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Preface: CERME 12 in virtual Bolzano
Carl Winsløw

ERME President
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The Conferences of ERME (European society for Research in Mathematics Education) have been 
held roughly biannually since 1998. The core of the conference is the thematic working groups
(TWG) in which new, related research studies are discussed, based on papers which participants read 
in advance. While this format has remained almost unchanged since 1998, the scale and scope of 
CERME have developed considerably over the years: from 120 participants and 7 TWG at CERME
1, to 915 participants and 27 TWG at CERME 12. Moreover, CERME has gone from being a mainly 
regional congress (with only a few participants from other continents) to being a truly global event in 
mathematics education research, known for fostering high quality scientific communication, 
cooperation and collaboration. At CERME12, no less than 48 nations were represented (Table 1).

At the same time, it is evident that CERME12 was a very special – and historically difficult – congress 
to organize. It was first scheduled for February 3-7, 2021. In May 2020, the ERME board announced 
its decision to postpone the congress by one year, due to the then roaring outbreak of the COVID-19
pandemic. Indeed, large parts of the world – and most of Europe – continued to experience lockdowns 
and restrictions that would have made the scheduled congress impossible. Instead, an online Pre-
CERME12 event was organized in February 2021, hosted by the Institute of Education at University 
College London, and made possible by the tireless efforts of the team led by Jeremy Hodgen and 
Eirini Geraniou (also chair resp. co-chair of the IPC of CERME12). The Pre-CERME12 event 
allowed the 27 TWGs to meet and prepare for conference, now postponed to 2022. 

The biannual General Assembly of ERME was also held during this event. We warmly thank Susanne 
Prediger for her service as President of ERME from 2017 to 2021! Her leadership also contributed 
crucially to the organisation of CERME12, and thus to the results presented in these proceedings. 

During the summer and fall of 2021, we all continued to plan for CERME12 as an onsite event in 
Bolzano, Italy. The YESS summer school was held near Bolzano in August, with great success. More 
than 700 papers and posters were submitted for CERME12 in September. But in November 2021, 
new and unknown variants of the virus appeared. Their alarming spread forced us to reconsider the 
situation. Finally, the LOC, the IPC and the ERME board jointly decided that CERME12 would be 
held as an online congress, as announced in a mail sent to all members of ERME on December 1st:

It is with great sadness that we must communicate a decision which is forced upon us by the current 
developments of the COVID epidemic in Europe, and which has been taken by the ERME board 
in full agreement with us: CERME12 will be organized by the Bolzano team as an online 
conference, on the same dates as originally foreseen. For a long time we hoped for the much 
desired possibility of having the first CERME in three years as a normal, face to face event. 
Organizing a virtual CERME – which we will strive to hold as much “CERME spirit” as possible 
– will be a very demanding task, both in terms of finding good technical solutions, and in terms of
organizing the programme and preparing the many TWG teams in a good way.
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Germany 209 Turkey 15 Iceland 3
Norway 85 Ireland 13 Lithuania 3
Italy 81 Czech Rep. 11 New Zealand 3
Spain 62 Slovakia 11 China 2
Sweden 62 Chile 9 Colombia 2
USA 41 Brazil 8 Hong Kong 2
UK 38 Croatia 8 Poland 2
Israel 31 Finland 6 Algeria 1
Netherlands 26 South Africa 6 Egypt 1
Denmark 24 Switzerland 6 Faroe Islands 1
France 21 Australia 5 Malta 1
Austria 20 Malawi 5 Romania 1
Canada 19 Mexico 5 Russia 1
Greece 19 Belgium 4 Thailand 1
Portugal 17 Japan 4 Tunisia 1
Hungary 15 Cyprus 3 Ukraine 1

Table 1: The success of CERME12 in numbers – 915 participants from 48 countries

Indeed, it took a unique tour de force for all organisers to prepare – in just two months – an online 
version of CERME, based as it is on group work and interaction, rather than on one-way presentations 
(which are relatively easy to transmit online). These effort was crowned by the best success the new 
conditions could possibly allow: an online congress with more participants than ever, with virtually 
no technical problems, and not least with a high level of participant satisfaction.

In the history of ERME, CERME12 will be remembered as a scientific highlight during the long and
hard pandemic. First of all, that is due to the plenary speakers and panelists, and to the contributors 
of papers and posters. Your efforts shine through the quality of the scientific texts offered by these
proceedings. ERME, as a society of scholars, was not stopped – hardly delayed – by the pandemic, 
thanks to your ingenuity and unfailing determination to do and share first class research.

The realization of CERME12 was made possible also by the many people who organised the 
congress, under the difficult conditions alluded to above, namely:

- The Local Organizing committee, led by Giorgio Bolondi and Federica Ferreti, and all of the
Bolzano team, including also the technicians who made the online congress run smoothly;

- The International Programme committee, led by Jeremy Hodgen and Eirini Geraniou;

- The leader teams of all 27 Thematic Working Groups.

For all your tireless and unselfish work during the three years between CERME 11 and CERME 12,
the community owes you immense and extraordinary gratitude.

And the story goes on: ERME invites all interested researchers to CERME 13 (Budapest , Hungary, 
July 2023), and after that, to CERME 14 to be held in real Bolzano in February 2025.
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About CERME12
The Eleventh Congress of European Research in Mathematics Education (CERME 12) took place 
virtually, hosted by the Free University of Bozen-Bolzano, Italy, from 2nd to 6th of February 2022, 
after a year’s delay due to the pandemic. Jeremy Hodgen (UK) and Eirini Geraniou (UK) were chair 
and co-chair of the International Programme Committee (IPC), which comprised Giorgio Bolondi 
(Italy), Jason Cooper (Israel), Ana Donevska-Todorova (Germany / North-Macedonia), Çiğdem 
Haser (Finland / Turkey), Uffe Thomas Jankvist (Denmark), Leander Kempen (Germany), Esther 
Levenson (Israel), Nuria Planas (Spain) and Michiel Veldhuis (The Netherlands). Giorgio Bolondi 
and Federica Ferreti were chair and co-chair, respectively, of the Local Organizing Committee 
(LOC). 

CERME12 hosted 27 Thematic Working Groups, listed in the table below. The TWGs 11 and 27 
were new TWGs, created following a call launched just after CERME11, and a selection process
involving the CERME12 IPC and the ERME board. They have both been very successful. Nine of 
the TWGs received so many submissions that they had to be split in two – more precisely the TWGs 
01, 03, 05, 09, 14, 16, 18, 19 and 20. In the end, CERME12 had 27 TWG leaders and 110 TWG co-
leaders. 

Thematic Working Group Leader Co-Leaders

TWG1: Argumentation and Proof Andreas Moutsios-Rentzos 

(Greece)

Orly Buchbinder (USA); Jenny 

Christine Cramer (Germany); 

Nicolas Leon (YR) until Aug 2021; 

and from Sep 2021: Viviane 

Durand-Guerrier (France); David 

A. Reid (Norway); Mei Yang
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(British Indian Ocean 

Territory/UK) YR

TWG2: Arithmetic and Number 

Systems

Elisabeth Rathgeb-Schnierer 

(Germany)

Judy Sayers (UK); Beatrice Vargas 

Dorneles (Brazil) until Sep 2021; 

Pernille Bødtker Sunde (Denmark) 

from Sep 2021; Renata Carvalho 

(Portugal) YR

TWG3: Algebraic Thinking Dave Hewitt (UK) Maria Chimoni (Cyprus); Cecilia 

Kilhamn (Sweden); Luis Radford 

(Canada) from Sep 2021; Jorunn 

Reinhardtsen (Norway) YR

TWG4: Geometry Teaching and 

Learning

Michela Maschietto (Italy) Alik Palatnik (Israel); Lina 

Brunheira (Portugal); Chrysi 

Papadaki (Germany) YR

TWG5: Probability and Statistics 

Education

Caterina Primi (Italy) Sibel Kazak (Turkey); Aisling Leavy 

(Ireland); Orlando Rafael Gonzalez 

(Thailand); Daniel Frischemeier 

(Germany) YR

TWG6: Applications and 

Modelling

Berta Barquero (Spain) Susana Carreira (Portugal); Jonas 

Bergman Ärlebäck (Sweden); 

Katrin Vorhölter (Germany); 

Gilbert Greefrath (Germany) from 

Sep 2021; Britta Eyrich Jessen 

(Denmark) YR

TWG7: Adult Mathematics 

Education

Kees Hoogland (The Netherlands) Javíer Díez-Palomar (Spain); Fiona 
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Editorial information
These proceedings are available as a complete volume online on the ERME website and each 
individual text is also available on the HAL open archive, where it can be found through keywords, 
title or author name. This has been the practice since CERME9, to increase the visibility of the huge 
work done in CERME conferences. 

This volume begins with texts corresponding to the three plenary activities of CERME12: the plenary 
lecture by Susanne Prediger (Germany) on “Enhancing language for developing conceptual 
understanding: A research journey connecting different research approaches”; the plenary lecture by 
Jeppe Skott (Sweden / Norway) on “Conceptualizing individual-context relationships in teaching: 
Developments in research on teachers’ knowledge, beliefs and identity”; and finally the panel 
discussion “Big Questions in Mathematics Education”. This panel discussion was led by Anna 
Baccaglini-Frank (Italy), Ingi Højsted (Faroe Islands) and Janka Medova (Slovakia), chaired by 
Michiel Veldhuis (The Netherlands) and moderated by Eirini Geraniou (UK/Greece). The two 
plenary speakers, Susanne Prediger and Jeppe Skott, each gave a response to the panel discussion.

After the plenaries, the reader will find 27 chapters corresponding to the work done in the TWGs of 
CERME12 (with combined introductions from all the split TWGs). These chapters follow a similar 
structure: they start with an introduction; then the long paper contributions (8-page papers) and the 
short poster contributions (2 pages) are presented – in alphabetical order by first author’s name. 

There are two kinds of introductions to the TWGs, according to the team’s choice: short introductions 
(4 pages) presenting the contributions; or long introductions (8 pages), which propose, in addition, 
an analysis of the current research on the theme of the TWG, and perspectives for the future. TWGs 
04, 06, 07, 09, 14, 15, 17, 18, 19, 22, 25 and 26 have chosen this form of long introduction. 

The publication of these proceedings is the result of a collaborative work, involving the CERME12 
IPC, the TWG leaders and co-leaders, the LOC chair and co-chair and the wider team at Bozen-
Bolzano. Particular thanks are due to Katrin Lambacher. We warmly thank all these people for their 
involvement, and hope that this volume will contribute to the development of mathematics education 
research in Europe and beyond.
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Conceptualizing individual-context relationships in teaching: 
Developments in research on teachers’ knowledge, beliefs and 

identity 
Jeppe Skott 

Linnaeus University, Sweden, & University of Agder, Norway;  
jeppe.skott@lnu.se & jeppe.skott@uia.no

Abstract: Research on teachers’ knowledge, beliefs and identity have contributed with 
significant new understandings of their respective fields. In this paper I track developments in 
each of them over the last few decades and address the question of how individual-context 
relationships have been conceptualized. Part of the answer is that the two first fields have 
primarily drawn on the constructivist inspiration that initially gave rise to them, while identity 
research has been based on more fundamentally social understandings of human functioning.
Another part of the answer is that none of the three fields has to any great extent drawn on
interactionist approaches. I suggest that doing so may be a fruitful way ahead, if we want to 
understand the role of the teacher for group life as it emerges in schools and classrooms.     

Keywords: Teachers knowledge, teachers’ beliefs, teacher identity, the social turn, 
interactionism.

Research on teachers and teaching
Studies of teachers and teaching have been a prominent part of mathematics education research 
for decades (Sfard, 2005). This is so not least at CERME conferences, where the research 
interest seems to have grown consistently over the last 20 years (Skott et al., 2018). Large parts 
of this research have focused on teachers’ knowledge, beliefs and identity, which have often 
been treated as separate teacher characteristics and dealt with by use of different theoretical 
frameworks. 

Inspired by constructivism, research on teachers’ knowledge and beliefs has traditionally 
considered their respective key constructs mental entities residing within the individual and
been premised on the expectation that they have considerable impact on teaching quality and 
student learning (Cross Francis et al., 2015; Skott, 2015b; Sowder, 2007). In this sense, 
teachers’ knowledge and beliefs have been treated as almost independent variables and semi-
causal determinants of classroom practice. 

Over the last 10-20 years, this approach to research on and with teachers has been challenged 
and modified, and perspectives with a stronger social and contextual emphasis have been 
adopted. This is so in two ways. First, studies of teachers’ knowledge and beliefs tend to be less 
inclined than before to expect that these mental constructs may serve as explanatory principles 
for practice and to a greater extent adopt – or at least call for – dynamic perspectives on the 
relationships between knowledge and beliefs on the one hand and classroom practices on the 
other (Ball, 2018; Skott, 2015c). Second, the field of teachers’ professional identities has grown 
into prominence, generally using more fundamentally social frameworks when studying 
teaching-learning processes (e.g. Darragh, 2016; Skott, 2013). In general, then, individual-
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context relationships are viewed differently now than a few decades ago. However, this is so in 
different ways within and across the three sub-fields.  

One aim of the present paper is to outline significant aspects of these developments and 
elaborate on the theoretical differences involved. This means that rather than discussing specific 
results on, for instance, teachers’ knowledge, beliefs, and identities as they relate to particular 
mathematical contents (e.g. algebra or problem solving) or particular educational settings (e.g. 
special categories of schools or teachers), I describe developments from a somewhat different 
vantage point. Doing so, I am inspired by what Lerman calls “the social turn” in mathematics 
education research (Lerman, 2000, 2006). The questions I ask are how and to what extent 
aspects of “the social” have been taken into account in studies of teachers’ knowledge, beliefs, 
and identity, in particular how the individual-context interface is dealt with. It is part of the 
answer to the latter of these questions that interactionism has played next to no role. It is another 
aim of the paper to invite considerations of the potential of interactionism, if intentions of 
research on and with teachers include understanding the meaning teachers make of their 
professional lives and the role of teachers for the practices that evolve in their classrooms.  

I begin the paper with accounts of the developments and main emphases in research on teachers’ 
knowledge, beliefs, and identities over the last few decades. It is beyond the scope of the paper 
to present a comprehensive review of research in all three fields, and my presentation of the 
literature is necessarily selective. I seek to present a critical overview that does justice to 
significant developments within each of them, including their similarities and differences. One 
of the differences is the extent to which the literature is self-reflective and discusses its own key 
constructs (i.e. knowledge, beliefs and identity) and the methodological problems involved in 
researching them. The notions beliefs and identity, for instance, are recurrent objects of 
attention, while this is less so with knowledge. Another difference is that there are a few 
established frameworks that dominate research on teachers’ knowledge, all of which draw on 
Shulman’s work from the 1980s, while a similar canon of frameworks does not exist in the two 
other fields. These differences are necessarily reflected in the structure of my presentation.

Following from that, I relate this account to “the social turn”, that is, “the emergence into the 
mathematics education research community of theories that see meaning, thinking and 
reasoning as products of social activity” (Lerman, 2000, p. 23). I do so by discussing three 
aspects of research on teachers’ professional identities, those of agency, situatedness and 
structure. Using this triad, I argue that the individual-context relationship is conceived of 
differently across and to some extent within the three fields. However, I also suggest that 
interactionist perspectives are conspicuously absent in all of them and that an interactionist 
complement to current approaches may be useful when seeking to understand the dynamic 
character of the teacher’s role for the emergence of group life in schools and classrooms. In 
particular, I refer to a framework called Patterns of Participation (PoP), a result of networking 
social practice theory (e.g. Holland et al., 1998; Lave, 2019; Wenger, 1998) with symbolic 
interactionism (e.g. Blumer, 1969; Prus, 1996) as one possible interactionist approach. 
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Research on teachers’ knowledge
Background and rationale of research on teachers’ knowledge

Teachers’ knowledge of the subjects they teach has been discussed for decades, including its 
relation to knowledge of and proficiency with other aspects of the profession (Hill et al., 2007). 
Some of these studies seek to find positive correlations between teachers’ academic proficiency 
with mathematics and their students’ performance. The studies by Begle (1972) and Eisenberg 
(1977) are classic examples of this. Conducted at the height of the New Maths era, Begle’s
study tested highly qualified teachers’ understanding of “modern algebra” (groups, rings and 
fields) and the real number system and found that any correlation with student learning was so 
small “as to be educationally insignificant” (p. 13). Eisenberg (1977) did a similar study with a 
more representative group of teachers, but also found that “teacher knowledge of subject matter 
had little effect on student performance” (p. 222). 

Summing up the results from these and similar studies, Adding it up, a report from the National 
Research Council in USA, argues much later that “proposals to improve mathematics
instruction by simply increasing the number of mathematics courses required of teachers are 
not likely to be successful” (National Research Council, 2001, p. 375). Based on such results, 
the rationale behind later research on mathematics teachers’ knowledge has been to come to 
grips with what mathematics teachers need to know and how. The results suggest that this 
knowledge needs to be closely linked to the work of teaching, if it is to improve instruction (e.g. 
Hoover et al., 2016). The most dominant frameworks that make such links draw on Shulman’s 
work from the 1980s (Shulman, 1986, 1987). 

Shulman’s knowledge base for teaching

In the 1970s and 1980s, behaviourist process-product studies played a significant role in
research on teachers (e.g. Medley, 1977). Shulman challenged this approach and bemoaned its 
lack of attention to teachers’ thinking and to the contents of instruction, which he called a blind 
spot and a missing paradigm in the field (Shulman, 1986, 2015).  In response, he built on a 
study of novice, secondary teachers of English, biology, social studies, and mathematics to
develop a description of teachers’ knowledge with seven categories, three of which were 
immediately related to the contents of instruction: curriculum knowledge, content knowledge,
and pedagogical content knowledge (Shulman, 1986, 1987). Especially the last two of these 
have been discussed extensively in mathematics education and in other educational scholarship.  

In relation to content knowledge, Shulman says that teachers are members of scholarly 
communities and “must understand the structures of subject matter, [that is] the principles of 
conceptual organization, and the principles of inquiry” (Shulman, 1987, p. 9). In essence, this 
does not differ from the knowledge of others, who know the subject. In contrast, pedagogical 
content knowledge (PCK), the most frequently cited category in Shulman’s framework, is 
specialised to teaching. It is that blend of content and pedagogy that forms “an understanding 
of how particular topics, problems, or issues are organized, represented, and adapted to the 
diverse interests and abilities of learners, and presented for instruction” (Shulman, 1987, p. 8).
In a continental European tradition this resembles methodological or technical aspects of 
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didaktik and in the US it was part of the testing of teachers, also before Shulman coined the 
term of PCK (Hill et al., 2007).  

Frameworks on mathematics teachers’ knowledge that build on Shulman

A long list of studies have drawn on Shulman’s knowledge base for teaching, both in 
mathematics and in other subjects. Generally, they shift the emphasis from analyses of the 
subjects themselves to how they are used in teaching. It is a joint outcome that it is not only 
PCK that is special to the profession, so are aspects of the contents itself. Four of the most 
prominent of these frameworks in mathematics are Ma’s Profound Understanding of 
Fundamental Mathematics; Teachers’ Specialized Knowledge of Mathematics developed by 
Carrillo and his colleagues; Rowland et al.’s Knowledge Quartet; and Ball et al.’s Mathematical 
Knowledge for Teaching.

Ma (1999) studied the mathematical knowledge of Chinese and U.S. primary teachers. At the 
time of the study, Chinese teachers were educated in normal schools that recruited grade-9
students for a 2-3 year programme (Li, 2012). Novice teachers, then, were 18-19 years old and 
had no post-secondary education. In contrast, all American teachers had at least a college 
degree. In spite of that, the American teachers were outperformed by their Chinese colleagues 
on tasks from the primary school curriculum, for instance 1 ÷ , and when asked to suggest 
educationally relevant situations to represent the meaning of such tasks. Ma concludes that there 
were significant differences between “the mathematical substance” of the knowledge of the two 
groups of teachers (p. 92). The Chinese participants were closer to having Profound 
Understanding of Fundamental Mathematics as they focussed on the relationships among the 
four operations and on longitudinal coherence, while the American teachers had a fragmented 
understanding of school mathematics that missed important interconnections among different 
parts of it.  

Carrillo and colleagues introduced a framework called Mathematics Teachers’ Specialized 
Knowledge (MTSK) (e.g. Carrillo-Yañez et al., 2018; Carrillo, 2021). MTSK, which has been 
used extensively in recent CERMEs, draws on long-term cooperation between researchers and 
teachers working at different educational levels. MTSK structures knowledge in terms of 
mathematical knowledge and pedagogical content knowledge, which are supplemented with a 
category of beliefs. Mathematical knowledge is divided in the three sub-categories on topics, 
practices and structure of the subject and PCK consists of knowledge of teaching, of learning 
and of standards for learning mathematics. MTSK focuses “exclusively on the knowledge 
specific to the mathematics teacher” (Carrillo-Yañez et al., 2018, p. 237) and considers neither 
professional knowledge that may be shared with teachers of other subjects, nor whether parts 
of the knowledge in the model is shared with other professions. As Carrillo (2021) says, it “is 
the model in its entirety that is specialized” (p. 90). 

Rowland et al. worked with prospective teachers and developed the Knowledge Quartet (KQ) 
as a perspective on the knowledge they need and on the situations in which they need it 
(Rowland et al., 2005; Rowland, 2008). The four parts of the KQ – foundation, transformation, 
connections and contingency – describe how the participants’ content-related knowledge 
“contribute to their teaching during the […] the school-based placements” (Rowland et al., 
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2005, p. 256). In Rowland et al.’s terminology, foundations consist of knowledge and beliefs 
“possessed” and concern “knowledge, understanding and ready recourse to [teachers’] learning 
in the academy […] irrespective of whether it is being put to purposeful use” (Rowland et al., 
2005, p. 260, emphasis in original). Transformation and connections are categories of 
“knowledge in action”. Transformations describe how “knowledge possessed” needs to be 
transformed to be educationally powerful, and connections concern the coherence of 
mathematics, that is, how concepts and procedures may be linked and sequenced in education.
The last element of the KQ, contingency, is “knowledge in interaction” and concerns teachers’ 
capacity to deal with unexpected, content-related issues, for instance when students ask
unexpected questions or make unforeseen conjectures. Contingency, then, includes being able
to respond to students’ ideas as they come up and the willingness and capacity to deviate from 
the original plan if necessary. 

The most referenced perspective on mathematics teachers’ knowledge is Mathematical 
Knowledge for Teaching (MKT), developed by Ball and her colleagues (e.g. Ball & Bass, 2000; 
Ball et al., 2008). Like the frameworks mentioned previously, MKT is an answer to the 
questions of what knowledge teachers need in instruction and whether and how they need to 
know it differently from others, who are also proficient with the subject. As mentioned before, 
Ball et al. build on Shulman, and one contribution of MKT is an elaboration of what may be 
entailed in PCK in mathematics. Another contribution is a distinction between common content
knowledge, that is, knowledge of the contents that teachers share with others who know the 
subject, and a form of specialised knowledge of the contents itself, “mathematical knowledge 
that equip [teachers] to navigate […] complex mathematical transactions flexibly and 
sensitively with diverse students in different lessons” (Ball & Bass, 2000, p. 94). One aspect of 
specialised content knowledge (SCK) is to be able to “unpack” mathematics, that is, pulling 
apart compressed concepts and procedures in order to help students understand inherent 
meanings. SCK is required also if teachers are to deal with tasks such as “responding to 
students’ ‘why’ questions”, “linking representations to underlying ideas and to other 
representations”, and “giving or evaluating mathematical explanations” (Ball et al., 2008, p. 
400; the authors list 16 such mathematical tasks of teaching). It is an important aspect of the
early work on MKT that SCK be understood in relative isolation from educational issues. It is 
“a kind of mathematical understanding that is pedagogically useful and ready, [but] not bundled 
in advance with other considerations of students or learning or pedagogy” (p. 88, emphasis 
added). 

Over the last few years, Ball has focused increasingly on the work of teaching itself, rather than 
on a knowledge base on which it is expected to rest. She deplores that “[s]cholars were 
[previously] studying classrooms and analysing discourse, tasks, and interactions, but were not 
unpacking what is involved for the teacher in doing those things” (Ball, 2018, p. 14). This 
perspective challenges the connotation of knowledge stability, which is apparent in Ball’s 
earlier work, and it is reflected also in a change of terminology, as Ball (like others) shifts her 
wording from knowledge to knowing and from teacher to teaching. The more dynamic 
understanding of the teacher-context relationship reflects the recognition that “teaching is co-
constructed in classrooms through a dynamic interplay of relationships, situated in broad socio-
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political, historical, economic, cultural, community, and family environments” (p. 15). The shift 
of emphasis invites interpretations of teaching and teacher proficiency that align more closely 
with the social turn. They also seem to question the previous claim that mathematical 
knowledge is not “bundled” with considerations of students and pedagogy. 

Looking across the frameworks on mathematics teachers’ knowledge: professional 
emphases and constructivist inspiration 

The frameworks presented above have contributed significantly to shifting our understandings 
of what teachers need to know by emphasising the professional and specialised aspects of 
teachers’ knowledge. They differ in their empirical grounding as well as with regard to their 
interpretation of what specialised may mean; to the categories of knowledge they use; to 
whether beliefs are included or not; and to their relative emphasis on knowledge itself relative 
to the situations in which the categories become professionally relevant.  

The frameworks, however, all build on Shulman’s work from the 1980s, which, as mentioned 
earlier, may be seen as a response to process-product studies of teachers and teaching. There 
are two related aspects to this. First, process-product research had no interest in the contents of 
instruction. In line with Shulman, the four frameworks refocus attention to the contents. They 
also take Shulman’s emphasis on professionalism a step further by suggesting that it is not only 
PCK, but also parts of teachers’ knowledge of the subject matter itself that is special to teaching. 
Content knowledge is, then, not merely a matter of knowing mathematics, but a matter knowing 
what and how mathematics is used in teaching. As Ball and Bass (2002) say the knowledge 
teachers need “has features that are rooted in the mathematical demands of teaching itself” (p. 
4). In this sense, there is a contextual element to the understandings of teachers’ knowledge in 
all of them: knowledge of the contents is at least to some extent contextualised to the profession. 

Second, Shulman’s knowledge base for teaching was a response to the behaviourist stance of 
process-product studies. In contrast, he and his team focused on “teacher thinking, teacher 
knowledge, teacher planning, teacher decision-making, and teachers’ conceptions of their 
subject matter and how that related to how they performed” (Shulman, 2015, p. 6). There is a 
cognitive emphasis and a focus on individual meaning-making in this (cf. Shulman & Shulman, 
2004) that aligns with attempts in mathematics education at the time to initiate “a constructivist 
revolution […] to countermand the stranglehold that behaviorism had on the field” (Steffe, 
2007, p. 281). This “revolution” brought with it new perspectives on students’ learning and 
knowing, by arguing that knowledge and meaning are acquired and possessed individually, 
although possibly supported or constrained by the social situation. A similar interpretation 
seems to have guided the frameworks on mathematics teachers’ knowledge, at least until fairly 
recently. Although they are different, the frameworks all originally carried connotations that 
knowledge is possessed by and resides in the individual, although enactment may be 
contextually framed. Until recently, they did not draw on other understandings of what it may 
mean to know. 
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Research on teachers’ beliefs
Background and rationale of belief research

Research on teachers’ beliefs also gained momentum in the 1980s, both in mathematics 
education and in other educational scholarship (Ashton, 2015; Skott, 2015c). There were two 
aspects to the background for the growing interest (Skott, 2015b). First, some researchers 
sought to understand classroom processes from the teachers’ perspectives (e.g. Nespor, 1987).
Elbaz (1983), for instance, explained her own intention of doing so by distancing herself from 
the general field of research on teachers:

Too frequently the emphasis was on diagnosing teacher failings and on prescribing 
improvements, whereas I was interested in seeing and understanding the situation from the 
teacher’s own perspective. (Elbaz, 1983, p. 4)  

Second, there was an interest in solving “problems of implementation”. The constructivist 
revolution coincided with a shift of emphasis from subject matter products to processes, in 
mathematics for instance from algorithms, definitions and proofs to problem solving and later 
to for instance reasoning and communication. The (sometimes implicit) question in belief 
research was – and still is – how one may expect this reform to materialise, if its priorities are 
not shared by the teachers. Therefore, much research has focused on  (1) what teachers’ believe
about mathematics and its teaching and learning, sometimes focussed on particular 
mathematical topics (e.g. problem solving, probability, algebra) and supplemented with their 
beliefs about themselves as learners, teachers and doers of mathematics; (2) how beliefs may 
change; and (3) what the relationships are between beliefs and classroom practice.

Thompson (1984) was one of the first in mathematics to point to belief research as a possible 
challenge to the behaviourist underpinnings of most research on teachers and teaching at the 
time. She used the term conceptions about a union of teachers’ “beliefs, views, and preferences” 
and argued that “[f]ailure to recognize the role that the teachers' conceptions might play in 
shaping their behavior is likely to result in misguided efforts to improve the quality of
mathematics instruction” (p. 106). Based on a multiple case study of three American junior high 
school teachers, she addressed the questions of (1) whether there were “incongruities between 
the teachers' characteristic instructional behavior and their professed conceptions”; (2) how 
such incongruities may be explained; and (3) whether differences among the teachers may be 
accounted for with reference to their conceptions (p. 107). 

Thompson’s second research question suggests that she considered teachers’ conceptions the 
default explanation for classroom practice, as any discrepancy between the two was in need of
an explanation. Based on a similar premise, a tremendous amount of research has been 
conducted on teachers’ beliefs ever since, both in mathematics education and beyond (e.g. Clark 
& Peterson, 1986; Conner & Singletary, 2021; Grossman et al., 1989; Hoffman & Seidel, 2015; 
Pajares, 1993; Richardsen, 2003; Thompson, 1992; Wilson & Cooney, 2002; Yurekli et al., 
2020). In fact, the expectation of belief impact on practice has been the main raison d’être of 
the field, even to the extent that it has at times been turned into one of direct causality (e.g. 
Ernest, 1991; Schoenfeld, 1992).  
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However, belief research has turned out to be a complicated endeavour. Belief change, often 
seen as an affective counterpart to conceptual change, is difficult to accomplish (Gill & Hardin, 
2015); beliefs are not readily observable, and it has proven difficult methodologically to elicit, 
infer or attribute beliefs, to teachers, based on more readily observable indicators (Abd-el-
Khalick & Lederman, 2000; Philipp, 2007); and the congruity thesis has been challenged as 
much as confirmed in empirical studies (Fives & Buehl, 2012). This last difficulty has led to 
modifications of the initial emphasis on impact. Before discussing this issue further, I introduce 
one other challenge, the conceptual problems with the key construct of beliefs.  

The concept of beliefs

As mentioned above, Thompson used the term of conceptions about a combination of beliefs, 
views and preferences. She did so without specifying differences between the three elements or 
relationships between the higher-level concept of conceptions and each of them. This is not 
uncommon in the field. As Pajares (1992) said, the construct of beliefs is “messy” and travels 
under alias. Mason (2004) made a list of related terms, indeed, one or more beginning with
every letter of the alphabet – affect, beliefs, conceptions, …, zeal – and commented at the end: 
“No wonder it is hard to make sense of it all!” (p. 347). This terminological multiplicity goes 
hand in hand with conceptual confusion and there is little consensus about how beliefs – or 
many of the other terms on offer – may be defined and relate for instance to knowledge (Gill & 
Fives, 2015; Kagan, 1992; Philipp, 2007; Russ et al., 2016).  

Beyond discussions of the concept of beliefs itself, considerable effort has gone into 
considerations of how beliefs are held and how they function (e.g. Cooney et al., 1998; Pajares, 
1992). It is argued, for instance, that they may be unconscious and implicit (e.g. Buehl & Beck, 
2015; Kagan, 1992; Rokeach, 1969). Green (1971) suggests that beliefs may have a mutual 
quasi-logical relationship, as they may be primary or derivative in relation to one another. 
Further, they may be central or peripheral in terms of psychological significance, and they are 
held in clusters that are internally coherent, but may be somewhat mutually isolated. As an 
example, one may consider possible quasi-logical relationships for a teacher among different 
beliefs about mathematics, students, learning, and about herself in relation to mathematics. One 
may also wonder what the relative significance is of these beliefs, whether and how they are 
clustered with each other or other professionally relevant beliefs, and what it matters for belief 
impact how they are held.  

It has also been argued that different beliefs serve different functions. Based on a 
comprehensive literature review, Fives & Buehl (2012) argue that beliefs may filter information 
and be important for what a teacher pays attention to for instance in professional development 
(PD). Beliefs may also structure interpretations of situations and problems, for instance a 
problematic classroom situation. Finally, they may guide action, for instance when self-efficacy 
beliefs play a role in the teacher’s perseverance in a classroom interaction.   

In spite of the confusion about the concept, there does seem to be some consensus about how 
the term of beliefs is used. A core of the beliefs construct – as used in the literature – may be 
summed up in four features, namely that beliefs are (1) subjectively true and (2) affectively 
laden and that they (3) build on substantial prior experiences and (4) have some explanatory 
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power in relation to action and meaning-making (Skott, 2015b). These four characteristics of 
how the term is used suggest, respectively, that the term is associated with significant degrees 
of conviction, commitment, stability and impact. The last two of these indicate that the notion 
of beliefs is an example of what Sfard (2008) calls objectifications, that is, reifications of 
processes and actions that take on a life of their own as they are interpreted as self-sustained 
entities with predictive power (Skott, 2015c). 

Returning to the quandary of belief impact

As indicated earlier, one finding in belief research is that the impact of teachers’ beliefs on 
classroom practice may not be as direct as initially expected. For the larger part of the field, 
however, beliefs are still considered the default explanation for classroom practice and as for 
Thompson (1984) an apparent lack of congruity calls for explanations. Sometimes explanations 
for lack of documented belief impact refer to methodological problems with accessing these 
elusive constructs or to the conceptual issues outlined above. Fives & Buehl (2012) argue that 
if different beliefs may serve different functions (filtering information, framing observations, 
and guiding action), it is hardly surprising that beliefs inferred from a teacher’s response to a 
questionnaire differ from those accessed when observing how she acts in a possibly conflictual 
classroom situation. Others have argued that apparent lack of compatibility between espoused 
and enacted beliefs may reveal that the beliefs are held differently, for instance that beliefs 
enacted may be unconscious, but more centrally held than those espoused in a research 
interview (e.g. Cross Francis, 2015). Still others suggest that the problem is caused by 
methodological difficulties and may be solved by using more specific self-report items or more 
fine-grained methods of analysis (e.g. Speer, 2008; Yurekli et al., 2020). Finally, Leatham 
(2006) suggests viewing beliefs as “sensible systems”, which – in a situation with apparent 
inconsistencies – requires the researcher to “look deeper, for we must have either misunderstood 
the implications of that belief, or some other belief took precedence in that particular situation” 
(p. 95).  Leatham suggests an interpretive stance in which inconsistency is an observer’s 
perspective that does not do justice to the complexities of teaching.  

The approaches above come to the rescue of the premise of belief impact by referring to the 
conceptual or methodological problems of the research process itself. Others have pointed to 
more substantive issues by suggesting more dynamic interpretations of belief-practice 
relationships (cf. Skott, 2015b). Schoenfeld (2011) modifies his previous deterministic 
description of belief impact somewhat and suggests that classroom dynamics may require the 
teacher to reconsider his/her approach. However, subsuming beliefs under the broader heading 
of orientations, he maintains that the teacher’s “routine and non-routine decision making can 
be fully characterized as a function of his [mathematics–related] resources, goals and 
orientations” (p. 13). Sztajn (2003) and Skott (2001) suggest that the significance of 
mathematics-related beliefs may be challenged and overruled by other educational concerns in 
a teaching-learning situation, and Lerman (2001) and Hoyles (1992) argue that beliefs are 
situated and that differences between for instance those espoused in a research interview and 
observed in a classroom interaction are different by virtue of those situations. The last two sets 
of approaches do away, respectively, with the premise that mathematics-related beliefs impact 
practice and the expectation of belief stability across contexts. However, they both use beliefs 
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about objectified mental entities, although the significant beliefs in a particular situation may 
not relate to mathematics and may not be temporally and contextually stable.  

One may regret the lack of an agreed-upon definition of beliefs and the methodological 
difficulties involved in researching them. These problems may be seen as an impediment to 
growth in the field and to the accumulation of research results. However, developments in belief 
research indicate that the conceptual core of the term as outlined previously suffices for it to 
function as what Blumer (1969) calls a sensitizing concept, that is, a concept that does not 
“provide descriptions of what to see, […] [but] merely suggest directions along which to look” 
(p. 148)1. In combination with the multiplicity of methodological approaches used in the field, 
this has led to more nuanced and multi-faceted understandings of affective aspects of teaching, 
including modifications to the field’s own initial rationale, the expectation of semi-causal 
relationships between stable, mathematics-related beliefs and practice. There has, then, been a 
move from beliefs to dynamic affect systems (cf. Pepin & Roesken-Winther, 2015), a move 
that has also been apparent at CERMEs (Skott et al., 2018). As suggested above, however, these 
modifications do not seem to change what is meant by the term beliefs. The larger part of the 
field draws on the original constructivist underpinnings, and even when these are challenged 
by notions of situatedness (Hoyles, 1992; Lerman, 2001), the perspective on beliefs as 
objectified mental entities may persist.

Research on teachers’ professional identities
Background and rationale of research on professional identities

Since the turn of the century, teacher identity has become a significant field in mathematics 
education, even though it has only played a minor role at CERMEs (Skott et al., 2018). As with 
studies of teachers’ beliefs, there seem to be two mutually related and often combined aspects 
to the research interest: One is to understand the lives of prospective or practising teachers in 
view of cultural and social demands and affordances (e.g. Arslan et al., 2021; Beauchamp & 
Thomas, 2011; Brown & McNamara, 2011; Cochran-Smith et al., 2012; Hong, 2010; Lutovac, 
2020; Skott, 2019); the other is to consider the character and development of identities as they 
relate to teachers’ participation in teacher education or PD programmes (e.g. Bobis et al. 2020;
Darragh and Radovic, 2019; Gresalfi & Cobb, 2011; Heyd-Metzuyanim, 2019; Hodgen & 
Askew, 2007; Horn et al., 2008; Jong, 2016; Ntow and Adler, 2019). Irrespective of which of 
these interests dominate a particular study, identity research moves beyond cognitive 
configurations such as knowledge and beliefs when seeking to understand teaching and teacher 
development. Hodgen and Askew’s (2007) wording that their case study of a primary teacher 
in the UK is based on the premise that professional change “involves at least in part becoming 
a ‘different’ teacher and a ‘different’ person” (p. 474) seems indicative of much research on 
professional identity. Part of the background to the interest in identity, then, is to challenge 

1 I reluctantly refer to Blumer here. As we shall see later, his theoretical stance is at odds with those adopted in 
belief research and he argues explicitly against the significance attached to constructs like beliefs. In spite of that, 
I find the notion of sensitizing concepts useful as a metaphorical description how the term of beliefs has functioned 
in belief research.  
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purely cognitive or epistemic approaches and move towards more comprehensive 
understandings of teachers and teaching, including social and cultural perspectives on identity 
and identity development. This is reflected in discussions about the concept itself.

The concept of identity

Teacher identity has become a productive line of research, but there is no agreement about a 
theoretical stance in the field, let alone about a definition of the concept itself (e.g. Beijard et 
al., 2004; Darragh, 2016; Day et al., 2006; Lutovac & Kaasila, 2018). In fact, the concept of 
professional identity seems as “messy” as the one of beliefs (cf. the section on beliefs).  

Based on her review of the literature, Darragh (2016) lists five different categories of 
frameworks used in identity research in mathematics education: participative (based on social 
practice theory), discursive, narrative, psychoanalytic, and performative (based on positioning 
theory). All of these have also been used in the subset of identity studies on teachers’ identities
and sometimes combined in different ways (e.g. Brown & McNamara, 2011; Losano et al., 
2018; Mosvold & Bjuland, 2016). However, the participative approach seems to dominate 
research on mathematics teachers’ professional identities (Lutovac & Kaasila, 2018).  

One main difference between the frameworks on offer is the emphasis on local contexts relative
to broader structural issues for the character and development of identities. In the first case, the 
main concern is with whether and how teachers negotiate and identify with normative identities 
in the locally social, for instance when engaged in PD. In the second case, structures and power 
relations beyond the current situation are from the beginning part of the conceptual framework. 

Across the most frequently used approaches, however, professional identities are considered 
socially constituted, in either a local or more structural sense, and consequently considered 
multiple, dynamic and contextually dependent, rather than somewhat stable personality traits. 
This profound role of “the social” in identity research is evident also in the most frequently 
used theoretical imports used in the field. Wenger (1998), for instance, talks about identities as 
negotiated ways of being a person in a context. Looking back on her own work on situated 
learning, Lave (2019) says that one goal was “to parse a community’s day-today practice with 
respect to producing ‘old-timers’ from ‘newcomers’” (p. 138), and that the concept of identity 
was introduced “to insist that knowledgeable skill is only a small part” of that process (p. 137). 
Holland et al. (1998) say that identities “must be conceptualized as they develop in social 
practice” (p. 5). And Gee (2000-2001) uses identity about “being recognized as a certain kind 
of person in a given context” (p. 99). The recurrent references to contexts and practices in these
wordings suggest that identities deal with the sense people make of themselves and each other 
at a particular time and place. They are conceived as individualities that are multiple and 
contextually dependent.  

Aspects of the core of identity

There seem to be three common aspects to and perspectives on lived identities in the definitions 
above, those of agency, situatedness, and structure (Skott, 2019). In combination with the 
concern for lived individualities, this identity triad may be seen as the core of the identity 
concept (figure 1). Like the core of the beliefs construct, it functions as a sensitizing concept 
that does not determine what to look at, but suggests directions along which to look.  
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Agency is an individual or communal willingness and capacity to act within social worlds, to 
influence how they unfold (e.g. Holland et al., 1998). It does not carry connotations of an 
independent and autonomous actor; rather the premise is that 

[b]oth the immediate and broader social contexts orient teachers’ actions, but do so in open-
ended ways, leaving space for professional decision-making and agency. Experiences of this
agentic space and of the outcomes of manoeuvring within it are aspects of identity. (Skott,
2019, p. 470)

Agency functions both when engaging actively in social practices and when being reluctant to 
do so. As an example of the latter situation, consider a teacher, who distances herself from the 
activities in the mathematics department at her school, because she experiences her colleagues 
as in opposition to the notion of quality instruction promoted by practices at her recent teacher 
education programme, which still functions an affectively-laden inspiration for her. Both her 
dissociation from the department and her affective and active affiliation with the teacher 
education programme are aspects of agency that may affect her professional experiences of 
herself at the school, that is, her professional identities.   

The second core aspect of professional identity is that of situatedness. It acknowledges the local 
negotiation of the meanings of a practice, including the significance and use of artefacts, 
reifications and relationships. Such negotiation relates to identity as it both establishes and 
unfolds by means of mutually acknowledged positions that influence professional experiences.
In the example above, the positions of the teacher in the department and at the school more 
generally are continually renegotiated, for instance positions of being an outsider, being elitist, 
or being a good mathematician. This negotiation may take place in department meetings, when 
having lunch in the staff room, and when establishing other – and possibly more productive – 
collaboration with colleagues beyond the department or with the leadership.   

Finally, there is a structural aspect to identity. The way I use the term, structure concerns issues 
stemming from beyond the immediate situation and therefore subject to little agentic control,
even if their meaning is negotiated locally. People, reifications, artefacts as well as networks of 
relationships among them may be subject to such structural influence. A dominant political 
discourse on teachers and teaching is in this sense structural. Schooling, as constituted globally 
and locally, is structural with its organisation within and between institutions, formal power 
relations and divisions of labour, and with the related formal qualification procedures and 
requirements, timetables, and assessment systems. These structural aspects position teachers 
and significantly influence lived experience in the profession. Consider again the example 
above. If a government decision is issued on the subject matter competence of teachers (e.g. all 
teachers need a Master’s degree) or on the introduction of new mathematical contents (e.g. 
computational thinking) the teacher may be positioned differently at the school, leading to 
different experiences of herself as (not) valued, as (in-)competent, and possibly as redundant. 

As we shall see later, the relative emphasis on and understandings of the relationships among 
the nodes of the identity triad differ between studies. But to some extent, most identity studies 
include all three, indicating a more fundamentally social understanding of the individual-
context relationship than in research on teachers’ knowledge and beliefs. 
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Summary – so far
It is time to sum up the discussion in order to address the questions of how research on teachers’ 
knowledge, beliefs and identity have developed over the last few decades, in particular how 
individual-context relationships are conceived and whether and how developments align with 
“the social turn”. I use the answers to set the stage for the following section.

The phrase of the social turn refers to a set of developments in mathematics education research 
beginning in the second half of the 1980s. This was at the peak of the constructivist revolution, 
but it was also the period in which the first references were made to theories and frameworks 
that challenged the exclusive emphasis on individual cognition and conceptualised learning and 
human functioning in more fundamentally social terms. Ever since, increasing numbers of 
studies have drawn on theoretical imports to mathematics education such as generations of 
cultural-historical activity theory (Engeström, 2001; Vygotsky, 1978, 1986; Wertsch, 1985),
social practice theory (Holland & Lave, 2001; Holland et al., 1998; Lave, 1988, 2019; Lave & 
Wenger, 1991; Wenger, 1998, 2010), discourse analysis (Gee, 2000-2001, 2005), and 
positioning theory (Harré & Van Langenhove, 1999), as well as on Sfard’s theory of 
commognition (Sfard, 2008). They have all fuelled “the strong version” of the social turn, as 
they describe “learning as development within socio-cultural historical practices and […] see 
meaning, thinking and reasoning as products of social activity” (Lerman, 2006, p. 172). 

My argument so far is that research on teachers’ knowledge and teachers’ beliefs that developed 
in the wake of the constructivist revolution were decidedly cognitive in their approach. In both 
fields, the respective key constructs were considered teacher characteristics that functioned 
almost as independent variables in relation to instruction and classroom practice. These 
constructivist underpinnings still seem to inform these lines of research. However, contextuality 

AGENCY

SITUATEDNESS

STRUCTURE

Figure 1: The identity triad: aspects of and perspectives on 
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has gradually been taken into account in both fields, also at CERMEs (Skott et al., 2018). The 
frameworks developed have explicitly phrased their understandings of teachers’ knowledge 
with reference to the profession, and both fields increasingly consider social challenges to how 
knowledge and beliefs are enacted, that is, adopt a dynamic acquisitionist stance. This means 
that to some extent the initial expectation of a semi-causal relationship between context-
independent knowledge and beliefs on the one hand and classroom practice on the other has 
been modified, and that context is considered a possible support to or limitation on the 
enactment of individuals’ knowledge and beliefs. Recently, steps have been taken in research 
on “knowledge” to adopt more fundamentally social perspectives on human functioning, 
reflected for instance in the use of the gerund knowing. In belief research, the more dynamic 
understandings do not encompass a reformulation of what it means to believe, for instance if 
reflected in a similar shift from beliefs to believing or affectively relating. Beliefs are still 
considered relatively stable mental entities that are acquired and possessed by individuals. In 
general, then, these fields have not turned social.

The situation is different in research on professional identities. This field took off after 
references to sociology, anthropology, and cultural psychology had become commonplace in 
mathematics education research. The emphasis on situatedness and structure and the 
understandings of agency in identity research indicate that it differs from most research on 
teachers’ knowledge and beliefs with regard to its stance on “the social”. In identity research, 
“the social” is generally not considered merely a set of external constraints on the otherwise 
autonomous functioning of the individual. Rather, “the social”, in the local as well as in the 
structural sense, significantly influences, and in some interpretations constitute professional 
identities. 

The identity triad – a tool for characterising approaches to identity research 
Different understandings of the relationships among the three aspects of the identity triad may 
serve to characterise approaches to identity research (Losano & Skott, submitted). Darragh and 
Radovic (2019), for instance, study the effects of long-term PD participation for a group of 
primary teachers in Chile. They explicitly distance themselves from approaches that do not 
sufficiently take “the wider social, cultural and political context” into consideration (p. 519). 
As they use the term, identities are discursive entities existing in a cultural realm beyond the 
individual and the local situation. Teachers select among and attach themselves to these cultural 
identities. With the terminology of the present paper, this is a highly structural perspective, and 
agency is a matter of selecting among predefined identities on offer in cultural worlds (cf. 
Losano & Skott, submitted). 

A different perspective is offered by Westaway (2019). She emphasises agency when focusing 
on how the experienced teacher in her South African case study enacts her professionalism.
This is done in ways that are supported and constrained by local and structural conditions. Not 
least in South Africa, structures and cultural mechanisms in the form of conflicting systemic 
roles stemming from the apartheid and post-apartheid eras “condition the way teachers express 
their […] teacher identities” (p. 484). However, Westaway distances herself from “systemic 
accounts” of identity, and in her study “the agency of the teacher is re-inserted into 
understanding why teachers continue to reproduce the old systemic roles of a teacher” (p. 490). 
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Finally, some research focuses on situatedness. This is often so in studies of whether and how 
a teacher education or PD programme supports teachers in moving from peripheral to more 
comprehensive participation in the reform (cf. Lave & Wenger, 1991). In this case,

reform-oriented practices become the centre of attention [and] the trend is to prioritise a 
particular set of practices, those related to the PD or teacher education programme, and a 
related figured world, the reform. (Skott, 2018, p. 608)  

Often, tensions between practices promoted by the PD in question and the ones that dominate
teachers’ school life are acknowledged. Gresalfi and Cobb (2011), for instance, argue that there 
are normative identities for teaching in both a school context and in a PD, and the question is 
whether and how participants identify with others’ expectations in these contexts, that is, 
develop personal identities that align with the normative ones.  

An interactionist complement to identity research
I suggest that there is a need for a complement to the three approaches to identity research 
mentioned above, notwithstanding the potentials of each of them. There are two reasons for 
this, one that relates to studies with significant emphases on agency or structure, and one that 
refers to studies that emphasise structure or situatedness. My arguments, then, refer less to the 
nodes of the identity triad, than to approaches located near two of the three axes between them. 
I refer to these approaches as variable oriented and community/society oriented, respectively. 
My argument is that in the first case there is a risk of not acknowledging the significance of the 
locally social that emerges for instance in a classroom or among colleagues at a school. In the 
second case, the risk is that, somewhat ironically, identity research may lose sight of the 
individual, as it focuses on pre-established social practices or structures. I suggest that what 
may be missing in both cases is an interactionist complement that focuses on the emergence of 
group life, and I argue that Patterns of Participation is one possible framework for doing so. In 
this section I introduce PoP before returning to possible limitations of the approaches located 
near the two axes mentioned above.   

PoP revitalises symbolic interactionism (SI) when researching learning and lives in schools and 
classrooms and combines SI with social practice theory (e.g. Skott, 2013). SI seeks to 
understand the emergence of group life and focuses on how meaning evolves in the locally 
social when people interact with one another. Interaction, then, is not merely a term for people 
taking turns in a communicative setting; it is the process through which “people come to fit 
their activities to one another and to form their own individual conduct” (Blumer, 1969, p. 10). 
In this process, they instantaneously see themselves and the objects attended to from the 
perspectives of individual or generalised others and adjust their own contributions accordingly. 
A teacher may, for instance, see herself and the task or contents attended to in a particular 
situation through the eyes of the students and anticipate and interpret their verbal and physical 
reactions to her own conduct, for instance their tone of voice or their lifted eyebrows. She may 
also – to use a symbolic interactionist phrase – take the attitude to herself of generalised others 
in the form of practices and figured worlds beyond the current situation such as collaborative 
settings with colleagues, the discussion at a recent parent meeting, the reform as promoted in a 
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PD, or a different set of pedagogical concerns that may be unrelated to the contents of 
instruction (Skott, 2019).  

The PoP perspective that I use, define teacher identities as the fluctuating experiences of being, 
becoming and belonging that evolve as teachers engage with their students, their colleagues, 
the leadership or others in relation to the profession. Such experiences may include being a 
good mathematician (or not), becoming recognised as an important adult by the students (or 
not), and belonging at the school or in the wider professional community (or not). In what 
follows, I use the identity triad to show how this perspective differs from the approaches to 
professional identity mentioned previously.    

The agency-structure axis: Variable oriented approaches and an interactionist response

Studies that attach primary importance to agency or to structure do not necessarily disregard 
the role of situatedness for teacher identity. Indeed, Darragh and Radovic (2019) are explicit 
that teachers select a specific identity “in a particular context and for a particular audience” (p. 
518). In spite of that, there is little attention to the role of the locally social and no concern for 
the possibility that unfolding, local events co-constitute identities, or for what makes the teacher 
select a particular identity “in a particular context and for a particular audience”. Similarly, but 
at the other end of the axis, an over-emphasis on agency may overlook aspects of identity that
emerge in the locally social. In this sense, neither approach is particularly concerned with the 
negotiation of identities as teachers engage in local practices.

Studies that highlight agency and structure differ in their perspectives on identity, but in both 
there is, then, a risk of disregarding the significance of the locally social (see figure 2). If this 
is the case, they become examples of what Prus (1996) refers to as “variable oriented social 
science”, that is, approaches that “reduce the study of the human condition to ‘individual 
properties’ or ‘social structures’” (p. xviii). In contrast and in line with SI, Prus suggests that 
social science is to understand group life as it unfolds, and  

acknowledge and attend to the ongoing accomplishment of everyday life in the ‘here and 
now’ (while mindful of the evershifting present within people’s experiences with the past 
and their anticipations of the future). (Prus, 1996, p. xviii)  

Figure 2: Variable-oriented approaches: Individualities in Context

(IiC) near the agency-structure axis; little attention to situatedness
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The interactionist perspective, then, takes the dynamic view of identities beyond merely being 
a matter of enacting identities (although possibly constrained by local or structural conditions) 
or selecting among a number of pre-given ones in some situation. It suggests that identity is 
itself an emergent phenomenon, “a moving target”, one that may be in flux, for instance as 
classroom processes unfold (Losano & Skott, submitted). It invites a focus on processual 
identifyings, rather than identities, to avoid the objectifying connotations of the latter term. The 
criticism of variable-oriented approaches, then, is that they do not sufficiently pay attention to 
situatedness, that is, life as it emerges locally.  

The structure-situatedness axis: Community/society oriented approaches and an 
interactionist response

Studies that highlight structure or focus on situatedness share their concern for the social 
constitution of identity and for pre-defined social structures or practices. They focus on what 
the situated-normative or structural identities on offer are in a particular situation. For ease of 
communication, I refer to these as community/society oriented.

Lutovac and Kaasila (2018) argue that such approaches may not do justice to key aspects of 
identity, as they lose sight of the individual. Similarly, I have argued that there is a need to re-
centre the individual, rather than a particular practice, if the intention is to understand teacher 
identities as they evolve in interaction (Skott, 2018). From this perspective, community/society 
oriented approaches pay limited attention to agency, which is reduced to a matter of selecting 
among predefined identities on offer or choosing (or not) to identify with and move from 
peripheral to more comprehensive participation in a pre-established practice (figure 3).  

This is at odds with the interactionist approach. As Blumer (1969) says, people act towards the 
meaning situations have for them, rather than towards structures, and meaning emerges in and 
from social interaction as an outcome of people taking (each) others’ attitude to the situation at 
hand. As an example, Leticia Losano and I have argued in our study of an experienced, Brazilian 
primary teacher, that agency is located squarely in the locally social as an aspect of a person-
practice interface (Losano & Skott, submitted). Agency is a matter of how the teacher combines 
and capitalises on the different attitudes she may take to herself in interaction, including how 
she actively renegotiates the meaning and significance of previous and anticipated future 
practices and figured worlds in view of interactions as they unfold at the instant. From this 
perspective, professional identities are not viewed as determined by pre-given structures or 
practices, but as dynamic experiences of being, becoming and belonging that evolve as teachers 
participate in group life.   
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The agency-situatedness axis: The location of the interactionist approach 

The suggested interactionist complement to other approaches to identity is located along the 
agency-situatedness axis, that is, an axis oriented towards emerging individualities in the locally 
social. Neither the variable oriented, nor the community/society oriented approach disregard 
the aspect of identity located outside their main axes, although these aspects play a minor role. 
In a somewhat similar sense, approaches located on the locally-social axis, including the 
interactionist approach, do not disregard structural issues. However, it is not an a priori decision 
that these issues play a role, but empirical questions whether, how and why this is so. The PoP 
framework, with its interactionist complement to the other approaches, is based on networking 
social practice theory and symbolic interactionism (e.g. Skott, 2013, 2018, 2019). The 
intentions with PoP include developing dynamic and contextual understandings of teachers and 
teaching, including their professional identities. The attempt is, then, to re-centre the individual, 
while maintaining the participatory stance of most studies of identity and as part of that to shift 
the emphasis from identity to fluctuating identifyings (figure 4).

Figure 4: Locally-social approaches: Individualities in Context (IiC) near 
the situatedness-agency axis; acknowledge structure if empirically justified

Figure 3: Community/society-oriented approaches: Individualities in 

Context (IiC) near the structure-situatedness axis; possibly with limited 
attention to agency
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STRUCTURE
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Extending the participatory stance to studies of teachers’ ‘knowledge’ and 
‘beliefs’  
It was a main point in my discussion of research on teachers’ knowledge and beliefs that these 
fields have “turned social” to a lesser extent than research on professional identity, and, indeed, 
to a lesser extent than most mathematics education research. Recently, suggestions have been 
made to do away with the acquisitionist underpinnings of research on teachers’ knowledge, but 
the field does not seem to have moved far in that direction (yet?). To the extent that beliefs and 
knowledge are still considered objectifications, that is, reified mental entities residing within 
the individual with substantial impact on practice, agency is a matter of enacting such 
objectifications, and structure and situatedness are merely considered external constraints. 
Interpreted in the terms of the identity triad, research on teachers’ knowledge and beliefs are 
located close to the agency node, and there is little in these fields that corresponds to the move 
from identities to fluctuating identifyings in identity research.   

This invites the question of whether it is helpful for understandings how teachers contribute to 
classroom practice and student learning to shift the emphasis from Mathematical Knowledge 
for Teaching to Mathematical Knowings When Teaching and from Beliefs about mathematics 
and its teaching and learning to Affectively relating to mathematics and students in classrooms
(cf. the section ‘Summary – so far’). I suggest that the answer is in the affirmative and that the 
PoP framework is one possible way of doing so. PoP was initially developed as a participatory 
challenge to mainstream belief research, and I have argued elsewhere that it is a useful 
alternative (Skott, 2013, 2015a). It differs significantly from the cognitive underpinnings of 
belief research and sheds light on the emergent character of how teachers relate affectively to 
mathematics, to their students’ learning of mathematics and to the acts of teaching as classroom 
processes unfold.  

So far little has been done with PoP in relation to teachers’ knowings when teaching. My recent 
study with Despina Potari and Chara Papakanderaki suggests that it may also have some 
potential in that field, that is, for understanding how teachers’ ways of knowing relate to 
interactions as they unfold for instance in a classroom (Skott et al., submitted). This study brings 
to the fore relationships between agency, situatedness and structure in the case of an 
experienced and highly qualified Greek teacher, Elena. In the course of the study, Elena moves 
from a somewhat traditional secondary school in Athens to an “experimental and model school” 
that is well known for developing innovative approaches to teaching. The data are from two 
teaching-learning sequences on functions in grade 10, one from each school. Although they are
on the same contents and both taught by Elena, the two sequences are very different. The 
students’ ways of participating differ and so do the mathematical objects of attention, even the 
object of function. Also, Elena’s experiences of belonging differ, and so do the ways of knowing 
required of her, in particular how she deals with relations between informal and different 
aspects of formal mathematics. The point in the present context, then, is that it is not only 
aspects of Elena’s professional identifyings that change in and through the interactions; so do 
her ways of knowing the contents.  
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Summary and conclusion
Research on and with mathematics teachers has over the last 40 years taken the professional 
tasks of teaching still more seriously and acknowledged that teaching is relational work 
conducted in local situations and conditioned by broader structural contexts. After having 
challenged the behaviourist approach in process-product studies as well as the emphasis on 
academic mathematics in early mathematics education scholarship, our field changed the 
emphasis towards (1) understanding teachers’ thinking and meaning making as they relate to 
the profession, with special emphasis on mathematical knowledge for teaching (not necessarily 
in the MKT sense) and (2) the beliefs teachers hold about the subject and about its teaching and 
learning. To some extent this takes the social situation of schools and classrooms into account. 
After the turn of the century, more fundamentally social approaches have been used in the study 
of teachers’ professional identities.

The outline above suggests that research on and with mathematics teachers in general turned 
social later than other fields of mathematics education, and it may be argued that research on 
teachers’ knowledge and beliefs still has not done so to any great extent. The question I have 
addressed in the present paper, however, is not merely whether or not specific subfields have 
turned social, but what it may mean to do so.  

To address this last question, I used the identity triad to locate different approaches to research 
on and with mathematics teachers, and argued that neither research on teachers’ knowledge, 
teachers’ beliefs nor teacher identity has adopted an interactionist approach to understanding 
the emergence of group life. I suggest that this may be needed, if the ambitions of research on 
and with teachers include understanding the contextual meanings they make of learning and 
lives in schools and classrooms. 
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Three researchers, Anna Baccaglini-Frank, Ingi Højsted and Janka Medová, were invited to present 
and discuss their proposals for a research agenda for mathematics education over the next 20 years 
in a panel discussion chaired by Michiel Veldhuis and moderated by Eirini Geraniou. 

In this paper, Anna Baccaglini-Frank summarizes the perspective that she presented, as leader of 
TWG24 "Representations in Mathematics Teaching and Learning", bringing attention to a shift in 
how groups of researchers in Mathematics Education think and talk about mathematical objects 
and their representations. She argues that such a shift has theoretical and practical implications that 
should be taken into account in future research, especially when addressing some "Big Questions 
in Mathematics Education".

In this paper Ingi Højsted outlines central points from his presentation at the plenary panel "Big 
Questions in Mathematics Education" of CERME12. He begins by briefly recounting the historical 
struggles with implementation of digital tools in mathematics education, and refers to the 
importance of how digital tools are utilized. To provide an example of the nuances and complexity 
of the research involved on digital technology in mathematics education, he focuses on the specific 
digital tool of dynamic geometry environments and describes pertinent dimensions of research foci 
in relation to this software: student learning, task design, the teacher. He considers some of the 
major challenges with regards to the implementation of dynamic geometry environments as well 
as other digital resources in mathematics education. Finally, he reiterates the three broad questions 
posed for the plenary panel debate.

This paper summarizes Janka Medová’s contribution to the plenary panel discussion Big Questions 
in Mathematics Education and focuses on the role of algorithms in mathematics education. 
Mathematics and computer science are interrelated from their substance. They share several 
common concepts including the algorithms, but the way they work with them differ among the two 
disciplines. Algorithms provide an additional dimension to mathematical knowledge, the deep 
procedural knowledge. Involvement of coding and work with algorithms in mathematics 
instruction seems to be a promising activity bridging the two disciplinary approaches. The 
questions: (i) how the work with algorithms contributes to students’ learning and (ii) how to prepare 
teachers for this kind of activities should be investigated.
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Mathematics Teaching and Learning” Perspective
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I summarize the perspective that I presented, as leader of TWG24 “Representations in Mathematics 
Teaching and Learning”, bringing attention to a shift in how groups of researchers in Mathematics 
Education think and talk about mathematical objects and their representations. I argue that such a 
shift has theoretical and practical implications that should be taken into account in future research,
especially when addressing some “Big Questions in Mathematics Education”.
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A shift in how we think about mathematical objects and their representations
In a recent paper (Baccaglini-Frank et al., 2022), we discussed what we see as a shift away from a 
Platonic conception of mathematical objects and their representations, characterizing various current 
lines of research in Mathematics Education. Such a shift opens new venues to how we think and talk 
about representations, which, in turn, influences how we use (and study) them in the teaching and 
learning of mathematics. In Plato’s allegory of the cave, representations of mathematical objects are 
seen as reflections of natural things; such reflections inspire artificial objects, of which we only get 
to see shadows; such shadows are the imperfect forms that allow indirect access to the “real” perfect 
objects behind them. An implication is that whoever seeks mathematical knowledge should strive to 
obtain mental representations as close as possible to the ideal (non-physical) forms. The Platonic
philosophical stance is at the basis of much research on mathematical representations. Many theories 
on learning mathematics claim the importance of understanding mathematical objects by somehow 
tapping on their “true” meanings that can be constructed by abstracting from their representations.
However, researchers in Mathematics education, including members of the CERME12 community, 
have also started exploring different theoretical perspectives on the meanings and representations of
mathematical objects (e.g., Miragliotta & Lisarelli, 2022; Palatnik & Abrahamson, 2022).

A very important shift away from the Platonic perspective has been initiated by Anna Sfard in her
Commognitive Framework (2008). Taking a Vygotskian socio-constructivist perspective, and 
following Wittgenstein, Sfard sees mathematical objects as no longer residing in some hyper-reality, 
but in discourse itself, being part of an autopoietic system, a system that defines its own objects. 
Hence, their meanings stem from the ways in which realizations of a mathematical object are used 
discursively. An implication of such a shift is that the term “representation” is inappropriate: Sfard
rejects the Platonic view of mathematical objects existing “out there” and being re-presented in 
discourse; rather, for her, mathematical objects “come to life” as part of a discourse of certain human 
communities.

Another perspective, supported by cumulative data from various fields (neurobiology, robotics, 
kinesiology) is casting doubt on the Platonic view, and in particular on its implication that bodily 
experiences are separate from the ideal “mental representations” discussed above. Indeed, the 
“embodied” turn in cognitive science rejects the hierarchical mind–body separation and stresses that 
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perception and action are formatively constitutive of our thinking. In the Mathematics Education
field, the embodied paradigm has been taken to suggest that learning new concepts begins with 
discovering new ways to act in the environment, using new instruments to perform tasks on 
discovered affordances (e.g., Abrahamson & Bakker, 2016). Working with the things themselves, 
students develop a capacity to act efficiently; they learn to describe the world mathematically to 
coordinate collaborative actions; they iteratively encounter more complex problems; and ultimately 
they modify the environments to solve emergent problems (Abrahamson & Abdu, 2021).

A specific interest of mine concerns learning mathematics with or through digital tools. Turning away 
from the Platonic perspective, these can be conceived as “extensions” of our mind-and-body selves, 
and we can explore new ways of thinking, talking and using representations of mathematical objects. 
This is a line opened by posthuman discourse that describes the blending of human and technology 
as a “triumphant overcoming” the “natural” limitations of the human body, leading to the fascinating 
notion of “digital extension” (see the discussion on Merleau-Ponty in Dolezal, 2020).

My three questions
Based on the shift discussed above, on discussions in TWG24 over past meetings, and on my personal 
research interests, I am particularly interested in thinking about the three following questions.

Question 1: How can we (and will we) produce and share representations/realizations of
mathematical objects to make teaching-learning processes truly inclusive? Indeed, producing and 
sharing representations/realizations of mathematical objects are fundamental processes to consider 
and study in the context of inclusive mathematics education. Research in this domain has highlighted 
the importance of using multi-modal channels of communication, perhaps also supported by Artificial 
Intelligence artifacts (e.g., Lew & Baccaglini-Frank, 2021). Given the new perspectives on what 
representations/realizations of mathematical objects might be, we should explore ways to share and 
appropriate others’ thoughts and personal experiences with such representations.

Question 2: How does (and will) learning occur (a) through making representations/realizations 
of mathematical objects or (b) through making artifacts that make these? A very interesting (to me) 
direction of research has been opened by research on “learning as making”, in a constructionist 
perspective, where, for example, shapes in space are constructed using a 3D pen or a 3D printer (e.g., 
Ng & Sinclair, 2018; Ng & Tsang, 2021), or sketches of figures are produced on the plane by drawing 
robots that can be programmed by young children using a graphical block coding language (e.g., 
Baccaglini-Frank et al., 2020; Baccaglini-Frank & Mariotti, 2022).

Question 3: Finally, since learning experiences can be very different and involve many different 
factors, I ask: How can we capture and study students’ experiences with 
representations/realizations more holistically? I ask this because in most of the research studies I
am familiar with, we attend to only a small part of the “whole picture”, focusing, for example, either 
on cognitive aspects or affective ones, or on a certain small “bit”, of a student’s larger and more 
complex interaction with an artifact. However, I believe that it would be beneficial to have analytical 
tools that allow us to see more of the bigger picture. Perhaps we could work harder on trying to
integrate results from studies that each looked at a small bit, but that together can provide new insights 
into students’ learning processes.
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Big Questions for Research on Digital Technology in Mathematics 
Education
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This paper outlines central points from my presentation at the plenary panel "Big Questions in 
Mathematics Education" of CERME12. I begin by briefly recounting the historical struggles with 
implementation of digital tools in mathematics education, and refer to the importance of how digital 
tools are utilized. To provide an example of the nuances and complexity of the research involved on 
digital technology in mathematics education, I focus on the specific digital tool of dynamic geometry 
environments and describe pertinent dimensions of research foci in relation to this software: student 
learning, task design, the teacher. I consider some of the major challenges with regards to the 
implementation of dynamic geometry environments as well as other digital resources in mathematics 
education. Finally, I reiterate the three broad questions posed for the plenary panel debate.

Keywords: Digital technology, implementation, DGE, the teacher dimension.

Looking back
Since the introduction of digital technology in mathematics education, extensive research has been 
conducted in relation to the implementation of different types of digital tools. In fact, already in the 
mid-eighties, the very first ICMI study (Churchhouse et al., 1986) considered the consequences 
computers and informatics might have on mathematics and mathematics education, and at that time,
researchers were optimistic. However, two decades later, in the 17th ICMI study, Michelle Artigue 
looked back and reported that “The situation is not so brilliant and no one would claim that the 
expectations expressed at the time of the first study have been fulfilled” (Artigue, 2009, p. 464).
During his CERME11 plenary speech, Paul Drijvers reflected on the low effect of integration of 
digital technology in mathematics education, acknowledging that “the mathematics education 
community is still struggling with the integration of digital technology in teaching and learning.”
(Drijvers, 2019, p. 8), while suggesting that the quality and exploitation of the digital tools are 
essential ingredients for effective integration. The manner in which digital technologies are utilized 
seems to be essential (Drijvers, 2019; Højsted & Mariotti, 2021; Jankvist & Misfeldt, 2015). In fact, 
Niss (2016) proposes that “the very same piece of digital technology can give rise to ‘marvels’ as 
well as to ‘disasters’ in mathematics education. This means that no ICT system, hard or soft, is, in 
and of itself, good or bad for mathematics education.” (p. 247).

Of course, there are many different types of software, and many different software of the same type. 
If we take the paradigmatic example of dynamic geometry environments (DGE), which has received 
a lot of research attention, more than 40 DGE had been developed by 2012 (Hollebrands & Lee, 
2012). Initially, much of the DGE research focused on students learning with DGEs, for example,
Arzarello and colleagues’ (2002) seminal work that categorized seven spontaneous ways in which
students drag objects in DGE. Another example is Mariotti’s (2015) elaboration of the semiotic 
potential of the dragging tool to introduce conditional statements.
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More recently, research attention has shifted towards task design, with authors describing DGE task 
design principles for specific mathematical aims, for example non-constructability tasks and
dependency tasks in relation to conjecture generation and reasoning (Baccaglini-Frank et al., 2017; 
Højsted & Mariotti, 2021), or developing frameworks to assess task quality (e.g. Trocki & 
Hollebrands, 2018).

Less research has been conducted in relation to the role of the teacher in facilitating the 
implementation of DGE (Komatsu & Jones, 2018). The same applies to other digital tools, as 
described by Traglová and colleagues (2018), who reviewed the research output on digital technology 
in mathematics education coming from CERME conferences since 1999, “the awareness of the 
importance of the teacher dimension in research on technology in mathematics education [...] 
emerged slowly” (p. 154). Although there are several salient contributions on the role of the teacher 
(e.g., Bartolini-Bussi & Mariotti, 2008; Drijvers et al. 2010) it is my impression, that this dimension 
still needs the most research attention. Suggesting the same in her PME plenary, Ana Sacristán 
proposed that teachers are the key players for the successful implementation of digital technologies, 
calling for “more teacher involvement in both professional development, and as co-constructors and 
collaborators in the design of technological implementations and resources” (Sacristan, 2017, p. 90).

Indeed, any designed digital mathematical resource may be adopted by their users (teachers and 
students) to suit their perceived needs in a particular classroom context (e.g., Trgalová & Rousson, 
2017). The appropriation process may lead to a use of the resource that is not coherent with the 
educational intentions of the designer. 

In a recent study (Højsted & Mariotti, in press), we found that collaborating with teachers about 
theoretical aspects of technology implementation can be a complex affair. This intricate issue requires 
reflecting on how to interface with teachers effectively to accomplish specific educational goals, 
while taking into account the variety of possible pedagogical paradigms that different teachers may 
adopt – paradigms that may well be implicit.

Looking forward
Even if much has been accomplished in research on digital technology in mathematics education, it 
is evident that successful integration of digital technology into teaching and learning mathematics 
remains a difficult and complex issue – akin to a gordian knot. Therefore, looking forward, I suggest 
that we reflect on these broad questions in the plenary debate:

1. How can we ensure that in another two decades, we are not still disappointed? 
2. Which are the main issues hindering successful implementation of digital technologies in 

mathematics education and what are the solutions? (The teacher dimension? Design of 
resources?)

3. How can solid research findings on digital technologies in mathematics education find its way 
into praxis?
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This paper summarizes my contribution to the plenary panel discussion Big Questions in 
Mathematics Education and focuses on the role of algorithms in mathematics education. 
Mathematics and computer science are interrelated from their substance. They share several 
common concepts including the algorithms, but the way they work with them differ among the two 
disciplines. Algorithms provide an additional dimension to mathematical knowledge, the deep 
procedural knowledge. Involvement of coding and work with algorithms in mathematics instruction 
seems to be a promising activity bridging the two disciplinary approaches. The questions: (i) how
the work with algorithms contributes to students’ learning and (ii) how to prepare teachers for this 
kind of activities should be investigated.

Keywords: Algorithms; mathematics education.

Mathematics and computer science are interrelated since the inchoative stages. Various fields of 
mathematics, including Boolean algebra, algebraic structures, discrete mathematics and probability 
provided the theoretical base for the emerging field of computer science. Some years later, in 1976, 
computer science started to pay off its debt by solving the problem of four colors using the 
thousands of hours of computing time (Appel and Haken, 1978). The nature of mathematics and 
natural sciences as they are practiced in the professional world is developing towards
computational thinking (Weintrop et al., 2016). Nowadays mathematicians perceive computing as 
an inherent part of doing mathematics (Lockwood et al., 2019). The use of computers allows 
processing the calculations in mathematical statistics, even the work with big data. 

Algorithms lie on the border between mathematics and computer science. Each discipline looks at
algorithms from a different point of view. Computer scientists (e.g., Wirth, 1985) define algorithms 
as finite, general, deterministic, resultative and elementary which has only limited use in
mathematical proofs. Mathematicians investigate the existence and correctness of algorithms, 
whereas computer scientists look at the algorithms in a more utilitarian way, looking for the real-
time instantiations, preferring obtaining the result to its preciseness. Therefore, heuristics were 
developed for solving problems with high complexity.  

Algorithms occur in curricula of both mathematics and computer science. Algorithms for basic 
mathematical operations were the traditional part of mathematics education. In recent years the 
algorithms have started to disappear from mathematics curricula as conceptual understanding was 
in main focus of mathematics educators and procedures were often perceived as the ‘rote learning’. 
On the other hand, Star (2007) sees the particular value in the procedural knowledge itself. Star 
foregrounds the deep procedural knowledge where the procedure is “known deeply, flexibly, and 
with critical judgment” (p. 133). Deep knowledge of algorithms, its principles and correctness 
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might be seen as an amalgam between conceptual understanding and procedural fluency, so-called 
precept (Gray & Tall, 1994). Some studies (Lockwood & De Chenne, 2021) demonstrated the 
added value involving coding in students’ mathematical problem solving. Furthermore, using 
coding for solving mathematical problems may strengthen the computational thinking of the 
learners. The questions about how knowledge about algorithms contributes to students’ learning of 
particular mathematical concepts and procedures and how can students profit from generalization 
of the mathematical procedures in an algorithmic way remain open.

If we want to approach algorithms from both sides, mathematics and computer science, we should 
decide who should teach about algorithms. There are countries, e.g. Slovakia, where algorithms 
and programming have had a strong position in curricula since the 1980s, as a part of computer 
science education. In other countries, e.g., France, algorithms are part of mathematical curricula. 
Both possibilities have their strengths and weaknesses. Teachers, specialists in mathematics or 
computer science focus on different characteristics of algorithms, in accordance with the 
disciplinary practices. Kortenkamp (this proceedings) describe several types of activities usual for 
work with algorithms in computer science: (i) design of algorithms, (ii) describing the algorithm 
in a (formal) language; (iii) carrying out algorithms, (iv) proving the correctness of algorithms, and 
(v) comparing algorithms with respect to complexity, elegance, or simplicity. These activities can 
be seen also in mathematics lessons and may serve as a bridge between the two disciplinary 
practices.

The teachers are the agents of any educational change (Kieran et al., 2013) and their work is shaped 
by their resources, orientations and goals (Schoenfeld, 2010). How the mathematics teachers’ 
predispositions influence their practice regarding the algorithms, what is the knowledge needed to 
teach algorithms as deep procedural knowledge and whether mathematics teachers see any value 
in algorithmic approaches to mathematical objects should be examined in further studies. 
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Introduction
Argumentation and proof continue to attract the growing and wide interest of the mathematics 
education research community, which was also evident in CERME 12. In Thematic Working Group 
1 (TWG01; “Argumentation and proof”), 39 participants from 15 different countries from 5
continents actively engaged in the discussion of the 30 papers and 3 posters. CERME 12 was the first 
to be organized online; a challenge and an opportunity to investigate ways of practicing and 
promoting communication, cooperation, and collaboration. For this purpose, the work of TWG01 was 
organized in both parallel split-group sessions and whole-group sessions, aimed to maximize active 
participation and to ensure the coherence and unity of the TWG01 identity in the subgroups. 
Moreover, the online format of the conference proved to be a great opportunity to organize a joint 
session with Thematic Working Group 9 (TWG09; “Mathematics and Language”). The session 
allowed the discussion of topics of the common interest of both TWGs, allowing for our practicing 
the ERME’s spirit of communicating, cooperating and collaborating beyond the conceptual 
boundaries of our TWG.

The papers of TWG01 were organized in seven themes, which were presented and discussed in split-
group or whole group sessions: 1) Theoretical and epistemological perspectives about argumentation 
and proof, 2) National and international perspectives about argumentation and proof, 3) 
Argumentation and proof in primary mathematics education, 4) Argumentation and proof in school 
and university mathematics, 5) Argumentation and proof in teacher education, 6) Argumentation and 
proof beyond mathematics text and context, and 7) Argumentation, Language and Proof (this was the 
theme of the joint session with TWG09).  

In this introduction chapter, the papers are presented and discussed in three broader topics, in line 
with the main themes elicited in the discussions of our group: a) Argumentation and proof in school 
and university, b) Theoretical, epistemological and sociocultural perspectives about argumentation 
and proof, and c) Argumentation and proof in different texts and contexts. 
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Discussion of Papers
Argumentation and proof in school and university

In the TWG01 Introduction section of the CERME 11 proceedings, it was noted that one of the areas 
that the TWG01 participants “would like, and hope, to see more research in future CERMEs was: 
The teaching of proof and argumentation in both school and university settings, including in teacher 
education with particular emphasis on argumentation and proof at the elementary school level.” In 
CERME 12, the topic of several papers appeared to address this, with a particular focus on primary 
education. The presented papers investigated diverse aspects of the primary school students’ 
argumentation and proof, including the students’ conceptions and understandings about proof (as 
presented in the papers of Sigrid Iversen
Haser), designs to support the students’ proving skills and in highlighting the empirical-deductive 
gap (as discussed in the papers of Melanie Platz, of Jo Knox and Igor’ Kontorovich). Moreover, we 
had the opportunity to discuss different aspects of reasoning that occur at these educational levels:
data-based argumentation as investigated in the paper of Jens Krummenauer and Sebastian Kuntze, 
and Simone Jablonski’s paper about mathematical reasoning outside of the classroom. Furthermore, 
we discussed topics specific to higher educational levels, including a paper about proofs without 
words at the secondary education level by Nadav Marco, Alik Palatnik and Baruch Schwarz, as well 
as Katharina Kirsten’s paper about the proving strategies employed by first year university students.  

Considering teacher education, a central issue concerned the importance of working with future and 
in-service teachers to explore ways of efficiently incorporating research findings about argumentation 
and proving in teacher training and professional development programs. Such efforts were evident in 
the papers of Orly Buchbinder and Sharon McCrone and of Gabriel Chun-Yeung Lee. At the same 
time, the papers of Thomas Bauer and Eva Müller-Hill and of Fiene Bredow and Christine Knipping 
allowed us to gain deeper insight on the teachers’ practices through the lenses of different theoretical 
perspectives. Moreover, Lakatosian ideas were at the crux of three papers concentrating on teachers
(the papers of Mei Yang, Andreas Stylianides and Mateja Jamnik, and of Dimitrios Deslis, Andreas 
Stylianides and Mateja Jamnik) and on teacher educators (as discussed in the paper of Magdalini 
Lada and Tore Alexander Forbregd).  

Overall, the presented papers offered the opportunity for rich discussions about the commonalities 
and specificities of teaching and learning argumentation and proving at the different educational 
levels (with a special focus on primary education), as well as about the appropriateness of the 
respective research approaches. At the same time, the discussion about the implementation of 
Lakatosian ideas in teacher education raised fruitful deliberations about the way that ideas that have 
been developed in a specific sociocultural context may (or may not) be applied to educational 
research, which leads to the second broader topic of the papers discussed in TWG01. 

Theoretical, epistemological and sociocultural perspectives about argumentation and proof 

The meaning(s) of proof, its relationships with the validity of mathematical knowledge and with the 
notion of truth, are important epistemological issues that are constantly being re-visited in the TWG01 
meetings; question certainties helps to enrich, broaden and alter perspectives. Along these lines,
Viviane Durand-Guerrier discussed the dialectical relationships between truth and proof, while the 
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discussion was enriched by Vergnauds’ ideas as employed in Nadia Azrou’s paper and by Habermas’ 
rationality in the paper of Paolo Boero. Moreover, the role of logic and deductive reasoning is at the 
crux of argumentation and proof and, hence, in this CERME, logic was again a central theme of our 
discussions in TWG01. Miglena Asenova’s paper, challenged the traditional perspective of classical 
logic and set-theoretical assumptions, while we had the opportunity to consider the role of unitizing 
predicates as presented in the paper of Paul Christian Dawkins and Kyeong Hah Roh, as well as the 
role of deductive reasoning in word problems as investigated in the paper of Rimas Norvaiša. 

Considering the complexity of the argumentation and proof phenomena, the discussions about 
epistemological and theoretical perspectives were explicitly linked with the role of the sociocultural 
aspects in the teaching and learning of argumentation and proof. For this purpose, we focused on the 
diverse perspectives and realizations of assessment in different countries (for example, Chile, 
Hungary, Norway), drawing upon the papers of and of Manuel Goizueta, Constanza 
Ledermann and Helena Montenegro. Furthermore, the paper of David Reid broadened the discussion 
to include ‘reasoning’ in the national curricula and standards in several countries. Moreover, the paper 
of Karolína Mottlová and Jana Slezáková offered an insight of implementing ideas of the curriculum 
of one country to another (respectively, from Singapore to Czech Republic), focusing on word 
problems. At the same time, language appears to be a crucial factor in mastering the logical structure 
of proofs, as discussed by Kerstin Hein. The latter issues about language are also explicitly linked to 
the third broad topic of the papers discussed in TWG01. 

Argumentation and proof in different texts and contexts

Argumentation and proof have been traditionally linked with language and verbal communication, 
but in CERME 12 the participants draw the attention to broader conceptualizations of text, including 
non-verbal and multimodal aspects. Within this context, we discussed the explanation norms 
expanded to include explanation videos and the explanation norms, as presented in the paper of 
Jessica Kunsteller. Moreover, in the last CERME, the participants’ discussions involved various 
aspects of the issues of language in argumentation and proof, while it was noted that it might be 
sensible to address this complexity in collaboration with colleagues of TWG09 and linguists. In this 
CERME, we addressed this issue by having a joint session with TWG09, where we had the 
opportunity to discuss language, argumentation and proof. For this purpose, we initiated the inter-
TWG collaboration by critically focusing on Toulmin’s scheme, which has been a staple tool for 
analyzing argumentation. The various implementations and extensions to the Toulmin’s model were
synthesized in the paper of Jenny Cramer and Leander Kempen, while the paper of Andreas Moutsios-
Rentzos explicitly acknowledged multimodality in the discussion about argumentation and text. Two 
papers of colleagues of TWG09 (of Christoph Körner and Michael Meyer, and of Jorge Toro and 
Walter Castro, which may be found in the TWG09 part of the CERME 12 proceedings) allowed us 
to reflect upon the commonalities and differences of the two groups with respect to language issues 
in argumentation and proof. 

Furthermore, mathematics is at the crux of the modern scientific, non-mathematical texts, such as 
physics. The participants of TWG01 investigated aspects of argumentation and proof in historical and 

Proceedings of CERME12 75



physics texts, as presented in the paper of Laura Branchetti, Alessia Cattabriga, Olivia Levrini and 
Sara Satanassi. 

Conclusions and Future Directions for TWG01
We argue that CERME12, the first to be conducted online, offered the participants the opportunity to 
be engaged in rich, broad and deep discussions about a variety of issues and perspectives. Importantly, 
we noted a valuable mix of a continuity of topics from previous CERMEs with novel ideas. A series 
of questions were posed that paint potential paths of future research projects. 

Considering the teaching of argumentation and proof, we noted the tensions amongst research, 
intentions and actuality in everyday teaching and the importance of findings ways to bridge the 
potential divides. Furthermore, we ponder how can we make the teaching of argumentation and proof 
feasible for the different grades, curricular, educational and sociocultural settings? Should it be
incorporated in everyday teaching practices across mathematical contents or should there also be a 
dedicated section to specific argumentation and proof practices (for example, about logic)?

Moreover, drawing upon the fact that in the modern curricula mathematics is present in non-
mathematical courses, we identified a need for investigating interdisciplinary perspectives about 
argumentation and proving in texts, textbooks, and teaching practices. 

The rapid technological advances appear to crucially affect the established communication norms and 
modalities, as they become part of the everyday teaching. Within this context, conceptualizing and 
investigating language issues related to argumentation and proof seems to need to be re-visited, and 
broadened to include non-verbal (multimodal, embodied, affective etc) and/or implicit aspects.

The sociocultural aspects of argumentation and proof seem to be another area of interest that 
transcends various perspectives, including the implementation of specific theoretical and/or
epistemological perspectives in different context (to the one that the perspective originated), as they 
may entail both cultural and cognitive dimensions.  

All these areas of interest intersect in complex ways and derive from this TWG01 meetings and 
should not be interpreted as prioritizing specific lines of research over others. We are aware that proof 
and argumentation are approached from different perspectives (and in other TWGs groups) and in 
TWG01 we are committed to voicing and exploring this diversity.
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Questioning the Exclusivity of Classical Logic and Set-Theoretic 
Assumptions in Analysis of Classroom Argumentation and Proof
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The paper highlights the necessity to question the exclusivity of classical logic, or of approaches that 
are reducible to it, in the analysis of classroom proof and argumentation processes, as well as the
role of the set-theoretic language as intrinsically linked to classical logic. Two examples drawn from 
mathematics classroom are analysed, recurring to the Ancient Indian empiricist Nyaya logic and to 
Peirce’s non-standard quantification, associating the last to a “free logic”, not axiomatizable within 
an axiomatic system where the specification axiom applies.

Keywords: Logic, Non-standard quantification, Nyaya, Free logic, Set-theoretic language.

Introduction.
The kind of logic students spontaneously resort to when they conjecture, argue or proof in 
mathematics classroom is often difficult to capture with the formal instruments of propositional logic 
(Barrier et al., 2009). Some scholars propose natural deduction for First Order Logic (FOL) as useful 
to reduce the distance between non deductive argumentation schemes and mathematical proof 
because of the possibility it offers to work on objects rather than on properties (Durand-Guerrier, 
2005). To capture reasoning in Mathematics Education (ME) also Hintikka’s dialogical logic, in 
reference to game theoretic semantic, is studied (e.g., Arzarello & Soldano, 2019; Blossier et al.,
2009). What is common to these approaches is that they all are classical1 or are reducible to the
classical one.2 Now, as Lindström’s theorems shows, classical logic is intrinsically connected to set-
theoretic language (Zalamea, 2021). In classical FOL the variables the quantifiers refer to, range on 
sets that represent the domains of the predicates. One of the fundamental axioms of set theory3 is the 
axiom of specification: given a set A and a formula φ(x), there exists a subset B={a A: φ(a)}. This 
axiom is based on Frege’s symmetry principle according to which one obtains “an equivalence […]
(locally, within the restricted universe A) between φ(a) (intensionality) and a B (extensionality)” 
(Zalamea, 2009/2012, p. 324). If this axiom fails, both the law of the excluded middle (thus classical 
logic) and the standard use of quantifiers fail, because it is not guaranteed that a property univocally 
determines a set. From the other hand, the domain of reference of the statements during a learning 
process evolves over time and to grasp this evolution, sets should become “variable” (Lawvere & 
Rosebgough, 2003). Such sets can be captured by topoi in intuitionistic logic, considering an 

1 Classical logic is the logic where the law of the excluded middle ( ) and the law of non-contradiction (
hold, while non-classical logics are logics where at least one of these two characteristic properties does not hold. Examples 
of non-classical logics are the paraconsistent logic (the principle of non-contradiction holds only locally but not globally) 
and the intuitionistic logic (the law of the excluded middle does not hold and consequently also the double negation does 
not mean in general an assertion: ).
2 The concept of truth in the game-theoretic semantic is different from the classical one (it is based on the logical existence 
of a choice function that guarantees the existence of a winning strategy for one of the players, called the verifier), but it 
can be shown that this truth concept is equivalent to the Tarskian one (Arzarello & Soldano, 2019) and thus to the truth 
conception in classical bivalent logic that follows the Aristotelian tradition.
3 I refer to the Zermelo-Fraenkel axiomatic system with the axiom of choice (ZFC), as it is the standard axiomatic set–
theoretic system within which mathematics usually is developed.
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evolution over time, but not by classical sets. Classical sets, and thus classical logic, could be 
considered as special cases where time collapses into a moment and sets become fix.

Summing up, since classical FOL is exactly tailored to capture classical set theory, restriction to set-
theoretical language may not allow different kinds of rationalities, that need to give up some of the
constrains of set-theory, to be recognised, and thus it prevents also the investigation of possible shifts 
between “non-standard” and classical rationalities. Indeed, such “epistemic” rationalities require to 
consider indeterminacy about the properties that hold or do not hold for an object. I argue, recurring 
to examples, that non-classical approaches to logic and quantification, which don’t require set-
theoretic assumptions, could be able to put into evidence these aspects in the analysis of reasoning in 
mathematics classroom. In this way, (at least) novices’ reasoning in ME, even if it does not match to 
classical logic, could be recognized as knowledge within a suitable rationality frame (Boero, 2017),
rather than as a lack of rationality.

Theoretical framework.
Nyaya and empiric rationality. In the Western mathematical tradition, the Aristotelian syllogism 
represents the basis of logical reasoning and for mathematical proofs only the deductive syllogistic 
inferences are accepted. On the other hand, D’Amore (2005) shows that when dealing with proof, 
novice students might spontaneously resort to a type of logic very different from the Aristotelian one–
the Indian Nyaya logic, a pragmatic and empiricist logic, linked to perception. In the Nyaya induction 
and deduction are closely interconnected within its “syllogism”. Furthermore, the use of examples is 
not only permitted but is expected by the argumentative model itself and the “formal” and “material” 
aspects are closely intertwined in it (Sharma, 1962, p. 186), for the inferential model itself is 
conceived as a proof process of truth. According to D’Amore (2005), the Indian Nyaya philosophical 
school (1st century BC) recognizes a pre-eminent importance to four means of knowledge: testimony, 
analogy, perception and inference. The inference is what can be considered the Nyaya “syllogism” 
and has the following structure: (1) the Assertion (what one wants to prove); (2) the Reason; (3) the 
Thesis (a general proposition followed by an example); (4) the Application; (5) the Conclusion. 
Finally, one of the fallacies of the “right reasoning” in Nyaya is reasoning on non-existent objects.

Peirce’s non-standard quantification. In ME also non-standard quantification, that cannot be framed 
within classical FOL, is epistemologically accounted (Blossier et al, 2009), with the aim to explain 
difficulties in managing quantification in classical sense at tertiary level or in the shift from secondary 
to tertiary level. These authors show that expert students (at tertiary level) spontaneously use different 
kinds of quantification that often involves temporal aspects and a kind of variation of the variables 
that often do not fit with the -variation as it is known after the introduction of the axiom of choice. 
They mention within the non-standard approaches to quantification Bolzano’s (link between constant 
and variable quantities) and Cauchy’s (link between variable quantity and fixed limit) ones, but they 
also account for the Peircean one, putting into evidence that it does not rest on logical distinctions but 
is “inner to the individuum” (Blossier et al., p. 84). I will deepen this last non-standard approach. 

According to Peirce, quantification can be general, vague, or precise. Peirce calls generality,
vagueness, and determination “the three affections of terms, [which] form a group dividing a category 
of what Kant calls ‘functions of judgment’” (Peirce, CP, 5.450)4. Generality means absence of 
distinction of individuals rather than validity for every individual, as it is the case for the classical 

4 Peirce’s Collected Papers (CP) are quoted in the usual way: (Peirce, CP, volume number.paragrph number).
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universal quantifier that quantifies over sets of individuals; it can be expressed by words like any,
whatever, etc. Vagueness means a certain type of existence that does not break the absence of 
distinction of individuals, but states that there are suitable generic individuals that satisfy a certain 
property; it can be expressed by words like some, certain, etc. It is similar to the classical existential 
quantifier but while the genericity of the latter rests on the proof of independence from the choice of 
a specific individual, the former rests on the knowledge of the possibility to choose individuals that 
remain indistinct, without a real actualization. Precision means effective actualization of possibility; 
the precise individual represents a rupture of the relationality that distinguishes the vagueness. As 
Hintikka’s logic also the Peircean one is a dialogic logic with a game-theoretic semantic (Pietarinen, 
2019), but Peirce’s logic is epistemic in a different manner as Hintikka’s one. Indeed, as Zalamea 
(2021) shows, Peirce’s logic can be captured by sheaf-logic and sheaf-logic is intuitionistic. Thus, 
quantification in Peirce’s logic does not require the axiom of specification and the symmetry of 
Frege’s abstraction principle fails in general. Furthermore, according to Hintikka (2001) intuitionistic 
logic is truly epistemic because the crucial notion in it: “is not knowing that, but knowing what (which, 
who, where, …), in brief, knowing + an indirect question, that is, knowledge of objects rather than 
knowledge of truth” (p. 10) and this knowing-what-logic “cannot be analysed in terms of knowing 
that plus the apparatus of received first order logic” (p. 11). 

The Nyaya logic is an example of an empiricist logic where reasoning applies on single objects, 
considered as “existent” by the subject; Peirce’s logic with its non-standard quantification can be 
considered as an example of free logic, where the domain the quantifiers range over is not necessarily 
a closed set but “the class of existing things” (Nolt, 2021). In this sense, these two approaches are 
compatible and can be combined, at least at the basic level considered in this context.

Methodology of research.
A hermeneutical approach to the text analysis (Palmer, 1969; Bagni, 2009) is adopted. In this
approach, the procedure consists in a dialectical back and forth between the meaning of the single 
parts of a text (oral, written etc.) and its global sense, in a meaning-increasing dialectical 
interpretation. The begin of the interpretation is always based on the interpreter’s presuppositions 
about the original context of the analysed text (cultural, historical, etc.). The concept of personal 
space (Brown, 1996) of the protagonists (students and teacher) is used to frame the researcher’s 
presuppositions in entering the analysis of the classroom excerpts and in searching for a global 
meaning, going from the part (examples) to the whole (discussions and conclusions) and vice versa.
According to Brown, the personal space is the (virtual) space where “an individual sees him or her 
self acting” (p. 120); it is made by all the aspects, interests, constraints and means that inform the 
subject’s acting in a context and is a source for meaning because “the individual acts in the world he 
or she imagines to exist” (p. 121). Here it mirrors the students’ and teacher’s background, inferred by 
the cultural context they are merged in while making mathematical statements or orchestrating 
mathematical classroom activities.

Data analysis and discussion.
Example 1: Empiric rationality, Nyaya, and non-standard quantification.

In this section an argumentative text produced by a 15-year-old high school student is discussed. S/he 
should answer the question: Is it true that Each number that ends with the digit 1 is a prime number 
(that means without divisors different from 1 and the number itself) or it is divisible by 3? The 
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teacher’s approach is Aristotelian and her and the student’s personal spaces are inferred from 
information provided by the researcher that collected the data5. They are framed by the personal 
backgrounds (professional and formative), as well as by the classroom context.

In the analysis (Figure 1) classical Aristotelian and Nyaya-lenses are adopted: student’s words are 
marked in black bold; the classification based on the Nyaya-scheme in green; the interpretation based 
on the Nyaya rationality frame in orange and the one within the Aristotelian frame in blue6.

Figure 1: Interpretation of student’s argumentation resorting to the Nyaya approach and to the 
classical Aristotelian approach

Discussion of example 1.

The student’s personal space is characterized here by: (1) the experience of the concept of proof in 
Euclidean geometry; (2) some first explicit information about how a proof is made (thesis, hypothesis, 
general reasoning, no use of examples); (3) some elements of set-theoretic language in reference to 
number sets, without deepening of quantification; (4) the interest in showing the own ability (the 
student was firmly convinced that her/his proof is a good one and s/he wants to prove the truth of the 
Assertion); (5) the constraint that the text is addressed to the teacher. The teacher’s personal space is 
framed at least by the following elements: (I) a valid proof starts from the hypothesis and ends with 
the thesis; (II) proof is deductive and the use of examples means induction; (III) her spontaneous,
implicit, or explicit, use of set-theoretic language as object language in mathematical contexts, due 

5 The analysed text was produced with research purposes completely different from the present one; thanks to prof. Paolo 
Boero from the University of Genoa for having authorized its use for this alternative analysis and for helping to detect 
the information that was needed to reconstruct the teacher’s and the student’s personal spaces. We know that the teacher 
graduated in the mid-1990s at the University of Genoa by a five-years graduation program in Mathematics. In this context, 
proof is based on classical Aristotelian approach and the object language is always set-theoretic. 
6 The Thesis and the Application of the Nyaya scheme are divided in two parts and the examples are missing.
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to her mathematical forma mentis. Both personal spaces are framed by the assumption that one “uses 
language in much the same way as everyone else” (Schulz, as quoted by Brown, 1996, p. 121).

The fact that the student has not recognized that the statement is false does not matter; the focus is on 
her/his reasoning. From the teacher’s “classical” point of view, the basis of the student’s reasoning 
could be summed up as follows: The student tries to show that there is a partition of the set of numbers 
ending with 1 in two subsets: the set A, containing the prime numbers greater than 2 ending with 1, 
and the set B, containing the multiples of 3 ending with 1. However, s/he does nothing but show that 
the set of prime numbers ending with 1 is a subset of the set of numbers ending with an odd digit and 
that there are multiples of 3 ending with 1. Of course, in this way s/he has not proved the existence 
of the supposed partition, but only the fact that there are two non-empty subsets of the sets A and B,
reversing so thesis and hypothesis. Let us now eliminate references to sets in the mathematical sense, 
that do not belong to everyday reasoning: thinking of the number 3 does not necessarily mean thinking 
of it as a natural or as a rational number, but as an “object” in itself, in the same way as one thinks of 
a cup not as an element of the set of all cups, but as an object that falls under the senses.

We see that the student lists some numbers ending with 1, followed by ellipsis, as if this list were to 
continue. The mathematically shaped thought might interpret this list as the representation of an 
infinite set. But this list is not necessarily an infinite set in actual sense; it represents probably 
indeterminacy or vagueness in Peirce’s sense or, at most, potential infinity. Indeed, if the student 
reasons in terms of numerical sets s/he should now try to prove the existence of the supposed partition 
and s/he does not. But if s/he does not reason in terms of numerical sets, what could s/he try to prove? 
Maybe that given any number that ends with 1, that number is prime or is a multiple of 3. This 
reasoning is based on an interpretation of “each” (the universal quantifier) in the sense of “any”, that 
has no meaning in classical FOL but means generality in Peirce’s sense. The student considers the 
first numbers listed as random cases (any) and finds that they have the required characteristics. This 
is a not valid generalization both in classical and in Peirce’s sense. What the student has shown is that 
there exist some numbers that satisfy the property and so s/he would be able only to quantify recurring 
to a vague existence. This reasoning produces a sort of “fake” generalization by induction. The 
student knows that the generalization by induction on single cases is not allowed and that s/he must 
produce a reasoning with general validity (the text is addressed to the teacher). What could mean in 
the student’s personal space “reasoning that applies in general”? S/he seems simply to produce an 
existence proof, s/he shows that the object being discussed actually exists in the sense of the Nyaya 
logic, and that it is precise in Peirce’s sense: there are primes (greater than 2) ending with 1 and there 
are multiples of 3 ending with 1. But the proof is different in the two cases. In the first case s/he shows 
that the numbers whose existence she wants to prove are a special case of other numbers, “defining” 
them by next genus (numbers ending with an odd digit) and specific difference (which end with 1). 
In the second case the proof of existence is made by bringing examples. However, s/he does not 
simply bring examples in the common sense because s/he does not reason on particular multiples of 
3, but on some multiples chosen by chance (they are vague in Peirce’s sense). To sum up, there seems 
to be a lack of distinction of vagueness (seen as randomness) and generality (seen as indeterminacy) 
in Peircean sense. To bridge the gap between every-day-rationality within an empiricist logic (Nyaya)
and mathematical rationality, the awareness of this distinction seems to be a necessary condition. 
Furthermore, the truth concept in the empiricist logic that fits to student’s reasoning, seems to be 
closer to the idea of existence (precise or vague), rather than to the one of generality.
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Example 2: Quantification within “blurred” domains.

The second example refers to a classroom argumentation led by the same teacher in another 
classroom. A worksheet with the argumentation discussed in example 1 is used to show that the proof 
is not valid. First, the teacher asks to tell if the proof is valid, but the students’ attention is captured 
by the semantical aspects: they detect two counterexamples (121 and 91) and state that it is false. The 
teacher brings the attention back to validity by asking what the reasoning on the worksheet is.7

9 Student 5: The reasoning is that the multiples of 3 and the prime numbers end with 1.
10 Student 4: No, that SOME multiple of 3 and SOME prime numbers end with 1. […]
17 Student 8: Maybe you want to say that … that for CERTAIN prime numbers or 

multiples of 3 things are going well because they end with 1, but this 
doesn’t mean … […]

19 Student 3: Yes, the reasoning says only that SOME prime numbers or multiples of 3 
end with 1.

20 Student 9: Even, although if ALL prime numbers or multiples of 3 should end with 1, 
there could be numbers that end with 1 and ARE NOT prime numbers or 
multiples of 3.

21 Student 6: It is as if there is a reversal!
22 Teacher: S6 said something important: “it is as if there is a reversal”. It is an 

important idea!
23 Student 1: The hypothesis and the thesis?
24 Student 6: It seems to me to be of a different matter!
25 Student 4: To me too, it is a matter … of numbers. Of sets of different numbers. […]
29 Student 9: I will try to say it again, I don’t know if it is OK: the multiples of 3 and the 

prime numbers are POSSIBLE numbers that end with 1, but these 
POSSIBLE numbers do not mean that they are ALL the numbers that end 
with 1.

30 Teacher: I would say that’s it. 
Discussion of example 2.

In this example the argumentation is carried out by a group of students. Nevertheless, one can state 
that the elements (1), (2), (3) and (5) of the student’s personal space in example 1 are also elements 
of the personal spaces of these students because the cultural and formative backgrounds are the same. 
The element (4) of the student’s personal space in the example 1 is substituted by the following one: 
(4’) uncertainty about what validity means in a proof and how it can be accessed, beside by bringing 
of counter examples. This topic is addressed for the first time in this lesson. The teacher’s personal 
space is the same described in example 1 with the following addition: (IV) intention to focus the 
discussion on the lack of validity due to a reversal of thesis and hypothesis.8

Most of the punctuated words in the transcript are related to quantification but apart from the line 9, 
the statements show students’ struggle with the determination of the domain of validity of the 
reasoning expressed on the worksheet and of its relation to the domain of the inverse statement which 
would be a valid one. The non-standard quantification used by the students express the indeterminacy 
of that domain: SOME, CERTAIN, NOT ALL, POSSIBLE numbers. For instance, as Student 4 (line 
10) sums up the reasoning on the worksheet, s/he uses the term some as vague existential quantifier
in Peirce’s sense because s/he knows that there are such numbers (the argumentation on the worksheet
tells it) but their multitude is indeterminate; s/he is not able to “close” epistemically a set with this
property. In line 22 the teacher supports Student 6’s intuition (line 21) that there is a reversal, meaning
that the thesis and the hypothesis are reversed, as suggested by Student 1 (line 23). But the students’

7 In the excerpt we use CAPITAL LETTERS for punctuated words and “…” for pauses longer than 5 seconds.
8 The points (4’) and (IV) are based on a communication made by the researcher that collected the data.
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intuition is not a matter of hypothesis and thesis, it is a matter of “numbers”, of “sets of different 
numbers” (lines 24 and 25): There are numbers that satisfy thesis and hypothesis but also numbers 
that satisfy only the thesis but not the hypothesis. Thus, the inverse statement of the statement to be 
proved is not a valid inference. This is quite more than what the teacher wanted to put into evidence 
(reversal of thesis and hypothesis) although it is logically equivalent to it. As in example 1, students’
quantification is suitably captured by the Peircean approach that expresses the epistemic uncertainty 
as vagueness related to variable sets, but unlike in the example 1, the argumentation produces an 
insight compatible with the teacher’s one, related to classical logic. Thus, an investigation about shifts 
between different logical frames would be useful to better frame the logical analysis.

Conclusions.
According to the hermeneutical approach, the interpretation of the students’ behaviour in the 
examples is meaningful within the global analysis (discussion) and vice versa. Going on in the 
interpretation, the analysis shows that students spontaneously resort to non-standard logics and non-
standard quantification in Peirce’s style and that these kinds of quantification and logic allow to 
formulate an argumentation that explains in a reliable way the lack of validity of a proof resorting to 
blurred domains, not considered within set-theoretic language. In this sense, further research should 
examine the shifts between different logical frames and the role of the relation between metalanguage 
and mathematical object-language not only in mathematics (Asenova, 2019), but also in ME. 
Furthermore, one can state that: (i) The novice’s concept of truth might be related to the concept of 
existence of the objects involved in the statement and not to a predicate that it might satisfy: A
statement is true if the objects involved in it actually exist; this kind of existence could be “proven” 
on different levels: by showing one or more “exemplars” with the required characteristics; by 
referring to single objects as to randomly chosen examples, in a sort of genericity; by referring to a 
characterisation of the object by a definition by comparison and contrast; (ii) The concept of 
“reasoning that applies in general” might be related for the student to the production of a procedure
of a proof of existence, rather than to reasoning that applies to all cases and therefore to no one in 
particular. All these aspects join some of the students’ most recurrent difficulties concerning proof 
(Stylianides & Stylianides, 2017) and emerged thanks to the non-standard approaches in the analysis.
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Argumentation and proof as core activities in mathematics should be staged continuously and 
meaningfully in mathematics lessons. But to what extent are preservice teachers at the end of their 
studies able to adequately introduce mathematical argumentation and proof as activities into their 
classroom planning and staging? Activity theory makes a valuable contribution to answering this 
question by emphasizing the importance of prospective teachers’ development of motives and goals, 
corresponding modes of action, subjective constructions of meaning and the ability to identify 
appropriate objects for argumentation and proving activities in the classroom. In this work-in-
progress paper, we outline an activity-theoretical framework and present empirical research tools 
based on it for analyzing prospective teachers’ classroom enactments. We apply these to case studies 
from an exploratory, qualitative study with preservice teachers in their final year of study. We present 
first results and draw conclusions towards future work.

Keywords: Argumentation, proof, activity theory, preservice teacher education, second discontinuity.

Introduction
In preservice teacher education, one way to address the issue of developing preservice teachers’
ability to adequately introduce mathematical argumentation and proof as activities into their 
classroom planning and staging is to foster students’ own argumentation competence, e.g., via 
proving tasks, and to get them acquainted with didactical models and theories on developing 
argumentation competence in class. However, it is unclear whether this kind of study suffices, within 
the bounds of possibility, to prepare preservice teachers well for teaching mathematical 
argumentation. One source of such doubt is the so-called phenomenon of double discontinuity (Klein,
1908), which concerns two difficult transitions: first, the secondary-tertiary transition, when students 
enter university (see Gueudet, 2008); second, the transition from university to teaching at school. For 
the latter transition, the crucial question is to what extent teachers are able to make effective use of 
academic knowledge in their teaching. There is evidence in practice that teachers do not make full 
use of their content knowledge and pedagogical content knowledge when designing lessons. An
activity-theoretical approach can help to theoretically ground such practical impressions regarding 
the second discontinuity and to substantiate and qualify them through empirical research. It goes 
beyond the consideration of the role of affect and beliefs for teaching argumentation and proof, but 
can also function as an interface to it. It offers starting points for the development of suitable formats 
for preservice teacher training courses in order to effectively address this issue.

Activity-theoretical framework
Activity-theoretic perspectives have already proven helpful in the teaching and learning of 
mathematical argumentation and proof in connection with the role of tools and cultural artifacts (e.g.
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Cerulli, Pedemonte, & Robotti, 2005). In our work we shift the focus to the role of motives, goals, 
and constructions of meaning in the teaching of mathematical argumentation. We use the conceptual 
framework of Leontjew (1982), as developed further by Lompscher and Giest (see Bruder & Schmitt,
2016). From the perspective of activity theory, the constitutive elements of human activities are a 
superordinate motive, the objects of activity, and ways or means of action to act on and with the 
objects. The motive drives actions directed towards an object of activity, dependent on the repertoire 
of ways of action and available means. Concrete goals of such actions realize the motive in various 
ways. In individual activity, superordinate motives usually are unconsciously or subconsciously 
behind consciously set goals for actions. In the process leading from the superordinate motive to the 
concrete goals of action, individual constructions of meaning emerge.

The activity-theoretical framework enables us to analyze differences and commonalities between 
mathematical practices at university vs. school – they manifest themselves in all components of the 
activity-theoretical framework: a) While one of the central motives of university practice lies in the 
argumentative justification and explanation of the deductive derivability of a statement within the 
framework of a mathematical theory, a related motive in school mathematics would focus on truth or 
general validity of a statement rather than its derivability. b) While at university the objects of activity 
are explicitly stated (as in propositions, conjectures or proofs), the objects in school mathematics are 
often more implicit, “hidden” opportunities for argumentation (such as the comparison of different 
solutions or the justification of calculation rules). c) At university, the ways and means of action 
consist (in the context of justification) in valid reasoning within the framework of globally ordered 
mathematical theories. In school mathematics, we rather find plausible and example-based as well as 
heuristic and generic argumentation, and (more informal) deductions in locally ordered propositional 
systems. Prominent goals realizing the motives of argumentation activity in both practices are the 
well-known “proof functions” according to Villiers (1990).

Research question for the exploratory study
From the perspective of activity-theory just presented, we can now formulate an initial hypothesis
with regard to issue raised at the beginning. We hypothesize that preservice teachers often do not 
adequately develop suitable motives and corresponding constructions of meaning in their studies, as 
well as develop an inadequate repertoire of actions and dismiss possible objects for argumentation 
and proof in mathematics lessons. Consequently, they are often not able to give space and shape to 
argumentation and proof in their own school teaching in a way that in principle accommodates the 
profound and multifaceted meaning of these activities for relevant mathematical practices. The
hypothesis is motivated by the observation from university teaching practice that preservice teachers 
develop a highly reduced image of mathematical argumentation and proof during the mathematics 
lessons that they experienced at school, which is only put into perspective in de facto little mediated 
ways at university. Moreover, constructions of meaning for argumentation and proof, developed in 
university and school mathematics practice, are primarily shaped by actual experience: “Meaning is 
educated” (Leontjew, 1982). These experiences can be quite one-sided in both of the respective 
practices. For example, preservice teachers at university increasingly experience that the meaning of 
proving is systematization, whereas in the school practice they experience it may at best mean 
verification. Possible objects of argumentation and proof as well as appropriate ways of acting are 
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often not perceived very much. At school, for example, objects of proof appear only singularly, 
objects of argumentation rather covertly, and generic argumentations are often not (fully) recognized 
as argumentations. Furthermore, the respective practices are partly experienced under other, more 
dominant overriding motives, for example as “learning practices” under the motive of solving set 
tasks according to certain standards. In school, for instance, an emphasis on application, when 
experienced as dominant, may overshadow meaningful motives of argumentation and proof. We 
consider such discontinuity experiences of naturally existing differences between mathematical 
practices on the part of preservice teachers as an additional cause of the circumstances claimed in our 
hypothesis, and pose the following, open research question for our explorative study:

In which sense do preservice teachers lack effective motives and corresponding constructions of 
meaning, appropriate ways of acting or access to suitable objects, in order to stage argumentation 
and proof activities in a meaningful way in the mathematics lessons they plan and conduct?

Methodology of the exploratory study
Using the activity-theoretical perspective described above, we deductively developed an observation 
and analysis framework for teaching productions by preservice teachers. In our study, we applied this 
instrument in the context of a course in the final year of study, in which six pairs of preservice teachers 
each plan one classroom session on a mathematical subject of their choice, carry it out as a teaching 
experiment with their fellow students as peer experts, and receive professional and peer 
feedback. Hence, we observed and analyzed a total of six different classroom sessions. The chosen 
topics for the sessions were: area of triangles (1), power functions (2), half-life (3), zeros (4), binomial 
formulas (5), scalar product (6). The two authors worked independently of each other with a semi-
structured observation sheet and compared their observations in follow-up discussions. Descriptions 
of observed, argumentative or argumentation-related actions of the teacher, of requests for such 
actions to the learners, as well as related formulations of goals, motives or object designations made 
by the teacher were noted in the sheet. The time and phase of the lesson or the phase transition were 
also recorded, as well as optional comments by the observers, both descriptive and interpretive in 
nature, for example on the actual actions of the learners. In addition to the completed, semi-structured 
observation sheets, the written plans, the classroom materials and the preservice teachers’ written 
post-lesson reflections form the data basis of our study.

As a first step of evaluation of the observational data and the planning and reflection documents, we 
describe stably occurring phenomena and patterns and propose an activity-theoretical analysis and 
explanation. The framework categories of motive, object, (way of) action, goal, and construction of 
meaning we use are obtained deductively from activity-theory. We supplement these inductively with 
intended or actual motives, goals and ways of action that can be recognized in the data.

Results
In a first review of the observational data, we were able to identify three overarching phenomena and 
associated stable patterns as specific manifestations of the phenomena in the teaching productions of 
the preservice teachers, which contribute to further differentiate our initial hypothesis with regard to 
our research question. In the following, we describe each phenomenon and its patterns, give concrete 
examples of the patterns and propose an activity-theoretical explanation for the phenomenon.
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Phenomenon 1: Missing out on opportunities for argumentation

Results and answers of the learners are not questioned further in class, sometimes not even checked. 
In addition to “how did you arrive at this result?”, questions like “why does it work that way?” and 
“what is good about this way?” are missing, i.e., questions that are fundamental for mathematical 
argumentation as an activity.

Phenomenon 1 occurs in three different patterns and shows up both on the situational-spontaneous 
level of action and on the level of reflexive planning action. As we illustrate in the following, these 
observations can be understood from an activity theoretical perspective as an indication that the 
availability or accessibility of objects of argumentation has an impact on two essential professional 
competence areas of teachers: “reflective competence” and “action-related competence”, which are 
defined and measured through the corresponding action (Lindmeier, 2011).

We first describe the patterns and concretize them through examples from the staging observations. 
Then we add suitable excerpts from the planning observations.

Pattern 1.1: Receiving results and moving on. Learners’ answers are received and rated, but they 
are not questioned further or confronted with each other.

Answers and results are not used as potential objects of argumentation activities. This applies both to 
planning (“symptoms”: discussion phases are planned far too briefly, possible variants for solutions 
are not considered in advance) and to situational ad hoc action in lessons.

Pattern 1.2: Leaving questions from students behind. Unexpected questions from learners are 
acknowledged as an element of classroom interaction, but they are left behind as objects of 
argumentation.

This pattern primarily concerns situational ad hoc action in class.

Pattern 1.3: Leaving opportunities unused in task construction. The argumentative potential is not 
exploited in task construction, the staging does not focus on argumentation.

This pattern primarily concerns the planning process, when during task construction possible objects 
of argumentation are not realized and hence do not become effective in staging.

We choose examples for the patterns from session 6 (“scalar product”) because all three patterns 
occur in this session. An overview of the patterns that were recognized in agreement by both observers 
(regarding all phenomena and sessions) is provided in Table 1. The learning content of session 6 are 
four basic mental models for the scalar product, relating it to projection, orthogonality, product, and 
angle. Small groups of learners go through four learning stations, each assigned to one of the basic 
mental models. Patterns 1.1-1.3 can be recognized in the staging observations in the following places:

[1.1: Receiving results and moving on] At station 1 (projection) the learners spend much time with 
calculations, which are then only looked at. Later in plenary, a pure checking of results is done.

[1.2: Leaving questions from students behind] In plenary after the station work, a learner reports 
purely procedurally, which the teacher acknowledges with “OK”. The question of whether the 
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scalar product can be negative is raised by a learner and answered by the teacher, but only with 
the brief mention of an inappropriate technical term. It was obviously not foreseen in the planning.

[1.3: Leaving opportunities unused in task construction] At station 2 (orthogonality) the teacher 
asks about “commonalities” among the given cases of vector pairs. In return to the answer “are 
perpendicular”, the teacher asks “why”. This could be a good attempt to go into depth 
argumentatively. Unfortunately, the teacher’s question remains unanswered and is then not 
pursued further. The conceptual aspect of relative coordinates, which would have been part of such 
an argumentation, remains excluded throughout the whole session.

Table 1: Phenomena and patterns (X = pattern recognized in class or found in planning documents)

Phenomena Patterns Sessions

1 2 3 4 5 6
(1) Missing out on
opportunities for 
argumentation

1.1: Receiving results and moving on X X X X X X
1.2: Leaving questions from students behind X X X
1.3: Leaving opportunities unused in task construction X X X X

(2) Missing focus on content 
and conceptual core

2.1: Strong emphasis on methodological side of teaching X X X
2.2: Missing the conceptual core X X X X

(3) General structure and 
discursive character of 
argumentation not 
exemplified.

3.1: Teaching by preparing written tasks or task sequences 
without a (local or global) argumentation-oriented 
dramaturgy

X X X X X X

The additional planning observations can be used on the one hand to support that the occurrence of 
the three patterns in class is consistent with the planning: The planning statement “The educational 
content of the lesson is the recognition of a new operation and the application of the arithmetic 
operation with vectors” is consistent with extended phases of mechanical calculations as described,
in contrast with short phases for in-depth comparison of results (Pattern 1.1). The planning statements 
“The pupils are able to experience the scalar product in its various forms and effects in group work” 
and “In addition, it can have a motivating function to show the practical benefits of the new operation” 
(our emphasis) indicate Pattern 1.3 inasmuch as they focus on the phenomenological rather than on 
the argumentative aspect. On the other hand, both the staging observations and the planning 
observations reported so far appear to be in contrast with goals that the preservice teachers set, partly
with explicit reference to German core standards K1-6 and levels of cognitive complexity AB1-3:

“The learning objectives are as follows. [...] The pupils explain the effect of the scalar product […] 
and explain the connection between the scalar product and the cosine (K1, K6, AB3). [...] [They]
realize that the angle between the vectors plays a crucial role. [T]hey discuss why zero comes out 
for the orthogonal vectors and not for the other vectors.” (our emphasis)

We explain phenomenon 1 from an activity-theoretical perspective in a more general way on the level 
of objects: Our findings suggest that, even though goals were set that are appropriate for 
argumentation activities, in task construction preservice teachers do not succeed in connecting these 
goals to suitable objects of activity. In our example, they do not recognize the basic mental models
of the scalar product as objects of argumentation activity, but rather as phenomena to be experienced.
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Phenomenon 2: Missing focus on content and on the conceptual core

A lack of focus on content and on the conceptual core within the planning manifests itself in a 
conspicuous accumulation of learning activities that are not properly related to the learning content 
of the session. Accordingly, there is no focused content-related activation of the learners; in 
particular, activities that can be beneficial to argumentation (e.g. observation) lose the content focus.

Phenomenon 2 occurs in two patterns that fit a distinction developed in Renkl & Atkinson (2007) 
from the viewpoint of educational psychology: active responding, active processing, and focused 
processing. Active responding merely refers to a visible engagement of the learner with the learning
environment. Active processing refers to actual processing of the content, beyond overt action and 
interactivity. Finally, the stance of focused processing emphasizes that it may be crucial that learners 
activities are focused on the central concepts and principles to be learned.

Pattern 2.1: Strong emphasis on the methodological side of teaching. The staging is methodically 
(and sometimes technically) overloaded with actions that are not related to the mathematical learning 
content. As a result, learners’ engagement contributes little to their understanding of the content.

The occurrence of this pattern only leads to active responding of the learners in the sense of Renkl &
Atkinson (2007). Pattern 1.1 particularly concerns the level of reflective planning actions.

Pattern 2.2: Missing the conceptual core. The staging contains mathematical actions related to the 
mathematical learning content, but these do not reach its mathematical core. As a result, learners’ 
engagement is not focused on the content core. In particular, argumentation-related activities appear 
not to be “conceived from an explanatory warrant” with a view to foster learners’ deeper 
mathematical understanding.

In Pattern 2.2 active processing of the learners can be observed, but their mathematical engagement 
does not constitute focused processing. The pattern concerns planning as well as staging.

The staging in session 3 (“half-life”) exemplifies both patterns (see Table 1). The learning content is 
the half-life in the context of exponential functions, which is concretized regarding the real-life 
phenomena of beer foam decay and dice throwing. The individual patterns can be recognized in the 
staging observations in the following places:

[3.1: Strong emphasis on the methodological side of teaching] The foam measuring activities or 
the implementation of the dice throwing experiment dominate the staging of the group phases.

[3.2: Missing the conceptual core] In working with the experimental data, learners are asked to 
plug in and calculate in the first place. Modelling work including discussions about the exponential 
behavior (as core of the matter) is neither visible during the group phases nor addressed in the 
follow-up plenary. In both phases we observe active processing, but no focused processing.

The planning documents reveal a certain tension: on the one hand, the aim of the session appears to 
be the application of existing knowledge about exponential processes and half-life to self-conducted, 
real-life experiments, presupposing that it is already known that the core processes involved are 
exponential. However, the planning of the concrete implementation is geared towards argumentation
– but it is unclear from which premises and to which conclusion the argument leads:
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“Pupils use the example of an everyday phenomenon to apply their already learned knowledge and 
skills about half-lives. They determine experimentally the half-life of dice throwing and beer foam 
decay by conducting experiments.”

“In the case of the dice experiment, arguments can be made mathematically or with the help of 
exponential correlations. In the case of beer foam, […] the learners should argue that the half-life 
does not change. Here, they could, for example, argue with prior knowledge from the previous 
lesson or the exponential equation. [...]”

All in all, the planning fluctuates between a focus on argumentation about exponential behavior on 
the one hand and experimentation and application on the other. In the implementation, we saw no
argumentation-related activities, but a number of unfocused technical or instrumental activities like 
measuring, plugging-in, and calculating instead. We explain phenomenon 2 on the level of motives:
Regarding Pattern 2.1, one possible explanation of our findings could be that “active” learning (in a 
naive interpretation of “being active” as “doing”) and application to the real world are effective as 
superordinate motives that override specific motives for mathematical argumentation activities. 
Regarding Pattern 2.2, the preservice teachers could be guided by rather nonspecific motives like 
“doing mathematics” (not specifying the content focus) or “doing argumentation” (unaware of 
concrete assignments of functional roles within the arguments).

Phenomenon 3: General structure and discursive character of argumentation are not exemplified

There is a lack of exemplification of mathematical argumentation by the teacher as a “living model” 
and as a knowledgeable navigator in argumentative classroom discourse. Such discourse hardly 
takes place, and if at all, the structural elements of argumentation remain hidden.

We observed one stable pattern which occurred in all six sessions (see Table 1):

Pattern 3.1: Teaching by preparing written tasks or task sequences without a (local or global) 
argumentation-oriented dramaturgy. The teacher prepares pre-formulated work assignments for 
individual or group work, and then largely fades into the background in the production. Neither the 
work assignments nor the classroom discussion of the results guide argumentation activities in a 
structural or discursive sense and clarify the argumentative dramaturgy.

This pattern concerns planning activities in the first place, but can also be instantiated, e.g. in the 
form of an ad hoc decision of the teacher to withdraw from an active role in a class discussion. Due 
to limited space, we have to dismiss more detailed example illustrations. We explain phenomenon 3 
on the level of sense constructions: The planning documents show that the preservice teachers are 
somehow aware of the general motives of mathematical argumentation activity and also concretize
these in part in suitable goals, such as exploration, conjecture and systematization. However, the 
chosen ways of action are often either not appropriate for pursuing the selected goals or they are not 
implemented as part of an effective argumentative dramaturgy. A reason for this could be that the 
preservice teachers lack the corresponding meaningful experience that could serve as a source of 
meaning constructions. Hence, they lack a basis to link goals and suitable ways of acting in a 
meaningful way and to concretize the motives of argumentation activity in the lesson.
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Summary and Outlook
We showed how an activity-theoretical framework can be used to analyze prospective teachers’
classroom enactments. Our analysis of preservice teachers’ lesson planning and staging exhibits 
phenomena and stable patterns that can be explained in terms of motives, objects, goals, ways of 
action, and meaning construction. Due to the exploratory nature of our study, we obviously cannot 
draw general conclusions. Regarding specific limitations, we point out that the lessons were 
conducted in a university seminar (in digital format) with peers as learners. While one could argue 
that the participants might act differently in a real-life setting, we conjecture that core elements of 
analysis (i.e., motives and objects) are not affected substantially by the setting. Our observations 
differentiate the hypothesis formulated at the beginning and illuminate it as a general issue in teacher 
education from a new perspective. Our activity-theoretical analysis of the three phenomena interprets 
them as specific variants of the overarching phenomenon of the ‘second discontinuity’: Developing 
preservice teachers’ own argumentation competence and didactical knowledge alone might not be 
sufficient for them to successfully enact mathematical argumentation in class. From a developmental 
perspective, an important objective for future work is the design and exploration of appropriate 
formats for teacher training that sustainably address the observed discontinuity phenomena. Of
particular interest might be in how far the phenomena identified in our observational data can be 
developed into explicit guiding principles for teaching mathematical reasoning and proof (e.g., 
Buchbinder & McCrone, 2022) and be incorporated into preservice teacher courses.
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In this paper, we analyze different presentations in a historical text by Galilei and a textbook for high 
school of the parabolic motion of a projectile with a lens developed within Mathematics education 
research on argumentation and proof (cognitive unity; Mariotti et al., 1997; Pedemonte, 2005). The 
analysis highlights possibilities and problematic issues, with particular attention to the aspects 
related to continuity and rupture between argumentation and proof in textbooks and the different 
interdisciplinary relationships between mathematics and physics mirrored by historical sources and 
textbooks. We discuss how a comparison between them can be exploited to develop a discourse about 
interdisciplinary that can enlarge the view of the relationship between the two disciplines and 
didactical implications that can be inferred from this comparison.

Keywords: Interdisciplinary approach, epistemology, proof, cognitive unity, textbook evaluation.

Introduction
To introduce the topic of our contribution, we start from three different representations of the 
trajectory of a projectile:

Figure 1: Three different representations of trajectory of projectile in historical texts

In Tartaglia’s representation, the trajectory of a projectile consists of three parts: a straight part, 
followed by an arc of a circle and then ending in a straight vertical line. As stressed in Renn  et al. 
(2000, p. 316): “in the Aristotelian tradition, projectile motion was conceived of as resulting from the 
contrariety of natural and violent motion, the latter according to medieval tradition acting through an 
impetus impressed by the mover into the moving body. According to this understanding of projectile 
motion, the trajectory cannot be symmetrical because the motion of the projectile is determined at the 
beginning and at the end by quite different causes. At the beginning it is dominated by the impetus 
impressed into the projectile, at the end by its natural motion towards the center of the earth.”. 
Principles elaborated to interpret motion on the Earth were “embodied” in the form of trajectory, 
pursuing the aim to provide an axiomatic foundation to the analysis of projectile motion. 
Guidobaldo’s sketch comes from an experiment. The paradigm was slowly changing in science and 
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his transition work was crucial to challenge the medieval perception of motion.  As we can see in his 
representation, the “symmetry” that he had experimentally found in the trajectory (it the ball will take 
the same path in falling as in rising, and the shape is that which, when inverted under the horizon) led 
him to corroborate the idea that not necessarily the different kinds of motions are consecutive. This 
opened the path to new hypotheses compatible with the possibility that motions can compose each 
other; in this frame, the trajectory could resemble a catenary or hyperbola or parabola. Galilei (1638), 
as we will show, in Discourses and Mathematical Demonstration Relating to Two New Science,
completed the process of proving that the trajectory is parabolic, setting up an axiomatic system and 
grounding reasoning on rigorous proofs inspired to Euclidean ones. These steps were crucial in the 
birth of Physics and clearly show that the structure of reasonings developed mainly in Geometry, like 
axiomatics and deductive proofs, from the very beginning played a key role in the development of 
Physics (Renn et al., 2000). Udhen et al. (2012) stressed that: “the relationship between physics and 
mathematics has many facets, from the possibility to discover new physics within the mathematical 
structure to the mathematical nature of basic physical concepts. […] students should not only 
recognize that mathematics is a valuable tool for physics, but also that it can provide the underlying 
structure of a physical theory” (p. 493). These historical cases clarify why mathematics is said to play 
a structural role in physics.

Institutional context and differences between historical texts and textbooks
To promote students’ awareness of the interdisciplinary relationships between mathematics physics 
and philosophy, in a historical perspective, is a goal of secondary school in the Italian Licei 
(Mathematics curriculum). In particular teachers are asked to pay attention to these aspects with 
respect to the XVII century and the birth of modern science. The books by Galilei are the primary 
sources to consider in order to analyse the topic from the historical-epistemological point of view. In 
this book the conceptions of disciplines and their relationship differs from today since it is a 
foundative book, one of pillars of modern scientific method, and an example of rich scientific text 
that intertwines explicitly many dimensions of knowledge that nowadays are codified in disciplines 
(mathematics, physics, engineering, philosophy). Physics textbooks for secondary school present a 
disciplinary didactical transposition that is consistent with the (implicit or explicit) didactical goals 
of the authors. The topic is not addressed in the same way as Galilei: parabolic motion is presented 
as a particular case of two-dimensional motion and introduced deserving a lot of space to algebraic 
passages and formulas, also in the proof. The main differences can be due to the targets (scientific 
community vs students), the goals (proposing a new theory vs teaching), the development of 
disciplines and their epistemologies (Euclidean geometry and study of motion vs M&P curriculum at 
school), interdisciplinarity (scientific discourse intertwining different dimensions  vs combination of 
elements of knowledge taught with a disciplinary perspective). 

Literature review and research questions 
In this paper, we focus on a specific aspect, epistemologically relevant from the disciplinary and 
interdisciplinary point of view, that is the way argumentation and proof (A&P) are presented in two 
texts about parabolic motion: Galilei (1638) and the chapter Two-Dimensional Kinematics in the 
physics textbook by Walker (2017; high school edition, translated also in Italian). Among the 
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different textbooks used in Italy, we chose that one because it is quite rich from the epistemological 
point of view (Bagaglini et al., 2021).  A first reading of the books showed that in both cases they 
deal with proving/demonstrating that the trajectory of a projectile is an arc of parabola, but the 
meanings of the term “proving” seemed to change, as well as the way proof were presented and 
intertwined with other aspects of the scientific argumentation. We consider A&P key concepts to 
analyse the structural role of mathematical thinking in physics learning in an interdisciplinary 
perspective. On one hand awareness about the relationship between mathematical proofs and physical 
argumentation contribute to developing an authentic picture of the role of mathematics in physics. 
On the other hand, to trigger a reflection about the meaning of A&P in mathematics and physics 
(M&P) is an opportunity to investigate the epistemology of such disciplines. With respect to the 
literature review in mathematics education, our research aims at contributing to address some open 
questions proposed in the handbook by Durand-Guerrier et al. (2012) about A&P in mathematics and 
empirical sciences: To what extent should mathematical proofs in the empirical sciences, such as 
physics, figure as a theme in mathematics teaching so as to provide students with an adequate and 
authentic picture of the role of mathematics in the world? Could a stronger emphasis on the process 
of establishing hypotheses (in the empirical sciences) help students better understand the structure of 
a proof that proceeds from assumptions to consequences and thus the meaning of axiomatics in 
general? We consider the way the bridge built between mathematical and physical aspects of A&P is 
presented crucial to address the nature of such a relationship from the didactical point of view. The 
type of presentation of a proof is already under investigation in mathematics education; open 
questions we are interested in are: To what extent and how is the presentation of a proof (verbal, 
visual, formal etc.) (in)dependent on the nature of the proof? Do students perceive different types of 
proofs as more or less explanatory or convincing?” (Durand-Guerrier et al., 2012). We hypothesized 
that connecting the notions of A&P in M&P makes this aspect even more important, since the verbal, 
the visual and the formal aspects of proof might play a different role in explaining and convincing 
students when “mathematizing” observation and reasonings about empirical phenomena or 
experiments, and in mirroring the nature of such a kind of proof, whose complexity is evident also in 
the historical cases briefly resumed in the introduction. 

In this paper we analyse the way knowledge belonging to M&P (objects, reasonings, assumptions, 
epistemological issues) is used in argumentative steps and proof in different texts. We consider the 
analysis of A&P in texts and the comparison with historical texts a key step to move from the 
historical-epistemological and cognitive analyses to the classroom practices, in particular considering 
teacher-students education. This issue has been investigated by papers presented in CERME10 
(Stylianides et al., 2018); among the themes discussed, we contribute to highlight the role of language 
in teaching and writing proofs and to search for analytical frameworks for argumentation and proof 
in textbook expositions.

Research framework 
The didactic value of inserting proof into an argumentative process that involves students in the 
formulation of conjectures has been highlighted by many studies as a way to move from a 
reproductive approach to demonstration to a productive one and to focus on proof as a process more 
than on proof as a product. The construct of cognitive unity has been introduced by Mariotti et al.  
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(1997) to encode this idea and to stress the need for didactical situations in which the construction of 
a proof naturally follows from the exploration of a problematic situation by students. In particular we 
refer to this key aspect: “some aspect of continuity, concerning the production, during the 
construction of the conjecture, of the elements (“arguments”) that are used later during the 
construction of the proof” (p. 1). This way some elements that characterize the proof (the choice of a 
statement to refer to, or of the semiotic representation register) are not artificially and suddenly 
introduced but arise naturally from the exploration, as it happens when statements are proved in 
research. Otherwise there is a cognitive rupture (Pedemonte, 2005). Proving that the trajectory of a 
projectile motion is parabolic can be considered a conjecture-proving problem, according to the
characterization of Mariotti et al. (1997).

We assume that continuity should be pursued also in physics teaching to guarantee a productive 
approach of students to proving in this field, in particular when mathematics appears in the statements 
and semiotic representations of physical entities, since students need to activate resources related to 
their conception and experience of mathematical processes. What happens to the flow of observation 
and conjectures about physical phenomena when mathematics enters the discourse? If teachers have 
to guide a classroom discussion to help the students to include these aspects, is continuity between 
A&P pursued or do their interventions cause cognitive rupture? As we showed, the issue is critical 
from the epistemological point of view, so we think teacher-students need examples and meta 
reflection to guide the students properly in such classroom discussions. The cognitive unity has been 
developed, and is mainly used, to analyse students’ reasonings. We consider texts targeted to non-
expert readers as examples of forms of presentation of reasonings,  as they were teachers' speeches 
when they guide students who made observations and conjectures to gradually organize their 
reasonings. These can be prototypes of different ways the teachers scaffold students’ approach to 
interdisciplinary A&P in the classroom, with possible different impacts on students’ learning. We 
consider thus it useful to carry out analyses with the same lens used with students of the ways the 
texts guide the readers to move from exploration to A&P.

Methods
The books were analysed at two scales: a global analysis of the organization of the books with 
epistemological and linguistic lenses (Bagaglini et al., 2021), and zooming in on some excerpts where 
we could find relevant aspects to analyse in order to identify continuity and rupture between A&P in 
the texts. In this paper we focus on the second aspect. From the methodological point of view, we 
referred to the analysis of cognitive unity and rupture proposed by Pedemonte (2005):

– structural analysis: refers to the link between the structures of statements used in argumentations
and in proofs. There is structural cognitive unity when statements used in the argumentation are also
used in the proof. Otherwise, there is structural cognitive rupture.

– referential analysis: refers to the systems of reference used in argumentations and in proofs, that is,
the systems of signs (drawings, calculations, algebraic expressions, etc.) and systems of knowledge
(definitions, theorems, etc.) used. There is referential cognitive unity when some systems of signs or
knowledge are used both in the argumentation and the proof. Otherwise, there is referential cognitive
rupture. We enlarged it according to our goal (interdisciplinary analysis of prototypes of A&P
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connections). We carried out a structural and referential analysis of relevant excerpts from the third 
and fourth day, concerning the study of local motions in Galilei (1638) and Walker (2017). We 
identified statements in A&P related to parabolic motion and then systems of representation and 
knowledge belonging to both mathematics and physics (considered as disciplines taught at school in 
grades 9-10 in Italy in the textbook’s analysis and as historical disciplines analyzing Galilei’s 
excerpts). We organized them on tables reporting on the left the excerpt (statements), on the right the 
referential analysis. By comparing the A&P steps, thanks to the structural and referential analysis, we 
detected unity or rupture in both texts. Because of space constraints, we report only a few excerpts to 
show the analysis of the proof of the statement “the trajectory of a projectile is parabolic” and  the 
previous choices made in the argumentative part.

Main results of the analysis of unity or rupture in Galilei’s and Walker’s texts 

By steady or uniform motion [1], I mean one in which the distances traversed 
by the moving particle [2] during any equal intervals of time [3], are 
themselves equal. [D1].

Definition of uniform motion using 
proportions (equal space in equal time)

A motion is said to be uniformly accelerated [4], when starting from rest, it 
acquires, during equal time-intervals [3], equal increments of speed.[...] the 
distances traversed [2] are proportional [D1] to the squares [5] of the times.

Definition of accelerated motion using 
proportions (equal increments of speed in 
equal time, space proportional to the square 
of time)

Imagine any particle projected along a horizontal plane without friction; if the 
plane is limited and elevated [6] the resulting motion which I call projection 
[7], is compounded of one which is uniform and horizontal [1] and of another 
which is vertical and naturally accelerated [4]. 

Definition of projectile, that incorporates 
the assumption of composition of motions 

Theorem 1 – Proposition 1: A projectile [7] which is carried by a uniform 
horizontal motion [1] compounded with a naturally accelerated [4] vertical 
motion describes a path which is a semi-parabola [8].

Theorem formulated using previous 
definitions

The section of this cone [..] which is called a parabola [8] [..] the square  [5] 
of bd is to the square  [5] of fe in the same ratio [9] as the axis ad is to the 
portion ae.

Definition of parabola

Let us imagine an elevated [6] horizontal line or plane ab along which a body 
moves with uniform [1] speed from a to b. Suppose this plane to end abruptly 
at b [6] [..]. Draw the line be along the plane ba to represent the flow, or 
measure, of time; divide this line into a number of segments, bc, cd, de,
representing equal intervals of time [3] [..] in proportion [D1] to the squares 
[5] of cb, db, eb, or, [..] in the squared ratio [9] of these same lines. [...]the
distance traversed [2] by a freely falling body varies as the square [5] of the 
time; in like manner the space eh traversed [2] during the time be will be nine 
times [D1] ci; thus it is evident that the distances eh, df, ci will be to one 

Proof is presented, where:
- the same terms introduced before are used, 
as well as the same spatial representation 
(segments/intervals of time)
- it is stressed the use of proportional 
reasoning, that was used to define the kinds 
of motions that are combined
- G. recalls the assumptions about the 
composition of motions
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another as the squares [5] of the lines be, bd, bc. The square [5] of hl is to that 
of fg as the line lb is to bg [D1]; and the square [5] of fg is to that of io as gb
is to bo; therefore the points i, f, h, lie on one and the same parabola [8].

- G. recalls the setting associated to the
definition of projectile with the same words
- G. intertwines the definition of parabola
and the characterization of accelerated 
motion in order to exploit the linguistic 
analogies to stress that the points must lie on 
a parabola.

Table 1: Analysis of Galilei’s excerpts

The combination and independence of horizontal 
and vertical motions are initially introduced in a 
lateral box as Big Idea. The status of the statement 
in terms of elements of A&P (axiom, theorem) is 
not expressed.

Projectile Motion: Basic Equations We now apply the independence 
of horizontal and vertical motions to projectiles. Just what do we mean 
by a projectile? Well, a projectile is an object that is thrown, kicked, 
batted, or otherwise launched into motion and then allowed to follow 
a path determined solely by the influence of gravity. 

The Big Idea is applied to projectile motion to 
obtain its equations and a phenomenological 
description of the projectile is presented.

Demonstrating Independence of Motion: A simple demonstration 
illustrates the independence of horizontal and vertical motions in 
projectile motion. [..] Notice that the ball goes straight down, lands 
near your feet, and returns almost to the level of your hand in about a 
second. [...] To you, its motion looks the same as before. The fact that 
you were moving in the horizontal direction the whole time had no 
effect on the ball’s vertical motion — the motions are independent.

A figure represents a moving person with a roller 
skate and a falling ball; the two combined motions 
are represented with a reference to real life.
The motion is seen also by an external observer 
and the trajectory is linear and vertical in the 
system of person and curved in the external 
system, that is represented through cartesian axes 
put onto the real life figure.
The relativity of motion in different systems is 
used to demonstrate independence of motions.

To an observer who sees you walking by, the ball follows a curved 
path, as shown. The precise shape of this curved path—a parabola—is
verified in the next section. 

A picture (photo with a camera to a real world 
phenomenon) is proposed.
In the description of the figure, it is mentioned the 
visualization of concepts and presented as one 
among other“examples of principle” of 
independence of  motions.
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FIGURE 4-4 Visualizing Concepts - Independence of Motion (a) An 
athlete jumps upward from a moving skateboard.

It is anticipated that the shape is a parabola and that 
this will be verified later.

A graph, resembling the one by Galilei but the use 
of x,y and units on the axes, is in a lateral box. 
The horizontal uniform motion is presented using 
proportions (equal space in equal time) without 
mentioning the nature of this description as 
definition. The same happens to vertical 
accelerated motion. Symbolic expressions are used 
for the generic case and the Galilei case is obtained 
substituting a value into equations for projectile 
motion.

An algebraic version of the proof is presented 
(never named proof), with:
- reference to a curved path:
- the term “found” instead of verify
- use of symbolic expression of the two motions 
combined, as well as  the parabolic generic 
equation
- no reference to assumptions about the 
combination of motions 
- the use of terms “substitution” and “eliminate” 
- no mention of the previous graph and the 
exemplification of principles of independence.

Table 2: Analysis of Walker’s excerpts

Discussion and conclusions
The first analysis shows that Galilei’s text is characterized by structural and referential unity: he 
mathematized the relationship between space and time with magnitudes and proportions and used 
always the same objects and properties to merge the observation of phenomena, empirical laws and 
geometrical properties of conic sections. The mathematization of the experimental setting allowed 
him to prove, deductively, that the trajectory is a semi-parabola, under the hypothesis that the motion 
of a projectile results from a composition of independent uniform and accelerated motion. The theory 
of magnitudes bridges the concrete action of measuring and the theoretical comparison between 
geometrical magnitudes. The graphic representation plays a crucial role, since the action itself to trace 
a line/curve with a motion of a point is a sort of ideal machine that draws a trajectory, hybridizing the 
notion ofs trajectory and geometrical curve to treat the trajectory geometrically. In this case the 
structural role of mathematics clearly emerges: “importing” the structure of Euclidean proof in the 
investigation of motion allows to refine and strengthen argumentation.
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In Walker’s chapter, it is visible the effort to consider the dimension of A&P: there are physical 
assumptions, a definition of projectile, examples that ground the assumptions about the composition 
of independent motions on empirical facts, stressing that they are realistic. Some referential choices 
are consistent: the motion of a projectile is a particular case of a more general motion, equations of 
evolution are used to derive new equations treating time and space as algebraic variables. However, 
many elements of rupture are present. both in terms of structural and referential analysis of the 
relationship between argumentation and proof. Indeed, the presentation of the argument concerning 
physical principles and entities and the proof are presented with figures and pictures related to real 
life, while in the derivation of the equation they switch suddenly to algebraic language and analytical 
reasoning (substituting variables in functions). Moreover definitions, principle, inference, proof are 
never mentioned. The link between empirical aspects and mathematical knowledge is hard to 
establish for a reader, because of the strong discontinuity in terms of use of signs and semiotic 
registers for the expression of the statements. 

Our analysis highlighted issues that we consider crucial from the didactical point of view since they 
connect relevant issues of mathematics education to interdisciplinarity M&P. In particular, from such 
a comparison prospective teachers can gain awareness about the ruptures that can be found in 
textbooks and thus adapt their teaching practices to pursue cognitive unity by reflecting on the aspects 
we stressed with their students and compensating for the weakness of textbooks.
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Guiding principles for teaching mathematics via reasoning and 
proving 
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Against the backdrop of policy documents and educational researchers’ vision of proof as an 
essential component of teaching mathematics across content areas and grade levels, teaching of 
reasoning and proof in mathematics classrooms remains an elusive goal. Teachers and the type of 
teaching they enact in classrooms are crucial for achieving this goal. This theoretical paper builds 
on the concept of proof-based teaching and suggest a set of guiding principles for what we call 
teaching mathematics via reasoning and proving. These principles were developed as a part of a 
multi-year design based project, and implemented in an undergraduate course Mathematical 
Reasoning and Proving for Secondary Teachers. We illustrate these principles using examples from 
proof-oriented lessons plan developed by prospective secondary teachers.   

Keywords: Reasoning and Proof, Classroom Instruction, Secondary Mathematics Teachers 

The state of reasoning and proving in mathematics classrooms  
Learning mathematics meaningfully entails more than following procedures and recalling facts; 
rather, it requires understanding, making sense of, and engaging in mathematical practices, such as 
identifying patterns, conjecturing, exploring with examples and counterexamples, and justifying and 
critiquing arguments. Collectively, these disciplinary practices are called reasoning and proving 
(Ellis et al., 2012; Stylianides, 2008). Proof serves many roles in mathematics, but in mathematics 
classrooms, reasoning and proving mainly serve to support students’ sense-making by providing 
insights into why something is true, and not just that something is true. Importantly, the means for 
showing why should be through deductive reasoning rather than relying on authority of the teacher 
or a textbook (Hanna & deVillers, 2012). Student participation in reasoning and proving activities 
across grade levels and mathematical topics is widely recognized as essential for meaningful learning 
(NGA & CCSSO, 2010; NCTM, 2009), due to the focus on mathematical sense making. Reasoning 
and proving are also linked to knowledge retention, enhanced understanding and making mathematics 
intellectually satisfying for learners (Harel, 2013).  

However, the uptake of reasoning and proving as an integral part of school mathematics has been 
slow and limited (Stylianides et al., 2017; Nardi & Knuth, 2017). Several potential explanations are 
offered for this phenomenon. Some researchers (e.g., Thompson et al., 2012) locate the problem with 
the dearth of examples in curricular materials for engaging students with reasoning and proving. 
Although there are some texts that aim to help teachers to integrate reasoning and proving in their 
teaching (e.g., Ellis et al., 2012; NCTM, 2009) they are often more appropriate for problem-based 
curricula rather than what can be considered a traditional secondary mathematics curriculum.  

Another reason for the low occurrence of reasoning and proving in mathematics classrooms is that 
teachers and students tend to interpret it narrowly, as two-column exercises in high school geometry 
(Herbst, 2002). The didactic contract (Brousseau, 1997) that develops around this genre of exercises 
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seem to be about reproduction of sometimes “obvious” mathematical results in a prescribed format. 
This leads both teachers and students to perceive proof as intellectually unexciting and a redundant 
activity (Harel, 2013). The powerful image of proof championed by mathematicians and championed 
by mathematics educators, does not seem to precipitate into mathematics classrooms. In addition, 
teachers’ own gaps in mathematical knowledge specific to proof and unproductive beliefs about 
teaching proof (for example, that only high-performing students can handle proofs) can sometimes 
pose barriers to classroom integration of reasoning and proving (Stylianides et al., 2017). But the 
issue runs deeper than that. Studies have shown that even teachers who seem to appreciate proof and 
acknowledge its importance in mathematics tend to prioritise development of procedural skills over 
proof-related activities in their own classrooms (e.g., Kotelawala, 2016).   

Nardi and Knuth (2017) suggest that “Orchestrating a focus on proof appreciation requires a change 
in classroom culture with respect to proof and proving, a change that must start with the teacher”, but 
it would also require “changing classroom culture, curricula, and instruction” (pp. 268-269). As much 
as we agree with the authors about the need for change and the critical role of teachers in this process, 
we are doubtful whether such an overhaul approach to classroom teaching is viable. First, many 
teachers’ personal experiences with proof as learners and their mental image of what it means to 
engage students in proving may impede them from enacting reasoning and proving in their 
classrooms. Thus, the role of teacher preparation and professional development in spearheading 
changes in classroom instruction is critical. Some positive effects of teacher preparation and 
professional development programs on classroom teaching have been reported in the literature (see 
Stylianides et. al., for an extensive summary).   

The second, and probably more substantial barrier for classroom integration of reasoning and proving, 
is found in factors external to individual teachers, but nonetheless critical, such as society, institutions 
and the culture of schooling (Chazan et al., 2016). Cultural environments dominated by standardized 
testing, pressure from parents, administrators and other stokeholds; a culture in which a teacher’s 
success is measured by the number of students passing tests, are less conducive change. In such 
environments, a teacher may find him/herself navigating a complex system of competing expectations 
and obligations; with the external pressure contributing to teachers’ reluctance to spend time on proof, 
instead of “covering” the curriculum.     

Towards possible solutions 
The problem and its plausible causes described above are not new, and several approaches to address 
it have been proposed over the years. One, already mentioned, is through teacher education and 
professional development initiatives aiming to enhance future and practicing teachers’ subject matter 
and pedagogical knowledge specific to proof, affecting their beliefs about proof, and providing 
ongoing classroom support for teachers enacting reasoning and proving in their classrooms (see 
Stylianides et al., 2017 for an overview). Such initiatives often rely on researcher-developed 
instructional materials that teachers try in their classrooms. These efforts are important as they help 
move the field towards developing theoretical and practical knowledge for making reasoning-and-
proving a reality in mathematics classrooms. Towards addressing this knowledge gap, Stylianides et 
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al., (2017) emphasized the need for theoretically sound and well-defined classroom interventions of 
short duration that support change of students’ conceptions.  

Another approach, proposed by Reid (2011), is Proof-Based Teaching (PfBT). As opposed to 
focusing on teaching proof, the PfBT is a way of teaching mathematics in which the teacher guides 
students through a carefully designed sequence of exploratory activities in which learners develop 
and prove mathematical results. The PfBT is akin to problem-solving teaching and inquiry-based 
learning (Ronis, 2008), but with the emphasis on students deductively proving the conjectures they 
develop during the exploratory activities. The PfBT approach seems to hold much promise for 
advancing change in teachers’ classroom practices related to proof. Changing the discourse from 
teaching proof towards proof-based teaching, puts student learning of mathematics in focus, 
potentially helping to alleviate some of the tensions teachers might associate with proof. Far from 
being a simple change of rhetoric, the PfBT restores the place of proof and proving in mathematics 
(Hanna & deVillers, 2012), highlighting its role in production of mathematical knowledge. 

The key element of PfBT, which guides the work of teaching, is the use of a framing theory. This 
theory outlines a sequence of definitions, statements, and conjectures that students are expected to 
discover and prove, to develop well-connected knowledge of particular mathematical content. For 
example, Reid and Vargas (2019) developed a framing theory for learning the operation on integers, 
called integer tiles theory (ITT), and enacted a PfBT teaching experiment in a 3rd grade classroom 
based on it. Although these results are encouraging, the PfBT model in its current form might not be 
easily extendable to secondary classrooms. The current state of educational research is such that many 
prominent topics in the secondary curriculum, e.g., quadratic functions, logarithms, trigonometry, 
analytic geometry, and others, do not have well-developed and well-established instructional theories. 
The lack of such theories may impede the broad application of PfBT. Thus, additional pathways are 
needed to promote instruction focused on reasoning and proof at the secondary level. In the next 
section, we outline Teaching Mathematics via Reasoning and Proof (TMvRP) model, which is close 
in spirit to PfBT, but does not rely heavily on the existence of established instructional theories.  

Teaching Mathematics via Reasoning and Proving (TMvRP) 
Our method 

Guiding principles of the TMvRP model were gradually developed and formulated while engaging 
in the multi-year design-based research project in which we designed a special course Mathematical 
Reasoning and Proving for Secondary Teachers, and systematically studied its impact on prospective 
secondary teachers’ (PSTs) knowledge, dispositions and practices specific to reasoning and proof.  
(Buchbinder & McCrone, 2020). In this course, the PSTs designed four proof-oriented lesson plans 
and taught them in local schools. The course discussions revolved constantly around the role of 
reasoning and proving in teaching and learning mathematics, and its usefulness and advantages for 
student learning. Having the PSTs design four proof-oriented lessons and enact these lessons in local 
schools aimed to convince the PSTs that (1) it is feasible to integrate reasoning and proving with any 
topic from the secondary mathematics curriculum, and (2) students are capable of learning complex 
concepts pertaining to deductive reasoning, such as conditional statements, indirect reasoning, and 
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quantification. Through the iterative cycles of implementing and studying this course, the guiding 
principles of TMvRP models emerged. 

The Guiding Principles of TMvRP 

Guiding Principle 1: Teaching reasoning and proving must be fully embedded within the existing 
content of mathematics curriculum. When teachers perceive reasoning and proving as practical and 
not competing with their curriculum, then there is a chance, they will embrace it in their classrooms. 

One of the key aspects that PfBT and TMvRP have in common is the emphasis on school 
mathematics, which we see as essential in order for teachers to get on board with the model. If 
teachers perceive reasoning and proving as taking time away from “curricular coverage”, they will 
be reluctant to spend class time on it, sending an implicit message of irrelevancy to students. Thus, 
we integrated reasoning and proving within the regular mathematics curriculum. 

Guiding Principle 2: Emphasis on deductive reasoning as a means to produce and validate 
mathematical knowledge. Proof-oriented tasks should focus on a small subset of deductive reasoning 
concepts, at the core of conventional mathematical knowledge.  

We wanted teachers and students to develop perceptions of reasoning and proving as central to 
mathematical thinking; processes that help to answer why something in mathematics is true (or false). 
At the same time, in mathematics there are special ways of responding to the question why, different 
from those used in everyday life, sciences, history or other fields. Mathematics requires deductive 
reasoning, which can be challenging to teach and learn. There TMvRP model allows to address some 
of the common and persistent proof-related misconceptions (Stylianides & Stylianides, 2017), such 
as students’ overreliance on empirical evidence). Focusing on one such misconception at a time, or 
on one element of deductive proof can help to maintain the focus on deductive reasoning in the 
classroom discourse.   

Guiding Principle 3: Use language, notation and representations within the conceptual reach of the 
students. This principle resonates with Stylianides’ (2007) definition of proof in school as an 
argument that uses knowledge, language and representations that are within the conceptual reach of 
the classroom community. We operationalize this in our TMvRP model by encouraging teachers to 
de-emphasize form of the proof (e.g., two-column or algebra-only) and avoid unnecessary “logical 
jargon” (inverse, contrapositive). Instead, the model encourages multiple proof formats and 
representations, appropriate to the grade level, to communicate about deductive reasoning.   

Illustration of the guiding principles of TMvRP in lesson planning 

Following are excerpts of two lesson plans developed and taught by a PST Diane (a pseudonym) in 
a 9th grade Algebra 1 class. We use these excerpts to illustrate the guiding principles of TMvRP. 
Lesson plan 1 integrated ideas pertaining the role of examples in proving with the mathematical topic 
of systems of linear equations through a context of the Hiking Exploration Problem (Fig. 1).  

In Lesson 2, Diane integrated ideas about direct (generic) proof and indirect proof with the topic of 
quotient rule for exponents. Diane started by having the students explore patterns of simplifying 
numeric quotients by expanding the exponents (Fig. 2).  
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Given a map of a trail with the starting positions of two hikers. Matt 
starts at the trailhead and walks at a rate of 2 mph; Bill starts 3 miles 
up the trail and walks at a rate of 1 mile per hour. 

1. Represent Matt and Bill’s movement along the trail with 
equations. 

2. Find evidence to support or disprove this claim: There exists a 
time on a 5-hour hike where Matt catches up to Bill. 

3. What type of evidence and how much evidence do we need to 
prove or disprove this claim? 

4. Solve the system of equations both graphically and algebraically. 
What does the solution mean in the context of the problem? 

5. Find evidence to support or disprove this claim: Bill is always 
further ahead on the trail than Matt is. 

6. What do we need to show to prove or disprove the claim in #5? 

7. Put a point on a graph that represents a counterexample to the claim in #5. What x-value corresponds to it? Use our 
equations to show algebraically that this x-value is a counterexample.

8. What if the hike was only 2 hours long? Find evidence to support or disprove the claims: (a) There exists a time on 
the 2 hour hike where Matt catches up to Bill on the trail. (b) Bill is always further ahead on the trail than Matt is. 

Figure 1: The Hiking Exploration Problem

Figure 2: Developing the quotient rule of exponents

Figure 3: Questions intended for applying indirect reasoning

Matt

Bill
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After students noticed and explained the pattern, Diane guided them through a generic proof (Mason 
& Pimm, 1984) of the rule. Next, she had students solve a set of tasks, which aimed to test the 
boundaries of use of the quotient rule (Fig. 3). When solving questions of the type shown in Fig. 3, 
Diane wanted students to assume that a given x-value is a solution, plug it in and obtain a false 
statement, which the students would interpret as a contradiction and conclude that the given x-value 
cannot be a solution. In the lesson plan, Diane wrote: “To summarize the indirect reasoning portion 
of the lesson, I want to make sure I emphasize that we are finding a contradiction to a statement, and 
that is why they are false.” Note that in the context of this lesson, indirect reasoning has a form: “X 
cannot be Y, because otherwise we reach a contradiction Z”. This does not constitute a proof by 
contradiction; nevertheless, being enculturated into explicit use of indirect reasoning can help 
students learn proof by contradiction at a later stage.   

The two lessons clearly differ from each other. In the first lesson on the role of examples in proving 
students learned when it is appropriate to use examples to prove existential statements and 
counterexamples or disprove a universal statement in the context of solving a word problem. The 
second lesson on indirect reasoning did not rely on a real-world context, but it included exploring 
patterns, conjecturing, using direct generic proof of the quotient rule of exponents. The indirect 
reasoning came naturally, in the context of testing the boundaries of the quotient rule.  

The outlines of these two lesson plans illustrate the guiding principles of TMvRP. First, reasoning 
and proving are fully integrated with the ongoing topic of the school curriculum. Proof concepts such 
as generic proof, indirect reasoning, role of examples in proving, and universal and existential 
statements support the learning of solving systems of equations and of exponent rules. Second, the 
mathematical topics provide a platform for the teacher to emphasize elements of deductive reasoning 
in ways that align naturally with the task. The teacher introduces students to the use of deductive 
reasoning in conventional mathematical ways, e.g., using supportive examples to prove existential 
statements and counterexamples to disprove universal statements. Third, while the teacher uses 
precise mathematical language throughout the lesson, she uses language within the students’ 
conceptual reach and makes clear choices about what proof-related vocabulary is or is not critical for 
students in that lesson. For example, in lesson 1 Diane explained to students what a counterexample 
is and its role, but in lesson 2 she decided not to introduce the concept of indirect reasoning. In her 
lesson plan she wrote: “I don’t think that using the words “indirect reasoning” is going to be 
particularly helpful to them [the students].” Regardless of whether we agree with Diane’s choice, this 
example illustrates how a teacher makes instructional decisions regarding their own classroom and 
adjusts the language and representations to fit the students’ perceived conceptual level, while 
introducing students to the deductive reasoning aligned with conventional mathematical practices. 

Conclusions and Future Directions 
In the extensive review of the research literature, Stylianides et al., 2017 observe a disproportionally 
larger number of studies describing difficulties related to teaching and learning of proof compared to 
studies seeking to address them. The line of research on research-based classroom interventions is 
gradually emerging, and with it some novel approaches to integrating reasoning and proving in 
classrooms, e.g. Reid’s (2011), and Reid and Vargas’ (2019) Proof-Based Teaching framework. In 
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this theoretical paper, we discussed some of the barriers to such integration, some having to do with 
individual teachers and others reaching beyond to institutional, cultural and societal factors. The 
analysis of these factors motivated our design-based research project in which we worked to support 
and empower PSTs to enact reasoning and proving in mathematics teaching. Through this project, 
we developed the guiding principles for the Teaching Mathematics via Reasoning and Proof 
(TMvRP) approach: (1) Full curriculum integration, (2) Incremental and continuous emphasis on 
deductive reasoning, and (3) Adjustment of language, notation and representations to students’ 
conceptual level.  

We believe that instructional activities developed in accordance with these principles have a potential 
to position reasoning and proving as vehicles for learning mathematical content, making these 
processes appealing and manageable for both teachers and students. The PSTs in our course had four 
opportunities to apply the guiding principles of TMvRP to their lesson planning and teaching, as the 
examples of Diane’s lesson plans show. Although some PSTs remained skeptical, the overwhelming 
majority of PSTs developed greater confidence in their ability to enact reasoning and proving in their 
classrooms. At the same time, we are mindful that the motivation for integrating proof in the lesson 
plans was external to PSTs as it was a course requirement. Thus, the question to what extent the 
TMvRP principles became part of their own teaching repertoire remains open. Hence, our new project 
focuses exactly on that: We follow the graduates of our mathematics education program into their 
supervised internship and the first two years of autonomous teaching to examine how (if at all) they 
continue integrating reasoning and proving into their teaching of mathematics. We hope that other 
researchers will be inspired to test TMvRP principles with prospective and/or practicing teachers to 
expand the research base behind this approach.  
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In recent years, the Toulmin model seems to have become a “silver bullet” when analyzing 
argumentation (and proof) in mathematics education. While the model and its adaptations are well-
fitted especially to reveal the structure of arguments, it is not suitable to grasp all aspects of 
argumentation which are relevant to the mathematics classroom. In this paper, we outline both, 
possibilities and limitations of the Toulmin model and present some additional considerations 
concerning this model undertaken in the last decades. Furthermore, we present and discuss some 
alternative approaches to argumentation and highlight their additional benefits. 

Keywords: Argumentation, Toulmin model, Rationality, Logic of inquiry, Walton’s dialogue theory

Introduction
In this article, we would like to follow up on a question that arose in the context of the TWG 
Argumentation and Proof at CERME11: Which models can be used besides the Toulmin model to 
analyze (mathematical) argumentation? Indeed, the Toulmin model has proven and established itself 
for structuring and presenting argumentation processes in a mathematical context. However, the 
associated disadvantages and 'blind spots' of the model are often ignored or disregarded. Moreover, 
the model appears to be so widespread that young researchers in particular fail to identify alternatives 
that might be better suited to address their research questions. 

Our first aim in this article is to show which possibilities the original Toulmin model offers for 
structuring mathematical argumentation processes, which advantages and disadvantages are 
associated with it, and which conceptual extensions of the model are discussed in mathematics 
education. Furthermore, we would like to discuss other perspectives on argumentation that go beyond 
structural analysis and present alternative approaches to investigating argumentation.

The Toulmin-Model
Toulmin (1958) proposed a model for structuring argumentation in general. Inglis et al. (2007, p. 4; 
emphasis in original) summarize this scheme as follows (see also Figure 1): 

Toulmin’s (1985) scheme has six basic types of statement, each of which 
plays a different role in an argument. The conclusion (C) is the statement of 
which the arguer wishes to convince their audience. The data (D) is the 
foundations on which the argument is based, the relevant evidence for the 
claim. The warrant (W) justifies the connection between data and 
conclusion by, for example, appealing to a rule, a definition or by making 
an analogy. The warrant is supported by the backing (B) which presents 
further evidence. The modal qualifier (Q) qualifies the conclusion by 
expressing degrees of confidence; and the rebuttal (R) potentially refutes 
the conclusion by stating the conditions under which it would not hold.

Figure 1: Toulmin’s 
model of a general
argument (similar to 
Inglis et al. (2007, p. 4))
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As Nussbaum (2011, p. 86) points out, Toulmin did not originally intend to propose a model of 
argument. He originally wanted to counter formal logic with an alternative foundation for argument. 
Nevertheless, the model has been misinterpreted as normative. Toulmin was not concerned with the 
completeness of arguments, for example, to evaluate their quality. Especially in non-mathematical 
contexts, the warrants are often not made explicit. Nor was it Toulmin’s concern to use the model to 
teach students how to propose an argument. It has been shown that the Toulmin model can be used 
to reveal argumentation structures in mathematical contexts (e.g., Inglis et al., 2007; Knipping, 2008). 
Here, the Toulmin model is often reduced to the somehow core aspects of Data, Warrant, and Claim. 
However, as stressed by Inglis et al. (2007) and Jahnke (2008), the whole model should be preferred 
to cover essential aspects of argumentations such as the backing, which specifies the warrant, or 
likewise the modal qualifier that serves to qualify the conclusion. 
Limits of the Toulmin model and opening a discussion 
The Toulmin model has its benefits when trying to reveal an argument’s structure. However, some 
limitations of the model have to be considered, too. On the structural level, Nussbaum (2011, p. 86) 
discusses that in some situations, a reliable distinction between warrant and backing is hard to 
undertake, and there are some arguments in real life (such as arguments with a number of separate 
reasons) that do not fit the components and structure of the model. Aberdein (2013) criticizes that the 
Toulmin model is weak for the representation of instructions which may be part of mathematical 
arguments in particular. Due to its structural-analytical orientation, the model is less suitable for 
highlighting how people argue and why, and there is no focus on the correctness of arguments or their 
acceptance by others. In a collective argumentation setting, the Toulmin model does not specify who 
produces (parts of) the argument, and the context is not taken into consideration.  

The Toulmin model furthermore does not capture the way in which an argument is presented to an 
audience, although as Gabel and Dreyfus (2019) show with regard to Perelman’s new rhetoric, the 
audience is a major factor in proof teaching. This holds true not only in situations in which a teacher 
guides the argumentation, but also in collective argumentation settings. Motives and reasons with 
which intention which person contributes which reasons with which rhetoric are not part of the 
Toulmin model’s structural focus but they are of importance when looking at argumentation and 
proof in the mathematics classroom.  

Extensions of the Toulmin model 
Inglis et al. (2007, p. 9–16) distinguish several warrant-types as categories of warrants with similar 
properties. In an argumentation, the check of some concrete examples or an apparent absence of a 
counterexample for the statement in focus might reduce the uncertainty about the conclusion of an 
argument. Such warrants are considered the inductive warrant type and might typically lead to modal 
qualifiers like “it seems that” or “it is plausible that”. The structural-intuitive warrant-type is about 
using some kind of observation (it might be of an intuitive type or not) that might persuade the 
individual to accept the validity of a conclusion.  Again, corresponding modal qualifiers might be “it 
seems that” or “it is plausible that”. Finally, the deductive warrant-type is concerned with those 
warrants used in a valid mathematical proof (axioms, statements, algebraic manipulations, etc.). For 
professional mathematics, using a deductive warrant should normally lead to a modal qualifier like 
“with necessity”. However, it has been shown in the literature that this need not be the case for 

Proceedings of CERME12 134



 

 
students (see Reid & Knipping 2010, p. 62 for an overview). Kempen (in press) analyzed high school 
graduates’ proof construction and extended the discussion of the oberserved warrants by the aspect 
of epistemic value. “The epistemic value is the degree of certainty or conviction assigned to a 
proposition“ (Duval, 1991, p. 254; authors’ translation). Accordingly, it can take on values such as 
obviously, likely, absurd, necessary, etc., and it is closely connected to the individuals’ understanding 
of the content (Duval, 2007, p. 138). This extension is based on the idea that a warrant is linked with 
an individual level of conviction and validity. Kempen showed that the epistemic values attributed to 
the warrants involved have an impact on the conclusion’s modal qualifiers. 
Besides focusing on a single argument leading from data to conclusion, it is also possible to consider 
longer chains of arguments. Here, a conclusion becomes new data for the application of further 
warrants. Such chains of arguments have been described as “argumentation stream” (Knipping & 
Reid, 2019), “Recyclage” (Duval, 1995), or “Sequential” (Aberdein, 2006). 
The Toulmin model is not only used as a tool to explore the local structure of an argument, but also 
its global structure (the structure as a whole) as described by Knipping and Reid (2019) when 
discussing classroom argumentations. In their analysis of global argumentation structures which 
transcend individual arguments, these authors added an element called “refutation” and explain:  

A refutation completely negates some part of the argument. In a finished argumentation refuted 
conclusions would have no place, but as we are concerned with representing the entire 
argumentation that occurred, it is important for us to include refutations and the arguments they 
refute, as part of the context of the remainder of the argumentation, even if there is no direct link 
to be made between the refuted argument and other parts of the argumentation. (Knipping & Reid, 
2019, p. 5) 

When analyzing complex arguments, e.g., when different people contribute to an argument, it has 
been valuable to use a schematic representation that enables the description of argumentation at 
different levels of detail, like using different shades, colours, or forms (see Knipping, 2003). Knipping 
and Reid (2013) show how teacher actions can shape argumentation processes in the mathematics 
classroom by identifying different global argumentation structures. They distinguish differently 
structured discourses that become visible in the shape of the global argumentation structure and 
thereby show how the Toulmin model may add to a deeper understanding of classroom interaction. 
Kopperschmidt (1989) also links the local and the global structure by analyzing the micro and macro 
structures. The micro structure contains the functional analysis (role and functions of the different 
parts involved in an argument with respect to the Toulmin model), the material analysis (linguistic 
interaction), and the formal analysis (structural patterns involved). At the macro level, a distinction 
is first made between single-step and multi-step argumentation. Here, a multi-step argumentation can 
be convergent (all elements involved fully support or refute a particular claim) or controversial (the 
elements involved only partially support or refute a particular claim). 

Further models and ideas for considering argumentation 

In the following, we will present and discuss other perspectives on argumentation that enable further 
aspects and views on the topic and thus open up new perspectives for corresponding analyses. A 
comprehensive overview on developments and different perspectives in argumentation theory in 
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general may be found in Van Eemeren et al. (2014). In selecting the perspectives listed below, we 
have tried to choose those that have experienced a certain spread in mathematics education and 
exemplarily focus on various aspects of argumentation beyond structure considerations.  
Considering the purpose of argumentation: communicative versus strategic action 

Arzarello and Soldano (2019) criticize the jurisprudential nature of the Toulmin model. According to 
them, in the type of argument considered by Toulmin “the goal is to convince the adversary, not the 
search/explanation of the truth, which is instead the goal of scientific argument, in particular in 
mathematics.” (Arzarello & Soldano, 2019, p. 227). We do not necessarily share this criticism of the 
Toulmin model as being too narrowly focused on jurisprudential arguments. However, Arzarello and 
Soldano’s critique raises an important issue: it might be necessary to consider the purpose of an 
argumentation when looking at argumentation in a classroom context.  

One way to distinguish between different purposes in which argumentation may play a role is 
described by Habermas (1981). He postulates a distinction between two different types of action: 
communicative action towards reaching agreement, and strategic action focused on securing consent. 

Moreover the action theoretical approaches [i.e. communicative vs. strategic action] differ in 
whether for coordinating actions they postulate agreement [german: „Einverständis“; authors’ 
comment], that means common knowledge [german: „gemeinsames Wissen“; authors’ comment], 
or just an external influence [german: „Einflussnahme“; authors’ comment] on another. 
“Common” knowledge needs to satisfy challenging conditions. It is not enough if participants 
share some opinions; not even if they know that they share those opinions. Common knowledge is 
a knowledge that constitutes agreement, while agreement terminates in the intersubjective 
recognition of criticisable claims. Agreement means that participants accept knowledge as valid, 
i.e. intersubjectively binding. […] The external exertion of influence (in the sense of a causal
effect) on the convictions of another participant in the interaction, on the other hand, keeps a one-
sided character. (Habermas, 1981, p. 574–575; emphasis in original; authors’ translation)

Mathematical argumentation should be a conjoint search for the truth and thus oriented towards 
reaching common knowledge. However, it is doubtful whether all classroom situations fulfil these 
noble goals. A study examining the prevalence of communicative and strategic behaviour in the 
classroom might provide interesting insights.  

Within Habermas’ framework of communicative action, Boero (2006) identified the construct of 
rationality as an especially useful tool for grasping the complexity of a classroom situation. Boero 
(2006, p. 189–190; emphasis in original) paraphrases Habermas’ perspective on three types of 
rationality:  

The epistemic rationality is related to the fact that we know something only when we know why 
the statements about it are true or false (otherwise our knowledge remains at an intuitive or 
implicit-pragmatic level). […] The teleologic rationality is related to the intended character of the 
activity, and to the awareness in choosing suitable tools to perform the activity and orient it to the 
aim to be achieved. The communicative rationality is related to communication practices in a 
community whose members can establish communication amongst them.  

Proceedings of CERME12 136



 

 
This threefold view on classroom situations shows that there is more to argumentation than its mere 
structural components. An individual or a group of individuals producing a mathematical argument 
need an awareness of shared knowledge which they can presume, they need to choose their tools and 
strategies wisely, and they need to choose means of communication which can be understood by other 
participants in the argumentation. Thus, rational behaviour presupposes an orientation towards 
communicative action.  

Boero et al. (2010) have shown how supplementing the structural analysis of argumentation with the 
Toulmin model with Habermas’ perspective on rationality opens up the possibility to consider a 
speaker’s intentions and consciousness within the argumentation. Whether an argument is accepted 
by a community or not is not simply defined by its logical soundness, its correctness, or its adherence 
to a certain structure. To put it in a different way: What counts as proof in a 5th year classroom may 
differ significantly from what is considered an acceptable proof at university level. This is captured 
well in a quote from Habermas highlighted by Boero and Planas (2014, p. 205): “The rationality of a  
judgment does not imply its truth but merely its justified acceptability in a given context”. Looking 
at argumentation from an epistemic, a teleological and a communicative perspective simultaneously 
may help us understand more about how an argument becomes a foundation of newly established 
common knowledge.  

“Logic of inquiry” to account for discoveries in argumentation  

Arzarello and Soldano (2019) point out that a perspective on argumentation with a narrow focus on 
deductive reasoning cannot account well for surprising discoveries. They refer to an example from 
the story Silver Blaze by Sir Arthur Conan Doyle. In this story, the fictional detective Sherlock 
Holmes concludes that a missing horse had not been stolen as assumed, but had indeed been taken by 
the stable owner, because the watch dog had not barked in the night. To account for the arising of 
such new theories and conjectures, Arzarello and Soldano introduce Hintikka’s “logic of inquiry”, to 
which they ascribe three characteristics: (i) the dialectic between questions and answers; (ii) the deep 
link with game theory; (iii) the functional interpretation of connectives and quantifiers (Arzarello & 
Soldano, 2019, p. 230). 

According to the logic of inquiry, deductions such as the one made by Sherlock Holmes in the story 
can be rewritten into a chain of questions and answers. The argumentation is guided by definitory 
rules framing the deductive steps on the one hand, and by strategic principles generating the inquiry 
steps on the other hand. This interplay of rules and strategies forms a connection to game theory. 
Arzarello and Soldano (2019) show how mathematical proving processes can be regarded as 
(semantic) games. They introduce an example from a mathematics classroom in which students fulfil 
roles as verifiers or falsifiers in their joint search for the truth. In this model, the existence of a proof 
is tantamount to the existence of a strategy with which the verifier will always win.  

Teaching and evaluation of argumentation: Walton’s Dialogue Theory and a Bayesian 
approach to argument evaluation 

Nussbaum (2011, p. 85) points out that argumentation models may serve three different purposes: 
analytical (with a focus on revealing the structure of an argument), normative (for judging an 
argument’s quality or to determining what an argument should look like), and descriptive (to identify 

Proceedings of CERME12 137



how people actually argue). He points out that the Toulmin model is primarily analytical, even though 
its components are not always clearly identifiable. Besides, also the adaptations towards the 
representation of global argumentation structures by Knipping (2003) serve a descriptive purpose. 
However, normative aspects are not covered by the Toulmin approach. Nussbaum (2011) therefore 
suggests two alternative frameworks for looking at argumentation in educational contexts: Walton’s 
Dialogue Theory and Bayesian models of everyday arguments. In this contribution, we only take the 
former into consideration. The Bayesian model works with probabilistic calculations to help 
determine posterior odds; it does not help in evaluating mathematical arguments whose premises are 
usually either correct or incorrect. 

Walton’s Dialogue Theory, according to Nussbaum (2011), is a complex argumentation framework 
consisting of several levels:  types of argumentation dialogues, specific argument schemes and critical 
questions, degrees of plausibility, and criteria for moral and aesthetic argumentation. Due to the 
limited space in this contribution, we focus on two aspects which appear particularly promising to 
address the shortcomings of the Toulmin model laid out above: argumentation schemes and posing 
critical questions, which may be applied both to the instruction and evaluation of argumentation.  

One way to improve students’ argumentation skills could be direct instruction in how to use different 
argumentation schemes. This has been a strategy in mathematics education, e.g. when teaching 
students two-column proofs or methods for proving by induction. However, while students might 
benefit from a scheme on which they can rely, it has been criticized in the past that students tend to 
apply such schemes without a deeper understanding of why the proof they are creating is, in fact, a 
proof. Regardless of whether argumentation schemes are explicitly taught to students, they can also 
serve to evaluate argumentation quality.   

A second possible application of Walton’s Dialogue Theory, according to Nussbaum (2011), is to use 
direct instruction on critical questions and stratagems useful for argumentation. “A stratagem is a 
generic type of brief argument expressed in discourse [such as…] I think [POSITION] because 
[REASON]” (Nussbaum, 2011, p. 93). Both, critical questions and stratagems, serve to inform 
students of evaluative criteria, which may in turn serve to assess argumentation quality from a teacher 
or researcher perspective.  

Besides schemes and critical questions, Nussbaum (2011, p. 94) also presents a list of criteria for the 
assessment of argument quality. However, several criteria on the list appear ill-fitted for the 
mathematics classroom, as they rely on an assessment of the depth of a discussion. The quality of a 
mathematical argument is not necessarily dependent on the number of arguments brought forth, or by 
how many of the arguments brought forth were defeated. A closer look at Walton’s schemes may, 
however, be beneficial also for evaluating and assessing mathematical argumentation with regard to 
quality.  

Conclusion: Widen the scope – there is more to arguments than structure 
We started out from the question “Which models can be used beside the Toulmin model to analyze 
(mathematical) argumentation?”. Our thorough consultation of alternative approaches to and 
perspectives on argumentation primarily shows the necessity of specifying the question further: what 
exactly do we want to analyze? I.e., what is the focus and the purpose of our research? The Toulmin 
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model can be suitable or well-fitted to reveal the structure of an argument. This approach, however, 
makes the structure of an argument (in Toulmin’s sense) visible; no more, no less. 

As we have seen above, there are several attempts to extend the traditional Toulmin model to gain 
more information about the different parts involved in the model. Besides, also the connections 
between these parts have been (theoretically and empirically) analyzed further. It is, however, 
important to notice that an analysis of the different parts of an argumentation’s structure does not 
imply any information about the soundness of the argumentation steps, the plausibility for the 
participants in the argumentation, or the generation of common knowledge.  
In this paper, other aspects that might be focused on when discussing argumentation became visible 
that go beyond the (original) intention of the Toulmin model. These aspects can be described as 
considering the purpose of an argumentation (communicative versus strategic action), accounting for 
discoveries in the course of the argumentation, and the discussion and conceptualization of normative 
aspects and educational purposes. 
From our point of view, we want to highlight the following conclusions. For structural analysis of the 
different parts of argumentation, we have not yet discovered a more suitable model than the Toulmin 
model with its extensions. However, a danger must also be pointed out here: If argumentation is 
theoretically defined according to the Toulmin model’s structural components, the Toulmin model 
becomes the sole instrument of analysis. One should beware of this redundant relationship because it 
obscures the view of a field of research that, as we have shown here, is quite broad. Argumentation 
in the mathematics classroom is more than the sum of its (structural) parts. It involves awareness, 
validity, intentions, strategies, questions, rhetoric and rationality.   
We have tried to broaden the view of the research field of argumentation in mathematics education. 
The examples we have chosen and brought up are well suited to point out horizons for further research 
on the topic. 
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In 2000, the National Council of Teachers of Mathematics highlighted proof as one of the most 
important components of mathematical thinking in justifying a mathematical idea in a fluent and 
formal way. One of the expectations is that students should be able to understand and construct 
mathematical proofs by the end of secondary school. The purpose of our study was to analyze and 
classify the justification strategies used by an honors high school student while producing a geometric 
proof. In this study, we adopted the justification framework (Marrades & Gutiérrez, 2000) to analyze 
a student’s process of doing a congruency of triangles proof task. Data were collected through a 
cognitive interview and a written task on pencil and paper. The results showed that the student used
deductive-formal, deductive-formal-structural, and deductive-failed types of justifications during her 
proof process.

Theoretical Framework

We used the justification framework developed and elaborated by Marrades and Gutiérrez (2000). 
The authors established the justification framework by expanding on previous approaches in 
academic literature. The framework provides an analytical tool to classify and analyze students’ 
strategies in the process of constructing justifications in problem-solving. The authors adopted the 
concept of justification as “any reason given to convince people of the truth of a statement” (Marrades 
& Gutierrez, 2000, p. 89). Also, they referred to proof as a justification that satisfies the agreed-upon 
abstraction criteria by expert mathematicians as valid in an axiomatic system. The framework 
identifies two principal classifications which are empirical and deductive justifications. Within these 
classifications, there categories and subcategories. The empirical justification has four categories:
failed, naïve empiricism (perceptual and inductive), crucial experiment, and generic example
(example-based, constructive, analytical, intellectual). The deductive justification has three 
categories: failed, though experiment (transformative and structural), and formal (transformative and 
structural).

Method and Data Collection

We used purposive sampling method and the participation was voluntary based. The participant, 
Nina, was an 11th grade, honors, and a female high school student. Nina took an introductory
geometry course previously where she received formal instruction on proofs. This was a crucial 
aspect of consideration for our study as we were interested in investigating the type of justification 
strategies the student will use in constructing a proof task. Some criteria we considered were that 
Nina was in the secondary school level, a level in which congruency of triangles is studied. In a pencil 
and paper environment and guided by a cognitive interview for 25 minutes, Nina worked on the 
congruency of triangles proof task.
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Research Results

In Table 1, we present Nina´s justifications strategies. By applying the theoretical framework, we 
determined that the student used diverse strategies in engaging in the geometric proof task of
congruency of triangle.

Table 1: Nina’ s justification strategies

Statement Reason Justification level Description
<S <R Given Deductive → Formal Because the problem 

gives me this information
XT bisects <SXR Given Deductive → Formal I am given this
<SXT <RXT Nina’ s thinking Deductive →Formal → 

Structural
The definition of bisector
(Congruency of angles)

<STX <RTX Nina’ s thinking Deductive → Failed XT is a bisector
ST RT Nina’ s thinking Deductive →Failed XT bisects the side SR in

two equal parts
SXT RXT Nina’ s demonstration Deductive →Failed The congruence theorem ASA

Nina’ s justification process was classified into the deductive main type of justification as she did not 
make use of any specific examples to do the proof justification, but instead used generic aspects of 
the problem, mental operations, and logical deductions. Nina´s first two arguments are deductive 
formal because she used only generic given aspects of the problem. After that, she employed a
deductive formal structural argument by applying the definition of bisector to support her 
justification. Her next justification steps were categorized into the deductive failed strategy as she 
elaborated correct conjectures but failed in providing the correct justification for them. To summarize, 
Nina derived part of her justification by using an accepted definition and logical inferences from it.
Later, she used an incorrect justification which consequently caused her next steps to be incorrect. 
Nina made an explicit effort to use rigorous symbolic language to express her thinking in written 
form while constructing sequences of logical deductions. Nevertheless, at the end she failed to 
succeed in elaborating the proof.

Limitations, and Future Directions

Because of the limited sample size and the participant’s status as an honors student, our findings 
cannot be generalized. A future direction of this study would be experimenting with more high school 
students from different backgrounds by including diverse geometry proof task types.
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Despite recognition of the importance of Lakatos-style proving activity in the mathematics classroom,
we know little about whether teachers’ relevant mathematical knowledge is conducive to supporting
it in their classrooms. We take a step towards addressing this research gap by reporting the results 
of an exploration of two primary teachers’ mathematical knowledge of content, students, and 
teaching practices relevant to Lakatos-style investigation of proof tasks. Through vignettes-based, 
semi-structured interviews, we presented the participants with 19 illustrated classroom episodes 
covering a range of Lakatosian techniques and a range of student ways of engaging with supportive 
examples and counterexamples to formulate, validate, refute, and refine conjectures of different types. 
Participants’ responses revealed both productive and counterproductive understandings highlighting 
that although Lakatos-style proof lies within teachers’ reach, supporting their preparation is crucial.

Keywords: Primary school mathematics, Mathematical knowledge for teaching Lakatos-style proof, 
Conjectures, Supportive examples, Counterexamples.

Introduction
In his book “Proofs and Refutations”, Lakatos (1976) reconstructed prominent mathematicians’
discussions on Euler’s theorem to highlight the key role example use can play in proving and refuting 
conjectures. As a result of the increasing research interest about the incorporation of proof 
construction into mathematics classrooms (e.g., Stylianides, 2016), some studies (e.g., Balacheff, 
1991; Komatsu et al., 2018) have investigated students’ ability to comprehend and employ Lakatosian 
techniques to solve proof tasks and reported encouraging findings. However, few studies have centred 
upon primary school level (e.g., Komatsu, 2010; Reid, 2002) and none has had an explicit focus on
teachers. Addressing these research gaps, our study sought to answer this research question: In what 
ways are two primary school teachers’ knowledge of content, students, and teaching practices 
relevant to Lakatos-style investigation of proof tasks similar and different regarding the extent to 
which they may be able to support potentially their students’ engagement with this style of proving?

Theoretical Frameworks
Phases of Lakatos-style Investigation of Proof Tasks

Drawing on Lakatos’ (1976) original work and others’ account of Lakatos-style proving activity in 
the mathematics classroom (e.g., Komatsu, 2010; Reid, 2002) we define Lakatos-style proving 
activity as an iterative and reflective process consisting of four interrelated phases (Deslis, 2020): in
Phase 1 students identify a conjecture which they wish to examine, based on a pattern, an educated 
guess, or simply following their teacher’s suggestion. Then they start examining cases to investigate 
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its validity. The discovery of supportive examples in Phase 2 may indicate that the conjecture is likely 
to be true. However, in Phase 3 counterexamples may also emerge from the examination of cases 
suggesting that the conjecture is false. In Phase 4 students reflect on the previously discovered 
examples to appropriately modify the false conjecture. The domains of the original conjecture can 
either be restricted or expanded, to exclude the discovered counterexamples, or to transform them 
into supportive examples, respectively. Once the conjecture has been altered, a new investigation 
cycle begins aiming to the further refinement of the conjecture. It is important to note that, although
our framework is based on Lakatos’ work, it focuses on certain aspects of Lakatos-style reasoning
and does not purport to reflect the whole complexity of his philosophy. For example, our framework 
does not focus on the interplay between defining and proving, which is crucial in Lakatos’ work.

Conjecture Types

According to the classification of statements proposed by Tsamir et al. (2009), we identify three
conjecture types: Always-True and Never-True conjectures are the two extremes, since only
supportive examples and counterexamples emerge during their examination, respectively; in contrast, 
both example types emerge during the examination of Sometimes-True conjectures (see Figure 1).

Justification Schemes (JS) and Refutation Schemes (RS) for Student Understandings

Justification and Refutation Schemes are two separate but interrelated three-level classifications
describing a rather comprehensive range of student understandings about the interplay between 
examples and proving. According to Framework JS, which is based on Harel and Sowder’s (1998)
classification and its adaptation by Stylianides and Stylianides (2009), students at the least advanced 
level accept generalisations based on supportive evidence coming from a few easy-to-check cases. 
At the intermediate level they believe that only example-based evidence coming from the 
examination of representative cases can produce valid generalisations, whereas at the advanced level
students are aware of the insufficiency of all types of example-based arguments. By analogy to JS, 
Framework RS, which we developed based on previous research on students’ views around 
counterexamples (e.g., Balacheff, 1991; Lee, 2016), students at the advanced level consider the 
discovery a counterexample sufficient to refute a conjecture, while students at the intermediate level 
question the sufficiency of a single counterexample to refute a conjecture and demand the discovery 
of more counterexamples, preferably resulting from strategically selected cases. At the least advanced
level students treat counterexamples as exceptions, resisting to the idea that the existence of 
counterexamples can affect the truth of a convincing conjecture. Students who hold the advanced 
schemes in relation to both example types can potentially also reach a meta-level that is key in the 
implementation of Phase 4 (Lakatos-style conjecture refinement). On top of the understanding that 
comes with the acquisition of the two advanced levels, students at this meta-level, which we call 
“refinement scheme”, are able to reflect on the previously discovered supportive examples and 
counterexamples to get insights into how the refuted conjecture can be appropriately modified.

MaKTeLaP: Mathematical Knowledge for Teaching Lakatos-style Proof

Building on previous research on the knowledge needed to teach mathematics (Ball et al., 2008), or 
specifically proof (Buchbinder & McCrone, 2020), we describe the mathematical knowledge relevant 
to bringing Lakatos-style activity into the classroom (Deslis et al., 2021). We identify three 
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knowledge components: (1) CoLaP which refers to the Content knowledge about what constitutes 
appropriate use of examples in Lakatos-style Proof tasks; (2) StuLaP which refers to the knowledge 
of Students’ typical understandings around the example use in Lakatos-style Proving; and (3) TeLaP
which refers to the knowledge of Teaching practices that can appropriately promote students’ efforts 
to productively engage with Lakatos-style Proof. Since all Lakatosian phases revolve around two 
example types, namely supportive examples (SEs) and counterexamples (CEs), we can identify two 
subcomponents within each component, each focusing on the knowledge around one example type.
For example, CoLaP splits into CoLaP [SE] and CoLaP [CE]. 

Methods
We collected our data through semi-structured interviews based on vignettes (Skilling & Stylianides, 
2019), which are contextualised descriptions of classroom situations (Deslis et al., 2021). 10 in-
service primary school teachers were presented with 19 classroom episodes with comic-style student 
characters discussing and exchanging arguments with their peers as they engaged in the phases of 
Lakatos-style investigation. Three student groups worked on the “Count the Squares” task (Zack, 
1997) and each explored a conjecture of a different type (see Figure 1). The student dialogues we 
used were adapted versions of classroom episodes from fifth grade reported in Zack (1997) and Reid 
(2002) and covered the whole range of investigation phases and student understandings, as described 
by our theoretical frameworks. After each episode participants were asked to comment on the validity 
of arguments, evaluate students’ understandings, and discuss how they would respond to each student 
contribution. We analysed responses for themes and ranked the various teacher understandings 
relevant to the different MaKTeLaP components and example types according to their level of 
sophistication (Deslis et al., 2021). In this paper we focus on two teacher participants, identify
similarities and differences in their responses, and discuss the degree to which their understandings 
put them in a good position to support the incorporation of Lakatos-style proving activity into their 
classrooms. The characteristics of the two teachers were reasonably similar. Alcyone and Nephele 
(nicknames) were both female, 29 and 27 years old, respectively. At the time of the study, they had 
18 and 45 months of teaching experience, respectively, and both held a Bachelor’s and a Master’s
degree in Education. Both participants taught middle-sized (21 and 23 students) fifth-grade classes
(ages 10-11) in similar and neighbouring schools in Athens, Greece, with most of their students 
coming from middle-income households.

How many squares are there in this 4-by-4 grid? Examine other similar grids of your choice. How many 
squares are there in each of them? Find a general rule that applies to grids of all sizes and prove your answer. 

Group 1- Always True Conjecture: 
“The number of squares in an n-by-

n grid is 12+22+…+(n-1)2+n2.”

Group 2- Sometimes True Conjecture:
“The number of squares in an n-by-n

grid is a multiple of five.”

Group 3- Never True Conjecture:      
“If an n-by-n grid has N squares and an 

m-by-m grid has M squares, then the 
m×n-by-m×n grid has M×N squares.”

Note. The phrasing of the conjectures has been altered; the student characters in the vignettes presented and discussed 
these conjectures using language that reflects the mathematical knowledge of students of their age. 

Figure 1: The proof task and the conjectures that were investigated by the three student groups
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Findings and Discussion
CoLaP: Knowledge of Content

Participants were asked to evaluate the arguments presented in the scenarios regarding their validity. 
The responses indicate that the two teachers’ understandings about the role of examples in the 
investigation of conjectures had both similarities and differences (see Table 1). Commenting on 
whether it is appropriate to conclude that a conjecture is true based on the discovery of some
supportive examples, Nephele preferred to judge on a case-by-case basis, while Alcyone’s responses 
suggested a blanket rejection of this idea. For example, when the second group (Sometimes-True 
conjecture) found a few examples that supported their conjecture, the two teachers agreed that this 
does not allow us to conclude that the conjecture will work for any grid:

Alcyone: The absence of counterexamples so far is not evidence that they do not exist. The 
examples so far are supportive, but a counterexample can emerge any time.

Nephele: The generalisation is not permissible, because it is only based on two examples.

Alcyone maintained this opinion when commenting on a similar moment during the first group’s 
investigation (Always-True conjecture). Yet, Nephele was convinced that it will work for all grids, 
although this generalisation would be based on the same number of examples as in the previous case:

Nephele: All the examples so far have confirmed the conjecture, so we can safely conclude 
that it is correct and works for all grids.

Their comments on arguments against the idea that any example-based argument can lead to safe 
generalisations of conjectures also highlighted the divergence of views:

Nephele: This is not necessarily true; sometimes even a few examples can provide undeniable
evidence and thus enable us to conclude that the conjecture is true for all cases.

Alcyone: The examples may show that there is a possibility for the conjecture to be true, but 
we cannot be sure about that if the only evidence we have comes from examples.

Overall, Alcyone showed concrete and stable appreciation of the usability and limitations of
supportive examples. She valued their role in the investigation of conjectures while being aware that 
we cannot prove a general statement merely based on examples. In contrast, Nephele’s responses 
varied from one episode to another, indicating weaker understanding which is highlighted by her 
erroneous belief that in some circumstances examples can be used to prove general statements.

In contrast to the previous example type, the two teachers were found to hold comparable views about 
the appropriate use of counterexamples in refuting conjectures. Specifically, both participants’ 
responses showed awareness that a single counterexample can sufficiently refute a general statement:

Nephele: Now that we have found a counterexample, we know that the conjecture is false.
Alcyone: The number of supportive examples we have found is irrelevant; one 

counterexample is enough to show us that the conjecture does not hold.

Table 1: Summary of Alcyone and Nephele’s understandings relevant to CoLaP

CoLaP [SE] A: Supportive examples can be used to investigate
general statements, but they cannot prove them. 

N: Supportive examples can be used both to 
investigate and to prove general statements.

CoLaP [CE] A & N: A single counterexample can sufficiently refute a conjecture.

Proceedings of CERME12 154



STuLaP: Knowledge of Student Understandings

Turning to StuLaP, participants’ judgements about the level of student understandings brought to the 
surface both similarities and differences in teachers’ views (see Table 2). Alcyone not only recognised
students’ common belief that examples can be used to prove general statements is a misconception,
but also was aware that the use of representative cases which have been strategically selected does
not make the argument any more valid from a mathematical perspective.

Alcyone: Any student who is happy to accept generalisations that are merely based on 
examples as proofs (no matter how many examples there are or the process through 
which they have been identified) has a significantly less advanced level of 
understanding than students who reject all kinds of example-based proofs.

Unlike Alcyone, Nephele was occasionally favourable towards the use of examples as a means to 
prove, since she tended to accept arguments that reflected the intermediate JS level as valid:

Nephele: The student has not realised that the examples so far have covered the whole 
spectrum of possible grids and therefore proved that the rule is correct. His choice 
to reject example-based proofs in their entirety signifies weak understanding. 

Unlike the case of supportive examples, the two participants had similar views about students’ 
understandings around counterexamples. Specifically, both teachers spoke highly of students who 
believed that a single counterexample can sufficiently refute a conjecture:

Nephele: Students who discard a conjecture immediately after the discovery of the first 
counterexample and consider further checks as unnecessary have a more advanced 
level of understanding than those who demand a substantial number of 
counterexamples to be discovered before they refute the statement.

Furthermore, both participants consistently criticised students who continuously treated 
counterexamples as exceptions and maintained their initial opinion ignoring the evidence against it:

Alcyone: Students’ refusal to reject a conjecture despite the existence of counterexamples 
and the treatment of counterexamples as exceptions indicates poor understanding.

Yet, Nephele also judged favourably students who were reluctant to reject conjectures after the 
discovery of one counterexample and instead demanded that a substantial number of counterexamples 
should be discovered, and characterised this practice as more productive than it actually is:

Nephele: Students’ reluctance to reject a conjecture immediately after the discovery of one 
counterexample and their need to find additional counterexamples shows a 
scepticism that is desirable in the classroom of mathematics.

Although Alcyone occasionally criticised this practice, in other episodes she also expressed views 
that were similar to those of Nephele:

Alcyone: I like this student’s critical attitude! It is always good to be reluctant and demand 
more evidence.

Overall, both teachers’ responses showed a satisfactory degree of awareness about which student 
understandings about counterexamples signify an advanced level of understanding and which do not, 
mirroring, to an extent, their good content knowledge on counterexamples. Still, some of their 
reactions to students who resisted to conjecture refutation unless numerous counterexamples were 
discovered, were contradictory, thus showing knowledge fragility. The main differences lay in their 
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understandings about student conceptions around supportive examples: unlike Alcyone, Nephele did 
not consider students’ tendency to overrely on empirical arguments as a misconception.

Table 2: Summary of Alcyone and Nephele’s understandings relevant to StuLaP

StuLaP [SE] A: Students’ belief that conjectures can be proved 
through supportive examples, even if these are 
coming from the examination of strategically 

selected cases, is counterproductive.

N: Students’ belief that conjectures can be 
proved through supportive examples is 

counterproductive unless these are coming from 
the examination of strategically selected cases.

StuLaP [CE] A & N: Students’ belief that a conjecture must be refuted after the discovery of one counterexample is 
productive, as is students’ desire to discover more counterexamples before they refute a statement.

TeLaP: Knowledge of Teaching Practices

As for the third MaKTeLaP component (see Table 3), participants were asked how they would 
respond to students’ contributions and how they would support students’ efforts if they were their 
teachers. Teachers’ responses showed that they promoted a slightly different usage of supportive 
examples in the exploration of proof tasks. To begin with the commonalities, both appreciated the 
importance of examining various examples in the beginning of the investigation:

Alcyone: The examination of several different cases is a reasonable thing to do after the 
formulation of a conjecture, since it can provide clues about how we can prove it.

Nephele’s advice regarding which cases students should try first was even more specific:
Nephele: The examination of the easiest-to-check cases can be a convenient way to start.

However, Nephele also thought that it is appropriate to encourage students to terminate the 
investigation once much confirmatory example-based evidence has been found:

Nephele: The examples have shown that the rule works; now I’d advise students to stop, and 
I’d give them a new problem to solve.

Taking a different approach, Alcyone appreciated that despite the valuable contribution of supportive 
examples to the promotion of the investigation, it is inappropriate to conclude an investigation at the 
stage of the example examination even if several confirmatory cases have been discovered:

Alcyone: I’d tell the students that even if they have found several examples supporting their 
conjecture, it is prudent to remain cautious and continue the examination of cases 
in search of counterexamples, which can emerge anytime.

The two teachers’ suggestions after the discovery of counterexamples were dissimilar, too. Nephele 
encouraged students to abandon the refuted conjecture and replace it with a new one:

Nephele: The conjecture clearly doesn’t work. I’d encourage students to abandon this idea 
and try to formulate a new conjecture that is not related to the multiples of five.

Taking a step further, Alcyone not only advised students to replace the faulty conjectures, but also 
suggested that the new conjecture could be an improved version of the initial conjecture. She also 
added that reflecting on the characteristics of the previously discovered examples can provide clues 
for the appropriate modification of the refuted conjecture:

Alcyone: The students can review the examples they found to come up with a refined version 
of the conjecture. […] There might be a subset of grids for which the conjecture 
works; for example, for the n-by-n grids where n is a multiple of five.
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All in all, both teachers’ suggestions showed an appreciation of the important part example 
examination can play in the investigation of conjectures. However, Alcyone’s suggestions in relation 
to both example types were clearly more sophisticated. Unlike Nephele, Alcyone was fully aware 
that supportive examples cannot prove general statements and judged the student arguments 
accordingly. Her suggestions to the students reflected an appreciation of the limitations of example 
use. A remarkable similarity between the two teachers’ responses was that although both recognised
that one counterexample can refute a conjecture, both also indulged in judging favourably students 
who attempted unnecessary checks to discover more. Yet, it was impressive that Alcyone encouraged 
the use of a technique that is surprisingly consistent with the spirit and the essence of Lakatos-style 
reasoning. Unlike Nephele who encouraged the replacement of a refuted conjecture with a new one, 
Alcyone said she would encourage students to use counterexamples not only to refute conjectures,
but also to modify and refine them considering the characteristics of the previously examined 
examples. This practice lies at the heart of Lakatos-style activity and the fact that Alcyone reinvented
it despite the lack of any prior relevant instruction in teacher education is encouraging.

Table 3: Summary of Alcyone and Nephele’s understandings relevant to TeLaP

TeLaP [SE] A: Use of supportive examples to initiate the 
conjecture exploration.

N: Use of supportive examples to initiate and 
terminate the conjecture exploration.

TeLaP [CE] A: Use of counterexamples to refute the conjecture 
and reflection on their characteristics to refine it. 

N: Use of counterexamples to refute the 
conjecture and then replace it with a new one.

Conclusion
Research on classrooms of expert teachers (e.g., Zack, 1997) or teachers who worked closely with 
researchers (e.g., Komatsu et al., 2018) suggests that students can engage productively in Lakatos-
style activity and benefit from it, even at primary school level. Still, we know little about how non-
expert teachers understand various aspects of this activity and thus whether they would have the 
knowledge to be able to support it in their classrooms. The present study adds to the increasing 
literature on the incorporation of Lakatos-style reasoning into school mathematics by exploring 
ordinary teachers’ relevant mathematical knowledge, an area that had previously been unexplored.
We analysed and compared two primary school teachers’ reactions to a set of 19 illustrated classroom 
episodes which enabled us, in an explorative way, to shed light on their understandings of content, 
students, and teaching practices relevant to Lakatos-style activity. Our study offers some encouraging 
findings while pointing in directions for future research. The case of Alcyone and her many
productive intuitive understandings suggest that it is possible for primary school teachers to have 
necessary (though, arguably, not sufficient) knowledge to bring Lakatos-style proof into their 
classrooms. Yet, the case of Nephele suggests that it is also important to identify appropriate ways to 
support the refinement of teachers’ understandings and highlights the crucial role teacher education 
has to play in preparing teachers to effectively engage their students with Lakatosian techniques.
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This study aims to describe a 6th-grade student’s progress in understanding written proof texts
through participating in an individual teaching experiment. The same task was administered to the 
student twice in an interview setting, before and a year after the teaching experiment. The student 
was asked to evaluate four arguments aimed to prove a given conjecture. While in the pre-interview, 
the student accepted all four arguments based on her Naïve Experience; in the post-interview, she 
rejected empirical arguments and looked for General Procedures (or Abstract Structures) that 
necessarily apply to the whole set of numbers under investigation. In the post-interview, spontaneous 
changes occurred in the student’s understanding of the given arguments after she constructed her
own proof for the same conjecture. Instructional design elements used in the teaching experiment 
might have facilitated her understanding of the structure of deductive proof texts.

Keywords: Proof comprehension, students’ understanding, middle school students, individual 
teaching experiment.

Introduction
Reliance on empirical reasoning for validating mathematical generalizations is a faulty way of 
thinking pervasive among students (Harel, 2008). Many students, even after learning about secure 
methods of proving, are reported to retain an empirical proof scheme (Education Committee of the 
European Mathematical Society, 2011). Current efforts in mathematics education, therefore, aim to 
help students realize the limitations of empirical arguments and learn about reasoning deductively at 
the early grade levels (Stylianides & Stylianides, 2009). Another deficiency in students’ learning 
about proof is holding a ritual proof scheme, in which the student judges the validity of an argument 
strictly by its appearance, rather than its underlying structure (Harel, 2008). The same proof can be 
presented in verbal, pictorial, or symbolic forms (Stylianides, 2007). However, it is the logical 
structure of the argument that determines its validity (Miyazaki et al., 2017). This suggests, one aspect 
of learning about proof is to distinguish between the structure and form of the argument.

This paper reports on the preliminary findings from an ongoing research study conducted in Turkey.
The purpose of the study is to explore the processes by which a 6th grade student (1) comes to 
understand deductive structure of mathematical proofs, and (2) develops the skills required to prove 
basic theorems, by use of an individual teaching experiment methodology. Even though the form of 
argument representation is an inseparable aspect of the instructional design approaches used in the 
teaching experiment, the main focus of the study is on helping the student understand deductive 
structure of mathematical proof. The purpose of the research reported here is to describe the student’s 
progress in understanding written proof texts (within and between the two interviews conducted 
before and a year after the teaching experiment) by using a research-based model, which allows 
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tracking changes in the students’ understanding in terms of argument form and structure. Describing
the student’s dynamic experiences with proof texts might elucidate the strengths and weaknesses of 
the instructional design approaches used in the teaching experiment study.

The model: Students’ ways of understanding a proof
Ahmadpour et al. (2019) put forward a model of students’ understanding of a written proof text. The 
model describes possible states of evolving understanding and the transitions between them. 
According to the model, students’ understanding of a formally acceptable proof may develop into 
three different end-states: a Formulated Proof, a Procedural Proof, and a Formulaic Proof. If the 
reader is aware of the underlying deductive structure of a proof, the proof is said to be “read” as a 
Formulated Proof. If the reader perceives the proof “as a general procedure that can be applied to any 
number, as a sort of recipe for producing examples, rather than a deductive structure applicable to all 
numbers” (Ahmadpour et al., 2019, p. 87), the proof is said to be read as a Procedural Proof. And, if
the reader considers only its surface-level form while reading a proof, it is said to be read as a 
Formulaic Proof. According to the model (Ahmadpour et al., 2019), processes of learning towards 
the three end-states follow three different theoretical pathways. They are, respectively, the Path of 
Structure, Path of Procedure, and Path of Form. Switching between the path-ways is possible due to 
the potential shifts of attention in one’s understanding. In this study, the main focus is on the Path of 
Structure, which describes the processes through which an individual comes to understand the 
deductive structure of a proof. In this path, through the transitions of generalization, abstraction, and 
formalization, the student develops from the state of Naïve Experience (in which existence of 
confirming examples are thought to validate generalizations) to those of General Procedure, Abstract 
Structure and Formulated Proof sequentially. The state of Abstract Structure was intended by the 
teaching experiment study reported here.

Ahmadpour et al. (2019) consider understanding as a dynamic process. Accordingly, the model 
allows description of students’ progression over time by linking form and structure, beyond merely 
marking the states of understanding at fixed points in time. Transitions of how one state of 
understanding develops into a next one is a major focus of the model. In this study, the pre-interview 
captures a fixed, consistent state of understanding a 6th grade student demonstrates before 
participating in a teaching experiment study. The post-interview captures the dynamic changes in her 
understanding facilitated by her interaction with the interview task.

Method
Context and the participant of the study

In Turkey, students are not explicitly taught the concept of proof at the middle school. The 
mathematics curriculum (Ministry of National Education [MoNE], 2018) emphasizes students’ 
explaining their reasoning and evaluating others’ in the classroom. However, to what extent the
abstract structures underlying valid arguments are explicated to the students is questionable, as no 
detailed prescriptions are provided for teachers. Hence, the 6th grade student, Beren (pseudonym),
participated in this study had no previous interaction with the notion of proof. Beren was approached 
based on her competence in four operations, her ability to express mathematical ideas, and her 
willingness to learn mathematics. She volunteered for the study along with her parents’ consent.
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The teaching experiment

The teaching experiment consisted of four major stages (Steffe & Thompson, 2000). The first stage 
aimed to prepare the student about basic number theory concepts (such as modular structure, parity, 
and divisibility) that would be the objects of conjectures studied throughout the teaching experiment. 
The second stage challenged the student’s extant source of conviction, Naïve Experience, by creating 
a cognitive conflict through using Monstrous Counterexample Illustration (Stylianides & Stylianides, 
2009). This stage triggered an intellectual need (Harel, 2008) in the student for learning about secure 
methods of proving. The third stage aimed to satisfy this need by designing tasks for her to understand
the deductive structure of mathematical proofs. Then, in the fourth stage, the student was encouraged 
to use this understanding to practice proving a set of theorems.

The first stage introduced to the student a way of representing modular structure of unknown 
quantities by using a short story, which later provided her a context for explaining mathematical
arguments. In this story, an unknown number of cookies evenly distributed in identical cups with 
some remainders were used to represent the modular structure of an unknown quantity. Based on the 
story, the algebraic expression defining odd numbers, 2n+1 (where n is a non-negative integer), was
represented as two cups containing the same number of cookies and a single cookie. A variation of 
the representation was used in the fourth stage, as in Figure 1, for the concept of consecutiveness (i.e., 
a cup of cookies standing for n items, and another cup and one more cookie representing n+1 items).

1st number (any number)

2nd number (consecutive to 
the 1st number)

The sum of two consecutive 
numbers ...

… is an odd number.

 

Figure 1: A flow-chart proof of “The sum of two consecutive numbers is an odd number.” 

Another instructional design component, the flow-chart proof format, adapted from Miyazaki et al.
(2017), was introduced to the student in the third stage. The flow-chart proof format was used with 
the purpose of explicating the structure of deductive arguments. Figure 1 illustrates the flow-chart 
proof using the specific representation developed in this study. Large circles represent the cups
containing an unknown number of cookies, while the small circles represent single cookies. The 
checkmark between the two leftmost boxes indicates that the two objects shown are related; that is, 
the cups contain exactly the same number of cookies – stand for the same unknown quantity. In other 
cases where the two objects are not related (for example in proving that the sum of two odd numbers 
is an even number) cups of different color or shape are used (invented by the student), and the 
checkpoints are filled with a cross mark (by the student).
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Data collection and analysis

The pre-interview was conducted at the beginning of the teaching experiment study. At the time of 
the pre-interview, Beren had just completed the 6th grade. The teaching experiment took 8 weeks. 
The post-interview was conducted a year after the completion of teaching experiment study. The task 
shown in Figure 2 was translated into Turkish. Beren was asked to think aloud while reading and 
making decisions about each of the arguments. Probing questions were used with the purpose of 
capturing details of her understandings. Pre- and post-interview data were analyzed based on the 
model of students’ ways of understanding a proof (Ahmadpour et al., 2019).

Figure 2: The task (Ahmadpour et al., 2019, p.89)

At the time of the pre-interview, Beren knew the meaning of algebraic expressions such as “2a+3”,
and was able to calculate the value of such expressions for specific values of the unknown “a”.
However, she did not know how to operate on algebraic expressions, which was essential for 
understanding Argument C. Such syntactical understanding was not among the goals of the teaching 
experiment and was not part of the instructional design. At the time of the post-interview, however, 
when Beren completed the 7th grade, she possessed a greater understanding of the algebraic operations 
used in Argument C, because students learn these skills at the 7th grade in Turkey (MoNE, 2018).

Findings
Two remarks are important to highlight. Although the concepts of divisibility are addressed in 
Turkish middle school mathematics curriculum, the learning objectives are restricted to the use of 
divisibility rules within arithmetic. Hence, the conjecture examined in this study was novel to Beren
at the time of pre-interview. However, this was not the case in the post-interview. Beren was asked 
to evaluate validity of the exact same conjecture in the last episode of the teaching experiment study, 
as part of a proof-production assessment. She was able to produce a valid proof of the statement.
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Pre-interview

Each of Beren’s evaluations in the pre-interview were based on Naïve Experience. For instance, 
reading Argument A, she reviewed all the calculations and decided that the given examples were 
correct. After testing the conjecture for two other sets of three consecutive numbers, she stated:

Beren: I think the sentence is correct. I mean this option A is correct. It shows its 
truth definitely. It has already given examples, has done the division. I don't 
think there is a problem with option A.

After going through similar procedures of Naïve Experience for Arguments B, C and D, Beren 
summarized her thoughts about the task:

Beren: I tried each of them [the four arguments] by doing different operations and 
three consecutive numbers hold. […] So, there is no reason for this, I find it 
by trying with numbers, again.

Post-interview

In the post-interview, Beren remembered the task from the last year and sequentially explained the
four arguments. Unlike in the pre-interview, she did not accept Argument A as a proof: 

Beren: Now, when I read, I do not directly understand because, now, it says ‘The 
rest of the numbers [are the same]’. How can I know without trying it? Who 
has proven this and according to what? […]. I'm moving on to the other. 
[…] This does not show for sure.

Continuing with Argument B, Beren thought that it could be a proof because it was not based on 
specific examples. However, she could not make sense of the representations used and hence the
underlying ideas communicated. She could not articulate a consistent meaning out of the realistic
situations she tried to make up, as she did not consider the relationship between the sizes of the three 
strips. Although she could not understand Argument B, her preliminary decision was not to eliminate 
this option. Beren seemed to think that Argument B might be arguing for all consecutive numbers.

Beren: I said it could be a proof because it does not give us a certain number here. 
No matter how much you divide, it says, the three [strips]. But, still I want 
to look at the others. According to that… You know, I want to decide 
whether this is a proof or not and tell its reason based on that.

In Argument C again, Beren could not make sense of the given algebraic expression. Her focus was 
on the form rather than the structure. (Note that in Argument C, instead of “n”, “a” was used as a 
variable, for the student’s familiarity.)

Beren: Why it says this three? [points to ‘3a’ in ‘a + (a+1) + (a+2) = 3a + 3’] … 
There are three of a’s, I see. […] Well, but it again gives us numbers here. It 
says one, two, … I mean. I think, I cannot prove with this.

Then, an instant shift of attention occurred in her understanding, marking a transition towards either 
a General Procedure or an Abstract Structure in her understanding. She associated the “+1” in the 
expression “(a+1)” with her previous understanding of how two consecutive numbers were related.

Beren: … like in the logic of a chart [the flow-chart proof]. Well, we were here 
[points to ‘(a+1)’] showing [this] 1 more, you know. In here, as well, I 
wonder, since it says a plus one, it is the extra… I mean we can transfer this 
into a schema. I, for this reason, think that this could be [a proof.] In fact, I 
think this shows certainly, as well. I think this has the logic of 'whatever 
number you try, it will work'.
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Beren’s comments about arguments B and C reveal that she was looking for General Procedures (or 
Abstract Structures) that would apply to all triples of consecutive numbers. She summarized her 
perception of the first three arguments and then continued with reading Argument D.

Beren: I know that this (Argument A) is not [a] ‘for sure’ [argument], this 
(Argument B) could be, I said. But I think that this (Argument C) will be for 
sure.

At her first glance, Beren judged Argument D by the sentence “The rest of the numbers are the same”.
Beren: I think rather than the operations, what is written here is important. Because 

‘The rest of the numbers are the same’. We want to proceed by… that
shows for everything, any number, here, not one number ten, eleven,
twelve. […] I think I would think a lot if it hadn't said that sentence.

Researcher: Well, let's pretend that this sentence is not there.
Beren: Still I don’t think it is [a proof] […] It's not proven for every consecutive 

number. […] Here you have to try and find it.
The researcher asked Beren how she would “try” in order to see if she would make use of the structure
“3 times the smallest number plus 3” illustrated in Argument D, in creating other examples. But, this 
unintentionally prompted Beren to construct her own proof for the statement, given in Figure 3 (left).

Figure 3: Beren’s flow-chart proof for the statement “The sum of any three consecutive natural 
numbers is divisible by 3” (left) and her formalized expression for Argument D (right)

While drawing the flow-chart, she explained her ideas in every step. Then she connected the Abstract 
Structure underlying this proof to that of Argument D.

Beren: Well, three consecutive numbers. In fact, it [her flow-chart proof] is [the
same as] the logic in here [Argument D]. But, in here [in Argument D] it
evaluates over ten.

Researcher: What if that ten is replaced by another number?
Beren: Again, it will be the same thing, but it’s saying it out of ten seems nonsense

to me. For example, if it says x there, would be okay. If it says x, it would
have proved for sure. It would have said 'whatever number came there... if 
any number comes in, it holds.' But I don't think this is okay, it’s being ten.

Then, she produced the algebraic expression in Figure 3 (right). Her explanation of this expression 
suggests that she perceived 3x+3 as an Abstract Structure subject to the distributive law for division.

Beren: Three x plus three. Three x is already divisible by three. We understand that, 
it is […] x. When I distribute three also one by one, it comes out one x… x
plus one. I can prove it this way.

She also considered Argument D to well emphasize Abstract Structure of three consecutive numbers:
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Beren: [Argument D] shows for ten, eleven, twelve, but it says ten plus one and 
plus two. It even proves more [compares to Argument A] that they are 
consecutive.

The above two scripts show that Beren understood the Abstract Structure behind Argument D. But,
she did not accept this argument as a Formulated Proof, because these structures were not expressed 
in a formally acceptable way to her.  

Beren: I can prove it this way [by using x]. But when I look at here [Argument D] 
ten, eleven, twelve, since they are consecutive, are summed, divided by 
three. But, is this same thing valid for two, three, four?

Researcher: Let's start with such a number [instead of ten] that… what is done here is 
not correct. Is that possible?

Beren: I think, it is not [possible]. Because when I do the same by x, I could show 
it. It holds anyway.

Note that Beren, when she created the algebraic expression “x + (x+1) + (x+2) = (x.3) +3 = 3x + 3” 
for Argument D, has just formalized the Abstract Structure of her own flow-chart proof (through her 
independent activity). Also note that an equivalent of the expression was given in Argument C, out 
of which she was not able to perceive the same structure before. This suggests thinking with the flow-
chart proof format helped Beren focus on the Abstract Structure behind Argument D. She then
transferred the same understanding of this structure to Arguments C and B.

Beren: I accept [Argument C]. Because I myself expressed it here [in Argument D]
by x. Here it uses not x, but a. Again, an algebraic expression it uses, I 
mean. It is not known what this number is, it could be 1, it could be ten or it 
could be a hundred. That is why, to me, this is a sufficient proof.

In Argument B, she matched the three strips with the expressions x, x+1 and x+2. She explained the 
underlying deductive structure of the two arguments and read them as Formulated Proofs.

Discussion
Findings from the pre-interview revealed Beren’s reliance on Naïve Experience, which was an 
expected situation for a 6th grade student who had not received any instruction on proof.  On the other 
hand, analysis of the states and transitions observed in her understanding of the given arguments
during the post-interview highlighted important aspects of the instructional design elements used in 
the teaching experiment study. First, the student expressed a preference for non-empirical arguments.
Unlike many others reported in the literature, who simultaneously possessed deductive and empirical 
proof schemes after learning about proof (Education Committee of the European Mathematical 
Society, 2011), she did not retain the empirical proof scheme. This suggests, the cognitive conflict 
approach used in the teaching experiment (Stylianides & Stylianides, 2009) helped Beren achieve the 
intended discrimination between valid and invalid modes of reasoning.

Second, in the post-interview, Beren was not able to make sense of the Arguments B and C in her 
first attempts. She was not familiar with the forms of representation used. After constructing her own 
flow-chart proof for the given statement, Beren first formalized its Abstract Structure through
studying Argument D (created her Formulated Proof by using a variable “x”) and then, connected 
this Abstract Structure with the forms of representation used in Arguments B and C. Her 
understanding of the Arguments B and C reached to the level of Formulated Proof, which would be 
the ultimate goal of proof comprehension for a mathematics learner. We hypothesize that the flow-
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chart proofs used in the teaching experiment study helped Beren focus on Abstract Structures behind 
deductive arguments. For instance, divisibility of 3x+3 by three was visualized in the last action in 
Beren’s proof, which was developed previously from the context of sharing 3 cups of and 3 single 
cookies among three people. Furthermore, the cups and cookies representation, evolved into the 
general notion of a collection and some single of the identical items, helped Beren to represent 
Abstract Structure of the property shared by every set of three consecutive numbers.

Beren demonstrated successful use of the Abstract Structures underlying her flow-chart proof
(learned in the teaching experiment) in a novel task. This might be an indication of the strong aspects 
of the instructional design in supporting young students’ learning of the structure of deductive proof. 
Also, note that Beren did not restrict proofs to necessarily have a flow-chart format or use cups and 
cookies representation. Examination of the aspect(s) of the teaching experiment (if any) that might 
have facilitated Beren’s discrimination between argument form and structure is an issue of further 
investigation. Results may provide insights into the ways of preventing the development of a ritual 
proof scheme (one that is observed frequently among students) while teaching proof. It is also 
important to note how the administration of the interview task itself, after the teaching experiment, 
elevated the student’s bringing together the structure (from the teaching experiment) and form
(supported by the task) to understand unfamiliar proof texts. Nature of Beren’s activity in the post-
interview might offer directions in the design of tasks for enhancing student learning about proof.
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To control for logical ability in a broader study, the study presented here investigates the 
understanding of inferences. The tasks consist of a conditional sentence in A, the negated or not 
negated antecedent (the if-clause) or consequent (main clause) of this conditional in B, and a possible 
inference from A and B as in the following example: (A) If the flowers are blue, the car is rolling.         
(B) The car is rolling. What do A and B imply mathematically-logically, if only the propositions A 
and B are known and nothing else? Cross the answer with which you agree most.  Given only the 
propositions A and B, mathematical logic implies t …are not blue. One cannot 
infer with mathematical logic whether the flowers are blue or not.  

Theoretical background 
The analysis of conditionals is immensely broad (von Fintel 2011), being spread out into many 
disciplines – philosophy, linguistics, logic, and psychology. Perhaps, the root of the matter is the 
following: With the word “if” one or more possible (or even counterfactual) worlds are possibly 
entered depending on the context. Therefore, some points have to be considered in the construction 
of the items: (1) Plausibility (Pólya 1990, Vol. 2, Ch. XII & XIII) of antecedent and consequent, the 
link by the two in its (2) power of  (explanatory) necessity (Bartelborth, 2007; Müller-Hill, 2017), (3) 
the formulation of the question (v4 in Durand-Guerrier 2003, p. 18; reasoning from or about a rule in 
Wason, 1968; Evans, 1997), (4) the context (e.g. deontic or not - Evans, 1997; Valiña & Martín, 
2016), (5) implicit quantification (propositional, open or bounded sentences - v7 in Durand-Guerrier, 
2003, p. 18), (6) reformulations without conditionals in predicative logic or as restrictions 
(Bartelborth, 2007), (7) material or logical implication in A.  

Present study 
As a consequence of these seven issues, the items are constructed as follows: Plausibility of the 
antecedent and consequent (1) have to be unknown, the plausibility of the conclusion (1,2) is 
systematically varied by context-types, three choices for the answer are given (see example above; 
3), only reasoning from a rule (3) in A, given as material implication (7) by abstract sentences in the 
present indicative (4), no quantifiers and avoiding the interpretation as open sentences in order to 
prevent implicit quantification (5, 6). Due to pilot studies, we did not use any negations in the 
conditional sentence and in a first step only contexts of every-day-life instead of mathematical ones 
(4, cf. Durand-Guerrier 2003, 18, v1; also to avoid differences in content knowledge). We used four 
cases of plausibility in A (context-type): CO (cogent) - The direction of the conditional is cogent, the 
logic converse is not. If the brakes are broken, the car is out of order. OC (not cogent) - The direction 
of the conditional is not cogent, whereas the converse is. Specifically, the converses of the CO-Items 
are used. If the car is out of order, the brakes are broken. EQ (equivalence) - Both directions of the 
conditional are cogent because it is a material equivalence. If you are a pupil, you go to school.          
NN (neutral) - No available truth value, no probability, arbitrary conditional. If the train is coming, 
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the flower is yellow. These cases are each combined with the following four logic types, realized by 
B: xa antecedent given, na negated antecedent, xc consequent, nc negated consequent. The 
convenience sample is comprised of N=593 students at the beginning of their university studies. Each 
combination of logic- and context-type used 2-8 contexts. Due to the multi-matrix booklet designs, a 
Rasch-model (N=593, infit 1.04, outfit 1.07, item-total-cor. .19, EAP-rel=.36) was applied.  

Results

Even if the contexts are extremely specified (see 1-7 above) and the logic-types and negation are 
controlled, the context has still a great impact on the variance of frequencies. The most abundant 
answer in each type coincide with those given if material implication in A had been mistaken as an 
equivalence - in contrast to the findings and interpretation of Durand-Guerrier (2003, p. 22). 

References
Bartelborth, T. (2007). Erklären. Berlin, Germany: de Gruyter.

Durand-Guerrier, V. (2003). Which notion of implication is the right one? From logical 
considerations to a didactic perspective. Educational Studies in mathematics, 53(1), 5-34. 
https://doi.org/10.1023/A:1024661004375 

Evans, J. (1998). Matching Bias in Conditional Reasoning: Do We Understand it After 25 Years? 
Thinking & Reasoning 4(1), 45–82. 

Müller-Hill, E. (2017). Eine handlungsorientierte didaktische Konzeption nomischer mathematischer 
Erklärung. JMD 38, 167–208. 

Pólya, G. (1990). Mathematics and plausible reasoning: Induction and analogy in mathematics.
Princeton, US: Princeton University Press. 

Valiña, M. D., & Martín, M. (2016). The Influence of Semantic and Pragmatic Factors in Wason’s 
Selection Task: State of the Art. Psychology 7, 925–940. 
https://doi.org/10.4236/psych.2016.76094 

von Fintel, Kai. 2011. Conditionals. In K. von Heusinger, C. Maienborn, & P. Portner (Eds.)
Semantics: An international handbook of meaning, vol. 2 (pp. 1515–1538). Berlin, Germany: de 
Gruyter Mouton. 

Wason, P. C. (1968). Reasoning about a Rule. Quarterly Journal of Experimental Psychology 12, 
129–140. https://doi.org/10.1080/14640746808400161 

Proceedings of CERME12 176



Proceedings of CERME12 177



Proceedings of CERME12 178



Proceedings of CERME12 179



Proceedings of CERME12 180



Proceedings of CERME12 181



Proceedings of CERME12 182



Proceedings of CERME12 183



Proceedings of CERME12 184



Language activities related to logical structures of proofs –                        
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This study combines the Toulmin model and processes while proving to analyze the language 
activities of proving processes concerning logical structures. A case study of Alena and Jannis (both 
grade 10 and 15 years old) is presented in more detail. The qualitative analysis of the proving 
processes of Alena, Jannis, and 46 other students (grades 8 to 12) reveals insights into the 
development of verbal activities from the first verbal sequence to the written product, in particular: 
1) The linguistic implicit logical structures in the process of proving, 2) the limited number of 
language activities, 3) the use of explicit logical language means in the last sequence of writing. 

Keywords: Formal proof, Toulmin model, language, proving activities, language activities 

Introduction  
Language means (words, phrases, and grammatical forms) can have different meanings in 
mathematics than in everyday language (Duval, 1995; Schleppegrell, 2007); this mainly applies to 
the language means of proofs and proving (such as conjunctions or other logical connectors). Within 
the huge learning content of proof and proving, particular challenges were identified in the structural 
change to deductive reasoning (Fischbein, 1982) and the steps from the process to the product of 
argumentation, such as proofs (Albano & Dello Iacono, 2019). These challenges are also rooted in 
linguistic challenges, e.g., with new meanings of the exact words (Duval, 1995) and their necessary 
connection to the language (Ferrari, 2004). Therefore, the language of deductive reasoning requires 
more systematic research attention (Durand-Guerrier et al., 2011). To study the language of proving, 
language must be functionally extended from the words and phrases to the language activities used 
by these language means (Schleppegrell, 2007; Prediger & Zindel, 2017). This extension resonates 
with the Vygotskian perspective of this paper, as Vygotsky (1962) regards language as an artifact that 
is learned by using it in meaningful activities. Hence, the language of deductive reasoning is learned 
in the language activities involved in proving activities with logical structures. Therefore, specific 
language challenges have to be figured out for relevant learning contents (Bailey, 2007). This paper 
aims at specifying the appropriate proving activities and their language representation related to the 
logical structures of proofs. Therefore, this study focuses on concrete language activities to overcome 
the logical structures while proving from the first verbal try to the proof text. First, the specification 
is theoretically derived from the existing state of research and then empirically investigated using 
students' processes with the following research question: Which language activities do students enact 
in their transition from verbally arguing to writing proofs?  

Theoretical Background 
Logical structures  

Understanding the logical structures is essential for students' transition from intuitive to deductive 
proof (Fischbein, 1982). The Toulmin model (1958) is widely used to analyze argumentations, 
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particularly in mathematics education, to model logical structures (e.g., Krummheuer, 1995). In the 
current paper, the short version of Toulmin's model is adapted so that data, warrant, and claim are 
described as the logical elements premise, warrant, and conclusions of a proof. Additionally, the 
logical relations between the logical elements are considered. In line with Duval (1991), the use of a 
conclusion from a previous step to another as a premise is called recycling. In this way, a multiple-
step proof can be described. Figure 1 shows the adapted model used in this study to capture students' 
activities with logical structures. 

Figure 1: Adapted Toulmin Model about logical structures in proof (here two steps) 

Proving activities related to logical structures 

Whereas Boero (1999) has specified all proving activities in general, Heinze et al. (2008) have 
focused mainly on proving activities related to logical structures (for proving activities at proofs with 
multiple steps). Additionally, Tsujiyama (2011) emphasized the identification of the premise and 
target conclusion. Based on their work, the following proving activities were specified as relevant 
concerning the logical structure of proofs (Hein, 2021): 1.) unfolding the information in the task 
(premise and target conclusion), 2.) identifying warrants and their logical structure, 3.) forming 
logical relations between logical elements (premise, warrant, conclusion) within the proof steps, 4.) 
arranging and creating relations between the proof steps, 5.) finding a linear representation of the 
proof. It should be noted that these activities can emerge in different orders and do not have to be 
observable.   

Language activities related to the logical structures 

The state of research on logical structures in the adapted Toulmin (1958) model and the specified 
proving activities (following Heinze et al., 2008; Tsujiyama, 2011) is the theoretical foundation to 
identify the language activities:  

This paper defines language activities as linguistic representations of concrete (learning) activities. 
Here, the main emphasis is on the linguistic representations of the proving activities related to logical 
structures (in the following stated as language activities). For every proof activity related to logical 
structures, a linguistic representation is described and graphically categorized to the Toulmin Model 
(Figure 2).  

Step 1 Step 2

(warrant)

premise
(recycling)

premise target conclusion

(warrant)
conclusionpremise

conclusion

conclusionpremise

Logical elements

Logical relations
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Figure 2: Language activities concerning logical structures (activities in dashed boxes) 

Although these activities can be done mentally, this paper describes how these activities can be 
observed. The underlying assumption is that the students need first to notice the logical structures for 
their understanding through visible activities.  

Methodology for the analysis of proving processes 
Data collection 

The data corpus for this paper stems from a major design research project on deductive reasoning in 
grades 8-12 with angle sets. A teaching-learning arrangement with verbal and graphical scaffolds was 
developed within the project. Whereas other publications investigate students' learning process of the 
logical structures (see Hein & Prediger, 2017), this paper focuses on identifying the enacted language 
activities. The complete data corpus consists of transcribed videos from design experiments and 
written proofs with 24 pairs of students (20 students in grade 8, 6 in grade 9, 4 in grade 10, 18 in 
grade 12). An example of the analysis is given using the case of Alena and Jannis, both tenth-graders 
and 15 years old (Hein, 2021). Their process illustrates the typical phenomena for the whole dataset, 
and the design experiments were still in a laboratory setting to gain deeper insights. The author was 
the teacher herself in the laboratory setting and interacted with the students to explore their learning 
(see Cobb & Steffe, 1983). 

Methods of qualitative data analysis  

The qualitative analysis of the students' language activities while proving draws upon the Toulmin 
Model, the proving activities, and the derived linguistic representations. First, the related logical 
structure based on the Toulmin model is coded (Figure 2). Then the proving activities are identified, 
respectively, as their linguistic representation. Based on the previous steps, the following tool 
analyzes the language activities in proving and their operationalization within the design experiment: 
1.) Linguistically unfolding the information in the task: stating the premise (step 1) and target 
conclusion (step 2); 2.) Stating (step 1) and linguistically unfolding the warrants (step 2): stating the 
mathematical propositions that must be used and unfolding the conditional implication structure; 3.) 
Using language means for logical relations within proof steps: verbalize the logical relations with 

5. Linearly verbalizing the proof with
language means for the logical structure

and to establish internal coherence

(warrant)

premise
(recycling)

premise target conclusion

(warrant)
conclusionpremise

conclusion

conclusionpremise

1. Linguistically unfolding the
information in the task

2. Stating and linguistically
unfolding the warrant

3. Using language means for logical relations
within proof steps

4. Using language means for
logical relations between proof

steps

2. Stating and linguistically
unfolding the warrant

3. Using language means for logical relations
within proof steps
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causal or conditional conjunction respectively prepositions; 4.) Using language means for logical 
relations between proof steps: verbalize the relation between the proof steps with logical language 
means; 5.) Linearly verbalizing the proof with language means for the logical structure and making 
text coherence: primarily through a proof text with an explication of the logical elements in their 
logical order, and the use of logical language means.  

Empirical insights 
Alena and Jannis work on their second proof within the teaching-
learning arrangement (the alternate interior angle proposition as in 
Figure 3). They have the necessary warrants (corresponding angle 
proposition, transitivity proposition, and vertically opposite proposition) 
available on cards. The whole session, they work as a pair.

For a first overview, Table 1 summarizes the reconstruction of the 
language activities of Alena and Jannis for each sequence. 

Table 1: Reconstruction of the language activities of Alena and Jannis

Phases of proving Reconstructed language activities (related to logical structures)

Sequence 1
Verbal reasoning

No language activity

Sequence 2
Filling in graphical 
scaffolds

Linguistically unfolding the information in the task (State the
target conclusion (activity 1 step 2)
Linguistically unfolding of the warrants (activity 2 step 2)
using language means for logical relations within proof steps
(activity 3)

Sequence 3
Writing the if-then-clause

Linguistically unfolding the information in the task (activity 1)

Sequence 4
Written products 

Linguistically unfolding information in the task (activity 1)
Stating and linguistically unfolding the warrants (activity 2)
Using language means for logical relations within proof steps
(activity 3)
Using language means for logical relations between proof steps
(activity 4)
Linearly verbalizing the proof with language means for the logical
structure and establishing internal coherence (activity 5)

Sequence 1: Verbal reasoning

In the first sequence, Alena refers to another task with a concrete alternate interior angle task (asking 
for gamma if alpha is 50 degrees) and points at it (Turn 578). Again, Alena and Jannis perform no 
language activity here. 

578 Alena This is… [16-sec break]. Again with this… [points on the previous task] 

In another task, Alena and Jannis, and the other students state the arguments or point with fingers at
the cards with the mathematical propositions, which is possible in the design of the teaching-learning 

Figure 3: Task
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arrangement. Without the teaching-learning arrangement, the students often only state conclusions 
here. 

Sequence 2: Filling in graphical scaffolds

In the second sequence, Alena and Jannis fill in graphical scaffolds to arrange the logical elements 
(premise, warrant, and conclusion) in the correct order. This process and the graphical scaffolds are
described for another student pair in Hein & Prediger (2017, sequence 2). Here the focus is only on 
the language activities. Through the graphical scaffold, they are demanded to make explicit the target 
conclusion by writing it down. In the following, a few examples are presented:

581 Alena Yes, mhm. Is gamma equal to alpha? 

In this way, the target conclusion from the task's information is linguistically unfolded (activity 1.2).  
639 Alena […] So this and this is equal [points on gamma and beta how they have named the 

vertically opposite angle of gamma] and this and this is equal [points on beta and 
alpha]. It follows that this and this [points on gamma and beta] are equal. 

Once a warrant is linguistically unfolded (activity 2.2) while applying the transitivity proposition.  

Finally, Alena and Jannis use isolated language means for logical relations within the proof steps 
(activity 3), such as in the following example: 

620 Jannis So from this [points on a graphical scaffold] follows for now that […]   

In this sequence, the students use, above all, deictic language means while filling in the graphic 
scaffolds which represent the logical structures. This sequence is described in detail in Hein (2021).  

Sequence 3: Writing the if-then-clause

In this sequence, the students write down the mathematical proposition with "if-then" and 
differentiate the premise and the target conclusion (activity 1). 

Sequence 4: Written products

Both students write proof texts independently, based on their filled graphical scaffolds (Figures 4, 5).  

Figure 4: Written product of Alena (original (Hein 2021, p. 231) and translation)

Proof for the validity of alternate interior angle proposition

[If] two parallel lines cross another, then .

This arises from the vertically opposite proposition, the corresponding angle 
proposition, and the transitivity proposition [Alena uses abbreviations chosen 
by herself for the propositions].

The lines t & a form an angle intersection. If you follow the vertically opposite 
proposition, it becomes clear that . 

Now, you can apply the corresponding angle proposition because both 
intersections s/a & t/a form the corresponding angle.                     Hence .

If you apply - and it
follows: 
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Figure 5: Written product of Jannis (original (Hein 2021, p. 232) and translation)

Both students write first what has to be reasoned (the alternate interior angle proposition) and thereby 
linguistically unfold the information in the task (activity 1). 

Both students use language means for logical relations within proof steps ("thereof.."; "in that case") 
(activity 3). To express the relation between the first and second step to the third step, Jannis makes 
explicit the conclusion of both first steps as a new premise ("The premises for the transitivity 

case…") and thereby use language means for logical 
relations between proof steps (activity 4). Finally, both students linguistically unfold the warrant, 
namely the unknown transitivity proposition (activity 2.2). Alena does this in brackets, Jannis, 
through the explicit application of the transitivity proposition. The other propositions as warrants are 
not unfolded.   

Besides the language means for logical relations Jannis also uses nominalizations ("premise") and 
makes explicit the logical status of the premise. Alena uses language means of text coherence such 
as "this" and refers to parts of the text before in this way. She also uses temporal conjunctions 
("Now"), which express no logical, but temporal relations. 

Both students show linear verbalization of the proof with language means for the logical structure 
and establish internal coherence (activity 5), primarily through a proof text with an explication of the 
logical elements in their logical order and usage of logical language means. 

Summary
As summarized in Table 1, Alena and Jannis perform different language activities. However, they 
can be identified depending on the related logical structures and concrete elements of the teaching-
learning arrangement.

To sum up, activity 1 (the linguistic unfolding of the information in the task) can be found late, with 
both premise and conclusion in sequence 3. Although Alena and Jannis state the warrants in sequence 
1 (here facilitated through the design of the teaching-learning arrangement), they unfold the warrant 
while filling in the graphical scaffolds and only make explicit the unknown warrant in their texts in 

The premise for the vertically opposite angle argument is that two lines 
cross each other. In this case, the lines a & h  cross each other. Thereof 
it follows that 

The premise for the corresponding angle argument is that one line 
crosses two parallel lines. In this case, the parallel lines g & h are 
crossed by a. Thereof .

The premises for the transitivity argument are In this 
case, 13  Thereof it 
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sequence 4. Jannis uses language means of logical relations between proof steps only in his text. The 
students mainly use language means for the logical relations within and between the proof steps, 
particularly in the writing products.  

For the other 46 students, similar language activities are empirically identified: Many logical 
structures remain tacit in the first sequence of verbal reasoning. When provided, conclusions are often 
expressed without further reasoning, and mathematical propositions are stated with the argument 
cards. While working with the graphical scaffolds, the students perform fewer language activities 
expected because of deictic language means. Such as "here" can be used instead. The premise and 
conclusion of the proposition, which must be proven, are stated very explicitly at later stages. The 
students then use more language means for the logical relations within and between the proof steps 
in the written products. In the texts, the mathematical content of the proof is represented through 
language means, with a variable degree of the explicit formulation. Sometimes, unnecessary temporal 
conjunctions are also used. 

In summary, although many opportunities are given within the design experiments, there is a slow 
increase in language activities related to the logical structure. 

Conclusion 
In this study, the logical structures and their articulation in language are investigated to specify the 
language learning content for proving (as demanded by Durand-Guerrier et al., 2011). The main 
finding in the case study of Alena and Jannis is the following: In line with Albano & Dello Iacono's 
(2019) results on typical proving processes, some language activities are rarely seen in the early 
sequence of verbal reasoning. However, there is identifiable progress towards increasing explicitness 
within the four sequences. Based on previous research on the importance of language activities based 
on Vygotsky's (1962) theory and this study, the following implications for teaching can be derived: 
1.) Increasing the teachers' awareness of the possible explicit language activities may be helpful so 
that the teachers can consciously demand the language activities. In particular, concerning 
explicitness for the logical structures (e.g., conjunctions and adverbs for logical relations). 2.) The 
herein described language activities are a starting point for the students to have opportunities to learn. 
3.) Emphasis should be given to having the students write the proof themselves in the classroom.  

It should be noted that the teaching-learning arrangement in design experiments causes the data of 
this study. Therefore, it is likely that students would show even fewer language activities without the 
teaching-learning arrangement. In addition, not all language activities have to be observable because 
they can also be only mental. Finally, the study's limitations are the small size of observed students 
and the limited number of tasks considered.  
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Seventh-grade students’ perceptions of qualities in a mathematical 
argument
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This paper reports on a task where seventh-grade students evaluated five pre-written arguments 
designed to display various proofs and non-proof arguments. The analysis focuses on what students 
described as qualities of the arguments. The results indicate that students appreciate arguments they 
perceive to understand, arguments that are short, and arguments containing text. Thus, the task 
approach holds the potential to unravel what students perceive as the qualities of an argument. 
However, there is no clear relationship between the features of the arguments and what students 
perceive to be qualities. Further investigation should occur to see how the task can be improved to 
better display aspects of valid mathematical arguments to help students appreciate these and, in turn, 
be able to produce mathematical proofs.

Keywords: Primary education, mathematics, argumentation, proof.

Introduction
Proof holds a prominent role in mathematics, and researchers and policymakers worldwide 
increasingly appreciate its importance for mathematics learning (Stylianides et al., 2017). In Norway, 
‘Reasoning and argumentation’ is one of six core elements in the new curricula implemented since 
autumn 2020. It states that the students should prove that their solutions to mathematical tasks are 
valid (Kunnskapsdepartementet, 2020). This formulation introduces proving to the primary school 
curricula in Norway (age 6 to 13), but it is not clear how it could be implemented into practice 
(Valenta & Enge, 2020). Reasoning and proving in primary education (ProPrimEd) is an intervention-
based project that aims to answer this call by developing research-based materials to help teachers 
implement proving into their teaching. A mathematical proof is here defined using Stylianides’ (2007)
definition of proof: a kind of argument that uses forms of reasoning and expression that are 
mathematically valid and suitable for a specific classroom community and uses true statements 
accepted by the same community. By this definition, it is assumed that students at all grade levels can 
engage meaningfully in the practice of proving.

This paper reports on a lesson in the intervention conducted in grade 7 (age 12-13). The aim was to 
prompt students to become aware of the qualities of a good mathematical argument as an entry into 
work with proving. Lannin (2005) recommends that “research should examine the types of tasks that 
encourage students to examine the variety of justifications and generalisation strategies that other 
students use” (p. 254). Thus, this study examines the potential of this task approach. In addition, 
possible connections between students’ evaluation and the designed arguments are explored to see 
whether the task can help students become aware of the features of valid arguments. The research 
question is: What are seventh-grade students’ perceptions of qualities of a mathematical argument?
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Theoretical framework and related literature
G. Stylianides’ (2008) framework defines categories to analyse students’ reasoning and proving 
activities, following A. Stylianides’ (2007) definition. The framework distinguishes between proofs 
and non-proof arguments, where proofs are demonstrations or generic examples. Without a specific 
example, a demonstration draws on the properties of and relations between mathematical objects to 
show why a conjecture is true. This can be done using variables or other means of representing 
mathematical objects. For example, a random even number could be represented as 2n or “pairs of 
shoes”, depending on the community. Counterexamples, contradictions, proofs by induction and 
proofs by exhaustion are also considered demonstrations. A generic example draws on a particular 
example and explains the underlying mechanisms to show why a conjecture must be valid for all 
cases. The affordances of using generic examples to help students move from showing that something 
is true towards showing why it is true is widely recognised (see e. g. Aricha-Metzer & Zaslavsky, 
2019). This suggests that generic examples are a promising entry into work with proving at the 
primary level. 

In G. Stylianides’ (2008) framework, a non-proof argument is either an empirical argument or a 
rationale. An empirical argument consists of showing that a conjecture holds in some cases without 
showing why, hence providing “inconclusive evidence for the truth” (G. Stylianides, 2008, p. 12). A 
rationale is introduced as a fourth category to capture arguments not covered by the three former 
types. It is neither an empirical argument nor a proof but an attempt to prove that either lacks reference 
to accepted statements or uses statements that are not accepted by the community. In this sense, a 
rationale can be seen as a proof that misses some of the steps or content needed to convince a given 
community. The categories described in this section provide the backdrop for the five pre-written 
arguments presented in the Methods section. 

How students perceive mathematical arguments have been investigated earlier, for example, by Bieda 
and Lepak (2014) and Healy and Hoyles (2000). Both studies show that students are likely to accept 
empirical arguments as proof. In Bieda and Lepak’s (2014) study, the students were the same age as 
those in this study and had no documented proving experience. They were given two examples of 
arguments to consider, one empirical non-proof argument and one proof, and were instructed to 
decide which argument they preferred. In addition, they were asked to describe how the one they did 
not prefer could be amended to be more convincing. The results indicated that students were inclined 
to prefer examples accompanied by explanatory text. They both had a numeric example to show that 
a conjecture holds and text explaining why. The students in Healy and Hoyles’ (2000) study had 
undergone teaching of proving and were given several arguments to consider, such as empirical 
arguments and proofs, using various modes of representation (e. g., everyday language and algebraic 
symbols). Their results indicated a discrepancy between what kinds of proofs students themselves 
would produce and what proof they believed would get the best mark by an evaluator. The students 
in the study had more success evaluating proofs written in words instead of algebraic notation and 
found them more convincing. The authors inferred that students’ informal and narrative 
argumentation should be exploited to develop their proof competence. The present study draws on 
these results by 1) using a variety of informal representations such as contexts, drawings, and 
narrative explanations, and 2) prompting students to reflect on their proof conceptions by asking them 
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to evaluate and choose among a set of arguments. Both studies described above applied interviews 
and surveys as data collection methods, while this study will take a different approach by observing 
group work without the presence of a teacher. This difference allows for insight into the potential of 
the task. 

Method
This study is a single instrumental case study, where the researcher focuses on an issue and uses a 
bounded case to illustrate it (Creswell & Poth, 2018). Here, the case consists of students who work 
on a proof-related task. The issue explored is the task’s potential to increase students’ awareness of 
the qualities of a good mathematical argument. The study was conducted in spring 2021. A class 
consisting of 19 seventh-grade students participated, and their regular teacher taught the lesson. 
According to the teacher, who had taught the group for three consecutive years, the students had not 
met the term argumentation explicitly in their mathematics instruction. Therefore, the study provides 
insight into their first meeting with this theme, and this case is thus instrumental in exploring this task 
as an entry into argumentation. However, previous observation and descriptions given by the teacher
suggested that the class was in the habit of showing their work, that is, in detailed writing, when they 
worked on tasks. The data was collected through video recordings of the students working in groups 
of three to four, giving five groups. Because of limited access to cameras, three out of five groups 
were chosen to be videotaped based on the level of verbal interaction observed in earlier lessons. The 
data material consisted of verbatim transcripts of the video recordings of the group discussions and 
the groups’ written responses, including the groups that were not filmed. Therefore, one group was 
neither recorded nor given any written reasons for their opinions and is not included in the data 
material. Hence, the number of participating students was 16, whereby 12 were video recorded, and 
four submitted a shared written response.

The task, shown in Figure 1 below, was presented to the class by the teacher in plenary along with 
five pre-written arguments, with no additional information given.  

Figure 1: The given task 

The arguments, shown in Figure 2 below, were crafted to demonstrate different arguments based on 
G. Stylianides’ (2008) framework and were designed to be perceived as the work of a student their 
age. Abi’s argument is a proof in the form of a generic example, while the rest are non-proof 
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arguments. Hannah’s and Inga’s arguments are empirical arguments using a few examples, with the 
distinction that Hannah gives numeric examples while Inga uses a drawing to show an example. Leo’s 
argument uses larger numbers and refers to using a calculator. All three are empirical arguments, 
while Belma’s argument is a rationale, as it contains a part of an argument but lacks logical 
connections and details to be convincing. None of the arguments is of the form demonstration, which 
emphasised the difference between generic examples and empirical arguments. 

Figure 2: The arguments that were given to the students (translated from Norwegian)
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The students were given copies of the arguments and the task and worked on it for 20 minutes before 
being called back to a whole-group discussion. While the groups worked with the task, the teacher 
and two researchers observed the groups.

The unit of analysis was a student contribution, either written or verbal. The contributions that 
regarded one of the arguments and described a positive or negative feature were collected. This gave 
36 utterances. The further analysis was performed as an inductive qualitative content analysis 
(Mayring, 2015). The aim was to understand the different perceptions and their magnitude in the data 
material. The utterances were coded inductively to capture the feature it addressed. Codes describing 
related features were then collected into overarching categories. For example, the code “short, 
positive” and the code “long, negative” both belong to the category “short”, as they both suggest the 
perception that an argument should be short.

Findings
The analysis of the 36 utterances resulted in seven categories, as shown in Table 1 below. In the 
following, each category is elaborated on in order of appearance in the table.

Table 1: Overview of utterances by category

Categories Explanation Short Text Order Drawing Examples Warrants

Frequency 15 (42 %) 7 (19 %) 5 (14 %) 3 (8 %) 3 (8 %) 2 (6 %) 1 (3 %)

The most frequent category, explanation, considered utterances related to understanding or 
explanation. It applied whenever a student stated that an argument was explained well or was easy to 
understand. Both Hannah’s, Leo’s, and Belma’s arguments were said to be easy to understand, and 
some students claimed that Hannah “…explained it really well”. One student spoke about Inga:
“Really bad explanation. I did not understand what she meant. She just drew.” Abi’s argument is 
criticised: “…is hard to understand because it is long and messy”. Another negative remark about it 
is that “It is so much strange going on here at once”, indicating that it was considered complex by the 
student and might represent something the student was not used to seeing. Other students appreciated 
Abi’s argument: “Because he explains, for example, that the tens are divided into two”. This utterance 
indicates that a student noticed an essential feature of the generic argument. Other students said, “It 
has both writing and drawing. Very good explanation. Everyone can understand this. No difficult 
words were used”. Thus, Abi’s argument was either valued for its thorough explanation or was not 
appreciated because of its length and complexity. These examples show that both the short and the 
more elaborate arguments could be explained well. Hence, what students mean when they say that 
something explains well or is easy to understand is unclear.

The category short considers utterances about the length of the argument. Hannah’s argument was 
appreciated because “It is simple and short”, and about Belma’s argument, some said that it was 
positive “…that she used only one example”. “Leo’s and Hannah’s arguments are good because they 
did not have too much text to read and understand”, while “Abi’s argument is hard to understand 
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because it is long and messy”. The students appeared to value short arguments because they took up 
little space and took little effort to read.

Several students mentioned the presence of explanatory text, especially regarding Inga’s and Abi’s 
arguments. Abi’s argument was valued because it had both writing and drawing, as indicated by the 
quote in the previous section. Inga’s argument was the only one that none of the students preferred, 
and one student said: “The others have written text. That is why hers is the worst because it is easier 
to explain by writing than by drawing”. Other utterances to support this view are: “She does not 
explain what it is that she has drawn”, and “but she does not explain what she does”. Hence, a short 
argument was not necessarily appreciated if the students did not find the content satisfying.

The four least frequent categories are the order of the argument, the use of drawings, the number of 
examples, and the warrants. Concerning the order of the argument, one student gave all the utterances, 
for example: “Leo just starts. Now I don’t know, if I start with the first, I don’t know (if it is true)”. 
The student seemed to believe that the conclusion, whether the conjecture is valid or not, should be 
stated at the beginning of the argument. Two utterances were about the number of examples: “There 
are more examples”, “checked on many numbers”. This indicates an appreciation of examples and is 
related to the features that the arguments were meant to display. However, the task intended that the 
students recognise these arguments as mere examples and not convincing arguments. These 
utterances suggest the opposite outcome of what was intended. The use of drawings is also mentioned 
by a few students, either saying that it is good to use a drawing or that the quality of the drawing 
affected the quality of the argument. The last category, warrants, captured an utterance where the 
student, in a critical tone, said, while reading from Leo’s argument: “I have used my calculator to 
check many cases. Ok?” indicating that this did not strengthen the argument. 

There were few direct references to the features that the arguments were designed to display. For 
instance, no student commented that Hannah’s and Leo’s arguments only showed that the conjecture 
was valid for some examples or that Belma’s explanation was incomplete. Instead, as shown above, 
some remarks suggested that it is good to have many examples. The two utterances appreciating Abi’s 
explanation for being thorough are other examples that indicate a possible awareness of how this 
argument differs from the rest. Except for these few exceptions, the data shows little awareness of 
the features of the pre-written arguments. 

Discussion 
This study offers insight into how students perceive mathematical arguments for general conjectures 
and suggests that features like the explanation, length, and the presence of text are the qualities that 
the students in this group value most. However, there is no apparent relationship between students’ 
perceptions and the features that the arguments were designed to display. These findings, along with 
a discussion on the methodological approach and the task’s design, are addressed below.

The appreciation of empirical arguments is evident in this study, as in previous studies (Bieda & 
Lepak, 2014; Healy & Hoyles, 2000). The inclination to prefer explanatory text is also evident, as 
Bieda and Lepak (2014) also found. However, the data show that students’ reactions are more 
nuanced. The notion of ‘explain’ seems to hold divergent meanings, where explanation appears to be 
a feature connected to whether the mere mathematical content of the argument makes sense or is 
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possible for the reader to understand. This discrepancy might be related to the class habits, where 
there is an emphasis on showing one’s work. To clarify how one has found the correct answer to a 
mathematical task. Thus, explanation, and in its extension conviction, might concern the presentation 
of a solution. This perspective is not compatible with assessing arguments for general conjectures. 
There seems to be a gap to fill to bring the students’ attention to the difference between evaluating a 
written task solution and evaluating whether an argument shows that a conjecture must be valid for 
all cases. It can be understood as a necessary shift in the socio-mathematical norms in the group, 
concerning what can count as an acceptable mathematical explanation (Yackel, 2002). At the more 
practical level, the results emphasise the importance of a well-orchestrated classroom discussion 
where issues like the difference between showing that and explaining why are addressed. Teachers 
can benefit from exploring teacher moves to support students’ argumentation by pressing to justify
why something works. Such actions are suggested by Martino and Maher (1999), who describe 
questioning that can prompt students’ justification when they work on mathematical problems.

Methodologically, this study provides a new lens into students’ evaluation of arguments by 
unravelling how students in groups act without the influence of a teacher or a researcher. The results 
suggest that students can both explore and verbalise what they perceive to be qualities of arguments 
but that the nature of these qualities is often distant from what would be accepted by the mathematical 
community. A limitation of this approach is that it makes it impossible to get further insight into the 
students’ meaning of the words ‘explain’ and ‘understand’, which frequently occurs in the data 
material. A follow-up interview where students are asked to elaborate on their conceptions of these 
notions could therefore be done to enrich the understanding of the case. As discussed in the previous 
section, this could provide further insight into how the gap between evaluating a written solution and 
evaluating an argument could be filled.

This study explores the potentials and challenges of a task where students evaluate others’ work, 
which is an approach recommended by Lannin (2005). The results indicate no clear relationship 
between argument design and the students’ evaluation, but that the task offers an entry point into 
discussing the qualities of a good mathematical argument. Further study should be made to explore 
improvements in the task. First, one possible approach is to use fewer arguments. In this task, one 
could reduce the number of arguments to three: one empirical example, one rationale, and one generic 
example, the distinction between showing that and explaining why could be highlighted in this way.
Second, asking the students to argue for the conjecture themselves before being presented with the 
pre-written arguments should be explored to see if it might influence how they perceive the 
arguments. Third, one could consider the suitability of the conjecture. Durand-Guerrier et al. (2012)
warn that too simple conjectures can obscure the need for proving. Therefore, it should be explored 
if conjectures of different complexity have different affordances in this task. Last, an extension of 
this task could be to find ways to highlight the deductive nature of proofs. A possible approach here 
is to use valid arguments where the order of the steps is altered and ask students to reorganise the 
steps to make the argument logical and convincing. Exploring these possibilities could be further 
steps toward finding fruitful ways to engage primary school students in proving.
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Mathematical reasoning outside the classroom – A case study with 
primary school students solving math trail tasks 

Simone Jablonski 

Goethe University Frankfurt, Germany; jablonski@math.uni-frankfurt.de  

Research findings underline the potentials of outdoor mathematics – leaving the classroom presents 
the students with every-day situations in which they can apply mathematics. By example, a math trail 
guides students along a path with several mathematical tasks to be solved on-site, e.g. by measuring 
or counting. Apart from long-term learning benefits and motivational aspects, it remains unclear how 
this form of experiential learning involves fundamental mathematics working methods and 
competences, i.e. mathematical reasoning. In this article, the method and results of a case study with 
15 primary school students are presented concerning the frequency and qualitative use of 
mathematical reasoning during a math trail with eight different mathematical tasks from the areas 
of arithmetic, combinatory and geometry. The results show that reasoning is involved in the students’ 
solution processes, mainly in developing a solution plan and in geometry tasks, i.e. for estimations.  

Keywords: Reasoning Skills, Outdoor Education, Mathematics Education, Experiential Learning 

The Experiential Learning Theory and outdoor education 
The learning theories by Lewin, Dewey and Piaget have – among other aspects – the importance of 
experiences with the environment in common (Kolb, 1984). Still, “learning was primarily a personal, 
internal process requiring only the limited environment of books, teacher, and classroom. Indeed, the 
wider ‘real world’ environment at times seems to be actively rejected by educational systems at all 
levels.” (Kolb, 1984, p. 34). In contrast, the Experiential Learning Theory (ELT) emphasizes the 
“central role that experience plays in the learning process” (Kolb, Boyatzis & Mainemelis, 2000, p. 
1). According to the authors, activities such as concrete experiences, reflective observation, abstract 
conceptualization and active experimentation are essential for the learning process and, in particular, 
the acquisition of mathematics concepts and skills. Also, Hattie et al. (1997) highlight the importance 
of out-of-class experiences for education, i.e. in the sense of first-hand experiences and through the 
embodiment of “abstract mathematical concepts in concrete terms, using ideas and modes of 
reasoning grounded in the sensory-motor system” (Lakoff & Nuñez, 2009, p. 5).  

In the context of mathematics education, the term outdoor mathematics describes the teaching and 
learning of mathematics outside the classroom in interaction with the environment. One approach is 
the math trail which describes a route with mathematics tasks to be discovered in and solved with the 
real-world environment (Zender & Ludwig, 2019). In the educational context, during a math trail, the 
students cooperate in groups of three and solve the tasks by means of mathematical activities. 
Furthermore, through first-hand, out-of-class experiences of mathematical concepts, math trails have 
the potential to foster the acquisition of mathematics skills and competencies, e.g. modelling, problem 
solving and reasoning (Buchholtz & Armbrust, 2018). The potential of the latter is focused on in the 
following.   
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Mathematical reasoning in the context of outdoor mathematics 
Mathematical reasoning shows high relevance in the teaching and learning of mathematics at different 
ages, e.g. concerning the question of how task design can foster reasoning processes (Stylianides et 
al., 2019). In this paper, the focus is on reasoning in primary school. Therefore, a broad definition of 
reasoning is chosen, whereby both – arguing and proving – are regarded as subareas of reasoning. 
This definition is comparable to Stylianides’ term reasoning-and-proving (Stylianides, 2008) and 
results in the description of reasoning through several activities, i.e. to identify patterns, make 
conjectures and provide arguments (Arnesen, Enge, Rø & Valenta, 2019). With the study being 
located in Germany, the following activities are highlighted in the curriculum for mathematics 
education in primary school by the Conference of Ministers of Education (KMK, 2004, p. 8): 
(a) question mathematical statements and check their correctness, (b) recognize mathematical
relations and develop assumptions, and (c) search for and understand reasons.

Being listed as a possible potential of math trails, it is examined on a theoretical level how far outdoor 
mathematics and math trails, in particular, can foster mathematical reasoning in the sense of the three 
mathematical reasoning activities.  

1. Out-of-class experiences: From ELT, it can be assumed that experiences play a major role in
learning processes. In the setting of a math trail, the students have to interact with objects and
situations in the real world – hereby, they collect experiences in this context. Still, it is not
only the collection of real-world experiences. To solve a task of a math trail, the students have
to reflect on their experiences by formulating mathematical statements and assumptions. In
this reflection process, mathematical reasoning is mainly necessary in the sense of the
reasoning activity (a) and (b).

2. Group Interaction: During a math trail, the students work in small groups. For the different
activities, i.e. searching the task’s object, planning the solving process, exchanging ideas,
collecting data and validating the results, it can be assumed that the students interact with each
other and reason for and against proposals and ideas. In this social process, mathematical
reasoning is mainly necessary for reasoning activities (b) and (c).

3. Transfer of Mathematical Knowledge: Being outside the classroom, the students have to
choose the data to be collected from all available data – whereby this number might be higher
in the real world than in a school book. Hereby, the students have to transfer the mathematical
knowledge that they acquired inside the classroom to a new context that was not primarily
created for educational purposes. In contrast to calculation tasks where the mathematical
content is often straightforward, the students have to decide (and reason) which mathematical
characteristics and relations can be found in the real-world situation. In this reflection process,
mathematical reasoning is necessary for the reasoning activities (a), (b) and (c).

State of the art and research question 
From quantitative empirical studies, it results that math trails have the potential for positive (long-
term) learning outcomes (Zender & Ludwig, 2019), motivational aspects (Gurjanow, Oliviera, 
Zender, Ludwig & Santos, 2019) and individual opportunities for the support of strengths and 
weaknesses (Buchholtz & Armbrust, 2018). With reference to ELT, math trails are a promising 
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approach for mathematics education. Still, there has been a lack of studies to examine the process-
related mathematical competences when solving math trail tasks, i.e. mathematical reasoning. From 
the theoretical potentials, it can be assumed that math trails foster reasoning on different levels. Still, 
the considerations need empirical validation. In order to focus on the aspect of mathematical 
reasoning in more detail, the paper focuses on the research question:  

To what extent and for what purpose do primary students use mathematical reasoning while solving 
math trail tasks outdoors? 

In particular, the focus is on the question of what characterizes the solution processes of math trail 
tasks concerning mathematical reasoning. From this perspective, it can finally be concluded to what 
extent math trail tasks are suitable for learning mathematical content and fostering mathematical 
reasoning. 

Methodology 
In June 2021, a case study with primary students was conducted to answer the research question. In 
total, 14 students aged 9-11 years were divided into six groups of two, three or four students. In these 
groups, the students followed the route of a math trail located at Goethe University Frankfurt with 
eight different tasks, including combinatory, geometry and arithmetic tasks (see Figure 1). The tasks 
do not include an explicit question that initiates reasoning. 

Figure 1: Three tasks from the study for combinatory (left), geometry (middle), arithmetic (right) 

For the entire route, the groups needed between 45 and 70 minutes (M = 62 minutes). Hereby, the 
students were supported by the MathCityMap app through a map, hints and an answer validation (for 
more information see Zender & Ludwig, 2019). In addition, they were accompanied by a university 
student who filmed their solving processes and interacted with the students if clarification was 
necessary. This setting resembles the methodological adaptation of the narrative walk-in-real-time 
interview that Buchholtz, Orey & Rosa (2020) adapted to the context of math trails.  
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In total, the video material contains about 370 minutes. Especially the students’ conversations during 
the actual solution processes are considered to analyze their way of reasoning. Therefore, the 
conversations are transcribed and analyzed in two different ways. First, on a quantitative level, the 
different mathematical activities are coded in accordance to Pólya’s phases of problem solving: 
‘Understand Task’, ‘Develop Solution Plan’, ‘Solve Task’ and ‘Task Validation’ (Pólya, 2004). In 
addition, the mathematical reasoning activities are coded and added to the respective activities in the 
solution processes. Through this, it is possible to specify the quantity of the students’ reasoning in 
relation to the activities during the solution process. This is visualized by means of activity diagrams 
(Ärlebäck & Albarracín, 2019; see Figure 2). Afterwards, on a qualitative level, the students’ 
identified reasoning activities are analyzed by means of a qualitative content analysis according to 
Mayring (2000). With this, different categories of mathematical reasoning can be identified 
inductively from the empirical material. The categories created in this process are to be considered 
disjoint. The results of the analyses on both levels are presented in the results section. 

Results 
Frequency of reasoning activities during the solution processes 

Figure 2 shows the activity diagram of the solution processes during the math trail by one of the 
participating groups. The diagram includes the mathematical activities of the group according to 
Pólya and specifies, in addition, the activities in which mathematical reasoning is relevant through 
shading. The diagram gives an overview of the eight tasks of the trail, whereby the tasks from Figure 
1 are Task 3 (Connected Trees), Task 6 (Body of Knowledge) and Task 7 (Step by Step). The time 
for navigation from one task to another is excluded in this presentation. 

Figure 2: Activity diagram of solution processes and mathematical reasoning activities 

In total, the amount of reasoning activities in this group is about 10 % of the time of the math trail 
task solution processes. Again, this number should be interpreted in the context of the tasks which do 
not include explicit claims for reasoning. During 25 % of the time, the students understand the tasks. 
This activity is relevant in all eight tasks. It happens mainly at the beginning of the solution processes 
through the actual task formulation and an analysis of the object and/or situation. In 4 % of the 
understanding activities, the students reasoned. The activity “Develop Solution Plan” is relevant in 
26 % of the group’s solution processes and – despite Task 1 – relevant in every task. In this activity, 
reasoning is coded most frequently, namely in 28 %. The students spend 35 % of the solution process 
on the actual task solving. About 5 % of this activity can be coded as reasoning activities. The group’s 
task validation has a relative duration of 14 %. In this activity, they do not use any reasoning.  
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Figure 3: Quantitative overview of all solution processes and reasoning activities   

Focusing on all six groups, in about 12 % of the math trail solution processes – excluding navigation 
– reasoning activities are coded. Figure 3 gives an overview of the frequency of the solution processes 
and the reasoning activities of all six groups. As a result of this, the beforehand described observations 
can be summarized for the sample as follows: The actual task solving activity is the most frequent 
activity in the solution process with more than 50 % on average. It is followed by the development 
of a solution plan whereby the high deviation shows differences between the groups for both 
activities. The activities of understanding and validating the task take both about 13 % on average. 
As presented in the example group, the students reason most frequently in developing a solution plan. 
From the 20 % of development activities, nearly one third involves reasoning activities. It is followed 
by the solving and validation of the task, in which 8 % of the activities involve reasoning activities. 
In the understanding of the task, reasoning plays a minor role.   

With tasks from three different mathematical topics being involved in the study, it is possible to 
analyze the frequency of reasoning activities with regards to the different actions, i.e. counting in the 
arithmetic tasks, measuring and estimating in the geometry tasks and trying and sketching in the 
combinatory tasks. Hereby, it can be observed that the geometry tasks involve about two reasoning 
activities per task. Despite the development of a solution plan, the students reason frequently on their 
estimations in the activity ‘Solve Task’. In the combinatory tasks, about one and a half reasoning 
activities are coded on average, mainly in the development of a solution plan. In the arithmetic tasks, 
the amount is about one reasoning activity per task. This might be explained by the comparably low 
duration of the activities in which the students develop a solution plan. As the activity is mostly 
counting, the students tend to skip the development of a plan in which reasoning is most frequent.  

Categorization of the reasoning activities 

The qualitative content analysis results in different categories that describe the reasoning activities 
for the different steps in the solution process according to Pólya (2004) in more detail. Due to the low 
frequency of the activity ‘Understand Task’, it is excluded from the qualitative analysis.  

With this analysis, it is possible to identify different ways of the reasoning activities the students used. 
Table 1 gives an overview of the categories with a representative example from the study (translated 
by the author from German to English).  
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Table 1: Qualitative categories describing the purpose of the reasoning activities in the different steps 
of the solution process 

 Definition Example 

Reasoning during Development of a Solution Plan 

Choose a strategy The students reason about a 
strategy they might use to solve 
the task. Aspects such as precision 
and efficiency are included where 
appropriate. 

“We should count the number of 
stones in one row, because there are 
four [rows] […] and it should be 
nearly the same [number of stones] in 
each row.” 

Identify 
object/situation 
characteristics 

The students use the local settings 
and refer to characteristics of the 
task object/the task situation to 
reason about a solution plan. 

“We have to count with six people. 
Because it [the bench] has three parts 
where two persons can sit on each.” 

Reasoning during Solving of Task 

Do measurements/ 
estimations/counts 

The students reason about their 
approach to measuring, estimating 
or counting. In particular, 
considerations of the correct 
procedure are included. 

Student shows a way on a map (see 
Figure 4 left). 

“No, this is not the shortest way. You 
have to go here and here and only 
measure up to this building.” 

Perform a 
calculation 

The students reason how to 
calculate, referring to known 
formulae and mathematical 
relations where appropriate. 

“The first tree has 14 ropes. And then 
the second [tree] has only 13 [ropes], 
because it is already connected to the 
first one. […] So we have 14 plus 13 
plus 12 […] and so on.”  

(see Figure 4 middle) 

Reasoning during Task Validation 

Check result’s 
correctness 

The students reason for or against 
a statement whether the achieved 
result might be correct.  

Student counts 16 regular elements on 
the task’s object (see Figure 4 right).  

“I think it is possible with two [colors] 
because 16 is an even number.” 

Make changes in 
the solution plan 

The students reason why an 
incorrect result was obtained and 
how the solution plan should be 
changed. 

“11 is too low, because we estimated 2 
meters, but I think it is more. Can you 
stand next to the figure so that we can 
estimate with you?” 
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Figure 4: Impressions of the solving processes during the math trail 

Discussion 
With regard to the question to what extent and for what purpose primary students use mathematical 
reasoning while solving math trail tasks outdoors, the following conclusions are drawn. Math trails 
provoke reasoning activities without explicit questions for reasoning: The students reason especially 
during the activities in which they decide on a solution plan, i.e. reason about a strategy and by means 
of characteristics. From the theoretical considerations, in particular Kolb (1984), especially the out-
of-class experiences and the group interaction seem to be relevant for the involvement of 
mathematical reasoning hereby. Still, the activities ‘Solve Task’ and ‘Task Validation’ involve 
reasoning. During the solving activities, they reason about measurements and calculations. From the 
theoretical considerations, especially the transfer of mathematical knowledge seems to be relevant, 
i.e. when choosing a suitable formula. During the task validation, again, the out-of-class experience 
seems to be an important factor, especially when it comes to the reflection of the solution process in 
the context of being outdoors.  

The results are in-line with the theoretical considerations – mainly derived from Kolb (1984) and 
Lakoff & Nuñez (2009) – concerning the relevance of mathematical reasoning in the outdoor setting 
of a math trail. Still, the indicator that the tasks involve reasoning to a different amount, i.e. in relation 
to the mathematical topic, raises further questions. Also, the deviation between the groups indicates 
that the groups might follow different patterns of reasoning along the tasks. Finally, the question 
arises to what extent the reasoning outdoors differs from the reasoning inside the classroom in a 
comparable setting – on both, a qualitative and a quantitative level. Comparable data are not available 
at the current time. In a follow-up study, these questions will be answered to examine the potential 
of math trails to foster mathematical reasoning. This will be part of the MAP-Study “Modelling, 
Arguing and Problem Solving in Outdoor Mathematics” funded by Dr. Hans Messer Stiftung. 
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The response of problem solvers to a request like ‘Explain your answer’ does not necessarily provide 
the assurance that the mathematical representation describing a word problem situation is correct. 
We suggest to compliment a traditional algebraic word problem with a request to establish a 
mathematical representation generalizing the problem situation and then to justify its derivation of 
this mathematical representation. Next, we suggest the construction of a valid deductive argument 
and evaluate the justification. An example executing the suggestions is given. 

Keywords: Word problems, deductive argument, proof validation, magnitudes. 

Introduction 
Recognition of the importance of proof in school mathematics has increased during recent decades 
(Balacheff, 1988; Hanna, 2000; Harel & Sowder, 2007; A.J. Stylianides, 2007; G.J. Stylianides, 
2008). There are several books presenting new forms of problems that are designed to engage teachers 
in the practice of reasoning and proving (Arbaugh et al., 2019; A.J. Stylianides, 2016). However, 
despite these trends in the mathematical research area, the choice of ways to learn to prove in a 
classroom seem to be quite poor when compared with the available resources for traditional tasks. 

Usually word problems have no relationship to reasoning or proving. Their aim is to learn to apply 
mathematics in contexts outside of mathematics. Word problems are designed just to find an answer 
to the formulated question. In itself, solving word problems is a great challenge for students as well 
as for teachers (Verschaffel et al., 2000). By modifying word problems from a plain search for an 
answer to a tool for reasoning, we hope to help students to make better progress in this type of task. 
We therefore suggest practising mathematical reasoning in the process of solving word problems. 
Uncovering logical relationships in the search for mathematical representations of word problems is 
a way to understand solutions and to make sense of them. 

Our research question is how can deductive reasoning be taught and learnt when solving word 
problems? 

The logical connections between statements constitute an important knowledge which students 
should learn about a deductive reasoning in school mathematics. For example, the rules for drawing 
the Modus Ponens inferences appear well-developed by early adolescence according to various 
studies from psychological research (Stylianides & Stylianides, 2008). Therefore the modified word 
problems considered below are appropriate for students of lower secondary education. This 
immensely increase opportunities to engage in reasoning-and-proving activities (also see Chapter 5 
in Arbaugh et al., 2019, for other arguments).  
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The discourse of a classroom should be central to the teaching and learning when using modified 
word problems. This facilitate the exchange of ideas between students and a teacher. Combining 
different levels of discourse could benefit students’ deductive reasoning (p. 22 in Blanke, 2018). 

Algebraic word problems 
To explain the idea we comment on the supposed phases and components of solving a word problem. 
The solution is obtained by the following six parts of a problem solving process (Verschaffel et al., 
2020, pp. 909 910): 

(a) the construction of an internal model of the problem situation, reflecting an understanding of 
the elements and relations in the problem situation; (b) the transformation of this situation model 
into a mathematical model of the elements and relations that are essential for the solution; (c) 
working through the mathematical model to derive mathematical result(s); (d) interpreting the 
outcome of the computational work; (e) evaluating whether the interpreted mathematical outcome 
is computationally correct and reasonable; and (f) communicating the obtained solution. 

The question is what makes us sure that the solution that is obtained is correct with respect to the 
original problem. We argue that the evaluation suggested by part (e) does not provide this assurance. 
Part (e) refers to the answer obtained from part (c) and the interpretation made in part (d). However, 
the question that remains is whether the mathematical model constructed in part (b) is correct. In 
other words, if the solver’s understanding of the problem or the transformation to the mathematical 
model are incorrect then the actions suggested by part (e) do not help. We therefore suggest using 
reasoning-and-proving activity to make sure that the mathematical model in part (b) is correct. 

From now on we replace the phrase ‘mathematical model’ in the description of the problem solving 
process by the phrase ‘symbolic representation’, for two reasons. First, we consider traditional word 
problems as a tool for learning the abstract concepts of school mathematics rather than as a tool for 
relating mathematics to the real world. In this paper a symbolic representation is a generalization of 
the relationships in a problem expressed in terms of mathematical symbols, such as an equation, a 
system of equations, inequalities, and so on. 

The second reason for the change in terminology is the discovery that the symbolic representations 
of the problem situations examined in this article are based on a suitable mathematical structure. We 
hypothesize that such a situation is typical for traditional algebraic word problems. The mathematical 
structure comes from the hidden properties of the magnitudes describing the word problem. These 
properties surface when we search for the premises of deductive reasoning. Thus, when considering 
word problems we pay special attention to magnitudes and their properties.  

Now we can specify the above mentioned discovery that a mathematical representation of an 
algebraic word problem is based on a suitable mathematical structure. Let the three magnitudes A, B 
and U be given. Let [A : U ] and [B : U ] be numerical values of A and B with respect to the unit 
magnitude U. Then the numerical value [A + B : U ] of the (non-arithmetical) sum A + B of 
magnitudes is the arithmetical sum of the numerical values [A : U ] and [B : U ], or in symbols we 
have the equality: 
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[A + B : U ] = [A : U ] + [B : U ]. (1) 

For example, if A is a length and B is a length then one can take two line segments with lengths A and 
B, respectively. Suppose that [A : U ] and [B : U ] are the corresponding numerical values measured 
with respect to a unit length U. Then the numerical value of the length A + B of the two end-to-end 
concatenated segments is obtained by the equality (1). 

Magnitudes usually appear in a contextual representation of the word problem contained in part (a) 
of the problem solving process. Some of them are unknown and have to be found. By part (b), the 
contextual representation is transformed into a symbolic representation by means of the relationships 
between the numerical values of the magnitudes. For example, all symbolic representations of the 
word problems considered in this paper are equations relating numerical values of magnitudes to each 
other. The unit names are added back to the numerical values when the result of the computational 
work is interpreted, as listed in part (d) of the problem solving process. 

We are now ready to name the class of word problems studied in this paper. An algebraic word 
problem (AWP) is a verbal description of a problem in which one or more questions are raised, the 
answers to which can be obtained by establishing and solving an equation with respect to a numerical 
value of unknown magnitude. This is a modification of the description of an arithmetic word problem 
given by Verschaffel et al. (2000). 

The primary goal of our suggestion is to teach and learn mathematical reasoning in school 
mathematics. With this aim, in addition to the usual question in an algebraic word problem we have 
two tasks. The first of these is to justify a symbolic representation that answers the question, and the 
second is to prove the stated representation by constructing a valid deductive argument. The second 
task is required since in this paper a ‘justification’ is a broader term than a ‘proof’: a justification 
means a set of arguments used to give reasons why a conjecture is true. We use the symbol AWP+2T 
to denote an AWP together with the two added tasks. The proof, in the form of deductive reasoning, 
assures us that the overall solution is correct with respect to the original problem. In sum, a problem 
solving process of an AWP+2T has a new part, (b’), consisting of proving the symbolic 
representation, while parts (a) and (b) now provide a response to the first task. 

Framework for reasoning-and-proving 
In this paper, reasoning-and-proving activities are considered when solving algebraic word problems. 
Here we recall the analytic framework describing the meaning of reasoning-and-proving given by 
G.J. Stylianides (2008) (see also Arbaugh et al., 2019). 

In mathematics, a proof of a new piece of knowledge is the final step of a work researching a 
mathematical phenomenon. It is preceded by asking questions, searching for patterns, making 
conjectures, and going back and forth. We use the mathematical component of the analytic framework 
that integrates three activities: identifying patterns, making conjectures, and providing arguments 
which may or may not qualify as proofs. 

How does solving word problems with reasoned judgement fit into the analytic framework? Briefly, 
the three activities of the mathematical component correspond to parts (a), (b) and (b’) of the problem 
solving process of AWP+2T. In other words, identification of patterns corresponds to searching for 
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mathematical relationships in the problem, making conjectures corresponds to formulating a symbolic 
representation, and giving arguments should prove the correctness of the symbolic representation. 
Analysis of the symbolic representation of the word problem and the computational work are 
therefore not part of the analytic framework, and nor are they a focus of the present paper. 

An AWP problem is usually described in terms of magnitudes. We interpret an attempt to understand 
the mathematical relationships between the magnitudes as a search for patterns in the context of the 
analytic framework. On what basis does a problem solver choose one possible mathematical 
relationship over other possible relationships? This question corresponds in the framework to the 
separation between plausible patterns and definite patterns. The patterning activity is called ‘definite’ 
if it is mathematically possible for a problem solver to provide conclusive evidence for the selection 
of one specific pattern over other patterns that also fit the data. In some tasks, the necessary 
information for the definiteness of a pattern is given explicitly (G.J. Stylianides, 2008; Arbaugh et 
al., 2019). How can we make definite choices between possible patterns when solving AWP+2T? 
The basis for this choice is given by the mathematical structure describing the properties of 
magnitudes. The structure we use below is relation (1) as explained in the preceding section. 

The third and final framework activity is the construction of arguments which may or may not qualify 
as proofs. The term ‘proof’ is used with the meaning suggested by A.J. Stylianides (2007) – a valid 
argument based on accepted truths for or against a mathematical claim. The term ‘valid’ indicates 
that the assertions making up the argument are connected by means of accepted canons of correct 
inference such as modus ponens and modus tollens. The term ‘accepted truth’ refers to a class of 
statements like axioms, theorems, definitions, modes of reasoning and representational tools that a 
classroom community may take as shared at a given time. We call such statements mathematical. An 
argument that qualifies as a proof makes explicit reference to the accepted truths that it uses. Next, 
we elaborate on the meaning of accepted truth, since it is too narrow when solving word problems 
with reasoned judgement. 

In the process of solving an AWP+2T problem, one needs to construct arguments proving a 
justification of the symbolic representation. The proof is based on a deductive argument, which is a 
series of statements consisting of premises and a conclusion. Clearly, the conclusion must be the 
symbolic representation of the problem. To specify a class of possible premises, we note that 
mathematical statements may not be sufficient. Statements about a word problem may refer to a 
contextual representation of facts about an imaginary world and may not be a part of reality. The truth 
of such statements is therefore of a different kind. The new term ‘accepted truth in context’ will refer 
to a class of mathematical statements as well as statements about a word problem that a classroom 
community may take as shared at a given time. 

Definition 1. Proof by context is a valid deductive argument with the premises being accepted truth 
in context and with the conclusion being a symbolic representation of the problem. 

A deductive argument is said to be valid if and only if it takes a form that makes it impossible for the 
premises to be true and the conclusion nevertheless to be false. Otherwise, a deductive argument is 
said to be invalid. 
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Having a precise meaning of the phrase ‘proof by context’, we can work on a definition of the term 
‘justification’ by adopting the ‘proof schemes’ approach of Harel and Sowder (1998). Similarly, we 
suggest using three levels of justification: by external sources, as a collection of facts, and proof by 
context. The changes reflect the specific features of word problems. Justifications by external sources 
are those in which problem solvers give reasons based on (a) the ritual or the form of the appearance 
of the argument, (b) the word of an authority, such as a teacher, and (c) some symbolic manipulation 
without reference to meaning. For example, the reason is ritual if there is no mention of constant 
speed in situations discussing the movement of objects. Justification as a collection of facts appears 
when there is no mention of the logical relations between statements leading to a hypothetical 
conclusion. Logical connections ensure the validity of a deductive argument, leading to the third level 
of justification.

An example of AWP+2T
This section answers the first research question of how deductive reasoning can be taught and learnt 
when solving word problems. We take any algebraic word problem (AWP) and complement it with
two tasks. The first task is to justify a symbolic representation that answers the question, and the 
second is to prove the justification of the symbolic representation. The symbol AWP+2T denotes the 
resulting modified AWP.

A solution of AWP+2T is obtained by the following modified problem solving process: 

I. Justifying a symbolic representation of the problem situation.
II. Answering the word problem question. 

III. Constructing and validating a deductive argument proving the stated representation. 

Relating this to the traditional problem solving process described at the beginning of Section 2, Part 
I corresponds to (a) and (b), part II corresponds to (c), (d), (e), (f), and part III is the new (b’).  

Recall the concept of a constant speed (Wu, 2011). 

Definition 2. An object moves at a constant speed along a straight line if there is a real number v such 
that for each real number t 0, the distance s(t) (measured in kilometres, metres, ...) covered by the 
moving object during the time period from 0 to t (measured in hours, seconds, ...) is equal to the 
product v t. This number v is called the speed of the motion, and it is the derived magnitude (measured 
in kilometres per hour, metres per second,…, respectively) related to the fundamental magnitudes of 
distance and duration by the equality of numerical values 

v = ( ) , for each t > 0. 

This example of an AWP is taken from a Lithuanian book for teachers. The original formulation has 
no hypothesis of the constancy of speed. We use a justification taken from this book. 

Word Problem. Tourists walking at a constant speed planned to cover a distance between a river 
and a tourist camp in 6 hours. However, after 2 hours’ walking they slowed down their initial speed 
by 0.5 km/h and were 30 minutes late arriving at the camp. 

1. What was the initial speed of the tourists? 
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2. Justify a symbolic representation of the problem situation. 
3. Create and validate a deductive argument proving the justification. 

 
Solution I. Justification. (1) Suppose that the initial speed of the tourists is x km/h. (2) Since distance 
= speed  time and since the tourists intended to walk from the start to the end in 6 hours, the distance 
between the river and the camp is equal to 6x km. (3) In fact the tourists walked at different speeds: 
for the first 2 hours at the initial speed of x km/h and for 4.5 hours (since they were 30 minutes late) 
at a speed of (x-0.5) km/h. (4) The distances they travelled are therefore equal to 2x km and 4.5(x-
0.5) km, respectively. (5) Combining the resulting distances we obtain the desired equation: 

                                                  2x + 4.5(x – 0.5) = 6x.                                                             (2) 

II. Finding an answer. Solving this equation one obtains x = 4.5. Thus the initial speed is 4.5 km/h, 
which is the answer to the problem. 

III. Deductive argument and validation. 

             A                             B                                                                   C 

The figure depicts a mathematical model of the trip described by the word problem. The point A 
denotes the location near the river where the tourists began their walk. The point C denotes the 
location of the tourist camp, the final destination of the trip. In between, the point B is the place where 
the tourists slowed down from their initial speed. The trip itself can be imagined as a moving point 
along the line segment AC at the speed described by the word problem. 

Next we construct the deductive argument 

                                                P1, P2, P3, P4, P5    equation (2),                                        (3) 

with the following premises. 

P1 If the length of the line segment AB is S1 km and the length of the line segment BC is S2        
km  then the length of the line segment AC is S1 + S2  km. 

P2 If an object moves at a constant speed v km/h during the time duration t h then the distance 
covered s = v·t km. 

P3 Fact I: the distance between points A and B is travelled at the speed of x km/h in a time of 
2 hours. 

P4 Fact II: the distance between points B and C is travelled at the speed of x – 0.5 km/h in a 
time of 4.5 hours. 

P5 Fact III: the distance between points A and C is travelled at the speed of x km/h in a time 
of 6 hours. 

Now we show that the deductive argument (3) is valid (that is, that the truth of all the premises entails 
the truth of the conclusion). 

P6 According to premises P2 and P3 and the inference rule modus ponens, S1 = 2x. 
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P7 According to premises P2 and P4 and the inference rule modus ponens, S2 = 4.5(x –  0.5). 

P8 According to premises P2 and P5 and the inference rule modus ponens, the distance 
between points A and C is equal to 6x km. 

P9 According to premise P1, statements P6, P7 and P8 and the inference rule modus ponens, 
equation (2) holds true. 

Evaluation of the level of justification of (2). This is done by interpreting each sentence of the 
justification. 

(1) The unknown initial speed of tourists is called the unknown variable and is denoted by the symbol 
x. This is used to represent the distances travelled by the tourists. (2) Fact III is obtained using the 
hypothesis of constancy of speed. (3) The value of the reduced speed is obtained using the relations 
described by the problem statement. (4) Facts I and II are obtained using the hypothesis of constancy 
of speed. (5) While it is not stated explicitly, the stated equation (2) is obtained by the property (1) of 
measurements. 

In conclusion, all the facts of the deductive argument are mentioned in the justification with no 
mention of logical links between them. Therefore the justification is at the second level.  

Conclusions 
The meaning of a symbolic representation of an algebraic word problem lies in the mathematical 
system of the properties of continuous magnitudes. This conclusion is confirmed by examples of 
solutions of modified algebraic word problems using reasoning-and-proving. The deductive argument 
appears to be a necessary instrument for this discovery. We do not need additional instruments to see 
a link between an arithmetical operation and a relationship between discrete magnitudes in an 
arithmetical word problem. 

A stepping stone to success in solving a modified word problem is the question of how to construct 
a deductive argument having built a non-proof argument. For example, having built a justification at 
the second level, to obtain a valid deductive argument one needs to find proper logical links between 
statements presumably implying a symbolic representation. This is the kind of task that is familiar in 
propositional logic. In conclusion, solving word problems becomes an exercise in logic. 

The most promising conclusion is that solving word problems with reasoned judgement in the sense 
of the present essay provides an unlimited source of reasoning-and-proving activities. 

More examples of AWP+2T and advantages of using reasoning to solve word problems are discussed 
in Ki & Norvaiša (2021). 
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Word problems for developing mathematical reasoning
Mathematical reasoning is a widely analyzed topic amongst secondary and high school students. It is 
widely believed that mathematical reasoning is only possible for students once they are aware of 
various mathematical concepts, so we decided to check whether 4-year-olds are capable of 
mathematical reasoning. We used word problems that have been shown to develop mathematical 
reasoning for 8–10-year-old students in Schliemann et al. (2002). In this study, we adapted the 
methodology to test the word problem with a 4-year-old child and older solvers.

We analyze ides about mathematical reasoning from Thompson et al. (2012), Arbaugh et al. (2018) 
and Stylianides et al. (2016) and define word problem solving characteristics that develop
mathematical reasoning.

A word problem develops mathematical reasoning, if solving includes argumentation, justification or
patterns identification and if it uses the statements known to a presenter and a class community.

Experiment with a 4-year-old student
We adapt the word problem for 4-year-old students, who may not know how to read. We illustrate 
the problem and change the numbers to smaller ones. Our aim is to check if we can develop 
mathematical reasoning from early years and to see how students of different ages solve the same 
problem. 

A word problem from Schliemann et al. (2002) is used:

Table A has 3 candy bars and 2 chairs. Table B has 6 candy bars and 4 chairs. Table C has 5 candy 
bars and 2 chairs. Show how you would divide the candy bars equally among those at each table.
Which table would you sit at? Convince us that you chose the best table. Are any tables the same?

The numbers in the original problem are such that at the first and second tables the subject gets 1 and 
a half candy bars, and at the third table there are 2 and a half candy bars. Our word problem (illustrated 
in Figure 1), using smaller numbers so younger kids do not make mistakes in computation. The solver
must choose between tables where the bear character gets less than 1, more than 1 or 1 cupcake. The 
question is formulated in the following way: All bears are going to sit on chairs. If the bear wants to 
eat as many cupcakes as possible, at which table he should sit? Could you explain why?

A 4-year-old girl attending kindergarten solved this word problem. During the interview, she 
expressed ideas such as:

Girl: At the first table, the bear would get one cupcake.
Interviewer: Really? How many bears will sit there?
Girl: Four bears. Then we need to cut this cupcake into two parts. This bear will get one 

part; another bear will get second part (points to chairs). Let us cut another cupcake
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into two parts. This bear will get one part; another bear will get the second part 
(points to chairs).

Interviewer: How much would each teddy bear get?
Girl: By four parts1.
Interviewer: How much would each bear get sitting at 

the middle table?
Girl: He would get two.
Interviewer: Even two? Why?
Girl: There are two chairs, three cupcakes.
Interviewer: One would get two, and the other?
Girl: Then we can cut one cupcake. One would 

get two and another the other two.
Interviewer: But not two whole ones?
Girl: By one and part2.
Interviewer: And at the third table.
Girl: They will get one each.
Interviewer: Where is it best to sit?
Girl: At this table (shows to the middle table), there they will get two cupcakes each.

Results
We interviewed different age groups with the same task. The justification was different, but correct 
amongst all interviewees, and we can identify that the argumentation changes during the learning 
period. The 4-year-old solver makes mistakes in the concepts she used, but shows correct reasoning. 
Our results show that we can use word problems that develop mathematical reasoning for younger 
kids.
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1 The 4-year-old student indicated that each bear would receive ¼ of two cupcakes. She did not say this explicitly because 
she has not learned fractions and could therefore not articulate the answer in those terms.

2 Same comment as above. The 4-year-old student indicated each bear would receive 1 ½ cupcakes.

Figure 1: Mathematical reasoning word 
problem in image
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Procedures in proof construction: 
 five proving strategies of first-year university students
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As proof construction typically presents many difficulties to university students, there is an increasing 
interest in student-centred forms of in-process support. This is accompanied by a need for research 
on how students – effectively or non-effectively – proceed in proof construction. This study therefore 
examines the proof-construction behaviour of first-year university students in 24 cases. Following 
the principles of empirical type construction, the author identified five proving strategies, each of 
which is characterised by a specific combination of sub-processes. Comparing these strategies to 
each other provides new insights into both different approaches to proving and typical obstacles. 
However, a comparison between successful and non-successful students did not reveal a clear 
relationship between the strategy used and performance. Our results suggest that the crucial aspects 
of proof construction are related to implementation at the microscopic rather than macroscopic level. 

Keywords: Reasoning and proof, proving strategies, tertiary education, type construction.

Introduction
Dealing with mathematical proof is a complex and demanding activity that causes great difficulties 
for many university students (Selden & Selden, 2008). One possible reason for these difficulties is 
related to a lack of transparency between proof as a product and its process of development (Hemmi, 
2008). Therefore, there are many reasons to place more emphasis on underlying proving processes 
and to specifically train proving strategies in university teaching (Karunakaran, 2018; Schoenfeld, 
1985). However, so far there has been little research on which such fostering programs could be 
based. This study, therefore, takes a process-oriented perspective on proving, and examines how 
university students behave in constructing proof. By comparing successful and non-successful 
students, the study, moreover, aims to identify procedures that are more effective than others. 

A process-oriented perspective on proving
Although proof-writing processes run differently for each individual, previous research revealed 
some invariances occurring across different cases. On the one hand, there are efforts to describe 
proving processes as a combination of recurring sub-processes. Each sub-process focuses on different 
cognitive demands and pursues a specific sub-goal of proof construction. Another approach refers to 
general proving strategies that describe typical behaviour patterns within proof construction. The 
paper first gives a brief overview of both approaches before connecting them.

Sub-processes of proving

In the field of reasoning and proof, various models have been proposed to describe relevant sub-
processes of proof construction (G. Stylianides et al., 2017). As the models differ in their target group
(school students, university students and mathematicians), they consider different demands in terms 
of formalisation and rigor. While some models emphasise the creative part of proving and highlight 
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processes of exploration and discovery (Hsieh et al., 2012; Schwarz et al., 2010), others include 
precising parts in the same way (Boero, 1999; Stein, 1986). However, from a synthesis of existing 
models four sub-processes emerge that are likely to be relevant in different contexts (Kirsten, 2018):

Understanding the problem situation represented in the proving task,
Identifying (informal) arguments that support the purported assertion,
Structuring single proving steps in a logical chain, 
Formulating a proof according to the requirements of the community.

Taking the process of proving from the problem-solving perspective, it is reasonable to add a fifth 
sub-process, that is, checking the proof’s validity (Carlson & Bloom, 2005; Schoenfeld, 1985).
Although validation might be implicitly included in the sub-processes listed above, it seems useful 
for teaching and research to make validation visible in a separate sub-process. In fact, the assumption 
of a total of five sub-processes proved to be empirically valid in initial studies examining university 
students’ proving processes (Kirsten, 2018). To that effect, there is empirical evidence that the five 
sub-processes display basic elements of proof construction and constitute an individual’s proving 
process. However, there is limited research on how these sub-processes interact in proof construction 
and how, i.e., in what order and weighting, they can be fruitfully combined. 

Proving strategies of university students

Proving strategies describe behavioural patterns that are characteristic for a proving process’ overall 
structure. A proving strategy is thus characterised by features such as dealing with impasses, 
incorporating metacognitive processes, or planning an approach based on understanding (Zazkis et 
al., 2015). Examining the problem-solving behaviour of college students, Schoenfeld (1992) 
identified the wild goose chase strategy as a frequently used but highly inefficient approach to 
proving: “roughly 60% of the solution attempts are of the ‘read, make a decision quickly, and pursue 
that direction come hell or high water’ variety” (p. 356). Consistent with this, Karunakaran (2018)
reports that first-year students often adhere to the linear structure of their proving process and 
therefore have difficulty with overcoming impasses. Both strategies reported here are likely to fail, 
because little time is spent on carefully analysing the problem situation or students do not adapt their 
process to the impasses occurred. Against this background, Zazkis et al. (2015) explicitly analysed 
the proving behaviours of six highly successful university students with reference to Pólya’s four 
stages of problem-solving. Their analyses revealed two promising strategies, namely the target 
strategy and the shotgun strategy. The target strategy describes a highly systematic behaviour, where 
students chose their approach on the basis of a careful problem analysis, and continuously monitor 
their own progress. Students, on the other hand, who use the shotgun strategy, implement many 
different approaches in a short period of time. They spend little time on understanding the given 
statement or setting up a plan, but adjust their approach as soon as it proves to be of little use. In 
contrast to the wild goose chase approach, the shotgun strategy thus includes a higher level of process 
control and is, therefore, considered to be more effective (Zazkis et al., 2015).

Combining both frameworks, it can be assumed, that each proving strategy is reflected in a 
characteristic combination of sub-processes. For example, the target strategy proceeds in a straight 
line, while the shotgun strategy moves back and forth between identifying arguments and validating. 
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The current study
Summarising previous findings, process-oriented research provides initial evidence that proving 
processes consist of at least five different sub-processes, each of which makes its own contribution 
to proof construction. How students combine these sub-processes though proving strategies, however, 
has been studied scarcely, and predominantly in relation to episodes of problem solving (Schoenfeld 
1985; D. Zazkis et al. 2015). To address this research gap, the current study aims to provide a holistic 
analysis of student proving processes that examines the interplay of individual sub-processes.

Research Questions

The current study pursues two main goals: first, the study aims to identify recurring proving strategies, 
each of which is characterised by a specific combination of sub-processes in terms of frequency, 
duration and sequence. Given the findings of Schoenfeld (1992) and Zazkis et al. (2015), it is 
reasonable that some proving strategies are more purposeful than others. Therefore, in a second step, 
we investigate the relationship between proving strategies and students’ proof construction 
performance. Here, the aim is to identify effective and non-effective aspects of proving strategies in 
order to replicate and enhance previous findings. In particular, the research is guided by the following 
questions: (1) Which proving strategies do university students use in proof construction? (2) Is there 
a relationship between the proving strategy used and the students’ performance? To address these 
questions, the study relies on an exploratory-descriptive design that allows fine-grained analyses. 

Participants and data collection

To gain insights into students’ proof-construction behaviour, the author conducted task-based 
interviews with first-year university students, including preservice teachers (Goldin, 1997). As part
of a regular exercise, students were asked to complete the two proving tasks given in Figure 1. If
students agreed, one of these tasks was solved under interview conditions. As is customary in the 
course, students were allowed to work in groups of two or three. In the interview, however, they 
received no support other than a standardised version of lecture notes (Schoenfeld, 1985). Following 
this procedure, the author and one of her colleagues conducted a total of 97 interviews, all of which 
were videotaped. From this total sample, we selected those cases for fine-grained analysis that were 
deemed representative of the entirety of cases. For this purpose, we first assessed the students’ 
performance in proof construction by rating their final product on a four-point scale, with a score of 
4 indicating a complete and valid proof and a score of 0 describing no substantial progress (Recio & 
Godino, 2001). Interrater reliability confirmed very good agreement for this rating (κ = .82). Based 
on the assessment of proving performance, the final sample was drawn by applying a qualitative 
sampling plan that follows the principles of maximum variation and homogenous sampling (Patton, 
1990). Thus, the final sample includes 24 proving processes that are almost evenly distributed among 
the different performance scores and that cover both proving tasks equally.

Figure 1: Proving tasks used in the tasked-based interviews

Figure 1: Proving tasks used in the tasked-based interviews
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Data analysis

In accordance with the research questions, data analysis was conducted in two stages. First, all 
proving processes were fully transcribed and coded leaning on Schoenfeld’s (1985) method of 
protocol analysis. The proving protocols were partitioned into coherent episodes, each of which is 
assigned to one of the sub-processes listed above (Kirsten, 2018). The coding thus led to a 
macroscopic description of the students’ processes, providing data on the frequency, duration and 
sequence of the sub-processes that occur (κ = .92). Based on this information, an empirical type 
construction was conducted in which processes with similar qualitative characteristics are grouped 
into types (Kluge, 2000). In particular, the transitions between sub-processes were considered in order 
to identify recurring sequences and empirical patterns that represent specific proving strategies. Each 
proving strategy thus describes a particular combination of sub-processes in terms of sequence and 
frequency. To identify particularly promising proving strategies, the second stage of analysis 
compared successful (score 3 or 4) and non-successful cases (score 0 or 1) in terms of strategy use.

Results 
Our analyses of 24 proving processes revealed five different proving strategies that first-year students 
apply in the field of real analysis. The following section gives an overview about the proving 
strategies and its characteristics. Each strategy is illustrated by an exemplary process and its 
schematic representation.

Proving strategies and sub-processes used by first-year students

Proof constructions using the step-by-step strategy are characterised by a linear structure in which 
the individual sub-processes are run through in the natural sequence listed above. Doing so, all sub-
processes are systematically built on one another, that is, each sub-process is worked through 
conclusively before the students move on to the next. In this strategy, the proving process is based on 
a careful analysis of the given statement and professes throughout. In particular, the choice of a 
proving approach is well-planned and highly target-oriented.

Figure 2: Exemplary sequence of sub-processes when using the step-by-step strategy (Alina & George)

The scorekeeping strategy is represented by proving processes in which a complete sequence of sub-
processes is followed by an additional loop of brainstorming. This loop occurs rather accidentally 
and is initiated by a formulation process in which the students write down a response that is not 
satisfactory for them but serves to achieve partial points in the exercise. While formulating the 
response, a process of insight takes place and the students generate new ideas for proof construction. 
However, the students do not pursue the new approaches consistently and therefore end proof 
construction with a process of identifying arguments (see the case of Lisa, Pia & Laura in Figure 3).

Understanding
Identifying
Structuring
Formulating
Validating
Rest
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Figure 3: Exemplary sequence of sub-processes when using the scorekeeping strategy

Proving processes that are assigned to the rebooting strategy are characterised by a cyclical structure 
in which several approaches are implemented one after the other. Each cycle contains a linear, self-
contained sequence of sub-processes such as understanding, identifying (informal) arguments and 
organising single proving steps. Thus, the rebooting strategy initially follows the step-by-step-
strategy until the current approach proves to be of little use and a new cycle is initiated. The validation 
and rejection of an approach necessitates a restart which is characteristic for this strategy. 

Figure 4: Exemplary sequence of sub-processes when using the rebooting strategy (Lukas & Tim)

When applying the decomposing strategy, a proving process shows a repeating pattern of 
development, elaboration and formulation, which is depicted in a staircase pattern in the schematic 
representation of the process. In contrast to the rebooting strategy, each cycle of development 
contributes to the final product, so there is a continuous progress. In our sample, students use the 
decomposing strategy in two different ways depending on the structure of the statement to be shown.
Some proving tasks allow, for example, a distinction by cases which naturally divides the proving 
process into different parts. By considering sub-proofs, the complexity of proof construction is 
reduced and each part can be dealt with in a self-contained step-by-step approach (see the process of 
Andreas & Ibrahim in Figure 5). If no content or structural subdivision is created in the task, students 
perform a chronological division by writing down previous results from time to time. In some cases, 
formulating parts of the final response allows new insights and thus supports further progress. 

Figure 5: Exemplary sequence of sub-processes when using the decomposing strategy

The looping strategy describes a proof-writing behavior in which students frequently move back and 
forth between sub-processes. Due to an occurring uncertainty or impasse, students first return to the 
previous sub-process and then continue with their proving process based on the newly gained 
knowledge. Since the switches mainly occur between successive sub-processes such as understanding 
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and identifying or structuring and formulating, the looping strategy basically follows a linear 
approach but is interspersed with mini-cycles. In contrast to the step-by-step strategy, the looping 
strategy thus provides several deepening loops. Doing so, the individual sub-processes are worked 
out in interaction with each other and are thus more closely linked.

Figure 6: Exemplary sequence of sub-processes when using the looping strategy (Alina & Sascha)

Comparing the different descriptions, a basically linear structure emerges across all strategies. While 
the step-by-step strategy represents an idealized linear procedure, the decomposing and the rebooting 
strategies divide the process into linear subsequences and the looping strategy uses mini -cycles to 
deepen individual sub-processes within a mainly progressive procedure. Due to these modifications, 
each strategy places a different emphasis on the individual sub-processes.

Proving strategies and performance

To identify particularly effective strategies of proving, we compared successful and non-successful 
processes regarding the proving strategies used. Table 1 shows how the examined cases are 
distributed among the different strategies and performance categories. Each letter combination 
represents one proving process and refers to the initials of the students involved.

Performance step-by-step rebooting decomposing scorekeeping looping 

successful ML, AG FT AS, TL

non-
successful

LT, DP AI, SDH TH, LS, JH, OJ, 
LPL

MFY, JIA, LUM,
LKH, DJ

Table 1: Distribution of the analysed processes among the different strategies and performances
(successful = score 3 & 4, non-successful = score 0 & 1, score 2 excluded)

The distribution in Table 1 shows that with the step-by-step strategy, the rebooting and the 
scorekeeping strategy proof-writing behaviours exist, which are exclusively associated with a low or 
high performance. However, the observed pattern is only conditionally suitable for a hypothesis 
generation. While the low proving performance of scorekeeping is already anchored in its definition, 
the rebooting strategy describes an approach that, from a theoretical perspective, does have effective 
components because an unsuitable approach is rejected in favour of a new idea. A detailed review of 
the assigned cases suggests that the difficulties encountered here arise less from restarting, but rather 
are the result of a lack of conceptual, procedural or strategical knowledge. The decomposing and the 
looping strategy, on the other hand, occur across different scores. It is likely that these behavioural 
patterns are not effective per se, but that it is the specific implementation that matters. 
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Discussion and conclusion
In the presented study, we analysed the proof construction behaviour of first-year university students 
by looking at the frequency, duration and sequence of sub-processes typical for proving (Kirsten, 
2018). Our research revealed five different proving strategies that replicate and complement previous 
findings. The step-by-step and the rebooting strategy are comparable to the target and the shotgun 
strategy reported by Zazkis et al. (2015). In addition, we identified two other strategies, namely the 
decomposing and the looping strategy, which can be considered as variants of the target strategy. 
Both strategies proceed target-oriented, but include several cycles of sub-processes in order to reduce 
complexity, handle impasses or create flexibility. The scorekeeping strategy is similar to wild goose 
chase processes in the way that students do not make progress over an extended period of time 
(Schoenfeld, 1985). Nevertheless, the students' efforts in this study go beyond a wild goose chase as 
there is a slight process control through the formulation of ideas. One possible reason for these 
differences is that proof construction in the university context is often associated with performance. 
Formulating partial solutions is a common strategy for coping with studies in the first year. Efforts in 
teaching should therefore aim at making this kind of strategy fruitful by valuing the late insights. In 
general, fostering programs such as heuristic worked examples, heuristic trainings, and learning 
videos should consider different types of proving strategies to provide authentic insights into proving.

Comparing successful and non-successful students, we could not establish a clear correlation between 
proving strategies and performance. Specifically, our results show that a proving strategy in which 
different approaches are implemented in the sense of the shotgun strategy is not necessarily associated 
with a high level of performance. As the study by Zazkis et al. (2015) only considers successful 
students, our results usefully complement the state of research and open the view for further aspects. 
On the one hand, it remains open whether proving strategies reflect an individual’s disposition or 
whether they are task-, situation- or proof-specific. On the other hand, our results suggest that students 
might fail because they have difficulties with strategy implementation. Further research should 
therefore analyse students’ proof-construction behaviour at a microscopic level. Especially those 
strategies that occur independently of performance should be analysed with particular care, as they 
can provide insights into effective and dysfunctional aspects of implementation.
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Previous research has made calls for interventions to assist students in bridging the empirical-
deductive gap. We respond to this call in a larger commognitive study that involved small groups of 
primary school students who discussed parity of natural numbers with a teacher-researcher. As part 
of this study, a learning environment was created based on the construct of interdiscursivity –
elements of task design that afford students to draw on and expand their familiar empirical 
approaches in situations where deductive arguments are needed. The study aims to explore how 
interdiscursivity can support students in taking their first deductive steps. In this paper, we analyze 
the activity of two 8-year-olds to learn how the interdiscursive elements contributed to their 
discursive growth. The central finding pertains to the activity of the teacher-researcher, who played 
a key role in realizing the interdiscursive potential of the designed environment.

Keywords: Proof and proving, primary school students, discourse, commognitive framework

Introduction
Research has shown that primary school students are capable of engaging in proving and generating
valid mathematical arguments (Stylianides, 2007). However, a wealth of research corroborates what 
Stylianides and Stylianides (2017) describe as “key and persistent problems” (p. 124)—students’ 
reliance on a few confirming cases as proof and the difficulty of transitioning from empirical to 
deductive arguments. To address these problems, Stylianides and Stylianides (2017) call for studies
into classroom-based interventions, highlighting a particular need for research at the primary school 
level. The researchers foreground three desired characteristics of such studies: an explanatory 
theoretical framework to identify key features to which the impact of the intervention could be 
attributed, a narrow and well-defined scope, and an appropriate mechanism to trigger and support 
changes in students’ learning to prove.

In her doctoral research, Knox (2021) has been addressing this call by using the commognitive 
framework, focusing on parity of natural numbers, and designing a learning environment to support 
primary school students in bridging the empirical-deductive junction. This paper presents a snippet 
of this research. We begin with the commognitive conceptualization of this junction, describe the 
designed environment, and analyze two students’ collaborative activity in this environment.

Commognitive framing of the study
The commognitive framework (Sfard, 2008) views mathematics as a historically established 
discourse, when mathematics learning is construed as a lasting change in the ways one participates 
in this discourse. A discourse about natural numbers (or a numerical discourse) is in our focus, when 
we distinguish between its two versions—empirical and deductive. The main objects of the empirical 
discourse are specific numbers, and it can be characterized with keywords that signify them verbally

Proceedings of CERME12 227



(e.g., “six”), mediators that point at them visually (e.g., the symbol “6”, Numicon tiles in Figure 1),
narratives about them and their properties (e.g., “6 is even”), and routines that involve them (e.g., 
substantiating that 6 is even). Deductive numerical discourse enables communicating about numbers
without specifying their quantities. This communication becomes possible through the usage of such 
keywords as “an even number” and such symbolic mediators as “2n + 1”. Deductive numerical 
discourse also allows for generating universal statements, such as “the sum of two odds is even”.

Figure 1: Numicon tiles

In commognitive terms, the deductive version of numerical discourse subsumes the empirical one 
since everything that can be said and done in the latter holds in the former. But deductive discourse 
affords much more. This is useful in situations that can be handled within both discourses. For 
instances, the narrative “3 + 5 is an even number” can be substantiated through either executing the 
addition and consequent arguing that the sum is even, or through resorting to the universal narrative 
stating that “odd + odd = even”.

The deductive numerical discourse summons specific ways for substantiating universal narratives. 
Here, showing that such a narrative holds for particular numbers is usually not viewed as an 
acceptable substantiation. Moreover, the deductive and empirical numerical discourses differ in their 
usage of some keywords. For instance, in the former, “odd” and “even” are conventionally interpreted 
as “all odds/even” or “the set of odd/even numbers”; in the empirical version, these words act as
adjectives that describe properties of specific numbers. In commognition, discourses that differ in 
their underpinning rules and the use of the same keywords are called incommensurable.

Like many theories informed by Vygotsky’s work, commognition suggests that learners’ 
transitioning from a familiar into a new and incommensurable discourse, requires the support of a 
more knowledgeable other. The commognitive stance has traditionally assumed that at such junctions,
a learner’s motivation to adopt the rules of a new discourse would initially be to meet the approval of 
the teacher and the learner would focus on repeating the steps of a shown procedure (ritualistic 
participation in terms of Sfard, 2008). Yet, the ultimate goal is for the learner to eventually realize
the productiveness of the new discourse and participate in it for themselves.

Cooper and Lavie (2021) argue that carefully designed tasks can support learners to by-pass the 
ritualistic stage in their transition between incommensurable discourses. By drawing on the much-
explored construct of intersubjectivity (e.g., Wertsch, 1984), Cooper and Lavie (2021) propose 
interdiscursivity as a discursive mechanism whereby learners may be eased into a new and 
incommensurable discourse via “the blending of discursive elements from different discourses” 
(p. 1). Specifically, the researchers hypothesize that a change in learners’ routines might be facilitated 
by tasks that capitalize on elements of the learner’s existing discourse in such a way that these 
elements “simultaneously [hold] meaning in an emerging discourse” (p. 8). Accordingly, in this paper 
we address the research question: “How can interdiscursivity support primary school students in 
taking their first steps in a deductive numerical discourse?”
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The study
To pursue our research aim, a set of concept cartoons (Keogh & Naylor, 1999) with three characters
was designed, each with a speech bubble featuring contradicting statements on parity. In each cartoon, 
two statements were universal, while the third statement foregrounded the “sometimeness” of the
previous statements (see Figure 2); we refer to the statements of the latter type as bilateral. In
empirical numerical discourse, refuting one statement with a counterexample would be considered 
sufficient to endorse the other statement without the need to substantiate it for all relevant cases.
Hence, the inclusion of bilateral statements was part of the interdiscursive design to support students’ 
move away from empiricism.

Figure 2: The “odd + odd” concept cartoon

Another element of the designed environment were generic strips – long and folded paper bands with 
both ends exposed (Figure 3). Generic strips bear an interdiscursive potential in the sense that they 
can visually mediate numbers in both empirical and deductive discourses. In the former, the strips 
can stand for specific numbers, in a way which is not very different from Numicon tiles (Figure 1)
that the students were familiar with from their school studies. On the other hand, the strips can also 
be treated as a generic odd or a generic even number, by focusing on the exposed edges and visually 
concealing the precise number of dots by folding the strip. We envisaged the introduction of the 
generic strips might provide the students with the material means for communicating about numbers 
and their parity in a nonspecific way. For instance, by drawing on the students’ familiar deeds with 
Numicon tiles, they may be able to use the generic strips to show that “nonspecific odd number +
nonspecific odd number = nonspecific even number”.

Figure 3: Odd and even generic strips

Twenty-eight Year 4 students (8- and 9-years old) from two New Zealand schools participated in the 
larger research. The participants were selected by their teachers to be withdrawn from their class to 
work in groups of four with the first author as a teacher-researcher (TR). The group work was video-
recorded with two cameras and students’ written artefacts were added to the data corpus. Each group 
session was transcribed in its entirety and analyzed with commognitive tools to identify instances of 
students’ discursive development (i.e., changes in the use of keywords, visual mediators, narratives,
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or routines). The question underpinning the analysis was whether and how the designed 
interdiscursive potential of the designed environment was realized to support the students in their 
substantiation of universal statements in the deductive numerical discourse.

Findings
In this paper, we present a case of a single group, which was selected due to its affordances to illustrate
the role of the interdiscursive environment in students’ learning to substantiate universal statements.
We provide excerpts to show three episodes where the group made their first steps towards deductive 
discourse: (1) facilitating dissatisfaction with an empirical discourse, (2) interdiscursivity in action,
and (3) the students’ uptake of these new discursive features in a deductive substantiation. The 
collected data affords focusing on two students in the group: Jane and Zara.

Prior to the first episode, Jane and Zara, classified numbers presented as Numicon tiles and written 
numerals as odd or even. Here, they had provided substantiations that referred to the generic structure 
or properties of odd and even numbers. For instance, they used the terminology of “in twos” and
“doubles” to substantiate that 6 is even. When substantiating that Numicon 5 is odd, Zara said,
“Instead of adding two on, you add on one and then it wouldn’t be even… every time you have an 
even number it has to be in twos.” The students’ attention to numbers’ structures thus placed them 
favourably for considering the structure of generic odd and even strips.

Dissatisfaction with an empirical substantiation of a universal narrative

In this episode, TR has just introduced the “odd + odd” concept cartoon to the students. 
240 Jane: Yeah, that’s right [referring to Hana’s narrative “odd + odd = even”]. […]
242 TR: What about Manu [“odd + odd = odd”]?
244 Jane: It’s wrong. […]
246 TR: Whereas Benny says…
247 Jane: Odd plus odd equals sometimes even and sometimes odd [reading Benny’s 

statement in the cartoon].
248 Danny: No wrong. See watch this [holds up two Numicon tiles 

of “3” and fits them together to make “6”].

249 Jane: I sometimes think that’s right [referring to Danny’s 
demonstration in 248] because, um it might be— ‘cos three and three—but 
what if there’s another number and we add them together? […]

253 Jane: So, because an odd and odd, like a three and three, equals odd [probably 
meant even] but if you put it together, they’re a small number... But some odd 
numbers are like really big—we don’t, we can’t even count them—they might 
not, they might be odd but can’t go even.” […]

282 Zara: Okay, so two odd numbers can sometimes make an even number.
In what appears as an attempt to convince Jane that “odd + odd = even”, Danny visually mediates the 
even sum using two Numicon tiles of “3” [248]. This is an implementation of an empirical 
substantiation since it shows that the universal statement is correct for this example without 
accounting for all pairs of odd numbers. Jane, in turn, appears dissatisfied with Danny’s choice of 
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“small” numbers rather than with him resorting to an example in the first place. On the other hand, 
her use of the word “sometimes” [249], mimics the bilateral narrative and may be interpreted as a
realization that Danny’s demonstration does not account for the universal scope of the statement, and 
especially for numbers that are “really big, we don’t, can’t even count them” [253]. This utterance 
provides an opportunity for TR to offer discursive tools for students to communicate about numbers 
of this sort as part of ushering them into deductive discourse. Notably, the window is not open 
indefinitely as Zara seems to capitalize on Jane’s doubt [253] to endorse the bilateral statement [282].

Interdiscursivity in action

To take advantage of Jane’s uncertainty, TR introduces an odd generic strip. 
298 TR: Is it an odd number or an even number [holds up an odd generic strip]?
299 Jane: Odd. […]
303 TR: So, Jane, you think it’s an odd number. […]
305 Zara, Jane: [together] Yeah.
306 TR: How do you know it’s an odd number?
307 [Jane, and Zara point to the unpaired circle at the end.]
308 TR: What are you pointing at Jane?
309 Jane: ‘Cos, that. It’s like that [traces the unpaired circle].

[Then counts the circles visible on the top layer] It’s nine. And nine’s an odd 
number.

310 TR: It’s nine. Did you need to count it to recognize it’s odd?
311 Jane: No.
312 TR: What were you looking at, that showed you it’s odd?
313 Jane: Cos if it’s like that, it would be even [covers the unpaired 

circle with her finger]. But since there’s one more
[removes her finger].

314 TR: Ah, so it’s like the extra one that makes it odd, is that right?
315 Jane: Yeah. […]
328 TR: Would that be an odd number [points to the even generic strip]?
329 Jane, Zara: [together] No.
330 TR: No. How did you know straight away?
331 Jane: Because there’re no extra bits [points to the ends of the even generic strip].
332 TR: Ah [holds up the folded odd generic strip]. Okay so we’d need two that kinda

look like this [i.e., two odd generic strips to represent “odd + odd”]? Zara, 
are you happy with that?

333 Zara: [nods.]
334 Jane: Yes and … there’s the same amount of dots on each one [side], [points to the 

pairs on the even generic strip] but that one there [points to the “extra one”
on the odd generic strip], there’s one more on one side. […]

This episode presents the full span of moves that TR undertakes to capitalize on generic strips and
equip the group with discursive tools to communicate about generic (rather than particular) odd and 
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even numbers. She starts with introducing each strip as a number that is either odd or even [298; 306;
328] and presses the students to engage with the structural features of the strip and draw on them in 
their substantiations. In [309], we see Jane harking back to empirical discourse, aiming to base her
substantiation of the strip’s oddness on counting; just as she did a short time ago with specific 
numbers. Then, TR steers Jane away from counting [310] towards substantiations based on the strip’s 
edges [310, 312, 330]. Notably, TR does not enable students to “get away” with just pointing at the 
structural features of the strips but she asks them to generate verbal narratives [308; 312; 330]: she 
also rephrases students’ narratives and models substantiations [314].

This teaching seems to work for Jane and Zara as their substantiations gradually change to become 
in tune with the rules of a new “discursive game”. Indeed, the students cooperate with the 
underpinning assumption that a long strip, not all parts of which are visible, stands for a number, and
that its parity can be determined by edges only [299; 305; 307; 311]. Jane shifts from providing 
gestural responses to communicating verbally [e.g., from 307 to 309]. Moreover, she does not only 
abandon her counting substantiation [309], but also independently generates substantiating narratives 
through introducing new phrases (“extra bits” [331], “same amount of dots”, and “one more” [334]).

The students’ uptake of new discursive features in a deductive substantiation

In the following episode, TR prompts the group to draw on the previous conversation regarding a 
second nonspecific odd having “one more” [Episode 2, 334], to substantiate “odd + odd = even”.

335 TR So … She [Jane] said that with odd numbers there’s one more and with 
another odd number is there going to be an extra one again? […]

337 Jane: …if it was like three then we could put it there [picks up 
Numicon 3-tile and connects it with the odd generic strip].
And then it’s not gonna be like that and there’s gonna be 
one left no more [puts the Numicon tile down and runs her 
finger around the “extra one” of the strip].

338 TR: Is it like a jigsaw puzzle so they kind of fit together?
339 Jane, Zara: [together] Yeah. […]
341 Zara: Yes, so if you have something like a square. If you have something like this

[draws a rectangle].
342 Jane: A rectangle.
343 Zara: Yes, it’s an oblong. So, if you have like two circles on each then it 

will be even [draws two circles in the rectangle]. And just keep on 
going down [draws two lines going down from each of the circles]. 
But if you added on an extra one here, then it wouldn’t be even 
[draws the extra circle at the bottom-right]. […]

345 TR: Can we use another colour to show how another odd number would fit with 
that [referring to Zara’s drawing in the previous episode, line 343]?

346 Jane: Yes [picks up a pen to add onto Zara’s drawing].
347 Zara: So, then if you put like another one there [“one” is taken here to 

mean another “odd”] then it would be even [referring to her 
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drawing]. [Jane draws one extra purple circle in a square to form a rectangle 
and continues to add pairs of purple circles to extend the rectangle.]

In this episode, we see changes in Zara and Jane’s communication. First, they now endorse the “odd 
+ odd = even”-statement, which marks a shift from where they were in the first episode. Second, the
episode captures a development in their substantiations. Initially, Jane chooses a numeric example 
(Numicon 3-tile) to “add to” the odd generic strip, and, by running her finger around the exterior of 
the latter, she visually mediates the generic “even” rectangular shape created by the two odds. This 
gesture can be viewed as Jane divorcing from the “counting-the-dots” approach that was previously 
evident [309]. In turn, Zara introduces the generic word “square” [341] and instantly replaces it with 
Jane’s “rectangle” [342]—two nouns that had not been previously used by TR. These nouns, coupled 
with Zara’s sketches [341-343] offer even more abstract realizations of even and odd numbers than 
the generic strips. Zara’s narratives underscore that the structure of the sketched rectangle determines
its parity (i.e., “if you have like two circles on each side” and “if you added an extra one”), when the 
precise number of paired circles is irrelevant and can “just keep on going down”. This may be 
interpreted as a marker of her first independent steps in the generic talk on numbers’ parity that is 
necessary for deductive discourse.

Note that TR still has a role to play in leading students’ discourses. She asks the students to draw 
“another odd number” [345] so that the two figures “fit together…like a jigsaw puzzle” [338]. Here, 
she signals to the students that they can use the structural features of odd (i.e., “an extra one”) to 
substantiate their endorsement of “odd + odd = even”, rather than perform a calculation.

Summary and Concluding Remarks
This paper offers a snippet of Knox’s (2021) larger research into young students’ first steps in a 
deductive version of a numerical discourse. This research contributes a New Zealand case to the 
international body of knowledge on how young students generate deductive arguments to substantiate 
universal statements (e.g., Stylianides, 2007). Moreover, with commognition as its explanatory 
theoretical framework to identify key features to which the impact of the intervention could be 
attributed, a narrow and well-defined scope, and with interdiscursivity as a mechanism to trigger and 
support changes in students’ learning; this research specifically addresses Stylianides and Stylianides 
(2017) call for research into proving at the primary school level.

Knox (2021) takes Cooper and Lavie’s (2021) theoretical proposal to an empirical test drive by
investigating how interdiscursivity can be mobilized to assist students to by-pass ritualistic 
participation in a new discourse that is incommensurable with their familiar one. The two distinctive 
features of the designed environment are bilateral narratives and generic strips. In the case of a single 
group of students, we illustrated how the bilateral narrative played a role in triggering one student’s
dissatisfaction with empirical substantiations with “small numbers” and interest in accounting for 
numbers that are “really big […] we can’t even count them”. This interest opened the door for 
introducing a way of talking about parity that does not rely on counting. Generic strips were designed 
to have meaningful interpretations in an empirical and a deductive version of the discourse. These 
artefacts laid the grounds for providing students with the discursive apparatus to communicate about
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generic odds. In the analysis, we highlighted the roles that these features had in the development of
Jane and Zara’s substantiations of “odd + odd = even”.

It seems unlikely that the potential of the two abovementioned features would be fully realized 
without the guidance of the knowledgeable other. In accord with many researchers (Cooper & Lavie, 
2021; Sfard, 2008; Stylianides, 2007), our analysis stressed the crucial role of the teacher in 
facilitating students’ discursive developments. Conceptualizing the empirical-deductive gap as an 
instance where substantial discursive change is required, teachers’ actions emerge as a key feature of 
an interdiscursive environment. To put it differently, we suggest that pre-designed features can set up 
the stage for interdiscursivity, but it is the teacher who can make the environment interdiscursive.

The presented case of Jane and Zara was relatively successful and concise, but it is silent about the 
other two members of the group. Furthermore, Knox’s (2021) larger research showed that some
students’ journeys were longer and more complicated, while some did not seem to reach the target.
Moreover, even when some students appeared to participate in a midway discourse, they still often
fluxed between it and the more familiar empirical arguments. Hence, metaphorically speaking,
interdiscursivity does not appear to us as a train that takes learners from an empirical to a deductive
station, but a bridge on which students can walk in both directions. Nevertheless, we propose that
interdiscursivity may be of interest for further research to explore how students can be assisted in 
bridging the empirical-deductive gap.
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“I would (not) teach proof, because it is (not) relevant to exams”: 
changing beliefs about teaching proof

Gabriel Chun-Yeung Lee
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Experts in mathematics education agree that reasoning and proof are essential and should be made 
central to learning mathematics. However, some school teachers tend to focus on procedural skills 
because of different beliefs unfavourable for the teaching of proof. To encourage teachers to teach 
proof, I developed and studied an intervention for preservice teachers in Hong Kong. In this paper,
I report the findings of this study regarding changing Hong Kong preservice teachers’ beliefs about 
teaching proof, particularly their beliefs about the relevance of proof to examinations.

Keywords: Beliefs, intervention, preservice teachers, proof. 

Introduction
Proof can play different important roles in learning mathematics, including, but not limited to,
justifying, communicating, and explaining mathematical knowledge (Knuth, 2002). Consequently, 
many experts in mathematics education suggest that learning activities involving proof and proof-
related reasoning should spread through school mathematics at different levels and in different 
content areas. Noting that teachers are the key decision-makers for what students will experience in 
classrooms, researchers have carried out studies on teachers’ proof-related knowledge and beliefs 
(e.g., Knuth, 2002) and have identified different difficulties that the teachers often have with 
(teaching) proof (e.g., Stylianides et al., 2013). Few intervention studies have been conducted to 
explore a resolution to these difficulties (e.g., Buchbinder & McCrone, 2020). To address the need to 
encourage teachers to teach proof, I conducted a 4-cycle design-based research study (The Design-
Based Research Collective, 2003) that aimed to develop an intervention to change Hong Kong 
preservice teachers’ beliefs about teaching proof, through iterations of implementation, evaluation,
and revision (McKenney & Reeves, 2014). In this paper, I report the findings of the fourth research 
cycle, focusing on the change in the participants’ beliefs about teaching proof, particularly their 
beliefs about relevance of proof to examinations.

The context: Hong Kong
Depending on different factors (e.g., classroom culture, curriculum & policy), students’ opportunities 
to learn proof can vary in different contexts. In Hong Kong, the place of proof in school mathematics 
is ambiguous. On the one hand, Hong Kong students seem to have more opportunities to be exposed
to proof than their counterparts in other countries (Leung, 2005). For example, proof is introduced 
early in junior secondary mathematics, under the topics of “Pythagorean theorem” and “deductive 
geometry” in Year 8 (CDC, 2017). On the other hand, there are indications that proof has a marginal
place in Hong Kong classrooms. The majority of the tasks that appear in textbooks or exam papers 
are non-proof-related and focus on students’ routine procedures, for example, applying formulae and 
solving equations. Few tasks focus on developing and/or assessing students’ proof and argumentation 
skills (e.g., Lee, 2021; Wong & Sutherland, 2018). Moreover, some Hong Kong teachers prioritise 
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the development of students’ skills in routine procedures over proof (e.g., Lee, 2019). The observed
hesitation of Hong Kong teachers in teaching proof indicates that there is a need for interventions 
with (preservice) teachers. As the findings regarding the place of proof in the Hong Kong
mathematics curriculum are also consistent with the results of studies conducted in other countries, it 
is believed that a study in developing an intervention that changes preservice teachers’ beliefs about 
teaching proof is in the international community’s interest.

Theoretical background
Beliefs refer to a statement of relation among ideas or objects that an individual holds to be true
(Philipp, 2007), which might have influences on the way a teacher teaches mathematics (Furinghetti 
& Morselli, 2011). Beliefs about teaching proof are multidimensional. They include, but are not 
limited to, beliefs about the nature and roles of proof in mathematics and in education, beliefs about 
teaching, and beliefs about students (e.g., ability, motivation). Different dimensions of beliefs are 
interrelated and related to emotions, such as anxiety about producing proof and interest in proof; the 
more positively a teacher views proof, the more likely s/he values proof and provides students with 
related activities (e.g., Fraiser, 2010; Kotelawala, 2016). Research studies reported that many teachers 
agree on the importance of proof in mathematics but they often have difficulty in teaching proof
because: (a) they, themselves, have cognitive and/or attitudinal difficulties with proof (e.g., 
Stylianides et al., 2017), (b) they believe that proof is not accessible to all students (e.g., Knuth,
2002), and/or (c) they believe that proof is not indispensable in school mathematics (e.g., Lee, 2019).

Preservice teachers enter teacher education programmes with pre-existing beliefs about mathematics 
and its teaching, which are often based on their previous learning experiences. Although beliefs are 
often considered to be resistant or slow to change, there is evidence (e.g., Yoo, 2008) that preservice 
teachers’ beliefs about teaching proof can be changed after a programme, a course or even an
intervention of relatively short duration, if they are provided with alternative learning experiences 
(Liljedahl et al., 2021). In this study, I developed an intervention that provided preservice teachers 
with alternative experiences of learning and teaching proof, which were different from the teacher-
talk approach they had mainly experienced in the past.

Intervention design

Figure 1: Design of the intervention

In this study, an intervention was designed for Hong Kong preservice teachers. The intervention
consisted of three weekly extracurricular workshops. Each of the workshops lasted two hours. In the 
first three research cycles (July 2018‒August 2019), the intervention design was trialled with different 
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groups of preservice teachers. The trials enabled evaluations of the intervention design, informing 
revisions of the design. The intervention design in the fourth research cycle (Figure 1) differed from 
that in the first research cycle; in general, the participants (a) engaged in proving activities that 
emphasised learning mathematics through proof and argumentation, (b) discussed the role of proof 
in school mathematics, (c) watched and discussed videos of classroom instruction involving proof 
and argumentation, and (d) planned a lesson and trialled it with peers (Table 1).

Table 1: Examples of activities of the intervention

Type of activities Example

Proving activities What is the divisor of the sum of any three consecutive 
integers? What about four, five, and so on? 

Discussions on the role of proof When and how does proof appear in the previous task?
What is the role of proof in this task?

Videos of classroom instruction [TIMSS 1999 Video Study ‒ HK3 Polygons] What did the 
teacher do in the video? Why? When did proof appear?

Lesson design and mini-teaching Use what you have learnt in the workshops so far to 
develop a less on “Area of a circle”

Methods
The fourth research cycle took place between September and November 2019. The intervention was 
not conducted with one single group, but multiple small groups. Twenty-seven Hong Kong preservice 
teachers attended the intervention. Among them, 18 participants attended all sessions of the 
intervention whereas 6 attended only one session.

Table 2: Examples of questionnaire items

Type of items Example

Likert items: Beliefs about the importance of 
proof

Making proofs improves mathematical thinking.

Likert items: Beliefs about the relevance of 
proof to examinations

Knowing how to make proofs is very important in 
excelling an examination/a test in school mathematics.

Likert items: Enjoyment and interest in proof Making proofs arouses my curiosity.

Likert items: Anxiety about proof I feel myself under pressure when I make proofs in 
mathematics lessons.

Likert items: Negative reactions when failing to 
produce proofs

Not being able to prove upsets me.

Open-ended questions Should we implement tasks of proof and proving in 
mathematics class? Please briefly explain.

A questionnaire, consisting of Likert items and open-ended questions (Table 2), was designed, and 
used to gather information about preservice teachers’ beliefs about teaching proof before and after 
the intervention. A subset of the teachers was invited to attend individual interviews after the 
intervention so that they could explain their beliefs about teaching proof, elaborate on their responses 
to the questionnaire and give their feedback about the intervention. The intervention was also audio-
recorded and fieldnotes were made as supplementary data. Among all participants, 23 completed the 
pre-intervention questionnaire, 7 completed the post-intervention questionnaire, and 12 attended the
post-intervention interviews. Pre- and post-intervention data were coded separately according to 
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different dimensions of teachers’ beliefs about teaching proof. The coded data were then compared 
to identify differences and, in turn, changes in their beliefs about teaching proof after the intervention.

More data were expected, but due to pro-democracy protests since June 2019 and the coronavirus 
pandemic since December 2019, several planned interventions were deferred and eventually 
cancelled. However, despite a reduced amount of data, analysis of the available data was sufficient 
to show the effects of the intervention on the participants’ beliefs about teaching proof.

Results
I analysed 12 sets of pre-post data, indicating the corresponding 12 participants’ beliefs about 
teaching proof and their changes after the intervention. In this paper, I first discuss the general 
findings in relation to the changes in the participants’ beliefs about teaching proof, particularly their 
beliefs about the relevance of proof to examinations, then use selected data excerpts to illustrate the 
changes in the participants’ beliefs about the relevance of proof to examinations and discuss how the 
intervention facilitated such belief changes.

In general, the participants developed more positive beliefs about teaching proof after the 
intervention. The analysis of the Likert items showed the participants maintained agreement that 
proof is essential to mathematics and developed more positive and less negative emotional 
dispositions towards proof, and more participants reported agreeing that proof is related to 
examinations. The analysis of the open-ended questions also showed that more participants reported 
valuing the explanatory power of proof and being willing to teach proof regularly. Having said that, 
a few participants reported and maintained some of their worries about teaching proof (e.g., students
lacked ability and interest, class time was not enough). Worries about students’ ability to learn proof 
remained influential in the participants’ beliefs about teaching proof. After the intervention, however, 
these worries no longer discouraged these participants from teaching proof, but rather prompted them 
to consider different approaches for teaching proof.

In the following, I use Participant 4’s data as an example of my analysis. Before the intervention, 
although Participant 4 was able to relate proof to the development of mathematical understanding, he
believed that teaching proof was not related to examinations and was therefore not essential:

Participant 4: […] I think, for secondary school students, proof is not so important to them. In 
relation to exams, [proof] is not so important, but proof can allow them to learn 
why this [mathematical statement/ concept/ idea] is true, making them not to learn 
by rote, but to understand a theorem and its principle, for applying the theorem 
more easily or knowing when to apply it.

At the beginning of the intervention, Participant 4 also revealed his belief about the relationships 
between school mathematics, proof, students, and examinations. He believed that a number of
students learn mathematics merely because it is a compulsory subject for all students in Hong Kong 
and prefer learning by rote over learning proof, so he believed that these students are relatively weak 
with proof:

Participant 4: I think there must be a portion of students who are not interested in mathematics. 
To them, learning mathematics is for taking [the Hong Kong public exam]. So, there 
must actually be a portion of students who rely on [learning] formulae by rote [and 
learning] examples by rote, for taking exams. Therefore, when seeing non-proof 
tasks, and when [seeing] tasks that can be solved by simply applying methods [that 
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they] have learnt by rote, s/he [the student] can easily solve [the tasks], answer 
correctly. However, when [seeing] proof tasks, [particularly] those that are not 
standard, they [the students] do not know how to apply [the methods] to solve [the 
tasks], so […] these students might be weaker with proof tasks.

Yet, after the intervention, Participant 4 developed a deeper understanding of the relationship between 
proof and the development of mathematical understanding and became aware that proof can play 
important roles in preparing students for examinations. Particularly, he developed a belief that 
learning proof is helpful for students to develop knowledge and skills in solving proving and non-
proving tasks:

Participant 4: [Before,] I thought there were not many proving tasks in [exams], so [students] 
could still achieve good results without proof. However, [now] I think [proof] can 
not only be [helpful in] proving tasks, but also helpful in other tasks. I think proof 
can be related to other domains.

Participant 4 attributed his learning in and changes after the intervention to the discussion about proof 
and the videos of classroom instruction, which allowed him to explore and reflect on different views 
about proof and teaching. Particularly, Participant 4’s experience of the intervention provided 
alternatives to his pre-existing beliefs about what proof is and about approaches for teaching proof.
Moreover, after seeing how primary students could learn mathematics through argumentation and 
proof in a video, Participant 4 became aware that students have the ability to learn mathematics 
through proof and argumentation. To him, the ideas of teaching proof conveyed in the intervention 
were positive and he wanted to apply them into his future teaching:

Interviewer: What did you experience and learn in [the intervention]?
Participant 4: In fact… at the beginning [of the intervention], [the instructor] asked everyone’s 

views about proof. Using [the discussion about which tasks in exams are proof-
related] as an example, it could be seen that there are some people [who hold views] 
that are different from my view. This might, in turn, reflect [an idea that] students 
[have different views about what proof is]. Second, video… [I] watched two videos; 
[I] saw more, different approaches for teaching, [for example,] that [video] of 
teaching children even and odd [numbers]. That teaching approach [was something
that] I have never experienced. I [started to] thinking about my teaching approach, 
and whether some of [my] lessons can involve that approach. [I also] saw that they 
[the primary students] were able to think [argue the meanings of even and odd 
numbers], [indicating that] probably older, secondary students should have this 
ability as well. [After the intervention, I started to] consider more about this aspect.

Participant 4’s change exemplifies one possible way how the intervention facilitated changes in the 
participants’ beliefs about teaching proof, particularly their beliefs about the relevance of proof to 
examinations. The intervention, through discussions about roles of proof in learning mathematics and 
videos of classroom instruction, provided the participants with alternative experiences of learning 
and teaching proof. These experiences challenged the participants’ pre-existing beliefs about teaching 
proof (e.g., “proof is always difficult, algebraic and formally presented”, “proof is separate from other 
domains of school mathematics”) and broadened their horizons by conveying that proof can be 
accessible to most (if not all) students and can be communicated via different representations as long 
as the representations are accessible to and accepted by the students. Consequently, the revised ideas
of proof and teaching mathematics allowed the participants to discover more connections between 
proof, learning mathematics and examinations, and in turn to develop more positive beliefs about the 
relevance of proof to examinations.
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I do not claim that all participants became convinced of the relevance of proof to examinations after 
the intervention. Rather, I assert that the participants gained more positive beliefs about the relevance 
of proof to examinations. In other words, after the intervention, whilst there were participants
becoming convinced that proof is relevant to examinations (as exemplified by the case of Participant 
4), others continued to believe that proof is not indispensable but helpful to students when preparing 
for and taking an exam. For the latter case, since the majority of tasks appearing in exam papers 
require students to apply formulae and solve equations and only a few require students to produce a 
proof or an argument (Lee, 2021), the participants continued to believe that proof is not necessary for 
students to pass an exam. Yet, after the intervention, they became aware that proof is somewhat 
related to examinations: proof can promote students’ mathematical understanding and reasoning, 
implying that teaching proof can help students do better in examinations.

In summary, during the intervention, the participants were provided with alternative experiences of 
proof (different from their past experiences), which challenged their pre-existing beliefs that 
discourage teaching proof (e.g., proof is not related to examinations, proof confuses students). The
participants had positive experiences with proof (e.g., they deepened mathematical understanding via 
proof) and developed positive emotions about proof (e.g., excitement, interest), helping them replace 
their pre-existing, discouraging beliefs by beliefs that encourage teaching proof (e.g., proof can 
promote students’ mathematical understanding and reasoning, proof can help students prepare for 
examinations). Having said that, beliefs that have basis in external factors, particularly in quantitative 
information (e.g., the number of proving tasks in exam papers and textbooks), seemed to be difficult 
to change (e.g., it is possible to pass an exam without proof).

Summary and discussion
There is some evidence that teachers’ beliefs about and practices of teaching proof are affected by 
examinations (e.g., Frasier & Panasuk, 2013; Lee, 2019; Nyaumwe & Buzuzi, 2007), in Hong Kong 
and in other countries. This paper demonstrates that whilst (a) some counterproductive beliefs of 
preservice teachers about the relevance of proof to examinations (e.g., “Students can pass exams 
without proof”) are difficult to change if the composition of tasks appearing in exam papers is not 
changed (curricular aspect), (b) more positive beliefs (e.g., “Proof can promote students’ 
mathematical understanding, which in turn helps preparing for and doing better in exams”) can be 
developed after an intervention that is carefully designed to provide preservice teachers with positive 
experiences of proof. In other words, for an effective intervention that aims to change preservice 
teachers’ beliefs about teaching proof, it is important to create alternative experiences of learning and 
teaching proof in which preservice teachers can deepen their mathematical understanding through 
proof and can translate such experiences into their future teaching.

It is believed that this study is in the international community’s interest for three reasons. First, the 
findings of this study are consistent with other studies that involved interventions with preservice 
teachers in which the participants developed more positive beliefs and emotional dispositions towards 
(teaching) proof (e.g., Buchbinder & McCrone, 2020; Yoo, 2008). These consistent findings in
different settings not only provide evidence that it is possible to change preservice teachers’ beliefs 
about teaching proof (which are often considered difficult to change) during teacher training, but also 
show that it is possible to generalise each finding to other settings.

Proceedings of CERME12 264



Second, in contrast with other interventions that were implemented in regular courses and lasted about 
a semester, the intervention of this study was designed as extracurricular workshops and took place 
within a month. The short-duration format allowed the intervention design to be tested and revised 
multiple times within a relatively short period of time, thereby enhancing the validity of the study’s
findings. This study also explored and showed the possibility of changing preservice teachers’ beliefs 
about teaching proof after an intervention of a short duration, responding to a “challenging but 
important question for mathematics education researchers: Would it be possible to design classroom-
based interventions of short duration in mathematics classrooms that could help alleviate significant 
problems of students’ learning in mathematics?” (Stylianides & Stylianides, 2013, p. 339).

Third, I reported different changes in the participants’ beliefs about teaching proof after the 
intervention in this study. The findings also demonstrated why some beliefs (e.g., belief about roles 
of proof in learning mathematics) changed and some (e.g., belief that students can pass exams without 
proof) remained unchanged. In other words, some beliefs about teaching proof are dependent on 
external factors (e.g., the proportion of proof to tasks that require only procedural skills in exam 
papers) and often remain unchanged if the corresponding external factors remain unchanged, and 
some are dependent on one’s past experiences and can be revised if positive and inspiring experiences 
of proof are provided (e.g., during courses of university mathematics and mathematics education).

Future work should continue to design (and improve) positive and inspiring experiences of proof for 
(preservice) teachers and explore and validate the effects of different designs on beliefs about 
teaching proof (ideally, both immediate and delayed effects) with larger samples (ideally, together 
with comparison or control groups). In order that dimensions of beliefs about teaching proof can be 
quantitatively measured for pre-post analysis and statistical modelling, it is also important to conduct 
studies to develop practical instruments.
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This study seeks to capitalize on the pedagogical potential of visual proof documents called Proof 
Without Words (PWWs) to advance proof learning in secondary mathematics. The data is drawn from 
design-based research (DBR), in which a PWW document was iteratively redesigned to lead students 
to generate more detailed and rigorous proof attempts. The gap-filling theoretical framework for 
proofs in mathematics education was used to evaluate students’ written proof products when working 
on initial vs. redesigned PWW versions. The results reveal a substantial positive effect of the PWW 
redesigned version on the quality of students’ products. They suggest the potentiality of five proposed 
PWW design principles in promoting secondary students’ proficiency in proof-related activities.

Keywords: Proofs Without Words, gap-filling, design-based research, secondary level proving.

Introduction
Mathematical proofs are fundamental in mathematics as they verify the truth of mathematical 
statements. Nevertheless, the importance of proofs goes beyond this function as they carry 
mathematical knowledge, ideas, and methods to propel further scientific developments (Rav, 1999). 
Notwithstanding the importance of proofs in mathematics, we witness a decline in proof-related 
activities in schools (Kotelawala, 2016), partly due to the difficulties students at the secondary level
encounter in proof activities (e.g., Miyazaki, Fujita & Jones, 2017). This abdication of proofs at the 
secondary level widens the gap between school and university mathematics and may further reduce 
students’ chances of pursuing and persisting in postsecondary STEM studies (Clark & Lovric, 2009).
It is then imperative to develop new approaches to foster students’ interest and success in learning 
mathematical proofs. 

The approach used in this study relies on Proofs Without Words (PWWs) – diagrammatic learning 
resources that allude to a proof process and scaffold its discovery. In PWW-based activities, students 
are given a PWW and requested to discover a proof and write it down. This paper focuses on a 
particular geometry PWW task of the Pythagorean Theorem, shown in Figure 1 (Garfield PWW -
adapted from Nelsen, 1993, p. 7): 

Figure 1: “discover and write down the proof implied by this diagram”
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Theoretical underpinnings 
Proof Without Words (PWWs) activity at the secondary level

Ever since the seventies, PWWs have started to be published in journals like the Mathematics 
Magazine and The College Mathematics Journal, designated primarily for mathematicians. Given a
PWW, an experienced mathematician can efficiently perform some mental actions to develop a 
formal proof: Translate diagrammatical information into verbal conjectures, construct a chain of 
justified arguments while filling in necessary gaps using prior knowledge. Without these mental 
actions, many mathematicians would not consider a PWW a proof in and of itself (Biehler & Kempen, 
2016). Therefore, in this paper, we refer to PWWs as learning resources and not as proofs. Still,
mathematicians value PWWs because of their elegance, mathematical beauty, and the insights they 
encapsulate (Arcavi, 2003). Mentioning these qualities, Nelsen (1993) advises math teachers to share 
PWWs with their students.

Nevertheless, are PWWs as accessible for secondary students as they are for experienced 
mathematicians? In other words, can secondary students develop proofs based on the visual clues 
given in a PWW? A previous exploratory case study demonstrated that the answer is not 
straightforward positive (Marco, Palatnik & Schwarz, 2021). On the one hand, providing a PWW led 
most students to generate proof attempts containing the proof’s key idea(s). However, students’
written proof attempts were meager, lacking details such as justifications, articulation of 
constructional procedures, and generality arguments. Figure 2 presents such a proof attempt that most 
mathematics educators will probably not accept as valid proof for the Pythagorean theorem. 
Therefore, we launched a design-based research program to find new ways to redesign PWWs to 
make students produce more detailed and rigorous proof attempts.

Figure 2: A student’s proof attempt based on Garfield PWW
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Gap-filling theoretical framework

The idea of gap-filling was introduced in literary theory. Gap-filling is a reader-oriented theory that 
emphasizes the reader’s role in sense-making when reading a text. It conceptualizes any text as a 
system of gaps, which the reader constantly needs to fill by adding information to construct meaning 
(Perry & Sternberg, 1986). In a passage from literary theory to mathematics education, we suggested 
gap-filling as a theoretical framework for activities around mathematical proof-document (Marco et 
al., 2021). We defined a gap in a proof document as missing information essential for a specific 
reader’s understanding. Accordingly, gap-filling is any action the reader takes to add information to 
complete what she identifies as a gap. For example, in Figure 1, the connection between the diagram 
and the equation is not indicated and constitutes a gap. In Figure 2, the student 
takes action to fill this gap – she brings in the notion of area calculations only implicitly represented 
in the PWW. After a first DBR iteration, we listed nine gap-filling actions, presented in Table 1, that
we expected students to perform while working on the Garfield PWW in consequent iterations
(Marco, Palatnik & Schwarz, under review):

Table 1: The gap-filling actions we expected students to perform in the Garfield PWW

# Description of the gap-filling action(s)

G1 Identifying what is given (an arbitrary right triangle with sides a, b, and c) and what should be 
proved ( ).

G2 Specifying the construction procedures through which the trapezoid is obtained.

G3 Justifying the congruence of the two triangles with sides a, b, and c (SAS congruence theorem)

G4 Verifying that the third middle triangle is isosceles and right-angled (by angle calculations).

G5 Proving that the whole figure is a right trapezoid (by definition).

G6 Recognizing the theorem can be derived from calculating the trapezoid’s areas in two different 
ways.

G7 Calculating the areas of all the different figures (using area formulas) and writing an equation such 
as

G8 Simplifying the equation to (algebraic manipulations)

G9 Explaining why the proof that is constructed based on a particular case can be seen as general 
proof.

Note that not all the gap-filling actions in Table 1 are of the same nature. We divided the gap-filling 
actions into four categories: Constructional (G2), justification of a figure’s properties (G3, G4, and 
G5), key-idea (G6, G7, and G8), and generalization frame gaps (G1 and G9). As mentioned above, 
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in early DBR iterations, almost all students filled key-idea gaps, but only a few identified or filled 
gaps from the other three categories (Marco, 2021; Marco et al., 2021; Marco et al., under review).

The five PWW design principles

In our three-year DBR, we probed for practical design principles that invite the filling of subtler gaps 
other than the key-idea gaps (Marco et al., under review). After three DBR iterations, we came up 
with five tentative PWW design principles with which we redesigned Garfield PWW (Figure 3). The 
process through which these principles were recognized and established cannot be expounded within 
the limits of this paper (for more details, see Marco et al. under review). Also, we do not claim these
five principles are exhaustive and are yet to be considered hypothetical (Van den Akker, 2013;
Bakker, 2018). We investigate if when these principles are enacted in a PWW’s redesign, more gap-
filling from Table 1 takes place. The five principles are: 

1. Key idea discoverability – Ensure the discovery of the proof’s key-idea(s) with minimal 
scaffolding. We showed that students tend to fill key-idea gaps of PWWs even if no 
adjustments are inserted. This finding is an encouraging one that we wish not to impair. So, 
all changes in the PWW must not risk the discoverability of the key ideas. 

2. Theorem’s conditions distinctiveness – Distinguish theorem’s givens from other elements of 
the proof. Herbst (2004) observed that students are not used for producing a proof “unless 
the conclusion to be proved, and the conditions under which that conclusion is true, are 
stated for them” (p. 133). Therefore, the visual grammar should indicate which parts of the 
diagram are given and conceived through construction. In this manner, the distinction 
creates a timeline (Dimmel & Herbst, 2015) in which the given parts precede the 
constructed ones.

3. Constructional visibility – Present construction procedures. Construction procedures have a 
significant epistemic role in geometry proofs. Without verifying how a diagram is 
conceived, no general truth can be established. If a teacher aspires students to generate 
rigorous proofs based on PWWs, we suggest the diagram to tell the construction story. In 
line with Dimmel and Herbst (2015) and Alshwaikh (2018), we found dashed lines and 
arrows to be well understood as representing constructional procedures.

4. Figure’s properties concealment – Avoid marking figures’ properties. Hewitt (1999) warns 
teachers not to inform students with necessary mathematical properties that can be deduced. 
In our study, when a property was marked, most students perceived it as a given and did not 
justify it. So, if the diagram conceals a figure’s property, it prompts students to conjecture it 
is true. Students are then more likely to gap-fill it by constructing a sub-proof. In this 
manner, the PWW-based activity combines conjecturing and proving that are regularly 
applied by geometry teachers as separate proof-related activities (Aaron & Herbst, 2019).

5. Human agency – Present the diagram as obtained by human activity. Morgan (2016) 
upholds that presenting mathematics as abstract, symbolic, and the absence of human 
agency may prevent students from accessing mathematics. Following this line, Alshwaikh 
(2018) argues that when diagrams tell a story and include human agency, they communicate 
better with learners.

Research questions

What impact does a PWW, redesigned according to these five design principles, have on students’
gap-filling actions?
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Method
This section introduces the redesign version of Garfield PWW and explains how the design principles 
are implemented. Taking a quantitative approach, we seek to evaluate and compare students’ gap-
filling actions when working on the initial PWW version (Figure 3, left) vs. on the final redesigned 
version (Figure 3, right). We then present the participants and describe how we collected and analyzed 
the data for this study during the second and fourth DBR iterations.

Material 

Figure 3: Garfield PWW initial version (left) and redesigned version (right)

How does this redesign implement the five design principles? Due to space restrictions, we will only 
focus on the third and the fourth principles, which are dominant in this redesign.

Constructional visibility: For denoting construction procedures, we used dashed lines, handmade 
inscriptions, gray-color arrows, and a drawing hand icon. We used continuous bold strokes only for 
the leftmost arbitrary triangle and printed letters a, b, and c, to indicate that these are the only givens 
in this diagram. We prolonged the perpendicular dashed lines more than needed to appear as rays 
created with a straightedge. The newly assigned segments a and b are denoted in gray handwritten 
letters and arrows on these perpendicular dashed lines. We escaped using the square notation for the 
rightmost right angle because it could lead students to perceive it as one of the theorem’s givens. 
Instead, we used a circular arrow with a handmade inscription of “ ”. This notation signifies that 
this measure stems from a deliberate human construction activity.

Figure’s properties concealment: We left the middle right angle unmarked and omitted the “c”
notation from the rightmost triangle hypotenuse since both can be inferred from triangles’
congruence. 

Participants

144 Israeli students of ages 15-16 participated in four DBR iterations. In the second DBR iteration,
37 Grade 10 students from two mathematically advanced classes from the same school participated. 
In the fourth DBR iteration, 72 Grade 10 students from another school participated. The fourth DBR 
iteration occurred at the beginning of the school year before students were grouped into different 
mathematics streams. All students were familiar with the Pythagorean Theorem since Grade 8 and 
had experience solving proof-related exercises in geometry. Most of the students in our study were 
not introduced to any proof of the Pythagorean theorem when they were eighth-graders, and the vast 
majority were not familiar with PWWs.
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Procedure

The PWW-activity consisted of three phases: (1) Students collaborated in small groups to discover a
proof while having the Garfield PWW at hand. (2) Each student individually wrote and submitted a 
proof attempt and (3) completed a proof comprehension test. In this paper, we only report on the 
students’ submitted written proofs produced in phase (2). To assess students’ written proofs, we used 
the notion of gap-filling. The quality of proofs was based on the number of gaps, from Table 1, that 
students identified and correctly filled. When grading students’ written proofs, we marked 1 for any 
identified and correctly filled gap, 0 for overlooked gaps, and 0.5 for identified gaps that were not 
adequately filled (i.e., partially or inaccurately filled). We then calculated the mean gap-filling rate 
(GFR) for each gap in each version. To answer our research question and assess the impact of the 
redesigned version on students’ gap-filling actions, we undertook a two-tailed t-test assuming unequal 
variance. The null hypothesis was that there would be no differences in gap-filling rates between the 
initial and redesign version of Garfield PWW.

Results
Table 2 presents the GFRs in the initial and redesigned version of the Garfield PWW. 

Table 2: The average gap-filling rates (GFR) in the initial (I-V) and redesigned (R-V) versions

G2:
Explaining 

the 
construction

G3: Why 
are the 

triangles 
congruent

G4: Why 
the middle 

triangle 
right

G5: Why 
the whole 
figure a 

right 
trapezoid

G6:
Calculating 
area in two 

different 
ways

G7:

Assigning 
an area 

formula for 
each figure

G8:

Algebraic 
operation to 
obtain the 
theorem

I-V GFR 
(SD), N=37

.02

(.34)

.17

(.23)

.18

(.3)

.24

(.43)

.92

(0.28)

.89

(.24)

.78

(.4)

R-V GFR 
(SD), N=72

.34

(.48)

.61

(.48)

.50

(.47)

.45

(.48)

.94

(0.22)

.93

(0.24)

.91

(.25)

t-test TE2 
vs. TE4

N/S N/S N/S

Effect size 
Hedge’s g

0.887 1.002 0.756 0.462 / / /

In the three gaps from the category of proof’s key ideas, we see no significant differences between 
the two PWW versions. However, in the categories of constructional gaps (G2) and justification of a 
figure’s properties gaps (G3, G4, and G5), the GFR are significantly distinct, with the redesigned 
version having much higher GFRs with substantial effect sizes. Note that increasing GFR in G2 
stemmed from more information about the construction that the redesigned version provides. 
Contrastingly, each justification of a figure’s properties gaps, G3, G4, and G5, increased even though 
the clues about this property were omitted. For instance, the middle triangle was marked right-angled 
in the initial version, and in the redesigned version, it was not. Remarkably, significantly more 
students filled G4 given the redesigned version.
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Discussion
Testing the redesigned version of the Garfield PWW, we found that more secondary students filled 
constructional gaps if the construction procedure was displayed in the diagram. Contrastingly,
students were more likely to fill gaps associated with the justification of a figure’s properties when 
the property was not explicitly evident in the diagram. We assume that behind the latter finding lies
students’ need to remove doubts about figure properties when interacting with the diagram. If a PWW 
leaves doubt about the truth of a figure’s property (i.e., not marking a right-angle mark), students will 
try to verify it by constructing a sub-proof. Removing a mark that reassures a figure’s property invites 
students to conjecture this property is true. After conjecturing, they naturally turn to prove it out of 
their own epistemic need for certainty (Marco et al., 2021). By doing so, they engage in an authentic 
mathematical inquiry in which conjecturing leads to formal proving (Aaron & Herbst, 2019).

In our redesigned version of Garfield PWW, we implement five design principles that we gleaned 
from the data of a broader DBR (Marco et al., under review). We elaborated here on two of these 
principles and showed their unequivocal effect on students’ written proof attempts. As usual, the list 
of principles remains hypothetical and non-exhaustive (Van den Akker, 2013). Further research with 
students from different age groups and various PWWs could lead to their development. These design 
principles have proved beneficial in leading students to fill more gaps in the case of Garfield PWW
and are likely to be generalized for other geometry PWW-activities. However, they can serve as a 
starting point for more research on the use of PWWs in mathematics education. Investigating to what 
extent these principles are helpful in redesigning PWWs in other domains of mathematics (i.e., 
progressions, algebra, and calculus) is an exciting avenue for future research.

We used the notion of gap-filling to assess students’ written products and compare the effectiveness 
of two versions of the same PWW. Gap-filling theory can change our perspective about how students 
learn from mathematical texts and shift our focus when designing them. Instead of exposing all the 
information we wish the student to engage with and understand, we need to carefully present the 
minimal information that still enables identifying and filling certain gaps. So, designing a proof 
document is not just about designing what it contains but also designing what it lacks. Well-adjusted 
gaps in proof-documents may help rekindle proving activities as central in mathematics education.
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In the reported experiment, we focus on word problems of the type What number makes sense,
which comes from Singapore textbooks. This problem was set to primary school 5th graders. In the 
analysis of the experiment, we focus on mathematical reasoning involving argumentation and on 
communication observed in pupils’ discussions while solving the problem. We comment on pupils’ 
reactions in terms of three approaches (mathematical, linguistic, real contextual) of which we have 
kept record also in our previous experiments.

Keywords: Argumentation, word problems, declension, multiplicative relations, Singapore math.

Introduction
Word problems represent a problematic area for both pupils and teachers. Pupils are not always 
motivated to solve them, as in word problems they practice stereotypical solving strategies they do 
not always understand. Teachers see pupils’ problems in solving word problems mainly in the lack 
of logical thinking or insufficient level of reading literacy, which is manifested, for example, by 
incorrect understanding of the text or the meaning of the words. This is why pupils often produce a 
wrong solution and use incorrect or inappropriate argumentation (Vondrová, 2013).

Different approaches to word problems can be observed in different countries. Within the frame of 
the Czech project “Support of the integration of mathematical, reading and language literacy in 
primary school pupils” (TA ČR, 2020), Singapore approach to word problems was used.
“Singapore outperforms the rest of the world in the OECD’s latest PISA survey, which evaluates
the quality, equity and efficiency of school systems” (OECD, 2016). This, for example, leads to “to
the promotion of approaches from Shanghai and Singapore in England, with ‘Singapore maths’ 
gaining considerable popularity” (Hough et al., 2019, p. 4523).

Various types of problems from Singapore textbooks (created with the help of researchers from the 
Université du Québec à Montréal) support the development of many skills in pupils as well as 
different approaches to the problem, which are the essence of their argumentation (Savard & 
Polotskaia, 2017). “Mathematical reasoning and communication are two key process skills in the 
framework of the Singapore school mathematics curriculum (Ministry of Education (Singapore), 
2012) that have been advocated for a long time” (Chua, 2017, p. 115). Mathematical reasoning is an 
inherent part of solving word problems of the type What number makes sense? (Kaur & Har, 2009) 
and communication takes place, among other, in the discussions of the solution, which was used in 
our experiments. This approach to word problems has not yet been researched in the Czech 
Republic, which motivated us to commence research using this approach in one type of word 
problems. 
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Theoretical framework
We work with the following definition of a word problem: A word problems is a “verbal 
description of problematic situations that give rise to one or more questions whose answers can be 
obtained by applying mathematical operations to the numerical data present in the problem” 
(Verschaffel et al., 2000, p. 641). We agree with this definition. When starting the research with the 
type of word problem “What number makes sense?” (Fig. 1) we regarded it as a non-standard word 
problem (Slezáková et al., 2021). Having studied the definition of a non-standard word problem 
(Jimenez & Verschaffel, 2014), however, we classify this type of a problem as standard with non-
standard wording. What makes the problem look ‘non-standard’ is the way the text is organized.

Figure 1: What number makes sense?

This type of word problems has two parts. The first part is the instruction: “Fill in the missing 
information in the word problem.” and the data that will be filled in. The second part is a problem 
situation with missing numerical data. These are replaced by underscores. The order of the numbers 
given in the first part does not have to correspond to the order of blanks in the problem. The pupil’s 
task is to fill in the numbers in such a way that the problem makes sense from the point of view of

a) mathematics, i.e. the filled in numbers make a problem situation that is mathematically 
meaningful, in other words the numerical data are in additive or multiplicative relation (e.g. the 
following holds for the numerical data 2, 3, 4, 5: 2 + 5 = 3 + 4). Pupils prefer to look for relations 
between numbers, which comes out of their experience and beliefs gained while solving word 
problems, which is that we get a result with the help of one or more arithmetic operations with 
numbers from the assignment while ignoring connections to real-life experience (De Corte &
Verschaffel, 1985; Nunes et al., 2016).

b) language, i.e. the filled in data are grammatically correct (in Czech e.g. declension). With 
respect to language, researchers focus especially on simplification of sentence formulation (Plath &
Leiss, 2018) or the length of words and sentences (Bergqvist et al., 2018). The issue of grammatical 
correctness with respect to declination characteristic of Slavonic languages has not yet been subject 
to research in the area of word problems,

c) real-life context, i.e. the filled in data make a meaningful real-life situation. Pupils tend 
to use their real-life experience more often while solving word problems (Van Dooren et al., 2019)
and thus get a clearer picture of the problem situation better (Cooper & Harries, 2002). The problem 
situation can be mathematically meaningful but nonsensical in a real-life context. 

Research questions
The main goal of our experiment was to analyse pupils’ reactions when solving a word problem and 
to find out: What arguments for completing the text of the word problem with the given numbers 
will pupils use? Specifically, will they be sensitive to the linguistic aspect of the problem? Further 
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partial goals that arose while conducting the experiment were: to compare approaches from two 
different classes from different schools, to gain evidence on whether this problem is suitable for a 
discussion leading to cooperation or involving conflicting opinions, which reinforces 
argumentation, to find out whether pupils are aware that the task has more than one solution.

Methodology
Let us now introduce the studied word problem (see Figure 2).

Figure 2: The problem ‘Pheasants’, translated from Czech

From the mathematical point of view, the problem has four solutions that are meaningful as the 
numbers are in a multiplicative relation (e.g. 4 x 5 = 2 x 10). With respect to real-life context, this 
situation is not a conflicting one since all four solutions make a possible real-life situation.
However, when we look at the problem from the linguistic point of view in Czech, the problem has 
only two solutions, namely 5, 2, 10, 4, or 10, 4, 5, 2. Otherwise the text is not grammatically correct 
(declension in Czech). We are aware that each language is specific (Daroczy, 2015). The impact of 
a country’s language and culture on the way pupils argument, verify and prove while solving 
problems was also discussed in the CERME11 TWG1. (Stylianides et al., 2019)

Let us now explain readers who do not speak Czech the linguistic reasons for selecting the right 
numbers in the blanks. The first, third and fourth blanks are in the Czech original in a sentence with 
“be” (was, were “bylo” or “byly”). What matters is the last letter in the word: “o” or “y”. The word 
“bylo” works only with the numbers 5 or 10. The word “byly” needs the word 4 or 2. In case of the 
second blank, the relevant word is the preposition “in” (in Czech “v” or “ve”). The form “v” can be 
followed only by the numbers 5 or 10. The form “ve” can be followed only by the numbers 2 or 4.

Research participants

Two fifth grade classes (A, B) took part in the experiment in 2021. There were 18 pupils in class A 
and 24 in class B (10 to 12-year-old pupils). Pupils from each class were working together online 
for 45 minutes. The lesson included a discussion with the pupils’ argumentation on the solutions.
The online lessons were recorded and transcribed. The pupils’ personal data were anonymized. 

Analysis of pupils’ work
We present the most interesting pupils’ reactions in the lessons that point out their approach to the 
problem. Both individual and mutual reactions in the episodes are grouped with respect to their 
nature: 1. Pupils’ first immediate reactions, 2. Reactions that show different approaches to problem 
solving, 3. Incorrect or inappropriate argumentation in a pupil’s reasoning, 4. Correct 
argumentation in a pupil’s reasoning. Each is followed by our commentary. The pupils are coded A 
or B, depending in the class they are from. The number specifies the individual pupil.

1. The first immediate pupils’ reaction

Number 10, 5, 4 and 2 fled from the text. Put them back in their places and check that they make sense. 

Children brought pheasants to a rescue station. They brought __ pheasants. They bought grain in __ 
packages. There were __ kg of grains in each of the packages. That means that if divided fairly among 
them, each pheasant would get __ kg of grain. 
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Pupil A1 I’m ready. It’s as if there were 10 shoppers. They bought 5 packages. The children 
brought pheasants to the rescue station. I thought it was 10 but I’m not really sure.

Commentary: Pupil A1 already had experience with this type of problem because he had solved a 
simpler one at the beginning of the lesson. He tried to fill in the first two numbers, but he was not 
sure if he had understood the wording of the problem.

Pupil B1 I know. I think it’s in pairs, it’s vice versa 2, 4 ,5 … no, not this way. Wrong.

Commentary: The impulsive reaction of pupil B1 could have stemmed from his need to show off in 
front of the teacher and other classmates. That might be the reason why he did not comment on the 
numbers in the text very meaningfully. He decided about numbers 2, 4 that the numbers went in 
pairs but soon realized the mistake.

2. Reactions that show different approaches to problem solving

Pupil A1 I think instead of 10 there will be 2. Because 10 must be down there. 10 must be 
the kilograms of grain, I found out because a pheasant is quite heavy in fact.

Teacher A So the picture showing the size of the pheasant helped you?

Pupil A1 Yes.

Pupil A2 Well, pupil A1 said there must be 2. But it doesn’t make sense when I read it
´bylo jich 2´. [there were two - problem in declension]

Pupil A3 There can be ´bylo jich 5´ [there were five], that makes sense. It can’t be 10, 
because 10 is a lot. 

Commentary: Pupil A1 approached the problem from the point of view of real context, which was 
strengthened by the fact that his classmates showed him what a pheasant looks like in a picture from 
the Internet. Thus, the picture was the basis for his argumentation, namely that the pheasant needs a 
lot of grain because it is large (in his words ‘heavy’). Pupil A2 approached the task from the
linguistic point of view. He realized the correct placement of numbers depended on declension. His 
argument was important for the thinking of the other classmate A3. They presented arguments with 
other possible numbers corresponding to the declension (5 and 10). Pupil A3 rejects the number 10 
from the given numbers, from the point of view of the real-life context - 10 pheasants brought to the 
rescue station are too many and therefore it would be necessary to prepare far more grains for them.

Pupil B2 I’ve solved it. I realized it can’t be ‘bylo jich 4’ [there were four] because it’s not 
right from the point of Czech. It must be ´bylo jich 10 5´ [there were 10 5].

Pupil B1 You know what? ‘Bylo jich’, it must be there 100%. Grammatically it must be 5
or 10. Because it can’t be ‘bylo jich 2 nebo 4’ [there were two or four].

Pupil B3 I think the second number could be a two because 10 and 5 are grammatically 
correct in the previous case … aha … they are both divisi … no, 10 is a divisible 
number. And two is also divisible and I think that could be it.

Pupil B1 No, that wouldn’t make sense grammar wise. It’s definitely wrong.
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Commentary: Pupil B2 approached the problem from the linguistic point of view. She focused on 
the verb ‘to be’. This motivated her classmates to the same approach. Pupil B1 reacted by listing all 
the possibilities, which he classified according to declension. Pupil B3 added an argument based on 
mathematics to the declension argument. She focused on common characteristics of numbers 2 and 
10 as numbers divisible by two, which did not bring her to the solution.

3. Incorrect or inappropriate argumentation in a pupil’s reasoning

Pupil A5 I was now calculating for myself. I decided there could be 5 pheasants. Then the 2 
kilograms, [unsure], in fact that it would be the 4 kilograms and I calculated that 1 
pheasant gets 2 kilograms, another one also 2 kilograms and then I got 5 
pheasants and 10 kilograms altogether. 

Pupil A6 Those 2 packages and 4 kilograms of grains in each of them. It means it’s 8 
altogether. 2 times 4 equals 8. And it wouldn’t make sense that each gets 10 
kilograms if there are only 8.

Commentary: Pupil A5 approached the problem from the mathematical point of view. Intuitively 
she was aware of the multiplicative relation between the numbers 2 and 5. There is a multiplicative 
relation between the numbers but not between these two. Pupil A6 then applied the multiplicative 
relation on the numbers used by pupil A5, which led to a number that is not offered. He based his 
argumentation contradicting pupil A5 and her solution on this.

Teacher B [the filled in numbers are 5, 2, 10, 4]. How much grain did they have altogether?

Pupil B1 Four. No, ten. Ten.

Pupil B4 No, there were two packages, so 2 x 10 … 

Pupil B5 There were two packages and, in each package, there were 10 kilograms of grain. 
2 x 10 is twenty.

Pupil B1 Yes, this made me confused. They had 20 kilograms. You’re right.

Teacher B And how did they divide it fairly among the pheasants?

Pupil B1 Well, they had each pheasant have 4, because there are 10 and to make it fair.

Commentary: Teacher B invited the pupils to check whether the previously proposed solution was 
correct. Pupil B1 was not able to answer the teacher’s question. Pupil B4 wanted to formulate the
correct solution but was interrupted by pupil B5, who completed the argument in the same way as 
pupil B4 was planning to. Probably thanks to the safe environment in the classroom, pupil B1 
acknowledged his mistake. The teacher wanted to check if pupil B1 really understood the problem,
so he asked the pupil to argue the right solution. Pupil B1 was not able to do that.

Pupil A7 There were 4 pheasants, they bought for them grains in 2 packages and, in each 
package, there were 5 kilograms of grain so together in the 2 there were 10 kg of 
grain.

Teacher A Why 4 pheasants?
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Pupil A7 Because it works like that. 4 pheasants, they scatter the grain on the ground and 
they can divide it somehow. This is how it works on farms, that they scatter the 
grain on the ground. They don’t let them peck it to pieces. They don’t put the 
package in the coop. [muted laughter]

Teacher A How many pheasants were there?

Pupil A7 There were 4 pheasants and each had 2 packages with 5 kg of grain.

Teacher A And now each has 2 packages or they have 2 packages together?

Pupil A7 They have them together. So, each pheasant couldn’t have 10 kilograms, in fact.
[enthusiastic reaction] I get it. There were 5 packages and, in each package, there 
were 2 kilograms of grain.

Commentary: As in the situation in class B, there was communication between one pupil and the 
teacher, who tried to use questions to make the pupil argue the solution. Pupil A7 first tried to find a 
solution by trial and error. After the teacher’s first question, he tried to argue from the point of view 
of the real-life context, which could have also been his attempt to make the class laugh (it certainly 
made him laugh). Unlike pupil B1, he perceived the context in the problem better, so after the third 
question from the teacher he became aware of the mistake and enthusiastically came up with a new 
solution, which, however, was not correct.

4. Correct argumentation in a pupil’s reasoning

Pupil A6 I think there are 10 kg of grains in each package. Because there are 2 packages 
and in each package there are 10, which is 20 and these 20 kg can be divided 
among 5 pheasants. That is 4.

Commentary: Pupils A6 felt no need to express explicitly that the numbers are multiplied or divided 
but obviously he understood the multiplicative relations.

Pupil B2 The first is 5, they brought 5 pheasants. They bought 2 packages for them. Each 
package was 10 kg. 10 x 2 is 20. And each had 4 and there were 5. Because 5 x 4 
is 20.

Commentary: Pupil B2 stated explicitly in her argumentation that the numbers are multiplied. She 
did not use division. She was aware of the multiplicative relation between the four numbers.

Conclusion
These two experiments showed that pupils from two fifth grades react similarly to this type of word 
problems. First came positive reactions of pupils facing a new type of problem. However, both of 
these reactions contained incorrect or meaningless arguments that were not related to the problem 
itself. Examples of reactions in different approaches to the problem show that these pupils had 
richer experience with language than younger school pupils (Slezáková et al., 2021) and therefore 
they focused on the language aspect of the problem, which helped them solve it. The choice of the 
number was argued with the declension rule. In this case, the linguistic aspect was helpful, reducing 
the number of possible solutions. On the other hand, we are aware of limitations of language in a 
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word problem. Still, it can bring new possibilities in the area of interdisciplinary relations between 
mathematics and language and it also gives more space for argumentation. Other arguments for 
filling in the numbers were the mathematical and the real-life context aspect. Extracts from the 
episodes in the 2nd and the 3rd points prove that the problem could provide potential opportunities 
for, among other, two key processual skills, mathematical reasoning (i.e. also argumentation) and 
communication, which is formulated in the Singapore curriculum. All this happened despite the 
unfavourable conditions of online education. Pupils actively listened to each other and used the 
arguments of others. The work of the whole class led to discussion and mutual support while 
searching for various solving strategies. In the final extracts of correct argumentation of the 
solution, we see similar reactions showing pupils’ insight into the multiplicative relations between 
the numbers. What makes these reactions different is that the pupil does not feel the need to express 
explicitly that it is either multiplication or division.

These experiments showed that problems of the type What number makes sense? can be the 
opportunity to the development of pupils’ argumentation skills and moreover they connect 
mathematical and language skills. While solving this type of problems, pupils naturally reason and 
justify their thinking processes. We are at the beginning of our research and in the future will 
conduct experiments with a wider set of problems, greater research sample and longer intervention. 
We would like to focus on the following questions: Will pupils use previous experience with this 
type of problems to solve new problems? How will pupils’ approaches vary depending on their age?
Will language aspects in other countries project into pupils’ argumentation in problem solving? 
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Changing the significance of argumentation and proof in final 
secondary school examinations – a comparison between Hungary and 

Thuringia
Kinga Szűcs
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Argumentation and especially proofs play a crucial role in mathematics as a science. To convey an 
authentic view of mathematics in school, arguments and proofs should play an important role in 
mathematics classrooms, too. Analysis of textbooks, curricula and examination tasks provide relevant 
insight into the role that proofs play in mathematics education. This paper compares the weight and 
the content of arguing and proving tasks in final secondary school examinations in two educational 
administrations which share similar recent political, social, and educational history.

Keywords: Secondary school mathematics, exit examinations, mathematics tests.

Introduction
Because of verifying mathematical knowledge, proofs play, without any doubt, an essential role in 
mathematics as a science (Hanna & Barbeau, 2008). Moreover, Rav (1999) emphasizes the unique 
value of proofs in mathematics, based on their function as a means for gaining and systemizing 
mathematical knowledge. He concludes: “Proofs, I maintain, are the heart of mathematics, the royal 
road to creating analytic tools and catalysing growth.” (ibid., p. 6). In addition, Heintz (2000) 
declares, proofs would constitute mathematics and, mathematics would define itself by proofs. In any 
case, demonstrating proofs must be only seen as one of the main activities in mathematics.

Among mathematics-education researchers, there is a consensus about the key role of proofs both in
mathematics classrooms and curricula (e.g., Hanna, 2000; Harel, 2008; Mariotti, 2006; Nardi & 
Knuth, 2017). The reasoning behind this, however, can fundamentally differ. While Harel (2008), for 
instance, underlines the way of thinking which becomes manifest in proofs, Hanna (2000) emphasizes 
the function of promoting mathematical understanding. Beyond that, Nardi and Knuth (2017) point 
out an active view of learners and plead for proofs in school because they are “critically important to 
knowing and doing mathematics” (p. 267). Different reasoning, indeed, leads to pursuing various 
objectives as well as to varying implementations when teaching proofs in mathematics classrooms.

In particular, cross-national research on curricular documents, such as educational standards, 
curricula, and textbooks, can provide an essential contribution to detecting the above-mentioned 
differences in regard to the objectives and implementations of proofs in mathematics education. This
approach was taken by Jones and Fujita (2013), who investigated the implementations of national 
curricula in the geometry chapters of textbooks in England and Japan. Despite noticing many
similarities between the geometry curricula, they identified differences in the two countries regarding
the treatment of proofs. Whereas in England a low ratio (6.9 %) of proof-related tasks was found, the 
ratio was much higher (26.2 %) in Japanese textbooks. This result can be explained by the fact that
the Japanese curriculum explicitly stipulates proofs only for geometry, whereas the English 

Proceedings of CERME12 307



curriculum requires them also in the domains of numbers and algebra. Based on a comparative 
analysis of textbooks, teacher guides of textbooks and curricula, Miyakawa (2017) identifies 
differences between France and Japan regarding the nature of proofs to be taught in geometry. He 
finds that implicit differences in geometry theory as well as in the principal function of proof related 
to that theory influence the nature of proof in geometry education. In addition, there is a wide range
of national analyses of textbooks related to the role of proof, for example, in Australia (Stacey & 
Vincent, 2009), in the USA (Stylianides, 2009), and in Hong Kong (Wong & Sutherland, 2018).

According to Karp and Shkolnyi (2021), not only textbooks and curricula, but also final exams have 
a high impact on mathematics education. They also state that the scholarly literature related to final 
exams in mathematics is not extensive. Moreover, none of the reported studies in their very recent 
article is explicitly linked to argumentation or proof. With the cross-national study presented in this 
paper, the author aims to contribute to this research gap.

The final secondary school examination in Thuringia and Hungary
Even if during the last decades, emphases have changed several times in mathematics education, 
proofs still play an important role in Hungarian mathematics education. A similar development can 
be seen in Thuringia, these days a German federal state. Hungary and Thuringia share a very 
analogous recent history on the one hand, while having both experienced substantial changes to their 
educational systems about the same time, on the other. Following the political changes in 1989, the 
democratization of the school system took place in the 1990s in both places. For different reasons, a 
second transformation took place around 2005. In Germany, the Standards for the General Certificate 
of Secondary Education in Mathematics (Kultusministerkonferenz, 2004) were established, and all 
federal states started to implement them in their curricula. Meanwhile, Hungary established a new, 
modernised final secondary school exam in mathematics at that time (Lukács, 2006).

For better understanding of the current research, I describe in the following passage some essential 
changes, which were applied to the final secondary examination in mathematics in both places. Note 
that the final secondary exam is carried out in each place at different levels of ability and in different 
kinds of secondary schools. This paper focuses on the main group addressed by this type of 
examination: learners in grammar school (Gymnasium, gimnázium) taking a basic course in 
mathematics and taking the secondary school exam between 2001 and 2020.

Table 1 shows the changing of the main exam characteristics in both places over time. The data 
demonstrate different tendencies in Hungary and Thuringia: in Hungary, one main structural change 
took place in 2005, while the characteristics of the examination in Thuringia were changed stepwise. 
Both places, however, share the characteristics that at the beginning of the 2000s only complex tasks 
were assigned, whereas in 2020 a mixture of elementary and complex tasks characterize the 
examination in mathematics, the latter being (partly) elective. Elementary tasks (such as calculating 
the first derivative of a polynomial function) require only a few cognitive steps. In contrast, complex 
tasks (such as sketching a curve that is models an every-day problem) not only need the use of several 
cognitive steps but also often require combining different kinds of information. In addition, in
Thuringia over the last twenty years, not only have the total exam points available increased twice, 
but also the length of time for the exam has been significantly extended.
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Table 1: main characteristics of the final secondary school examination in mathematics

time period Hungary Thuringia

2001 180 minutes
total score: 80

6 complex tasks and 1 
additional proving task

210 minutes, total score: 60
1 (out of 2) and additional 2 (out of 3) complex tasks

2002 – 2004 210 minutes (270´ from 2011), total score: 60
4 – 5 elementary tasks and 2 (each out of 2) complex tasks

2005 – 2013 180 minutes
total score: 100

12 elementary tasks 
and 2 (out of 3) 

additional complex 
tasks

2014 – 2016 270 minutes, total score: 60
7 – 8 elementary tasks and 2 (each out of 2) complex tasks

2017 – 2020 (270 in 2017) 300 minutes, total score: 120
7 – 8 elementary tasks 1 complex task and 1 (out of 2) 

additional complex task

Research questions
Against the background of the high significance of proofs in mathematics as a science as well as in 
mathematics education, this paper investigates, to what extent has been changed their weight and 
content in mathematics education in these two states. Such an analysis can give insight into the claims 
implemented in mathematics education and addressed to the learners at the end of their secondary 
education. The notions “argumentation” and “proof” are used in different ways in the related 
literature. However, in this paper both, mathematical argumentation and proof, are understood as 
realizations of reasoning in mathematics, based on Brunner (2014). The research presented in this
paper was led by the following question: To what extent have the expectations at the end of secondary 
education related to mathematical argumentation and proof in Hungary and Thuringia been changed 
in the last two decades? Are the tendencies in those places similar? Which conclusions can be drawn
about the role of proofs, based on the identified tendencies?

Methodology
The methodology used in the study was already successfully applied and detailed described in Szűcs 
(2021). A short summary of this is to identify temporal alterations based on existing tasks and 
guidance material for marking and evaluating. Documentary research was chosen as an appropriate 
method for data collection. In addition, qualitative content analysis, which allows for the systematic
and theory-based processing of big textual data, was selected for data examination.

Documentary research

Original examination tasks, as well as the relevant guidelines for marking and assessment, are the 
primary sources of the study. The nature of the source material in the places that were researched is 
insignificantly different. Whereas examination tasks, including guidance material, are in the public 
domain in Hungary, this is not the case in Thuringia. However, materials for the whole period under 
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analysis could be reconstructed in both places based on the public sources of the Hungarian Ministry 
of Education, on the unpublished sources of the Thuringian Ministry of Education and, on the 
information available from task developers (Fried, 2004; Skorsetz, 2005). However, based on the 
authority of the providers, we can conclude, that all sources are authentic, reliable, and trustworthy.

Structuring qualitative content analysis

Since models and categories related to argumentation and proof in mathematics already exist, a
special type of qualitative content analysis, the so-called structuring qualitative content analysis, was 
deemed to be appropriate. In addition, this method is particularly useful for identifying temporal 
tendencies, which is extraordinarily relevant for the current research questions. 

Table 2: excerpts from the encoding manual

category reasoning with mathematical tools

definition Argumentation is based on mathematics, but not necessarily on deductive steps.

standard 
example

Three books were taken from a bookcase and put back arbitrarily. […] Demonstrate, that it 
is not possible that exactly two of the three books are in the right place. (2009, part C, task e)

explanation Systematic testing of all ways is possible.

encoding rule Reasoning based on concrete examples is possible and productive.

category logical reasoning with mathematical tools

definition Deductive steps are identifiable, but they are not necessarily formal.

standard 
example

Three points, A (3;0;5), B (6;4;3) and D (0;4;3) are given, in a Cartesian coordinate system. 
Show that A, B and C explicitly determine a plane ε. (2001, part 2.1, task a)

explanation Definition of linear dependence and vectors must be deductively applied. 

encoding rule Deductive application of definitions, theorems and methods is needed, but no formal proof.

category formal-deductive proof

Definition formal chain of deductive steps

Standard 
example

( ) is a sequence of numbers with , and . Show that ( ) is not a 

geometric sequence. (2002, part C, task a)

explanation Formal notation and, the generality of the claim suggest that a formal proof is expected.

encoding rule Requirement of a formal proof must be recognized.
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To determine basic material, it is necessary to define the terms “argumentation” and “proof”. A viable 
definition of argumentation, which includes the notion “proof”, was given by Schwarzkopf (2000). It 
means a social interaction in school, in which a need for reasoning is indicated, and afterwards, this 
need is tested to be satisfied. According to this, all examination tasks have been rated as 
argumentation tasks, in which a need for reasoning was clearly indicated, meaning tasks contained 
verbs such as “show”, “reason”, “prove” etc. Note that searching for keywords is a popular method 
to identify argumentation tasks when analysing textbooks (Mariotti et al., 2018). The set of tasks 
containing at least one of the listed verbs is called the basic material. A set of categories has been 
specified, according to Brunner (2014). She identifies four categories based on the cognitive level 
needed for reasoning in mathematics classrooms, which enables a qualitative differentiation between 
the expected arguments. Excluding the type “everyday-arguing”, the following three types have been 
applied to the data: reasoning with mathematical tools, logical reasoning with mathematical tools and,
formal-deductive proving. The encoding was carried out as follows: Each coded text passage was 
mapped to one of the three categories. This mapping process was supported by the information given 
in the guidance material. Table 2 shows excerpts from the encoding manual; the tasks have been 
translated into English by the author of this paper.

After encoding, results were prepared as follows: Based on the marking instructions, the score of 
each argumentation task, and its related mathematical domain were recorded. The total score of each 
category was calculated for each year and, afterwards, their proportion of the whole exam was 
determined. Tasks of choice, in the meaning of alternatives, were noted. Scores of the three categories 
added up to a total argumentation score for each year. Within this total score, the proportion of each 
mathematical domain was also calculated. Table 3 gives insight into this process, based on the 
Thuringian data from 2002. 

Table 3: Encoding the arguing tasks from Thuringia in 2002

year task category score proportion of the 
exam

domain

2002 part A1, task b log. reasoning with math. tools 1 average: 1.5
(A1 and A2 
alternatives)

2.5 % calculus

part A2, task a log. reasoning with math. tools 2 calculus

part C, task a formal-deductive proof 2 3.3 % calculus

total of argumentation tasks 3.5 5.8 %

Results
Comparison of the changing of quantitative aspects in the final secondary school examination

Tendencies related to the volume of argumentation tasks and the type of reasoning are shown in 
Figure 1. The data suggest – similarly to the findings of Miyakawa (2017) – that there are differences 
in the nature of argumentation tasks between Hungary and Thuringia, which can be traced back to 
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different implicit views on mathematics. In Hungary, before the new examinations in 2005, a high 
proportion (15.31 %) of argumentation tasks was present and, those tasks required only formal-
deductive proofs. However, the introduction of the new exam led not only to the halving of the
proportion of these tasks (7.75 %) but also to the complete absence of formal-deductive proofs. 
Hungary experimented between 2005 and 2016 by addressing argumentation tasks, which do not 
require deductive reasoning but gave up on that in 2017. Hungary seems to be a country, in which 
proofs in school mainly have the function of demonstrating a specific, deductive way of thinking 
(Harel, 2008). In Thuringia, in contrast, formal-deductive proofs did not play an important role in the 
period under investigation. However, the proportion of argumentation tasks was relatively constant
over the time in question (12.7 %–15.8 %) and increased in the last four years to over 20 %. The 
proportion of tasks requiring logical reasoning with mathematical tools varies between 5.8%–14.5%, 
but they are complemented by an increasing number of tasks requiring reasoning with mathematical 
tools. Thus, it could be inferred that argumentation plays an important role in Thuringia, too, but the 
focus is more on applied mathematics.

Figure 1: changing of the types of reasoning in final secondary school examinations over time

Comparison of the changing of qualitative aspects in the final secondary school examination

The above-described quantitative tendencies regarding the type of reasoning also have a qualitative 
component. Changes related to the specific mathematical domains are presented in Figure 2. Each 
percentage expresses the proportion of the score of the domain related to the total score of 
argumentation tasks.

Figure 2: changing of the mathematical field of reasoning tasks over time

Significant differences between the two places in the study can also be observed regarding domains. 
Whereas only three mathematical domains are used in Thuringia, the argumenation tasks in the final 
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secondary school examination in Hungary become more varied over time, covering up to seven 
different domains. Furthermore, calculus dominates constantly in Thuringia, but it is barely evident 
in Hungary. In addition, while geometry is noticeable but not dominant in Thuringia, it is the main 
mathematical domain of argumentation in Hungary. Mathematical reasoning is more spread across 
various domains in Hungary than it is in Thuringia. These findings are similar to the results which 
compare England and Japan (Jones & Fujita, 2013) and can traced back to different values of the final 
secondary school exam in those two places: Whereas this type of examination rounds upper secondary 
school education in Thuringia, it finishes the entire secondary education in Hungary.

Summary and open questions
Even if argumentation and proof form the main parts of mathematics as a science leading to the view 
that they should play a key role in mathematics education, they are only moderately included in final 
secondary school examinations in Hungary and in Thuringia. Especially alarming is the fact that 
formal-deductive proofs currently play no role in those examinations. However, slightly different 
routes led to the current situation: In Hungary, formal-deductive proofs disappeared after the 
structural change of the exam in 2005, while they have never been focused on in Thuringia. Moreover,
mathematical reasoning is spread across more various mathematical domains in Hungary than it is in 
Thuringia. These results may allow us to infer different views of mathematics in the two places.
However, further analysis of curricula, textbooks and classroom activities would be needed to 
investigate those views and confirm this inference.
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Despite the pedagogical values of Lakatos-style proving activity in school mathematics, little is 
known about how teachers react to students’ reasoning in this kind of activity. As an attempt to 
unpack the underlying decision-making processes, this study examines teachers’ noticing of students’ 
justification and refutation of conjectures in the context of Lakatos-style proving activity. Twelve 
Chinese pre-service and in-service secondary mathematics teachers participated in semi-structured, 
vignette-based interviews where they were presented with realistic classroom scenarios. These were 
based on actual classroom episodes reported in the literature and covered various aspects of Lakatos-
style reasoning in the context of geometry. Findings show that teachers can better notice students’ 
justifications than students’ refutations, and better notice students’ valid arguments than invalid 
arguments. Key themes are identified to characterise their noticing of various student arguments.

Keywords: Proof, Lakatos, Justification, Refutation, Professional noticing.

Introduction
In the form of fictional classroom discussion, Lakatos (1976) described how mathematicians 
constructed and utilised mathematical knowledge through a zig-zag reasoning process. Some aspects 
of Lakatos-style reasoning, such as conscious guessing and the zig-zag path of reasoning, were 
suggested by mathematical educators (e.g., Lampert, 1990) to be applied in some school 
mathematical activities for engaging students in authentic mathematics. Some empirical studies also 
showed that school-age students can perform in line with Lakatos-style reasoning, but most of them 
paid attention to students’ proving processes (e.g., Komatsu, 2016; Reid, 2002), while few studies 
focused on the role of teachers. It remains unclear how teachers deal with various types of students’ 
responses throughout different phases of Lakatos-style proving. To address this research gap, one 
promising attempt is to investigate teachers’ professional noticing by focusing on how they pay 
attention to and make sense of particular instructional situations (Jacobs et al., 2010). We explore
teachers’ professional noticing of students’ reasoning in the context of Lakatos-style proving activity.
In this paper, we focus specifically on how teachers notice students’ uses of examples and 
counterexamples during the justification and refutation of conjectures, which potentially can inform 
students’ further refinement of the conjectures or proofs thereof.

Theoretical framework
Lakatos-style proving process

Using Lakatos’ (1976) book and some mathematics education studies that discussed the 
implementation of his approach in school mathematics (e.g., Reid, 2002; Komatsu, 2016; Deslis et 
al., 2021), we identified five phases of the Lakatos-style proving process to capture some aspects of 
Lakatos-style reasoning: First, a conjecture is formulated through conscious guessing (Phase 1). Then 
the conjecture is tested through examination of supportive examples (Phase 2). A proof may be 
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constructed to further validate the conjecture (Phase 3). Yet, counterexamples may emerge that refute 
the conjecture or the respective proof (Phase 4), thus necessitating the refinement of the conjecture 
or the proof (Phase 5). Note that Lakatos’ philosophy is more complex than this 5-phase framework. 
It also emphasises other aspects (e.g., the crucial role of the interplay between defining and proving).

Justification and refutation schemes

We utilised a framework of students’ justification and refutation schemes to conceptualise how 
students justify and refute conjectures in diverse ways, reflecting different degrees of mathematical 
sophistication. This framework was constructed drawing on previous research on students’ proof 
schemes (Balacheff, 1988; Harel & Sowder, 1998; K. Lee, 2016; Stylianides & Stylianides, 2009; 
Deslis et al., 2021). There are four levels of justification schemes. Students at the lowest level (Naïve 
empirical justification) believe that examining a few examples which are easy to check (e.g., 
examining the example “x = 1” for validating the conjecture “for any natural number, 2x is an even 
number”) can prove a mathematical generalisation. Students at a higher level (Crucial experiment 
justification) also accept example-based proofs, but they believe that the examples need to be 
strategically identified following some rationale (e.g., examining a set of odd numbers “x = 1, 3, 5, 
7, 9…” for the above-mentioned conjecture). Students at the next level (Nonempirical justification)
believe that it is not sufficient to validate a conjecture based on a subset of examples, but unlike 
students at the most advanced level (Deductive justification), they may not recognise the role of 
deductive inferences in proof. There are also four levels of refutation schemes. Students at the least 
advanced level (Naïve refutation) regard counterexample(s) as exception(s), and still consider a
conjecture to be true regardless of the existence of counterexample(s). Students at the next level 
(Empirical refutation) think it is insufficient to refute a conjecture based on a single counterexample 
and need to see more counterexamples to be convinced that the conjecture is false. Students at the 
next level (Single counterexample refutation) believe that it is sufficient to refute a conjecture based 
on a single counterexample. Students at the most advanced level (General counterexample refutation)
accept the sufficiency of a single counterexample in refuting a conjecture and recognise further that 
identifying the common properties of counterexamples can support the refinement of the conjecture.

Noticing

Despite various conceptualisations of teacher noticing, it is generally considered to involve at least 
two components, Attending and Interpreting (e.g., Es & Sherin, 2008). Jacobs et al. (2010) 
additionally introduced a third component, Deciding, which works with the other two components in 
integrated ways to lay the foundation for teachers’ responses to students’ mathematical thinking. This 
idea has been used in much later research (e.g., M. Y. Lee & Francis, 2018). Following Jacobs et al.’s 
(2010) conceptualisation, we define teacher professional noticing as an integrated set of three key 
processes: (1) selectively attending to noteworthy students’ strategies in particular instructional 
events; (2) interpreting students’ understanding reflected in these strategies; and (3) deciding
intended responses to students (as opposed to executing actual responses).

Research methods
Data were drawn from semi-structured interviews with twelve Chinese teachers. For a diversity of 
teacher profiles, these participants included four pre-service teachers, four novice teachers with an 
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average of 2.75 years of teaching experience, and four experienced teachers with an average of 17.75 
years of teaching experience in junior high school for students aged 12-15. They were recruited 
through convenience sampling. 

The one-hour interviews were conducted online. The participants were presented with a set of 
classroom vignette episodes showing how students solved a geometric proof task (see Figure 1).
These episodes were adapted from actual classroom scenarios reported in Komatsu et al.’s (2014)
research on Lakatos-style proving, guided by the above-mentioned theoretical frameworks. They
reflect the five phases of Lakatos-style proving and diverse students’ understandings in a format of 
classroom discussion, trying to make the episodes sufficiently realistic to elicit teachers’ responses in 
the context of Lakatos-style activity (Skilling & Stylianides, 2020). We chose to present teachers with 
comic-style episodes because Lakatos-style proving activity is believed to be scarce in existing 
Chinese classrooms. Also, comic-style episodes allowed us to provide participants with sufficiently 
realistic but also abstract enough information, aiming to direct their attention to critical aspects of the 
classroom practices of interest, and allow them to form their interpretations of such context (Herbst 
et al., 2011). Note that we did not study what teachers actually noticed in real classrooms. Instead, 
we attempted to explore what they might notice in the context of Lakatos-style proving activity.

Figure 1: The geometric proof task (Komatsu et al., 2014) presented in the vignette episodes

Based on the above rationales, we designed eleven episodes around this proof task, among which 
there were four episodes about justifications and four episodes about refutations of the conjecture
(i.e., irrespective of the position of line k, PQ = DQ − BP). These eight episodes respectively reflected 
each level of Justification and Refutation schemes, covering Phases 2-4 in the Lakatos-style proving 
process. Figure 2 shows two sample episodes translated from Chinese to English.

Figure 2: Crucial experiment justification (Left) and General counterexample refutation (Right)

Proceedings of CERME12 317



After seeing each episode, participants were asked to describe (i) the students’ thinking and/or actions 
that they attended to, (ii) how they interpreted the students’ understandings, and (iii) how would they 
respond to the students, corresponding to the Attending, Interpreting, and Deciding aspects of 
teachers’ professional noticing. Following Jacobs et al.’s (2010) coding scheme of teacher noticing, 
teachers’ responses were coded based on the extent of evidence that teachers demonstrated in their
consideration of students’ reasoning. Specifically, responses about the Attending aspect were coded 
on a 2-point scale: Evidence (1) and Lack of evidence (0), and responses about the Interpreting and 
Deciding aspects were coded on a 3-point scale: Robust evidence (2), Limited evidence (1), and Lack 
of evidence (0) (Jacobs et al., 2010). After coding teachers’ responses into the various categories, 
emerging themes were identified for each category to capture its characteristics (Corbin & Strauss, 
1990). Double counting was applied for responses that related to more than one theme.

Findings
Overview of teachers’ professional noticing

To capture participants’ noticing of students’ justifications and refutations, mean scores of the 
Attending, Interpreting, and Deciding aspects were calculated for each of 8 episodes. Given that the 
two lower levels and the two higher levels of Justification and Refutation schemes describe students’ 
invalid and valid reasoning, respectively, we calculated the average scores of each pair of levels as a
more stable measure of teachers’ noticing of (in)valid justification/refutation arguments (Table 1). 

Participants had on average higher scores in noticing students’ justifications than refutations, across 
each aspect of teacher noticing – Attending (0.75 vs. 0.54), Interpreting (1.29 vs. 1.13), and Deciding 
(1.31 vs. 1.29). Although participants showed the same averages (1.29) in interpreting students’ valid 
and invalid justifications, they showed higher averages in attending to (0.96 vs. 0.54) and deciding 
how to respond to (1.42 vs. 1.17) students’ valid justifications than invalid justifications. A similar 
pattern emerged from participants noticing of students’ refutations.

Table 1: Means (SD) for teaches’ scores of noticing students’ justification and refutation

Component skill 
(Scale) 

Justification Refutation 

Invalid Valid Overall Invalid Valid Overall 

Attending (0-1) 0.54 (0.51) 0.96 (0.20) 0.75 (0.44) 0.46 (0.51) 0.63 (0.49) 0.54 (0.50) 

Interpreting (0-2) 1.29 (0.55) 1.29 (0.46) 1.29 (0.50) 1.13 (0.68) 1.13 (0.54) 1.13 (0.61) 

Deciding (0-2) 1.17 (0.56) 1.42 (0.65) 1.31 (0.59) 1.08 (0.65) 1.50 (0.66) 1.29 (0.68) 

To supplement the average scores and give a more complete picture of teacher noticing, Table 2 
shows the number of teacher responses which were coded as showing different extents of evidence.

Attending to students’ strategies

Regarding the Attending aspect, responses with evidence mentioned exact mathematically important 
details of specific students’ strategies, as described by our theoretical framework. Most participants 
gave evidence of attending to students’ justifications, except to a student’s Crucial experiment 
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justification. Meanwhile, most participants demonstrated evidence of attending to Single 
counterexample refutation, but they did not demonstrate evidence of attending to other types of 
refutation. This may explain partly why participants had higher averages in attending to students’ 
justifications, especially valid justifications, than other types of student reasoning. 

Table 2: Number of teacher responses which were coded as showing the different extent of evidence

 Justification (Total: 48 teacher responses) Refutation (Total: 48 teacher responses) 

Invalid (Total: 24) Valid (Total: 24) Invalid (Total: 24) Valid (Total: 24) 

A
tte

nd
in

g 

Evidence (N=13) 

Lack of evidence (N=11) 

Evidence (N=23) 

Lack of evidence (N=1) 

Evidence  (N=11) 

Lack of evidence (N=13) 

Evidence (N=15) 

Lack of evidence (N=9) 

In
te

rp
re

tin
g 

Robust evidence (N=8) 

Limited evidence (N=15) 

Lack of evidence (N=1) 

Robust evidence (N=7) 

Limited evidence (N=17) 

Robust evidence (N=7) 

Limited evidence (N=13) 

Lack of evidence (N=4) 

Robust evidence (N=5) 

Limited evidence (N=17) 

Lack of evidence (N=2) 

D
ec

id
in

g Robust evidence (N=6) 

Limited evidence (N=16) 

Lack of evidence (N=2) 

Robust evidence (N=12) 

Limited evidence (N=10) 

Lack of evidence (N=2) 

Robust evidence (N=6) 

Limited evidence (N=14) 

Lack of evidence (N=4) 

Robust evidence (N=13) 

Limited evidence (N=9) 

Lack of evidence (N=2) 

Among the lack-of-evidence responses, some of them omitted mathematically important details of 
the students’ strategies. This characteristic was evident in 8/12 teacher responses to a student’s 
Crucial experiment justification. To illustrate, 7 teachers mentioned that this student tested more 
examples compared to another student who only tested one example, but they did not comment on 
the unique feature of this student’s reasoning, that is, the strategic selection of examples. Some other 
lack-of-evidence responses included information that was inconsistent with the students’ strategies.
This was notable in teachers’ responses to students’ invalid refutations (9/24). For example, regarding 
the episode about Empirical refutation, 3 teachers wrongly noted that the student wanted to find all
counterexamples, whereas the student just suggested finding more counterexamples.

Interpreting students’ understandings

Concerning the Interpreting aspect, robust-evidence responses exactly described what the students
did and did not understand (as suggested by our theoretical framework), citing details of the students’
mathematically important strategies. Eight participants gave robust-evidence responses for
interpreting a student’s Naïve empirical justification. Yet, when interpreting other types of student 
arguments, no more than 4 participants provided robust evidence. This may partially explain teachers’ 
slightly higher average scores in interpreting justifications (1.29) versus refutations (1.13).

The majority of limited-evidence responses omitted some details of students’ (mis)understandings.
This characteristic existed in more than half of teachers’ responses, except those for interpreting 
Naïve empirical justification and Empirical refutation. For example, when interpreting a student’s 
General counterexample refutation, a teacher expressed appreciation of this student’s idea of 
comparing three counterexamples to examine the conjecture, but she did not elaborate on this idea.

Proceedings of CERME12 319



Some limited-evidence responses contained descriptions inconsistent with specific student strategies,
although they precisely mentioned some (mis)understandings of these students. To illustrate, 
commenting on a student’s Empirical refutation, a teacher said this student’s idea (i.e., finding more 
counterexamples so that we can be convinced) was acceptable in refutations, although she also
mentioned that using one counterexample can already refute the conjecture. By contrast, another 
teacher misinterpreted that this student would like to test all counterexamples, and all descriptions 
this teacher provided were inconsistent with the student’s strategy details. This was unclear whether 
this teacher understood the student’s strategy, so this response was coded as “Lack of evidence”.

Some teachers’ limited-evidence responses contained descriptions as if based on teachers’ 
assumptions rather than on the vignette provided. For example, a teacher assumed that the student
with Naïve refutation ignored the counterexample because “this student was stubborn and was not 
willing to hear others’ ideas”, but this was hard to justify based on what the student said.

Deciding how to respond based on students’ understanding

Around half of the teacher responses for valid justifications (12/24) and refutations (13/24) gave 
robust evidence when deciding how to respond to a student, while much fewer responses for invalid 
justifications (6/24) and refutations (6/24) showed robust evidence. In these robust-evidence 
responses, teachers demonstrated explicit consideration of the students’ reasoning and how their 
proposed responses could further these students’ thinking (as suggested by our theoretical framework).
For example, in a robust-evidence response for a student’s Crucial experiment justification, a teacher 
made use of one mathematically important aspect of this student’s strategy (i.e., asking the student to 
analyse common properties of these strategically identified examples) to facilitate the student’s 
progression from testing examples to giving a proof:

Teacher: I will appreciate the student’s spirit of exploration, and I will remind him these are 
only some examples…The student needs to learn how to analyse…whether there 
are common properties among different figures (i.e., examples). If there are, can we 
start proving this conclusion with geometric proof? He has drawn a lot of figures, 
and we need to find their common properties. 

Limited-evidence responses demonstrated teachers’ uses of students’ reasoning in deciding how to 
respond but in a general or unproductive way. To illustrate, 4/12 teachers proposed very similar 
responses (e.g., simply asking students to give a proof) for students’ Naïve empirical justification and 
Crucial experiment justification, even though both types of student reasoning indicated different 
levels of mathematical sophistication (as reflected in students’ way of identifying examples to 
validate the conjecture). Some teachers suggested to the student who ignored the counterexample
(Naive refutation) to find more counterexamples or accepted the idea of the student with Empirical 
refutation to find more counterexamples, in order to convince both students that this conjecture was 
refuted. But they did not remind the students that one counterexample can already refute the 
conjecture, and this was not conducive to students’ development of refutation ability. 

Unlike responses with robust or limited evidence, lack-of-evidence responses cited few or no details 
of the specific students’ reasoning (e.g., “I will let the student think more and then examine based on 
his idea…I think it will be better if I allow students to inquire rather than directly telling them the 
answers”), leaving open the question of whether teachers consider these students’ reasoning. 
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Discussion and Conclusion
To conclude, our results show that teachers may be less able to notice students’ refutations than 
justifications. When the students in our vignettes gave invalid arguments (regardless of whether for 
justification or refutation), teachers were less likely to attend to and decide how to respond to their 
thinking. Noticing with non-robust-evidence may hinder teachers from making use of students’ 
reasoning to engage students in Lakatos-style zig-zag processes of conjectures, proofs, and refutations.

For instance, many participants noticed that compared to the student with a Naïve empirical 
justification, the student with a Crucial experiment justification tested more examples. Yet, they did 
not point out that these examples were strategically identified. In other words, teachers may be 
sensitive to whether students’ reasoning is example-based, but they may pay limited attention to and 
interpretation of students’ ways of identifying supportive examples. Their neglect of such a
mathematically important strategy may partly explain why some teachers suggested to both students 
a very similar next step (i.e., directly asking them to switch from example-based reasoning to giving
a proof), without using each student’s existing reasoning as a starting point for his/her further 
development. By contrast, like a teacher’s robust-evidence response that we quoted above, one
productive use of a student’s Crucial experiment justification can be letting this student analyse the 
common properties of the strategically-identified examples for the further construction of a proof.

For students’ refutations, despite the wide recognition of the role of a single counterexample in 
refutation, some teachers still allowed or even encouraged students who had a Naïve refutation or an 
Empirical refutation scheme to examine more counterexamples to confirm the conjecture was false.
This may not be conducive to students’ understandings of the minimally necessary and sufficient way 
of refutations. Yet if teachers can emphasise the role of a single counterexample and meanwhile 
support students’ investigation of more counterexamples to find out their common properties that 
refute the conjecture (as described by the General counterexample refutation), students may have 
opportunities to experience the process of refining a conjecture based on analyses of counterexamples.

Overall, this study constructs a picture of teachers’ professional noticing of students’ thinking in 
justification and refutation in the context of Lakatos-style activity, which was seldom investigated in 
previous research. This can help us (as a field) to better understand in such context how teachers 
attend to and make sense of students’ justifications and refutations in different ways, which in turn 
may shape what learning opportunities teachers offer to students in the follow-up refinement of the 
proof or the conjecture. To better prepare teachers to implement Lakatos-style proving activity, 
further training on their professional noticing, especially their noticing of students’ refutations and 
invalid justifications, is needed. Finally, we acknowledge Sherin and Star’s (2011) critique of 
research on teacher noticing that we indirectly learn what teachers notice from what they express in 
their comments, but the underlying mechanism of teacher noticing is still unclear. In a further study, 
we will try to unpack such a mechanism by considering how teachers’ views (e.g., their views of 
proofs, teaching proof, and noticing) condition teachers to notice.
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Introduction 
Learning and teaching arithmetic and number systems through activities in kindergarten and school 
is a relevant and broad field in mathematics education. In kindergarten, children start to develop a 
number concept of natural numbers with counting and subitizing. Primary school aims at evolving a
deep conceptual understanding of numbers and basic arithmetic operations. The transition from 
natural numbers to rational numbers is a key challenge for mathematics education in the first years 
of secondary school. Only if students have a deep understanding of natural numbers, will they be able 
to develop conceptual understanding and procedural skills in rational numbers. Even if a great variety 
of topics comes with learning and teaching arithmetic and number systems there are common goals, 
such as developing conceptual understanding and building number- and structure-sense as 
foundations for flexibility in mental and written arithmetic operations. Research in arithmetic and 
number systems does not only focus on typical content, but also on models for teaching and learning, 
approaches for heterogeneous and inclusive classrooms, analogue and digital tools to support 
understanding, and, not to forget, teachers’ competencies and cultural practices. 

Working Group 2 was formed in 2011 and has developed as a forum for discussing theoretical and 
empirical research on the teaching and learning of arithmetic and number systems. Over the last 
decade, our work has aimed to acquire and enhance knowledge about students’ understanding and 
meaningful learning in this content area regarding different ages and achievement levels. The scope 
of the TWG comprises kindergarten to 12th grade and emphasizes research-based specifications of 
domain specific frameworks, concepts and goals, analysis of learning processes and learning 
outcomes in different classroom cultures, as well as innovative teaching and diagnostic approaches 
that attend to both procedural and conceptual knowledge.  

This year, we faced the same variety of topics as in previous conferences, but even more diversity in 
theoretical approaches and measurements. This was a great opportunity to negotiate our 
understanding of terms and clarify our theoretical and methodological approaches. The group 
intensively discussed 15 papers and 6 posters in the plenary whole group as well as in small groups.  

Discussed papers and posters
The presented and discussed papers and posters can be pooled in four thematic groups: Number sense, 
understanding of basic ideas, strategies in mental arithmetic, teaching approaches and methodological 
approaches. 
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Number sense 

Nathalie Bisaillon explores the role of groupitizing (the ability to recognize structured quantities 
without counting) in building internal representations of quantities to enhance students number sense. 
Three activities are presented to highlight the links between groupitizing skills, the construction of 
dynamic and imagistic mental representations and the comprehension of numeration. It is 
hypothesized that the use of these activities with 7–8-year-olds would enhance their number sense.  

Brumm Leonie and Elisabeth Rathgeb-Schnierer present their initial study on comparing strategies 
in numerosity estimation in grade 3 students. Their interest focused on using two and three-
dimensional tasks, and the relationship between strategies and task characteristics. The aim of the 
study is to reveal effective strategies which lead to high estimation accuracy according to the type of
task. (poster)  

Zübeyde Er and Perihan Dinç Artut  investigate the strategies of gifted students in grade 5 in number 
sense problems. Twenty-one students undertook twenty-five questions in a number sense test where 
both opinions and answers were analysed. The results of this test revealed that the majority of 
strategies used are rule-based strategies not number sense based.

Elvira Fernandez-Ahumada, Natividad Adamuz-Povedano, Enrique Martinez-Jimenez and Jesús 
Montejo-Gámez present a review of instruments on assessment of number sense and mature number 
sense. The authors highlighted the existence of 10 instruments, of which the majority focused on the 
assessment of early number sense, mainly for ages between 3 and 8 years, while there are far fewer 
instruments for the assessment of the so-called mature number sense. (poster)

Astrid Junker investigates counting strategies of one first-grade student with a high proficiency in 
foundational number-sense (FoNS). A task-based, semi-structured counting interview was conducted 
with the aim to qualitatively analyze counting strategies. The results suggest that a student with 
proficiency in number-sense does not necessarily exhibit flexible counting strategies in the number 
range 10-20.   

Pernille Bødtker Sunde and Judy Sayers investigate perspectives of six Danish first-grade teachers
on teaching and learning number and addition. Data was gathered by a semi-structured interview with 
open-ended questions that allow to reveal teachers’ emphasis in teaching on number. Data was 
analyzed based on the FoNS framework. The results show that teachers hardly mention estimation, 
quantity discrimination and number pattern when they report on their teaching practice in first grade. 

Understanding of basic ideas 

Marei Fetzer and Kerstin Tiedemann developed a theoretical approach in how to introduce 
multiplication to support children’s understanding of this operation. The theoretical approach makes 
the distinction between basic ideas (Grundvorstellungen), strategies and representations of 
multiplication. The authors illustrate their approach through a German textbook example.  

Aurelien Ovide, Lalina Coulange and Grégory Train examine the potentials of a specific approach 
for teaching and learning fractions. Data was collected throughout teaching experiments, one 
designed by Brousseau for 5th graders and others designed by the author for 8th graders. The results 
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highlight the potential of commensuration meaning to enable students to access a broad 
conceptualization of multiplicative comparison relationships between fractions.

Strategies in mental arithmetic and flexibility

Claudia Corriveau, Doris Jeannotte and Sandrine Michot investigate how the way the manipulatives 
are used on a fraction task influence the students’ reasoning. The methodological and analytical work 
is based on the concepts of affordance and didactic variables. The analysis shows that introducing 
familiar manipulatives in new tasks forces the students to develop new ways of doing and thinking. 

Timo Flückiger and Elisabeth Rathgeb-Schnierer present the development and piloting of a 
standardized, semi-structured interview guide designed to capture second and third graders abilities 
in flexible mental calculations. This interview guide will allow for more generalizable conclusions 
on the cognitive elements sustaining the solution process based on students’ explanations and 
justifications of solution methods. (poster)

Ioannis Papadopoulos and Michail Karakostas investigate students’ strategy choices when 
performing mental and written fraction arithmetic. They find that the written algorithm was the 
preferred strategy in both mental and written calculations. The students’ arguments for their choice 
of the algorithm was accuracy, speed and easiness, although the algorithm was in fact the most time-
consuming strategy for all items.  

Maria Pericleous investigates how a number line can be used as a vehicle for mathematical 
understanding. The author uses concept cartoons as a tool to support the role of the number line to 
foster and develop conceptual understanding of simple calculation strategies. Nineteen participants,
ages 7-8 years old, engaged in whole class discussion drawing on their perceptions of constructing 
and reading open number lines.  

Anders Månsson addresses the inter-coder reliability of three researchers when categorizing mental 
computation strategies of prospective elementary teachers (PETs). PETs’ mental computation 
strategies were captured questionnaires (15 two-digit addition problems) and categorized by
strategies described in literature. Based on the high consensus in categorization, the author concludes 
that the questionnaire and the categories are appropriate and reliable to investigate PETs’ strategies. 

Steven Van Vaerenbergh, Irene Polo-Blanco, Lara González-de Cos and Juncal Goñi-
Cerveradeveloped investigate the strategies used by students with an autism spectrum disorder 
diagnosis when solving Cartesian product problems. An exploratory and descriptive investigation 
was conducted with 26 students (6-12 years). Results show a low success in solving problems by the 
participants, but a variety of correct strategies were found, predominantly operation strategies.  

Cristina Zorrilla, Pedro Ivars, Ceneida Fernández and Salvador Llinares present a study in progress 
that aims to examine characteristics of the transition from natural to rational numbers when grade 6
students (11-12 years old) solve multiplicative structure problems. Data was collected throughout a 
teaching experiment (with three phases), a pre-test, an instruction, and a post-test.  Preliminary results 
show different levels of success according to the numerical set used and the type of problem solved.  
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Teaching approaches

Silke Friedrich and Elisabeth Rathgeb-Schnierer investigate whether students work on open-ended 
tasks according to their learning and performance levels. This initial study compares 160 grade 3 
students’ attitudes and achievement levels in mathematics, compared to the complexity of the 
equations individuals created. Results suggest that those who scored highly in achievement tests 
invent particularly complicated equations. (poster)

Laura Korten presents the development of a diagnosis-guided support programme for primary school 
students with mathematical learning difficulties. The programme will be conducted by university 
students, which will stimulate, develop and refine their own fostering and supporting competences. 
Initial results suggest university students need specific criteria to enable them to support children’s 
strategies more effectively. (poster)

Sze Man Yeung and Taro Fujita introduce and provides some examples of productive practices in the 
context of a study that aims to investigate how learning environments of productive practices can be 
embedded into the daily lessons as a part of the curriculum for basic skills and higher-order skills 
training. Number pyramids in a grade 2 classroom will be used, and students’ mathematical thinking 
processes while doing productive practices will be analyzed. (poster) 

Methodological approaches and tools 

Mayu Akoi and Carl Winsløw pursue the aim of elaborating a large-scale model of an arithmetic 
curriculum. Based on the Anthropological Theory of Didactic they created an epistemological 
reference model for the entire domain of arithmetic in a Japanese primary school from grades 1 to 6. 
The model allows observed lessons to be evaluated in the context of the entire curriculum as well as 
the comparison of different curricula.  

Einat Heyd-Metzuyanim, Avital Elbaum-Cohen and Michal Tabach introduce a tool for analyzing the 
arithmetic discourse of students. This tool allows to map students’ participation in the discourse on a 
continuum between ritual and explorative. Therefore, the individual performance of a student is 
assessed based on eight characteristics (e.g., objectification, flexibility or focus on process or 
procedure) that enable to construct a ritual/explorative ratio. 

Anna Lisa Simon, Benjamin Rott and Maike Schindler introduce the use of eye-tracking analysis to 
explore students’ strategy use when naming and locating numbers on a marked number line. When 
measuring response time, they found that the use of reference points, e.g. gazing at the nearest 
reference point, was more efficient than strategies based on counting procedures, such as counting 
from the beginning of the number line.  

Summary 
The discussed theoretical and empirical projects show a huge variety, but also common goals for 
current and future research: We aim to investigae students’ development of conceptual knowledge, 
number sense, flexibility and adaptive expertise in arithmetic. Additionally, we intend to develop and 
evaluate teaching approaches that lead to a deep understanding of arithmetic and number systems.    
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We present a methodological discussion of how to elaborate different scale epistemological reference 
models and in particular, present a large-scale model for the domain of arithmetic in Japanese
primary school, based on the national program and selected textbooks. Our theoretical base is the 
Anthropological Theory of Didactic (ATD), specifically the notion of praxeology and the levels of 
didactic codetermination. We also briefly discuss our motivation for creating such models, namely to 
analyse how students experience shifts between mathematics in different school systems.
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Introduction
When we observe mathematics teaching in a classroom, we observe teachers and students interacting 
on tasks like “Let us think ways of calculating 12+3” or “Let us calculate 29 3” etc., normally 
introduced by the teacher; we may want to understand how the activity promotes various types of 
learning. Other questions may be difficult to answer from what we observe in the class, like: where
do the specific mathematical tasks come from? Why do the students encounter difficulties? etc. In 
my doctoral research project, I am interested in pupils who attend (or attended) mathematics teaching 
in different school systems (Japanese, Swedish and Danish). For these and many other questions in 
educational research, we need to include information on conditions and constraints in a wider context, 
even if we just want to analyse the phenomena observed within certain classroom situations.

A metaphor may be useful here. The world map gives us a prices idea of the location of the countries 
we want to look for. For instance, we can see that Germany is located on the European continent and 
Kenya on the African continent. With a more detailed map, we can find out more details (e.g., what 
cities are there in Germany?). In other words, we are able to look up and compare since we have a
map. Even when preparing a holiday in a small beach town, we need to know how it is situated in 
relation to other locations like airports and so on.

In the same way, when analysing a classroom episode on the teaching of addition of fractions in grade 
3, to understand the actions of teachers and students, a wider “map” of the knowledge at stake in the 
subject (or even in the school institution) may be needed. The main point of the present paper is to 
show how the anthropological theory of the didactic (ATD) can be used to define different scales of
such a “school knowledge maps” (also called epistemological reference models), and to develop a 
methodology for the specific purpose of creating “large scale” models that shows how a mathematical 
domain is structured over several school years within a specific school institution. Concretely, we 
present an epistemological reference model for the domain of arithmetic in Japanese primary school, 
along with a methodological discussion of how that model was produced, based on certain official 
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documents along with textbook material. It is also a main point that the ATD allows us to connect
such large-scale models directly with more detailed models of specific parts of the domain which are 
more commonly used in ATD analysis of classroom episodes.

Theoretical Framework and research question 
Our study adopts the anthropological theory of the didactics (ATD) proposed by Yves Chevallard 
from the early 1980s (Bosch & Gascòn, 2006), more precisely, the notion of praxeology and the levels 
of didactic codetermination. According to ATD, any human knowledge and practice can be described 
by using the notion of praxeology. Praxeologies are made of a practical block: a type of task (T) and 
a technique (τ) and a knowledge block: a technology (θ) and a theory (Θ). In addition, Chevallard
proposed the levels of didactic codetermination for researchers to identify conditions and constraints 
at different levels. The scale of levels of didactic codetermination are constituted of nine different 
levels: 1. Subject 2. Theme 3. Sector 4. Domain 5. Discipline 6. Pedagogy 7. School 8. Society 9. 
Civilisation (Bosch & Gascòn, 2006). Concretely, for instance, the quadratic formula, polynomial 
equations, polynomials, and algebra constitute a subject, theme, sector and domain, respectively 
(Artigue & Winsløw, 2010). The school subject of mathematics is a discipline. Higher levels 
determine all disciplines and will not be modeled here. The first three levels (1-3) are defined by 
praxeologies (Artigue & Winsløw, 2010). A subject corresponds to a few praxis blocks, while a theme 
and a sector are determined by a shared technology and a shared theory, respectively. 

We can now formulate our research question for this study: How to elaborate an epistemological 
reference model for an entire domain of school mathematics, in the sense of the official domain to be 
taught in a given school system, when the model is required to cover several years of teaching, and 
still with a level of detail that would make it useable to situate a concrete teaching situation and to 
compare with how the domain is taught in other school systems? As a case (considered here), how to 
do this for the domain of arithmetic and grade 1-6 in Japanese primary school?

Note that this paper is mainly about how to develop a method based on a strong theoretical paradigm,
and methodology is therefore more important in this paper than the products we exhibit from the 
concrete case mentioned in the research questions, in order to illustrate it our methodological 
approach.

Methodology 1: choice of data (and how to get the data)
Before describing the process of elaborating an epistemological reference model, we explain the 
selection of materials for the case, which could be similar (yet different) according to the context.
There are two levels of official programs in Japan: a general course of study for primary school 
(SHOGAKKO GAKUSHU SHIDO YORYO) and a primary school teaching guide for the Japanese 
course of study in mathematics (SHOGAKKO GAKUSHU SHIDO YORYO KAISETSU SANSU-
HEN). Both are issued by the Ministry of Education, Culture, Sports, Science and Technology 
(MEXT). The former includes the basic act of education, general educational goals, and an outline of 
contents for teaching in each discipline. By contrast, the latter is published in each discipline and 
contains more detail than the course of study. When more detail is sought, we consider also 
mathematics textbooks authorized by MEXT. These are published by commercial textbook 
companies, based on the first mentioned documents, and are selected and distributed by schools. The 
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three levels of material are interconnected, and tightly aligned. The primary sources of our modeling 
approach are the teaching guide for mathematics (refered to in the sequel as the program), and one 
selected textbook series. The textbook is published by TOKYO SHYOSEKI publishing company,
and is widely used both in Japan, and in the supplementary schools that will later be a main focus of 
our research. From the program, we mainly use a table that summarizes mathematical contents for 
teaching in each grade. This table is extremely useful for elaborating large-scale models since it 
specifies that, for instance, teaching addition and subtraction of 2-digit numbers occurs in grade 1. 
One can say that the table specifies the location of themes and sectors. Then, the textbook can be used 
to develop more detailed, local models (example given in table 2), in other words, at the subject level 
in terms of types of task and techniques. This is why we use the program rather than the general 
course of study to develop our models. It is also easier to model because what is shown in the general
course of study school is similarly explained in the programme, with additional detail. In fact, we can 
elaborate the large scale model based on the program to some extent; however, textbooks are needed 
to specify more closely the types of task and techniques to be taught.

Figure 1: How to elaborate different scale models 

The process of elaborating a large-scale epistemological reference model is then as follow:

1. Browse through the table for the domain of arithmetic, dividing it into sectors.

2. Identify themes within each sector from the table, and to clarify and substantiate these further, 
refer to the detailed description in the program and to practices exhibited in relevant textbook 
chapters.

The method of constructing detailed models of themes is then as follow:

1. Browse through relevant textbook chapters, and analyse all examples and exercises to identify 
types of tasks and the corresponding techniques; in conjunction with that, when we identify 
types of tasks and analyse techniques. (In Japan, as textbooks are strongly aligned with the 
program, it is justified for many purposes to base the model on just one textbook system.)

2. Whenever a task is encountered which does not belong to a type of task already identified, a 
new type is added to the model. The end result covers the theme in question.

The second part of our approach is similar to the one employed in the study by Wijayanti and Winsløw 
(2017). They elaborate praxeological reference models for certain themes related to proportion, as 
they appear in a range of different Indonesian textbooks. However, our method to categorize and 
situate different themes and sectors, is new.
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Methodology 2: analysis of data (examples and overall outcomes) 
We now present a large-scale epistemological reference model for the domain of arithmetic in 
Japanese primary school in grades 1-6 (Table 1), based on the above methodology. After the long 
table presenting the result, we provide further details of how the method was applied.

Table 1: An epistemological reference model 1 for the domain of arithmetic 

Sector1: Representation of (positive) rational numbers
Grade

G1 G2 G3 G4 G5 G6
Theme1-1: Compare the size given objects

Th.1-2: Count the size given objects

Th.1-3: Decompositions and compositions of a given 
numbers
Th.1-4: Cardinal numbers

Th.1-5: Ordinal numbers

Th.1-6: Representation of 2-digit numbers

Th.1-7: Representation of 3-digit numbers

Th. 1-8: The principle of the base-10 numeration system

Th. 1-9: Representation of 4-digit numbers

Th. 1-10: Representation of unit fractions

Th. 1-11: Representation of unit of ten thousand N one 
hundred million
Th. 1-12: Representation of fraction 

Th. 1-13: 10 times, 100 times, 1000 times and 1/10 times of 
whole numbers
Th. 1-14: Representation of decimal numbers (0.1)

Th. 1-15: Representation of unit one hundred million and 
trillion
Th. 1-16: Representation of approximate numbers

Th.1-17: Representation of proper fraction, improper fraction, 
and mixed fraction
Th. 1-18: Representation of decimal numbers (0.01, 0.001)
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Th. 1-19: Representation of even and odd numbers

Th. 1-20: Representation of divisors and multiples

Th. 1-21: 10 times, 100 times, 1000 times, 1/10 times and 
1/100 times of decimal numbers 
Sector2: Operations with (positive) rational numbers G1 G2 G3 G4 G5 G6

Theme2-1: Addition of 1-digit numbers 

Th.2-2: Addition of simple 2-digit numbers

Th.2-3: Addition of 2-digit numbers

Th.2-4: Addition of simple 3-digit numbers

Th.2-5: Addition of 3-digit numbers

Th.2-6: Addition of 4-digit numbers

Th.2-7: Addition with decimal numbers (until 1/10)

Th.2-8: Addition with decimal numbers (until 1/100)

Th.2-9: Addition with fractions of the same denominator 
(total is less than 1)
Th.2-10: Addition with fractions of the same denominator 
(total is more that 1)
Th.2-11: Addition with fractions of the different denominator

Th.2-12: Addition using approximate numbers

Th.2-13: Addition using letters such as a, x

Th.2-14: Subtraction of 1-digit numbers

Th.2-15: Subtraction of simple 2-digit numbers 

Th.2-16: Subtraction of 2-digit numbers

Th.2-17: Subtraction of simple 3-digit numbers 

Th.2-18: Subtraction of 3-digit numbers

Th.2-19: Subtraction of 4-digit numbers

Th.2-20: Subtraction with decimal numbers (until 1/10)
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Th.2-21: Subtraction with decimal numbers (until 1/100)

Th.2-22: Subtraction with fractions with the same 
denominator (total is less than 1)
Th.2-23: Subtraction with fractions with the same 
denominator (total is more than 1)
Th.2-24: Subtraction with fractions of the different 
denominator
Th.2-25: Subtraction using approximate numbers

Th.2-26: Subtraction using letter such as a, x

Th.2-27: Multiplication of 1-digit numbers (multiplication 
table)
Th.2-28: Multiplication of simple 2-digit numbers 

Th.2-29: Multiplication (2-digit numbers or 3-digit numbers 
1-digit numbers or 2-digit numbers)

Th.2-30: Multiplication using approximate numbers

Th.2-31: Multiplication of decimal numbers in which a 
multiplier is whole numbers 
Th.2-32: Multiplication of decimal numbers 

Th.2-33: Multiplication of fractions

Th.2-34: Multiplication using letters such as a, x

Th.2-35: Division in which a divisor and a quotient are 1-digit 
numbers
Th.2-36: Division (simple calculation in which a divisor is 1-
digit numbers, and a quotient is 2-digit numbers)
Th.2-37: Division using approximate numbers

Th.2-38: Division (calculation in which a divisor is 1-digit 
numbers or 2-digit numbers, and a dividend is 2-digit 
numbers or 3- digit numbers) 
Th.2-39: Division of decimal numbers in which a divisor is 
whole numbers
Th.2-40: Division of decimal numbers

Th.2-41: Division of fractions

Th.2-42: Division using letters such as a, x
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In our model, representation with rationale numbers and operation with rational numbers were 
identified as the two sectors, corresponding to theories developed throughout the six years of primary 
school. This is because the domain of arithmetic is roughly divided into two parts in the table of the 
program: number and operations, and it is also justified by the details (roughly, themes) appearing in 
these parts. In Japan, negative numbers are taught only in secondary school. Hence, rational numbers 
do not include negative numbers in this context. Within the sector1 and 2, we identified twenty-one 
themes (for instance, representation of 3-digit numbers, Representation of fractions) and forty-two
themes (for instance, addition with fractions of the different denominator), respectively, based on the 
table of the program. Table 1 shows in which grade(s) a given theme is to be taught.

We finally show a more detailed model of one particular theme: Addition of 1-digit numbers (Table 
2), with types of tasks (T) and technique (τ), along with examples of tasks from the textbooks. This 
is the kind of model presented and used (more extensively) by Wijayanti and Winsløw (2017).

Table 2: A praxeological reference model of one theme: Addition of 1-digit numbers

Type of tasks Technique Example of task 

T1: The 
addition of 1-
digit numbers
(cardinal 
numbers, 
cases of
combination)

1: Put the two sets or 
quantities together and 
count the result 

t1: Write the equation. 

We put 2 pencils and 5 
pencils in the box. How 
many pencils do we 
have in total?

Τ2: The 
addition of 1-
digit numbers
(cardinal 
numbers, 
cases of 
increase)

2: Counting up from 
an augend by the 
addend 

t2: Write the equation. 
There are 4 flowers in 
the vase. The girl puts 3 
more flowers in there. 
How many flowers are 
there in total? 

Τ3: The 
addition of 1-
digit numbers 
(ordinal 
numbers).

3: Converting a given 
ordinal number into 
cardinal number based 
on a figure, then use 2.

t3: Sora is 6th from the 
front. Behind Sora, 
there are 4 people. How 
many people are there in 
total? 

Conclusion 
In this paper, we have shown how ATD can be used to answer a methodological question: how to 
elaborate a large-scale model of a curriculum. As a concrete case we have shown different scale 
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models for the domain of arithmetic in Japanese primary school. Such a model can be used, for 
instance, to precisely situate observations from a lesson in a larger context.More generally, the levels 
of codetermination (subject, theme, sector) and praxeologies allow us to elaborate different scale 
models and relate them to each other. We acknowledge that the form and characteristics of study 
programmes and textbooks may vary from country to country. For instance, our next step will be to
develop similar models for the domain of arithmetic in primary school in Denmark. However, the 
Danish curriculum is (roughly speaking) less explicitly structured than the Japanese one; therefore, 
the precision of the model will be different. We will later use the model to address  the main questions
of my PhD project: how the domain of Japanese arithmetic, defined by MEXT, transposes to the 
Japanese supplementary school in Denmark (held on Saturdays), and how the students there 
experience it, as they attend Danish school on working days.

References 
Artigue, M., & Winsløw, C. (2010). International comparative studies on mathematics education: A 

viewpoint from the anthropological theory of didactics. Recherches en didactique des 
mathématiques, 30(1), 47-82.

Bosch, M., & Gascón, J. (2006). Twenty-five years of the didactic transposition. ICMI bulletin,
58(58), 51-65.

Fujii, T., & Majima, H. (2021). Atarashi sansu 1 [New mathematics for elementary school for grade 
1]. Tokyo: Tokyo Syoseki Shuppan.

Fujii, T., & Majima, H. (2021). Atarashi sansu 2 [New mathematics for elementary school for grade 
2]. Tokyo: Tokyo Syoseki Shuppan.

Fujii, T., & Majima, H. (2021). Atarashi sansu 3[New mathematics for elementary school for grade 
3]. Tokyo: Tokyo Syoseki Shuppan.

Fujii, T., & Majima, H. (2021). Atarashi sansu 4 [New mathematics for elementary school for grade 
4]. Tokyo: Tokyo Syoseki Shuppan.

Fujii, T., & Majima, H. (2021). Atarashi sansu 5 [New mathematics for elementary school for grade 
5]. Tokyo: Tokyo Syoseki Shuppan.

Fujii, T., & Majima, H. (2021). Atarashi sansu 6 [New mathematics for elementary school for grade 
6]. Tokyo: Tokyo Syoseki Shuppan.

Ministry of Education, Culture, Sports, Science and Technology. (2017). Syougakko gakusyu shido 
yoryo kaisetsu, sansu-hen [Primary school teaching guide for the Japanese course of study: 
Mathematics]. Tokyo: Nihon Bunkyou Shuppan. 

Wijayanti, D., & Winslow, C. (2017). Mathematical practice in textbooks anaylysis: Praxeological 
reference models, the case of proportion. REDIMAT, 6(3), 307-330. doi: 
10.17583/redimat.2017.2078

Proceedings of CERME12 335



Proceedings of CERME12 336



Proceedings of CERME12 337



Proceedings of CERME12 338



Proceedings of CERME12 339



Proceedings of CERME12 340



Proceedings of CERME12 341



Proceedings of CERME12 342



Proceedings of CERME12 343



Strategies in numerosity estimation
Comparison of students with high and low accuracy

Leonie Brumm1 and Elisabeth Rathgeb-Schnierer2

1University of Kassel, Germany; brumm@uni-kassel.de
2University of Kassel, Germany; rathgeb-schnierer@mathematik.uni-kassel.de

Keywords: Estimation strategy, numerosity estimation, elementary school students. 

Introduction and theoretical framework
Estimation is an important part of everyday activities and is present in everybody’s life. Generally, 
an estimation encourages methods that lead to reasonable, not necessarily accurate results. Estimation 
is also defined as mental comparison and measurement (Schipper, 2009). Consequently, it includes a 
varied set of processes which differ depending on the task and type of estimation. In recent English
literature, four types of estimation are distinguished: Measurement, computational, numerosity and 
numberline estimation (Sayers et al., 2020). This project refers to numerosity estimation. It requires 
translating a non-numerical quantitative representation into a number (Siegler & Booth, 2005). 

Accordingly, estimation is conceived as problem-solving process. Every common problem requires 
different mathematical knowledge and flexible ways. Adaptive problem solving is one crucial goal 
of mathematics education (Siegler & Booth, 2005). Furthermore, research results suggest that 
students who are gifted estimators show better arithmetic skills in terms of counting, number sense, 
mental computation, strategy flexibility, and conceptual understanding (e.g., Booth & Siegler, 2006; 
Crites, 1992).  Particularly, numerosity estimation influences the development of number knowledge 
with increasing numbers (Wessolowski, 2014). So, another reason for fostering estimation abilities 
is the great impact for the development of arithmetic skills (e.g., Luwel et al., 2005; Siegler & Booth, 
2005).

Despite the importance of numerosity estimation, there is a lot more known about other basic 
numerical processes (Booth & Siegler, 2006). However, previous research shows various strategies 
in numerosity estimation. Furthermore, the accuracy in estimating quantities increases with age. The 
performance as well as the adaption to task characteristics seemed to increase with age. In general, 
former studies show that strategy choices in numerosity estimation depend on specific problem 
characteristics. (e.g., Crites, 1992; Siegler & Booth, 2005). 

Aim 
According to previous research, the present study focuses on comparing strategies in numerosity 
estimation in two- and three-dimensional tasks of students (third grade) with high and low accuracy 
in estimation. Another emphasis is on investigating the exhibited strategies in relation to task 
characteristics. Further, the project targets to reveal strategies which lead to high estimation accuracy 
according to the type of task. We are also interested in correlations of arithmetic skills and numerosity 
estimation abilities. 
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Method
Data will be collected by two discretely developed instruments. We developed a numerosity 
estimation test to assess estimation accuracy. The test results facilitate to select the students for semi-
structured interviews. The semi-structured interviews intend to reveal estimation strategies.  

The test is digitally implemented in an online survey software. The final test will include 21 
estimation tasks with different characteristics. A task consists of a number of elements that is to be 
estimated. After structuring different types of tasks, seven tasks were chosen for the estimation test.
So, following characteristics will be considered in the test: Dimension (2D/3D), arrangement 
(structured/unstructured) and elements (equal/unequal). It is important to regard that on a screen it is 
only possible to see a representation of a three-dimensional quantity. Amongst others, that is one 
reason why not all summarized task characteristics were chosen. Every of the chosen seven tasks will 
appear three times in a different number range. The number range up to 50, from 50 to 100 and from 
100 to 150 is covered that way. Overall, the students can see the picture for a certain time. After this 
time expired, the students still have time to adjust their result with a slider. Before the test starts, an 
introduction of estimation as well as an instruction how to use the test are intended. Students who 
made accurate and less accurate estimates in the test will be part of the interviews. A semi-structured 
guideline will be developed. It will mainly contain tasks of the estimation test. For evaluating the 
interview, it will be videotaped. The use of both instruments enables new perspectives on numerosity 
estimation. Besides, other constructs like linguistic and arithmetic skills will be surveyed.

The pilot study of the numerosity estimation test (N = 31) shows that the test is reliable. The 
Cronbach’s Alpha of the 2D subscale is = .81 and = .80 for the 3D subscale.
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The purpose of this research is to determine the strategies which 5th grade gifted students use in 
number sense problems. This study has been designed as a case study, which is one of the 
qualitative research designs. The sample of the study consisted of 21 fifth-grade students who were 
diagnosed as gifted in a centre of a southern city in Turkey. The number sense test was used as the 
data collection tool. This test consisted of 25 items, which were prepared in line with the five basic 
number sense components. The data obtained from the data collection tool were 
analysedthroughqualitative analysis methods. In addition, the students’ opinions and answers to the 
questions were taken. The research findings presented that 25.90% of the students' solutions are 
number sense-based, 23.42% of them are partially number sense-based, and 43.61% of them are 
rule-based strategies. 

Keywords: Number sense, Number sense components, Number sense strategies, Gifted students. 

Introduction and Theoretical Framework  
Number sense refers to a person's general understanding about numbers and operations in addition 
tohis ability and tendency to use this understanding to make mathematical judgments in flexible 
ways and to develop useful strategies for coping with numbers and operations. It reflects the 
tendency and ability to use numbers and quantitative methods as a tool for conveying, processing 
and interpreting information (McIntosh, Reys&Reys, 1992). 

According to the standards of National Council of Teachers of Mathematics (NCTM,2000), 
students from pre-school to the end of the secondary education period must have understood 
numbers, the ways of representing numbers, the relationships between numbers and number 
systems, the meaning of operations and their interrelationships, and they must have been able to 
calculate smoothly and make appropriate estimations. On the other hand, it is emphasized that 
students must have developed the concept of number sensebased on these standards.Within the 
educational context, not every individual is the same and they have different learning rates, so there 
are individual differences among students. In this context, gifted students can be considered in one 
of the student groups that show individual differences.  

Special talent is defined as a person's high level of performance in abstract thinking and reasoning 
skills and being above the normal intelligence age (Gagne, 2004). Renzulli (1978), on the other 
hand, stated that individuals with special talent have a high level of task awareness and creativity 
skills and they have academic skills above average. 

Due to their different cognitive, personal and emotional characteristics compared to students with 
normal development, the question of how well gifted students have mastery of number sense 
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strategies comes to mind. Foustana, Luwel, &Verschaffel (2017) stated that there are individual 
differences in the choice of strategy while solving the problems. In addition, stated that the choice 
of strategy depends on talent.In the related literature, there are some studies conducted about 
number sense with a group of gifted students, one of the group of students which show individual 
difference, (Doğan&Paydar, 2020;Tunalı, 2018; Wang, Halberda&Feigenson, 2017). Available 
resources were reviewed and no study investigating the strategies that are used by gifted fifth grade 
students in the number sense test was found. It becomes important to determine the number sense 
strategies they use when solving number sense problems of gifted students, a group of students with 
individual differences, since it produces significant results to be able to meet the educational needs 
of these individuals. Moreover, the study might have some contributions to create awareness about 
the importance of number sense of gifted and talented students in mathematics education.In this 
context, this study aimed to determine the strategies used by the fifth grade-gifted students while 
solving the number sense problems. 

Method 
Design of the Study  

This study was designed as a case study, qualitative research designs. In case studies, generally 
more than one data collection methods are used. The purpose is to reach a rich variety of data that 
will confirm each other. In this study, the answers given by the students to the Number Sense Test 
(NST) were investigated as documents. In addition, the students’ opinions and answers to the 
questions were takeninto account. 

Participants  

In Turkey, there are Science and Art Centres (SAC) in order to provide the most appropriate 
education and training environment for the gifted preschool, primary, secondary and high school 
individuals who have individual differences.Students who are diagnosed as gifted by standard tests 
receive education in line with their needs in Science and Art Centres outside of formal education 
hours.This research was conducted with 9 female and 12 male students, 21 in total, who were 
diagnosed as gifted and studying at fifth grade in the centre of a city in the southern part of Turkey. 
The research sample was determined on a voluntary basis among the students studying at the 
Science and Art Centre. 

Data Collection Tool 

The data collection tool consisted of some questions in the number sense scale adapted by Singh 
(2009) from McIntosh, Reys, Reys, Bana, and Farrell, (1997). Following the field experts’ 
suggestions, some of the questions in the original form were excluded from NST, as they were not 
considered appropriate for the levels of the fifth grade students. Moreover, the views of a language 
specialist were taken for controlling the translated version of NST. In line with the advice given, 
some measurement units such as miles and gallons, which were not used in Turkey, was taken out. 
Then, the test was finalized. There are 5 components in the test as understanding the concept of 
number, using the multiple representations of numbers, understanding the effect of operations, 
using equivalent expressions, using calculation and counting strategies. Understanding number 
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concepts of component is about understanding the value that the number represented and the size 
that the number indicated. They understand and use the numbers and relationships completely 
(Harç, 2010). For example, the skill of knowing that there are indefinite decimal number between 
0.7 and 0.8 is a sign of this component. Using multiple representations is related to knowing 
different representations of the number or the value the number represented. Understanding the 
effect of operations is related to realize how the result can be affected when a number or the value 
of the operation is changed in an operation. Using equivalent expression is related to knowing the 
numbers in different expressions, that is, their equivalences. For example, understanding that two 
out of five can also be represented by an equivalence or understanding that 80 x 0.5 and 80:2 are 
equivalent symbolize this component (İymen, 2012). Using counting and computation strategies is 
related to knowing the result of the operation without using pen and pencil. The components of 
Number Sense Test (NST), the distribution of the questions about these components and some 
sample items are presented in Table 1. 

Table 1:The components of Number Sense Test, the distribution of the questions about these 
components and some sample items 

Components Items Sample Item 

Understanding 
the concept of 
number 

Number of Items: 6  

Items: 1,6,11,16,21,25 

Item 1:Is there a fraction between 
5
2

and
5
3 ? If 

yes, how many?  

Using multiple 
representation 

 

Number of Items:5 

Items:2, 7,12,17, 22 

Item 7:

Some letters are given on the numerical axis.  

Please, make up a fraction of letters in which the 

numerator is about two times the denominator. 

Understanding 
the effect of the 
operation 

Number of Items:5 

Items:3, 8,13,18,23 

Item13: Circle the appropriate choice for the 

solution of 87 x 0.09.                                    

A) much bigger than 87 

B)a little smaller than 87  

C) a little bigger than 87  

D) much bigger than 87 

Using the 
equivalence 
representation 

Number of Items:4 

Items:4,9,14,19 

Item 9: Which of the following operations’ result 

is bigger?  

A) 145 x 4                      B) 144 + 146 + 148 + 150 

Using calculation 
and counting 
strategies 

Number of Items:5 

Items:5,10,15,20,24 

Item 24:Circle the appropriate choice forthe result 
of [ 6 x 347 ] ÷ 43.     

 A) About 30 B) About 50          
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 C) About 80  D) about 100 

Total 25 items  

 

Data Collection and Analysis  

The data of the research wereobtained by means of the interviews and document analysis technique. 
The students’ answers on the number sense test were used as documents in this research. The 
interviews were conductedwith the same students in order to determine the way they thought while 
solving the questions in the number sense test. The NST wasadministered to each student 
individually. After the students finished answering the questions in the test, they were interviewed 
to find out the strategy they used while solving the questions. The interviews were recorded by a 
recorder after necessary permissions had been obtained from the students.  

The data of the research was analyzed by making use of qualitative analysis methods. The audio 
recordings obtained from the interviews were transcribed and they were analyzed descriptively. 
Descriptive analysis is interpreting and summarizing the research data according to the themes 
which had been determined before (Yıldırım&Şimşek, 1999). Codes such as S1, S2, … were 
assigned to the students who were interviewed so as to keep their identities confidential. The 
strategies used while solving the number sense problems are no answer(Unanswered) or 
explanation (Unanswered), an answer containing no explanation (Unexplained), rule-based 
strategy (RBS), number sense based strategy (NSBS) and partially number sense based strategy 
(PNSBS).  These strategies were explainedin below. 

No answer or explanation (Unanswered): This category contains situations in which there are no 
answers or explanations,  

An answer containing no explanation (Unexplained): This category contains answers without any 
explanation,  

Rule-based strategy (RBS): This category contains finding the result by grounding on the operations 
or rules. For example; finding the result by equalizing denominators while adding two fractions 
with different denominators to each other, 

Number sense based strategy (NSBS): This category contains understanding the numbers, knowing 
the relative size of numbers, using reference point, estimating the result and being able to evaluate 
its appropriateness, knowing the effect of numbers on operations (Şengül, 2013). For example; 
being able to judge that the fraction 4/7 is bigger than the fraction 2/5 without using any algorithms,  

Partially number sense based strategy (PNSBS): This category contains situations in which both 
rule-based and number sense based strategies are used together. For example,using the points of 1 
and 0.5 as reference points while comparing numbers. Feeling obliged to convert the number into a 
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decimal number while deciding if the number 8/15 is bigger than 0.5 and doing this by using paper 
and pencil algorithm when needed (Şengül, 2013). 

Findings 
In this part, findings obtained from the research data and interpretations are presented.  

The Five Components of the Numbers Sense Strategies 

The strategies that 21 gifted students used for the problems about each number sense component 
were investigated and findings approached on the basis of components.525 answers that was used 
related to the strategies (25x21=525) were obtained from the students‟ solutions in the NST of 25 
items.The distribution of the strategies that the students used in the answers to the questions in NST 
is presented in Table 2. 

Table 2: The distribution concerning the strategies about the five the component theNCT 

Components Strategies F % 

Understanding the 
concept of number 

NSBS 30 23.80 
PNSBS 17 13.49 

RBS 61 48.41 

Unexplained 3 2.38 

Unanswered 15 11.90 

Total 126 100 

Using multiple 
representation 

 

NSBS 15 14.28 
PNSBS 36 34.28 

RBS 44 41.90 

Unexplained 2 1.90 

Unanswered 8 7.61 

Total 105 100 

Understanding the effect 
of the operation 

NSBS 47 44.76 
PNSBS 19 18.09 

RBS 38 36.19 

Unexplained - - 

Unanswered 1 0.95 

Total 105 100 

Using the equivalence 
representation 

NSBS 35 41.66 
PNSBS 13 15.47 

RBS 32 38.09 

Unexplained 3 3.57 

Unanswered 1 1.19 

Total 84 100 

Using calculation and NSBS 9 8.57 
PNSBS 34 32.38 
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counting strategies RBS 58 55.23 

Unexplained 1 0.95 

Unanswered 3 2.85 

Total 105 100 

Total NSBS 136 25.90 

PNSBS 123 23.42 

RBS 229 43.61 

Unexplained 10 1.90 

Unanswered 27 5.14 

Total 525 100 
 

As seen in Table 2, according to the component of understanding the concept of number, 48.61% of 
the strategies that the students used in the answers to the items in NST are rule-based 
strategies..Moreover, some examples from the interviews with students and some sample answers to 
the items in the component of understanding the number concept are given below (Figure 1). 

 
Figure 1:Solution by using rule-based strategy 

Item 21 in NST is “In which of the following operations is the result bigger than 1? Please, find?”. 
The explanation of the student who gave the answer in Figure 1 is as follows;“I equalized the 
denominators as I did here. When I equalized the denominators, I reached the result in Choice D  
Choice D is bigger than 1 (S9).”When the solution in Figure 1 and the opinions of the student are 
considered together, it can be said that the student used rule-based strategy. While S9 was doing 
addition in fractions, he solved the problem by grounding on the rules of equalizing the 
denominators. The explanation of S4 for the item 21 in NST is as follows; “I considered the choices 
whether they were bigger or smaller than a half. Both fractions in choice A were smaller than a half 
so they were also smaller than 1. In choice B, there are two fractions. One of them is a half and the 
other one is smaller than a half. In choice C, both fractions are smaller than a half. In choice D, 
there is the addition of a fraction bigger than a half and a half so the number is bigger than 1 (S4)”. 
Thus, it can be interpreted that from the explanation of S4 that he used the number sense based 
strategy. 

The findings about the strategies that are used in the problems of the component of using multiple 
representations are given in Table 2.Table 2 shows that 41.09% of the strategies that the students 
used in the answers to the items in NST are rule-based strategies. In addition, some excerpts from 
the interviews with students and some sample answers to the items in the component of using 
multiple representations are given below (Figure 2). 
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Figure 2: Solution by using rule-based strategy 

Item 7 in NST is “Some letters are given on the numerical axis. Please, make up a fraction in which 
the numerator is about two times the denominator”. The explanation of the student who gave the 
answer in Figure 2 is as follows;“I assigned values to the letters on the numerical axis. I assigned 
letter E as 6/4 and letter C as 3/4. I found out that the result would be about two times when I took 
the first fraction as it was, turned the second faction upside down and multiplied them (S15)”.When 
the solution in Figure 2 and the opinions of the student are considered together, it can be interpreted 
that the student used rule-based strategy in his solution. The explanation of S7 about his answer for 
item 7 is as follows;“As number G is bigger than 2 andnumber E is bigger than 1, I thought G/E 
would be about 2 (S7)”. Thus, it can be interpreted S7 used number sense based strategy in his 
solution. 

As seen in Table 2, according to the component of understanding the effect of the operation 44.76% 
of the strategies that the students used in the answers to the items in NST are number sense based 
strategies. According to the component of using equivalence representations 41.66% of the 
strategies that the students used in the answers to the items in NST are number sense based 
strategies. Also, according the component of using calculation and counting strategies 8.57% of the 
strategies that are used by the students in the answers to the items about using calculation and 
counting strategies in NST are number sense based strategies and 55.23% of them are rule-based 
strategies.  

When Table 2 is considered, it is seen that 43.61% of the strategies that the students used while 
answering the items in NST are rule-based strategies. Table 2 presents that majority of the students 
used rule-based strategies while solving the problems in NST.  

Conclusion andRecommendations  

This study, in which it is aimed to determine the strategies that are used by fifth grade students in 
solving number sense problems, grounds on the findings received from 21 students.When all the 
solutions obtained from the students (without considering whether they are right or wrong) are 
considered, it is seen that 25.90% of the students' solutions are number sense-based, 23.42% of 
them are partially number sense-based, and 43.61% of them are rule-based strategies. 

Er and Artut (2018), in the studythey conducted with 8thgrade students with normal 
developmentwith the same data collectiontool, stated that the students mostly (55, 57 %) used the 
rule-basedstrategy in their answers.Although the percentage of gifted individuals using rule-based 
strategies is high, it can be said that they prefer number sense-based strategies when compared to 
students with normal development.This may be due to the characteristics of gifted students.Tunalı 
(2018), in his study,found that the number sense levels ofgifted students were betterthan those with 
normal development.In addition, in his study, it was determined that gifted students preferred 

Proceedings of CERME12 368



 

 

number sense strategies more, while students with normal development preferred rule-based 
approaches.In this context, it can be said that the results obtained from this study are parallel to the 
results obtained in Er and Artut (2018) andTunalı (2018). 

When the importance of number senseis taken into consideration, the number of activities about the 
concept of number sense should be increased in the curriculum. Moreover, these activities should be 
administered in the lessons and gifted students should be encouraged to use their number 
senses.Furthermore, training should be given to gifted students to develop their mental calculation 
skills and prediction skills, so students’ sense of number are developed. 
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Introduction 
The importance of fostering number sense from the early years of learning has been highlighted by 
both universal references and normative frameworks for decades. However, despite this long history, 
no consensus has been reached on the definition of this object of study and how it should be measured 
and evaluated. This paper presents a revision of instruments dealing with number sense assessment. 

Given that early numeracy skills are vital for later mathematics learning (Aunio, 2019; Jordan et al., 
2009) it is necessary to have appropriate assessment tools that provide detailed information about 
children's performance and development (Purpura and Lonigan, 2015) and allow teachers to plan 
targeted instruction and interventions (Aunio, 2019).  

Among the typology of existing instruments, Purpura et al. (2015) distinguish between those that 
perform discrete measures, assessing individual components and specific mathematical skills, versus 
those that perform broad content measures focusing on multiple mathematical components. Foegen 
et al. (2007) indicate that a tool covering a broader range of content might be a more suitable means 
of assessing early mathematical skills in children as these, particularly in the early years, develop as 
a sequence of connected concepts and skills (National Mathematics Advisory Panel, 2008). 

The instruments studied in this paper are focused on the assessment of number sense, considering 
both early number sense (ENS) and mature number sense (MNS), according to the approach of 
Whitacre et al. (2020). ENS includes learned skills that involve explicit knowledge of numbers, such 
as number recognition abilities, counting, number pattern recognition, number comparison, 
performing arithmetic operations, measurement, and estimation concepts. For its part, MNS focuses 
on habits of mind and ways of behaving mathematically that are considered desirable, such as the 
flexible manipulation of numbers and operations or the ability to use numbers and quantitative 
methods as a means of communicating, processing, and interpreting information (McIntosh et al. 
1992). 

In this paper, we focus on these two components since we consider them to be of greatest interest in 
the field of mathematics education, precisely because they can be acquired and learned. Some of the 
instruments revised here are not specific to number sense, but address some of its dimensions within 
a broader assessment.  
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The instruments analyzed were found in documents obtained after searching the SCOPUS databases 
with the descriptors "tool" AND "numeracy" AND "primary education", "test" AND "mathema*" 
AND "primary education", "numeracy test" AND "primary education", and "number sense" AND 
evaluation. This search generated an initial sample of 187 articles. Subsequently, an abstract review 
was performed to select papers that focused on the use of instruments to measure number sense or 
related mathematical skills.  

The analysis of these works leads us to highlight the existence of 10 instruments, among which there 
is a proliferation of those focused on the assessment of early number sense, mainly for ages between 
3 and 8 years, while there are far fewer instruments for the assessment of the so-called mature number 
sense. 

It is also observed that all the instruments analyzed approach the assessment of number sense from a 
quantitative perspective. However, given that there is consensus in considering number sense as 
something easily observable, it seems reasonable to address in future work instruments that attempt 
to assess number sense from a qualitative approach. 
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This paper is about the initial part of our research concerning the question of how to introduce 
multiplication in mathematics classes and how to support children’s understanding of it. For that 
purpose, we developed a theoretical approach first which makes a distinction between basic ideas 
(Grundvorstellungen), strategies and representations of multiplication. On this basis, we are now able 
to investigate more closely how different aspects of the multiplication teaching fit together and which 
difficulties might arise in their interplay. In this paper, an example from a German mathematics 
textbook illustrates our theoretical reflections and distinctions.  

Keywords: Multiplication, Grundvorstellungen, strategies, representations, textbooks. 

Introduction 
It is multiplication that, for primary school children, opens the door to larger whole numbers. In many 
countries, the action of repeated addition is commonly used to introduce multiplication. This initial 
approach often shapes the idea of multiplication and, thus, tends to become the dominant frame for 
interpreting multiplicative situations – for students as well as for primary teachers (Askew, 2018). 
However, relying exclusively on repeated addition proves to be critical for sustainable understanding 
of multiplication (Bakos & Sinclair, 2019; Askew, 2018). In relation to these findings, we plan a 
larger empirical study to have a closer look on the question of how multiplication is actually 
introduced in everyday classroom communication. But for now – and in this paper –, we focus on 
clarifying our theoretical perspective and, thus, differentiate between basic ideas in the sense of 
Grundvorstellungen (GVs), strategies and representations of multiplication. This way, we have 
become able to investigate more closely how different aspects of teaching multiplication fit together 
and which difficulties might potentially arise in their interplay.  

Thus, in this paper, we present part of our theoretical framework and approach the following 
questions: 1) What are basic ideas of the mathematical concept of multiplication? 2) What are 
appropriate strategies for obtaining correct solutions to multiplication problems? 3) Which 
representations can help to teach and learn about those basic ideas and strategies? 

We will present the example of a German textbook in order to illustrate the use of our theoretical 
reflections: What suggestions of handling the complex interaction of basic ideas, strategies and 
representations can be found in the textbooks?  

On Grundvorstellungen 
In order to be able to support children’s understanding of multiplication, we have to ask what 
multiplication is all about: What does it actually mean to multiply? For our study, we follow vom 
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Hofe & Blum (2016, p. 226) and use the German term Grundvorstellung (GV; pural 
‘Grundvorstellungen’). Grundvorstellungen (GVs) characterize mathematical concepts and their 
applications to real-life situations. On a primarily normative level, they are descriptions of the 
relationship “between mathematical structures, individual-psychological processes, and subject-
related contexts, or, in short: the relationships between mathematics, the individual, and reality.” 
(ibid, p. 213). With regard to elementary school, the real contexts are, above all, everyday contexts 
of action. For the case of multiplication, then, the question is which everyday actions have an inherent 
multiplicative structure.   

According to the GVs concept, three aspects can be distinguished: The first aspect is the “constitution 
of meaning” of a mathematical concept (ibid, p. 230). In our context, this means that children get to 
understand multiplication by linking the mathematical procedure to real-life contexts, situations, and 
actions. The second aspect is the “generation of a corresponding mental representation” (ibid, p. 
230). In our context, this means that children approach multiplication by constructing mental 
representations which include exactly those aspects of the real-life context that are relevant from a 
mathematical perspective.  The third aspect is the “ability to apply” the mathematical concept to real-
life situations by recognizing a corresponding structure (ibid, p. 230). In our context, this means that 
children become able to apply the mathematical concept of multiplication to real-life contexts by 
recognizing multiplicative structures in the complexity of real-life situations.    

We chose the GV concept for our research on multiplication for at least two reasons: First, the concept 
highlights that teachers (and mathematics educators) have to make decisions on a normative level:  
From an expert’s point of view, which everyday actions have an inherent multiplicative structure and 
can be, for this reason, a suitable starting point for individual constitution of meaning? Thus, the GV 
concept focuses very clearly on the connection to real-life situations. Second, the GV concept allows 
us to differentiate between this normative level on the one hand and an empirical level on the other 
hand. Vom Hofe & Blum (ibid, p. 232) speak about a normative and a descriptive way of using the 
GV concept. When we use the concept in a descriptive way, we try to get as much information as 
possible about the mental representations that individual students actually have developed. Those 
mental representations might correspond to the intended ones more or less, but they are crucial when 
it comes to the actual processes of teaching and learning.  

In the following, we will first use the GV concept in a normative way. Thus, we present two essential 
GVs of multiplication that can be found in the literature. Both of them ground on the activity of 
building units or – a bit shorter – of unitizing (Götze & Baiker, 2020; Lamon, 1994). This initial 
selection might need to be complemented and adapted in our ongoing research work. 

Repeated addition 

In Germany as in many other countries, repeated addition is the most common approach to introduce 
the basic idea of multiplication. Tasks then focus on sequential situations in which someone performs 
a specific action several times. An example from the German textbook “Zahlenbuch 2”: A boy carries 
3 books from a box behind him to a table in front and he does it exactly 7 times (figure 1, left). The 
boy says: “Always 3 books on a pile.”. Two aspects are characteristic of the GV repeated addition: 
Someone bundles units and performs, one after another, a specific action on each of those units.     
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Figure 1: Dynamic and static situations

The story about carrying books from a box to a table can be told mathematically in two different 
ways. It can be described as a process of repeated addition (3+3+3+3+3+3+3) or, in order to shorten 
the story, as a process of multiplication (7·3). The different meanings of multiplicand and multiplier 
fit perfectly well to the real-life situation (3 books on each pile, carrying 7 piles one after another) 
(Götze & Baiker, 2020). Thus, multiplication is introduced as a ‘shortcut’ of a repeated addition. 
However, is multiplication really nothing more than a certain form of adding? 

In other tasks, the chronological sequence is not highlighted that much. For example, nine roses were 
put in each package for sale at the “Florida Botanical Garden’s annual gift and plant sale” (figure 1, 
right, from the US-American textbook “enVision Mathematics Grade 3”). This is a rather static 
situation; all activities are already completed. The only question that brings us to repeated addition is
the question of the total number: “How many roses are in 8 packages?” In order to find an answer to 
that question, the boy suggests to add (and subtract) repeatedly: “To find the next multiple of 9 in the 
table, you can add ten and subtract 1.” Thus, repeated addition is mainly presented as a strategy to 
obtain a correct solution. 

In fact, there are mathematics educators that come up with doubts about the GV of repeated addition
and its potential for understanding multiplication. For example, Nunes & Bryant (2009, p. 9) 
summarize: “Finally, it is assumed that, in spite of the procedural links between addition and 
multiplication, these two forms of reasoning are distinct enough to be considered as separate 
conceptual domains.” Similarly, Bakos and Sinclair (2019) state, together with Akew (2018), that the 
exclusive reference to repeated addition implies “limiting access to opportunities through which 
functionally thinking can emerge” (Akew 2018, p.1). Since several years, this position is supported 
from different sides. First, there are empirical studies that report a correlation between the use of 
addition strategies and the underachievement on multiplication problems (Baroody, 1999; Park & 
Nunes, 2001). Second, studies focus on successful forms of teaching multiplication which do not 
introduce multiplication as a ‘shortcut’ of addition, but as a mathematical operation in its own right
(Park & Nunes, 2001). Third, some researchers stress that the GV of repeated addition does not allow 
to recognize the functional relation between multiplicand and multiplier (Askew, 2018). This last 
reference leads us directly to the second GV.

One-to-many correspondence

The concept of one-to-many correspondence refers to the activity of comparing quantities in a certain 
way (Vergnaud, 1983). A first way of comparing quantities is to compare them additively. For 
example, Sara has 7 playing cards more than Jonathan has. There are two sets of cards and we can 
determine the difference between these two sets by adding: If Jonathan collects 7 additional playing 
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cards, he will have as many cards as Sara. Thus, additive reasoning stems from the (mental) action of 
joining and placing sets in one-to-one correspondence. A second way of comparing quantities is to 
compare them multiplicatively (Sinclair & Bakos, 2019). For example, “Amy’s Mum is making 2 
pots of tomato soup. She wants to put 3 tomatoes in each pot of soup. How many tomatoes does she 
need?” In this case, there are more than two quantities and these quantities are not compared 
additively. Instead, the action is rather putting two variables in one-to-many correspondence (Nunes 
& Bryant, 2009, p. 11). Two aspects are characteristic of the GV of one-to-many correspondence: 
Someone performs an action that keeps the ratio between two variables (tomatoes, pots) constant and 
that leads to bundled units – at least in the end. 

It is noteworthy that the concrete action can actually be performed in one way or another. For 
example, Amy’s Mum can put one tomato in each pot until there are 3 tomatoes in both pots or she 
can always put 3 tomatoes at once in a pot. Both actions lead to the same result, to a constant ratio 
between tomatoes and pots. Thus, in the GV of one-to-many correspondence, the focus is put on 
relations between quantities. In other words, the basic idea of one-to-many correspondences puts 
particular emphasis on the relation between the multiplicand and the multiplier. Accordingly, this GV 
stresses the asymmetry of multiplication as well as repeated addition does.  

The example of cooking tomato soup (with surprisingly few tomatoes) is taken from a study 
conducted by Park & Nunes (2001, p. 768). In this intervention study, the researchers compare two 
treatment conditions: teaching of multiplication through repeated addition and teaching through one-
to-many correspondence. Both groups made significant progress from pre- to posttest. But, at posttest, 
the group taught by one-to-many correspondence performed significantly better than the repeated 
addition group in multiplicative problems even after controlling for level of performance at pretest 
(Park & Nunes, 2001, p. 770). On this basis, the researchers come to the conclusion that teaching of 
multiplication should not be grounded in repeated addition, but in one-to-many correspondence (ibid, 
p. 772). Further research results strengthen this position, namely those about children’s informal 
knowledge about multiplication. Several studies report that many children already start school with a 
remarkable understanding of one-to-many correspondence and that this informal knowledge seems 
to be quite resistant (Nunes & Bryant, 2009, p. 12, 21). Moreover, many children, who have not been 
taught about multiplication yet, quite successfully use correspondence strategies in order to solve 
multiplicative reasoning problems (Kouba, 1989; Carpenter et al., 1993).  

On strategies 
Independent of the focussed GV, it is another important aspect of teaching multiplication to provide 
strategies for children which allow them to obtain correct solutions to multiplication problems in a 
flexible and efficient way (Nunes & Bryant, 2009). However, strategies taught in mathematics classes 
seem to be different in different countries. To start with, we draw on the German perspective and 
refer to core strategies (Götze & Baiker, 2020). 

Knowing by heart 

From our perspective, knowing by heart is not actually a calculating strategy. Thus, you will not have 
to calculate anymore if you know the solution to a multiplication problem by heart. Still, it can serve 
as a very helpful “tool for solution” – for example as part of addition strategies as we will see in the 
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next paragraph (Rathgeb-Schnierer & Green, 2013, p. 354). Knowing by heart is not necessarily 
linked to (any) Grundvorstellung of multiplication.  

Repeated addition 

Repeated addition was introduced as a GV above. Although some researchers argue that it is not 
really a separate idea of multiplication, it is understood as an appropriate strategy to solve 
multiplication problems anyway (Götze & Baiker, 2020).  

One possibility to realize repeated addition is to add every single unit: 3+3+3+3+3+3+3 = 21. 
Alternatively, you can start from a result that you know by heart and add or subtract the ‘missing’ 
units: 7·3 = 15+3+3 = 21. However, the concrete calculation process may look like, the “procedural 
links between addition and multiplication” become obvious (Nunes & Bryant, 2009, p. 9).  

Changing order  

Changing the order of the factors is a helpful strategy when solving multiplication tasks. This strategy 
is based on the mathematical structure of commutativity. Nevertheless, it is quite difficult to link this 
strategy to real-life contexts and, thereby, to the intended GVs. It is much easier, but takes longer to 
carry 7 times 3 books from a box to a table than it would be to carry 3 times 7 books. If Amy’s Mum 
put 2 instead of 3 tomatoes in each pot and took 3 instead of 2 pots, the soup might still taste the 
same, but there would be more of dishwashing to do.   

On representations 
As we can see so far, the interplay of GVs and strategies might be rather difficult in detail. In this 
regard, it is particularly relevant that all of them require representations in order to be accessible to 
children in mathematics classes (Kuhnke, 2013). For this very reason, representations are the third 
part of our theoretical perspective.   

Real-life or didactical  

Kuhnke (2013, p. 42) differentiates between real-life and didactical representations. Real-life 
representations take up real-life contexts that children probably already know, whereas didactical 
representations are specially made for teaching purposes and, therefore, are strongly adapted to the 
intended mathematical structure. With a view to GVs, this distinction is important because real-life 
representations are much more helpful for linking the mathematical concept of multiplication to 
typical application situations that children might know from their everyday lives outside school.   

Real-life: Picture sequences  

Picture sequences are real-life representations. They are well-known and widespread representations 
of multiplication and usually consist of two or more pictures telling a story of repeated actions. Thus, 
this representation is closely connected to the GV and the strategy of repeated addition. As we see in 
the story of the boy and the books above, the story-line itself is reduced to a minimum. Thus, links to 
every experiences are supposed to be realized and, at the same time, processes of abstracting and 
seeing the mathematical aspect within that story are meant to be enabled.  
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Real-life or didactical: Unstructured and structured quantities 

Pictures of structured or unstructured quantities might be either realized in real-life or in didactical 
representations. This way of representing multiplication is based on the discrimination of 
multiplicand and multiplier. In the case of unstructured items, the action of unitizing is highlighted. 
The one-to many correspondences may be visualized as well as the concept of repeated addition. 
Strategies supported by this way of representing are unitizing and repeated addition. 

Mainly didactical: Rectangular arrangements 

In Germany, rectangular arrangements as a particular form of structured quantities are quite common. 
They might be either real-life or didactical representations and support a close link between geometry 
and arithmetic. Rectangular arrangements especially enable the visualization of the commutative 
structure of multiplication. Such structured arrangements can represent both GVs: The focus can be 
on repeated addition or on one-to-many correspondences. Strategies supported by this way of 
representing are unitizing and counting units, repeated addition and changing order. 

5. First insights: Textbooks  
How is multiplication introduced in textbooks? Do representations align with certain GVs? What 
strategies are introduced and supported? In the following, we present an example from our textbook 
analyses in order to illustrate the use of our theoretical distinction between GVs, strategies, and 
representations as an analytic framework. Thus, we ask for 1) representations in order of their 
appearance and analyze on this basis 2) which GVs are addressed and 3) which strategies are 
supported. 

In the German textbook „eins zwei drei Mathematik 2“ (one two three mathematics 2), the 
introduction of multiplication is to be found on pages 72-73.  

Context: A common classroom.  

Representations: Rectangular arrangements embedded in the classroom situation, didactical 
rectangular arrangement, pre-structured representations of quantities  

Tasks: Talk about the picture, find multiplicative structures in your own classroom, talk about 
quantities and about amounts of units, write multiplication tasks according to the representations 
given, draw representations  

Addressed GVs: repeated addition 

Potentially supported strategies: knowing by heart, changing order, repeated addition 

In this introduction, the focus is exclusively on the GV of repeated addition, although the given 
everyday situation of a classroom would support a much wider spectrum. Such pictures basically 
offer the opportunity to include unstructured quantities which require the process of unitizing and 
support the concept of one-to-many correspondences. Besides, the tasks reduce the potentially wide 
range of supported concepts. Accordingly, this textbook conceptualizes multiplication solely in the 
context of repeated addition.  In particular, multiplication is reduced to a certain way of writing and 
speaking. It is understood as a ‘shortcut’ for addition. 
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The next pages 74-75 focus on rectangular arrangements. 

Context: Children working in a (math) class room  

Representations: rectangular arrangements (one embedded in a story line showing the sequence 
of progression, one row after the other is uncovered)   

Tasks: write the addition and the multiplication problem, show the multiplication problem on the 
hundred board, draw the multiplication problem and write the matching addition problem. 

Addressed GVs: repeated addition 

Potentially supported strategies:  knowing by heart, repeated addition 

On these pages, the focus is put on rectangular arrangements. These didactical representations offer 
the opportunity to refer to the commutative structure of multiplication and to introduce the changing 
of order as an appropriate strategy to solve multiplication tasks. Interesting enough, this potential is 
not used. Instead, children should ‘translate’ between one type of representation (pictures of 
rectangular arrangements) and another (symbolic representations, multiplication and addition 
problems). Accordingly, there is a focus on the structure accomplished by a differentiation in rows 
and columns. Again, repeated addition is the only addressed GV and the only addressed strategy as 
well. The misleading idea of multiplication being a different way of writing additions is strengthened. 

6. Discussion 
There are at least two GVs of multiplication: repeated addition and one-to-many correspondences. 
Both rely on the basic mathematical activity of unitizing (Lamon, 1994). However, repeated addition 
is the dominant approach in many countries including Germany, Italy, Taiwan, the US and Canada. 
First (German) textbook analyses confirm that this way of introducing multiplication provides a good 
basis to repeated addition as a strategy. Nevertheless, we found representations that might be used 
for addressing a much wider range of multiplicative situations. We can think of comparing quantities 
multiplicatively, of stressing the functional relation between multiplicand and multiplier and, in this 
way, of focusing on one-to-many correspondences. But, as first analyses indicate, these potentials 
concerning the Grundvorstellungen don’t seem to be exhausted in the textbooks. Instead, we found 
the introductions of multiplication being mainly restricted to the GV and the strategy of repeated 
addition. This is a surprising result, especially as many researchers agree on the GV of one-to-many 
correspondence as very promising for supporting children’s understanding of multiplication and their 
performance on multiplication problems.   

On the basis of these first results, we regard the theoretical discrimination of GVs, strategies and 
representations as helpful for our work on the question of how to introduce multiplication in a 
meaningful and consistent way. Thus, we resume that these elements do not always complement each 
other in a useful way, but can actually be in conflict.  

How do we plan to proceed in our larger project? On the one hand, we want to find out how teachers 
are supported in their teaching of multiplication in different national contexts in order to prove, 
deepen and complete our findings from the textbook analyses. On the other hand, we are in process 
to do research in mathematical classrooms to get insight into the ways introduction of multiplication 
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is empirically realized in everyday classrooms. We have identified remarkable challenges from a 
theoretical perspective. Thus, the question arises how teachers actually face these challenges of 
introducing multiplication. At the moment, we observe (German) mathematics classes of grade 2 in 
order to reconstruct empirically how teachers actually work with the offers of their textbooks and 
meet the challenge of introducing multiplication in class discussions. This way, we hope to contribute 
to the scientific discussion about competing approaches to multiplication. 
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Introduction 
Flexibility in mental calculation is a central goal of elementary mathematics education and there was 
an increasing research interest in children's approaches and flexible strategies in the last two decades 
(e.g. Green & Rathgeb-Schnierer, 2020). Empirical findings show that primary students rarely solve 
problems flexibly and adaptively, especially after learning standard written algorithm (e.g. Selter, 
2001). Accordingly, students are often not capable to refer to number patterns and relationships as 
well as specific problem features for solving one or multi-digit problems flexibly (ibid.). Research 
results suggest that students’ creative and flexible use and combination of different strategic means 
(Rathgeb-Schnierer & Green, 2013) decrease after introducing respective strategies as a sample 
solution in the classroom (Benz, 2005). Thus, specific approaches for learning arithmetic seem to 
have a negative impact on students’ abilities in flexible mental calculation. On the other hand, studies 
show that students’ flexible mental calculation can be supported by appropriate instructional 
approaches (e.g. Rechtsteiner & Rathgeb-Schnierer, 2017). For the development of perceiving and 
using number patterns and relationships as well as flexible mental calculation Schütte emphasizes the 
importance of the approach “Zahlenblickschulung" (2004, p. 142; see also Rechtsteiner & Rathgeb-
Schnierer, 2017). In general, teaching approaches have a crucial impact on students’ abilities in 
flexible and adaptive arithmetic. Although flexibility in mental calculation is consensually considered 
a relevant ability, the concept is not consistently defined and operationalized in different studies. 
Rechtsteiner-Merz (2013) has analyzed the existing approaches. In this study, we refer to the 
approach which connects the notion of flexibility to cognitive elements that sustain the solution 
process (e.g. Rathgeb-Schnierer & Green, 2013). Cognitive elements are defined in the context of 
this study according to Rathgeb-Schnierer & Green “as specific mental actions that sustain a solution 
process […]. These can be learned procedures (such as computing algorithms) or recognition of 
number characteristics (such as number patterns and relations)” (2019, p. 5, emphasis in original). In 
this vein, we define flexible mental calculation according to Rathgeb-Schnierer and Green: "Only if 
the tools of solution are linked in a dynamic way to problem characteristics, number patterns, and 
relationships would we consider as evidence of flexibility in mental calculation" (2013, p. 357).  

Aim of the study 
There are research projects that investigate flexibility in mental arithmetic with regard to the cognitive 
elements that sustain the solution process (e.g. Green & Rathgeb-Schnierer, 2020; Rechtsteiner & 
Rathgeb-Schnierer, 2017). However, conclusions about these cognitive elements cannot be drawn 
directly based on manifest characteristics, such as the obtained solution or the described methods of 
solution. Valid conclusions can only be derived from students’ explanations and justifications. So far, 
no standardized instrument exists for capturing the cognitive elements objectively and reliably. 
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Furthermore, the existing instruments are not sufficiently validated. According to this, already 
published research results only allow limited generalizable conclusions. Our study pursues innovative 
approaches: It targets to develop and evaluate a standardized, semi-structured interview for second 
and third graders which allows capturing abilities in flexible mental calculation by revealing the 
cognitive elements that sustain the solution process. Therefore, we developed a semi-structured 
interview guideline regarding the quality criteria of objectivity, reliability, and validity. The interview 
contains activities of sorting problems (prompt: “Which problem is easy/hard for you?”), reasoning 
about sorting as well as comparing (prompt: “Which problem is easier for you?”) and solving 
problems (e.g. Rathgeb-Schnierer & Green, 2013; Rechtsteiner & Rathgeb-Schnierer, 2017). For 
evaluation, we will conduct and videotape approx. 100 interviews with students from the end of 
second grade and beginning of third grade. Additionally, we survey other constructs, such as 
arithmetic skills and linguistic abilities. We aim to enhance existing methods to capture flexibility in 
mental calculation by providing an interview instrument with a different perspective that allows to be 
applied to a large sample. This interview offers new options regarding quantitative and qualitative 
analyses as well as triangulation analysis. We completed the pilot run of the semi-structured interview 
guideline with eleven second graders. Some of the interviews were also conducted by an assistant to 
see how well the semi-structured guideline worked.  
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Introduction 
This study explores a teaching approach for heterogeneous learning groups in mathematics 
instruction. In elementary school the diversity of students is a key challenge. Since elementary 
schools draw their student body from residential areas, students exhibit a wide range of abilities and 
achievement levels. In order to cope with heterogeneous learning groups, various approaches have 
been developed within mathematics education. In the German context, these approaches base on the 
concept of differentiation through open-ended tasks that allow multiple solutions on different 
achievement levels. This concept is specifically labeled as ‘natural differentiation’ (literally 
translated) (Scherer, 2013). This concept assumes that students work on differentiating open-ended 
tasks according to their learning and performance level. Whether this assumption is also confirmed 
in practice has not yet been systematically empirically tested. This is the aim of the presented research 
project. The study will compare the individual learning condition of students and the performance 
level when working on an open-ended task that allows multiple solutions (naturally differentiation). 

Theoretical framework 
The theoretical framework is the offer/take-up model (Angebots-Nutzungs-Modell) (Göbel & 
Helmke, 2010) developed by Helmke. This model describes the complex processes of teaching and 
learning and all influencing factors in a simplified way. To explain the effects of teaching and learning 
success, the model gives a compact overview of the most important variable clusters. 

In this project we offer students an open-ended task. Open-ended tasks allow multiple solutions at 
different levels and thus provide learning opportunities for students with different levels of 
proficiency. The use of open-ended tasks that allow multiple solutions on different achievement levels 
represents an innovative approach of teaching and learning arithmetic in heterogeneous classes and 
inclusive education (Lindenskov & Lindhardt, 2020). 

Aim of the study 
The study aims to determine to what extent the use of an open-ended task depends on prior knowledge 
and other variables of learning condition. Our research question is: Do students process the open-
ended task "Kombi-Gleichungen" (invention of equations with multiple operations) according to their 
prior knowledge and individual learning conditions? 
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Methodology 
The sample includes 160 third graders from different heterogeneous classrooms. Firstly, we assessed 
the learning condition of the students by a questionnaire to analyze students’ attitudes towards 
learning mathematics and a standardized test to measure the achievement level in mathematics. The 
chosen instruments allow to survey cognitive learning prerequisites as well as motivational and 
volitional learning prerequisites. Secondly, we conducted two math lessons and offered all students 
the open-ended task to invent equations in which the equal sign is relationally used (e.g., 2 + 7 – 3 = 
10 – 4). This task allows multiple solutions, enables students to work at their individual performance 
level. The students’ worksheets provide the database for our analysis. To assess the level of students’ 
solution process, we use a category system (Friedrich & Rathgeb-Schnierer, 2020). Finally, we link 
level of the solution process to the learning prerequisites of the students. 

Preliminary outcomes 
After analyzing part of the data, it appears the highest processing level is characterized by invention 
of equations with different operations, multi-digit numbers, several calculation steps, and transitions 
with a systematic procedure. Inventing an equation system including two or even more complex 
equations is a characteristic of a high level of processing. All students were able to handle the open-
ended task: Those who scored highly in the achievement test attempted to invent particularly 
complicated equations. Students with a low score invented many equations with few calculation steps. 
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We propose a new tool – the aRithmetic Discourse Profile (RDP) for analyzing the arithmetic 
discourse of students, based on the commognitive theory. The tool maps students’ discourse on a 
continuum between ritual and explorative participation. We apply the tool to the discourse of 12 7th 
grade students and exemplify the analysis on three tasks: one in addition of whole numbers, one in 
multiplication and one with fractions. Tasks were taken from regular curricular materials of 
elementary school mathematics. We discuss the affordances of the tool in relation to existing 
diagnostic tools.  

Keywords: Arithmetic, discourse, assessment, commognition.    

Introduction 
Assessing students’ mastery of arithmetic has multiple potential benefits. It can assist teachers in 
evaluating students’ performance in relation to curricular expectations and provide researchers with 
measures of pre- and post- interventions. Two major forms of assessment currently exist for assessing 
students’ arithmetic discourse. One is the common school-based exams (or standardized tests). The 
other are “diagnostical tools” usually used by educational psychologists to assess students’ 
“arithmetic abilities” (or disabilities) (e.g. Chinn, 2020). School-based exams are effective for 
efficiently assessing students’ outcomes. Diagnostic psychological tools are effective for identifying 
certain common deficits (such as problems with fact retrieval) (e.g. Dowker, 2012). However, both 
these types of tools do not provide a fine-grained profile of students’ arithmetic knowledge and skills.  

Previous commognitive studies (Ben-Yehuda, 2003; Ben-Yehuda et al., 2005) have started offering 
an alternative to the above two types of assessment, by proposing a form of “profiling” a students’ 
arithmetic discourse, based on transcriptions of think-aloud interviews. However, these studies were 
quite preliminary in their conceptualization. Their categories were difficult to replicate and not 
sufficiently connected to a broad theory of learning. In the past two decades, the commognitive theory 
has evolved and sharpened its tools of analysis. One useful conceptualization that has come out of 
commognitive studies is that of the “ritual-exploration” dyad, which qualifies participation in 
discourses both according to development (learners starting from ritual and moving to explorations) 
(Lavie & Sfard, 2019) and according to achievements (learners experiencing difficulties performing 
more ritually than successful learners) (Heyd-Metzuyanim, 2015). Armed with these new 
conceptualizations our goal is to develop and test a tool for mapping students arithmetic discourse 
based on the continuum of ritual to explorative participation.  

Theoretical Background 
Commognition theorizes the learning of mathematics as a process whereby learners gradually become 
participants in the mathematical discourse. This process is characterized by movement from 
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performance of ritual routines to explorative routines. Routines are pairs of task (what it is that the 
performer feels obliged to do) and procedure (the steps to achieve the goal). Ritual routines are aimed 
primarily at pleasing the masters of the discourse, usually teachers or parents. As such, they are mostly 
characterized by thoughtful imitation (Lavie et al., 2019). The learner attempts to repeat actions that 
she saw the expert perform in situations that she perceives as similar to the present task. As the learner 
gains experience with similar tasks, her routines gradually become more explorative (Sfard & Lavie, 
2005). Explorative participation is characterized by flexible usage of different procedures to achieve 
a single task, and by the learner initiating these procedures to achieve her own goals. That is, the 
learner performs the routines to produce narratives about the world, not to please an external 
authority. Explorative participation is thus characterized by agentivity. In addition, explorative 
routines are bonded, that is, the output of each step serves as an input to the next step in the procedure. 
In contrast, ritual routines may often be unbonded since they are made up of steps imitated of others, 
without the performer being aware of how or why each step is bonded with the former ones. 

In mathematics, routines are mostly concerned with producing narratives about mathematics objects. 
For example, the routine of multiplying 5 × 3 leads, eventually (after, for example, adding three to 
itself five times), to the narrative “5 times 3 is 15”. Yet for such routines to be enacted with ease, 
learners need to objectify numbers. The process of objectification, according to commognition, is the 
main process that underlies what is often termed as “mathematical understanding”. Within this 
process, learners come to view processes (such as counting or adding) as products. For example, the 
process of counting “one, two, three, four” eventually gets reified into an object (“four”) that can be 
treated as existing on its own, regardless of the process of counting that led to it. The process of 
objectification, however, takes time, and ritual performers often treat the signifiers of mathematical 
objects (such as the digits of a number in the realm of tens) only syntactically, that is, without relation 
to the object that they are supposed to signify. The processes of objectification are never-ending in 
the learning of mathematics since mathematical discourses are hierarchical. Thus, for example, once 
the learner masters (or becomes explorative in) the discourse of natural numbers, they are expected 
to enter the discourse of fractions (or rationale numbers). Once this has been mastered, the 
expectations for participation are raised to the discourse of real numbers, algebra, etc.  

School exams are ill-suited to examine the extent to which students perform explorative routines in a 
certain discourse, as they mostly give a picture of the final answer produced by the students’ routines, 
not the procedure by which the answer was produced. Therefore, students may be identified as 
“successful” (or achieve highly on exams) in school mathematics, while many of their mathematical 
routines are still ritual (Heyd-Metzuyanim, 2015). Another problem with standard school assessment 
is that they can miss certain explorative routines that students who err in their final answers do 
perform. This is especially relevant to low achieving students (Ben-Yehuda et al., 2005; Heyd-
Metzuyanim, 2013). To overcome these limitations, early commognitive research came up with a tool 
called “Arithmetic Discourse Profiling” (Ben-Yehuda, 2003). This tool, based on a form of cognitive 
interviewing, attempts to map the student’s discourse in ways that highlight not just what the student 
does “wrong” (or non-canonically) but also (and more importantly) the actions the student does 
perform when attempting to solve mathematical tasks. In this work, we aim to extend the early 
attempts at profiling arithmetic discourse by using the more recent definitions and operationalizations 
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of ritual vs. explorative routines. Our research question is: Based on tasks taken from elementary 
school curriculum, how can students’ arithmetic discourse be characterized on the continuum 
between ritual and explorative participation?

Method
Our analytical tool was developed as a secondary data analysis, on data collected by the first author 
(Heyd-Metzuyanim, 2011). The data consists of arithmetic interviews conducted with 12 7th graders
during 2008. The interviews were conducted as part of a larger study where the author taught the 12 
students in three groups over a period of 5 months, in an out of school “course”. The course was 
broadly defined as “mathematics enrichment” and the original study was aimed at examining 
interactions between emotional and cognitive aspects of learning. The students were placed in three 
groups (each of 4): Low achieving, middle-high achieving, and excelling. The excelling group 
consisted of 4 boys who came from an accelerated mathematics and science classroom (to which 
entrance was based on very high grades in elementary school mathematics and other subjects). 
Placement in the low and middle-high achieving group was based on reports coming from the school 
and parents of the students regarding their grades in elementary school mathematics and their 
achievements in the beginning of 7th grade. 

All the interviews were conducted by the first author, in a one-on-one setting. Students were asked to 
think out loud as they solved the problems (Young, 2005). When they were not successful and asked 
for help, the interviewer attempted to scaffold the task, yet mostly she refrained from giving feedback 
on the correctness of the results. Interviews were videotaped with two cameras, one pointing at the 
student’s face and one on his writing. Written artifacts were collected too.

The interview protocol was based on Ben-Yehuda’s (2003) ADP protocol and consisted of 24 tasks 
(some very short) that had potential to illuminate various aspects of students’ arithmetic discourse. 
For the present study, which goal was mainly to create analytical tools, we chose three tasks for 
analysis (the full protocol appears in (Heyd-Metzuyanim, 2011)). These tasks were (1) Add 96+7936 
(if possible, “in your head”) (2) Multiply and (3) . We chose these tasks as they covered 

a relatively large domain of arithmetic skills, including manipulating whole numbers and fractions. 

Analysis: Analysis was done on full verbatim transcriptions of the interviews and proceeded in two 
steps. First, we divided each routine (task + procedure) into sub-routines (for example, adding 
96+7935 often consisted of sub-routines such as adding 5+6, adding 11 to 8020, etc). Next, we 
determined whether the routine (or sub-routines) were ritual or explorative according to eight 
categories, taken from the literature on ritual and explorations. These are explained in Table 1.

Table 1 - Criteria of analysis for ritual-explorative routines

Criterion Analytical actions Characteristics of an explorative
routine

Characteristics of a ritual 
routine

1 Objectified 
/syntactic 
mediation.

Searching for evidence 
that the nouns signify 
numbers/quantities and 

In whole numbers, relating to the 
place value of the numeral. In 
fractions: relating to different 
realizations of the fraction as the 
same, including fraction as 

In whole numbers: relating to 
operations as signaling 
procedures on digits rather than 
on the whole number. In 
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not just the signifier of 
the number 

operator, part of whole, part of 
quantity, etc.  

fractions, relating separately to 
the numerator and denominator. 

2 Flexibility 

 

Look for multiple 
procedures that are 
associated with the 
same task. 

More than one procedure is 
associated with the main task OR 
a non-standard procedure is 
applied to the task. 

Relying on only one procedure 
while showing rigidity and 
reluctance to use any other 
procedure.  

3 Agency/Exter
nal authority 

 

Look for subjectifying 
discourse; examine 
verbs/pronouns and 
non-verbal signals that 
indicate the confidence. 

Mathematizing with high 
confidence (no hesitations, 
question marks, no looking for 
approval). 

Spontaneously articulating 
mathematical narratives 

Talking with question marks; 
Verbally or Non-verbally 
seeking approval from the 
interviewer; Relating to external 
authority for justification (e.g. 
“that’s what I learned in 
school”) 

4 Focus on goal 
or on 
procedure 

 

Look for verbs 
indicating doing (e.g. 
“I add”) vs. being verbs 
indicating the result (“it 
is…”);  

Talking about the result, checking 
it, or explaining it spontaneously 

Talking about the actions of the 
procedure. Ending the 
procedure without relating to 
the reasonableness of the result. 

5 Bondedness 

 

Examine the procedure; 
sub-procedures and the 
bonds between them.  

Each sub-procedure feeds the next 
sub-procedure. The narrative of 
the result of sub-procedure N 
serves as the input of sub-
procedure N+1.  

There is a disconnect between a 
certain sub-procedure and its 
following one OR sub-
procedures using different 
realizations are not treated as 
the same.  

The final three characteristics were Canonical procedures that were coded as explorative if all the 
steps in the procedure aligned with standard mathematical procedures; Canonical narratives were 
coded as explorative if the end result of a procedure (e.g. the end result for the task “two thirds of 9” 
was “six”) was canonical; and Mediation was coded as explorative if the procedure was fully initiated 
and enacted by the student, and ritual if some parts of it were mediated by the interviewer. 

The first stages of constructing the coding criteria (exemplified in the findings section) were created 
by the first and third authors, through mutual agreement. After that, the second author was taught the 
coding scheme, blindly replicated it on 50% of the data, and created a coding manual. 

After coding was complete, a “ritual/exploration” ratio was calculated for each student, on each of 
the tasks. The highest explorative ratio could be 0/8 (0 ritual, 8 explorative characteristics), whereas 
the most ritual performance could by 8/0. Notably some of the characteristics (agentivity, bondedness, 
canonical and non-canonical procedure/narrative) could be coded both as ritual and as explorative. 
This was necessary since we wanted to account for explorative elements of sub-routines. Thus ratios 
such as 7/3 or 5/6 were also possible. In general, ratios close to 1 showed “mixed” performance.   

Findings 
Table 2 - Ritual-Exploration ratios and relative placement of 12 students 

Student Achievement group 96+7935 25×99  

Dana Low 6/4 8/2 7/3 

Hili Low 7/2 Not attempted Not attempted 
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Hila Low 7/3 7/1 Not attempted 

Naor Low 2/6 8/3 4/5 

Edna Middle-high 8/3 6/7 Not attempted 

Idit Middle-high 0/7 6/5 7/4 

Dan Middle-high 1/7 7/6 2/6 

Ziv Middle-high 3/6 3/8 2/6 

Ram Excelling 0/6 0/8 1/7 

Gabby Excelling 0/7 0/8 1/7 

Yoram Excelling 0/7 0/8 0/7 

Amir Excelling 0/7 1/8 0/8 

Table 2 summarizes the ritual/explorative ratios of the 12 students’ (all pseudonymed) performance 
on the three tasks. Before we delve into the exemplification of how these ratios were determined, 
there are a few observations worth mentioning regarding this table.  

Our first observation is that the ritual/exploration tool seems to capture a wide range of routine 
enactments, from those very high in exploration (0/8) to those almost only featuring ritual 
characteristics (8/2). Secondly, we see the low achieving group very high in ritual characteristics (or 
not attempting tasks at all); the moderate-high group is fluctuating widely, between 0 and 8; and the 
excelling group is quite consistent around the 0 – meaning high exploration. This lends validity to the 
tool as capturing features that reflect students’ success in school mathematics. A third observation is 
that students can be inconsistent with respect to different tasks. For example, Dan’s performance is 
explorative in the addition task, ritual in the multiplication task, and relatively explorative again in 
the fractions task. We do see, however, that in the excelling group these fluctuations do not exist.  

Next, we demonstrate our analysis on two episodes from students’ interviews, showing different types 
of routine enactment, associated with different ritual/explorative ratios. 

Episode I: Hila, 96+7935 – Dominantly ritual performance 
 What is said (what is done) Writing 

1 Hila: Ah, ninety-six plus seven, seven... seven thousand, seven thousand ninety and 
thirty, um, can I calculate? 

 
2 Interviewer: Is there a way that you can do it in your head? 
3 Hila: I, um, it’s so difficult for me, I- 
4 Interviewer: Try it 

5 
Hila: OK. Ah, wow, three plus (..) nine, twelve. Um twelve, um twelve and five plus six 
is eleven. Eleven plus twelve, equals thirty-three (..), yes, ah no, twenty-three. So, it’s 
eight thousand ninety and thirty, Ah no. Twenty three. OK. 

6 Interviewer: OK, look at the answer and tell me if it looks alright to you? 

 

7 Hila: Oops. 

8 Interviewer: Wait, oops. Why oops? What’s not good about it? 
9 Hila: ‘cause I had to do plus 

10 Interviewer: And what did you do? 
11 Hila: Aah... (points at the paper) I didn’t combine like... here the... 
12 Interviewer: Now do you want to do it vertically? 
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13 Hila: (Writes). Eighty, three. Five – six, nine, yeah twelve, ten, yeah aah (erases) eighty, 
eighty (erases).  

14 Interviewer: And that’s a better way? 

15 Hila: Yes. 

We see in Hila’s performance 7 characteristics of ritual and 3 or explorative participation, thus her 
ritual/explorative ratio is 7/3. Following is the characteristics analysis: A. Non-objectified discourse. 
The digits in Hila’s discourse are treated as independent entities, to be combined and manipulated in 
some form, but not as indicative of a whole number or as place value (see line 5, where the digits are 
first added horizontally, and then line 13). B. Rigid performance: Hila sticks only to procedures of 
adding the digits separately. Even when asked to do it “out loud”, she tries (albeit unsuccessfully) to 
reconstruct some sort of procedure for adding the numbers digit by digit. C. External authority: Hila’s 
discourse is hesitant, and she relies on the interviewer to encourage her to try out the task to begin 
with [4], to monitor her answer [6, 8] and to suggest an alternative procedure [12]. D. Focus on 
procedure: Hila focuses only on the procedure (“I had to do plus” [9] “I didn’t combine” [11]). She 
does not check her answer showing no interest in the result. E. Canonical procedures: Some of the 
procedures Hila enacts are non-canonical (e.g.  adding the sums of the unit digits and tens digits: 
11+12). Other procedures are canonical (e.g. writing the “carry on” digits in the appropriate places in 
the vertical solution). Therefore, she got 1 on both “canonical” and “non-canonical” sides of the 
ritual/explorative table. F. Canonical narratives: Similar to E. some of Hila’s narratives are canonical 
(e.g. 5+6=11) while others are not (the overall sum is non-canonical). G. Mediation: Hila’s 
performance is mediated by several comments of the interviewer, especially the suggestion to “do it 
vertically” [12]. H. Bondedness: all of Hila’s sub-procedures feed one into the other. Therefore, she 
received a ‘1’ on the bonded criteria (explorative). 

Episode II: Idit solving 25×99 - Example of mixed performance 
1 Idit: (Reads the task, sighs) I usually get messed up with such exercises  
2 interviewer: Is there something that you can do with the... ninety-nine? (..) That is very 

close to another number? 
3 Idit: A hundred (Interviewer: OK) You can round it (up) to like... (looks at 

Interviewer), no. First, I’ll round it to 25 times 100. Can I do (that)? 
(Interviewer: OK) Which turns out two thousand and five hundred 
(Interviewer: Umhmm) and then take off one. But (comments on failing on 
such exercises. Interviewer encourages her to try, nevertheless). So, it turns 
out a thousand… No (erases)… (writes 1049) wait, no (erases, mumbles, 
writes 2499.  

4 interviewer: Two thousand four hundred and ninety-nine 
5 Idit: that’s what seems most reasonable 
6 Interviewer: But do you think it’s correct? (Idit shrugs “I guess so” and smiles). If I tell 

you that this is 99. I tell you that this is 99 times (intrusion outside). If I tell 
you this as an exercise of 99 times 25 would it help? 

7 Idit: (giggles) No 
Idit’s ritual/explorative ratio was determined as 6/5 for the following reasons: A. Objectified 
discourse: we only find indications of objectified discourse in Idit’s solution. She treats 25 times 100 
as objects (“which turns out two thousand and five hundred” and “I’ll round it to 25 times 100” [3]). 
B. Rigid performance: Idit does not have an alternative procedure for multiplying 25×100 (e.g. by 
long multiplication), even though she is unhappy with the result [7] C. Both Agentivity and External 
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authority: in some points, Idit makes independent choices and seeks no guidance (e.g. decides 1049 
is an error and instead writes 2499). In other parts, she seeks approval from the interviewer (e.g. “Can 
I do that?” [3]) D. Focus on product. There are no indications that Idit is focused on the procedure 
and she does comment on the final product (“That’s what seems most reasonable” [5]) E. The overall 
procedure is non-canonical since she sames 25×99 with 25×100 -1 F. Canonical and non-canonical 
narratives: all the sub-narratives (25×100=2500; 2500-1=2499) are canonical however the overall 
narrative 25×99=2499 is non-canonical G. Mediation: Idit’s performance is mediated by the 
interviewer suggesting the similarity between 99 and 100 [2] H. Bondedness and non-bondedness: 
all of Idit’s sub-procedures are bonded, yet the overall procedure is not bonded to the overall task. 

Discussion 
In this study we asked how can students’ arithmetic discourse be characterized on the continuum 
between ritual and explorative participation? Our results indicate that the eight characteristics of 
ritual/explorative participation are useful for locating students on such a continuum. These 
characteristics are: Objectification, Flexibility, Agentivity, Focus on procedure/product, Canonical 
procedures, Canonical narratives, Mediation and Bondedness. We used these characteristics to 
construct a ritual/explorative ratio, where ratios close to 0 indicated high explorative performance, 
whereas ratios nearing 8/0 indicate ritual performance. Ratios around 1 indicate mixed performance, 
which mostly show parts of the sub-procedures are ritual while others are explorative.  

The validity of this tool is stemming from three sources. First, we were able to achieve blind inter-
rater reliability showing that our criteria of analysis were operational. Second, we found general 
coherence between the ratios and students school achievements (as indicated by placement into the 
achievement groups in the study, see table 1). Third, the ratios generally cohered with the first 
author’s experience with the students, gained through teaching them for five months. 

Our findings generally support the commognitive theory of the development of students’ 
mathematical discourse in several respects. First, they show that students generally achieving higher 
(and thus, presumably more fluent in the arithmetic discourse) indeed perform more exploratively, 
while low achieving students (who have not mastered the discourse) perform ritually (Heyd-
Metzuyanim, 2015). Second, we see from table 1 that students generally performed more 
exploratively in discourses that are primary (e.g. natural numbers) while in a newer discourse 
(fractions) the performance was more ritual. This is consonant with the theory that states higher level 
discourses are built upon primary discourses that are subsumed by them (Sfard, 2008). However, we 
also found some anomalies, such as a student whose performance on the multiplication task was ritual 
while his discourse on fractions was explorative. Future studies should look more into the question 
of whether these are anomalies that are characteristic of “transition” phases (such as at the level of 
beginning middle school) or whether they can be seen also in later stages of mathematical learning. 

The study of course has several limitations, the main one of which is the relatively small number of 
participants. This is a limitation related to the high work-intensiveness of commognitive analysis and 
may be overcome in future studies by finding ways to make the analysis more efficient. Nevertheless, 
the method suggested in this study is the first form of quantifying mathematical performance 
according to the ritual-explorative continuum. As such, it opens up multiple avenues for further 
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inquiry. For example, future studies can examine whether the pattern of “being around 1 ratio” in 
students who are identified as middle-high achieving repeats itself, while the pattern of “close to 0 
ratio” is common in students identified as excelling. The latter question is especially important since 
we note that the curriculum mostly advances according to the assumption that students have mastered 
primary discourses. For example, middle-school curriculum is based on the assumption that students 
are explorative participants in the arithmetic discourse (Karsenty & Arcavi, 2003). Whether and how 
students “fill in” formerly learned discourses is an open question, which the tool proposed in this 
study may help to answer. 
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Counting strategies in a proficient grade 1 student: the case of Petra 
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A case study design was used to explore a foundational number-sense (FoNS) proficient student’s 
strategy use in counting. The student, referred to as Petra, participated in a task-based semi-
structured systematic counting interview. The interview was analysed qualitatively exploring part-
whole reasoning in counting strategies in interrelation with FoNS, which was measured using a 
digital assessment. The interrelations were discussed as reflecting strands that Kilpatrick et al. 
(2001) found important for mathematical proficiency. Petra showed the ability to use combinations 
of one-to-one and relational strategies and high levels of adaptive reasoning and productive 
disposition. Petra also showed that a number-sense proficient student may be flexible in counting in 
the 0-10 range but not necessarily in the 10-20 range. Results are discussed as part-whole reasoning 
on the mental number line. 

Keywords: Part-whole reasoning, mental number line, counting strategies, number sense, grade 1. 

Introduction 
Counting is a central to number sense, which is the ability to work flexibly with numbers and 
quantities predicting students’ mathematical proficiency (Andrews & Sayers, 2015). Flexibility is 
essential in definitions of number sense. Developing mental representations of numbers and strategies 
represented on a mental number line enables flexible mental calculations, part-whole reasoning and 
relational strategies (Dehaene, 2011; Hunting, 2003; Rathgeb-Schnierer & Green, 2019). 

Variation in counting and counting strategies is traditionally described in terms of Gelman and 
Gallistel’s (1986) three how-to-count principles: the one-to-one principle of correspondence between 
numerals and items, the stable-order principle of numerals in any count, and the cardinal principle of 
the final counted item’s numeral representing the number of items in the set. Students with 
mathematical difficulties are found to exhibit immature, inflexible and inefficient counting strategies 
and having problems shifting between strategies compared to proficient students (Gelman & Gallistel, 
1986). Alternatively, or complementarily, variation in counting strategies can be considered as 
included in arithmetical problems as part-whole structures supporting relational strategies and part-
whole reasoning (e.g. Hunting, 2003). 

Mental flexibility is critical to the efficiency of mental strategies (Rathgeb-Schnierer & Green, 2019). 
Carpenter and his colleagues (e.g. Carpenter et al., 1996) has emphasised understanding students’ 
thinking as a knowledge base for cognitively guided instruction promoting mathematical 
development. However, what mental processes contribute to mental flexibility? Kilpatrick et al. 
(2001) claimed that five interwoven and interdependent strands represent the flexible interrelations 
needed for mathematical proficiency. Extended knowledge of the continuum of number-sense 
proficiency and flexibility in counting is needed to develop characteristics of various proficiency, and 
improve the discovery and teaching of typical and atypical variations to support mathematical 
development in all students. The paper discuss flexibility as part-whole reasoning by exploring a 
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grade 1 number-sense proficient student’s systematic counting strategies considered in interrelation 
with foundational number sense (FoNS) concepts. The paper interprets interrelations to promote 
counting flexibility and raises the following research questions: 

RQI: What strategies does a number-sense proficient grade 1 student use in counting? 

RQII: How may strategy use be interrelated with part-whole reasoning on the mental number line? 
The paper reports on data from a Ph.D. project studying 75 Norwegian grade 1 students’ variations 
in counting and patterning strategies in relation to FoNS and verbal and nonverbal reasoning. 

Theoretical framework 
Andrews and Sayers’ (2015) described systematic counting as being able to count forwards and 
backwards between 0 and 20, understanding ordinality and being able to start counting from an 
arbitrary starting point between 0 and 20. Systematic counting is integrated into Andrews and Sayers’ 
(2015) FoNS definition and interrelates with the seven other components: number identification, 
number and quantity, quantity discrimination, representing numbers, estimation, arithmetic 
competence, and number patterns (Andrews & Sayers, 2015). Counting strategies develop from 
count-all one-to-one correspondence strategies to the more efficient retrieval strategies, such as 
count-on, which partly depend on one-to-one strategies and relational strategies. Finally, 
interrelations between counting and arithmetic emerge in the most abstract derived fact relational 
strategies based on commutativity and the inverse principle. Such mental representations enable part-
whole reasoning about the relations between parts constituting the whole and decomposition of the 
whole into parts of the mental number line and efficient relational strategies (Dowker, 2014; Hunting, 
2003). 

Flexible counting strategies, conceptual understanding of numbers and the ability to count 
systematically have been found to depend on estimation abilities and the ability to compare small 
quantities without counting, also called subitising (Andrews & Sayers, 2015; Dehaene, 2011). 
Derived fact strategies might be a combination of counting and subitising (Dowker, 2014). 

Understanding structures of patterns develops generalisations and promotes part-whole reasoning, 
which is critical for commutativity, number sense, algebra, and counting (Hunting, 2003). Counting 
repeating patterns (e.g. ABABAB, □ΔΔ□ΔΔ□ΔΔ) and growing patterns (e.g. 1 3 5, □ □□ □□□, 
ABAABAAAB) enable the use of both one-to-one building-up strategies and more advanced unit 
factor and scalar relational strategies, which consider a repeating unit or multiplicative relations 
between quantities in two or more measure spaces, but with different advanced levels. 

Concrete counting operations with counting blocks or other manipulatives develop flexible and 
efficient mental counting and calculations (Rathgeb-Schnierer & Green, 2019). The mental number 
line enables the use of part-whole reasoning and is the cognitive system underlying number sense 
(Dehaene, 2011) serving mental representations of the ordinality, cardinality and magnitudes of 
numbers as well as the relations between numbers, thus enabling flexible operation with numbers. 

Kilpatrick et al. (2001) holistically described flexibility as the following five strands that make up 
mathematical proficiency: (1) conceptual understanding interrelations between mathematical ideas 
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and their mental representations, including knowledge of why and when mathematical ideas are 
important and useful, (2) strategic competence to formulate, represent and solve mathematical 
problems, (3) procedural fluency and knowing when procedures are appropriate, which is shown as 
flexible, accurate, and efficient procedures, (4) adaptive reasoning as the capacity to think logically 
about interrelations between concepts and situations, and (5) productive disposition involving the 
ability to see mathematics as useful and understanding that steady effort will pay off in combination 
with a view of oneself as an effective learner and doer of mathematics (Kilpatrick et al., 2001). The 
strands include students’ attitudes and metacognition as it concerns knowledge and reflection on 
one’s reasoning and problem-solving abilities. 

Methods 
A task-based semi-structured interview was designed to explore Petra’s strategies for systematic 
counting: forwards and backwards in counting on 1s, 2s and 3s in the 0-20 range. Petra’s counting 
and counting strategies were explored using a case study design (Yin, 2014). 

Recruitment, sample, and case 

Following informed parental consent, Petra, aged 5 years and 11 months, was purposefully chosen 
from the larger study sample as the student with the highest score on the digital number sense test of 
75 grade 1 students. Petra is thus referred to as a number-sense proficient student. 

Assessments and procedures 

A task-based semi-structured counting interview was developed based on Andrews and Sayers’ 
(2015) definition of systematic counting. A toy frog named Mr Minus asked ten questions to facilitate 
observation of Petra’s counting strategies. Counting blocks were made available. If needed, Mr Minus 
modelled counting by jumping on a number line made of counting blocks. No time limits were given, 
the interview was video-recorded and lasted approximately 10 minutes. The author was Mr Minus’s 
voice and initiated a dialogue by asking the following questions: (1) ‘What number do we start 
counting at?’ (2) ‘How far is it possible to count?’ (3) ‘Is it possible to count backwards as well?’ (4) 
‘Do we need to start counting at 1? Is it possible to count forwards from 7?’ (5) ‘Is it possible to count 
backwards from 9?’ (6) ‘Can we count from 20 to 0 too?’ (7) ‘I have heard some adults count in a 
weird way. They counted 2-4-6… Have you heard such counting? I am wondering how to continue 
to count if I am to continue to count the same way. Can you help me?’ (8) ‘Is it also possible to count 
backwards this way?’ (9) ‘I have heard some adults count in a weird way. They counted 1-3-5… 
Have you heard such counting? I am wondering how to continue to count if I am to continue to count 
the same way. Can you help me?’ and (10) ‘Is it also possible to count backwards this way?’. Mr 
Minus (test-administrator) gave verbal and nonverbal prompts if needed. 

A digital FoNS assessment (Saksvik-Raanes & Solstad, in press) measured all FoNS components 
except for representing numbers, following Andrews and Sayers’ (2015) number sense definition. 
Subitising was included as an eight component: (1) number identification, (2) systematic counting, 
(3) number and quantity, (4) quantity discrimination, (5) estimation, (6) arithmetic competence, (7) 
subitising, and (8) number patterns. Subitising tasks were timed. 
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In a 30-minute session, Petra dragged, dropped and organised objects on the screen or tapped the 
appropriate multiple-choice item to solve tasks. Figure 1 provides an example of each of the different 
task designs and the verbal instructions given in the systematic counting component tasks. Petra 
scored 62 out of 69 possible points. 

Figure 1. The tree task design of the systematic counting component 

A)  B)  C)  

A) Put the numbers in order, B) Place the star on the third star in the line, and C) Place the correct number into the box. 

Analytical procedures 

Petra’s counting response and strategies in tasks 1 to 6 (see description in the “assessments and 
procedures” section) were coded and qualitatively analysed according to Andrews and Sayers’ (2015) 
description of systematic counting and Gelman and Gallistel’s (1986) how-to-count principles using 
NVivo. In addition, Petra’s strategy use in tasks 7 to 10 was coded as one-to-one building-
up/correspondence strategies, and as part-whole relational strategies depending on multiplicative 
relations between two or three units in counting. Number sense was measured using a digital 
assessment based on Andrews and Sayers’ (2015) eight components of FoNS on an individual tablet. 
Petra’s responses to the tasks in the digital FoNS assessment were scored dichotomously. 

Petra’s strategy use in relation to her FoNS was discussed to reflect part-whole reasoning on her 
mental number line, using Kilpatrick et al.’s (2001) strands of mathematical proficiency as guidelines. 

Results and analyses 
Semi-structured systematic counting interview 

Mr Minus: What is the smallest number we can start to count from? 
Petra: 1. 
Mr Minus: How far is it possible to count? 
Petra: Am I to count to hundred? 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-(…)-100. 

At every -9 from 29 to 99, she prolonged pronunciation of the /i:/ vowel before the 10 transitions. 
Petra: I also manage to count to hundred like this: 10-20-30-40-50-60-70-80-90-100. Now 

I counted only the tens. 

Her thumb represented 10 and her index finger represented 20. No fingers were used for subsequent 
counting. 

Mr Minus: Is it possible to start counting backwards? 
Petra: I manage to count from hundred to eighty, I think. 99-98-97-96-95-94-93-92-91-

80-89-88-87-86-85-84-83-82-81. 

She prolonged the pronunciation of the vowels in 95 and 91 and quickly said 80 without self-
correction. 

Mr Minus: What comes next, after 81? 
Petra: Seventy! 
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Petra finger-counted on her left hand and correspondently whispered every 10th number word from 
10 in the additive direction for each finger, which was the opposite direction from the subtracting 
counting she had started using. She said 70 loudly and stopped counting. 

Mr Minus: Can we count from twenty to zero too? 
Petra: I do not think I know much about that! Sometimes I need to do like this. 

She illustrated finger-counting corresponding to lip movements pronouncing 1-2-3-4-5. 
Mr Minus: That is okay if you need to. 
Petra: 20-90-no-19-17-15-14-13-12-11-10-9-8-7-6-5-4-3-2-1-0. 

Petra self-corrected 90 to 19. The three fist phonemes of Norwegian number words for 90 and 19 are 
identical and perhaps phonologically distracted her. After she said 19, she started finger-counting on 
her left thumb and whispered 1 before she said 10 while still holding up only her thumb, representing 
the 10th addend. As such, she combined a retrieval relational and a one-to-one strategy, as adjacent 
fingers one-by-one represented the consecutive addends while she whispered 11-12-13-14-15-16 
before answering 17 loudly. She counted forwards from 10 and stopped when she saw there was one 
less finger on her hand than the number of fingers she remembered seeing on her hand from the 
preceding answer. Then she repeated her strategy of the thump representing 10. Because she 
whispered 11 without showing the index fingers before she whispered 11, she answered 15. She used 
the same strategy to find the subsequent answers, including 11. Petra stopped using her fingers when 
she continued to count down from 10 to 0. 

Mr Minus: High five! You made it! Is it possible to counting forwards from seven to twenty? 
Petra: I think so. That is almost what I already counted. 8-9-10-11-12-13-14-15-16-17-

18-19-20. That was easy, you only start at eight. 
Mr Minus: Cool! Is it possible to start counting from 14 as well? 
Petra: 14-15-16-17-18-19-20. 
Mr Minus: Is it so that we can count backwards from an arbitrary point as well, say from 9? 
Petra: 9-8-7-6-5-4-3-2-1-0. 
Mr Minus: I have heard some adults count in a weird way. They counted 2-4-6… Have you 

heard that? I wonder how to count on from 6 if I were to continue counting the same 
way. Do you know? 

Petra: Yes, 1-2-3-4. And that’s only two! The next numbers are 8-10-12. And you know 
what? I also manage from three to nine.  

Fingers one-to-one corresponded to the number words. Then she grouped two and two fingers on her 
left hand. She counted 3-6-9 while she showed one and one finger. 

Mr Minus: WOW! What is the next number when counting like that? 
Petra: 12-15-18-20-23-26-29. 

Petra one-to-one correspondently finger-counted and whispered numbers between 9 and 12. She 
continued to whisper-count with the same three fingers and said the number on the third finger loudly. 
Incorrect one-to-one correspondence made her answer 20 without self-correction. 

Mr Minus: You teach me lots of things! Is it possible to count backwards in the same way as 
you counted 2-4-6 forwards? 

Petra: Yes, I can try that. 10-8-6-4-2-0. 
Mr Minus: Okay. I have heard some adults count in a weird way. They counted 1-3-5… Have 

you heard that? I wonder how to count on from 5 if I am to continue counting the 
same way. Do you know? 

Petra: 1-… Am I to do addition?  
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Mr Minus: I do not know. I just heard someone count that way. 1-3-5, and I do not understand 

what to say next if I am to continue in the same pattern. 
Petra: 1-3-5…? 6? 
Mr Minus: Maybe? I want to try something! I want to jump like they counted. 1-3-5… Now I 

jump once more. What am I to say when I land here? And here? 

The interviewer lined up counting blocks, making a number line from 1-10. The frog jumped on every 
other block and said the number names corresponding to the number line position on which he landed 
on. The frog jumped on every other block and said the number names corresponding to the number 
line position on which he landed. 

Petra: 7-10 

This was Petra’ answer for the two positions Mr Minus jumped on after 5. 
Mr Minus: How did you do that? 
Petra: I counted inside myself. I counted 2-4-6-8-10. 

She correspondently pointed at the second, fourth, sixth, eight and tenth block. 
Mr Minus: Okay. But I said 1-3-5 and you said seven was the next number. How did you know 

that? 
Petra: I added two more. 
Mr Minus: Okay, that was what happened! Is it possible to jump back and count in this way as 

well? 
Petra: Do you mean 7-5-3? 

She tapped her fingers on the table in the opposite downwards or subtractive direction. 
Mr Minus: Yes! And now I think you showed me that it is possible! 
Petra: I know how to make a rocket with my fingers! I do like this. Do you manage? 

She ended the dialogue, making a rocket with both hands and laughed. 

Foundational number sense (FoNS) 

Petra mastered all number sense components in the digital assessment, expect for estimation and 
arithmetic. For numbers between 10 and 20, she showed difficulties estimating a number’s position 
on the number line and doing arithmetical operations. 

One-to-one and relational strategies 

For tasks 1 to 6, Petra successfully used the required one-to-one strategy with correspondence 
between the number name and the counting procedure. Tasks 7 to 10 served as opportunities for part-
whole reasoning about multiplicative relations between numbers and processes on the mental number 
line. Therefore, the tasks enabled the use of both one-to- one and relational strategies. As the results 
showed, Petra successfully and unsuccessfully used a combination of counting-all, counting-on and 
retrieval strategies. That is, both one-to-one and relational strategies. Success seemed to depend on 
the number range in which she counted. Petra did not use the one-to-one count-all strategy alone. 
Despite various success, she considered the appropriateness of more advanced relational strategies 
and showed emergent part-whole reasoning (Dowker, 2014). She used these strategies in combination 
with one-to-one backup strategies for support. The digital assessment also supported the assumption 
that she used relational fact retrieval strategies for numbers between 1 and 10 in forwards counting 
but used a combination of one-to-one and relational strategies in backwards counting above 10. 
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Discussion 
Indications of conceptual understanding, procedural fluency, and strategic competence 

Petra met some of Andrews and Sayers’ (2015) systematic counting criteria. She counted correctly 
forwards to 100 and met their criteria of forwards counting from 0-20, but she did not meet the criteria 
of backwards counting from 20 to 0. She mastered forwards and backwards counting in patterns of 
2s on even numbers in the 0–20 range but mastered only backwards counting on odd numbers in the 
10–0 range. She successfully counted backwards from an arbitrary starting point between 10 and 0, 
but not between 20 and 10. There is compliance between Petra’s counting, estimation, and arithmetic 
competence. Estimation is important for mentally representing the number line (Dehaene, 2011). 
Petra met the one-to-one principle of Gelman and Gallistel’s (1986) in a count-all backup strategy 
but not in a combined backup and retrieval strategy counting-on from 10. The stable order principle 
was met in forwards counting in 1s and in patterns of 2s and 3s. She was challenged in backwards 
counting by 1s in the 20-10 range, omitting two numbers but not in the 10-0 range. The cardinal 
principle was confirmed in the number and quantity component of the digital FoNS assessment. 
Petra’s strong subitising abilities may have played a role when her thumb represented 10 and when 
she reasoned in multiplicative relations, counted on 2s and explored counting on 3s. 

Self-correction and efficient strategy use were implemented as procedural fluency. Self-correction 
occurred inconsistently. It is unknown whether incorrect counting from 99-80 resulted from number 
name or ordinality problems and a not fully established mental number line for the eighth or nineth 
10 range, something her strategy use in the 20-10 range supports. If so, subtracting perhaps distracted 
her. These findings underline the interrelations between conceptual understanding and procedural 
fluency. Petra used efficient strategies, that is, when she counted to 100 by counting by 10s and when 
she counted in 2s and tried to count in 3s. Additionally, she showed a high level of strategic 
competence as she represented and solved problems verbally, explained her mental strategies and 
utilised manipulatives. The findings show the mutually supportive interrelations between strategic 
competence, conceptual understanding and procedural fluency (Kilpatrick et al., 2001). 

Indications of metacognition through adaptive reasoning and productive disposition 

Petra searched for similarities and differences or patterns in the counting and gave generalised 
explanations to show accountability of her strategy use in other situations. For example, she argued 
for transferring the use of the strategy, which made her master counting from 1 to 20 when she was 
asked to count-on from 7 to 20, and that she recognised relational patterns and explained she had to 
count by 2s to correctly continue the number sequence 2-4-6. Petra initiated, argued, explored, and 
demonstrated different ways and patterns of counting. For example, she counted by 10s to 100 and 
she tried to count by 3s after counting by 2s. Her interest in exploring unknown counting overcame 
her insecurity of succeeding or meeting an expectation of mastery without finger-counting. 

Kilpatrick et al. (2001) claimed that knowledge about one’s own thinking and ability to monitor one’s 
own understanding and problem-solving contribute to strategic competence and adaptive reasoning, 
and is known as metacognition. Petra showed indications of a high metacognitive level. One is that 
she explained how she was strategically going to approach new tasks, which, according to Kilpatrick 
et al. (2001), reflected her motivation or productive disposition, which is important for learning. 
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Counting strategies as part-whole reasoning on the mental number line? 
Exploring Petra’s counting raises the question of whether and how mental number lines representing 
the different 10s interrelate and how to develop an understanding of the pattern regularity linking 
them. Petra seemed to have mental representations for the tens’ group structure and the positioning 
system of -1 to -9 range. Still, ten-transitioning was challenging in backwards counting and in the 10-
20 range. The phonological structure perhaps distracted her. Exploring and considering strategy use 
in an integrated approach of the area model part-whole reasoning and the linear model the mental 
number line and, as such, combined the mental map of numerosity and the mental number line needs 
further examination (Dehaene, 2011). 
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Preservice elementary teachers’ use of mental computation strategies in addition on two-digit natural 
numbers is analyzed using a written questionnaire. The inter-coder reliability of three researchers in 
their categorization of the preservice elementary teachers’ explanations as mental computation 
strategies is investigated. The results show that the coders are to a large degree in agreement, 
strengthening the reliability of the method. 
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Introduction and theory 
There exist variations in the definition of mental computation in the research literature, but a general 
trait among the definitions is calculating without using any equipment (Baranyai et al, 2019; Hartnett, 
2007; Heirdsfield, 2011; Maclellan, 2001; Thompson, 1999). There are many advantages of 
becoming better at mental computation; for example, it improves number sense, it gives a better 
understanding of the place value system and elementary calculation rules, and it is often involved in 
everyday use of mathematics (Hope & Sherill, 1987; Maclellan, 2001; Thompson, 2010). Mental 
computation is part of the elementary curricular content globally, and in several countries there have 
in recent years been an increased focus on mental computation in teacher education (Hartnett, 2007). 

Mental computation strategies are different ways that arithmetic problems are solved mentally 
(Hartnett, 2007; Threlfall, 2000). To do mental computation efficiently, one needs to be flexible, learn 
several different strategies, and know when to use which strategy (Rechtsteiner, 2019). Some 
strategies are more general, and others are more dependent on coincidences in the calculation. 
Thompson (2009) stresses the importance of teaching and using mental calculation strategies, since 
the traditional methods are generally not effective enough to improve students’ numeracy proficiency. 
However, even though mental strategies are a desired focus for computational instruction in schools, 
Hartnett (2007) suggests that teachers have been slow to adopt such changes in their classrooms, and 
that a possible block to adopting this approach is the teachers’ lack of knowledge about possible 
computation strategies. There is evidence to suggest that pupils are often not directly exposed to 
mental computation strategies in school, but rather are left to devise for themselves more or less 
efficient strategies (McIntosh et al, 1995). Many mental computation strategies are possible for pupils 
to discover on their own, but one cannot presume that all pupils will be able to do so (Murphy, 2004). 
Some pupils get stuck in unwieldly mental computation strategies, such as doing the standard 
algorithm mentally, and therefore need to learn more efficient strategies in an organized and 
systematic way (Heirdsfield & Cooper, 2004). 
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Mental computation strategies in connection to elementary pupils has been well researched, but less 
so in connection to preservice elementary teachers (PETs). Since PETs are the next generation of 
teachers, it is important that they know and master mental computation strategies. They need a strong 
foundation of the mathematics of mental computation including an ability to use efficient strategies 
of their own (Heirdsfield & Cooper, 2004; Thompson, 2009). It is therefore important to know the 
current knowledge and proficiency base of PETs on mental computation. Knowing which strategies 
PETs are aware of and use, gives valuable information for continuing professional development on 
how to address mental computation strategies in teacher education and related research, to improve 
teacher content knowledge on mental computation (Hartnett, 2007; Thompson, 2009; Valenta & 
Enge, 2013). 

To investigate the mental computation strategy use of PETs, researchers need to categorize the PETs’ 
current strategies. In research literature a common method to do this is through interviews, where one 
can ask the PETs follow up questions, an alternative that is not available in the same way for a written 
questionnaire. However, a written questionnaire is a more efficient tool than an interview when it 
comes to gathering larger sets of data in statistical investigations (Mastrothanasis et al, 2018). 

There is not a single, consensus approach regarding how to categorize mental computation strategies 
(Whitacre, 2015). In this paper, I focus on strategy categorization using as a theoretical lens a 
comprehensive list of mental computation strategies on addition on two-digit natural numbers (Table 
1). The list is the result of an exhaustive search of the mental computation strategies that occur in the 
literature. After each strategy is given a reference to where the definition can be found in the literature. 

Table 1: Mental computation strategies for addition on two-digit natural numbers 

Strategy Definition Source 

1010 [ten-ten] 
 

(Beishuizen, 1993) 

10s [1010 
stepwise]  

(Reys et al, 1995) 

A10 [adding-on]  (Blöte et al, 2000) 

AUTO [Automatic 
calculation] 

Retrieve the answer automatically or from 
memory. 

(Lucangeli et al, 
2003) 

B [balancing]  

 

(Heirdsfield & 
Cooper, 1997) 

Counting  (McIntosh & Dole, 
2005) 

Doubles and near 
doubles  

 is , so it is one more. 

 

(McIntosh & Dole, 
2005) 

N10 [stringing]  (Beishuizen, 1993) 
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N10C [stringing 
with compensation] 

 

 

(Baranyai et al, 
2019) 

Round one or 
both addends to 
multiple of ten, 
then adjust 

 
(Reys et al, 1995) 

Round to 
multiples of five  

(Reys et al, 1995) 

SA [standard 
algorithm done 
mentally] 

Mental image of pen and paper algorithm, 
placing numbers under each other, as on paper, 
and carrying out the operation, right to left. 

(Heirdsfield, 2001) 

u-1010 [1010 right 
to left]  

(Beishuizen, 1993) 

 

u-N10 [N10 right 
to left]  

 (Beishuizen, 1993) 

Using tens as the 
unit 

  tens   tens   tens   (McIntosh & Dole, 
2005) 

When categorizing there is the question of inter-coder reliability (Lange, 2011), that is if different 
researchers agree in their categorizations. Evaluating the inter-coder reliability is recommended as 
good practice in qualitative analysis, although this is a somewhat controversial topic in the qualitative 
research community, with some arguing that it is an inappropriate or unnecessary step within the 
goals of qualitative analysis (O’Connor & Joffe, 2020). Team coding is a good inter-coder reliability 
check (Miles & Huberman, 1994), and a standard way of doing this is using percentage agreement or 
Cohen’s Kappa (Cohen, 1960). 

Method 
Purpose of article and research question 

This paper is the first article in a planned series of articles where I utilize written questionnaires to 
conduct research into PETs’ mental computation strategy use, making use of the comprehensive list 
of strategies in Table 1. In general, research articles categorizing students’ and PETs’ strategy use 
only draw on a subset of these strategies and different subsets in each article, thus limiting the degree 
of comparisons that can be done across the research literature. Before using the comprehensive list 
of strategies in Table 1 to categorize data from the PET questionnaires, I propose that it is important 
to first investigate the inter-coder reliability of researchers. (Some researchers may not think this is 
necessary in qualitative research, so alternatively the investigation can also be seen as out of curiosity 
or interest to understand how different teacher educator colleagues categorize the same data.) If 
different researchers’ categorizations are in agreement that strengthens the reliability of the method. 
Therefore, a relevant and interesting research question is: 
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Using a written questionnaire and a comprehensive list of mental computation strategies occurring 
in the literature, how do different researchers differ in their categorizations of preservice elementary 
teachers’ mental computation strategy use in addition on two-digit natural numbers? 

To limit the scope of the investigation only addition on two-digit natural numbers is considered. If 
the categorizations are in agreement in this particular case, that increases the confidence in using 
written questionnaires to analyze PETs’ mental computation strategy use in general. 

Research participants 

A written mental computation strategy questionnaire was in 2020 given to two different classes of 
PETs at a mid-sized university in Norway: 

I. 31 second year PETs with 30 ECTS credits of university mathematics. 
II. 15 third year PETs with a mix of 0, 30 or 60 ECTS credits of university mathematics. 

Measures 

The PETs’ use of mental computation strategies was measured with a written questionnaire consisting 
of fifteen exercises on addition on two-digit natural numbers. Figure 1 shows the questionnaire 
instructions and how each exercise was presented to the PETs. 

 

Figure 1: Questionnaire instructions together with the first exercise 

The exercises were constructed by the author so that many different strategies would be used by the 
PETs: 

1. , 2. , 3. , 4. , 5. , 6. , 7. , 8. , 
9. , 10. , 11. , 12. , 13. , 14. , 15.  
The PETs’ written explanations were categorized as mental computation strategies by three different 
researchers (of which one was the author) according to the list of strategy definitions given in Table 
1. The explanations could also be categorized as “Other” (O) or as an “Unclear strategy” (US). In 
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addition to being instructed to use the list of mental computation strategies, the researchers were 
directed to base their categorization solely on a PET’s own written explanation (not speculating on 
how a PET was “really thinking” when calculating). 

The categorization inter-coder reliability was measured by comparing (1) the percentage agreement 
(that is the proportion of the exercises that the coders agreed on) and (2) the average strategy 
distribution of the coders. Note that in (1) percentage agreement was chosen instead of Cohen’s 
Kappa (Cohen, 1960), because the difference between them is negligible since there are many 
categories of strategies and the probability for random agreement when categorizing is thus small. 

Data collection 
The questionnaire was administered as part of a normal lecture in two classes (referred to here as 
Class I and Class II) at the university. The PETs’ participation in the questionnaire was voluntary and 
anonymous. They were not informed beforehand that they would take a questionnaire, so they had no 
way of preparing for it. There was no time limit to the questionnaire. 

The PETs’ explanations in Class I were categorized as strategies by the author and another 
mathematics teacher educator (called instructor A). Both the author and instructor A are associate 
professors in mathematic didactics. The PETs’ explanations in Class II were categorized by the author 
and another mathematics teacher educator (called instructor B). Instructor B is a university lecturer 
in mathematic didactics with several years of experience as an elementary school teacher. 

Results 
Class I categorized by author and instructor A 

The author and instructor A were in agreement in  and disagreement in  of the 
 exercises. In  of the exercises their categorizations were overlapping (but not 

inclusion in set theory terms). One can conclude that the two persons categorizations are to a high 
degree in agreement, strengthening the reliability of the method.  

Figures 1 & 2 show the averages of the 15 exercises for Class I as categorized by the author (Figure 
1) and instructor A (Figure 2), where similar strategies have been grouped. (The strategies were 
consider separately when considering if categorizations were in agreement. Each strategy in the 
category Remaining have a small relative frequency ( ).)  

      

Figure 1: Class I categorized by author                    Figure 2: Class I categorized by instructor A 
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Generally seen the averages in Figures 1 & 2 reflect the relative frequencies in each of the 15 
exercises. One exception is exercise 4 (that is ). Most of the PETs have calculated exercise 4 
by adding  and then attaching a zero. The author has categorized this strategy as “Other” (O) 
whereas instructor A categorized it as an “Unclear strategy” (US). 

Class II categorized by author and instructor B 

The author and instructor B were in agreement in  and disagreement in  of the 
 exercises. In  of the exercises the categorizations were overlapping (but not inclusion 

in set theory terms). Although the author’s agreement with instructor B was somewhat smaller than 
with instructor A, the overall agreement of two categorizations is good also in this case.  

The diagrams in Figures 3 & 4 show the averages of the 15 exercises for Class II as categorized by 
the author (Figure 3) and instructor B (Figure 4). The grouping of the categorizations is here the same 
as for Class I. 

        

Figure 3: Class II categorized by author                   Figure 4: Class II categorized by instructor B 

Discussions and conclusions 

Exploring how different researchers categorize preservice elementary teachers’ mental computation 
strategy use, utilizing the comprehensive list of strategies as a theoretical lens to analyze their work, 
is an important first step for me before moving into the all-important task of understanding more, in 
general, about PETs’ strategy use. We have in this paper seen that, using a written questionnaire and 
a comprehensive list of mental computation strategies occurring in literature, there is good agreement 
between how three different researchers categorize PETs’ explanations as mental computation 
strategies. This is a valuable result since it means that written questionnaires and the comprehensive 
list of strategies in table 1 can be used more reliably to analyze PETs’ use of mental computation 
strategies. 
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In this paper primary and secondary school students are followed while they try to perform 
operations with rational numbers first mentally and then in paper-and-pencil. The same tasks were 
given to the participants of both groups. The findings give evidence that no matter the context (mental 
or written calculations) the dominance of the mental form of the written algorithm is unquestionable 
for both groups. Moreover, most of the student were not able to explain their decision to use the 
algorithm in their mental calculations. The students who were able to justify their choice claimed 
that their criterion was the accuracy, speed and easiness provided by the algorithm which creates a 
paradox since for all the items on the study the algorithm is the most time-consuming strategy.  

Keywords: Mental calculations, rational numbers, written algorithm. 

Introduction. 
Mental calculations with rational numbers have been the focus of several studies (Caney & Watson, 
2003; Rezat, 2011; Carvalho & Ponte, 2019). The ability to perform mentally such calculations is 
considered significant. According to the Principles and Standards of the NCTM (2000), “students 
should develop and adapt procedures for mental calculations and computational estimation with 
fractions, decimals, and integers” (p. 220). In the last CERME, Papadopoulos et al. (2019) highlighted 
the dominance of the use of mental form of the written algorithm as a way to calculate mentally the 
outcome of certain operations with rational numbers. The discussion that followed the presentation 
was fruitful and raised questions concerning the possible reason the participants choose this strategy, 
or whether they know alternative strategies and if yes why they do not use them. Moreover, the 
audience in the conference was wondering whether the results would be the same in case the students 
were asked to solve the same tasks in paper-and-pencil.  

In this setting the current study attempts to give some answers to the above-mentioned concerns. So, 
the research questions are as follows: 

(i) What is the range of the strategies employed by primary and secondary education students 
when they execute operations (first mentally and then in a written form) that involve 
rational numbers? 

(ii) On what criterion do they choose their mental calculation strategy?     
 
Theoretical background   
Most of the studies on mental calculation focus on whole numbers and their four operations (Rezat, 
2011). However, in recent years there is an ongoing interest on mental calculations with rational 
numbers examining issues such as the comparison of rational numbers (Yang et al., 2009) and the 
operations with them (Caney & Watson, 2003; Papadopoulos et al., 2019). Caney and Watson (2003) 
recorded the strategies the participants used while trying to calculate mentally. They ended with a 
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series of different strategies: ‘changing operation’ (e.g., subtraction to addition), ‘changing 
representation’ (e.g., fractions to decimals and vice versa), ‘use of equivalents’, ‘use of known facts’ 
(e.g., times table), ‘repeated addition/multiplication’ (e.g., by doubling, halving), ‘use of bridging’ 
(bridged to one/whole),‘working with parts of a second number’(split the second number by place 
value or by parts), ‘working from the left/right’, ‘using mental picture’, ‘using mental form of written 
algorithm’ and ‘using memorized rules’. They group these strategies in two main categories: 
instrumental and conceptual strategies. The first refer to strategies based on the use of procedural 
paths learned by rote. The second occurs when students make use of their knowledge on the specific 
set of numbers and operations in order to calculate mentally. Callingham and Watson (2004) found 
that in the realm of rational numbers it is easier to work mentally with fractions rather than with 
decimals or percentages and that division is more demanding compared to addition and subtraction 
(which holds equally for the set of whole numbers). Moreover, it seems that in the context of the 
addition and subtraction of decimal numbers the students preferred strategies they already used for 
mental calculations with whole numbers (Rezat, 2011). In their study on mental calculations with 
rational numbers by primary school students Carvalho and Ponte (2019) highlight two main findings: 
In their effort to work mentally the students (i) tend to use the strategy of ‘changing representation’ 
(from fractions to decimals), and (ii) ‘use numerical relationships strategies supported by 
propositional representations’ (p. 393). Another related issue is the ability of flexibility in mental 
calculations that has been raised by scholars such as Rathgeb-Schnierer and Green (2015) and the 
lack of which has been recorded not only for students but for teachers also (Lemonidis et al., 2018). 
Finally, Papadopoulos et al. (2019) who tried to record and compare strategies used by participants 
across all educational levels for the same tasks found that the mental form of the written algorithm 
dominated in the participants choices no matter the educational level (almost 43% for primary school 
students, 31% for secondary school students, 46% for University students from the Department of 
Primary Education and 59% for University students from the Mathematics and Engineering 
Departments). All the other strategies’ percentages were close to 1%-2%. This raises the issue of how 
the solvers choose strategies in mental calculations. Indeed, the choice of the proper strategy is of 
critical importance. Threlfall (2000) described the process of choosing strategies as a series of certain 
steps: (i) prior analysis of the problem to recognize features that are associated to different possible 
strategies, (ii) decide which ones of these strategies are viable in terms of knowledge and skills, (iii) 
decide between the viable strategies the one that is (possibly) the easiest, and (iv) carry through the 
decision in practice. But as he admits ‘neither children nor adults actually calculate in that way’ (p. 
84). The idea of teaching criteria for deciding in advance which strategy to use is rather not feasible 
and perhaps this explains why there are no suggestions in the relevant research literature for direct 
teaching on how to decide strategically the proper way of mental calculation (Threlfall, 2002). So, 
there is no proof on the way students choose to calculate mentally and this is why in this paper we 
chose to examine this issue. Threlfall (2002) claims that mental calculation strategies are not 
purposefully selected by the students, but they occur since the students are interested in finding the 
solution rather than the method. More precisely, he claims that “They are ways of thinking about 
mental calculations that do not describe the whole sequence to the solution, but concern just some of 
the steps, for example ways of beginning, ways of thinking about the numbers, and ways of relating 
the numbers to other knowledge” (p. 42). 
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Setting of the study  
The total number of the participants was 127 students from primary and secondary education. More 
precisely there were 65 students from grades 5 and 6, and 62 students from grades 10, 11 and 12 in a 
rural area of Northern Greece.  

Five tasks in total were given to the students (Fig. 1) 

                       

   Item 1                        Item 2                               Item 3                          Item 4                                Item 5 

Figure 1: Tasks posed to the students 

The tasks’ design followed two principles. First, there are more than one ways to calculate each item. 
Second, all the items can be calculated in a fast and easy way if the solvers notice the quantities 
involved in each operation. Therefore, item 1 includes the sum of two halves and therefore the answer 
is 1. Item 2 is about four halves, therefore 2. In item 3 if the solver sees  as +  it is easy then to 

get the result 1 . For item 4 the result should be the double of 2.5, therefore 5. Finally, for item 5 the 
solver must think how many halves are needed to get 8. Therefore, the answer is 16. This small 
collection of items involves all the four operations and a variety of combination of numbers (fractions, 
whole numbers, mixed numbers).  

The whole study consisted of a two-step process. Initially all the participants were interviewed 
individually. They were asked to solve the tasks one-by-one mentally vocalizing their thoughts while 
solving them. They were not allowed to make written calculations or to keep some notes. There was 
no time restriction, and they could skip tasks in case they felt they couldn’t solve them. No feedback 
was provided to them during their effort. All interviews were recorded and transcribed.  

For the second part, the students were invited to work individually on paper-and-pencil. Now they 
had to solve each item with as many different ways as they could. After completing the solutions for 
each item, the students had also to write down their answer for the question: Can you explain why 
from all these different ways of solving this item, did you choose this specific strategy for your mental 
calculation?         

The transcribed protocols (first part) and the students’ worksheets (second part) constituted our data. 
For the first part of the study the data were analyzed in two levels. First, the answers were categorized 
according to whether they were correct, incorrect, unanswered or not codable. Second, the correct 
answers were distributed to the different strategies of Caney and Watson (2003). It must be said 
however that not all the strategies appeared in the students’ answers and that some new strategies 
emerged. For the second part, the data analysis took place at a qualitative level on the basis of content 
analysis following a more deductive sort of thematic analysis (Mayring, 2014). The data were coded 
independently by the authors and validity and reliability were established by comparing sets of 
independent results, clarifying codes and re-coding data until agreement. 
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Results and Discussion 
Table 1 summarizes the distribution of the total number of answers (635 answers for the first part of 
mental calculation and 721 for the second part of written calculations) across the different strategies. 

Table 1: Distribution of answers across different strategies for both parts of the study 

 1. Written 
algorithm 

2. Equivalent 3. Parts of a 
number 

4. Change 
representation 

5. Reduction 

Mental 
calculation 

229/635 
(36.06%) 

6/635 (0.94%) 5/635 (0.78%) 8/635 (1.25%) 4/635 (0.62%) 

Written 
calculation 

296/721 
(41.05%) 

26/721 (3.6%) 7/721 (0.97%) 20/721 
(2.77%) 

10/721 
(1.38%) 

 6. Algebraic  7.Combine 8. Incorrect 9.Unanswered  10.No-codable 

Mental 
calculation 

0/635 (0%) 7/635 (1.1%) 263/635 
(41.41%) 

112/635 
(17.64%) 

1/635 (0.15%) 

Written 
calculation 

2/721 (0.27%) 37/721 
(5.13%) 

252/721 
(34.95%) 

68/721 
(9.43%) 

3/721 (0.41%) 

Examining the different strategies, it seems to be an overlapping between the use of Equivalent and 
use of Reduction since from the mathematical point of view it is the same. Reduction results always 
to equivalent fractions. We consider them different based on the wording of the participating students 
who treated them as such. It was the solver’s aim as this was expressed verbally that made us to 
decide if the solution is associated with one strategy or another. Another new strategy is the 
‘algebraic’ one (despite its limited presence) that was not included in the list of Caney and Watson 
(2003). An example of this approach collected from answers in item 1 is: 

 + = => 48 ∙ + 48 ∙ = 48 => 8 ∙ 3 + 6 ∙ 4 = 48 => 48 = 48 => = 1. 

The category of ‘combination’ has been also added to include answers that combine more than one 
strategy at the same calculation. For example, in the following answer for item 5 the student combined 
the Reduction and Written algorithm strategies: 8 ÷ = 8 ÷ ÷÷ = 8 ÷ = 8 ∙ = 16. For the same 

item, another response combined the Equivalent and Change representation strategies: 8 ÷ = 8 ÷= . = 16. 

Two interesting observations can be made based on the arithmetical data of Table 1. The first is 
related with the range of the strategies employed by the participants in their mental and written 
calculations. It can be said that the results are more or less the same in both cases. Papadopoulos et 
al. (2019) highlighted the dominance of the mental form of the written algorithm in mental 
calculations with rational numbers. But it seems now that the situation is the same no matter the way 
of calculation (mental or written). Therefore, it is not the context of the calculation that promotes the 
use of the algorithm. The second observation is that almost the total number of the collected answers 
is around the triplet algorithm-incorrect-unanswered (almost 94% and 86% for the mental and written 
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calculation respectively). This means that the main option for a correct answer is to use the algorithm. 
Otherwise, the most possible is to get an incorrect answer or skip the task. 

The situation remains the same when the data from Table 1 are distributed across the two samples in 
Table 2. The algorithm percentages for primary education students for the mental and written 
calculations are 29.84% and 37.73% respectively. Interestingly no other strategies are employed by 
the primary school students except 2 answers using the ‘parts of numbers’ in the mental part of the 
study, and 2 cases in the written part (‘parts of numbers’ and ‘change representation). All the students 
(almost 100%) are gathered around the same triplet mentioned earlier. The secondary education 
students employed several strategies in their mental and written calculations. However, the frequency 
of these strategies is small compared with the use of the algorithm. So, in the mental part of the study 
42,58% of the correct answers were based on the use of algorithm while only 28 out of 310 answers 
(9,03%) employed other strategies. The situation is improved in the written part of the study since 
the percentage of the correct answers that use other strategies (except from algorithm) is increased to 
25,31% (100 out of 395 answers). But again the dominance of the algorithm (43.79%) is 
unquestioned.   

Table 2: Distribution of strategies across the two samples for both parts of the study 

 Mental calculation Written calculation 

 Primary 
Education 

Secondary 
Education 

Primary 
Education 

Secondary 
Education 

Written 
Algorithm 

97 (29.84%) 132 (42.58%) 123 (37.73%) 173 (43.79%) 

Equivalent   6  26 

Parts of number 2 3 1 6 

Change represent  8 1 19 

Reduction   4  10 

Algebraically     2 

Combination   7  37 

Incorrect  138 (42.46%) 125 (40.32%) 148 (45.39%) 104 (26.32%) 

Unanswered  88 (27.07%) 24 (7.74%) 53 (16.25%) 15 (3.79%) 

Non-codable   1  3 

TOTAL 325 310 326 395 

An alternative way to organize the data for the written phase of the study is according to the number 
of different strategies per item employed by the participants (Table 3). From the 325 answers given 
by the primary school students (65 students × 5 items) 123 employed one strategy (i.e., the mental 
form of the written algorithm) and the rest of them but one did not employ any strategy. Only one 
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student was able to use 2 different strategies for one item. The situation is slightly better for the 
secondary education students (62 × 5 = 310 answers). There was a small number of answers that 
employed 2, 3, and 4 strategies (49, 13, and 3 answers respectively). But again, the main characteristic 
is that the majority of the answers are around 0 and 1 strategies. So, our claim that it is not the context 
that imposed the use of the algorithmic approach is rather strengthened.  

Table 3: Number of strategies for the same task  

Number of different 
strategies 

Primary Education Secondary Education TOTAL 

0 strategies 201 (61.84%) 122 (39.35%) 323 

1 Strategy 123 (37.84%) 123 (39.67%) 246 

2 strategies 1 49 50 

3 strategies  13 13 

4 strategies  3 3 

TOTAL 325 310 635 

Therefore, almost half of the attempts represent lack of any strategy while in the case of the successful 
attempts almost 8 out of ten were based on the use of just one strategy, that is the use of the mental 
form of the written algorithm. So, the research question about the range of the strategies employed in 
these two different contexts can be answered in a rather clear manner: No matter the context, the 
students can merely use the algorithm in their calculations, or they are unable to respond successfully. 

Table 4: Reason for choosing a strategy      

Reason of choosing a 
strategy 

Primary Education Secondary Education TOTAL 

Easy / fast / efficient 7 (2.15%) 80 (25.8%) 87 (13.7%) 

Teaching practice 1 2 3 

Certainty 1 28 (9.03%) 29 

Lack of another 
knowledge 

8 5 13 

I don’t know 308 (94.76%) 195 (62.90%) 503 (79.21%) 

TOTAL 325 310 635 

The second research question aims to reveal the criterion the students use to choose their mental 
calculation strategy. Our hope was to contribute to the issue raised by Threlfall (2002) that there is 
no proof on the way students choose to calculate mentally. The analysis of the collected answers 
resulted in five categories (Table 4). The students explained that they chose the specific approach in 
their mental calculation because (i) they think that this was the easier, faster, and more efficient way 
for the calculation, (ii) this is the way they were taught to calculate with rational numbers, (iii) they 
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felt secure with the specific strategy, (iv) this was the only strategy they knew, and (v) they were 
unable to provide any explanation for their decision. For the primary school students what is 
impressive is the very small number of responses. In (only) 17 (out of 325) cases the students were 
able to explain the way they worked. This means that for almost 95 out of 100 cases they were not 
able either to justify their choice or to find any strategy that would serve their purpose (unanswered 
items). For those who were able to provide an explanation this was mainly the 
easiness/fastness/efficiency of the algorithmic approach. For the secondary education students, for 
almost 63 (out of 100) cases the students were unable to justify their choices. From those who gave 
explanations, again most of them justified their choice on the basis of the easiness/fastness/efficiency 
of the algorithmic approach. In comparison to the primary school students the only difference here 
was the increased number of answers (28 vs 1) referring to the issue of the certainty the students felt 
with using the specific strategy for mental calculations. Actually, focusing on the total sample what 
is evident is the students’ inability to justify their choices. But what is especially interesting is a 
paradox that seems to appear after analysing all the responses. From Tables 1-3 it can be seen that 
the students exhibited an almost exclusive preference to the mental form of the written algorithm. 
This choice was later justified by them as the most easy, fast, and efficient way of calculating. Its 
efficiency is unquestionable. Indeed, the correct application of the algorithm guarantees the correct 
result. But it is interesting that they consider it easy and fast. For example, for item 1, the sum +  
can be immediately (in an easy and fast way) be seen as the sum of two halves which is equal to 1. 
On the contrary, the participants preferred to make the fractions having the same denominator ( += + ), to add them ( + = + = ), to reduce the sum, to find 1 ( + = + = =1) and they considered this process as the most easy and fast.         

Conclusions 

The ability for mental calculations and the selection of the most suitable strategy for mental 
calculations are considered especially significant by the research community. In this paper we 
followed primary and secondary school students in their attempt to calculate (mentally and in paper-
and-pencil) the same collection of tasks. It seems that the algorithm was the only option for primary 
school students no matter whether they calculated mentally or in paper-and-pencil. The secondary 
school students exhibited an ability to use alternative strategies, but the presence of these strategies 
was very small compared to the use of the algorithm. Most of the participants used just one strategy 
for their calculations in paper-and-pencil, which is indicative of limited flexibility (Heinze et al., 
2009). Finally, most of the students justified their choice of the algorithmic approach considering it 
as being easy, fast, and efficient. From the mathematics point of view this creates a paradox since the 
use of algorithm provokes an increased cognitive load compared to many other mental approaches in 
calculating. The findings reveal some interesting aspects about mental calculations, but these findings 
cannot be generalized due to the relatively small number of participants. However, they deepen our 
understanding of the topic and challenge us for a future study to strengthen our arguments made here.     
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Using Concept Cartoons to support the number line as a vehicle for 
mathematical understanding 
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This contribution draws on a research study the aim of which was to investigate the number line as 
a vehicle for mathematical understanding in the naturalistic setting of the elementary classroom. 
This paper focuses on one aspect of this research; the use of Concept Cartoons as an educational 
tool to support the role of the number line as a tool for fostering the development of conceptual 
understanding. Evidence from whole class discussion and the pupils’ own productions points to the 
role of Concept Cartoons in supporting pupils’ sense making, the elaboration of informal 
strategies, and the development of more sophisticated ones. 

Keywords: Concept Cartoons, number line, mental calculations, primary education.   

Background. 
The understanding of and ability to use the linear, mathematical number line constitutes an essential 
facet of pupils’ mathematics education (Lemonidis, 2016). The number line representation plays an 
important role in facilitating pupils to develop flexibility in mental arithmetic as they actively 
construct mathematical meaning, number sense, and understandings of number relationships 
(Frykholm, 2010). The number line is not a simple representation. According to Herbst (1997), a 
number line is formed by the consecutive translation of a specified segment U, as a unit from zero 
that can be partitioned in an infinite number of ways. He suggests that the number line is a 
metaphor of the number system. The number line is also considered a geometrical model, involving 
a continuous interchange between a geometrical and an arithmetic representation (Gagatsis et al., 
2003).  Within the literature, two major types of number lines can be identified; the structured 
number line and the empty number line (Diezman et al., 2010). There is a large body of literature 
that discusses the number line and its crucial role in teaching and learning elementary mathematics 
(Beishuizen, 2010; Gravemeijer, 2020). Whilst generally effective, research findings often raise 
doubts about the usefulness of the number line as a didactical model (Van den Heuvel-Panhuizen, 
2008). These studies point towards a coherent treatment of the number line throughout the years of 
compulsory education and presentation of the number line in the school official documentation in a 
developmentally appropriate manner, by focusing on the simultaneous presence of the geometric 
and the arithmetic conceptualization of number on the number line. It is acknowledged that it is 
superficial to simply recommend the use of the number line for the students’ mathematical 
development or include it in curriculum materials and other recourses. If emphasis is given on the 
nature of the number line and its use as a representation of sophisticated ideas, then a conceptual 
way of teaching and learning is being encouraged, contributing to addressing students’ difficulties 
(Van den Heuvel-Panhuizen, 2008). In promoting a non-threatening classroom culture that 
encourages all pupils to create, formulate, extend and express their mathematical understanding, 
and simultaneously provides the teacher an insight into the pupils’ understanding, a didactical tool 
that can be utilised alongside the number line is Concept Cartoon. 
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Concept cartoons are cognitive drawings or visual engagements that use a cartoon-style design to 
present mathematical conversations inside speech bubbles (Dabell et al., 2008). The integrated 
written text is characterized by minimal use of written language, in order to be accessible by all 
pupils, regardless of their literacy skills. The cartoon characters are engaged in a dialogue or an 
argument presenting alternative statements, concepts or questions that are related to a central 
content-related topic. All alternative viewpoints presented by the cartoon characters have equal 
status and are grounded on research related with pupils’ understanding in order to appear credible 
(Naylor & Keogh, 2013). Thus, the legitimized argument presented in the concept cartoon provides 
a comfortable and non-threatening environment inviting pupils to engage in and extent the 
characters’ argument. Concept cartoons are considered a valuable learning and teaching tool that 
provides the pupils the opportunity to interpret and understand mathematical concepts (Naylor & 
Keogh, 2013). As the pupils’ ideas are articulated by the cartoon characters, even reluctant or less 
confident pupils are encouraged to express their personal views as responses to the characters and 
justify their reasoning and thus, engage in the discussion (Sexton et al., 2009). Comparing and 
contrasting ideas facilitates learning and interpretation of knowledge, reveals and eliminates 
misconceptions (Dabell, 2008). Adding to the above, research studies with a focus on engaging 
pupils with concept cartoons, also argue that the use of concept cartoons has the potential of 
increasing levels of motivation, involvement and interest towards lessons and have a positive effect 
on mathematical achievement (Naylor & Keogh, 2013).  

Keeping in mind the aforementioned, this paper focuses on Concept Cartoons, as an educational 
tool to support the number line as a vehicle for mathematical understanding. To be more precise, 
this paper examines how Concept Cartoons can be utilized in a Year 2 mathematics classroom to 
provide a fruitful context for appreciating the nature of the number line and its use as a 
representation of sophisticated ideas. 

Method. 
The results presented in this contribution form part of a broader study that constitutes an attempt to 
translate the idea of the number line as a vehicle for mathematical understanding in the naturalistic 
setting of the elementary classroom (Pericleous, 2022). To be more descriptive, this study sought to 
examine the use of the structured and empty number line as a tool to support and develop Year 2 
and Year 3 pupils’ sense making and calculation strategies specific to addition and subtraction in 
the number domain 0-1000. The study employed a design based research methodology (Cobb et al., 
2003) that was informed by Realistic Mathematics Education and a socio-constructivist approach to 
teaching and learning (Gravemeijer, 2020). Thus, pupils’ learning process was viewed from both 
the individual perspective and the social perspective. In this learning process, where pupils pass 
through various levels of understanding, models such as the number line function as a bridging 
device between informal to more formal mathematics, supporting a shift from a ‘model’ of pupils’ 
informal solution strategies to a ‘model for’ mathematical reasoning (Gravemeijer, 2020). The 
study was conducted in a public primary school in Cyprus. The participants, as relevant for this 
paper, were 19 pupils (7-8 years old) of a wide range of abilities. The instructional sequences were 
conducted throughout a school year and were carried out as a part of the ordinary mathematics 
classroom with the teacher as the researcher and author of this paper. Starting from pupils’ 
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embodiment of the number line, and explicitly giving emphasis on the nature of the number line, 
the instructional approach was organized around number sequence and recognition, addition and 
subtraction in the domain from 1 through 100. The overall aim of the instructional approach was to 
create opportunities for the pupils to build connections or relations between representations of 
mathematical ideas, to have the freedom to come up with their own notations, find their own ways 
to decompose quantities and regroup/recombine them and express and discuss their ideas. In doing 
so, the pupils had the opportunity to understand the nature of the structured and empty number line 
before acting on them and modelling 
their solution strategies.  

The data collection process as 
relevant to this paper included video 
data from the teaching sequences, 
the field notes from the teacher and 
pupils’ written work. The overall 
process of analysis of the collected 
data drew upon progressive focusing 
and the constructs ‘account-of’ and 
‘accounting-for’. According to Stake 
(2004), progressive focusing is 
achieved in various stages; first 
observing, then further inquiry, 
beginning to focus on relevant issues, and then seeking to explain. The analysis of collected data 
started simultaneously with the data collection process, in order to further organise the instructional 
sequences. The data were treated both qualitatively and quantitatively, aiming at identifying pupils’ 
thinking, strategies and procedures and their development. The ongoing analysis being conducted 
while the study was in progress led to a focus on several issues and events; accounts-of, which were 
then placed in a broader theoretical context by conducting a retrospective analysis (accounting-for). 
Creating the Concept Cartoons aimed at providing pupils the opportunity to appreciate the number 
line as a rich model that can have different manifestations, by giving them as much initiative as 
possible, and simultaneously reducing the leading role of the teacher. This paper focuses on 
Concept Cartoons that were employed as a way to support pupils’ understanding of the number line 
and gain access to their calculation strategies. They present addition situations up to 100 without 
bridging. The pupils would explore a specific Concept Cartoon either individually or in small 
groups. After exploring a concept cartoon, pupils would draw a star next to the cartoon they felt 
more close to, as a way for the teacher to gain access to their thinking and understanding and 
adequately build on their existing knowledge. Classroom discussion would follow.  

Findings. 
Supporting pupils’ understanding of the number line. 

There were instances where the Concept Cartoons were related with defining the structured and 
empty number line and developing key understandings underpinning the conventions considered to 

Figure 1: Gaining insight into the pupils’ calculation strategies 
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interpret, create and use number lines. For instance, in defining the structured number line, the 
Concept Cartoon was created by taking into consideration pupils’ embodiment of the number line, 
requesting pupils’ opinions regarding the cartoon characters’ diagrams. The speech bubbles 
included two structured number lines (0-15, 0-30), a line with no marked numbers and a number 
line with no equal intervals between the marked numbers. All pupils drew a star on the structured 
number lines.  

Student1: The child’s (cartoon character) number line is wrong, because the numbers are at 
some parts very close to each other and at other places they are away from each 
other. They do not have the same distance from each other. 

Student2: And the other one has no points for the numbers.  
Student1: Yes. 
Student3: It is a number line (0-15) because it begins from zero, the numbers have equal 

spaces from each other, and they are marked. 
Student4: And the numbers are in order.  
Student5: I agree. It is the same with the one that goes up to 30.   
Teacher: Keeping in mind this discussion, how can we define the number line?  
Student5: It is a straight line that has numbers that are placed in order; they are shown on the 

line with a mark and have the same distance from each other.  
Student6: And it goes to infinity.  

While, at first the pupils would refer to the perceptual features of the number line, progressively, 
they would make reference to order, continuity and the variety of numbers that could be represented 
on it. The discussion led to the conclusion that a number line shows the order of specific numbers, it 
includes points in equal intervals that show the place of the number and that the difference of a 
number to the next is constant. The classroom constructed a definition of the number line. This 
definition was often revisited 
throughout the year to support the 
development of a global 
perspective on the number system, 
by focusing on the unit interval 
and the partition of this interval.  

Furthermore, Concept Cartoons 
were created so as to demonstrate 
the flexibility of the number line.  
For instance, the Concept Cartoon 
in Figure 2 was explored after the 
classroom was introduced to the 
empty number line as a tool to 
record one’s thinking. By drawing 
upon the pupils’ own informal 
strategies, Figure 2 provided the 
classroom the opportunity to discuss calculation strategies and the flexibility in the ways of 
recording results (for example including arrows or writing on top of the jumps made) and in the 
jumps made on the number line to solve a computation task. In this Concept Cartoon, the pupils’ 
preferences were divided between the cartoon characters of Ann, Lina and Peter. 

Figure 2: Concept Cartoon for the flexibility of the empty number 
line 
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Student1: Ann and Peter added the tens and then the ones. They worked in the same way but 

Peter did not put the arrows. 
Student2: Yes, but do we have to? It’s addition, we know it from the plus sign.  
Teacher: The empty number line gives us a lot of freedom in the ways of recording results.  
Student2: Thus, we can decide what to do. 
Teacher: Yes.  

The pupils argued that it was more difficult to follow 
Nick’s way of recording results because of the missing 
symbols above the jumps. The classroom established that 
the written symbols that accompany the jumps show the 
steps one follows to calculate the result, as well as possible 
errors. Furthermore, one pupil stated that even though he 
chose a cartoon character, his choice was related with the 
way of recording results and not with the calculation 
strategy presented by the cartoon character, explaining “I 
would start from 60, add the tens and then the ones. It is 
easier this way”. At this point, it should be noted that even 
pupils that struggled to model their calculation strategy on 
the empty number line, they understood the conventions 
used in interpreting the diagram, and thus, reading and 
identifying the strategy being modelled on the empty 
number line. Folllowing this Concept Cartoon, the pupils 
solved a calculation task, using their own strategies (see Figure 3). 

Gaining insight into pupils’ calculation strategies. 

Another type of Concept Cartoons created and employed in the classroom aimed at gaining insight 
into pupils’ calculation strategies, as well as providing pupils with the opportunity to experience 
and develop a range of mental calculation strategies. Speech bubbles proposing various solution 
procedures encouraged pupils to identify the name of the character that best matched their personal 
strategy choice for calculating the result, and providing reasons for choosing the specific strategy.  
For instance, in Figure 1, the Concept Cartoon was exploited as an introduction to the addition of 
two-digit numbers, where the second number is multiple of 10. The strategies used by the cartoon 
characters would enable the teacher to determine whether the pupils perceive the calculation as too 
hard, can solve the calculation in different ways, but recognise that a mental strategy is most 
efficient, would solve the calculation using auxiliary means, can remember a strategy, but would 
need to write it to perform the calculation (Sexton et al., 2009). The discussion led to a repertoire of 
proposed methods and procedures to calculate the result. According to the pupils the result could be 
calculated using arithmetic blocks, making jumps on a structured number line (counting by ones or 
tens), with a drawing (iconic representation of tens and ones, money model) or mentally. The 
pupils’ mental reasoning strategy was to split 64 into tens and ones and processed separately. It was 
noticed that writing on paper to solve the calculation meant making a drawing and not a written 
calculation strategy. This can be explained by the fact that the pupils had not been introduced to 
written calculation strategies yet. This is also an indicator of pupils engaging in and extending the 

Figure 3: Pupils' calculation strategies 
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cartoon character’s argument. In addition, while no pupil perceived the calculation as difficult, the 
reliance on arithmetic blocks was evident, suggesting the need for the pupils to be provided with 
more opportunities to develop mental calculation strategies. Nonetheless, all pupils, using their 
preferred models, method and procedure reached the same result. 

Adding to the above, in Figure 4, the methods used by the cartoon characters would enable the class 
to discuss various ways of computation as well as enable the teacher to determine the ways the 
pupils preferred to solve the calculation. The speech bubbles included splitting (Ann) where the 

numbers are divided by 
multiples of ten and units and 
processed separately when 
operations are carried out, 
stringing or compensation 
strategy (Nick) which refers to 
keeping the first number intact 
while splitting the second 
number into tens and ones, 
which are then added separately 
from the first number, the 
conventional paper and pencil 
algorithm (Lina) and arithmetic 
blocks (Peter). Even though the 
algorithm had not been 
introduced in the classroom, it 

was mentioned previously by some pupils, as knowledge they had acquired outside school. Thus, it 
was included in the Concept Cartoon, so as to be explicitly discussed, but without expecting pupils 
to use it as a way of working. Indeed, two pupils chose Lina. One pupil chose Peter, revealing that 
pupils would gradually rely less on models to solve a calculation task. The other pupils’ preferences 
were divided between Ann and Nick, with four pupils commenting that they did not need to write it 
down because they worked the calculation mentally. Figure 5 illustrates pupils’ calculation 
strategies when solving similar 
calculation tasks. Comparison of the 
pupils’ calculation strategies modelled 
on the empty number line that followed 
the exploration of Concept Cartoons 
presented in Figure 3 and 5 accordingly, 
also revealed that pupils’ strategies involved fewer steps.  

Discussion and Conclusion. 
The purpose of this paper was to examine Concept Cartoons as an educational tool to support the 
number line as a vehicle for mathematical understanding. This study confirms findings from other 
research studies that Concept Cartoons act as an engaging and beneficial tool that supports pupils in 
interpreting and understanding concepts (Naylor & Keogh, 2013; Sexton et al., 2009). The Concept 

Figure 4: Gaining insight into the pupils’ calculation strategies 

Figure 5: Pupil's calculation strategies 

Proceedings of CERME12 423



 

 

Cartoons presented in this paper constitute an illustration of the attempt made to treat in a coherent 
way the number line by focusing on the simultaneous presence of the geometric and the arithmetic 
conceptualization of number on the number line, and fostering the transition from a model of 
pupils’ informal solution strategies to a model for mathematical reasoning. Empirical evidence from 
the classroom indicates that Concept Cartoons created opportunities for the pupils to build 
connections and relations between representations of mathematical ideas, to have the freedom to 
come up with their own notations, as well as express and discuss their ideas, pointing to the 
usefulness of the number line as a didactical model (Van den Heuvel-Panhuizen, 2008). Initially, 
the Concept Cartoons provided the pupils with a platform from which, by drawing upon experience, 
they reached a definition, as suggested by Herbst (1997). Even though the instructional approach 
followed in this study was focused on positive whole numbers, the pupils’ statements and work 
point to the number line being used as a metaphor to support thinking.  Furthermore, by supporting 
pupils in defining and understanding the number line, the pupils were able to understand the 
conventions used in interpreting diagrams and thus, reading and identifying the strategy being 
modelled on the empty number line (see Figures 2 and 4). Adding to the above, findings from this 
study, also show, that the Concept Cartoons containing procedures in their bubbles (as a text or 
image), provoked discussion, reasoning and reflection regarding strategy choice and comparison of 
strategies, supporting pupils in developing mental calculation strategies (see Figures 3 and 5). As 
the Concept Cartoons were carefully designed by taking into account pupils’ backgrounds, language 
literacy skills, as well as their level of mathematical understanding, pupils were kept motivated and 
engaged. This was also evident in the pupils’ mathematical journal where they shared their thoughts 
stating for example “I like concept cartoons because the characters are like us”, “The lesson is 
easier with the concept cartoons”.  

Concept Cartoons also proved a valuable instrument in providing the teacher with insight 
concerning pupils’ understanding of the number line and the repertoire of strategies pupils use to 
perform an addition calculation. At this point it should be noted that this was not a straightforward 
process. For the effective use of the Concept Cartoons and supporting pupils’ understanding of the 
number line and development of strategies and procedures, the classroom environment encouraged 
communication, exploration, discussion and reasoning. The social and sociomathematical norms 
negotiated and established in the classroom (Kilpatrick et al., 2001), offered pupils the freedom to 
develop, express and share their thinking. However, this does not tell the whole story. Concept 
Cartoons containing bubbles with proposed various results or with empty bubbles were also created 
and employed in the classroom both in addition and subtraction in the number domain 0-100. 
Through reflection and classroom discussion supported pupils progressing towards more elegant 
and higher-level strategies (Gravemeijer, 2020). Interpreting the number line, associating actions 
with it and communicating mathematical meaning may contribute towards a comprehensive picture 
of its conceptual structure and complete development of understanding of the number system. 
Additionally, employing Concept Cartoons alongside the number line in the teaching and learning 
process, points to the role of the teacher in taking into consideration their affordances, as well as the 
difficulties and limitations in their use depending on the mathematical content and the cognitive 
level of the pupil. 
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The number line is an important external representation in primary education and research has 
shown that performance in number line tasks correlates with general mathematical achievement. A 
promising tool for gaining insights into students’ strategies—in number line and other tasks—is eye 
tracking. However, previous eye-tracking research has predominantly addressed students’ use of 
strategies on an empty number line, whereas students’ strategy uses and eye movements on the 
marked number line have hardly been explored. This paper presents an exploratory study that 
investigates student strategies in locating numbers on a marked number line. In this paper, we present 
students’ strategies in naming and placing numbers on the number line as well as differences in the 
use of strategies between students with short and long response times, indicating the use of more or 
less efficient strategies. 

Keywords: Number line tasks, eye tracking, strategies.  

Introduction 
It is of fundamental interest for mathematics education research to examine students’ mathematical 
performance levels and their individual strategies when working on mathematical tasks to meet the 
individual needs of students (Anthony & Walshaw, 2009). The basis for many mathematical learning 
processes is laid in mathematics learning at primary level. Lacks in basic mathematical knowledge 
can lead to difficulties at secondary level (Moser Opitz et al., 2017). One essential aspect for learning 
mathematics is to develop the concept of numbers, which requires various aspects, including numbers 
in their ordinal aspect (Fuson, 1988). To build up and deepen an ordinal understanding of numbers, 
external representations with linear arrangement of numbers, such as the number line, are often used 
(Diezmann & Lowrie, 2007). Furthermore, number line tasks are “widely used to investigate 
mathematical learning and development” (Schneider et al., 2018, p. 1467) and students’ number line 
estimation performance is of predictive nature for their mathematical development (Booth & Siegler, 
2008). Therefore, it seems crucial to examine students’ strategies in locating numbers on the number 
line. Previous research has indicated that eye tracking holds potential for the analysis of strategies in 
empty number line tasks (e.g., van’t Noordende et al., 2016). In this paper, unlike previous ET studies, 
we investigate the use of strategies on the marked number line and show an exploratory first excerpt 
from a larger study. 

Number line tasks 
The number line is one of the essential external representations in mathematics education to address 
the ordinal number aspect (Diezmann & Lowrie, 2007). On the number line, numbers are arranged 
linearly and represented by their position in relation to other numbers (Schulz & Wartha, 2021). 
Students performance in number line estimation tasks correlates with broader mathematical 
competence (for a meta analysis, see Schneider et al., 2018). There are several types of number lines, 
for example, the marked number line or the empty number line. For the marked number line, there 
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are different presentation options. The number line can be completely or only partially marked with 
hatch marks and labelled with numbers. Hatch marks can represent visual reference points, also 
without being numbered. Also, different ranges of numbers can be represented. Thus, on different 
scales the same marks and distances must be interpreted differently (Schulz & Wartha, 2021). 

Often, the empty number line (where only beginning and endpoints are labelled) is used to study 
children’s number sense. In studies using the empty number line, children are often asked to estimate 
the spatial position of numbers (e.g., van’t Noordende et al., 2016). These studies indicate that 
children with mathematical difficulties (MD) show less precise estimations as compared to children 
without MD (Landerl et al., 2017). Further, eye-tracking studies have indicated that differences in the 
estimation of numbers between children with and without MD are related to the different use of 
strategies for estimating numbers (van der Weijden et al., 2018), that students with MD are less 
flexible in strategy use, and that student strategies may involve, for example, the use of reference 
points such as the given beginning, end- and midpoint (van’t Noordende et al., 2016). 

However, so far only little research has investigated students’ strategies on the marked number line 
and previous works on the empty number line (e.g., Barth & Paladino, 2011) suggest that strategies 
may differ between the two representations—due to, for example, hatch marks, etc. Differences in 
strategy use on the marked number line may be related to a different use of reference points—as 
compared to the empty number line—and, furthermore, to the use of additional marks, which may be 
indications of counting strategies, as Diezmann and colleagues showed in an interview study (2010). 
This calls for studies investigating students’ strategy use on the marked number line.  

Eye tracking 
Eye tracking (ET) is the technique to record a person’s eye movements (Holmqvist et al., 2011). It 
has proven to provide insights into children’s mental processes and their strategies when working on 
mathematical tasks—through domain-specific interpretations (Schindler & Lilienthal, 2019). There 
are some ET studies addressing number line tasks in the field of natural numbers—to investigate 
strategies in solving these tasks—both in adults (e.g., Sullivan et al., 2011; with MD, e.g., van der 
Weijden et al. 2018) and in children (e.g., Schneider et al., 2008; with MD, e.g., van’t Noordende et 
al., 2016).  

ET research has already addressed students’ diversity with respect to their competence levels, for 
example, addressing children with and without MD. These ET studies use the empty number line 
with varying ranges of numbers (usually 0-100, e.g., Schneider et al., 2008; and 0-1000, e.g., Sullivan 
et al., 2011). Yet, little is known about how students deal with the marked number line and there 
are—to the best of our knowledge—no ET studies investigating the use of strategies in locating 
numbers in marked number lines tasks. As mentioned earlier, differences in students’ locating of 
numbers on the number line could be due to different use of strategies. Therefore, it seems worthwhile 
to investigate students’ strategies locating numbers on the marked number line.  

We ask the following research question: What strategies do students use in locating numbers on a 
marked number line, and how does students’ strategy use differ?  
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This study 
Tasks and procedure 

In this study, we used a number line with labelled beginning and endpoint and hatch marks—with 
distance between adjacent marks of a unit of 10. We used this type of number line, which is an 
intermediate form between a completely marked and an empty number line (Schulz & Wartha, 2021), 
to give students some help and orientation (steps of 10) but not to display all of the information (i.e., 
every single number) on the number line. We used two different task types. In the “number-to-
position-task” (NP), we presented a symbolic number to the students and then asked them to place it 
on the number line. This task type is common in ET studies of number line tasks (e.g., Sullivan et al., 
2011). In the other task type, the “position-to-number-task” (PN) (Figure 1), students were shown a 
position (red cross) on the number line and asked to name the number that corresponded to it. This 
task type avoids falsification of results due to possible motoric difficulties (Gomez et al., 2017). 

 
Figure 1: Position-to-number-task 

In individual sessions in a quiet room in their school, the students worked on the tasks. There were 
three items for each task format. Before the tasks, there was one practice task each (with number 10 
each) to introduce the number line and get the students acquainted with the task format. In the NP, 
the numbers 70, 30, 90 (in that order) were to be placed on the number line. The numbers were 
presented in the upper left corner of the screen. The students were asked to read the number aloud to 
ensure they had perceived it correctly before the number line appeared. Then students were asked to 
point at the corresponding place, fixate it with their eyes, and let us know when they were done. In 
the PN, the position (red cross) of the numbers 80, 40, 60 (in that order) were shown and the students 
were asked to say what number was indicated. In between the tasks, the students were instructed to 
fixate a star in the upper left corner of the screen before the next task appeared, so that students’ gazes 
started from the same place. The students received no response as to whether their answers were 
correct. Verbal answers were recorded through an audio-recorder. 

Participants and eye tracker 

A total number of 186 German fifth graders (165 students of a comprehensive school, 21 students of 
a special school for learning difficulties) worked on the tasks. We chose fifth graders since at the end 
of primary school (i.e., grade 4), students may still have difficulties with the number line (Rodriguez 
et al., 2001). From the entire group of participants, ten students each were selected for the NP and PN 
tasks (mean age: 10.11 years) based on response times in the respective task type: To get insights into 
a diverse set of strategies, we included five students (both tasks: three students from special school 
and two students from comprehensive school) whose response times were particularly long (LRT-
group), and five (from comprehensive school; except for NP: one student from special school) with 
particularly short response times (SRT-group). This choice was made since long and short response 
times typically reflect different strategies (e.g., Schindler et al., 2019). Additionally, we analyzed 
only trials where students solved the tasks successfully, to rule out that the students just guessed. 
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The students’ eye movements were recorded with the remote eye tracker Tobii Pro X3-120 (120 Hz, 
binocular, infrared). This eye tracker is attached to the bottom frame of a monitor and therefore very 
unobtrusive. The average accuracy for the students in this study was 0.7°. Tasks were presented on a 
24” Full HD computer screen. The distance of the students to the screen was about 50 cm. 

Data and data analysis 

We used response times and videos, which were provided by Tobii Pro Lab software. The existing 
ET studies on number line tasks examine fixations. In our study, however, we use gaze-overlaid 
videos (where student gazes are augmented through a dot wandering around)—like, for example, 
Schindler and Lilienthal (2019) did. These videos are unfiltered and contain all captured information, 
that is, all eye movements are considered (not only fixations), which is advantageous when studying 
strategies. Analysis of these data has already proven to be useful in identifying children’s strategies 
in other mathematical domains and tasks (for quantity recognition, see e.g., Schindler et al., 2019). 
We analyzed the gaze-overlaid videos in an inductive manner based on Mayring’s (2014) qualitative 
content analysis: For each task, the eye movements were first looked at, described, interpreted, and 
then paraphrased. In a subsequent strategy finding process, commonalities between the eye 
movements of the students were sought, categories of strategies were found and each assigned with 
corresponding descriptions. Finally, the strategies used by the students in the two groups (with long 
and short response times) were compared qualitatively. 

Results 

In the following, we will pursue the research question: What strategies do students use in locating 
numbers on a marked number line, and how does students’ strategy use differ? We will do so by 
elaborating on the strategies used by the LRT-group and the SRT-group respectively.  For visualizing 
gaze patterns, we use gaze plots, although we used gaze-overlaid videos for the data analysis. 

Position-to-number-task 

Task 80: The five students of the SRT-group showed an orientation to the end of the number line 
(100), this means they used counting from 100 backwards to the red cross (80) (Figure 2). 

 
Figure 2: Gaze plot SRT-group—identifying 80 on the number line (PN) 

The students of the LRT-group mainly used counting from the beginning of the number line forward 
and were partially additionally oriented to the whole number line (i.e., gazes were at beginning and 
endpoint) (Figure 3, left). One student also showed an orientation of 100 backwards after first 
appearing to want to count from the beginning (Figure 3, right). 

  
Figure 3: Gaze plots LRT-group—identifying 80 on the number line (PN) 

Task 40: The students of the SRT-group named the number without looking at reference points (i.e., 
direct identification), or oriented themselves to the middle (50) of the number line (Figure 4).  
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Figure 4: Gaze plot SRT-group—identifying 40 on the number line (PN) 

The LRT-group students mainly used counting from the beginning of the number line forward (Figure 
5, left). One student additionally used the middle of the number line as orientation (Figure 5, right).  

  
Figure 5: Gaze plots LRT-group—identifying 40 on the number line (PN) 

Task 60: Both groups predominantly used the middle of the number line as orientation (Figure 6, 
left), while the students in the LRT-group partly also paid attention to the entire number line (i.e., 
beginning and endpoint) (Figure 6, right). 

  
Figure 6: Gaze plots—identifying 60 on the number line (PN) 

In sum, we found that students with long response times predominantly used counting procedures, 
which are time-consuming—especially from 0 forward for high numbers—or a combined use of 
reference points (e.g., beginning and endpoint). In contrast, students with short response times tended 
to use more efficient strategies such as looking directly at the red cross or the nearest reference point. 

Number-to-position-task  

Task 70: In this task, there was predominantly an orientation to the endpoint (100) for the SRT-group. 
Two examples of orientation to the endpoint are shown in Figure 7: from 100 stepwise (counting) to 
70 (left) and from 100 directly to 70 (right). 

  
Figure 7: Gaze plots SRT-group—placing 70 on the number line (NP) 

The orientation to 100 was also frequently evident in the LRT-group, but here students sometimes 
additionally showed an orientation to the midpoint (50) (Figure 8, left). One student of the LRT-group 
used counting from 0 forward (Figure 8, right). 

  
Figure 8: Gaze plots LRT-group—placing 70 on the number line (NP) 

Task 30: The students of the SRT-group either counted from the beginning (Figure 9, left) or used 
no reference points (Figure 9, right). 
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Figure 9: Gaze plots SRT-group—placing 30 on the number line (NP) 

One student of the students of the LRT-group counted from the beginning but additionally had many 
gazes at the end of the number line (Figure 10, left). Another one was more oriented towards the 
middle (50) and counted backwards (Figure 10, right). 

  
Figure 10: Gaze plots LRT-group—placing 30 on the number line (NP) 

Task 90: Here, the strategy use was similar for the two groups. The placing of the number happened 
either directly (Figure 11, left) or in orientation to the endpoint (Figure 11, right).  

  
Figure 11: Gaze plots—placing 90 on the number line (NP) 

In sum, for the first two tasks of the NP, students who had short response times appeared to use more 
efficient strategies than students with long response times, such as using a near reference point only. 
In contrast, in the group of students with long response times, for example, combination of strategies 
(reference points) or counting from the beginning (time-consuming for high numbers) occurred. 

Discussion 
Our study revealed different strategies for tasks on the marked number line—indicated by the 
students’ eye movements. We found that the students appeared to use different reference points 
(beginning, midpoint, or endpoint) and that they partially combined reference points. We found 
counting strategies starting from different reference points and we also found strategies of direct 
orientation starting from different reference points or without looking at any reference point. 
Furthermore, our analyses indicate differences in the use of strategies between students who had long 
response times (LRT) and those with short response times (SRT). For the naming of numbers on the 
number line (PN), there were apparent differences between the two groups: The LRT-group used 
time-consuming counting procedures along the number line and the combined use of reference points. 
They used the relation of given marks (Schulz & Wartha, 2021), for example, that the number 40 is 
next to the number 50, the marked midpoint, less often than students with shorter response times. 
SRT-group students had almost exclusive gazes at the marked place and the nearest reference point. 
Students with longer response times used less efficient strategies. This is in line with previous ET 
research (e.g., Schindler et al., 2019), including studies on the empty number line, which showed 
differences in the efficiency of different students’ use of strategies (e.g., van’t Noordende et al., 2016). 
Beyond that, for placing numbers on the number line (NP), similar differences in the use of strategies 
were found. However, these differences in the use of strategies only showed for two out of three tasks. 
This could be due to the chosen number of the third task—90 is close to 100 and probably therefore, 
there was little variation in this task. 
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Our insights relate to the results found by Rodriguez et al. (2001) that students in the transition from 
primary to secondary level may still have difficulties with the number line. This implies that naming 
and placing numbers on the number line partially needs to be supported at the beginning of secondary 
school—even in the range up to 100. With respect to the whole sample, future studies should explore 
the tasks on the marked number line further to see if the results found here are transferable and if the 
trends of our exploratory study can be found in larger samples. Looking at more students, might show 
a greater variation of strategies. It would also be interesting to investigate if there are differences 
between children with and without MD in their strategy use to locate numbers on the marked number 
line—as shown for the empty number line (e.g., van’t Noordende et al., 2016). We believe that our 
exploratory study contributes to gain fine-grained insights into students’ strategies when working on 
number line tasks—an important tool for the development of the number concept and its ordinal 
aspect (Diezmann & Lowrie, 2007). Gaining such insights is an important step for being able to 
address students’ individual needs in this mathematical content (Anthony & Walshaw, 2009). 
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This study investigates Danish teachers’ perspectives on teaching and learning number and addition 
in year one through analyses of semi-structured interviews with six year one teachers. The teachers’ 
perspectives are analysed through an established year one framework for number sense: 
Foundational Number Sense (FoNS). The analysis indicates that the FoNS framework is a useful tool 
to identify factors that teachers privilege, but important foundational factors, estimation, quantity 
discrimination and number patterns were only superficially discussed by the teachers in their 
interviews. 

Keywords: Foundational Number Sense, teacher perspectives, simple addition, year one students. 

Introduction 
Learning and teaching of arithmetic has been a major topic for educational research for decades 
(Nunes et al., 2016) and the importance of students’ arithmetic competence for mathematical 
development in general is widely acknowledged. Thus, numerical and arithmetic competence has 
been linked to development of mathematics achievement and difficulties (e.g. Feigenson et al., 2013; 
Geary et al., 2013; Ostad, 1997). Teaching of arithmetic in primary school relies on the 
implementation of key knowledge to set up strong foundations for a successful development of 
arithmetic competence, e.g. adaptive flexibility, strategies for mental calculation, and number 
knowledge. Therefore, it is important to get insight into teachers’ perspectives on the teaching of 
number and arithmetic in the early years of school, where number and basic arithmetic is the primary 
focus, and research suggests is a crucial stage in children’s development of number competencies.  

In this paper, we explore six Danish teachers’ perspectives on the teaching and learning of number 
and addition and analyse whether this is aligned with the FoNS framework. 

Numerical and arithmetic competence  

Development of arithmetic competence rely on several components of numerical competence or 
number sense (Desoete & Grégoire, 2006; Fuson & Burghardt, 2003), for example: symbolic 
knowledge and number words (e.g. Chu et al., 2015), mapping symbols to quantity (e.g. Geary, 2013), 
basic counting skills (e.g. Jordan et al., 2009), number comparison skills (e.g. De Smedt et al., 2013), 
estimation skills (e.g. Booth & Siegler, 2008; Gilmore et al., 2007), and knowledge of base-ten 
number structure (Laski et al., 2014). The individual components of number sense are all important 
for further mathematical development, however, the links between them are essential for students’ 
development (Gersten et al., 2005). 

Recently, Andrews and Sayers (2015) proposed a framework for identifying students’ opportunities 
to acquire foundational number sense, FoNS, and demonstrated its strength when analysing lessons 
and textbooks in different cultural contexts (Andrews & Sayers, 2015; Löwenhielm et al., 2019; 
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Sayers & Andrews, 2015). The framework is derived from an extensive literature study and comprises 
eight categories of FoNS (for a thorough description see Andrews and Sayers, 2015): 1) Number 
recognition, 2) Systematic counting, 3) Relationship between number and quantity, 4) Quantity 
discrimination, 5) Different representations of number, 6) Estimation, 7) Simple arithmetic 
competence, and 8) Awareness of number patterns. Each of these categories has been shown to play 
an important role in students’ development in mathematics (Andrews & Sayers, 2015).  

The current study 

This study investigates six Danish year one teachers’ perspectives on the teaching and learning of 
number and addition in year one through analyses of semi-structured interviews. The aim of the study 
is to analyse whether teachers’ perspectives are aligned with established mathematical knowledge of 
numerical and arithmetic competence. Our research questions are: 1) Can the FoNS framework be 
applied to teacher interviews effectively? 2) Can the FoNS framework inform us what teachers 
privilege when discussing their lessons on number and arithmetic?  

Methodology and Methods 
Drawing on exploratory Case study methodology (Yin, 2013), this small qualitative study is based 
on semi-structured interviews and lesson observations with six Danish year one teachers. The 
teachers’ utterances related to different aspects of the teaching and learning of number and addition 
were analysed and categorised using the FoNS framework (Andrews & Sayers, 2015).  

The selection of participants ensured an equal number of male and female teachers, and a cross section 
of professional experience (2-24 yrs.) and age (30-49 yrs.). The teachers were informed about the 
project both in writing and at an introductory meeting prior to the interviews took place. By the end 
of the project, the teachers were offered to read and approve the transcripts of the interview. None of 
the teachers took advantage of this offer. Pseudonyms have been used throughout. 

Teacher interviews 

In accordance with an exploratory Case study investigation a series of open ended interview questions 
were used to elicit teachers’ perspectives on what they emphasise in the teaching on number. Each 
interview lasted between 45 and 60 minutes, and the interview focused on the teachers’ perspectives 
on teaching and learning of arithmetic in year one. The semi-structured interview was guided by 
questions related to the teacher’s plans for and reflections on a specific observed lesson on number 
and arithmetic as well as general questions on the teaching and learning of number and arithmetic 
(addition and subtraction) in year one. The questions on the observed lesson was related to planning 
of the lesson: “Why did you choose these specific activities?”, carrying out the lesson: “How did you 
experience the lesson? Did it proceed as you had expected?”, Progression: “How will you follow up 
on this lesson? What will be the next step?”, and characteristics of a ‘good activity’: “what is a good 
activity and what makes it good? What do the students learn in these activities?”. 

General questions about learning were asked specifically about teaching addition, for example: “how 
do you introduce the students to addition” and “what aspects do you emphasize?”, prerequisites for 
learning addition: “What is the prerequisites for learning addition, how do you ensure the students 
have the prerequisites?”, and “Are there aspects of learning addition the students’ find especially 
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difficult?”, Furthermore, questions were asked about children’s progression in teaching addition, for 
example: “How do you see the progression in teaching addition?” and “What do you expect your 
students to know or be able to work on by the end of year one?”. 

Throughout the interview, if the teacher primarily referred to practical aspects, e.g. “a good activity 
is easy to explain for the students” or “the lesson went well because many students participated in the 
activity”, the teachers were asked additional questions related to the mathematics of the activities and 
lesson, e.g. “what aspects of number and addition do you think the students learn through that 
(particular) activity?”. According to Bryman (2016), this was to ensure teachers had an opportunity 
to reflect on the aspects of mathematics that were of interest in this project. Only utterances with 
mathematical content related to number and arithmetic were categorised in the analysis. 

To analyse how six teachers, describe their approaches to their lessons we transcribed the interviews 
using NVivo. Excerpts presented here were all translated into English, a process that included 
transforming Danish idioms into equivalent English expressions without losing the speaker’s 
intended meaning (Brinkmann & Kvale, 2015). We have chosen to scrutinise these teachers’ 
utterances to identify what components of number sense they privileged over others in their teaching 
of number and addition. In so doing we used a deductive approach (Bryman, 2016; Yin, 2013) where 
the first author read each transcript repeatedly, to determine which FoNS components were addressed. 
To minimize the need for translating the interviews, the second author then read the collective 
excerpts of the different categories to ensure consistent categorisation. In the following, we present 
the results of our application of the FoNS framework to the interviews. 

Results 
In the following we provide examples of utterances by teachers that were mapped directly to each of 
the FoNS categories. However, a statement or description of an activity can contain several FoNS 
categories and is then assigned to all relevant categories.  

FoNS categories in the interviews 

Number recognition: Knowing number symbols and number names were emphasised by all teachers 
but explicated very differently. The teachers expressed very different levels of necessary knowledge 
for the students. One teacher, Else, said that the students “need to know the numbers, their value and 
be able to write and read them, and recognise them”. Frida exemplifies by saying “they should know 
what twelve looks like”. Allan specifies a number range: “the students need to learn the numbers to 
100” and Dan explicated that the students do not have to know the number name as long as they “can 
write it” although he also emphasised knowing the names of the tens. Knowing the names of the tens 
was also mentioned by Carl as a help to find the number names of two-digit numbers. Bettina, talking 
about the base ten number system, explained how she focused on “enhancing the students’ 
competencies of naming number”. Naming two-digit numbers are something that many students find 
difficult because of the Danish number names. Carl mentioned this and explains how he addressed 
this in activities where the students “have to find the number 13 or 17 so they practise finding the 
correct symbol for the correct number name”. 
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Systematic counting: Counting skills are addressed by all teachers. Dan said that “they need to know 
the number sequence” and Carl stated “Early maths is mostly about counting”. Else said, when asked 
what she thought should be the focus in year 0 (a preschool class) she said “it’s important that they 
just count and count and count”. All the teachers provided many examples of counting procedures, 
often performed by the use of manipulatives or other representations e.g. a number line. The number 
line was mentioned by all the teachers in relation to activities of ordering numbers or “find the 
number” and when performing counting procedures. However, Carl and Else were the only teachers 
directly referring to knowledge of “the number before and after”. All teachers referred to skip 
counting, often by ten. Skip counting was used together with references to times tables and the 
teachers thus referred to “knowing the ten times table” when they taught the students to count in tens 
in order to find the name of a two-digit number.  

Number and quantity: The relationship between number and quantity was addressed by four of the 
teachers but with different levels of articulation. Allan emphasised that “they need to recognise that 
quantity and number kind of go together”. Bettina said “the students need to understand the symbols 
and the naming of quantity”. Carl, elaborating on “the translation between number and quantity”, 
underlined that “they need to understand quantity; the symbol 4 equals four things”. Likewise, Else 
emphasised the understanding of the relationship between number and quantity. “They need to have 
an idea of what value is and what is worth more (…) so many dots or centicubes, what is the size and 
quantity of that”. 

Quantity discrimination: Comparing quantity was addressed very briefly by only two teachers and 
only in a single statement from each. Else described an activity where students construct two-digit 
numbers by combining two playing cards, write the number and compare with the next number they 
construct. She reflects: “I don’t know if they just write some numbers or if they actually understand 
which is bigger and which is smaller”. Allan also addressed comparing numbers in relation to doing 
addition and comparing possible results: ”seeing this result is one bigger and this is one smaller than 
the other”. 

Representations of number: All teachers mentioned several different representations of numbers, both 
concrete materials like money, centicubes and fingers, but also partitioning in tens and ones, friends 
of ten and the number line. In two of the classes all students had a tablet, and the two teachers also 
mentioned and app, Number Pieces, where students can represent numbers using ones, tens etc. and 
partition numbers. 

Estimation was only mentioned by one teacher, Else. She very briefly referred to estimation of 
quantity by mentioning an activity of “how many in the jar”. This is an activity, where the students 
have different containers with an unknown number of items. The students then guess how many items 
are in the container and afterwards they count the exact number of items. However, she did not 
explicitly use the expression estimation or to estimate. 

Simple arithmetic: Given the teaching and learning of number and arithmetic in year one was the 
focus of the interviews, simple arithmetic was mentioned by all teachers. However, the teachers 
differed substantially with regard to their focus on different calculation methods and strategies, the 
number range, bridging ten and level of fluency with single digit addition. 
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Number patterns: Several teachers talked about knowing the sequence of numbers (categorised as 
systematic counting), but only two explicitly referred to putting in correct order. Else referred to a 
specific evaluation activity where the students have to put some number cards in the correct order. 
Carl described an equivalent activity where students are given a number card and then has to line up 
according to the number sequence.  

Summarising Results 

The FoNS categories were well presented in the teachers’ responses to questions. Table 1 provides 
an overview of how the categories are distributed over the six teachers’ interviews. 

Table 1: Overview of the categories of Foundational Number Sense (Andrews & Sayers, 2015) and 
their presence in the interviews with the six teachers indicated by  X. 

 A: Allan, B: Bettina, C: Carl, D: Dan, E: Else and F: Frida. 
Category A B C D E F 

Number recognition X X X X X X 

Systematic counting X X X X X X 

Number and quantity X X X X X  

Quantity discrimination X    X  

Different representations X X X X X X 

Estimation     X  

Simple arithmetic competence X X X X X X 

Number patterns   X  X  

 

Discussion 
The aim of this paper was to investigate whether teachers’ perspectives are aligned with the FoNS 
framework in year one. The discussion provides insights into how year one teachers in six Danish 
schools perceive key teaching and learning number and arithmetic attributes, but also how a simple 
framework can be used to identify these. 

The analysis of the interviews revealed that all components of FoNS were addressed explicitly or 
implicitly in the interviews, but not equally by all teachers. A single teacher, Else, addressed all eight 
categories, whereas the teacher Frida only addressed four. The remaining four teachers addressed five 
or six of the categories. However, what is perhaps more important is to what extent the different 
components of FoNS were addressed by the teachers.  

Although all teachers explicitly emphasized number symbols and number names (Chu et al., 2015) 
as the most important aspects of “knowing number” not all teachers mentioned quantity and creating 
the link between symbols and quantity (Geary, 2013). However, all teachers mentioned the 
importance and relevance of using manipulatives, which implicitly provides learning opportunities 
for students to create the link between number and quantity, and other number representations.  
Counting skills (Jordan et al., 2009) was explicitly mentioned by all teachers. Thus, some of the basic 
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components of FoNS and prerequisites for doing arithmetic is explicitly or implicitly part of the 
teachers’ perspectives on the teaching and learning of number in year one. 

Three of the components found to be of special importance in the early years, quantity discrimination 
(De Smedt et al., 2013), estimation (Booth & Siegler, 2008; Gersten et al., 2005; Gilmore et al., 2007) 
and number patterns (Gersten et al., 2005), was only addressed implicitly by one (estimation) or two 
teachers (quantity discrimination and number patterns), and in all cases these categories was only 
addressed superficially and implicitly by the teachers. These findings resonate with a cross-cultural 
study by Sayers and Andrews (2015) on the opportunities to learn different aspects of FoNS in 
different activities observed in six different European classrooms. Across countries, they found no 
episodes where teachers encouraged students to estimate and only 2 of 18 episodes where a single 
teacher introduced quantity discrimination. 

Although estimation is considered to be one of the most important mathematical competences along 
with  proportional reasoning and problem solving (Sriraman & Knott, 2009) it is remarkably absent 
in both classrooms (Andrews & Sayers, 2015; Sayers et al., 2016), textbooks (Sayers et al., 2021), 
and curricula (Andrews et al., 2021; Sunde et al., 2021). In this study we have shown that teachers 
do not explicate estimation or estimation related activities as an important part of their year one 
teaching. 

With regard to the application of the FoNS framework to teacher interviews we found it successful 
on two key points: 1) The framework provided an easy to use categorisation of components of number 
sense known to be of importance for further development in mathematics (Andrews & Sayers, 2015). 
2) The use of the framework also highlighted the differences in the number sense components the 
different teachers addressed. 

In conclusion, the findings indicate that teachers are cognisant of a wide range of the important 
foundations for developing FoNS and arithmetic competence. However, it is also apparent that three 
crucial aspects, quantity discrimination, estimation skills and number patterns, were only mentioned 
implicitly by one or two teachers in the interviews. 

We have shown that the FoNS framework is easy to apply in analysing teacher interviews, and can 
successfully reveal patterns of teachers’ perspectives on the learning of number in year one. The 
analysis shows the differences between teachers with respect to the number of FoNS categories and 
it highlights the underrepresented categories. 

This study cannot provide insight in how teachers actually teach. The analysis can only give an 
indication of what teachers emphasise in their classroom practice. A teacher’s description of an 
activity cannot provide the full picture of the complete range of FoNS categories that the activity 
would cover when actually performed by the teacher in interaction with students in the classroom. 
Thus, the actual learning opportunities for the students might be richer than the interview would 
suggest. However, it would be reasonable to expect that what the teachers emphasise in the interviews 
is what they would also emphasise during teaching. Further research on video observations will show 
to what extend the findings of the lack of awareness on quantity discrimination, number patterns and 
estimation skills are accentuated in the actual teaching and learning in the classroom. 
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The present work focuses on arithmetic word problem solving and explores the strategies used by 26 
students diagnosed with autism spectrum disorder when solving multiplicative Cartesian product 
problems. The students solved two outfit problems involving small and large numbers, respectively. 
The success in both problems was low. We found a variety of correct strategies, predominantly 
operation strategies. Most incorrect strategies were based on additive relations with modelling. We 
detail the difficulties observed during the problem-solving process, and implications for teaching 
students diagnosed with the disorder are drawn. 

Keywords: Primary education, combinatorial thinking, cartesian product problems, solution 
strategies, autism spectrum disorder. 

Introduction 
Combinatorics constitutes a significant component of the mathematics curriculum, building on a rich 
structure of principles that underlie several other areas, such as counting, numeration, computation 
and probability. While developing their combinatorial thinking skills, children learn key 
mathematical skills such as constructing meaningful representations, reasoning mathematically, and 
generalizing mathematical concepts (English, 1991, 2005). 

An important process in the development of combinatorial thinking skills is the acquisition of 
combinatorial strategies. A standard task to help children acquire these strategies is the Cartesian 
product problem (English, 1991), which consists in finding all possible combinations of two items, 
taken out of two different sets of items. Mulligan and Mitchelmore (1997) found that children in 
grades 2 and 3 used three main intuitive strategies for solving different types of problems with 
multiplicative structure, and all three are encountered among the correct resolutions of Cartesian 
product problems. These strategies are: i) direct modeling with counting strategies (when concrete 
manipulatives or drawings are used to model the problem situation, and objects are counted with no 
obvious reference to the multiplicative structure); ii) counting strategies (when the same actions are 
performed as in the previous level, but without the use of manipulatives); and iii) operation strategies 
(when multiplications are used). Several studies have shown that children develop these strategies 
intuitively, and that they acquire increasingly more sophisticated strategies for this type of problem, 
depending on age and experience (English, 1991; Maher & Martino, 1996). Mulligan and 
Mitchelmore (1997) note, though, that the Cartesian product problems are considered very difficult 
by the children, and most of the responses obtained in their study were incorrect. Furthermore, the 
majority of these incorrect responses were based on applying an inappropriate additive strategy, in 
which the numbers were added instead of multiplied. The prevalence of this incorrect strategy in the 
resolution of Cartesian product problems is confirmed by Nesher (1992), for students in grades 3 to 
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6, and by Ivars and Fernández (2016), for students in grades 1 to 6. The latter study additionally 
performs a more detailed analysis of the incorrect responses, identifying strategies such as one-to-
one combinations (when elements are combined one to one without repetition) and nonsensical 
strategies (which include blank responses). 

The focus of our research is on students with autism spectrum disorder (ASD). This disorder is 
characterized by deficits in social development, communication, and restrictive and repetitive 
behaviors or interests (American Psychiatric Association, 2013). These characteristics may lead to 
poor problem-solving capabilities, in particular since they often result in low reading comprehension 
and difficulties in thinking ahead or planning tasks. In order to improve problem-solving capabilities 
in ASD students, adapted instruction is required. To that end, there has been a growing interest in 
researching mathematical learning in this group (Bullen et al., 2020; Polo-Blanco et al., in press a; 
Polo-Blanco et al., in press b) and, in particular, in the strategies they employ when solving 
mathematical problems (Polo-Blanco et al., 2019, 2021). This research is especially relevant since 
students with ASD are increasingly incorporated into mainstream educational settings at all levels of 
education (Roberts & Webster, 2020). 

The literature on probabilistic thinking, in particular combinatorial thinking, in students with ASD is 
very scarce. To our knowledge, only the work by López-Mojica, e.g. (2013), analyzes the resolution 
of combinatorial tasks in one student with ASD. The author highlights the need to explore 
combinatorial activities in order to introduce the idea of probability (López Mojica, 2013). At the 
same time, the importance of combinatorial thinking in students in general is clear, as emphasized by 
several authors (e.g., Eizenberg & Zaslavsky, 2004; English, 1991, 2005): First, as mentioned before, 
it allows them to acquire the mathematical skills that are present in the educational curricula. Second, 
people use basic principles of combinatorics in many everyday situations, for instance by enumerating 
all possible ways an event can occur, which is key to making informed decisions (Yee, 2009). 
Combinatorics therefore develops skills needed in daily life, and we consider this aspect to be 
especially relevant for ASD students, whom it helps to be more autonomous in their adult life. 

For these reasons, in this paper we set out to investigate the strategies used by students with an ASD 
diagnosis when solving Cartesian product problems. In particular, we study the strategies they use 
when solving two “outfit problems”, which require a multiplication to obtain all possible 
combinations. Based on the results in previous studies with students of typical development, we 
anticipate that the students with ASD will also experience difficulties in the task, and that they will 
use basic strategies in their resolution. 

Our research questions are: 

 What strategies do students with ASD employ to solve multiplicative Cartesian product 
problems? 

 What are the main difficulties they encounter during the process of solving Cartesian product 
problems? 
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Methodology 
We conducted an exploratory and descriptive investigation (Yin, 2017) in which we detailed the 
solving strategies of 26 students with ASD, as well as the main difficulties identified, when solving 
combination problems with multiplicative structure. 

Participants 

The participants were 26 students aged 6 to 12 years (23 males and 3 females), diagnosed with ASD 
according to DSM-5 (American Psychiatric Association, 2013), with minimum IQ of 70 on the 
WISC-V (Wechsler, 2014), and minimum equivalent mathematical age of 5.5 years. All of them were 
attending primary education in 19 ordinary schools in Cantabria (Spain). The mean chronological age 
of participants at the time was 9.35 years, with a standard deviation of 2.06. The mean IQ of the 
participants was 89.88, with a standard deviation of 11.77. 

Data collection instrument 

Based on Mulligan and Mitchelmore (1997), we designed a questionnaire with 16 multiplication and 
division problems of the types: equal groups, multiplicative comparison and Cartesian product. Of 
these 16 problems, students first solved 8 problems involving small numbers. Then, the students who 
had provided the correct solution for a problem were asked to solve the corresponding large-number 
problem. In this study we analyze the two Cartesian product problems that required a multiplication 
for their resolution, one with small numbers and one with large numbers. These problems are: 

 Outfits Problem, Small (OPS): I have 3 shirts of different colors and 4 different pairs of pants. 
If I wear one shirt and one pair of pants each time, in how many ways can I dress? 

 Outfits Problem, Large (OPL): I have 8 shirts of different colors and 3 different pairs of pants. 
If I wear one shirt and one pair of pants each time, in how many ways can I dress? 

The students solved these problems individually, in one session of approximately 25 minutes and in 
a classroom free of distractions, with only the interviewer and the student present. Before starting to 
solve the problems, the interviewer explained what the test consisted of, and made sure that he or she 
understood the statements, reading them with him or her in cases where the student was confused. 
The student was told that he or she could write, use manipulatives (interlocking blocks) or answer 
orally. All sessions were videotaped, and the solutions were transcribed for later analysis. The 
students’ strategies were coded by the fourth author. An experienced mathematics education teacher, 
who was blind to the hypotheses of the study, recoded 30% of the students’ strategies. The mean 
interobserver reliability for strategy categorization was 94%, calculated as the number of agreements 
divided by the number of agreements plus disagreements and multiplied by 100. 

Analysis categories 

We adhered to the following system for classifying the strategies used to solve multiplicative structure 
problems (Ivars & Fernández, 2016; Mulligan & Mitchelmore, 1997): incorrect strategies (level 0), 
direct modeling with counting (level 1), counting (level 2) and operation strategies (level 3). The 
incorrect strategies (level 0) considered were inappropriate additive relationships, one-to-one 
combinations, and given number (when one of the numbers in the problem is given as the answer). 
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Results 
Table 1 shows the strategies followed by the students on the Cartesian product problems with small 
numbers, OPS. Eight out of the 26 students followed correct resolution strategies, the most frequent 
one being operations based (six students). Two students (S7 and S15) represented this strategy 
symbolically in the form of a horizontal algorithm, while another two (S13 and S26) expressed the 
multiplication verbally (“Three times four”). The last two students (S32 and S35) started by 
manipulating cubes and then gave the answer, one verbally and the other symbolically. In Figure 1, 
we can see that S32 used the orange and purple blocks to create structures of different heights, 
representing respectively the three T-shirts and the four pants. He then selected an orange structure 
and hit it against each of the purple ones, saying aloud the numbers “one” till “four”. Finally, he said 
“four times three” and wrote the number 12 as the solution. S35 joined four blocks and then another 
three, and wrote the number “7”, as we can see in Figure 1. He then corrected “ah, but it asks you 
how many ways... Seven is the total”. He wrote the multiplication in the form of a vertical algorithm 
as the result and said, “Twelve ways. I think 12 ways”, and he crossed out the number seven he wrote 
earlier.  

Table 1: Strategies followed for the OPS problem 

Correct strategies Incorrect strategies (level 0) 

Direct modeling 
with counting 

(level 1) 

Counting 
(level 2) 

Operation 
strategies 
(level 3) 

Inappropriate 
additive relationships 

One-to-one 
combinations 

Given 
number 

Other 

S10 S19 S7, S13, 
S15, S26, 
S32, S35 

S3, S4, S11, S12, 
S16, S17, S20, S21, 
S24, S25, S27, S31 

S8, S29 S28, S34 S14, 
S30 

One student (S10) demonstrated a matching strategy that he expressed through drawings of all 
possible combinations of shirts with pants. As shown in Figure 1, he assigned a number to each shirt 
and pair of pants, and used the symbol “+” to express the pairing. After finishing the drawing, S10 
counted the pairs obtained and provided the answer. 

   

Figure 1: Examples of correct solution strategies, by S32 (left), S35 (middle), and S10 (right) 

Another student (S19) used a correct counting strategy, although he made a calculation error when 
executing it. In particular, his strategy consisted in the repeated addition of the same number (“four”). 
He performed mental calculation to keep track of the running total, while using his fingers to represent 
the amount of times he had added this number. Eventually, however, he got confused and raised an 
additional, fourth finger, answering: “I would say sixteen”. 
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The most often encountered incorrect solution strategy for the OPS problem was the application of 
inappropriate additive relations (12 students). In this case, the students added the quantities given in 
the statement instead of multiplying them, obtaining “7” as a result. Out of them, five students 
responded verbally: three stated this orally and two (S17 and S31) simply wrote the result without 
further explanation. In Figure 2, we can see that two students responded by expressing the sum 
symbolically, one in the form of a vertical algorithm (S16) and one in the form of a horizontal 
algorithm (S20). One student (S3) used drawings to help him perform the additive strategy. After 
reading the problem, he drew a boy wearing pants and a T-shirt, and an additional two T-shirts and 
three pairs of pants around it. Interestingly, one of the T-shirts resembled very much the one he was 
wearing at the moment, and from his remarks he was imagining these were his clothes: “Okay, I 
always wear this one... ah, no, only on one day I wear this one”. Finally, he said “It would be one 
plus one equals two”, and concluded “seven”, which he wrote down as the result. Another student 
(S4) used cubes to calculate the result, as we can see in Figure 2. He picked up three cubes with one 
hand and placed them on the problem sheet, and then put four more cubes, concluding that there were 
“seven” different shapes. 

   

Figure 2: Examples of incorrect solution strategies, by S16 (left), S4 (middle), and S12 (right) 

Three students (S11, S12 and S27) tried multiple representations to solve the problem. S11 initially 
took three red marbles with his left hand and four orange blocks with his right hand, said “seven”, 
and wrote the number “7”. He argued to the interviewer that this was the result by saying, “Because 
I added the t-shirts [shows his right hand with four orange blocks] and also the pants and in total it 
would give... [starts singing, playing with the chips].” S12 initially answered, “Three and four, 
seven.”  After the interviewer asked him what that “seven” was, S12 began to draw the 3 shirts and 
the 4 pants, as we can see in Figure 2. After the interviewer insisted “how many ways can I dress?” 
S12 repeated, “Seven”. S27 made arguments apparently unrelated to the task and first said that the 
answer was “14”, writing down “14 and 30” and finally ended up saying that it was “7”: 

S27: I got it, seven. 
Interviewer: And how do you know it's seven? 
S27: The first one you put the shirt on, then socks and pants and lastly combing our hair 

and brushing our teeth. Okay? That's it. 
Interviewer: So you... you count seven things that you do. But why do you know it's seven? 
S27: Because I do, because three plus four is seven. 

Two students (S8 and S29) performed an incorrect one-to-one combination strategy, by matching 
each garment from one set with one from the other set, without repetition. Both students expressed 
this verbally. For instance, S29 wrote “three ways” and argued “because there are four pants, I can 
only use three because... [he thinks] because I have one pair of pants left over”. 

Two of the students (S28 and S34) responded a number already given in the statement. S28 verbally 
expressed that the solution was “three”, and argued that “because he had heard it”. S34 answered 
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several times as a result “many”, and, after the interviewer requested that he specify how many, he 
said “three or four”, which are the number of shirts and pants given in the statement, respectively. 

One student (S14) performed a strategy that could not be identified as any of the previous. After 
reading the problem, S14 said “Three, four... Ouch! Let's see...” and wrote the number “5”, and 
argued: “Three, four, five”. We interpret that he provided “5” as the answer because it was the next 
number in the numerical sequence. A final case of a strategy classified as “other” is that of S30, who 
drew a picture of a boy wearing a tracksuit, copying some letters from his own jacket. Although the 
interviewer insisted that he continue, S30 was tired and distracted and did not answer anything else. 

All students who obtained a correct answer in the OPS problem went on to solve the large-number 
multiplication problem, OPL. These students, seven in total, again used a correct strategy to solve 
this second problem, as summarized in Table 2. Specifically, most of them used operation strategies 
(5 students), which three of them (S7, S15 and S32) represented symbolically in the form of a 
horizontal algorithm, and the other two (S13 and S26) expressed verbally. For instance, S26 read the 
problem and said “I think I am going to multiply eight by three”, and then wrote “24” as a result. 

Table 2: Strategies followed for the OPL problem 

Correct strategies 

Direct modeling with counting (level 1) Counting (level 2) Operation strategies (level 3) 

S10, S35  S7, S13, S15, S26, S32 

Student S10 repeated the matching strategy he had applied successfully in the OPS problem, drawing 
all possible combinations of shirts and pants. This time, he represented them by the letters “C” (from 
“camiseta”, in Spanish) and “P” (from “pantalones”) accompanied by numbers, as shown in Figure 
3. When finished drawing, he counted the pairs obtained and provided the answer.  

  

Figure 3: Examples of correct solution strategies for OPL, by S10 (left) and S35 (right) 

Finally, student S35 used a modeling strategy with a manipulative type of representation making use 
of blocks. He first joined eight blocks, and then another three blocks, after which he combined both 
groups forming an inverted “T”, as we can see in Figure 3. Following this, he touched each of the 
blocks in the row of eight and repeated this step three times. He then said “Twenty-four”. 

Interviewer: Okay, how did you know? 
S35: By counting per pair of pants how many shirts there are. 
Interviewer: And what did you count? 
S35: Well I counted [touching the blocks in the row where there are eight]: one, two, 

three, four, five, six, seven, eight [counts the row again] nine, ten, eleven,... 
Interviewer: Okay okay. 
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Discussion and conclusion 
This work contributes to the area of problem solving in students with ASD. Specifically, we have 
analyzed the strategies used by students with ASD when solving Cartesian product problems that 
involve multiplications. Most of the students failed to solve the problems correctly, and a variety of 
strategies were found in the analysis of their solutions. The most frequently used correct approach 
consisted of operation strategies based on internalized calculations. In line with the results found in 
the literature for students of typical development (e.g., Ivars & Fernández, 2016), the most frequent 
incorrect strategy was the use of additive relations, carried out on many occasions through modeling. 

The results show significant difficulties in understanding the problems, confirming previous studies 
on problem solving in ASD students (Polo-Blanco et al., 2019), which could be related to the language 
difficulties characteristic of the disorder. In order to facilitate the understanding of Cartesian product 
problem solving, the problems could be contextualized to topics familiar to the student, in line with 
previous work (Polo-Blanco et al., 2021). In addition, basic modeling strategies could help the student 
understand the situation and the combinations posed in the problem. In order to move from modeling 
and counting strategies to operation strategies, it is advisable to adapt the instruction to the needs 
observed, and to start from the strategy used by the student. For instance, if the student uses a table 
to list the combinations, it may be useful to help them see that the number of combinations coincides 
with the result of the multiplication. In general, teaching methodologies adapted to the characteristics 
of ASD students should be designed for the resolution of these problems (Polo-Blanco et al., in press 
a), for instance, by including self-instruction lists with the support of visual guides.  

The results of this work allow us to further explore the elements that hinder the learning of students 
with ASD, in order to offer effective instructions to achieve an improvement in academic performance 
and, ultimately, a greater autonomy and quality of life in adulthood. 
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Repositioning the role of practice in mathematics learning 
There is a growing concern about effectively carrying out practices for enhancing the students’ 
procedural fluency (Codding et al., 2011). Nonetheless, the function of practices is often inadvertently 
reduced to a way of mechanical skill training. It is believed that the didactic potential of practices is 
far more than this. Wittmann and Müller (2017) carefully categorise three types of practice that give 
us a clear purpose of doing practice: Introductory practice, Basic practice, and Productive practice. 
Introductory practice helps students to familiarise themselves with the new knowledge; Basic practice 
focuses on the small set of skills which should be mastered automatically; Productive practice 
integrates the practice of skills with the training of higher-order skills (e.g., exploration and 
explanation of patterns, problem-solving) (Wittmann, 2019). These three types of practice have their 
own unique functions in the learning process, so they are important and irreplaceable. 

This study aims on investigating how the learning environments of productive practices can be 
embedded into the daily lessons as a part of the curriculum for basic skills and higher-order skills 
training. The aim of this poster is to introduce and provide some examples of productive practice. 

Productive practice 
Wittmann (2019) emphasises that productive practices are mathematically rich and well-structured 
small tasks, which provide unique opportunities for exploring and explaining the mathematical 
patterns while encouraging students to have plenty of basic skill practice. Two examples of 
productive practices (Wittmann & Müller, 2017) are shown below:  

Schöne Päckchen (Pretty Packages)  

Pretty Packages (Figure 1) are deliberately arranged in columns with flexible addends that either 
ascend or descend. While students are having plenty of practice time on addition, they also have the 
chance to explore the patterns and understand the concept of particular arithmetic laws (in this case, 
the associative law). They can make use of what they discovered and solve the questions effectively. 

Figure 1: Schöne Päckchen (Pretty Packages) 
Number pyramid 

Number pyramid is commonly used in school for practising addition and subtraction and itself is 
based on Pascal’s triangle, which is a source of rich mathematical properties in mathematics. It can 
become a good example of productive practice because the numbers in the bricks can be arranged 
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deliberately to create different circumstances for exploring. For example, set A in Figure 2 with the 
number in the right bottom one increases by 1 and set B in Figure 2 with the number in the middle 
one increases by 1 create different effects to brick A. During the process of dealing with the actual 
numbers and finishing a collection of additional exercises, students can observe how the pattern of 
the given numbers at the bottom might affect the later answers and explain it mathematically. Students 
are not expected to explain the pattern in terms of algebraic expression, but they can have an important 
pre-algebra experience. 

Figure 2: The bottom bricks of number pyramids are intentionally arranged 

A problem-solving task with various solutions can be created by arranging the number pyramid in 
another way (Figure 3). While practising the arithmetic, students also have a chance to enhance their 
problem-solving skills through the process of observing, conjecturing, justifying, and reasoning.  

Figure 3: Productive practice which nurtures problem-solving skills 

What’s next? 
Productive practices are not some separated tasks for specific problem-solving skills; instead, they 
are well-designed packages of learning environment which are fully merged with the curriculum. 
They can prompt deep procedural learning, meanwhile create opportunities for students to understand 
phenomena in a mathematical way and enhance their high order thinking skills. To evaluate and 
further develop the design of the learning environment with the use of productive practices, a design 
research study of using number pyramids in grade 2 classroom will be conducted. In the study, the 
lessons will be observed and some of the students will be invited for interviews afterwards; thereby 
analysing their mathematical thinking process while doing productive practices. 
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In this paper, we present the study in progress that is being carried out to examine characteristics of 
the transition from natural to rational numbers when Primary School students solve multiplicative 
structure problems. A teaching experiment has been designed, including a pre-test, an instruction, 
and a post-test. In these pages, we focus on the first two phases of this teaching experiment and the 
beginning of phase three with a preliminary analysis of the pre-test. Results show the levels of success 
and strategies that students use when they solve multiplicative structure problems before 
participating in the instruction. 

Keywords: Numbers, fractions, multiplication, division, elementary education. 

Introduction 
In the 80s and early 90s, a line of research focused on students’ difficulties in solving multiplicative 
structure problems (e.g., De Corte et al., 1988; Fischbein et al., 1985; Levain, 1992) emerged. This 
research showed that although solving multiplicative structure problems involves reasoning about the 
structure of the problems independently of the number set involved, primary and secondary school 
students had difficulties solving multiplicative structure problems when natural numbers were 
replaced with rational numbers (e.g., Fischbein et al., 1985). 

In light of these results, there was a need to provide mental strategies to students to counteract these 
difficulties (Fischbein et al., 1985) and present the different structure problems, systematically 
alternating natural and rational numbers as numerical sets (Levain, 1992). De Corte et al. (1988) 
analysed whether 11-12-year-old students had other informal strategies, different from the algorithm, 
and to what extent these led them to the correct answer. For this purpose, they designed a test with 
problems with natural and rational numbers, including eight multiplication problems with an 
asymmetrical structure. This test was solved twice: once with a multiple-choice format, which 
required the choice of the appropriate arithmetic operation among six options; and once with a free-
response format, which required the use of any strategy that provided an answer to the problem. They 
found that sixth-grade students were more successful in solving multiplication problems as free-
response tasks than multiple-choice tasks, where the correct strategy was reduced to the algorithm. 
However, as far as we know, there is no research focused on how primary school students progress 
from natural to rational numbers when they solve multiplicative structure problems, although 
students’ difficulties in solving these problems with rational numbers persist (Zorrilla et al., in press). 

This study examines characteristics of the transition from natural to rational numbers in primary 
school students when they solve multiplicative structure problems. For this purpose, we design a 
teaching experiment (Stylianides & Stylianides, 2013) that theoretically focuses on teaching with 
variation and on developing students’ relational thinking during instruction. This methodological 
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approach distinguishes three stages (Cobb & Gravemeijer, 2008; Gravemeijer & Prediger, 2019): 
preparation (the design of a teaching module), implementation, and analysis. In this paper, we present 
the design of the teaching module that consists of a pre-test, instruction and a post-test, a description 
of the implementation, and a preliminary analysis focused on the pre-test. With the pre-test analysis, 
we can answer the research questions: What are the levels of success of sixth-grade Primary School 
students (11-12-years-old) when they solve multiplicative structure problems with natural and 
rational numbers before the instruction? Furthermore, which strategies do sixth-grade Primary School 
students use to solve them? 

Conceptual framework 
Teaching with variation 

Learning is related to developing a particular way of seeing (Marton & Pang, 2006): discerning. 
Students must discern the object of learning, which implies discerning the critical features. To discern 
each critical feature, students must experience variation in one of its dimensions while other features 
remain invariant (Marton & Pang, 2006). 

Teaching with variation is an approach widely shared by Chinese teachers (Cai & Nie, 2007), being 
even imperceptible within Chinese culture (Sun, 2011). In contrast, in Occident, imperceptibility is 
not associated with its popularity but with its unfamiliarity (Sun, 2011). This teaching with 
“indigenous” variation is called Bianshi teaching in Chinese, whose translation would be “changing 
form” in English (Sun, 2011; 2019). Bianshi practice is not only an approach in mathematics 
education (Sun, 2011) but also it is an efficient way of working on problem-solving (Cai & Nie, 
2007). Bianshi variation practice incorporates three types of widespread activities (e.g., Cai & Nie, 
2007; Sun, 2019): 

 One problem, multiple changes (OPMC). Presenting an initial problem and, once it is solved, 
presenting and solving variations of the initial problem. 

 One problem, multiple solutions (OPMS). Presenting a problem and providing the opportunity 
to solve it using different strategies to promote flexible ways of thinking in 
choosing/designing a strategy to solve the problem. 

 Multiple problems, one solution (MPOS). Using the same strategy to solve a set of problems 
of identical structure. 

Student participation in these Bianshi activities promotes meaningful connections (Cai & Nie, 2007; 
Sun, 2011; 2013). Furthermore, Bianshi activity allows students to develop a confident attitude 
towards unfamiliar problems, advance problem-solving skills and obtain flexible thinking (Cai & 
Nie, 2007). The latter benefit could be closely related to developing relational thinking strategies, 
which we discuss below. 

Relational thinking: Strategies for multiplicative structure problems 

In this study, we focused on the isomorphism of measures problems (Vergnaud, 1997), whose 
structure is a proportion between two measure spaces (M1 and M2), each containing two quantities. 
In these problems, one of the quantities is reduced to 1, so three types of problems arise depending 
on which of the other three quantities is the unknown (Greer, 1992): multiplication, where the 
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unknown is the total quantity; partitive division, where the unknown is the quantity per group; and 
quotitive division, where the unknown is the number of groups. 

Relational thinking involves using the fundamental properties of operations and equality (Empson & 
Levi, 2011). Multiplicative structure problems involving fractions support the emergence of relational 
thinking about operations as students begin to find their own more efficient strategies, relating 
operations and quantities and representing and structuring their thinking (Empson et al., 2011). 

Empson and Levi (2011) identified different strategies that students produce with multiplicative 
structure problems. The strategies develop from a basic way of thinking (direct modeling and 
repeated addition) to more sophisticated ways of thinking (grouping and combining strategies and 
multiplicative strategies): 

 Direct modeling. Students represent all the quantities by drawing. Then, they count, add or 
subtract until they get the answer. 

 Repeated addition. In this strategy, students also count, add or subtract; however, unlike direct 
modeling, they take mathematical symbols to represent mathematical relationships. 

 Grouping and combining strategies. Unlike the previous strategies, students only represent 
quantities that they consider necessary. They start grouping quantities until they reach what 
Empson and Levi (2011, p. 57) call “friendlier amounts”, usually natural numbers, which they 
then work with. 

 Multiplicative strategies. Students show multiplicative thinking through the formation of 
groupings, but which, unlike the previous strategy, are linked multiplicatively. 

The latter two strategies show a greater understanding of the relationships between quantities, as 
students begin to simplify their computations. Below, in Table 1, we show these strategies by solving 
a quotitive division problem. 

Table 1: Children’s strategies for a quotitive division problem 

Children’s strategies for 
multiplicative structure problems 

Problem: My mother has made 2 litres of orange juice. If she has 
distributed it in  litre glasses, how many glasses has she filled? 

Direct modeling 
 

Repeated addition 
 

She has filled 8 glasses 

Grouping and combining 
strategies 

  litres  2 glasses 

  litres  4 glasses 

1  1  2 litres  8 glasses 

Multiplicative strategies 
4 groups of  is 1. There are 2 ones in 2, so there are 2 times 4 or 8 

groups of  in 2 so she has filled 8 glasses 
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Method 
We have designed a teaching experiment that consists of three stages (Cobb & Gravemeijer, 2008; 
Gravemeijer & Prediger, 2019): preparation, implementation, and analysis. The first phase consisted 
of the design of a teaching module. First, we defined the learning objective: favouring the transition 
from natural numbers to fractions in solving multiplicative structure problems using relational 
thinking strategies (Empson & Levi, 2011), and the use of teaching with variation (e.g., Sun, 2011). 
The teaching module consisted of eight sessions of 50 minutes approximately: a pre-test (one 
session), the instruction (six sessions) and a post-test (one session). The instruction is based on the 
three types of Bianshi activities and the development of the different strategies introduced above: 

 OPMC. Each session starts with an initial problem, and variations are made according to a 
feature, while other features remain unchanged. For instance, in Figure 1, the initial problem 
has the total quantity as unknown (multiplication problem), while the variations have as 
unknown the quantity per group (partitive division problem) or the number of groups 
(quotitive division problem). All other characteristics remain unchanged (for instance, the 
number used). Another example of variation is shown in Figure 2. The quantities of the initial 
problem are natural numbers, while the following problems vary according to the quantities 
considered (natural numbers, N; unit fractions, UF; non-unit proper fractions, PF; and 
improper fractions, IF). All other characteristics remain unchanged. 

 OPMS. Students can solve the problems using different strategies (students could use the 
strategies described above to solve the problems from Figures 1 and 2). The instructor (one 
of the researchers) guides them in progressing from basic to more sophisticated strategies. 

 MPOS. The problems and their variations allow students to use the same strategy as they are 
problems with the same structure. 

The pre-test and post-test were designed to analyse changes in both the students’ levels of success 
and the strategies used by them in solving multiplication, partitive division and quotitive division 
problems with natural numbers and fractions. Both tests had three problems of each typology. 

In the second phase, we implemented the teaching module with three different groups of primary 
school students (a total of 61 6th graders, 11-12 years old). The students solved the pre-test and post-
test individually during the first and the last session of the teaching module. During the instruction, 
first, students worked in small groups, solving three problems in each session and then, the different 
strategies used were discussed with the whole class. Data collection is necessary to document 
students’ reasoning’ progress and their evolution during the teaching module (Cobb & Gravemeijer, 
2008; Cobb et al., 2016). Therefore, all sessions were videotaped, we collected students’ worksheets 
during all the sessions and students’ discussions in small groups were also voice recorded. 

Currently, we are at the beginning of phase 3, analysing the data collected. The research data are 
primary school students answers to the pre-test and post-test, the videos and audio transcriptions of 
the sessions and students’ worksheets collected during the instruction. In this study, we present a 
preliminary analysis of the students’ answers to the pre-test to explore the levels of success and the 
strategies that sixth-grade Primary School students’ use when solving multiplicative structure 
problems with natural and rational numbers before participating in the instruction. This gives us 
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information about the starting point in our instruction, and later it will allow us to identify changes 
along with the teaching module and the post-test to identify characteristics of the transition from 
natural to rational numbers in primary school students. 

 
Figure 1: An example of variation: the unknown quantity as a critical feature 

 
Figure 2: An example of variation: the quantity used (N, UF, PF, IF) as a critical feature 

Pre-test analysis 
The analysis is being carried out in two phases. In the first phase, students’ success levels in each 
problem were analysed. In the second phase, we focused on students’ strategies. To illustrate the 
analysis process, we will use a quotitive division problem from the pre-test. The problem is: My 
mother has made 2 litres of orange juice. If she has distributed it in  litre glasses, how many glasses 

has she filled?  
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Phase 1. Analysis of students’ success levels 

Each problem is codified as “1”, whether the procedure is correct (independently of computation 
errors), or as “0”, whether the procedure is incorrect (Table 2) to obtain students’ success levels. 

Table 2: Example of success level analysis 

Student answer Code Description 

 

0 The student uses a multiplication algorithm correctly but 
incorrectly according to the problem statement 

 

1 The student converts the number of litres to millilitres 
and uses the division algorithm correctly to get the 

number of glasses she has filled 

Phase 2. Analysis of students’ strategies 

Secondly, the analysis focuses on the strategies used by the students. Currently, four researchers are 
analysing a sample of different problems to generate descriptors of the strategies used in each 
problem. We have begun to discuss the similarities and differences in the strategies used by the 
students. Below are some examples of the strategies that have emerged during this first approach to 
the analysis process. 

In Figure 3, to solve the problem, the student (P52) graphically represents the total quantity (two 
litres) in two jugs which he/she divides into fourths (which is the amount of juice in a glass). To give 
the result, the student counts the number of  he/she has drawn and answers, “she has filled 8 glasses”. 

 
Figure 3: Strategy based on a graphical representation (P52) 

In Figure 4, the student (P58) does not need to represent the quantities graphically and makes 
groupings. First, the student identifies that four times  is a litre of juice. As the total quantity is two 
litres, to obtain the answer he/she doubles the number of glasses he/she fills with one litre, obtaining 
eight glasses. In Figure 5, the student (P12) converts two litres into 2000 millilitres and  litre into 
250 millilitres to divide with natural numbers. 

 
Figure 4: Strategy based on groupings (P58) 
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Figure 5: Strategy based on a conversion to natural numbers (P12) 

First results and conclusions 
We have identified different levels of success according to the numerical set used and the type of 
problem solved. On the one hand, concerning the numerical set, 94% of the participants correctly 
solved problems with natural numbers while 46% correctly solved problems with fractions. On the 
other hand, according to the type of problem, results of the pre-test showed that 68.3% of the 
participants correctly solved the multiplication problems, 52.5% the partitive division problems and 
65% the quotitive division problems. 

Regarding the strategies, although we are in the process of analysis, the descriptors of strategies 
identified are closely related to the general categories identified by Empson and Levi (2011; e.g., 
drawing-based strategies such as direct modeling or grouping-based strategies such as grouping and 
combining strategies). Furthermore, we have identified incorrect strategies which suggest the need 
for teachers to focus students’ attention on the invariance of the structure of the problem regardless 
of the numerical set involved. Our results provide details regarding the participants’ starting point 
prior to the instruction and will allow us to identify changes along the teaching module to identify 
characteristics of the transition from natural to rational numbers. 
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The Working Group
In CERME12, the Thematic Working Group 3, ‘Algebraic Thinking’, continued its work from 
previous CERME conferences. We had a total of 27 papers and three posters with a total of 39 people 
in the group. Participants represented countries from Europe and other continents: Canada, Cyprus, 
Denmark, Finland, France, Germany, Greece, Hungary, Italy, Norway, Spain, Sweden, The 
Netherlands, United Kingdom, and the United States of America. The papers loosely centred around 
six themes. These were: Generalisation and Pattern, Structure, Equations and Variables, Theoretical, 
Functional Thinking, and Algebraic Thinking. We discuss each of these themes below.

Generalisation and Pattern
Generalisation is a key aspect of algebraic thinking and there were a number of papers which looked 
at how students might be helped in developing their generalisation skills further. Figural patterns 
continue to feature as a significant research tool to explore students’ generalization skills, although 
perhaps less common during this conference than the last. Mazza et al. looked at Grade 10 students 
as they considered proofs related to figurative patterns. Students were presented with ‘visual proofs’ 
and asked to justify theorems based upon those pictures. They found that there was a close match 
between the way in which students described the figural patterns in terms of mathematical properties 
and their explanations of the theorems. Goñi-Cervera et al. used a well-known growth pattern 
involving chairs placed around a certain number of tables. Their particular focus was students with 
autism spectrum disorder (AS) compared with students they describe as ‘typically-developing’ (TD). 
Although there was more success gained by TD students, it was found that the most frequent strategies 
for both groups were the same. Lócska and Kovács found that generalisation and reasoning strategies 
were supported by an intervention with 7th grade Hungarian students. This intervention used 
numerical tricks based around the array of numbers in a month found in calendars. Reinhardtsen and 
Carlsen’s study involved students approaching introductory algebra through a calculational 
perspective. They found that teaching norms of emphasising procedures and products remained and 
that students could evaluate letters but struggled to use them to express generalisation and structure. 
Kilhamn reported a case study where computer programming was used when working with pattern 
generalizations. Tinkering with the code sparked students’ curiosity in new ways, and when the 
computer did all the arithmetic, the students were free to look for pattern and structure.
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Structure
A key aspect of algebra which was prominent in the previous CERME was that of structure. The 
continuum between operational and structural thinking was present in a number of papers. Lenz’s 
study offered situations which included boxes with unknown or indeterminant numbers of marbles in 
boxes. She looked at kindergarten and elementary school children’s approaches to establishing 
relationships within the continuum of number-orientated and structure-orientated approaches. The 
need to break away from concrete representation and perceive the variable as a thought object was 
argued. Unteregge’s study involved slightly older children in Grade 4 and looked at the way they 
justified equalities within the result-orientated and structure-orientated continuum. It was found that 
students with a clear understanding of equality used different rationales across this range and could 
easily switch between them. Sencindiver (see Wladis et al. with Sencinder underlined) presented a 
paper concerning college students doing an algebra course, also using a framework of operational 
and structural thinking. Students were asked to justify algebraic transformations of expressions; an 
analysis of their attempts was conducted in terms of the students’ understanding of equivalence, 
substitution, and substitution equivalence. Wladis et al. (paper with Wladis underlined) also used the 
operation and structural continuum but along with another dimension of extracted vs. stipulated to 
look at college students’ thinking about equivalence. They found that this two-dimensional 
framework was useful to analyse students’ definitions of equivalence. Their finding was that although 
students noticed ‘sameness’, they struggled with articulating a more standard definition of 
equivalence. Vlachos investigated students’ understanding of what constituted a set. The sample 
included students from Grades 6, 9 and 12. Various prevalent misconceptions were identified. Grade 
12 students did considerably better but there was no significant difference found between Grade 6 
and Grade 9 students.

Equations and Variables
Dealing with equations is a standard part of the algebra curriculum. Roos and Kempen looked at the 
bar model as a pedagogical tool to assist with solving algebraic equations. Their study involved two 
cycles with low attaining Grade 10 students followed by Grade 8 students. They found that there was 
a need for students to develop conceptual understanding of which operations were illustrated within 
the model, rather than focusing on the numbers involved. López Centella et al. studied Grade 5 
students to see whether they could relate a given algebraic equation to five different contextual 
situations. They found that the students had different forms of justification depending upon the 
contextual situation, and that the students were able to infer mathematical truths which had not been 
explicitly taught to them. Korntreff and Prediger’s study involved Grade 7 and 8 students. They 
focused on the variable which appears within certain algebraic activities. Variables can play the role 
of ‘generalizers’ or unknowns. Their teaching experiment showed that students could construct both 
meanings for a variable, but only some students were able to distinguish explicitly the distinction 
between the two. They also found that the meaning students had of a variable was related to the 
algebraic activity within which the variable was used. Tondorf and Prediger studied Grade 5 students 
who were asked to justify the transformation from one arithmetic expression to another, both of which 
could be represented by the same geometric image. When making sense of the transformation of an 
expression, many students linked this with the geometric representation. They concluded that the 
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dynamic transformation of a graphical representation could be used ahead of the dynamic 
transformation of symbolic expressions. 

Theoretical
There were a number of papers which were based around theoretical arguments or developing models 
related to the teaching and learning of mathematics. Eriksson carried out a literature review on 
algebraic thinking related to students of 5-12 years old. She considered three perspectives in respect 
to teaching approaches which were based upon whether arithmetic thinking or algebraic thinking was 
developed first or whether they were developed at the same time. It was found that more research is 
needed on the perspective of developing algebraic thinking before arithmetic thinking. Weigand et 
al. came from the German tradition of Grundvorstellungen, which they translated as Basic Mental 
Models. They compared four different models for an equation and explored the relationship between 
these models and solving equations, particularly in relation to the use of technology. Three other 
papers used a similar framework to each other in their studies. Strømskag and Chevallard analysed 
textbooks from different countries, along with other publications from influential authors. They found 
that the evolution of curricula related to the notion of functions has seen a decline in algebra being 
taught as a modelling tool, and the reduced inclusion of parameters in algebraic equations. Hällback 
et al. analysed the algebra content of two Swedish upper secondary programmes and found that the 
programme for vocational education and training was more focused on know-how aspects rather than 
know-why. In contrast, the programme for higher educational preparation was more evenly balanced 
between these two aspects. Finally, Tonnesen constructed a praxeological reference model to develop 
a diagnostic test tool. This was used to examine students’ technical and theoretical knowledge of 
basic algebra.

Functional thinking
Functional thinking is a significant aspect of algebraic thinking. Frey et al. interviewed 35 educational 
experts across five countries about their views of what constitutes functional thinking. In their 
preliminary results from two German interviewees and one interviewee from the Netherlands, it was 
found that there were different views across those experts. Sterner’s study involved contextual growth 
patterns being presented to Grade 1 students and found that graphical representation, along with well-
thought-through terminology, was significant in developing students’ reasoning about recursive and 
also covariational relationships. Pittalis et al. focused more widely on algebraic thinking. They 
proposed and empirically validated a framework describing algebraic thinking abilities of Grade 3 
students. Functional thinking, along with two other abilities, were found to form an index of those 
students’ capacity to respond to algebraic tasks.

Algebraic thinking
Algebraic thinking is, of course, the focus of our Thematic Working Group. In that sense this is a 
theme which pervades all the papers. There are papers, though, where this is a more explicit focus.
Radford presented his own conception of what constitutes algebraic thinking before then going on to 
analyse Grade 3 students’ engagement in tasks presented in concrete and iconic semiotic systems. He 
found that the students generated two key algebraic ideas: that of ‘removing’ (from both sides) and 
‘separating’ (effectively reducing the coefficient of the unknow to 1). Bräuer’s study also avoided 
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use of symbolic language by using the image of balance scales to support learning of linear equation 
systems, involving multiple unknowns, with Grade 3 and 4 students. It was found that the students
could use algebraic strategies in an informal way without the need for an explicit intervention 
programme. Akinwunmi and Steinweg made a distinction between focusing on patterns and focusing 
on structure in their study with Grade 3 and 4 students. They argued that awareness of structure was 
important for students to engage in reasoning about patterns and made a case for the importance of 
material representations to help develop more structural arguments. Chimoni (Pitta-Pantazi et al.) 
presented a paper where they also made the case that seeing structure is important in early algebraic 
thinking. They found that students who solved arithmetical tasks using algebraic strategies were also 
able to solve algebraic tasks. They concluded that generalised arithmetic abilities underpin 
manipulation of algebraic expressions. Lastly, Fred et al. saw algebraic thinking as a resource or tool 
for action. They argued that explicit connections should be made between algebraic thinking and 
ways in which algebra plays a role in addressing challenges such as sustainability and climate change. 
In their analysis of two major research review books, they found that most of the ‘powerful algebraic 
ideas’ had a logical or psychological focus. 

Discussions and further directions for TWG3
There was much discussion about the relationship between arithmetic thinking and algebraic thinking.
Sometimes these were mentioned as a transition from one to the other. If that were to be the case, 
then is there a type of continuum between the two or is there an abrupt shift from one to the other? 
What constitutes the beginning of algebraic thinking? Alternatively, are these seem as running in 
parallel with each other, or are they actually more separate than sometimes imagined? For example, 
algebraic thinking can exist within a non-arithmetic context. We feel the link between these two is an 
important area for future work, perhaps considering the idea of advanced arithmetic thinking (which 
looks forward from arithmetic, rather than pre-algebra, which looks back from algebra). We also 
noted that terms, such as arithmetic thinking, functional thinking, relational thinking, and algebraic 
thinking were used without them always being defined. Different ways in which such terms are used 
can result in quite different analysis and conclusions being drawn from studies. The use of 
representations/models was a feature in a number of papers, and we felt that more work could be 
focused on how the abstraction process might involve gradual moving away from the use of 
representations/models. Algebra was often presented as a desired endpoint within some empirical 
studies, and we felt that more research could be done around the way in which algebra can be used,
such as a modelling tool. We were aware of some important areas which were not represented so 
much in the papers and posters at this CERME. This included the use of technology. Also, there was 
no reference to the aesthetic aspect of algebraic activity. This is far from a dry area of mathematics 
and can bring many insights and Aha! moments which have an affective impact. We are aware that 
some papers may be presented within other TWGs in relation to both these aspects, but we feel that 
research around both these would be a very welcome addition to the next CERME in this thematic 
working group. Lastly, we noted the relative lack of discussion about the role of teacher interactions 
with students whilst involved with algebraic activities. Often focus was on the tasks presented to 
students but the way in which tasks are introduced and the nature of the teacher-student interactions 
which follow can be just as, or even more, significant as the tasks themselves.
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Teaching algebraic thinking within early algebra – a literature review
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There is a lack of overview regarding previous empirical studies within the early algebra research 
field. Consequently, the aim of this study is to propose one way to organise how algebraic thinking
can be operationalised when teaching students five to twelve years old. The study is conducted as a 
literature review. The results show six categories of operationalising algebraic thinking with these 
young students. These categories can briefly be organised as three traditions: (1) arithmetic thinking 
tradition developing arithmetic thinking first, (2) developing arithmetic and algebra at the same time, 
or (3) algebraic thinking tradition developing algebraic thinking first. This method of organisation 
highlights one tradition of algebraic thinking where more research is needed - the tradition in which 
algebraic thinking is developed first. This tradition, as stated in the results, includes the category 
algebraic work.

Keywords: Early algebra, algebraic thinking, literature review, primary school students.

Introduction 
In the early algebra research field, authors attempt to explain student opportunities to explore and 
discern mathematical relations, patterns and arithmetical structures through processes of noting, 
conjecturing, generalising, representing, justifying and communicating (Kieran et al., 2016). Early 
algebra is then manifested using symbols other than numbers only including geometrical figures, 
verbal and written language and gestures (Kaput, 2008; Kieran, 2004, 2018; Kieran et al., 2016). One
problem within this research field is the age of the students and which level of the school system that 
is referred to as “early”. In the literature included in this review, early algebra can refer to the youngest 
students’ work on structures in mathematics, the introduction of algebra in secondary school or 
intermediate algebra, for example, as preparation for college-level mathematics (Katz, 2007). This 
broad focus on the level of schooling makes it difficult to navigate this field of research. Additionally,
early algebra focusing only on the youngest students has been operationalised in different ways in 
different empirical studies (Blanton & Kaput, 2011; Kieran, 2004). Parts of this research concerns 
issues about how algebraic thinking should best be introduced to the youngest students. Hodgen,
Oldenburg, and Strömskag (2018) argue, in a discussion on the last twenty years of developing 
research in mathematics education, that there is a need of an overview of this large number of different 
empirical studies regarding early algebra. Thus, it is difficult to navigate in this research field. The
aim of this paper is to propose a method of categorising research regarding the teaching traditions of,
or for, algebraic thinking in the age group five to twelve years old. The research question guiding the
literature review is: According to which different traditions can algebraic thinking be operationalised
within early algebra for students five to twelve years old?
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Early algebra research and ways of operationalising algebraic thinking
This section briefly highlights different traditions of operationalising student algebraic thinking.

Research on algebraic thinking within early algebra concerns student actions related to ways of doing, 
thinking and talking about algebra (Hodgen, Oldenburg & Strömskag, 2019). This research also 
includes ways of operationalising algebra in teaching (Hodgen, Oldenburg & Strömskag, 2019).
Kaput (2008) suggests two core aspects of algebraic thinking that may briefly be described as: (1) 
algebra as generalisations and expressions of the generalisations, and (2) algebra as guided actions 
on symbols within conventional symbol systems. Kaput (2008) further describes three strands of an 
embodiment of these core aspects: algebra as the study of structures, algebra as the study of functions, 
relations and statements, and algebra as the application of modelling languages. Kieran (2004) has 
proposed that algebraic thinking is connected to three interrelated activities for teaching school 
algebra broadly described as: (1) generational activities, for example forming equations, (2) 
transformational activities, for example rule-based operations, and (3) meta-level activities, as for
example problem-solving in which algebra can be used as a tool. Further, Radford (2014) describes
three ways of manifesting algebraic thinking as; (1) factual algebraic thinking, when students use
their daily life language, (2) contextual algebraic thinking, when the symbols and language the 
students use are related to the specific context or situation, and (3) symbolic algebraic thinking, when
the students use formal algebraic symbols. Davydov (2008) provides a fourth way of describing 
algebraic thinking related to the youngest students that is theoretically grounded on the idea that 
algebraic thinking develops if students can work with, and reflect on, arithmetical generalisations and 
that the youngest students are able to carry out such generalisations. Davydov (2008) argues that the 
young students should be introduced to algebraic work from the very beginning of their schooling
and that students need to jointly take part in the work of identifying mathematical problems, choosing
tools to work with, developing models to reflect on solutions and mathematical concepts, and lastly 
reflecting on whether the models developed are general and will work when solving other types of 
mathematical problems. The suggested tools when constructing these models include most algebraic
symbols and geometrical figures (Schmittau, 2003).

Concerning the youngest students in the school system, van Oers (2001) describes three different 
traditions of mathematics teaching: (1) arithmetic thinking first – an arithmetic tradition in which 
teaching focuses on operations with numerical examples, (2) arithmetic and algebra at the same time 
– a problem-solving tradition in which teaching focuses on arithmetic and algebra as methods for
solving tasks, or (3) algebraic thinking first – a tradition of algebraic thinking in which teaching
challenges the students to identify mathematical problems and focus on what tools to use when
solving these problems. In this third tradition van Oers (2001) suggest algebra to be used as a tool
when teaching the youngest students.

Methods
This systematic literature review was conducted using the keywords; early algebra and algebraic 
thinking in the Education Resource Information Centre (ERIC) database. Early algebra was searched 
on 12 March 2018 and yielded 206 articles, algebraic thinking was searched on 26 October 2018, and 
yielded 331 articles. Fifty-one articles were identified in both searches. One observation due to the 
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date of the search is that any articles of a later date can be deductively organised into the categories 
described below.

While reading the titles and the abstracts of the 486 articles, a process of elimination was conducted 
in two steps. In a first reading, 274 articles were taken for further analyses including studies of 
students five to twelve years old. In a second reading, still based on the titles and the abstracts, 147
articles focusing on operationalising algebraic thinking in teaching were selected for further analyses. 
Articles concerning teachers or teacher students and articles about, for example, students with less 
ability in mathematics not focusing on teaching were omitted. They were omitted because these 
studies focused on how the participants understood algebra not on how to operationalise algebraic 
thinking. In total 147 articles were included in the extended analyses.

The next step in the analyses was to identify the descriptions of student opportunities to think 
algebraically. This was achieved by constructing thematic categories regarding operationalising 
algebraic thinking in early algebra according to the analysis question; Who is doing what with what 
tools and with what aim? (Eriksson & Eriksson, 2021). Here, the categories were inductively 
identified related to in which way the teaching of algebraic thinking was described in the studies. And 
finally, the categories found in this step of the analyses were interpreted and grouped into more overall 
traditions inspired by van Oers’ (2001) suggestions concerning different traditions for mathematics 
teaching; (1) as an arithmetic thinking tradition or arithmetic first (2) as a tradition of arithmetic and 
algebra at the same time or (3) as an algebraic thinking tradition or algebra first.

Results
The results of the literature review are presented in Table 1. This table includes a presentation of the 
six categories regarding operationalising algebraic thinking within early algebra. 

Table 1: 

The traditions, categories, and teaching examples given in the articles

Tradition Category Examples of focus in teaching

1. Arithmetic thinking tradition

(arithmetic first)

1.a) Algebraized elementary

mathematics

47-18+18=47

1.b) Pre-algebra Numerical answers to unknowns

2. Algebra and arithmetic at the same

time

2.a) Early algebraization Operating with unknowns, equalities

2.b) Arithmetico-algebraic thinking Relationships between different tools 
and notations

2.c) Emergent algebraic thinking Geometrical patterns

3. Algebraic thinking tradition

(algebra first)

3.a) Algebraic work Structures between concepts jointly 
reflected using algebra, geometrical 
figures and language

1. Arithmetic thinking tradition
Category 1.a) is termed algebraized elementary mathematics and is related to the arithmetic thinking
tradition. In this category, algebraic thinking is built on details manifested as arithmetic (Britt &
Irwin, 2008; Lins & Kaput, 2004). Algebraic thinking could be developed by making structures
visible using arithmetical examples. As one example, a statement such as 47+18-18=47 visualises
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that whatever is added and then subtracted entails that the original number does not change (Lins & 
Kaput, 2004). To summarize this category: algebraic thinking is related to the idea that algebra is 
about generalisations that can, or need to be, developed from arithmetical examples (Britt & Irwin, 
2008; Lins & Kaput, 2004). Thus, algebra is introduced after the students have developed their 
arithmetic abilities.

The category 1.b) includes studies presented as pre-algebra. These studies describe teaching that aims
to prepare for algebraic teaching grounded in arithmetic (e.g., Carraher & Schliemann, 2007).
Arithmetic is thus seen as operations with numbers, separated from algebra that is about 
generalisations. The teaching of pre-algebra in these studies is proposed to be positioned after 
arithmetic but before teaching algebra. The students are, for example, supposed to work with (1)
counting, grouping and sorting artefacts, (2) numbers and numbers of objects, (3) comparisons of
quantities and values, (4) organisation of sequences and (5) sums, differences, quotas, and products 
of quantities and values. To summarize this category: the focus is on numerical values, thus the 
arithmetic aspect of mathematics.

2. Algebra and arithmetic at the same time
Category 2.a), related to the algebra and arithmetic at the same time tradition and is termed early
algebraization (Blanton & Kaput, 2011; Kieran, 2004). Early algebraization is based on the idea that
arithmetic can be more than counting and by-heart knowledge (Blanton & Kaput, 2011; Kieran,
2004). The teaching described often focuses on student opportunities to analyse relationships between
quantities, identify structures, generalise, solve problems, model, argue, prove and predict (Blanton
& Kaput, 2011; Kieran, 2004). The studies representing this category state that the differences
between arithmetic and algebra are not completely distinct, but the differences can be presented
according to what is specific for algebra, thus: a focus on relationships, not counting numerically, a
focus on operations and their inverses, a focus on the process of problem-solving, not only the answer,
a focus on symbols such as numbers and letters and a focus on the meaning of the equals sign (Kieran,
2004). To summarize this category: algebra is used to analyse arithmetical relationships beyond
numerical answers using numerical symbols.

In the category 2.b), teaching is focused on an arithmetico-algebraic way of thinking. The teaching 
within these studies describes, for example, a modelling process focusing on both arithmetic and 
algebra (Hitt et al., 2016; Pittalis, 2018). This type of teaching is categorised by student actions related 
to arithmetic, visible arithmetic processes, their transformations to algebra and their inverses. 
Students are supposed to develop arithmetic and algebra at the same time, consequently teaching 
focuses on relationships between different notations, tools and student actions (Hitt et al., 2016). To 
summarize this category: the studies identify points of contact between arithmetic and algebra instead 
of describing differences.

Category 2.c) is termed emergent algebraic thinking and is suggested by, for example, Radford (2000, 
2014) and Zazkis and Liljedahl (2002). Research interest concerns teaching focused on student ability
to generalise and to then symbolise generalisations, thus students are allowed to express 
generalisations verbally using gestures and symbols without any requirement for students to note 
generalisations in a purely correct algebraic manner. Emergent algebraic thinking can thus be 
developed without using common mathematical nomenclature. The studies included are based on 
student opportunities to work algebraically by, for example, representing solutions to mathematical 
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problems verbally, by using written language, drawings, symbols, models and gestures. These actions 
form the observable data used to analyse the algebraic thinking developed in teaching (Roth & 
Radford, 2011). Problems are often manifested by geometrical pattern development. To summarize
this category: emergent algebraic thinking focuses on different symbols, verbal language and gestures 
to operationalise algebraic thinking.

3. Algebraic thinking tradition
The final category 3.a), and the only category that is related to the algebraic thinking tradition, is
termed algebraic work in which researchers often refer to the El’konin-Davydov Curriculum
(Kozulin, 2003; Schmittau, 2003; Sophian, 2002; Venenciano & Dougherty, 2014). Here, teaching
the youngest students begins with measuring and comparing quantities related to lengths, volumes,
areas, weights and numerical values. These quantities are often noted using algebraic symbols and
geometrical length segments. This type of teaching is operationalised as collective analyses of
mathematical concepts, their derivation from measurement and their representation by schematic
models. Relationships between quantities are identified by the students in collective problem
situations. For example, a whole class may collaborate together with a teacher to develop models that
visualise how a relationship noted as A = B + C can also be represented as C = A – B or B = A – B.
In order to be able to discuss such statements, the students and the teacher often use length segment
models and algebraic symbols as in Figure 1.

Figure 1: The relationship A = B + C as it is presented in Davydov (2008)

Here, Algebra is used as a tool to discuss general structures of mathematical concepts (van Oers,
2001). The relationships depicted in Figure 1 can be used by students as a means for reflection on the 
essence of mathematics as scientific knowledge of quantity and relationships. In a next step students 
can compare quantities that are almost the same, quantities that do not differ significantly and thus 
need to be measured to be compared. Students may also compare quantities of lengths to quantities 
of weights to discuss if they are possible to compare. A third task may be to compare quantities of,
for example, volume in containers of different shapes. Students then must identify that an 
intermediary unit is necessary in order to compare the different quantities. Such tasks can be designed 
without using numerical examples. The sets of progressively more difficult problems are not 
organised with different content but as problems in which previous solution methods are inadequate
but give guidance. Students are supposed to identify the need for new methods, tools and conceptual 
knowledge. Increasingly difficult and complex problems are designed for the students to solve (e.g.,
Schmittau, 2003). It is proposed that this algebraic way of teaching is introduced to students from 
about five years old. The studies categorised as algebraic work under the algebraic thinking tradition 
often focus on student agency, their opportunities to initiate and take part in discussions on 

A

B C

A
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mathematical content and reflect on structures and relations. Summarising this category, the students 
begin with algebra before arithmetic in joint activities.

Discussion
As the results above describe, the research field concerning early algebra is multifaceted in how 
algebraic thinking can be operationalised in teaching. Researchers in the literature review argue that 
it is not easy to obtain an overview of what algebra is and what arithmetic is when describing teaching 
in the different types of teaching traditions. This is managed here by categorising different teaching 
according to how algebraic thinking is operationalised. However, the same researchers argue that it
is important to grasp differences and similarities between these two contents in order to better 
understand what is in focus and what is possible for the students to distinguish (Radford, 2000; 
Kieran, 2004, 2018). In this overview, these categories have been organised as; beginning with 
arithmetic and then introducing algebra, working with arithmetic and algebra at the same time and
beginning with algebra to develop algebraic thinking as well as arithmetic thinking. Some concluding 
remarks are given in relation to the first and the third tradition.

In the arithmetic thinking tradition, arithmetic abilities are supposed to be developed before the 
students are expected to develop algebraic thinking. Within this tradition, algebra is usually 
introduced in middle school when the students have worked with arithmetic for a while and 
supposedly have developed basic arithmetic abilities. Even though these studies are included in the 
research field of early algebra, it is thus not the youngest students who are referred to in the research 
literature. This teaching tradition empowers students to communicate generalisations by using 
numerical examples as in, for example, pre-algebra (Carraher & Schliemann, 2007) and algebraized
elementary mathematics (Lins & Kaput, 2004). According to Kaput’s (2008) description of algebraic 
thinking, this teaching can be understood in relation to generalised arithmetic, but less in relation to 
syntactical, guided manipulations of symbols. Based on Kieran (2016) and Kieran et al. (2018), this 
kind of teaching tradition can be understood as generalisation activities despite the symbols used 
being numerical. However, referring to Radford’s (2014) descriptions regarding manifestations of 
algebraic thinking, it is doubtful whether this is to be considered as algebraic thinking when the 
content is related to numerical values only.

In contrast to the arithmetic thinking tradition, the algebraic thinking tradition emphasis that algebraic 
thinking needs to be developed first in order to develop arithmetic thinking. Here algebraic thinking 
is operationalised in the earliest grades in elementary and primary school. Algebraic structures and 
relationships are worked with as a foundation for arithmetical work (Davydov, 2008; Schmittau, 
2003; Sophian, 2002). The development of mathematical abilities using algebraic symbols and line 
segments is suggested as a means in a collective, problem-solving activity (Kozulin, 2003; Schmittau, 
2003; Sophian, 2002; Venenciano & Dougherty, 2014). Teaching should focus on relationships 
between mathematical concepts and structures within arithmetic such as relationships between 
quantities (Schmittau, 2003). One important difference between this algebraic thinking tradition and 
the arithmetic thinking tradition is the idea that theoretical knowledge is developed by ascending from 
the abstract to the concrete (Davydov, 2008). In order to enable this process among the youngest
students as well, algebraic symbols and algebraic ways of thinking are essential in the algebraic 
tradition. Comparing this way of operationalising algebraic thinking to Kaput’s (2008) three strands, 
this can be seen as: a) algebra as the study of structure and systems abstracted from computation, b) 
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algebra as the study of relationships and structures and c) algebra as collective modelling. Referring 
to Kieran (2004), the algebra first tradition is focusing generalisation work in which students and a 
teacher jointly construct equations and reflect on structures as they identify problems and explore 
mathematical tools.

The result of this literature review indicates that there is a lack of studies within the third tradition -
starting with algebra. This gap is also identified by Coles (2021) in a discussion in Educational Studies 
in Mathematics, in which he states that ”[t]he manner in which symbols arise from activity within 
Davydov’s work potentially offers huge advantages in multi-lingual classrooms, and I would see this 
as a rich area of future research” (p. 475). Consequently, this review confirms Coles’ (2021) argument 
that more studies in this field are necessary, specifically studies that could expand our knowledge of 
the algebraic thinking tradition.
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How can powerful algebraic ideas be understood for the combined purpose of developing students’ 
emergent algebraic thinking and fostering future active citizens? To address this question, we have 
examined two major research review books on early algebra to investigate the interpretations of 
“powerful algebraic ideas” that are present in the books as a whole. Skovsmose and Valero’s (2008)
four interpretations of powerful mathematical ideas (which focus on the logical, psychological, 
cultural, and sociological power of mathematics) were used. We show that in the books and book 
chapters there is a dominance of the logical and psychological interpretations of the power of
algebraic. Furthermore, the cultural and sociological interpretations appear connected to algebraic 
thinking as a resource or tool for action in “society”. Advancing new possibilities of expanding the 
ways in which early algebraic thinking is made powerful for students is a challenge to research.

Keywords: Early algebra, algebraic thinking, powerful algebraic ideas, socio-political perspective.

A socio-political perspective on early algebra?
In the last decades, early algebra research has stressed the importance of students’ introduction to
algebraic practices in the lower grades to support students’ emergent algebraic thinking (e.g. Kaput, 
2008; Radford, 2014). Such an early introduction lays the ground for further algebraic thinking. Since 
algebra has a special position in mathematics, through its applicability in other areas and for its role
in supporting general reasoning, conclusions, and proofs, an early introduction to algebraic practices 
and thinking is considered a foundation for realizing the intentions of the mathematics curriculum 
with respect to students’ overall mathematical learning (Cai & Knuth, 2011). Simultaneously, interest 
on the socio-political dimensions of mathematics education has grown among researchers and 
practitioners (Gutiérrez, 2013; Planas & Valero, 2016). A socio-political approach to mathematics 
education considers the development of mathematical thinking and learning as an aim tightly
connected with the overall societal intention of providing students with tools to become active 
citizens. In other words, mathematics education should offer clear opportunities to deploy 
mathematical thinking to consider and act on the problems and concerns of students as members of a 
society (e.g., Skovsmose, 1994). When bringing these two lines of research together, one could think 
that the aim of developing students’ algebraic thinking is not only to advance the learning of further 
mathematics, but also more explicitly to empower children’s critical reflection and democratic
participation in communities of peers and in society (Hauge & Barwell, 2017). As it appears from 
the analysis of the basic works in our study, more often than not this combined aim is not so clearly 
articulated in research. Thus, bringing together students’ emergent algebraic thinking and fostering 
future active citizens becomes a relevant challenge to advance a socio-political research work on early 
school algebra.
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This paper has the intention of examining the way in which the aims of early algebra are expressed 
in research. Identifying how such aims are articulated is a first step in finding ways to connect them 
with the intentions of empowering students as future citizens, and in opening possibilities for new 
design of curricula and pedagogies that promote algebraic thinking. 

We took inspiration in Skovsmose and Valero (2008), who reviewed how research in mathematics 
education views mathematics as being powerful and learning mathematics as empowering students 
and giving them access to participation in society and democracy. They reviewed research with three 
questions in mind:  a) What is the understanding of “power” present in research? b) What is the source 
of the power of mathematical ideas? and c) What are the consequences of that power? As a result, 
they identified four distinct interpretations of the notion of “powerful mathematical ideas” that are 
present in the field. Mathematics and mathematics education are powerful in a logical sense when 
the focus is on the internal characteristics of mathematics. The learning of mathematics is then 
justified “for the sake of the internal characteristics of mathematics” (Skovsmose & Valero, 2008, 
p.15). Powerful mathematics education is powerful in a psychological sense when the focus is on the 
individual’s possibility of acquiring mathematical knowledge. Powerful mathematical ideas are then 
defined in relation to the mental operations involved in the learning of mathematics, rather than the 
internal logics of algebra. Mathematics education is powerful in a cultural sense when the focus is on 
students’ interpretations of their life possibilities in a context and reflects a situated learner’s 
perspective, addressing students’ background, but also their foreground, or how students perceive 
themselves as mathematicians in their future live. Mathematics education is powerful in a 
sociological sense when considering mathematics as a central tool for larger social action and 
organization. Powerful mathematical ideas, then, are “defined in relation to the extent to which they 
are used as a resource for action in society” (Skovsmose & Valero, 2008, p. 21).  

In our case, these four interpretations invited us to inquire in which ways democratic access to early 
algebraic thinking can be considered as powerful for the purpose of connecting the development of 
algebraic thinking with the intention of education for an active citizenship. The question we want to 
discuss in this paper is: How can we understand powerful algebraic ideas for the combined purpose 
of developing students’ emergent algebraic thinking and fostering future active citizens? 
Methodology 
To answer this question, we examined two major research review books in the field of early algebra 
(Cai & Knuth, 2011; Kieran, 2018) to investigate the interpretations of “powerful algebraic ideas” in 
the books as a whole. This process was done in three steps. First, an analytic tool was created (Table 
1) where Skovsmose and Valero’s (2008) three questions (a) What is the understanding of “power” 
present in research? b) What is the source of the power of mathematical ideas? c) What are the 
consequences of that power?) helped guiding the description of each interpretation. Second, we 
performed an exercise of researching research (Pais & Valero, 2012) on the two books to identify 
statements present in the texts related to each of the four interpretations. This was done by scanning 
for keywords associated to each interpretation, identifying excerpts that expressed these ideas, and 
articulating the overall sense of powerful algebraic ideas present in the books. In researching research 
as an analytical approach, we were not interested in pointing the particular author of an idea. Rather, 
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we identified the regularities of what is being said about powerful algebraic ideas. Therefore, the 
excerpts that illustrate the interpretations are coded “C&K” and “K” plus the page number to point 
the source of the citations in Cai and Knuth (2011) and Kieran (2018) respectively. 

Table 1: Summarised view of Skovsmose and Valero’s (2008) Powerful mathematical ideas… 

Logically speaking… Psychologically speaking… 

Mathematics is seen as objects. The focus is on 
understanding mathematical concepts and doing 

mathematics for the sake of the internal 
characteristics of mathematics. The goal is to 

establish mathematical knowledge, its ways of 
working and to provide new insight into a different 
set of concepts. Being able to make abstractions is 
essential. Mathematics empowers through peoples’ 

enculturation in it. 

Mathematics is conceived primarily as a learning 
process. The focus is on capturing and facilitating the 

developmental nature of mathematical thinking 
towards higher levels of abstraction and 

formalization. The mathematical power is situated in 
its developmental potentialities. 

Culturally speaking… Sociologically speaking… 

Mathematics is seen as a tool to relate to people’s 
context and life conditions, for making decisions, 
participating in different practices, and envisioning 
future life possibilities. Mathematics is powerful as it 
allows the understanding and transformation of who 
learners can become. 

Mathematics is seen as a descriptive and prescriptive 
resource and tool for action that formats society. 
Mathematics is powerful as it allows planning and 
decision making as an integrated part of technological 
actions. It also allows to recognize the harms that 
mathematics, as a resource in technological action, can 
create. 
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Powerful algebraic ideas 
Table 2 shows the approximate distribution of excerpts in the texts.  From this distribution, it is clear 
that most of the terms appear in connection with the logical and psychological focus. 

Table 2: Distribution of number of excerpts 

Interpretation  Keywords Nr. of excerpts 

Logically speaking... abstraction, concept, generalization, mathematical 
structures, origin 

More than 200 

Psychologically 
speaking… 

argumentation, mathematical thinking, mediating tools, 
modelling, reflection, 

More than 100 

Culturally 
speaking… 

critical decisions, culturally, family, student´s 
background, student´s foreground 

Less than 20 

Sociologically 
speaking… 

agency, empowerment, citizenship, critical thinking, 
critical reflection, democratic, real, society 

Less than 10 

In what follows we characterize the four different interpretations of powerful algebraic ideas as they 
appear in the two books. We acknowledge that even though we try to keep the four interpretations as 
distinct perspectives and emphases, they are not strict, clear-cut categories. Rather there are fine lines 
of distinction and similarity between them. Therefore, we tried to capture what can be foregrounded 
within each interpretation. 

… Logically speaking 

Algebraic ideas are presented in the books as powerful logically speaking when stress is placed on 
the features of algebra such as abstraction, mathematical structures and generalization. This 
dimension of powerful algebraic ideas connects to the multiple perspectives one needs to understand 
concepts and by linking these concepts to one another. For example, generalizing is described as 
powerful in relation to processes of identifying mathematical structures and relationships in 
mathematical situations. Seeing and describing mathematical structures and relationships are also 
seen as powerful in relation to constructing meaning. For example, understanding the “multiple 
meanings of variables and the ability to employ variables to express mathematical relationships or 
situations” (K, p. 144) are also expressed in terms of powerful algebraic ideas. The power of thinking 
algebraically is described as empowering students to analyse relationships, to notice structures, to 
generalize, to problem-solve, to model, to justify, to prove, and to predict (K, p. 408). Furthermore, 
“structure in terms of an agreed list of properties” is seen as a powerful algebraic idea when using 
them as axioms for deducing other properties (K, p. 287). In sum, the power in this category is 
strongly related to the internal logics of algebra.  
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… Psychologically speaking 

From a psychological point of view, powerful algebraic ideas seem primarily to be defined in relation 
to what students can grasp and give meaning to in the learning processes of algebra. For example, 
symbolic notions are emphasized as tools in relation to students’ thinking regarding generalizations 
and relationships between variables: “in particular, to recognizing the varying nature of variables” 
(K, p. 276). The algebraic symbols are also emphasized as powerful to describe and reason with 
overall mathematical ideas (C&K, p. 19). Schematizing, discovering patterns, “to imagine and to 
express, to specialize and to generalize, to conjecture and to convince” is also mentioned in terms of 
being powerful algebraic ideas (K, p. 334). This in relation to recognise “situations as instances of a 
class of similar situations, which constitute a person’s example space” (K, p 334). “Observing 
examples to find regularities, noticing structure and relationships, forming conjectures about the 
observations, and then proving and concluding general statements” was also mentioned in terms of 
being powerful (K, p. 356). Mental models are mentioned as ways of thinking about abstract concepts 
(e.g., balance for equivalence) and/or represent abstract concepts (e.g., physical balances, balance 
diagrams, balance language, equations as balance). Transforming processes, the recognition of 
mathematical ideas and the use of mathematical strategies and analytical tools were mentioned (C&K, 
p. 332). Abilities such as meaningful symbolic reasoning are seen as powerful because they prepare 
for the abstraction of more advanced concepts and thinking in later grades. (C&K, p. 14). In contrast 
to powerful mathematical ideas in a logical sense, mathematical ideas are powerful because they 
relate primarily to students’ learning of algebra rather than to a predominant focus on the internal 
characteristics of algebra. 

… Culturally speaking 

We interpret this dimension as emphasizing informal notions of algebraic concepts where language 
plays an important role. Competencies as to going from informal notions to more formal ways of 
mathematical thinking are emphasized (K, p. 29). Algebra is described as a cluster of modelling 
languages both in and out of mathematics (C&K, p. 492). The importance of tasks for students’ lives 
is also emphasized for students to engage and participate (C&K, p. 430). Argumentation competences 
is attributed a crucial role (C&K, p. 469) even though algebraic thinking not always is mentioned 
directly; rather, activities with a special focus on argumentation. Further, is algebraic thinking 
highlighted as creating marginalization of students in schools and society as well as “a gateway to 
academic and economic success” and in that sense is algebra seen as valuable for the students. 
Culturally speaking powerful algebraic ideas recognize the situated perspective of learning algebra 
and the culturally loaded meaning associated to learning algebra. 

… Sociologically speaking 

The role of algebraic thinking is sometimes backgrounded, and sometimes it is foregrounded. 
Furthermore, “the use of symbols (letters) to express relationships (to model) and thereby to resolve 
problems” are mentioned in terms of powerful algebraic ideas (C&K, p. 561). “Real” problems are 
used as starting points where transforming processes, reorganizing mathematical ideas, schematizing, 
discovering relations and patterns, symbolizing, using analytic tools, and refining existing models are 
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deployed as tools for students to have agency over their life situations and to critically scrutinize their 
environment interpreted as powerful algebraic ideas (C&K, 2011 p. 332). Students’ abilities to make 
sense of data is mentioned, this in relation to whether and how different quantities relate to each other. 
In relation to this seem tables, graphs, and the use of symbols to work as tools or models to invite the 
students to describe and reason about mathematics ideas (C&K, 2011 p. 19). Algebraic reasoning is 
also highlighted, this in terms of being a powerful algebraic idea (K, p.380). In some excerpts is 
algebraic thinking expressed powerful in relation to work as a “fluid domain of thinking”, “habit of 
mind” and as a particular resource to be used and integrated in every topic (C&K, p.18).  

Discussion and conclusions 
As described earlier on, we set us the task of discussing how to understand powerful algebraic ideas 
for the combined purpose of developing students’ emergent algebraic thinking and fostering future 
active citizens. That is, we try to move early algebra education towards a practice at intersection of 
fostering future democratic citizens and the emergence of algebraic thinking for future mathematical 
learning. The main result, in screening two major research review books, is that there is a dominance 
of the logical and psychological interpretations of “powerful algebraic ideas”. This result resonates 
with Skovsmose and Valero (2008) who, for the general field of mathematics education, could see a 
large number of publications adhering to these two interpretations of power. To keep assuming that 
the logical and psychological interpretations will lead to an empowerment of students may be 
problematic. As we know, the connection between mathematical knowledge and competence and 
relevant problems that people face in their lives does not happen “naturally” (Hauge & Barwell, 
2017). As society gets more complex and children face the challenges of sustainability and climate 
change, it becomes necessary to make explicit connections between algebraic capacities/thinking and 
the ways in which algebra plays a role in addressing such shaky situations.  

Our analysis of powerful algebraic ideas culturally and sociologically speaking can guide us in the 
attempt to enlarge the idea of algebraic practices where students are involved in more socially relevant 
issues, as for example climate change and sustainability, and where algebraic thinking becomes a 
resource or a tool for concrete critical thinking and action. One way of inviting students to be involved 
in this kind of activities is to work with models of situations that go beyond so called realistic or semi-
real references for a controlled problem. For example, we can challenge students to read or model 
“reality” and then by raising certain questions/issues implicit make algebraic thinking becoming an 
analytical tool in the exploration of those models. Further, asking questions/making statements that 
invite the students to becoming aware of models’ potential of visualizing only certain “things” and 
leaving other things unnoticed and invite them to reflect on what kind of consequences that may have. 
In this kind of work, algebraic thinking can become a language tool/resource as well as an analytical 
resource/tool (see also Blanton 2008). Another way of inviting students to this kind of work is in 
relation to technological action, where algebraic thinking can work both as a tool to create 
technological solutions as well as enable the students to detect that all things that are created with 
mathematics are not all good. Thinking in this direction, the contextualization becomes crucial, this 
in the establishment of an arena where algebraic thinking can operate both as a source of power but 
at the same time inviting students to critical examinations of mathematics itself. This implies a need 
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to uncover the contextualization of a certain structure and at the same time creating another kind of 
need for algebraic thinking.  

The remaining question is then, which could be new possibilities to build those kinds of arenas with 
the combined aim for early algebraic thinking? We believe that as a community of researchers, we 
could embrace the challenge of designing algebraic practices that place algebraic thinking in a larger 
context. In contrast to the usual work with problems and contexts tailored for algebra, we see that 
wicked problems (Block et al., 2018; Hauge & Barwell, 2017; Jurdak, 2016; Rittel & Webbers, 1973; 
Steffensen, 2021) can be a fruitful idea to both empowering the contextualization as well as creating 
another kind of need for algebraic thinking. Wicked problems can help us bridging the gap between 
school algebra and more socially relevant issues (e.g., Jurdak, 2016; Steffensen, 2021). Wicked 
problems can be described as complex problems with no definite formulation of what the problem 
and its solution actually is. Then the problem-formulations are vague and involve different interests 
and/or perspectives which encourage to negotiate disagreements that open up for different framing of 
the problem. Thus, if we want to go beyond providing students with tools to solve problems 
encountered in real life and instead invite the students to work as mathematicians handling conflicting 
stakes, complexity, decisions, and uncertainty, exploring algebraic activity to address wicked 
problem can be rewarding.   

Neither of the above, however, comes without challenges. There is a risk that the students’ either 
disregard mathematical (in this case algebraic) aspects or disregard socio-political aspects or 
disassociate them. Our further research intends to explore this further by imagining wicked problems 
in an iterative and collaborative process including pre-service teachers, teachers, researchers, and 
teacher educators, where we also stage these imagined wicked problems with 6–9-year-old students. 
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In this paper, we present the first results from the Erasmus+ project FunThink which focuses on 
enhancing functional thinking from primary to upper secondary school. In an international interview 
study (in Cyprus, Germany, Netherlands, Poland, and Slovakia) we investigated 35 educational 
experts’ views on what they consider functional thinking to be. From each country between six and 
nine experts were interviewed. We analyze these semi-structured interviews using qualitative content 
analysis, with both deductive and inductive categories, related to different conceptualizations of 
functions, mathematization, activities supporting functional thinking, and cognitive aspects related 
to functions. These analyses are currently underway; therefore, we present our theoretical 
background, our coding scheme which is under construction, and excerpts of three interviews in this 
proposal.  

Keywords: Functional thinking, expert interviews, empirical study. 

Introduction 
Functional thinking is required when relating two or more quantities, e.g., when understanding 
scientific laws such as the dependency between speed, distance, and time or when modelling 
something we read about in every newspaper such as the spread of a virus. Hence, it is not only a key 
element of (school) mathematics but also relevant for other disciplines and everyday situations (e.g. 
Selden & Selden, 1992; Vollrath, 1989). However, there is no consensus in the international literature 
on what exactly encompasses functional thinking and, hence, educators might also understand this 
notion differently, with different implications for teaching practice. This paper presents first findings 
of the Erasmus+ project FunThink- Enhancing functional thinking from primary to upper secondary 
school. The overarching goal of this project is to improve the teaching and learning of functional 
thinking across all school grades. As a basis for further steps in the project, the project members, inter 
alia, conducted a corresponding literature review, charted national curricular situations, and 
interviewed mathematics education experts1 in order to portray their individual perspectives on 
functional thinking. Altogether, the interview study was conducted in five countries, yet, in this paper 
only interview excerpts from Germany and the Netherlands are presented regarding the question what 
educational experts consider functional thinking to be. To relate these empirical insights to relevant 
theoretical considerations on functional thinking, we present in the following section the 
corresponding theoretical background. 

 
1 Further partners in the interview study are Martina Geisen, Veronika Hubeňáková, Monika Krišáková, Edyta Nowińska, 
Marios Pittalis, and Miroslawa Sajka. 
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Theoretical background 
Based on the concept of function which reaches back to Bernoulli (1667 – 1748, Büchter & Henn, 
2010), the notion of functional thinking was introduced over 100 years ago during the reforms of 
Meran in 1905. At that time, functional thinking was understood as conceptual interpretation of the 
mathematical object of function and was considered a “guiding category for teaching mathematics in 
order to concentrate, unify and structure different areas of mathematics taught in schools” (Krüger, 
2019, p. 35). Since then, it has developed in different ways in the international context which led to 
a variation in definitions. In the following, we present three main strands in the understanding of 
functional thinking. 

First of all, functional thinking can be seen as a major component of algebraic thinking (Warren & 
Cooper, 2005). More precisely, Pittalis et al. (2020) describe functional thinking “as the process of 
building, describing, and reasoning with and about functions” (p. 632) and relate this rather broad 
definition to Blanton and Kaput (2011), Stephens et al. (2017), and others. 

The definitions by Markworth (2012) and Smith (2008) rather focus on the aspects of representation 
and generalization of functional thinking. They see functional thinking as a type of 

[…] representational thinking that focuses on the relationship between two (or more) varying 
quantities, specifically the kinds of thinking that lead from specific relationships (individual 
incidences) to generalizations of that relationship across instances. (Smith, 2008, p. 143) 

Besides those two strands, Cañadas et al. (2016) describe functional thinking in a general sense 
composed of topics, methods, and relationships concerning functions. Moreover, these authors show 
examples that fit into the two previously outlined strands: Functional thinking includes functional 
relationships between quantities, the generalization, and representation, which all support the 
understanding of function behavior (Blanton & Kaput, 2011). Moreover, it is linked to the ideas of 
change, more explicitly to qualitative and quantitative change, the relationship between changes and 
the ability to use these relationships for solving problems (Warren & Cooper, 2005). 

These three definitions illustrate that there is no clear consensus about what functional thinking 
entails. Although they appear disparate, they do share the idea that functional thinking involves 
reasoning about the relationship between quantities. Considering that, one could ask how functional 
thinking can be developed by learners and how teachers can support this process. Functional thinking 
cannot be learned as an independent topic but has to be considered in close connection to the concept 
of function (cf. Vollrath, 1989). With this regard, the literature describes four perspectives on 
functions that play an important role when dealing with concrete function tasks or preliminary 
activities. These so-called function aspects include characteristics of functions and can form a basis 
for the design and implementation of tasks in mathematics education. In the international context, 
usually four main aspects of functions are distinguished: input-output, covariation, correspondence, 
and mathematical object (e.g. Doorman et al., 2012; Pittalis et al., 2020).  

Function as an input-output assignment stresses the operational and computational character of the 
function concept; in this sense, it is not necessary to be aware of the causal relation between the in- 
and output (Pittalis et al., 2020). It is for example relevant when dealing with patterns and structures: 
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within a sequence of values, recursive patterning describes the existing variation and indicates how 
a next element can be determined if the previous element or a number of elements is provided 
(Stephens et al., 2017).  

The aspect of covariation emphasizes the simultaneous variation of two quantities, often a dependent 
and an independent variable, and relates to Thompson and Carlson (2017). In their work, they offer 
a definition of a function with a focus on covariational reasoning:  

A function, covariationally, is a conception of two quantities varying simultaneously such that 
there is an invariant relationship between their values that has the property that, in the person’s 
conception, every value of one quantity determines exactly one value of the other. (p. 436) 

This definition highlights the connection of two variables and their interdependency without using 
the terms dependent and independent variable. Similarly, Confrey and Smith (1995) describe the 
covariational approach as comprehending, analyzing, and manipulating the relation between two 
changing quantities. The change in one quantity appears if a change in the related quantity occurs.  

The view on a function as a correspondence relation focuses on the relation of the independent and 
dependent variable and on how this relation can be represented (Smith, 2008). In more formal 
definitions of functions this view is expressed as ordered pairs:  

[…] a function from a set S to a set T is a rule that assigns to each element x of set S a unique 
element of set T. The set S is called the domain of the function. If f is the name of the function, 
then the unique element in T corresponding to an element x in S is denoted f(x) […] and is called 
image of x. The set {f(x) | x ϵ S} is called the range of the function. (Yandl, 1991, p. 72) 

To conclude, the fourth aspect focuses on a function as a mathematical object with its own specific 
representations and properties which can be dealt with. This perspective is needed to compare a 
function with another function or with another mathematical object. Higher-order processes like 
differentiation or concatenation require this view of a function (Lichti & Roth, 2019).  

Different to the international context, in Germany, only three aspects are commonly discussed. The 
aspect of input-output assignment is omitted as a separate aspect. It is rather included in the other 
aspects. For example, using a function machine where something is put in, which then results in an 
output relates to the aspect of correspondence due to the direct assignment. Moreover, considering 
the covariation between inputs and outputs can help finding the underlying rule. At the same time, 
the input-output assignment can refer to the object aspect if the calculation does not happen within a 
function but with the whole function (e.g. addition of two functions) which then results in a new 
output. This difference in the distinction of the aspects of functions might be due to country-related 
particularities or the historical development as in Germany the notion of functional thinking is clearly 
associated to Vollrath (1989) who only distinguishes these three aspects of functions.  

The set of four aspects can be considered to show an increasing level of sophistication. Studies report 
a gradual development from a process view which is similar to the input-output-assignment aspect to 
a more structural view which can be compared to the function as a mathematical object aspect (Sfard, 
1991). Activities with a focus on input-output assignment are often already included in primary 
school (e.g., Leinhardt et al., 1990; Lichti & Roth, 2019; Pittalis et al., 2020; Stephens et al., 2017). 
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Studies show that young students are able to reach sophisticated ways of reasoning with functions, or 
algebraically, if rich tasks are provided accompanied by fitting instruction (e.g., Blanton et al., 2015; 
Stephens et al., 2016; Stephens et al., 2017). The implementation of the three other aspects often 
follows later in the curricula, whereas the object aspect appears to be the most abstract one. 

As stated above, functional thinking is closely intertwined with the concept of function and cannot 
be considered on its own. The topic of function has been found to cause difficulties for many 
secondary school students (Sproesser et al., 2020). Reasons for these difficulties might be found in 
the abstract character of functions which makes the concept only accessible through modelling in 
representations and focusing on the changes between such representations (cf. Duval, 2006). Tables, 
algebraic expressions, graphs, and verbal descriptions are the most common representations used in 
school. Each of these types of representation has advantages and disadvantages depending on the 
specific situation and task at hand. A flexible use of representation and changes between 
representations, can support students’ learning and understanding of functions and therefore of 
functional thinking (e.g. Adu-Gyamfi, 2007). 

Returning to what was stated at the beginning, functional thinking is considered a key aspect in 
mathematics and relates to many other disciplines, and everyday life. It is present in many situations 
even if we are not aware of it. The second part of this paper, which describes excerpts of an 
international interview study, provides insight into how international educational experts see 
functional thinking. This is particularly important in how they frame the development of students’ 
functional thinking. Similarities and differences to the above-mentioned definitions of functional 
thinking will become visible from our analysis of the interviews. 

Research question and methodology 
The interview study was carried out in order to collect views and experiences of educational experts 
on functional thinking and to get insight of which elements described in the literature are particularly 
relevant for them. The research question for the main study is: what do educational experts in Cyprus, 
Germany, the Netherlands, Poland, and Slovakia consider functional thinking to be? In this paper, 
only exemplary results from Germany and the Netherlands are presented. 

Sample 

Experts of mathematics education in all five partner countries (Netherlands, Poland, Cyprus, 
Slovakia, and Germany) were informally approached by project members to participate in this study. 
The interviewees ranged from professionals for mathematics education from primary to tertiary 
education working at universities to experienced mathematics teachers for primary and secondary 
schools and curriculum developers. They were chosen in order to gather views from different 
professional perspectives but all were considered as experts referring to functional thinking in their 
embeddings. Between six and nine interviews were conducted in each partner country which led to a 
total of 35 interviews. In this paper, only excerpts from two interviews in Germany and one interview 
in the Netherlands are presented. A more detailed description of these three interviewees can be found 
in the results and discussion section. 
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Procedure and interview guideline 

Prior to the interviews, a semi-structured interview guideline was created to answer, inter alia, the 
questions of what the experts understand by functional thinking and how it can be addressed in the 
classroom. Further questions included what students should learn to develop functional thinking in 
the interviewee’s opinion and what exemplary tasks could look like. Moreover, some information 
was gathered about the interviewees’ professional background. The interviews took place virtually or 
in person depending on the current situation (mostly related to COVID-19 restrictions) in each 
country. A recording, video tape (together with corresponding transcripts) or a detailed protocol of 
each interview was used for the analysis. The analysis is currently still in progress. The analysis 
methodology we use is qualitative content analysis according to Mayring (2014). This is used for 
building a coding scheme with inductive and deductive categories. 

Coding scheme 

As our coding scheme is currently under development, we only refer to the main categories we are 
working with. In a first step, we code educators’ ideas in the perspective on functional thinking they 
referred to. Here, the four aspects of considering functions (input-output, covariation, 
correspondence, mathematical object) play the main role. Secondly, we code how functions are used 
for mathematization described by educators, which can take place inside (from informal to more 
formal mathematics, i.e., vertical mathematization) and outside (modelling a meaningful situation 
with mathematical tools, i.e., horizontal mathematization) of mathematics. In a third step, we code 
the activities educators described which they thought could support or require functional thinking. 
This especially addresses patterning and dealing with representations. Finally, we code semantic and 
syntactic elements and concepts related to functions and functional thinking, other related fields and 
counterexamples. As these codes are still under construction, in the following, we only show a first 
sketch of the analysis of interview excerpts. 

Results and discussion 
The first interviewee from Germany (G1) works at the transition from university to licensed teachers 
(a part-time seminary, where graduated college students gain their teaching license) with a focus in 
mathematics education. Interviewee G1 answered the question of what he considers functional 
thinking to be in the following way: 

Functional thinking [..] is everything that has to do with the dependence of two quantities, of two 
variables. […] It is so the upper goal, the upper principle, so on the one hand the one variable has 
a value, that affects the value of another variable that dependents on it. It would so rather be the 
static side, so the allocation, then also the change, if one variable changes, what consequences does 
it have for the other variable. Yes, and the third would be so basically the course that you can 
conclude, the overall picture of the dependency. […] It already goes in the direction of the idea of 
using mental representations of mathematical concepts (Grundvorstellungen), but above these 
basic ideas stands the consciousness of dependence and everything that is around it or what is 
subordinate, the calculating that must actually, that leans on this principle. […] 

The description of functional thinking by interviewee G1 is rather broad and highlights the 
dependency of two variables. Concerning his perspective on functions, the aspects of covariation, 
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correspondence, and mathematical object are clearly mentioned and described as basic ideas. 
According to the interviewee, everything that follows, like calculations, can be derived from these 
principles. Due to the prominence of the aspects according to Vollrath (1989) in Germany, it is not 
surprising that the aspect of input-output assignment is not mentioned. 

Another German interviewee (G2), a teacher from primary school (Grade 1-4), answered the same 
question. The interviewee is a longtime teacher who initially studied education for primary and lower 
secondary school with a focus in general studies, German, and mathematics. Besides the degree in 
education, the interviewee also has a postgraduate degree in pedagogy.  

[…] what do they actually want with that in elementary school? […] it's about relationships for 
me in functional thinking, so not just functions according to the motto of a value is assigned to 
another value, but about relationships, about the discovery of relationships, and then again a bit of 
the science lesson plays into it for me, which then says laws of nature, you can make discoveries, 
you can observe them, you can explore them, you can measure something, math comes into it 
again […]. 

Interviewee G2 is rather general in her definition of functional thinking. G2 sees functional thinking 
in a wider sense than just related to functions. The focus is on relationships and connection to real 
life. The elements of discovery, observing, exploring, and measuring of relationships show this close 
connection to the real world. G2’s description of functions indicates the aspect of correspondence. 
Later in the interview, as example, she mentions collections of tasks with continuous elements where 
students can recognize patterns (starke Päckchen) as an activity for addressing functional thinking 
which includes elements of the input-output assignment. In general, G2 seems less aware of the 
aspects of functions and functional thinking. In contrast to G1, G2 only mentions some aspects and 
does not address them explicitly.  

An interviewee from the Netherlands (N1) has been a teacher for 16 years, mainly in the upper 
primary school grades (Grade 5 and 6). When asked about her definition of functional thinking, she 
mentioned “that must be about relating mathematics to a context and its utility.” This is related to our 
code on horizontal mathematization (modelling extra-mathematical situations with mathematical 
tools), which is rather well established in the Netherlands, due to the implementation of realistic 
mathematics education. When prompted by the interviewer that functions could also be interpreted 
in a more mathematical sense, she referred to patterning tasks in the early grades of primary school, 
doing rows of calculations and observing what remains fixed and what changes, graphing activities, 
and summarized all these as “reasoning about relations.” In this she clearly related to the covariational 
view of functional thinking while describing useful activities for eliciting it. Interestingly, she 
connected this reasoning about relations also to an attitude that students should develop in society, 
seeing relations, experimenting, encountering obstacles, and systematically try to deal with them. 

These first excerpts indicate a clear difference in views between experts. Functional thinking is 
mostly understood in a way that is somewhat similar to one of or a mixture of the definitions 
mentioned in the theoretical background. Yet, the descriptions provided by the interviewees are less 
detailed and some lack a complete description of all aspects of functions and functional thinking. The 
detailed analysis which is to follow will provide more insights, from all the partner countries, into the 
extant conceptualizations of functional thinking in practice. 
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This paper focuses on algebraic learning and explores the strategies followed by 17 students with 
Autism Spectrum Disorder and 17 typically-developing students to solve a generalization task in a 
functional thinking context. We design and administer a questionnaire with different questions about 
specific (consecutive and non-consecutive) cases and the general case. Success in the proposed task 
was higher in the group of typically-developing students. Different strategies were encountered, 
predominantly (1) modeling with drawing and (2) operations, with neither group having much 
success obtaining the general term. We discuss the implications for teaching students with autism. 

Keywords: Autism spectrum disorder, functional thinking, generalization, primary education, 
strategies. 

Introduction 
In the context of mathematics education in Spain, the official primary school curriculum establishes 
the requirement for students to successfully solve situations involving both numbers and their 
relationships (BOE, 2014). Along these lines, the early algebra presented is intended to introduce 
algebraic thinking in levels before secondary school (Blanton et al., 2015). 

Some studies on functional thinking have focused on studying the strategies shown by students when 
solving generalization tasks that involve functional relationships. For example, Blanton and Kaput 
(2004) noted differences between the various strategies used depending on the age of the participants. 
In Early Childhood Education, students used counting and addition strategies, while some fifth 
graders managed to establish multiplicative patterns through words and symbols. Cañadas and 
Fuentes (2015) also studied the strategies shown when solving a functional relationship and 
concluded that the six- and seven-year-old students participating in their study responded by using 
strategies such as counting with drawings, direct answer, associating elements in groups and others. 

Although the official curriculum in Spain is standardized and intends for all students to achieve the 
same goals by the end of the primary school, the reality is that classrooms are increasingly 
heterogeneous in terms of their students' characteristics. This diversity of students includes those with 
Autism Spectrum Disorder (ASD), which is a developmental neurobiological disorder that manifests 
itself during the first years of life and lasts throughout the entire life cycle. Its main symptoms are: 
(a) persistent deficits in social interaction and communication and (b) restrictive and repetitive 
patterns of behavior, interests or activities (APA, 2013). In addition, people with ASD may exhibit 
resistance to change, a tendency to maintain routines, deficits in executive functions, and difficulties 
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in understanding spoken and figurative language, and in inferring the mental states of other people 
(Ozonoff & Schetter, 2007).  

Students with ASD are increasingly enrolled in mainstream schools alongside their typically-
developing (TD) peers (Barnett & Cleary, 2019). Some of the deficits of the disorder, such as those 
in executive functions or verbal comprehension, may interfere with learning, particularly in learning 
mathematical concepts (e.g., Chen et al., 2019; Polo-Blanco et al., 2019; in press). Specifically, 
deficits in abstract reasoning may limit the ability to generalize (Minshew & Goldstein, 2002; 
Ozonoff & Schetter). Although there are studies that analyze the understanding of pre-algebraic 
functional tasks by TD students (Cañadas & Fuentes, 2015; Morales et al., 2018), there are few 
analogues for ASD students (Barnett & Cleary, 2019; Goñi-Cervera et al., 2021; Polo-Blanco et al., 
under review). 

Considering the above, we expect that students with ASD will rely often on basic strategies like the 
use of modeling with manipulatives when solving a task in a functional context, and that they will 
show difficulties when generalizing the functional relationship. 

Objectives 
This study is part of a larger one whose main objective is to describe the mathematical abilities of 
students with ASD and their relationship with cognitive variables, such as executive functions. This 
work focuses on algebraic learning and explores the strategies employed by TD and ASD students to 
solve a generalization task in a functional thinking context in order to observe similarities and 
differences between the two groups of students in terms of the strategy use, and to describe possible 
difficulties in the ASD group. 

Methodology 
This research of an exploratory nature (Yin, 2017) relied on cases and controls, and compared the 
solution strategies of students with ASD matched with their TD controls when solving a task that 
involves the functional relationship f(x) = 2x + 2. 

Participants 

The participants were 34 students in grades 1 through 4 (6 to 9 years old) from 12 schools in Cantabria 
(Spain). Of these, 17 had ASD diagnosis and 17 were TD at the time of the study. The students were 
paired: each ASD with each TD control from the same school and grade as his/her ASD student pair. 
An inclusion criterion for participants from both groups was to have IQ equal to or greater than 70 as 
measured by WISC-V. Ten of the participants were enrolled in 1st grade (A1, A2, A3, A4, A5, and 
their respective TD pairs T1, T2, T3, T4 and T5), two (A6 and T6) in 2nd grade, six (A7, A8, A9, T7, 
T8, T9) in 3rd grade and 16 (A10, A11, A12, A13, A14, A15, A16, A17, T10, T11, T12, T13, T14, 
T15, T16 and T17) in 4th grade. The arithmetic mean and standard deviation of the IQs for the ASD 
group were 87.35 and 10.22, and 103 and 13.12 for the TD group. 

The participants with ASD were recruited in different ways, by advertising the project through social 
media, the press, associations, guidance staff in schools and hospitals. Once an ASD participant was 

Proceedings of CERME12 506



 

 

recruited, a TD student from the same school and class to act as a control was sought via family 
members or the school's guidance staff.  

Information gathering tool 

A task used in Carraher et al. (2008) and Merino et al. (2013) whose structure involves the function 
f(x) = 2x + 2 was adapted and implemented. The adaptation consisted of using simple language, 
helping the students read the statement and guiding their work. The task began by presenting, as an 
example, a square table with four people around it and two square tables together with six people 
(Figure 1). They were then asked how many people could be seated if 3, 4, and 5 tables (consecutive 
terms) were joined, if 8, 18, and 100 tables (non-consecutive terms) were joined, and if any number 
of tables (general term) were joined. The task was given to the students in printed form so they could 
solve it individually in writing, or both in writing and orally, and they had manipulatives (blocks) that 
they could use if they wanted. 

Figure 1: Introduction of the task with people arranged at one and two tables 

The students answered the task individually in a classroom free of distractions, with only the 
interviewer present. Prior to this task, the students had solved three other tasks with the same 
interviewer in a previous session. First, the interviewer created a climate of trust with the students, 
letting them play with the blocks or drawing. If the student was not comfortable, the session was 
postponed. The solution process was videotaped and transcribed for later analysis. Both the written 
and oral responses were analyzed. 

Analysis categories 

Based on the strategies defined by Morales et al. (2018), the following categories of answers were 
established: (a) no answer: if the student does not provide a response, either verbal or written, or does 
not know the answer; (b) direct answer: if the student provides an answer that is difficult to justify or 
has no apparent relation to the task; (c) given number: if the student provides as an answer the number 
given in the statement; (d) modeling with manipulatives and counting: if the student models the 
situation using the available manipulatives; (e) modeling with drawing and counting: if the student 
models the situation using drawings; (f) counting: if the student performs the same actions as in 
modeling, but without using manipulatives or drawings; and (g) operations: if the student performs 
additive or multiplicative calculations orally or in writing. 

Results 
Next, and to simplify, we show the frequency of the strategies used by the participants in those 
questions that involve consecutive, non-consecutive and general terms (see Table 1). The results show 
how often a certain strategy is used by ASD and TD students. The numbers in parentheses indicate 
the number of right answers. The column "students" shows the number of students who used this 
strategy at least once. 
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Table 1: Frequency of Strategies and Success in Solving the Task f(x) = 2x + 2 

 Autism spectrum disorder students  Typically-developing students 

 Case 

Strategy Consecutive 
Non-

consecutive General Students  Consecutive 
Non-

consecutive General Students 

No answer 0(0) 8(0) 4(0)  5  0(0) 8(0) 2(0) 4 

Direct answer 9(2) 7(1) 6(0) 10  0(0) 1(0) 0(0) 1 

Given number 3(0) 3(0) 1(0) 1  0(0) 2(0) 0(0) 2 

Modeling with 
manipulatives 
and counting 

0(0) 0(0) 0(0) 0  6(3) 4(1) 2(0) 4 

Modeling with 
drawing and 
counting 

15(12) 7(2) 2(0) 6  21(17) 14(7) 3(0) 9 

Counting 
without 
manipulatives 

3(3) 2(0) 0(0) 1  0(0) 0(0) 1(0) 1 

Operations 21(0) 24(0) 4(0) 11  24(6) 22(5) 9(1) 14 

Total number of 
strategies 

51 (17) 51 (3) 17 (0)   51 (26) 51 (13) 17 (1)  

In what follows, the strategies are exemplified, focusing on the two most frequent in both groups. We 
also show some examples concerning other less frequent strategies. 

As Table 1 shows, the operations strategy was the most frequent, in both groups of participants with 
ASD (49 occasions among all the sections) and the TD students (55 occasions among all the sections). 
However, no student with ASD used this strategy successfully, compared to three 4th-grade TD 
students (T10, T12, and T15) who correctly answered twelve times.  

The students with ASD who used the operations strategy chose, for the most part, additive operations. 
For example, A1 exhibited the strategy by using an incorrect additive operation, answering for 100 
tables: “200. Because 100 + 100 is 200”. Student A8 also used an incorrect additive strategy, 
answering all the sections of the task by adding six to the number of tables given. Among the ASD 
students, only A13 resorted to multiplication (for example, for 18 tables, he multiplied 10 by 18 and 
for the general term, answered: “you have to multiply it by 10”). Two other students with ASD used 
multiplicative reasoning, although without explicitly stating the multiplicative operation. For 
example, A15 answered for the general term, “I counted by twos”, and A11 used expressions such as 
“four times four” or “you add ten times four”.  

In turn, 14 TD students used the operations strategy. They proposed correct and incorrect additive 
operations. For example, T12 responded correctly to the consecutive terms, looking at his previous 
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answer and adding two. On the contrary, T1 used an incorrect strategy, because when asked "How 
many people can be seated if 100 tables are joined?" he described being unable to draw the 100 tables 
and referred to how "3 + 2" people sit at each table. A transcript of the conversation between the 
interviewer and the student (Figure 2) is provided below:  

Interviewer: What if we have 100 tables? 

Student T1:  Well… two and three. Two and three and two and three and two and three 

Interviewer: How would we put that? 

Student T1:  We have to put: three, two, three, two, three, two, three, two… in all of them. […]  

 

Figure 2: Operations Strategy for 100 Tables (T1) 

Among the 14 TD students who used operations, 10 of them used some multiplication throughout all 
the sections, and of these, 7 used multiplications exclusively. Thus, T10 used a multiplicative 
operations strategy by reasoning "you have to multiply the number of tables by 2 and then add 2 for 
those at the ends", when asked for the general term.  

The modeling with drawing and counting strategy was the second most frequent strategy, both for 
ASD (24 times) and TD (38 times) students. In addition, this strategy was the one that led to the most 
correct answers, especially in the consecutive cases. 

Figure 3 (a and b) shows the solution for four and eight tables given by student A7. The first solution 
is correct, while the second is incorrect, as it places more guests than there should be at the ends. 
Figure 3 (c and d) shows the solution for 18 tables and the general term for student T7. The solution 
for 18 tables is incorrect, as he forgot to draw the people at the ends. The solution of the general term 
shows that T7 determined the number of people by drawing and counting them. 

    
(a)                               (b)                               (c)                                      (d) 

Figure 3: Modeling Strategy with Drawing  

Other less frequent strategies 

The remaining strategies were less frequent in the two groups of students. For example, on up to 12 
occasions, four TD students used the modeling with manipulatives and counting strategy, which was 
not used by any student with ASD. Student T16 used the blocks made available during the task, 
modeling the situation for the different numbers of tables. The modeling was correct for 3, 4, 5, 8 and 
18 tables (Figure 4, a and b), and incomplete due to insufficient blocks for 100 tables (Figure 4, c). 

While drawing, I counted the 
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In addition, T16 also used blocks, particularizing to represent "any number of tables" and respond to 
the general term (Figure 4, d). He said: “counting these pieces... The middle thing was the tables and 
those who are here next door were the people”. 

     
                     (a)                                  (b)                                   (c)                           (d)          

Figure 4: Modeling with manipulatives strategy for 5, 18, 100 tables and general term (T16) 

Another infrequent strategy in ASD students was counting without manipulatives. Two students (A1 
and T4) used a counting strategy for some questions. Thus, to determine how many people could be 
seated if 4 tables were joined, A1 swayed to the right and left, and each time his body tilted to one 
side, he counted one. Each time his body titled to the middle he said “a gap here” meaning it was a 
table and no one sits in a table. He said: “one, a gap here, two, a gap here, three, a gap here…". 
Student T4 also employed a counting strategy by responding to the general term by writing "using 
the tables and counting them". 

Regarding the direct answer strategy, it was only used by one TD student and for just one question, 
while 13 students with ASD gave these answers on 22 occasions. After being unable to draw 100 
tables, T4 replied: “A thousand… I don't know. Or 50 or so... A thousand".  

In the group of students with ASD, an example of the given number strategy was provided by student 
A12, who did not justify his answer to the problem in any section. However, his answers show a 
relationship p = t, where p is the number of people and t the number of tables. His answers for the 
terms t = 3, 4, 5, 8, 18, and 100 were 3, 4, 5, 8, 18, and 100, respectively. In addition, for the general 
term he wrote the number zero. This could be related to the absence of a specific number of tables or 
people in the statement. Students T6 and T16 also responded with the same number of tables to the 
question that involved 100 tables. 

Conclusions 
With this exploratory study, we are contributing to the start of an investigation comparing algebraic 
thinking in both TD and ASD students in primary education. Success in the proposed task was higher 
in the TD group, although it was accessible to some of the students with ASD. 

In both groups of students, the predominant strategies were modeling with drawing and counting and 
operations. The task increased in difficulty as the number of tables rose, with the question involving 
the general term proving very difficult. Contrary to what we expected, modeling with manipulatives 
was not used by any student with ASD. One reason that could explain this is that the material provided 
(blocks) was not adequate to represent the situation. Given the type of literal thinking common in 
ASD students (Happé, 1995), they may have had difficulty imagining that the blocks represented the 
tables and people around them. However, they did not show difficulties in implementing the modeling 
strategy through drawings. The frequent use of a direct answer strategy among students with ASD 
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and given that in most cases it did not lead them to the correct answer, could be associated with a 
poor understanding of the task. The preference in ASD students for following additive strategies 
agrees with previous studies carried out with TD students and enrolled in lower grades (Blanton and 
Kaput, 2004). In addition, the choice of strategies based on drawings agrees with previous research 
involving 5- and 6-year-old TD students (Cañadas & Fuentes, 2015) and it is in line with other works 
about problem solving by ASD students (Polo-Blanco et al., 2019). 

As a future line of research, the sample could be expanded to delve into possible differences within 
the group with ASD, and to see if subgroups of normal-performing and low-performing students are 
identified, in line with previous work (Chen et al. 2019). The aim of this study is to enhance the 
research on mathematical learning in students with ASD. In particular, this study serves as an aid to 
those teachers who work with ASD students enrolled in mainstream classrooms who follow the 
official curriculum, alongside their TD peers. 
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We compare the algebra content in the Swedish upper secondary syllabi for higher educational 
preparatory (HEP) and vocational educational and training (VET) programmes. The study is 
theoretically embedded in the Anthropological Theory of the Didactic (ATD), where praxeology is 
used as an analytical tool. The results reveal that the algebra content in the VET programmes is more 
focused on praxis (‘know-how’) aspects compared to the HEP programmes, in which the balance 
between praxis and logos (‘know-why’) aspects is more even. We discuss the results in view of 
students’ opportunities to develop algebraic knowledge within the framework of the given syllabi. 

Keywords: Algebra, ATD, praxeology, syllabus. 

In 2011, Swedish upper secondary school underwent a major reform, with the implementation of new 
curriculum documents and school organisational structures (Swedish National Agency for Education, 
2011). An essential consequence of this was a stronger separation between vocational educational 
and training (VET) and higher educational preparatory (HEP) programmes (Lindberg & Grevholm, 
2013), which has raised questions regarding social justice and purposes of education (Nylund et al., 
2017). As part of the reform, three alignments in mathematics were introduced: for vocational, social 
science-oriented, and natural science-oriented programmes. Before 2011, all students, regardless of 
programme, took the same first course in mathematics. In this paper, we look more closely at the 
mathematical content in the syllabi for the three alignments in the 2011 curriculum, particularly the 
algebra content in the first two courses for each alignment.1 

Algebra is often referred to as a gatekeeper, not only to more advanced studies in mathematics and 
science (Blanton et al., 2015) but also to participating in society and gaining full access to civil rights 
(Moses & Cobb, 2001). At the same time, algebra appears to be a problematic topic for students in 
several countries (Hemmi et al., 2021). One reason for this may be that algebra has traditionally not 
been introduced until secondary school, creating a gap between arithmetic and algebra (Linchevski 
& Herscovics, 1996). However, in recent decades, research has repeatedly shown that students benefit 
from being gradually introduced to algebra already from the earliest grades (Blanton et al., 2015). 
These findings have slowly made their way into the educational system (Hemmi et al., 2021). 

In Sweden, algebra has been a difficult topic for students to manage for many years (Hemmi et al., 
2021). In the international evaluation TIMSS (Trends in International Mathematics and Science 
Study), Swedish students’ results in algebra have been below international average since the 1960s 
(Bråting, 2021). Research has revealed that generalised arithmetic is virtually absent in the last three 
Swedish curricula for compulsory school (Bråting, 2021), and Swedish students have trouble 
understanding the different roles of variables (Kilhamn, 2014) as well as using the relational property 

 
1 Since the analyses conducted in this paper, small revisions have been made to the syllabi. The analyses in this paper are 
based on the syllabi that were valid until 30 June 2021. 
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of the equal sign (Madej, 2021). However, this research, like most of the recent Swedish research on 
algebra learning, was conducted at compulsory school level. Research on algebra learning at upper 
secondary level in Sweden is lacking, particularly since the 2011 reform. One exception is 
Gustafsson’s (2019) thesis on upper secondary students’ difficulties with algebra, revealing that 
students still struggle to understand the different roles of variables and the invisible multiplication 
sign in expressions such as 4x (see also Hewitt, 2012).  

This study is part of a larger project exploring socioeconomic aspects of the didactic transposition of 
algebra in Sweden. In the present study, the focus is on the transposition of algebra from scholarly 
produced knowledge to the educational system (Chevallard, 2006). Hence, the study is theoretically 
embedded in the Anthropological Theory of the Didactic (ATD), where praxeology is used as an 
analytical tool.  The aim is to unpack differences in how algebraic content is formulated in the syllabi 
for VET and HEP programmes, and to discuss how these differences may affect students’ 
opportunities to learn algebra. In forthcoming studies, the focus will shift towards aspects regarding 
social justice and purposes of education. We pose the following research question: From a 
praxeological perspective, what characterises the algebra content in syllabi for VET and HEP 
programmes and what are the main differences? 

A praxeological perspective on school algebra 
The Anthropological Theory of the Didactic (ATD) is particularly useful for studying teaching 
content, such as school algebra, from an institutional perspective. It acknowledges that humans and 
human activity are involved in the teaching and learning process, that syllabi do not appear ex nihilo, 
and that the process is an “exogeneous production” (Bosch & Gascón, 2006: p. 54). In other words, 
the process is “something generated outside school that is moved […] to school out of a social need 
of education and diffusion” (ibid.). Within the ATD, this process is expressed in terms of the didactic 
transposition, which describes how (mathematical) knowledge is transposed between different 
institutions (Figure 1). The outcomes of the teaching and learning process depend on the humans 
involved in it – starting with scholars developing and determining the content at one end, and ending 
with the students’ learned knowledge on the other (Bosch & Gascón, 2006). From this perspective, it 
is thus possible as a researcher to study a content from an unbiased position. In this study, we are 
interested in investigating the transposition of algebra from ‘Scholarly knowledge’ to ‘Knowledge to 
be taught’ (Figure 1). This corresponds to the algebra content developed by professional 
mathematicians, selected by the educational system, and transferred into so-called school algebra 
(Bråting, 2021; Hemmi et al., 2021; Kilhamn, 2014).  

Figure 1: The didactic transposition from Bosch and Gascón (2006, p. 56) 

To describe mathematical (indeed, any human) activity, ATD employs the notion of praxeology 
(Bosch & Gascón, 2006). Any praxeology is divided into two blocks: praxis (‘know-how’) and logos 
(‘know-why’). The praxis block thus contains the practical part and consists of types of tasks, 
(mathematical) tasks or exercises to be done, and techniques, the method(s) connected to the type of 
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task. The second block, logos, consisting of technology and theory, refers to human thinking and 
reasoning and is the ‘explaining’ part of the praxeology (Chevallard, 2006) (see Figure 2). The suffix 
-logy in technology indicates that this is a discourse on a given technique. This discourse is expected 
to justify the technique as a valid way of not only solving a particular type of task but also of clarifying
the logic behind it. Theory can therefore be explained as an overarching theory or a set of underlying 
principles that justifies the technology (e.g. Chevallard, 2006). 

Figure 2: A model of the praxeology concept (Chevallard, 2006)

School algebra has been studied from an ATD perspective for many years. Summarising findings 
from such research, Bosch (2015) describes a situation in which a formal approach to algebra 
predominates, to the detriment of a functional view. In today’s secondary schools, Bosch claims, 
algebra is largely identified with equation solving, and ‘the language of algebra’ is reduced to a formal 
structure whereby students are asked to manipulate algebraic expressions with little regard for what 
they represent. In contrast to this, she outlines a view of school algebra building on ATD principles, 
where it is instead interpreted as “a process of algebraization of already existing mathematical 
praxeologies” (ibid., p. 61, emph. in original). In other words, instead of being yet another piece of 
mathematical content, algebra appears as a general tool for modelling any school mathematical 
praxeology.

Method, material, and procedure
In this study, we have conducted a praxeological analysis of the syllabi for the first two mathematics 
courses in the national curriculum for upper secondary level in Sweden, Lgy112. We view curriculum 
documents as indicative of the transposition from scholarly knowledge to knowledge to be taught 
(Figure 1); through this analysis we have been able to discern nuances in the written language and 
unpack implicit meanings behind the formulations in the syllabi, thus contributing knowledge of the 
transposition processes behind the algebra content in the upper secondary curriculum.

The first two mathematics courses in Lgy11 each have three alignments: a, b, and c, aimed at 
vocational (VET), social sciences-oriented (HEP), and natural sciences-oriented (HEP) programmes,
respectively. In vocational programmes, Course 1a is compulsory and 2a is optional. In social 
sciences-oriented programmes, 1b and 2b are compulsory and 3b is optional (compulsory in 
economy). In natural sciences-oriented programmes, 1c, 2c, and 3c are generally compulsory, while 
4 and 5 are optional (4 is compulsory in some programmes). The subject plan starts with an 
introduction to the subject and a formulation of aims. The syllabus for each course (1a, 1b, 1c etc.) 
consists of core content and knowledge requirements based on mathematical competencies. In this 
study, the sole focus of the analysis has been on the core content. This is organised in categories 

2 In the rest of the paper, we will use the abbreviation Lgy11 (Läroplan för gymnasieskolan [Syllabus for the upper 
secondary school], Swedish National Agency for Education, 2012).

PRAXIS
TASK
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Proceedings of CERME12 515



 
 
written in bullet points, which constitute our unit of analysis. Before beginning the analysis, we 
extracted the algebra content from the core content, using Blanton et al.’s (2015) so-called big ideas 
of algebra consisting of I) variables, II) equivalence, expressions, equations, and inequalities, III) 
generalised arithmetic, IV) proportional reasoning, and V) functional thinking. The units of analysis 
containing algebra content were then classified in praxeological terms. Here it should be pointed out 
that Swedish school syllabi contain no explicitly formulated tasks, meaning that this part of the praxis 
block did not appear in the analysis. 

In the classification, we made use of what we have called ‘determining words’; that is, words that 
carry information on how the core content can be interpreted praxeologically. For instance, the core 
content in Course 1a regarding problem solving is formulated: “Strategies for mathematical problem 
solving including the use of digital media and tools” (Swedish National Agency for Education, 2012, 
p. 5). The word ‘strategies’ indicates an emphasis on different methods, which we interpret as 
technique (praxis). As another example, in the core content of Course 3b in the category ‘Algebra’, 
we find: “The concepts of polynomial and rational expressions, and generalisation of the laws of 
arithmetic for dealing with these concepts” (ibid., p. 27). The term ‘concept’ suggests that the teaching 
situation should offer a wider perspective on polynomials and rational expressions, i.e. to learn why 
they work. In learning a mathematical concept, definitions and underlying principles are conceivably 
offered, which we interpret as theory (logos). Contrastingly, the term ‘generalisation’ suggests 
drawing on established rules to justify new algebraic rules, and we have interpreted this as indicative 
of technology (logos). 

Following the classification, the pieces of algebra content were sorted into tables with one column 
for each alignment. To help identify patterns in the content of the different courses and to recognise 
differences and similarities between the alignments, as a last step the praxeological ‘determining 
words’ were picked out and placed in a new summarising table. The analysis was done by the first 
author, but was discussed and reviewed by all authors throughout the process. 

Results 
We begin by presenting the results of the analysis of algebra content in all three alignments in the 
core content categories “Understanding of numbers, arithmetic, and algebra” and “Relationships and 
change”. In order to be as transparent as possible, we provide the tables used in our analysis for 
Course 1 in both categories. Due to lack of space, the tables connected to Course 2 are not shown. In 
the following tables, green, purple, and yellow mark technique, technology and theory, respectively.  

Table 1: The category ‘Understanding of numbers, arithmetic, and algebra’ in Course 1 

Ma1a (VET) Ma1b (HEP, social sciences) Ma1c (HEP, natural sciences) 

Handling algebraic expressions and 
formulae relevant in subjects typical 
of a programme, […] 

Handling algebraic expressions and 
formulae relevant to subjects typical 
of programmes. 

Generalisation of the rules of 
arithmetic to handle algebraic 
expressions. 

 The concept of linear inequality. The concept of linear inequality. 

[…] as well as methods for solving 
linear equations. 

Algebraic and graphical methods for 
solving linear equations and 
inequalities and exponential 
equations. 

Algebraic and graphical methods for 
solving linear equations and 
inequalities and exponential 
equations. 
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As Table 1 shows, in the first category in Course 1 alignment a merely contains determining words 
indicating a focus on technique (praxis), whereas alignment b also contains wordings indicative of 
theory (logos). Words interpreted as indicative of technology (logos) were only found in alignment 
c. Furthermore, it is notable that the term ‘generalised arithmetic’ (technology) only occurs in 
alignment c (top right in Table 1) and that inequalities are only referred to in the HEP alignments.  

Overall, Course 2 contains more algebraic topics in this category than Course 1 does. Some of the 
content focusing on praxis aspects is exactly the same in all three alignments, for instance certain 
methods for solving equations. However, the way linear equations are described differs between the 
alignments: While alignment a contains the phrase “use of linear equations in problem solving 
situations”, in alignments b and c it is formulated as “the concept of linear equations”. A similar 
distinction appears regarding logarithms: While alignment c introduces the concept of logarithms 
(theory), in alignment b the concept of logarithms is connected with solving exponential equations 
(technology). In alignment a, logarithms are not included at all. 

Table 2: The category ‘Relationships and change’ in Course 1 

Ma1a Ma1b Ma1c 

The concepts of ratio and 
proportionality in reasoning, 
calculations, measurements, and 
constructions. 

  

Differences between linear and 
exponential processes. 

The concept of a function, domain, 
and range of a definition, and also 
properties of linear functions and 
exponential functions. 

The concept of a function, domain, 
and range of a definition, and also 
properties of linear functions and 
exponential functions. 

 Representations of functions, e.g. in 
the form of words, shapes, functional 
expressions, tables, and graphs. 

Representations of functions in the 
form of words, functional 
expressions, tables, and graphs. 

 Differences between the concepts of 
equation, algebraic expression, and 
function. 

Differences between the concepts of 
equation, algebraic expression, and 
function. 

In the category “Relationships and change”, wordings suggest a greater emphasis on logos compared 
to the previous one. This holds for both Courses 1 and 2, and for all three alignments. In Course 1, 
phrases indicative of technique (praxis) are only found in alignment a (in connection with ratio and 
proportionality; see top left in Table 2), while technology appears in all three alignments, either in 
the form of concepts in connection to specific techniques (in alignment a) or specific aspects of 
concepts, such as properties of or representations of functions (alignments b and c). Furthermore, in 
Course 1, a focus on theory can only be found in alignments b and c, in connection with the function 
concept. However, here it is important to emphasise that in alignment a, functions are not introduced 
until Course 2. The syllabus for Course 2a describes the function concept in almost the same way as 
in alignments a and b, except that “applications of functions” are added in Course 2a, indicating an 
emphasis on praxis. Finally, it is worth mentioning that in Course 2 the content regarding graph 
construction is phrased identically in all three alignments. 

In Table 3 we have compiled all determining words found in the syllabi, and ordered them according 
to whether they are indicative of technique, technology, or theory. As the analysis revealed only small 
differences between the b and c alignments, in the table we have merged the two into the same 
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column. In conclusion, Table 3 indicates that the praxeological organisation of the algebra content of 
the first two courses in the VET and HEP alignments differs in focus. The VET praxeology has a 
strong emphasis on praxis, while logos, in particular theory, is largely absent. The HEP praxeology, 
on the other hand, is more even in its emphases, with a fairly strong theoretical component.  

Table 3: A compilation of the determining words that indicate technique, technology, or theory

Discussion 
In response to our research question, through a praxeological analysis of the mathematics syllabi for 
the first two courses in the Swedish national curriculum for upper secondary school, we have 
concluded that the praxeological organisation of the algebra content in the VET alignment emphasises 
praxis (techniques), whereas the praxeological organisation in the HEP alignments is more evenly 
balanced between the praxis and logos blocks. However, although theory and technology (logos) are 
emphasised more in the HEP alignments, they are typically not connected to particular techniques. 
Indeed, connections between techniques and technologies are rarely explicit in the syllabi. The 
content regarding ratio and proportionality in Course 1a, generalisation of arithmetic laws in Course 
1c, and complex numbers in Courses 2b and 2c are the only pieces of core content with formulations 
of technologies supporting techniques in the same core content. This lack of connection between 
technique and technology, as well as the limited role of theory in alignment a, makes it difficult to 
view the praxeologies outlined by the syllabi as complete, even allowing for the lack of explicit task 
formulations. 

 Ma1a Ma2a Ma1bc Ma2bc 

Technique Methods 

Handling 

Strategies 

Calculations 

 

Solution of 

Construction 

 

Measurements 

Methods 

Handling 

Strategies 

 

Use of 

Solving 

Construction 

Applications 

Methods 

Handling 

 

 

 

Solving 

Methods 

Handling 

 

 

 

Solving 

Construction 

Applying 

Technology  

Reasoning 

 

Differences 

Representations 

Reasoning 

Properties 

Representations 

 

Properties 

 

Reasoning 

Properties 

 

Theory The concept The concept 

Differences between 
concepts 

The concept 

Differences between 
concepts 

Motivation 

Generalisation 

 

The concept 

Differences between 
concepts 

Motivation 

 

Extension 
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One of our main findings was that the praxeological organisation of school algebra in VET 
programmes syllabi emphasises several techniques, with little or no technology or theory justifying 
them. This resonates with the formal and technical approach that Bosch (2015) claims is characteristic 
of school algebra internationally: The ‘language of algebra’ is reduced to different techniques of 
equation solving and manipulation of algebraic expressions. It is not per se a problem that praxis is 
more emphasised in the VET programmes syllabi; given that the overall purpose of VET programmes 
is to act as preparational for the various future vocations, a more practical focus is needed. However, 
what is problematic is the inadequate connection between techniques and technologies in the core 
content. As technologies serve to justify the given techniques (see Figure 2), one apprehension 
regarding this – which is supported by Bosch’s (2015) description of school algebra – is that the 
techniques are turned into mere ‘recipes’ for solving given tasks, without being grounded in 
knowledge of the underlying concepts. Such knowledge might, for instance, enable students to select 
the most efficient technique for solving a particular task. In the core content for HEP programmes, 
on the other hand, we saw more formulations that were only connected to the logos block (mostly 
theory), but with little or no connection to particular techniques. 

As Gustafsson (2019), Madej (2021) and Hewitt (2012) have already stressed, students have difficulty 
understanding the meaning of different algebraic representations, such as the meaning of the equal 
sign and variables. From this study, we know that the algebraic knowledge to be taught at upper 
secondary level has a fairly insufficient organisation of praxis and logos, regardless of alignment. 
While it might be possible to build teaching situations merely around logos or praxis aspects of a 
concept, for a praxeology to hold and make sense, both aspects are needed, as “[praxis] entails logos, 
which in turn backs up praxis” (Chevallard, 2006, p. 3). Thus, one might ask whether the insufficient 
organisation observed in this study is connected to students’ understanding of different algebraic 
representations, and whether the differences detected between alignments persist throughout the 
didactic transposition. Hence, as this small study focused only on formulations in the syllabi and not 
on students’ knowledge, textbook content, or teaching situations, our next step is to examine how 
textbooks and teachers emphasise and organise algebra praxeologically. These forthcoming studies 
will also help us to dig more deeply into questions regarding social justice and purposes of education 
(Lindberg & Grevholm, 2013; Nylund et al., 2017).  
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Tinkering in algebra – the case of John
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Finding a general rule for a figural pattern is a common type of task in early algebra, intended to 
enhance the ability to express generalization. In light of the incorporation of programming in school 
mathematics, this paper reports on one teacher’s experience of using tinkering as a didactic strategy 
for patterning tasks, in comparison with a traditional approach. The discussion centers around
possible benefits of integrating programming and algebra. An affordance of working with a computer 
program was that the general expression became relevant for the students and changed from being 
the end point of a patterning task to function as the starting point for mathematical tinkering.

Keywords: Algebra, figural patterns, computational thinking, programming, tinkering.

Introduction
The current world-wide incorporation of programming in school curricula (Brown et al., 2014;
Mannila et al., 2014) raises questions of how these new ideas and technologies could enhance 
mathematics education. In Sweden, as in many other countries, programming has been included in 
the mathematics syllabus (Bocconi et al., 2018). Uniquely for Sweden, programming has also 
specifically been connected to algebra, although it is not a well-defined concept in the curriculum 
documents (Kilhamn & Bråting, 2019; Swedish National Agency of Education, 2018). Programming
could be broadly interpreted as a pedagogical tool for developing students’ digital competence and 
computational thinking, or in a narrow sense as a set of computer coding activities. Many Swedish 
teachers struggle to understand and shape what programming in school mathematics is and what it 
might be in relation to mathematics education (Kilhamn et al., 2021; Misfeldt et al., 2019). In this 
paper programming is seen in the broad sense, defining computational thinking (CT) in line with Aho 
(2012) as “the thought processes involved in formulating problems so their solutions can be 
represented as computational steps and algorithms” (p. 832). The aim of this paper is to contribute to 
a discussion about how algebra learning could benefit from programming activities and 
computational thinking practices such as tinkering. By describing a teacher’s experience of a lesson 
on figural patterns based on tinkering with code, the paper seeks to induce a discussion in the spirit 
of Gadanidis et al. (2017), who write that “We need many more cases of what might be in mathematics 
and CT integration to better understand the role CT affordances might play in disrupting and 
improving mathematics education” (p. 94).

Figural patterns 
Algebra is sometimes described as the study of structure, where algebraic thinking emphasizes 
relations and structure over processes. Hewitt (2019) defines algebraic structure as a combination of 
recognizable parts and recognizable patterns connecting the parts. Structure is important to discern in 
order to describe generalizations across and between specific instances. Patterning tasks, i.e. working 
with figural patterns, can be used to enhance students’ sense of structure (Hewitt, 2019), and to 
promote students’ understanding of functional relationships (Friel & Markworth, 2009). In this paper, 
figural patterns are seen as a way into generalization. 
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A traditional teaching trajectory for patterning tasks starts with a figural pattern where the first three 
figures are visually exposed. The students are then asked to find the number corresponding to the 
next figure, then perhaps to figure number 7, then 10, then 20, then 100. Typically, students insert the 
numbers in a table to find a functional relationship between a figure number and the total number of 
elements in the figure, and finally write a general expression for figure n.

This teaching trajectory has been widely reported in research literature (e.g. Blanton et al, 2015; 
Kieran, 2018). Some researchers stress the importance of drawing (Friel & Markworth, 2009) or using 
words and gestures (Radford, 2014) before symbolizing. However, sometimes the teaching trajectory 
quickly moves away from the visual figures into a table of values, where a total number of elements 
for each figure is calculated and students are asked to look for patterns in the table. Hewitt (2019) 
describes the danger of students losing touch with the context of the figural pattern by spending time 
calculating and looking at the table of values created from the figures. In order to see structure, he 
suggests students should stay focused on the figures and avoid doing the arithmetic, since the total 
number hides the structure that reveals the generalization. He argues that “learners should never do 
any arithmetic, just write down the arithmetic they would do”(ibid, p 563). El Mouhayar (2018)
showed that students who focused on numbers were more likely to take a recursive approach, going 
from one figure to the next, whereas Strømskag (2015) found that students who stayed within the 
figural context more often found a general expression 

In contrast to the traditional learning trajectory for figural patterns, a more challenging problem could 
be to present a pattern and ask for the figure number of a large number of parts. One such problem 
about a matchstick figure, taken from TIMSS07, was used in a study of problem solving in small 
groups (Kilhamn, 2012). When the study was presented at a conference in Cambridge, participants 
in the audience criticized the problem, advocating instead the traditional step-by-step instruction 
described above, claiming it to be the ‘right way to teach patterns’. The reaction pinpointed the fact 
that this type of instruction is a well-established didactic strategy. However, as the case of John 
presented below will show, it may not always be the most prosperous strategy.

Computational thinking and tinkering
Computational thinking (CT) is a fairly new concept in educational research, first introduced by 
Papert in 1996. The term involves the kind of thinking skills needed to understand and capitalize on 
digital technology, and practices used by programmers. In recent years, researchers in computational 
science as well as mathematics education have attempted to define CT or create frameworks that 
describe it (e.g. Aho, 2012; Grover & Pea 2013; Kotsopoulos et al., 2017). One of several commonly 
accepted elements of CT is pattern generalization (Grover & Pea, 2013), which is also an important 
ingredient in algebraic thinking. In this paper we will focus on the practice of tinkering brought up 
more or less explicitly in all CT frameworks.

Dictionaries often define tinkering as the act of improving something by making changes to it, and a 
tinkerer as a person who enjoys experimenting with and repairing machines. In a CT perspective, 
tinkering experiences promote engagement in changes and modifications of existing objects 
(Kotsopoulos et al., 2017). Brennan and Resnick (2012) describe several CT practices such as testing,
debugging, reusing and remixing, that could be seen as aspects of tinkering. Tinkering involves 
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exploration, modification and reflection, it is about trying, adjusting and trying again. Fundamentally, 
it builds on learning from failures, turning mistakes into triumphs in the spirit of Thomas Edison, 
who is said to have uttered “I have not failed, I have just found 10 000 ways that won’t work”.1 In
mathematics education, tinkering could mean to explore a mathematical idea or mathematical 
relationship by making small and purposeful changes and reflecting on these. It is not the same as a 
guess-and-check problem solving strategy, since the main objective when tinkering is not to find a 
correct answer but to explore and change something already present. In a description of 

Boaler and
mathematical tinkering

Method
The case study presented here emerged from a larger set of data collected when studying the 
transposition of knowledge that followed the recent inclusion of programming into school 
mathematics in Sweden (Bråting et al., 2021). A research question for the larger study was: What 
opportunities, challenges and pitfalls related to the learning of algebra can be identified in the 
didactical choices teachers make when implementing programming in mathematics? Interviews were
initially made with 20 teachers identified as early adopters (Kilhamn et al., 2021). They were all 
enthusiastic about the challenge, had some previous experience in teaching programming, and many
were responsible for implementation of digital technology in their schools. The audio recorded 
interviews took approximately 30 minutes and were semi-structured around questions that had been 
supplied in advance. Following four background questions the interview guide included the following 
topics: What is the role of programming in mathematics? Where do you find inspiration and ideas?  
Can you give an example of a good programming activity that you have tried? What programming 
concepts are important to bring up in mathematics?

Many of the teachers described programming activities with little connection to mathematics, and 
when there was a mathematics content, it was most commonly geometry, arithmetic or probability. 
One teacher was different in that he said he tried to incorporate some Python programming into every 
topic, in almost every lesson. When asked to describe a good lesson he chose an algebra lesson. He
claimed that the incorporation of programming had changed his teaching and created better learning 
opportunities for his students. His story is reported here as the case of John. 

The case of John
The interview with John was made in October 2019. John had by then been teaching mathematics, 
science and technology in grades 7-9 for over 25 years. In 2017 he was appointed head teacher with 
a specific responsibility to coach his colleagues in the use of digital tools and programming, mainly 
in technology. In mathematics he used an interactive whiteboard, but struggled to find ways to engage 
students in programming activities that were compatible with the mathematics curriculum. In 2018,

1 https://www.goodreads.com/author/quotes/3091287.Thomas_A_Edison
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when programming was officially included in the mathematics curriculum, he started to use the net-
based platform Google Collaboratory, coding in Python. John described a lesson about figural 
patterns in Grade 7 (students’ age 13), claiming that it was the first time ever that his students truly 
engaged in finding a general expression for a pattern. When he started working with these students 
two months earlier, they had no previous coding experience through school. Every student in his 
classroom has a personal laptop, so he can use the platform both in class and for homework, where
he can see what the students do, give personal feedback and pick up student solutions for whole class 
discussions. John’s ambition is to get students into the habit of using Python code every lesson so
that they become accustomed to programming, learning syntax through experience more than direct 
teaching. John stood out from the other early adopters in that he included programming in almost 
every content topic, rather than making it a topic in itself. He said he did not teach programming per 
se, but he told his students to use programming, treating it as a mathematical tool. Typically, he would 
give them an example code to tinker with and modify. In addition to the interview, python codes as 
well as written reflections that John shared with his colleagues were collected.

The lesson 
Below, the lesson is described in three parts and analysed in relation to aspects that were in some way 
different from the traditional teaching trajectory on figural patterns described above.

Part 1: Introducing the general expression

During the previous lesson, the class had worked with a figural pattern where a number of markers
in a figural arrangement increased by three for each figure, starting with five. They had explored and 
discussed what features of the pattern were important in order to find a general expression: change 
and starting number. Together they now wrote the following basic code in Python, which everyone 
copied into their personal computer and tried out.

The code gives a sequence of instructions that computes and prints the figure number and its 
corresponding number of markers. John expressed that he did not expect all students to comprehend 
the code in detail, but for this part of the lesson it was enough to copy the code and run it to confirm 
that it worked for that pattern. John wrote the following reflection: “Many students found this difficult 
and did not seem to see the benefit of this program. The next step is to get the students to program.”

Part 2: Transferring to other patterns

In contrast to a standard lesson where the general expression for the pattern comes at the end, the 
programming activity used the general expression as the starting point for exploration through 
tinkering. After introducing the above piece of code, the students worked with similar figural patterns 
presented as tasks in their textbook, all visual configurations of growing patterns with linear solutions.
The students were encouraged to make use of the code they had produced but with access to sticks 
and markers if they needed. All students chose to work with the code. When they knew that one 
pattern was described by figure_number*3+2 they could start to tinker with the expression to 
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explore the effect of small changes. A further challenge came when the question was posed the other 
way around, for example “what figure number would need 64 sticks?” The code did not produce the 
answer and needed to be modified. John explained: 

“Then I showed the class how to modify this code so that instead of asking for a certain figure it 
prints the first 50 figures with the number of sticks in. And then you can see that: ‘Well there are 
55 sticks in figure number 17’. And this – when they suddenly saw – they had it all there! It was 
like ‘wow’ they could do anything, all information was there in this table that was printed.”

In this section of the lesson the power of the computer was put to use, so that patterns could be 
investigated using larger numbers and more data without having to do all the calculations. The 
students discussed large numbers and compared different outputs. The most confident students started 
to think about what needed to be changed in the code to get the inverse operation instead.

Part 3: Homework assignment

Finally, John assigned the following task as homework: 

Make a program that calculates the number of white squares in the following pattern. The program 
should ask what figure you want to know the number of white squares for, and then show you the 
result. If you want, you can modify and improve the program. 

1. 2. 3. 

Figure 1: Figural pattern used for homework: the first three figures. 

All students managed to solve the task although the pattern on surface value looked quite different 
from previous patterns. Many explained that they had copied the original code and tinkered with it 
until they got the correct result when they ran it (figure_number*3+1), checking with the given 
Figures 1–3 Some modified the code, adding features. Some came up with quite different solutions, 
with more or less efficient codes. Others came up with creative expansions, such as making a loop 
that kept asking for another figure number or commands that could handle an invalid input.

In the interview, John expressed that his students better understood the importance of finding the 
formula for a pattern because it is used in the program. It was the first time he saw that students found 
the general expression useful. In traditional patterning tasks many students would do the arithmetic 
for the first three figures and perhaps a few more, but they would lose interest before they got to the 
general expression, not seeing the point of finding it. Now they were dazzled with what the computer 
could do once they inserted the expression and were curious to see what happened with the numbers
produced when small changes were made. It was, John noted, easier for them to relate to the figure 
n, because it was there, in the program, with the descriptive name figure_number. 
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Discussion
The case of John brought out several possible affordances of introducing programming when dealing 
with figural patterns. One was that students, as suggested by Hewitt (2019), could explore the pattern 
without doing a lot of arithmetic. In fact, the power of using a computer code to do the arithmetic 
enabled students to look for patterns in larger numbers and to find structure in a table with many more 
entries. Iteratively moving back and forth between the code, the printed output and the original pattern 
figures enhanced students’ focus on structural aspects of the pattern while downplaying arithmetic 
procedures. However, according to John, the main benefit had a more psychological character 
addressing the fact that students found the general expression relevant and useful as a way to 
communicate with the computer. Instead of being the end point of the task, as in traditional patterning 
tasks, the expression became a starting point, something to tinker with that sparked curiosity.
Furthermore, the expression became more visible and made more sense when the variable was 
represented by a descriptive word, not as the abstract letter n. This could potentially be a useful 
intermediate step before dealing with variables in symbolic algebra, well worth further investigation. 

Tinkering proved to be a valuable practice for these students when looking for a general expression 
for a pattern. The algebraic question “What is the general expression for the nth figure of the pattern?” 
changed into a computational question “What do we need to change in the command given to the 
computer so that it describes or generates the pattern?”, leading up to questions about the effects of 
different changes made in the code. While this is in line with how Aho (2012) defines CT, it also 
uncovers opportunities for students to rise to yet another level of generalisation that further develops 
their algebraic thinking, namely that very different patterns can be described by the same or a similar 
algebraic expression. Tinkering, or what Brennan and Resnick (2012) describes as reusing and 
remixing predefined code, empowered students to see similarities between patterns with quite 
different surface features. 

Another benefit was the opportunity of expansion, providing more challenge for students who needed
it. Many of the students in John’s class started posing new questions, such as what to do if the input 
is invalid or how to write the code so that the figure number is the output when the total number is 
the input. Furthermore, it would be possible to tackle the pattern the other way round by asking
students to change the expression in the code slightly and then try to create a pattern to match the new 
expression and the numbers printed when the program was run.

The various affordances of programming in John’s algebra lesson suggest that we should be open to 
the use of programming is school mathematics. Further design research with lessons like this would 
therefore be valuable. However, a teaching approach that involves tinkering with code is only possible 
when the teachers’ coding proficiency is high, otherwise the work is bound to get stuck on syntax 
issues. This case study describes a teacher with many years of experience and good programming 
skills, which is not always the case. Much work is still needed to help teachers develop necessary 
programming competence (Kilhamn et al., 2021; Misfeldt et al., 2019), but in the meantime teachers 
could embrace a tinkering approach to teaching and start using mathematical tinkering, in the sense 
of Boaler & mathematics in general and patterning tasks in particular.
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Why not let the lesson start with an intricate algebraic expression, perhaps graphically represented 
using dynamic software, and then explore what happens when small changes are made?
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Students’ challenges with variables are well documented. Although instructional approaches have 
been developed to support students’ conceptual understanding of variables as generalizers, many 
students confound variables as generalizers (e.g. in generalization activities) with a second meaning, 
variables as unknowns (e.g. in equation solving activities). In our design research project, we 
developed a teaching learning arrangement in which both meanings could be constructed. The design 
experiments reveal first qualitative evidence that students were able to construct both meanings, but 
only some students developed explicit awareness of the distinctions of meanings. This calls for more 
explicit comparison activities with a focus on different algebraic activities and their underlying 
epistemic purposes, as well as the development of a meaning-related language in which students can 
express both meanings.

Keywords: Variables as generalizers, variables as unknowns, variation principle, learning from 
comparison, design research.

Theoretical background
Learning from comparison has proven effective in many contexts for raising awareness of critical 
differences (Alfieri et al., 2013). In our design research study, we use this design principle to increase 
students’ awareness about critical differences between meanings of the variable (Usiskin, 1988;
Malisani & Spagnolo, 2009). The research question for this paper is: Which ideas do students 
articulate about variables as generalizers and as unknowns and how do they compare the
conceptions? The qualitative case of a larger design research study reveals that not only local
meanings, but also underlying epistemic purposes need to be compared. We outline the theoretical 
background, the design principle and the methodological framework, before unfolding the case of 
two students.

Variables as generalizers and unknowns

The concept of variable lies at the heart of most algebraic activities, yet various studies reveal many 
students’ difficulties with understanding variables in all their meanings (e.g., Malisani & Spagnolo, 
2009; Küchemann, 1981). Whereas the meaning of variables as unknowns (a fixed set of hidden 
numbers that have to be disclosed, e.g. in equation solving activities) seem to be constructed more 
easily (Küchemann, 1981), the meaning of the variable as a generalizer reveals a critical obstacle in 
many students’ understanding of the variable (Bardini et al., 2005; Malisani & Spagnolo, 2009). The 
conception of the variable as generalizer draws its relevance from generalization activities, in which 
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the variable is used to express general relationships without any further specification of the numbers 
for which they apply (Usiskin, 1988). 

Although various instructional approaches were established to enhance students’ conceptual 
understanding of the variable as generalizer, students still tend to confound the two conceptions of 
variable as unknown and as generalizer, even after going through these approaches (Bardini et al., 
2005; Prediger & Krägeloh, 2016). At least three reasons can be identified for these confoundations 
of conceptions: First, variables as generalizers and as unknowns share crucial similarities on the 
surface. Both represent numbers, both are signified by letters, and the same syntactical operations can 
be performed with them during algebraic transformations. A second reason for these confoundations 
was identified in the unprecise language by which students express their ideas about variables 
(Prediger & Krägeloh, 2016). Generalization activities require certain phrases to think and express 
generalizations (see Table 1). Hence, to allow students to grasp relevant differences in meanings, 
contrasting relevant phrases might be useful. Third, students do not seem to be aware about the 
different natures of the algebraic activities in which they are used. They naïvely assume that all 
variables are used in problem solving activities, in which a variable denotes a hidden number, which 
has to be disclosed by solving an equation and, thus, assign this meaning also to variables in 
generalization activities. As Bardini et al. (2005) showed, many of these students impose the meaning 
of unknowns to the generalization activities by interpreting them as a “temporally indeterminate 
number whose fate is to become determinate at a certain point” (p. 129, emphasis in original). That 
means, students use variables in activities, which require a generalizer, but act as if they were 
disclosing unknowns. 

Table 1 summarizes similarities and differences of the two conceptions that are potentially 
overlooked by students. Other authors (Usiskin, 1988; Bardini et al., 2005; Prediger & Krägeloh, 
2016) have already identified the surface level, the meanings and the algebraic activities as crucial 
for students’ understanding. Additionally, the underlying epistemic purpose (i.e., what kind of 
knowledge gain is intended by its use) became apparent during our empirical analysis. Thus, the last 
row serves as an advance organizer for the later analytical outcomes. 

Table 1: Similarities and differences of variables as generalizers and unknowns (of increasing depth) 

 Variable as generalizer Variable as unknown 

Similarities on  
surface level  

Both represent numbers  
Both are signified by letters and are object of equal syntactical operations 

Differences  
in meanings 
in examples  
(Küchemann, 1981) 

Variable stands for all possible numbers  
of a relevant domain 
(e.g., in equality 3 (x+5) = 3x + 15) 

Variable usually stands for a (concrete set of) 
hidden number of a relevant domain 
(e.g., in equation 3x+5 = 13) 

Meaning-related 
phrases for expressing 
the meaning (Prediger 
& Krägeloh, 2016) 

An arbitrary number, always a different 
number, the number always changes, … 

The number we are looking for, number is 
already fixed 

Differences in  
underlying purposes 
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Algebraic activity 
(Usiskin, 1988) 

Generalization activities in which variable 
is used to express general relationships 

Problem solving activities in which variable is 
used as a hidden number that needs to be 
disclosed 

Epistemic purposes 
(Usiskin, 1988,  
 Bardini et al., 2005) 

One wants to express that no further 
determination of an algebraic statement is 
needed – there is nothing more to know 

One wants to express that something is not yet 
known, but shall be known in the future 

Design Principles: Creating Rich Experiences and Learning from Comparison 

The presented research is embedded in a larger design research project (Gravemeijer & Cobb, 2006) 
that aims at designing a teaching-learning arrangement to enhance students’ conceptual 
understanding of variables as generalizers and as unknowns and at developing an empirically 
grounded local instruction theory. Here, we focus on sequences in which student explicate the 
meanings and the purpose of variables, first in rich experiences with generalization and problem 
solving activities, and later in reflective sequences by the design principle of learning from 
comparison. 

Learning from comparison has proven to be effective in different domains for increasing students’ 
conceptual and procedural knowledge and awareness (cf. meta-analysis by Alfieri et al., 2013). When 
comparing different uses of a concept or procedure, students have been shown to detect relevant 
structural features, and to learn to distinguish them from irrelevant surface features (ibid.). In algebra 
education, learning from comparison proved effective for increasing students’ flexibility with 
different solutions procedures, in particular the Chinese Bianshi tradition also applied it for 
conceptual learning, e.g. for geometry concepts (Guo & Pang, 2011). Here, we adapt it for our 
purpose of raising students’ awareness for the difference in meanings between generalizer and 
unknown.  

This adaptation is not self-evident as conceptual differences of the generalizer and the unknown seem 
to lie especially deep, because their meanings ground in different underlying purposes which seem to 
be confounded by the students (Table 1). Thus, the differences of these two meanings of variables 
cannot be reduced to pointing out relevant definitional features and contrasting them. In addition, 
language challenges can be expected in the design experiments (Prediger & Krägeloh, 2016). 

 

Methodological framework of the design research study 
Design experiments as method of data gathering 

In this paper, we focus on snapshots of students’ ideas when learning from comparison about 
variables as generalizers and unknowns in a first design of a teaching-learning arrangement that 
engages students in generalization activities as well as informal equation solving activities. The data 
was gathered in design experiments in an online setting, taught by the first author of this paper. For 
each of the six pairs of students (n = 12) with varying mathematical prior knowledge, usually 4-5 
sessions were conducted. In total, 33 hours of video were recorded and partly transcribed. This paper 
focuses on the case of two girls from a German-speaking school for higher tracked students: Anna 
(Grade 7) was a high achieving student who had not encountered variables signified by letters in her 
formal education before. Nora (Grade 8) already worked with variables in various algebraic problems 
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(transforming expressions etc.), but Nora’s teacher considered her in need to refresh and deepen her 
understanding of variables. 

Methods of data analysis 

For the qualitative analysis of students’ ideas about the variable as generalizer and unknown, the 
transcripts were segmented and situations were selected in which students explicitly related the two 
meanings of variables to another. Then, we applied an open coding procedure to code students’ 
utterances with respect to their ideas about main differences and similarities, starting from codes in 
Table 1. The last line of Table 1 emerged during this coding procedure. 

 

Empirical insights into students’ ideas about generalizers and unknowns 
Anna and Nora’s understanding of the variable as generalizer 

In the first three design experiment sessions (of 90 
minutes each), Anna and Nora receive rich 
possibilities to engage in generalization activities in 
the context of an e-scooter rental (0.15 € per minute 
riding time, 1 € to unlock the scooter). The students 
conduct repeated calculations in the table in Figure 1 
and discover that variables can represent all relevant 
numbers. In Session 1 after filling the table, the 
teacher asks for an explanation: 

1.601  Teacher: Um, now we have written x there suddenly. What does the x mean in this 
calculation? Can you explain that? 

1.602  Nora: Um, that is an x-arbitrary number. 
1.603  Teacher: Mhm, and what does that mean, “x-arbitrary number”? 
1.604  Nora: Uh, that every number can stand there. 
1.605  Teacher: Mhm, very nice. Anna, any extensions? 
1.606  Anna: Yes, x-arbitrary just means that only this one number in this calculation, which 

is represented by this letter x, though, can be every number. This number, 0.15 
or 15 Cent, they are not changeable, they stay always. Only x is changeable […]. 

Nora describes the meaning of the variable as generalizer by “x-arbitrary number” and “every 
number”, which does not necessarily guarantee that she has firmly grasped the idea of a variable as 
an indeterminate generalizer for generalizing expressions (as the analysis of comparable cases in 
Prediger & Krägeloh (2016) reveals). In Turn 1.606, Anna compares the changeable nature of x with 
the unchangeable nature of constants and thereby implies that the variable represents different 
numbers. Later on, Nora also expresses her understanding by describing that different driving times 
influence the total cost of the ride: 

1.649  Nora: […] if one drives 10 minutes now, then it is cheaper, as if one drives 20 minutes. 
 

Anna and Nora’s understanding of the epistemic purpose of the generalizer 

Even if both girls have built a solid understanding of the meaning of the variable as generalizer, their 
ideas substantially differ when asked to explain the purpose of describing situations with variables: 

 

Figure 1: Table for re-inventing variables  
as generalizers in e-scooter context 
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2.029  Teacher: So, why do we do that, writing down such a general expression [with variables]? 
2.030  Anna: Yeah, to represent, not so much to know a total price in Euro. Rather, for 

representation. Okay, um, this information here, the 0.15 and the 1, these are 
fixed numbers which stay like this in every calculation, but the x, this is the 
changeable, variable number. 

[…] 
2.034  Nora: I don’t know. Maybe if one calculates this mentally, and then one forgets it, one 

has to start from the beginning. And here, one has written it down? 
[…] 
2.039  Teacher: But what is the advantage if I […] remember this expression [points at 

33 0.15+1] or this one [points at x 0.15+1]? So, what is the difference? 
2.040  Nora: Uh, that for the one below [refers to x 0.15+1] we don’t know how long he 

was driving, and then, we actually don’t have to calculate it. 
2.041  Teacher: […] Anna, any extensions? 
2.042  Anna: Yeah, then one just has to look: Okay, I know for sure that the 0.15 and the 1 

stay. Thus, I only have to look which information x has been in this calculation. 
And this would be 19, for example. Then I only have to look: Okay, 19, and then 
I can calculate again. 

In Turn 2.030, Anna describes the purpose of using variables (represented by letters) from a 
representation perspective: Variables represented by letters allow to differentiate between changeable 
and constant numbers in a series of similar calculations. Nora, in contrast, points out in Turn 2.034, 
that algebraic expressions with letters give relief to one’s memory capacity. Anna takes up this idea 
in Turn 2.042 and further develops it into explaining the purpose typical for formulas: Algebraic 
expressions establish a general sequence of calculations, which guarantees the determination of a 
number depending on another number. Thus, Anna articulates a purpose that is typical for a 
“calculator’s mind” (Radford, 1996, p. 50): one formula can substitute many similar calculations. In 
sum, Anna assigns two purposes to variables as generalizers: (a) It signifies the changeable numbers 
and therefore distinguishes them (visually) from constants, and (b) it allows to establish a formula, 
which reduces complexity for the evaluation of new numbers. 

For Nora, Turn 2.034 does not yet provide evidence that she also thought about Anna’s purpose (b) 
or simply referred to the general idea that written language allows to relief memory capacity. 
However, in Session 3, after extensive work in a spreadsheet environment, she gives the following 
answer when asked to describe the use of the variable in algebraic expressions: 

3.752 Nora: So that we can use the formula for every single number and immediately know 
how much the solution is. 

Thus, at latest the work in the spreadsheet environment allowed Nora to establish the perspective of 
the calculator’s mind and to express Anna’s purpose (b). Yet, there might be a crucial difference 
between Anna and Nora concerning the epistemic purpose (i.e. the intended knowledge gain) with 
which they use the variable. For Nora, the immediate knowledge of a solution seems to be the main 
intention to establish a formula using variables. Thus, she ascribes an epistemic purpose to 
generalizers that is more typical for unknowns, namely that the variable needs to be known in the 
future (Bardini et al., 2005). In contrast, Anna explicitly articulates in Turn 2.022 that the calculation 
of “a total price in Euro” is not the main goal. Anna’s idea (a) allows her to see that the algebraic 
expression has a function beyond quick calculation and the reduction of complexity, namely to 
contrast changing quantities from constants. This suggests that Anna is aware of the crucial epistemic 
purpose of the variable as generalizer, namely to see the variable not just as a temporal misfortune 
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that needs to be overcome at a certain point (Bardini et al., 2005), but as something that has a value 
in its own right. 

We infer that for these students (and also other students in our design experiments) the understanding 
of generalizers needs to be expressed also by the underlying epistemic purposes for the use of 
variables. Therefore, epistemic purposes can reveal subtle but important differences in students’ 
ideas. 

Nora’s struggle to compare the generalizer and the unknown 

In Session 4 of the design experiment series, Nora and Anna are engaged in problem solving activities 
in which they had to find unknown numbers. For example, they find the unknown price per minute x 
by informally solving the formal equation x  11+1 = 3.20 that identified two descriptions of the total 
cost of an e-scooter ride, namely one as a general algebraic expression and the other as a concrete 
price. Nora manages to interpret both sides of the equation as the total cost of the ride and she also 
describes the differences of these two descriptions as follows: “one is the total costs in a calculation 
and the other is the sum of the total costs” (Turn 4.133). Yet, when the teacher points out a difference 
between x in the general expression x 11+1 and in the equation x 11+1 = 3.20, Nora struggles: 

4.136  Teacher: […] If I only have the expression  [writes x 11+1], Nora, and it stands for the 
total costs, does it always result in 3.20? 

4.137  Nora: Um, no, because the x, it can be replaced by any arbitrary number. 
4.138  Teacher: Okay, very nice. And here, what is it like [points at equation x 11+1 = 3.20]? 

What does x stand for, here? 
4.139  Nora: Um, what [what do you mean]? 
4.140  Teacher: Okay, does this x still stand for all numbers, somehow arbitrary numbers, like 

you have said before? 
4.141 Nora: Yes? [hesitant, asking]. 

Afterwards the teacher checks again if Nora really believes that x in the equation x 11+1 = 3.20 
still represents any arbitrary number, and Nora again confirms this. It seems that Nora struggles to 
give the letter x a different meaning than that of an arbitrary number, even though she has profound 
experiences with tasks on disclosing unknowns from her previous classroom experiences and from 
the task just solved. For example, she found one concrete number that solves the equation, interpreted 
this number correctly as the driving price per minute, and, furthermore, in Turn 4.137 explicitly stated 
that the expression x 11+1 does not always equal 3.20. Hence, for Nora it is not at all obvious that 
letters need to be reinterpreted in certain algebraic situations. 

A possible explanation for Nora’s struggle to reinterpret the letter is that she acts like the students 
observed by Bardini et al. (2005) and understands it as a 
temporal generalizer that eventually needs to be disclosed 
(e.g., by transforming the equation to get a solution). Hence, 
for Nora the determination of an unknown number is part of 
the epistemic purpose that she connects with letters that 
represent any arbitrary number. If this explanation of Nora’s 
struggle is accurate, it shows that she could profoundly 
profit from a more explicit comparison of the generalizer 

 

Figure 2: Working backwards for  
informally solving x  11 + 1 = 3.20 
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and the unknown, not only comparing their meanings, but also their purposes, attached to their use in 
generational and problem solving activities. 

Anna’s intuitive comparison of the  
epistemic purposes of generalizer and unknown 

In Session 5 of the design experiment series, Nora and Anna are again engaged in informal equation 
solving activities in which they have to find unknown numbers by undoing, i.e. working backwards 
in arrow schemes (Figure 2). During a discussion about how the arrow scheme has to be interpreted, 
Anna provides exactly the comparison of epistemic purposes that Nora needed: 

5.101 Anna: If I had to describe this by and large, these are two different cases. One is 
someone who may have to do this calculation several times, because he is 
somewhat like a salesman or something and has different prices per minute [x 
represents the price per minute in the expression x 11+1] […]. Then of course 
such a calculation [x 11+1] is a good idea, because one can then simply always 
insert the x, right? So, whether it is 0.1, or 0.2 or 0.3. 
And the other one is someone who might want to know exactly, uh how - why 
am I paying 3.20 now? So, he calculates backwards again, looks, uh, what price 
is coming from where, how is it put together? 

In this remarkable statement, Anna describes the upper and the lower part of the arrow scheme as two 
different cases which represent different meanings of the variable. She explicitly compares the 
different epistemic purposes of the generalizer and the unknown: For the generalizer, she refers to the 
calculational ease that comes along with a formula – her purpose (b). Moreover, she enriches it by a 
meaningful story in which a general expression by means of variable is a “good idea” in itself. Hence, 
it is quite likely that Anna again uses the variable with the epistemic purpose typical for the 
generalizer. For the unknown, in contrast, Anna constructs a scenario where someone wants to know 
a certain unknown quantity. Thus, she explicates the typical epistemic purpose of the unknown. 

 

Discussion and Outlook 
In this paper, we investigated which ideas students articulate about variables as generalizers and 
unknowns before and when being prompted to explicit comparisons. As the presented case study 
indicates, prompting students to compare the different conceptions of variables seems to be a fruitful 
approach to explore and develop students’ ideas about variables. In the case of Nora, for example, 
such a comparison-prompt revealed her difficulties in switching from one conception to another. The 
analysis revealed that Nora’s difficulties with confounding meanings might be explained by a 
misunderstanding located in the purpose that she attributes to the variable as generalizer: Her 
understanding of the generalizer still used the epistemic purpose of the unknown, namely that 
variables are only temporally indeterminate and shall be disclosed in the future (Bardini et al., 2005).  

From these observations (in the case of Nora and other students in our sample), we infer that the level 
of comparison should be deepened: not just the meaning of generalizer and unknown need to be 
compared to gain an elaborate and distinctive understanding of these two conceptions, but also the 
different underlying epistemic purposes of their use in two different algebraic activities (what 
resonates with the epistemological analysis by Usiskin, 1988). The case of Anna showed that some 
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students intuitively compare the epistemic purposes by themselves. Interestingly, Anna embedded 
such comparisons in everyday scenarios that made the different algebraic activities and the underlying 
purposes accessible for her. Since the explication of epistemic purposes proved to enhance the 
students’ deep understanding of the conceptions of variables, we will incorporate this focus of 
comparison in future design experiment cycles. 

In sum, this case study underlines and explicates the diagnosis of Bardini et al. (2005) that students’ 
understanding of the meaning of variable depends on their deep lying ideas about the algebraic 
activities in which the variable is used, and we add an explicit awareness of the epistemic purpose of 
this use. Therefore, it seems that a reflection on the purpose of different meanings of variables and, 
thus, a comparison of different algebraic activities as presented by Usiskin (1988) could also be 
promising to foster students’ understanding of variable. 
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The purpose of this study is to explore how student teachers explain the solution to a linear equation. 
Previous analyses with a quantitative approach have reported what aspects the participants included 
in their explanations (Larson & Larsson, 2021), applying a set of low inference codes developed by 
constant comparison (Andrews & Larson, 2019). This report focuses qualitative aspects in these 
explanations. The participants were 146 Norwegian and 161 Swedish student teachers for compulsory 
school. They were given a correct but deficit three step solution to a linear equation: 

x + 5 = 4x – 1 ; 5 = 3x – 1 ; 6 = 3x ; 2 = x 

The participants were invited to explain the solution to a fictive friend, who was absent when the 
topic was introduced to the class. The analytic tool (Andrews & Larson, 2019) included codes of how 
the operations in the solution were explained, and ‘explanatory codes’ identifying e.g. if the student 
teacher clarified that the purpose of solving an equation is to find the value of x, and that you in the 
solving process want to separate unknowns from knowns. The quantitative analyses showed that less 
than half of the participants clarified that the purpose of solving an equation is to find the value of x 
(the code ‘conceptual objective’), while a majority explained that you want to separate unknowns 
from knowns in the solving procedure (‘procedural objective’). Even though previous reports 
revealed relevant results, including differences between the two countries (Larson & Larsson, 2021), 
quantitative analyses produce only rough descriptions of the participants’ replies. If a script was 
coded as ‘conceptual objective’, there might still be differences in how this was expressed. Identifying 
such differences requires a qualitative approach, where the wording that yielded a specific code is 
scrutinised. The purpose of this report is to highlight some initial results from this qualitative analysis. 

Conceptual objective 
This code deals with the purpose of solving an equation, that is to find the value of x. Since the task 
was to explain how to solve the current equation, it is a strength if the purpose of the solution was 
stated early in the reply. One good example is a script that was well organised in bullet points. The 
first point said: “When you want to solve an equation, you want to find the value of x.” This 
immediately enlightened the purpose of the solving process for the fictive friend or a potential student. 
Two other examples were: “In the task above we want to find the answer to x. That is what number x 
is.” and “Here, we have to find out which x-value makes the equation work out and the values of each 
side to become equal.” Despite the wording in the former excerpt might not be the best, it still explains 
that the purpose is to find the value of x. That is also true for the latter, which in addition mentions 
the balance property of an equation. 

The excerpt “x is a variable we want to find out.” includes the notion of variable. It might, however, 
be unclear because it does not explain what it means to ‘find out a variable’. This also applies to the 
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student teacher who as first sentence wrote “What is sought is the symbol ‘x’.”, and later in the script 
wrote “To get x …”. These excerpts deal with the purpose of solving an equation, but the descriptions 
are imprecise and might not help a student who does not already know what it means to ‘get x’. 

An example of lower quality is where the ‘conceptual objective’ first is mentioned in the last 
assertion, after several operational steps: “We do not wish to be left with 3x = 6, we wish to be left 
with how much x is. That is x = 2.” Despite this is a fair explanation of the last step, the reply does 
not provide the fictive friend an initial information of the purpose of all the operational steps. 

Procedural objective 
This will be illustrated by just one example. The first sentence said: “Collect all x on one side.” The 
following assertions were numbered. Point 1 began with: “Move the x which is easiest to move (the 
one that stands alone).” In addition to handling the separation of unknowns and knowns, this assertion 
also touched how this should be accomplished. Point 2 began: “Collect all detached numbers on one 
side.” And point 3 said: “To get x alone, divide both sides by the number in front of x → 3.” Overall, 
this is a thorough description of the procedure in the solution, that is to separate unknowns from 
knowns. Several scripts included only the third point from the example above. In spite all these scripts 
were coded as ‘procedural objective’, providing this description at the end only is an explanation of 
lower quality than the one providing the idea of separating unknowns from knowns in each step of 
its explanation. 

Finally, there were excerpts mentioning both the ‘conceptual’ and the ‘procedural’ objective, as the 
one starting “Equations mean to find out what the unknown is, that is x. We do this by getting x to 
stand alone on one side of the equals sign.” Although the language has some shortcomings, this 
explanation early highlights both the purpose and the process of the solution, which is likely to be 
beneficial for the student. 

Summary and implications 
This paper suggests it is important as well what is included in the explanation of the solution, as 
where in the solution it appears. It highlights, that before the operational steps you should stress that 
the purpose of solving an equation is to find the value of x, and to do that you want to separate 
unknown terms from known. That will justify the operational steps and is hence likely to be beneficial 
for the learner. This means the results presented might be useful for teachers, and in teacher education. 
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Early algebra is becoming more and more important in research of mathematics education. 
Relational thinking and variables are emphasized as essential sub-areas of algebraic thinking. The 
article provides an insight into kindergarten and elementary school children’s abilities to establish 
relationships between quantities. The children's approaches can be described in a continuum between 
number-oriented and structure-oriented approaches. The influence of indefinite quantities can be 
shown by comparing three case studies. 

Keywords: Elementary school mathematics, early algebra, relational thinking, variable, task design.  

Introduction 
The present study is about early algebra, which importance is steadily increasing for mathematics 
teaching in elementary schools (e.g. Kieran, 2018; Cai & Knuth, 2011). Studies show that an 
algebraization of mathematics lessons in elementary school is beneficial for itself as well as for later 
algebra learning (e.g. Mason, 2008; Kaput, 2008). Compared to arithmetic thinking, algebraic 
thinking is characterized by a structural rather than an operational view of mathematical objects 
(Steinweg, 2013; Kieran, 2004). Kieran (2004) named the consideration of relational aspects of 
operations instead of their computation as an essential way of thinking in early algebra. Likewise, 
comparing mathematical expressions and a relational understanding of the equal sign plays an 
essential role in early algebraic thinking. The creation of relationships between mathematical 
expressions defines algebra and can be described in particular in the aspect of relational thinking, 
which forms the theoretical framework of the present study. 

Theoretical framework 
Relational thinking is to be regarded as a sub-area of early algebra and can be defined as follows: 

“Sentences have to be considered as wholes instead of as processes to do step by step. When 
students analyze expressions, they compare elements on one side of the equal sign to elements on 
the other side of the equal sign or they look for relations between elements on one side of the 
equation” (Molina & Ambrose, 2008; p.64). 

Fostering relational thinking with the help of equations is a possibility and has already been studied 
(e.g. Carpenter et al., 2003; Molina et al., 2005; Molina et al., 2008). Nonetheless, non-formal 
representations can also be used to establish relationships between elements (Schliemann et al., 2007). 
They offer the advantage of granting access to younger children as well and thus capturing pre-school 
starting points for mathematical learning. Furthermore, problems of the formal representation are 
avoided. This includes the relational understanding of equal signs, which can be seen as a prerequisite 
for using relational thinking with regard to equations (cf. Molina et al., 2005). 
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In addition to relational thinking, dealing with variables is an essential aspect of algebraic thinking. 
In principle, three aspects of variables can be identified: variables as unknowns (e.g. 5 + x = 8), 
variables as indeterminate like in functional relationships or as a general number, for example to 
describe the laws of calculation (e.g. Freudenthal, 1983). The influence of various variables on 
relational thinking is illustrated by a study by Stephens and Wang (2008). They showed that the 
inclusion of multiple variables supports the use of relational thinking. Secondary school students had 
to put numbers in the boxes of the equation 18 + □ = 20 + □, establishing relationships between two 
indeterminate values. Compared to placeholder problems with only one unknown, these equations 
could stimulate students to think relationally rather than using operational solutions. 

Relational thinking as the creation of relationships between mathematical expressions - be it 
equations, operations or relationships in factual relationships - is of great importance in early algebra. 
In particular, the connection between variable concepts and the use of the relationships between 
mathematical elements is challenging and requires further investigation, particularly with regard to 
young children of preschool and elementary school age. Therefore, the research questions examined 
in this article are the following: How do elementary school children establish relationships between 
known, unknown and indefinite quantities that are represented by real material? What influence does 
the different use of known, unknown and indefinite quantities have on the use of relational ways of 
thinking? 

Method 
The aim of the study is an exploratory recording of the abilities of preschool and elementary school 
children to think relationally1. As Stephens and Wang's (2008) studies have shown, the use of multiple 
variables within equations is helpful in stimulating relational thinking. With regard to the age group 
of kindergarten and elementary school children, a design was chosen in which equations with known 
and unknown quantities were represented with the help of material. Based on Melzig (2013), tasks 
were created in which boxes and marbles represent known and unknown quantities. Melzig showed 
that boxes open up a first access to a sustainable understanding of variables. The non-formal task 
design with real material (boxes and marbles) should also enable preschool children to show their 
relational thinking and can serve as a starting point for developing sustainable ideas about variables. 
Various equations with one or more variables have been translated into an arrangement of different 
colored boxes and single lying marbles. A story was told: two children play with marbles, some of 
which they keep in colorful boxes. Within a task there are the same number of marbles in boxes of 
the same color. Boxes of the same color may contain a different number of marbles in a different 
task. There were 12 tasks in 4 different task types. 

 

 

 

 
1 Other studies used the data to examine the conceptualization of the variables (e.g. Lenz, 2021).  
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Table 1: Overview of the tasks. 

Task type Example of the tasks 

Type A: “The same?”

Two given sets of quantities have to be compared with each 
other. The content of the boxes is not known and does not need 
to be determined to answer the question. The boxes can be seen 

as a variable as an indefinite. Task A1: “Does both children have the same 
amount of marbles? How did you get that?”

Type B: “How many?”

The contents of a box must be determined. The amount of 
marbles asked for can clearly be determined and so appears as 

an unknown. Exercises B1 and B4 also contain additional boxes 
(the red ones), which content is not known and does not 

necessarily have to be determined in order to find a solution.

Task B4: How many marbles have to be in a 
green box, so that both children have the same 

amount of marbles? How did you get that?

Type C: “How many?”

Both children have boxes of unknown content. In contrast to the 
previous type, no specific quantities can be given for them. In 
order to answer the question, children can state a relationship 

between the amount of marbles in the boxes. Since the contents 
of the boxes cannot be clearly determined in comparison to task 

type B, it can be seen as indefinite.

Task C1: How many marbles have to be in the 
boy’s box so that both children have the same 
amounts of marbles? How did you get that?

Type D: “Make them equal”

Both children have the same amounts of marbles. The 
interviewer makes a transformation by removing or adding a 
box by one child in the task. Children have to decide what 

amounts of marbles they have to give to the other child in the 
task or take away from the child to the interviewer, to make the 

quantities equal again. Tasks D1 could be answered with a 
specific number of marbles, while in task D2 a relationship 

between two indefinite quantities had to be established.

Task D1: Both children have the same amount of 
marbles. Now, the boy gives one of his boxes to 
the interviewer. How much does the girl have to 

give to the interviewer, so that both children have 
the same amount of marbles again?

To get insight into children’s ways of thinking and their use of relational thinking, a qualitative survey 
method using interviews was chosen. The study follows a diagnostic approach and is not to be 
understood as an intervention. The tasks were dealt with in video-recorded, semi-standardized 
individual interviews with 80 children in three age groups. 5-6 years old kindergarten children (N = 
25), 7-8 years old second-graders (N = 29) and 9-10 years old fourth-graders (N = 26) took part. The 
children were asked to explain their approach. The transcribed interviews formed the data basis for 
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the subsequent qualitative content analysis (cf. Mayring, 2010) and the method for analyzing 
interviews according to Schmidt (2005). Categories were formed out of all of the interview-transcripts 
which described children’s approaches to answer the tasks. They were created deductively based on 
preliminary theoretical considerations and inductively obtained from the data. The categories were 
recorded in a coding guide. After re-coding all the material, an overview of the categories of the entire 
data material was given in frequency tables. These were used for further analysis by pointing out 
possible relationships that need to be checked in individual cases. In a last step, in-depth case analyzes 
were made (Schmidt, 2005). 

Findings 
After answering the tasks, the children were asked how they got their answer. Based on the analysis 
of the interviews, this article focuses on comparing the approaches described by the primary school 
children. First, the evaluation dimensions are presented and related to the theoretical background. 
Then insights into three case studies from primary school children are given. 

Number-oriented and structure-oriented approaches 

The approaches described by the children for processing the tasks can be described across all tasks in 
a continuum between number-oriented and structure-oriented approaches.  

Number-oriented approach 

The number-oriented approach focuses on the specific amounts of the marbles. Because the 
calculation of sums instead of relating quantities predominates, it can be characterized as an 
arithmetic way of thinking.  

Structure-oriented approach 

In a structure-oriented approach, children make gestural or linguistically clear that equal subsets are 
related to each other. The focus is on the quantities themselves and not on their value ("they are the 
same" instead of naming the specific number). Children take a structural perspective on the task and 
make connections between sub-structures of the task. According to Molina and Ambrose (2008), this 
approach can be characterized as relational thinking.  

Three case studies 

The distinction between number-oriented and structure-oriented approaches is compared using the 
example of the processing of tasks B4 and C1 (see Table 1) by three children. But they also show the 
influence of adding another, indefinite variable to exercise C1. It should be noted that the change in 
task types was not communicated to the children. In task type B, it was possible to answer with 
specific numerical values. Immediately afterwards, task C1 was set, whereby no specific numerical 
values could be given. Thus, some problems for the children are to be expected. But the answers to 
task C1 also reflect the spontaneous approaches of the children without being influenced by learning 
effects. 
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Leonie, 4th- grader  

In task B4, Leonie states that there must be a marble in each of the red and green boxes. She justifies 
this with the fact that both children then each have four marbles. When asked whether she needs to 
know the contents of the red boxes, she seemed unsettled. This shows that in addition to the number-
oriented approach described, no structure-oriented approach is conceivable for her, in which the 
content of the red boxes is not determined. 

In task C1, Leonie spontaneously gives numerical values for the two boxes given. The interviewer 
then names various other numerical values as the contents of the girl's box. Leonie can give the correct 
amount of marbles for the boy's box. This shows that she does not accept the aforementioned 
numerical values as fixed actual content, but can imagine different values. She is able to deal with 
changing numerical values and recognizes the dependency. However, she does not explicitly succeed 
in generalizing the relationship between the indefinite quantities. 

Matteo, 4th-grader  

In task B4, Matteo structures subsets as equivalent to one another without having to determine their 
specific content. Based on the individually lying marbles, he deduces the contents of the green boxes. 
This approach can be characterized as structural: 

Matteo: There must be one marble in a green box, because here (points to the red boxes) 
there are the same numbers and here (points to a green box on the boy’s side and 
on the girl’s side) ... In order to make this one marble difference (points to the girl’s 
marble), one must also be in here (points to the girl's front green box).  

In task C1 Matteo states that there is a dependency between the indefinite quantities of marbles in the 
two differently colored boxes. He says correctly that the contents of the boy's box cannot be 
determined because the content of the girl's box is not known. When asked by the interviewer, Matteo 
can then state the general relationship between the quantities of marbles in both boxes and refers to 
the marble lying individually in his argumentation. In addition, a structuring of the given quantities 
becomes clear: 

Matteo: Here (points to the boy's box) there is one more marble than here (points to the girl's 
box), because here (points to the girl's marble) there is a single marble.  

Julius, 2nd grader  

In task B4, the second grader Julius names the value of one marble as the content of the green box. 
He claims to have checked this by calculating subtotals: the contents of the green boxes and the 
individually lying marbles. He doesn't say anything about the red boxes. He may have excluded these 
because they contain the same amount of marbles. Although his approach by calculating partial sums 
is to be regarded as number-oriented, this already represents a transition to the structure-oriented 
approach. He has recognized partial amounts of equal amount (the red boxes) that will be disregarded 
for further consideration. 

In task C1 Julius succeeds in specifying the relationship between the indefinite quantities:  
Interviewer: How many marbles must there be in a green box so that both children have the same 

amount of marbles? …  
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Julius: Because one thing (taps the girl’s marble) and then you still have to calculate that 
here (taps the girl’s box), there can be one, two or three (waving his hand 
rhythmically in the air) and there would always have to be one more (taps on the 
boy’s box) to be in it than in the box (points to the girl’s box) then it would be right.

Julius example shows impressively that he is able to establish relationships and to support this with 
gestures. At this point he shows a structure-oriented view of the task.

Figure 1: Approaches of the three children in comparison of tasks B4 and C1

Figure 1 shows how Leonie and Julius move from a number-oriented approach to a structure-oriented 
approach in the transition from task types B to C. This suggests that the task design, and especially 
task type C, can encourage children to think relationally. Since not all values are given, the children 
have no way of calculating specific numbers. They are encouraged to take a look at the whole and to 
establish relationships between the indefinite quantities. Thus, the results of the study by Stephens 
and Wang (2008) can also be confirmed with regard to the handling of real material and with primary 
school children.

Conclusion
The analysis of the entire interviews showed that there are children who mainly proceed in a number-
oriented approach. To do this, they name numbers for additional boxes in task type B (like the red 
boxes in task B4) and give arithmetic reasoning. In task type C, these children are primarily tied to 
numerical values in order to find access to the task. This is shown in the case study of Leonie. 
However, she already manages to deal with various numerical examples in task C1 but she cannot 
indicate a static relationship between the indefinite quantities. 

In contrast, there are children who show mainly structure-oriented approaches across all of the 12 
tasks. Matteo's explanations of tasks B4 and C1 serve as an example. He is able to take a structure-
oriented view of the whole from above across all tasks. This can be characterized as relational 
thinking (e.g. Molina & Ambrose, 2008).

In addition to these cases, however, there are also children who switch approaches. Second grader 
Julius described in task type B mainly number-oriented procedures. This may be due to the fact that 
it is possible to operate with specific numerical values. But also in his processing of task B4 it should 
be noted that he is already on the way to a structure-oriented approach in that he only calculates partial 
sums instead of the whole sum of marbles, as Leonie did. In task C1, Julius shows that he is able to 
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describe relationships between the sets. The tasks of type C thus stimulated him to move from a 
number-oriented approach to structure-oriented approach and thus relational thinking. 

Discussion 
The empirical study shows that relational thinking as a sub-area of algebraic thinking can be 
stimulated in elementary school children. The study also showed that some kindergarten children are 
also capable of relational thinking, which, due to the length of this article, could not be taken up. The 
skills of the kindergarten children are to be regarded as prior knowledge and at the same time the 
starting point for further mathematical learning with regard to early algebra. With the help of the task 
design in its non-formal representation, instead of starting from procedures and calculating result 
values, many children succeed in recognizing relationships between the elements with the help of a 
look at the whole and using them to find solutions. It is precisely this “view from above” on the 
elements of a mathematical situation and their relationship to one another that constitutes relational 
thinking and thus also an essential aspect of algebraic thinking. 

In particular, the type C tasks, which contain indefinite quantities, encourage children of primary 
school age to use relational thinking. This is already indicated by the small insight into the processing 
by the second grader Julius within the case studies and also corresponds with the explanations of 
Stephens and Wang (2008). As a result, the inclusion of unknown and indefinite quantities in the 
sense of a spiral curriculum also appears profitable in elementary school lessons. 

The analyses give a little insight into the differences in the approaches of the children. With regard 
to the use of the task design in school, very different approaches by the children are to be expected. 
A classroom discussion about children’s ways of thinking used can lead the children to focus on both 
number-oriented approaches and structure-oriented approaches. The real material can be used to 
clarify your own ways of thinking to others - in particular the established relationships between the 
quantities.  

Nevertheless, it is important to break away from a real representation and later perceive the variable 
as a thought object instead of a real object in the form of the box. 
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According to the Hungarian National Curriculum, the systematic study of algebra starts in the 
seventh grade. In the initial phase, traditional methods focus less on generalization as a cornerstone 
of algebra and more on algebraic operations. Matched with the traditional syllabus, the authors have 
incorporated lessons into the teaching process at this early stage of algebra learning that focus on 
generalization activities and the meaningful use of symbols. The authors investigated how 
generalization activities manifest themselves during these lessons. 

Keywords: Algebraic reasoning, generalizations, using symbols, algebra in the early grades, lower 
secondary level education. 

Introduction 
The cognitive ability to abstract is given special attention in the Hungarian National Core Curriculum 
in grades 7-8 (Government Decree, 2012, rev. 2020). The generalization of experiences and the need 
to justify relationships are also expected. The curriculum also requires the learner to formalize the 
mathematical content of everyday problems and use letters to denote unknown quantities. To begin 
teaching using symbols, a procedural approach based on “letter arithmetic,” i.e., practicing operations 
with algebraic expressions based on definitions and rules, is a traditional teaching strategy also 
presented in Hungarian textbooks. However, less emphasis is on generalization and the meaningful 
use of symbols in that early stage. Discrepancies between development goals and the practice in 
teaching early algebra were the impetus of our research. Improving this situation requires recognizing 
that algebraic thinking, which involves the meaningful use of symbols, is a form of mathematical 
sense-making related to symbolization (Schoenfeld, 2007). Many authors explain the sense-making 
process of a mathematical concept by connecting it to prior knowledge (Scheiner, 2016). Palatnik & 
Koichu (2017) found that the criterion for successful implementation of the sense-making process is 
that students are adequately engaged in the task and that the learning environment, which in their 
scenario was project work, is supportive. Inspired by these ideas, the authors of this paper added 
mathematical problem situations to the traditional “letter arithmetic” to support the generalization 
process and the meaningful use of variables. This paradigm is named the “Sense-Making-Algebra” 
teaching strategy by the authors of this paper. A rationale behind this teaching strategy is to allow 
students to see the power of symbolization as early as possible in the algebra learning process. 
Furthermore, with a problem-oriented teaching approach (Kónya & Kovács, 2021), the authors aimed 
to create a supportive learning environment.  

The authors’ research questions are, (1) how do seventh-grade students’ generalization activities 
manifest themselves during the “Sense-Making-Algebra” intervention, and (2) what resources do they 
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employ to create their generalization? We hypothesize that most learners can generalize from 
experience and argue for generalization using natural language or symbols after the teaching unit.  

This paper describes a part of the broader experiment: the content and analysis of the first 
experimental lesson and the related follow-up test. In this lesson, we used the so-called “calendar 
problem,” which has been discussed in various places in the literature, as an effective initiative to 
encourage generalization (Friedlander & Hershkowitz, 1997; Huang et al., 2014). 

The first author performed the action research reported in this paper in her three seventh-grade 
classes. The second author acted as a critical friend during the teaching experiment. The study 
provides an example of how to put into practice the sense-making use of variables. Although there 
are some well-prepared collections on teaching strategies and recommendations on algebra learning 
(e.g., Friedlander & Arcavi, 2017), these works are focused on equations. The authors found fewer 
compendiums of a similar style at the pre-equations stage of algebra learning, with generalization and 
reasoning in focus, which also motivated this research.  

Theoretical underpinning  
Several scholars attempted to investigate the nature and content of algebraic thinking. There are 
several perspectives on what defines algebraic thinking, but many agree that generalization, or the 
ability to discern the general in the specific, is a crucial element (Pittalis & Zacharias, 2019). The 
present article focuses mainly on generalization, which may be accomplished using natural language 
and symbols. While outlining the theoretical basis, we emphasize this perspective, and in this regard, 
the work of Kaput (2007) serves as the theoretical framework for our research. 

Freudenthal (1977) made an early attempt to conceptualize school algebra and included algebraic 
thinking in the subject. Freudenthal highlighted that the ability to describe relations and solve 
procedures in a general way is part of algebra. In this novel perspective, algebra is seen as a human 
cognitive activity. Thus, those who conceive algebra as reasoning prefer to examine how students 
think and speak about it. Arcavi (1994) considers the dichotomy of generalization and symbol usage 
in school algebra and claims that many students who master algebraic methods often fail to perceive 
algebra as a tool for comprehending, expressing, conveying generalizations, and constructing 
mathematical arguments. According to Kieran’s (2004) model for conceptualizing algebraic activity, 
algebra is a multidimensional activity that includes numerous ways of thinking. Algebraic thinking 
approaches quantitative situations that aim to find relationships and structure using not strictly letters-
symbolic approaches. Kaput (2007) emphasizes two core aspects of algebraic reasoning. One of them 
is generalization, and expressing generalizations in increasingly coherent symbol usage (Core Aspect 
A). “Increasingly” means that initially, the students use their resources, typically natural language, 
but later switch to conventional representational forms. Core Aspect B means the syntactically guided 
action on symbols. Kaput argues that the “Core Aspect B” should come later than the “Core Aspect 
A” since rule-based actions on symbols depend on knowing the allowed combinations of symbols, 
particularly which combinations are equivalent to others.  
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Method 
The action research took place from December 2020 till March 2021 in a Hungarian practicing school 
for teacher training. A total of 68 seventh-grade students aged 13-14 years (hereafter S01-S68) from 
three classes (hereafter classes b, d, z) participated in the experiment. The groups have three maths 
lessons a week, each 40 minutes long. The teacher was the same in all three classes. Based on the 
textbook used in the school, the teacher’s syllabus allocated 28 lessons to algebra instruction. The 
intervention took place in the first teaching unit (Algebraic expressions and operations with algebraic 
expressions), for which the curriculum allocated 11 lessons. The teacher conducted four experimental 
lessons in this teaching unit. The authors only report on the first experimental lesson in this paper and 
the follow-up test relating to it. The authors used the following tools for data collection and analysis: 
(1) classroom observation through a visiting teacher’s field notes; (2) the teacher’s research journal; 
(3) copies of students’ written outputs. 

The first lesson was inspired by Huang et al. (2014), where the authors report a lesson on investigating 
patterns in calendars, focusing on improving empirical reasoning towards deductive proof. The 
planning of lessons followed a problem-oriented teaching approach (Kónya & Kovács, 2021). It 
means that students: (1) analyzed mathematical problems; (2) were allowed to reflect on their own 
and their classmates’ thinking critically in classroom discussions; (3) were encouraged to explain and 
justify their thinking. 

The plan of the first lesson is as follows. Part 1: pattern finding. Students looked for patterns in the 
December 2020 calendar during the preparatory phase of the lesson. First, the teacher chose the 
diagonal 1-9-17-25 (Figure 1, left). Then, after determining that the numbers in the sequence increased 
by 8, students worked in pairs to explore similar patterns (Figure 1, right). The purpose of the pattern-
finding task was to make students aware of the mathematical structure of the calendar, which is 
already familiar from everyday life. 

 
Figure 1. The December 2020 calendar with diagonal patterns 

Part 2: magician’s trick. The principal part of the lesson was based on a magician’s trick. “Choose a 
number with a top right and a bottom left neighbor. Then, you tell me the sum of the three numbers, 
and I will guess the chosen number!” The processing of the magician’s trick had three stages: (1) 
Numerical experience. The number said by the student and the number thought of was recorded on 
the board. (2) Formulating the rule: how did the magician do the calculations? (3) Explanation of the 
rule. The theoretical consideration behind placing the problem in a playful context was to engage as 
many students as possible in the task and maintain motivation. 
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In the follow-up test, two compulsory and one optional assignment were given to the students (Table 
1). The first and second problem was close to the calendar task in the lesson. These two tasks were 
chosen to require generalization and make it easy to argue without using symbols. On the other hand, 
the third task was assumed to be much more difficult to explain without symbols. 

Table 1: The follow-up test (for March calendar) 

Task 1. (Compulsory) Nándi selected a number in the calendar and added its left and 
right neighbors. When he halved the sum, he got exactly the number he had chosen. 
Do you think this is always true if you choose a number with a left and a right 
neighbor? Justify! 

 

Task 2. (Compulsory) Csenge chose a number from the calendar with both a lower 
and an upper neighbor. She added the two neighbors together and then halved the 
sum. What has she experienced? Will this always be true if you choose a number that 
has a lower and an upper neighbor? Justify! 

 

Task 3. (Optional) Laci had a magician trick. If someone told him the sum of three 

numbers in the calendar in the shape of a V, he would guess the middle number. (For 

example, if someone told him that the sum is 22, he would know that the middle 

number is 12.) However, unfortunately, he forgot how the trick worked. Help him!  

 

To assess the follow-up test, the authors examined the students’ solutions, for which they created the 
following code system (Table 2). 

Table 2: The coding system to evaluate students’ outcomes 

Code Description Definition 

NA No Answer One of the following elements: The student has not submitted a solution. No 
explanation. The student did not understand the text. The student tries to give reasons 
but does not give a relevant explanation. 

AR Arithmetic level The student makes relevant calculations only on some numbers. 

ALG Algebraic level, 
without symbol 

The student argues generally and correctly, using natural language without using 
symbols.  

ALG+ Algebraic level, 
using a symbol 

Three criteria must be fulfilled. (1) A symbol represents a number in the configuration. 
(2) Student correctly expresses the relationships between the numbers, and (3) student 
performs algebraic operations.   
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Findings and analysis 
During the pattern-finding task (part 1 of the lesson), students have skillfully formulated the rules in 
the natural language during classroom discussions. Moreover, the generalization process emerged 
naturally: 

S45:  Is what we are talking about a feature unique to December or not? 

S32  [Enthusiastically] There are seven numbers next to each other, that is, they are arranged by week, 
so for each month, it is [true]. 

While working on the magician’s trick (part 2 of the lesson), the experience was written on the 
whiteboard (Table 3), and the one who figured out the trick could be the next magician. 

Table 3: Numerical experience in class d 

The magician Teacher Teacher Teacher S31 S31 

Sum 33 66 69 73 75 

Number thought 11 22 23 “You made a mistake.” 25 

 

Finally, students formulated the rule in their own words; they had to divide the sum of three numbers 
by three to get the number they had chosen. 

When questioned why the trick worked, a faulty analogy emerged. Several students suggested that it 
should be divided by three because three numbers were added. The teacher took advantage of this 
situation and involved the class in discussing the mistake. The following dialogue is from class b, 
although almost the same happened in class z. 

Teacher:  [Adressing the faulty analogy.] Look at the diagonal patterns in the calendar! [She points to the 
corresponding pattern, see Figure 1 (right) that she deliberately left on the board at the beginning of 
the lesson.] 

S03:  [Uncertainly] The [number] six is the key. 

S14: One number is six less and the other six more [than the number one thinks]. 

T:  Let us write what he said! Let, for example, the number thought be 11. Thus 
 

T: What if the thought number is not 11? 

S: [Unrecognized student from the class] It can be anything 

S14:  Let it be ! 

First, S14 tried to explain the rule with his natural resource, which was the basis of the teacher’s 
general example. They concluded with the deductive proof . It is worth 
noting that the students explained the rule of merging starting from the problem situation; this is a 
point where the advantage of the “Sense-Making Algebra” approach is very apparent. 
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In class d, after the general examples, S46 proposed denoting the numbers with , i.e.,  
 Although the need to use letters emerged in the student, she did not express the 

relationships between the symbols. The student’s typical failure provided an appropriate opportunity 
for the teacher to draw attention to the principle that symbols must express the mathematical relations 
extracted from the situation. 

In two classes, the students wanted to create their own magic tricks. The need for generalization was 
raised naturally in all three classes: do the series apply in other months, does the magic trick work in 
other directions, or other months? The use of letters and symbols occurs spontaneously in two of the 
three classes, with minimal teacher guidance. However, more teacher guidance and questions were 
needed in the third class. 

The result of the coding of the follow-up test is shown in Table 4. 

Table 4: Result of the follow-up test 
 

Task 1 Task 2 Task 3 

NA 23 28 61 

AR 6 5 0 

ALG 25 23 0 

ALG+ 14 12 7 

SUM 68 68 68 

39 students gave algebraic level answers (ALG and ALG+) in the first task, i.e., 57% of all students. 
The result is similar in the second task, 52%, 35 out of 68 students.  21% of all students used symbols 
to express their reasoning (ALG+) in the first task, while 18% in the second task. The following 
examples are representative of each category. 

NA (Task 1., S12) “Yes, that is true. Because if a number has a left and a right neighbor, both will be 
odd or even, and if you add two odd or even numbers together and divide by two, you always get an 
integer.” What student writes is true in itself, but it does not explain the experience. 

AR (Task 1, S22) See Figure 2. The student refers to only one particular case and concludes that the 
rule is always valid. (Translation of the text in the figure: “always true”). 

ALG (Task 1. S1) “The rule is valid because if you add a number one greater than the number you 
have chosen and a number one less than the number you have chosen, you will always end up with 

Figure 2: AR solution of Task 1 by S22 
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twice the chosen number.” The student correctly expresses the relationship between numbers in 
natural language; his reasoning is general, but he does not use symbols. 

ALG+ (Task 3. S4) See Figure 3. The student represented the central element of the V-shape by , 
correctly determined the other two elements ( ), and performed the merge correctly (

). The number needed is then determined by thinking backward from the sum. Translation of the 
text: “Add fourteen to the total and divide by three.” 

 
Figure 3: ALG+ solution for Task 3 by S4 

The follow-up test also showed an example of an unexpected generalization: S15 wrote: “Conclusion: 
if you add the neighbors of a number (it can be second neighbors, third neighbors, fourth neighbors), 
you always get twice the number. It is because both neighbors differ by the same difference from the 
number.” 

Discussion and pedagogical implications 
The authors’ first research question was: how do seventh-grade students’ generalization activities 
manifest themselves during the “Sense-Making-Algebra” intervention? Consistent with Friedlander 
& Hershkowitz (1997), our research confirmed that students generalize and reason willingly and 
satisfactorily at the early algebra learning stage. A possible good choice for this process is the 
“calendar problem,” as presented by Huang et al., (2014). The mathematical structure is simple, based 
on addition, so it can be used to pose problems accessible to a wide range of learners. Furthermore, 
we found that making and justifying conjectures occurs naturally using this type of exploration task. 
Moreover, this study found that the “problem-oriented” teaching approach supported generalization 
and reasoning activities, providing a good space for classroom discourse (Kónya & Kovács, 2021). 
Generalization, in many cases, did not occur as an individual activity but as a consequence of group 
discourse. The starting point for generalization could be the students’ questioning in addition to the 
teacher’s initiative.  

The second research question was: what resources do students employ to create their generalization? 
Students expressed their ideas verbally in natural language resources in classroom discourse, which 
facilitated generalization. The predominance of textual formulation remained in written work until 
the end of the learning cycle. However, about 20% of the students were already confident using 
symbols in problem situations in our experiment. Although we did not use project work as a learning 
environment, we saw an identical process described by Palatnik & Koichu (2017), who reported that 
students developed and justified claims, made generalizations, addressed why-questions, and 
established coherence among the explored objects.  
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The study presented in this paper is based on data collected within a teaching experiment aimed at 
the implementation of a didactical path focused on proofs without words. Our research aim is to 
investigate the link between visualization and generalization processes enacted by students during 
their work on the tasks that constitute the didactical path. To pursue our aim, we analyzed students’ 
argumentative processes, documented within their written protocols and within excerpts from the 
video-recordings of small group activities and classroom discussions. Through this analysis, 
developed by means of Radford’s theory of objectification and Duval’s levels of apprehension, we 
highlight the role played by visualization in supporting generalization.  

Keywords: Argumentation, explanation, generalization, proofs without words, visualization. 

Background  
A proof without words is a proof that makes use of a graphical artifact, a picture or other visual 
mean, to reconstruct a deductive process that justifies a given statement or an equation (Nelsen, 
1993). There is debate around whether a proof without words really qualify as a proof (Gierdien, 
2007, p.1); anyway research in Mathematics Education highlighted the powerful role of proofs 
without words in learning and teaching mathematics. Hanna (1989) showed that involving students 
in interpretation and analysis of activities on proofs without words could shift the focus of teaching 
from proofs that prove to proofs that explain.  

In 2019 we designed and implemented a teaching experiment focused on proofs without words. It 
was a pilot study that involved three 10th grade classes of a scientific high school near Rome, with a 
total of 66 students. In this paper we will focus on the second stage of this experiment trying to 
highlight the link between the visualization process and the generalization one through the tool of 
argumentation. By argumentation we mean, according to Stylianides et al. (2016), the discourse or 
rhetorical means used by an individual or a group to convince others that a statement is true or false. 
It may involve exploration of examples, generation or refinement of conjectures, and production of 
arguments for these conjectures. 

Theoretical framework  
The analytical framework we refer to is made up of two main components, the apprehension levels 
described by Duval and the theory of objectification introduced by Radford.  

Following Duval (2006, p.107) “Mathematical objects, in contrast to phenomena of astronomy, 
physics, chemistry, biology, etc., are never accessible by perception or by instruments”. He goes on 
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to state that “the only way to have access to them [mathematical objects] and deal with them is 
using signs and semiotic representations”. This is the reason why “representation and visualization 
are at the core of understanding in mathematics” (Duval, 1999, p.1). Furthermore visualization, in 
the Duval framework, is a process that goes over the vision. “Unlike vision, which provides a direct 
access to the object, visualization is based on the production of a semiotic representation” (Duval, 
1999, p.7). A semiotic representation does not show things as they are, it “shows relations or, better, 
organization of relations between representational units” (Duval, 1999, p.7). In our work students 
are asked to explain the relations they see between images of proofs. The perceptual apprehension 
refers to the recognition of figures and subfigures; sequential apprehension, is used when 
describing a construction of a figure based on mathematical properties; the ability to recognize such 
mathematical properties and explain them refers to the discursive apprehension while the operative 
apprehension is a process by which students, operating on the figure, identify the solution of a 
mathematical problem. 

Following Radford (2001, p.81), generalization must be considered as “one of the more natural 
human semiotic process”; looking into the way students “deploy and mobilize signs to accomplish 
mathematical generalization”, Radford points out three levels of generalization. Factual 
generalization, that is, “a generalization of numerical actions in the form of an operational scheme 
that remains bound to the numerical level” (p.82), at this level the semiotic tools for the 
objectification are the perceptual semiosis, the generative functions of language and the operational 
schemes. The factual generalization is achieved by students by means of rhythm in the utterances, 
ostensive gestures, adverbs like always, every, etc. and making reference to space and time (i.e. the 
next figure…). The second step in generalization is contextual generalization, at this level students 
are able to write explanations regarding their conjectures and mathematical operations, in these 
explanations they perform actions on abstract objects (you take that square…) but still have a 
perspectival view of mathematical objects. The last level is symbolic generalization, it occurs when 
students talk about mathematical objects in an impersonal way (the sum of the first n squares…, the 
n-th figure…) and using a more specific terminology, these aspects show that the symbolic 
generalization is reached when students succeed in a de-subjectification process. 

These two theorical frameworks start from different systems of principles since Duval takes 
constructivism as his point of departure, while Radford’s theory stems from a sociocultural 
perspective on learning. Nevertheless, we decided to implement a networking (Prediger et al., 2008) 
of the two theories, integrating them locally in order to study the visualization process, by means of 
the apprehension levels, and the generalization process referring to Radford theory. This decision is 
motivated by the fact that, beyond the effectiveness of the level of apprehension in analysing the 
visualization processes, we noticed that students, explaining and justifying on the way they look at 
the figure, use the figure itself as an artifact of communication and signification. This is in line with 
the sociocultural perspective that grounded the theory of semiotic mediation in the sense of 
Vygotsky (Cole et al. 1978) and is one of the starting points for Radford’s theory. 
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Context of the study
The study presented in this paper took place in Spring 2021 (totally 8 hours) and involved a 10th

grade class of an Italian high school (26 students). Due to the pandemic period, the presence of 
students in the classroom was limited to 50%. Half of the students were present in the classroom, 
while the other half was at home connected using a video-communication service (Google Meet) 
and a Multimedia Interactive Whiteboard.

The students were divided into 6 non-homogeneous groups, in agreement with their teacher. Each 
meeting was articulated in an initial phase of small group activity, followed by a classroom 
discussion. The students were invited to discuss the questions as a group and to write down the 
answers that would be later collected by the teacher. After the small groups’ work, the students 
were involved by the researchers (the authors of this paper) and by their teacher in a discussion 
regarding the strategies used by the different groups to deal with the tasks they had to face.

The didactical path was designed as a sequence of worksheets focused on questions based on
examples of proofs without words. One of the worksheets is represented in Figure 1.

Figure 1: Worksheet 3

All the worksheets included questions about a number sequence, as the one in Figure 1. The 
students were asked to find some elements of the number sequence under investigation (question 1, 
Figure 1) and to explain how to find out a generic element of the sequence (question 2, Figure 1). 
To make them reflect on the visualization processes they enacted, the students were asked to 
explain which features of the figures helped them in formulating their answers (question 3, Figure 
1). Nevertheless we add a table with numbers (see figure 1) to let the students be free to choose the 
semiotic representation they felt more comfortable with: the picture that recalls a proof without 
words or the table that recalls a more traditional approach. From the analysis of data collected we 
could see that only one group preferred the table and did not use the picture in answering questions 
1 and 2. 
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The last two questions aimed to prompt students identify the theorems behind the proofs without 
words proposed in the worksheets and reflect on the role played by figures in supporting the 
formulation of conjectures and in proving theorems (questions 4 and 5, Figure 1).  

Research questions and methodology 
Our research hypothesis is that argumentation could represent an effective tool through which the 
link between visualization and generalization could be explored. The analysis we developed was 
aimed at investigating this link. The research question that guided our analysis is: referring to the 
level of generalization and of apprehension reached by students, what characterizes the link 
between visualization and generalization when students face activities focused on proofs without 
words?  

In order to answer this question, we collected the protocols written by students during the group 
work and the audio and video-recordings of all the activities (both face-to-face activities and 
activities carried out at distance), including group work and classroom discussions. We then 
analyzed the whole material, transcribing some excerpts we considered as interesting in order to 
establish a link between visualization and generalization.  

For our analysis, we referred to the main components of our theoretical framework: Duval’s levels 
of apprehension and the generalization categorization proposed by Radford. 

In this paper we will analyse the work of only two groups. The reason for this choice is that the 
students in these groups felt the need to explain in depth their written protocols during the class 
discussion even if they didn’t grasp the whole solution of the task. This didn’t happen in other 
groups, probably because students were not used to argumentation neither written nor oral. 
Sometimes (it is the case of one of the groups of our experiment) the solution of the task was easily 
grasped, and the visualization process remained implicit. 

We follow the evolution of each group along three steps: (1) the discussion in the small group, (2) 
the students’ written protocols, and (3) the classroom discussion with the teacher and the authors. 
We chose to focus our analysis on the excerpts regarding questions 2 and 3 of the worksheet in 
Figure 1, since they enable us to focus on the way students formulate their generalizations (question 
2) and explain how they looked at the figures, that is the visualization processes that supported their 
generalizations (question 3).  

Regarding step (2), we should note that the condition under which the experiment was conducted 
(remote meeting) strongly limited the semiotic potential of the interaction between students. In 
particular, it was not possible to collect any data about students’ use of gestures or facial 
expressions during the small group discussions. 

The final discussion in class which is reported here was led by one of the authors with the aim to 
foster students’ explication of their visualization and generalization processes. 

Data analysis  
Analysis of data taken from group 1 
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The first excerpt is taken from the discussion of group 1. They are working together during a 
remote meeting. One of the participants share the screen with the figures of worksheet 3 (Figure 1). 
The group is trying to answer the number 2 question while they look at the figures on the screen. 

20  Giada: …But…I think I understood that the next figure is always equal to twice the previous figure 
plus one.  

21  Giorgia: Yes, it’s true. 

22  Lea: Giada, can you repeat what you said? 

23  Giada: So… for instance figure 5 is equal to twice the figure 4 plus 1.  

24  Lea: Ah, ok, I got it, so you suggest writing down this instead of the whole formula? 

In line 20 Giada comes up with an idea, “the next figure is always equal to twice the previous figure 
plus one”, and she shares the idea with the group. The group discusses and they write it in their 
protocol. From these data it emerges, according to Radford theoretical framework, a contextual 
generalization, it goes over the numerical level; they find out a property that holds for each figure. 
However, we argue that they still have a perspectival view of the mathematical objects, seen in the 
expression “the next figure …the previous figure”, so the generalization process is not complete, 
they did not reach to the symbolic level. 

In their written answer to question 2, the students wrote: “The number of squares of the next figure, 
with respect to the figure we are considering, is doubled plus one”. And when they are asked to 
clarify the visualization process (question 3) they discuss and then write: “Colours that helps to 
differentiate the different columns, the increasing shape, the figure number”. 

During the discussion in class, we tried to push forward the investigation about the visualization, 
asking the students for explanations about the written answers. This can be seen in the following 
excerpt involving one of the authors and a student from group 1. 

13  Giorgia: Given a figure of the sequence, to get the number of squares of the following figure, we 
doubled the number of squares of the given figure and add 1. 

14  Author: Where did you see it in the figure? 

15  Giorgia: … for instance [pointing at figure 0 of the worksheet displayed on the whiteboard] the 
figure 0… 1 times 2 is 2, plus 1 is 3, and so on… 

16  Author: Did the figure help you in discovering that? 

17  Giorgia: Yes. 

18  Author: How? 

19  Giorgia: It helped us because we saw that … this one [pointing at the yellow square]… in order to 
get to the red one [pointing at the two red squares] … we multiply times two and then we 
add the one that we had before. 

20  Author: Which one? 
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21  Giorgia: The yellow one. 

22  Author: And what about the next steps? 

23  Giorgia: … all this stuff [pointing at figure 1, lower part] times 2 is 6, the same as 1,2,3,4,5,6… the 
red and green squares [pointing at the red and green squares of figure 2, lower part] plus 1 
that is, once again, the yellow one. 

We think that, in the previous excerpt, Giorgia has carried out a very peculiar visualization process. 
Even if she didn’t use the hint given by the upper part of the sequence of figures of the worksheet, 
she is able to perform an advanced process of visualization. She actually doesn’t stop herself to the 
visual perception of the figures, she goes over, seeing the “relations”, and the “organization of 
relations between representational units” (Duval, 1999). In this case the representational units are 
the squares. She highlighted the relation between the yellow square of figure 0 and the two red 
squares of figure 1 (the yellow square doubled and “became” the two red squares of figure 1) and 
did the same for each figure in relation with the next one. Moreover, in line 19, Giorgia describes 
the construction of any figure of the sequence starting from the previous one (sequential 
apprehension). 

Analysis of data taken from group 2 

We now move to the analysis of the material of group 2. We will notice that, even if the two groups 
obtained two different formulas and looked at the figures in two different ways, the characterization 
of the link between the visualization and the generalization process is similar. 

7  Francesco: …Anyway… these figures…are simply increasing…every next column is one plus the 
previous one and then…I didn’t get why… they … put them on top of each other... 

8  Federica: I think they go like 2 x 2 is 4, next 4 x 2 is 8, the last column, so 8 x 2 I think … so figure 4 
will be 16, the last column and so…  

9  Francesco: Are you talking about…the one that has been added? 

10  Federica: Yes, the blue one... 

11  Francesco: Ok, yes, it is multiplied by 2 

… 

16  Francesco: … anyway… the column that has been added is a number… and the other columns equal 
that number minus 1, so… for instance, in figure 5 they will be 32 plus 31… 

17  Federica: Yes, is it so. 

Francesco, in line 16, makes an effort towards generalization. In this moment he is contributing to 
the work of the group with an idea that goes over the numerical level. After the discussion, the 
group wrote down their idea in the written answer to question 2 as follows: 

Last column times 2, minus 1 

We notice that this protocol is different from the formula given by group 1. Even the generalization 
process is slightly different because group 2 explained how to compute the number of squares of 
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any figure without any reference to the previous figure, so they go over the perspectival view. 
Anyway, the generalization level of group 2 is still a contextual generalization because they did not 
proceed to the des-embodiment in their mathematical description; they actually need to know the 
number of squares of the last column in order to compute the number of squares of the whole 
figure. Since we want to investigate the link between this generalization process and the 
visualization, we analyze the written answer to question 3 given by group 2. It was: 

It helped us the way the squares are arranged in the upper part of the figures. 

Therefore, the way students in group 2 look at the figure is also different with respect to group 1; 
specifically, students of group 2 look at the upper part of the figures while students from group 1 
look at the lower part. In the next excerpt, taken from the class discussion with one of the authors, 
the visualization process fielded by the students in answering question 2 emerges. 

41  Francesco: A way to find the number of squares is taking the last column, multiply such a column 
times 2 and subtract 1. 

42  Author: What tells you that? 

43  Francesco: We can argue that from the figure here above, i mean … you see that it always misses a 
square… is this one times 2 minus 1 [pointing at figure 1] 

44  Author: Ok 

   45  Francesco: …Or this times 2 minus 1 [pointing at figure 3]…because…I mean…you can tell it by this 
figure [pointing at the upper part of figure 3] 

In line 41 Francesco describes an action on abstract objects (taking the last column); this kind of 
operation, characteristic of the contextual generalization, is suggested by the figure, as Francesco 
explained in line 43. Furthermore, from line 45 we argue that the description of Francesco is indeed 
the description of the construction of the whole sequence of mathematical figures, as pointed out by 
Duval describing the sequential apprehension. 

Conclusions 
Generalization and visualization are two essential components of the mathematics learning and 
teaching process. Often the link between these two components is obscured by many factors. We 
refer to the attitude of students toward argumentation (as we already discussed) and to the peculiar 
conditions in which the experiment took place (remote meetings) which affect the social-
communicative dimension of the interaction between students. In the small-group activities 
mediated by screens, students’ semiotic assets are restricted. The fact that implicit and mutual 
agreement of face-to-face interaction must be replaced by objective elements of social interaction, 
according to Radford (2001), guides the activity toward the generalization. Thus, the balance 
between visualization and generalization it’s unlikely to arise. However, the two examples 
discussed in this paper show that pushing forward the argumentation process is an effective way to 
clarify the connection between the visualization and the generalization processes fielded by students 
when they approach a mathematical problem. The link between visualization and generalization 
process was outlined in other studies (e.g., Barbosa, 2011). The contribution of this paper is to 
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characterize, in terms of level of apprehension, the generalization achieved by 10th grade students 
who do not succeed in the whole task. In the analysis we outlined that, even if the two groups 
looked at the figure in different ways and produced different formulas, their contextual 
generalization was guided by a sequential apprehension. So, in these two cases, the link between the 
visualization and the generalization process is characterized by the match of sequential 
apprehension and contextual generalization. It seems to us to be worthy of further study to 
investigate the visualization process of groups of students that reach a symbolic generalization in 
solving similar tasks. 
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The present study proposed and empirically validated a theoretical framework describing algebraic 
thinking abilities for Grade 3 students. Four algebraic abilities were incorporated in this framework: 
‘relational manipulation of equalities/inequalities’, ‘compose and decompose number and 
arithmetical expressions’, ‘functional thinking’ and ‘representing-modeling’. The study involved 124 
students. Analysis showed that the three first constructs compose a general thinking ability that could 
be considered as an index of Grade 3 students’ capacity to respond to a variety of algebraic thinking 
tasks. This general ability was a strong predictive factor of students’ representing-modeling ability.  

Keywords: Early-algebra, functional thinking, generalized arithmetic, modeling.  
 

Introduction 
Initiatives worldwide have underlined the significance of early algebra in mathematics education and 
stressed that to meet the goal of developing a fundamental algebraic understanding, students in 
elementary school should be involved in activities that prepare them for algebra in later grades 
(National Council of Teachers of Mathematics, 2000; Stephens, et al., 2017). Early algebraic thinking 
can be coherently conceptualized as a synthesis of different content strands, concepts, processes or 
forms of reasoning that relate to the ideas of equivalence, properties of numbers and operations, 
variable, proportional reasoning, modelling, and functional thinking (Chimoni, et al., 2018; Kaput, 
2008; Kieran, et al., 2016). Research studies suggest that elementary school children could engage in 
sophisticated ways of algebraic thinking, such as generalizing, representing, justifying, and reasoning 
with mathematical structure and relationships (Stephens et al., 2017). However, the existence of 
different approaches to the notion of algebraic thinking, in terms of content strands, concepts, 
processes and reasoning forms makes it challenging to provide a coherent description of the nature 
of algebraic thinking.  The relation between young students’ algebraic thinking abilities, remains 
under-researched. In this study, as a first step, we explore Grade 3 students’ thinking algebraic 
abilities to identify their relations based on empirical data. 

 

Theoretical Considerations 
Several research efforts concentrated on the analysis of the nature and content of algebraic thinking 
and provided a list of characteristics of algebraic thinking in all grades (e.g., Blanton et al., 2011). An 
overarching definition suggested that algebraic thinking is a ‘habit of mind’ that enables students to 
identify and express mathematical structure and relationships (Blanton & Kaput, 2005). Researchers 
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claimed that a fundamental element of algebraic thinking is generalization, that is the ability to see 
the general in the particular (Kaput, 2008; Kieran, 2007). Chimoni et al. (2018) provided a synthesis 
of the literature, suggesting four basic dimensions in terms of (a) content strands, (b) concepts, (c) 
processes, and (d) reasoning forms: A number of theoretical frameworks conceptualized algebra in 
terms of content strands and concepts. For instance, Kaput’s (2008) model asserts that generalizing 
and symbolizing are tightly linked in that symbols allow generalizations to be expressed in a stable 
and compact form, throughout generalized arithmetic, functional thinking, and modeling languages. 
Generalized arithmetic entails noticing relationships between numbers, the manipulations of 
operations and their properties, and the transformation and solution of equations (Chimoni et al., 
2018). Functional thinking has generally been defined as the process of building, describing, and 
reasoning with and about functions (Stephens, et al., 2017). Modeling languages involves the use of 
symbols for developing models, and re-translating between models and situations.  Kaput’s 
framework was empirically validated by Pitta-Pantazi et al. (2020) for grades 8 and 9.  

Kieran (2007) conceptualized algebra as a multidimensional activity that encompasses 
various types of tasks and ways of thinking. She suggested three types of activities: generational, 
transformational, and global, meta-level. The generational activities refer to the generation of 
equations and expressions in various situations and involve exploration of problem situations and 
numerical and geometrical patterns that lead to the formulation of generalizations, and exploring 
numerical relations. The transformational activities refer to the transformation of expressions by 
applying specific rules and involve conceptual understanding of algebraic objects. The global, meta-
level activities are not strictly algebraic in nature, but algebraic tools are needed to be investigated 
and involve general mathematical processes, such as proving, studying functional relations, and 
identifying structure. Further, Kieran (2007) suggested that the smooth transition from arithmetic to 
algebra could be achieved by focusing on (a) the relations of numbers and not only on calculations; 
(b) relations between operations; (c) representation and solution of problems; (d) the use of numbers 
and letters; (e) the meaning of the equal sign. This list of activities provides a comprehensive lens to 
examine algebraic thinking in terms of content strands and specific algebraic concepts. In addition, 
Drijvers et al., (2011) distinguished four strands in algebra teaching: patterns and formulas; 
restrictions; functions; and language. Patterns and formulas involve searching for regularity, patterns 
and structures and embeds generalization. Restrictions entail manipulating equations or inequalities, 
such as finding what value of the unknown variable satisfies the required conditions. Functions reflect 
algebra as the study of relations and functions. Language concerns algebra as a symbolic system. 
Driscoll (1999) provided a description of algebraic thinking in terms of habits of mind that fits with 
the frameworks suggested by Kieran (2007) and Drijvers et al. (2011). He suggested ‘doing and 
undoing mathematical processes’, ‘identifying and representing functional rules’, and ‘thinking about 
computations independently of particular numbers’. 

In terms of processes and reasoning forms, a number of research studies proposed noticing, 
representing, and justifying with mathematical structure and relations as core processes for searching 
similarities and differences (Blanton et al., 2011; Jeannotte & Kieran, 2017). Abductive, inductive 
and deductive reasoning were proposed as important types of reasoning forms in algebraic situations 
(Chimoni et al., 2018). For instance, abductive reasoning is necessary at the stage where individuals 
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develop a prediction about a plausible generalization (Rivera & Becker, 2007), while inductive 
reasoning is required to grasp a generality through noticing how a local commonality hold across all 
terms. The variety of the frameworks described above shows the complexity in defining early 
algebraic thinking by clarifying its differences from arithmetical thinking and defining well-accepted 
algebraic abilities for young students (Chimoni et al., 2018). Furthermore, to date, these frameworks 
have not been extensively validated based on empirical data for young students. 

 

The Present Study 
The main purpose of the study is to examine, based on a synthesis of well-accepted theoretical 
frameworks, Grade 3 students’ algebraic thinking abilities. We define algebraic thinking abilities as 
the capacity of the individuals to perform various early algebra tasks and include both relevant 
knowledge, reasoning skills, and algebraic processes, such as generalizing, representing, justifying 
and reasoning with mathematical relationships (Blanton et al., 2011). We propose algebraic thinking 
abilities in an attempt to describe the structure of algebraic thinking by amalgamating various types 
of algebraic tasks, processes and practices. The proposed framework is based on (a) Kaput’s (2008) 
algebra core content areas, (b) Blanton et al.’s, (2011) description of algebraic processes, (c) Kieran’s 
(2007) algebraic types of activities, (d) Drijvers et al.’s, (2011) algebra strands, and (e) Driscoll’s 
(1999) algebraic habits of mind. The framework (see Figure 1) involves four distinct but correlated 
factors and defines a measurement model of young student’s algebraic thinking abilities. The 
innovative aspect of the proposed framework is the fact that it integrates aspects of the fore-mentioned 
frameworks that meet Grade 3 students’ early-algebraic experiences and needs. It is grounded on 
embedding early algebraic processes and practices in specific content areas to define algebraic 
thinking abilities that Grade 3 students should develop based on well-accepted frameworks, 
contemporary curricula, and policy documents. The proposed thinking abilities can be used as 
measurement indicators of Grade 3 algebraic thinking. 

The first factor, relational manipulation of equalities/inequalities, corresponds to students’ 
capacity to manipulate equations and equalities, find the value of the unknown in equations and 
inequalities that are represented in the form of an empty box to be filled or in balance scale equalities 
and inequalities that are suitable for Grade 3. It embeds Driscoll’s (1999) idea of doing and undoing 
mathematical procedures. The second factor, compose and decompose numbers and arithmetical 
expressions, includes students’ ability to conceptualize the relations and properties of numbers, 
relations between operations, to reflect and make predictions about computations and solve problems 
independently of particular numbers, based on number-property generalizations. In addition, it 
includes the ability to interpret equalities expressed in different forms (Blanton et al., 2011). Students 
need to decide as a result of noticing an arithmetic or computational structure, before proceeding to 
a second action. Conclusively, it conceptualizes students’ capacity to make numeric and arithmetical 
computations, solve numeric related problems, and interpret equivalence expressions by grasping 
mathematical structure and relations in these situations, abstracting from arithmetic properties and 
objectifying the generalized properties. The third factor, functional thinking, adopts the definition 
proposed by Pittalis et al. (2020) for young students, suggesting that it encompasses student’s capacity 
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to notice, generalize, and abstract relations between covarying quantities/variables, represent these 
relations through natural language, symbols, and appropriate representations and use the generalized 
representations in problem solving situations. Finally, representing-modeling languages, represents 
students’ capacity to represent word-problem situations that embed relations among quantities using 
a variety of representations, such as number sentences, literal symbols, and figural models (Kaput, 
2008; Kieran et al., 2016). The research questions of the study were: Could different algebraic 
thinking tasks be categorized on the basis of the factors of the proposed theoretical framework? What 
is the structure and the relations between the proposed algebraic thinking abilities, as they are 
projected through Grade 3 students’ responses? 

Measures 

The test items were adopted or developed based on previous research studies (Blanton et al. 2011; 
Chimoni et al., 2018). The multiple-choice tasks were considered as correct or incorrect, while the 
open tasks were given partial marks. The first factor, relational manipulation of 
equalities/inequalities, was measured by three types of tasks: completing the missing value in an 
equity, finding the value of the unknown in an equation that was presented in a balance-scale form, 
and finding one possible value of an unknow variable in an inequality that was presented in a pictorial 
form (Drijvers et al., 2011). Variables in balance-scale equations and inequalities were represented 
by pictorial symbols (see Table 1). The second factor, compose and decompose numbers and 
arithmetical expressions, was measured by four types of tasks. The first type required students to 
solve number-property problems, such as conceptualizing odd and even numbers. The second type of 
tasks provided students the result of an addition or subtraction and asked students to find the sum or 
difference based on the derived facts (Driscoll, 1999). Generalization of the derived fact was 
necessary to conceptualize the structure of the provided and the given calculations and grasp the 
differences. The third type required students to predict whether ‘big calculations’ result to odd or 
even numbers, without making any calculations but noticing the odd/even property of the numbers 
and generalizing the result of adding/subtracting odd/even numbers. The fourth type provided 
students two equalities in the form of balance-scale situation. Student had to find the heaviest toy by 
interpreting the equalities and making assumptions regarding the relations of the involved objects. 
The representing-modeling languages factor was measured by three types of tasks that required 
translating a word-problem situation by noticing the relation between the involved quantities. In the 
first type students had to represent the problem in a number sentence form, in the second one in a 
model form (Kieran et al., 2016), and the third one in literal symbols. Functional thinking was 
measured by tasks that entail four modes of thinking (Pittalis et al., 2020): recursive patterning (14 
tasks), covariational thinking (5 tasks), correspondence-particular (7 tasks), and correspondence-
general (7 tasks). Due to space limitations, we do not present the functional thinking tasks. 

Participants, Procedure and Data Analysis 

Consent forms for students to participate in the study were distributed to two urban primary schools 
in Cyprus. The schools, teachers and students involved participated voluntarily, thus our sampling 
was a convenient one. Parents’ consent forms were returned for 95% of the students, resulting in a 
sample of 124 Grade 3, 9-year-old students (65 males and 59 females).  
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Table 1: Examples of tasks 

Factor Type of task Example 

Relational 
manipulation 
of equalities 
and 
inequalities 

(a) Completing 
equalities 

(b) Solving equations 
in balance scale form 

(c) Solving inequalities 

(a) Fill in the missing number: ,  

(b) Find the value of the symbol.       (c) Find a possible value for the symbol. 

                                  
Compose and 
decompose 
numbers and 
arithmetical 
expressions 

(a) Solving number-
property problems 

(b) Make calculations 
based on derived facts 

(c) Make predictions 
based on number-
properties 

(d) Interpret equities 

 

(a) I had in my pocket more than 12, but less than 15 euro. I spent all my 
money to buy pencils that cost 2 euro each. How much money I had in my 
pocket? 

(b) Find the following if you know that 118+8=126. 

128+8, 118+18, 118+9, 218+8, 119+18 

(c) Does the following give even result (without making calculations)? 

122+18, 15+45, 478+222+444, 333-115 

(d) Which toy is the 
heaviest? 

 

Representing-
modeling 
languages 

(a) Number sentence 

(b) Model 

(c) Literal Symbols 

(a) Which number sentence represents the problem? 

I had 4 pencils. I gave 3 pencils to my brother. How many pencils have I got 
now? 

      

(b) Which model represents the situation? 

Nick has 5 stamps less than Sophie. 

 

(c) Which relation represents the situation? 

Katy (K) and Lia (L) have altogether 3 stamps less than Mary (M). 

   

   

The tasks of the study were split into two parts. Consideration was given to the number of 
tasks and time required to be approximately the same. Each part was administered in the form of a 
written test during one school period. The two parts were administered in two successive weeks. The 
instructions were provided in written and verbal form. Confirmatory factor analysis was used to 
examine the validity of our proposed, a priori model by using MPLUS 8.0 (Muthén & Muthén, 1998-
2007). To evaluate model fit, three widely accepted fit indices were computed: χ2/df should be <2; 
the Comparative Fit Index should be >.9; and the root mean-square error of approximation (RMSEA) 
should be <.08. The Cronbach’s alpha index of internal consistency was very good (α=.81).  
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Results 
Confirmatory factor analysis (CFA) was used to evaluate the construct validity of the model. Based 
on the results, the a-priori model matched the data set of the present study and determined the 
“goodness of fit” of the hypothesized latent construct. Analysis showed that the fit-indices of the 
hypothesized model were excellent (χ2/df=1.27, CFI=.97, and RMSEA=.05), validating empirically 
the fit of the structure of the model to the empirical data. Figure 1 presents the observed variables 
(different types of tasks in Table 1), the corresponding factor loadings and the factor correlations. 
CFA showed that the factor loadings of the tasks were statistically significant and most of them were 
rather large, ranging from .42 to .83, giving support to the assumption that all latent factors were 
adequately measured by the observed variables. In accordance with our theoretical assumption, all 
measures were clustered into four first-order factors in the expected factor-loading pattern. Thus, 
analysis showed that algebraic thinking consists of four interrelated abilities that is (a) relational 
manipulation of equalities/inequalities, (b) compose and decompose numbers and arithmetical 
expressions, (c) functional thinking, and (d) representing-modeling languages. The correlations 
between the four abilities were significant (see Figure 1) and ranged from .64 to .88.  

 
p<.05, F1: Relational Manipulation of Equalities/Inequalities, F2: Compose and Decompose Numbers and Arithmetical 
Expressions, F3: Functional thinking, F4: Representing-modeling Languages 

Figure 1: The standardized solution of the proposed framework 

To investigate the relations between the four algebraic thinking abilities, we examined the fit to the 
data of alternative structural models, hypothesizing a direct sequential path between the four factors 
or the existence of a higher-order thinking ability. The model that had the best fitting indices 
(χ2/df=1.25, CFI=.97, and RMSEA=.04) showed that F1, F2, and F3 compose a higher-order factor, 
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F100, reflecting students’ general algebraic ability to manipulate relationally equalities and 
inequalities, compose and decompose numbers and arithmetic structures, generalize and abstract 
functional relations (see Figure 2). Analysis showed that F100 could accurately explain students’ 
variances in F1, F2 and F3, suggesting that young students develop these abilities in parallel, their 
development is interrelated, and they share equally important contribution in building up a general 
functional thinking ability. F100 could be considered as an index of students’ readiness to engage in 
algebraic thinking situations by noticing, interpreting, abstracting, and effectively using structure in 
arithmetic situations, number and operations properties, and quantity relations. It is the consequence 
of the correlations between F1, F2 and F3 that underlies a synthesis of specific arithmetic and 
algebraic thinking abilities.  The regression coefficient of F100 on F4 was 0.76 (p<0.05), indicating 
that F100 is a strong predictive factor of students’ modeling languages ability using a variety of 
representational forms. It could be supported that F100, as a general arithmetic-algebraic ability 
predicts rather accurately ‘representing-modeling languages’ that has a salient algebraic-nature. 

 
Figure 2: The relations between algebraic thinking abilities 

Discussion 
The contribution of the study lies on the empirical evaluation of a proposed model that unpacks the 
dimensions of Grade 3 students’ algebraic thinking. The results of the study showed that Grade 3 
students’ variances in algebraic situations might be modelled by four distinct and interrelated 
algebraic thinking abilities; relational manipulation of equalities and inequalities, compose and 
decompose numbers and arithmetical expressions, functional thinking. and representing-modeling 
languages. Structural analysis showed that the three abilities, relational manipulation of equalities 
and inequalities, compose and decompose numbers and arithmetical expressions, and functional 
thinking compose a general algebraic thinking ability that can be considered as an index of Grade 3 
students’ capacity to respond adequately in a variety of arithmetic-algebraic thinking tasks (Blanton 
et al., 2011, Driscoll, 1999). This general ability proved to be a strong predictive factor of students’ 
ability to represent word problems and situations using number sentence, models or symbols. It could 
be supported that compose and decompose numbers and arithmetical expressions facilitates grasping 
the numerical relations in a problem and conceiving how the quantities set an equivalence or an 
equation, functional thinking contributes in noticing the relations between the involved quantities in 
the word situation, and relational manipulation of equalities and inequalities to discern the known 
and the unknown in the formed expression. The results of the present study are important in terms of 
teaching implications. The framework helps teachers to get a better understanding of algebraic 
thinking and the specific type of abilities that Grade 3 students should develop. Furthermore, the 
description of algebraic thinking abilities may inform teachers about students’ potential difficulties 
and thinking requirements in a variety of situations.  
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Early algebra: Simplifying equations  
Luis Radford  

Laurentian University, Canada; lradford@laurentian.ca  
Placed within the early algebra research field (Blanton et al., 2017; Cai & Knuth, 2011; Kieran, 
2018; Kilhamn & Säljö, 2019), this article focuses on young students’ understanding of basic 
algebraic ideas around equations. The article seeks to contribute to the field by shedding light on 
Grade 3 students’ meaning-making processes underpinning the simplification of equations and the 
algebraic operations involved. In the first part, I present a theoretical conception of algebraic 
thinking. I also describe two non-alphanumeric semiotic systems that played an important role in the 
students’ dealings with algebra. In the second part, I discuss two episodes of students simplifying 

equations. 

Keywords: Algebra, equations, isolating the unknown, semiotics. 

Algebraic thinking  
One of the most enduring problems with which mathematics educators have been confronted is the 
problem of characterizing algebra and clarifying what makes it different from arithmetic. Two main 
solutions have been suggested. One consists in equating algebra with the use of letters. The other 
consists in conceiving of algebra as focused on operations rather than on results. While the first 
solution offers a very narrow conception of algebra—impeding teachers from recognizing algebraic 
thinking in activities based on types of mathematical representations different from letters—the 
second one offers a very narrow conception of arithmetic, which becomes demoted to simple 
computation. 

In previous work (Radford, 2014) I have suggested three elements to characterize algebraic thinking:  

(1) Indeterminacy of magnitudes: algebraic thinking involves indeterminate magnitudes. These can 
be unknowns, variables, parameters, etc. 

(2) Denotation: the indeterminate quantities involved must be named or symbolized. This 
symbolization can be carried out in several ways. Alphanumeric signs can be used, but not 
necessarily. The denotation of indeterminate quantities can also be symbolized by means of natural 
language, gestures, unconventional signs, or even a mixture of them.  

3) Analyticity: algebraic thinking (a) calculates/operates with indeterminate magnitudes as if they 
were known and (b) treats the mathematical relations featuring determinate and indeterminate 
magnitudes (equations, formulas, expressions, etc.) in a deductive manner.  

Simplifying equations 
Drawing on the aforementioned conception of algebraic thinking, in what follows, I report on the 
results of a teaching-learning activity in a Grade 3 class (8-9-year-old students). The activity was 
based on the use of two non-alphanumeric semiotic systems: a Concrete Semiotic System (CSS) and 
an Iconic Semiotic System (ISS) through which students could translate simple word-problems into 
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linear equations.1 The CSS is comprised of material objects: a) paper envelopes that each contain the 
same unknown number of cardboard cards; b) cardboard cards, and c) the equal sign. The envelopes 
played the role of unknowns while the card played the role of concrete numbers (constants). The ISS 
is derived from the CSS: it replaces concrete objects with iconic drawings { ,  ,  =, ↑}. The 
additional “arrow” sign replaces actions performed on concrete cards or envelopes of the CSS during 
the process of simplifying equations. The students could substitute the arrow by simple lines 
indicating that a card or envelope (or sets of) are removed. The range of problems that can be 
formulated in natural language and translated into the CSS and ISS is very limited, but it is enough 
to ensure that young students have their first encounter with algebraic thinking. 

The research question that this paper seeks to address is about the identification of the teacher and 
students’ meaning-making processes underpinning the understanding of algebraic techniques of 
isolating the unknown in one-unknown linear equations. Following the methodology of the theory of 
objectification (Radford, 2021), the data analysis involves a multimodal investigation of teaching-
learning activity where students work in small groups and participate in collective discussions.  

In Grade 2 the students started being familiarized with the isolating-the-unknown procedure using 
the CSS (Radford, 2017). At the beginning of the teaching-learning activity that I investigate here 
(which was the first Grade 3 activity on equations), the teacher organized a general discussion around 
the equation . (Of course, no alphanumeric symbolism, was used in Grades 2 and 3). The 
students discussed various solving procedures: trial and error, comparison of terms (more on this 
below), and the isolating-the-unknown procedure. In Grade 3 the isolating-the-unknown procedure 
was not yet the students’ first choice. The teacher had to ask, referring to what they had learned in 
Grade 2: “What do we mean by isolate? If I tell you, I'd like to isolate the envelope . . . ” Cyr, one of 
the students, answered: “Does that mean like putting it alone?” When the teacher asked Cyr to 
articulate the idea, Cyr went to the blackboard and removed one card after another from each side of 
the equation, showing the procedure. The isolating-the-unknown procedure remained shown with 
actions rather than articulated with words. The teacher rephrased Cyr’s actions: “If you remove one 
[card] on this side, what do you do?” Cyr answered: “I remove another one from there (the other side 
of the equation). Isolating-the-unknown procedure was a key aspect in the systematization of algebra 
conducted by Arab mathematicians in the 8th and 9th centuries (Al-Khwārizmī and others; see Oaks 
& Alkhateeb, 2007). It involves operations with known and unknown magnitudes to simplify 
equations. Mathematicians called these simplifying operations al-gabr and al-muqābala, and it is 
from the former that our modern term algebra borrows its name. By working with Cyr and by 
thematizing actions through language, the teacher strives to enable the students to reach a deeper level 
of understanding of the ideas underpinning the algebraic procedure. In the next sections, I discuss the 
work of one small group, focusing on two equations. 

 
1 Here is an example of a simple word problem: “Sylvain and Chantal have some hockey cards. Chantal has three cards 
and Sylvain has two cards. Their mother puts some cards in three envelopes and makes sure to put the same number of 
cards in each envelope. She gives one envelope to Chantal and two to Sylvain. Now the two children have the same 
number of hockey cards. How many hockey cards are inside each envelope?” (Radford, 2017, p. 18). 
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The equation in the CSS and the ISS 
The two equations were given in the ISS. They are translations of a story in which two children have 
cards and envelopes. Each envelope has the same unknown number of cards, and both children have 
in total the same number of cards (see footnote 1). The exercise of translating stories of this type into 
the ISS was done in Grade 2 and continued in Grade 3. In this section I discuss the students’ dealings 
with the equation  (Figure 1.1) and in the next section I discuss the equation 

(Figure 1.2). 

  
Figure 1. The equations  as presented to the students in the ISS 

Using a kit of envelopes and cards, the students were asked to make an equation and solve it, then 
draw their procedure. The idea was, hence, to have the students solve the equation first in the CSS, 
then using the ISS. The students made the equation in the CSS (Figure 2.1). Then, they drew the 
equation in the ISS. Elsa says: “We must remove that (she circled the card on the left side of the 
equation) so that there are just envelopes, do you remember? (Then she removes one card on the 
other side) 1, 1.” (Figure 2.2). The answer is found by the comparison method (i.e., the students 
compare the equal to the equal and associate the remaining parts of the equation: in this case, one 
envelope on the left side is equal to the envelope on the right; hence, the other envelope is equal to 
the five remaining cards). 

 

 

 

Figure 2. Solving the equation  in the CSS and the ISS 

The teacher arrives and asks the students to explain their procedure. The students construct again the 
equation in the CSS. They remove one card from each side of the equation. The teacher says: “You 
are in the process of isolating! . . . How many envelopes do you want on one side?” Puzzled by the 
question, the students look at each other. One moment ago, Elsa mentioned the idea of having 
envelopes on one side. The teacher’s intervention pushes the conversation further. On the one hand, 
the teacher acknowledges that the students are in the process of isolating the unknown. On the other 
hand, she raises a question that deals with something that has not been considered by the students. It 
is this unconsidered aspect of the simplification of the equation—a mathematical operation that would 
lead from  to  equal to something—that puzzled the students. 

1  Teacher: You want to know how many cards there are in ONE envelope (she points to the envelope 
several times when she says ONE) . . . First of all, you did this (she removes a card from 
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each side) you removed a card . . . Okay, what happens now? There are 2 envelopes 
(pointing to the envelopes on one side of the equation), then (pointing to the objects on the 
other side of the equation) 1 envelope and 5 cards. 

2  Cora: We counted all these (points to the cards). It's 5. So, it (pointing to 1 of the envelopes) should 
have 5 too (see Figure 3.1). 

3  Teacher: How do you know? 
4  Elsa: We are going to remove (she removes 1 envelope from the left side; see Figure 3.2). 
5  Teacher: You're removing 1 envelope?  
6  Elsa and Cora: Yes. (Elsa removes an envelope from the other side as well; Figure 3.3). 
7  Teacher: Why did you choose to do that?  
8 Cora: Because this (the sides of the equation) must be equal. 
9  Elsa: because we must remove; because there must be only 1 envelope left (she takes the envelope 

that is left) 
10  Teacher: Is it okay to remove 1 envelope and then 1 envelope? Is your equation still equal? 
11 Cora: Yes!  

 

Figure 3. The students and the teacher discussing the equation  

In Line 1 the teacher starts simplifying the equation as the students did. She says: “First of all, you 
did this” and removes one card from each side. Then, in an encouraging tone, she asks “What happens 
now?” In Line 2 Cora resorts to the comparison method, but the verbal articulation of ideas leaves 
important relations unaccounted for. These are the relations that the teacher asks for in Line 3. In Line 
4 Elsa starts removing one envelope from each side. The teacher wants to make sure that the students 
understand the idea behind the “removing” operation. So, in Line 7 she asks for reasons. In Lines 8 
and 9 the students offer two answers: Cora’s focuses on the conservation of the equality between both 
sides of the equation; Elsa’s focuses on the idea of ending up with one envelope. In Line 10 the 
teacher wants again to make sure that there is a clear understanding of the actions that are carried out 
to simplify the equation. When the teacher leaves, the students come back to the equation in the ISS 
and remove one envelope from each side (Figure 3.4). 

So far, the isolating-the-unknown procedure has necessitated the application of a key operation: 
removing equal things from both sides of the equation. In the next equation an additional 
mathematical operation is required. Let’s turn to the students’ investigation of this equation. 

The equation  in the CSS and the ISS 
The students tackle the equation . They construct the equation in the CSS and, instead 
of solving it with the help of concrete materials, they draw the equation.  

Cora starts by removing one envelope from each side. After that, she removes one card from each 
side (Figure 4.1). 

12  Elsa:  You only removed 1, but there must be only 1 envelope left. That's a problem. (They think 
for a while; then Elsa continues). Four [cards], but there's not another envelope here (points 
to the right side of the equation). 
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13  Cora:  There are 4 cards left, that's 4, we must remove these cards (she circles the 4 remaining 

cards on the right side of the equation) . . . And here (she points to 1 of the remaining 
envelopes on the left side of the equation) there are 0 [cards]. 

14  Elsa:  Yes but look! If there is 0 [cards] in the envelope, this (pointing to the envelope on the right 
side of the equation) will be 4 and this (pointing to an envelope on the left side) will be 1 
[meaning perhaps 0]. But the 2 [envelopes] must have the same exact (she points to the 
drawing), the 2 [envelopes] must have the same number [of cards]. 

15  Cora:  (Explaining the idea again) We removed that (the 4 cards). 
16  Elsa:  Then, there are 0, but there must be some cards [in the envelope]. 
17  Cora:  Why? 
18  Elsa:  Here you have to remove this, here you remove this (points with her pen to her drawing) 

and you can't remove that [the 4 cards on the right side], because there are not 4 other 
[cards] here [on the left side] that you can remove . . . 

Here, the students find themselves in a new situation. While in the previous problem, removing the 
same number of cards and envelopes was sufficient to isolate the unknown, in this problem the 
“removing” operation is not enough. They end up with two envelopes on the left side of the equation 
and four cards on the right side. They cannot continue removing envelopes for, as Elsa notes in Line 
12, there are no more envelopes to remove on the right side. And “That's a problem.” Cora suggests 
removing the four cards on the left side, which will lead them to zero cards. She then assigns zero 
cards to one of the two envelopes on the left side, which means that there are four cards in the other 
envelope. Elsa points out two problems with Cora’s suggestion. First, she argues that all envelopes 
must have the same number of cards (Line 14). Second, simplifying entails removing the same things 
on both sides of the equation (Line 18). This requirement or condition is violated. 

The students reach an impasse. “On est en train de se chicaner pour la réponse” [“We are having an 
altercation over the response”]. They tried to call the teacher, but she was busy discussing with 
another group. I was videotaping this group; I removed my headphones and went to talk to the 
students. I suggested that they use the concrete material (envelopes and cards). The students 
constructed the equation again and proceeded to remove one card and one envelope on each side. 

19  Elsa:  There are still 2 envelopes left (see Figure 4.2). 
20  Mia:  Then, there are 2 (pointing to 2 cards) here (pointing to 1 of the envelopes) and 2 

(pointing to the 2 remaining cards) here (pointing to the other envelope; see Figure 4.3). 
21  Cora:  There must be 1 envelope! 
22  Elsa:  (She removes 1 envelope and moves the cards to the other side of the equation; see 

Figure 4.4)  

 
   

Figure 4. Discussing the solution of  in the CSS 

In Line 20 Mia suggests an idea. However, the idea is not taken into consideration by the other 
students. Perhaps because the idea is not framed within the kind of actions that the students recognize 
as legitimate in solving the equation. Yet, we see in Figure 4.4 that Elsa, in despair, removes one 
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envelope and transfers the cards to the other side of the equation, placing them underneath the 
envelope, twice breaking the "do the same on both sides" rule. Not finding a convincing way to 
proceed, Elsa (like Cora in Line 13) steps outside the boundaries of the algebraically thinkable that 
they have established so far. The situation once again became very tense as we saw in Line 18. Elsa 
says that they are still altercating and laughs. Cora says: “OK. We’ll do it again!” They remove one 
card and one envelope from each side of the equation. 

23  Elsa:  There are 4 [cards]. We must have just 1 envelope remaining. So, we must remove 1 
[envelope]; we don’t have a choice (she removes the envelope). 

24  Cora:  Yes, but if we remove 1 … we must remove something else (she points to the other side 
of the equation). 

They discuss for a while and come back to the simplified equation ( ).  After looking 
attentively at the 4 cards and the 2 envelopes, Elsa says that she has an idea:  

25  Elsa:  Wait, wait. Here's my idea. Because we have 2 [cards] here (with each hand, she takes 2 
cards from the bunch of 4 cards; then, she slowly moves the 2 hands holding the cards 
and puts them in front of each of the envelopes; see Figure 5.1. When the cards arrive at 
their destination, she says) 2 in each envelope.  

  She immediately starts the explanation again: she slides the 4 envelopes as she did before, 
on one side of the equation. She says:  

26  Elsa:  Separate this [the 4 cards] into 2 (as she says this, she separates the envelopes; see 
Figure 5.2. She then slides them in front of each envelope); there are 2 in each envelope. 

   

Figure 5. Finding (again) how to solve the  equation 

Elsa’s demonstration is followed by Mia’s reaction: 
27  Mia:  This is what I said before, but you, you were . . . 
28  Elsa:  (completing Mia’s sentence) . . .  altercating! 
29  Mia:  . . .  you said, no, no . . . 
30  Elsa:  I am sorry, Mia! 

Cora makes the equation again and goes through the steps to isolate the unknown. When she reaches 
the equation , she says:  

31 Cora:  We are going to separate . . . (and slides the 2 cards towards 1 envelope and 2 cards towards 
the other envelope; see Figure 5.3). 

Mia is right in arguing that she suggested long before (Line 20, Figure 4.3) that each envelope has 
two cards. However, her suggestion was not articulated in terms of a separation of cards. In Elsa’s 
case, the solution appears first in an embodied way: “Wait, wait. Here's my idea. Because we have 2 
[cards] here . . . 2 in each envelope.” The few uttered words are accompanied by a complex set of 
grabbing and sliding actions that remain unqualified linguistically. The linguistic articulation appears 
when she starts again the process of solving the problem. She says: “Separate this into 2, there are 2 
in each envelope.” Although the importance of the kinesthetic dimension that accompanied the 
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problem-solving procedure does not disappear, the thematic articulation in language is much more 
sophisticated. The new mathematical operation is named “to separate.” This new operation is a 
precursor of what will later be known as the algebraic operation of division. The Arab mathematicians 
had a term for it: al-radd, decreasing the coefficient of the unknown to 1. 

In previous research we have found that at the precise moment of learning something, the students 
undergo a process where mathematical thinking becomes reorganized; what previously took many 
words and actions becomes reorganized and contracted: the students filter the necessary from the 
unnecessary and their semiotic activity becomes contracted. There is a semiotic contraction (Radford, 
2021). Here, we see the opposite process: in Line 26 Elsa adds actions and words to signify the 
emerging operation. There is a semiotic expansion that allows her and her teammates to better notice 
the operation and endow it with meaning.  

The students kept solving with their hands the equation in the CSS several times. It seems that seeing 
was not enough and that feeling with their hands and their bodies was necessary. Then, they drew 
their solution in the ISS. The new operation requires a sign to be expressed. Figure 5.4 shows that the 
students chose an arrow, which is reminiscent of the sliding action that makes the two cards 
correspond to each envelope. The sign is an icon of the action. 

Concluding remarks 
This article dealt with the topic of equations in early algebra. It focused on the way Grade 3 students 
dealt with some of the key algebraic ideas that underpin the simplification of equations. In the first 
part, I suggested that the characterization of algebra (a) as calculation with letters or (b) as focused 
on operations rather than on their results are both unsatisfactory. In the first case, the characterization 
falls short by limiting the scope of algebra; in the second case it fails by downplaying the complexities 
of arithmetic thinking (which is reduced to trivial calculations). Based on historical-epistemological 
considerations (Radford, 1995; 2001), I suggested a conception of algebra that stress the authenticity 
of denotating unknown magnitudes in various ways and emphasizes the analytic-deductive nature 
that underpins algebraic inquiries. If we know that second degree equations have at most two 
solutions, it is not because we guessed the solutions, it is because they were deduced.  

Starting from these premises, the Grade 3 teaching-learning activity was didactically organized 
around the use of two semiotic systems: the CSS and the ISS. The excerpts analyzed here started with 
a classroom general discussion around different methods to solve the equation  According 
to the definition of algebra suggested in the first section of this paper, the solution of equations 

 does not include the operation of the unknown. As a result, in solving those equations the 
students have not stepped yet into the realm of algebra (Filloy & Rojano, 1987). However, the 
investigation of the equation  provided the students with an opportunity to continue 
familiarizing themselves with the isolating-the-unknown procedure that they encountered in Grade 2. 
In this sense the equation  was envisioned rather as a propaedeutic step towards tackling 
equations of the type  algebraically, something that the students did in the second 
part of the teaching-learning activity. We can see in Figures 3.2 and 3.3 the moment at which Elsa 
applies the al-muquabāla or removing operation that was previously applied to the constants in 
solving the equation  to the equation . The “removing” operation now 
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acquires a new and more developed meaning. It requires seeing the unknown and the equation under 
a new light. It is this new aspect of the mathematical activity that leads the teacher, in Line 10, to ask 
two fundamental questions: “Is it okay to remove 1 envelope and then 1 envelope? Is your equation 
still equal?” More generally, the CSS- and ISS-based teaching-and-learning activity made room for 
meaning-making processes out of which the Grade 3 students to generate, in their work with the 
teacher, two important algebraic ideas that underpin the simplification of equations: “removing” 
(removing equal terms from both sides of the equation) and “separating” (i.e., reducing the coefficient 
of the unknown to 1), those operational ideas that Arab mathematicians referred to as al-gabr / al-
muqābala and al-radd, respectively (Oaks & Alkhateeb, 2007). The emergence of these sensuous 
and embodied operations served as foundational blocks for the students’ encounter with algebraic 
alphanumeric symbolism, which happened one year later, when they were in Grade 4. 
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In this theoretical paper we discuss what a calculational perspective on mathematical activity entails 
and discuss its relevance in terms of related speech genres in the introductory algebra classroom. 
Learning in the introductory algebra classroom is multifaceted because major shifts in form (the 
algebraic syntax versus arithmetic syntax) and function (analytic rather than calculational) are 
expected to take place. This theoretical argument is exemplified through student utterances from a 
Californian 6th grade classroom discussion, in which students’ calculational perspective on 
mathematical activity is apparent. The data reveal traits and intentions from both traditional and 
alternative instructional genres. Our main argument is that the students’ approaches to generalize 
provided patterns were limited to their perceptual field and thus fail to include a deductive argument, 
the key feature of algebraic reasoning.  

Keywords: Algebraic reasoning, analytic perspective, calculational perspective, introductory 
algebra, speech genre.  

Introduction 
This theoretical paper discusses two perspectives on mathematical activity, calculational and 
analytic, that are discernible in introductory algebra classrooms. Different frames of reference, or 
speech genres (Bakhtin, 1986), can present communicational challenges and limit possibilities for 
algebra learning. We take these two perspectives as points of departure and discuss these in terms of 
previous research. A calculational perspective is exemplified through discussions of patterning tasks 
in a US 6th grade classroom.  

Hewitt (2019), in a theoretical contribution, suggested that students in school ought to focus on 
“structure within complex examples” (p. 558) to develop algebraic thinking. Moreover, the students 
should be encouraged to make their reasoning explicit through expressing what they see rather than 
performing any mathematical calculations. Montenegro et al. (2018) argued in a similar manner from 
an empirical point of view. They found that students succeeded in obtaining a functional relationship 
in a figural pattern when the students turned away from the patterns in numbers and turned towards 
structure in the figural pattern engaged with. Both Hewitt (2019) and Montenegro et al. (2018) thus 
argued in favour of an analytic approach over a calculational one. 

Although the goal of algebra teaching is for students to engage in analytical thinking, the calculational 
discourse persists in many classrooms. We argue that research has to acknowledge and investigate 
the role that this discourse plays in students’ participation in algebraic activity. Learning in the 
introductory algebra classroom is multifaceted because major shifts in form (the algebraic syntax 
versus arithmetic syntax) and function (analytic rather than calculational) are expected to take place. 
Sfard (2007) addresses the bewilderment involved in the shift in function of mathematical activity 
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algebra teaching may cause for students through her heading “When the rules of discourse change, 
but nobody tells you”. We would like to contribute theoretical insights into the characteristics of 
students’ calculational perspective in introductory algebra classrooms 

A sociocultural approach to mathematical thinking  
To address students’ perspective on mathematical activity in classroom interactions we draw on 
Radford (2014) who defines thinking as cultural, embodied and material. Students mathematical 
thinking is not a separated and ideal internal process but occur as they use cultural artifacts (function 
table, algebraic syntax, etc.) and other semiotic means in social and goal-oriented activity. The 
semiotic resources the students use to solve patterning problems, such as gestures, spoken and written 
words, numbers, function tables and algebraic symbols, shape the form and generality of their 
mathematical thinking (Radford, 2018). Furthermore, the patterning activity itself and the cultural 
artifacts employed gain meaning from cultural practices such as algebraic reasoning and schooling, 
of which language is a prominent aspect (Sfard, 2007).  

We draw on Bakhtin’s (1986) notion of speech genres when considering the nature of different 
perspectives on mathematical activity and their role in shaping the classroom discourse. According 
to Bakhtin, speech genres are extremely heterogeneous, and examples varies from everyday small 
talk and narratives to sports commentary and different kinds of scientific statements. As an inclusive 
concept, speech genre is not generally defined. Instead, we conceptualize it in terms of the specific 
speech genres discussed in this study. For Bakhtin (1986), the utterance, i.e. the unit of language in 
use and in context, was the basic unit of analysis and he argued that addressivity is the key to 
understanding it. Addressivity refers to the dialogic nature of the utterance, as it is shaped to address 
a particular listener (real or imagined) foreseeing his response. Furthermore, Bakhtin found our 
utterances relatively stable in forms of construction and argued that no utterance is given that does 
not belong to a speech genre, emphasizing that we are not always conscious of it: “[we] speak in 
diverse genres without suspecting that they exist.” (Bakhtin, 1986, p. 78).  

Related speech genres in the introductory algebra classroom 
In the introductory algebra classroom, we argue that there are several related speech genres with deep 
cultural roots at play. A genre form may include linguistically coded intentions and rhetoric that a 
current speaker may not be aware of (Gerofsky, 1999). Gerofsky argued for the importance of 
intertextuality between related genres as “a genre which, in its form and addressivity, recalls other 
familiar genres may bring to consciousness the hidden ground and intentions embedded within 
[these]” (p. 38). Genres speak to students telling them what to expect and what is expected of them. 
Radford (2001) argued that algebra as a way of reasoning involves dealing with indeterminate 
quantities in an analytic and deductive manner with the intensions of explaining and arguing about 
general relationships and methods for solving problems. Thus, algebra is a specific genre form.  

Another speech genre at play is instructional discourse. Mehan (1979) showed that utterances in the 
classroom (mathematics as well as other subjects) followed a distinct pattern of initiation-reply-
evaluation (I-R-E). Thus, it can be seen as a rather standard and rigid speech genre, also found to 
dominate mathematics teaching in American classrooms (Stigler & Hiebert, 1999). 
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Experimental studies have developed alternative programs to open up classroom discourse, in which 
students explore new problems, pose conjectures and argue (Lampert, 1990). Reform documents, 
such as Standards 2000, aim to bring these ideas into the ordinary classroom (Hiebert, 1999). The 
speech genre involved shares some ground and intentions with algebraic reasoning since algebra grew 
out of a sociocultural context of explaining and arguing (Radford, 2001).  

Hiebert (1999) explained that the implementation of alternative programs in school districts have not 
been effective for a simple but unappreciated reason, since it “is hard to change the way we teach” 
(p. 15). Furthermore, Hiebert argued that there is overwhelming evidence that what students learn in 
traditional teaching is unsatisfactory and consists of the following: “In most classrooms, students 
have more opportunities to learn simple calculation procedures, terms, and definitions than to learn 
more complex procedures and why they work or to engage in mathematical processes other than 
calculation and memorization” (p. 12). This supports the notion of students developing a calculational 
perspective on mathematical activity in mathematics classrooms. Furthermore, this genre can be seen 
to emerge as students’ uptake of teachers’ intentions in traditional instruction. A genre analysis of 
classroom interactions can shed new light on the communicational processes that shape the 
introductory algebra classroom discourse. In this paper we limit the further discussion to explore the 
nature of a calculational perspective and contrast it to an analytic perspective.  

Calculational and analytical perspectives in introductory algebra 
We propose a new theoretical stance on student activity in the introductory algebra classroom, i.e. a 
calculational perspective. Based on previous research on algebra learning, we single out as key 
demarcations between algebraic and calculational perspectives: (1) ways of interpreting signs and 
operations; (2) strategies for solving problems; and (3) ways of justifying solutions. This is contrasted 
to an analytic perspective, which is a central feature of algebraic reasoning (Radford, 2012).  

As regards the first demarcation, Booth (1984) and Kieran (1981) found that students working with 
numbers and their operations tended to interpret the operational signs and the equal sign as signaling 
types of actions rather than structure. Additionally, Kieran showed that students developed a limited 
view of what constitutes a mathematical solution and were likely to search for numerical answers 
(lack of closure). Radford (2018), upon repeatedly observing that 4th, 5th, and 6th grade students 
included an equal sign in their generalizations (i.e. n + n = x), argued that the conceptual challenge 
for students was not necessarily the alphanumerical symbols themselves, but a need for 
reconceptualizing numerical operations.  

Students holding a calculational perspective are limited to a processual view of signs and operations. 
In contrast, an analytic perspective includes a structural view of operations: (1) signaling 
mathematical structures that are relevant and can be used in transformations of expressions (Kieran, 
2018); and (2) seeing expressions as objects in themselves that can be operated upon, substituted, or 
classified (Sfard, 2007). These are interdependent of a developing awareness of mathematical 
generalities (Kieran, 2018) and an acceptance of indeterminacy, both in operations (operating with 
indeterminacy as if it were a number) and solutions (Radford, 2018).  

Concerning students’ problem-solving strategies, the second demarcation, students often use a guess-
and-check strategy to solve new algebraic problems, including patterning tasks (Bednarz & Janvier, 
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1996; Lannin, 2005; Radford, 2018). Bednarz and Janvier (1996) found that students using a guess-
and-check strategy were not able to accept indeterminacy and remained dependent on performing 
calculations on numbers. In contrast, students that used a strategy of determining the underlying 
structure of the problem (which included the linking of different mathematical structures such as for 
example additive and multiplicative to determine how many equal parts) were able to explain an 
algebraic equation when shown such a solution.  

Addressing the third demarcation, students’ justifications, Lannin (2005) showed that 6th grade 
students mainly used empirical results to determine and justify their pattern generalizations when left 
to themselves. They tended to focus on particular values to determine and verify generalizations, 
rather than a general relation. Radford (2012) argued that algebra is an analytic art. Formulas must 
be deduced and not guessed for students to engage in algebraic reasoning. They have to come up with 
a deductive argument. A deductive argument, for example in a patterning activity, includes three 
components: (1) noticing a commonality between the terms p₁, p₂, p₃, …, pₖ; (2) generalizing this to 
all subsequent terms pₖ₊₁, pₖ₊₂, pₖ₊₃, …; and (3) using the communality to formulate an expression for 
any term in the sequence, i.e. an explicit strategy to generalize a sequence (Radford, 2008). However, 
students more often pursue a recursive strategy where each term (pₖ) is determined from the previous 
one (pₖ₋₁) (Lannin et al., 2006). Radford (2012) argued that such a generalization is of an arithmetic 
nature, as opposed to algebraic, as it is limited to include terms within the perceptual field. It does 
not include the third component of a deductive argument. Nevertheless, guess-and-check and 
recursive strategies might be helpful in generalizing a pattern. Particularly, a recursive strategy can 
give insight into the pattern’s rate of change, which again can be helpful in developing an explicit 
expression. However, research shows that students struggle to see the connection between the two 
ways of generalizing a pattern (Lannin et al., 2006).  

Ellis (2007) showed that the processes of generalization and justification were interwoven in students’ 
activity. 7th grade students’ generalizing acts were directly linked to the justifications they gave. On 
the other hand, their view of what counts as an acceptable justification influenced their generalization 
process and students following a deductive justification scheme developed more sophisticated 
generalizations from initially limited or unhelpful generalizations. 

In sum, a calculational perspective on mathematical activity includes (but is not limited to): 1) 
viewing numbers as the main objects of activity and other signs and operations as actions to perform; 
2) employing strategies rooted in calculational processes in problem solving, and 3) relying on 
empirical results for justification. These aspects may confirm and reinforce each other as Ellis (2007) 
pointed out, and they may function as barriers for students’ engagement in algebraic, analytic 
reasoning. The intention of the calculational genre, as opposed to the algebraic genre, is to perform 
calculations following known procedures to produce correct numerical solutions. 

Students’ calculational perspective in a 6th grade classroom 
To empirically exemplify our theoretical contribution, we draw on data from a Californian 6th grade 
classroom where students were working with patterning tasks. The background for this paper is an 
international algebra project called VIDEOMAT (see Kilhamn & Säljö, 2019). An in-depth analysis 
of students’ discourse in classroom patterning activity showed that students across countries pursued 
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similar solving strategies. Reinhardtsen and Givvin (2019) found that students focused on processes 
of calculations rather than structure and quantitative relationships in their work, i.e. they drew on 
operations on numbers rather than introduced algebraic ideas and symbols. 

The teacher’s approach to working with every patterning task involved three main phases of activity, 
classroom exploration of a pattern, making a function table and developing an explicit generalization 
from a recursive one when possible, and extending the generalization to all subsequent terms and 
creating an algebraic expression. The teacher first asked for students’ observations and suggestions 
before proceeding, allowing students to pose conjectures and ideas.  

We structure the following section according to the three main characteristics of the calculational 
perspective outlined above. The first two episodes exemplify students’ view of numbers as the main 
objects of activity and other signs and operations as actions to perform. The third episode exemplify 
students use of strategies rooted in calculational processes, thus relying on empirical justification.  

Explicit and recursive generalizations: “Multiplying by 4 or they're adding 4” 

In the first lesson the teacher introduced the metaphor of function machine, emphasizing an explicit 
relationship between sets of numbers in the second phase of activity. In the first phase of activity the 
class discussed the numerical sequence 4, 8, 12, 16, __, __, __. Students suggested both recursive 
generalizations: “Like it's plus 4, 4 plus 4 equals 8, and 8 plus 4 equals 12, and so on”, and explicit 
ones: “I did multiples of 4, 20, 24, 28”. 

In phase two, the teacher drew a function chart and a function machine and then asked the students 
to discuss shortly with their seat-partner: “And if I put a 2 in, what's going on in here, so that I get an 
8 out. What's happening in this machine that represents this number sequence?”. One student, Mara, 
made a link to the previous discussion and said to her partner: “Multiplying by 4 or they're adding 
4”. Another student, Ivy, offers a more literal explanation: “And then it came out in a different 
number, so it's a function machine”.  

The ideas presented by students in the whole class discussion in the first phase are mainly concerned 
with how to calculate the terms in the sequence. Mara’s uptake of the calculational ideas as presented 
in phase two shows that these are accessible to other students. However, making sense of the 
difference between the two generalizations, recursive (pₖ= pₖ₋₁+4) and explicit (pₖ=4k) and the 
relationship between them, requires looking at the numbers and operations analytically.  

Neither Ivy nor Mara picked up on the significant changes in the perspective that the teacher was 
emphasizing. Ivy offered a literal interpretation and referred to a transformation of a number, as if by 
magic. Mara linked the teacher’s question to the previous discussion but did not notice that the 
operation of “adding 4” no longer was appropriate, i.e. the horizontal relationship between numbers 
in the two columns only corresponds to an explicit generalization of the sequence.  
 
Using letters: “Because you can do 4n … n can be any number, so multiply it”  

In the third phase of working with the sequence above after having determined the 10th and 20th terms 
of the sequence together, the teacher asked the students to discuss the general expression with their 
seat-partner “How do I show 4 times any number. We're just calling it n for right now”.  
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Trace explained his expression to his partner: “4n. Because you can do 4n, yea, 4n. n can be any 
number, so multiply it, 4 dot n, 4n, stuff like that”. Trace made sense of his expression on the terms 
of being able to perform a calculation when replacing n with a number: “Because you can do 4n… n 
can be any number, so multiply it”. Thus, Trace was able to respond to the teacher’s question of how 
to show “4 times any number”. However, as Küchemann (1978) pointed out, there is a leap between 
being able to evaluate an expression and using a letter as a variable to express mathematical structures 
and relationships.  

In the third lesson the class worked with a figural pattern. In phase one the whole class discussion 
centered around rate of change. However, in the second phase of creating a function table guided by 
the teacher, the students no longer made references to the figures but quickly noticed a familiar 
(quadratic) relationship between the numbers in the two columns. Luna set up multiple numerical 
expressions such as 1·1=1, 2·2=4 and 3·3=9, and in the third phase she suggested: “It’s called n times 
n equals x”. Her generalization was developed and verified through calculating numerical 
expressions, and her algebraic expression also resembled these.  

Guess-an-check strategy: “I tried the next number which is 6” 

The teacher emphasized the relationship between a recursive and an explicit generalization as a 
strategy to determine the explicit expression throughout the classroom work. However, the students 
mainly used a guess-and-check strategy when working independently with function charts.  

In the third lesson the teacher gave the students a function chart in which the left column included 
the numbers 1-8, with x as the last entry, and the right column included the four first entries: 5, 11, 
17, 23. The instructions were to fill in missing numbers, describe patterns and write an expression.  

The teacher, in a whole class setting, asked Liam to explain what he noticed. He explained that he 
first looked at “1 times something gets to 5”, deciding this being 5. He then tried the next pair of 
numbers in the chart (2, 11), but found that 2·6≠11: “So, I realized that you could do, I tried the next 
number which is 6”. He then explained he did minus one to get the number he needed; five. He then 
tried the sequence of operations regarding the next pair of numbers in the chart (2,11): 6·2=12,  
12-1=11, and found that it worked. Liam demonstrates how the students approached the number 
sequences through guess-and-check. Also when working with figural sequences, the students used 
this strategy. Lisa, in the fourth lesson, explained her approach: “Um, I tried it, I kind of did, um. I 
don’t know how to explain it, but I started with doing multiplying it by 1 and adding 2, but it didn’t 
work. So, I tried multiplying by 2 and subtracting 1”. The students working with function charts 
increasingly made explicit generalizations, but these were mainly based on numerical schemes rather 
than analytical ones. This finding coincides with Ellis’ (2007) argument. 

Synthesizes and concluding remarks 
In this paper we set out to come up with theoretical insights into the characteristics of students’ 
calculational perspective in introductory algebra classrooms. We have argued that developing 
algebraic reasoning is a challenging process as previously met calculational perspectives interfere 
when trying to reason analytically about number patterns and figural patterns. The empirical examples 
demonstrate that students approach problems in introductory algebra through a calculational 
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perspective. They face difficulties making sense of the difference between a recursive and an explicit 
generalization (cf. Lannin, 2005; Lannin et al., 2006), they evaluate letters but struggle using them to 
express structure and generalities (cf. Küchemann, 1978; Radford, 2018), and they use a guess-and-
check strategy (cf. Bednarz & Janvier, 1996; Ellis, 2007).  

The classroom data reveal traits and intentions from both traditional and alternative instructional 
genres. Elements such as letting students explore sequences, notice patterns, and suggest ideas invited 
students to engage in generalization processes. However, the use of a function chart and algebraic 
notation as a step-by-step process heavily supported by the teacher share traits with the traditional 
instructional discourse and may have informed students’ participation in the activity. Deeply rooted 
norms (cf. Stigler & Hiebert, 1999) of emphasizing procedures and products (solutions, facts, etc.) 
rather than mathematical processes (problem solving, generalizing, etc.) came to the fore in the 
classroom, despite efforts by the teacher to focus on the latter in discussions. 

We argue in accordance with Radford (2012) that the students’ calculational perspective is of an 
arithmetic nature, as opposed to an algebraic nature. The students’ approaches to generalize the 
patterns are limited to their perceptual field, and thus fail to include a deductive argument, the key 
feature of algebraic reasoning (Ellis, 2007; Radford, 2012). Despite the teacher’s efforts, the students 
do not make sense of the shifts in form (the algebraic syntax versus arithmetic syntax) and function 
(analytic rather than calculational) in this classroom. These expected shifts unfortunately do not take 
place. More research is needed to investigate the role that the calculational perspective play in 
students’ participation in algebraic activity. 

Radford (2018) found that symbolic thinking, in which letters are used to develop a generalization, 
took a long time for students to develop. Furthermore, it developed in line with an increasingly 
analytic approach to patterning activity. A genre analysis of the introductory algebra classroom 
supports this finding. A genre form includes many aspects that reinforce each other, as we have 
pointed out concerning calculational and analytical genres. Our discussion suggests the importance 
of addressing the elements of the algebraic genre as a consorted effort.  
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Elementary algebra has been the bedrock of science and technology for centuries. But taught algebra 
today is much more a set of formal exercises than a modelling tool. The present study focuses on the 
notion of formula and how its curricular evolution appears to be a witness and a cause of the 
degradation of taught algebra as a modelling tool. This examination involves careful analyses of 
curricular facts that seem not to have attracted the full attention of researchers, such as the vanishing 
of parameters from algebraic equations. Drawing on the anthropological theory of the didactic 
(ATD), we outline the perspective of an imperative revitalization of the elementary algebra 
curriculum. Data used in the study include curriculum materials such as textbooks from different 
countries and various types of publications on school algebra by authors influential in their time. 

Keywords: Curriculum, didactic transposition, elementary algebra, formulas, parameters. 

Introduction 
The passing of time changes curricular contents. This universal process of “curricular aging” can lead 
any subject matter to lose a large part of its instrumental value and to deteriorate to the point that its 
study at school becomes but a rite of passage imposed on the younger generations. In this study, we 
try to set out conditions favourable to making elementary algebra, understood as the algebra taught 
in secondary schools, an effective tool for understanding many “facts” of both the mathematical and 
the extra-mathematical world. By studying how the possibilities offered by elementary algebra have 
been greatly reduced by the evolution of the algebra curriculum over the last century, we will 
highlight the potential of elementary algebra to become a tool for understanding the world around us. 
Our research question is: What key conditions should secondary school algebra meet to become an 
effective modelling tool for our time? 

On the epistemology and methodology of the study 
In the framework of the ATD (Chevallard, 2019, 2020), the modelling of didactic phenomena rests 
on the notions of person, institution, and institutional position.  

All human individuals are persons. Any “instituted” reality is an institution, such as a family, a class, 
a couple, a school, a ministry, the Norwegian society, and the French society. Any institution is 
organized into a set of institutional positions: In a classroom, there is the teacher position and the 
position of student; in mathematics education, there are the positions of textbook author, of teacher 
educator, of “great mathematician”, etc. An institutional position is occupied by persons who thus 
become “subjects” of the institution. Persons are shaped by the set of institutional positions they 
occupy and have occupied. Persons are thus singular representatives of a position to which they are 
subjected. At the same time, persons can change the positions they occupy; there is thus a dialectic 
between persons and institutions in the making of a society.  
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Consequently, to study any institutional position, one studies the persons who are or have been its 
subjects; and, conversely, in order to study a person, one studies the positions he or she occupies or 
has occupied. Hence, in this study, we have studied persons’ publications that allow us to enlighten 
the historical evolution of the teacher and student positions regarding elementary algebra. This has 
enabled us to identify conditions and constraints that have determined the current didactic 
transposition of elementary algebra and, most importantly, the vanishing of parameters from it. Our 
methodology is essentially that of didactic transposition analysis (Chevallard, 1991). 

The take-off of algebra: From rules to formulas 
We shall first highlight the key points of the changes that have affected the algebra curriculum, in 
order to identify core requirements for revitalizing secondary school algebra. We will focus on an 
aspect little considered: the role played (or not played), in the algebra curriculum, by the notion of 
formula, seen both as a symptom and as a cause of the impoverishment of school algebra. Here is a 
typical rule found on the Internet for how to find the area of a trapezoid (How to Find the Area, n.d., 
Example Question #1 section): “To find the area of a trapezoid, multiply the sum of the bases (the 
parallel sides) by the height (the perpendicular distance between the bases), and then divide by 2.” 
Once fully algebraized, this rule becomes a formula: A =   (b1 + b2)h, where b1 and b2 are the lengths 
of the parallel sides and h the distance between them.  

Parameters: From implicit to explicit 

To distinguish between “arithmetical rules” and “algebraic formulas,” we must use the essential 
notion of parameter. In the formula A = l × b for the area of a rectangle with length l and breadth b, the 
letters l and b are parameters specifying the rectangle. While a rule (in words) contains parameters 
implicitly (like “length” and “breadth”), a formula contains explicit parameters. Consider the 
following rule given by Percival Abbott (1869–1954) in his book Algebra (Abbott, 1942/1971):  

The area of a rectangle in square metres is equal to the length in metres multiplied by the breadth 
in metres. This rule is shortened in Algebra by employing letters as symbols, to represent the 
quantities… [With the letters l, b, and A representing respectively the length, breadth, and area (in 
metres and square metres)] the above rule can now be written in the form: A = l × b.” (pp. 13–14) 

A rule thus expressed is therefore called a formula. With this, a question arises. According to Abbott 
(p. 13), the “classical” doctrine on the arithmetic-algebra divide consists in the fact that, in arithmetic, 
one employs definite numbers, whereas in algebra, “we are, in the main, concerned with general 
expression and general results, in which letters or other symbols represent numbers not named or 
specified.” Now this statement is subtly contradictory to the notion of “arithmetical rule”: In the rule 
for the rectangle, we have, not “definite numbers,” but “implicit parameters,” the length and the 
breadth, not represented by letters. 

How can this seeming discrepancy be explained? A quick answer is: In arithmetic, students are given 
a rule—they only have to apply it when the (implicit) parameters in the rule take definite numerical 
values. Deriving a formula (relying on some basic, given rules or formulas) is usually rather easy 
when done algebraically. In contrast, if you do it “arithmetically,” it usually becomes more complex, 
and beyond the reach of beginners. This can be linked to the notion of topos of an institutional 
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position, that is the set of types of tasks that persons in that position may have to perform (Chevallard, 
2019). Let us repeat: in arithmetic, the teacher provides the rules ready-made, and the students simply 
apply them to numerical values. 

In his History of Mathematics, David E. Smith (1925/1958, p. 437) made this comment: “To the 
student of today, having a good symbolism at his disposal, it seems impossible that the world should 
ever have been troubled by an equation like ax + b = 0.” Such however was the case. The algebraization 
of arithmetic was a huge step forward, a game changer for the sciences. But an almost surreptitious 
drawback happened that greatly reduced the power of the algebra actually taught.  

A Pyrrhic victory 
The algebraic modelling of arithmetical rules might pertain to the student topos, as the exercise set 
of Abbott’s Algebra (1942/1971) seems to show. Here are some of Abbott’s exercises (pp. 20–21): 
“Write down expressions for: (1) The number of pence in £x; (2) The number of pounds in n pence… 
(19) A train travels at v  km/h. How far does it go in x hours and how long does it take to go y  km?” 

The implicit parameters of arithmetical rules are here translated into explicit parameters: n, v, x, and 
y. However, in the history of elementary algebra, explicit parameters will tend to be replaced by 
“definite numbers.” Here is an example taken from the chapter “Simple Equations” of Abbott’s book: 

A motorist travels from town A to town B at an average speed of 64  km/h. On his return journey 
his average speed is 80  km/h. He takes 9 hours for the double journey (not including stops). How 
far is it from A to B? (Abbott, 1942/1971, p. 66) 

Abbott (1942/1971, p. 76) describes another type of equations “in which the values of the unknown 
quantities will be found in terms of letters which occur in the equation.” He calls them literal 
equations and states that they can be solved by the same methods as simple equations. The examples 
he gives of literal equations are 5x – a = 2x – b, and a(x – 2) = 5x – (a + b). The 14 equations in the related 
exercise set are similar to these: they are quite simple, and nobody knows what they claim to model—
they are a mere didactic device, related to the need for tasks for repetitive training. We will come 
back to this phenomenon in the section “A turning point in the didactic transposition process.”   

Transformation versus evaluation of formulas: Reaching a demarcation line 

The paucity of the material thus presented by Abbott is in striking contrast to the chapter’s 
introduction, which begins with this promising statement (Abbott, 1942/1971): 

One of the most important applications of elementary Algebra is to the use of formulae. In every 
form of applied science and mathematics… formulae are constantly employed, and their 
interpretation and manipulation are essential. (p. 69) 

The author explains that formulas “involve three operations: (1) Construction; (2) 
manipulation; (3) evaluation” (p. 69). The construction of a formula does not start 
from scratch: it relies on formulas previously established, either theoretically or 
empirically. The first “worked example” given by Abbott is typical: “Find a formula 
for the total area (A) of the surface of a square pyramid as in Fig. 10 [see figure 
opposite] when AB = a and OQ = d ” (p. 70). Here, the use of algebra is genuine but 
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minimalist. By contrast, the second example and all the exercises given by Abbott are just evaluation 
tasks, as this exercise: “The volume of a cone, V, is given by the formula V =   πr2h, where r = radius 

of base, h = height of cone. Find V when r = 3·5, h = 12, π =  ” (Abbott, 1942/1971, p. 70).  

The manipulation of formulas is only present in the section entitled “Transformation of Formulae.” 
About the volume of a cone (V =   πr2h), Abbott (1942/1971) writes: 

It may be necessary to express the height of the cone in terms of the volume and the radius of the 
base. In that case we would write the formula in the form: h =  , that is, the formula has been 

transformed. When one quantity is expressed in terms of others, as in V =   πr2h, the quantity thus 
expressed, in this case V, is sometimes called the subject of the formula… This process of 
transformation has been termed by Prof. Sir Percy Nunn “changing the subject of the formula.” 
(pp. 71–72) 

About such a change, Abbott (1942/1971) adds this caveat: “The transformation of formulae often 
requires skill and experience in algebraical manipulation” (p. 72). He then illustrates the “methods” 
to be followed by five “worked examples.” In one of them (p. 73), he transforms the formula L = l +   

to find d in terms of L and l and arrives at d =  . Readers are not asked to find the 

expression of l in terms of L and d—the answers are l =   —, which would require solving 

the quadratic equation  l2 − Ll +  = 0. Here we reach the demarcation line drawn by the traditional 
didactic transposition of elementary algebra. 

This line draws a curricular curiosity. Firstly, the quadratic equations with parameters considered 
have only one parameter. Secondly, students are not asked to give the expression of their solutions 
(which, in the general case, would include the parameter), but simply to specify, according to the 
value of the parameter, when they have 0, 1 or 2 roots. This sudden change of didactic contract 
(Brousseau, 1997)—an equation is no longer “something to be solved” but to be “studied” or 
“discussed”—was (and still is) a source of difficulty for students. In spite of this, the question of the 
“manipulation” and transformation of formulas, alongside their “construction” and “evaluation,” 
which are much less problematic, is at the heart of what algebra can consist of. In Abbott’s Example 
5 (p. 74), readers are asked to find the length l of a simple pendulum in terms of the other quantities 

when its time of vibration is given by t = 2π  . Exercise 13 (No. 2) is about expressing the radius r 

of a sphere in terms of its volume V (p. 74). The usefulness of these transformations seems obvious. 
Now the big problem is that the type of tasks in question— “changing the subject of a formula”—has 
become marginalized in most secondary curriculums. A study of Norwegian textbooks used in recent 
decades is a clear testimony to this fact (Strømskag & Chevallard, 2021). In one of the textbooks for 
Grade 11 (Sandvold et al., 2006, p. 26), the authors consider the formula v =   (where v is the speed, 
d is the distance travelled, and t is the time) and explain how to “solve the formula with respect to the 
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time t ” as if the students were complete beginners in elementary algebra. The authors then explain 

how to solve for c the (fabricated) formula p = a +    bc2 to arrive at c = ± . Then follow tasks that 

ask to solve for t these formulas: d = vt; d =  at2; v = v0 + at; d = . This is a limited viaticum (e.g., 
there are no quadratic equations with parameters) for a further journey into elementary algebra. The 
same phenomenon prevails in French textbooks (Chevallard & Bosch, 2012) and in German 
textbooks (e.g., Brandt & Reinelt, 2009). The latter is in line with the German Mathematics Standards 
for the expected level by the end of upper secondary education (Kultusministerkonferenz, 2012), 
where parameters are present in some of the example tasks but never in equations to be solved. 

The pitfalls of didactic transposition 
The marginalization of formula transformation 

Let us consider the following exercise proposed by Abbott (1942/1971, p. 75): “There is an electrical 
formula I = . Express this (1) as a formula for V and (2) as a formula for R. Find I if V = 2 and R = 20.” 
A number of teaching institutions choose to “spare” their subjects the algebraic “work” needed to go 
from the formula I =  to the formulas V = R·I and R =  . One of the most widespread techniques, it 
seems, consists in substituting to the algebra needed a graphic “mnemonic trick” which takes the form 
of a triangle in which the parameters V, I, R are displayed (see example in Figure 1).  

 
Figure 1: A graphic mnemonic trick (retrieved from Nimar_geek, 2020) 

This “triangle technique” is pushed forward by institutions. The institutional enforcement of this 
technique seems to send the following message: “You don’t need to know algebra at all.” 

There is also another, widespread technique, which is implemented more by people—students, in 
particular—than by institutions. This technique consists in avoiding any literal calculation. Suppose 
we are given the formula I =  and values for I and R, and are asked to calculate V. If I = 1.2 and R = 20, 

the formula gives rise to the equality 1.2 =   , which is a linear equation in V that the student can 
therefore easily solve. This technique consists in first transforming a formula into a “simple” 
numerical equation.  

A turning point in the didactic transposition process 

How has this demarcation line been drawn? The answer must involve the conditions and constraints 
that have historically determined the didactic transposition of elementary algebra. Two influential 
textbook authors who have taken part in this transpositive work are Abbott and Nunn. About the 
phrase “Change the subject of a formula,” Nunn writes in his book The Teaching of Algebra (1914): 

Proceedings of CERME12 624



 

 

 

He [the author himself] believes that it was used for the first time in his lectures to teachers of 
mathematics in 1909. It was subsequently adopted in the Report on the Teaching of Algebra by 
the Committee of the Mathematical Association. (p. 78) 

Why did Nunn introduce this way of saying, which was adopted by Abbott and others, when what is 
required is simply to “solve the equation A = πr2 for r?” Nunn seems to have been quite aware of the 
change he wanted to popularize. Thus, he launches an attack against the position of strength given to 
equations, which he calls “conundrums” that “the school tradition has not lifted … to a much higher 
level of intellectual dignity” (Nunn, 1914, p. 77). 

Nunn’s degradation of equations leads to the coming apart of two distinct topics: equations and 
formulas. Formulas such as V = R·I, which become equations once an unknown has been chosen (we 
can solve V = R·I for I for example), are indispensable in many fields of science and technology. 
Paradoxically, they were going to be marginalized by their very “promotion.” 

This detail of the didactic transposition process is linked to two great constraints. The first constraint 
is that of simplicity: the transposed content must be “simple” enough to offer students a topos that 
they can actually occupy. In France, in the early 1960s, a demanding exercise textbook for Grade 10 
still proposed the following, highly artificial exercise (what exactly is it modelling?): “Solve the 
equation (a + b)2 x2 – (a – b)(a2 – b2)  x – 2ab (a2 + b2) = 0” (Combes, 1961, p. 124). But parameters in 
equations were officially deemed “undesirable” in 1981 (Chevallard & Bosch, 2012, p. 16). The 
second constraint is that, for didactic reasons of repetitive training, the teacher must be able to produce 
at will tasks of any type he or she has to teach. However, because of their origin in specific domains 
(geometry, physics, technology, etc.), it seems that the list of formulas to be “solved” is limited. In 
order to make it easier to create formula transformation tasks, it is accepted to break the link between 
a formula and what it models. The constraints mentioned therefore contributed to making the algebra 
taught a separate field, almost foreign to the other fields of mathematics and science.  

Systems and models: Algebra for the future 
So, what should elementary algebra consist of? To answer this question, we must first introduce two 
basic notions of the ATD: the notions of system and model. A system  is any entity subject to laws 
of its own. For example, a (geometric) sphere is a system whose “laws” are generally called the 
properties of the sphere, such as the following: “A great circle… of a sphere is the intersection of the 
sphere and a plane that passes through the centre point of the sphere” (“Great Circle,” 2021). Any 
formula is a system as well. The formulas for the volume and the surface area of a sphere of radius r, 
that is, V =   π r3 and A = 4 π r2, are systems in their own right, which themselves have properties (we 

have V = A ×   or A =   or 3V – r A = 0, etc.). Given a system , a system ′ is said to be a model of  
if, by studying ′, one can answer certain questions Q about . In practice, given a question Q relating 
to  which one wants to answer, one tries to build up a model ′ of  (or choose one already existing) 
whose study with respect to the question Q is easier, safer, quicker than by a “direct” study of . For 
example, if the radius r of a sphere increases by 20%, the new surface area A′ will be 
4 π r′ 2 = 4 π (1.2 r)2 = 1.44 A, so that the surface area will increase by 44%—a tricky result to obtain 
experimentally. 
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The great catastrophe which historically disorganized and denatured elementary algebra resulted from 
the generalized rupture of the link between the systems  to be modelled algebraically and their 
algebraic models ′ relating to some question Q about . In most textbooks, this link has disappeared 
entirely. The vanishing of parameters from algebraic expressions goes together with the purely formal 
existence of algebraic expressions, which consequently lose their functional role, that is, the role of 
elements of a model of a system.  

Conclusion: Conditions for a more authentic algebra curriculum 
How can we pave the way towards a curricular reconstruction that revitalizes elementary algebra? 
The answer rests on two components: 1) the notions of system and model explained above and 2) 
rescuing the notion of formula and reintroducing expressions in several indeterminates in order to be 
able to model a diversity of mathematical or extra-mathematical systems. In a mathematics class, it 
is essential to study triples ( , Q, ′) composed of a mathematical or extra-mathematical system , a 
question Q raised about , and a model ′ (related to  and Q) which contains mathematical elements 
that are key to constructing an answer to Q. 

Mathematics education is therefore potentially concerned with all situations in which mathematics is 
or can be used to better understand the situation in question. In this respect, let us remind the reader 
that, from about 1600 to 1800, mathematics was divided into two branches, that of pure mathematics 
and the widely embracing branch of mixed mathematics (see e.g., Bacon, 1605/1901, pp. 172–174).  

So, what key conditions should school algebra meet to be an effective modelling tool for our time? 
By way of a conclusion, we shall sum up the core of a more “authentic” study and use of algebra 
identified in the course of this inquiry: 

1) The students start from a system  and a question Q raised about it, whose adequate treatment 
seems to involve mathematical elements; 2) These students build up a model ′ of , relative to 
the question Q, which will be built with elementary algebra (and will include as many parameters 
as seems useful); 3) They work on ′ to derive an answer A deemed adequate to the question Q; 
4) At the same time, prompted by this process of inquiring about , they discover the resources of 
algebra, study or restudy them in order to make an efficient use of the tools thus garnered. 

A brief example is in order here. The starting point is the theorem which says that when the sum of 
three numbers a, b, and c is constant, then the expression ab + bc + ca is maximal when a = b = c. What 
can this result be used for? One answer concerns the prices of diamonds, when assumed to be 
proportional to the square of their weight. If the price of a diamond of weight w is equal to kw2, where 
k  >  0, and if a diamond is broken into three pieces of weight a, b, and c, respectively, the price of each 
of these pieces is ka2, kb2, and kc2 while the price of the original diamond of weight w0 was 
kw02 = k (a + b + c)2. We have: (a + b + c)2 – (a2 + b2 + c2) = 2(ab + bc +ca) > 0. The price of the original 
diamond is therefore greater than the sum of the prices of the three diamonds obtained. As a 
consequence of the equality 3(ab + bc + ca) = (a + b + c)2 –   [(a – b)2 + (b – c)2 + (c – a)2] = w02 –   [(a –
 b)2 + (b – c)2 + (c – a)2], the loss of value caused by the breaking of the diamond into three parts is 
maximal when a = b = c, that is when the three pieces have the same weight. Here, the system  is a 
diamond and its selling price, and a key element of the model ′ is the equality 
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3(ab + bc + ca) = (a + b + c)2 –   [(a – b)2 + (b – c)2 + (c – a)2] with three parameters. For a more detailed 
discussion of this example, see Strømskag and Chevallard (2021). The four points listed above outline 
a research and innovation programme to which the present study is a contribution in order to help 
develop, in the decade to come, the full collaboration of researchers, teachers, and teacher educators. 
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Poster summary 
Although there has been a good deal of research into the problems students often encounter when 
solving and trying to understand first-degree equations, there has been relatively little comparable 
research involving quadratic equations. A number of authors have identified difficulties with 
quadratic equations which overlap with those known for first-degree equations. For example, some 
students were unable to solve quadratic equations because of difficulties with working with fractions, 
negative numbers and basic computational skills, as well as difficulties with understanding the 
concept of variable (e.g., Didiş & Erbas, 2015; Hu et al., 2021; O'Connor & Norton, 2016). However, 
a number of problems specific to solving quadratic equations have also been identified, including 
using the quadratic formula, completing the square, factoring second-degree polynomials, and 
understanding the zero product property (e.g., Hu et al., 2021; O'Connor & Norton, 2016; Tall et al., 
2014). 

Research into how programming can help students understand algebra has been rather limited so far. 
Most of the connections to algebra that have been looked at are related to built-in features of the 
chosen programming environment, such as coordinate systems and variables (e.g., Germia & 
Panorkou, 2020). Much recent research has focused on using Scratch to introduce programming to 
younger students, both with the goal of teaching computational thinking as well as teaching concepts 
within mathematics (e.g., Benton et al., 2016). 

Although the zero product property is unlikely to be useful for solving an arbitrary quadratic equation, 
since it is unlikely to be factorable (Bossé & Nandakumar, 2005), it has clear uses within the context 
of school mathematics, as well as being important for understanding more advanced mathematics 
such as the roots of polynomials and the partial fraction method of integration. Therefore, this poster 
aimed to initiate a discussion in the TWG3 about the use of programming tasks as an instrument to 
teach and develop algebraic thinking, in particular with regard to using the zero product property to 
solve quadratic equations. In addition to background information, the poster includes information 
about the intended design of the project as well as example tasks. 

In cooperation with secondary school teachers, pairs of students will be given a series of programming 
tasks designed to elicit a deeper understanding of the zero product property and how to apply it when 
solving quadratic equations. The tasks will be developed together with the teachers, tapping into their 
knowledge of their own students' current understanding of mathematics. The students will be recorded 
while working on the tasks and interviewed afterwards in order to gain insight into the effectiveness 
of the programming tasks. The tasks and results will be designed and analyzed using the theoretical 
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framework Abstraction in Context (AiC), which builds on the works of Freudenthal and Davydov 
and combines both cognitive and sociocultural ideas (Dreyfus et al., 2015; Dreyfus & Kidron, 2014). 
AiC relies on a detailed analysis of student discussions during the tasks as well as their interview 
responses in order to identify the formation of new mathematical constructs. This method of analysis 
does not depend on comparing the results of a pre-test and post-test. 

This poster presents the research project in a graphical format in order to more clearly show how the 
various phases fit together.  
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The main aim of this paper is theoretical and methodological: to show how The Antropological 
Theory of the Didactics – in particular, the construction of a praxeological reference model – can be 
used as a foundation for developing a diagnostic test tool which examines students technical and 
theoretical knowledge of basic algebra (and related arithmetical knowledge on which initial algebra 
is based). The point is to provide explicit control on what is being tested, for instance, in relation to 
a given national curriculum, and in relation to teaching interventions. 

Keywords: Anthropological theory of the didactics, school algebra, praxeological reference model, 
diagnostic test.  

School algebra   
In secondary school, basic algebra is a crucial bridge between arithmetic and more advanced subjects 
involving functions and analytic geometry. To set up algebraic models, it is necessary to master 
arithmetic and algebraic techniques by hand, at to know associated theory like the distributive law. 
But it is a longstanding and widespread problem that large groups of students seem to get stuck at 
this bridge between arithmetic and algebra (Herscovics & Linchevski, 1994). This has major personal 
and societal consequences because basic algebra as taught in lower secondary school plays a crucial 
role in upper secondary mathematics and hence for access to attractive higher education programmes. 
In that way school algebra is often described as a central gatekeeper (Loveless, 2013).   

The last decades of algebra research has given more attention to the theoretical foundations of 
students’ work. Algebraic transformations are not viewed only as procedures, but also as theoretical 
entities (Kieran, 2007). Kieran divides research in algebraic transformations into theoretical, 
technical, and practical elements. These elements are closely connected, and different institutions 
within the educational system manage them in subtly different ways. Early research on school algebra 
tended to make a sharp distinction among procedural and conceptual approaches. This dichotomy is 
currently challenged, and the potential of new theoretical and methodological approaches become 
essential to investigate the crucial connections between techniques and theory (Schneider & Stern, 
2010). The Anthropological Theory of the Didactic offers, in particular, a promising new approach 
to this task. 

To investigate the transition from arithmetic to algebra and to gain knowledge about what algebraic 
techniques and theory are particularly problematic for students in Danish lower secondary school, we 
ask the research question: “How can the Anthropological Theory of the Didactics (ATD) and the 
construction of a praxeological reference model (PRM) be used as foundation for developing a 
diagnostic test tool, to examine students technical and theoretical algebra knowledge?” 

This paper will concentrate on the construction of the PRM and the derived diagnostic test tool with 
preliminary results from the pilot test. The PRM and the results of the diagnostic test will be used in 
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a latter study to select research-based resources and design teaching interventions to support teachers 
teaching basic algebra.   

ATD as theoretical foundation   
The Anthropological Theory of Didactics, subsequently noted as ATD, has emerged as a theory of 
mathematics education. A central feature in ATD is the use of praxeology to model school 
mathematics activity. A praxeology compromise types of task, techniques, technologies, and theories 
(Bosch, 2015). The “practical block” or praxis is formed by the types of task and by the techniques 
used to solve them (Barbé et al., 2005). The “theoretical block” or logos consists of technology 
(discourse on techniques) and theory (more general discourse, based on deductive reasoning from 
definitions and the like). This means the techniques for carrying out tasks are explained and justified 
by a ‘discourse on the technique’ called technology; taking this discourse to a more abstract level 
yields mathematical theory, to validate the technological discourse and to connect entire praxeologies 
(Bosch, 2015).  

The use of praxeology to analyse school algebra has been particularly successful, since the birth of 
ATD as a theoretical foundation for mathematics education research (Bosch, 2015). Bosch argues 
that the explicit reference praxeological models (PRM) concerning school algebra provides 
opportunities to ask research questions that go beyond the assumptions held by the school institution 
itself. At the international level, ATD research has led to significant new insights on the algebra 
problem, including the frequent disconnectedness of praxeologies taught and learnt. 

According to Chevallard (2019), praxeologies are not static, but a dynamic system of institutionally 
situated activities. The explicit construction of a PRM will enable us to analyse what arithmetic and 
algebraic praxeologies are currently taught in the Danish lower secondary school according to 
curriculum, textbook material, and written examination. The PRM will also form the foundation for 
developing a diagnostic test tool, which can “diagnose” what algebraic techniques and theory are 
problematic for students (in our case, Danish grade 7). The result of the diagnostic test is analysed in 
terms of the PRM and may lead to revise the tool (e.g., if unexpected techniques appear). In a later 
study the diagnostic tool and the associated PRM will be used to design the intervention based on 
resources and to analyze the effects of the interventions. Thus, the model is the researchers’ explicit 
reference throughout the four-step research process shown in Figure 1.  

 

Figure 1. Construction and use of the praxeological reference model 
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Methods to construct the praxeological reference model 
In Denmark, the so-called “common goals” for mathematics (Danish Ministry of Education, 2019), 
constitute the official directives for all primary and lower secondary school. They are divided into 
four parts: competences, number and algebra, geometry and measurement, statistics, and probability. 
The overall goal for algebra is that “the student can apply real numbers and algebraic expressions in 
mathematical investigations”. It is up to textbook authors and teachers to transpose the common goals 
into teaching practice; in addition to the official goals, they can also find some direction in the 
exercises appearing the national exam after grade 9.  

Our first step in building the PRM was to identify types of tasks appearing in the 2019 national exam 
(Prøvebanken, 2021) and in the textbook series Kontext+ grade 7-9 (Lindhardt et al., 2021). We began 
by identifying the tasks in the material associated to arithmetic and algebra, understood as tasks solely 
focused on operations, equations and order relations involving numbers (arithmetic), or numbers and 
literal symbols (algebra). At the level of theory, operations are in these two cases obeying the axioms 
of ordered integral domains or fields. In this paper, we do not consider the use of CAS tools and 
instrumented techniques.  

The second step is to analyse in terms of task type Ti and corresponding techniques τi used to solve 
Ti. Let us first take an example from arithmetic where students are asked to calculate the following 
tasks (Lindhardt et al., 2021, p.104).  

a.  
b.  
c.  

Tasks a. and b. are simple (they can be solved by one technique). Task a. is what we have named type 
T4: addition of negative integer to a positive integer, with corresponding technique τ4: 

; where b. is a task of type T6: subtraction of negative integer from negative integer, with 
corresponding technique τ6: . Task c. requires both techniques τ4 and τ6 and is thus 
a combination of more elementary tasks. 

An example of a type of task from algebra is T15: solve a first-degree equation. Tasks of this type 
appear for instance in the written national 2019 exam (Prøvebanken, 2021) 

    Solve the equations 

d.  
e.            

They can be solved by the technique τ15: involving addition, subtraction, multiplication, and division 
on both sides of the equal sign.  

In general, exercises can contain several questions, where not all questions can be answered by a 
single technique. This means, that once a model of types of tasks and corresponding techniques has 
been established, more complex questions must be decomposed in tasks of the types established 
(Winsløw et al., 2013). It is relatively straightforward to identify types of tasks and techniques in 
arithmetic and algebra as shown above (cf. Wijayanti & Winsløw, 2017). The next step is to identify 
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themes (groups of practice blocks unified by a technology) and sectors (groups of themes unified by 
a theory). 

Example of PRM theme and sector 

The problem of ordering two given fractions can, according to special cases, necessitate different 
techniques. It thus leads to group of practices which are taught together and are unified by a shared 
discourse about techniques, involving characteristics of the special cases, and descriptions of the 
techniques. Table 1 is type of task Ti and corresponding techniques τi from the analysed textbook 
material and written exam and gives an overview of the theme of PRM according to fractions.   

Table 1. Theme of PRM based on textbooks (Kontext) and written exam (FSA) according to fractions  

Type of task Techniques Kon-

text+

5 

Kon-

text+

6 

Kon-

text+

7 

Kon-

text+

8 

Kon-

text+

9 

FSA 

2020

Dec 

FSA 

2021

May 

T19: Given two unit 
fractions  and  , 

which is largest 

τ19: The fraction with the 

lowest denominator is 
largest i.e.,  

       

T20: Examine which 

fraction with like 

denominator and 
different numerators,  

and  is largest. 

τ20: The fraction with the 

highest numerator is largest 
i.e.,  

 

       

T21: Examine which 

fraction with like 

numeration and 

different denominators 
fraction  and  is 

largest. 

τ21: The fraction with lowest 

denominator is largest i.e., 
 

 

       

It is characteristic of Danish textbooks that the same types of tasks reappear year after year, while the 
theme as a whole may still be relatively disconnected. This theme is a part of a larger “fraction sector”, 
unified by a theory which involves both informal and more formal representations and properties of 
fractions, from addition of simple fractions with pizza diagrams to calculation rules given with 
algebraic symbolism.  

Methods to construct the diagnostic test tool 
The aim of the diagnostic test tool is to detect what arithmetic and algebraic techniques are 
particularly problematic for Danish students at early lower secondary school, and to get insight in the 
students’ theoretical knowledge especially in relation to basic algebra. The development of the 
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diagnostic test tool is based on the PRM and was inspired by an earlier project by Cosan (2021) on 
middle school arithmetic.  

Items designed to test techniques are straightforward to construct. And several items can be included 
to investigate how variations influence on success rates. For example, the item “Compute “ 
represents the type of task T4: addition of negative integer to a positive integer, as defined above.  

It is more difficult to design items that detect students’ theoretical knowledge which includes 
technology to describe and explain techniques. The item “Explain why ” requests 
from students a piece of discourse justifying the algebraic rule, which may appeal to more or less 
formal theoretical principles. For instance, some students may refer to “two minuses can be replaced 
by a plus” as an overarching principle in such contexts; this could, in fact, be part of a theory that 
some students hold. In the ATD sense such theory elements are empirical objects, to be discovered 
and traced. 

Items can also simply request a description of a technique (i.e., a technology), e. g. “Explain how you 
would determine which of the fractions is largest” 

Results from the pilot test of the diagnostic test tool 
The diagnostic test has been pilot tested by 25 grade 7 students (12–13-year-old) in lower secondary 
school in the capital of Denmark. The students got 45 min. to do the 67-item paper and pencil test.  

Table 2. Sum of type of answers in the test 

Correct answer Incorrect answer No answer Sum  

455 306 914 1675 

Table 2 shows that more than half of the items has not been answered by the students. Despite this, it 
is possible to give some preliminary results. The following are examples of analyses of test answers 
in relation to the previously selected examples from the PRM.  

Table 3. Item and associated sum of answers in the test 

Item Item number Correct answer Incorrect No answer 

 1.4 20 2 3 

 1.5 8 16 1 

Table 3 shows that almost all the students can solve the item of task type T4: addition of negative 
integer to a positive integer. But only a third of the students could solve the item of task type T6: 
subtraction of negative integer from negative integer. This result indicates that students know that 
adding opposite is the same as subtraction, but they cannot apply the rule   

By varying the items given for a specific type of task, we can also discover specific features of type 
of task. For example, the test contains variations of the task type T15: solve a first-degree equation 
(discussed above). These variations result in hugely different success rates.  
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Table 4. Test results of variations of the task type T15 

Item Item number Correct answer In-correct No answer 

 1.1 21 2 2 

 1.6 4 18 3 

 2.1 23 1 1 

 2.5 10 1 14 

 4.7 8 9 13 

When comparing the results from item number 1.1, 1.6 and 2.1, item number 1.6 has significantly 
fewer correct answers. One possibly crucial difference between 1.6 and the other questions is the 
location of the unknown. In 1.6 the unknown is located on the right side of the equal sign. That this 
could make a big difference is confirmed by a longitudinal examination of how middle school 
students understand the equal sign and equivalence of equations (Alibali et al, 2007).  

The purpose of item number 3.7 is to get insights in students’ argumentation for which fraction is 
largest. And we get answers like: “If the denominators are the same, I just look at the numerators 
which are the highest” and “I look at the denominators and if the fractions have the same denominator, 
then I will look at the numerator which one is the largest”.  With such items, we can detect not only 
a (correct) technique but also what it is, and a level of technology.  

In the following two examples, the student’s argumentation is based on pizza representations of 
fractions, which are also extensively used in Danish textbooks. Figure 2. “I want to draw”. Figure 3. 
“By seeing it as a circle and look where there are most fields that are filled”. 

 
          Figure 2. Student answer to question 3.7                Figure 3. Student answer to question 3.7 

In Figure 2, we can see the representation serves as an argument but in Figure 3, this wordless 
technology fails because of missing the usual convention, that the circle must be divided into equal 
parts. The diagrammatic representation has evident forces in giving meaning to fractions (between 0 
and 1) for young children; but the division of a circle into five equal parts is also a task which contain 
other meanings (including angles etc.) that are in some sense irrelevant to the task. Varying this task 
to include fractions with large denominators or nominators would evidently also make this technology 
fail.  

Conclusion 
In this paper, we have shown by a few examples, how ATD and the construction of a PRM, can be 
used as a foundation for developing a diagnostic test tool, to examine students technical and 
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theoretical knowledge. By first constructing the PRM based on textbook material, written 
examination, and common core. Then grouping the task and corresponding techniques in themes and 
sectors according to shared technology and theory. The PRM is then used to design the diagnostic 
test items in line with the tasks, techniques, and level of theory in the PRM. In that way the diagnostic 
test is aligned with the knowledge to be taught and provide explicit control on what is being tested. 

Among the examples from the pilot test, we discussed the students’ difficulties with relating 
subtraction and additive inverse, and especially with repeated additive inversion. These examples 
indicate that the diagnostic test, based on the PRM, can be used to identify significant obstacles. This 
is crucial for the next steps in our doctoral project.  

The next step in the project is to apply the results from the pilot-test to inform and strengthen the 
PRM. Then to revise the diagnostic test tool and complete the final test in four classes, before and 
after the teaching intervention. The overall aim is to investigate the transition from arithmetic to 
algebra and to explore if and how interventions with research-based material can support teachers’ 
efforts to teach basic algebra.   
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Primary school children’s justifications of equalities 
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A focus on mathematical structures and relationships in mathematical activity is important for the 
development of algebraic thinking. A comprehensive and flexible understanding of equality, which in 
particular includes a relational perspective on equality, is an important prerequisite for this. In the 
project, that forms the basis of this paper, substantive learning environments were further developed 
by use of Term fields and tested in teaching-learning experiments. In the video-based qualitative 
analyses, the focus is on the justification processes of fourth graders in the context of equalities. This 
paper presents and discusses the main results of the study, four different ways of justifying equalities 
and their characteristics. 

Keywords: Early algebra, understanding of equalities, equal sign, mathematical reasoning. 

Introduction: understanding of equalities in primary school 
A call for greater support of algebraic thinking in the early grades is made in current research (e.g., 
Steinweg, 2017). Particular emphasis is placed on mathematical structures, found to be central to the 
development of early algebraic thinking (Hewitt, 2019; Steinweg, 2017). According to Steinweg 
(2017), equivalence structures are an algebraic key idea that focuses on the relation of given numbers, 
sums, products, etc. in equations. However, in primary school the equal sign is often introduced as 
an operational sign, prompting calculation.  

Studies have found that students interpret the equal sign predominantly operationally and have 
difficulty taking a relational and structural view when needed (e.g., Eichhorn et al., 2018; Stephens 
et al., 2013). Some authors further differentiate between views of the equal sign. For example, 
regarding the relational understanding of the equal sign, Stephens et al. (2013) distinguish between a 
relational-computational view and a relational-structural view. A relational view is crucial for 
flexibility in mental calculation (Rechtsteiner & Rathgeb-Schnierer, 2017; Steinweg, 2017). This is 
an important skill in elementary school arithmetic and also essential as preparation for algebra (Jones 
et al., 2012).  

In addition to the numerous studies concerning the use of the equal sign and the solving of formal 
equations, approaches have also investigated the content-related understanding of equalities in 
primary school (Mayer, 2019; Nührenbörger & Schwarzkopf, 2015). In these studies, substantial 
learning environments were developed, incorporating task formats that children are familiar with 
from textbooks, such as Number walls and Computing chains. These task formats share a specific 
external structure, combining numbers and operations in a way that allows numerous basic 
mathematical activities to explore structures and relationships. Thus, the learning environments focus 
on equality but without the use of the equal sign. The results of these studies show that primary school 
children can indeed take a relational view of equalities and interpret them structurally.  

Comparing the results of the studies described above using quite different learning environments, it 
is evident that children interpret equalities differently depending on the context and form in which 
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they are presented. Seo and Ginsburg (2003) use the term pseudo-flexibility to describe children’s 
context-dependent interpretation. Children can take an operational view or different relational views 
of equalities, but these views appear to be entirely determined by the context and are mostly not 
linked to each other.  

The project, from which data is excerpted and analyzed in this paper, has two objectives. On the one 
hand, a teaching-learning arrangement was developed that can stimulate a comprehensive and flexible 
understanding of equality in children by using Term fields (see Figure 2). On the other hand, the 
children's justifications of equalities are analyzed qualitatively. The concepts from the literature 
described above serve as a starting point for analyzing the justifications provided by the children in 
this project. This paper focuses on the research question: How do children justify discovered 
equalities in the context of the developed learning environments? 

Methodology and design 
In line with the aim of the project, qualitative interview studies about German primary school 
children's conceptions of mathematical equality were conducted. The studies focus on two learning 
environments that were planned on the basis of already existing well known substantial task formats 
such as Arithmetic triangles and Number sequences (see Figure 1). The latter were enriched by using 
design principles developed from theory and study results. 

 
Figure 1: General structure of the task formats Arithmetic triangles and Number sequences 

The central feature of both learning environments lays in the combination of a substantial task format 
and formal representation of appropriate equations. The children first work on tasks that encourage 
them to explore equalities in the context of the task formats and ask them to describe and justify these 
equalities (e.g., “Calculate the sum of the inner numbers and the sum of the outer numbers of the 
arithmetic triangle.”). The goal is to develop a content-related relational concept of equality. Content-
related does not refer to a factual context, but to the task formats, e.g. the arithmetic triangles. The 
relationship between the numbers of an arithmetic triangle is supported by the visual structure of the 
task format. Similar to the way Nührenbörger and Schwarzkopf (2015) used “Term walls” with 
notated calculations instead of results in the context of “Number walls” in their study, the learning 
environments in the present study were enriched by using Term fields, i.e. small sticky notes with 
terms (e. g. 10+32) related to number fields (e. g., 42) of the task format (see Figure 2). 

c+aa+b

b+c

a

cb
a+b+c

always

+ a
s s+a s+2a s+3a s+4a s+5a s+6a
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Figure 2: Term fields that explicate calculations behind the numbers 

Term fields are meant to serve as a kind of exploration tool to make explicit the essential structure of 
the task formats. They should be used as a basis for explaining relationships between number fields 
of the task format. In this way, children have an opportunity to focus on structures between terms in 
addition to compute them. Based on students’ work with the Term fields, the students are given 
appropriate tasks for assigning equations to arithmetic triangles and number sequences, as well as 
tasks for evaluating, completing, and correcting equations. The equations always consist of terms that 
arise or potentially arise from the task format (Figure 3, see associated arithmetic triangle and number 
sequence in Figure 2). The children's attention is to be focused on the structure of the terms by means 
of certain guiding questions that are repeatedly asked during the interview (e. g., “From which 
triangle/number sequence was the equation formed?”, “Why is the equation (not) correct?”). 

 
Figure 3: Equations consisting of terms that arise from an arithmetic triangle and a number sequence 

A total of 42 collaborative peer interviews, each with two fourth grade children, were conducted on 
the described learning environments. A pre-test was administered to each student at the beginning of 
the first interview. Students were given a set of equations to sort into two boxes ("true" and "not 
true"). Some equations were incomplete and had to be completed first. The pre-test was used to 
determine the children's interpretation of the equal sign before working in the learning environments. 
The children were randomly selected by the teacher and had neither previously encountered the Term 
field learning environments nor Arithmetic triangles or Number sequences in class. At the beginning 
of the interview series, the task formats were worked out together. The interviews were videotaped 
and largely transcribed. The analysis of the data follows the interpretative paradigm (Krummheuer & 
Naujok, 1999; Voigt, 1991). In particular, Steinbring's theory of the construction of new mathematical 
knowledge in classroom interaction is used to reconstruct the respective reference contexts of the 
children while they were justifying equalities (Steinbring, 2005). Thus, different ways of justifying 
were inductively reconstructed. These are presented and discussed below. 

Empirical results and discussion: ways of justifying equalities in a range between 
result orientation and structure orientation 
Equalities can be interpreted in different ways and, accordingly, justified differently, depending on 
which aspects of equality are focused on. The data analysis showed that children develop and use 
different justifications for equalities in the context of the learning environments, which can be located 
in a range between result orientation and structure orientation (see Figure 4). Previous findings from 
the literature described above were incorporated and extended in the development of the four 
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categories. For example, the analyses confirmed the two relational views of equality, relational-
computational and relational-structural, suggested by Stephens et al. (2013). In the study presented 
here, it was found that these views of equalities could be further differentiated by distinguishing 
between determination of overall and intermediate results (category 1 and 2), and using structure with 
or without generalized approaches (category 3 and 4). Category 1 and 2 correspond to a relational-
computational view as defined by Stephens et al. (2013), while category 3 and 4 correspond to a 
relational-structural one (see Figure 4). The children in the study didn't show a purely operational 
view of equalities in the interviews. However, students’ operational view was evident in the separate 
pre-test. The learning environments were intentionally designed to stimulate a relational 
interpretation of equalities by including the task formats Arithmetic triangles and Number sequences. 

 
Figure 4: Justifications for equalities in the range between result orientation and structure orientation 

In contrast to the study by Stephens et al. (2013), the study presented here reconstructed the particular 
situational view behind a justification, rather than investigate a child's fundamental concept of 
equality. In the following, the four categories of justifications are explained using selected episodes 
from the interviews. 

Justifications by determining overall results 

One way of justifying equality, evident in the present study, is based on determining the overall results 
of the terms. Each term in an arithmetic triangle or a number sequence is perceived as a separate task 
and their respective values are determined independently, and then finally compared. Charlie and 
Fabian evaluated equations formed from arithmetical triangles and corrected them if necessary. The 
following equation was placed on the table: 42 + 8 = 10 + 32 + 8 

Interviewer: Why is that true (points to the equation)? 
Charlie: (Pulls the equation towards him.) Forty-two (points to 42 on the left side of the 

equation) plus eight (points to 8 on the left) is fifty. Ten (points to 10 on the right) 
plus thirty-two (points to 32 on the right) is forty-two plus eight (points to 8 on the 
right) is fifty. 

Charlie determined the overall results of both sides of the equation separately (50) by adding the 
summands linearly from left to right. 

 

Figure 5: Reconstruction of Charlie's justification by determining overall results on each side 

1. determining overall results

2. determining intermediate results

3. using a structure of the arithmetic terms

4. using a structure of the arithmetic terms 
with generalized approaches

result-oriented structure-oriented

Justifications by

 42  +  8  =  10  +  32  +  8 
      50                     42 
                               50 

Proceedings of CERME12 641



 

 

Justifications in this category suggest that the children make a strongly result-oriented interpretation 
of the terms. They do not direct their attention to the mathematical regularities underlying the terms 
but focus on the results. In the range between result and structure orientation, such a way of reasoning 
is to be located correspondingly far to the left (see Figure 4). 

Justifications by determining intermediate results 

Another way of justifying relies on the determination of intermediate results. This involves 
determining selected term components of arithmetic triangles and number sequences and comparing 
the resulting partial results. Characteristic for such justifications is the omission of obviously equal 
term components occurring on both sides of the equation (e.g., equal starting numbers in number 
sequences or equal inner numbers in arithmetic triangles). Sometimes longer components of the terms 
are left out of the evaluation of equality, sometimes only single numbers, as in the following example. 
Lara and Grace evaluated equations which could have been formed from number sequences: 
10 + 3 + 3 + 3 + 3 = 10 + 6 + 6 

Interviewer: Why does it fit? 
… … 
Lara That's both twelve (points to the equation), always. 
… … 
Lara So that together are twelve (taps the sixes on the right side) and three plus three 

plus three plus three (taps the threes on the left side) are also twelve again. 

The summand 10, which occurred on both sides of the equation (starting number in the task format 
Number sequences), was omitted by Lara when evaluating the equality. She calculated only the non-
identical term components (12 each), compared the intermediate results and concluded based on their 
agreement that the equation is correct. 

 

Figure 6: Reconstruction of Lara's justification by determining intermediate results on each side 

Justifications in this category, point to a predominantly result-oriented understanding of equality. 
Compared to the previous category, however, such justifications are still somewhat more relational, 
since equal values are compared and deliberately disregarded. The location of these justifications in 
the range between result orientation and structure orientation is therefore on the result-oriented side, 
although not quite as strongly to the left as that of the first category (see Figure 4). 

Justifications by using a structure of the arithmetic terms 

Another way of reasoning is based on focusing and comparing the two terms of an equation with 
respect to their structure and their relation to each other. The justifications refer to the concrete 
numerical values. There are many differences in how the children relate the structures of the terms. 
This depends on which mathematical laws they (implicitly) refer to. Rachel and Kate each wrote 
down different plus numbers and the corresponding term fields for a number sequence with starting 
number 10 and target number 22. As part of the task, the interviewer combined one of Rachel's term 
fields (10+4+4+4) and one of Kate's (10+2+2+2+2+2) into an equation. The children agreed with it 
and justified their decision: 

10 + 3 + 3 + 3 + 3  =  10 + 6 + 6 
                  12                               12 
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Kate: Here are (points to term field 10+2+2+2+2+2) uh, wait a minute (.) one two three 

four five six times (taps on the twos one after the other) and here are three times 
(points to term field 10+4+4+4) and that (points to the left term field) is the double 
of it (points to the right term field) so that- and here (points to the right term field) 
are six times and there are three times (points to the left term field) and three is half 
of six  

  
 

… … 
Rachel: And two and four is also the - so two #1 is half of four. 
Kate: #1 Exactly. I just said that. 
… … 
Rachel: Yes, because here are six t- oh (points to term field 10+2+2+2+2 and moves it by 

mistake) six times (points to the term field again) and there are three times (points 
to term field 10+4+4+4) and then it must work. 

The terms were interpreted multiplicatively. The size and the number of the summands of one side 
(size: 2; number: 6) were related to the size and number of the summands of the other side (size: 4; 
number: 3). The reasoning implicitly referred to the law of constancy of the product. 

 
Figure 7: Reconstruction of Rachel's and Kate's justification by using a structure of the arithmetic 

terms (based on the law of the constancy of the product) 

Justifications in this category point to a predominantly structure-oriented interpretation. The 
interpretation implies mathematical regularities that underlie the structure of the terms. Such 
justifications are accordingly on the structure-oriented side. 

Justifications by using a structure of the arithmetic terms with generalizing approaches 

The fourth way of justification, like the third one, refers to the comparison of the structure of terms 
and their relation to each other. The justifications are also based on mathematical laws. However, 
such a reasoning is not only based on the concrete numerical values, but is detached from them by 
making generalizable statements. The degree of generalization can vary. Lara and Grace used term 
fields to justify why 34 occurred in both the +8-sequence and the +4-sequences. Lara's reasoning was 
similar to Rachel's and Kate's, but showed clearly generalizing approaches: 

 
Figure 8: Term fields for the 34 from the +8 sequence and the +4 sequence to which the children refer 

Lara: Then you have to take those two times, that's six and then six times  
(writes down her idea on a piece of paper)  
 
 

… … 
Lara: So, I first have three times eight are twenty-four, uh but because I have half of the 

eight, uh you have to take the double of the front, so what you, with which number 

10 + 4 + 4 + 4  =  10 + 2 + 2 + 2 + 2 + 2 + 2
10 +     3  •   4    =  10 +            6    •    2 
                           =  10 +         (6:2) • (2•2) 
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you multiplied that. So we have to- theoretically you have to halve here (points to 
"8" in "3•8=24" on her note) and double here (points to "3" in "3•8=24" on her 
note). 

… … 
Lara So, you you you double the three (points from "3" in "3•8=24" to "6" in "6•4=24") 

and halve the eight (points from "8" in "3•8=24" to "4" in "6•4=24"). Then a four 
will be written there and, you know what I mean? (Looks at Grace.) 

… … 
Lara You halve, you dou- halve the front number (points briefly to her note) or you halve 

the back number, you halve one number and you double the other one and then the 
same result comes out. 

Lara justified the equality of the terms based on her written representation of her idea. She shortened 
the terms of the relevant term fields by multiplicative representation of the same summands and by 
omitting the identical starting numbers. Her justification contained generalized approaches. She 
replaced the number of summands, now represented by the first factor in each case in her 
representation, with a general description ("with which number you multiplied that"). When Grace 
didn't understand, she first concretized her idea using the exemplary numbers of the task ("you double 
the three and half the eight"). In terms of content, Lara's idea referred to the constancy of the product. 
Later she expressed her idea again in a highly generalized way. She replaced both the first and the 
second factor with a general description ("You (...) halve the front number or you halve the back 
number, you halve one number and you double the other one and then the same result comes out."). 
In addition, Lara clarified that it doesn't matter which of the numbers is halved and which is doubled. 
She moved away from concrete numerical values and instead used descriptive word variables. 

 

Figure 9: Reconstruction of Lara's justification by using a structure of the arithmetic terms with 
generalized approaches (based on the law of the constancy of the product) 

Justifications of this category suggest that the children have a strong structure-oriented understanding 
of equality. The relationship between the terms is interpreted and explained on a more general level 
with regard to the mathematical regularities on which it is based. The classification of such 
generalizing justifications takes place far on the structure-oriented side. 

Closing remarks 
The analyses showed that children use different justifications in the range between result orientation 
and structure orientation, (implicitly) refer to appropriate mathematical laws and generalize these to 
different degrees. The way of justification depends on different factors, e.g. on the numerical values, 
the suggestions of the other child or the impulses of the interviewer. This connection will be examined 
in more detail in further data analysis.  

The presented learning environments, which combine content understanding and formal 
representation of equations with the help of term fields and focus on sharing discovered equalities 
and possible justifications of these, can contribute to stimulate a flexible understanding of equalities. 

            10 + 8 + 8 + 8  =  10 + 4 + 4 + 4 + 4 + 4 + 4 
          10 +     3  •   8    =  10 +            6    •    4 

                                        =  10 +         (2•3) • (8:2) 
 
(one number : 2) • (2 • other number) = one number • other number 
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Students’ intuitive conceptions regarding the concept of set 
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Abstract: In this study, a questionnaire was administered to different-aged students in order to 
explore the intuitive conceptions they hold regarding the concept of set. A number of different 
conceptions emerged. Students’ scores per grade were compared in order to investigate the effect 
Mathematics education has on their conceptions. 

Keywords: Set, intuitive conceptions, infinity. 

Introduction 
The concept of set is fundamental in modern mathematics. In school mathematics, the concept of 
set is used in various contexts, generally in an inconsistent manner (Fischbein & Baltsan, 1998). In 
the curriculum of most countries, sets are included in Algebra as a means of defining the concept of 
function, express the solution of an inequality etc. 

The set concept is accepted in mathematics as a primitive, undefined concept. Instead of a formal 
definition one starts with an intuitive model, the idea of a collection of objects (Fischbein & 
Baltsan, 1998). In order to grasp the essence of a set, students need to be taught the formal 
properties and aspects of sets in school mathematics. If that doesn’t happen, students can only rely 
to their intuitive conceptions regarding the set concept. Spontaneous conceptions are the result of 
generalization of everyday experience in the absence of systematic instruction and can lead to the 
creation of “spontaneous concepts” (Karpov, 2003). Such concepts are not conscious and often 
differ from scientific ones. Scientific concepts, once acquired by students, begin to mediate their 
thinking and problem solving. Thus, the instruction of such concepts plays a decisive role in their 
mental development facilitating their ability to operate at the level of formal-logical thought 
(Karpov, 2003). 

Theoretical framework 
Spontaneous conceptions that are contradictory to scientific conceptions (conceptions that experts 
have consensus on) are named misconceptions. Fischbein and Baltsan (1998) identified a number of 
students’ misconceptions. The most profound being the following: (a) there must be at least one 
common property or a relationship between elements of a set; (b) a set must contain at least one 
element; (c) a set can contain repeated (not discrete) elements; (d) two sets are equal if they contain 
the same number of objects; and (e) a set cannot contain an infinite amount of elements. Bagni 
(2006) showed that students might be unable to distinguish between the concepts of “inclusion” and 
“belonging” especially when they are dealing with various semiotic systems (verbal, diagrammatic 
and symbolic). Lastly, Tsamir (2001) found that students hold contradictory ideas when they are 
asked to compare the number of elements of infinite sets. The most prominent categories of ideas 
were: (a) all infinite sets are equivalent; (b) infinite sets are incomparable; (c) if set A is a subset of 
set B then A has fewer elements than B; and (d) 2 sets are equivalent if there is a one-to-one 
correspondence between their elements.  
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Fischbein and Baltsan found that the formal mathematical properties of sets, which usually 
contradict the corresponding intuitive ones, are “forgotten as an effect of age” (1998, pp. 20). In 
Greece, students are using the concept of set in various contexts, even before it is formally 
introduced to them. They learn about number sets and they define a circle as a set of points on a 
plane that are equidistant from a given point. The concept of set is first taught in grade 9 in the 
course of Probabilities and then in grade 10 in the course of Algebra. In both grades the curriculum 
suggests that the teacher will spend two lessons teaching the concept of set and the operations 
between sets. In most cases, even those two lessons are neglected and the set is just being seen as a 
supplementary concept in different contexts like geometry, algebra, analysis, or probabilities. The 
research questions of this study are: (1) What conceptions do different-aged students have regarding 
the mathematical concept of set?; and (2) What effect does age have in the understanding of the set 
concept and its properties? 

Methodology 
The research tool was a questionnaire, consisting of 11 questions, which were constructed based on 
the aforementioned findings of previous research regarding the concept of set. Questions regarding 
the concept of set and equality between sets (1 to 7) were included in the questionnaire given to all 
groups, while questions regarding union, interception, inclusion, belonging and comparison of 
infinite sets (8 to 11) were only included in the questionnaire of groups 2 and 3. The questionnaire 
was administered to 116 grade 6 students (group 1, primary school), 127 grade 9 students (group 2, 
junior high school) and 154 grade 12 students (group 3, high school), from various schools around 
Greece. Students from the first two groups had never been explicitly taught anything regarding sets. 
Some of the students of the third group had been provided with a definition for the concept of set in 
grade 10 (two years prior to this study), but all of them use sets regularly, in the form of “the 
domain” or “the range” of a function. Data were analyzed with IBM SPSS Statistics 26. To answer 
the first research question we calculated the percentages of students that held each conception 
(questions 1 – 7, 11). We will present and discuss the results from some of the questions that we 
find particularly interesting. As far as the second research question is concerned, we conducted an 
ANOVA test to check the hypothesis that, no differences were found between the scores of the 
three groups.  

Results 
First research question 

We begin by addressing our first research question, namely, what conceptions students have 
regarding the mathematical concept of set. For that purpose, we are going to present some of the 
questions from our questionnaire and we will discuss the results. 

Question 1. 

What do you think a set is in mathematics? 

In the first question of our questionnaire we found a number of different conceptions students have 
regarding the set concept. We will provide some examples of answers and elaborate on how we 
coded them. A student answered that “a set is the collection of similar objects and their 
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classification into a group”. In our understanding, this student saw sets as both a collection and as a 
group (the Greek word for group can also be translated as team). As expected, there were answers 
like “a set is any collection of objects” or “a set is a group of objects”, for which the coding is 
obvious. Another student described a set as “a collection of numbers”. This student thought of sets 
as a collection of numbers, not accepting non numerical elements. A student wrote that “a set is a 
group or a category of similar objects, rational numbers for example”. That student thought of sets 
as both groups and categories and gave the example of rational numbers. In our estimation, this is 
not enough evidence to assume that he only accepts numbers as the elements of a set. There was a 
student that gave us the simple answer “the whole”. Others wrote that a set is “the whole or a group 
with some common element” or “something complete”. These students were considered to hold the 
conception that a set is the whole. Some students used the Greek word “plethos” saying for example 
that a set is “a plethos of elements that meet certain conditions”. The word plethos can be translated 
as “a number of”, “a multitude”, or in some cases “a crowd”. We chose the code multitude for those 
answers. Lastly, a lot of students provided answers like “for me, a set is the outcome”, or “I 
perceive this in two ways, as the outcome of an addition or as a group”. Those students seemed to 
conceptualize a set as the outcome or the sum of certain numbers. One would expect that every 
student that holds that conception accepts only numbers as the elements of a set. However, this was 
definitely not the case in our survey, as there were different conceptions for sets, sometimes 
contrasting ones, coexisting in students’ minds. 

There were also students whose answers were out of context or formulated in a way that didn’t 
allow for a proper coding or they were simply unintelligible, for example “I think that the elements 
of a set must have a common property” or “something that is concentrated”. 

Table 1: Words used by students in order to define the set concept 

What do students think a set is in Mathematics Percentages of students holding this conception 

A collection 2.3% 

A group 28.7% 

A category 2.3% 

The whole 5.5% 

A multitude 6.9% 

The outcome 24.2% 

A cluster of numbers 5.6% 

Out of context/ unintelligible 21.2% 

Missing values 19.1% 

Since a student can use more than one of the aforementioned words, the percentages do not add up 
to 100%. One thing that stands out is the fact that 24.2% of the students think of a set as the 
outcome of an operation (or the sum of certain numbers). If we include the number of students that 
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chose (a) or (b) on question 4 (see below) and those that answered question 7c (see below) 
incorrectly (both implying that those students are adding up the elements) then we find that 49.4% 
of students think of sets as the outcome of an operation or a sum. That is probably due to the fact 
that, in Greek the word for “set” is commonly used as “total”. It is also interesting that 28.7% of 
students view a set as a “group” or a “team” of elements, probably implying a uniformity between 
the elements of a set, while only 2.3% of them think of a set as a collection of objects (which is the 
term used to “formally” describe a set). 

Question 3. 

Do you think that the elements of a set must have a certain common property? 

The students’ answers to the third question (Table 2) show that most students thought that the 
elements of a set must have a certain common property or conform to a certain criterion that allows 
them to be included in the set. This finding is consistent for all three groups. Fischbein and Baltsan 
(1998) found that the proportion of wrong answers increases generally with age. This doesn’t seem 
to be the case in our study since the percentage of wrong answer is almost the same for all groups. 
This misconception is common among prospective teachers as well (Fischbein & Baltsan, 1998). It 
is worth noting that the description of a set in the Greek textbook used in grade 9 highlights that we 
use to collect or choose certain objects and sort them into groups or categories, for example, 
numbers, letters of the alphabet, books in a library depending on their content, and that, groups or 
categories like those, are called sets. Albeit not wrong per se, such a description can easily foster 
the misconception that the elements of a set must be of the same kind. 

Table 2: Group * Question 3 Crosstabulation 

Group Yes No 

1 77.7% 22.3% 

2 76.8% 23.2% 

3 80.7% 21.4% 

Total 78.6% 21.4% 

Question 4. 

Mark each of the following answers that seem correct to you. The set of the letters of the word 
“TENNIS” is: 

(a) {5} 
(b) {6} 
(c) {T,E,N,I,S} 
(d) {T,E,N,N,I,S} 

On the 4th question (table 3) we examine whether students think that a set can contain repeated 
elements (those that answered {6} or {T,E,N,N,I,S}) or not. We found that most students think that 
it is acceptable for a set to contain repeated elements. That is especially true for groups 1 and 2 
(younger students). It is also important to note that only 27.7% of the students marked only the 
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correct answer (students were allowed to mark more than one answers in this question), which is 
{T,E,N,I,S}. 

Table 3: Question 4 – Percentages of students accepting repeated elements in a set 

Group Repeated elements are allowed. Elements of a set must be discrete. 

1 78.3% 21.7% 

2 76.0% 24.0% 

3 56.5% 43.5% 

Total 69.0% 31.0% 

Question 5. 

Do the following collections define a set? Choose the correct answer. 

(a) Natural numbers greater than 8 and smaller than 10. 
i. Yes, {9} 

ii. No, a set must have more than 1 element. 
(b) Natural numbers greater than 8 and smaller than 9. 

i. Yes, {} 
ii. No, a set must contain at least 1 element. 

On the table below, we examine whether students accept the notion of a “unit set” (question 5a) and 
the notion of an “empty set” (question 5b). We found that almost half the students think that a set 
must have two or more elements, while 63.9% of the students think that a set must contain at least 
one element. 

Table 4: Group * Question 5 Crosstabulation 

 Question 5a Question 5b 

Group Correct Wrong Correct Wrong 

1 53.6% 46.4% 36.0% 64.0% 

2 37.8% 62.2% 32.3% 67.7% 

3 58.4% 41.6% 39.2% 60.8% 

Total 50.4% 49.6% 36.1% 63.9% 

Question 7. 

Describe the following statements as true (T) or false (F). 

(a) {1,2,3,4}={4,3,2,1} 
(b) {1,2,3,4}={a,b,c,d} 
(c) {1,2,3,4}={1,2,7} 
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This question is an extension of Fischbein’s and Baltsan’s (1998) observation that, two sets are 
equal if they contain the same number of objects. We presumed that some students were going to 
think of a set as “an ordered n-tuple”, thus answering that {1,2,3,4}≠{4,3,2,1}, or as “the sum of all 
elements”, thus answering that {1,2,3,4}={1,2,7}. From the following table we infer that: (a) 22.8% 
of the students think that {1,2,3,4}≠{4,3,2,1} which implies that the order of the elements play a 
role when describing a set; (b) 57.7% of the students believe that {1,2,3,4}={a,b,c,d}, which means 
that two sets are equal when they have the same number of elements; and (c) 21.9% of the students 
answered that {1,2,3,4}={1,2,7}, which could imply that two sets are equal if their elements add up 
to the same number. 

 Table 5: Group * Question 7 Crosstabulation 

 Question 7(a) Question 7(b) Question 7(c) 

Group Correct Wrong Correct Wrong Correct Wrong 

1 77.9% 22.1% 37.1% 62.9% 73.7% 26.3% 

2 77.4% 22.6% 41.1% 58.9% 74.6% 25.4% 

3 76.5% 23.5% 47.4% 52.6% 84.3% 15.7% 

Total 77.2% 22,8% 42.3% 57.7% 78.1% 21.9% 

Question 11. 
Describe the following statements as true (T) or false (F). 

(a) The number of elements in an infinite set is larger than the number of elements in any of its 
proper subsets.  

(b) All infinite sets have the same number of elements. 
(c) Infinite sets are incomparable. 

In question 10 (not listed here), which was included only in the questionnaire for groups 2 and 3, 
we asked the students to compare some infinite sets. We used different representations, known to 
elicit specific answers (Maria et al., 2009, Tirosh & Tsamir, 1996, Tsamir, 2001). For example, we 
gave them the sets A={1,2,3,4,5,…} and B={1,4,9,16,25,…} and asked them whether the number 
of elements in set A is larger, smaller, or equal to the number of elements in set B, or if it the two 
sets are incomparable. Then we gave the students the sets A={1,2,3,4,5,…} and 
B={12,22,32,42,52,…}, and asked them the same question. The first representation is known to lead 
students to answer in terms of “inclusion”, while the second is supposed to lead them to consider 
“one-to-one correspondence” as the appropriate way to answer the question (Maria et al., 2009, 
Tirosh & Tsamir, 1996, Tsamir, 2001). The main reason for using this question was to engage 
students with a task regarding the cardinality of infinite sets and then, explicitly ask them about 
their ideas, in question 11.  
In question 11 (table 6), which was also included only in the questionnaire for groups 2 and 3, we 
verified Tsamir’s (2001) findings that some students come up with contradictory ideas when they 
are asked to compare the number of elements of infinite sets. Specifically, 32 junior high and high 
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school students marked both Q11a and Q11b as true (“true” being the wrong answer), 38 of them 
marked both Q11c and Q11a as true (also wrong) and 29 marked both Q11b and Q11c as true (also 
wrong). It is important to note that 15 students didn’t answer Q11a, 17 didn’t answer Q11b and 15 
didn’t answer Q11c, and so they are excluded from the following table. We should also point out 
that, Tsamir (2001) used the phrase “number of elements” in her study. In our questionnaire, written 
in Greek, we actually used the word “plethos” instead of “number”. The Greek word for 
“cardinality” is derived from the word “plethos”.

Table 6: Question 11a, 11b, 11c – Crosstabs 

Q11b Q11a Q11c

Cor. Wr. Cor. Wr. Cor. Wr.

Q11a Cor. 64 113 Q11c Cor. 114 46 Q11b Cor. 44 74

Wr. 52 32 Wr. 64 38 Wr. 116 29

Total 116 116 178 84 160 103

Second research question 
Fischbein and Baltsan (1998) found that the formal mathematical properties of set are “forgotten as 
an effect of age”. To check that hypothesis, we decided to use our questionnaire as a test, thus, 
calculating the total score of each student for questions 1-7 (those that were included in the 
questionnaires of all three groups) and then, to compare the mean scores of the three groups (Table 
7 and Table 8, SUM1_7). What we found was that group 3 (high school students) scored 
significantly higher than the other two groups. That finding could be explained due to the fact that, 
in Greek schools the concept of set is almost never taught explicitly even though students are using 
it in various contexts. It is impossible to forget something that you have never been taught, so the 
effect of age cannot be explained in terms of forgetfulness. 

Table 7: Oneway ANOVA for Sum1_7 

Sum of Squares df Mean Square F Sig

Between Groups 95.246 2 47.623 11.335 0.000

Within Groups 1655.384 394 4.201

Total 1750.630 396

Table 8: ANOVA – Post Hoc Tests – Homogeneous Subsets – Tukey Ba,b – Sum1_7 

Tukey Ba,b Subset for alpha = 0.05

Group N 1 2

1 116 6.9397

2 127 6.9843
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3 154 7.9675

Means for groups in homogeneous subsets are displayed 

a. Uses Harmonic Mean Sample Size = 130.502

b. The group sizes are unequal. The harmonic mean of the group sizes is used.

Discussion 
All misconceptions found by previous research (Fischbein & Baltsan, 1998, Tsamir, 2001) were 
verified by our study and some new ones were added in the mix. The most prevalent conceptions 
that differ from the formal use of the set concept were: (1) a set is an outcome, (2) a set is a group 
of objects, (3) elements of a set must conform to a certain criterion, (4) a set must have at least one 
element, (5) a set can contain repeated elements, (6) a set is an “ordered n-tuple”, (7) two sets are 
equal if they contain the same number of elements, (8) two sets are equal if their elements add up to 
the same number (only apply to number sets), (9) the number of elements in an infinite set is larger 
than the number of elements in any of its proper subsets, (10) all infinite sets have the same number 
of elements and (11) infinite sets are incomparable.

When we compared the mean score of each group, we found no significant difference between 
groups 1 (primary school) and 2 (junior high school). High school students (group 3) scored 
significantly higher than their younger counterparts. This discrepancy may be due to the fact that 
12th graders have gained more experience in sets as a result of using them in Algebra and Analysis 
courses in High School. Fischbein and Baltsan (1998) found that the percentage of wrong answers 
increases as age increases. This wasn’t the case in any question of our survey. On the other hand, 
Tsamir’s (2001) findings that some students hold contradictory ideas when they are asked to 
compare the number of elements of infinite sets were in accordance with our findings.
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In this study, we describe a model of student thinking around equivalence (conceptualized as any type 
of equivalence relation), presenting vignettes from student conceptions from various college courses 
ranging from developmental to linear algebra. In this model, we conceptualize student definitions 
along a continuous plane with two-dimensions: the extent to which definitions are extracted vs. 
stipulated; and the extent to which conceptions of equivalence are operational or structural. We 
present examples to illustrate how this model may help us to recognize ill-defined or operational
thinking on the part of students even when they appear to be able to provide “standard” definitions 
of equivalence, as well as to highlight cases in which students are providing mathematically valid, if 
non-standard, definitions of equivalence. We hope that this framework will serve as a useful tool for 
analyzing student work and exploring instructional and curricular handling of equivalence.

Keywords: Equivalence, solution set, operational-views, structural-views, definitions.

Equivalence is central to mathematics at all levels, and across all domains. In mathematics education, 
much research has focused on studying how students think about the equals sign in primary (Knuth et 
al., 2006) through post-secondary (Fyfe et al., 2020) school, because student conceptions of the equals 
sign are related to their arithmetic and algebraic calculations. However, equality is just one example 
of the larger concept of equivalence—other types of equivalence occur extensively throughout the K-
16 curriculum, but are rarely, if ever, taught under one unifying idea called equivalence (Wladis et al., 
2020). On the other hand, multiple types of equivalence (e.g., similar/congruent figures, function 
types, equations with the “same form”) are contained in the U.S. Common Core Mathematics 
Standards but are never explicitly labeled as a type of equivalence. When equivalence is not explicitly 
defined, students may extract their own non-standard, ill-defined, or unstable definitions, or they may 
inappropriately use the definition of equivalence from one area (e.g., expressions) in another area 
where it cannot be directly applied to obtain the “standard” definition expected of them (e.g., 
equations). In this paper we will illustrate this problem by presenting examples of student definitions 
around equivalence and a model for analyzing student definitions, focusing on college students’ 
definitions of equivalent equations. Examples of student work will be used as vignettes to illustrate 
the model. Our aim in presenting this model is to start a conversation about student definitions of 
equivalence and to present an initial framework that can then be further tested, refined, and revised 
by future empirical work.

Theoretical framework
We frame the analysis of student definitions of concepts in terms of Tall and Vinner’s (1981) concept 
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image and concept definition constructs. A person’s concept image describes the “total cognitive 
structure that is associated with the concept, which includes all the mental pictures and associated 
properties and processes” (p.152). Their concept definition describes a “form of words that a learner 
uses for his own explanation of his (evoked) concept image” (p.152). Hence an individual’s personal 
concept definition is idiosyncratic to the individual, may vary based on the context it is evoked, and 
may deviate from the larger mathematical community (the formal concept definition). When we refer 
to a student’s ‘definition’, we are referring to their personal concept definition. 

In this paper, we define the formal concept definition of equivalence as an equivalence relation. The 
formal definition of an equivalence relation most often given in advanced mathematics classes is that 
of a binary relation that follows the identity, symmetry and transitive properties. However, another 
equivalent but more accessible definition of an equivalence relation is that of a partition on a set, or 
more informally: If we have a set of objects and a mathematically well-defined rule for sorting objects 
into sets so that each goes into one and only one set, then this “sorting” is an equivalence relation, and 
two objects are equivalent if they belong to the same set. Using this definition as an analysis tool 
allows us to account for many types of equivalence, with many different mathematical objects (e.g., 
numbers, algebraic expressions, algebraic equations) and equivalence relations (e.g., equality of 
expressions; insertion equivalence of equations; Wladis et al., 2020; Zwetzschler & Prediger, 2013).  
(We note that this definition is an analysis tool that is not necessarily intended to be given to students.) 

From this perspective, a student’s personal definition of equivalence in a given context is valid in so 
far as it is an equivalence relation and can be expressed in a mathematically well-defined way by the 
individual. When students have no explicit definitions of equivalence, this presents several potential 
problems: (1) students may incorrectly apply one definition to another context where it fails to produce 
the “standard” definition (e.g., definition of equivalent expressions to equations); (2) they may have 
only ill-defined or operational definitions of equivalence which inhibit their ability to reason through 
problems; or (3) they may use valid but non-standard definitions of equivalence, in which case they 
are being penalized for not knowing certain socio-mathematical norms (Yackel & Cobb, 1996) even 
when they are reasoning correctly. We argue that the model presented here allows us to better 
recognize when these three situations (as well as others) might be occurring with students. 

Model of equivalence 
Our model of student thinking about equivalence conceptualizes student definitions as existing on a 
two-dimensional plane with two axes: operational vs. structural conceptions of equivalence (Sfard, 
1992), and extracted vs. stipulated definitions of equivalence (Edwards & Ward, 2004). A student 
with an operational conception thinks of mathematical entities as a process of computation, while a 
student with a structural conception thinks of them as abstract objects which can then be acted on by  
even higher-order processes. A student with a structural conception sees objects as reified processes 
(e.g.,  is seen as an object itself, and not just as the process of multiplying  by 6), however when 
students view something as an object which is not the reification of any process, this is called a 
pseudostructural conception (p.75, Sfard, 1992). We see Sfard’s constructs as related to the 
computational/relational distinction made in research on the equals sign, where the computational 
view is a cue to calculate, and the relational view focuses on equality as a relationship (e.g., Knuth et 
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al., 2006). Our model can be seen as a generalization of the computational/relational distinction made 
in research on the equals sign, where equivalence structures (the equivalence relationships) are core 
objects that justify computation.  This is in contrast to Sfard’s description of structures (e.g., algebraic 
expressions) being viewed as a normative process which is reified into an object.   

Extracted definitions are created to describe actual observed usage of a term (e.g., a student may 
extract a meaning for equivalence from their instructional experiences, whether or not they have 
encountered an explicit definition). In contrast, stipulated definitions are those definitions that are 
stated explicitly—to determine if something fits the definition one must consult the definition directly 
(Edwards & Ward, 2004). We note that in our model, a stipulated definition may be stipulated by the 
student or an authority—the key features we use to determine if a definition is stipulated in our 
framework is whether it appears to be explicit, well-defined, and stable across contexts. We note that 
while we have displayed our model in Table 1 as a two-by-two grid for the sake of simplicity, but we 
conceptualize these categories as a spectrum (thus, Table 1 is actually a continuous 2D plane).  

Table 1: Model of student thinking about equivalence 

  Extracted Definition Stipulated Definition 
Operational 

Conception of 
Equivalence 

Pseudo-process view: Students see equivalence 
as a computational process, and their approaches 
to those processes are dictated by prior 
experience in ways that are extracted rather than 
stipulated. Definitions of equivalence are 
typically non-standard, ill-defined, and/or 
unstable.  

Process view: Students see equivalence as a 
process, but do process computations by 
referring to stipulated rules or properties. 
Students with this view may be able to 
perform calculations correctly but this does 
not necessarily translate to being able to use 
stipulated definitions to recognize equivalent 
objects. 

Structural 
Conception of 
Equivalence 

Pseudo-object view: The student is able to 
consider whether two objects are equivalent 
without reverting to an explicit computation, 
perhaps by considering the structure of the 
objects; but definitions of equivalence are 
typically extracted in some way from experience 
rather than based on stipulated definitions of 
equivalence, and as a result are typically non-
standard, ill-defined, and/or unstable 

Object view: The student is able to consider 
whether two objects are equivalent without 
reverting to an explicit computation, perhaps 
by considering the structure of the objects; 
definitions of equivalence used to determine 
equivalence are stipulated. The student 
conceptualizes equivalence classes (or 
solution sets) as objects, although they need 
not do this formally. 

Methods 
Data for this study were collected from 124 students at an urban community college in the US through 
open-ended questions in 18 different courses, from developmental elementary algebra (similar to 
Algebra I in secondary school) to linear algebra. Student responses were analyzed using thematic 
analysis (Braun & Clarke, 2006), combining codes from the model above with an emergent coding 
scheme.   Multiple coders participated in several rounds of coding until consensus was reached. 
Responses coded as indicative of an operational view of equivalence provided evidence of thinking 
of equivalence as an algorithm; those coded as indicative of a structural view of equivalence provided 
evidence of thinking of equivalence as a fixed trait of an object, or reasoning about equivalence via 
its general properties. Further coding details are described below.  

Results 
Students often struggled to provide definitions of equivalent equations for several different reasons. 
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One issue appears to be that students attempted to apply the definition of equivalent expressions to 
that of equivalent equations.  

Pseudo-process view (extracted and operational): For example, in Figure 1, we see the work of two 
students, one in elementary algebra, and one in linear algebra, both of whom give somewhat similar 
definitions of equivalent equations. The elementary algebra student gives a more ill-defined definition 
(“same answer”) but we see from the examples that they provide that they appear to be thinking about 
equivalent arithmetic expressions. We would classify this response as a pseudo-process view, as the 
definition is not well-defined and appears to center around arithmetic calculation.  

 
Figure 1: Definitions from an elementary algebra student, pseudo-process view (on left) and a linear 

algebra student, extracted view (on right) 

Operational view: We see similar work by the linear algebra student in Figure 1, with some 
differences; they give broader examples of equivalence (describing also vectors) and their definition 
is more detailed (“when two quantities are the same on both sides of an equation”). But like the 
elementary algebra student in Figure 1, they conflate the definition of equivalent expressions with 
equations (they include an algebra example, but only show identical expressions as equal). Their 
definition of equivalent equations is also not fully well-defined (“check if both sides are the same”), 
because the word “same” is not well-defined. While their answer shows signs of having seen more 
examples of mathematical equivalence, this does not appear to have positively impacted their 
definition of equivalent equations; we classify their definition as extracted, because it is ill-defined.  

Structural view: Students who apply the definition of equivalent expressions to equations may even 
do this in a way that is mathematically valid (i.e., fits the definition of an equivalence relation), even 
though it is not a “standard” definitions of equivalent equations (e.g., same solution set). Consider 
Figure 2, where a precalculus student has defined equivalent equations as two equations where “the 
result or the number after the equal sign are equivalent”. Based on their examples, they seem to be 
suggesting that any equations of the form  for fixed  would be equivalent. This is 
similar to definitions given by other students in other research (Wladis et al., 2020). This example is 
particularly interesting, because the two equations given here also happen to have the same solution 
set, so it is unclear if this is also an implied part of the student’s definition. Whether the definition 
includes this feature or not, we would classify it as structural even though it is a “non-standard” 
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definition, because the student has given what could be a well-defined but alternate definition of 
equivalence (whether or not their definition is fully well-defined is unclear)1.  

 
Figure 2. Precalculus student’s non-standard structural definition of equivalent equations 

In contrast to the previous examples, some students did draw in some way on the notion of “solving” 
equations or the solution sets of equations when defining equivalence. However, the ways in which 
students drew on notions of “solving” also fell into different areas of our framework. Simply talking 
about the “solution” of an equation was not sufficient to classify work as either stipulated or structural 
even though it sounds like it is related to the standard insertional equivalence definition of equations 
(i.e., same solution set).  

Structural view: In Figure 3(a), we see the work of a Calculus III student, who appears to have a 
well-defined and structural view of equivalent equations: they define equivalent equations as having 
the same solution set (seeming to conceptualize the solution set as a fixed object); and their definition 
appears to be well-defined, not just because of their stated definition, but also because the example 
they give which shows that their interpretation of “same solution” appears to be the “standard” one. 
We note that this is critical, as many students used the language of “same solution” but actually meant 
it to describe equivalent sides of an equation (equivalent expressions) rather than solution set.  

Pseudo-process views (operational and extracted): See, for example, the work of an introductory 
statistics student in Figure 3(b). This student wrote that two equations are equivalent if you “substitute 
the value in for  and the solution is the same for both equations”: this sounds like the standard 
definition of equivalent equations (if an incomplete one that does not account for the possibility that 

 may have more than one value), however, looking at the example they provided, we see that to them 
“solution” denotes the quantity resulting from simplifying one side of an equation (not the solution 
set of an equation). In this sense, the student’s definition is ill-defined, because the vocabulary that 
they are using appears to be ill-defined and has multiple, perhaps vague, meanings. For these reasons, 
we would classify this work in (b) as a pseudo-process view, even though on the surface the definition 
initially looked similar to the one in (a). The student work in Figure 3(c) shows another common 
approach that students used, in which they drew on notions of solving when asked about equivalent 
equations, but struggled to relate these notions to any well-defined definition of equivalence. This 

 
1 This student may be drawing on notions of equations with the “same form” (e.g., , ) which 
is another type of equivalence that is commonly used in the algebra curriculum, even if it is not called equivalence in the 
curriculum (however, “same form” could in fact be codified as a formal equivalence relation, and students may be noticing 
this when they draw on it in their equivalence definitions (Wladis et al., 2020)). 
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student has solved an equation and checked the solution by substituting it back into the original 
equation; however, it is unclear what the definition of equivalent equations is, or even which two 
objects the student is claiming are equivalent (perhaps equivalence for them is not about the 
relationship between two objects, but instead names a process of checking the solution of an equation). 
Thus, we classify this as a pseudo-process view—there is no well-defined stated definition, and the 
student’s focus is on computation.  

 
(a) Calculus III student 

       
(b) introductory stats student  (c) intermediate algebra/precalculus student 

Figure 3: Examples of different ways that students used “solving” in defining equivalent equations 

Students also gave other non-standard definitions of equivalence that might have been well-defined 
equivalence relations (e.g., equivalent arithmetic equations as ones that express the same additive 
relationship; equivalent algebraic equations as ones that express the same relationship between the 
variables). However, we note that by de-coupling our categorization of student definitions of 
equivalence from what is “standard” and thinking more carefully about the extent to which student 
definitions of equivalence are stipulated (and an equivalence relation); and the extent to which student 
conceptions of equivalence are structural or operational, we may be able to achieve two critical goals 
more effectively: (1) we may be able to better identify student thinking which “sounds right”, but is 
actually ill-defined; and (2) we may be able to identify valid student thinking that simply does not 
adhere to “standard” definitions. Both of these goals may better help us to tailor instruction to students.  

We now briefly describe some overall trends we found in coding responses to open-ended questions 
on definitions of equivalence (Table 2). Students primarily associated equivalence with equality, and 
rarely cited other forms (e.g., equivalent equations), although the incidence of non-equality examples 
rose somewhat with course level. Similarly, students at all levels were extremely likely to give ill-
defined or vague definitions of equivalence when asked. When asked about their definitions of 
equivalent equations, most students conflated this with the definition of equivalent expressions; this 
did not appear to improve with course level, suggesting that the lack of explicit definitions of 
equivalent equations in textbooks and curricula (Wladis et al., 2020) may well be contributing to 
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student difficulties in understanding how definitions of equivalence vary in different contexts. Some 
of these definitions, while non-standard, may have been equivalence relations, and therefore reflect 
mathematically valid reasoning—the prevalence of this was not correlated with course level, 
suggesting that students at all levels may sometimes be generating valid but non-standard definitions. 
Many students associated equivalent equations with solving, but this was rarely done in a well-defined 
way: roughly one quarter of all students at all course levels solved an equation but did not relate this 
in any well-defined way to the definition of equivalent equations (most commonly they solved a single 
equation and then checked the answer, with no mention of which two things were equivalent); a 
smaller percentage of students did this at levels of precalculus and above, but the differences by course 
level were small. Some students interpreted equivalent equations as equations with the same solution 
set, and did so in a well-defined way; this was slightly more common as course levels went up; 
however, the vast majority of these students did so in an operational way (i.e., solved two equations 
and said they were equivalent, without discussing the solution set in a more general or structural way). 
This is perhaps to be expected, given the operational way in which the question itself was phrased, 
however, this does follow patterns observed in questions without this more operational wording, such 
as the more general question about the definition of equivalence given on this set of questions 
(although the tendency to use structural rather than operational definitions did increase with course 
level). However, we note that overall, structural and well-defined definitions were rare among all 
students, suggesting that instruction which specifically includes explicit stipulated definitions, and 
which encourages structural reasoning, is needed at all levels. 

Table 2. Summary of student definitions of equivalence 

  
elementary alg. or 

below 
intermediate alg. or 

100-level 200-level or above 
General definition of equivalence       
ill-defined or vague 67% 71% 60% 
cited equality 94% 87% 80% 
other valid definition 0% 3% 16% 
operational definition 41% 18% 17% 
structural definition 0% 2% 17% 
How to tell if two equations are equivalent     
conflated w/ equiv. expressions 44% 48% 44% 

of these, possible well-defined defn. 19% 6% 16% 
finding solution set, operational 0% 3% 8% 
related to "solving" but ill-defined 22% 29% 16% 
solution set, structural 0% 2% 4% 
total n 36 62 25 

Discussion and conclusion 
Our model of student definitions of equivalence aims to refocus our attention from whether definitions 
look “standard” to whether student definitions are well-defined equivalence relations, and whether 
their definitions are structural vs. operational. Using this lens allows us to pinpoint when students 
appear to understand a standard definition, but upon deeper analysis we find that their definition is ill-
defined or wholly operational, limiting their ability to use it. On the other hand, this model also allows 
us to recognize students’ mathematically valid definitions even when they are nonstandard or students 
are not able to explain them fully formally. Evidence from examples of student work suggests that 
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students do notice many kinds of “sameness”, yet struggle to articulate this in mathematically well-
defined ways, just as they struggle to articulate “standard” definitions of equivalence in well-defined 
ways. This suggests that students are capable of noticing and using more generalized notions of 
equivalence, but need more explicit definitions and language in order to be able to do this rigorously. 
Future research is necessary to better understand what kinds of explicit definitions of equivalence 
work best for students in different contexts, and the extent to which discussions of the more general 
notion of an equivalence relation might be helpful in instruction. This framework may also be able to 
serve as a framework for instruction and curricula, to assess how the concept of equivalence is 
presented to students as they are learning at various levels in the curriculum.  
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Early algebra approaches have prepared the transition from arithmetic to algebra for concepts such 
as variables and the equal sign. In this paper, we focus on necessary transitions for the concept of 
equivalence of expressions. The design research project shows how fifth graders can develop an
understanding of the transformations of expressions by dynamically restructuring figures.

Keywords: Early algebra, equivalence of expressions, connecting multiple representations.

Introduction: Early algebra for preparing transitions from arithmetic to 
algebraic concepts – the case of the concept equivalence of expressions
Students’ challenges in the transition from arithmetic to algebra are widely documented empirically
(Kieran, 2004). In different theoretical frameworks, two main instructional strategies have been 
applied to prepare these transitions: (a) Making differences explicit, e.g. between the operational and 
the relational meaning of the equal sign (Knuth et al., 2006), (b) Preparing algebraic concepts already 
in arithmetic in early algebra approaches, e.g. generalization activities for the later formal 
introduction of variables (Mason et al., 1985), but also the early confrontation with relational 
meanings of the equal sign (McNeill et al., 2019). These approaches can be effective in enhancing 
students’ understanding that is fundamental for the later symbolic formalism for variable and equal 
sign. But as transitions are also necessary for a third algebraic concept, equivalence of expressions
(equalities), we pursue the research question: How to 
enhance the connection between different 
characterizations of equivalence to prepare the 
transition to algebra?

Background: Existing approaches and 
our design approach 

Existing approaches for enhancing students’ 
understanding of algebraic equivalence 

For refining the research question, we adopt an
epistemological perspective and first specify 
different characterizations of equivalence (Kieran, 
2004; Zwetzschler & Prediger, 2013). Students 
usually start with an operational characterization of 
equivalence, result equivalence (defined as two 
numeric expressions are equivalent if they have the 

Figure 1: Three characterizations of 
equivalence of expressions (adapted from 

Tondorf & Prediger, submitted)
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same result, see example in Figure 1). However, students also need to become aware of a relational 
characterization as description equivalence.  Description equivalence is defined as two expressions 
are equivalent if they describe the same situation or figure, however, our learning environment, 
focuses on geometric figures, see example in Figure 1. In a later phase, the transition (or flexible 
move forward and backward) to a transformational characterization of transformation equivalence is 
needed (defined as two expressions are equivalent if they can be transformed into each other 
according to transformation rules) (Kieran & Sfard, 1999). Strategy (b) was already realized to 
facilitate a transition from result to description equivalence (Mason et al., 1985; Kieran & Sfard, 
1999). However, the connection between description and transformation equivalence has hardly 
explicitly enhanced, so far. Based on the existing approaches, we conduct a design research project 
for developing and investigating an early algebra approach for bridging this gap for expressions 
without variables. On this background, we refine our research question as follows: How can early 
algebra students’ connection between description and transformation equivalence for expressions be 
enhanced?

Based on a literature review, we briefly sketch two existing approaches for establishing these two 
characterizations: (1) Early algebra approaches can provide first opportunities for students to 
experience how different expressions can describe the same situation or geometric figure through 
connecting different representations (e.g. Mason et al., 1995). Some algebra approaches also make 
explicit that these pairs of expressions are then called equivalent, thus fostering the characterization 
of description equivalence (Zwetzschler & Prediger, 2013; Sfard & Kieran, 1999). However, the 
transition to transformation equivalence is hardly supported. (2) If the learning of the characterization 
of transformation equivalence is supported, 
then starting from result equivalence, not from 
description equivalence (e.g. Schwarzkopf et 
al., 2018). Usually without reference to a 
described situation or figure, these approaches 
engage students in discussing why two 
expressions have the same result by 
investigating involved expressions and the
structure of their sub-expressions, e.g. by 
using the distributive law intuitively to 
summarise sub-expressions. As they do not yet 
sufficiently involve the connection of multiple 
representations, the representations will be a 
focus of our qualitative analysis.

Our first design approach for connecting 
description and transformation equivalence

As the state of research shows, establishing a 
strong fundamental understanding of
equivalence of expressions by the relational 
characterization as description equivalence is crucial, e.g. by connecting multiple representations 

Figure 2: Task 1 for description equivalence, 
Task 2 for transcription to transformation equivalence 
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(Mason et al., 1995). However, existing approaches do not sufficiently support the connection of 
description and transformation equivalence. We designed a learning environment to engage students
in activities that could lead to a recognition of this aspect of equivalence. Figure 2 shows two tasks 
focussed on in this paper: Students worked out the connection of structures of expressions and 
subexpressions to geometric structure in the figures and the characterization of description 
equivalence in previous tasks. Focus Task 1 then asks in a first approach to compare two different 
geometric structures and also their respective expressions.  

Focus Task 2 then was the preliminary version designed to engage students in the connection to 
transformation equivalence by asking to connect each step of transformation to the geometric figures
in a way that each expression can be replaced by a description-equivalent-one. 

Methodology of the design research study
Within the chosen Design Research methodology (Gravemeijer & Cobb, 2006), we developed the 
initial design (from Figure 2) and investigated the research question mentioned above. 

Methods of data gathering. Up to now, design experiments have been conducted in laboratory 
settings with seven pairs of fifth graders. In total, 27.5 hours of video were recorded and partially
transcribed. In this paper, we analyze a case of two girls, Lea and Linda (10-11 years old), described 
as high-achieving by their teacher. This case was chosen due to its significance in illustrating two 
complementary phenomena concerning the task potential with 
respect to the research question.

Methods of data analysis. According to the analytic procedure 
developed in Tondorf & Prediger (submitted) for other cases
(Figure 3), the transcript was qualitatively analyzed in two steps: 
In step 1, the students’ utterances are coded according to the 
addressed components: result R and the expressions EA and EB, 
in symbolic representation, or in the graphical representation the 
structured figures SA or SB,  and the figure F. In step 2, students’ 
utterances were coded regarding the implicitly or explicitly 
drawn links between the components and marked in the analytic 
framework (═ marks the conclusion that EA and EB are 
equivalent, ↔ marks a transformation between EA and EB , —
marks the connection of two concerned / marked objects. The coding was conducted by the first 
author, checked by the second author, missing intercoder agreement was solved by consensual 
discussion.

Empirical insights into students’ transition pathways 
Episode 1: Students’ invention of restructuring from one structured figure to the next

Episode 1 illustrates students’ emerging idea of a dynamic comparison of the given structures that we 
identified empirically: By dynamic we mean a comparison which results from a stepwise 
modification of one object into the other (e.g. EA to EB in transformation equivalence). We distinguish 

Figure 3: Analytic framework 
for capturing representations 

and connections addressed 
in students’ utterances
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it from static comparison, which is bound to a third stable object of comparison (like result 
equivalence comes from connecting both expressions EA and EB independently of one another to 
result R). In Task 1 of Figure 2, Linda and Lea are asked to compare the two structured figures (named 
SA and SB for easier analysis) and the expressions EA and EB with respect to similarities and 
differences. The girls had already allocated the structure of the expressions to the structure of the 
figures by explained marking of SA coming from EA or rather by 
finding EB coming from SB, described how both expressions are 
description equivalent, and named same-structured and different-
structured areas of SA and SB. When asked to transfer their discovery 
onto the symbolic representations, Linda focused on SA and SB and 
starts to describe the relation between 8  12 in EA and groups of fours 
in EB. 

49 Linda: Here [gestures along the rows of structured figure SB with 3 groups of 4], when you take that 
together 

50 Teacher: Um, that is a great idea, can you also. 

51 Linda: four, eight, twelve 

Linda described the relation between three groups of four in one row of structured figure SB and one 
complete row of 12 (like in SA). Even though she used merely the vague “here” to refer to the units 
(Turn 49) and a language of symbolic representation for the process (“take together” in Turn 49), she 
hinted at the structured figure SB (Turn 49) and explained how the 3 groups of 4 in a row are related 
by counting up in units of fours (Turn 51). We interpret her dynamic notion (“take together”) and the 
counting in units as her explanation of how a row with 3 groups of 4 can be dynamically modified 
into 1 group of 12. Within our analytic framework in Figure 4, we thereby 
inserted an additional edge between SA and SB that we had not found in the 
literature prior to our analysis. 

The case of Lea and Linda resonates with other cases analysed in Tondorf & 
Prediger (submitted), in which we identified similar dynamic descriptions of the 
structured figures. With different technical or everyday phrases (“break apart”, 
“draw a line”), students express emerging ideas of restructuring the figures. So, 
the extension of the analytic framework by a new edge (not anticipated from the 
literature) is not only a technical analytic detail, but an important finding of a 
forth characterization of equivalence that the first group of students invented. It 
can be seen as the graphical counterpart of the symbolic transformation 
equivalence. We call this dynamic relation between structured figures 
restructuring equivalence (represented by the double arrow between SA and SB). 

Episode 2: The connection of transforming and restructuring expressions  

Linda and Lea continued to build upon the dynamic connection between the structured figures SA and 
SB (that they invented in Episode 1): Episode 2, documented in the next transcript, took place in the 
beginning of their discussion of Task 2 (from Figure 2), when they tried to retrace the ideas of the 
fictitious student Zeynep and connected her idea to their previous idea from Turn 49/51: 

 

Figure 4: 
Additional edge  

for students’ 
restructuring 

process from SB to 
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154 Linda: She [the fictitious student Zeynep in Task 2] always means, um, she writes always what is 

here [points at “Each group of 12 can be replaced by 3 groups of 4.”], above.  

155 Lea: Uh-huh, she describes the expressions, always. 

156 Linda: [After 10 sec break] Ok. [reads out loud] “Each group of 12 can be replaced by two groups 
of 4.” That works, because four, eight, twelve [gestures along the yellow line in the picture]. 
Just like it was done by Matt [hints at SB]. And then, he has done also always, uhm uh-huh, 
groups of 12 always into groups of 4. Just like here, also here [hints at the green and yellow 
line]. She [referring to Zeynep] says, what you could do. 

157 Lea: Yes, every [group of] 12 can be, by three fours  

158 Linda: be replaced  

159 Lea: Can be replaced. 

160 Linda: Yes, and that works, actually 

 … 

162 Linda: And here [unclear where exactly she points at]. 
Three times – um – eight times three plus – no: eight times three times four. Two fours 

163 Lea: #plus two times four. This is here, that, though [shows the upper lines in SA/SB which only 
two groups of four squares are marked] two times four. 

164 Linda: Yes, she has only splitted them, here [hints at 8  3  4], hasn’t she?  

When Linda read the given explanation of a replacement process in Turn 156, she immediately 
connected it to the dynamic modification she conducted in Turn 51 in Episode 1 (when taking together 
the 3 groups of 4 into 12) and interpreted this modification backwards, as splitting the 12 into 3 groups 
of 4. Whereas the phrase “can be replaced” in the task is more static (i.e. not involving dynamic 
restructuring processes), her interpretation was expressed dynamically as “done […] groups of 12” 
(Turn 156). This approach of dynamic modification of the figures is 
then transferred to making sense of the symbolic transformations in 
the following lines: Examining the expression 8  3  4 + 2  4, Linda 
mixes language of symbolic representation (Turn 162 “eight times 
three time four”) and referring to the graphical representation of 
multiplication (Turn 162 “two fours”). We interpret this as an 
indication that she mentally connects the graphical and symbolical 
representations to one object. Lea strengthened this connection by 
articulating how both representations match each other (Turn 163). 
Apparently, Linda and (maybe also) Lea succeed to connect the 
known characterization of description equivalence with their 
emerging characterization of restructuring.  

Based on this connection, Linda started a first attempt to explain the 
change within the symbolic expression (Turn 164). She addresseed the transformation of 8  12 into 
8  3  4 (Turn 164), again expressed with reference to the graphical representation (“splitted”), which 
refers to her underlying characterization of restructuring. Although her description of the process is 
not completely explicit, her emergent meaning-making of the transformation process is recognizable. 
Both girls constructed the meaning of transformations starting from the geometric characterization of 

 

Figure 5: Students’ process of  
argumentation and connecting 

of restructuring and 
transformation  
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description equivalence given in the task. However, they used a further bridging characterization for 
this transition, their dynamic characterization of restructuring equivalence.  

Other students in our design experiments also used this newly emerging idea of restructuring as a 
bridge from description equivalence to transformation, so again, the identified phenomenon was not 
only specific to Linda and Lea. Like for Task 1, students used various ways of articulating their ideas 
to bridge the gap and explain the connection. Also in Task 2, they varied in the degree of explicitness 
when describing and explaining the transformation of expressions. However, they had in common to 
connect both processes, restructuring and transforming, in their meaning-making processes (for 
further cases see Tondorf & Prediger, submitted). The empirically identified phenomenon lead to 
another extension of our analytical and epistemological framework in Figure 5: the additional vertical 
edge between the double arrows links the restructuring from SA to SB and the transforming between 
EA and EB. This extension signifies the mentally constructed connection between both 
characterizations.  

Discussion and conclusion 
Summary and embedding of findings  

Our research question, how students’ mental connections of description equivalence to 
transformation equivalence for expressions can be enhanced, was addressed in a design research 
methodology (Gravemeijer & Cobb, 2006). Our preliminary design answer developed in the first 
design experiments was to present expressions 8  12 + 2  4 and 26  4 that describe the same 
geometric figure structured in two different ways, and to engage the students not only in discussing 
similarities and differences of the structured figures (Task 1 in Figure 2) but also to stepwisely 
compare bridging expressions from 8  12 + 2  4 via 8  3  4 +2  4 and 24  4 +2  4 to 26  4.  

The empirical analysis of the presented case (and further cases in Tondorf & Prediger, submitted) 
reveals that students can even go beyond the stepwise static comparisons initiated in the task (e.g. 
between the subexpressions 8  12 and 8  3  4): several (but not all) students were found to adopt a 
dynamic approach to find the modifications made in the structured subfigures and explain how to 
restructure one subfigure into the other. They articulate these restructuring activities in dynamic 
wording (“take together”, “break apart”, “split”). Whereas a dynamic approach is usually only used 
for the transformation of symbolic expressions, we learned from these students that a dynamic 
approach can be used already earlier, when working with the graphical representations. Thereby, they 
constructed a fourth bridging characterization that we named restructuring equivalence, for which 
we see a huge potential to prepare the meaningful ground for transitions to later algebraic 
transformations. 

The activity of restructuring figures is used by mathematicians in so-called proofs without words for 
proving the equivalence of symbolic expressions by restructuring figures, of course while 
acknowledging that an explicit articulation of connection is also required (Nelsen, 1993). Our study 
reveals a possibility for students to discover the underlying restructuring equivalence when working 
with geometric figures and we argue that this has important theoretical implications. We further 
develop this empirically grounded theorisation in Tondorf & Prediger (submitted). 
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In our data, we found a second important phenomenon 
that contributes to the theorisation: Students use the 
restructuring equivalence to make sense of 
transformation equivalence. When trying to make sense 
of the transformation of the expression, many students 
connected the symbolic and graphical representations 
intensely, e.g. by combining references to symbolic 
representation and graphical representation to describe 
the expression or figure (like Lea in Turn 162 of Episode 
2). In these contexts, students built upon their dynamic 
approach (constructed for comparing structured figures)
to explain the transformation steps between the bridging 
expressions. Thus, they made sense of transformation
equivalence by explicitly connecting it to restructuring 
equivalence. The restructuring equivalence thereby takes 
the role of an important new bridging characterization in 
a dynamic approach (Figure 6) that prepares not only the 
shift from graphical to symbolic representations, but also 
the transition from the static approach of description 
equivalence to the dynamic approach of transformation 
equivalence. With the new bridging characterization, we 
can engage students in connecting multiple 
representations which has often been shown to be 
effective for learning (e.g. Mason et al., 1995). Moreover, 
we can engage them in connecting concepts and 
procedures, which is of major importance for the 
successful transition from arithmetic to algebra (Kieran, 2004). 

Introducing bridging characterizations might be another instructional strategy (c) that can enrich 
strategy (a), making differences explicit, and (b), treating core ideas of algebraic concepts before the 
formal symbolism of variables is introduced, (see introduction).

Consequences for our instructional design 

We used the empirical findings for revising the task in our second design experiment cycle: In order 
to enhance all students’ mental connections of graphical and symbolic representations as identified 
for Lea and Linda, figures were added in each step of transformation and restructuring. Additionally, 
the explanation in the first step was phrased in a more dynamic way to support students’ dynamic 
thinking (Figure 7). As the analysis of processes initiated by the refined Task 2 reveals (Tondorf & 
Prediger, submitted), these revisions allowed also students who could not adopt a dynamic approach 
in Task 1 to take over the offered dynamic language to describe and partially explain the 
transformation by restructuring. With these additional supports, the bridging characterization seems 
to be in reach for many students.

Figure 7: Revised Task with 
a more dynamic approach

Figure 6: Restructuring equivalence as 
bridging characterization in early algebra
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Methodological limitations and concluding remarks  

The presented design experiments provide promising insights into how one may enhance students’ 
understanding of transformation equivalence. However, there are still many gaps to fill. Firstly, we 
have not yet transferred the idea to other expressions and other transformation processes. Secondly, 
the presented task and the learning environment do not include the transition to generality which is 
crucial in early algebra as well. Thus, students’ learning is not yet enhanced beyond the concrete case 
given in the task. There is need for further research to develop learning opportunities in which the 
contextual ideas can evolve into general concepts.  
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Introduction
The TWG04 is concerned with research on geometry teaching and learning from kindergarten to 
university, including teacher education. In particular, it aims to contribute to the congress and 
research by discussing new and upcoming matters regarding the teaching and learning of geometry 
and, at the same time, continuing the discussions on the issues raised in the last CERME.

At virtual pre-CERME12 in 2021, two topics were discussed (The specific aspects of mathematical 
activity in geometry and Teaching and learning geometry), around questions such as “Which 
competencies (visual, reasoning, operational, and figural) should students/pupils have 
acquired/developed at the end of a specific school level?”, “Which is the impact of online teaching 
and learning geometry?”, and “What geometry our students should know when they move from 
primary to secondary to tertiary education?”. Crucial points highlighted by several contributions are 
the relevance of language from a very early age, the use of material and digital tools, and the focus 
on visualization. At CERME12, in TWG04, we intended to continue discussing the two issues 
proposed for pre-CERME12 and relaunch a third issue, Teacher education in geometry.

Around 25 researchers from South Africa, the Middle East, East/Central/West Europe, the USA, and 
South America participated in TWG04 during the online sessions. The TWG04 work was stimulated 
by and organized around nine research papers and three posters. This group’s exciting and relevant 
feature was its polyphony: a blend of experienced and young researchers discussing geometry 
teaching and learning. In the concluding survey, the participants indicated that participation in the 
TWG04 was an enriching experience.

Organization of the TWG04 at the congress
The papers and posters were divided into three topics, concerning their primary focus on Teacher 
education in geometry, Use of tools in geometry teaching and learning, and Students.

The fundamental elements of all the papers and posters were presented by the authors and discussed 
in groups. In particular, in each session, two papers/posters were introduced by a participant, and then 
a collective discussion followed. In turn, one participant was in charge of writing down the questions 
and comments arising during the discussion on an open document, as well as each participant could 
contribute by writing questions/comments on the same open document. At the end of the work on the 
set of papers/posters concerning a topic, the participants were divided into three subgroups to discuss
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related questions, which were formulated by the team of group co-leaders to guide them towards a 
synthesis of the previous collective discussion. Finally, the last session was dedicated to sharing the 
synthesis of all the discussions and small group works to prepare the final report of this working 
group. 

Focus on teacher education in geometry
This topic includes contributions that have teacher training and reflections on teachers’ beliefs on 
geometry as crucial elements.

In her paper, Kuzle investigates the value of geometry in mathematics instructions through a
questionnaire proposed to a sample of 120 German in-service teachers. She analyses two items of 
that questionnaire: the first item aims to collect teachers’ opinions on the role of geometry instruction 
in elementary school, and the second item asks to mark the most significant reasons for neglecting 
geometry education. A result of this research is that geometry is still insufficiently taught compared 
to other areas of mathematics, in particular arithmetic, even if positive changes are observable. In 
general, the predominance of arithmetic seems related to time-practical reasons rather than a disregard 
for geometry. Nevertheless, there seems to be a difference between prospective and in-service 
teachers, related to the insecurity that prospective teachers have with respect to geometry content 
knowledge. Two reasons could explain this difference: a lack of mathematics knowledge from school 
as learners and insufficient preparation at the university level as teachers. From this research emerges 
the question of knowing if there are some geometry topics teachers feel more insecure about teaching 
them. Further research could provide elements to plan teacher education from different perspectives.   

Finally, the discussion on the paper confirmed the relevance of the investigated question “What role 
does geometry instruction have nowadays in school mathematics?” for all the teachers, and the 
relevance of taking into account how textbooks convey an image of geometry with respect to the 
other parts of mathematics curriculum (i.e., starting from the organization of chapters in the textbook). 

Hausler and Kuzle’s poster contributes to the discussion on teachers’ images of geometry. By 
“Imagine you are an artist. A good friend asks you what geometry is. Draw a picture in which you 
explain to him or her what geometry is for you. Be creative in your ideas”, prospective primary 
teachers attending a geometry course at the university were invited to perform two drawings, one at 
the beginning of the course and the other at the end. The two authors analyse the drawings to detect 
changes due to the attendance of the course taught by one of the authors. 

Although research is carried out on teachers’ beliefs (e.g., see other CERMEs groups), these two 
contributions emphasize that in teacher education, it is vital to consider not only primary teachers’ 
beliefs about mathematics but also about particular fields of mathematics and its teaching, as in this 
case geometry. From this point of view, it might become fundamental to investigate which 
activities/tasks affect prospective teachers’ attitudes towards geometry and its teaching and define 
criteria for identifying their impact on teachers.

The questions concerning the relation between teachers’ content knowledge, their difficulty in 
teaching geometry, and didactical tasks are also investigated in other papers from different 
perspectives. 
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Ratnayake et al.’s paper focuses on secondary school prospective teachers and their difficulty in 
enacting geometry in the classroom. In the trend of research focusing on teachers’ mathematical 
knowledge, their research project aims to offer a set of criteria for developing aspects of examples in 
tasks to analyse teachers’ knowledge in geometry. In particular, with this work, the analysis of figures 
and their attributes in solving tasks is discussed.

Several questions emerged, such as which tasks can be considered emblematic for prospective teacher 
education in geometry. The papers presented by Bernabeu et al., Giménez et al., and Brunheira et al. 
contributed to the discussion on primary school teacher education. In particular, Bernabeu et al. and 
Giménez et al. propose classification tasks, the former on quadrilaterals and the latter on 3D figures. 
Brunheira et al. focus on the reasoning process in the context of a task on 3D figures. In all these 
papers, the features of the tasks allow highlighting the knowledge that students possess and the 
knowledge that teachers need to develop for geometric thinking. 

Bernabeu et al. analyse quadrilateral classifications to bring out the definitions possessed by 
prospective primary teachers and to identify prospective teacher profiles. Although their research 
focuses on the mathematical knowledge of prospective teachers, the task analysed here can be 
interpreted between specialized content knowledge and pedagogical knowledge (Ball, Thames & 
Phelps, 2008). The researchers do not collect quadrilateral definitions and classifications with direct 
questions but as responses to a professional task given to prospective teachers. Specifically, they 
analyse teachers’ knowledge through their answer to the request to anticipate children’s answers for 
a classification task. The analysis shows that only around 30% of the teachers use hierarchical 
definitions involving the transitivity of inclusion relations (although with some non-economic 
definitions). The discussion of this paper also led to a comparison of quadrilateral classifications and 
definitions in the primary school of participants’ countries, showing how classifications can be 
relevant – referring to Usinkin and Griffin’s work (2008) – for comparing and examining curricula 
and textbooks (for instance, see the definition of rhomboid/parallelogram or trapezoid/trapezium).

Giménez et al. analyse the answers to the task of constructing polyhedra using material half-cubes 
and classifying them; they aim to identify which types of knowledge prospective teachers possess. 
As in Bernabeu et al.’s paper, they are interested in mathematical content knowledge; nevertheless, 
the authors also consider the meta-didactical knowledge on the value of the classification process in 
learning geometry. Indeed, the questions they ask students include important mathematical 
knowledge and invite discussion of the relevance of the processes activated in these tasks (for 
instance, “Why do you consider that when we study various types of figures, a fundamental process 
to work with is classification?”). The analysis highlights that even at the undergraduate level, the 
perceptual appearance dominates over certain conceptual aspects: most of the classification criteria 
are based on a description of the object with a low level of structuring. Despite having manipulative 
elements which could support them, prospective teachers are not capable of expressing 
mathematically well-formulated explanations. For instance, they use terms from plane geometry in 
their discourse on spatial geometry, and their arguments are very similar to those that pupils use. 
Thus, the question of what role the construction of tangible models plays in developing prospective 
teachers’ geometrical thinking and knowledge for teaching geometry remains relevant. 
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In Brunheira et al.’s paper, 3D geometry is the context in which the researchers study prospective
(primary and secondary) teachers’ knowledge of reasoning process within the framework of 
specialized mathematics knowledge for teaching. The task for prospective teachers proposed in the 
paper consists of two parts: in the first part, the prospective teachers have to identify the reasoning 
processes involved in the task which will be proposed to students; in the second part, prospective 
teachers are asked to discuss on students’ reasoning that emerging in an excerpt of a dialogue between 
students and teacher. The analysis shows that this kind of task and context promotes the knowledge 
of reasoning processes. 

The discussion which developed in the working group proposed additional issues, such as:

- It is significant to bring together the mathematical properties and visualization processes 
involved in solving a geometric problem. 

- There is a need for more collaboration between researchers and teachers in the research field 
of geometry education.

- The role embodied context plays in geometry teaching and learning, particularly the use of 
tools, types of tasks, and activities.

- Research could focus on the learning trajectory between primary and secondary education and 
its relation to the education of prospective teachers. 

Finally, two suggestions emerged for further research contributions. The first suggestion is the 
following research questions: “Do teacher training programs in different countries have geometry/ 
teaching geometry courses (and to what extent)?" and "How can this choice influence prospective 
teachers’ efficiency/preparation for geometry instruction?”. The second suggestion concerns the 
development of research on secondary teacher education in geometry in connection with primary 
teacher education.

As pointed out in the discussion of some of the papers in this section, tasks on 3D geometry seem to 
be a good context for exploring geometrical thinking. The papers in the next section also focus on 
this content using DGS and material (tangible) models.

Focus on the use of tools in geometry teaching and learning
The group discussed this topic based on three contributions: one paper concerns using the 3D 
environment of GeoGebra DGS, and the other papers report two experiments with material (tangible) 
models of 3D figures made with different tools (3D pens and construction kits). All these papers refer 
to secondary school. They are based on different theoretical frameworks (i.e., the theory of semiotic 
mediation and embodied learning).

In Sua et al.’s paper, 3D DGE mediates the relationships between 2D space and 3D space. The task 
described in the paper involves geometrical constructions and their meaning in plane geometry and 
pays attention to the meaning of correct constructions (corresponding to several solutions) for 
constructions in 3D space. The dimension of space is the only variable of the task: the request for 
constructing triangles (isosceles and equilateral ones) is the same in the two spaces, 2D and 3D,
starting from the same kind of initial object (the side of the triangles). While adapting the 2D 
procedure, the students consider the new dimension of the space passing from circles to spheres in 
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their constructions, but they do not control the intersections between the drawn spheres as they do 
with the circles. On the other hand, the syntax of some commands in 3D DGE does not match 2D 
procedures; the transition between environments also requires a different and new conceptualization 
of 2D objects by students. This paper opens several research questions on: 3D visualization mediated 
by the DGE, cognitive and epistemological control in the transition from 2D to 3D spaces, awareness 
of this transition for students (it seems to observe a misattributing of 2D properties to 3D objects). 
Finally, in general, which is the challenge of this kind of task for secondary students?

The two other papers investigate 3D geometry using 3D pens and construction kits. 

Palatnik and Abrahamson develop an enactivist argument for learning 3D geometry by constructing 
tangible models in their paper. They describe the gap between the geometry taught at school, mainly 
2D geometry with 2D tools, and the 3D space where students live and experience 3D objects. From 
an embodied perspective in mathematics education, the authors investigate students’ cognitive 
processes in 3D tasks with tools for constructing 3D models of solids (i.e., cube and tetrahedron) in 
small and medium sizes (hand-held and human-scale models) (Herbst, Fujita, Halverscheid & Weiss,
2017). These tasks foster the transition between 2D and 3D figures and models and, in general, 
between 2D and 3D space differently from that analysed in Sua et al.’s paper. Students’ physical 
actions led to shifts in perceptual-motor attention, which involve a refinement of geometric reasoning.

Rosenski et al.’s research focuses on emotional aspects and the influence of affect in 3D problem 
solving using 3D pens. Their results show the relevance of those aspects in learning geometry with 
tools and the potential of the 3D pen for engaging students in spatial geometry tasks. Compared to 
the construction kits, the 3D pen is an emerging technology for mathematics education. Subsequent 
group work discussed the role of the novelty of material and digital tools in student engagement, 
particularly when the novelty of a tool is neutralized by regular use in the classroom. 

The discussion in the group raised several questions, such as: “What is the added value of tangible 
and/or digital/virtual manipulatives in geometry instruction?”, “Is it important to start a teaching 
experiment from material manipulatives with students?”, “What are the affordances and constraints 
of using material manipulatives?”. For students in different age groups, we asked: “What constitutes 
learning of geometry when they use physical models?”, “When is it useful to propose material tools, 
and when is it necessary to let students work only with their mental images?”, “What are principles 
of task design with manipulatives?”, “What makes work with manipulatives (material and virtual) 
exciting for students (except the novelty of medium)?”. Furthermore, “Why is 3D DSE especially 
important as a tool of semiotic mediation?”. These questions remain open for research. 

Our group agreed on the importance of using material tools to teach geometry in elementary school, 
high school, and even at university level. Nevertheless, the idea that manipulatives and digital tools 
are age-sensitive emerged: some tools (or some ways of using them) are adequate for younger or 
older students; so, while moving between different manipulatives or a manipulative and symbolic 
forms, the meanings that need to be constructed have to be in focus. Material and digital tools offer a 
combination of representations, which is very important in geometry teaching and learning (Herbst, 
Fujita, Halverscheid & Weiss, 2017). In some cases, as with 3D pens, boundaries between material 
and digital tools, novel and traditional mediums, 2D and 3D, are constantly crossed; thus, it becomes 
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interesting to study them. Although the novelty of a tool is a factor of motivation and reinforcement 
in the learning process, it seems that students’ motivation in activities with tools cannot be ascribed 
to their novelty alone; the creative and collaborative nature of activities could maintain student’s 
interest because they made something together, they have to communicate, and so on. 

The discussion proposed additional issues, such as:

- Taking into account instrumental genesis for students and teachers and the importance of 
students’ experience with tools.

- Identifying the tool’s novelty effect on students’ engagement and motivation.
- Considering the change of didactical contract when a new tool is introduced in the class for 

planning activities and identifying students’ engagement.
- Emphasizing connections between geometry education and its applications in the real world 

(e.g., architecture, mechanical engineering, and art).

Focus on students
The discussion on the third topic was based on three papers concerning students in grades 5, 6, and 
9. These papers are developed within different theoretical frameworks (e.g., embodied cognition, 
realistic geometry, van Hiele Levels, PISA framework for competences) and focus respectively on
abstraction in geometry (Boonstra), problem solving requested by online DGS tasks in the time of 

The contributions of Boonstra and Edamus et al. discuss the same mathematical content, the 
geometric reflection, and pay attention to static and dynamic aspects concerning the reflection in two 
different environments. Grounded in the realistic mathematics education approach, Boonstra focuses 
on the processes activated by 5-6-grade pupils facing two problems on reflection through the use of 
a mirror (“Move the chess towers in front and behind the see-through mirror and let them meet in the 
mirror”; “Place a see-through mirror in the correct position on the line”) to investigate how embodied 
activities support abstraction. This paper suggests discussing which characteristics and properties the 
tasks should have to support abstraction and which is the role of the tool (e.g., tasks with a mirror and 
tasks without a mirror) within the embodied research design.

Edamus et al. analyse the resolution of a task on the composition of two reflections with parallel axes 
to study students’ understanding of reflection from a functional point of view. In particular, after 
constructing the symmetrical figures, two students have to collaborate online to solve the task of 
moving axes and describing/explaining what happens to the symmetrical figures. In the discussion 
on students’ processes, the questions on why students must move between static and dynamic aspects 
for understanding reflection and how this helps them in their learning process are asked. The setting 
of the experiment is interesting for fostering communication between the students, the emergence and 
development of mathematical language: in pair work, one student gets access to the online DGS file 
and shares his screen; only this student can manipulate the DGS figure while the other one is forced 
to verbalize his ideas and give instructions. 

The third contribution brought in the discussion on the assessment of geometrical competencies. The 
heart of the matter is which strategies and methods researchers and teachers have at their disposal to 
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assess students’ competencies in geometry. The assessment involves choosing what is to be 
evaluated, a framework for geometry learning and competencies, and a format in which questions are 
asked. The crucial question arises as to a suitable framework for constructing a good test to measure 
geometric thinking. 

In the discussion, additional issues emerged, such as:

- Different types of tasks and content (i.e., the inclusion of non-Euclidean geometry; topology; 
task with manipulatives) can surface different aspects of students’ geometric thinking, 
reasoning, behaviour, argumentation, … 

- Engaging students in collective visualization is challenging in the absence of physical 
manipulatives. 

Finally, other questions emerged for further research contributions, for instance, concerning social 
aspects of students learning of geometry (i.e., gender differences in participation)

Future Directions for TWG04
The discussions in this TWG were vibrant and, as a good discussion, posed more questions than 
answers. In this paper, we leave some other suggestions for the next TWG on geometry teaching and 
learning. 

In the frame of the geometry education research community considering the possible international 
study on the geometry content knowledge necessary for (primary/secondary) teachers:

- What research questions should be considered?
- Which differences and similarities of national curricula should be taken into account?
- Which theoretical perspectives on geometry teaching and learning should be taken into 

account?
- What tools does the current research provide for teacher education in geometry?

In the paper and poster presentations, we observed three essential processes involved in students’ 
work when they engage with a geometric problem/task: visualization, argumentation, and the 
transitions between different representations (e.g., 3D geometrical objects and their 2D 
representation). As researchers and/or teachers, how can we become aware of/observe when our 
students engage in those different processes? Finally, how can we foster/promote the activation of 
those processes?

We hope that this TWG on geometry teaching and learning continues to advance the research on 
geometry education, paying attention to the changes in scholarly contexts and the new educational 
needs that arise. 
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This study aims to characterize the preservice primary teachers’ curriculum reasoning when 
anticipating primary students’ answers to figure classification tasks. Anticipating answers to figure 
classification tasks involves considering the relationship between the definition and classification
and the characteristics of geometrical thinking progression. We analyzed the definitions of geometric 
figures posed by twenty-eight preservice primary teachers to quadrilateral classification tasks. The 
results show three preservice primary teachers' profiles taking into account the
specialization/generalization of the quadrilateral definitions provided and the transitivity of inclusion 
relations. These results indicate features of curricular reasoning in anticipating tasks as part of 
preservice primary teachers’ curricular noticing.

Keywords: curricular noticing, anticipating students’ answers, geometric reasoning, hierarchical 
classification, definition of geometric figures.

Introduction
Previous researches (Jones & Tzekaki, 2016; Sinclair et al., 2016) argue that it is important for 
teachers to understand the elements that condition understanding of inclusive relationships to plan 
geometry instruction. This generates the need to know how preservice primary teachers (PPT) reason 
when anticipating student answers as an aspect of curricular noticing (Dietiker et al., 2018). This 
construct describes a set of professional practices that allow teachers or preservice teachers to 
recognize, interpret, and generate learning opportunities from teaching-learning situations when they 
interact with curricular materials. In these situations, they had to carry out the curricular reasoning
(Breyfogle et al., 2010), which has been defined as the thought processes in which teachers or 
preservice teachers engage when working with curricular documents or materials to plan, implement
and reflect on instruction.

Theoretical Background and Framework
A key aspect in the progression of geometric thinking, whatever the educational level, is 
understanding a geometric figure as an example of a class of figures (hierarchical classification). The 
understanding of hierarchical classifications is linked to the definition of the figure. These
hierarchical classifications imply that, for example, a figure (square) in a class A (rectangle) has all 
the properties of the class B (parallelograms) that includes it. There are two processes for defining 
these figures. On the one hand, the specialization process, in which to get an example of A, attributes 
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have been added to the definition of B (more general class); and, on the other hand, the generalization
process, by suppressing attributes from the definition of an example of A to create a more general 
class, like B. The process of including an example within a more general class, and so on (A is an 
example of B, B is an example of C, so A is an example of C) is known as transitivity (de Villiers,
1994) (Figure 1).

Figure 1: The specialization and generalization of the definitions and the transitivity of the inclusion 
relations

However, understanding the specialization and the transitivity in the hierarchical relationships 
between figures is difficult (Fujita, 2012; Fujita & Jones, 2007). Previous research (Brunheira & da 
Ponte, 2019) showed that prospective teachers, after a teacher education experiment that includes this 
kind of classifications, had a limited figural concept, and therefore, difficulties in the hierarchical 
classifications using the transitivity. These difficulties may be a problem for prospective teacher when
they will have to plan the teaching/instruction.

For planning the teaching of hierarchical relationships of geometric figures in primary education, PPT
should anticipate the thinking processes that the tasks may promote in students considering the 
cognitive abilities of the students (both mathematical and didactic contents). For example, PPT should 
consider, as key aspects in learning, the process of specialization of the definition (adding properties 
to a general class) as well as the transitivity of the inclusion relations (A B and B C, then A C) 
(de Villiers, 1994). The way in which PPT use these two features of inclusion relations between
geometric figures could provide information on how they reason about the hierarchical classification 
tasks. In this sense, anticipating students’ answers to hierarchical classification tasks in a lesson is a 
skill linked to curricular reasoning (Breyfogle et al., 2010) as an aspect of curricular noticing
(Dietiker et al., 2018). Thus, this study aims to find out:

How do PPT reason when anticipating correct answers in hierarchical classification tasks as
an aspect of curricular noticing?

Method
This study involved 28 PPT who participated in a learning environment (4 sessions of 2 hours) aimed 
at developing curricular noticing. The content of the learning environment includes the
characteristics of geometric thinking development in primary education and the types of tasks for 
enhancing the students’ geometric thinking along the lesson plan. The PPT, during the learning 
environment, analysed primary school students’ answers, anticipated answers from primary school 

Proceedings of CERME12 697



students to the tasks of classifying geometric figures and shapes, and analysed teaching activities to 
support understanding of inclusion relationships (Lehrer et al., 2014). These actions related with the
curricular noticing are what the PPT would put into practice during their teaching practices at school
and in their future as teachers. At the end of the learning environment, PPT solved a task on 
anticipating primary school students' answers to an activity in inclusive relations between geometric 
figures (Usiskin & Griffin, 2008). In this study, we analysed the PPT’s answers given to this last task
through a qualitative analysis (Figure 1).

The task

The task is contextualised in the planning of a lesson with the learning objective: inclusive relations 
between geometric objects, for pupils aged 10-12 years. The focus was the relation between 
definitions of geometric objects and classification. Three versions of the same task were proposed in 
the domain of quadrilaterals (Figure 2). The task highlights the curricular reasoning processes
(Breyfogle et al., 2010) of PPT by anticipating possible student answers considering mathematical 
knowledge and the development of geometric thinking in primary education (Sánchez-Matamoros et 
al., 2019). PPT should take into account the process of specialization (add conditions to generate 
subclasses) and the transitivity of the inclusion relationships of quadrilaterals. For example, in version 
1b task, the rhombus must have four equal sides to be a particular example of the rhomboid class 
(quadrilateral with two pairs of opposite sides parallel) (Table 1).

Some of these quadrilaterals often appear in the primary school curriculum with partitive (non-
inclusive) definitions, such as defining trapezium as a quadrilateral with only two parallel sides. Thus, 
this task has a high cognitive demand for PPT, as it requires modifying and overcoming the definitions 
associated with prototypical images and partitive definitions.

Figure 2: Task of anticipating student answer as part of teaching planning

Version 1a Version 1b Version 1c

Trapezium: quadrilateral with 
two parallel sides.

Rhomboid: quadrilateral with 
two pairs of opposite sides 
parallel

Quadrilateral: polygon with 
four sides
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Isosceles trapezium: trapezium
with congruent diagonals.

Rhombus: rhomboid with
congruent sides.

Kite: quadrilateral with
perpendicular diagonals and 
two pairs of adjacent congruent 
sides.

Rectangle: isosceles trapezium
with congruent angles.

Square: rhombus with
congruent angles.

Rhombus: kite with congruent
sides.

Square: rectangle with
congruent sides.

Square: rhombus with equal 
angles.

Table 1: Possible definitions and inclusive relationships between quadrilaterals

Analysis

For the analysis of the task answers, we considered three criteria:

The economy of the definition, i.e., if the definition included the minimum and sufficient
conditions or redundant conditions. In addition, we considered if the definitions derived from
the perceptual references of prototypical examples (prototypical judgement, type 1), from the
attributes of prototypical examples (prototypical judgement, type 2) or using attributes
relevant to the concept (analytical features, type 3 judgement) (Hershkowitz, 1990).
The specialization of the definitions, i.e., to what extent it was considered that adding
attributes to the general class generate a subclass. For example, in task 1c, to define a rhombus,
it is sufficient to add having equal sides to the definition of a kite (see Table 1).
The transitivity of the definitions (A B and B C then A C). For example, that the
definitions given allow us to see that, if a square is a rhombus, and a rhombus is a rhomboid,
then the square is a rhomboid, but not inversely (there are rhomboids that are not squares)
(asymmetric relations between the inclusion relations between geometric figures).

Regarding of procedure followed, we analysed the answers following the above criteria (Figure 3)
and then compared the answers with each other, identifying similarities and differences, generating
patterns of answers. These patterns of answers were considered as profiles PPT’s anticipatory 
competence of anticipating primary school students' answers to a task on figure classification as a 
part of the acquisition of the curricular noticing. One student out of 28 provided an answer that was 
inconsistent with the required task, so it was not considered in characterising the profiles.

Figure 3: Example of analysis of the PPT17’s answer
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Results
The analysis has generated three PPT’s profiles.

Profile 1. No use of hierarchical definitions nor of the transitivity process (n=7)

Preservice primary teachers in this profile do not recognise the process of generating subclasses as 
they do not take into account any case the specialization of definitions, and they fail to consider the 
transitivity between inclusion relations. In this profile, PPT seem to base their definitions on 
prototypical images, generating prototypical judgements of type 1. For example, the preservice
teacher PPT10 in task 1b, Rhomboid Rhombus Square, indicated,

- Rhomboid: A geometric figure with four sides that do not form right angles, of which the
opposite sides are equal, and the adjacent sides are unequal.

- Rhombus: Geometric figure with four equal sides that do not form right angles.

- Square: Figure having four equal sides that form four right angles.

This PPT use partitive definitions and removes the possibility of generating subclasses from the more 
general classes by indicating that: the rhomboid has the adjacent sides unequal, excluding the 
rhombus as a subclass of the rhomboid; the rhombus has no right angles, eliminating the possibility 
of squares as a subclass of the rhombus; and the rhomboid has no right angles, excluding squares as 
a subclass and thus preventing transitivity between inclusion relations. 

Profile 2. Partial use of hierarchical definitions, but not transitivity process (n=12)

PPT in this profile show a partial understanding of the specialization process. They define the figures 
considering only some of the inclusion conditions indicated in the task. Furthermore, they show a 
lack of understanding of the transitivity of inclusion relations by defining some figures using 
attributes of the prototypical figures, but not all the necessary attributes or using some definitions 
incorrectly. In this profile, PPT seem to use attributes of the prototypical examples as reference, 
generating prototypical judgements of type 2, as they use attributes of the identified figures. For 
example, the preservice teacher PPT2 in task 1a, Trapezium Isosceles
Trapezium Rectangle Square, indicated

As the student is at level 3, he can analyse the properties of geometric figures giving the 
sufficient and necessary indications, relating the properties to each other:

- The trapezium is a quadrilateral with only two parallel sides.

- The Isosceles trapezium is a quadrilateral with two equal angles two by two.

- The rectangle is a quadrilateral with all right angles.

- The square is a quadrilateral with all sides equal and all right angles.

By defining trapezium as a quadrilateral with only two parallel sides, it excludes the possibility of 
considering the rest of the parallelograms (rectangle and square) as subclasses, and therefore does not
take transitivity into account. By defining isosceles trapezium as a quadrilateral with [two] equal 
angles two by two it seems to be using some properties of the prototypical figure, but not all of them. 
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Finally, the definitions and the relation of inclusion between squares and rectangles are adequately 
indicated, reflecting judgements supported by the attributes of the prototypical figures and evidencing 
the characteristic of specialization between the rectangle and the square.

Profile 3. Use of hierarchical definitions involving the transitivity of inclusion relations 
(although with some non-economical definitions) (n=8)

In this profile, PPT use the specialization of definitions and the transitivity of inclusion relations.
They define geometric figures considering, in all cases, the process of adding attributes to a class to 
generate a subclass (specialization), which entails the transitivity of inclusion relations. Furthermore,
in most cases, they define geometric figures using the relevant attributes of the concepts (analytical
features, type 3 judgement), although in some cases they provide redundant data. For example, the 
participant PPT17 in task 1b, Rhomboid Rhombus Square, explains,

- Rhomboid: Parallelogram with interior angles less than 180º, and with 4 sides parallel
two by two.

- Rhombus: rhomboid with four equal sides and perpendicular diagonals.

- Square: rhombus with four right angles.

This PPT adds redundant information in the definition of rhomboid: parallelogram with angles less 
than 180º and parallel sides two by two. However, he explicitly uses the process of specialization of
definitions (a rhombus is a rhomboid that ...; a square is a rhombus that ...), showing the transitivity
of inclusion relations.

Discussion
The aim of this study was to characterise the PPT’s curricular reasoning when anticipating correct 
answers in tasks involving inclusive relations between geometric figures as an aspect of curricular 
noticing. The results show three profiles of the PPT’s curricular reasoning in the classification tasks,
considering how they considered the specialization of definitions and the transitivity of inclusion 
relations. The three profiles described in the result section show two ideas. Firstly, about the 
preservice primary teachers' understanding of the relationship between defining and classifying, and 
secondly, about the characteristics of the PPT’s curricular reasoning regarding the student’s 
geometrical thinking in anticipating tasks.

Preservice primary teachers’ understanding of the relationship between defining and 
classifying

The specialization of definitions and transitivity of inclusion relations are key to understanding the 
relationship between the processes of defining and classifying. On the one hand, the process of 
specialization allows us to understand how adding properties to figures generates a subclass of a 
class. Furthermore, considering the definitions of geometric figures to reflect two (or more) inclusion 
relations is a key aspect that must be understood by PPT when they think about the cognitive demand 
of tasks for the primary students. On the other hand, the transitivity of inclusion relations is linked to 
the process of generalization of definitions, which allows to include a figure (A) within a class (B) 
and, to include this second class, within another more general class (C) (Figure 1). Understanding 
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these relationships between figures, dismissing misconceptions generated by prototypical examples 
(profile 3) and using Analytical Features (type 3) (Hershkowitz, 1990) seems to be a necessary 
condition in PPT’s understanding of the potential of teaching activities in primary education. Thus, 
PPT using in their definitions some references to prototypical examples or attributes of figures to 
express the inclusive relationship between geometric figures (prototypical judgement 1 and 2)
(Hershkowitz, 1990), seem have limited ability to anticipate primary school students' answers to the
classification tasks of geometric figures.

Characteristics of preservice primary teachers’ curricular reasoning in anticipating tasks 

The PPT’s curricular reasoning in anticipatory tasks indicates ways of thinking about teaching 
activities considering the students’ geometrical thinking. In this study, the ideas of 
specialization/generalization of definitions and transitivity of inclusion relations have been 
considered as key aspects when PPT anticipate student answers in the teaching activities focused on 
the relationships between defining and classifying. In this way, anticipating student answers has 
shown features (profiles) of the PPT’s curricular reasoning as part of curricular noticing (Amador et 
al., 2017). Furthermore, these results show that if a PPT uses correctly all the process to anticipate a 
hierarchical definition from a classification (specialization and transitivity), he/she has acquired one 
of the aspects of the curricular noticing. 

For example, the inclusion relationship between the Rhomboid Rhombus Square has been the one 
in which the least students have applied the process of specialization, generating non-inclusive 
definitions and using the attributes of the prototypical figures, which tend to be exclusive. Possibly, 
using prototypical examples of the concept of quadrilateral makes it difficult for PPT to use the 
relevant attributes of different quadrilaterals to establish inclusive relationships between them.
Moreover, in the definitions in which excluding attributes have been used the most, so that neither 
specialization of the definition nor transitivity of the inclusive relations can occur, it has been in the 
quadrilaterals in the first inclusion relation of the three graphs (e.g., in task 1b 
Rhomboid Rhombus). We think that this may be due to the difficulty involved in the process of 
generalization (eliminating certain properties or substituting some for more general ones) when the 
concepts have already been acquired (a posteriori classification) (de Villiers, 1994) (Figure 3), to
include the rest of the quadrilaterals that make up the inclusive relation within this more general class.
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Geometry is one of the most important topics of mathematics education. Even though most 
pupils just see geometry as the study of objects, points, shapes, geometry, is also applied in 
other subjects such as engineering, architecture or music. For these reasons, a very important 
teachers´ role is to arouse pupils´ interest in geometry and create a positive relationship with it. 
Sometimes it is a challenging mission because as we can observe in recent years, students in 
Slovakia achieve a relatively low level of geometric knowledge (Bočková, Pavlovičová, 
Čeretková, 2020). The pupils´ problems with geometry can be caused by the fact that pupils are 
at a very low level of geometric thinking or mathematics competencies in geometry. For this 
reason, it is very important to use van Hiele theory at all levels of education. 

Dutch mathematicians Pierre van Hiele and Dina van Hiele – Geldof tried to understand and 
eliminate pupils' problems in geometry. Based on their observations, they described the model 
of geometric thinking in 1957. Van Hiele theory consists of five hierarchical and sequence 
levels (visualization, analysis, informal deduction, formal deduction, rigor) (Usinkin, 1982; 
Van Hiele, 1986). Today, van Hiele model of geometric thinking forms the basis of the content 
of education in various countries, such as the United States, Russia, Netherlands and Taiwan.

The main aim of this poster is to present the research about geometric thinking and mathematics 
competencies in the geometry of nine-grade pupils in Slovakia, who finished the lower middle 
school level of education. The research is focused on determining the level of geometric 
thinking of pupils The aim of the research is a quantitative evaluation of the solution of 
geometric problems, too. We also would like to find out the connection between the correct 
solutions of the geometric problem at different levels of mathematics competencies in geometry 
and the level of geometric thinking according to Van Hiele theory.

The levels of pupils´ geometric thinking were determined by using the van Hiele geometric test. 
The test was applied with the consent of Professor Zelman Usiskin. We suggested the valid and 
reliable Test of mathematical competencies in geometry, too. In the test, we used PISA division 
of mathematical competencies into three competency clusters: reproduction, connection and 
reflection. The test contains three tasks for each of the three levels of mathematical 
competencies. The research was realized in May – June 2021. The research sample consisted 
of 760 nine–grade pupils, who solved the van Hiele geometric test and Test of mathematical 
competencies in geometry. 

According to Mc Anelly (2011), who has stated the separated levels of geometric thinking in 
the age category, pupils in the second stage of elementary schools should be at the level of 
analysis or informal deduction. Our research shows that 50.5 % of pupils achieved the required 
level of analysis or a higher level of geometric thinking (21.3 % - analysis level, 24.2 % -
informal deduction level, 5 % - formal deduction level). The surprising finding is that 7.4 % of 
pupils did not even reach the level of visualization and 27.5 % of pupils achieved the 
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visualization level. 14.6 % of pupils did not assign any level of geometric thinking. We 
compared same-age pupils from other countries with similar research, which was carried out 
by Usiskin (1982), Haviger, Vojkůvková (2013), Adelabu, Makgato, Ramaligela (2019) and 
Idris (2009). Slovak students have a similar or higher level of geometric thinking. 

From the solution of geometric problems at different levels of mathematical competencies, it 
follows that pupils have a lot of misconceptions of basic knowledge in geometry. They cannot 
identify or use the formula for geometric shapes. They do not determine the length of the sides 
and the length of the altitude of geometric shapes from the picture, they have problems read 
from the image. Pupils also use the Pythagorean theorem in the general triangle and they have 
an incorrect conception of a straight angle. 

We used statistical implicative analysis methods, specifically C.H.I.C. statistical software 
(Classification Hiérarchique Implicative et Cohésitive) to compare and reveal the connections 
between the level of mathematics competencies with the attained level of geometric thinking 
according to Van Hiele theory. An important finding is that we confirmed the interconnection 
between the solutions of individual tasks of both tests, with the achieved level of geometric 
thinking as well as with the correct solutions of tasks at a certain level of competence. 
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To explain, interpret and distinguish the large diversity of visual information and spatial phenomena 
in today’s world, children need to be able to grasp and understand the underlying mathematical and 
geometrical structures. Relating these real-life spatial phenomena with their underlying geometrical 
characteristics can be regarded as abstraction, one of the core aspects of mathematical thinking 
according to Drijvers (2015). How to foster the process of abstraction in geometry in primary school 
is the central question of my research. Practical and theoretical perspectives on geometry and 
abstraction, together with the theoretical lens of embodied cognition, led to design criteria for 
activities fostering abstraction in geometry. Accordingly, activities on mirroring for students from 
grade 5 to 6 have been designed, based on an embodied abstraction approach.  

Theoretical background and research question 
Geometry education in the Netherlands is characterized by a realistic approach, described by 
Freudenthal (1973) as grasping space, “the space that the child must learn to know, explore, conquer, 
in order to live, breathe and move better in it” (p. 403). It encompasses problems, tasks and activities 
experienced in our direct surrounding, with the aim of learning about mathematical objects and 
concepts.  

Based on the definition of abstraction by Dreyfus (2014), as the attempt to reach an understanding of 
the structure of a mathematical concept, and the notion of reflective abstraction by Piaget (1985) the 
process of abstraction in geometry can be regarded as the discovery and formalizing of new (to the 
learner) mathematic structures in spatial orientation through a process of reflection on experiences 
and explorations.  

The theoretical lens of embodied cognition is used in this study for an embodied approach of 
abstraction in geometry. Embodied cognition theory emphasizes that all cognition is rooted in bodily 
experience; in the interaction of the body with the physical environment (Abrahamson & Lindgren, 
2014). The definition of abstraction in geometry through the lens of embodied cognition that is used 
for the design reads: the process of describing, explaining, reflecting on, and structuring of action in 
the experienced world using mathematical artifacts. The design principles for the learning 
environment have their origin in action-based embodied design, one of the design genres introduced 
by Abrahamson et al. (2020). In action-based design: “participants … tackle motor-control problems: 
they are assigned the task of performing a technologically mediated manipulation of material or 
virtual objects, in an attempt to achieve a specified goal state.” (p. 5). The research question we try 
to answer with this design is: how can embodied activities in geometry contribute to the process of 
abstraction by children in grades 5-6. 

Proceedings of CERME12 706



 

 

Methods 
The study can be characterized as a design study (Bakker, 2018). During a series of design cycles, a 
learning environment on embodied tasks on mirroring is developed and tested. Criteria for the 
environment are outlined in a design table and based on the definition of the process of abstraction 
(see above) and elements of embodied design: enactment, expected verbalizing, degrees of freedom, 
and attentional anchors. The tasks focus on the geometrical properties of mirroring: perpendicularity, 
equidistance and angle of incidence begin equal to the angle of reflection. This is done using a see-
through mirror, chess pieces and a laser pointer. The designs are tested during task-based interviews 
with 8 individual children from grade 5 and 6. The interviews, which took 30 minutes on average, 
are video-taped. Data are in the process of analysis in a bottom-up theory-guided coding process. 

Results 
During acting, all students discovered the correct position (equal distance to the mirror and on a 
straight line perpendicular to the mirror) of the chess pieces on either side of the see-through mirror. 
When explaining their solutions, they showed an understanding of equal distances of object and 
reflection image. Several students were able to write a clear instruction, including a drawing, of how 
to position the chess pieces, thus showing promising steps in the process of abstraction. Although 
they showed an understanding of the need of perpendicularity, they still struggled with the abstraction 
hereof.  

Conclusion 
This embodied design shows mixed, but also promising, results in fostering abstraction in the 
designed tasks on mirroring. More work is needed to further investigate embodied design in this and 
other areas of geometry. 
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This paper aims to discuss the prospective primary teachers’ knowledge of reasoning processes, 
namely the way they relate several reasoning processes, when solving a didactical task involving 
geometry. Data were collected by audio and video records of lessons, participant observation and 
the collection of written records of the prospective teachers. The results show how a group of 
prospective primary teachers may reach a high level of knowledge when involved in didactical tasks 
that are supported by relevant mathematical tasks and real classroom episodes, while working 
collaboratively. In particular, geometry tasks that involve spatial structuring favor the emergence of 
different reasoning processes and its relationships.   

Keywords: Mathematical reasoning processes, Prospective primary teachers, Geometry, Spatial 
structuring 

Introduction. 
Teacher education should give special attention to mathematical reasoning, considering both the 
ability to reason, and knowledge about the reasoning processes (Stylianides & Stylianides, 2006). In 
particular, developing mathematical reasoning processes in the domain of geometry, in early years 
classrooms, implies specifically developing visualisation and spatial reasoning (Moss et al., 2015) 
since the central processes of generalising and justifying (Rodrigues et al., 2021), in this case, are 
founded on the geometric properties and on the objects´ structure. 

This paper is part of the Mathematical Reasoning and Teacher Education (REASON) project, which 
aims to study the mathematical and didactical knowledge teachers need to carry out a practice that 
promotes pupils’ mathematical reasoning and to study the ways to foster its development in 
prospective and practicing teachers of primary, middle and secondary school. In our communication 
we intend to discuss the knowledge of reasoning processes of a group of prospective primary teachers, 
when solving a task involving geometry, namely the way they relate several reasoning processes. 
This task was the fifth one implemented in a teacher education experiment carried out in 2019/20.  

Conceptual framework 
Reasoning in geometry 

Reasoning geometrically about a spatial entity (object, diagram or concept) implies constituting an 
adequate mental model, that is, one that captures its relevant spatial structure and its geometric 
properties. Battista et al. (2018) state that “spatial and geometric structuring are types of spatial and 
geometric reasoning, respectively, that play vital roles in the construction of appropriate mental 
models for geometric reasoning” (p. 202). For spatial reasoning to adequately support geometric 
reasoning, these mental models must incorporate operational knowledge of relevant geometric 
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properties and concepts, using mental models that integrate geometric properties into their structure 
and operation (Battista, 2007). 
Lannin et al. (2011) distinguish two aspects in the generalisation: (i) identify common elements in 
different cases; (ii) extend reasoning beyond the domain for which common elements were initially 
identified, that is, thinking about a relationship, idea, representation, rule, pattern or other 
mathematical property considering it in a broader domain. For example, when, at the beginning of 
school, a student identifies squares as the figures that have four equal sides, he is making a 
generalisation that is false, but it is a generalisation. For these authors, the process of justifying 
consists of building a logical sequence of statements, each one relying on established knowledge in 
order to reach a conclusion. Thus, constructing a valid justification for a generalisation is not easy as 
it has to be verified that the generalisation is true for all cases in the domain, resorting to valid implicit 
relations. A valid justification must explain why by offering a view of the underlying relationships 
that exist in all cases.  
Thus, we consider that the process of generalising is fundamental in Mathematics when we intend to 
"make general statements about properties, concepts or procedures" and that "justification is central 
to making it possible to mathematically validate" those statements (Mata-Pereira & Ponte, 2018, p. 
783). These two processes interact with each other, as in many situations the language used in 
justification has to be general so that its applicability to the entire domain is clear; on the other hand, 
when some generalisations are established, it is because, at least implicitly, there are already 
justifications for them. For Jeannotte and Kieran (2017), exemplifying is an auxiliary process of 
generalising and justifying, which allows inferring data about a problem by generating elements that 
support those processes. In the process of generalising, it is essential to look for similarities and 
differences through the production of examples, in which case it is necessary to mobilize the process 
of comparing. In turn, in justifying the examples can be critical, for example when using 
counterexamples. For these authors, classifying consists, through the search for similarities and 
differences, identifying common and distinct points in different objects, joining them or separating 
them into a class of objects based on mathematical properties or definitions. This process involves 
comparing and, by stating that all elements of the class obey certain characteristics, it establishes a 
generalisation (Brunheira, 2019). For Mason (2001), “classification is not just about making 
distinctions and describing properties, but about justifying conjectures that all possible objects with 
those properties have been described or otherwise captured” (p.7). Mariotti and Fischbein (1997) state 
in the following way what means to classify in geometry: 

A classification task consists of stating an equivalence among similar but figurally different 
objects, towards a generalisation. That means overcoming the particular case and consider this 
particular case as an instance of a general class. In other terms, the process of classification consists 
of identifying pertinent common properties, which determine a category. (p. 244) 

Thus, in addition to identifying the different reasoning processes, it is essential to have a deep 
understanding of the meaning of each one in order to establish relationships between them, thus 
reaching a high level of knowledge (Rodrigues et al., 2021). 

Reasoning in preservice teacher education 
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Several studies (Lannin et al., 2011; Stylianides & Ball, 2008; Stylianides & Stylianides, 2009) 
indicate that prospective elementary school teachers must have opportunities to develop their 
mathematical reasoning if they are to work on it with their students, particularly in geometry.  
In the field of geometry, Battista (2007) states that reasoning is strongly based on the spatial 
structuring of objects or situations, that is, on mental models that are activated to interpret and reason 
about these objects or situations. In the context of preservice teacher education in geometry, 
Brunheira (2019) suggests that processes such as classifying and justifying generalisations about 
geometric figures are influenced by the quality of spatial reasoning, but they are also promoters of its 
development. For Lehrer et al. (2013), geometric concepts such as shapes and relationships between 
them, for example congruence, constitute opportunities to build those relationships.  
In addition to developing their own reasoning, Francisco and Maher (2011) refer to the need to create 
opportunities for teachers to learn about how to develop mathematical reasoning in students. In the 
same sense, Stylianides and Ball (2008) defend the need to develop in teachers the ability to plan and 
implement tasks that promote the development of reasoning in their students.  

Methodology 
The study reported here followed a qualitative-interpretative approach (Erickson, 1986) since it aims 
to understand the way prospective teachers relate several reasoning processes. Its context is a teacher 
education experiment developed in 2019/20 with 31 prospective primary teachers, attending a Master 
Degree certifying for teaching in primary schools (grade 1 to 4) and teaching Mathematics and 
Natural Sciences in grades 5 and 6. It took place during six lessons, one per week, each lasting two 
hours and 30 min and focused on mathematical reasoning, addressing specialised mathematics 
knowledge for teaching. All the tasks were initially explored autonomously by the prospective 
teachers, organised into eight groups, and were subsequently discussed by the class as a whole. 

The data were collected through participant observation of the lessons, by the team Project, using 
audio and video recordings of the autonomous work carried out by two groups of prospective teachers 
(Groups 1 and 2) and the whole class discussions, and documents collection (all tasks resolutions). 
The data reported here are from Group 2. According to the ethical criterion of confidentiality, all the 
prospective teachers signed a free and informed consent form, in relation to the data collection 
methods, and are given fictitious names. 

This paper refers to a didatical task about reasoning in geometry. Figure 1 presents an excerpt of the 
task.  

Consider the task Let's learn about pyramids, proposed to 3rd grade students. In the previous year, the class 
had already come into contact with pyramids and prisms, in a first approach to their characteristics. So the 
teacher introduced the task by projecting the image below and asking What is the intruder? 

 
After the initial discussion, the students started solving the task in pairs, using some models of pyramids in 
cardboard and wood, match sticks, toothpicks and plasticine balls. 
3. Identify the reasoning processes involved. 
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4. Read the following dialog. The students had already analysed the possibility of building a pyramid 
with 13 edges using the material, as shown in the image. They were currently analysing the same 
issue for 15 edges. 

Teacher — So, with 15 toothpicks, 15 edges, what happened? 
Student — It would be missing 1. 
Teacher — So and how many toothpicks did you put in the base? 
Student — Eight. 
Teacher — Eight. And now how many do you have to put on the side edges?  
Student — Oh my God... 
Teacher — OK, you can look at what you've done! 
Student — Seven. 
Teacher — So, can we build with 15? 
Student — No… there was a toothpick missing… with odd numbers I couldn't do it. 
Teacher — Ah! So tell me why it's not possible with odd numbers. 
Student — Because one is missing or one is left. 
Teacher — And why does this happen? What happens to the edges in the pyramids? 
Student — Hmm... Here (points to the base) and here (points to the place where the side edges 
would be) must have the same number. 

4.1. Discuss how the student's reasoning evolved, relating it to the interaction she established with 
the teacher. 
4.2. Explain the role of the manipulative material in this situation and throughout the task. 

Figure 1: An excerpt of the task  

We used content analysis (Bardin, 2010) of the data using the framework we elaborated before 
(Rodrigues et al., 2021) concerned with knowledge of reasoning processes. The categories correspond 
to the reasoning processes worked in the teacher education experiment: generalising, justifying, 
exemplifying, comparing and classifying. Each of these categories were divided into subcategories 
corresponding to six levels of specialised mathematical knowledge of the content, presented in 
hierarchical form (Table 1). 

Table 1: Framework for knowledge of mathematical reasoning processes  

Category Subcategories 

Knowledge of the reasoning process 

5. Knowledge of the process fits the definition presented, and 
includes its relationship with the other reasoning processes  

4. Knowledge of the process fits the definition presented, and is 
explicitly outlined by enunciating the properties of the process 

3. Knowledge of the process fits the definition presented, and is 
explicitly outlined through illustrative example(s)  

2. Recognising a reasoning process though considering only 
‘correct’ processes  

1. Knowledge of the process takes on the meaning of the term in 
everyday language 

0. The process is confused with other processes 
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Results  
Episode 1  

In this episode, we analyse the reasoning processes that the group of prospective teachers identified 
to be used by the 3rd grade students during the solution of the intruder task (Figure 1). This lesson 
intended to support the introduction of the classification process which is, in our perspective, the main 
process in question. In fact, to find the intruder, students must identify pertinent common properties 
that determines the pyramids as a class (for example, they all have triangular faces that converge at a 
vertex) where the prism does not belong. For this, they should also ignore their particularities (for 
example, distinct bases) and consider them as representatives of a more general class (Mariotti & 
Fischbein, 1997). 

Nuno:  OK. "Identify the reasoning processes involved". Here, I think that . . . the most 
obvious common is generalisation. They identify a property that fits all the 
pyramids. 

Lara:  Yes. 
Daniela:  Yes, Yes. 
Nuno:  So one of them is to generalise. To compare... 
Daniela:  Also to compare. You don't think so? 
Nuno:  Between several... 
Daniela:  Between figures, yes.  
Lara:  To generalise they compare, don't they? 
Nuno:  Yes, yes. They exemplify, here it does not... 
Lara:  No. 
Daniela:  No. 
Daniela:  Compare between what? 
Lara:  Among the different figures so that you can generalise. 
Helena:  For example, here they made a comparison. When they had to select what it was 

[the intruder]. 
Nuno:  Yes, that's a fact. Between the ones that are and the ones that are not [pyramids]. 
Helena:  Exactly. 
 

As expected, the prospective teachers did not report the classification process, but their analysis 
clearly identifies the generalising process that is strongly related to that process (Jeannotte & Kieran, 
2017; Mariotti & Fischbein, 1997). Furthermore, Nuno explains the substantiation of this 
generalisation by saying that it corresponds to the property that “fits all pyramids”, an idea that gathers 
consensus. Associated with the process of generalising, the group also refers to the process of 
comparing as a support process because, as Lara says, it is necessary to compare the different figures 
“so that you can generalise”, which is also consistent with the literature.  

The group agrees and is sure about the two identified processes, when one of the elements raises the 
hypothesis that the process of justifying may be also involved: 

Lara:  To justify I don't know if it makes sense. Okay, you find properties that you can 
justify, but properties are generalisations. 

Nuno:  Yes, yes. So, to generalise. 
Helena:  I think it's enough to generalise and to compare. 
Nuno:  Although, in order to generalise, they will also have to justify first, generalising is 

the most comprehensive of all. They will say first that the pyramid is a pyramid...  
Helena:  Because so, so and so. Exactly. 
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Nuno:  It is a quadrangular pyramid, because the base is a square and because the faces are 

triangles, it has x vertices... 
Daniela:  I think that, in order to reach the generalisation, they start with justification. 

What started out as a tentative hypothesis from one of the prospective teachers turned out to be a 
meaningful possibility for everyone. The idea that the process of justifying may be involved derives 
from the perspective that, in this case, when we generalise we already have justification in mind or, 
to put it another way, we generalise because we know why. This idea is consistent with the suggestion 
by Mason (2001) when he states that the process of classifying also involves justifying conjectures 
that all possible objects with those properties have been described. Furthermore, in the particular case 
of geometry, as Brunheira (2019) states, the justification of generalisations concerning a class of 
geometric figures is based on a mental model of the class of objects, that is, its spatial structure that 
often presides over the formulation of generalisations.  

In this way, we consider that the group's dialogues are quite relevant as they identify interactions 
between the processes of generalising and justifying, also showing understanding about all processes 
already dealt with, which corresponds to level 5. 

Episode 2 
Lara:  She started, she realized first that with 13 [toothpick] it would be left with one, 

right? That was the first thing she noticed. With 13 there would be one left, then 
with 15… 

Daniela:  Yes, but here… 
Lara:  One would be missing. 
Lara:  She only realized the 15… she only gave the answer to 15 so quickly, because she 

had already done the one for 13. 
Helena:  Because she had already done for 13. 
Lara:  Because she even said there was one missing. Do you understand? 
Daniela:  Yes… 
Nuno:  Then we have to make a comparison with what the teacher was saying. Right here 

at the beginning, the teacher refers to another example, so she can... 
Lara:  So, she can make a generalisation. 
Nuno:  A generalisation, exactly. 
Daniela:  So, the student began by understanding that with 13 toothpicks, one would be 

missing to complete the pyramid. 
Nuno:  Then the teacher … encourages the student to go further… 
Lara:  By giving another example. 
Nuno:  …and it presents a new example, in this case with 15 toothpicks. Then the teacher 

encourages the student to go further by presenting a new example. She presents a 
new example, enabling the student to use the reasoning process, to generalise. She 
gave this example so that she could later conclude that it couldn't be an odd number. 

In the written record with the answers to the task, the group summarizes the previous ideas and adds: 
 
In order to lead the student to a generalisation, the teacher guided her, leading her to understand 
that the number of toothpicks could not be odd. Also, the teacher asks why this happens, prompting 
justification. In a first moment, the student does not justify it, she only describes what happened. 
After the teacher's insistence, the student points to the material and justifies why her generalisation 
is valid. (Group’s record on question 4) 
 

In this episode, the prospective teachers elect three processes that are mobilized: to generalise (that 
there are no pyramids with an odd number of edges), to exemplify (for 13 and 15 edges) and to justify 
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(why an odd number of edges is impossible). Regarding the first process, the group correctly identifies 
that it is a generalisation when the student extends her conclusion (about 13 and 15) to the domain of 
odd numbers, corresponding to the definition of the generalisation process that was established. With 
regard to the process of justifying, it is noteworthy that the group is able to distinguish a simple 
description of an event (when the student says “Because one is missing or one is left”) from a 
justification, relating this process with the investigation of the underlying reasons why it is true 
(Lannin et al., 2011). Finally, about the process of exemplifying, actually the examples used (with 13 
and 15 edges) are suggested in the task. However, the group recognizes the support these examples 
provide for both the processes of generalising and justifying (Jeannotte & Kieran, 2017). In the first 
case, they consider that it is based on the attempt to build a pyramid with 13 edges that the student 
quickly concludes that it is impossible to construct a pyramid with 15 edges. In addition, they also 
realize that these two examples are fundamental to generalise and to justify, as they recognise the 
understanding of the situation they generate, allowing the student to understand why the number of 
edges cannot be odd.  

Conclusion 
The didactical task led the group of future teachers in a discussion about the reasoning processes 
involved in task on the properties of pyramids. In this discussion, the group was able to easily 
recognize, in context, the characteristics of the process of generalising, as well as its relationship with 
the process of comparing and exemplifying. However, the richness of the context involved–the 
establishment of the class of pyramids–enhances the emergence of various reasoning processes that 
occur in a non-linear way, generating a discussion about the distinction between generalising and 
justifying. Despite some hesitation, participants used the association between the process of justifying 
and the understanding of why a relationship works (Lannin et al., 2011) as a selection criterion for 
that process, which is found to be appropriate. Furthermore, they are also able to understand the 
supporting role that the process of exemplifying assumes in establishing a justification without 
confusing the role of empirical examples in establishing a statement, which is very common 
(Stylianides & Stylianides, 2009). On the contrary, the group seems to recognize that, in geometry, a 
justification must be associated with the spatial structure of objects (Brunheira, 2019). 

This paper focused on a group of prospective teachers who shows a maximum level of knowledge 
about reasoning processes and its relationships, highlighting the importance and potential of 
didactical tasks that promote this knowledge, including the idea that different kinds of tasks can offer 
different kinds of opportunities for reasoning (Stylianides & Stylianides, 2006), which may be 
promoted using real classroom episodes. This research should be developed further highlighting the 
difficulties felt by other future teachers and ways to address them. 
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This paper gives insights into an ongoing study that investigates pairs of students working on 
geometrical tasks in a cooperative way. The goal of the study is to learn more about students’ 
understanding of geometrical reflection. First results of the study show that «symmetry» and 
«congruence» are useful categories to describe the students’ learning processes on reflections. This 
paper briefly summarises the theoretical background of the study. Subsequently, it discusses two 
examples of observed phenomena about these categories of the conceptual understanding.  

Keywords: Geometrical reflection, conceptual learning, basic ideas.  

Introduction  
The formation of conceptual structures is a central aim in the teaching of mathematics, in particular 
in geometry. The students have to form mental images of objects and their mathematical properties 
mediating between their real-world experiences on the one hand and the abstract mathematical 
structures on the other hand. Developing these representations and concepts to capture the meaning 
of concepts requires a social process (Dörfler, 1995). This includes explanations, drawings, 
negotiations and discussions in interactive settings (Krummheuer, 1995; Voigt, 1995). During the 
pandemic these learning-processes had to take place in online learning environments. Schwob and 
Gudladt (2021) show that online learning environments can support successful interactions and 
enable the exchange of individual knowledge. Based on this research, the present project uses the 
dynamic geometry software «GeoGebra» within such online learning environments to gain insights 
into the students´ understanding of the congruence mapping reflection. This contribution discusses 
very first results of the ongoing project, focusing on the following question: Which conceptual aspects 
of reflection can be observed? 

Theoretical Background  
This paper focuses on the teaching and learning of mathematical concepts. More precisely speaking, 
the aim is on the students´ understanding of reflection. From our theoretical point of view, the matter 
of understanding a concept goes beyond the knowledge about the mathematical definition of concepts 
(Tall & Vinner, 1981). Roughly speaking, the students have to develop basic ideas1 about what 
reflections mean within different demands. For example, in figure 1 below we can understand 
reflection in a statical way: If you see one quadrangle ABCD you can use the characteristics of 
reflection to check out whether g is a symmetry-axis of the figure. Hence, symmetry is understood as 

1 “basic ideas” is our translation of the term “Grundvorstellungen”, which is used by vom Hofe and Blum (2016). 
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a static basic idea of reflection. If the students ask themselves whether both halves are equal or not 
while solving the tasks, the category «symmetry» may be prominent. On the other hand, you can also 
see the triangles ABC and ACD and ask yourself, whether these two triangles are congruent to each 
other. In this case, you have to activate a more dynamic view on reflections: Can we move one triangle 
on the other one by reflection at the axis g? In order to build a comprehensive concept it is necessary 
for the students to work empirically by operating with the objects and thus gaining insights in their 
properties (Dörfler, 1995). In terms of a comprehensive concept students would benefit from getting 
to know static and dynamic aspects of reflection. 

Figure 1: Basic ideas of reflection at quadrangle ABCD

Of course, for the mathematical experts, both meanings of reflection result from the same 
mathematical definition. But, from our point of view, they are different basic ideas that serve as a 
bridge between individual images and officially and formal definitions. 

So, Grundvorstellungen can be construed as mediating elements or as objects of transition between 
the world of mathematics and the individual conceptual world of the learner. GVs thus describe 
relationships between mathematical structures, individual-psychological processes, and subject-
related contexts, or, in short: the relationships between mathematics, the individual, and reality. 
(vom Hofe & Blum, 2016, p. 231) 

These basic ideas can be differentiated into two aspects: The normative aspect describes what 
concepts the students should have (vom Hofe & Blum, 2016). The descriptive aspect shows the 
occurring activated concepts of individual students (vom Hofe & Blum, 2016). The focus of the 
present project is on the descriptive aspects of basic ideas.  

The Benefit of Using Dynamic Geometry Software2

Researchers like Ng and Sinclair (2015) combined analogue (paper-and-pencil work) and digital 
settings (dynamic computer-based environment) for reasoning about symmetry. The students worked 

2 Hereafter often abbreviated as DGS. 
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on the topic of symmetry for three lessons and increasingly used functional relationships to discuss 
the symmetry of objects e.g. by dragging them to explore the connection of pre-image and image. 
Starting from a static understanding of reflection, students seem to have extended their knowledge by 
operating with the respective figures in this manner. In addition, students developed new terms while 
communicating about symmetry (Ng & Sinclair, 2015). In other studies, the influence of the dynamic 
geometry software GeoGebra was investigated. Here it was shown that students who had to reflect 
drawn objects by using GeoGebra performed better in geometric transformations, especially in 
reflection (Pavethira & Kwan Eu, 2016). 

Methodology and Methods  
With the aim of gaining insights into descriptive aspects of the explored basic ideas we planned online 
interviews via the meeting tool «BigBlueButton» (https://bigbluebutton.org/) with pairs of students 
in secondary education (communication through technology) (Drijvers et al., 2016). While the 
interviews feature pairs of same-aged students, every student works on his or her own computer at 
home without enabling their webcams. One of them gets access to the tasks in «GeoGebra 
Classroom» (https://www.geogebra.org/) and has the authority to manipulate applets and share his 
screen. Based on the shared screen the students and the interviewer discuss the effects of manipulating 
reflections in the dynamic geometry software «GeoGebra» (communication of technology) (Drijvers 
et al., 2016). The interviews feature students from sixth to tenth grade. This age range was deliberately 
chosen because curricular standards on the topics symmetry and congruence are often not properly 
implemented in German schools. The students in the following episodes are in grade 9 (episode 1) 
and grade 6 (episode 2). The examples show that an adequate conceptual understanding of reflection 
doesn’t necessarily depend on the grade level. Both student groups have basic knowledge of the DGS 
«GeoGebra» and its functionality.  

Working on the student´s understandings, we decided to organise our research as a qualitative study. 
The interviews are being transcripted3 and analysed applying ethnomethodological methods 
(Krummheuer, 1995; Voigt, 1995) to work out different conceptual understandings of reflection. 
Furthermore, the transcripted episodes will be analysed by using comparative analysis to connect the 
theoretical background and empirical results via reconstructive categories (Krummheuer, 2018).  

The Learning Environment  

Altogether the learning environment includes eight tasks. Based on the work of Senftleben (1996) the 
tasks contain four phases: First, the researcher asks about the effects of a geometric operation and 
supports the students with a visualisation of the initial geometric construction of the object (Figure 
2) below. Secondly, the students work on the question in a cooperative way. It is important that they 
do not use any representation within this phase – all operations are performed in their mind only. At 
the end of this phase, the students make a hypothesis about the effects of the discussed operation. 
Within the next phase, this hypothesis is validated by performing the operation within «GeoGebra». 
If the original hypothesis proves to be wrong, the students are then asked to find an explanation for 

3 All transcripts in the present paper have been translated to English by the authors. 
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their observation. While one of the students may manipulate objects on the screen at his free will, the 
other student is forced to verbalise his ideas and give instructions. Through this interaction both 
students must discuss-the-screen (Drijvers et al., 2010). 

Example: Two Episodes 

The students in the following episodes worked on six tasks before. The first three tasks encompass 
the reflection at one axis: The Pentagon1 was reflected at the straight line g, so that the image 
Pentagon2 originates. The students worked on the manipulation of Pentagon1 (one vertex and 
position of Pentagon1) and the single axis of reflection g and their effects on Pentagon2. Afterwards 
the tasks focus on a double reflection at two parallel axes (figure 2): First the Pentagon1 was reflected 
at the straight line g, so that the image Pentagon2 originates. In addition, Pentagon2 was reflected at 
the straight line h, the image is named Pentagon3. First, the interviewer explains this double 
reflection. In the following we provide an analysis of two episodes that focus on the following 
question:  

“Imagine you move the axis of reflection g towards pentagon1. What happens to the pentagon 2 and 
3? Describe and explain.”  

In the following episodes the pairs of students work on this question. The students have already 
discussed their ideas within the first phase of the task, i.e. they built a hypothesis about the expected 
movements of the pentagons. The episodes start with the (very short) discussion of the accompanying 
hypothesis. 

Figure 2: Construction of the task 

Episode 1: Symmetry 

Both students assumed what happens to the pentagons while moving the axis of reflection g . This 
episode begins with the verbalisation of the hypothesis and continues with the interviewer’s question 
on what happens to the pentagons: 
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203 Michael: this is exactly the same as the task before, that 2 stops and that the 1, err 
pentagon 1 moves to the left 

204 Nicolas: yes and 3 stops also, doesn’t it? 
     During line 205 and 208 the students verify their hypothesis. 

209 Interviewer:  what happened now? 
210  Michael: err pentagon 2 moves towards pentagon 1 and 3 moves to the side 
211 Interviewer: and why? 
212 Michael: so to the right (…) do you have an idea why? 
213 Nicolas: um move the axis a little bit to the left (8 sec.) yes because, yes because the 

first reflects err the second which is symmetrical again and then the second 
is mirrored again err to the third and the third must also have the same 
distance again as the second so they are symmetrical again. you know? 

214 Michael: oh yes. 

Michael and Nicolas relate their hypothesis to the previous task, dealing with the same pentagons and 
reflections. But, within that task, the reflection axis h was moved. Hence, only pentagon 3 moved. 
Both assume that pentagons 2 and 3 wouldn’t move (turn 204) because the axis of reflection h isn’t 
shifted. They hypothesise, that only pentagon 1 would show an effect by “[moving] to the left” (turn 
203). At first sight, this hypothesis sounds strange. But, having in mind a statical conceptional 
understanding of reflection, it seems quite plausible: Assume that the students understand pentagons 
1 and 2 as a single figure and the line g as its symmetry-axis. Within this interpretation of the figure, 
it is very rational (besides alternative hypotheses) to expect that a movement of g would cause a 
movement of pentagon 1 in order to maintain the symmetry-axis of the figure.

When the students check their hypothesis by manipulating the objects in the «GeoGebra» applet (turn 
210 and 212), they are confronted with the correct movements of the pentagons. The interviewer then 
asks them to find a reasoning for their observation (turn 211). Nicolas comes up with the explanation 
that pairs of subsequent pentagons are symmetrical (turn 213). One possible interpretation could be 
that he combines pentagons 1 and 2, which are described as symmetrical to each other, as well as 
pentagons 2 and 3.  In this interpretation, pentagon 2 belongs to both combined symmetrical figures 
and represents one half of each figure. As Nicolas focuses on pentagons 2 and 3 and their respective 
distances to h, a static understanding of reflection can be assumed. The role that pentagon 2 has within 
this interpretation won’t be further explained here. Within this episode, the research question can be 
answered as follows: The students Michael and Nicolas seem to have a statical basic idea of reflection, 
as they apparently combine two pentagons to one symmetrical figure. So, it seems that the category 
of «symmetry» has been activated in the students in this context.  

Episode 2: Congruence 

Both students assumed what happens to the figures while moving the axis of reflection g. At the 
beginning of this episode Niklas and Jonas present their hypothesis: 

395 Niklas: pentagon 2 pulled itself towards pentagon 1 and pentagon3 moves itself 
away from pentagon 2 

During line 396 and 400 the students verify their hypothesis.  
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401 Interviewer: very good. okay. now here’s the same question again. why is nothing 
happening with pentagon 1? 

402 Niklas: um (moves the line g in the applet back and forth) 
403 Jonas: maybe because pentagon 1 is the main figure (hesitant) (..)* that was drawn 

created? 
404 Niklas:                                                                                               * (laughs) 
405 Interviewer: what do you mean by main figure? 
406 Jonas: the one that has been drawn first and the others are just the reflections of it 
407 Interviewer: mhm (affirmative) 
408 Niklas: oh so this is the starting figure of the reflected pentagon 2 and 3 both of 

which are reflections. so they must be reflected err, towards pentagon 1 
don’t they? so pentagon 3 to pentagon 2 of course. 

409 Jonas: yes.
410 Interviewer: what is the difference between the main figure or the, the original figure and 

the pentagons 2 and 3? 
411 Niklas: um pentagon 2 and 3 (mumbling) (6 sec.) so they sort of need this exact 

reflection to continue being reflections, don’t they? 
412 Jonas: they even need pentagon 1 to exist because the other two are only 

reflections 

Niklas presents a correct hypothesis about the movement of pentagon 2 and 3 when the axis of 
reflection g is shifted in the direction of pentagon 1. He assumes that they would move according to 
the respective changes in distance to the axes of reflection g and h (turn 395). As the students verify 
their hypothesis, they are asked to find a reason why pentagon 1 doesn’t move (turn 401). They 
describe pentagon 1 as the main figure (turn 403) that was drawn first (turn 406). In contrast to this 
main pentagon, the others are identified as only reflections (turn 408). Since they describe the three 
pentagons with different terms, one can assume that the students interpret them as distinct geometrical 
objects, which are congruent to each other. The interviewer then asks them to explain the difference 
between the main figure and the reflected figures (turn 410). At this point, Jonas stresses the necessity 
of the main figure (pentagon 1) for the existence of the reflected figures (pentagons 2 and 3; turn 
412). Within this episode, the research question can be answered as follows: The students Niklas and 
Jonas seem to have a dynamic view of reflection, as they apparently compare the pentagon 1 as the 
main figure with the pentagons 2 and 3 as reflected figures. So, it seems that the category of 
«congruence» has been activated in the students in this context.  

Discussion  
A comparison of the two episodes shows very different views on the geometrical objects and 
thematised operations. These different views depend on the question, whether the students understand 
the pentagons as different objects or not. An interpretation of the pentagons as halves of a summarised 
figure, as in the first episode, leads to an understanding of the lines g and h as axes of symmetry. If, 
on the other hand, the students’ concept of reflection is different, as within the second episode, the 
lines are interpreted as axes of a congruence mapping that leads to a movement, i.e. the basic idea of 
congruence is activated. Both interpretations of reflection are important for students’ understanding 
of the concept of geometrical reflection. In some situations, the static basic idea «symmetry» may 
enable students to construct symmetrical figures or identify properties of figures etc. In contrast the 
dynamic basic idea «congruence» may be important in situations where more figures and the 
functional relationship between them are relevant. To be clear the tasks in the learning environment 
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focus from a normative point of view on the dynamic basic idea «congruence». However, both basic 
ideas can be used to solve the tasks successfully.   

The flexibility of switching through previous tasks in «GeoGebra Classroom» may support students 
in answering questions like "Did figure one move in previous tasks?" or “Which operations have been 
executed in these tasks?”. By dragging objects in the respective applets, students may realise, that 
figure one only ever moves if it is dragged directly. Based on this observation, technology could 
potentially support the understanding of the functional relationship between the pre-image and its 
images. Thus, conducting research on how a connection between image and pre-image is established, 
could lead to further insights. In this context it might be interesting to consider whether the categories 
«symmetry» and «congruence» affect the students’ understanding of this functional relationship. 
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This research aims to characterize how prospective primary school teachers describe and classify 
solids. A professional task is designed and implemented with 148 future primary teachers. The task 
is structured in four sections in which construction, composition and decomposition, visualization, 
identification of attributes of 3D figures and their classification are promoted. The development of 
the task involves the use of manipulative material (half cubes). For the analysis, some tools of the 
model of Didactic-mathematical Knowledge and Competences of the mathematics teacher are used. 
It is observed that most of the future teachers recognize mainly perceptual elements of the figures, 
which makes them construct dichotomous classifications, and only a few interpret the classification 
utilizing global characteristics.  

Keywords: Didactic-mathematical knowledge, future teachers, solids, classification, primary 
education   

Introduction  
It is widely accepted that the geometry of solids has been neglected in many curricula, and 3D 
geometry teaching receives limited or insufficient attention in primary school classrooms. Prospective 
teachers are suddenly engaged in plane representations of solids, but when doing classifications, they 
are proposed to analyse just general polyhedra observations and constructions. Many teachers who 
deal with geometric concepts have an approach in which they memorize the names of the figures and 
some of their characteristics are privileged (Copley, 2000). Furthermore, the representations used to 
show these figures are centred on a prototypical view of them. Authors such as Sinclair and Bruce 
(2015) point out that little research has focused on the geometric thinking of children (and prospective 
teachers) concerning these types of figures and the process of classification.  

Therefore, our study aims to show an approximation to the mathematical knowledge evidenced by 
future primary school teachers when they tackle a task of construction, analysis and classification of 
3D figures, based on the tools of the CCDM perspective (Godino, 2009; Pino-Fan & Godino, 2015; 
Godino et al., 2016).  

Theoretical framework  

In previous research, figures that students or future teachers must recognize are presented by the 
teacher, noting how they identify the properties that underlie these forms and if this helps the teacher 
classify them (Guillen & Figueras, 2005; Patkin, 2015).  According to the approaches of Vinner 
(1991) and Fujita (2012) when students decide whether an object belongs to a certain category, they 
can give biased answers because in their decision prototypical or common forms are privileged.  This 
suggests that figures presented in the same position and with little variety of examples allow deeper 
consideration and analysis of them. We assume that we should have greater knowledge regarding 
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how future teachers face such classification problems of solids. Identifying this knowledge is a key 
aspect to adapt and improve training proposals to promote geometric reasoning in future teachers.  

In this model CCDM, it is considered that two key competencies that the mathematics teacher should 
develop are mathematical competence and the competence of analysis and didactic intervention. It is 
suggested that the knowledge necessary for teaching mathematics implies a deep knowledge of 
mathematics and its teaching that is, a didactic-mathematical knowledge. However, mathematical 
knowledge alone is not sufficient for the adequate practice of the mathematics teacher (Pino-Fan et 
al., 2015). From the CCDM model, it is proposed that to achieve suitable teaching, a mathematics 
teacher must possess different types of knowledge. On the one hand, you have to know the school 
mathematics of the educational level at which you teach. Additionally, it is necessary to understand 
elements of later levels, what is referred to as the ‘knowledge of the mathematical content per-se’. 
This knowledge is divided into two types: common mathematical knowledge and extended 
mathematical knowledge.  

The first refers to the knowledge regarding the mathematical object that is necessary to put into play 
to solve problems and activities related to a specific mathematical topic at a particular educational 
level. It is generally associated with the level at which it is taught. The second refers to the fact that 
the teacher, in addition to knowing how to face problems and activities on a certain topic, must have 
advanced knowledge, which is part of higher levels. 

Methodology 

A professional task was designed and implemented with 148 students studying Primary Education at 
a university in Spain. The task introduces the process of constructing solids using one, two, three and 
four half cubes. The future teachers construct the figures by using plane development. They talk about 
the observed properties of the shapes and provide one or more classification ideas for the shapes. The 
key questions analysed in this paper are described in table 1. The task was solved collaboratively, 
which resulted in the configuration of 33 groups. Our data is the protocols written by each of the 
groups. From the analysis of the productions of future teachers, the types of constructions are 
identified; the criteria used to classify 3D figures, and the value given to the classification process 
from the didactic perspective. 

As it is in our interest to analyze the types of knowledge that emerged in the development of the 
proposed professional task, we will base ourselves on the analysis of three fundamental questions that 
reveal fundamental elements for the discussion that we want to raise. Table 1 presents the selected 
questions, the type of knowledge that is valued and its intentionality.  

 

Nº Question 
Type of 

knowledge  
Intention 

2.b-c Build all the polyhedra that could be 
constructed with the four pieces (half cubes). 
Make a table where you present the graphic 

Common Obtain figures through composition. 

Identify a variety of shapes 
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representation, the name and the 
characteristics of the obtained figures. 

Know specific language to describe 
geometric figures 

2.d Define criteria and classify the figures that you 
have obtained in section b. Explain what you 
have considered to define the criteria 

Extended Generate categories from the 
characteristics of different figures. 

2.e Why do you consider that when we study 
various types of figures, a fundamental process 
to work with is Classification? 

Extended and 
Meta-didactic  

Promote an attitude of inquiry. 
Recognize the intentions and 
motivations of a classification task. 

Table1. Questions in the professional task 

We grouped similar responses belonging to the same category. From this categorization, information 
was obtained that allowed for describing difficulties, errors and justifications presented in the 
common knowledge of the content that future teachers have concerning 3D figures and their 
classification. To systematize the answers given to a question about classification, we show the 
process of recognizing emerging categories associated with the texts of future teachers. 

 

Examples of texts found Emergent category 

They establish a table where it is grouped according to the number of 
vertices. [Identify most constructed figures that have 8 vertices. Most have 
between 6 and 12 vertices. None have 11 ...] 

Perceptive appearance according to 
Battista (2012). 

Figures 1,2 and 3 (cube, octahedron and triangular prism) can be classified 
within the same group since they are regular polyhedra, while figures 4,5, 
6 are totally irregular, and therefore do not have all the equal faces. 
Therefore, we have two groups, regular and irregular. 

Attempt to classify by grouping known 
features in 2D (regular, irregular) but with 
errors. 

We have taken into account the type of polyhedron according to its bases, 
the regularity, the number of faces (bases and sides), the shape of its bases, 

Correct recognition of 2D characteristics 
applied to 3D. 

We have considered if it is concave or convex, the number of vertices and 
edges, and the symmetry. 

Recognition of characteristics associated 
with the global observation of 3D figures. 

Table 2. Emerging categories in ideas and classification criteria 

To systematize the look at mathematical objects, we looked for the type of characteristics used from 
the classification. For this, the idea of the configuration of objects and processes of the Onto-semiotic 
perspective is used, looking at the definitions, arguments and propositions used. 
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Example of given argumentation Emergent category 

“… Since it allows children to group objects according to their 
similarities and differences, based on different criteria: shape, colour, 
size ... These relationships serve as the basis for the construction of 
logical-mathematical thinking. Piaget considers that these logical 
relations are the base of the classification, seriation, notion of the number 
and graphical representation”. 

It allows to establish logical relationships and 
discover new concepts 

“The fact of classifying allows us to compare and see the differences of 
the other groups. Thus, it also allows us to look for regularities between 
shapes and their properties, to compare similarities and differences using 
the appropriate vocabulary, to understand the relationships between 
different three-dimensional figures, using the properties that define 
them, and to look carefully at the regularities and changes that occur they 
produce in a collection or a sequence”. 

It allows to compare, recognize common 
characteristics, through similarities and 
differences 

"Classification is important because it allows ordering or organizing the 
figures into groups following common criteria, which facilitates the 
development of logic". 

Allows an organization 

Table 3. Argumentation categories given to the rank value 

Results 
We then recognized characteristics of the mathematical knowledge of the students in three sections: 
common knowledge about 3D figures; extended knowledge about the meaning given to the 
classification and the value of the solid classification itself.  

Common knowledge of 3D figures. Each group built and recognized different polyhedra, the 
triangular prism being the one that the majority built (27.7%), followed by the trapezoidal prism (in 
some cases incorrectly named hexahedron) and the rectangular prism, both with a 23.1 %. Only four 
groups (6.2%) speak of a parallelepiped. Two groups (3.1%) mention an octahedron. When some 
groups were unable to assign a "known" mathematical name to the constructed figure, they proposed 
real names such as "chair", "bridge", "podium", among others (28.6%). In the descriptions they make 
of each figure, some teams state characteristics related to parallels, incidents, or perpendicularity, and 
express them correctly. 

Students consider length as a differentiating element of solids, thus, for example, a triangular prism 
built with two half-cubes assumes it differently from a triangular prism built with three half-cubes. 
On the other hand, they identify regular and irregular bodies (which is used as an initial classification 
criterion in some cases). The use of informal language is evidenced to describe elements that are 
named in the geometry of solids; they name vertices, corners etc. Most students use the term equality 
to refer to situations of congruence, which in addition to being an error, triggers elements of greater 
concern, such as the mixture of terms from plane geometry with the geometry of space. It seems to 
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us that it is due to the difference between equality and congruence, which is not sufficiently 
emphasized in school geometry. 

Among the errors, we find eight groups that form a solid with the four half cubes that they identify 
with a cube, but which is not. Indeed, with four half cubes, we can never obtain a cube. This shows a 
difficulty associated with visualization because when joining the four half-cubes, a rectangular prism 
with two square faces and four rectangular faces is obtained as shown in Figure 2. Only in some cases 
do they show that this is not the case, saying that it is a prism with a square base, but with a height 
less than the side of the square. The other wrong example is to name one of the constructed figures 
an octahedron since by combining the four half cubes we can never get a face that is an equilateral 
triangle. In this case, there is only one group making this mistake. 

Regarding the extended knowledge about classification. Most of the groups point to elements of a 
visual and descriptive nature to classify the solids. They mention, for example, the number of faces, 
vertices, sides and bases that the polyhedra they managed to build have. In these cases, they classify 
considering these attributes. 

Although other groups allude to global characteristics proposing a classification of the figures as 
regular and irregular polyhedra, they do so in the incorrect way, since none of the constructed figures 
is a regular polyhedron. Other groups, when doing the classification, speak of figures that it is not 
possible to get with half cubes such as pyramids. Few groups speak of prisms as convex polyhedra, 
which is correct. Table 3 shows the percentages according to the elements that the future teachers 
considered for the classifications. 

 

Reference to a 
classification  

Perceptive 
appearance 

Characteristics 
Symmetry 

Other 
classification 

Global 
view 

None 

Number of teams 18 1 10 3 1 

Average 54,54 % 3,03 % 30,3% 9,09 % 3,03% 

Table 4. Elements used by prospective teachers for classifying 

Most of the classification criteria depend on a mere description of the object, that is, they do not 
address some more advanced theoretical element. Rather remain in a process of visual verification; 
only one group manages to rescue elements from the origin of the half cube as a section of the cube 
and the configuration of the 2D figures when locating to build a body in 3D. The classification process 
depends on the ability to identify similarities and differences between figures and explain why a 
certain figure is an example of such a class (Walcott et al., 2009). When describing elements of the 
classification, the examples and characteristics are usually shown but not so much the common and 
distinguishing criteria, although they are being valued as important. In the same way, we found that 
future teachers find it difficult to recognize how certain visualization elements are associated with 
representations that allow recognizing properties. For example, we expected that there would be 
classification proposals where the number of concavities or symmetries were considered. 
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Extended and meta-didactic knowledge about the value of the classification process. The importance 
given to the classification process by future teachers focuses on aspects such as establishing 
relationships; the identification of properties; the recognition of common and uncommon 
characteristics of the idea of classification as a grouping. As can be seen in Table 5, all groups focus 
on the importance of classification as it allows distinguishing attributes based on the comparison. 
Others simply refer to the classification as separation, posing simple dichotomous groupings, but 
without an adequate appropriation of the characteristics of the figures. 

 

Explanation Categories  Nº of groups  

It allows to establish logical relationships and discover new concepts 17 

It allows to compare, recognize common characteristics, through similarities and 
differences 

33 

Allows an organization 4 

Table 5. Elements valued as important in the classification process 

After what has been observed, we can say that most of the groups identify the recognition of common 
characteristics as a great value of the classification, but at the time of classifying, they do not explicitly 
state the criteria, but rather emphasize the name given to a group of figures as evidence of the 
classification. 

Final considerations 
In relation to the common knowledge of mathematical content, this study found that the perceptual 
appearance dominates over certain conceptual aspects (Bernabeu et al., 2017; Gonzato et al., 2013). 
Future teachers identify visual arguments, similar to those used by children themselves in the early 
ages. An application of the assumed mathematical knowledge of the known classifications of figures 
in the plane is not observed in the case of prisms. 

The language that is established in the group of students for teachers is mostly descriptive and 
suggests that its members are at the second level of van Hiele (Gutiérrez & Jaime, 1998). We can say 
that we interpret our results in the sense of showing the difficulty in relating the understanding of 
geometric figures to the coordination of two semiotic systems of representation. The discursive (oral 
or written) and the non-discursive (drawings, photos of the figures) (Duval, 2017). Indeed, despite 
having manipulative elements, students are not capable of formulating mathematically well-
formulated explanations. 

The analysis carried out has made it possible to identify a perceptual domain in the characterization 
of 3D figures and a low level of structuring from properties. Although the arguments given by future 
teachers about the value of the classification are at an initial level, it shows how they could deal with 
this process in the mathematics class in primary education in the future. Solving the question itself 
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led future teachers to question the classification models that they had learned in their school years, 
but as they did not have a broad appropriation of the attributes of solids, they could not recognize 
generalizable properties that would allow them to make rankings richer. 

The results of this study show that some future teachers like to define a mathematical object by 
describing its characteristics or properties. Future teachers manage to be surprised by the great variety 
of figures that can be built with the manipulative material worked on in the professional task. 
Moreover, it does not seem enough to recognize, for example, that different types of prisms can be 
obtained, and that this variety. It makes it possible to propose various types of classifications, starting 
with those in which one type of attribute is privileged (dichotomy), to then give way to more complex 
ones where there is a combination of attributes. No inclusive classifications are noticed.  

The use of manipulative material as a mediator of the observations and responses allowed 
opportunities for reflection on the congruence of figures that can be observed in different positions. 
Moreover, common mathematical knowledge is not sufficient, because many groups are not able to 
systematize the process of the construction of figures, and they are satisfied with having found a few. 
Photography has made it possible to overcome the problems of drawing, which in turn has helped the 
classification process. Despite this, some groups were not able to identify the global pieces built, and 
they continue to look at the individual elements of shapes. 
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Introduction and theoretical framework 
Geometry is an important part of mathematics instruction. It is the basis of other sub-areas of 
mathematics, different fields in science, technology, and arts (Wittmann, 1999). Furthermore, it is a 
tool for the acquisition of intellectual, cognitive, and practical life competencies (Wittmann, 1999). 
Despite the recognition of the role that geometry plays in school mathematics, it is often neglected 
compared to other areas of mathematics, such as arithmetic (Backe-Neuwald, 2000). These findings 
raise certain questions regarding current geometry education: What meanings do learners (i.e., 
students, pre-service teachers) assign to geometry? What geometrical concepts do they learn? 

Geometry curriculum is nowadays structured around so-called fundamental ideas, which can be seen 
as “tools to organize the phenomena of the physical, social and mental world” (Freudenthal, 1973, p. 
41). In the literature (e.g., Backe-Neuwald, 2000), different conceptualizations of fundamental ideas 
for structuring the geometry curricula are reported. Based on Wittmann’s model (1999) of 
fundamental ideas of geometry, Kuzle and Glasnović Gracin (2020) proposed the following empirical 
model: geometric forms and their construction, operations with forms, coordinates, special 
relationships and reasoning, measurement, geometric patterns, geometric forms in the environment, 
and geometrization. They showed that primary grade students (Grades 3–6) had a rather narrow image 
of geometry regarding fundamental ideas, which primarily reflected the first fundamental idea. This 
was partially due to the mathematics curriculum itself (Kuzle & Glasnović Gracin, 2020), but may 
have also been due to the role that geometry plays in school mathematics as well as in-service 
teachers’ insecurity both regarding the selection of central geometry contents and the criteria that 
determine their significance (Backe-Neuwald, 2000).  

Research questions and method 
Based on the theoretical considerations and empirical results, we sought to study pre-service teachers’ 
images of geometry through the lens of fundamental ideas of geometry as they progressed through a 
two-semester geometry course. The term image “refers to mental representations of a cognitive 
structure associated with a particular concept (i.e., geometry), built up over the years through various 
experiences” (Kuzle & Glasnović Gracin, 2020, p. 13). Two research questions guided the study:  

 What fundamental ideas of geometry can be seen in pre-service teachers’ drawings? 
 How do pre-service teachers’ images of geometry change during the geometry course?  

Within the exploratory qualitative study presented in this poster, a cohort of pre-service teachers in 
primary mathematics (Grades 1–6) that were enrolled in the course “Geometry and its didactics I and 
II” participated in the study. The course itself was structured around the fundamental ideas of 
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geometry, which were continuously made explicit. The main source of data were two drawings, which 
the pre-service teachers were to submit at the beginning and the end of the course. Drawings as a data 
tool were chosen because they are understood as expressions of mental images and provide unique 
insights into individuals’ minds (Kuzle & Glasnović Gracin; 2020, Luquet, 1927/2001). The data 
included only 43 sets of drawings due to the second semester being administered in a digital format. 
The first author analyzed the data using an inventory developed by Kuzle and Glasnović Gracin 
(2020). Here, every drawn object was categorized into one or more fundamental ideas according to 
its interpreted meaning. Afterward, the descriptive statistics were calculated. 

Results and discussion 
The results revealed that the first fundamental idea was illustrated by all pre-service teachers at both 
measuring times. All other fundamental ideas were drawn by more pre-service teachers at the end of 
the two-semester course. The largest increase showed the idea of geometric patterns (37% more 
second drawings included a pattern compared to the first drawings), followed by geometrization with 
32%. The number of drawings including the idea of operation with forms increased by 26%, followed 
by the idea of coordinates, special relationships and reasoning (18%), and geometric forms in the 
environment (14%). The lowest increase had the idea of measurement (9%), which was already drawn 
by a relatively high number of pre-service teachers at the beginning of the course. Thus, the 
fundamental ideas that were already highly presented at the beginning of the course showed a slight 
increase, whereas the fundamental ideas that were not that strongly represented showed a stronger 
increase. The results showed that the pre-service teachers’ image of geometry broadened and became 
more multifaceted during the two-semester geometry course. Most of the pre-service teachers thought 
of more different fundamental ideas than before. Concretely, the drawings revealed, which course 
topics, thoughts, and new insights shaped the pre-service teachers’ images. Based on these findings, 
the geometry course can be further developed to enrich the pre-service teachers’ ideas of geometry 
even more, and consequently counteract their insecurities regarding teaching geometry.   
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Primary school mathematics has undergone many changes in the last twenty years. Geometry in 
particular was re-evaluated due to a paradigm change and was attributed greater importance in 
curricula worldwide. Despite a clear consensus that geometry instruction is an indispensable 
component of mathematics even in primary education, the status of elementary school geometry is 
still considered unsatisfactory in many cases. This report aimed to find out if earlier findings that 
geometry is neglected in school mathematics instruction can be confirmed based on new empirical 
data using a questionnaire. In total, 120 primary grade teachers participated in the study. The study 
confirmed the results from previous research, but also shed light on new emerging factors 
contributing to the unsatisfactory state of current geometry teaching in primary education. 
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Introduction 
For several decades, researchers have emphasized the importance of teaching geometry (Franke & 
Reinhold, 2016; Sinclair & Bruce, 2015; Vigilante, 1967). Engagement with geometric content 
promotes basic cognitive skills, allows the development of specific mathematical ways of thinking, 
and contributes greatly to understanding the world in which we live (Bauersfeld, 1992; Franke & 
Reinhold, 2016). Furthermore, all mathematics is permeated by geometric ways of thinking, because 
whenever a piece of visual information is perceived, analyzed, and stored, geometric thinking is 
fundamental to this process. Despite the acknowledged importance of geometry, it seems to have lost 
its position in school mathematics developing the reputation of being the “problem child” of 
mathematics teaching as was reported by Backe-Neuwald (2000) more than two decades ago. 

Mathematics teaching in elementary schools has been influenced by many changes that have taken 
place in the last 20 years. Firstly, to counteract the worldwide trend of the reduction of geometry in 
the school curriculum (Clements, 2003; Van de Walle & Lovin, 2006), the role of geometry 
concerning perspectives on the teaching of geometry for the 21st century has been reassessed 
(Mammana & Villani, 1998). Secondly, the teaching of geometry has been re-evaluated due to a 
paradigm shift in school education to a focus on process-oriented mathematical competencies, such 
as problem solving and argumentation. The fundamental question of whether geometry is being 
neglected remains open, arguably with good reason, as the status of elementary school geometry 
instruction is still considered unsatisfactory, especially compared to arithmetic (Clements, 2003; 
Franke & Reinhold, 2016). Similar results were reported in the study by Backe-Neuwald (2000) in 
which nearly 80% of primary grade teachers agreed with the statement that the teaching of geometry 
is neglected and mostly serves as entertainment rather than important mathematical content. Since 
these findings, however, the mathematics curriculum in Germany has been revised, making a 
reassessment of the empirical findings of Backe-Neuwald (2000) necessary. Furthermore, only a few 
studies (e.g., Sitter, 2019; Wiese, 2016) are based on recent data subsequent to the paradigm shift. 
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This paper takes into consideration a number of the recent discussions in the literature by focusing 
on the role of geometry instruction in elementary school mathematics. Specifically, utilizing two 
questionnaire items adapted from Backe-Neuwald (2000), I investigate whether there are any changes 
in the previously reported situation regarding the neglect of geometry in school mathematics. 

Related literature 
The study by Backe-Neuwald (2000) involving 108 in-service teachers represents a milestone in the 
contemporary empirical examination of geometry in primary schools and its role in the school 
structure, its results have been followed up in the form of a replication (Sitter, 2019) and an extension 
study (Wiese, 2016). The teachers’ perceptions of school geometry were very ambivalent: when 
asked about associations with geometry instruction in elementary school, some teachers described it 
as “a welcome change” or “an exciting thing,” whereas others considered it “secondary,” “beside the 
point”, or “not important” (Backe-Neuwald, 2000, p. 16–18.). As noted earlier, almost 80% of the in-
service teachers surveyed believed that geometry was neglected in elementary school, not because of 
the curricular requirements of the syllabi, but due to issues concerning its actual implementation in 
the classroom (Backe-Neuwald, 2000). Only 15% of the teachers surveyed disagreed with the 
statement. In 89 cases (82.4%), the teachers stated that they have to utilize the available instructional 
time for more important mathematical content, namely arithmetic, which was identified as the main 
reason for the neglect of geometry in school mathematics. Moreover, many teachers (n = 65; 60.2%) 
shied away from the preparation intensity of geometry instruction (Backe-Neuwald, 2000) which was 
identified as the second reason for geometry being neglected in school mathematics. This was 
confirmed in the work of Sitter (2019). Along these lines, the third reason reported was that too little 
support in the form of additional materials is available for the preparation of geometry lessons.  

Teachers themselves play a crucial role when it comes to explaining the deficit in the teaching of 
geometry. Teacher training has been strongly criticized in the past. Bauersfeld (1992) noted that 
elementary school teacher education is divided among different faculties into subject and pedagogical 
content knowledge which does not reflect school reality and, above all, limits development in the 
field of didactics. Such shortfalls are specifically attributed to geometry courses, which lead to 
subject-didactic uncertainties that either partially or completely prevent teachers from teaching 
geometry (Sitter, 2019). Further, Clements (2003) reported that a large proportion of prospective 
mathematics teachers only reached Level 2 of the van Hiele model of geometric reasoning (i.e., 
descriptive reasoning). Similar phenomena were reported in the study by Backe-Neuwald (2000). The 
teachers viewed their own previous education with regard to geometry topics and content as 
insufficient (n = 28; 25.9%) and they felt insecure teaching geometry (n = 21; 19.4%). The latter was 
most prominent in teachers with little teaching experience as well as out-of-field teachers (i.e., non-
specialists). According to Backe-Neuwald (2000), this leads to a high degree of professional 
uncertainty in the conveyance of geometric content and, ultimately, to the deprioritization of 
geometry lessons. Textbooks were identified as the sixth main factor (n = 18; 16.7%) contributing to 
the neglect of geometry because textbook suggestions were perceived as being too trivial, easy and 
not challenging enough. Other reasons, such as time intensive methodological preparation, intensity 
of subject preparation, and difficulty of student assessment, were mentioned by less than 10% of 
teachers. Difficulty of student assessment was also reported by Sitter (2019). 
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Research process 
For this study, a mixed-methods research design was chosen. Elementary schools were selected 
through existing contact with the resercher’s university and random inquiries. The sample of 120    
in-service primary teachers (Grades 1–6) consisted of 22 male teachers (18.3%) and 97 female 
teachers (80.8%). One participant did not provide gender information. A total of 90 teachers taught 
mathematics as subject specialists (75%) and 29 of them were non-subject specialists (24.2%). The 
data of one participant was not provided. In terms of professional experience, 16 teachers (13.3%) 
have been teaching mathematics for less than or up to two years, 18 (15%) for up to 5 years, 19 
(15.8%) for up to 10 years, 16 (13.3%) for up to 20 years, and 51 (42.5%) for more than 20 years. 

The main source of data was a questionnaire on the state of the teaching of geometry in primary 
grades that was based on an adaptation of the instrument of Backe-Neuwald (2000). Additionally, 
new items were developed based on literature published in the last 20 years (e.g., Clements, 2003; 
Franke & Reinhold, 2016). To cover a broad field of research, six sections were included. Each 
section consisted of several items with both open and closed questions. In addition to personal 
information, there were questions about the characteristics of geometry lessons, the use of materials, 
the goals and aspects of teaching geometry, possible reasons for the neglect of geometry, and the 
participants’ personal attitude toward teaching geometry. The questionnaires were either distributed 
on site or were sent by e-mail. All questionnaires were returned to the author by mail. 

In this report, I focus on the section of the questionnaire dealing with the possible neglect of geometry, 
which was measured with two items. Both items were analyzed in order to answer the research 
question. The first item was as follows: “It is frequently claimed that geometry instruction is 
neglected in elementary education and only leads a ‘Cinderella existence’ there. What is your 
opinion?” (Backe-Neuwald, 2000). Three options were given for the item where one response was 
to be marked and then justified in a free-form text response. In addition to “I agree because...” and 
“I do not agree because…”, “Other” was provided as a third option. It was assumed that there may 
be teachers who are not in a position to or are unwilling to take a position. The analysis of the item 
was based on qualitative content analysis according to Mayring (2010). For this report, the analysis-
guiding categories emerged inductively from the hypothesis, in particular, the analysis variables of 
teaching experience, professional background, and teacher gender. In contrast to the first item, the 
second item was a standardized item which was slightly adapted from Backe-Neuwald (2000). It 
included statements on reasons leading to the neglect of geometry instruction. Here, 12 statements 
taken from Backe-Neuwald (2000) were supplemented with three additional statements (i.e., 5.2.1, 
5.2.6, 5.2.7) which were identified in the recent literature (Clements, 2003; Franke & Reinhold, 
2016), with an option of writing an additional statement (i.e., 5.2.16). The in-service teachers were 
asked to mark the aspects that were most significant to them, and to rank five responses accordingly 
(e.g., 1-most significant). The item was evaluated according to the frequencies of all response options 
as well as according to assigned rankings. The items complemented each other; by evaluating the 
open-ended item, teachers could express themselves freely without having been steered in one 
direction by predetermined response options. Through the additional evaluation of the standardized 
item, the spectrum of answers was expanded. 
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Results 
Here, I present the results concerning the two items. The first item explicitly addressed the question 
of whether geometry instruction is neglected in the teachers’ opinion and asked them to give reasons 
for their answer. In total, 45.8% of the participants agreed with the statement (n = 55), 35.8% of them 
disagreed (n = 43), and 14.2% did not take a clear position (n = 17). Five surveys were disregarded 
because either no information was provided or more than one answer was given. The affirmative 
responses were relatively evenly distributed across gender, professional background, and teaching 
experience in the groups with up to 5, 20, and more than 20 years of experience. However, affirmative 
responses were represented above average (60%–66%) in teachers with up to 2 years and 10 years of 
teaching experience. Conversely, 40% to 44% of those teachers with up to 5, 20, and more than 20 
years of experience did not agree with the statement. 

For the qualitative analysis of the item, the responses were categorized along the chosen focal 
variables of teaching experience, professional background, and teacher gender and presented as a 
selection, since there was often considerable overlap between the answers. Looking at the teachers’ 
justifications for their respective statements, several commonalities stand out. Geometry instruction 
is neglected in elementary school [...] because  

“for almost all teachers arithmetic is in the foreground.” (female, up to 20 years, specialist) 
“when there is time pressure, practicing ‘arithmetic’ is preferred.” (female, over 20 years, 
specialist) 
 “the weighting of work in the textbooks is also evident. Few textbooks deal adequately with 
geometry topics, especially in Grades 1–4. This means that the teacher has to provide a lot of 
additional material and it also gives the impression that it is of less importance.” (female, up to 10 
years, specialist) 
“the RLP [curriculum] is crammed with other elementary basic knowledge and a lot of time is lost 
to the sustainable learning of the basic arithmetic operations.” (female, up to 10 years, specialist) 
“many consider the topic of ‘Numbers and operations’ to be the absolute No. 1 and since it is so 
packed, geometry goes under.” (female, up to 10 years, specialist) 

The predominant reasons given for the neglect of geometry were time pressure (n = 15), and the 
importance of arithmetic (n = 22).  The latter was often mentioned in connection to the mathematics 
standards for primary education. Furthermore, the often very time-consuming and material-intensive 
preparation was also frequently mentioned as a factor contributing to the neglect of geometry (n = 7), 
which was also brought up in connection with textbooks. The reasons given mainly focused on 
practical requirements and perceived constraints (i.e., time pressure, the importance of arithmetic) or 
convenience (i.e., intensity of preparation). A disregard for the content of geometry was rarely 
communicated in the statements, but did occur occasionally: 

“it does not have the same value as imparting basic knowledge.” (female, over 20 years, specialist) 

Finally, in five cases the opinion was expressed, especially by those with more teaching experience, 
that non-specialist teachers in particular simply do not have the necessary qualifications to teach 
geometry confidently and appropriately: 

“many (colleagues) feel insecure or perceive it as a ‘gimmick’.” (male, up to 20 years, specialist) 
“there is a lack of trained professionals.” (female, over 20 years, specialist) 
“lateral entry employees often lack the ability of methodical approach in teaching geometry.” 
(female, over 20 years, specialist) 
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There are some comments stating that geometry is not neglected, but on closer inspection these 
display a misunderstanding of the question: they do not offer a general assessment of elementary 
school geometry as a whole (except in three cases), but rather refer primarily to the teacher’s own 
practice based on school or state curricula (n = 33). Geometry instruction is not neglected in 
elementary school [...] because  

“I always meet the curriculum requirements.” (female, over 20 years, specialist) 
“one lesson per week is a fixed geometry lesson.” (female, up to 5 years, non-specialist) 

The results from the standardized item of the questionnaire concerning the reasons for the neglect of 
geometry instruction in primary school is shown in Table 1. In addition to marking the factors 
influencing the implementation of geometry in school mathematics, the teachers were asked to rank 
the five most significant factors (i.e., statements). From this, a simple score was generated, which 
awarded the most important reason five points, the second most important four points, and so on. The 
score, as opposed to just looking at the absolute frequencies, allows a better assessment of the 
importance of the reasons for neglecting the teaching of geometry – even though both metrics show 
an almost equal ordering of the reasons. Out of 120 surveys, 117 teachers filled out this item. 
Additionally, not all participants ranked their answers (n = 24), so that this data was not taken into 
consideration for the Top 5 Score. The teachers’ answers on this item predominantly confirmed the 
findings of the aforementioned open responses item. Accordingly, the importance of arithmetic was 
again the primary reason given for neglecting geometry (items 5.2.6 and 5.2.8). Item 5.2.8 was evenly 
distributed across the professional background with two-thirds of participants from both groups 
agreeing with this statement. The intensity of preparation for geometry continued to be significant, 
especially as evidenced by the comparatively high score (item 5.2.3). Similarly, the role of the teacher 
was addressed in the sense of uncertainty in the conveyance of geometry content (items 5.2.11 and 
5.2.2). Item 5.2.11 was also relatively evenly distributed across professional background; 38.9% of 
subject specialists and 48.3% of non-specialists agreed with this statement. 

Table 1: Reasons for neglect of the teaching of geometry 

Item Statement Absolute frequency 
(max. 93) 

Score Top 5 

5.2.8 The arithmetic topics have to be worked through, leaving little 
time for geometry topics. 

80 251 

5.2.3 Geometry lessons require a lot of preparation in terms of the 
creation and provision of materials. 

76 193 

5.2.6 The arithmetic topics are more relevant for the school track 
than geometry topics. 

54 137 

5.2.11 Teachers feel insecure when teaching geometry. 49 113 

5.2.5 Student performance is difficult to assess and time-
consuming. 

47 85 

5.2.2 Geometry instruction requires a lot of subject preparation. 41 105 
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5.2.9 There are too few aids for the preparation of geometry lessons. 40 92 

5.2.4 Geometry lessons require a lot of methodical preparation 
effort. 

36 89 

5.2.1 The learning objectives for teaching geometry do not seem as 
clear as for teaching arithmetic. 

29 88 

5.2.15 Many of the suggestions in textbooks for teaching geometry 
are trivial, too easy, and not challenging enough. 

25 46 

5.2.10 Teachers perceive their own previous education with regard to 
geometry topics and content as insufficient. 

21 50 

5.2.7 Geometry topics seem arbitrary compared to arithmetic 
instruction. 

14 40 

5.2.16 Other: _________________ 14 23 

5.2.13 The development of geometric skills is subject to an inner 
maturation process in children, which can neither be 

accelerated nor halted. 

13 25 

5.2.12 The goals of geometry instruction are not as important 
because _______. 

5 6 

5.2.14 Geometry instruction does not begin until secondary school. 2 0 

Thus, the issue of neglect seems to originate predominantly from temporal-practical reasons, and not 
from a disregard for the importance of geometry. One of the most frequent reasons that the teachers 
gave on item 5.2.16 (i.e., “Other: _______”) was the limited material availability in schools, including 
both analog and digital tools. This opens up a certain area of tension, since apparently teaching 
material in the sense of geometry as a visual instruction is quite appreciated, but it is more likely to 
be made available by the school rather than to be developed as a part of the teachers’ own lesson 
preparation. Moreover, the teachers also reported that mathematics textbooks contributed to the 
negative trend for the following reasons: poor coverage of geometry topics, lack of usable tasks, and 
lack of integration of geometry topics into the “overall mathematics”. 

Discussion and conclusions  
In the literature, it has been postulated – often on an insufficient empirical basis – that geometry is 
neglected in mathematics. This paper focuses on the question of whether there are any changes 
regarding the neglect of geometry teaching in the last two decades in relation to two items adapted 
from Backe-Neuwald (2000). The study results confirmed the hypothesis that despite the paradigm 
shift that occurred two decades ago, geometry is still insufficiently taught compared to other areas of 
mathematics, but positive changes were observable compared to findings reported two decades ago.  

While about 80% of the participants in the study by Backe-Neuwald (2000) agreed with the thesis 
that geometry instruction is neglected in elementary school, only 45.8% of participants in this study 
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agreed with that statement. In other words, 15% of participants from the Backe-Neuwald (2000) study 
and 35.8% of participants in this study disagreed with the thesis. Despite the positive trend over the 
last two decades, the perception that geometry is neglected still exists to a high degree that cannot be 
disregarded. The main reason for this seems to lie predominantly in the perceived importance of 
arithmetic (n = 80; 86%, item 5.2.8), especially in the early school years as has been reported 
previously in the work of Backe-Neuwald (2000) (n = 89; 82.4%). The fact that geometry can and 
must be the basis of arithmetic, both in terms of content and in the formation of mathematical 
teaching-learning processes (Bauersfeld, 1992), is not taken into consideration by the teachers at all. 
Similarly, the teachers from both studies identified the preparation intensity of geometry instruction 
in terms of material creation and provision (item 5.2.3) as the second reason for the neglect of 
geometry. Both groups also emphasized that standardized materials were only available to a limited 
extent. Geometry lessons are guided by the visualization of different concepts and the provision and 
use of materials in this respect is paramount, but the reality in schools still seems to be deplorable. If 
improvements in this situation would make it possible to upgrade elementary school geometry, such 
measures should certainly be taken, because the value of continuous material use for the learning 
success, especially in the area of spatial imagination, is undisputed (Franke & Reinhold, 2016). It is 
worth noting, however, that an improved availability of materials, as an essential requirement of 
making changes to the teaching of geometry, would not alleviate the perceived time pressure under 
the impression of the excessive weight of arithmetic; yet this is a particularly pressing problem of 
geometry instruction for teachers. Two reasons for neglecting geometry that played a minimal role in 
Backe-Neuwald (2000) with less than 10% of teachers identifying them, seem to play a greater role 
two decades on. Difficulties regarding performance assessment in geometry (item 5.2.5) was ranked 
fifth (n = 47; 50.5%), and intensity of subject preparation (item 5.2.2) was ranked sixth (n = 41; 
44.1%). This may be due to curricular changes which placed extensive focus on process-oriented 
mathematical competencies such as problem solving and argumentation. 

The present work has highlighted various aspects of geometry teaching that have direct implications 
for professional practice. As in the study by Backe-Neuwald (2000), teachers felt insecure when 
teaching geometry (item 5.2.11). Even though this was ranked as the fourth reason in this study and 
the fifth reason in the study by Backe-Neuwald (2000), the new results call for attention. The feeling 
of insecurity more than doubled in the last two decades, from 19.4% to 52.7%. Whereas in the study 
by Backe-Neuwald (2000) the perception of inadequate previous education (item 5.2.10) was the 
fourth reason given (25.9%), this was reported by 22.6% of teachers, and hence was ranked 11th. The 
open-response items in particular bring these issues even more to light. The finding that the 
qualifications of many teachers, especially those who are not fully trained, not only are insufficient 
to teach geometry competently but also raise insecurities in teaching geometry should give cause for 
concern, especially since this aspect has not yet appeared as a prominent reason in the literature. 
Comprehensive teacher training focusing on both content and pedagogical content knowledge is 
essential as well as supplementary training in order to dispel uncertainties when teaching geometry 
(Jones & Mooney, 2003). Also, the collaboration between researchers and practitioners (e.g., design 
research, action research) may provide teachers with the needed support. We need to understand how 
teachers may be better prepared to play the roles that have been emphasized in the literature as well 
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as ongoing developments (Sinclair & Bruce, 2015). The importance of this aspect can hardly be 
overemphasized, especially given the increasing proportion of not fully trained teachers. It should not 
be forgotten that the participating teachers only represent in-service primary teachers to a limited 
extent. Despite this drawback, the study results not only provide an up-to-date insight into elementary 
school geometry teaching but also provide new evidence for questions that have not yet been 
examined in the literature which call for immediate attention that should be examined by educators. 
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Like Plato’s allegorical cave-dwellers, students of three-dimensional geometry seldom get to handle 
the real thing, working instead with two-dimensional silhouettes. Such historical sensory deprivation 
may partially explain students’ generally poor conceptual understanding of this core content and 
alienation from the field. Operating from a perspective of embodied learning, our design-based 
research study invited middle-school students to collaboratively construct and investigate 
voluminous objects. We present qualitative analyses of empirical results from implementing two 
experimental geometry activities. For both cases, we characterize students’ critical insights as shifts 
in perceptuomotor attention leading to refinement of geometric argumentation.  We implicate 
students’ realization of an available 3D medium affordances catalyzing these shifts. The findings 
contribute to a socio-material elaboration of embodied learning for school geometry. 

Keywords: Spatial geometry, Embodiment, Manipulatives, Visualization 

Introduction 
Historically, the mathematical discipline of geometry originated from mundane practice—situated, 
embodied know-how serving personal, social, and professional contexts, such as carpentry, 
agriculture, and navigation. However, while humans live and act in 3D space and engage voluminous 
objects as part of this naturalistic spatial comportment, geometry scholarship—the reification and 
scrutiny of these objects’ structural properties—has historically depended on 2D material media and 
their consequent “flat” perspectives (Alsina, 2010). This dependence has а price. For example, a 
recent study by Fujita et al. (2020) documents elementary- and middle-school students’ poor 
performance on spatial geometry problems, especially those requiring multiple reasoning steps. 

Scholars from different disciplines have claimed that if students began studying geometry with their 
embodied sensibilities, we could preempt their poor engagement and low performance in the 
discipline (Freudenthal 1971; Thompson, 2013). Pedagogical advocacy to work with “the thing itself” 
harks back to Enlightenment (Rousseau, 1755/1979; Froebel, 1885/2005) and modernity (Montessori, 
1949/1967), bolstered by Gaspard Monge and Felix Klein’s approach to the development of intuition 
about complex structures through the construction of concrete models (Mueller, 2001). Still, after 
over 60 years of empirical research on the use of manipulatives in mathematical classrooms, their 
cognitive effects and optimal utilization have yet to be established (Bartolini Bussi et al., 2010).  

We argue that realizing a material transformation in (spatial) geometry instruction, from 2D to 3D, 
demands a paradigmatic epistemological shift from idealistic to realistic views on geometry; from a 
representationalism model that separates perception, cognition, and action to an embodied model. 

Cognitive argument: from a perception-cognition-action model to embodied cognition 
Per Plato, she who seeks mathematical knowledge should strive to obtain mental representations as 
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close as possible to the ideal (non-physical) forms. Millennia later, Platonic metaphysics persevere 
through cognitive-science theoretical models that box the mind inside the skull as an amodal ethereal 
switchboard between its earthly perception input and action output (Hurley, 2010). Over the recent 
decades, however, cumulative data from various fields (neurobiology, robotics, kinesiology) is 
casting doubt on this classical model (e.g., Willems & Francken, 2012).    

The embodied turn in cognitive science rejects the hierarchical mind–body separation and stresses 
that perception and action are formatively constitutive of our thinking—cognition is modal and 
situated activity (e.g., Chemero, 2013). The mind’s function is not to represent the environment 
precisely but to engage with it dynamically vis-à-vis socio–biological task demands and emergent 
contextual contingencies. The environment offers opportunities for potential action—affordances 
(Gibson, 1986)—that the agent interactively discerns and incorporates. When we engage the world 
with fellow humans, we coordinate with them perceptual orientations in relation to shared situations, 
from early development (Tomasello, 2019) and through to professional practice (Goodwin, 2018). 

Imported to mathematics instruction, tenets from the embodied paradigm of the cognitive sciences 
suggest that learning new concepts begins with discovering new ways to act in the environment, using 
new instruments to perform tasks on discovered affordances (Abrahamson & Bakker, 2016). Working 
with the things themselves, students develop a capacity to act efficiently, describe the world 
mathematically to coordinate collaborative actions, iteratively encounter more complex problems, 
and ultimately modify the environments to solve emergent problems (Abrahamson et al., 2020). 

Spatial geometry challenges and possible theoretical and practical solutions 

Roth and collaborators demonstrated that geometry knowledge may emerge as enacted exploration 
of concrete instructional resources. Their examination of primary-school students’ classification of 
geometric objects fuses material phenomenology and phenomenological sociology to view geometry 
as cultural–historical motivated sensuous labor (e.g. Bautista & Roth, 2012). Yet, whereas overtly 
embodied routines, such as gesturing, manipulating objects, and applying mechanical construction 
tools, are considered essential for young students’ geometric reasoning and problem solving (Kaur & 
Sinclair, 2014), these resources almost disappear from older schoolchildren’s instructional activities. 
Perhaps most acutely, mainstream spatial geometry education skips “the real thing,” immediately 
requiring of students to visualize 3D objects given their 2D representations (Widder et al., 2019). 
Consequently, students struggle “to overcome the perceptual appearance (or ‘look’) of the given 
diagram” (Fujita et al., 2020, p. 235). For instance, for one of their survey items (see Figure 1, on the 
left), just 17 % of the 5th-grade students, 34% of 7th-grade students, and 52% of 9th-grade students 
marked the correct answer (percentages rounded). In light of their results, Fujita et al. (2020) call to 
revise primary and secondary school curriculum to provide students with more opportunities to 
develop both spatial skills and geometric knowledge for productive argumentation. However, the 
researchers do not indicate what types of tasks could possibly serve as context for realizing this call. 

Investigating a 3D DGE (dynamic graphic environment), Mithalal and Balacheff (2019) explored 
conditions in which construction tasks stimulate students’ transition from working with drawings and 
iconic visualizations to perceiving geometric properties of figures and non-iconic visual displays. 
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They claim that this transition depends on students’ ability to perform certain figural operations 
(dimensional and instrumental deconstruction) in tasks designed to hone this ability. 

 

 

 

In a cube, can you identify the shape ABC? 
Choose your answer from (a) – (e). 

(a) Right-angled triangle 
(b) Isosceles triangle. 
(c) Right-angled isosceles triangle 
(d) Equilateral triangle 
(e) Scalene triangle 

ABCDA’B’C’D’ is a cube. Answer the true/ false questions and 
explain your reasoning.  

1. CB’D’ is a right-angled triangle. The right angle is ___? 
2. B’D’ is the shortest side of the triangle CB’D’. 
3. Triangle CB’D’ has an obtuse angle.  
4. In triangle CB’D’, all angles are equal.  

Figure 1: Tasks involving 2D representations of 3D geometrical shapes 

With Fujita et al. (2020) and Mithalal and Balacheff (2019), we acknowledge the key cognitive role 
of sensory perception in understanding spatial geometrical forms. Yet, we conceptualize sensory 
perception as necessarily serving and emerging from goal-oriented action. We thus seek to 
investigate how students ground geometry concepts in action-oriented perception. Our study 
accordingly evaluates a set of enactive tasks designed for high-school students to develop geometrical 
perceptions through multimodal action-based interactions with concrete material. 

Constructing tangible models as embodied design for spatial geometry learning 
Supported by the embodied perspective, we are looking to capture and theorize conceptually 
significant shifts in students’ perceptuomotor attention towards voluminous geometrical solids. The 
two vignettes, both from video-recorded data gathered in Jerusalem, Israel1, illustrate how each 
activity’s unique sensorimotor affordances enabled students to engage in conceptually generative 
collaborative enactment and argumentation. The first vignette (V1) presents a task (Figure 1, right) 
designed to stimulate perceptual coordination of 2D diagrams and their 3D counterparts: students use 
a “3D pen” to construct a voluminous cube from its “flat” image, then they manipulate the model to 
investigate its properties per the problem instructions. The vignette exemplifies a “first step out of 
Plato’s cave,” where students tentatively realize what they can, may, and should do with a 3D model. 
In the second vignette (V2), students assemble a very large multi-unit geometrical form and then 
identify the “hidden” form that emerged in between the units. This vignette exemplifies students’ 
zealous unshackling of any remaining “geometry-is-flat” predilections. 

                                                 
1 Qualitative analysis of additional cases is currently underway to evaluate for generalizability of these case studies   
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V1. Stepping out of the cave: Learning a 3D model’s affordances for spatial problem solving 

The teaching experiment presented in this vignette is a part of a wider educational research project 
evaluating students’ experiences with 3D pen sketching while solving spatial geometry problems (for 
details, see Rosenski & Palatnik, 2021). Three 10th grade students (T, G, & M) faced the task shown 
in Figure 1 (right) for approximately 20 minutes. Male student G drew the triangle inside the cube 
with a 3D pen. Next, over approximately 8 minutes, the students discussed the problem but made no 
significant progress. They were inclined to believe that CB’D’ is a right-angled triangle.  

T: No, but you know that this is a cube, and this (cube face) is a square, and then, this 
is 90 degrees, then this is 90 degrees, and then it (diagonal) bisects the angle, so it 
is 45(degrees). 

G: The question is, if we rotate (two faces, where the edge is an axis) [gestures 
“rotation” with two palms as faces], would it be the same angle? Could it be? 

M: To them, it (the angle) in the picture also looks like that (90 degrees). 
T: In the picture, it is just from a different angle, if you turn it like this [adjusts the 

model], you can see that this [points] is the right angle if this is stretched [pulls up 
the slightly sagging plastic diagonal of the top face of the cube.] 

 

 

Figure 2: Investigating 2D representations of 3D geometrical shapes  

During these eight minutes, students left the model standing between them on G’s writing surface 
(see Figure 2). Remarkably, the students made inferences and conjectures about the task without 
taking the model in hand, only lightly touching it and making minor adjustments. Most of these 
adjustments reoriented the 3D model vis-à-vis the given 2D diagram. 

In this phase of problem solving, the students were reluctant to make inferences based on the 
appearance of the 3D model. They approached the 3D model to correlate it with a cultural form that 
they are used to—a 2D diagram. In particular, the students sought to “flatten” the 3D model such that 
it would be seen as identical to the 2D diagram, where CB’D’ presents an apparent right angle (see 
Figure 2-left, where T twists her body). However, a retinal image of a 3D object is not similar to a 
2D projection. As Gibson (1986) has argued, we notice optical invariances of the object under the 
movement of the source of light, movement of the observer, movement of an observer’s head, and 
manipulations and local transformations of the object itself. Naturalistic interaction could possibly 
untether the students from “paper math.” Soon after, indeed, the students utilized these affordances 
of their 3D model, discerned it invariant features by handling it, and made correct inferences. 

Several factors prepared the A-ha moment. For instance, G was unsatisfied with the claim that CB’D’ 
is a right-angled triangle. He argued: “If these two angles look like the same shape, if they are both 
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right angles and a triangle has a total of 180 degrees, then the triangle cannot exist”; “This is 
impossible. If you rotate it each way to make it (one of the angles) look like a right angle, then you 
can rotate it in a different way (to make other angle look like a right angle)”. Yet his teammates, still 
“deep in the cave,” had still to be convinced.  

At the 14th minute of tackling the task, we witness a shift in students’ interaction with a model.  T 
took the model in hand (Figure 2-right) for the first time, rotated it for five seconds, and 20 seconds 
later said, “Now I get it.” In the next minute, T tried to formulate her vision, accompanying her 
explanation with more than 5 complex model rotations (i.e., more than 2 axes involved). The core of 
her argument was in line with what G had previously argued: from different angles, the triangle 
appears isosceles, and yet its angle “can’t be 90 for all of them.” During this minute, G’s attention 
was on the rotating model, enabling him to see it under these transformations. In contrast, M focused 
only on the 2D diagram and tried several times to draw her peers’ attention to it: “Look at the picture!” 
It took another minute for G to formulate an answer and a valid argument. 

T: So you think all the angles are 60 degrees? Is it an equilateral triangle? 
G: Yeah, look, all the sides are of the same length [traces with finger three sides in 

succession] if you look at it. Is that true? 
T: Mmmm…I don’t know. 
G: Look [adjusts the model], all the sides (of the triangle) are exactly a diagonal [traces 

a diagonal of the upper face], the diagonal of a square. All the squares are the same. 
And that means, if all of the sides are equal [points on a different face], all of the 
angles are equal, and they’re all 60 degrees. 

T: Ok... [types into the response form] We think that all sides are equal; therefore, the 
angles are also equal... equal to 60. It’s an equilateral triangle. 

To summarize, the task was difficult for the students, even with a 3D pen and a model. In line with 
Fujita et al. (2020), the task demanded that students harmonize their spatial reasoning skills with 
domain-specific knowledge of planar geometry (properties of squares and triangles). It took students 
time to utilize an available 3D medium and realize its affordances (a spectrum of perspectives on the 
equilateral triangle for the team members). M’s decision to stick to a 2D drawing may explain her 
low contribution to the final effort. In contrast, when T physically rotated the model, her actions 
apparently spurred and supported her spatial reasoning and were visible to G. He, in turn, observed 
these physical rotations, which allowed him to refine his previous arguments based on mental 
rotations and apply the corresponding geometric knowledge to the new 3D situation. 

V2. Further steps: Constructing enactive argumentation—gesture, action, medium  

In the second teaching experiment, part of “Geometry In… and Out” (Benally et al., 2021), four 7th 
grade students constructed voluminous solids (Figure 3) then worked on the following questions: 
“Comparing the volumes of the large and small tetrahedra that you built, how many times the volume 
of the large tetrahedron is greater? Explain your answer. Several small tetrahedra compose the large 
tetrahedron. Can you describe a three-dimensional shape between them? Can you construct it?” 

Once the group had constructed the first small pyramid, Yali placed it on his head (Figure 4a). Nami, 
using Yali as a stand, gestured on him that this polyhedron is called “arba-on” (“arba” is four in 
Hebrew). The palms of her hands present the polyhedron’s faces. Then, removing the model off Yali’s 
head, Nami gestured similarly, though with her forearms, to present the same four faces (Figure 4b). 
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It took the students approximately 11 minutes of collaborative work to construct a large model and 
begin answering the items. Their plan for estimating the large tetrahedron’s volume was to 
decompose it into its component parts. They easily recognized four small tetrahedra: “three at the 
base, and one at the top.” However, the students were not sure about the shape of a three-dimensional 
hollow between the tetrahedra (the octahedron outlined in red, for your convenience, in Figure 4c).  

1)    Your team has to construct a three-dimensional model of 
the following geometrical solid using a construction kit. 
The solid has the following properties: 

●   All the faces are congruent equilateral triangles. 

●   The same number of edges converge at each vertex. 

2)   The polyhedron you’ve constructed is called a 
tetrahedron. Construct a similar polyhedron whose edges 
are 2 times larger than the original one. You can use the 
image below for construction. 

 

Figure 3: The tetrahedron construction task and materials. 

Figure 4: Different affordances of the available media as manifested in students’ actions 

Tami, Nami, and Gali suggested that the hollow is also shaped as a tetrahedron. Yali disagreed and 
offered to count the faces of the “empty space.” He rotated the large model, hoping to render it more 
familiar, yet that action proved unhelpful. Tami remonstrated, “You just can’t see this (tetrahedron).” 
To support her claim, she grabbed two sheets of paper lying on the desk and applied them successively 
as the polyhedron’s faces, expecting these to total at four. Immediately, Yali appropriated Tami’s 
strategy, just to disprove her. Summoning more paper sheets and distributing them over more group 
members, he marshaled an “octopus of hands” to simultaneously cover all the polyhedron’s faces. 
The introduction of these auxiliary objects helped students to solidify the shape (Figure 4d), count 
the faces, and eventually write the following definition: “The polyhedron between four triangular 
(pyramids) has eight identical faces. Each face is an equilateral triangle.”  

This vignette illustrated the emergence of students’ enactive argumentation through collaborative 
semiotic evolution of gestures into concrete media. Students’ hands, semi-constructed models, and 
even repurposed found objects became instrumental in shaping a void—rendering a contested obscure 
object into an articulated, unequivocal, and publicly inspectable form. The hidden octahedron was 
born as a “prospective indexical” (Goodwin, 2018) then came forth through pointing, formative 

 
a 

 
b 

 
c 

 
d 
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gestures, and construction media. Thus, the hollow solid inhabiting the larger structure was 
substantiated, reified. Eventually, once the form was delegated from imagination to media, the 
students could allocate cognitive resources to enumerate its facets and name the new geometric object. 

Discussion and Conclusion 
This article aimed to present theoretical foundations and empirical arguments for a set of embodied 
spatial-geometry curricular resources for middle school. We submitted that historical dependence of 
geometry education on 2D media is implicitly rooted in an idealistic Platonic tradition and the 
representational cognitivist model. We conjectured that tasks in which students construct 3D objects 
are more than “working with manipulatives”—they let students use their natural capacities of 
multimodal perception and collaborative action. We supported our argument through qualitative 
analysis of two vignettes exemplifying embodied design for spatial geometry learning. 

We demonstrated how a group of middle-school students grounded geometric concepts of solids, 
their cross-sections, faces, and edges in goal-oriented, situated activity of constructing concrete 3D 
models. Our first vignette demonstrated that coordination of traditional and novel medium is not easy 
for students. They tentatively experiment with their new degrees of modal freedom—looking at 
objects, pointing at them, touching them, lifting and rotating them. New affordances catalyze shifts 
of students’ attention to relevant features supporting their geometric reasoning.  

Mithalal and Balacheff (2019) considered the possibility of a continuous evolution from iconic to 
non-iconic visualization, where the figural operation of instrumental deconstruction would play a 
cohesive role. Our second vignette provides an empirical basis for this assumption. The transition 
from iconic visualization to non-iconic visualization was carried out by introducing tangible auxiliary 
elements (paper sheets in the form of polyhedron faces) into the 3D model. Thus, the students 
performed a naive instrumental deconstruction of shape, a mereological deconstruction of a 3-
dimensional shape into four tetrahedrons and an unfamiliar shape, and finally a dimensional 
deconstruction of a 3-dimensional shape, which focused their attention on the 2-dimensional faces of 
the octahedron (see Palatnik & Sigler, 2021, for a theoretical discussion on the introduction of an 
auxiliary element as a shift in attention). This argumentation by action was later transformed into a 
normative formulation of properties—the formal definition of a geometric solid. 

Constructing and manipulating tangible models creates opportunities for students to harmonize 
spatial skills and rigorous geometric argumentation as well as bridge iconic and non-iconic 
visualization. Yet, it is challenging to step out of Plato’s cave after a lifetime of unwitting 
incarceration. Middle school geometry should organize students’ engagement with 3D objects as one 
would any artifact—with untampered senses; with gross and fine motor actions; with all the tacit, 
evolutionarily endowed naturalistic sensibilities for orienting in the environment. Once students 
realize how to work with three-dimensional objects in mathematical activities, they can tap their 
know-how to build valid arguments grounded in enactive experience. 
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There has been extensive research on investigating teachers’ mathematical knowledge in different 
topics and more recently at different school levels, with some work towards this in geometry (e.g., Ko
& Herbst, 2020). In this paper we provide examples of research tasks used to describe and investigate
teachers’ knowledge of basic geometry. By basic geometry we mean concepts, theorems and 
properties of lines, angles and triangles in the junior secondary curriculum of South Africa. Since the 
choice of examples is a key element of any task, we offer a set of criteria for developing aspects of 
the example (i.e., figure in case of geometry) in tasks. The tasks, in turn, provoke teacher responses 
that enable us to describe aspects of teachers’ mathematical knowledge for teaching geometry. We 
do this using a framework for producing tasks of varying difficulty level for teachers that could be 
used to illuminate their geometry knowledge for teaching.

Keywords: geometry, mathematics teacher knowledge, tasks.

Background of the study
Geometry is an important topic in school mathematics. Euclidean geometry is part of the school 
curriculum in many countries and the foundation for Euclidean geometry starts from primary grades 
by introducing shapes and their properties. However, geometry continues to be a topic that students 
struggle with (e.g., Luneta, 2014; Steele, 2013). One of the many reasons for students’ low 
achievements, especially in geometry, is teachers’ difficulty in teaching geometry (e.g., Bowie, 2013; 
Steele, 2013). Based on recent experience of working closely with different groups of secondary 
teachers in Gauteng, South Africa, the team of the Wits Maths Connect Secondary (WMCS) project 
recognized the need to support teachers to improve their knowledge of basic geometry. 

The aim of our project is to understand the knowledge that teachers need to teach basic geometry in 
schools and then to support them through a professional development (PD) programme. Our 
definition of teachers’ knowledge is based on Ma’s (2010) conception of profound understanding of 
the content with breadth and depth of knowledge. We can also consider this knowledge as common 
content knowledge (CCK) (Ball et al., 2008) but it is specialised and needed for teaching. In order to 
understand this knowledge, we are in the process of developing a framework which focuses on 
developing teachers’ mathematical knowledge for teaching, which is defined as including both 
knowledge of mathematics and knowledge of mathematics teaching (for details, see Adler, 2021).

We did not find any literature dealing with teacher knowledge when their mathematical knowledge 
is weak and little dealing with teaching basic geometry or teacher knowledge of basic geometry. By 
basic geometry we mean concepts, theorems and properties of lines, angles and triangles in junior 
secondary curriculum of South Africa. We are working with a relatively unique group of teachers 
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who acknowledged the weaknesses in their geometry knowledge base.  They openly discussed these
and requested a course to help them to improve their geometry knowledge. 

The PD provided us with a unique opportunity to understand what knowledge they bring, what is 
lacking and how we might help them to build their knowledge to the point where they can teach 
geometry with confidence and competence. So, from a research perspective, we asked ourselves how 
do we “measure” teachers’ starting base and then “measure” gains over time? We do not focus in this 
paper on teachers’ knowledge per se, nor the PD, nor do we look at change. None of these is possible
without a framework that is geometry-specific for classifying tasks that would appropriately elicit 
teachers’ knowledge. A key element of any task is the example/s used and in this paper we offer a
set of criteria for developing examples within the tasks. In turn, these tasks provoke teacher responses 
and thus enable us to describe aspects of their mathematical knowledge for teaching geometry.

Literature Review
Several scholars since Shulman (1986) have tried to define specialised aspects of teachers’
knowledge. Ball, Thames and Phelps (2008) categorised teachers’ knowledge to specify different 
aspects which need to be focused upon. Following from Ball and colleagues’ delineations of subject-
matter knowledge (SMK) for teaching, Herbst and colleagues (e.g. Ko & Herbst, 2020) designed an 
instrument SMK-G to measure teachers’ knowledge of geometry. They focused on tasks for teaching 
to capture differences in teachers’ mathematical knowledge for teaching high school geometry. 
Through this work they offer distinctions between different SMK-specific tasks of teaching. For 
example, in one item teachers are provided with four algebraic expressions and asked to choose a set 
of measures for angles in a parallelogram that can be given to students as an exercise after they have 
learnt about interior angles of a parallelogram. 

There are several other studies on designing assessment instruments to measure teachers’ 
mathematical knowledge for teaching geometry. For example, in contrast to the assessment tools 
developed for assessing teachers’ mathematical knowledge in a broader range of mathematical topics, 
Martinovic and Manizade (2018) proposed “that the measures should be designed as ‘probes’ around 
specific topics commonly taught by a targeted group of teachers” (p. 613). They developed a probe 
for a task on Area of a Trapezoid and developed a pedagogical content knowledge (PCK) instrument 
with rubrics used to “measure teachers’ responses and … create PCK profiles” (p. 615). They propose 
that secondary mathematics teachers’ PCK is a complex and multidimensional phenomenon with five 
dimensions: geometric knowledge; ability to provide geometric extensions; knowledge of applicable 
instructional strategies and tools; ability to ask diagnostic questions and knowledge of student 
challenges and conceptions. In another approach, Steele (2013) designed open-ended tasks and 
rubrics to understand teachers’ thought processes in solving problems on geometry and measurement. 

In the South African context, Bowie (2013) argued that both the research and curriculum documents 
acknowledge the difficulty that teachers face in enacting geometry in the classroom. In a study with 
128 first year pre-service teachers, Luneta (2014) found that the majority of the participants had
limited knowledge in basic geometry, falling within Level 1 of Van Hiele’s theory. He argued that 
the participants “required not remedial but re-learning of basic these concepts” (p. 71). An earlier 
investigation in South Africa echoed this and showed that both pre-service and in-service teachers
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failed to reach the competence level expected of Grade 7 students (van der Sandt, 2007). It is therefore 
clear that the teachers we are working with in this study constitute a small sample of a much larger 
group of teachers in South Africa who have limited knowledge of basic geometry. 

We draw on the existing literature to design tasks to investigate teachers’ knowledge in geometry. 
However, to engage with pedagogical aspects successfully, teachers need strong content knowledge. 
In the context of our work, teachers needed support in understanding basic knowledge of geometry. 
In the existing literature, examples that are used in tasks are not problematised. The examples are a 
critical aspect of designing tasks for teachers, particularly those with a low knowledge base because 
it is essential that teachers are able to make a start on the tasks, even if they cannot complete all 
aspects of the task. In this paper, we focus on exemplification including tasks and examples for the 
purpose of describing teachers’ knowledge. We now turn our attention to the theoretical framework 
which foregrounds examples in understanding teachers’ knowledge. 

Theoretical framework
We turned to Adler and Ronda (2015) for a theoretical framework on Mathematical Discourse in 
Instruction (MDI) where they focused on object of learning, exemplification, and explanatory talk
(see Figure 1). Using a socio-cultural framework (Vygotsky, 1978), the authors (ibid) consider
mathematics teaching as goal directed. In MDI, how an object of learning is exemplified is important. 
Another aspect, which is important in exemplification is the principle of variation. In their work, 
Adler and Pournara (2020) developed the use of exemplification for mathematics teacher education. 
They focused on algebra and functions. In MDI for algebra, examples and figures are different. By
contrast, in geometry the example and the figure are the same (or at least inextricably linked). We 
therefore asked ourselves what does it mean to use exemplification in the topic of geometry? In the 
MDI framework (see Figure 1), exemplification is classified into examples, representations and tasks. 
This requires adaptation for geometry. 

Figure 1: The MDI conceptual framework (Adler & Mosvold, forthcoming adapted from Adler & 
Ronda, 2015).

Developing the framework for geometry: Exemplification
The framework MDI focuses on the object of learning, exemplification, explanatory communication 
and learner participation. In developing the current framework for geometry, we borrowed these 

Object of learning

Exemplification Explanatory 
communication

Learner participation

Examples

Tasks

Representations Word use Justification/ Substantiations
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elements from MDI framework and modified them according to the needs of using it to examine the 
tasks used in the data collection tools pre-assessment, worksheets, and questions for the focused
interview (see Takker et al., 2021). In this paper, we will focus on exemplification in geometry using 
examples as a means to access and ultimately to describe teachers’ knowledge.

Figure 2: Exemplification aspect of the framework

The exemplification element is divided into three categories: (a) Geometric Figure (GF) and its 
attributes, (b) Representations, and (c) Tasks. These three categories are further divided into 
subcategories (see Figure 2). For instance, GF and its attributes is sub-divided into GF and attributes 
of GF in focus, whereas the task category is sub-divided into tasks with a diagram and tasks without 
a diagram. These subcategories are then examined under different levels. We needed a relatively fine-
grained measure to describe and categorise teachers’ knowledge, particularly as we worked in the
largely unchartered waters of teachers’ low knowledge base in geometry where we ultimately seek to 
investigate changes in their knowledge. 

For us, categorising the tasks and examples is a start. And this is what is being offered in this paper. 
For example, GF is categorised into three levels with two sub levels based on the number of GFs in 
the given diagram, namely: one GF; two GFs (with same type of figures or different) and three or 
more GFs (with same type of figures or different). The attributes of GF in focus are categorised into
three levels depending on axioms, definitions or theorems needed to solve the problem. In geometry 
it is important to identify the properties when the diagram is in a familiar orientation as well as in an
unfamiliar orientation. Therefore, we categorised representation in standard orientation, in non-
standard orientation or in multiple orientations. By standard orientation we mean the most familiar 
and common orientation. For example, having the “unequal side” of an isosceles triangle in horizontal 
position. And non-standard orientation refers to any other orientation than the familiar or most 
common orientation. In a complex figure, if one or more GF is in standard orientation and others in 
non-standard orientations then we consider the diagram is in multiple orientations. The subcategories 
for the third main category, i.e., task, are distinguished by whether the task comes with a diagram, or
whether it is expected that a diagram (or a part of it is) be drawn as part of the solution. Six levels
were set for a task which comes with a diagram whereas five levels were set for a question which 
does not come with a diagram. The levels for the task category were also based on the difficulty level 
of the task. For example, is it a numerical measure problem, or does it include algebra or a simple 

Exemplification

Geometric figure 
and its attributes

Representation Task

With diagram Without diagramGeometric figure Attributes of 
geometric figure in 

focus
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proof, or a complex proof without numerical measures, or perhaps algebra is also required? In rating 
the tasks of each data collection tool, the first two authors examined them individually and then 
discussed to ensure the validity. There were not many differences in each examination and agreement 
was quickly reached. We present three different tasks and their classifications using the framework.

EXEMPLIFICATION
Geometric figure (GF) and its attributes

GF (and diagram complexity) Attributes of GF in focus
L1: One GF 
L2(a): Two GFs – same type of GFs
L2(b): Two GFs – different types of GFs
L3(a): Three or more GFs – same type of GFs
L3(b): Three or more GFs – different types of 
GFs

L1: Use of axioms, definitions to identify instances 
of GF 
L2: Use of axioms, definitions, or properties in 
solving problems. 
L3: Use of axioms, definitions, properties or 
theorems in solving problems 

Representation (diagram and symbols)
L1: Standard orientation 
L2: Non-standard orientation

L3: Multiple orientations

Task
With diagram Without diagram

L1: Numerical measure problem 
L2: Algebraic measure problem 
L3: Numerical proof problem
L4: Algebraic proof problem
L5: Simple proof 
L6: Complex proofs and converse

L1: Draw a diagram based on given information for 
one GF
L2: Extend a given figure 
L3: Draw a diagram based on given information for 
two or more GFs
L4: Construct a simple figure with one GF 
L5: Construct a complex figure with two or more 
GFs

Figure 3: Levels in exemplification aspect of the framework

Examples of Tasks

We provide examples of three tasks and their analysis using the levels of the framework. The 
exemplification aspect of the framework guided us to design geometric problems with different 
combinations of levels. For instance, Example 1 (see Figure 4) has one GF in standard orientation
and a numerical measure. The properties that can be used include sum of the interior angles of a 
triangle and angles opposite equal sides of an isosceles triangle. Therefore, this was categorised as 
L1, 2, 1, 1 which is explained in Figure 4. 

In XYZ, YX = YZ and .
Is the information given in the question 
sufficient to find the size of . Give reasons.

GF - L1: one GF
Attributes of GF - L2: two geometric properties to solve: 
sum of the interior angles add up to and opposite angles
to opposite equal sides are equal

Representation - L1: Standard orientation

Task: with a diagram - L1: a numerical measure problem

Figure 4: Analysis of Example 1
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In the second example, (see Figure 5) there are two GFs in a non-standard orientation (because the 
parallel lines are not horizontal) and algebraic measure. The properties that can be used include angles 
formed on a pair of parallel lines cut by a transversal; vertically opposite angles and angles on a 
straight line. Therefore, this was categorised as L2(a), 2, 2, 2.

You will use algebra to answer this question.
(a) Determine the value of . Give reasons.
(b) Determine the value of . Give reasons.
(c) Fill in the sizes of all 8 angles on the

diagram.

GF – L2(a): two GF - a pair of parallel lines with a 
transversal

Attributes of GF - L2: geometric properties such 
as: angles formed on a pair of lines cut by a 
transversal; vertically opposite angles; and angles 
on a straight line 

Representation - L2: non-standard orientation

Task (with diagram) – L2: Algebraic measure 
problem

Figure 5: Analysis of Example 2

The third example involves geometric proof. Example 3 (Figure 6) was categorised under L3(a), 2,
2, 6. The diagram given in the question includes three GFs - an isosceles triangle, a line parallel to 
one side and an angle bisector, and therefore coded as L3(a). The task was coded with L2 for 
Attributes of GF in focus since axioms, definitions and properties such as the properties of an isosceles 
triangle, definition of a bisector of an angle, properties of parallel lines, angles on a straight line, 
angles at a point need to be used to solve this problem. The diagram of Example 3 is not in standard 
orientation and that is the reason why it was classified as L2 for Representation.

While this is not a very complicated geometry task, it proved to be quite a challenging problem for 
the target group of teachers, as we saw in their difficulties with this and similar tasks. Therefore, we 
categorised Example 3 under L6 for the task aspect - a complex proof involving if-then-because
reasoning.

In the given diagram, lines 
GC, HB and 
FE intersect at 
point A, BC = 
AC, and AH 
bisects GF. 
Prove that EF 
is parallel to BC.

GF - L3(b): three GFs - isosceles triangle, a pair of parallel lines and 
an angle bisector

Attributes of GF - L2: geometric properties such as: opposite 
angles to opposite equal sides are equal; sum of the interior angles 
add up to ; bisection of an angle; angles formed on a pair of
line cut by a transversal; vertically opposite angles need to be used 
to solve the task
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Representation - L2: non-standard orientation

Task (with diagram) – L6: a proof of a non-numerical rider 
involving if-then-because reasoning

Figure 6: Analysis of Example 3

Discussion and Conclusion
The existing literature (e.g., Ko & Herbst, 2020), contains research on the use of measures to assess 
teacher knowledge in geometry. But there is no instrument to investigate teacher knowledge of basic 
geometry and hence a focus on content knowledge needed by teachers with a low knowledge base.
We have presented part of the framework on exemplification used to develop tasks for investigating 
mathematical knowledge for teaching basic geometry. We showed how the framework is used to 
categorise the difficulty levels of the tasks. While using the exemplification aspect of the framework 
to design tasks for different levels of difficulty, we use the explanatory communication aspect to 
analyse the teacher responses to course tasks, including the pre-assessment, worksheets, and a focused 
interview. By analysing data, we hope to identify the mathematical knowledge that is needed to teach 
basic geometry. Although we are working with a small and special group of teachers, they represent 
a much larger group of teachers in South Africa, and possibly in other parts of the world, with low 
levels of geometry knowledge. This unique opportunity holds the potential to identify the structure 
of profound knowledge needed for teaching basic geometric ideas, relevant for teachers and teacher 
educators in planning tasks to support teacher learning. 
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One’s affective state can change our actions and thought process while learning. The interplay of 
student’s emotion and problem solving in spatial geometry has not been thoroughly studied. We 
present qualitative analysis of individual and collaborative problem solving of spatial geometry tasks 
by middle school students (8 students in a lab setting, and 21 students in group interviews in a 
classroom setting). We use the concept of embodied learning design, with the 3D printing pen as a 
medium, to make the process of converting 2D sketches to 3D models more explicit. Findings revealed 
that the students’ affective state significantly influenced the way they solve the problems in spatial 
geometry. 3D sketching environment allows students to build a bond (intimacy) with the material and 
use their emotions as signals for heuristic changes (integrity). The discrepancy between 2D and 3D 
visualization in spatial geometry tasks may lead to students’ emotional tension. 

Keywords: Spatial geometry, secondary school mathematics, embodied learning, 3D sketching 
affective states, problem solving 

Introduction and Theoretical Background 
Spatial geometry 

Grasping spatial geometry calls for command of five different types of mathematical thinking: spatial 
structuring, measurement, representing 3D objects, spatial ability, and conceptualizing mathematical 
properties (Pittalis & Christou, 2010). Students and teachers have historically relied on traditional 2D 
media and materials and their resulting “flat” perspectives (Alsina, 2010). Students struggle with 
spatial geometry tasks, especially those requiring several reasoning steps (Fujita et al., 2020). 
Applying a dynamic geometry environment (DGE) to spatial geometry fosters innovation in didactic 
and research methods and may stimulate geometrical reasoning (Mithalal & Balacheff, 2019). 
However, even 3D DGE are limited to the two-dimensional medium (screen) and thus may create 
perceptual problems (Dimmel & Bock, 2017). Therefore, we are seeking a teaching method that can 
provide students with a three dimensional and multimodal experience and facilitate the development 
of the five types of thinking mentioned above.  

3D pen—a novel technology for freehand drawing of 3D models 

The 3D pen is a relatively novel technology which application to spatial geometry instruction has not 
been significantly studied. The pen excretes hot plastic which allows one to draw in three dimensions 
free hand. The use of the 3D pen in mathematics education was presented by Ng, et al., (2020) in 
which elementary students were studied using the pen in comparison to dynamic geometry programs. 
It was found that long term retention of the group using the 3D pen was significantly better.  
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Our study focuses on cognitive and affective states of middle school students to find the potential of 
this novel medium in learning environment that promotes interaction between the object and the 
person (via gestures, movements and embodiment of the physical world) which is not possible when 
using a 2D medium (paper or screen). Assuming that using a 3D pen will make the 2D to 3D 
conversion visible and therefore easier and more natural for learners, we aim to characterize learners' 
emotions when solving non-standard spatial geometry problems.  

Embodied learning of geometry 

Embodied learning, an educational approach based on the role of the body — through movement, 
action, and gesture as a powerful tool for understanding and learning school subjects — is gaining 
ground in educational research (Abrahamson et al., 2020; Kim et al., 2011). Embodied learning is 
based on embodied cognition which suggests there is some level of interaction between the body’s 
physical actions and movements in its environment and our cognition (Wilson, 2002). 

The activities in which students solve spatial geometry questions by constructing tangible models 
may potentially bridge the gap between intuitive and disciplinary ways of mathematical reasoning 
(Palatnik & Abrahamson, 2021). Tasks in which students sketch with the 3D pen to visualize a 
problem can be considered as a sub-genre of embodied design activity—compelling students to use 
movements and gestures (c.f. Abrahamson & Lindgren, 2014).Research that combines the theory of 
embodied design with the effect on students’ affective state is relatively rare (Sinclair & Heyd-
Metzuyanim, 2014). This study focuses on students’ emotions and meta-affective abilities while 
solving nonroutine for them problems (spatial geometry) using non-routine medium (3D sketching 
pen).  

Theoretical framework for influence of affect on problem solving 

While solving non-routine problems, many students are overcome by their emotions and unable to 
continue to solve the problem, however other students can maneuver their emotions, think of an 
alternative solution, and therefore solve the problem (McLeod, 1988). When students are aware of 
the feeling of frustration, for example, they can use it as a sign to give up and move on to the next 
problem, or as a sign to reevaluate their solution and find an alternative solution (Debellis & Goldin, 
2006; McLeod 1988; Hannula, 2015).  

Debellis and Goldin (2006) define mathematical intimacy as the students’ emotional engagement 
with mathematics and mathematic integrity as their sense of “fundamental commitment to 
mathematical truth” and pursuit of understanding (Debellis & Goldin, 2006, p.132). The individual’s 
ability to solve problems is influenced by their control of their emotions, their awareness, context and 
situation, mathematical education, attitudes, values, beliefs held by themselves and the environment 
and normative emotional expectation (Debellis & Goldin, 2006). Educators, curriculum developers, 
instructional coordinators, and textbook writers who are aware of students’ emotions and the effects 
on their learning patterns, can use this to their advantage when searching for methods to create optimal 
learning environments.  

McLeod (1988) characterizes these affective states based on magnitude (intensity), direction (positive 
or negative), level of awareness (of their meta-affective processing), duration, and level of control. 
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According to Debellis and Goldin (2006) mathematical intimacy refers to a specific, emotional 
engagement with mathematics. Mathematical integrity relates to one’s affective state when 
determining if a solution is satisfactory or should be praised. This leads to the pursuit of understanding 
and the students’ commitment (or lack thereof) to the mathematical truth. Students with high 
mathematical integrity recognize their insufficient knowledge or understanding and decide to change 
their solution or direction when problem solving.   

Our research is situated on a nexus of spatial geometry content, embodied pedagogy, and the 
emotional component of students’ learning. This research report focuses on the following  RQ: 

How does the experience of 3D sketching influence the students’ affective state and their awareness 
of these states while solving spatial geometry problems? 

Methods 
The cases reported in this paper are part of a larger research project  which explores the effect of the 
use of embodied learning design on spatial geometry problems (Palatnik & Abrahamson, 2021; 
Rosenski, 2021). We tested 9 students in individual interviews in a lab setting, and 25 students in 
group interviews in a classroom setting. Of the 9 students interviewed in the lab setting, 8 were 
included in the data analysis.  The students were chosen based grade level (9th-11th grade), as they 
have all studied concepts in planar geometry necessary to solve the problems given. Of the 25 students 
interviewed in group settings, 21 students were included in the data analysis. The others were omitted 
for not completing the entire question set.   

Figure 1: Example of question #3 

Before beginning the main activity, the students were asked to answer a computerized test of 30 
questions that test spatial ability. The test is based on mental rotation and ability to rotate 3D objects 
projected on the screen. Subsequently, the students were given a 3D pen and were asked to sketch a 
pyramid with the 3D pen to practice drawing lines in the air. Most students were able to sketch freely 
with the pen within 10 minutes. The main activity of the study includes 3 questions in spatial 
geometry. Figure 1 shows the last question in the series of items.  The students answered the questions 
by sketching a 3D object (shown to them on a 2D sketch) inside a plastic wire model of the cube and 

 Given Section Question True / False 

 ABCDA’B’C’D’ 
represents a 

cube. 

E is the middle 
points of A’C. 

F is the middle 
point of B’C’. 

1 B’ is a point on AE. True False 

2 ABFE is an isosceles 
trapezoid. The equal 

edges are _____.  

True False 

3 ABFE is a right-
angled trapezoid. The 
right angles are_____. 

True False 

4 AE is the longest edge 
of quadrilateral 

ABFE. 

True False 
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then using mathematical reasoning. Our decision to have the students sketch the drawings, is not only 
for the use of the 3D pen technology, but also to make the process of converting 2D sketches to 3D 
models more explicit and potentially overcome the difficulties associated with this process as 
described by Fujita, et al. (2020). We hypothesize that students struggle to use spatial visualization 
and property based spatial analytic reasoning, but the physical act of sketching in 3D allows the 
student to develop new ways to interact with the 3D model using embodied cognition to overcome 
this issue. After the students have sketched their 3D models and move on to the phase of problem 
solving. After solving each question, the students were asked to express how confident they were in 
their answers. This allowed us to see if students who answered incorrectly were sure or unsure of 
their solutions. The three questions increase in terms of difficulty and familiarize students with  the 
3D model affordances.  

After completing the questions, the students participated in a task-based interview (Goldin, 2000) 
about the questions themselves along with a semi-structured interview about their overall experience 
and feelings. Some of the question in the interview were open ended while some questions asked 
students to ‘rate their feelings’ on a scale from 1-10. In open ended questions, many students do not 
elaborate, but in the direct ‘rating’ questions students felt comfortable answering.  The one-on-one 
interviews allows participants to expand on their experience of answering questions. The entire 
session was audio and video recorded (the students’ face off frame) in order to properly record and 
analysis the students’ actions and arguments and answers.  

Our analysis used triangulation of data from the videos, responses, and field notes of the researcher. 
The data was transferred to detailed transcripts which were coded freely. The student’s internal affects 
are inferred from external factors such as observable behavior in individual children’s mathematical 
problem-solving during task-based interviews (Debellis & Goldin, 2006). The affective states and 
emotions of the students were characterized as suggested by McLeod (1988) magnitude (intensity), 
direction (positive or negative), level of awareness (of their meta-affective processing), duration, and 
level of control. Throughout the coding process, the main themes surfaced, and we were able to 
categorize the various aspects of the students’ experience. 

Findings 
Mathematical intimacy 

Mathematical intimacy is the deep engagement of participants while solving the problems (Debellis, 
& Goldin, 2006). These feelings can be positive or negative  and have varying magnitudes. Most of 
the participants of our study experienced mathematical intimacy while facing the tasks. Namely, the 
students were emotionally connected to the activity and showed (verbally and via behaviors) their 
deep care as the activity advanced from question to question. For instance, when answering the 
questions, a participant C was supposed to have a break for lunch. However, he did not agree to leave 
the room for the break until he finished the question he was working on. Note that C initially answered 
most of the questions incorrectly, but then saying aloud, “I’m not sure I sketched it correctly,” felt he 
had made a mistake and corrected all his answers to the correct answer.  

Each participant had a different range of emotions at all stages of the study, but there are several 
“common scenarios.” Some participants were excited when they drew a 3D model but sad when they 
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could not immediately answer the question, were satisfied when answering the question, and 
described strong positive emotions about the activity during the interview. The other participants 
were frustrated at their inability to find the correct explanation for their answer, making them give up 
and move on to another question. These students still got the correct answers and were able to solve 
the problem. Some participants were restrained when drawing with a 3D pen but expressed extreme 
excitement when asked about their experience during interviews. 

The emotions in the students after finishing the activity were generally positive in fairly high 
magnitude. Most participants felt the activity was generally good, while others felt deep feelings of 
excitement and amusement, directly connecting a 3D pen experience with this feeling. For instance, 
participant O5 claimed it was “a thousand times more fun” than a “traditional math class.” When 
asked directly to rate their experience of 3D sketching while solving a problem on a scale of 1-10 in 
one of the emotionally charged characteristics, participants answered in the following way: 

 
Figure 2: Participant responses for rating their emotions, post activity 

As can be seen in Figure 2, the students felt that the activity and use of the 3D pen was cool, not very 
annoying, not very complex, quite helpful, interesting, and should be done later in the school year. 
While asking students to describe the magnitude of their emotions is not necessarily the most accurate 
measurement, these numbers relate to a general feeling among the students and is corroborated with 
the findings throughout the interview. When solving the problem, the participant A, after 3 minutes 
of searching for the solution, suddenly found the answer and screamed “Oh! I know! The diagonal 
and the side are never equal in a square.” His task-based interview confirmed his deep satisfaction in 
solving the problem: “It was really fun, there was a lot of hands-on work which is nice. It makes you 
think in a way you usually don’t”  

Mathematical integrity. 

Some of the participants of our study demonstrated mathematical integrity related to problem solving 
in general and spatial reasoning in particular. For instance, M, struggled to understand the 
characteristics of the 3D figure and when asked if the trapezoid she had drawn was isosceles (shown 
in Figure 1, question #3, section 2) she said “Based on how it looks I think no [not an isosceles 
trapezoid] I’m trying to think how I can prove why….um, wait I need to understand this” and later 
said “wow this is hard.” Her acknowledgement of lack of understanding, eventually led her to the 
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correct answer. She used this seemingly negative emotion to alter her problem-solving plans and 
change her thinking. In this case, M’s negative feelings were at a low magnitude, and they allowed 
her to change direction without being overcome by anxiety or despair.  

We also observed interesting manifestations of mathematical integrity pertinent to the material and 
visual aspects of 3D sketching activities. One participant explained that the 3D pen’s biggest 
disadvantage is not being “exact” enough, the lines drawn are “not straight” and it’s too bad that they 
did not use a ruler. This may relate to the participants’ values or previous beliefs about mathematics 
in general, but also shows his search for ‘exact’ and ‘true’ mathematical representations, rather than 
ones that are not exact. Another student, A, consistently looked to the given 2D sketch when solving 
the problem instead of using the 3D model (c.f. Palatnik & Abrahamson, 2021 for the similar 
phenomenon). He explained in the interview that “I used the sketch because it’s more exact.”. It seems 
that A feels that in order to align with his own ‘mathematical truth’ all the sketches must be exact. 
Throughout the problem-solving process, he decided to use calculations with Pythagorean theorem, 
despite not needing them to prove his answer. However, for him, it may have been the best way to 
solve the problem. When solving the trapezoid question (shown in Figure 1) section 4, he used 
complex calculations and an auxiliary line drawn with the 3D pen to explain his answer. When trying 
to thoroughly explain the calculations to the researcher he laughed and seemed to realize the excess 
calculations. He took this struggle with explanation ‘lightly’ and was able to solve the problem. 

The participants of the study used their mathematical integrity to solve non-routine problems 
successfully without allowing their affective states of frustration or anxiety overcome their ability to 
make heuristic decisions and changes. This allowed them to describe their experience of using 3D 
pen and a tangible model to solve spatial geometry problems as positive. Students who can feel 
comfortable in a state of ‘unknown’ while searching for the right solution, will be able to solve non-
routine problems (Debellis, & Goldin, 2006).  

Discussion. 
We conducted a study of middle-school students facing the spatial geometry tasks while sketching 
with a 3D pen. We sought to find out how does the experience of 3D sketching influence the students’ 
affective state and their awareness of these states while geometry problem solving. The participants 
demonstrated a high level of mathematic intimacy—connection and strong emotions and mathematic 
integrity, the ability to use the intimacy to their favor. The students showed strong positive emotions 
such as excitement, satisfaction, and awe. The nature of the activity in the study gives students the 
ability to sketch 3D figures by themselves, rotate the figures, and change or add auxiliary lines. The 
two-dimensional diagrams on which the school's spatial geometry curriculum is based represent 
three-dimensional bodies in a distorted form (Widder, et al., 2019). This quality can create a sense of 
alienation in students. However, the affordances given by the 3D sketching develops the students’ 
bond with a problem. This bond gave them general positive feelings about the activity, despite being 
a nonroutine and challenging problem to solve.  

Students in the study showed a high level of mathematic integrity as they were able to recognize their 
own lack of spatial understanding or geometric knowledge which led them to reassess their problem-
solving strategy. Most of the students navigated their emotions of dissatisfaction, lack of confidence, 
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or frustration and were able to successfully solve the problems. In certain cases, we observed a type 
of mathematical integrity specific to 3D representation and sketching. Students are accustomed to 
using 2D sketches of 3D figures, and therefore some of them felt that the 2D sketch was more exact 
or closer to their own ‘mathematic truth.’ Educators and educational designers should be aware that 
the discrepancy between 2D and 3D visualization in spatial geometry tasks can lead to emotional 
tension for students. Some secondary students may have feelings of antagonism towards the novel 
medium of 3D sketches and require mediation before beginning the activity.  

The participants' level of intimacy and integrity shows a high level of comfort and openness 
throughout the activity. Our study used a learning environment based on the principles of embodied 
learning. Abramson and Lindgren (2014) suggest that one may create a deep understanding by 
physical interaction with the environment. The 3D model of the cube allows students to “off load” at 
least some of the cognitive processes (mental rotations, imaginary auxiliary elements) needed to 
complete the task (Wilson, 2012). The use of the 3D pen affords students a physical visualization of 
the conversion process from a 2D sketch to a 3D model. In its "purely mental" form, this process 
proves to be very challenging for students of all ages (Fujita, et al., 2020). Throughout the intervention 
phases, the participants’ affective states can be seen as ‘pathways’ that may guide them to various 
directions and changes in the heuristic decisions (Debellis, & Goldin, 2006). The students in our study 
used their recognition of inadequate justifications as a signal to make a heuristic change (McLeod, 
1988). In many cases this recognition was directly connected to the manipulation of 3D model and in 
particular 3D sketching. 

In this study we found that the students’ affective state significantly influenced the way they solve 
problems. The awareness of the students’ emotions and its effect on how they solve problems can 
allow both students and teachers to mitigate the negative emotions and reroute them to an alternate 
solution. This topic demands further examination with research using a variety of geometry tasks and 
populations. The high school curriculum in Israel is focused on having students successfully pass 
matriculation exams and spatial geometry tasks are part of the exams on all the levels. Thus, drawing 
on our findings on secondary students’ experience while using 3D pen in spatial geometry, we suggest 
that teacher professional development programs consider recent advancements of embodied learning, 
novel medium (as 3D pen) ,and student’s affective states as well as the connection between these 
fields.  
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Introduction
The working group gathered 39 participants from 14 countries, from Asia to South America, with 
26 papers and six posters. The participants were introduced to the three subthemes identified as 
emerging across all submissions. In particular, submissions focused on “Teacher education”, 
“Reasoning about data” and “Statistical and Probabilistic Thinking and Reasoning”. We prepared 
three guiding questions to support in the discussions on the three subthemes. The questions were: 
“Considering these presentations, what contribution do they make to what we now know about 
teacher education/reading the data/statistical and probabilistic reasoning?”, “Considering these 
presentations, what issues (regarding (mis-)conceptions, teaching approaches, resources, 
assessment etc.) do they highlight/raise about teacher education/reading the data/statistical and 
probabilistic reasoning?” and “What comments or thoughts do you have now with regard to teacher 
education/reading the data/statistical and probabilistic reasoning, from a research and practice 
point of view, to advance future research?”. 

Teacher education 

There were ten papers focusing on the subtheme of Teacher Education. They represented a broad 
gamut of research examining the disciplinary foci of statistics, probability and STEM. These 
research studies considered the experiences of students, preservice and practicing teachers across 
various educational settings, including early childhood, primary, secondary and college-level 
learning environments. They also explored a variety of learning opportunities to support the 
development of understanding including the use of innovative technologies, lesson study and a 
range of professional development opportunities.  One of the themes that emerged from the research 
presentations was the need for researchers to engage in more effective communication with 
statistics and probability educators. The field is a fast-evolving landscape and new knowledge and 
understandings about pedagogies are constantly being developed. Our responsibility is to assist 
teachers in identifying these critical and desirable facets of statistics and probability education. This 
communication should focus on:
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(1) The purpose and rationale for teaching statistics education. We need to remind teachers that our 
goal as educators is to engage students in statistical thinking and reasoning, develop statistical 
literacy and learn how to critically read the world and how we represent it statistically.

(2) Identifying the desirable feature of good statistics teaching. This includes teaching statistics 
through projects and investigations, open questions, and the need to address meaningful 
problems. We need to better communicate and provide a justification for how these desirable 
practices relate to the previously expressed purpose and rationale of statistics education

(3) Explaining the limitations of some common approaches to teaching statistics and probability. 
Examples are a focus on technical procedures, calculations of descriptive statistics in isolation 
from developing conceptual understanding and the use of closed questions that don’t promote 
inquiry and a questioning stance.

(4) Providing insights into what it feels like to engage in these desirable pedagogical practices. It is 
important that teachers are provided with rich experiences of engaging in statistical 
investigations so that inert theoretical knowledge becomes meaningful. It is very valuable for 
teachers to have the opportunity to experience the practices of statisticians and experience the 
benefits for the learner of engaging in these practices. 

A second theme that arose was recognition that statistics and probability education continue to 
evolve rapidly. Consequently, we need to continually remain open to and expand our 
conceptualization of the field.  Moving forward the statistics and probability educational research 
community need to better leverage the use of contexts in our practices. This involves moving 
beyond meaningless and trite textbooks problems to a focus on addressing meaningful problem that 
may have personal relevance to learners or engage them in considering real life global problems and 
challenges. Many of these types of problems occur in rich interdisciplinary contexts such as STEM 
and embracing these new contexts provides numerous opportunities for the development and use of 
innovative pedagogies. Some of these opportunities include a move to new technologies and tools 
that allow us to explore large and open-source data sets that represent real problems and provide 
new lenses and ways of visualising data. Considering these responsibilities as researchers to 
embrace and manage change, we identified the emerging challenge for us as statistics and 
probability educators to balance context and at the same time ensure a focus on desirable learning 
outcomes. We communicated this concern and culminated our discussions in the form of a driving 
question for future consideration:  How can we foreground statistics and probability when engaged 
in interdisciplinary collaborations and at the same time not lose sight of the important contexts that 
drive and underpin investigations and inquiry?

Statistical and Probabilistic Thinking and Reasoning 

Eleven papers were presented under the subtheme of Statistical and Probabilistic Thinking and 
Reasoning. Five of those focused on probabilistic reasoning in relation to risk perception, decision 
making under uncertainty, random variation and sample space, covariation tasks in a Bayesian 
situation, and combinatorics. In these studies, the participants were primary, secondary, and 
university students. The other six papers investigated students’ statistical conceptions with regard to 
frequency tables, statistical content in terms of statistical literacy and reading levels of statistical 

Proceedings of CERME12 776



graphs in the mathematics textbook, the exploration of real and rich data with the use of technology 
tools and communication of results. Most of these studies involved secondary school students, but 
one study focused on primary school students. Textbook analysis research included primary and 
secondary grades. 

From the discussions of these presented papers, three main themes emerged: 1) The emphasis on 
statistical reasoning in all phases of statistical investigation cycle and consideration of individual’s 
dispositions like attitude towards statistics led to a broader view of statistical reasoning; 2) The 
research suggested the importance of rich learning experiences in support of critical thinking 
through the use of meaningful context and real data sets, the implementation of project-based 
learning in statistics education, and promoting probabilistic reasoning in data-based decision-
making processes. 3) Fostering informal ideas with regard to statistical and probabilistic reasoning 
with younger learners is still relevant. In addition, some concerns have been expressed about the 
readiness of teachers and students for open-ended tasks suggested by research as well as the limited 
sources and time for implementing statistical projects. Critical discussions on the future of statistics 
and probability education have raised the questions of (1) relying on “better” textbooks versus 
“more” digital tools in school education, (2) communicating appropriate use of probability 
language, especially related to the everyday language (e.g., chance, luck, randomness), in the 
classroom, and (3) increasing the role of researchers in task design, textbook and curriculum 
development related to probability and statistics.

Reasoning about data 

Within the five papers in the section “reasoning about data” four papers have had a specific focus 
on Data Science Education and to related fields like big data and machine learning. We discussed 
several core ideas and fundamental aspects to develop a competent reasoning about data in a 
sustainable way and across all age levels. 

(1) At first we identified that it is important that there is a continuous development of data 
competence (from primary school to adult education) in the sense of a spiral curriculum. 

(2) Second, the appropriate use of digital tools (like Gapminder, CODAP and TinkerPlots) can 
reduce the extraneous load in working processes and make learners able to explore large and 
multivariate data and to explore their data with regard to their specific inquiry questions. One 
crucial point in this respect is the choice of the digital tool. Educational software like TinkerPlots 
do not need a specific programming language (but are limited in some sense with regard to the 
data exploration capabilities). In contrast professional software like R or Python offer a broad 
range and landscape of statistical activities, but are more difficult to learn and learners may 
concentrate on programming and technical issues rather than on the content and the statistical 
exploration. So there is the danger that technical issues distract from the content issues. 

(3) A third core idea to develop a competent reasoning about data, which was raised in the 
discussion, was the cooperation with other disciplines, e.g., the STEM disciplines. 

(4) A fourth point is that the kind of data which is used for teaching and learning issues plays an 
important role: learners should be given real, meaningful data, which is authentic and offers 

Proceedings of CERME12 777



multivariate explorations. In addition to that the role of task design is central. In the discussion it 
was mentioned that teachers are often not comfortable with complex open problems which do 
not show clear steps to solve the task. To prepare teacher to consider using open tasks and 
problems and to make them familiar with these kinds of tasks was identified as a huge task for 
teacher education. 

(5) A last, but fundamental issue with regard to reasoning about data which was mentioned was 
Data Science. Data Science was figured out to be an emerging field in statistics education and 
includes aspects like Big data, Open data, other data collection methods (e.g., Sensors, 
Webscraping). These new concepts, issues and ideas of Data Science led to the re-interpretation 
of fundamental ideas and concepts in statistics education (e.g., PPDAC cycle). 

Looking ahead in the context of Data Science new approaches like Machine Learning in education 
are very new topics and one should use the opportunity to share all the different approaches 
arising and to include all the things we “know” by now (open projects, problem oriented learning, 
using new technology…). Given that four of five paper in the rubric “Reasoning about data” have 
tackled issues with regard to Data Science, we see that that this topic becomes more and more 
important in the statistics education landscape. Looking forward three big issues were identified 
which seem to be very relevant for a future perspective on reasoning about the data. Specifically 
more qualitative, design-based and quantitative research is needed in the following three fields: 
integration of Data Science into the classroom, connection of informal and formal concepts for 
reasoning about data and the connection of data, chance and context.

Organization of the TWG sessions

In the first session, we explained the organization of the Sessions. We were divided into two groups 
for some sessions: TWG5a with Caterina Primi, Sibel Kazak and Orlando Rafael Gonzalez and 
TWG5b with Aisling Leavy and Daniel Frischemeier. Each group used breakout rooms to create 
smaller groups. In this way, also with virtual modality, we tried to promote the famous three Cs of 
CERME Communication, Cooperation and Collaboration. To create a collaborative atmosphere that 
would support the discussions and feedback over the following days, we started with an ice-breaker 
activity “Speed dating” involving all the participants. Participants got to know their TG5 colleagues 
in a friendly context through this activity. We created groups of three randomly and for 3 minutes 
each participant introduced themself shortly before swapping to a new random group. At the end of 
each session for each group, a Padlet has been created to document and to write down the results of 
the discussion. There was a corresponding card in the Padlet for each of the guiding questions. In 
addition to that, there were two further cards for raising other issues, thoughts, etc. regarding the 
papers. All the contributions we collected were significant for a successful and substantial 
concluding discussion on the last day of CERME-12 when we summed up all our insights during 
the CERME-12 week. The last day we had a culminating session with all participants with the aim 
being to engage in an in-depth discussion on subthemes and to share the contributions discussed 
during each session.
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The Teaching Statistics Through Data Investigations (TSDI) professional development course is a 
Massive Open Online Course (MOOC) designed to strengthen participants’ ability to use a statistical 
investigation cycle to teach statistics and help students explore data using technology tools and make 
evidence-based claims. The case of interest for this research were 63 MOOC participants who also 
participated in one of nine professional learning teams (PLT) during 2016-2017. Quantitative data 
was analyzed using statistical tests to measure significance in growth of confidence to teach statistics, 
and qualitative data used to confirm or refute quantitative data-based claims. Results from the study 
indicate that a blended approach to professional development is an effective way to increase statistics 
educators’ confidence to teach statistics. 

Keywords: Statistics education, teacher confidence, MOOC, professional growth. 

Background 
In their seminal paper from a study of how statisticians think and work, Wild and Pfannkuch (1999) 
claimed that doing statistics involves a process of data investigations and specific ways of thinking 
about data. Teachers need to be knowledgeable about this method to enhance students’ learning 
(Franklin et al., 2007). The GAISE K-12 report represented the work of Wild, Pfannkuch, and others 
to organize teaching statistics as phases in a statistical investigative cycle: posing a question, 
collecting data, analyzing data, and interpreting results. 
In 2015, Hollylynne Lee and colleagues launched the Teaching Statistics through Data Investigations 
(TSDI) massive open online course (MOOC) to prepare middle school, high school, and 
postsecondary teachers in pedagogy for teaching statistics (see http://go.ncsu.edu/tsdi). The TSDI 
MOOC was part of a larger effort at the Friday Institute for Educational Innovation at North Carolina 
State University to create and implement MOOCs designed specifically for educators, to use design 
principles based on effective professional development and are specifically targeted at better 
preparing educators for the current challenges in K-12 education (Kleiman et al., 2013). 
Lee and Tran (2015) proposed the Students’ Approaches to Statistical Investigations (SASI) 
framework to help statistics teachers support students. The SASI framework builds on the GAISE K- 
12 framework (Franklin et al., 2007) and is grounded within four phases of statistical investigation 
(pose a question, collect data, analyze data, interpret results). The TSDI course introduced 
participants to this framework and built opportunities for participants to learn how to apply these 
ideas in task design, engage in data investigations themselves, and analyze students’ work. It was 
designed to strengthen participants’ skills and prepare them to use a statistical investigation cycle to 
teach statistics and help students explore data to make evidence based claims (see 
http://go.ncsu.edu/tsdi). There was a two-step registration process; first registration was for the 
platform that offers the course along with other MOOCs, and the second registration was specifically 
for the course. There were five units in the TSDI MOOC course. Unit 1 was titled Considering the 
Possibilities of Teaching Statistics with Data and focused on what statistics is and why it is taught in 
schools. Unit 2 was titled Engaging in Statistics, and it offered a careful look at what it means to 
engage in statistics. Unit 3 focused on Introducing Levels of Statistical Sophistication and presented 
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a framework for supporting growth in students’ statistical sophistication and digged deeper into 
statistical habits of mind. Unit 4 was titled Delving Deeper into the Investigation Cycle, and it 
provided teaching and learning materials to assist participants in understanding the different 
components of a statistical investigation, including several resources that can be used directly with 
students. Finally, Unit 5 engaged participants in Putting It All Together to consider how to change 
teaching practices that can really engage students in doing statistics with real data. Each unit was 
similarly structured by containing the following sections: Hear from your instructor; Engage with 
essentials; Learn from our expert panel; Dive into data; Investigate: assessment items; Discuss with 
your colleagues; Extend your learning; Demonstrate your learning; and Unit feedback survey. The 
course included instructor videos explaining the units, expert panel videos, videos of real students 
and teachers engaging in statistics work, animations depicting student work in statistics, brief 
readings, excerpted readings from articles or books, various data analysis tools (open source), and 
lesson plans, tasks, online apps, and videos that can be used in the classroom. 
With a small grant funded by the American Statistical Association, Hollylynne Lee aimed to support 
local changes in statistics teaching and collaborative learning among teachers by supporting 
professional learning teams (PLT) among TSDI MOOC-Ed participants during fall 2016 and spring 
2017. In those small teams, groups of participants were supposed to meet several times (online and if 
possible, face-to-face) and share their learning and experiences in the course, as well as their statistics 
teaching practices. The plan was to pursue a blended approach to professional development among 
teachers of statistics. 
There is a common and strong issue with teachers’ confidence to teach statistics (Estrada et al., 2011; 
Lovett, 2016; Stohl, 2005). Teachers mostly escape from teaching statistics for various reasons. One 
of those reasons was the lack of their knowledge about different strategies in teaching statistics (Hill 
et al., 2005). Thus, given the description of MOOC and PLT above, the research question guided this 
study is: In what ways does participation in a MOOC and in a PLT focused on teaching statistics 
impact teachers’ confidence to teach statistics? 

Theoretical framework 
Clarke and Hollingsworth (2002) explains teachers’ professional development and recommends key 
considerations for in-service and pre-service teacher training programs. The authors describe six 
perspectives about teacher change: (1) changes as training; (2) change as adaptation; (3) change as 
personal development; (4) change as local reform; (5) change as systemic restructuring; and (6) 
change as growth or learning. The authors state that those perspectives are not mutually exclusive, 
and they are interrelated. However, most professional developments align with the change as growth 
or learning perspective. In this perspective, change is identified with learning, and it is regarded as a 
natural and expected component of the professional activity of teachers and schools (Avineri, 2016) 
and, historically, “teacher change has been directly linked with planned professional development 
activities” (Clarke & Hollingsworth, 2002, p. 948). A model to explain the process of teacher change 
was developed by an international group of researchers (Teacher Professional Growth Consortium, 
1994), as the Interconnected Model of Teacher Professional Growth. The Interconnected Model of 
Teacher Professional Growth suggests that professional growth (change) occurs through the 
mediating processes of reflection and enactment in four domains that encompass the teacher. These 
domains are (1) the personal domain (teachers’ knowledge, beliefs, and attitudes); (2) the domain of 
process (teachers’ professional experimentation); (3) the domain of consequence (salient outcomes 
of professional development); and, (4) the external domain (sources of information, stimulus, and 
support). The Interconnected Model of Professional Growth is updated to frame this study and used 
as the model for explaining teachers’ change or professional growth in this study (Figure 1). 
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Figure 1: The interconnected growth model for blended PDs of MOOC and PLT 

According to Clarke and Hollingsworth (2002), there are two different mechanisms (or two mediating 
processes) to account for change or professional growth effects: enactment and reflection. Enactment 
is the mechanism by which a teacher puts a new idea, belief, or a practice into action. Reflection, on 
the other hand, is defined as “active, persistent, and careful consideration” (directly quoted in [Clarke 
and Hollingsworth, 2002, p. 954], from [Dewey, 1910, p. 6]). In order to answer the research question 
of this study (In what ways does participation in a MOOC and in a PLT focused on teaching statistics 
impact teachers’ confidence to teach statistics?) the following construct is provided as guiding 
hypotheses. 

External domain >> Personal domain: We hypothesize that participants’ engagements in 
MOOC and PLT influences their knowledge of and confidence in teaching statistics. For 
example, a teacher explores a conceptual misconception discussed in a MOOC forum 
and realizes that he/she also has that misconception and tries to overcome it. (Reflection) 

Methods 
The largest group in this study is all TSDI MOOC participants (804 enrolled participants in total) for 
fall 2016 and spring 2017. The case of interest for this research are the 63 TSDI MOOC participants 
that also joined one of nine PLTs. There were four PLTs formed during fall 2016, and five PLTs 
formed during spring 2017. The study focuses on understanding the experiences of members of the 
nine PLTs situated within the larger MOOC community to find out about the change in their 
confidence about teaching statistics. 
The Self-Efficacy for Teaching Statistics Survey (SETS; Harrell-Williams et al., 2014; Harrell- 
Williams et al., 2017) is designed to evaluate participants’ confidence about teaching various aspects 
of statistics (e.g., estimate a population mean or proportion using data from survey; calculate the 
correlation coefficient between two variables, using technology; interpret measures of association). 
According to Lovett (2016), the SETS survey aligns with Bandura’s (2006) construct of self-efficacy 
measuring expectations, and it measures teachers’ efficacy for tasks and task levels that align with 
the GAISE framework. Those levels (Levels A, B, and C) are considered to have increasing statistical 
sophistication. The levels are aligned to some specific statistical content. Level A represents topics 
for novice statistics learners; Level B represents more complex content; and Level C represents more 
advanced content (Franklin et al., 2007). The SETS instrument consists of 44 items which are 
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categorized as Level A, Level B, and Level C items. 11 items in the SETS instrument correspond to 
GAISE Level A (confidence to teach basic statistical content); 15 items correspond to GAISE Level 
B (confidence to teach more complex content); and 18 items correspond to GAISE Level C 
(confidence to teach more advanced statistical content). The SETS instrument has been validated as 
an appropriate instrument to measure confidence, on a scale from 1-6, for each of the 44 items. For 
each item in the SETS survey, participants rate their confidence in teaching the skills necessary to 
successfully complete the task on the following scale: 1-not at all confident; 2-only a little confident; 
3-somewhat confident; 4-confident; 5-very confident; 6-completely confident. Content validity is 
established using experts’ (college-level statistics educators, including teacher educators) judgement, 
focus groups (preservice and in-service teachers), and several pilot studies. Structural, substantive, 
and content validity evidence for the scores from the SETS instrument were outlined, and 
confirmatory factor analysis results provided evidence for treating the SETS as a two-dimensional 
(for SETS-Middle School, Harrell-Williams et al., 2014), and three-dimensional (for SETS-High 
School, Harrell-Williams et al., 2017) instrument aligned with GAISE Pre-K-12 framework. Within 
the TSDI MOOC, the SETS surveys were given to the participants twice. Participants could take the 
survey while they were in Unit 1 of the course (pre-SETS), and the survey was again available in 
Unit 5 (post-SETS). There was one open-ended question on the survey for participants to elaborate 
on factors that affect their confidence. In Unit 5, they were specifically asked to discuss any changes 
in their confidence in discussion forums. Thus, the SETS survey results can help describe the growth 
in participants’ confidence about teaching statistics. The quantitative data for this research included 
SETS survey results. The statistical method for analyzing the SETS survey results is to examine 
scores for their total confidence pre and post, as well as gain scores for each level (A, B, C) of 
statistical sophistication of topics. The PLT participants who took the post-test were identified and 
pre-test takers were filtered to be in the same group. The SETS questionnaire has 44 Likert-scale 
prompts; these prompts are separated into three blocks, and each block represents different levels of 
sophistication (A, B, or C). The analysis is conducted for every sub-scaled score of these different 
levels and for the total. After matching pre- and post-surveys, 28 PLT participants took both the pre- 
and post-SETS. A dependent samples t-test was used to determine whether there was an increase in 
participants’ gain scores in confidence to teach statistics after their participation in the course and 
PLT. The increase in participants’ confidence to teach statistics is examined by analyzing SETS 
results and other qualitative data. 

Results 
Since a paired t-test is a parametric test with an assumption of normality, the distribution of gain 
scores for the total confidence score (postTotalSETS-preTotalSETS) should be checked for 
normality. Using Wessa's (2017) online tool, a Normal QQ Plot was created with the total SETS gain 
scores, which indicated the distribution was somewhat normal (See Figure 2). The assumption of 
normality was then assessed via Kolmogorov-Smirnov (K-S) test, and the results suggested that 
normality was a reasonable assumption for our data set. For example, the K-S test for total SETS gain 
scores had a test statistic value of .1546. Larger values of the K-S test statistic indicate the distribution 
does not follow a normal distribution. Since .1546 < .2499 (K-S test critical value for α=.05), the data 
is a reasonably good fit with the normal distribution, and a paired t-test can be used. 
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Figure 2: Title of the figure, no dot at the end 

The question being asked for this analysis is: Is there sufficient evidence to suggest that PLT and 
MOOC participants’ confidence in teaching statistics was increased after they took the TSDI MOOC 
and they participated in PLT? In other words, is there sufficient evidence to suggest that the mean 
score is greater for the post-SETS than the pre-SETS? 
Ho: There is no difference between post and pre-SETS test scores. Md = M2 - M1= 0 
Ha: M2 > M1 

Table 1 represents the SETS survey data for 28 PLT participants that completed both the pre- and 
post-SETS instrument. As seen in the table, in all three levels (A, B and C), it is observed that by 
participating in the MOOC and the PLT, participants SETS scores increased. Thus, we reject the null 
hypothesis and conclude that there is sufficient evidence to say that participants' confidence to teach 
statistics was increased by this phenomenon (participating in both MOOC and PLT). As a conclusion 
of looking to quantitative data of SETS results, we could claim that after participating in both MOOC 
and PLT PD projects, the PLT participants’ confidence to teach statistics increased. 

 

 Pre-SETS 
Mean 

Post-SETS 
Mean 

Difference 
Mean 

Standard 
Deviation 

t-test 

LevelA Scaleda 4.19 4.82 .63 .90 3.71*** 

Level B Scaleda 

 
3.87 

 
4.63 

 
.75 

 
1.06 

 
3.76*** 

Level C Scaleda 

 
3.83 

 
4.48 

 
.65 

 
1.05 

 
3.30*** 

 
Total Scaleda 

 
3.93 

 
4.62 

 
.68 

 
.96 

 
3.77* 

N = 28. 
a Scaled to 1 - 6. 
* p  <  .05,  ** p  <  .01, *** p  < .001. 

 
Table 1: PLT participants’ SETS results 
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At the end of the pre-SETS survey, participants answered a similar question with minor differences. 
The open-ended question in pre-SETS was as follows: “Consider some of the topics that you were 
most or least confident teaching. What may be some reasons that teachers might be more or less 
confident in teaching those topics?” 

In the end post-SETS survey, participants were expected to answer the following open-ended 
question: “Consider some of the topics that you were most or least confident teaching. Did anything 
we did in this MOOC help you gain confidence in those areas? For the areas you are still less 
confident with, what may help build your confidence?” 

In the pre-SETS question, the goal was to make participants reflect on their own explanations of 
reasons for their least and most confident topics in teaching statistics; in the post-SETS question, we 
aimed to have them re-visit those topics and reflect on their own perspectives about how their 
participation affected their confidences to teach them. 
Our desire was to figure out whether there was a change in their reflection about their confidence to 
teach statistics after participating in the MOOC and the PLT. Table 2 provides a sample of four PLT 
members’ responses to the open-ended questions. 

 

Term/Years of 
Experience 

Pre-SETS Post-SETS 

Fall / 9  
 
 
I've only rarely taught about 
fitting data to models. 

The concept of sample vs. population and the 
ideas around variability are two areas that I 
find are greatly improved using some of the 
real-time examples and simulations from this 
MOOC. 

Fall / 1 I feel like I do not have enough 
practice or knowledge about 
these topics to be able to teach 
them to my students. 

 
I am more confident in creating experiments 
and gathering data. I feel like I could have used 
more help in analyzing the data. 

Spring / 5  
 
 
Teachers might be more or less 
confident in teaching certain 
topics due to experience and 
education background. 

Being able to talk with others and play with 
data helped me to gain confidence in those 
areas. The whole idea of exploration really 
helped me to gain confidence. I think having 
resources and activities with the activities I am 
less confident in would help me to gain 
confidence. 

Spring / 27 As math teachers, we probably 
feel more confident with topics 
that involve calculations and 
less confident about topics that 
involve things that can limit the 
conclusions of those 
calculations, such as lurking 
variables and weaknesses in the 
data collection techniques. 

 
 
 
 
I gained confidence in the technology end of 
things by reviewing some of the resources 
(that are bookmarked, but I do not recall their 
names off of the top of my head) presented in 
this course. 

Table 2: SETS open-ended response examples 

Proceedings of CERME12 784



As seen in the table above, these four participants reflected on the change in their confidence in their 
own words. For example, a fall participant with one year of experience answered the question saying 
that he or she did not have enough experience or knowledge; on the other hand, the post-survey 
response of this participant included a detailed description of the impact stating that he or she had 
gained confidence in creating experiments and collecting data. The teacher directly reflects on the 
change in his or her confidence in conducting a statistics lesson using SASI framework. 
The participant on the fourth row stated that math teachers used to feel more confident in more 
‘mathematical’ subjects, and statistics is not one of those. In the post-survey, the participant said that 
she or he gained confidence in using technological tools. As a teacher with 27 years of experience, 
that participant gives a good sense about the strong connection between confidence to teach statistics 
and being able to use technology for teaching. 
There were 15 participants (out of 28 who took both pre- and post-SETS survey) who gave us 
evidence of self-reflection on the positive change in their confidence to teach statistics. Looking at 
both participants’ SETS quantitative results and open-ended responses, results showed that the 
phenomenon (participating in MOOC and PLT) helped them to gain confidence in teaching statistics. 
A response given to a question in the end-of-course survey (“What was the most valuable aspect of 
this MOOC-Ed in supporting your personal or professional learning goals?”) also showed evidence 
supporting increased confidence after participating in MOOC and PLT. 
“This course gave me some great lesson plan ideas. It also made me more confident in teaching 
statistics where before I felt like I knew nothing about teaching statistics. After this course, I feel like 
I would teach it to my students.” (PLT member, 8 years of experience) 

Conclusion 
Participating in the MOOC and PLT increased participants’ confidence to teach statistics. Most of 
the teachers went from a “I know nothing about teaching statistics,” or “I am clueless about statistics 
myself, how could I teach it?” level, to an “I can do it!” level. Attending the TSDI MOOC and PLT, 
the participants reflected that their self-confidence to teach statistics increased. This claim is 
supported by both SETS quantitative results and open-ended responses in SETS. The results of the 
study are valuable, because as stated before, there is a common and strong issue with teachers’ 
confidence to teach statistics (Estrada et al., 2011; Lovett, 2016; Stohl, 2005). 
The findings can be used to help statistics education researchers, as well as others in any educational 
discipline, to design more MOOC and PLT professional development projects to contribute to 
teachers’ professional growth. The findings also can be used to create a common drive to change 
problematic aspects of statistics in curriculum. 
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Introduction 
Covariational reasoning includes recognizing patterns and interpreting the relationship in bivariate 
data (Garfield & Ben-Zvi, 2008). Although it is important to focus on enhancing young learners 
statistical thinking in various facets (Ben-Zvi, 2018), most curricula address this topic only in later 
years of statistics education. With this poster, we want to present the idea of using qualitative data 
such as photos from the Dollarstreet to address young learners covariational reasoning. 

Theoretical framework 
Many researchers recognize the value of a real context meaningful for students (e.g., Garfield & Ben-
Zvi, 2008) and emphasize the importance of teaching and learning of statistics for democracy and 
citizen education (Nicholson et al., 2018). Recommendations to regard students as active learners 
when constructing their statistical knowledge often imply the use of technology and tools to explore 
real datasets (Garfield & Ben-Zvi, 2008). The databases and visualization tools provided by 
Gapminder (Rosling et al., 2005) including the photo database Dollarstreet (Rosling, 2015) give many 
opportunities to explore real datasets in statistics education at school level. In that direction, Andre et 
al. (2020) investigated how the context of sustainable development can enrich pupils’ statistics 
education. Anyway, many authors also found difficulties in addressing young learners covariational 
reasoning, and recommend using alternatives to scatterplots (Konold, 2002).  

Methods and Implementation 
Following design-based research approaches (Bakker, 2018), in the summer term of 2021, we 
designed a seminar for six primary school teacher students focusing on important issues for Education 
for Sustainable Development and statistics education (Andre et al., 2021). The major task for the 
students in this seminar was to design and implement a learning trajectory for pupils of grade 1. 
Besides addressing other statistical ideas, it was mandatory for students to include two tasks as shown 
in figure 1 where pupils should relate the quality of sanitation facilities to various income levels and 
interpret a scatterplot in the same context. The implementation took place in a primary school class 
with 18 children. The students had to write a report and transcribed the interviews with the children 
when solving the mandatory tasks. We analyzed these interviews and the students’ reports in several 
dimensions. This poster focusses on pupils covariational reasoning with qualitative data. 
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Figure 1: Left: Drag-and-drop task for qualitative covariational reasoning; Right: Gapminder’s 
scatterplot showing income data and data of sanitation standards (Andre et al., 2021) 

Results 
While struggling to interpret the scatterplot, all children managed to relate qualitative data from 
photos to quantitative data, i.e., the income level. In our analysis we found several opportunities to 
further address supplementary aspects such as causality and variance (Andre et al., 2021).  
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Introduction 
Statistical graphs are essential for communicating information in many different areas, and appear 
frequently in the media, and for this reason a minimal statistical literacy is needed for the citizen to 
be able to interpret these graphs critically (Weiland, 2017). This need is still more urgent in the current 
pandemic situation, where citizens need to understand statistical information mainly distributed in 
graphs to collaborate with political and health authorities (Batanero et al., 2021). Moreover, graphical 
competence is part of statistical literacy defined by Gal (2002) as the ability to interpret and critically 
evaluate statistical information, data-related arguments, or stochastic phenomena, which they may 
encounter in diverse contexts, joined to the ability to discuss or communicate reactions to such 
statistical information, when required (pp. 2-3). 

Consequently, graphical competence is a main goal in school curricula in many countries. This is the 
case of the compulsory education curricula in Costa Rica (MEP, 2012) that, for primary education 
recommend that children are requested to collect and record data to answer statistical questions about 
themselves and their environment, using bar and line graphs, tables and pictograms, as well as to read 
and interpret these representations since the 1st grade. Further study of graphs is accomplished in 
secondary education, where histograms, frequency polygons and pie charts are also introduced with 
the aim of improving students’ graphical abilities. These goals can only be achieved with a correct 
teaching of the topic and the use of adequate textbooks. 

Research analysing different content in textbooks is increasing today, since these books are a main 
didactical tool for teachers and students and constitute an intermediate stage between the official 
curricular guidelines and the teaching implemented in the classroom (Fan et al., 2013). Consequently, 
the aim of this research was to analyse the activities where statistical graphs are used in the Costa 
Rica textbooks and, more specifically the reading levels required from the students to complete these 
activities. 

Below we describe the foundations, method and results of the research and we finish with some 
considerations to improve the teaching of statistical graphs in compulsory education. 
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Foundations 
The work is supported, in the first place, by theoretical models on difficulty levels in reading graphs, 
and secondly on some research that have previously studied statistical graphs in primary school 
textbooks which is used to compare with our results. 

Reading Levels of Graphs 

A graph is a complex semiotic object, due to the different components that need to be comprehended 
in order to fully understand the information displayed (title, scales, types and amount of data and 
graphical elements used to represent the data). The graphic builder encodes the information 
represented by means of these elements and the reader of the graphic should carry out a series of 
interpretative processes for each of these components and for the graph as a whole as well as of the 
relationship of the graph with the information context (Arteaga & Batanero, 2011; Sharma, 2006; 
Spence, 1991). 

Consequently, the interpretation of a graph is more or less complex, depending on the information 
that needs to be extracted from the graph and for this reason, several authors have defined levels in 
the reading of graphs. These levels reflect the fact that on the same statistical graph, we can raise 
questions of different levels of difficulty, which can refer to the title and scales, the variables and 
values being represented, the interpolation or extrapolation of values, and even to the detection of 
biases in the graph or in statements based on the graph. In this research, we relied on those defined 
by Curcio and his collaborators (Friel et al., 2001; Shaughnessy, et al. 1996; Curcio, 1989): 

L1. Reading the data, where only the literal reading of a graph element is requested, for example, 
reading the graph title, the scale labels or the frequency for a given value. 

L2. Reading between the data. Besides the literal reading of the graph, in this level the child has to 
compare various data represented in the graph or complete some arithmetical calculations with 
the data. 

L3. Reading beyond the data. This level involves a generalization of the values in the graph, for 
example, interpolating or extrapolating the information displayed. 

L4. Reading behind the data. A person attains this level when he or she is able to make a critical 
valuation of the graph, of the way it has been constructed or can discuss a statement related to 
the graph content. 

Previous research 

We also draw on other research that analyses statistical graphics in primary school textbooks, most 
of which only dealt with primary education textbooks. Díaz-Levicoy in various works analyses 
statistical graphs in primary school textbooks (primary education Chilean and Spanish textbooks in 
Díaz-Levicoy et al. (2016), grades 4 to 6, Argentinean textbooks in Díaz-Levicoy et al. (2017), 
Peruvian textbooks in Díaz-Levicoy et al. (2018)), with very similar conclusions. The authors study 
the type of graph proposed, the activity requested of the child, and the reading levels required in the 
activity. They conclude that bar graphs are most frequently used, with little weight given to other 
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types of graphs in the curriculum. The most frequent activity in Spanish textbooks is reading graphs, 
while calculating was predominant in the Chilean books. 

The most frequent reading levels in Curcio's (1989) classification were L1 followed by L2 in Chile 
and Spain; L2 being the most common level in Argentina. Level L3 appears from 4th grade in Spain 
and 3rd grade in Chile, and is not proposed in Argentina textbooks. As regards L4 only grades 5 and 
6 in Spain and grades 4 and 6 in Argentina consider this level. The tendency was different in the 
Peruvian textbooks, were half activities in grade 1 correspond to level L1 and the remaining to L2, 
which predominates in all the other grades with very scarce activities in levels L3 or L4, 

A direct precursor to this work is that by Jiménez-Castro et al. (2020), who analysed statistical graphs 
and reading levels in the activities related to them in two series of primary school textbooks (grades 
1 to 6 in Costa Rica). Bar and line diagrams (single and multiple), pie charts, dot plots and pictograms 
were observed, with a large predominance of bar charts. Generally, the reading level required in the 
activities was L2 level. 

All the above research deals with primary education textbooks and only that by Jiménez-Castro et al. 
(2020) was carried out in Costa Rica. This paper expands research by Jiménez Castro et al. (2020) 
with the analysis of a new editorial (6 new books) and expand the study with an investigation of three 
complete editorials for secondary education (grades 7 to 9, additional 18 textbooks) with particular 
focus on the reading levels requires in the activities proposed for statistical graphs in these textbooks. 
Below we describe the method, present the analysis categories and discuss the results. We conclude 
with some implications for the teaching of statistical graphs. 

Method 
This is a qualitative research, based on content analysis, which was carried out through the following 
phases (Porta & Silva, 2003): 

- Fixing the object of analysis: In each textbook, the activities that incorporate statistical graphs 
were studied. 

- Determining the categories or coding rules: The categories were the reading levels identified 
a priori based on previous research (Friel et al., 2001; Shaughnessy, et al., 1996; Curcio, 1989) 

- Checking the reliability of the coding-categorisation system: the coding was reviewed several 
times by one author and discussed with other colleagues until an agreement on the coding was 
reached. These categories are presented in section called “Analysis categories”. 

The information of the variable “Reading level” was coded, following an inductive and cyclical 
process; a detailed reading of each activity was carried out, the data obtained were interpreted and 
reviewed to make sense of the analysis, the data were related to the defined categories. This process 
was carried out of one of the authors of the paper as part as his doctoral thesis, consulted with the 
director of the doctoral thesis and with other colleagues, to give greater validity to the study. 

Sample of textbooks and activities 

The sample includes all the activities related to statistical graphs (activities where statistical graphs 
appear or activities that propose to build a statistical graph) in three books series of primary education 
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(grades 1 to 6, 18 textbooks) and in another three series of textbooks directed to secondary education 
(grades 7 to 9, 18 additional textbooks). All the editorials were selected because they are most widely 
used in Costa Rica and are listed in the Appendix. In total. the number of activities analysed were 
579 activities in primary education and 363 in secondary education. 

Analysis categories 

We used the reading level required, using the classification by Curcio (1987), and Friel et al. (2001). 
Below we include examples of activities classified in each of these levels: 

L1. Reading the data: At this level the activity concentrates on answering questions about the 
frequency of a value for a variable (or the value to which a frequency corresponds), without going so 
far as to make other connections or perform other calculations with the data. An example is shown in 
Figure 1, where children should complete a bar graph to represent the frequency of a series of objects 
(previously classified) shown in an image. 

  

Figure 1. Example of reading level L1 “reading the data” (Source S1, p. 298) 

L2. Reading between the data: this level applies when comparisons or operations must be made with 
the data obtained from a graph in order to solve the activity. It involves identifying relationships 
between the data, as in questions b of the activity presented in Figure 2, where, after reading the data, 
operations have to be performed on the data. Question f also corresponds to this reading level, because 
depending on the year of birth, the student must locate such data on the graph, and if the year is not 
a multiple of 10, he/she needs to locate it on the X-axis in order to identify the life expectancy 
corresponding to that year. 

L3. Reading beyond the data: This reading level is achieved in activities where we ask to obtain data 
not explicitly represented within the graph, which includes interpolating or extrapolating a piece of 
data on the graph. We classify questions a and c in Figure 2 at this level as well, as the trend is not 
explicitly represented but must be inferred from reading the values on the graph and comparing along 
the time axis. 

L4. Reading behind the data. The solution of activities qualified at this level require from the solver 
a critical appraisal of the method of data collection, validity, or reliability or to justify the conclusions 
made. Although this level of reading is not common in textbooks, we have encountered some 
examples in activities such as the one presented in question d in Figure 2, where the student is asked 
to think about the reasons explaining the increase in life expectancy along time. 
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Figure 2: Task reproduced from AL5 p. 166

Results and discussion
In Table 1 we present the percentage of activities that were classified in each of the reading levels 
defined by Curcio and his collaborators (Friel et al., 2001; Shaughnessy, et al., 1996; Curcio, 1989) 
by school grade. We can observe the predominance of level L1 (reading the data), where only a literal 
reading of the data displayed in the graph is required from the students in the first three grades, in 
particular in the first grade, where the children are only starting to be introduced to some statistical 
ideas. This level diminishes in relevance since grade 4 in favour of upper reading levels.

Table 1: Percentage of tasks by reading level and school grade

Primary education Secondary education
Reading 
levels

1st 
(n=50)

2nd 
(n=108)

3rd 
(n=97)

4th
(n=109)

5th 
(n=93)

6th
(n=122)

7th
(n=176)

8th
(n=82)

9th
(n=105)

L1 68.0 42.6 44.3 24.8 22.6 32.8 21.0 30.5 29.5
L2 30.0 43.5 40.2 52.3 52.7 50.8 59.1 52.4 46.7
L3 2.0 7.4 6.2 16.5 16.1 7.4 13.6 15.9 10.5
L4 6.5 9.3 6.4 8.6 9.0 6.3 1.2 13.3

The reading level L2 (reading between the data, where students are also requested to perform some 
computations or comparisons with the data in the graph) was very frequent along all the school grades, 
including secondary education. It was the most frequent level in grades 4 to 9 because in these levels’ 
graphs are also used to facilitate the computation of central tendency and spread measures and for 
this reason, the students are requested not only to read the graph but to compute mean, mode, range 
or other statistics with the data represented in the graph. Interpolation and extrapolation activities 
(reading level L3), as well as critical reading activities (Level L4) appear with low frequency in all 
the grades, although they are a bit more frequent in secondary education.

These results contrasts with what is reflected in the study described by Díaz-Levicoy et al. (2016), 
where Spanish and Chilean books remain only at reading level L1 in the first two grades and is still

a. Which tendency shows the life expectancy? Does it increase or decrease? Justify
b. How many years of difference there is between 1970 and currently?
c. Is the tendency similar for both genres? Explain
d. Suggest two reasons why the life expectancy follows this tendency
e. Comment two consequences of this tendency for our society
f. Taking into account the year you were born. Which is your life expectancy?
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the most frequent level along all the primary education. In Costa Rica, reading levels 3 and 4 appear 
significantly from the second year onwards and increase in frequency until the sixth year. In the 
Spanish context, the maximum reading level only appeared in the fifth grade, whereas in the Chilean 
context, it is incorporated in a sustained manner from the fourth grade onwards, coinciding with the 
recommendations given in NCTM (2000) to promote the making of inferences and the obtaining of 
predictions from the data analysed. In Argentina, L3 is not taken into account and L4 only in grades 
4 and 6. So, the distribution of reading levels in primary education in our research is more similar to 
that in the Peruvian textbooks, were half activities in grade 1 correspond to level L1 and the remaining 
to L2, which predominates in all the other grades with very scarce activities in levels L3 or L4. 

In Table 2 we analyse the reading levels of the activities analysed by editorial, and we can observe 
some differences. As regards primary education, AL present more than half the activities in the L2 
reading between data level, which suggest a stronger emphasis in computation in this publisher. EV 
is the editorial with less activities in this level, while it put more weight in L1 reading the data, in 
order to reinforce in the children, the learning of the different graphs before going further in more 
complicate activities. All the three editors include a small percentage of L3 and L4 activities which 
are those promoting statistical reasoning in dealing with predicting variables not in the graph and 
reinforcing the critical reading of the information. 

Table 2: Activities with different reading levels in the various editorials 
 Primary education Secondary education 

Reading levels AL 
(n=147) 

EV 
(n=181) 

SA 
(n=251) 

PI 
(n=126) 

PO 
(n=92) 

SA 
(n=145) 

L1 27.2 47.0 34.3 31.7 33.7 15.2 
L2 54.4 40.3 46.2 58.7 41.3 57.9 
L3 8.8 5.5 13.5 7.1 13.0 18.6 
L4 9.5 7.2 6.0 2.4 12.0 8.3 

As regards secondary education, SA is the editor with less L1 reading the data activities, which are 
less important at these teaching levels, given the age of students. PO is the publisher with less L2 
activities, implying a smaller emphasis in computation. This is the editorial with a more balanced 
distribution of reading levels in the activities, since it includes more than a 10% of activities in each 
of the levels L3 and L4. 

Conclusions 
In this paper we present the analysis of the reading levels collaborators (according to the model by 
(Friel et al., 2001; Shaughnessy, et al., 1996; Curcio, 1989) required to complete the activities linked 
to statistical graphs contained in the most widely used textbooks in Costa Rica, at primary and 
secondary school levels. 

The study reveals a predominance of the first two levels “reading the data” where only a direct reading 
of the information in the graph is required and “reading between the data”, where only comparisons 
or computation with that information is needed. Specifically, this second level is predominant in most 
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grades even at secondary education level, which suggest an excessive emphasis in developing the 
computational abilities, instead of focusing in fostering their statistical literacy or reasoning. 

We particularly point to the scarceness of level L4 “reading behind the data” activities, which will be 
particularly relevant in the education of secondary school students. These activities serve to develop 
in the student their ability to reason with statistical information, to discuss arguments based in 
statistics information and to assess the reliability of such information and in this way, help improving 
the students’ statistical literacy. 

Also note that the L3 level in secondary school textbooks is not much considered, this type of level 
requires the student to be able to perform interpolations and extrapolations of the data presented in a 
graph, which is considered an important part of graph comprehension (Friel et al., 2001) 

We suggest that especially in secondary education, it would be important to incorporate a greater 
number of L3 and L4 activities, which are closely related to the skills necessary to develop good 
statistical literacy levels (Gal, 2002) 

As we pointed out in the previous sections, there are scarce research examining statistical graphs in 
secondary school education textbooks, and therefore this research should be continued with the 
analysis of other variables and textbooks in other countries. However, we hope our research make 
teachers conscious of the importance of taking into account all the possible reading levels when 
working with statistical graphs at school and help them organise teaching to take into account this 
didactical variable. 
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Appendix: List of editorials used in the analysis 

Primary education textbooks 
Serie 1: Asociación Libros para Todos (AL). Textbooks directed to grades 1 to 6 published in 2017. 
Serie 2: Editorial Santillana Serie Casa del Saber (SA). Textbooks directed to grades 1 to 6 published 

in 2016. 
Serie 3: Editorial Eduvisión. Visión Matemática (EV). Textbooks directed to grades 1 to 6 published 

in 2014. 
Secondary education textbooks 
Serie 1: Editorial Publicaciones Innovadoras en Matemáticas (PI). Textbooks directed to grades 7 to 

9 published in 2017. 
Serie 2: Editorial Publicaciones Porras y Gamboa (PO). Textbooks directed to grades 7 to 9 

published in 2017. 
Serie 3: Editorial Santillana (SA). Textbooks directed to grades 7 to 9 published in 2017. 
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Due to their interdisciplinary nature, data science methods, such as machine learning, can be taught 
in many different ways. This paper presents an approach that takes advantage of the close content 
connection to statistics and of the mathematical structure of data science methods to develop an 
introductory course for engineering students. Following the research methodology of design 
research, we discuss the theoretical motivation and methodological implementation of the design 
principles for the course and show first insights into empirical results from the design cycles. 

Keywords: Data Science, Machine Learning, Design Research, SRLE. 

Introduction 
A large proportion of the methods attributed to data science are (computer-aided) applications of 
statistics, making data science an essential topic in the statistics education research community 
(Engel, 2017; Gould, 2017). The possibility of applying data science methods in almost all areas of 
industry and research has created a need for subject-specific concepts for teaching the methods over 
the past years (Engel, 2017; Grillenberg & Romeike, 2018). 

Due to the interdisciplinarity of data science between mathematics, statistics, computer science, 
ethics, and the respective reference science, there are many ways to approach the topic. We want to 
show insights into the design of an introductory course for data science (DS), particularly machine 
learning (ML), for early mechanical engineering bachelor students in a few lectures focusing on 
statistics, particularly mathematics. The development of the course follows the methodology of 
design research (Gravemeijer & Cobb, 2006). 

In this paper, we motivate the design principles of the course and present their respective elaboration. 
For this reason, the central part of this paper is theoretical, followed by examples from the 
introductory course that illustrate the explicit implementation of the design principles. In the end, we 
switch to a first empirical evaluation and give a brief insight into the students’ views on the developed 
introductory course. 

Theoretical considerations for designing the introductory course  
This section gives insights into the current state of research regarding teaching DS and in the 
methodology of design research, followed by the theoretically motivated design principles. 

The current state of research in teaching data science with a focus on machine learning  

In a DS study program, the versatility of what can be taught and in which ways it can be taught is 
wide (Grillenberg & Romeike, 2018). There are different approaches to the concretization of a DS 
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curriculum for schools (Heinemann et al., 2018), undergraduate programs (De Veaux et al., 2017), 
and competence models for sub-aspects such as data literacy (Ridsdale et al., 2017) or data 
management (Grillenberg, 2019). One subfield of DS and part of many DS curricula is data analysis, 
especially ML (Grillenberg & Romeike, 2018). There are many open questions and few empirical 
studies about how learning ML occurs under different teaching methods (Steinbach et al., 2020).  

Especially for students without a mathematical or computer science background, there are different 
approaches to how to deal with the more complex mathematical and programming details that seem 
to be a hurdle for students (Lavesson, 2010). Suppose one additionally considers the easy accessibility 
of methods nowadays, there is a danger: Using ML without theoretical expertise, for example, on 
fundamental mathematics and statistics, creates the risk of harmful socio-technical systems (Heuer et 
al., 2010). To date, there is little consideration of the role of ML in the context of statistical literacy 
and data literacy (Grant, 2017; Kadijevich & Stephens, 2020; Schüller, 2017). In this context, the 
distinction between the terms statistical and data literacy is still fluid, with broad similarities, and 
somewhat arbitrary (Gould, 2017; Schüller, 2017).  

Theoretical considerations on design research 

The research methodology of design research focuses on the close connection between the systematic 
design of teaching-learning material and the investigation of learning processes working with this 
material (Gravemeijer & Cobb, 2006). Especially in the case of little empirically tested teaching-
learning material, design research can be used sensibly with the two following goals: To get 
empirically tested and cyclically improved teaching-learning material and to get research results on 
the learning processes of the target group when working with the material.  

For this purpose, first, a prototype of the teaching-learning material is developed, considering the so-
called design principles (see section The design principles for the introductory course). The 
development of the prototype also includes theoretical considerations about the students’ learning 
processes, so-called intended learning trajectories. Subsequently, the prototype is tested with the 
target group in the so-called design experiments, for example to compare the students’ individual 
learning paths with the intended learning trajectories. By analyzing the design experiments, a local 
(concerning the target group and the material) teaching-learning theory emerges, which contributes 
to the further development of the material. A cyclical continuation then provides improved teaching-
learning material and a sharpened local teaching-learning theory (Gravemeijer & Cobb, 2006).  

The design principles for the introductory course 

In this section we motivate the design principles (DP) of the course and explain their methodical 
implementation. In the following section Insights into the course, two examples, The unit square and 
Reflection tasks, illustrate how the design principles are incorporated into the design of the course.  

The first design principle is Strong inclusion of statistics and mathematics to approach the DS/ML 
methods (DP1). There are two main reasons for this design principle: One is the proximity between 
DS and statistics, respectively mathematics, in terms of content and the personal interest in this 
connection. The other is the fact that engineering students are, due to their curriculum, a target group 
with a comparatively strong mathematical background.  
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To implement the first design principle, we use the “four-level approach for specifying and 
structuring mathematical learning content” (Hußmann & Prediger, 2016). The four-level approach 
illustrates how to proceed methodically when the focus within a design research project is on 
analyzing the learning content. Using the approach, the prototype of the material emerges by 
answering a series of systematic questions on three theoretical levels in the sense of a “classic 
didactical analysis of subject matters” (Hußmann & Prediger, 2016). The first level, the formal level, 
addresses the logical structure and the formal representation of the (mathematical) learning content 
(objects and procedures). The second, the semantic level, addresses the sense and meaning of the 
objects and procedures under study; helpful representations and mental models are identified and 
linked to each other (see a concrete example in section The unit square). On the subsequent concrete 
level, the last theoretical level, learning situations, and examples for experiencing the concepts and 
procedures are developed (see a concrete example in section Reflection tasks). The fourth level then 
equals the implementation and evaluation of the design experiments. 

The second design principle is Embedding all methods in the overall context of data analysis (DP2). 
It is an idea, which is used in several different contexts while learning methods to handle with data 
(Heinemann et al., 2018; Wild & Pfannkuch, 1999). 

This design principle is implemented by using the “CRoss-Industry Standard Process for Data 
Mining” (CRISP-DM, Chapman et al., 2000) model to structure the course and some teaching 
activities. The CRISP-DM model is a process model that describes all essential steps of a DS process 
in an industrial context, starting with a question and ending with the implementation of the results. It 
has already been fruitfully used in other projects to structure teaching activities in the context of DS 
(Heinemann et al., 2018). The CRISP-DM also gives an overview of some core ideas of DS, 
according to DP3 (core ideas of DS and ML, see next paragraph), and we additionally use it in the 
sense of DP4 (classroom activities, see next paragraph) to design tasks that encourage students to 
discuss core ideas and own proceedings (see a concrete example in section Reflection tasks). 

The further four design principles (DP3 to DP6) refer to the basic ideas of the “Statistical Reasoning 
Learning Environment” (SRLE, Garfield & Ben-Zvi, 2008). The SRLE is a well-structured and 
proven approach to create teaching-learning environments in the context of data. The origins of the 
SRLE go back to Cobb (1992) and were developed further by different statistics educators within the 
following decades. Because of the close proximity of DS and statistics in terms of content, it offers 
to use some ideas of the SRLE as design principles for the introductory course. 

The following ideas from the SRLE (Garfield & Ben-Zvi, 2008) are adopted as design principles: 
Focusing on the developing core ideas of DS and ML (DP3, original: “Focus on developing central 
statistical ideas”), Using classroom activities to support the development of students’ reasoning 
(DP4), Using realistic and motivating data sets (DP5) and Integration of appropriate technological 
tools (DP6). DP4, DP5 and DP6 are adopted literally from the SRLE. 

Insights into the course 
To give an overview, we first present the content components of the course. Then we illustrate how 
the design principles shape the course by giving two examples. 
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The course components 

The selection of the learning content is mainly based on the subjectively set goal of the course to 
convey the usefulness, practical relevance, and methodology of DS, especially ML, in the engineering 
sciences. Students shall be enabled to delve deeper into the topic of DS and ML. This goal results in 
three sessions of approximately 3 hours each:  

Session 1 - fundamentals: A first overview of the possibilities to use DS methods in engineering is 
shown, and the CRISP-DM model is introduced. The handling of data within this setting is discussed 
and the basic concepts of ML up to classification are introduced.  

Session 2 - k-nearest-neighbor classification (kNN): The basic concepts of ML are explored in depth 
by discussing the kNN as a possible method for classification. 

Session 3 - model quality of classification models: Model properties (variance and bias), as well as 
different performance measures (accuracy, precision, recall), are discussed to be able to evaluate and 
compare classification models and to select the model parameters for a specific question.  

The following example The unit square shows the use of the “four-level approach” on the first two 
levels, and thus gives insights into the implementation of DP1. The next example Reflection task 
shows the use of CRISP-DM as the elaboration of DP2 and some synergies with the design principles 
adopted from the SRLE (DP4 to DP6). 

The unit square – An example for the analysis of the learning content on the first two levels  

In Session 3, model quality of classification models, different model characteristics and performance 
measures are discussed with the students. When creating a classification model, the available data set 
consists of examples with the characteristics of the independent variables (called features) and a 
dependent variable (called a label). The total data set is first divided into training data and test data. 
The training data is used to build the model, and the test data is then used to check how well the 
model can predict the correct label. Concerning a binary classification model, the testing phase is 
usually represented using a confusion matrix as in Figure 1. Here, the number of correctly classified 
examples (true positive and true negative) separated by 
class is on the main diagonal, and the number of 
incorrectly classified examples (false positive and false 
negative) is on the opposite diagonal. 

All performance measures and performance criteria are 
derived from the values in the confusion matrix. A content analysis of the learning object, as it has 
been done on the formal level of the four-level approach, reveals that all performance measures can 
be represented by a probability space, which explains the relations of the values among each other:  

Each example classified by the model1 can be represented as , where 
 with  representing the actual class of the example and  representing the new 

 
1 We continue to consider a binary classification problem here, a transfer to higher dimensionality does not pose a 
problem. 

 
Figure 1: Example of a confusion-matrix 
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classified class.  is the number of examples. This gives  with  
and  as the normalized count measure, a probability space that represents the testing phase.   

Going on in the formal level, all addressed performance measures and their 
interrelationships among each other can be represented based on this 
probability space (for example, certain performance measures are equivalent 
to conditional probabilities). On the subsequent semantic level, the following 
questions arise concerning the prerequisites of the target group: How can the 
performance measures and their interrelationships be communicated without 
addressing this probability space and, for example, conditional probabilities?  

The unit square (see Figure 2) is considered to be a proven means to visualize 
proportions and probabilities up to conditional probability (Böcherer-Linder 
et al., 2017). The analysis in the two levels reveals that the unit square provides a way of representing 
the testing phase. The unit square in addition can visualize the performance measures to show them 
as formulas based on the values of the confusion matrix. Thus, by linking the content to mathematics, 
the unit square is included as a visual representation in the course.  

Besides the elaboration of different representatives of the 
performance measures (in this example, the unit square, the formula, 
and the values calculated by hand or with Python), the core ideas of 
Session 3 (such as the distinction between types of misclassification, 
which can also be visualized in the unit square) emerge from 
analyzing the learning content up to the semantic level. The analysis 
of core ideas, connections, and representatives results in a 
theoretical sequence in which they can be worked out: the intended learning trajectory (see Figure 3). 

Reflection task – An example for considerations on the third level 

The work areas of the CRISP-DM are learning objectives (see Session 1). The CRISP-DM is also 
used to structure the course (see section The design principles for the introductory course). The 
structure is implemented, among others, by giving students a task at the end of each session to reflect 
on the learnings in the framing of the CRISP-DM. For example, at the end of the third session, when 
students have to design a model and use the model for a decision afterwards (Bata et al., in press), 
this task reads: 

Reflect on your decision in the Jupyter Notebook together in groups in the context of your notes from 
the last lecture2 and the CRISP-DM. If you find it useful, complete your answers again. 

This task demonstrates the incorporation and the interrelation of some design principles while 
formulating explicit learning opportunities on the third level of the “four-level approach”: Students 
work with a data set regarding the quality of steel (realistic data sets, see DP5), the Jupyter Notebooks 
are used as technical support throughout the task (appropriate technological tools, see DP6). The 

 
2 This refers to the notes of the reflection task of the past lecture (Session 2). 

 
Figure 2: Example 

of a unit square 

 
Figure 3: Excerpt of an 

intended learning trajectory 
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open assignment encourages students, who are working together in groups at this point, to discuss 
their results and to defend them argumentatively using the CRISP-DM (overall context, see DP2, 
classroom activities, see DP4). 

First empirical insights  
The design cycles and data collection 

The introductory course has been conducted in two design cycles in different settings so far. In the 
first cycle, seven students participated in a laboratory setting (in groups of two and three, 
accompanied by the lecturer during the processing of the tasks). In the second cycle, 39 students 
participated in a course setting. The third session was additionally conducted with 4x2 students in a 
laboratory setting. All sessions took place via an online conference tool. Each session was video-
recorded and transcribed. The group work was additionally documented using written products.  

In addition, data were collected using a one-minute paper in each session. Students were asked five 
questions per session, each to be answered at one point after the session within a given time (usually 
one minute) and without looking into the learning material. The five questions were intended, among 
others, to help gather information about the learning environment. The evaluation gives a first insight 
into the students’ views, from which we present first results. 

Results 

The question of the one-minute paper “How relevant do you think the content of the past lecture is to 
your studies and future career, and why?” was evaluated using points to characterize the students’ 
answers: 0 points means no relevance, 1 point means medium relevance and 2 points means high 
relevance. In addition, the reasons were collected and grouped into content-related groups. Mean 
values between 1.81 and 1.92 across the cycles indicate that most students perceive the learning 
content as very relevant. However, the reasons for their ratings varied: Only about 10 percent of the 
students justify the relevance with concrete content like “validation of ML models”; instead, general 
facts are used as reasons. For example, students mention the presence and relevance of DS and ML 
in engineering or everyday life or Python as an essential competence for jobs and studies. 

Two questions of each one-minute paper focused on the content goals of the particular session, for 
example: “For which data sets is the performance measure accuracy not recommended?” To evaluate 
the questions, 1 point (answered completely correctly), 3 points (answered partially correctly), or 5 
points (answered incorrectly or not answered at all) were assigned to each response. The scores give 
an overview regarding the students’ learning results concerning the questions. The questions were 
largely answered in a meaningful way in terms of content, the mean values of the answer points per 
question ranged from 1.95 to 2.63 across both cycles. 

Discussion 
This paper gives insights into the design principles and development of a short introductory course 
for DS and ML for engineering students. Especially the first design principle, implemented by the 
approach of specifying and structuring the learning content focusing on its statistical and 
mathematical aspects, opens a way to analyze ML methods, which have so far rarely been investigated 

Proceedings of CERME12 802



 

 

 

from the perspective of the classic didactical analysis of subject matters. For example, the connection 
to the unit square has two potentials: On the one hand, learning methods with threshold parameters, 
which are discussed in every advanced ML course, can be transferred to the representation of the 
performance measures with an animated unit square. This visualization can show the direct influence 
of the threshold parameter on the performance measures. On the other hand, the very visual 
representation of the unit square can be used when students’ backgrounds are not as mathematical as 
in the case of mechanical engineers.   

The first analysis of the one-minute-paper questions shows a pleasing result, as the planned contents 
seem to reach the students and seem relevant to them. Nevertheless, the question arises about how 
the design principles, and the resulting developed or chosen representations, visualizations, and 
instructional activities contribute to the students’ learning processes. The overall design study aims 
to explore students’ individual learning paths through a qualitative analysis of the resulting video 
material to address this question. From this analysis, results are expected on whether and how the 
statistical and mathematical details are learned by students (which is unanswered by now) and used 
when applying the methods (first results see Bata et al., in press). Based on these findings, the role of 
statistics and mathematics in ML, specifically in the context of data and statistical literacy, can be 
addressed in greater depth. 
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Recently, researchers have encouraged the teaching of statistical inference to students at all levels. 
However, what constitutes pre-service teachers’ pedagogical content knowledge for statistical 
inference has not yet been given specific attention in research. This paper presents a qualitative study 
of pre-service teachers participating in a collaborative learning setup in a mathematics course to be 
prepared for teaching statistics in primary school aged 6–10 years. The study reported here is the 
first cycle of a design research project. The findings show that pre-service teachers’ learning 
opportunities regarding pedagogical content knowledge for statistical inference are insufficient. 
Based on the initial results, an initial conjecture map was constructed that guides the forthcoming 
design cycle. 

Keywords: Content representation, design research, pedagogical content knowledge, pre-service 
teachers, statistical inference. 

Introduction 
Informal statistical inference (ISI) (Makar & Rubin, 2009) is often considered an essential ability of 
statistically literate citizens and the root of understanding formal inference (Biehler & Pratt, 2012). 
Much research focusing on ISI has been carried out with recommendations for powerful statistical 
ideas to introduce in primary school (Makar & Rubin, 2018). Despite prevalent international research 
findings, ISI has only made breakthroughs in the primary school curricula of a few countries. 
Therefore, researchers have called for ISI to be explicitly included in school curricula and teacher 
education (e.g., Langrall et al., 2017). However, in teacher education, limited time is spent on 
statistics. Thus, we need to learn to endorse ISI pedagogical knowledge for pre-service teachers 
through well-designed and effective arrangements (de Vetten et al., 2018). In line with Makar and 
Rubin (2018), we shift the focus from questions about what constitutes ISI to more knowledge of 
teaching statistical inference (SI) and design educational settings that provide prerequisites for 
pedagogical content knowledge (PCK) regarding SI. 

Lehrer and English (2018) emphasised that children’s informal reasoning about insecurity is formed 
both in and outside formal schooling. The same can be expected to apply to pre-service teachers, 
which makes it interesting to investigate the extent to which they pay attention to inference as a 
learning object in an existing learning environment. This paper presents the first cycle of a design 
research project (cf. Bakker, 2018), conducted in a mathematics course for pre-service teachers in 
Sweden. The design aims to provide knowledge to improve teacher education, from an educational 
setting focusing on statistical literacy to a setting supporting pre-service teachers’ development of 
PCK for SI. We ask: How can a collaborative teaching strategy that mainly promotes statistical 
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literacy skills support pre-service teachers’ PCK for SI? Based on the findings, we propose an 
improved teaching strategy that is beneficial for developing pre-service teachers’ PCK for SI. 

Theoretical background 
Statistical inference in statistics education  

SI is usually associated with methods and concepts at the tertiary level, such as point interval 
estimates and hypothesis testing. By proposing a broader use of the term inference and making 
inferential reasoning available to all ages, Makar and Rubin (2009, p. 85) identified three key 
principles of ISI: “(1) generalization, including predictions, parameter estimates, and conclusions, 
that extend beyond describing the given data; (2) the use of data as evidence for those generalizations; 
and (3) employment of probabilistic language in describing the generalization, including informal 
reference to levels of certainty about the conclusions drawn”. Acting on these principles can direct 
teachers’ attention to children’s abilities to communicate probabilistic predictions and generalisations 
from data. For example, Shaughnessy (2019) proposes a learning trajectory for the early years where 
children are initially encouraged to explore the use of statements such as ‘likely’ or ‘unlikely’, and 
thereafter propose and justify conclusions and predictions based on data, followed by designing 
studies for further investigation. Furthermore, Makar and Rubin (2018) acknowledge the integration 
of contextual knowledge and consideration of the aggregate as having key roles in making inferences. 
The proposed broad approach aligns with frameworks such as data modelling and the statistical 
investigation cycle, all of which incorporate the importance of teaching the overall picture of a 
statistical investigation rather than divided parts (Lehrer & English, 2018). 

Several frameworks have been developed to describe a statistical investigative process. Findings from 
prior research (e.g., Blomberg, 2015) suggest that data, distribution, and inference, each associated 
with the earlier phases, constitute the core of statistics in education at all stages, including younger 
students. At the school level, the GAISE Pre-K–12 Report (Bargagliotti, 2020) proposes a model of 
four components: 1) Formulate Statistical Investigative Questions; 2. Collect/Consider the Data; 3) 
Analyse the Data; and 4) Interpret the Results. In line with Shaughnessy (2019), we consider 
distribution and inference to be the heart and soul of statistics. When composed into a somewhat 
simplified format that we believe can serve pre-service teachers who are to teach younger children, a 
statistical process follows three phases: data generation (e.g., problem context, statistical question, 
collect and organise data), analysis (e.g., use appropriate displays to represent data, distribution, 
variability, expected value), and communication (e.g., inference, generalisation, based on data, with 
uncertainty). To summarise, for students of all ages to have access to the aforementioned desirable 
inferential ideas, pre-service teachers not only need content knowledge of statistics, but they also 
need PCK for SI. What constitutes PCK and how to measure PCK for SI in teacher education are 
presented in the following section. 

The quality of pre-service teachers’ pedagogical content knowledge 

Since the introduction of PCK (Shulman, 1986), the concept has been interpreted and operated in 
various ways in different research domains. The resulting theoretical diversity of PCK models 
motivated Carlson and Daehler (2019) to develop a refined consensus model (RCM). In addition to 
content knowledge, pedagogical knowledge, knowledge of students, curricular knowledge, and 
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assessment knowledge, this model also considers collective (cPCK), personal (pPCK) and enacted 
(ePCK) as aspects of teachers’ professional knowledge. To shed light on how to support pre-service 
teachers’ development, the RCM of PCK is expected to contribute to situating the research and 
identifying elements to study. Based on the RCM of PCK, Chan et al. (2019) suggested a framework 
for measuring the quality of teachers’ PCK. The framework consists of the following five key 
components: 1) selection and connection of big ideas, 2) selection of instructional strategies and 
representations, 3) recognition of variations in student understanding, 4) integration between PCK 
components and 5) pedagogical reasoning. These PCK components are not intended to constitute a 
fixed framework but are rather open to adaptation within different contexts. Thus, they are flexible 
enough to measure the quality of different variants of pre-service teachers’ PCK, such as what a group 
of pre-service teachers knows, what a single pre-service teacher knows and does, and expressed 
pedagogical reasons for judgement and action. 

Methods 
Context and participants 

The RCM model of PCK centres around the teacher’s ePCK, which can be characterised by planning, 
carrying out that plan and reflecting on instructions and student outcomes. However, in this study, 
the pre-service teachers’ reports did not include an enacted teaching context with students in schools. 
The empirical data occurred when groups of pre-service teachers planned and reflected upon a 
hypothetical teaching situation. Thus, this study falls within the realm of cPCK, which is considered 
a result of transformations of pre-service teachers’ pPCK in a learning context in which pre-service 
teachers initially individually reflect and thereafter collectively reflect and plan. As the study was 
conducted during the COVID-19 pandemic, a remote teaching setup was used. Lectures and group 
work were conducted online in digital meetings. 

The participants in the study came from one class in teacher education that focused on becoming a 
teacher for students aged 6–10 years. The participants studied a course in mathematics, including 
statistics, during the second of four years of study. The class consisted of 62 pre-service teachers, 33 
of whom signed an informed consent form to participate in the study. The mean age of the participants 
was 29 years, with a standard deviation of 7.7 years. The research project has been ethically reviewed 
and approved by the Faculty of Health, Science and Technology at Karlstad University. 

Design, data, and analysis 

The teacher educators have been involved in planning and evaluating the study’s design and have 
provided significant knowledge of the inherent possibilities in hypothetical learning trajectories and 
design conjectures (Bakker, 2018). Hence, a research model was developed that matched the purpose 
of the study and the teacher educators’ planning. The teaching of statistics was carried out in six steps 
over two weeks. The learning objectives with these six occasions can be summarised as emphasising 
statistical literacy, developing statistical thinking and conceptual understanding rather than 
knowledge of the modelling process and procedural skills. Teaching statistical literacy emphasises 
statistical knowledge and skills in contextual settings and the need to critically evaluate studies and 
reports based on statistics and to communicate critical ideas (Sharma, 2017). Such an approach calls 
for developing pre-service teachers’ ability to plan, enact and evaluate teaching-learning settings that 
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focus on developing skills to evaluate statistical studies’ quality and findings rather than practical 
skills that come with performing studies. 

The six occasions are briefly depicted next: 1) A homework assignment that consists of reading and 
performing tasks in teaching material on probability and statistics for teachers. The learning content 
consists of basic concepts from the descriptive statistics such as mean, median, mode, range, boxplot, 
and how to compile and represent data with different types of diagrams. In addition to a short section 
that addresses the challenge teachers face in choosing an appropriate activity for teaching statistics, 
the teaching material includes no more than a short repetition of what the pre-service teachers have 
encountered in primary and secondary school. 2) A lecture, which highlights the purpose of statistics 
in teaching and in everyday life; descriptions of the subject and central concepts (as mentioned above, 
reliability and validity), drawing on practical examples. 3) A homework assignment involving 
individual work of self-selected statistical material and reflections based on support questions from 
the teacher educator. One question concerns inference: “In what way can conclusions be drawn 
(generalise, predict, etc.) and with what certainty do you think it can be done?” 4) Group work: The 
participants in the study were randomly divided into 11 groups, with 3–4 members in each group. 
Each group chooses one of the group members’ self-selected statistical materials from the third 
occasion. Each group completed a description of the content in a hypothetical teaching situation 
covering three big ideas for teaching statistics for students aged 6–10 years, supported by a so-called 
Content Representation (CoRe) (e.g.,  Hume & Berry, 2011). A CoRe is a template for teachers to 
portray big ideas of concepts and skills related to a particular topic with answers to critical 
pedagogical challenges. 5) Each group presents their planned teaching situation by recording a video. 
Finally, 6) Group work: Each group compiles written feedback for three films. 

This study focuses on data materials from occasion four, the pre-service teachers’ CoRes, compiled 
in groups. Using CoRe as a reflective tool can transform teachers’ tacit pPCK into explicit cPCK 
(Alonzo et al., 2019). Therefore, the knowledge expressed in a CoRe that was put together by a group 
of pre-service teachers represents their cPCK (Carlson & Daehler, 2019). A content analysis approach 
was used in this study (Robson & McCartan, 2016). The analysis used the five key PCK components 
(Chan et al., 2019) as operationalised categories. Within each of these components, the pre-service 
teachers’ written outcomes related to statistical conceptual ideas were identified. Our focus was on 
identifying content related to inference. The first author of this paper is responsible for the analysis. 
To ensure validity, the findings have been discussed with both teacher educators and co-authors. 

Results 
The first key PCK component concerns the selection, connection and coherence of big ideas. In total, 
the 11 groups proposed 29 big ideas. To get an idea of the pre-service teachers’ knowledge of big 
ideas in statistics, their stated outcomes of big ideas were interpreted and placed in one of the 
following five categories and their accompanying distribution and examples of the stated big idea 
followed by the expected learning outcome: 1. Data (10): “How to measure and compare data – To 
be able to formulate a question to be able to find out a specific matter”, “With the help of statistics, 
you can find out various questions”, “Statistics is a collection ... – Collection is an important process; 
it is important for students to get an understanding of who to ask or what to look for”, 2. Analysis (9): 
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“Interpret – reading the diagram”, “The bars represent data – To be able to create bar charts after 
collected data”, “Analyse – comparison of the data presented in the diagrams”, 3. Communication 
(0), 4. Critical (1): “Statistics can be misused and misunderstood - All available statistics should not 
be trusted. It is important to be critical of sources”, and 5. Other topic (9): “Stress – We think that 
students should learn that stress can be both positive and negative depending on how you deal with 
it”, “Risks with an increased use of the Internet”, “Values – We want our students to gain knowledge 
about the Convention on the Rights of the Child”. Summing up, the analysis of the pre-service 
teachers’ CoRes showed that most of their stated big ideas connected to data generation, followed by 
analytical skills and other topic. One group stated a critical approach to statistics and no big idea was 
qualified in the category of communication. 

The second key PCK component, teaching strategies, highlights the selection of instructional 
strategies and representations regarding the stated big ideas. Several groups suggest a modelling 
approach, meaning that students conduct their surveys and create diagrams. Furthermore, we can see 
traces of outcomes of PCK for teaching statistics, such as starting from everyday questions and 
showing examples of statistics that can be interesting, showing films about statistical investigation 
and practicing interpretations and comparisons of existing diagrams. We also note some outcomes of 
general pedagogical ideas, such as individual work, classroom discussions and a combination of these 
(individual-pairs-all), without relating to statistics. 

The third key PCK component, students’ understanding, draws attention to a student-focused 
classroom climate based on the individuals’ knowledge and recognises the variation in students’ 
learning. In addition to activities that engage students’ interests, it is also desirable to uncover their 
thinking. Overall, pre-service teachers identify a wide range of student-focused factors that affect 
their teaching ideas at a general level. Raised challenges are, for example, different levels of students’ 
preconceptions, language difficulties, lack of interest and unproductive attitude. Pedagogical ideas to 
address these issues were, for example, conducting investigation, diagram creation, presenting these 
to each other, making comparisons and discussing each other’s presentations. When it comes to 
outcomes regarding inference, there are no traces of possible difficulties that students may have. 

In the fourth key PCK component, integration between PCK components, attention is drawn to the 
teachers’ ability to plan the next teaching step and adapt this to how the students have received 
teaching. Since the study does not include a context in which pre-service teachers practice teaching, 
it is impossible to infer anything about their adjustment skills within this component. However, based 
on existing data, it is possible to identify pre-service teachers’ presumptive ideas about obtaining 
students’ learning big ideas and adjusting teaching practices. For example, some groups expressed 
ideas about controlling how students design, interpret, and analyse diagrams. 

The fifth key PCK component, pedagogical reasoning, focuses on pedagogical issues as a teacher’s 
ability to justify decisions and actions within a teaching situation. Supporting questions in the CoRe 
evoked pedagogical reasoning and thus became applicable as an empirical basis for this fifth 
component. The arguments for the selected ideas are anchored in the importance of being a competent 
consumer of statistics. It was seen as important that the students understand the purpose of using 
diagrams and being critical of the statistics presented to them. Some stated the importance of students 
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engaging with an investigation, compiling diagrams and interpreting and drawing conclusions based 
on the results. Both teaching methods and the arguments behind these choices vary. Some groups 
highlighted the importance of motivating students to learn and suggested using up-to-date social 
issues and topics that were close to the students’ interests. Others mentioned teaching methods such 
as classroom discussion to introduce students to making interpretations and conclusions and equal 
collective understanding to reduce the variation in students’ knowledge in the classroom. In addition 
to these outcomes of reasoning, most of the pedagogical reasonings was inadequate or missing. 

Conclusion and discussion 
Regarding the implications and limitations of the study, we would like to draw the reader’s attention 
to the fact that the study should not be regarded as an isolated case study but as a first sub-study of 
design research consisting of several iterative studies (Bakker, 2018). The study was conducted in a 
specific context that limits the generalizability of the results to similar conditions. The study was also 
limited to one group of students who carried out all work during remote teaching due to the pandemic. 
The dropout rate was 47 %, most likely due to the pandemic.  

Regarding the question of how the collaborative teaching strategy promotes pre-service teachers’ 
PCK, we see, with the support of Carlson and Daehler (2019), that when students in groups plan to 
teach and then assess each other’s work, they are offered the opportunity to exchange knowledge 
from pPCK to cPCK and back to pPCK on several occasions. In addition, students acquired 
professional knowledge bases such as content knowledge about statistics and curriculum knowledge 
via the internet. The results from the study depict a somewhat fragmented picture of the pre-service 
teachers’ knowledge about big ideas in statistics education as emphasised by Shaughnessy (2019). 
The pre-service teachers’ outcomes regarding inference in accordance with Makar and Rubin’s 
(2018) ideas are almost non-existent. However, there is a clear emphasis on compiling and organising 
data, interpreting data, and being statistically literate. It is noteworthy that the setting triggered nearly 
half of the participating groups to choose topics from statistical contexts, separate from statistics, as 
big ideas. Indeed, knowledge of the problem context is a central conception in statistics education, 
and the stated big ideas, which were identified as statements about societal issues, are relevant to 
students. However, in this learning context, statistics was the subject of focus. Therefore, the results 
indicate that learning objectives for statistics are partly outperformed by learning objectives for other 
topics. Based on these results, we infer that a statistical literacy approach to teaching does not provide 
satisfactory outcomes in pre-service teachers’ PCK for SI. Therefore, we suggest a draft of a 
conjecture map (Table 1) to guide the next cycle.  

In accordance with Lehrer and English (2018), our suggestion for an improved strategy for high-level 
teacher educators with high-level conjecture is to emphasise a more explicit focus on practicing data 
modelling and highlight what characterises SI in education. We choose to complement the design 
conjectures of existing tools (e.g., CoRe) and participant structures (collaborative learning) within 
the embodiment of putting the conceptual framework of ISI modelling into practice. The design 
includes a lesson plan in which the development of content knowledge encompasses PCK. Our ideas 
of theoretical conjectures, meaning the produced desired outcomes from the mediating processes, 
include appropriately emphasising inference as a big idea, describing its key principles in accordance 
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with Makar and Rubin (2009), and connecting inference to other core statistical conceptions such as 
data generating and distribution. Furthermore, according to Table 1, we suggest a designed mediating 
process that produces outcomes for how SI can be made teachable for the age group in focus, as well 
as pedagogical reasoning for selected teaching methods at both class and individual levels. The initial 
conjecture map presented in Table 1 will guide the forthcoming design cycle of our design research 
project. The plan is to carry out a second-phase study at the end of 2021. We intend to present 
preliminary results from the forthcoming study at CERME 12. 

Table 1: Conjecture Map - Statistical Inference Modelling Teaching 

High-level 
conjecture 

Embodiment/design Mediating processes Pre-service teachers’ 
outcomes 

Conceptual 
framework of ISI 
modelling in 
education, and 
cPCK can 
contribute to pre-
service teachers’ 
ability to plan and 
reflect on teaching 
SI appropriate for a 
particular age. 

 Putting ISI modelling into 
practice. 
 Completing a CoRe. 
 Planning for a hypothetical 

lesson or lesson sequence in 
statistics. 
 Using peer review. 
 The development of content 

knowledge encompasses PCK. 
 Collaborative learning as a 

participant structure. 

 Experiencing ISI modelling 
cycle. 
 Identifying inference as a core 

concept and its connections to 
other big ideas in statistics 
education. 
 Expressing in speech and 

writing about planning for SI 
modelling teaching. 
 Reflecting in writing on other 

students’ video presentations. 

 Describing inference as 
a big idea together with 
other big ideas and 
concepts in statistics 
education.  
 Specifying how SI can 

be made teachable for 
the age group in focus.  
 Arguing for selected 

teaching methods at class 
and individual levels. 
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Evaluating the risk of a hypothesis given some indicators for the hypothesis is a crucial example for 
conditional probability reasoning. Calculating the probability of a risk when a set of parameters (e. 
g. the so-called base rate, true- and false-positive rate) is given, is a task which is referred to as a 
Bayesian task, as it can be solved with the Bayes’ formula. The conceptual understanding of a 
mathematical formula (and of Bayesian tasks more specifically) implies being able to reason about 
effects of changes in the given quantities. Based on the dimensions of the concept of functional 
thinking we propose to refer to this aspect as “Covariation” of Bayesian reasoning. However, hardly 
any studies have so far investigated Covariation in a Bayesian situation. In this paper we present a 
study in which participants are asked to reason about changes of the base rate and introduce a coding 
system with which their answers can be analyzed.  

Keywords: Bayesian reasoning, covariation in Bayesian situations, statistics education. 

Introduction 
Evaluating Bayesian situations, i. e. the risk of a hypothesis (H) given some indicators (I) for the 
hypothesis, is important for experts from different fields (e. g. medicine and law) in everyday practice 
and a crucial part of conditional probability reasoning. The comprehension of Bayesian situations has 
so far almost exclusively been tested with the capability to calculate a probability for the positive 
predictive value (PPV), that is P(H|I). This is a conditional probability indicating that a hypothesis H 
(e. g. a medical condition) is true, if an indicator I for the hypothesis (e. g. a positive test result in a 
medical test) is given. This probability can be calculated with the Bayes’ formula when the base rate 
of the hypothesis P(H), the true-positive rate P(I|H) and the false-positive rate  of the indicator 
are given: . 

Summarizing the results of previous works (Binder et al., 2021; Böcherer-Linder et al., 2017; 
Böcherer-Linder & Eichler, 2017) of our ongoing research program, we argue that three aspects are 
necessary for a comprehensive understanding of a Bayesian situation: Being able to calculate one 
specific probability such as  in a Bayesian situation using Bayes’ formula (we refer to this 
aspect as “Performance”), to assess the influence of changes of the given parameters of the situation 
(we refer to this aspect as “Covariation”) and to discuss the result’s impact (we refer to this aspect as 
“Communication”). While the aspect of Performance has been studied repeatedly, we are aware of 
hardly any studies for the remaining two aspects.  

Proceedings of CERME12 829



 

 

As part of a larger project we test and train all aspects of understanding a Bayesian situation 
(http://bayesianreasoning.de/en/bayes_en.html). In the training, participants learn to systematically 
combine two beneficial strategies, first representing the statistical information of the Bayesian 
situation in natural frequencies (McDowell & Jacobs, 2017) and second depicting the structure of the 
problem in a suitable visualization (e. g. Binder et al., 2020; Böcherer-Linder & Eichler, 2019; Khan 
et al., 2015). In this paper we present insights from a study which was conducted in preparation for 
designing these trainings. Thereby, we focus on the aspect of Covariation which we regard referring 
to the medical situation similar to the one shown in figure 1.  

Example for a medical diagnostic test:  
Representation of the statistical information in form of 
natural frequencies: 
100 out of 1000 people are infected. 
80 out of these 100 infected people receive a positive test 
result. 
90 out of the 900 uninfected people mistakenly receive a 
positive test result. 
Calculation of the positive predictive value (PPV): 

 
 

Figure 1: Example for the two beneficial strategies representing the statistical information with 
natural frequencies and depicting the situation in a visualization, here the unit square 

To the best of our knowledge, Covariation as an aspect of Bayesian problems has only been tested 
once before (Böcherer-Linder et al., 2017). There, it was demonstrated that the effect of base rate 
change – that is, an increase or a decrease of  - is easier to understand with a unit square than 
with a frequency tree as a supporting visualization. Yet, this study does not shed light on the question 
why participants made mistakes and how they approached these questions.   

Therefore, we want to provide an insight into first results of our study in which participants’ 
reasonings for evaluating the change of the base rate in a Bayesian situation are analyzed. Our main 
question in this paper is: How can students’ reasonings about Covariation (with a focus on a base rate 
change) in a Bayesian situation be categorized? In order to answer the question, we introduce a 
category system in this paper with which it is possible to analyze and cluster the level of different 
reasonings for evaluating the change of the base rate.  

Theoretical Background 
“It is believed that teaching students how to perceive formulas as covariational entities based on the 
provided context is essential. This skill can enable them to consider formulas as dynamic functions” 
(Sokolowski, 2021, p. 184). Even though this quote by Sokolowski has been formulated in the context 
of teaching physics, we argue that the covariational understanding of a function is equally important 
in conditional probability reasoning. We thereby refer to Borovcnik (2012, p. 21) who proposes “to 
investigate the influence of variations of input parameters on the result [i.e. ]” aiming to 
strengthen a conceptual understanding instead of a more superficial numerical understanding of the 
concept of conditional probability and thereby of Bayesian situations. 
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Hence, we understand the Bayes’ theorem not only as a formula but as a function that expresses the 
dependence of the posterior probability on three parameters. By appreciating Bayesian situations in 
the context of functions we combine two fields of mathematics education, i.e. statistical education 
with functional thinking. Consequently, we comprehend the central aspect of functional thinking, i.e. 
Covariation (Lichti & Roth, 2019), also as a part of Bayesian thinking. Covariation stresses the 
dependence of the independent variable on the dependent variable and the association between 
changes of both. A typical question for Covariation in the field of Bayesian reasoning is the following: 
“How does the positive predictive value  change when the base rate  
increases/decreases?” In the following figure 2, it is illustrated in the unit square how the PPV is 
affected by an increase/decrease of the base rate. 

Base rate 100 out of 1.000 (10%) 500 out of 1.000 (50%) 
Unit square 

  
PPV   

Figure 2: Dependence of the PPV on the base rate illustrated in the unit square 

Considering the effects of changes of the base rate is specifically important, as its influence often 
causes errors and misunderstandings when calculating the PPV (Kahneman & Tversky, 1982). For 
instance, in the situation of medical diagnostic tests (Fig. 1), very low base rates can cause a 
counterintuitive statistical phenomenon since in that case false-positive test results are more likely 
than true-positive test results and therefore the PPV is considerably low despite good test parameters 
(i.e. high true- and low false-positive rate). In such situations people tend to ignore the influence of 
the base rate which is called the “base rate neglect” (Kahneman & Tversky, 1982). 

Analysing students reasonings about changes of the base rate can be significant in order to identify 
their conceptual understanding of the Bayesian situation. The SOLO-taxonomy of Biggs and Collies 
(1982) proposes a model with which it is possible to cluster the Structure of Observed Learning 
Outcomes (SOLO) into distinct levels. These levels differ with regard to the amount of (relevant) 
information which is used and linked to the cue in the students’ arguments. Thereby, they distinguish 
five different levels of observed learning outcomes which can be applied to the teaching of various 
topics. We propose to apply the SOLO taxonomy by Biggs and Collis (1982) to the categorization of 
reasonings which are given about changes of the base rate in a Bayesian situation. In order to apply 
this model to tasks on Covariation, we identify what information is relevant for this task and thereby 
adapt the levels by Biggs and Collies to Covariation tasks in a Bayesian situation.  

The PPV  in a Bayesian situation is calculated by  (Fig. 1). 

Thus, when reasoning about changes of the PPV it is necessary to consider alterations in both 

Proceedings of CERME12 831



 

 

quantities representing the multiplied probabilities and 
 and then analyze their effect on the fraction (i.e. the PPV). Both quantities are dependent 

on the base rate. Illustrated in the unit squares in Fig. 2, one can see that the amount of infected people 
with a positive test result represented by  in the Bayesian formula increases with a higher 
base rate, whereas the amount of uninfected people with a positive test result represented by 

 decreases when true- and false-positive rates stay the same. The relative increment of infected 
people with a positive test result (nominator) is higher than the relative increment of all people with 
a positive test result (denominator). Therefore, the PPV increases with an increase of the base rate. 
The different levels in the SOLO-model adapted to a Covariation task are described in figure 3.  

Level Description by Biggs & Collis Covariation task in a Bayesian problem 
Pre-
structural 

An irrelevant feature might be 
linked to the cue.   
 

No explanation is given for the described relation between base 
rate and PPV or irrelevant consequences of the base rate change 
are described (e. g. on )). 

Uni-
structural 

One relevant feature is linked to 
the cue. 
 

The effect on only one of the relevant quantities ( ) or 
)) is considered or the effect of several quantities in the 

Bayesian situation is considered, but only one of them is relevant. 
Multi-
structural 

Several relevant features are linked 
to the cue.   
 

Both relevant quantities (  and ) are considered, 
but their relation to the PPV is not clearly spelled out. 

Relational All relevant data are considered 
and put into a conceptual scheme.  
 

Both relevant quantities (  and ) are considered 
and their relation to the PPV is clearly spelled out. 

Extended 
abstract 

All relevant data are considered 
and subsumed in an abstract 
model.   

A general model for the dependence of the PPV on changes of the 
base rate is generated. 

Figure 3: SOLO model (Biggs & Collis, 1982) applied to Covariation tasks in Bayesian situations 

In this study, we want to describe how we developed a coding system for the reasonings about 
Covariational tasks in Bayesian situations in order to classify them within these categories. Moreover, 
we will describe which further categories we inductively derived in order to code differences. 
Consequently, we will outline in the results section how the different levels of reasoning are 
distributed among preservice teachers, who were the subjects of our study.  

Material and methods 
Study design 

Every participant answered five questions about a Bayesian situation such as the medical situation 
shown in Fig. 1. Thereby, we used two different Bayesian situations: one context about breathalyzers 
and another one about a mammography screening. The first task was always to a) calculate the PPV. 
The consecutive tasks were to determine how b) an increase of the true-positive rate, c) an increase 
of the false-positive rate, d) a decrease of the base rate and e) an equally large increase of the true- 
and the false-positive rate simultaneously affected the PPV. Answers were given in form of single 
choice questions with three options: the PPV i) decreases, ii) stays the same, iii) increases. Task a) 
was always the first one and task e) was always the last one. Tasks b) to d) were presented in a random 
order. Each participant was asked to give a reasoning for their choice of answer in one of the single-
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choice questions of b) to e). The answer to which a participant was asked to formulate a reasoning 
was chosen randomly. In the results section we only refer to the reasonings which participants have 
given for their decision of the effect of the base rate change.  

Materials 

Since visualizations and natural frequencies help to understand the influence of the base rate 
(Böcherer-Linder et al. 2017, also compare Fig. 2), we investigate how people reason about 
Covariation with the help of these two beneficial strategies (Fig. 1). As visualizations, we used a 
double-tree and a unit square which were more supportive in tasks of Performance than the simple 
tree diagram (Böcherer-Linder & Eichler, 2019) as we suppose that Performance is a prerequisite for 
Covariational tasks. Thus, the Bayesian situation was described with probabilities and also displayed 
in a visualization (unit square or double-tree) with frequencies.  

Participants 

230 pre-service teachers (181 females, 47 males, 2 unknown) participated in this study. They all study 
to become teachers in mathematics and another subject but for different age groups (e. g. some for 
primary school others for secondary school). They did not receive any prior training in stochastics.  
60 out of the 230 participants were asked to give a reasoning for their answer to the single choice 
question about changes of the base rate.  

Results 
Developing categories for the data analysis 

In this section we illustrate, how we coded the different reasonings and their belonging to the different 
levels of the SOLO taxonomy. Thereby, we refer to four exemplarily reasonings below. The initial 
question was: “Imagine: The probability that a driver is under the influence of alcohol is actually 
smaller than 10%. How does that affect the probability that a driver is actually under the influence of 
alcohol, if (s)he receives a positive test result in the breathalyzer?” After selecting if  increases, 
decreases or remains constant, the participants were asked to explain their choice: 

Example 1: “The precision of the test is not changed by the description in the text.” 

Example 2: “  something smaller than  something smaller than ” 

Example 3: “As the number of people who are under the influence of alcohol decreases, the 
probability also decreases, that a positively tested person is also under the influence of alcohol. The 
nominator of the fraction decreases and the denominator stays the same. Thus, the result is smaller.“ 

Example 4: “Number of people under the influence of alcohol decreases, analogously 90% positive 
 less under the influence of alcohol and positive and number of false positively tested bigger. 

Denominator bigger and nominator smaller therefore result is smaller.”  

First, we coded to which probabilities/quantities of the Bayesian situation the reasonings made a 
reference to. Example 1 refers to the true- and false-positive rate of the test (“precision of the test”), 
whereas examples 2 and 3 both refer to the quantity of true-positives (the numbers of the Bayesian 
context were chosen in a distinct way so we made this inference in example 2). In example 4 
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references to the quantity of true-positives and false-positives are drawn. However, in example 4 we 
can also observe that the conclusion for the denominator of the fraction for the PPV is wrong (i.e. it 
actually decreases as well). In total we observed six types of quantity-references (QR), some 
including further subtypes: no reference to any probability or quantity (e. g. “somehow seems logic”, 
QR0), references to one or more probabilities of the test (e. g. true- or false-positive rate, QR11-
QR14), references to one of the joint probabilities (e. g. true- or false-positives, QR21-QR22), 
references to two joint probabilities or joint events with only one of them being relevant (QR31-
QR32) or both of them being relevant (QR33-QR34), description of a direct link between a decreased 
base rate and a decrease PPV without further explanation (QR40) and between a decreased base rate 
and an increased PPV (QR50). The types QR33 and QR34 differ only in their implications on the 
PPV: while both correctly describe the changes in the two joint probabilities, only QR34 draws the 
correct conclusions from it while QR33 doesn’t. In figure 4 we display how we have assigned the 
different observed probability/quantity references to the levels in the SOLO taxonomy.  

Level Observed probability/quantity reference 
No level QR0 and QR50  
Pre-structural QR11-QR14 + QR40 
Uni-structural QR21-QR22 + QR31-QR32 
Multi-structural QR33 
Relational QR34 
Extended abstract No observations. 

Figure 4: Observations of quantity/probability references in the different levels of the SOLO model 

Apart from differences in quantity references we noted further differences and inductively generated 
additional categories to quantify these differences. First, we noticed a difference in the reference to 
the context of the Bayesian situation. While in example 2 there is no reference to the context at all, 
examples 3 and 4 refer to the specific context of the Bayesian situation. Example 1 refers to a more 
general context, as the “precision of the test” is just as suitable for the breathalyzer context as for the 
mammography context. Therefore, we differentiated between the connection of a rationale with a 
specific context with three codes: no context (C0), specific context (C1) and general context (C2). 
Second, we observed a difference in the representation of the described (changed or unchanged) 
quantities/probabilities. In example 2 only percentages are used, in example 4 percentages, references 
to a fraction and absolute frequencies are used. In example 3 probabilities, references to a fraction 
and absolute frequencies are used. For each reasoning we coded if each of the following types of 
representations was used (code 1) or not (code 0): probability (R1), percentage (R2), frequencies 
(R3), fraction (R4), proportion (R5), quota (R6) and size of an area in the unit square (R7). 

Reporting the data within the categories 

Two raters independently coded all 60 reasonings for effects of the base rate change with the coding 
system described above. We report inter-rater-reliability that was assessed for all categories described 
in a first attempt without further training. For the reference to the context Cohen’s Kappa was 0.75 
(95% CI: [0.59;0.9]) and therefore substantial. For each representation an interclass correlation 
coefficient (ICC) was calculated. The ICC for a quota as a representation was poor with an ICC of 
0.381 (95% CI: [0.144;0.577]. Yet, the other representation types were coded with a good to excellent 

Proceedings of CERME12 834



 

 

inter-rater-reliability with a range from 0.687 (95% CI: [0.528;0.8]) for frequency, to 0.92 (95% CI: 
[0.841;0.94] for proportions. For the quantity-representation the Cohen’s Kappa was 0.76 (95% CI: 
[0.63-0.88]). Overall, apart from the coding of the quotas as representation the inter-rater reliability 
seems satisfying. The results of the ratings of both raters are represented in figure 5.  

 Context Representation 

 no 
(C0) 

specific 
(C1) 

general 
(C2) 

prob. 
(R1) 

perc. 
(R2) 

frequ. 
(R3) 

frac. 
(R4) 

prop. 
(R5) 

quota 
(R6) 

area 
(R7) 

No level (25/20) (12/11) (11/9) (2/0) (13/8) (6/5) (6/1) (4/2) (2/0) (3/1) (2/0) 

Prestructural (15/23) (2/9) (10/11) (3/3) (11/13) (8/8) (3/2) (0/2) (1/4) (1/0) (1/0) 

Unistructural (18/15) (1/1) (15/14) (2/0) (10/9) (10/4) (9/11) (3/1) (2/0) (0/0) (1/1) 

Multistructural (1/1) (0/0) (1/1) (0/0) (0/0) (1/1) (1/1) (1/1) (0/0) (0/0) (0/0) 

Relational (1/1) (0/0) (1/1) (0/0) (1/1) (0/0) (1/1) (0/0) (1/1) (0/0) (0/0) 

Figure 5: Number of Answers in each of the categories (rater 1/rater 2) 

Discussion 
Bayesian tasks have so far almost exclusively been studied as tasks of Performance. These tasks are 
known to be difficult and one of the assumed reasons for that is the base rate neglect, thus the 
cognitive error by which the influence of the base rate on the PPV is overlooked. We have introduced 
the concept of Covariation (which is an established dimension of functional thinking) to Bayesian 
tasks. With Covariation tasks in a Bayesian situation one can directly assess the participants’ ability 
to judge the influence of the base rate on the PPV. Asking for a reasoning of the given answer (as we 
did in this study) allows to qualitatively study the participants understanding of the Bayesian 
situation. The coding system which we have introduced in this paper can be of special help when 
teaching about Bayesian tasks, since arguments which belong to the different levels of the SOLO-
model reveal different issues about the understanding of the Bayesian situation. For instance, students 
who reason according to the prestructural level clearly lack an understanding of the Bayesian situation 
itself as they are unaware of the relevant quantities which have to be considered in the particular 
Bayesian task. Therefore, they should revise the basics again (e. g. what sets and subsets are described 
in the situation and how can they be quantified and used to calculate the PPV). On the other hand, 
students whose reasoning belongs to the multistructural level are very well aware of the structure of 
a Bayesian situation. They might only need some support in how to argue about changes in a fraction. 
Thus, the coding system can help to tailor the support to the students’ needs. Moreover, it is evident, 
that the reasoning level in Bayesian situations is generally rather poor with 40 out of 60 students 
whose reasoning remains on the pre-structural level or cannot be assigned to either level. This 
observation confirms prior research about Bayesian reasoning in so far as Bayesian tasks have 
generally been shown to be considerably challenging and counter intuitive without any training.  

A consecutive cluster analysis with the data derived from the coding system together with additional 
information from the study will reveal if and how the levels in the reasoning about Covariation 
coincide with other aspects (e. g. the capability to correctly calculate the PPV or the type of 
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visualization which was used as a supportive tool). This will shed more light on how to successfully 
teach a conceptual understanding of conditional probabilities. 
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reasoning in pupils’ solution to probability comparison tasks 
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In order to foster the learning of mathematics, the teacher must be able to interpret and analyse the 
students’ mathematical activity. This cognitive analysis competence allows the teacher to understand 
the processes of mathematical learning, to foresee conflicts of meanings and to establish different 
possibilities for institutionalising the mathematical knowledge involved. In this paper, we are 
concerned with assessing the initial knowledge and competence of prospective primary school 
teachers in order to analyse responses of primary school pupils when solving urn probability 
comparison tasks. Specifically, we are interested in analysing what degrees of proportional reasoning 
the prospective teachers identify in the pupils’ answers. The results reveal the prospective teachers’ 
limitations for correctly identify proportional reasoning, specially to discriminate additive and 
multiplicative comparison.  

Keywords: Probability, proportional reasoning, specialized probabilistic knowledge, teacher’s 
education, urn tasks. 

Introduction 
A critical issue in mathematics education research is to clarify the type of didactic-mathematical 
knowledge that mathematics teachers should have in order to develop their teaching work in an 
appropriate manner (Chapman, 2014; Mason, 2016). The mathematics education research community 
accepts that teachers should have a certain level of mathematical competence, that is, they should be 
able to perform the mathematical practices necessary to solve the problems that the curriculum 
proposes and to articulate them with the subsequent mathematical contents. Teachers should also 
have a specialized knowledge of the content itself, of the transformations that have to be applied to it 
in teaching and learning processes, and of the psychological, sociological and pedagogical factors, 
among others, that condition these processes. Although the analysis of pupils’ thinking is considered 
one of the main tasks of mathematics teaching, identifying the mathematical ideas inherent to the 
strategies that a pupil uses during mathematical problem solving could be difficult for the teacher 
(Fernández et al., 2013). In this sense, several researches indicate that both pre-service and in-service 
teachers have difficulties to interpret the responses of primary education students when solving 
mathematical tasks involving proportional reasoning, as well as making action decisions based on 
how pupils seems to understand proportionality (Buforn et al., 2020; Fernández et al., 2013). These 
investigations concluded that further research is needed on pre-service teachers’ didactic and 
mathematical knowledge related to proportional reasoning. 

The aim of this work is to assess the knowledge and skills of prospective primary school teachers to 
interpret pupils’ responses to probability comparison tasks, identify incorrect strategies and recognise 
proportional reasoning in their mathematical activity. We address the following research questions: 
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What do prospective teachers understand by proportional reasoning in the context of probability 
comparison tasks? How do they identify and use it to justify their assessment of pupils’ solutions?  

Proportional and probabilistic reasoning are strongly linked; both involve quantitative and qualitative 
analysis, establishing relationships, making inferences and predicting outcomes. The results will 
allow us to design, implement and evaluate training actions to develop these didactic-mathematical 
knowledge and skills in prospective mathematics teachers. 

Previous research 
Proportional reasoning, understood as the ability to establish multiplicative relationships between two 
quantities and to extend this relationship to another pair of quantities (Lamon, 2007), is an objective 
present in the Primary Education curriculum, which integrates both the various interpretations of the 
rational number (ratio, operator, part-whole, measure and quotient) and the ways of reasoning with 
these meanings (up and down reasoning, relational thinking, covariance, etc.). Proportional reasoning 
is “a form of mathematical reasoning that involves a sense of co-variation and of multiple 
comparisons, and the ability to mentally store and process several pieces of information. Proportional 
reasoning is very much concerned with inference and prediction and involves both qualitative and 
quantitative methods of thought” (Lesh et al., 1988, p. 93).  

Extensive research has focused on investigating pupils’ strategies and levels of proportional reasoning 
in the context of probability, mainly in the urns probabilities comparison setting (Bryant & Nunes, 
2012; Cañizares & Batanero, 1998; Langrall & Mooney, 2005; Van Dooren, 2014; Watson, 2005). 
According to Falk et al. (1980), probability can be thought of as being composed of two sub-
constructs: chance and proportion. Various researches in mathematics education reveal that both 
students and teachers have difficulties in applying proportional reasoning in statistical and 
probabilistic contexts (Gal, 2002). Specifically, the lack of proportional reasoning to solve elementary 
probability comparison problems is found not only in students, but also in prospective primary school 
teachers (Contreras et al., 2011; Gómez et al., 2016; Vásquez & Alsina, 2015). Begolli et al. (2021) 
suggest that “prior knowledge of proportional reasoning reveals deeper insights into students’ 
potential for learning about probabilistic reasoning, than prior knowledge of the concept of 
probability itself” (p. 462). For this reason, it is essential that prospective teachers be aware of the 
different components of proportional reasoning and how they appear in probability. 

Didactic-mathematical knowledge and competence model 
The study of the type of didactic and mathematical knowledge and competences that teachers should 
have in order to manage the pupils’ learning process has generated several models that intend to 
characterize such teachers’ knowledge and competences (Chapman, 2014; Hill et al., 2008). In this 
research we adopt the teacher’s Didactic-Mathematical Knowledge and Competence (DMKC) model 
(Godino et al., 2017) developed within the Onto-Semiotic Approach (OSA). The DMKC model 
considers that the teacher should have a common mathematical knowledge regarding a certain 
educational level where he/she teaches, as well as an expanded mathematical content knowledge that 
allows him/her to articulate the content with higher educational levels. In addition, as some 
mathematical content is put at stake,  the teacher should have a didactic-mathematical or specialized 
knowledge of the different facets involved in the educational process: epistemic (institutional content 
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meanings), ecological (aligning tasks according to institutional mandatory curriculum), cognitive 
(understanding student’s thinking), affective (reacting to anguish, indifference, anger, etc., manifested 
by students), interactional (identifying and answering to students’ conflicts and interactions), and 
mediational (choosing the best suitable resources for teaching). In the epistemic facet, the specialized 
knowledge allows the teacher to recognize the diversity of meanings involved, be able to solve the 
task using different strategies and justify the accuracy of the procedures. In the cognitive facet, the 
specialized knowledge guarantees the teacher being able to understand the ways of reasoning, 
difficulties and personal meanings that students may present when working with the specific 
mathematical situation. It makes the teacher competent to identifying possible different solution 
strategies in a probability problem, assessing students’ responses and recognizing the mathematical 
objects involved. In particular, analyzing the proportional reasoning put at stake in the mathematical 
practices involved in their resolutions. This will provide teachers appropriate responses to real 
classroom situations. 

Method 
We performed a content and descriptive analysis of the written solutions to the problem in order to 
classify the responses into different categories building on previous research and refining these 
categories through a cyclical and inductive process; this is typical of qualitative research. This 
research was conducted with 116 prospective primary school teachers (PPT in the following) at a 
Spanish university. During their undergraduate studies, these prospective teachers received specific 
preparation on the epistemic, cognitive, instructional and curricular aspects of teaching statistics and 
probability. Specifically, the intervention was carried out once the training process of the PPTs on 
the main contents of Data Processing, Chance and Probability had been completed. This deals with 
the fundamentals of the Didactics of Mathematics in terms of the main concepts, properties and 
procedures that form the primary school mathematics curriculum, mathematical learning, errors and 
difficulties and instructional aspects (tasks, materials and resources) related to this content. The task 
(see Figure 1) was proposed to the PPTs to be solved individually and voluntarily. The written 
answers of the PPTs to this task were analysed using content and descriptive analysis methods. 

Below you find a problem and some solutions to it developed by primary school pupils. 

In box A two white balls and two black balls have been placed. In box B there are 4 white balls and 4 black balls. 
In which box is there a greater chance of getting a black ball? 

Alba: “In box B because it has 2 more black balls than box A”. 
Daniel: “The same, because in box B there are 2 more white balls, but there are also two more black balls”. 
Lucía: “The same, because in both the white balls are half as many as the black balls”. 
Salva: “The same because in box B the number of white and black balls has been multiplied by 2 compared to A”. 

Justify whether each pupil’s answer seems correct or incorrect and identify proportional reasoning in the pupils’ 
answers. 

 Figure 1: Task proposed to PPTs to assess the analysis of pupils’ solutions to a probability comparison problem 

To assess the cognitive facet of the PPTs’ didactical-mathematical knowledge and competence, we 
proposed to the participants to analyse the correctness degree of different pupils' solutions to a 
probability comparison problem in urns, identifying the proportional reasoning involved or not, as a 
relevant mathematical element of pupils' mathematical thinking when solving this type of task. 
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Notice that Alba’s answer is incorrect, as she only compares the favourable cases, which leads her to 
decide that in box B the probability of drawing the black ball is higher. To Daniel, the probability is 
the same, “because in box B there are two more white balls, but there are also two more black balls”. 
Daniel compares in an additive way the unfavourable cases (white balls) and the favourable cases 
(black balls) of both boxes: as the difference between the unfavourable cases of both boxes and the 
favourable cases of both boxes is the same, two, he concludes that the probability of drawing a black 
ball in both boxes is the same.  This argument is not correct, since it only leads to a right answer in 
the case where the number of favourable cases matches the number of unfavourable cases. In Lucía’s 
solution, it is true that “if the number of unfavourable cases is the number of favourable cases 
multiplied by a scalar (in our case 2) the probability remains constant”. However, it is not true that 
“in both cases the white balls are half of the black balls”. It seems that Lucía confuses “unfavourable 
cases” with “possible cases”. We note that Lucía uses a correspondence strategy (proportional 
reasoning) but the multiplicative relationship that she establishes in one urn to be extended to the 
other is not correct. Finally, to justify that the probability of drawing a black ball in both boxes is the 
same, Salva uses proportional reasoning: the probability, as the ratio between the number of 
favourable and possible cases (favourable plus unfavourable) remains constant if both the number of 
favourable and unfavourable cases is multiplied by a scalar. 

Results 
Of the 116 participants, 100 (i.e., 86.21%) considered Daniel’s answer to be correct, but only 73 
(62.93%) provided some conclusive justification. Table 1 shows that more than half of PPTs 
(50.86%) considered Lucía’s solution to be right, however, just 24 (20.69%) of them gave a clear 
description of why the argument used by this student is appropriate. Of the 84 (i.e. 72.41%) PPTs 
who explained why they considered the solution given by Salva to be correct or not, 78 (67.24%) 
considered it to be correct and only 6 (5.17%) considered his argument to be inadequate (they believe 
that it is only valid in this particular case or that he should have relied on the use of Laplace's rule). 
In addition, two PPTs considered all pupils’ answers to be correct, without justifying their assessment. 
These two PPTs were the only ones who implicitly considered Alba’s solution being right, for which 
106 (91.38%) PPTs justified her error.  

Table 1: Frequencies (percentages) in the assessment of the correctness degree of pupils' responses 

 Alba Lucía Daniel Salva 
No answer/Not conclusive evaluation 10 (8.62) 35 (30.17) 34 (29.31) 32 (27.59) 
Pupil’s solution correct 0 (0) 24 (20.69) 73 (62.93) 78 (67.24) 
Pupil’s solution incorrect 106 (91.38) 57 (49.14) 19 (16.38) 6 (5.17) 
Total 116 (100) 116 (100) 116 (100) 116 (100) 

In view of the interest of this paper, of the arguments used by PPTs to justify their assessment of 
primary school pupils’ answers as correct or incorrect, we focus our attention on those evaluations 
that refer to the presence or absence of proportional reasoning (see Table 1). This will give us useful 
information about what prospective teachers understand by proportional reasoning in the context of 
probability comparison problems and when and how they identify it in the pupils’ responses. 
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As we see in Table 2, eleven PPTs consider that comparing only favourable cases in an additive way 
shows an absence of proportional reasoning in Alba’s strategy, which they interpret in the context of 
probability as the ability to establish a proportion, or to establish a multiplicative relation/comparison. 
For example, PPT41’s answer: 

PPT41: I have been able to identify proportional reasoning in pupils who think that there is 
the same probability due to the fact that the number of balls in one box is 
proportional to the number of balls in the other box. Error that Alba may have made 
is assuming that because there are more black balls in one box than in the other, 
there is a much higher probability of getting a black ball, regardless of the number 
of white balls.  

Table 2: Reference to proportional reasoning in the PPTs’ assessment of pupils’ solutions 

Student Reference to proportional reasoning  Frequency 
Alba 
 

Lack of proportional reasoning (multiplicative comparison, covariation) as a 
cause of error 

11 

Evidence of proportional reasoning understood as a “more, more” type 
comparison  

7 

Evidence of proportional reasoning understood as an additive comparison 3 
Lucía 
 

Evidence of proportional reasoning (multiplicative relationship) leading to the 
conclusion that there is the same probability  

31 

Inadequate or incomplete proportional reasoning (multiplicative relationship) 
as a cause for her error  

10 

Daniel Proportional reasoning (proportion, equivalence of fractions) as a guarantee of 
successful response 

19 

Salva 
 

Proportional reasoning (proportion, equivalence of fractions) as a guarantee of 
successful response  

13 

Proportional reasoning (multiplicative relation, variation) guarantee of 
successful answer  

26 

Furthermore, we note that seven PPTs of the 106 that identify and justify Alba's answer as incorrect, 
identify proportional reasoning like a “more, more” type comparison.  See for example, PPT52’s 
answer: 

PPT52: […] In Alba's solution, a proportional reasoning can be identified, since the student 
observes more balls in box B and therefore thinks that there is a higher probability 
of drawing one in this box.  

Three other PPTs also identify proportional reasoning in Alba's incorrect answer, which they interpret 
as an additive relationship. For example: 

PPT110: In Alba's answer we can notice some proportional reasoning, she has taken into 
account the increase of two balls in the black colour [...] That would explain her 
mistake, to have thought proportionally in only one colour. 

Likewise, other participants contemplate that Lucía has an error due to the use of proportional 
reasoning when it was not appropriate (“the main error refers to using proportional reasoning when 
it was not appropriate to do so”, PPT24). They consider that the most suitable strategy is to stablish 
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an additive comparison. In this sense, the analysis of the PPTs’ reports shows that several participants 
show inadequate knowledge of proportional reasoning because they consider it in terms of additive 
comparisons. That is the case of PPT18:  

PPT18: We can say that proportional reasoning is found in the following three answers 
[referred to Daniel, Lucía and Salva], in all three the same amount is added or taken 
equally in the two boxes. There is the same probability in box A as in box B.  

Furthermore, 22 PPTs points out that pupils correctly apply proportional reasoning when they 
understand and use relevantly the equivalence of fractions and employ it to calculate and compare 
probabilities. They consider this leads to success for Daniel and Salva in their response. For instance, 
PPT38: 

PPT38: Regarding proportional reasoning, I identify it in two cases, Daniel and Salva, since 
both have taken into account the equivalence of fractions. Thus, they have observed 
that in box A there are 2/4 white and 2/4 black, while in box B there are 4/8 white 
and 4/8 black, which means that the probability in both cases is the same.  

To 50 (i.e., 43.10%) of the PPTs, proportional reasoning is involved in those pupils’ answers in which 
a multiplicative comparison is established (see Table 2). This is observed in the evaluations of Lucía 
or Salva:  

PPT11: Lucía has reasoned that in box A, there are half as many black balls and half as 
many white balls as in box B. She aimed to say, in some way, that the quantity in 
one box and the other changes proportionally.  

PPT45: Salva uses proportional reasoning because he says that in box B both black and 
white balls have been multiplied by two with respect to box A.  

As we can see, PPT11 and PPT45 consider the multiplicative relation between the favorable cases 
(and unfavorable cases) of both boxes. Other participants look at the correspondence within each of 
the boxes to ensure the same probability. For instance, PPT38 considers "there is the same number of 
both white (2) and black (2) balls in box A and, also the same number of white (4) and black (4) balls 
in box B, so the ratio is maintained and the probability is the same". 

In summary, we have noticed that, a high-rise percentage of prospective teachers consider 
proportional reasoning to be based on "more …, more …" relationships (these descriptions appear in 
23.91% of the occasions in which PPTs identify proportional reasoning). Besides, even when some 
prospective teachers discriminate between additive comparisons and multiplicative comparisons, 
they do not always properly describe the multiplicative relationship, or the magnitudes involved in 
the proportionality correspondence. That is, they do not always correctly establish a multiplicative 
comparison between the ratios of favorable and unfavorable cases (or of favorable and possible cases) 
within both boxes, or between the ratios of favorable cases between the boxes and of unfavorable or 
possible cases between the boxes. Furthermore, some participants, consider that the establishment of 
a multiplicative relationship only between favorable cases or (also solely) between possible cases is 
sufficient to identify proportional reasoning and respond successfully to the task.  
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Implications for teaching and research 
“The identification of the relevant mathematical elements in a problem and the interpretation of how 
they are present in the students’ answers allow prospective teachers to be in better conditions to make 
relevant instructional decisions and help students develop their proportional reasoning” (Llinares, 
2013, p. 81). Hence to interpret different pupils’ solution to a probability comparison task by 
recognising how proportional reasoning is involved in their answers, can help to enhance prospective 
teachers’ didactic-mathematical knowledge and competences (especially in the cognitive facet) 
regarding this topic. 

Our results show the need to strengthen teachers’ education in relation to the connection between 
proportional and probabilistic reasoning. Prospective teachers find limitations in identifying and 
justify possible erroneous strategies behind pupils' incorrect answers. A biased or insufficient 
knowledge of proportional reasoning could explain why PPTs do not identify it in the incorrect 
answers and when they do, they show errors when interpreting the proportionality relationship and 
the properties that characterise it (Burgos & Godino, 2021).  

We think that our results provide additional valuable information for the design of materials in teacher 
education programs that consider the characteristics of prospective teachers’ understanding of 
proportional reasoning in probability tasks. First, to guarantee that prospective teachers are able to 
recognize and respond to students' errors, teacher education programs should develop a deep 
understanding of the conceptual, propositional and argumentative components of proportional 
reasoning involved in probability setting.  On the one hand, proportional reasoning is an integral part 
of probabilistic reasoning. But on the other hand, probability is an enabling environment for future 
teachers to overcome a limited view of proportional reasoning linked to solving missing-value 
problems. “Balancing the amount of probability instruction with proportional reasoning instruction 
may be more successful than teaching only about probabilities” (Begolli et al., 2021, p 463). 
Therefore, specific actions should be designed in teacher training to reinforce the structural 
components of proportional reasoning by integrating it with probabilistic reasoning. 
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This paper presenting one aspect of a design-based research project examines the development of a 
teacher’s noticing skills in the context of data analysis and interpretation during her involvement in 
an online professional development program (OPD). For this purpose, the noticing skills of the 
teacher for the strategies used in the given students’ responses were identified according to the 
modified version of the Jacobs et al.’s (2010) framework. By examining the teachers’ discussions in 
the OPD, how the teacher’s noticing expertise evolved throughout this process was investigated. 
Findings show that the teacher had difficulties in each interrelated skill of noticing at first. However, 
enhancement in her noticing of students’ thinking in the context of data analysis was observed 
throughout her participation in the OPD. 

Keywords: Collaboration, data analysis and interpretation, online professional development, teacher 
noticing 

Teacher noticing, which is a key part of teaching expertise (van Es, & Sherin, 2021) and has been a 
prominent construct in the mathematics education literature for the last 20 years, is generally defined 
as all the processes that teachers engage to deal with the ongoing information in the classroom 
(Sherin, Jacobs, & Philipp, 2011). Teacher noticing is essential for efficient instructional practice 
(Blömeke et al., 2015) and has a direct influence on students’ learning (van Es & Sherin, 2021). 
Although different conceptualizations exist about teacher noticing, researchers generally regard it as 
including two main processes: paying attention to and making sense of the notable situations in the 
classroom (Sherin et al., 2011). Jacobs and her colleagues (2010) add one more process to the above 
description, which is decision-making. Furthermore, they focus particularly on noticing students’ 
mathematical thinking, which is an essential practice to promote students’ learning (National Council 
of Teachers of Mathematics [NCTM], 2014).  

Despite the value of teacher noticing, the relevant studies suggest that noticing is not an innate ability 
and the teaching experience alone does not provide sufficient improvement (Jacobs et al., 2010). 
Therefore, researchers attempted to develop teachers’ noticing skills through variety of ways. For 
instance, Fernandez, Llinares, and Rojas (2020) showed evidence of enhancement in prospective 
teachers’ noticing skills through sharing narratives about their own practices in an online forum and 
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collaborating with their partners and tutor. Moreover, Fernandez et al. (2020) and several other 
researchers (e.g. Klein, Fukawa-Connelly, & Silverman, 2017) agree that online systems “slow down 
the process of learning” (Clay, Silverman, & Fischer, 2012, p. 762) by giving teachers extra time to 
reflect on the situations, which allows them from different contexts to collaborate around instructional 
situations. The necessity for such environments has been felt even more during the COVID-19 
pandemic. Taking into account the advantages of online environments for teachers’ professional 
development and its particular need during the pandemic, in this paper, we report one aspect of a 
larger research project which aims to support middle school mathematics teachers’ noticing skills of 
students’ mathematical thinking through their involvement in an Online Professional Development 
(OPD) program. 

Although we focus on various mathematical contents in the project, the specific domain of students’ 
mathematical thinking considered in this paper is about analyzing and interpreting data which is the 
core process of the statistical reasoning (Jones et al., 2004). More specifically, this process includes 
“recognizing patterns and trends in the data and making inferences and predictions from data.” (Jones 
et al. 2004, p.103). In this research paper, our aim is to examine to what extent a middle school 
mathematics teacher attends to and interpret students’ inferences from a given data and how the 
teacher base their decisions on students’ understandings. Moreover, we are interested in how the 
teacher’s participation in the OPD could support the development of her noticing skills. In other 
words, the following research question guided the research study: How do a middle school 
mathematics teacher’s noticing of students’ thinking in the context of analyzing and interpreting data 
develop throughout her involvement in an online professional development program? 

Alternative to the studies that use online systems for developing teachers’ noticing skills (Fernandez, 
Lilinares, & Valls, 2012; Fernandez et al., 2020), synchronous modes of communication were also 
used in the present study. Furthermore, in this research, we work with in-service teachers who have 
less than 15 years of experience. By this way, we have a chance to investigate novice teachers’ 
development of noticing skills regarding students’ understanding through collaboration with other 
colleagues from different schools across Turkey. Lastly, we particularly focus on the content of data 
analysis and interpretation, which gets relatively less attention in the available literature. Hence, this 
study may provide valuable information to the teacher noticing literature about the nature and 
development of middle school mathematics teachers’ noticing skills in the context of data analysis.  

METHOD 
This study is part of a large research project, which adopt design-based research as its methodology 
(Bakker, 2018). However, in the current study, we limited ourselves to a teacher, Aslı, as our case 
and examined how her noticing skills developed during her participation in the OPD.   

Participants  

The teacher Aslı was selected among the project participants who are 35 middle school mathematics 
teachers whose professional experience did not exceed 15 years and working in public schools in 
different cities of Turkey. We selected Aslı, who has 8 years of teaching experience, for this study 
because she was one of the very active teachers in the OPD. She tried to enhance collaborative 
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discussion environment by challenging the other teachers through her questions and making 
comments to their opinions.   

Data collection 

The data of the study was collected through the basketball problem, shown in Figure 1 below. This 
item was adapted by Gökce (2019) from the work of McGatha, Cobb and McClain (2002). In the 
problem, the scores of two basketball players were given during the last 10 games and the students 
were asked to decide which player the coach should choose. To decide, students should analyze the 
given data by using appropriate measures of central tendency and variability, and interpret the results 
in the given context. Research suggests two strategies that students generally use while answering 
such comparison questions. Therefore, student responses including those strategies are provided 
under the problem to examine how teachers notice them. As shown in Figure 1, Student 1 (S1) chose 
Barış by focusing on the mean score of each player. Her reasoning was partially correct since she 
ignored the variability of the given data. On the other hand, Student 2 (S2) also chose Barış by only 
focusing on the scores above a certain value, 15. Since he ignored the data less than 15, reasoning of 
S2 was not correct.  

 
Figure 1. The basketball problem 

To determine the teachers’ noticing skills before the discussions held in the OPD, teachers were asked 
to answer three questions suggested by Jacobs et al. (2010) based on the given cases. Subsequently, 
the basketball problem was discussed in the OPD with all teachers and research team during 3 weeks 
period. To summarize the discussion in the OPD, a synchronous session was conducted by the 
facilitator, a member of the design team and researcher who has many research studies on statistical 
thinking. In that session, teachers were expected to ask any questions they have in their mind 
regarding the problem and state their opinions regarding the online asynchronous discussion held 
among the teachers. Moreover, the facilitator mentioned some big ideas, such as the importance of 
the context in interpreting the given data, that did not get enough attention in the discussion. Lastly, 
semi-structured interviews were conducted to get in-depth information regarding the change in 
teacher’s noticing skills after asynchronous and synchronous discussions. Teacher Aslı’s written 
answers about two students’ strategies, participating teachers’ comments in the asynchronous 
discussion held in the OPD and summary session, and Aslı’s interview transcripts were constituted 
the data for this study.  
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Data Analysis 

For the analysis of the data, the theoretical framework by Jacobs et al. (2010) was modified by taking 
into consideration the data collected and the Teacher Recognition Skills framework developed by 
Kilic and Dogan (2021). Accordingly, while teachers’ attending skills was examined at four levels, 
the skills of interpreting students’ understanding and deciding how to respond were examined at five 
levels. In particular, teachers' attending skills, the ability of teachers to identify the mathematical 
details in students’ strategies, were categorized as No Attempt, Lack, Limited and Robust Evidence 
as different from Jacobs et al.’s (2010) framework. For interpreting skill, identification of students' 
understanding based on their strategies, one more category, Substantial Evidence was added to the 
categories of attention. In relation to the last skill, the teachers’ ability to base their decisions on 
students’ understandings, were not evaluated as lack, limited and robust. Instead, categories named 
as No Attempt, Ignorance, Questioning, Challenging and lastly Responding to child and 
Incorporating were used based on the data. Based on this framework, we firstly determined the 
noticing skills of teacher Aslı. Then, by examining the teachers’ discussions in the OPD and the 
interview of Aslı, we tried to find evidence in the development of her noticing skills and how those 
developments occurred.  

Findings 
In this paper we aimed to examine the development of a teacher’s noticing skills during her 
involvement in the OPD program. Below, teacher’s responses and the changes in her ideas during 
and after the discussions in the OPD will be provided for each noticing skill, respectively. 

The teacher’s evolving expertise in attending and interpreting skill 

The below response presents teacher’s attention to the given students’ strategies before the discussion 
in the OPD:  

Aslı:  For S1, mean is the best way while comparing two groups. For S2, if the range is 
too much among the given data, it is correct to use median and the data which are 
above the median. We can say that statistical reasoning of S2 was correct if we just 
evaluated the player Barış. However, if the range is not too much while comparing 
two groups, as in the two groups in this question, comparison using mean will be a 
better approach just like S1 did. (Pre-test) 

In this response, teacher attended that S1 used mean while comparing two groups, but she could not 
notice that S1 did not consider the variability while interpreting the given data. In other words, since 
she could not attend all the details in S1’s strategy, she evaluated her reasoning inaccurately. The 
teacher managed to attend S2’s reasoning as not correct; however, she focused on a concept, median, 
which was not used by the student. For these reasons, the level of teacher attention to the given student 
strategies was coded as lack. 

Aslı began the discussion in the OPD with the same arguments in the pre-test . Following her 
comments in system, the below discussion held among some teachers.   

T1:  …I believe that S2 chose Barış by considering the mode of the given data. Even 
though the answer of S2 is correct, I do not think that his reasoning is true.  

Aslı:  If S2 used the mode of the given data, should not he consider 18 [the mode of the 
data for Barış]? If S2 were to use mode, did not he say that 18 repeated much in the 
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given situation; thus, I choose Barış? I thought that since the sixth data is 15 when 
all of them are ordered, S2 focused on the median of the given data. 

T1:  I stated that S2 used the mode by grouping all the data, which are above 15. I do 
not think that we can take 15 as median since there are 10 games in total.  

T3:  Differently from above discussion, I think that neither S1 nor S2 reasoned correctly 
about this question. S1’s reasoning is missing since she does not know that it is not 
enough to just look at one central tendency when the averages are so close to each 
other. In here, she should look at the ranges of the given data additionally.  I could 
not understand which statistical concept S2 used with his statement of ‘15 and more 
points’. I do not think that he used the mode or median as mentioned in above 
comments.  

Since teachers could not agree on evaluating S2’s strategy, facilitator posed some questions to let 
teachers think and interpret the meaning of mode and median for the given data sets.  After a long 
discussion in the system, teachers agreed that S2 did not use the concepts of mode or median, but 
simpler reasoning. In other words, they agreed that he only concentrated on the highest points in the 
given data. The following comment of Aslı in the discussion indicated that teacher’s expertise in 
attending S2’s strategy improved after this fruitful discussion.  

Aslı:  I believe that to organize data by grouping (She means to group the data with respect 
to highest and lowest scores) is correct to understand the nature/tendency of the 
data. However, it is missing. This is also valid for S2. While thinking the scores 
which are above 15, the data which are below 15 were lost.  (Discussion) 

When the data was analyzed in terms of interpreting skills, again her response indicated the lack of 
evidence in interpreting the students’ mathematical understanding. The following response was 
received before the discussion in the OPD when Aslı was asked to interpret the students' mathematical 
understanding by considering the given students’ strategies:  

Aslı:  For S1, the mean; that is, all values in the data group, is important because it is 
affected by the change of each data. For S2, on the other hand, if the difference 
among the data is high, to look at the median and the data above the median is a 
more accurate way to interpret the data. Because of the skewed distribution of the 
data , looking at the median is the most useful method for S2. (Pre-test) 

Although teacher thought that S1considered the importance of all data, S1’s solution is not enough to 
make this claim. For S2’s strategy, the teacher again focused on the concept of median as she attended 
in the first question. She argued that S2 knew to use the median when the data set is skewed; which 
indeed cannot be concluded from the student’s strategy. Furthermore, the teacher did not mention 
variability or representativeness while interpreting the students’ mathematical understanding.  

When teachers were asked to interpret students’ mathematical understanding in the given student 
responses in the OPD, Aslı’s comment was as follows: 

Aslı:  S1 used only the mean when comparing the data groups, but did not include the 
concept of range, she should interpret these two concepts together. In S2's 
interpretation, grouping (She means to group the data with respect to highest and 
lowest scores) can be used to organize the data, but it is insufficient on its own for 
data analysis. It is seen that S2 has no knowledge of the concepts of mean, median, 
and range when looking at the solution. I think that the starting points of both 
students' reasoning are correct, but they are insufficient. To interpret the data with 
a single concept will not be sufficient in data analysis. (Discussion) 
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Most of the other teachers agreed with Aslı’s comment in the following parts of the discussion. It was 
observed that Aslı mentioned the concepts of mean and range, which are necessary to interpret the 
mathematical understanding of the S1’s strategy. For S2, teacher gave up her idea of median. Since 
teachers did not focus on the meaning that S1 attributed to the mean, facilitator let teachers discuss 
this through her questions. After this discussion, she interpreted S1’s strategy by referring to the 
concept of representativeness during the interview while she did not mention it in her first comment 
in the OPD. Lastly, Aslı’s following expression regarding her own development gave us one more 
evidence that discussions nurtured her interpreting skills of students’ understanding.  “The 
discussions in the OPD enabled us to brainstorm. It made me realize some new ideas. In particular, I 
became aware of the concept of range for this question”. 

The teacher’s expertise in deciding skill 
Before the discussion in the OPD, Aslı responded her next instructional moves as in the following:  

Aslı:  To show that both students’ reasoning can differ with respect to the different 
situations, I give two data sets whose ranges are high and low and I ask which 
student is more successful. For example, 

  Case 1: Ayşe’s savings during five months: 10, 50, 90, 90, 100 (Mean=68) 
  Case 2: Ali’s savings during five months: 70, 80, 85, 85, 100 (Mean=84) 

If we look at the mean, we interpret correctly and say that Ali is more successful. I 
can relate this question with the given problem situation by stating that it is not 
correct to say that Ayşe is more successful since she has 3 data which are above 90. 
(Pre-test) 

During the interview, Aslı stated that she would use the above example for S2. Since Aslı believed 
that the use of mean is better for this problem, she asked such a question to S2 so that student can 
realize that he should use mean while answering this question. In other words, her aim of asking this 
question is to lead S2 to the teacher’s correct answer. In addition, Aslı added some questions to 
understand both students’ strategies better such as “Why did you use 15 in your answer?” or “Why 
did you use the mean?”. For these reasons, the level of her expertise in deciding how to respond based 
on the given students’ strategies were determined as questioning.   

On the other hand, Aslı began the asynchronous discussion held in the OPD with the argument below:  
Aslı:  S1 should feel the need to look at the range while interpreting the data. So, for this 

purpose, I would ask which players she would choose if the mean of them were 
equal. Similarly, I would ask S2 which players he would choose if the number of 
data, which are above 15, were equal. My aim in this part is S1 and S2 should notice 
that their reasoning is missing and only one method is not enough while analyzing 
data. (Discussion) 

Different from her first comment in the pre-test, Aslı asked some probing questions for S1 to let her 
notice that she should consider the variability of the given data. In the same way, the questions for 
S2 were to guide him to consider the data which are below 15. In other words, the teacher started 
challenging students, a higher level in the framework, to make them realize that their reasoning is 
underdeveloped. Although Aslı did not provide any explanation regarding how to guide S2 to the use 
of average in her first comment in the OPD, she offered some ways for this aim after the facilitator’s 
question. During the discussion in the OPD, most of the teachers agreed with the Aslı’s first comment. 
On the other hand, during the interview, when she was asked about her next problems to the students 
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after the basketball problem, she stated that “I again present a problem that students can provide 
different comments…Indeed, I would change the context. However, the characteristics of the data 
would be the same so that to calculate just the mean would not be sufficient.” With this description, 
we can say that the teacher thought providing new contexts for students. However, her aim seems to 
make students practice the ideas discussed in the given problem, not to emphasize the importance of 
the context, which was discussed by the teachers and facilitator during the synchronous session.  

Discussion  
The case of Aslı was presented to illustrate that the OPD can help teachers in their development of 
noticing skills. At the beginning, the teacher had difficulties in each interrelated skill of noticing. 
However, the findings showed enhancement in her noticing of students’ thinking in the context of 
data analysis throughout her participation in the OPD. During the discussion, teachers had a chance 
of observing different ideas, posing questions, and making suggestions to each other. Also, the 
facilitator let teachers focus on the important concepts through her prompts. All these interactions 
might direct the teacher’s focus on students’ mathematical thinking deeply as consistent with the 
study of Fernandez et al. (2020). In other words, it can be inferred that the collaboration among the 
teachers and the facilitator throughout the discussion might allow the teacher to attend the details of 
the given strategies and interpret students’ understanding by covering all the essential concepts such 
as variability and representativeness. Moreover, the teachers were provided with two students’ 
strategies and the solution of S2 was particularly challenging and unfamiliar for the teachers. This 
could have led the discussion environment to be more productive, which in turn might have increased 
the collaboration among teachers.  

Another factor contributing to the development in the teacher’s noticing skills could be the 
asynchronous nature of the OPD. Clay et al. (2012) argues this mode of communication slows down 
the process of learning, which could enable teachers spent more time to consider and revise their 
ideas (Fernandez et al., 2012; Klein et al., 2017). Indeed, this was shown by Aslı’s one of the 
statements during the interview: “Discussions in the OPD provided us to think more on the students’ 
answers.” Thus, asynchronous modes of communication provided via the OPD might play an 
effective role in developing the teacher’s attention to the given task; leading fruitful communication 
among teachers which in turn enhance her noticing skills.   

Although there was clear improvement in attending and interpreting skills of the teacher, deciding 
how to respond based on students’ understandings was more difficult for her. Preceding the 
discussion, the teacher’s questions were like directing students to the correct answer which was also 
observed by Klein et al. (2017). Even though the teacher suggested asking probing questions to 
challenge students throughout the discussion, she had difficulty in extending students’ understanding 
to a further point after the discussions. Although some new ideas were presented by the facilitator 
during the synchronous session such as the use of graphical representations of the data presented in 
the basketball problem and the importance of context for interpreting data, these ideas were not 
reflected in the teacher’s responses during the interview. Therefore, in future research, we suggest 
carrying such specific ideas into the OPD to enable teachers create more productive discussion 
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environment for the deciding skill. Lastly, it would be good to examine how the teachers’ evolving 
expertise is reflected into her instructional practices in further research studies.  
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In Hungary, teaching of statistics has been part of the curriculum for only 20 years. The introduction 
has been gradual: while the earlier curricula aimed at a low level of statistical literacy, the recent 
curricular changes have moved to a higher level. Despite initial difficulties, the subject is now 
popular with students and teachers alike. To maintain this, it is important that teachers are given 
adequate support to teach statistics at a higher level. In this article, we describe the development and 
current situation of teaching statistics in Hungary, and the research and development activities that 
have been taking place in this field. We examine whether teachers' attitudes, skills and interest in 
statistics (education) are congruent with the development of the statistics curriculum in Hungarian 
schools. 

Keywords: Statistic education, curriculum development, teacher attitudes. 

Introduction, theoretical framework 
There is a wide range of international literature on the development and teaching statistical literacy. 
Developing statistical literacy is an important task for schools in our data-driven everyday lives 
(Watson, 2003a). Secondary schools play an important role and offer many opportunities in this 
process (Watson, 2003b).  Over the last 20 years, there has been a growing demand for education to 
focus more on statistical literacy, reasoning and thinking (Ben-Zvi & Garfield, 2004). However, it is 
not unique that statistics education is nevertheless often simply a matter of learning and practising 
definitions and new procedures, without the need for a deeper understanding of the underlying 
concept (Batanero & Borovcnik, 2016). The term statistical literacy increasingly carries the 
connotation that an individual can be goal-oriented in a specific field, rather than simply acquiring 
basic knowledge (Gal, 2002). In recent years, the critical handling and interpretation of data has also 
become emphasised in terms of growing up and taking responsibility (Schiller & Engel, 2018). 
Another important task related to this topic is designing curricula around statistics and the targeted 
organisation of classroom procedures (Ridgeway, 2015). Examining teachers' skills and attitudes 
towards teaching statistics in primary level (Chick & Pierce, 2008) and secondary level is a crucial 
phenomenon for development. 

In Hungary, statistics was introduced as a separate subject in secondary education in the 1950s, but 
only in vocational schools (Tóth, 2006). In secondary grammar schools, the subject of statistics did 
not appear in the final exam requirements before 2000.  However, in the last 20 years, there have 
been many changes in this field in Hungary. In this essay we present a brief history of the topic, the 
current situation and possible directions for further development. First, we would like to demonstrate 
the changes in the curriculum, then we analyse the requirements of school-leaving examination, and 
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finally introduce the results of a teacher survey. In this way, we aim to provide a complex picture of 
the circumstances of statistics education in Hungary today. 

As for the possible way forward, several doctoral research projects have currently been dealing with 
the teaching of statistics in Hungary, and this is one of the main elements of a four-year research 
project launched by the Hungarian Academy of Sciences in September 2021. As an essential element 
of the thorough investigation of sources conducted by the authors of this article, a system for defining 
levels of statistical literacy has also been developed. The system defines 3 levels, grouped according 
to statistical content (measures of central tendency and variability, charts). The first level is 
characterised by the application of basic conceptual knowledge and the ability to perform simple 
calculations. The second level is characterised by the skill to solve more complex, multi-step tasks, 
and to compare and contrast them. The third level is characterised by reasoning, argumentation, 
generalisation and abstraction. Considering that the incorporation of elements of statistical literacy is 
still at an early stage, 3 levels are sufficient to describe the characteristics currently want to be 
observed. 

Development of teaching statistics in Hungary since 2000 
In order to understand the changes in teaching statistics, we will examine different segments of 
education: the official curricula, the requirements and tasks of the final examination (which have a 
greater impact on the content of education than the curriculum itself). 

Curricula 

In Hungarian public education, teaching statistics was not included in the requirements at all in the 
20th century. The first time when statistical knowledge appeared within mathematics was in the 
framework curricula of the National Curriculum, which were prepared in 1995 and came into force 
in 20001. Since then, the National Curriculum and the framework curricula have undergone several 
major and minor changes (one major change in 2012, the other in 2020). The 2000 (Sajtóiroda, 2004) 
and 2012 framework curricula (Oktatási Hivatal, n.d.) had very similar requirements within the 
subject of statistics. In grades 1–4, the requirements included collecting data, making tables and 
graphs, reading and interpreting them; interpreting the arithmetic mean of some numbers, introducing 
the concept of "average", using it to characterise sets of data. In grades 5–8, the pie chart, the mode, 
the median and the analysis of data sets were also introduced. In addition, in grades 9–12, the ability 
to measure the standard deviation of data, to know the sampling with or without replacement and to 
solve problems related to them.  

The 2020 framework (Oktatási Hivatal, n.d.) has introduced significant changes in several aspects, 
mainly in the requirements for secondary schools. In grades 9–10, the interpretation and evaluation 

 
1 In Hungary, since 2000, the content of teaching and learning in schools has been determined by a three-tier curriculum 
regulation, as prescribed by law. The top level of regulation is the National Core Curriculum. The second level of content 
regulation is the framework curricula, which provide both curricular and methodological support. The third, local, level 
of regulation is the pedagogical programme of the schools and the local curriculum drawn up by the teachers in the 
schools. 
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of data, the drawing of simple statistical conclusions, the choice of the appropriate type of graph to 
represent a specific set of data and to answer a statistical question, the creation and reversal of a pie 
chart into a bar chart, the recognition and correction of graphical manipulations in graphs are new 
items. Also new materials in grades 11–12: visualisation of the concept of a representative sample; 
classification and characterisation of statistical data using quartiles, means and scatter; construction 
and use of box-plot diagrams; interpretation and evaluation of data, statistical inference; recognition 
of statistical manipulations in graphics and text. 

In addition to the changes in content, another important difference is that the 2020 framework 
proposes significantly more time (more than 50% more than in the 2012 curriculum) for teaching 
probability and statistics.  

Requirements and tasks of the final exam 

One of the characteristics of Hungarian mathematics education is that classroom practice is 
influenced more by the requirements and tasks of the final exams than by the curriculum itself. In 
Hungary, a new final exam2 system was introduced in 2005 (Csapodi, 2016). The requirements for 
the intermediate level exam were determined by the content of the National Core Curriculum and the 
basic curriculum, while the requirements for the advanced level exam were more in line with the 
needs of higher education. Changes in the curriculum are of course always followed by changes in 
the requirements for the final examination. Knowing that the secondary school curriculum devotes 
9% of the available time to probability and statistics, it is interesting to see that the examination 
requirements of these topics in the examination papers for the baccalaureate are 15%, which is much 
closer to the 12% timeframe in the new curriculum. 

The current requirements for the exam are generally quite simple, falling into level 1 mentioned in 
the introduction: the ability to draw pie charts and bar graphs and to read data from them; to calculate 
mean, mode, median and standard deviation. The only requirement that goes perhaps a little beyond 
these is to be able to compare data sets using the statistical indicators learned. 

Due to the changes in the curriculum in 2020 and the increase in the time available for teaching 
statistics, the requirements for the baccalaureate will also change from 2024. In addition to the 
previous requirements, the concept of quartiles and box-plot diagrams will be introduced, but more 
importantly, the requirements include the ability to choose the appropriate diagram for the situation 
and to argue for the choice, and at advanced level the ability to choose a mean value that well 
characterises the data set, to argue for the choice, and to evaluate and analyse the statistical indicators 
obtained and to draw statistical conclusions. These are a very big changes from the more traditional 
closed-ended tasks in Hungary. 

Looking at the sets of tasks over the last 15 years, we see that the tasks on statistics do not go beyond 
level 1 of statistical literacy (the level system mentioned in point 1), as required: making simple 
diagrams, reading data from diagrams, calculating means and dispersion coefficients. The evaluation 

 
2 By final exam we mean an exam that is to be performed by those who leave secondary school at the age of 16 or 18, 
before entering higher education. This type of exam is also called matura, baccalauréat or graduation exam. 
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of the results obtained, and the analysis of the data have not been included in the questions so far. In 
the 50 or so sets of intermediate level questions that have been used since the introduction of the new 
examination system, there are few that require more complex thinking. 

Research on the detailed analysis of final exams (Csapodi, 2016; Csapodi & Koncz, 2016) show that 
students at both levels are successful in solving statistics problems and, where there is an opportunity, 
they are willing to choose the corresponding problems3. Knowing that statistics is a relatively new 
subject in schools, there are two possible explanations for this. It is possible that the statistical literacy 
of teachers (see the results of the teacher survey later) and the available teaching materials have 
improved as well. On the other hand, we have also seen that, out of understandable caution, the 
requirements for these subjects only ask candidates to demonstrate basic knowledge. One of the 
consequences of this is that the examination requirements for these subjects from 2024 onwards will 
require a greater amount of knowledge and more complex competences from candidates than in the 
past, albeit to a lesser extent.  

RQ 1. Whether or not teachers’ attitudes, skills, and interest in statistics (education) are congruent 
with the development in the curriculum of statistics at Hungarian schools? 

RQ 2. What is the attitude of Hungarian math teachers to further expansion of the statistical 
curriculum? 

Methodology 
Designing the teacher questionnaire survey  

In connection with the current changes, we have conducted a survey for research purposes, involving 
secondary school teachers. As a research method, a questionnaire survey was chosen due to the 
uncertainties of the epidemic situation. This quantitative research method is easy to conduct online, 
and the results can also be evaluated in this form. The aim of the survey was to obtain information on 
the studies, attitudes, and classroom habits of teachers in the field of teaching descriptive statistics. 
Taking these details into consideration, further education and development opportunities should 
become more targeted, both in terms of teacher education and teacher training.  

The questionnaire consisted of four main parts: background data on the respondents; rating of 
statements on a 5-point Likert scale in 2 groups of questions: (1) How much do they agree with the 
given statements about the teaching of statistics? (2) To what extent do they feel that the given 
statements about the teaching of statistics are true for them? The fourth part of the questionnaire 
measured the popularity of teaching particular mathematics areas. A total of 28 statements were 
assessed in parts 2 and 3. The main statements: 7 + 6 + 7 statements were included for basic attitudes, 
assessment of students' knowledge, and framework knowledge. The sub-statements: 3 + 3 + 2 
statements are listed in order of opinion on the working methods used, about the assessment and the 
current requirements. The questionnaire was tested on a small sample, using convenience sampling. 

 
3 It is not necessary to solve all the problems in the exam to get the maximum score, both at intermediate and at advanced 
level students can skip one of the exercises. 
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Results of a teacher survey 

The questionnaire for an online survey was completed by 181 teachers. Although the survey is not 
representative, we can say in terms of background data, that the composition of the respondents is 
similar in terms of both settlement type and school type to the proportions measurable in the society 
of Hungarian teachers. As far as professional background is concerned, more than 80% of respondents 
have been teaching at secondary grammar schools for more than 15 years. Nearly 30% indicated their 
own secondary school studies as the source of their knowledge needed to teach statistics, 56% chose 
their own university studies, 76% chose ‘their own teaching experience’, and almost 60% mentioned 
their ‘own research’. The following table summarizes the proportion of groups with different 
professional experience in details (measured in years) that indicated their own secondary education 
as a source, their university studies and their teaching experience gained during their work. (Several 
sources could be marked, not just their main one.) 

Table 1: Distribution of teachers by teaching experience and source of statistical knowledge 

Years in public 
education 

Number of teachers  Secondary school 
studies 

University studies Teaching experience 

More than 25 years 65 8 (12%) 38 (59%) 58 (89%) 

15–24 years 78 12 (15%) 38 (49%) 61 (78%) 

5–14 years 24 13 (54%) 15 (63%) 18 (75%) 

Less than 5 years 14 14 (100%) 11 (79%) 8 (57%) 

Given the detailed data, just a small proportion of teachers who have been teaching for more than 15 
years have high school statistical studies and also in these age groups there is the lowest indication 
of university statistical qualification. In the case of those, who have been teaching less than 15 years, 
the presence of high school statistics education can be well traced. The teaching experience is also 
expected to decrease as the number of teaching years decreases. 

During the examination of the sources used to teach statistics, we found that, that 78% of respondents 
use the available textbooks and 91% use available exercise books and 92% work with statistical tasks 
in the graduation task series of previous years. Thus, we can say that the need for purposeful 
preparation for output requirements is very strong, and that it is substantial to examine the available 
textbooks and exercise books when inspecting the teaching of statistics thoroughly. 

Based on the evaluation of the 12 statements of the second part, we can say that the majority of 
teachers (60%) fully or largely agree that the students' knowledge meets the current requirements, 
their fulfilment does not mean any difficulties. The statistical questions of the final leaving exam are 
not considered difficult, however, they do not support raising the level of questions, as well as raising 
the number of lessons devoted to the topic and expanding the curriculum in this field. On the other 
hand, there is a great deal of interest and willingness to participate in in-service teacher training on 
statistics (74.6%).  
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The 16 statements in the third part included, for example, statements about the framework curriculum. 
It was found that only 50% of the respondents stated that they were aware of the changes in the 
framework curriculum, on the other hand, as a result of all this, there is a very high degree of 
indifference – more than 57% – to the changes in the framework curriculum. The feedback on 
classroom habits is more varied. The new elements – reasoning, data evaluation (S2, S3), analysis
(S13, S14), statistical conclusions (S4) – were not welcomed, although, according to the answers, the 
graph shows that the new methodological expectations have become part of the teachers' daily work.

Figure 1: Grading statements about the appearance of interpretation and evaluation in teachers’ own 
classroom work

In written school exercises and tests, open items that require justification or reasoning are not used 
and are not welcomed. 

Figure 2: Integrating analysis and evaluation into tests with statistical content

In the fourth, concluding part of the questionnaire, the respondents rated how willing they were to 
teach certain areas of mathematics. (1 = very much dislikes, 2 = dislikes, 3 = indifferent, 4 = likes, 5 
= very much likes). According to this ranking, it seems that the classical topics with a long tradition 
(equations, algebra, sets, functions, etc.) are the most popular whereas, for example, logic and 
probability only achieved lower scores, statistics and graphs were in the lower midfield.
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Conclusion 
Based on the responses to the 28 statements in the questionnaire, we can therefore say that teachers 
are generally satisfied with the current statistical requirements, the number of the proposed lessons 
and the achievement of their students (RQ1). However, the direction of stepping forward is less 
popular, both in terms of increasing the number of lessons in the field, expanding the content, and 
changes in final exam requirements (RQ2). Preparation for the exam requirements is still highly 
emphasised. To change the basic approach, it is necessary to incorporate new expectations and 
methodological issues in both teacher education and teacher training in statistics education; and to 
support colleagues' work by creating a novel, free-to-use task collection. 

Summary and outlook 
Regarding to the situation of descriptive statistics education in Hungary, based on the above, we can 
state that many positive changes have taken place in this field since 2000: basic knowledge of 
statistics has been included in the curriculum and among the final exam requirements; based on the 
research, statistics have become a popular topic for students, they successfully solve these types of 
tasks, for example on the final exam; the proportion of this topic has increased during the latest 
curriculum developments; there has been a shift in the curriculum and in the graduation requirements 
from the simple return of conceptual knowledge towards application, interpretation and analysis; 
basically teachers like teaching descriptive statistics. At the same time, it is evident in addition to 
positive changes, that there are areas where further development may be substantial: it is worthwhile 
(in line with international practice) to add additional elements to the statistical part of the mathematics 
curriculum, for example, the possibility of regression and correlation calculation, as well as the 
possibility of hypothesis testing in the curriculum should be examined; the statistical part of textbooks 
and exercise books should be expanded and enriched, the authors of this article play an active role in 
this work; to deepen the knowledge of teachers, to help their methodological preparation, to consider 
important to expand statistical knowledge, to prefer to deal with the teaching of statistics. 
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Teaching statistics through projects brings to life in the classroom aspects of working with data that 
are not usually part of traditional paper-and-pencil activities. There exists a generalized agreement 
about the positive effects of this kind of teaching proposals and number of international and local 
initiatives to foster them at secondary and tertiary level. Despite all this, their sustainability as 
normalized classroom activities is very fragile, given in particular the extra amount of work required 
to teachers willing to implement them. Research in didactics can help better understand the 
conditions that enable the introduction and management of statistics projects in the classroom, as 
well as the – sometimes invisible – constraints that hinder their development. We illustrate it with a 
case study based on the implementation of a statistics project in a classroom of Grade 9 students, 
using recent developments of the anthropological theory of the didactic. 

Keywords: Statistics education, project-based teaching, noise pollution, study and research paths, 
anthropological theory of the didactic. 

Introduction: Statistics project competitions in Catalonia and Spain 
Despite the influence of recent didactics research in the Spanish intended curricula at secondary level, 
one can still find in textbooks “some inertias, inherited from previous curricula and from traditional 
uses of statistics, with many algorithmic procedures, leaving few spaces for critical thinking, decision 
making, and analysing solutions within a context. Additionally, the official intended curriculum still 
has some outdated standards regarding the use of tables, and an excessive emphasis on 
mathematization of statistical procedures” (Rodríguez-Muñiz et al., 2018, p. 419). Furthermore, the 
topics of statistics tend to remain the last to be taught at the end of the academic year, and thus the 
first to suffer reduction due to rescheduling necessities (Angulo et al., 2013). 

Since 2006 in Spain and 2009 in Catalonia, university departments of statistics supported by scientific 
societies launch annual competitions for projects based on surveys and experiments carried out by 
secondary school students. In the case of Catalonia, about 70 projects are presented every year, with 
200 students, 30 teachers and 15 schools (1.5% of the total). The contest includes three categories. 
These competitions appear as good opportunities to involve teachers and schools in the 
implementation of inquiry- or project-based teaching proposals, creating an external motivation for 
students and increasing the visibility of their work. What teachers and students do and how they 
organise their inquiries is certainly very diverse. According to Markulin et al. (2021), project-based 
learning in statistics is a broad term that refer to different teaching proposals, ranging from open 
individual inquiries to strongly guided collective activities.  
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The teaching proposal we are analysing emerged in this context of statistics competitions. It was 
implemented by the first author, a mathematics teacher with 16 years of experience. It has evolved 
during the past five years as the teacher, together with the students and schools, have gained more 
experience. We focus on the last project implemented in the academic year 2020/2021 with Grade 9 
students, which won both the Catalan and the Spanish awards in their category. After describing the 
experience, we will introduce some analytical models from the anthropological theory of the didactic, 
especially the notion of “study and research paths” (Chevallard, 2015) to present a critical analysis 
of the didactic process. The results obtained will help us draw some hypotheses about the difficulties 
found for the implementation of such proposals and possible ways to overcome them.  

A Statistics project in Grade 9 about noise pollution 
Five years developing projects to teach statistics 

The project we are considering was implemented in a secondary school in Rubí, an industrial town 
in the outskirts of Barcelona with around 90.000 inhabitants. The idea of teaching statistics through 
projects in secondary education first appeared six years ago when the teacher had to deal with a group 
of unmotivated students with low skills in mathematics. To raise interest in the class she designed a 
survey with a topic of interest for the students, they gathered the information and then perform a 
simple descriptive statistical study: tables of frequency, graphics and centralization and deviation 
measures. The following years, the implementation of the projects went on, and the way of teaching 
statistics was improved through them. One fact that fostered this improvement was the contest 
“Incubator/Seedbed of surveys and experiments”. In addition, the attendance to the awards ceremony, 
where winner projects are presented, also helped widen the teacher’s perspectives. This led to last 
year’s project “The noise and how it affects our health”, which was run during 24 weekly sessions of 
50 minutes with two groups of 30 students and consisted of two phases or parts. 

First part: How noisy is our town? 

The first phase of the project took place in the first 12 sessions. It consisted of an investigation to 
know how noisy Rubí is. We can distinguish different steps in the project development. For the first 
two sessions, the teacher searched previous studies and information about the topic and prepared a 
presentation about what the noise is, an official noise map of the city published in the Town Hall 
website, a Google Maps for each student to locate a pin in their home address. Once the class saw 
that students’ neighbourhoods could “cover” a vast enough space, the teacher proposed a survey with 
questions about the characteristics of the streets that can affect the noise level. She also presented 
DecibelX, a sound level meter app. Students answered the survey and carried out a descriptive 
statistical analysis. With all the information, students made their own hypotheses. 

The data gathering was done in two steps. With the help of the mobile application DecibelX, students 
measured the amount of noise outside their houses. Measurements were carried out for two weeks, 
starting on the 5th of October 2020 and finishing on the 18th of October 2020, and on certain times: 
from 7am to 8am (morning), from 5pm to 9pm (afternoon), from 9pm to 11pm (evening) and from 
11pm to 7 am (night). With every measurement, students filled out a Google Forms with the email 
address, the number of decibels, the time and a picture of the measurement from the app. 
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For the statistical analysis, all the information in the Google Form was downloaded to an Excel file. 
The students, in groups of 4, calculated the mean, standard deviation and coefficient of variation of 
the measures per each time slot and made graphics (Figure 1). 

  
Figure 1: Results of the statistical analysis of one of Rubí’s areas 

With the analysis, students could contrast the hypotheses previously raised. They discovered, among 
others, that: 

1. Two main parts of the city could be distinguished: the city centre (called “the red zone”) and 
the outskirts (called “the green zone”), where the difference of decibels was notorious. 

2. Some items not considered in the hypotheses could be identified; for instance, the proximity 
to children parks, which affected the amount of noise in the afternoon. 

3. The Noise Map provided by the Town Hall had higher levels of noise in some parts of the city 
centre than those measured by students. As a possible reason it was pointed up that some 
streets had become pedestrian since the map was published in 2012. 

Finally, to show the results of the study, the teacher selected the places where students had gathered 
enough noise measures (at least 70% of the number agreed in advance) and uploaded the results in a 
digital map provided by the Cartographic Institute of Catalonia, called Instamaps (Figure 2). 

 
Figure 2: Instamaps of Rubí (www.instamaps.cat)1 

Second part: How does noise affect our health? 

The second part of the project followed the same structure as the first one and took place during the 
next 12 sessions. However, in this case, the previous study was carried out entirely by the students. 
In groups, they looked for information about how the noise affects our health and summarised it in 
an infographic made with Canva, which they shared with the rest of the students making an oral 
exposition in class. They then made their own hypotheses considering the previous research and 
gathered data in two steps. First, students, always in groups, proposed the type of questions they 

 
1 https://www.instamaps.cat/visor.html?businessid=b099e4b7093f76d5bf574d1e26dc4893&3D=false#14/41.5007/2.0225 

 Mean   Std Dev CV 
Morning 39,04 3,67      9,41% 
Afternoon 35,56 2,41 6,78% 
Evening 35,63 2,95 8,29% 
Night 34,27 2,97 8,67% 
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should ask to the inhabitants of the city to study if the noise affected their health. Questions were 
shared in a padlet, commented in class to select the most suitable ones. Students administrated the 
survey in the two different parts of the city identified in the previous phase of the project: the city 
centre or red zone and the outskirts or the green zone. A total of 435 answers were collected. 

Again, for the statistical analysis, all the information in the Google Form was downloaded to an Excel 
file and the students, in groups of 4, made a descriptive statistical analysis (Figure 3). 

 
Figure 3. Examples of figures summarising two answers from the survey 

As final results, students found that: most of the people were aware that the exposition to high 
amounts of noise for a long period of time could cause health problems; there was a difference 
between the people in the two zones in terms of their sleeping quality; and people suffered more from 
anxiety and stress than from physical health problems. At the end of the project, students made some 
general proposals to improve the noise pollution in the town, like installing porous paving which 
absorbs a high quantity of the acoustic wave, increasing the amount of pedestrian zones, organising 
workshops at schools, and using the local media (radio, magazines, newspapers) to make people 
aware of noise pollution and give advice on how to reduce the noise. 

Analysing a teaching experience from a research perspective 
Study and research paths as descriptive and analytical models 

Researchers working in the Anthropological Theory of the Didactic (ATD, Chevallard, 2015) have 
been developing a methodology of analysis for teaching experiences that can be ranged into the 
category of inquiry-, problem- or project-based learning and are conceptualised as study and research 
paths (SRPs). These instructional practices correspond to the pedagogical paradigm of questioning 
the world, where one studies open questions and develops knowledge – with other kind of tools – to 
provide answers to them. Some difficulties found in implementing projects can be explained by the 
prevalence, at school, of the paradigm of visiting works, in which curricula are first proposed in terms 
of organisations of knowledge to study (or “visit”) and problems, projects or investigations tend to 
be subordinate to them: one approaches a question – or carries out a project – to encounter some 
specific knowledge organisation.  

As shown by Bosch (2018), SRPs are not only instructional proposals designed and implemented 
within the ATD, but they can also be used as models in the scientific meaning of the term: not 
examples to follow, but conceptual constructions to better analyse empirical experiences. The main 
research question motivating these analyses is to better know the conditions that can foster the 
implementation of project-based teaching and the barriers or constraints that hinder it. The set of 
conditions and constraints of all kinds (curricula and pedagogical resources, classroom management, 
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school organisation, society determinants, etc.) correspond to what we call the ecology of teaching 
and learning processes. 

The study we present here is an example of the use of SRPs as a descriptive and analytical tool applied 
to an empirical teaching process organised in terms of project-based learning that was implemented 
by a teacher without any connection to didactics research, let alone the ATD. In fact, the teacher 
decided to teach statistics through projects without relying on any specific PBL perspective. Our 
purpose is to show some key elements of the teaching process – now interpreted as an SRP – that 
help to better understand its ecology. In the next sections, we introduce at the same time the notion 
of SRP and the analysis of the teaching process only for the first part of the project. 

The Herbartian schema 

In an SRP, the generating question is the main purpose of the inquiry. Students, guided by the teacher, 
address them by proposing new derived questions, searching data and pieces of information 
potentially useful, and studying them. The results of the study are then contrasted and validated with 
the data and old information available, which usually produces new interrogations calling for new 
data and information, etc. At the end, what matters is to be able to provide an acceptable answer to 
the initial question and disseminate it. The Herbartian schema proposed by Chevallard (2011) 
identifies some key elements of an SRP. The reduced form of the schema S(X; Y; Q)  R  indicates 
a didactic system S where a group of students X with the help of a group of teachers Y address a 
question Q to provide their own answer R . The developed form of the schema [S(X; Y; Q)  M]  
R  includes a milieu M with all the resources used by S(X, Y, Q) during the inquiry: questions Qi 
derived from Q, external answers or works Aj  elaborated by others that seem useful to address Q, 
empirical data Dk and other pieces of knowledge, virtual and material objects Om : 

[S(X; Y; Q)  {Qi, Aj , Dk, Om}]  R . 

Some commonalities have been identified in the teaching experience: 

 The starting point is an initial question, called the “generating question”, the teacher raises in a 
global way, to the whole group of students. 

 The project is a collective work, that is, the answer to the question is a joint report from the whole 
class, which will be submitted to the contest. Despite some of the work was organized in small 
teams, students share their results and the new questions or directions to follow. 

 The work is guided through partial questions, with some given or requested answers. 
 Several supports and tools were used: interactive maps, mobile applications, digital campus, etc. 

Using the Herbartian schema, we have a single teacher Y={y}, a whole class X consisting of students 
xi sometimes organised in teams Xj. The generating question Q was divided by the teacher into two 
sub-questions: how noisy the city is (Q1) and how noise affects our health (Q2).  Along the experience 
other questions, proposed by X or y, appeared and they were related to institutional answers Aj , (like 
the definition and measure of noise, or the statistical notions to determine a sample, organise data, 
summarise and visualise it, etc.). Material and digital tools were mobilised: Excel, DecibelX, 
Instamaps, Canva, GoogleForms, etc., together with the students’ familiarity and knowledge about 
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the town and what produces noise. Finally, an important element of the project is the data collected 
Dk, linked to new knowledge work as its quality, reliability, representativity, etc.  

However, an SRP is a dynamic entity where questions generate the need for answers with, in turn, 
raise new questions in a kind of selfsustained process (Bosch & Winslow, 2015). Next some examples 
are given, to show the dialectic between questions and answers and its crucial role in the dynamics 
of the process. 

The questions-answers dialectic of the first part of the project 

In an SRP many questions are raised, some more explicitly than others. Pieces of answers are 
provided to these questions, by the teacher or the students, using available resources or producing 
them by themselves. Space limitation only permits us to present a short account of the questions and 
answers that appeared during the first part of the project, those more implicit are indicated into 
brackets. We will next use this summary to analyse the teacher’s and students’ role in the inquiry. 

Q1 Is Rubí very noisy? 
Q1.1 What is noise and how to measure it?  

 A1.1 Teacher’s presentation about noise A1.1.2 Introduction of the app DecibelX  
Q1.2 [What do we know about Rubí’s noise?]  

 A1.2 Official noise map of Rubí in 2012 
Q1.3 Is the map still valid today? Can we reproduce it partially?  

Q1.3.1 Where do we live in Rubí?  
 A1.3.1. We are distributed in different zones of the town 

Q1.3.2 What are the characteristics of the surroundings of where we live? 
A1.3.2 Google Forms answering some questions 

Q1.3.3 [How to collect data?]  
 A1.3.3 Using DecibelX in each student’s zone in different hours, with a survey  

Q1.3.4 How many data are necessary? 
 A1.3.4 Formula and determination of the sample size 

Q1.3.5 How are we going to analyse the data? 
A1.3.5 With the mean, standard deviation, coefficient of variation and graphics 

Q1.3.6 How many data do we have? How are they? Are there errors?  
A1.3.6 Data collection check 

Q1.3.7 What do the collected data say?   
 A1.3.7 Data cleansing, numerical and graphical summaries, interpretation 

 A1.3 In some zones, Rubí is less noisy than in 2012 […] 
 

Figure 4 shows the map of questions and answers only for the first phase, using the above notation. 
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Figure 4: Map of questions and answers of the first part of the project 

Some of the questions were proposed directly by the teacher, such as Q1.1 and Q1.2; few of them by 
the students. Some questions were answered using established works introduced by the teacher (the 
study dimension of SRP), while others need ad-hoc elaborations based on students’ hypotheses, data 
compilation and exploitation (research dimension). The sharing of responsibilities between teacher 
and students was analysed. Table 1 summarises the involved elements (what), the class organisation 
(how) and the persons assuming the main active role (who) for the first 12 sessions. Remember that 
y represents the teacher, xi individual students and Xj a students' team.   

Table 1: Elements, methodology and main agent for the first 12 sessions of the project 

 

The table shows that the teacher acted as main agent with a lot of active participation in most of 
sessions. However, an important characteristic of this project that is crucial in the paradigm of 
questioning the world is that all the new information, tools and pieces of knowledge introduced by 
the teachers were studied and activated by the students because they needed them to answer the 
question. The new knowledge was at the service of the project, not the other way round. 

Concluding remarks 
To analyse the constraints hindering the development of this teaching experience, we will consider 
two specific aspects. On the one hand, the experience was developed in response to a generic 
proposal, such as the announcement of a contest. The contest invites statistical work in the context of 
secondary education, as it is a topic included in the curriculum. The initial motivation of the contest 
is to influence the value given to statistics, especially its usefulness, to motivate students and get them 
interested in statistics. The generic recommendations and previous examples offered by the 
organisation of the contest include the case of formulating a question, a hypothesis or to do an 
experiment from which questions can be formulated. However, no detailed guidelines are given nor 
a specific PBL approach suggested; it is an open setting, passing the responsibility to the participating 
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teachers, which leaves them alone and requires much more dedication. It also gives them more 
flexibility and allows more creativity. 

On the other hand, although it may be influenced by instructional formats that are in vogue, defined 
independently of the content, the teacher did not have guidelines to follow. The implementation of 
projects in class was not a requirement of the school. It appeared as the teacher’s response to the 
demotivation detected in a group of students, with the aim to show the usefulness of statistics. The 
teacher worked alone to prepare the project questions and answers, provide the tools to be used and 
guide the students’ inquiry. The result was clearly an excessive burden of time that puts sustainability 
at risk. The analysis of the project through the ATD approach shows some characteristics of the 
project that could have been organised differently, for instance in the management of the questions-
answer dialectic and the sharing of responsibilities between teacher and students: what was explicitly 
stated, what remained implicit; what was done by the teacher, what by the students and why, etc. 
Collaborative work between teachers and researchers can help identify the constraints that hinder the 
long-term sustainability of project-based teaching in statistics and, the most important, implement 
new conditions to overcome them.  
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Infodemiology and COVID-19: Using big data analytics to enhance 
secondary students’ statistical thinking in an artificial intelligence era 
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The goal of this article is to illustrate how two Grade 12 Thai students, working together on an 
activity using Google Trends and COVID-19 open data from the Department of Disease Control of 
Thailand, engaged in the six phases of the framework for statistical thinking for the era of big data 
and artificial intelligence developed by González, Isoda and Araya (2020). The obtained results 
provide empirical evidence that senior high school students can successfully engage in 
infodemiology, a multidisciplinary field through which it is possible to observe the health-seeking 
behaviors of people involved in social media and their attitudes toward health and illness. This study 
documents the feasibility of enhancing secondary students’ statistical thinking and literacy through 
the engagement in big data analytics to monitor new infectious diseases such as the COVID-19.  

Keywords: Statistical education, COVID-19 data, statistical thinking, big data transnumeration.  

Introduction 
The interest in big data has been growing in many areas of today’s society, including education. Big 
data (i.e., data that are too big for standard database software to process; Manyika et al., 2011), 
represents a paradigm shift in the ways that we understand and study our world, and at the very least, 
it is seen as a way to better use and creatively analyze information for public and private benefit. In 
order to make sense of big data, it is necessary to explore large, complex and seemingly unrelated 
sets of raw data, looking for significant correlations and new and unanticipated connections among 
them, using artificial intelligence (AI)-driven data analytics platforms, powerful enough to handle 
data sets with sizes in the order of terabytes, petabytes and zettabytes (Claverie-Berge, 2012; Glaser, 
2018). These platforms are IT environments in which raw big data sets can be transnumerated under 
user request (i.e., converted into a new type of representation, within the platform restrictions, 
standards, and degrees of access) by AI (Ferguson, 2012). For example, search engines like Google 
and Google Trends use AI algorithms to analyze vast amounts of text online and determine, as quickly 
as possible, the most appropriate result for a particular search. 

The concept of big data “refers to datasets whose size is beyond the ability of typical database 
software tools to capture, store, manage, and analyze” (Manyika et al., 2011, p.1). Additionally, big 
data is often associated with key characteristics that go beyond the question of size, namely the 5 Vs: 
volume, velocity, variety, veracity and value (Storey & Song, 2017). Big data is dispersed among 
various platforms that operate with different standards, providers and degrees of access (Ferguson, 
2012). For example, a lot of work in big data focuses on Twitter, the blogosphere, and search engine 
queries. All of these activities are not undertaken equally by the whole population, which raises 
concerning issues around the question of whose data traces will be analyzed using big data. 

Big data is opportunistic data (i.e., data already collected by others, not through personally-planned 
processes conducted by the user, and hosted somewhere). One way in which big data can be converted 
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into a new type of knowledge is through machine learning, which is an automated process that extracts 
patterns from data using AI algorithms (Kelleher et al., 2015). This approach to data analysis, the big 
data analytics, is an iterative and exploratory process of using advanced technologies and analytical 
techniques on big data to reveal critical information, such as hidden and/or meaningful data patterns, 
trends and associations, which are data-first answers, and then users will work backward to find the 
questions that should have been asked (Claverie-Berge, 2012; Cumming et al., 2017; Glaser, 2018). 

The big data analytics approach to data analysis is rarely, if ever, dealt with at school level (Wild et 
al., 2018). Instead, statistical thinking frameworks using a question-then-answer approach (e.g., such 
the PPDAC cycle), are commonly used when teaching statistics in the school. These question-then-
answer approaches focus on data gathered systematically for a purpose, using planned processes, and 
chosen on statistical grounds (e.g., random sampling) to justify certain types of inferences and 
conclusions. This is one of the most relevant criticisms to current statistical thinking frameworks, 
because analyzing opportunistic data requires statistical thinking processes that do not necessarily 
follow the line of thought sketched by models such as the PPDAC cycle (Wild et al., 2018). 

A framework for statistical thinking for the era of big data and AI 
Addressing the aforementioned weakness of statistical thinking frameworks using a question-then-
answer approach was one of the aims of the “Inclusive Mathematics for Sustainability in a Digital 
Economy” (InMside) project, supported by the APEC Secretariat1. One of the outcomes of the 
InMside project was a six-phase framework for statistical thinking for the era of big data and AI, 
describing how a big data user engages in statistical thinking with the support of an AI-driven 
platform (González et al., 2020). This framework understands statistical thinking as a cognitive 
process comprised of the following six phases2. 

 Big data quality assessment: Before engaging in creative discovery with big data, users must 
assess the quality of the big data at hand, in order to establish, among other things, from where 
the data came, how they were collected, and what instrument or questions were used to collect 
such data. In other words, this is a step in which the users assess big data’s veracity (i.e., the 
assurance of quality or credibility of the collected data for the intended use).  

 Patterns and relationships from data: Iteratively look for trends within big data sets, such as 
patterns and linear or nonlinear relationships between variables, with the support of an AI-
driven data analytics platform (e.g., Google Trends), based on a particular interest. 

 Questions: Pose critical and worry questions, in order to find plausible explanations to the 
patterns and relationships found. These questions are not digging into data searching for 
specific metrics, as in the traditional data handling approach. 

 Objectives: Set objectives related to the posed questions, in order to analyze the data. 
 Data mining: In order to achieve the objectives previously set, the user re-examines the data in 

the light of the objectives, explore old and new data sources, or introduce new variables for 

 
1  For more information, please refer to https://aimp2.apec.org/sites/PDB/Lists/Proposals/ DispForm.aspx?ID=2247 

2 For detailed information on this framework, the interested reader may consult the article by González et al. (2020). 
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consideration, using AI, machine learning and statistics.  
 Designing: Provide ideas for new searches for trends within big data sets, based on the 

understanding of the past and present, and design plans and strategies for the future, based on 
the results from the data mining. 

Using big data analytics to engage in infodemiology 
Big data analytics allows data users and scientists to engage in a new research field known as 
infodemiology, which is the study of big data generated during a pandemic or other significant event 
that may impact public health, using web-based resources, in order to repurpose such data to inform 
public health and health policymaking (Kurian et al., 2020). During these times of COVID-19, using 
health-related data in a statistical investigation allow students to put into practice statistical thinking 
and big data analytics in the context of a real-life problem, as well as to fully experience statistical 
processes such as acknowledging, modelling of and reasoning about variability, data representation, 
data-driven argumentation, and informal inference (González et al., 2020; Watson et al., 2018). 

Research methodology overview 
Participants and data gathering procedure 

For this study, a task named “Use Google Trends to tell a data story” was developed by the author, 
with the support of a Grade 12 mathematics teacher working in a large public high school in Bangkok, 
who administered the task to her 24 students (9 boys, 15 girls) via Zoom in real time on September 
13, 2021, in two 50-minute-long consecutive sessions. This task required students to look for stories 
told by COVID-19 data using Google Trends (https://trends.google.com). All the participants were 
already familiar with using Google Trends and Excel, stating the “what” and the “why” while making 
charts with the application, using the six phases of the framework for statistical thinking for the era 
of big data and AI (González et al., 2020), and using and interpreting the COVID-19 Dashboard data 
from the Department of Disease Control of Thailand (https://ddc.moph.go.th/ covid19-dashboard). 
The students, arranged in pairs, were placed in breakout rooms and engaged in solving the task after 
being instructed by the teacher. Students were not assisted in any way as to influence their responses. 
When the task was completed, each group submitted their stories in a Word document to the teacher, 
including captures of Google Trends charts and any additional graphical representation or calculation 
made for the activity. A qualitative interpretive micro-analysis was used to analyze the data.  

Summary of results: Yai and Nan’s answer 
In order to illustrate the potential of this activity to enhance secondary students’ statistical thinking 
and literacy through the implementation of the six-phase framework for statistical thinking for the 
era of big data and AI (González et al., 2020), this paper presents, as a case study, a description of 
the answer given by one pair of students (two girls nicknamed Yai and Nan). This was due to the rich 
answers that occurred in this pair and the fact that these answers were deemed to be typical of the 
ones that occurred in the other pairs. The analysis of the collected data will be presented in terms of 
the six phases of the aforementioned framework for statistical thinking (González et al., 2020). 
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Big data quality assessment 

The veracity of the big data to be used in this task was assessed by the researcher and the classroom 
teacher, who provided students with data from a trustful source (i.e., the Department of Disease 
Control of Thailand). Also, students were previously instructed to approach to big data analytics 
posing worry questions such as “Who created the source?” “What methodology did they follow in 
collecting the data?” “Did the data creators, or anyone else, summarize, edited or modified the data? 
Answers to these questions are necessary to assess and determine the veracity and quality of the data. 

Patterns and relationships from data 

Browsing news and media reports on the Internet, Yai and Nan found the date of the first confirmed 
case of COVID-19 in Thailand (January 12, 2020) and China (December 8, 2019). Then, they decided 
to set January 12, 2020 as the “Day Zero”, and created a data set from December 8, 2019, until April 
4, 2020, the date in which all commercial international flights were suspended in Thailand, and 
lockdown measures were implemented in varying degrees throughout the country. When asked why 
they named January 12 as “Day Zero”, they answered that they learned from the movies that the first 
person infected by a disease is usually called “Patient Zero”. 

Using Google Trends, this group chose three keywords to observe the online health-seeking behaviors 
of Thai people involved in social media, in relation to COVID-19, over the selected time period. The 
keywords were the following: flu, fever, coronavirus. Figure 1 shows the evolution of the online 
search trends for these three keywords in Thailand during the chosen timeframe. 

 Google searches for “flu”  Google searches for “fever” 
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SV
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SV
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 Google searches for “coronavirus”  Google searches for the three keywords 
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Figure 1: Relative search volumes (RSVs) of the Google queries “flu”, “fever”, “coronavirus”, and 
their simultaneous comparison, during December 8, 2019 to April 4, 2020 in Thailand 

Making a naked eye analysis of the graphs depicted in Figure 1, Yai and Nan mentioned that the 
general trends of the Google searches for each of the keywords of interest changed after the “Day 
Zero”. In relation to this idea, they wrote the following: 

Yai and Nan:  General trends on each graph show that interest in Thailand for searching “flu” and 
“fever” in Google spiked in “Day Zero”, but not for “coronavirus”. The Google 
Trends graphs for “flu”, “fever” and “coronavirus” were nearly parallel until 
January 26, 2020, when the searches for “coronavirus” started to increase, and more 
clearly from February 22, 2020, when the Google searches for “fever” and 
“coronavirus” increased in comparison to the searches for “flu”. 

So, in order to write their data story, Yai and Nan explored sets of raw big data using Google Trends 
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looking for patterns and connections, instead of digging into data searching for specific metrics. This 
approach provided them with data-first answers to questions they had not yet thought to ask.  

Questions 

Some of the questions posed by Yai and Nan, based on the patterns and relationships they found from 
their interpretation of Google Trends graphs depicted in Figure 1, are shown below. 

 Why did the interest in Thailand for Google searching “coronavirus” started late in January 
2020, almost two weeks after “Day Zero”? 

 Why did the Google searches for “fever” and “coronavirus” start to show a noticeable increase 
after February 22, 2020, in comparison with the Google searches for “flu”? 

 What happened in Thailand from March 13 to 25, 2020, that there was a common increase in 
the Google searches for “flu”, “fever” and “coronavirus”? 

 Is there a relationship between the volume of Google searches for “flu”, “fever” and 
“coronavirus” and the number of daily new COVID-19 cases reported in Thailand during that 
time period? 

Then, from the data-first answers generated in the previous phase, Yai and Nan worked backward to 
find the questions that should have been asked. These questions can lead to the creation of more data 
representations in order to find explanations to the patterns and relationships previously found. 

Objectives 

After posing questions to arrive at insights about the patterns and relationships previously found, Yai 
and Nan, were able to set clear objectives to continue their data analysis, such as the following: 

 To identify the reasons why the interest in Thailand for Google searching “coronavirus” started 
late in January 2020, almost two weeks after “Day Zero”. 

 To identify the reasons why Google searches for “fever” and “coronavirus” started to show a 
noticeable increase after February 22, 2020, in comparison with the Google searches for “flu”. 

 To determine what happened in Thailand from March 13 to 25, 2020, that there was a common 
increase in the Google searches for “flu”, “fever” and “coronavirus”. 

 To determine whether there is a relationship between the volume of Google searches for “flu”, 
“fever” and “coronavirus” and the number of daily new COVID-19 cases reported in Thailand 
during that time period. 

Data mining 

In order to address the objectives previously set, Yai and Nan engaged in data mining. Data mining 
is the process of finding and extracting relevant data, previously unknown but potentially useful, in a 
heterogeneous data repository, using AI, machine learning and statistics (Cumming et al., 2017). In 
order to exemplify this phase in Yai and Nan’s work, let us briefly address the objectives stated above. 

Any verbal statement can be considered to be a hypothesis. Therefore, in the context of data mining, 
a hypothesis is an explanation of some phenomenon (e.g., a cause-effect relationship or a trend in 
data) that can be argued by the means of data analysis. Then, Yai and Nan hypothesized, in relation 
to the first objective, that the term “coronavirus” was not on most Thai people’s health radars by that 
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time. Yai and Nan confirmed this hypothesis when they found, through Google searches, that the 
terms “novel coronavirus” and “2019-nCoV” were mentioned by the World Health Organization 
(WHO) in their first situation report, published in January 21, 2020. 

In relation to the second objective, Yai and Nan surfed the Internet to find plausible answers. They 
concluded the following: 

Yai and Nan:  It is very likely that the noticeable increase in Google searches for “fever” and 
“coronavirus” that started in Thailand after February 22, 2020, was due to the news 
of the 10 towns locked down in Italy, which was released on February 23, 2020, 
after as the number of reported cases in Italy grew from fewer than five to more 
than 150. Also, the Ministry of Public Health and the Department of Disease 
Control of Thailand had a daily broadcast to instruct population about COVID-19, 
and by that time thermometers were placed in most public spaces, so people were 
watching their temperature, since people knew that “fever” was one of the most 
common symptoms of COVID-19. 

In relation to the third objective, Yai and Nan concluded, after surfing the Internet, the following: 
Yai and Nan:  We think that the noticeable spike in Google searches for “flu”, “fever” and 

“coronavirus” that happened in Thailand from March 13 to 25, 2020, was mainly 
because of the state of emergency to control COVID-19 declared by the Thai Prime 
Minister and Cabinet on March 17, to become effective on and from March 26 to 
April 30, 2020. This measure prohibited entering into Thailand, entering in crowded 
areas and places at risk of COVID-19 infection, gatherings of many people, and 
only certain businesses were allowed to open. Also, on March 22, Thailand reported 
188 new COVID-19 cases, the largest single-day rise until then, and the first time 
that more than 100 new cases were reported. Another possible reason could be the 
announcement of the death by COVID-19 of four Thai nationals on March 24. 
Before that, only one person had died of the virus in Thailand. 

In relation to the last objective, Yai and Nan used the data from the Department of Disease Control 
of Thailand to obtain the number of daily new COVID-19 cases reported in Thailand from “Day 
Zero” to April 4, 2020, and plotted them in Excel against the RSVs for each of their Google queries, 
which they downloaded from Google Trends. The results are depicted in Figure 2. 

Pearson correlation coefficients were calculated between each Google query’ RSV and the daily new 
COVID-19 cases in Thailand. On this matter, Yai and Nan wrote the following: 

Yai and Nan:  The Excel scatterplots revealed a moderate to strong relationship between the 
volume of Google searches in Thailand for “fever” and the daily new COVID-19 
cases reported from “Day Zero” to April 4 ( r = 0.363 = 0.602 ). A strong 
relationship was found between the volume of Google searches in Thailand for 
“coronavirus” and the daily new COVID-19 cases reported during the chosen 
period (r =  0.6756 = 0.822). We interpret these results as evidence that, as the 
number of COVID-19 cases increased, Thai people’s interest in searching 
information on “fever” and “coronavirus” also increased. However, the relationship 
between the volume of Google searches in Thailand for “flu” and the daily new 
COVID-19 cases reported during the chosen period was negative, because of the 
decreasing linear trend, and moderate (r =  0.094 = 0.307 ). We think that 
when more was known about the nature of COVID-19, so agencies and Thai people 
got to know that COVID-19 wasn’t a flu variety, then the volume of Google 
searches in Thailand for “flu” wasn’t as large as the volume of Google searches for 
“coronavirus” or “fever”, one of the most common symptoms of COVID-19. 
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Figure 2: Scatterplots of the daily new COVID-19 cases reported in Thailand from January 12 to 
April 4, 2020, as a function of the RSVs of the Google queries “flu”, “fever”, and “coronavirus”

Designing

From all the insight and valuable knowledge Yai and Nan gained through engaging in the data mining 
phase (e.g., Thai people learning that COVID-19 was not a flu variety), they were able to design plans 
and strategies for the future, to generate value of some sort. For example, they suggested the creation 
of health education campaigns about COVID-19 using music and animated cartoons, so Thai people 
avoid considering COVID-19 as a flu variety, self-medication, and underestimating its symptoms.

Summary and implications
Google Trends is a proven AI-driven tool for evaluating people’s information-seeking activities. If 
Google Trends is used to describe interest on health issues or health-seeking behaviors of people 
involved in social media, then we are engaging in infodemiology, which is the area of scientific 
research that focuses on scanning the Internet, publicly available data (e.g., public health and 
government databases) and other sources for user-contributed health-related data. This study reveals 
the benefits of engaging secondary students in infodemiology, through big data analytics using 
Google Trends, for their development of statistical thinking in this era of big data and AI. In fact, 
while engaged in data mining, Yai and Nan provided answers similar to those by Kurian et al. (2020).

Although this short description is far from exhaustive, the findings reported in this paper have 
practical implications for the teaching and learning of statistics, suggesting how an activity designed 
to engage students in infodemiology and big data analytics is particularly suited to support the 
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development of statistical thinking for the era of big data and artificial intelligence through the 
implementation of the six phases of the big data analytics approach identified by González et al. 
(2020). Even though the traditional question-then-answer approach can still be used to find answers 
when we have specific needs, when it comes to finding the most impactful ways to reveal stories from 
big data, people that let the data provide the questions first, as in the approach described by González 
et al. (2020), Claverie-Berge (2012) and Glaser (2018), will get the best and more insightful results. 
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Introduction 
Recent statistical education research has focused on informal statistical inference (ISI), without using 
formal inferential statistical procedures to understand the concept of uncertainty (Makar & Rubin, 
2018). Kazak et al. (2021) focused on the relationship between multivariate data and ISI, and 
identified students’ difficulties about the relationship between correlation and uncertainty. On the 
other hand, there is a few studies related to the task of improving students’ understanding with 
correlation and uncertainty, and promoting ISI. Accordingly, this study discusses the instructional 
guidance needed to resolve them and the task promoted ISI with multivariate data. This study 
develops a task to promote ISI, by focusing on correlation with multivariate data. 

Method 
In this study, the principles of the task designed from a theoretical perspective are based on 
collaboration with researchers and teachers. Makar and Rubin (2009) defined ISI as comprising three 
elements — “generalization beyond the data at hand,” “use of data as evidence of generalization,” 
and “representation of uncertainty with probabilistic language.” Further, Engel and Sedlmeier (2011) 
pointed out the importance of understanding the concept of correlation as distinct from that of 
regression, and the need to understand data as a construct of signal and noise, whilst also considering 
the role of variability. The principles of the task design for this study, based on previous literature, 
are presented in Table 1. Subsequently, a tentative task, the “Decathlon Data Project,” was developed 
based on the principle of the presented task design. 

Principle Description of the principle 

Principle 1 Researchers and teachers should develop problems that enable students to use 
correlations to identify the relationship between variables through real multivariate 
data and to, subsequently, make generalized predictions. 

Principle 2 Teachers should plan their instructional guidance to enable students for 
technological modeling and making generalizations based on evidence on the 
relationship between various variables. 

Principle 3 Teachers should encourage students to reflect on the process and conclusions of 
data analysis, as well as account for the explanations (Signal) and unexplained 
variations (Noise) in the data. 

Table1: The principles of task design in this study 
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Results and Conclusion 
The developed task pertains to the Olympic Decathlon (Figure 1). 

The “King of Athletes” is a decathlon in athletics, in which the participants’ ranking is determined 
by their total score from ten different events. In the 2021 Tokyo Olympics, two Japanese athletes, 
who competed in the previous Rio Olympics (Keisuke Ushiro and Akihiko Nakamura) could not 
participate because they were unable to achieve the participation standard score of 8350 points. 
Thus, based on the score data of the 23 athletes who participated in the Tokyo Olympics and the 
two Japanese athletes, what events would you suggest to the Japanese athletes to practice and 
participate in, in order to win a medal in the next Olympics? 

Figure 1: The task of the “Decathlon Data Project” 

Principle 1: This task aims to predict the events that the Japanese athletes should focus on for the 
next Olympic Games, by considering the relationship between the total score and each event and 
between the events based on real data of the decathlon. Principle 2: This task was designed to enable 
students to predict the events that the athletes should focus on by determining the correlation 
coefficients between the total score and the points or records of each competition, using CODAP 
(Finzer, 2017) and Excel, and by creating scatter plots. Principle 3: In this task, the teacher 
encouraged students, through reflection, to recognize the need to further analyze data about world 
competition, since the proposed events are only based on the characteristics and trends of the Tokyo 
Olympics. It is expected to help students understand the relationship between correlation and 
uncertainty, and promote ISI. After this study, the author and the teacher will collaborate to validate 
the effectiveness of the task from a practical perspective and elaborate the principles of task design. 
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The historical development of the Danish school is deeply influenced by the German Bildung-
tradition. Through all periods, the curricular aims were formulated both in terms of Allgemeinbildung 
and education (Børne- og Undervisningsministeriet, 2022). Allgemeinbildung addresses the need for 
a democratic society to have enlightened and empowered citizens. Mathematics teaching must, as 
well as all other school subjects, contribute to students Allgemeinbildung (Niss, 2000). Heinrich 
Winter (1995) offers a specification of how mathematics education should contribute to this aim. He 
determines three basis experiences, which mathematics teaching should allow students to create.  

In today’s data-rich society, all citizens should be familiar with statistical ideas. Statistical reasoning 
is a way of moving back and forth between the particular and the general and the purpose of statistical 
investigations are to learn new about the context (Zieffler et al., 2018). Because of the embedded 
connection to the context, statistics teaching seems to comprise potentials particularly for Winter’s 
first basis experience: “to perceive and understand the phenomena of the world around us in nature, 
society and culture in a specific way” (translated in Biehler, 2019, p. 153).  

The inclusion of digital technologies (DT) in statistics teaching comprises some potentials, for 
example by liberating students from routine calculations and drawing of graphs and making instant 
shifts between different representations and simulations possible (Biehler et al., 2013). The question 
is, however, if statistical reasoning with the use of DT comprises new potentials for 
Allgemeinbildung. The research question for this project is: How can statistics teaching in lower 
secondary school be designed so that students’ statistical reasoning with digital technologies can 
serve as contributions to their Allgemeinbildung? 

Distribution is a central statistical idea and is a way of moving from seeing data as individual values 
to interpreting distribution as a conceptual entity. It is difficult for middle-grade students to liberate 
their view on data from the measurement value of an object to see data in terms of distributions. A 
conceptual understanding of distribution is, at the same time, a prerequisite for developing the ability 
to choose appropriate statistical measures. The inclusion of DT can support the development of an 
informal understanding of distribution (Bakker & Gravemeijer, 2004). The development of students’ 
conceptual understanding might give rise to experiencing the world around them in new ways. Their 
interaction with DT while reasoning about data in terms of distribution might be essential in creating 
the opportunity for such experiences. To conceptualize students’ interaction with digital technology 
and investigate how the inclusion of DT affects the ability to articulate their reasoning, the Theory of 
Instrumental Genesis (TIG) is included in the project. TIG conceptualizes the role of an artefact when 
humans carry out a task. Drijvers et al. (2013) describe TIG in three dualities. The artefact-instrument-
duality describes the process where a person builds an instrument out of an artefact. The 
instrumentation-instrumentalisation-duality is bilateral and addresses how a student knowledge forms 
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the building of an instrument, and, at the same time, the artefact forms the students thinking. The 
scheme-technique duality addresses the duality between the students thinking and gesture. In this 
project, the focus will be on the process where students build an instrument for reasoning about 
distribution from educational software for statistics, but also on how the software forms their 
conceptual understanding about distribution.   

This PhD project is expected to connect Allgemeinbildung and the use of digital technologies and 
develop teaching principles for statistics teaching in lower secondary school. The methodological 
approach is Design-Based Research (DBR), which is anchored in authentic learning situations 
through iterative processes. Each iteration comprises preparation, experiment and retrospective 
analysis (Bakker & van Erde, 2015).  
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There is a growing interest in engagement with non-traditional data generated from a variety of 
sources, such as sensory devices, smartphones/watches, and social media tools. This paper reports 
on experiences of a group of pre-service mathematics teachers in acquiring and organizing image-
based data to analyze categorical data as part of a course assignment. To identify the actions pre-
service teachers took to transform observations of butterflies’ photos to cases to answer statistical 
questions related to categorical data, the data from retrospective interviews and artifacts generated 
during the data exploration and organization were analyzed. The findings suggest that data handling 
and structuring became an important component of the statistical investigation before formulating 
statistical questions. While the use of hierarchical tables in structuring data by hand appeared to be 
intuitive, it could be challenging to use such a structure already built in a data organizing tool. 

Keywords: Statistical inquiry, data acquiring, data organizing, image-based data, categorical data. 

Introduction 
Understanding and reasoning with data become increasingly essential part of our everyday lives as 
we need to handle information related to global issues on health, environment and so on, such as the 
COVID19 pandemic and wild fires due to extreme weather conditions. The nature of data also evolves 
with the advanced digital technologies. Large quantities and different forms of data are generated 
from a variety of sources, such as sensory devices, smartphones/watches, social media tools etc., 
every day. To analyze and make predictions from these data require new skills. Therefore, an 
important goal of statistics education is to develop necessary data skills starting from early school 
years.  

Statistics is typically taught as part of school mathematics curriculum and there has been a shift from 
simply computing numerical and graphical representations of data to an inquiry-based approach 
(Watson, Jones, & Pratt, 2013). In this approach to the teaching of statistics, the focus is on the 
statistical problem-solving process (Franklin, Kader, Mewborn, Moreno, et al., 2007; Bargagliotti, 
Franklin, Arnold, Gould, et al., 2020). According to the Pre-K–12 Guidelines for Assessment and 
Instruction in Statistics Education II (GAISE II): A Framework for Statistics and Data Science 
Education, the purpose of this process is “to collect and analyze data to answer statistical investigative 
questions” (Bargagliotti et al., 2020, p. 13). As seen in Figure 1, it has four components that are 
interlinked: (1) Formulate statistical investigative questions, (2) Collect/consider the data, (3) 
Analyze the data, and (4) Interpret the results.  
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Figure 1: Statistical problem-solving process (reproduced from Bargagliotti et al., 2020) 

Traditional statistical education focuses on data from random samples and making inferences from a 
sample to an unknown population. In today’s digital age, however, data come in various forms (big, 
messy, unstructured data, repurposed data, image/text/sound-based data etc.) and do not necessarily 
comply with the structure required for statistical inference in the traditional sense (Gould, 
Bargagliotti, & Johnson, 2017). Along with the emerging field of data science, statistics education 
tends to focus more on the engagement with such non-traditional data sets. 

Image-based data, i.e., the use of photographs as data, becomes increasingly common in daily 
encounters. The GAISE II report (Bargagliotti et al., 2020) acknowledges the use of this kind of non-
traditional data as part of the statistical problem-solving process and helping students to make sense 
of these non-traditional data. As an example, Bargagliotti et al. use data from Dollar Street website 
as part of the Gapminder Foundation project (www.gapminder.org/dollar-street). The Dollar Street 
website displays the world as a street ordered by monthly income per person in the family from 
different countries and continents, and currently uses 43685 photos of 422 families in 66 different 
countries. Using these image-based data, students are expected to investigate “How are people’s 
concepts of family and living spaces similar or different across the world?” (Bargagliotti et al., 2020, 
p. 63). The guidelines in the GAISE II report offers some instructional ideas with regard to the use of 
these image-based data through each four components of the statistical problem-solving process 
mentioned above. Bargagliotti et al. (2020) suggest that this kind of non-traditional, multivariate data 
sets requires a great amount of data exploration time to make observations and wonderings to analyze 
data. Engagement with other types of non-traditional (large and complex) data from secondary data 
sources, such as participatory sensing data (Gould et al., 2017) and public data sets (Wilkerson, 
Lanouette, & Shareff, 2021), also appears to require more emphasis on considering data and data 
preparation phases in statistical investigation process. As seen in these studies, such existing 
multivariate data sets are constructed and made publicly available by others with a particular purpose 
and investigators often repurpose them to explore new questions. To do so, data handling and 
structuring becomes an important part of statistical investigations.  

The Collect/Consider the Data component of the statistical problem-solving process involves 
recording/acquiring, measuring and organizing the data to answer statistical questions with the 
acknowledgment of variability in data (Bargagliotti et al., 2020). Konold, Finzer, and Kreetong 
(2017) call attention to this important process of transforming observations into data and focus on 
table format as a typical means of data recording and structuring either by hand or using software. 
Two common table formats in statistics are case-data table and summary table as called by Konold 
et al. (2017). While case-data tables are mainly used for collecting and storing raw data, summary 
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tables usually include only some of the information gathered and are organized in a way to compare 
groups or detect trends in the data. The data analysis software, such as TinkerPlots (Konold & Miller, 
2011) and CODAP (https://codap.concord.org/), uses attribute-based structure for recording data 
where each column includes a variable and each row holds one observation, called a ‘case’, as 
described by Konold et al. (2017). However, entering the information collected to organize the data 
in such a format can be challenging for the learners. Konold et al. point out the need for thinking of 
data based on attributes which requires considering properties of the observations along with their 
values case by case. Their study revealed that students and adults tended to create two types of case 
tables, flat and hierarchical, when they were asked to construct data sheets to record and organize the 
data by hand from the pictures showing traffic along two road segments (including information about 
the vehicle type, speed, direction etc.) in a given time and date. Compared to the flat tables (attributes 
as columns and cases as rows) as seen in most data analysis software, the hierarchical tables include 
the cases at more than one level created by nested structure. This type of hierarchical structure of 
observations is available in CODAP and allows exploration of multilevel data sets. 

Given the scarce of research on how students/adults come to record and organize data, especially with 
non-traditional image-based data, as part of a statistical problem-solving process, the aim of this paper 
is to present a case of three pre-service mathematics teachers who chose to use photos of butterflies 
as data to analyze categorical data. More specifically, the following question will be investigated in 
this exploratory study: What actions did pre-service teachers take to transform observations of 
butterflies’ photos to cases to answer statistical questions related to categorical data? 

Method 
As part of 3rd year course, Teaching of Statistics and Probability, in the mathematics education 
program, the pre-service teachers were given a group assignment to design a statistical investigation 
activity that is aligned with the learning outcomes in the middle school mathematics curriculum. Two 
of the groups were expected to focus on analyzing categorical data and comparing two or three groups 
using existing data sets available in publicly available internet sources. One of these groups, including 
Arya, Yelda and Hale (pseudonyms), chose image-based data using “Kelebek-Türk” (Butterflies-
Turk) group’s website (https://www.kelebek-turk.com/) while the other group designed their data 
investigation activity involving data collected through survey questions on readings books.  

Due to the uniqueness of transforming image-based data into a statistical analysis of categorical data 
with group comparisons, an interview was conducted with these three pre-service teachers to gain 
insights into their approaches when acquiring and organizing information from photographs of 
butterflies. Other artifacts, such as the documents created during the data exploration and 
organization, were also collected for analysis to answer the research question. Recordings of group 
interview and the student artifacts were analyzed using the perspectives on collect data/consider data 
suggested by Bargagliotti et al. (2020) and Konold et al. (2017). 

Findings 
Preservice teachers began with considering possible data appropriate for analyzing categorical data 
with comparing groups, which was given in the course assignment. Due to the difficulty in finding at 
least three categorical variables in data sets using publicly available data sources, such as Turkish 
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Statistical Institution website, they stated that some of the data explored during the course, such as 
the ladybug data (Bargagliotti et al., 2020, p. 32), inspired them to consider similar data about other 
animals. Yelda came up with the idea of searching butterfly data on the internet and found the group 
of Kelebek-Türk that provides photographs and observational data provided by their members from 
different age and occupation groups. After reading the “About us” information on the website, the 
pre-service teachers got their initial information about how the data were collected. Then they decided 
to use some of these photographs to construct their own observations involving categorical data. 

According to the Kelebek-Türk website, there are 416 types of butterflies under nine different 
families in Turkey and their members have photographed 393 of them. As seen in Figure 2, there are 
nine butterfly families with different number of types, such as the Family Hesperiidae has 43 types, 
observed in Turkey and Figure 3 shows a sample of photos of different butterfly types belonging to 
the Family Hesperiidae.  

 

 
Figure 2: Screenshot of the website displaying the information about all nine different butterfly 

families  
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Figure 3: Screenshot of the website displaying the photographs of the butterfly types belonging to the 
Family Hesperiidae 

Following the exploration of the information given in these pages, the pre-service teachers decided 
to focus on two families with a similar number of butterfly types (the Family Hesperiidae with 43 
types and the Family Pieridae with 39 types) for comparison purposes given in the assignment. To 
collect information about these two families, they then began to click on each photo as seen in Figure 
3. For example, Figure 4 shows various information about Muschampia poggei from the Family 
Hesperiidae, including numerical (frequencies of photographs by cities), geographic (distributions of 
butterflies across Turkey), photographic (captured images of butterflies with/without identified 
gender), tabular (months they were seen) and graphical (distribution of altitudes seen by months) 
representations. From this information, they selected to focus on the image of butterfly with 
unidentified gender (since not all types had gender information) to generate attributes, such as wing 
color and wing appearance which were considered as distinguishing characters of butterflies, and the 
seasons the butterflies seen, which involved grouping of months data given on the website.   

 

 
Figure 4: Screenshot of the website displaying various information about Muschampia poggei from 

the Family Hesperiidae  

After this extensive exploration on the website, the pre-service teachers began to make an ordered 
list for each type of butterflies in both families, including the name of the butterfly, its photo, and the 
season it is seen, on a Word document. As part of the course assignment, they needed to use CODAP 
to analyze the data to answer questions considered in the Formulate statistical investigative questions 
phase of the statistical problem-solving process in Figure 1. Three questions emerged during this 
exploration: 1) What colors are the wings of the Family Hesperiidae and the Family Pieridae? 2) How 
do the appearances of the wings of the Family Hesperiidae and the Family Pieridae look like? 3) What 
seasons do the Family Hesperiidae and the Family Pieridae tend to be seen? Then they constructed a 
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table, as seen in Figure 5, displaying the family name, type name, wing color, wing appearance, and 
season seen in columns respectively and case values in rows. 

 

 
Figure 5: Part of the table created for organizing the data 

Organizing the data as shown in Figure 5 made entering them into CODAP table relatively easier due 
to its case-based structure. One difficulty the pre-service teachers encountered in this process was 
having more than one value for season variable for some cases, such as Pyrgus serratulae seen in both 
spring and summer. Therefore, they chose to create two different data sets, one including 70 cases of 
butterflies in two families with family names, wing color and wing appearance variables (Figure 6, 
table on the left) and the other including 120 cases with season variable for two families (Figure 6, 
table on the right). Due to the repeated cases for each season a butterfly seen, the number of cases 
was increased in the second data set. The pre-service teachers decided to separate multiple seasons 
since they wanted to answer their third question: What seasons do the Family Hesperiidae and the 
Family Pieridae tend to be seen? In either of the data sets, they also did not include type name which 
was displayed in the table in Figure 5 as they considered that having the type names would not allow 
to see two categories (the families) which were compared in the data analysis.  

 

              
Figure 6: The data set tables created in CODAP 
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Concluding remarks 
This paper presented insights from a group of pre-service teachers’ experience of acquiring and 
organizing image-based data to analyze categorical data by comparing two groups as part of a course 
assignment. As pointed out by Bargagliotti et al. (2020), the pre-service teachers spent a great deal 
of time to explore the non-traditional data involving photographs and other types of data collected by 
others for specific purposes as mentioned in the Kelebek-Türk website. In accord with the findings 
of Gould et al. (2017) and Wilkerson et al. (2021), data handling and structuring became an important 
component of the statistical investigation before formulating statistical questions. They needed to 
consider attributes/variables and criteria for identifying categoric values for them, such as assigning 
values, plain or pattern, for wing appearance based on the dots or lines seen in the photos of 
butterflies. The pre-service teachers did not seem to have any issue with preparing the data for the 
analysis in CODAP as they were able to consider the data as attribute-based. This could be due to 
their prior experiences with using CODAP for data analysis during the Statistics course taken in the 
previous semester. However, transforming the initial table created by hand (Figure 5) into a single 
data set table in CODAP was challenging for them. Since their initial table included subsets of data 
within the season variable, the flat table did not work. Instead, they needed to create hierarchical data 
sets, which is possible in CODAP, but this feature was not used in the course before. It was also 
evident in the work of Konold et al. (2017) that the use of hierarchical tables in structuring data by 
hand was more intuitive, but it could be challenging to use such a structure that is already built in 
CODAP environment.  
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This work is part of a wider investigation conducted in Italy, which aims to explore the effects of 
instruction in combinatorial reasoning of secondary school students. Two groups of students with 
and without instruction were given a questionnaire adapted from Navarro-Pelayo’s research in order 
to analyze the students’ performances and strategies used in the solutions, as well as the effect of 
instruction. In this work we present the results found in three combination problems. The students 
did not generally present particular difficulties in solving problems of combinations even though 
students who received instruction showed an improvement in their performances. In the no instruction 
group enumeration was the main strategy while the group of instruction used a more heterogeneous 
distribution of strategies. 

Keywords: Combination problems, strategies, secondary students’ performance. 

Introduction 
The study of combinatorics is an important component of mathematics, especially within discrete 
mathematics and in the school curriculum, where often plays a key role in the teaching of probability. 
For instance, combinatorial reasoning is needed to form the sample space in probability problems, as 
well as to understand some discrete distributions (e.g., the binomial distribution). However, not much 
attention has been given to the teaching of this topic, especially in the Italian school system. 
Moreover, some previous research, such as that by Navarro-Pelayo (1994) have described the 
students’ difficulties in solving combinatorial problems, and this justifies an interest toward this field 
of research.  

Piaget and Inhelder (1951) considered that combinatorial reasoning is a pre-requisite for a full 
understanding of the notions of randomness and probability. In addition, combinatorics is an area 
where students can both develop and train problem solving strategies, as well as mathematical 
processes such as generalization and recursive thinking (Kapur, 1970). Although there has been 
previous research on students’ strategies in solving combinatorial problems, most of this research 
have been carried out with small children (e.g., English 1991; 2005) or university students (Godino 
et al., 2005) and none of this research considered Italian students.  

The aim of this research was exploring the Italian students’ combinatorial capacity and its change 
with instruction, as well as describing strategies developed by secondary school students before and 
after teaching. In this paper we present a part of the results of the global project; more specifically we 
analyze both performances and strategies used by a sample of secondary school students in solving 
three combination problems, also comparing the results obtained by the students with and without 
instruction. 
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Background 
We based our research on the work by Fischbein and Gazit (1988), who analyzed the combinatorial 
capacity of children since 10th year of age and proved that they can learn to solve combinatorial 
problems when they receive a specific instruction. They suggested as main variables affecting the 
difficulty of the tasks the type of combinatorial operations (suggesting that permutations are the 
hardest), the type of element to be combined (numbers and letters are easier than objects or people) 
and the total number of combinations to be formed (a variable that we will describe as the dimension 
of the problem). Concerning secondary school students, Batanero et al. (1997) showed on a sample 
of 720 14-15-years-old students the effect on the difficulty of combinatorial problems of the implicit 
combinatorial model (together with the type of elements to be combined, the type of combinatorial 
operations and instruction). This variable was firstly described by Dubois (1984) who stated that 
every elementary combinatorial problem (that is a problem that could be solved through the 
application of a single combinatorial operation) could be classified through one of three possible 
schemes, implicitly present within the problem: selection, distribution or partition, depending on the 
combinatorial operation suggested in the text.  Henceforth, we will refer to a problem by saying that 
it belongs to a particular model depending on its combinatorial scheme. 

Regarding combinatorial strategies, English (2005) described enumeration used by small children in 
combinatorial problems and considered both a-systematic (consisting in a random or incomplete 
selection of elements) and systematic enumeration. Systematic enumeration involves repeating the 
selection, fixing an element (for example the first element in a permutation) and combining it with 
all the other elements, and then repeating the procedure with the remaining elements until all the 
configurations are listed. Lockwood and Gibson (2016) worked with 42 undergraduate students 
concluding that even creating partial lists of the set of outcomes led to significant improvements in 
the students’ performance in solving combinatorial problems; the authors also suggested that 
instruction should facilitate systematic enumeration processes in the students. In a case study with 
university students, Godino et al. (2005) found that some students still used enumeration at this 
educational level and described other strategies such as use of a formula, use of the sum or product 
rule, posing new problems related to the original or breaking down the problem into simpler 
subproblems. In our investigation we will analyze all the strategies used by the students in the sample 
and its effectiveness to get a correct solution, as well as the differences between students with and 
without instruction. 

Method 
The sample consisted in 115 secondary school Italian students from different school grades and 
specialties, 64 of which had not received instruction on combinatorics and 51 students who received 
instruction on the subject. Although the sample of students was not random, because we depended 
on the availability of schools and teachers, we included classes of different schools and with different 
teachers, in order to obtain a sample of students as heterogeneous as possible. The group of students 
who did not received instruction was formed by classes of grade 10, 11 and 12 (i.e., second, third and 
fourth year of secondary school with students aged between 15 and 18). On the other hand, most of 
the students who received instruction on combinatorics belonged to grade 12 (fourth year of 
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secondary school with age 17-18). There were also three students belonging to grade 10 (second year 
of secondary school) who received instruction on combinatorics in extracurricular courses and who 
were, then, included in this group. The instruction was mostly formal, based on the use of formulas 
to solve combinatorial problems, with the exception of one class of 12 students who approached the 
topic in a constructivist way, mostly through exercises and examples, constructing combinatorial 
rules before being taught a formula. The students were given a questionnaire of 13 open-ended 
problems (in an Italian translation) adapted from the one used in Navarro-Pelayo (1994) and Batanero 
et al. (1997) and proposed in two different versions presenting the same problems with an inverted 
order, aiming to cancel a possible effect of time on the data collection and obtaining a sufficient 
amount of data on every item of the questionnaire. Depending on the availability of the school, 
students had 60 or 90 minutes to complete the questionnaire. We remark, though, that time did not 
represent an issue, considering that most of the students were able to complete the questionnaire 
widely before the smaller time limit. 

In this work we will focus on three items taken from the whole questionnaire and corresponding with 
combination problems: 

Item 1. Supposing we have three identical letters, we want to place them into four different colored 
envelopes: yellow, blue, red and green. It is only possible to introduce one letter in each different 
envelope. How many ways can the three identical letters be placed into the four different 
envelopes? For example, we could introduce a letter into the yellow envelope, another into the 
blue envelope and the last one into the green envelope. 

Item 2. School students must elect their representatives. Five students are the candidates: 
Elisabeth, Ferdinand, George, Lucy and Mary. In how many different ways can three of the five 
candidates be chosen? For example, Elisabeth, Mary and George could be elected. 

Item 3. Mary and Cindy buy four lipsticks of different shades, numbered from 1 to 4. They decide 
to share out the lipsticks, two for each of them. In how many ways can they share out the lipsticks? 
For example, Mary could hold lipsticks with shades 1 and 2 and Cindy those with shades 3 and 4. 

All the three items are small dimensional, meaning that the solution requires less than 10 
combinatorial configurations. Item 1 is a problem belonging to the distribution model (Dubois, 1984) 
in which students are requested to distribute some objects (the letters) in three containers (the 
envelopes), and whose solution is . Item 2 belongs to the selection model and 

students are asked to select 3 people from a group of five and the solution is . 

Finally, item 3 belongs to the partition model and students are asked to form two subsets from a set 
of numbers and the solution is .  

Once the written responses of each student were collected, a content analysis (Neuendorf, 2017) was 
performed. Every solution has been codified through numerical vectors including all the information 
related to the problem (e.g., ID of the student, group, class, correctness of the resolution, strategy of 
resolution). We also included qualitative information on the strategy used; for example, when a 
student employed a formula but not enumeration in a problem the respective entries of the vector 
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include a number identifying how the formula has been used (e.g., correct formula, wrong formula, 
correct formula with arithmetical mistake, correct formula introduced with a wrong name, etc.) and 
a zero in correspondence of enumeration. After the codification of the students' responses to the 
questionnaires, we proceeded with a quantitative analysis focusing mainly on two variables: on one 
hand the correctness (or not) of the problem solution and on the other hand, the strategy used by the 
student (in this work we focused only on the bare use of a strategy and not on how a particular strategy 
is used). The solution to a problem was considered correct if the student either identified the total 
number of combinations by using a formula or correct arithmetic operations or else if he or she 
provided a complete list of all the possible configurations. Regarding the strategies, we observed all 
the procedures of the students considering all the strategy appearing in a solution, even when one 
strategy was used as a support for another one. 

Results 
In Table 1 we present the percentages of correct solutions to each item in both groups. We note that 
in both groups item 3 (partition of a set of numbers into two disjointed subsets) was significantly 
easier than the other two problems and that, generally, there was an improvement in students’ 
performances after the instruction, even though some students in the instruction group were still not 
able to solve the problems. 

Table 1: Percentages of students in each group correctly solving the items (above) and comparison 
with results in Navarro-Pelayo (below) 

Item 1  

Distribution 

Item 2  

Selection 

Item 3   

Partition 

Item 1  

Distribution 

Item 2  

Selection 

Item 3   

Partition 

No instruction (n=64) Instruction (n=51) 

39,1  12,5  51,6  51,0  54,9  66,7  

No instruction (n=348) [Navarro-Pelayo, 1994] Instruction (n=352) [Navarro-Pelayo, 1994] 

26,9 22,5 31,0 26,7 46,0 37,2 

 

We observe that despite the small dimension (only 10 different configurations), item 2 was difficult 
for students with no instruction. We suppose that this is due to the fact that the students were not used 
to deal with the selection of people (while they were more familiar to work with numbers, that are 
used in item 3, and letters, appearing in item 1). We can observe that mistakes mostly derive from 
either not considering that the ordering of elements does not have an influence in the problem or 
considering as different elements that are identical instead; for example, in item 3 many students 
provided a solution that considered different the permutations of a same solving configuration or in 
item 1 students assumed that different letters should be distributed in the envelopes. This error was 
described both in Batanero et al. (1997) and Fischbein and Gazit (1988) as linked to combination 
problems. Comparing our results with those in Navarro-Pelayo (1994) – see Table 1 – we can observe 
a similar trend of improvement for Spanish students. While, on one hand, the percentages are different 
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from those obtained in our sample, probably because of the different sample size (115 students in our 
research and 720 in Navarro-Pelayo’s), on the other hand we observe a similar pattern of results: 
students globally improve after the instruction and they perform better on item 1 and item 3 (with the 
latter as the best performing item), but it is in item 2 where can be noted the best improvement after 
instruction. 

Students’ strategies 

In analyzing the solutions, the following strategies were considered: a) Enumeration, found in 
previous research (Batanero et al., 1997; Godino et al., 2005; English, 2005; Lockwood and Gibson, 
2016) with students of different ages and consisting in the explicit listing of all the possible 
combinations to be formed, according to the problem statement. b) Tree- diagram: the student builds 
a tree diagram as a help in producing all the configurations; according to Fischbein and Gazit (1988) 
the resolution of the problem is facilitated with the involvement of this tool. We also considered the 
following strategies, as described in Godino et al. (2005): c) Formula: the student recognizes the 
combinatorial operation of combination (or another operation, when the students proceed changing 
the combinatorial model or refers to another problem that he or she found equivalent) as a solution to 
the problem and remembers its formula. d) Reference to other problem: the student transforms the 
problem in another equivalent which is used to obtain the solution. e) Sub-problem decomposition: 
the original problem is divided into several combination problems of smaller dimension and the 
resolutions of which are combined to get the solution to the initial problem. f) Sum, product or 
quotient rules: the student does not remember the formula of combinations and tries to solve the 
problem using the elementary arithmetical rules of sum, product or quotient. g) Other strategies, 
generally giving a wrong answer with no justification.  

In Table 2 we present a summary of the results obtained from the analysis of strategies, with the 
percentage of use of every strategy considered together with the percentage of students getting to a 
correct solution. We observe how students without instruction mostly relied on an enumerative 
strategy in every item, even though this did not always lead to a correct resolution, especially in item 
2. The majority of enumerations were systematic, probably due to the reduced dimension of the 
problem, that allowed students to better control their listing procedures. We remark how students 
proceeding through enumeration failed in reaching the correct answer due to different reason: on one 
side, in item 1 and item 3 their mistakes were mostly connected to a misunderstanding of the problem 
(i.e., considering objects different/identical or taking/not taking into account the importance of order) 
rather than something imputable to the chosen procedure. However, in these items students tended to 
overestimate the number of configurations.  

A different situation is observed in item 2 where students mostly produced an incomplete list of 
configurations, underestimating the solution of the problem, providing a partial resolution to the 
problem (a solution which does not contain procedural mistakes but that fails to reach a correct 
solution). In fact, we observed how most of the enumerations end with a list of 9 out of 10 
configurations. 
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Table 2: Percentages of global and correct use of each strategy in the no instruction group (n=64) and 
in the instruction group (n=51, percentages in brackets) 

Figure 1: (a, left) Resolution of item 1 through the implicit use of the sum rule  

(b, right) Resolution of item 3 through enumeration 

Some of the students also developed different solving strategies but there were very few cases in 
which they were able to get to a correct solution. Most of these were reached through the use of the 
sum rule, by changing the model of the problem from distribution to selection: an example of this 
resolution is presented in Figure 1a, where the student explains that, instead of distributing letters he 
can choose the envelope to be left empty and so there are four possibilities (basically, every sub-
problem is represented by a single configuration of the envelope that is discarded so that the global 
solution is reached by summing up the results obtained in the four subproblems). A change of model 
can be also observed in Figure 1b, where the student distributed people instead of partitioning 
lipsticks and proceeds by listing all the possible configurations. We also notice how in the group of 
students with instruction – see Table 2, percentages in brackets – the choice of strategy shifted from 
a majority of enumerations to a more heterogeneous use of strategies. In fact, most of the considered 

 Item 1 Item 2 Item 3 

Strategy Global Correct Global Correct Global Correct 

Systematic enumeration 45,5 (21,3) 30,9 (19,1) 75,4 (17,0) 12,3 (8,5) 75,9 (39,6) 53,4 (33,3) 

A-systematic enumeration 5,5 (10,6) (6,4) 1,8 (4,3) (2,1) (4,2) (4,2) 

Tree diagram 16,4 (2,1) 5,5 1,8 (2,1)  8,6 (2,1) 3,4 

Formula (29,8) (19,1) (57,4) (46,8) 1,7 (31,3) (25,0) 

Reference to other problem (6,4) (6,4) (6,4) (4,3) 1,7 (6,3) (4,2) 

Sub-problems decomposition 7,3  10,5 (2,1)  6,9 (4,2) 3,4 (2,1) 

Sum rule 10,9 (8,5) 9,1 (8,5) 5,3  (4,2) (2,1) 

Product rule 25,5 (29,8)  21,1 (14,9) 1,8 (2,1) 20,7 (16,7) 3,4 (2,1) 

Quotient rule (6,4) (6,4) (10,6) (6,4) (12,5) (8,3) 

Other 3,6 1,8 (2,1)  (4,2) (4,2) 
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strategies appeared in the solutions of the whole group with the exception of the sub-problems 
decomposition and tree diagram, that were scarcely used. The most frequent strategies were formula, 
enumeration and product rule, even though the latter was mostly connected to a non-resolution of the 
problem. Students of the instruction group who applied a formula mostly got to a correct solution, 
even though we can observe some students using a wrong formula due to, we suppose, a 
misunderstanding of the statement of the problem. 

 
Figure 2: Resolution of item 3 through the double use of enumeration and quotient rule 

We observe how part of the students used enumeration; we suppose, also considering results of the 
whole questionnaire, that this is due to the fact that the problem is a small-dimensional, so students 
easily produce a complete list of configurations. This strategy led to a correct solution nearly in most 
of the cases for item 1 and item 3 while, similarly to what was observed for the group of no instruction, 
students were not always able to get to the complete list of enumerations in item 2, for which resulted 
more effective the use of the formula. We suppose that the reason is that the formulation of item 2 is 
very similar to usual combination problems one can find in textbooks. Finally, we notice that some 
of the students who received instruction solved the problem using multiple strategies within the same 
resolution; for example, we can observe in Figure 2 a resolution of a student involving both 
enumeration and quotient rule. On one hand, on the left of the figure, the student properly produces 
the complete list of solving configurations and then provides an argument involving the arithmetic 
rule of quotient explaining how the result of the problem is 6. We suppose that students that provided 
a double solution proceeded in this way in order to justify their calculations, in case they were not 
sure about the formula or the rule they were using. In conclusion, instruction was found to be useful 
to increase the competence of the tested students to solve combinatorial problems, in agreement to 
what stated by Fischbein and Gazit (1988). Students’ performances (in terms of correctly solved 
problems) increased significatively after the instruction, even though some difficulties remained, and 
the students were not always able to get to the correct solution. In spite of a (mostly) formal instruction 
based on the learning of formulas it is worth observing that even after acquiring new procedures some 
of the students of the group with instruction continued to rely on enumeration, even though sometimes 
they used it together with formulas and arithmetical rules, providing a double solution to a problem. 
Comparing our results with the ones presented in Godino et al. (2005) for university students, we 
notice that the distribution of strategies for secondary school students is different, shifting toward a 
higher use of enumeration. On the other side, focusing only on the results of the group with 
instruction, we can observe that the distribution of strategy was more similar to what observed in 
university students with higher mathematical preparation that, consequently, does not seem to play a 
key role in the development of solving strategies. 
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Conclusions 
Despite the small dimension of the tested sample, this explorative research provides new insights on 
the solving strategies students activate when solving combination problems. Most of the correct 
answers come from the use of either enumeration or formulas even though students also developed 
other different procedures. We underline the fact that knowing the strategies that the students activate 
would allow the teacher to better implement a teaching activity, for example introducing different 
techniques. However, further and deeper steps would be needed in order to proceed with this research; 
for example, widening the dimension of the sample and including more focused qualitative analysis, 
aiming to better understand the mechanisms that lay behind the choice of a solving strategy. 
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Developing statistical thinking at the early school levels is a challenge that in-service primary school 
teachers must face. One of the actions that would achieve this goal is aimed at generating teaching 
proposals from the teachers themselves in their schools, from contexts that give meaning to the 
analysis of data in situations of uncertainty from an informal perspective. This report presents how 
collaboratively, a group of preschool and primary school teachers and researchers participated in a 
Lesson Study Group on the Informal Statistical Inference (ISI) approach for nine weeks. This allowed 
them to move in a cycle of goal setting, planning, implementation and evaluation of a lesson plan, 
acquiring knowledge of the content and pedagogical knowledge of ISI reflecting on their professional 
learning and the teaching of ISI. 

Keywords: Early statistics, primary education, informal statistical inference, lesson study, 
pedagogical content knowledge. 

Introduction 
Statistical thinking makes it possible to more accurately analyze the world and overcome the 
fallibility of intuition. The use of statistics allows decisions to be made about phenomena in which 
uncertainty is present and facilitates the establishment of inferences in situations that we try to foresee 
according to the behavior of the data. It is necessary to incorporate at the school level experiences 
that allow students to face critically various information sources that provide data, such as those 
related to epidemiological phenomena, scientific findings, electoral results, weather forecasts, 
economic models, among others. In turn, they are required to be able to recognize variation and 
understand the randomness present in many daily activities. Given this scenario, teachers could use 
informal statistical inference (ISI) as a theoretical and pedagogical approach that contributes to 
developing in their students’ ways of reasoning in situations of uncertainty, understanding ISI as “a 
generalized conclusion expressed with uncertainty and evidenced by, yet extending beyond, available 
data” (Ben-Zvi, et al., 2015, p. 293). 

On the other hand, preservice teachers and in-service teachers, require a pedagogical content 
knowledge of the informal inferential reasoning (IIR) around central concepts of ISI, so that they 
understand key ideas in statistics, anticipate the difficulties and errors of students and can build tasks 
that provide opportunities for the development of inferential reasoning (Leavy, 2010). In this sense, 
the present study addresses early statistical education with preschool and primary educators and 
investigates their pedagogical content knowledge (PCK) by planning a learning sequence on ISI in 
early childhood education designed collaboratively within a lesson study group (LSG), and by 
researching their lessons in the classroom.   
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Lesson study for the transformation of teaching 
To initiate a Lesson Study cycle, a team of 3 or more teachers is needed to form a LSG, which meets 
periodically to establish a lesson plan. Through Lesson Study cycles, understood as a process of 
instructional improvement, teachers can transform traditional ways of teaching mathematics into an 
instance of teacher professional development. Research has shown that it is a way for teachers to 
develop their work collaboratively and understand how their students learn. Lesson Study (LS) 
focuses attention on teamwork and shared responsibility around a lesson plan, its implementation, 
and its improvement. Thus, one or more teachers prepare the lesson, selecting the materials needed 
to achieve the objective stipulated in the lesson plan. Subsequently, one of the teachers involved in 
the planning implements the lesson, which in some cases is observed by other teachers or researchers. 
Once the lesson is completed, the teachers and observers meet in a session in which the implemented 
lesson is reviewed and analyzed, which will allow for the improvement of the lesson plan and its 
subsequent dissemination. According to Isoda et al. (2021), LS allows the development of teachers' 
Content Knowledge and Pedagogical Knowledge, promotes their ability to observe students' 
productions in class, motivates the improvement of their teaching proposals and allows the 
establishment of collaborative relationships among colleagues.  

Teachers' knowledge and Informal Statistical Inference 
Since the 1980s, Shulman (1987) stated that teaching begins when the teacher reflects on what needs 
to be learned and how students will be taught. In these reflective processes, beliefs, implicit theories, 
and other forms of thinking interact with context variables to shape actions that take place in the 
classroom. The PCK construct seeks answers that contribute to specifying the professional knowledge 
needed in teaching to intensify student learning (Shulman, 1987). 

The framework presented in Table 1 (Chick et al., 2006), accounts for the components of PCK that 
are evident in teaching and the way pedagogical and content knowledge are intertwined. This 
framework considers three components:  Clearly PCK (involves aspects that are more of a mixture 
of content and pedagogy); Content knowledge in a pedagogical context (involves aspects drawn more 
directly from the content); and Pedagogical knowledge in a content context (includes knowledge 
drawn more directly from pedagogy). 

Table 1:  Framework for analyzing Pedagogical Content Knowledge (Chick et al., 2006) 

PCK Category 
Clearly PCK 
 

Teaching Strategies 
Student Thinking 
Student Thinking - Misconceptions 
Cognitive Demands of Task 
Appropriate and Detailed Representations of Concepts 
Explanations 
Knowledge of Examples 
Knowledge of Resources 
Curriculum Knowledge 
Purpose of Content Knowledge 

Content knowledge in a 
pedagogical context 

Profound Understanding of Fundamental Mathematics (PUFM) 
Deconstructing Content to Key Components 
Mathematical Structure and Connections 
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PCK Category 

Procedural Knowledge 
Methods of Solution 

Pedagogical knowledge in a 
content context 

Goals for Learning 
Getting and Maintaining Student Focus 
Classroom Techniques 

The research in which this report is framed, involves characterizing the progression of the IIR from 
kindergarten through fourth grade attending, in turn, to the development of the PCK of the teachers 
when designing and implements a lesson plan in an LSG. In this sense, it is considered that the PCK 
accounts for the knowledge of teachers to understand the concepts, problems or emerging difficulties 
adapted according to the interests and skills of the students (Estrella et al., 2015).  

This framework is combined with the informal statistical inference components characterized by 
Makar and Rubin (2009) for the generation of teaching proposals that seek to promote IIR in students 
at the school level. Various frameworks have been proposed when characterizing the ISI and the 
reasoning that it supports, whose common components correspond to using data as evidence requiring 
to  assess and consider the available data to establish arguments associated with a question or problem, 
privileging certain evidence that they provide over personal experiences or opinions; generalizing 
beyond the data accounts for the ability to communicate conclusions derived from particular data, 
generating inferences that apply to a broader set; and expressing uncertainty implies  manifesting the 
uncertain in generalization, being aware that statements are not certainties, but consider a margin of 
error. 

In this way, one of the purposes of this study focuses on how the work in a LSG that seeks to promote 
ISI can contribute to the development of the PCK of the teachers linked to the experience. Although 
the work with the teachers included stages of planning, execution and improvement of a lesson plan, 
this report focuses on the following question: How does a teacher's PCK manifest itself when 
planning a lesson plan on ISI at the preschool to fourth grade levels? 

Methodology 
To answer this question, -and based upon consensus among the authors-, a qualitative, descriptive-
interpretative approach is adopted, analyzing the dialogues transcribed from nine video recordings: 
seven working sessions within the LSG and two lessons of implementation of the lesson plans of each 
teacher, according to the categories adapted from the PCK components of Chick and collaborators 
(2006), integrating the key components of the IIR. 

Participants 

The LSG consisted of six teachers (three primary school teachers, one preschool educator, two special 
educators) and three researchers with expertise in statistics education, two of them with LS research 
experience. Regarding their years of professional experience, three of the teachers in this school had 
more than 15 years of teaching experience, two of them had between 10 and 15 years of experience 
and one had less than 10 years of teaching experience. The teachers work in a municipal educational 
establishment located in the Metropolitan Region of Chile and carried out the execution of the lesson 
plans with a total of 70 students distributed in grades K-4. 
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The LS cycle for generating a lesson plan that promotes IIR. 

The LSG met weekly for 2 hours during 9 weeks. The activities of the LS cycle in which the teachers 
had to go through were delineated by the team of researchers based on four work axes: A. Authentic 
experiences of informal inferential reasoning; B. Planning a learning sequence; C. Implementation, 
revision and adjustment of the lesson plan that promotes IIR; and D. Analysis and reflection of the 
LS process.  

In Table 2, although the activities are presented sequentially, some actions are carried out cyclically 
throughout the process, for example implementation of the lesson plan, review and adjustment of the 
lesson, identify student needs, reformulate objectives, propose new possible teaching interventions, 
among others. 

Table 2: Overview of the activities according to the LSG work 

Week Activity 

1–2 

Authentic experiences of informal inferential reasoning: Exploring content knowledge in a 
pedagogical context 
•Task 1. How will Tom get to school tomorrow?  •Task 2. Which car would he choose to win the race?  
What elements characterize IIR: Comparing responses of LSG teachers and some other teachers in the 
country, in light of the components: Using data as evidence, expressing uncertainty, and generalizing 
beyond data. 

3–4 
What do we expect from the IIR of K-4 students? - Planning a learning sequence  
Identify student needs, formulate objectives, set a task to promote IIR, anticipate student difficulties 
and responses, outline possible teaching interventions, and determine aspects to assess. 

5 
Implementation of the lesson plan 
The planned lesson plan is implemented, some teachers and researchers observe and record, in videos 
and/or field notes, what happens.   

6 
Review and adjustment of the lesson plan according to post-session analysis  
The experiences of the teachers in the implementation are shared, the LSG reviews and adjusts the 
lesson plan considering some suggestions and recommendations that arise in the post-session analysis. 

7 Implementation of the adjusted version of the lesson plan 
The lesson plan is implemented in light of the proposed adjustments and the LSG's recommendations. 

8 - 9 

Analysis and reflection of the LS process 
Video records and field notes are reviewed to identify strengths and aspects of the intended lesson 
plan, and group reflection on all activities of the process describing the LS experience, professional 
learning and challenges, socioemotional aspects and some discoveries.   

ISI tasks proposed to the teachers in the first LS stage  

In the first LS stage, the teachers had two experiences that triggered their RII (see Table 3). The first 
situation is from the inferential domain and is based on one of the items reported by Watson and 
Callingham (2003). The second situation belongs to the probability domain and is related to a 
randomized experiment with dice. After its realization, the in-service teachers were able to know the 
elements that have been characterized at the research and pedagogical level of the ISI approach, with 
the purpose of integrating these elements in the lesson plan that would be formulated, implemented 
and evaluated in the following stages.   

Table 3: ISI tasks proposed to the educators and teachers in the first stage of the LS 

Situation  Concepts ISI Ability Resources 

Proceedings of CERME12 917



 

 

Reading a data 
representation with a 
missing data to make a 
prediction in a scenario of 
uncertainty.  

Variable, categories 
of the variable; 
data; majority; 
prediction. 

Predicting the variable 
category in which the 
missing data 
correspond beyond the 
data provided in the 
representation. 

Conducting an experiment 
of throwing two dice 
simultaneously, advancing 
on game board according 
to the sum of the results of 
the dice faces. 

Random variable; 
sample; population; 
random experiment; 
variability; sample size; 
prediction. 

Predicting the greatest 
chance of winning by 
considering various 
samples. 

The lesson plan and the core task proposed within the LSG 

The lesson plan was jointly designed based on previous LSG discussions on IIR and was intended to 
be implemented transversally with K-4 students. This plan considers a central statistical task of a 
playful type involving the randomized coin-tossing experiment, called "the frog race".  

The game, whose instructions are illustrated in Figure 1, favors the manipulation of the material and 
the recording of data on a game board. Before starting the game, each player must choose the frog 
that he/she thinks can reach the goal before the other two. The game ends when one of the frogs has 
reached the goal. The game can be repeated as many times as desired, although three or more 
completed games are recommended. 

            

Figure 1: Board and game instructions “Frog race” (Estrella et al., 2022) 

After completing several games with the data recorded on the boards, students are encouraged to 
establish generalizations beyond the data, using arguments based on the samples obtained (their own 
and those of their classmates) and to express uncertainty about which of the frogs is more likely to 
win; the guiding question was "If you had to give someone advice, which frog would you advise them 
to choose? Why?". Each teacher gave two lessons on ISI in two groups of the same course. 

Results  
To account for teachers' PCK when generating, implementing, and improving a lesson plan that 
promotes IIR, some illustrative episodes were selected from the categories proposed by Chick et al. 
(2006).  Given the limitation of this paper, we chose to show only the lesson planning stage and the 
categories used to analyze the teachers' interventions (each teacher is labeled with T1 to T5, and the 
researchers as R1 and R2).  
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Conformation of a lesson plan  

As an instance prior to the planning of the lesson plan, the teachers faced IIR eliciting tasks, as an 
authentic experience that not only allowed them to activate their content knowledge on ISI, but also 
enabled them in a subsequent exercise, to analyze their own and other colleagues' answers, 
considering the IIR components brought into play. At the same time, they learned in parallel some 
aspects of the ISI approach as an alternative that makes possible the teaching of contents associated 
with uncertainty prior to the use of formal inference techniques. These actions were key in the 
formulation of a central task of the lesson plan.  

Some manifestations of teachers' PCK according to the categories (1) Clearly PCK, (2) Content 
knowledge in a pedagogical context and (3) Pedagogical knowledge in a content context, when 
participating in an LSG are illustrated in Table 4 below. 

Table 4: PCK manifestations of two teachers according to PCK categories 

Stage of the LS cycle PCK 
Category  

Planning 1 2 3 
T1: The central problem of the class... considering K to 4th grade, What scenario... evidence... 

express uncertainty... X X X 

T2: It would have to be something like the car race thinking that something super meaningful and 
known to the kids...   X 

T1: You can think of the generalization in the fact that if they see that a car is winning... When 
they are doing the game ...If a partner asks them X X  

T1: A visual question to see who is winning... visually they realize who is winning... and when 
the children realize that they are winning... they will immediately say "yes", I experience this 
daily with my students. They want to get to the winning situation, yes or yes! 

X  X 

In this episode, T1 points out in his intervention key aspects to promote in his students, identifying 
components of the IIR that are fundamental for students to understand and establish ISI, in particular 
the use of data as evidence and the establishment of expressions with uncertainty. T2 proposes to the 
LSG to involve playfulness as a fundamental feature of the task, so that students can become 
emotionally attached to its development. Then T1 points out to his colleagues that employing a visual 
representation could allow students to reason through identifying patterns in the data, and analyze the 
results more favorably. Finally, T1 discusses strategies for engaging students. 

Table 5: PCK manifestations of five teachers according to PCK categories 

Stage of the LS cycle PCK 
Category  

Planning 1 2 3 
R1: Regarding the car race, in kindergarten I think there would be difficulty with the sum of the 

dice, ... there would be too much prominence of the teacher, 2 dice are going to be slower 
(e.g. 6 and 6). 

X   

T1: Maybe the children could roll [roll the dice] and one [teacher] could count.   X 
T2: But T1, that has to be done [live and direct with the students] how do you plan to do it with 

Kindergarten in this [Pandemic] scenario?    X 

T1: A of course .... I was thinking about that... how do you apply it? It has to be something we 
can apply now [Pandemic] right?   X 

T3: With R2 we thought of a race, but with colored frogs, and that, instead of rolling dice, you 
would roll a coin 2 times or 2 coins at the same time. The frogs would advance, for example, 
the orange one if the two coins go "tails", the pink one if the two coins are "heads"., and the 
blue one if different [head and tail]. 

 X  
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R1: Given the level of the children it could be 2 coins. I want to know which frog you would vote 

for. X   

T4: I'm leaning...I have no prior training ...but I think there's a better chance of 1 or 1 [heads and 
seal].  

R1: and why?    
T4: I don't know... Thinking it's harder for [both] 2 heads and 2 tails to fall out.  
R2: Do you have 2 coins? let's toss them 10 times!     

 X  

T5: I already did it, I got 2-times [both] head, 1-time tails [both], and 7-times tail and head 
T4: I won!  X  

T1: Playing the game I feel it's super practical, because the parents could pull or the children, and 
helping them to advance. We [teachers] wouldn't have to do it, my kids could do it.    X 

T4: It could be playing as a family and completing a register... X   
In the episode (see Table 5), R1 invites to anticipate certain difficulties of the students in the operation 
of a randomized experiment of throwing two dice simultaneously given the limited numerical scope 
of the kindergarten through fourth grade students. Some LSG members propose alternatives to reduce 
its complexity, in this case using two coins (three non-equiprobable events) instead of dice (six 
equiprobable events; or 36 non-equiprobable events). On the other hand, teachers discuss some 
pedagogical strategies that can be adjusted regarding their management in an online learning 
environment given the pandemic. In turn, R1's intervention provokes teachers to bring into play their 
content knowledge in the pedagogical context of task planning vis-à-vis possible predictions, the 
operation of the randomized experiment, and possible outcomes. 

Discussion  
It is recognized that teachers face challenges in teaching statistics, as many lack experiences in school 
or in their initial teacher training, particularly on aspects specific to early statistics (Estrella et al., 
2020). Although research regarding teachers' PCK about ISI and ways of preparing to teach ISI is 
scarce (de Vetten et al., 2017), it is also recognized that teacher professional development experiences 
conducive to promoting PCK on ISI and associated reasoning can be generated. In this perspective, 
the manifestation of K-4 teachers' PCK was analyzed when planning, executing and improving the 
lesson plan on ISI. 

Authentic informal inferential reasoning experiences (Table 3) helped to foster in teachers, an 
awareness of the uncertainty inherent in the outcomes presented in the situations, which led to 
proposing a central task for K-4 students to develop their IIR early; in turn, allowed teachers to 
analyze their own IIR, and to delimit future actions regarding the planning, management and 
evaluation of a learning sequence that could develop the IIR of their students. The planned learning 
sequence considered the materials, motivation, online education context, and students' prior 
knowledge and experiences, delineating possible teaching interventions, in the core task promoting 
IIR. During the implementation, review, and adjustment of the lesson plan, teachers were able to 
reflect on the achievement of the lesson objectives, providing feedback leading to the fine-tuning of 
the lesson. Finally, the instance of reflection of the LS process allowed teachers to make explicit the 
professional challenges, the perceived socioemotional aspects and some discoveries.  

Although this report shows part of the comprehensive analysis of teachers' PCK in only one of the 
stages of the LSG cycle, the categories employed can be considered relevant to analyze in detail the 
manifestation of aspects of PCK in relation to IIR. The generation of statistical learning sequences 
created with the expertise of the teachers themselves together with LSG collaborating researchers in 
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an LS that lasted several weeks, hold promise for the promotion of statistical thinking at the early 
school levels. It is projected that the spirit of improvement of the LS methodology will permeate both 
the learning sequence constructed and the experience and teaching of this group of teachers. 
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Game-variation to support probabilistic reasoning 
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This study investigates game-variation as a means for supporting reasoning on the bi-
directional relationship between underlying probability distribution and data. A teaching 
experiment where students in Grade 5 (11-12 years old students) are playing three games of 
the Color-run constitutes the context of investigation. The study shows how variations in the 
sample space between the games can pull students into probabilistic reasoning about chance, 
random variation and sample space. The study also shows how probabilistic reasoning can 
face challenges from deterministic reasoning. 

Keywords: Probabilistic reasoning, deterministic reasoning, random variation, sample space, 
inferentialism. 

Introduction 
This study intends to contribute to the call for increased attention on how learning environments 
can be designed to support students’ statistical and probabilistic reasoning (Ben-Zvi et al., 2018; 
Langrall et al., 2017). This is approached by the research question: 

How can variation in sample space between games be used to support reasoning on 
the bi-directional relationship between underlying probability distribution and data? 

A teaching experiment where Swedish grade 5 students are playing three games of the Color-
run (Nilsson, 2020) constitutes thew context of investigation. 

Theoretical background 
The present study takes an inferentialist perspective on reasoning. This means that reasoning is 
understood to be a constructive process, taking place as students participate in and contribute 
to the practice of giving and asking for reasons (GoGAR) (Brandom, 2000). Think of the 
concept “probability”, in the claim, “The probability of an outcome of six is 1/6 when rolling 
the die.” Being an act of reasoning in GoGAR, the claim implies the assumption of a fair die, 
that the relative frequency of sixes stabilizes around 1/6 as we increase the number of trials, 
and that the probability of not having a six is 5/6. This example involves many reasons related 
to the concept of probability, of which only a few have been made explicit here. The main point, 
however, is to show that reasoning consists of knowing what follows from a claim and what it 
follows from, what would be evidence for it and what is incompatible with it (Brandom, 2002). 
For the learning of probability, this implies teaching where students are invited to make claims 
(take a stand) and are challenged to ask and give reasons for claims, in explorative practices of 
experimenting with data, making connections, explaining, inferring and generalizing (Nilsson, 
2019). 

Understanding the bi-directional relationship between underlying probability distribution and 
data implies understanding how the sample space is mapped in data, taking into consideration 
the effect of chance (Nilsson, 2014). On this issue, research shows some contradicting results. 
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Lecoutre (1992) for instance, shows that students often fail to use information of sample space 
when an element of chance is involved. Students argued that outcomes of a random experiment 
are equiprobable, no matter of the composition of the sample space, because the experiment is 
just a matter of chance. Noll and Shaughnessy (2012) and English and Watson (2016), on the 
other hand, show that students tend to stress proportional reasoning between sample space and 
frequency outcomes. Several studies also show that students tend to appreciate contextual, 
material and idiosyncratic explanations (Nilsson et al., 2018; Watson et al., 2007) over 
probabilistic and data-centered reasons when asked to predict or explain the distribution of data.

Method
The teaching experiment

This study is part of a small-scaled teaching experiment over three lessons in a Swedish grade
5 class (11–12 years old) with the purpose of exploring informal hypothesis testing in a 
probability context. The present study concentrates on the first of three lessons, with the aim of
introducing the students to reasoning on random variation and sample space in the context of 
the Color-run (Nilsson, 2020). Three bottles with three different sample spaces were design. 
After shaking the bottle, the color of the marble that appears in the neck of the bottle is recorded. 
The color first recorded seven times wins the game.

Figure 1 shows the bottle used in the first game and the results of the three games. The entire 
lesson was in the format of whole-class teaching. One camera was placed at the back of the 
classroom to capture the whole-class discussions. In the two first games there were 15 students 
in the class. Another student joined in during Game 2.

Figure 1: The bottle and the three games. The order of the three games moves from left to right. A list of 
reasons is to the left of Game 1. At the top of the list is ‘weight’, then ‘agilent’ and at the bottom ‘luck, 

chance’. The row at the bottom of the playing-boards tells the colors – red to the left, yellow in the middle 
and blue to the right - and the number of each color in the bottle. At the very bottom are the students’ 

votes on each game.
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The rationale of the design of the game 

The teaching experiment was designed by me, the researcher and author of the paper. Sara1, the 
class-teacher, run the lessons and was supposed to act as she was used to. She was used to elicit 
and build discussion on students’ ideas. If no student made connections between the win of a 
game and the sample space, Sara should take some careful initiatives to support such 
connections. 

Each game was structured in three phases: predicting-playing-reflecting. First, the students 
were asked to predict which color they think will win and to provide reasons for their 
predictions. Second, the game was played. Third, the students were asked to reflect on the 
outcomes of the game, connecting back to their predictions. It was expected that a game both 
would ask for reasons and give reasons. It would ask for reasons if a game outcome was 
different from students’ expectations. Experiences from previous games would help in giving 
reasons for predicting a subsequent game. 

A principal idea of the variation theory is that we can only discern an aspect of a learning object 
if we experience a variation in that aspect (Runesson, 2006). In the present study the bi-
directional relationship between sample space and data was an aspect students were supposed 
to discern. On this account, the sample space was changed between the three games. The game 
should also incite reflections on random variation. This raised questions on the length of a game. 
A long game would stress the regularity between sample space and data but mask random 
variation. A short game would stress random variation but mask the relationship between 
sample space and data. In preparing the lesson, I played the game of different length and decided 
to use a seven-step playing board (Figure, 1). 

Method of analysis 

In the analysis I looked for signs of taking a stance and of asking and giving reasons for a stance 
taken. Taking a stance (expressing a claim) on an outcome, was initiated by the teacher asking, 
“Who do you think will win?”. Taking a stance was also made explicit in voting on a color. 
Signs of asking for reasons are ‘why-questions” or questions like, ‘how are you thinking?’. 
Signs of giving reasons come with signal words like, ‘because’ and ‘since’. The results are 
structured according to the phases of predicting-playing-reflecting in each game. 

Analysis and Results 
Game 1 

The sample space in Game 1 was, 2R, 2Y and 2B (Figure, 1). 

Predicting on Game 1 

After introducing the game and making all aware of that it is two marbles of each color in the 
bottle, Sara asked, “Which color do you think wins?”. The votes from the students were two on 

 
1 Sara is a pseudonym for the teacher’s real name. 
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red, ten on yellow and three on blue. The students gave both deterministic and probabilistic 
reasons for their votes. 

Of the deterministic reasons were an idea of distance the most emphasized. When Sara asked 
the students to vote, she held the bottle horizontally and a yellow marble was closest to the 
bottle top. The students noted that the yellow was “At the front”. Hence, being at the front, the 
yellow marble has the shortest distance to the bottle top and so, most likely be first to the top 
when turning the bottle around. Sara did not shake the bottle to challenge the idea.  

Probabilistic reasons are reasons that take into consideration sample space and random 
variation. For instance, when Sara asked Marcus why he voted for blue he said, “I don’t know. 
One should pick one and it doesn’t matter which one”. We can interpret Marcus as if he 
considers the win of the game to be just a matter of chance, since each color has as many 
favorable outcomes. 

Playing Game 1 

Sara turned the bottle each time. One of her students helped her at the whiteboard to mark the 
outcomes in the race. Sara moved around in the classroom to engage all students in reporting 
on outcomes. The first game ended with one on red, seven on yellow and five on blue. 

Reflecting on Game 1 

Sara asked, “Do you have any ideas why yellow won?” Students still argued for the distance to 
the bottle top. Now, Sara challenged this, “But I shook the bottle. I thought I was shaking a lot” 
[Sara shakes the bottle]. No student responded, probably because the shortcomings of their idea 
became obvious to them. Another deterministic reason that came up was, “Maybe because it is 
heavier? [giggling] They [the yellow] look bigger”. Sara looked close to the bottle, and 
responded with a long yes, which can be interpreted as if she wanted to tell that all marbles are 
exactly the same, without dismissing the student’s contribution. In general, Sara struggled 
between an attitude that no answer is wrong and trying to turn the students away from 
deterministic reasons towards probabilistic reasons. 

Albin explained the win of yellow by, ”Yellow has luck”. After Albin’s suggestion Sara made 
a list on the whiteboard of the reasons students came up with (Figure, 1). Noting ‘weight’ and 
‘at the front’, she asked if she had missed anything. One student repeated luck. Sara revoiced 
luck but with hesitation in the tone. She also expressed, “Lucky color maybe”. Sara added 
‘Luck’ to the list. It seems as if Sara considered luck not a characteristic of randomness but a 
material property of the yellow color. Why Sara made this interpretation might be because 
Albin said, “Yellow has luck” and not “Yellow had luck”. The former signals that yellow 
possesses luck as a property. Regardless of if Sara made this interpretation or not, the situation 
shows how important it is to make inferences explicit in teaching, so the participants know they 
are talking about the same thing. 

Game 2 

The sample space in game 2 was, 3R, 2Y and 2B (Figure, 1). 

Predicting on Game 2.  
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Sara made explicit the number of colors in the bottle. Eleven students voted on red, one on 
yellow and three on blue (Figure, 1) and Sara asked, “Yellow was a color of luck, it had the 
weight for winning, but now we do not believe in yellow anymore, it is only one that believes 
in yellow? Why do we believe most in red this time?”. Daniel articulated, “It is most of them”. 
Several students agreed with Daniel. Mario, who claimed that yellow won Game 1 because they 
looked bigger (heavier) now claimed that red looks bigger. However, when Sara claimed the 
marbles are exactly the same he moved to probabilistic reasoning: 

Mario: But, it can be because, it is more, it is greater, like, 65% percent chance that 
red wins as they are one more than the other”.  

Sara: Where did you get the 65% chance from? 
Mario: Sorry, I say 60% chance. 60% chance and the other have 20% chance, 

because, yes red, because, last time it was 50, 50 50. 

Mario seems to confuse two ways of quantifying the probabilities. He ended with, “last time it 
was 50, 50 50”, which implies that he connects equally likely outcomes to a 50-50 situation. 
When he articulated 65% chance on red, we do not know if he changes the chance also of the 
other two colors or if he ends up in the triplet 65-50-50. However, Mario’s change to 60% can 
be understood as if he discovers that the total probability needs to be 100%. Nevertheless, 
extending on Daniel’s sample space reasoning, Mario tries to give reasons for the probabilities 
of the three outcomes by making connections to the underlying sample space. Being able to 
compare between different games helped him in making this connection. 

Sara held the bottle horizontally also when the students were predicting the second game. 
However, this time, no student expressed they vote on a color because it is at the front. 

Playing Game 2 

After five observations in Game 2, there were three yellow, one red and one blue. When the 
third yellow appeared in the fifth observation one student voiced, “What?”. Sara picked up on 
that, asking, “Anyone who has any thoughts now when yellow has run away with three?”. 
Following his previous line of reasoning, Albin responded, “They (yellow) are lucky!” 

Sara stopped the game again after nine observations. Now there were six on yellow, two on red 
and one on blue. Sara asked, “How can this be?”. Reasons given were that it is something with 
yellow; that yellow is closes to the bottle top most times and that yellow won last time. 

Next come five observations with no yellow. One student claimed yellow got tired and another 
that yellow wants to create a thrill. Since these answers are accompanied with a laugh, I interpret 
them more as jokes than as real reasons. No student referred to luck or chance. The next 
observation is yellow, and the game ended with four on red, seven on yellow and four on blue.  

Reflecting on Game 2 

Sara initiated reflections on Game 2 by connecting the game-variations to the list of reasons 
posted on the whiteboard. She asked, “Do we still think it is about these things [moving her 
hand over the list] or is it something new, something we should delete, because we are going to 
play another game with another bottle, so we need to have some thoughts before”. The students 
negotiated on deleting the social reason ‘Most votes’ and the distance reason ‘At the front’. 
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They kept weight and added that yellow is agilent and bouncy. However, most students raised 
their hand for “luck” as a reason for why yellow won. There is reason to believe that this was 
stimulated by how Sara was pausing the game, highlighting aspects of random variation. 

No student referred to the role of sample space, which was probably because the situation was 
about explaining why yellow won. The sample space did not answer to why yellow won. 

Game 3 

The sample space in Game 3 was, 2R, 3Y and 5B (Figure, 1). 

Predicting on Game 3 

In Game 3 it was evident that the sample space is a strong reason for many students. In Game 
3 there are 16 students but, there are 17 votes, distributed as, four on red, three on yellow and 
nine on blue. From the video it is hard to figure out where the extra vote comes from. However, 
most likely it is an extra vote on yellow, because it appeared some confusion when Sara counted 
the votes on yellow. Most students voted on blue, because there are most blue in the bottle. So, 
even if the students did not receive empirical evidence in Game 2 for the role of the sample 
space, most students put forward properties of the sample space as the strongest reason for why 
it is highest chance that blue wins Game 3. 

Charles took a specific turn on the sample space. He voted for red because there are two red 
marbles in the bottle. He shaped this reason from the two first games, “It is always two marbles 
that win”. Sara responded, “Okay, it is always those [colors] with two marbles, yes it was two 
yellow [looking at the playing-board of Game 2] and two yellow also there [looking at the bottle 
of Game 1]. Okay, so when it is two of the same sorts, it wins!”. Another student, Albin, 
challenged this by noting that there were two of each color in Game 1 and that there were also 
two blue in Game 2. Sara’s first reaction to Albin was to silence him but, almost immediately 
she acknowledged his objection: 

Sara: “But now it's Charles who ..., here you're [talking to Sven] talking about there 
are two. Yes, here it was two of each [pointing to Game 1]. Here then [looking 
at Game 2]? Yes, there were two blues as you said. Yes, hmm [nodding her 
head from side to side]. 

Even if Sara did not move further on this contradiction, the episode shows how game-variation 
can invite for reasoning on sample space in relation to exploring patterns between games.  

Playing Game 3 

Again, the game provided students opportunities to experience random variation in short series. 
After seven observations Sara made a short break. She did not ask for any reflections or 
thoughts. She just let the student take in that there is one observation on red, two on yellow and 
four on blue. No more blue appeared in Game 3. Yellow won again. In the last seven 
observations it appeared six yellow and two red. The game ended by, three on red, seven on 
yellow and four on blue.  

Reflecting on Game 3 
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Several students thought that the yellow marbles are heavier and therefore drop down to the 
bottle top faster than the other. It is probably unlikely to many students that yellow wins over 
blue only because of chance, since there were so many more blue than yellow marbles in the 
bottle. In terms of hypothesis testing, we can say they consider the result of seven yellow out 
of a total of 14 observations so extreme that they reject the null hypothesis P(yellow)=3/10. The 
result on yellow is rather unlikely, but not significant on the level of 0,05 (two-sided test). 
However, we need to take into account that yellow won all three games. This experience most 
likely further support that chance does not tell the whole story for the results on yellow, 
compared to the other colors, within and between the games. 

Chance was also highlighted in reflecting on Game 3. When Sara asked for other ideas on why 
yellow won, Albin again answered “luck”. Charles then added “the chance”, which Sara added 
to the list of reasons, after luck (Figure, 1). The meaning of luck or chance was not given any 
further consideration. The class negotiated on deleting bouncy and keeping agilent in the list of 
reasons. 

Concluding discussion 
How can variation in sample space between games be used to support reasoning on the bi-
directional relationship between underlying probability distribution and data? The present study 
answers to this research question by reporting on a teaching experiment where students in Grade 
5 (11-12 years old students) were playing three games of the Color-run (Nilsson, 2020). 

In line with previous research (e.g., Nilsson et al., 2018; Watson et al., 2007), this study shows 
how probabilistic reasoning can face challenges from deterministic reasoning. Deterministic 
reasoning was manifested as distance reasoning and reasoning on material properties of the 
random generator. Distance reasoning relates to the perception that random experiments can be 
controlled (Pratt, 2000): you can control the outcomes by ordering them in a certain way. 
Distance reasoning neglects the random process, which, in the present study, took place in 
shaking the bottle. Reasoning on properties took place in reflecting of material difference 
between the colors in the bottles. Material differences were manifested as differences in weight, 
bounce, and agility. Reasoning on material differences does not need to neglect the random 
process, where students predict too narrow ranges of variation (Noll & Shaughnessy, 2012). 
After Game 3, for instance, material differences were given increased attention. The result of 
yellow in Game 3 was almost significant for rejecting the parameter value, according to sample 
space. Hence, it was reasonable to reflect on if it could be something more to the situation, 
beyond sample space and chance, to explain the strongly deviating result of Game 3. 

In contrast to Lecoutre (1992), the present study shows that students can express strong 
commitments to the role of the sample space. In Game 3, for instance, even though the number 
of favorable outcomes was not decisive for the outcome of Game 2, most students used the 
number of favorable outcomes to give reason for why blue would win in Game 3. 

Several students referred to luck, to explain the outcome of the games. What students mean by 
luck, is not always easy to tell. Does it refer to a property of an outcome or is it synonymous to 
chance? However, it would not be inferentially possible to substitute “Yellow has luck” with 
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“Yellow has chance”. Hence, the present study suggests further research on the meaning of 
luck. Taking an inferentialist perspective (Brandom, 2000), the study particularly suggests 
investigating situations in which students are supported to develop GoGARs of many inferential 
relationships that include the concept of luck. 
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Introduction 
Important decisions in politics, economics, health, and society are based on statistics. In order to 
participate in society as a responsible citizen, data management is an essential skill (e.g., Nichelson 
et al., 2018). For students growing up in a data-driven world, it is crucial to not only know how to 
analyse data, but also to think about how data are generated and what data can or cannot tell us (Wild 
et al., 2018). The present study follows the work of Andre et al. (2020), aiming to re-design their 
learning trajectory towards a student-centred approach on data collection and processing of data.  

Theoretical background 
Wild et al. (2018) list key statistical ideas important to understand at a deeper level including data 
collection, statistical modeling, covariance, and others. Student-centred methods lead to deeper 
understanding of concepts and the use of technology when exploring real datasets is crucial therefore 
(e.g., Wild et al., 2018). The PPDAC-cycle (Wild et al., 2018) describes such statistical investigation 
processes. Moreover, many studies emphasize that a context meaningful for students contributes to 
their development of competences (e.g., Makar und Ben-Zvi, 2011). Andre et al. (2020) take 
sustainability issues as such a context for students’ statistical investigations. With the doughnut 
economy, Raworth (2017) presents an economic model for describing sustainable development (see 
figure 1), where social thresholds should be fulfilled while ecological boundaries should be obeyed. 

Methods and Implementation 
Following design-based research approaches (Bakker, 2018), a learning trajectory was generated to 
guide students of the ‘Secondary School Centre’ of Vipiteno in the district of South Tyrol through 
their own statistical research on sustainable development of their school’s community. The aim of 
the study was to identify opportunities and challenges that arise during their statistical investigations. 

31 students of two grade 12 classes participated in this study. They completed 12 lessons of 45 
minutes each. In the first part, students were asked to identify factors contributing to a good and 
equitable life in the school community. Based on these results, basic ideas of the doughnut model 
(Raworth, 2017) were introduced, and a school doughnut was assembled containing students’ ideas 
of their schools’ sustainable development including issues such as energy consumption, CO2-
emissions on their way to school, political voice, mental health and many more. Subsequently, 
students were guided in their working processes of collecting and analysing data on these issues. 
Currently, results of the assignments and video recordings of the lessons are analysed qualitatively. 
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Figure 1: Doughnut Model (Raworth, 2017, p. e48) 

First Results 
Following the PPDAC-cycle, students managed to generate a doughnut model of their schools’ 
sustainable development integrating several crucial topics. Thus, students could develop a deeper 
understanding of how to describe a phenomenon with statistical procedures. Two main categories of 
our data analysis are processes of data collection and generating statistical questions where we found 
major difficulties. Moreover, a third main category were students’ struggles when defining specific 
boundaries and thresholds to classify the results of their investigations. These results are used to re-
implement an improved learning trajectory in order to support students to overcome these difficulties.   
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Data exploration and getting new insights from data is more important today than ever before. 
Exploring data is an important part of data science and can be a fruitful topic in middle school. New 
insights can be gained from rich data, but this requires a good data basis. Therefore, we present 
multivariate and rich data of over 1200 young people who answered an online survey on more than 
150 questions. Several examples of possible data explorations of this data are presented. A short 
glimpse is given to a corresponding teaching unit for grade 8-10. With a suitable data science tool, 
students can handle and analyze such rich data. Students’ presentations at the end of the teaching 
unit show the insights students get from the data but also, show challenges when exploring 
multivariate data.  

Keywords: Data science, multivariate data, statistics education, CODAP. 

Introduction 
Statistics and data exploration have a long tradition and is fortunately also getting more attention in 
the classroom. With the rise of the new field of data science in recent years, its importance is once 
again increased (Ridgway, 2016) and gets new perspectives from computer science and special 
domain knowledge. In a data science project (Rubin & Mokros, 2018), various skills can be acquired 
and used that are helpful for good data exploration. On the one hand, this requires having rich, real 
data for students to draw real insights and conclusions that are important and motivating to them 
(Garfield & Ben-Zvi, 2008). On the other hand, a tool is needed that provides easy access to data 
analysis (Biehler, Ben-Zvi, Bakker, & Makar, 2013). In this paper, we present an example of such 
data which were collected as part of the ProDaBi project (https://www.prodabi.de/en/) and use the 
CODAP tool for exemplary explorations.  

Background 
The Project Data Science and Big Data in Schools (ProDaBi) aims at investigating in which way and 
with what topics data science can be implemented in the school curriculum. The project was initiated 
by Deutsche Telekom Stiftung and is conducted by an interdisciplinary team with members from 
statistics and computer science education. In this context, we collaborated with a media education 
research association1 that conducts representative surveys among young people. We received an 
elaborated questionnaire for telephone interviews about media use of young people (so called “JIM-
study”; JIM=Youth, Information, Media) and adapted this as an online survey. Since 2019, many 
young people participated in this online survey, so that we got rich and real data on young people’s 
media use, which we call JIM-PB, based on the official JIM study and our regional reference 

                                                 
1 https://www.mpfs.de  
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(PB=Paderborn). Please note, in contrast to the official data from the JIM-study, our data does not 
claim to be representative.  

The data is used in different teaching settings. At first, it is used as an introduction in a project course 
on data science in grade 12 (Frischemeier, Biehler, Podworny, & Budde, 2021). This project course 
consists of three modules: (1) basics of data analysis and statistical thinking, (2) algorithmic thinking 
and machine learning, and (3) application in a comprehensive project.  

Second, adapted from these modules 1 and 2, we have developed a teaching unit for grades 8-10, 
which also introduces statistical reasoning and machine learning. Here, students work entirely with 
the CODAP tool, both for data exploration and for creating decision trees based on data. This entire 
unit makes use of the JIM-PB data. Enhancing statistical thinking as proposed by Wild and Pfannkuch 
(1999) and introducing predictive modelling (Ridgway, Ridgway, & Nicholson, 2018) with the use 
of decision trees are the two main purposes of the teaching unit.  

Rich data that allow multivariate explorations consist of many variables of different types to motivate 
creative investigations. How the JIM-PB data fulfils this is shown in the next section. 

The data “JIM-PB” 
The JIM-PB data is based on an online survey that contains various thematic blocks. The first block 
contains questions on age, sex, grade, type of school. The following blocks contain question in the 
style “How often do you…”  

 … do leisure activities (e.g. meeting friends, playing an instrument, etc.), 
 … use classical and digital media (e.g. newspapers, radio, etc.), 
 … use media devices (e.g. tablet, gaming console, PC, etc.), 
 … use social media (e.g. Facebook, Twitter, WhatsApp, etc.), 
 … watch different YouTube videos (e.g. on product tests, letsplays, sports, etc.), 
 … play different electronic games (e.g. car racing, shooter, adventure, etc.), 
 … use specific apps (e.g. for news, public transport, school, etc.). 

Values for all the corresponding questions on the frequency range from “daily”, over “several times 
a week”, “once a week”, “once in a fortnight”, “once a month”, “less often” to “never”.  

Some questions are posed concerning the weekly time in minutes e.g. on watching TV, playing 
electronic games or using a PC for school at home. Additionally, questions are asked about 
availability or owning devices for media use (e.g. PC, Laptop, Tablet, WiFi, etc.). Questions are like 
“Is the device available at your home?” with values “available at home” or “not available at home” 
and “Do you own such a device?” with values “I own it myself” and “I do not own it”.  

This leads to 161 different questions, resp. variables. 1287 young people fully answered the survey, 
so the data contains as many cases from September 2020 until June 2021. A list of variables lists the 
original questions and the variable’s names in the data. Data handling is done in advance. Variables 
are defined and little data cleaning like correction of German umlauts is necessary.  

This results in rich and multivariate data with numerical and many categorical variables. In particular, 
the large number of variables makes it possible to develop and investigate very creative questions. 
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The Jim-PB data in a teaching unit for middle school 
The idea of using the Jim-PB data in school is mainly to introduce reasoning about data in the frame 
of a data project. The PPDAC-cycle (Wild & Pfannkuch, 1999) frames the teaching unit and  

[w]orking with SP [statistical projects] thus represents a strategy that can enrich curricula because 
each phase involved in developing a project entails the use of various statistical concepts and 
processes that go beyond the topics normally included in curricula (Gómez-Blancarte & Ortega, 
2018, p. 5) 

For use in school, we created two versions of the data. The “standard” version is didactically reduced 
and contains 50 variables. A selection was made for this based on content criteria. For example, all 
questions about “owning” a device and playing different games were abandoned. We recommend 
using this version in grade 8-10. The “large” version contains all 161 variables.  

The selection of a tool is crucial for doing data science in middle school. We selected and applied our 
JIM-PB data to the online data exploration platform CODAP (https://codap.concord.org), which is a 
free and online software that allows an easy and quick start of data exploration for beginners. For a 
detailed description of CODAP see for example Haldar, Wong, Heller, and Konold (2018). 

For the teaching unit in middle school, we have chosen personalized advertising as the context. This 
has a motivation and an everyday relevance for students. The students are asked to explore the data 
with regard to four topics: user groups of TikTok, online newspapers, Youtube Letsplay videos and 
use of game consoles. Eight lessons with 45 minutes each can be used to enhance students’ statistical 
skills when exploring Jim-PB data with CODAP in the first part. Additional eight lessons then build 
on findings from the first part to create and understand the method of decision trees for predictive 
modelling within CODAP. For the first part, three lessons can be dedicated to introducing basic terms, 
the data and tool, and concepts like row, column and cell percentages. Posing statistical questions 
(Arnold, 2013) and preparing group work can happen in lesson 4. The following two lessons can be 
used for students’ own data exploration and preparation of a presentation. That results in a following 
presentation lesson. Reflections on the data, the PPDAC cycle and the conclusions can happen in the 
eighth lesson of the first part.  

Explorations of the Jim-PB data with CODAP 
What’s in the Jim-PB data? At the beginning of an analysis, it is worth taking a brief look at one-
dimensional distributions to characterize the sample of respondents. 

 
Figure 1: Distribution of sex and age in the Jim-PB data 
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A little more female (56%) than male (44%) students participated in the survey, aged 10-20 with peak 
at age 15 (Figure 1). For example, 78% have a game console available at home and a tablet is used 
by slightly less than half for gaming (Figure 2). 

 
Figure 2: Distribution of game console available at home (left) and playing on a tablet (right) 

Exemplarily, we look at a typical distribution of how often the participants use a tablet or Instagram 
(Figure 3). Such an “u” shape often occurs in these data, which means that the students can be split 
in two major subgroups (“rarely” and “frequently”). 

 
Figure 3: Distribution of tablet use (left) and Instagram use (right) in the Jim-PB data 

Who belongs to those who daily use a tablet? Are those, who use daily a tablet those who use 
Instagram daily? For answering questions like this, two-dimensional diagrams are necessary like in 
Figure 4. 

The challenge of interpreting complex diagrams like the one in Figure 4 is to use the correct 
percentages. This is often difficult for students (Watson & Callingham, 2014) and must therefore be 
well addressed in class. In Figure 4, row percentages are shown. A correct interpretation of the value 
53 % at the top right corner is: Of those who use a tablet daily, 53 % use Instagram daily. But this is 
the same for those who never use a tablet (lowest right value in Figure 4)! Now we look at those who 
use a tablet daily. 
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Figure 4: Do those who daily use a tablet those who daily use Instagram? (with row percentages)  

7x7 tables like in Figure 4 are quite complex and hard to interpret not only for middle school students. 
By using data moves (Erickson, Wilkerson, Finzer, & Reichsman, 2019) like filtering with the “eye” 
function in CODAP, one can concentrate on a subgroup of the participants by selecting the 
corresponding cases and hiding all other cases (Figure 5).  

 
Figure 5: Filtering the data by selecting a subgroup (left) and the subgroup only (right) 

Now the analysis can be focused on the subgroup of participants of those who use a tablet daily. For 
example, in this subgroup two third are female (Figure 6 left) in contrast to all participants (56%, 
Figure 1); distributed over all grades (Figure 6 middle) like in the whole group. 38% play often with 
the tablet (Figure 6 right, values for ‘several times a week’ plus ‘daily’) in contrast to the all 
participants, of whom less than 20% play tablet often (Figure 2 right). As a story, daily-tablet-user 
are more often female than male and use a tablet for playing more often than the whole group.  
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Figure 6: Subgroup displays of those who use a tablet daily 

This is a small impression of an analysis of the Jim-PB data that can be done with CODAP.  

Students’ explorations of the JIM-PB data: some impressions 
The first part of the teaching unit was implemented in four different classes in different schools in 
2020, once in grade 9 and 10 and twice in grade 11. This includes a total of 77 students aged 13 (grade 
9) to 17 (grade 11). All students had nearly no previous knowledge in statistics and data analysis. We 
collected their final presentations from lesson 7 and analyzed their diagrams and written 
interpretations. Student groups had between two and six members, we collected n=15 presentations 
because one group did not hand in their presentation.  

Here we give a short overview of the 15 students’ presentations, the diagrams used and written 
interpretations. Major differences between the three grades could not be identified, but the groups 
differed greatly in their work, independently of the grade. There were great and poor presentations in 
every grade. So, we analyzed on all presentations without taking the grade into account. 

The number of slides and diagrams varied much between the presentations. The number of slides 
varied between two and 37, with an average of 13. Many slides of a presentation had only little or no 
text, except one presentation that was like a report. Every group stated their topic at the beginning.  

The number of diagrams per presentation varied between two and 16 with an average of six. One 
group did not include any diagram, they only reported several percentages (that must have been 
figured out with diagrams in CODAP). The presentations often had no written explanations in the 
slides but were explained orally during the presentation lesson. Three groups used column 
percentages, all other used row percentages which are the default setting in CODAP. For these groups 
it is not clear whether they also considered using column percentages to answer their underlying 
question. Of course, a rearrangement of the variables would be equivalent to changing row and 
column percentages. Using and interpreting percentages was often challenging for students. The use 
of row percentages did not always go along with the interpretations, several times column or cell 
percentages would have been appropriate for the written statements. This is similar to results found 
by Watson and Callingham (2014). Two groups used the filtering function to focus on subgroups like 
in Figure 5.  

Proceedings of CERME12 945



 

 

A nice example is from a group from grade eleven that looked at how the frequency of reading online 
newspapers is changing with age. They computed the average age of readers in the different groups 
as shown in Figure 7. 

 
Figure 7: Students’ exploration of age and online newspaper reading 

As an interpretation they wrote “For each ‘reading frequency’ you can see the average age indicated 
by the blue line. Newspapers are read online from the age of about 15, while the average age of non-
online newspaper readers is 13. Therefore, it can be said that the target group of online newspapers 
has the age of more than 15 years, while the largest and most active part of the readers is represented 
by people aged 16 years and older.”  

Students’ investigations were rich and showed interesting relationships in the data. Diagrams created 
and used for presentation by the students offered great opportunity to tell many stories about the data. 
Nevertheless, only few detailed descriptions like the one for Figure 7 occurred and these were not yet 
completely satisfactory due to inaccuracies in the explanations. Cultivating interpretations turned out 
to be a challenge. 

Conclusion 
The JIM-PB data provides rich exploration opportunities and is suitable for students aged 13 and up. 
For students, the version with 50 variables is sufficient to make interesting discoveries and looking 
for many relationships in the data. CODAP has proven as an appropriate tool for an easy entrance to 
explorations. 

Such rich data not only brings advantages, but also challenges. The type of the data means that 
variables with seven values have to be related to each other. This results in 7x7 matrices with a total 
of 49 entries. In class, it became apparent that the interpretation of 7x7 matrices was challenging for 
students and patterns were rarely well described and interpreted. As an implication, we added a lesson 
on data preparation in the teaching unit, where the seven values can easily be merged so that only the 
values “frequently” and “rarely” remain by using the “hierarchize” function in the CODAP’s table. 
Then only four-field tables occur, which are much easier to interpret than the 7x7 matrices. 
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Additionally, modelling aspects of such a data preparation with relation to possible interpretations 
can be discussed in class. As another implication, data moves (Erickson et al., 2019) like filtering 
(easily done in CODAP with the “eye” function) are a useful concept that can enrich students’ data 
science projects in middle school. 
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During the last year, governments around the world used statistics data to keep people informed 
about Covid-19, to stress the importance of managing this disease and to encourage to adopt 
preventive behaviors. In this study, we investigated a mechanism underlying intentional non-
precautionary behaviors during the COVID-19 lockdown. We hypothesized that the comprehension 
of COVID-19 risk statistics information had a central role in mediating the relationship between 
probabilistic reasoning ability and perceived statistics value (the antecedents) and the intention to 
act non-precautionary behaviors. Participants were 141 university students enrolled in an online 
study. Results revealed that probabilistic reasoning ability and perception of statistics value had a 
role in reducing the likelihood of engaging in transgressive behaviors through their impact on the 
ability to adequately reason with statistics data referred to the COVID-19 epidemic.  

Keywords: Probabilistic reasoning, COVID-19 risk statistics information, statistic value, statistical 
literacy. 

 
Introduction  
The 2019 coronavirus disease (COVID-19) outbreak, caused by the novel coronavirus SARS-CoV-
2, has become a global health threat, which has prompted the scientific community to question how 
to deal with it and mitigate its impact. It has been reported for the first time in Wuhan, Hubei Province 
(China) in late December 2019 and it has rapidly spread around all the five continents. As of 30 April 
2020, the number of totals confirmed cases worldwide has exceeded 3 million (World Health 
Organization, 2020). On 20 February 2020, Italy identified its first case of local transmission and 
since March 20, Italy had surpassed China as the country with the highest amount of people who died 
from COVID-19 in the world (World Health Organization, WHO, 2020a). The number of deaths in 
Italy remained the highest worldwide until April 13, when the USA has become the nation with the 
highest number of deaths (WHO, 2020b). Even though governments around the world adopted 
different response strategies to tackle the pandemic, at some stage most countries either enforced or 
encouraged policies targeting preventive behaviors such as social distancing. However, these 
measures of containment have requested citizens a limitation of their activities and a modulation of 
their behaviors. 

In medical decision-making, it has been widely demonstrated that adherence to health behaviors is 
influenced by risk comprehension related to the medical issue/problem. For example, risk 
comprehension has been found to influence risky decisions related to sexual behavior (Patel et al., 
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2007), substance use (Lundborg & Lindgren, 2002) and tobacco consumption (Lundborg & Lindgren, 
2004). In a systematic review about poor risk comprehension’s health outcomes, it has been found 
that a lower comprehension of health information was associated with more hospitalizations, less 
mammography screening and influenza vaccination (Berkan et al., 2011).  

Several studies about risk comprehension were then carried out to investigate what improves or 
hinders it. In this regard, as much of health-related information is expressed numerically (Reyna et 
al., 2009), a growing body of literature has sought to determine how health numeracy skills, the ability 
to understand and make use of health-related statistics (Låg et al., 2014), can improve people’s risk 
comprehension. Health numeracy, intended as the ability related to probabilities, proportions, and 
percentages in the health domain, is low in the general population (Lipkus et al., 2001; Peters, 2012). 
However, it seems to have important impact on risk comprehension (Låg et al., 2014; Rolison et al., 
2020).  

Anyway, numeracy is a complex concept, encompassing several functional elements. Numeracy 
skills can be defined along a continuum that goes from elementary arithmetic skills to higher levels 
that encompass the ability to master probabilistic information and risk estimates (Reyna et al., 2009). 
Among these numerical skills, a growing interest has been recently posed on probabilistic reasoning 
abilities (Donati et al., 2014; Donovan et al., 2017; Hertwig et al., 2008; Primi et al., 2017). 
Probabilistic reasoning can be defined as the ability to think statistically about uncertain outcomes, 
and to make decisions based on probabilistic information. Probabilistic reasoning ability represents 
an important skill to correctly understand information related to risks. Interestingly, it has been highly 
documented that the majority of people have an inadequate comprehension of probabilities 
(Gigerenzer et al., 2005), even if they are highly educated (Lipkus et al., 2001). In the health domain, 
risk comprehension demands people to face uncertain outcomes and, therefore, with probabilities. 
For example, it has been demonstrated that the inadequate comprehension of risk and probabilities is 
critical in many areas, as the understanding of diagnostic tests (Gigerenzer et al., 2007) and drugs’ 
side effects (Gigerenzer & Galesic, 2012). Specifically referring to COVID-19 related risks, it has 
been shown that when introductory statistic course students had higher probabilistic reasoning ability, 
they were more proficient in understanding COVID-19 risks (Primi et al., 2021). Additionally, 
probability reasoning ability, reflective ability and statistics interest had a role in reducing the 
likelihood of engaging in transgressive behaviors through their profitable impact on the ability to 
adequately reason with statistics data referred to the COVID-19 pandemic. 

In line with this premise, we were interested in investigating the relation between probability 
reasoning ability and Covid Statistic Risk Comprehension in graduate students with more experience 
in statistics. We hypothesized that people who properly understand probability would be better in 
understanding and evaluating Covid Statistic Risk information. Additionally, as mass media 
communication about COVID-19 has been based on statistical concepts, such as “frequency”, “shape 
of the curve”, “flattening the curve”, “positive rates”, we hypothesized that a fundamental prerequisite 
to personally engage in data understanding would be the perception of the statistics value. It 
represents the usefulness, relevance, and worth of statistics in personal and professional life (Schau 
et al., 2003). Finally, as individuals who perceived risk related to COVID-19 as higher declared are 
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more likely to implement protective behaviors (de Bruin & Bennett, 2020, we included intentional 
non-precautionary behaviors during the COVID-19 lockdown as dependent variable.  

In sum, our research question was to investigate the role of the probabilistic reasoning ability and the 
perceived value of statistics (positively related to each other) as antecedents of risk comprehension 
of COVID-19 statistics and this variable was hypothesized as the intermediary variable (mediator) 
between its antecedents and the dependent variable, that was conceptualized as intentional non-
precautionary behaviors during the COVID-19 lockdown. 

Method 
Participants 

Participants were 141 students attending graduate programs (60% female; mean age = 23.4; SD = 
4.83) at the University of Florence (Italy). Introductory stats courses are compulsory in all the 
programs. For the pandemic all the programs were online. All students participated on a voluntary 
basis after they were given information about the general aim of the investigation. Participants 
completed an online survey on April 2020, during the first Italian lockdown. 

Measures and Procedure 

The Probabilistic Reasoning Scale (PRS-B; Primi et al., 2019) consists of 9 multiple-choice 
questions. The items include questions about simple, conditional and conjunct rule in probability, and 
the numerical data are presented in frequencies or percentages. A single composite score, based on 
the sum of correct responses, was calculated.  

The Value subscale of the Survey of Attitude towards Statistics (SATS-36; Schau, 2003) is one of the 
subscales of the instrument measuring the six components of attitude toward statistics. The specific 
subscale consists of 9 Likert-type items using a 7-point scale ranging from strongly disagree to 
strongly agree. A single composite score was computed based on the sum of the responses, with 
higher ratings representing a higher perception of the Statistic Value.   

The Statistics Risk Comprehension Scale-Covid 19 (SRCS-Covid 19) was developed for the purpose 
of this study. In detail, we constructed a scale aimed at investigating people’s understanding of the 
statistics about the epidemiological situation regarding the COVID-19 epidemic that was spreading 
in Italy in that specific historical period. Eight multiple-choice items with three response options 
(among which only one was the correct one) were created with the aim of covering the most debated 
issues in the Italian mass media concerning the COVID-19 at that time (e.g., cases of infections, dead 
cases out of infections, prevalence rates of positive COVID-19 tests). A single composite score, based 
on the sum of correct responses, was calculated. An example of item is: “On 19 March 2020, in Italy 
there are about 40,000 infections and about 33,000 people who are still positive for the virus. This 
means that: a) As of that date, there are about 73,000 cases of infections; b) As of that date, there 
are about 7,000 cases between deceased and recovered; c) As of that date, there are about 7,000 
cases of healed”. 

In order to investigate the intention to act not precautionary behaviors put in place during the 
lockdown period, we developed a brief questionnaire through which participants were asked to 
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indicate whether they have intention to act the listed behaviors. Behaviors were defined as not 
precautionary on the basis of the restrictions imposed by Italian government through the Decree of 
President of the Council of Ministers (DPCM) issued on March 9, 2020 
(https://www.gazzettaufficiale.it/eli/id/2020/03/09/20A01558/sg). An example of not precautionary 
behavior was “Take a walk with some friends”. For each of the ten listed behaviors, participants had 
to respond “no” (scored as 0) if they had not the intention to engage in that behavior, or “yes” (scored 
as 1) if they had the intention to do that behavior, by specifically referring to the lockdown period. 
Among the listed behaviors, four were classified as not precautionary. In order to obtain a measure 
of intentional not precautionary behaviors, a total score was computed by summing responses given 
to the items investigating those kinds of behaviors. 

After giving the informed consent, each scale was briefly introduced, and instructions for completion 
were given. All participants completed the PRS-B, Value subscale of the SATS-36, SRCS-Covid 19 
and the scale investigating intentional precautionary behaviors during the Covid 19 lockdown period. 
Time administration was about 30 min. 

Results 
To analyze the relationships between COVID19-related statistics risk comprehension and the scores 
relative to probabilistic reasoning ability, perception of statistics value, and intention to engage in not 
precautionary behaviors, correlations among the variables were calculated (Table 1).  

 

 1. 2. 3. 4. 

1. COVID19-related statistics risk comprehension -    

2. Probabilistic reasoning ability .46*** -   

3. Perception of statistics value .33*** .36*** -  

4. Number of intentional not precautionary behaviors during the Covid 
19 lockdown 

-.22** -.13 -.22* - 

M (SD) 5.09(1.52) 6.43(1.72) 46.71(8.36) 1.94(1.71) 

*p<.05, **p<.01, ***p<.001 

Table 1: Summary of intercorrelations, means, and standard deviations for scores of COVID19-
related statistics risk comprehension, probabilistic reasoning ability, perception of statistics value, and 

intention to engage in not precautionary behaviors during the Covid 19 lockdown 

 
As expected, the SRCS-Covid 19 score significantly and positively correlated with probabilistic 
reasoning ability and perception of statistics value. It was also significantly and negatively correlated 
with the number of not precautionary behaviors that are likely to take be placed. Moreover, 

Proceedings of CERME12 951



 

 

probabilistic reasoning ability and perception of statistics value were positively inter-related, and the 
number of intentional not precautionary behaviors were significantly and negatively correlated with 
both probabilistic reasoning ability and perception of statistics value. 

In order to investigate our hypothesis on the mechanisms underlying the relationships among these 
variables, we conducted a path analysis employing the maximum likelihood (ML) method using 
AMOS 16 software (Arbuckle, 2007). The model included probabilistic reasoning ability and 
perception of statistics value as COVID-19 statistics risk comprehension’s antecedents (positively 
related to each other). In turn, statistics risk comprehension was hypothesized as the intermediary 
variable (mediator) between the antecedents and the dependent variable, that was conceptualized as 
the number of intentional not precautionary behaviors during the Covid 19 lockdown. 

The presence of the mediated effect was investigated through the test of indirect effects (Cheung & 
Lau, 2008). In AMOS the Bootstrap confidence interval method is used to define the confidence 
intervals for indirect effects (MacKinnon et al., 2004). In mediation analysis, bootstrapping is used 
to generate an empirically derived representation of the sampling distribution of the indirect effect, 
and this empirical representation is used for the construction of a confidence interval for the indirect 
effect. The 90% bias-corrected confidence interval percentile method was implemented, using 2,000 
bootstrap samples. Confidence intervals for the indirect effects which do not contain 0 are considered 
as indicative of significant indirect effects, thus meaning the presence of a mediated effect. Several 
goodness-of-fit indices were used to test the adequacy of the model: Comparative Fit Index (CFI) 
(Bentler, 1990), the Tucker-Lewis Index (TLI) (Tucker & Lewis, 1973) and the Root Mean Square 
Error of Approximation (RMSEA) (Steiger & Ling, 1980). CFI and TLI values equal to .90 or greater 
and RMSEA values of .08 or below are considered as indices of adequate fit. The model showed a 
good fit to the data (CFI = .976, TLI = .927, RMSEA = .074). All coefficients were statistically 
significant in the expected directions. Specifically, results revealed that probabilistic reasoning ability 
and perception of statistics value – positively inter-correlated – had a significant direct and positive 
effect on COVID-19 statistics risk comprehension. In turn, COVID-19 statistics risk comprehension 
was directly and negatively related to the number of intentional not precautionary behaviors during 
the Covid 19 lockdown. Results also showed significant and negative indirect effects from the 
independent variables on the number of intentional not precautionary behaviors during the Covid 19 
lockdown, indicating that probabilistic reasoning ability and perception of statistics value had a role 
in reducing the likelihood of engaging in transgressive behaviors through their profitable impact on 
the ability to adequately reason with statistics data referred to the COVID-19 epidemic (Figure 1).  
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Figure 1: Path model among the variables. Straight lines indicate direct effects. Dotted lines indicate 
indirect effects. All the coefficients are standardized

Conclusion
The emergency caused by coronavirus disease 2019 (COVID-19) has led to a surge in interest in 
trustworthy statistics and a greater number of people accessing statistical information about their own 
communities. Results showed the role of mediator of the statistics risk comprehension confirming the 
need to have a deep understanding of statistics, especially in the context of a global pandemic such 
as Covid-19. We found that probabilistic reasoning ability and perception of value in statistic had 
indirect effects on the intention to act non-precautionary behaviors through statistic risk 
comprehension. This result is in line with other studies concerning diverse health contexts, that 
showed that numeracy (in its different components) has consistently been related to risk perception, 
more accurate understanding of risks, and better decisions (Garcia-Retamero et al., 2019), and with 
explanation models related to behavioral conducted in the pandemic (Primi et al., 2021). More 
generally, our findings show the importance of statistical literacy as an essential skill for all citizens, 
especially in the context of a global pandemic such as Covid-19. 
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This paper presents a training action with ten recently graduated teachers who are taking an 
advanced training Master's Degree in Spain. The objective of the action is to develop their didactic-
mathematical competences and, in particular, the onto-semiotic competence in the field of statistics 
in early childhood education. To achieve this competence, the teachers identified the emergent 
objects in a real videotaped mathematical practice. The results obtained from a qualitative analysis 
indicate that the participants have difficulties in recognizing the properties and the arguments, as 
well as some statistical concepts, whereas they identify the procedures quite well. It is concluded that 
the competence development requires increasing the temporal suitability of the action and also 
dedicating more hours to the initial training of teachers in statistical content. 

Keywords: Teacher education, instructional design, onto-semiotic competence, statistics, early 
childhood education. 

Introduction 
The development of statistical literacy should begin in early childhood education (NCTM, 2000).  
Carrying out small statistical studies with a qualitative variable is suitable for this. However, in Spain, 
there is still some reluctance to do so. One of the causes of the statistics teaching and learning 
processes implementation slowdown in the early ages is that statistical content is not well integrated 
into the Spanish educational curriculum for early childhood education. But this is not the only reason.  

In the last decade, there has been a warning that, in the initial training of teachers at this stage, not 
enough hours are dedicated to statistics (Alsina & Vásquez, 2016; Franklin et al., 2015; among 
others). Along these lines, Alsina (2020) reviews the study plans of the Degree in Early Childhood 
Education of seventeen Spanish universities and concludes that most of them dedicate only 6 credits 
to the whole didactic-mathematical training and that only three of these universities, allocates 
between 6 and 9 credits to strictly mathematical or statistical content. Consequently, there is an 
immediate need to improve the didactic-mathematical skills and knowledge in statistics of 
kindergarten teachers. In this sense, Batanero (2019) suggests that research on the teacher's statistical 
knowledge focus on training actions that favor the development of their specialized knowledge and 
professional competence. 

This work is part of a larger investigation whose aim is to explore and develop the didactic-
mathematical skills and knowledge about statistics in early childhood education of a group of recently 
graduated teachers after a training action designed for this purpose. This paper addresses the onto-
semiotic competence and it is motivated by the question of which mathematical objects identify the 
participants in a statistical practice of early childhood education. 
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It is dedicated the following section to expose the theoretical framework and describe the 
methodological approach, as well as the training action, in the third point. In the fourth section, the 
main results regarding the onto-semiotic competence are collected and, finally, the conclusions of the 
work and some final reflections are presented. 

Framework 
In recent decades, the field of mathematical education research has focused on determining the 
knowledge of the mathematics teacher. In this sense, the Schulman model (1987) and the 
Mathematical Knowledge for Teaching model (MKT) (Hill et al., 2008) stand out internationally. 
Different approaches have also been interested in teacher skills, such as Lesson Study (Fernandez & 
Yoshida, 2004) or Noticing (Mason, 2002). 

This research is developed within the Teacher’s Didactic-Mathematical Knowledge and Competence 
(DMKC) model (Godino et al., 2017) of Onto-semiotic Approach (OSA) (Godino et al., 2007) 
theoretical framework, because it offers detailed categories of knowledge and skills.  

This model considers that the mathematics teacher must have three types of knowledge.  The 
mathematical knowledge includes the common knowledge of the content of MKT; the didactic-
mathematical knowledge comprises the specialized knowledge of MKT and also cognitive, affective, 
interactional, mediational and ecological aspects and, finally, the third is the meta didactic-
mathematical, which includes knowledge about the norms that condition a teaching and learning 
process, as well as on the didactic suitability assessment criteria (Pino-Fan & Godino, 2015). 
Likewise, the DMKC determines that the mathematics teacher's main competence is the general 
competence of didactic analysis and intervention. This competence is made up of five different 
competences: global meaning analysis competence, onto-semiotic analysis competence of 
mathematical practices, didactic configurations analysis and management competence, normative 
analysis competence and didactic suitability analysis and assessment competence (Godino et al., 
2017). 

Specifically, in this work, we focus the attention on one of them, on the onto-semiotic analysis of 
mathematical practices competence. This competence consists in carrying out an onto-semiotic 
analysis, that is, in identifying the objects (situation-problem, concepts, linguistic elements, 
procedures, properties and arguments) and processes involved in a mathematical practice (Godino et 
al., 2017). To achieve the development of this competence, current research (Burgos et al., 2018; 
Godino et al., 2018; among others) is committed to specific training actions in which it is necessary, 
first, to produce an evolution of the personal meanings; then, introduce the tools of the OSA and put 
them into practice and, finally, institutionalize the acquired knowledge through discussions. 

Method 
Methodological approach 

This research is framed within the exploratory qualitative approach and the design research paradigm 
(Kelly et al., 2008), which pursues the development of knowledge about an educational reality that is 
desired to be improved through the design of an innovative intervention in it, while researching on 
the said design (Cobb et al., 2003). 
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Context and participants 

The training action was carried out with the ten students of the Master's Degree in Advanced Training 
of Early Childhood and Primary Education Teachers of a Spanish university. All of the participants 
are recently graduated teachers with no work experience. In particular, two of them have dedicated 6 
ECTS of their initial training to didactic-statistical content for the teaching and learning of statistics 
in primary education and, the other eight, 0.5 ECTS to statistics in early childhood education. The 
teachers worked in pairs throughout the training action.   

Video material and implementation 

In the formative experience of this research, video is the main material used. Its use of scaffolding 
coincides with that indicated by various authors (Coles, 2014; Gaudin & Chaliès, 2015) in teacher 
training, since it is used to develop analysis and reflection skills, such as competence in onto-semiotic 
analysis. Specifically, two real teaching and learning processes videotaped are used in this action. 

The main video shows the mathematical practices of an early childhood education class (5-6 year- 
old) when carrying out a statistical study. Children want to discover “What is the game that the class 
likes the most?”. First, they collect the data. Each child has a paper with five pictures that represent 
a class’ game (building game, cars, doctors, hairdressers and jigsaw puzzles) and has to cut the one 
he likes the most. Then, children all together build a single pictogram with the pictures they have cut. 
Finally, they compare frequencies and identify the mode. In the following sessions, the 
transnumeration is worked, since they build a graphic experientially and another, with Lego pieces. 

The other video is about geometry in 5th grade (10-11 year-old) and it is used as a preliminary practice 
with the OSA. 

Implementation 

The action designed and implemented consists, principally, of two content blocks (Figure 1). In the 
first block, of provocation and exploration of personal meanings, the participants assessed, according 
to their criteria, the statistical teaching-learning process of the main video. Then, they shared their 
impressions and ideas. This block is completed with an oral game about the personal meanings of the 
training teachers about the mathematical processes defined by NCTM (2000). The second block 
focuses on onto-semiotic competence. First, the lecturer introduced some theoretical notions of OSA, 
such as the kinds of mathematical objects and onto-semiotic analysis. Then, in Task 1, the teachers 
searched for mosaics and then identified the emergent objects in them. In Task 2, they watched the 
geometry video and recognized the mathematical processes underlying in the video. Afterwards, they 
shared their work. Finally, in task 3, they had to identify contextualized examples of each type of 
mathematical object and process that emerged in the statistical teaching-learning process videotaped. 
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Figure 1: Characteristics of designed and implemented formative intervention 

Data collection and analysis 

In this paper, it is analyzed the information collected from the teacher’s pairs written responses 
corresponding to task 3 applying the onto-semiotic analysis techniques. Specifically, first, an expert 
onto-semiotic analysis of the emergent objects in the videotaped was carried out and then, based on 
the content analysis, the onto-semiotic analysis of each pair was compared with the expert. 

Results and discussion 
As far as concepts are concerned, certain difficulties have been detected. Some of them have also 
been observed in other training experiences with primary and secondary school teachers and with 
other mathematical content. For example, not all the elements that the participants present as a 
concept are, really, a concept. Likewise, not all the mathematical concepts identified are actually 
mathematical concepts that emerge in the teaching and learning process, since some of them do not 
emerge in the videotaped process or, simply, as Beltrán-Pellicer et al. (2020) suggest, do not respond 
to an operational need, such as "statistics" or "reasoning”. Another aspect observed is that some 
couples confuse the curricular contents with the concepts. For example, one of the pairs presents as a 
concept “the identification of the numerical symbols”. Similarly, another couple does the same with 
"writing the number symbols." As highlighted by Beltrán-Pellicer et al. (2020), the teachers in 
training include in mathematical concepts, concepts that, from the didactic-mathematical perspective, 
are rather linguistic elements, such as "tie" to refer that two categories of the variable have the same 
absolute frequency or "drawing", to symbolize the iconic figure of a category. Another remarkable 
characteristic is that teachers have difficulty seeing concepts that emerge from a routine situation in 
the early ages classroom. In the videotaped process, and specifically, for data collection, a child has 
to distribute scissors to each partner, so that they make a correspondence. Only two couples have 
been able to detect this correspondence. 

In the process, mainly numerical and statistical concepts emerge. It should be noted that the teachers 
in training recognize the first quite well. However, the results are not good in terms of statistical 
concepts. Table 1 shows the statistical concepts that emerge and the number of pairs that identifies 
each of them. As can be seen, the concepts that they mostly recognize are mode and pictogram, 
although it is surprising that, since mode is the main concept, it is not explicitly recognized by all the 
groups. Likewise, concepts so elementary as variable or absolute frequency have not been identified 
by the teachers in training. This result is in line with that obtained by Gea (2014), in which the 
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percentage of identification of the measures of central tendency by prospective secondary school 
teachers is higher than that of the statistical variable. 

Table 1: Number of pairs that identifies each statistical concept 

Statistical concepts Number of pairs 

Absolute frequency 0 

Categories 0 

Graph 2 

Mode 3 

Pictogram 3 

Population 0 

Qualitative statistical variable 0 

Sample 0 

With regard to linguistic elements, the mathematical videotaped practice brings into play four types 
of language: verbal expressions, numerical, graphic and iconic language. Now, while four pairs 
identify verbal and graphic language, only one of these four also recognizes numerical and iconic 
language. One of the pairs only identifies graphic language. 

It should be noted that in the videotaped, the children represent the data in three ways. However, only 
one of the couples is able to refer to the experiential graph and the Legos graph. This result is worrying 
given the importance of experiential and manipulative mathematics in the early ages.  

Regarding the procedures, most teachers recognize the data collection and the graphs construction, 
but, on the contrary, do not identify the data reading. An important fact observed in the analysis of 
this kind of object is that, in some cases, the teachers’ personal meaning of the mathematical 
procedure coincides with that of the mathematical process. In fact, Beltrán-Pellicer et al. (2020) point 
to certain coincidences between both constructs that make it difficult to differentiate them. This could 
explain why teachers do not view level 2 of data reading as a procedure, but as a reasoning process. 
This level requires interpretation of the data from the comparison or ordering, typical entities of the 
reasoning. Finally, with regard to the statements and arguments, the level of competence shown by 
the teachers in training has been very low. 

In the videotape, eleven emerged properties or propositions are considered informal and, most of 
them, are linked to the data reading. Three couples identified only the following: "The game with the 
most votes was hairdressers." The remaining, none of them. As for the only formal property that is 
put into play, "the mode represents a group, so it provides information on the entire set and not on 
specific elements", it should be noted that no one recognized this property. We believe that there are 
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two reasons for the low number of correctly identified properties and propositions. The first lies in a 
lack of understanding of what is a mathematical proposition, property or statement (Giacomone et 
al., 2018). The second is that most of the properties of the videotaped process are justified from 
informal deductive arguments based on a graph; consequently, the properties and propositions do not 
emerge accompanied by their arguments.  

The result is not better in the case of arguments. Four of the five couples have not been able to 
correctly identify any argument. In fact, it has been observed that training teachers confuse arguments 
and properties and propositions, that is, they can present an argument as a property and a property as 
an argument. Or, they, simply, do not separate the proposition to be justified from the argument itself, 
that is, they present a justifying statement (Beltrán-Pellicer et al., 2020) with a proposition-
conjunction-argument structure. 

Conclusions 
The competence development of the teachers has not been uniform for all the objects. The level of 
recognition of linguistic elements and procedures is sufficient, but that of properties, propositions and 
arguments is insufficient. As far as concepts are concerned, the level is beginner, but not sufficient, 
since they recognize numerical concepts well, but not statistical ones. 

In our opinion, in addition to the aspects indicated in the previous section that hinder the development 
of competences, we point out the early childhood context. Specifically, we refer to the fact that 
common verbal expressions abound in early age mathematical practices and that the mathematical 
name of the concepts in them is not institutionalized. This requires a higher cognitive effort on the 
part of the teacher to identify mathematical objects, because there is a “camouflage” effect. Therefore, 
it is necessary to educate the professional noticing of kindergarten teachers in this regard.  

We emphasize that the level of recognition of the procedures shows that the mathematics with which 
the participants have been trained has been basically algorithmic, rather than constructive. Moreover, 
they identify most of the procedures involved, but do not distinguish the reading and interpretation 
of the data, to which it seems that they are not so used. 

Finally, it is necessary to add that the didactic suitability of the formative action is quite high, but for 
possible replications it is suggested to leave more time for the discussions and institutionalizations of 
the mathematical objects, even for the assimilation of their meanings. However, it is difficult to 
increase the degree of cognitive suitability of the action if the teachers have not previously received 
an initial training that favors, at least, their common content knowledge. 

It is evident, now more than ever in the reality that we live as a consequence of the pandemic, that 
statistics are necessary for society and science to advance. Therefore, it is a good time to push for a 
change in university curricula. 
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In Brazil, as in many other countries, there is a gap between the type of statistics preservice teachers 
learn in graduate programmes and what they will teach at compulsory education. This paper presents 
the design of a study and research path for teacher education (SRP-TE) as a tool to reflect, develop, 
analyse, and experience teaching proposals in statistics for the final grades of the lower secondary 
school. The investigation is based on some principles of the Anthropological Theory of the Didactic 
and its proposals to locate teacher education within the paradigm of questioning the world. The 
proposed SRP-TE starts from a school activity about the water distribution in Brazil and its extension 
to incorporate dimensions of the statistical work that tend to be absent from secondary education, 
such as the search, collection, cleansing, and representation of data. 

Keywords: Anthropological Theory of the Didactic, study and research path for teacher education, 
statistics teaching, secondary school, working with data. 

Introduction – Research context and aim 
In this paper, we present a PhD investigation developed at the Universidade Federal de Mato 
Grosso do Sul (Brazil) in partnership with the Universitat de Barcelona (Spain). The question 
motivating the research project came from a perceived limitation in the preservice teacher education 
process followed by the first author during her degree in mathematics education. In the case of 
statistics, it seems that the double discontinuity described by Klein (Isaev & Eichler, 2017) 
appeared there with even greater prominence. The subject Probability and Statistics did not provide 
future mathematics teachers with a practical vision of the area. It is then common to hear reports 
from new mathematics teachers expressing difficulty working with this theme in Brazilian 
compulsory education1 when they take up a classroom, as happened with the first author of this 
article. A significant gap is perceived between the education received and the teaching practice, and 
the situation is not limited to Brazil. According to Martignon (Batanero et al., 2011): 

[…] the gap between disciplinary statistics and school statistics has to be taken seriously into 
account when preparing future school teachers of statistics who have to be aware that they will be 
providing future citizens with “statistical literacy”. In other words, future citizens need to be 
endowed with tools for interpreting statistical information in the media, for dealing with relative 
and absolute risks, and for understanding the effect of base rates on the predictive accuracy of 
medical tests” (Batanero et al., 2011, p. 34) 

 
1 In Brazil, the compulsory education is composed by preschool (for children between four and five years old); primary 
and lower secondary education (for children between six and fourteen years old), that is also known as elementary 
education; and upper secondary education or high school (for teenagers between fifteen and seventeen years old). 
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In her master’s thesis, Verbisck (2019) focused on the case of probability and the teaching 
proposals of different textbook collections from grade 1 to grade 12. In all cases, only a small part 
is devoted to probability and statistics, with a tendency to locate it in the last chapters of each book. 
More than ten years ago, Lopes and Ferreira (2004, p.12, our translation) stated that “until the 
implementation of [...] PCNs2 (MEC, 1998), the teaching of statistics at elementary and high school 
grades was very restricted and marginal. The topics covered were included in the mathematics 
discipline, in the most advanced grades and, generally, it was one of the last topics in the textbook 
[...]”. However, this persists today, at least in more than half of the textbooks approved by the 
Brazilian ministry of education in 2017.  
There is an agreement in the international research community on the importance of adopting a 
broad view of statistics that includes aspects such as searching for and collecting data, cleaning and 
organising data, visualising data, using specific software, preparing reports, all within a perspective 
of solving open questions and studying variability. These perspectives are described in terms of: 
“statistical reasoning” (Garfield & Ben-Zvi, 2008), “statistical literacy” (Watson, 2006), “statistical 
thinking” (Wild & Pfannkuch, 1999), “informal inferential reasoning” (IIR) (Leavy, 2010) and 
“informal statistical inference (ISI)” (de Vetten et al., 2019).  
How to transpose this perspective in teacher education is still an open problem. Statistical 
investigations are often taken as a basis for enlarging teachers content knowledge while providing 
them with new pedagogical resources (Makar & Fielding, 2011, Pfannkuchm & Ben-Zvi, 2011, 
Santos & da Ponte, 2014). Our PhD research proposal follows this line of research, focusing on 
lower secondary school teacher education. We aim to investigate the possibilities and contributions 
of implementing a teacher education proposal to focus their reflections on current statistical practice 
and literacy. The proposal should also provide teachers with experience in carrying out statistical 
inquiries. Thus, the broad research question framing the development of the thesis is: What 
educational proposal is it possible to implement with a group of preservice mathematics teachers in 
Brazil and how this proposal contributes to providing future teachers with tools to design, analyse 
and implement new didactic processes for the teaching of statistics in lower secondary school? This 
question is approached within the Anthropological Theory of the Didactic (ATD) and, more 
particularly, a specific teacher education proposal called “study and research paths for teacher 
education” (SRP-TE). After presenting the theoretical approach, we will describe the design of an 
SRP-TE that will be implemented during this academic year 2022, with a pilot version during the 
last term of 2021.  The SRP-TE starts from an open question taken from a Brazilian textbook. We 
will illustrate in this paper how the inquiry promoted by an SRP-TE can highlight the different 
dimensions of the statistical work and also be used as a tool to analyse curriculum and textbook 
proposals. 
Theoretical framework: Study and research paths for teacher education 
Chevallard (2015) states that, in our societies, teaching mathematics—and teaching in general—
participates from what he calls the paradigm of visiting works. In this paradigm, the role of students 
is to study ready and finished knowledge organisations built in topics, areas, domains, and 
disciplines. It is up to the students to “look and admire” these works without necessarily 
questioning their validity or value. So, in this paradigm, topics and subjects are like monuments: 
students cannot change them; they do not need to know their raison d’être; they just have to study 
them. At most, questions about knowledge value and validity are posed by the teacher, 
characterised as “the one who knows”. 

 
2 Parâmetros Curriculares Nacionais (National Curriculum Parameters), official documents used in Brazil as a curricular 
tool for educators and educational institutions. These curriculum documents were published in 1997 and 1998 and have 
recently been replaced by the document: BNCC, Base Nacional Comum Curricular (Common National Curriculum 
Base). The BNCC was approved by the Brazilian Education Minister on December 20, 2017. With this document, “school 
systems and public and private educational institutions now have a mandatory national reference for the preparation or 
adaptation of their curricula and pedagogical proposals” (Brasil, 2017, p. 5, our translation). 
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In contrast to this first paradigm, Chevallard describes the paradigm of questioning the world in 
which knowledge organisations change into questions. Teaching and learning processes become 
inquiry processes aiming at answering the questions. In other words, students are the inquirers of 
the generating questions Q proposed by the teachers (or by the students themselves). There may be 
times when visiting works is required in the search for answers to a question, but with a specific 
raison d’être (answering Q). They also have to search for answers in medias (as the internet, books, 
experts, etc.), and they have to validate these answers and check their utility to answer Q. This 
paradigm creates significant changes in the teachers’ and students’ roles. The first ones are no 
longer the “holders of knowledge”, and the students raise questions, investigate, search or elaborate 
answers and even validate them. To study the conditions needed to transition to this second 
paradigm, Chevallard (2015) proposes a general inquiry format called study and research paths 
(SRP). The interplay between questions and answers plays a crucial role in the dynamics of SRPs. 
Students, helped by teachers, address an initial question Q, display Q into derived questions Qi, 
search or elaborate answers Ai, find new questions during the process which, in turn, call for new 
answers, etc. Bosch and Winsløw (2015) point at the importance of such a dialectic between 
questions and answers to ensure the dynamics of SRPs, which is usually represented using 
questions-answers maps (Figure 1). 
 
 
 

Figure 1: Example of Questions-Answers maps (Q-
A) (Winsløw et al., 2013, p. 271) 
Barquero, Bosch and Romo (2015) argue that teacher education proposals also need to be conceived 
within the new paradigm of questioning the world. Thus, they consider implementing study and 
research paths for teacher education (SRP-TE) “as a way to provide teachers with pertinent 
(theoretical and practical) tools to nourish and sustain their professional development” (Barquero et 
al., 2015, p. 810). An SRP-TE consists of five modules, which will be described below. 
Module 0 is to propose the open question (generating question Q0-TE) related to the subject to be 
discussed. In our case, our Q0-TE is: “How to teach statistics in the final grades of lower secondary 
school?”. Other derived questions will appear, such as: What statistics should we teach at these 
levels according to the curriculum? What kind of activities are proposed by official textbooks? 
What other proposals can exist? Partial answers to Q0-TE will appear during the entire SRP-TE (and 
hopefully also afterwards), making it a transversal module of the educational process. Module 1 
consists of proposing the group of teachers an SRP with a relevant question that could be 
approached in a real classroom as students. With this, the group of teachers will be introduced to an 
inquiry process, a strategy also suggested by Makar and Fielding (2011). Module 2 is the moment 
for teachers to analyse the experienced SRP using epistemological and didactic tools spontaneously 
accessed by the students or provided by the educators. In Module 3, teachers design and implement 
(if possible) an SRP for the schooling level under discussion. The new design is carried out based 
on the analyses made in the previous module, adapting, adding, or excluding (if necessary) didactic 
tools that seem necessary – or at least useful – for the implementation of this new SRP. Finally, 
Module 4 consists of the teachers sharing their experiences through an a posteriori analysis. Again, 
the mathematical and didactic tools used in modules 2 and 3 are present here and have great 
importance, “not only to provide some provisional answers to the question that was at the origin of 
the whole process (e.g., “How to teach …?”), but also as a means to analyse other possible 
alternative answers” (Barquero at al., 2015, pp. 810-811), as those answers found in Module 0. 
These modules structure the SRP-TE. We present below an exercise identified in a Brazilian 
textbook of the eighth grade of secondary school that gave us the initial idea of a generating 
question to be studied in the SRP when developing module 1 with the group of teachers. 
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Designing a teacher education proposal 
The proposed SRP for the teachers starts from a school activity about “the water distribution in 
Brazil”. Looking at the approach to statistics in some textbooks from the eighth and ninth grades of 
secondary school, we find the exercise below:  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Brazilian exercise (Giovanni Júnior & Castrucci, 2018, p. 26, our translation) 

This type of exercise shown in Figure 2, and which is relatively common in the textbooks, is clearly 
located in the paradigm of visit works. Although it presents a relevant topic to be discussed (and 
even includes a link to the source of the data), it does not pose any open question, nor does it 
encourage students to search the data, organise and summarise them, and investigate other issues 
related to the topic. The questions raised in the textbook only require students to look at the graph, 
identify the largest or smallest bar, and perform some simple percentage calculations. If we look at 
the official curriculum guidelines, we can observe that this is not the kind of activity that 
encourages students to develop the skills assigned to this level of education, which are: 
- Assess the suitability of different types of charts to represent a survey dataset. 
- Classify the frequencies of a continuous variable of a survey into classes so that they summarise 

the data in a way that is suitable for decision making. 
- Obtain the values of measures of central tendency of a statistical survey (mean, mode and median) 

with an understanding of their meanings and relate them to the data dispersion, indicated by the 
range. 

- Select reasons of different natures (physical, ethical, or economic) that justify conducting sample 
and non-census surveys and recognise that sample selection can be done in different ways (simple 
random, systematic, and stratified sampling). 
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- Plan and execute a sample survey, selecting an appropriate sampling technique, and write a report 
that contains the appropriate graphs to represent the data sets, highlighting aspects such as 
measures of central tendency, range, and conclusions. (Brasil, 2017, p. 315, our translation) 

Despite the limitations of the exercise proposed, the topic presents many interesting questions that 
could generate a potential SRP within and SRP-TE. For this, we need to move from the paradigm of 
visiting works to the paradigm of questioning the world and question the piece of information 
given. At the same time, we will see how the inquiry process it generates can incorporate 
dimensions of the statistical work that tend to be absent from secondary education, like the search, 
collection, cleansing and representation of data, together with a critical reading of quantitative 
information. Thus, for the SRP to be developed with the group of preservice teachers in Module 1, 
we propose to start with Q0 and initiate a questioning that can lead to the following derived 
questions (starting from the same text and graphical information as before): 

Q0: How can we explain the contradiction between the abundance of water resources and the water 
problems (scarcity, quality degradation, lack of control, etc.) of Brazilian locations? How are 
hydric resources distributed in Brazil compared to the population and surface? 

Q1_Water: What do we know about water distribution in Brazil?  
Q1.1. Are there studies about the water problem in Brazil? Where can we find them? 
Q1.2. What disciplines are involved in the studies: geography, politics, geology?  
… 

Q2_Graph: What information can we draw from the graph? 
Q2.1. What variables appear in the graph? What others could it be interesting to consider? 
Q2.2: What are hydric resources? How are they measured? 
Q2.3: Why are the variables in percentages? How are these percentages calculated? 
Q2.4: How will be the graph if we use units instead of percentages?  
Q2.5: Can we improve the graph using another type or adding/omitting information? 
… 

Q3_Data: What data is used to make the graph?  
Q3.1 Is it available? Where? [The presented link does not work.] 
Q3.2. Is the data available also reliable? How is it obtained? 
Q3.3. What are the units of the different variables in the data source? 
Q3.4. Can we use the available data to reproduce or update the graph?  
Q3.5. Are there other interesting variables with available data to consider? 
... 

Q4_Working with data: How to download the data to start working with it? 
Q4.1. How to clean the table of data to make it ready to use? 
Q4.2. What tools are available for data processing, and which ones can we use? 
Q4.3. What types of numerical and graphical summaries are appropriate? 
… 

We started from the main subject of the text presented in the textbook exercise and elaborated a 
relevant open question (Q0) that could be worked on in a classroom. The exercise presented a graph 
with the distribution of water in Brazil and the population and surface area by region. This graph 
will also serve as a possible answer for a derived question since its source is the Ministry of the 
Environment. In this initial work to list our generating question and possible derived questions, we 
identified two large groups of questions: those related to the topic “water” (Q1, Q1.1, Q1.2, ...) and 
those related to the topic “graph” (Q2, Q2.1, Q2.2, ...). Still, within the topic “graph”, another large 
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group of questions appears, which is the topic related to “data” (Q3, Q3.1, Q3.2, ...). By raising the 
questions related to “data”, we entered the topic “working with data” (Q4), which also made us 
think of derived questions (Q4.1, Q4.2, ...). With this, we obtain an a priori questions-answers map 
(Figure 3) that is part of SRP-TE.  
 

 
Figure 3: Questions-answers map about water distribution in Brazil 

We started from an exercise proposed in a Brazilian textbook and reworked it to display the initial 
and derived questions that may arise during the inquiry process. This questions-answers map serves 
as a possible SRP to be developed with the group of preservice mathematics teachers. The answers 
are still being developed since we have not yet worked directly with the group. It is an a priori study 
about the proposed theme: distribution of water in Brazil and, with this SRP in development, we 
believe it will be possible to work with dimensions of the statistical work that tend to be absent 
from the final grades of the lower secondary education, as the search, collection, cleansing and 
representation of data. The inclusion of provisional answers will likely enrich the map with more 
questions and potential maps to follow. It will also introduce more connections between the derived 
questions and the different branches they form. 

Conclusions 
The a priori questions-answers map shows the productivity of changing attitude from visiting works 
to questioning the world. It first gives visibility to many interrogations that are usually hidden in the 
way school tends to present (quantitative and qualitative) information, giving no room for doubts or 
questioning. It also shows how these interrogations go beyond the strict statistical reading and 
analysis of data to merge with other disciplines or areas concerned by the question addressed. This 
is not specific to statistics, even if it plays a crucial role there. Teaching modelling also suffers from 
the same phenomenon of disciplinary confinement. It makes many connections between different 
topics of statistics that tend to be presented separately even if they nourish each other (like the 
definition and measurement of variables, the reliability of data, the ambiguity of percentages, the 
pertinence of the type of graphs chosen, etc.). Finally, it provides future teachers with a broader and 
more realistic vision of statistics that can help them detach from the narrow perspective proposed by 
textbook exercises and facilitate the introduction of engaging statistical activities in the classrooms.  
We hypothesise that the design and implementation of an SRP-TE in statistics will provide students 
with tools to reflect, develop, analyse, and implement new statistics teaching proposals when 
working in lower secondary school and develop a critical posture when acting in their profession. 
The change of paradigms proposed by Chevallard (2015) seems particularly appropriate in the case 
of statistical inquiries for the specific descriptive tools it provides (Markulin et al., 2021). It also 
makes us, researchers, adopt a critical stance towards the social, educational, political and 
epistemological dimensions that involve the themes of teacher education and statistics teaching. 
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In the 21st century, schools have been increasingly expected to raise students prepared for a world 
of quantities and uncertainty. As statistical practices become an important skill for every individual, 
researchers and educators work on ways to translate the methodologies of professional statisticians 
in the teaching and learning environments. Technological tools are helpful in translating statistical 
investigations into the classroom. The purpose of our research is to understand teachers’ experiences 
about integrating statistical practices into their STEM lesson plans by using LabStar, a dynamic data 
collection and data analysis tool. Findings were investigated under four categories: personal 
development, in-class implementation, views about the mobile application and the tool, and statistical 
investigation environment. Future research was recommended to investigate teachers’ professional 
development opportunities to integrate meaningful statistical practices in their lesson plans.   

Keywords: Statistics education, statistical investigation, dynamic data analysis technology.  

 
Introduction 
In the Big Data era being competent in making data driven decisions in all aspects of daily life is 
inevitable. Many decisions in politics, economics and social sciences are based on thorough analysis 
of data. The omnipresence of data requires individuals with strong analytical and reasoning skills 
who can base their decisions on their inferences beyond the data in the way that professional 
statisticians do (Frischemeier, 2020). However, international reports point out the lack of individuals, 
who demonstrate necessary skills to cope with Big Data even at the tertiary level (Manyika et. al., 
2011; Puang-Ngern, Bilgin, Kyng, 2017). From this point, practice of statistics became a crucial 
element to integrate in primary and secondary school curricula. 

In 21st century, schools have been increasingly expected to raise students prepared for a world of 
quantities and uncertainty. With the availability of data from variety of sources and in a variety of 
formats students are required to manage the complexities to reach data driven conclusions (Makar & 
Rubin, 2009). Statistics, therefore, has become an essential element of school mathematics curricula 
of many countries (e.g., Australian Curriculum, Assessment and Reporting Authority, 2015; 
Common Core State Standards Initiative, 2010; Ministry of National Education, 2018). 

As statistical practices become an important skill for every individual, researchers and educators work 
on ways to translate the methodologies of professional statisticians in the teaching and learning 
environments. Statistics education is becoming an agenda across many levels of schooling. Debates 
about how to help students gain an understanding about statistics requires us to think about the nature 
of statistics. Statistics is about carrying out statistical investigations on a specific statistical question 
to understand a phenomenon. Statistical investigations are based on exploring the variation, by 
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engaging data collection, data representation, data reduction, level of certainty and informal inference 
practices (Watson et al., 2018).  

Statistical investigation is recommended to be the focus of the statistics teaching-learning activities 
in classroom contexts. The parts of the investigation process have been also included in mathematics 
curricula starting from elementary grades. As the practices of statistical investigation become a part 
in mathematics curriculum, the role of the teachers comes forth. Teachers are expected to design 
authentic contexts where students can engage in data collection, analysis, and informal inference 
processes. Research also underlines the importance of teacher knowledge on statistics and statistical 
thinking to design effective learning experiences for their students (Rodrigues & de Ponte, 2020). 

Technological tools are helpful in translating statistical investigations into classroom. Dynamic 
technologies that allow students to experiment with data collection and analysis techniques were 
started to be researched in terms of the opportunities they provide for statistical practices (Meletiou-
Mavrotheris et al., 2008).  

COVID-19 caused schools to get shut off, which made STEM and statistics education to be conducted 
on online portals. This probably led to changes in the teaching method and the environment. The aim 
of creating statistics literate students that use statistics tools, software, and can interpret the data 
became the priority. In order to fulfill this aim, collaboration, communication and multidisciplinary 
studies that involves data science and education must be addressed. 

Based on this rationale the purpose of our research is to understand teachers’ experiences about 
integrating statistical practices into their STEM lesson plans by using LabStar, a dynamic data 
collection and data analysis tool. Teachers were provided with educational videos about integration 
of statistical investigations into STEM lesson plans and the use of LabStar tool. After watching all 
the videos teachers implemented the STEM lesson plans, designed with authentic statistical 
investigation tasks. Our aim is to explore the lived experiences of teachers about the implementation 
of these lesson plans. Our research questions are:  

• How STEM teachers contextualize statistics and mathematics into daily life problems 
using STEM integration? 

• How STEM teachers perceive their roles in terms of integration statistical investigation in 
STEM education?  

• How STEM teachers evaluate the educational videos in terms of designing and 
implementing statistical investigations in STEM lessons? 

Methodology 
The research used a phenomenological method among qualitative research designs. The study group 
is four STEM teachers who used statistical investigation practices in their classrooms during 2020-
2021 Spring Semester. T1 was a middle grades mathematics teacher, T2 and T3 middle grades 
science teachers, and T4 was a high school physics teacher. They implemented STEM lesson plans 
integrated with statistical investigation in various grades and with different disciplines in the center 
of the lesson plan. They used LabStar as a dynamic data analysis technology. LabStar is a dynamic 
data collection and analysis tool. It works with the physical tool and the mobile application. The 
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mobile application can be used also separately from the tool by analyzing open resource data. All 
teachers and students had the LabStar mobile application, one of them (T4) had both the physical 
data collection tool and the mobile application. Teachers used data from open resources to analyze 
in their in-class implementations.  Before the implementation they were provided with training 
videos regarding ways of using dynamic data analysis technology in their STEM lesson plans.  

For data collection we conducted face-to-face interviews with the teachers. To ensure a prolonged 
relationship, interviews lasted at least 60 min. Audit groups were formed within the research group 
and member check processes were planned to ensure trustworthiness. Researchers are also using 
peer-debriefing during data collection and analysis phases. STEM lesson plans and field notes of 
the teachers were used as data sources to ensure triangulation in data collection. For data analysis, 
interviews were transcribed, and thematic analysis was conducted by using constant comparative 
method. Because multiple coders will analyze the transcripts, the methods for ensuring intercoder 
reliability were used. Documents of teachers (lesson plans and notes) will be analyzed by content 
analysis. Data analysis will be finished in November 2021.  

Findings 
Analysis of the interviews and the documents revealed myriad findings about the experiences they 
had during integration of STEM education into their classes. Findings were investigated under four 
categories: personal development, in-class implementation, views about the mobile application and 
the tool, and statistical investigation environment.  

Personal Development  

This theme emerged as the participants mentioned about the training they have received and research 
they have done before and/or during applying a STEM activity in the class. All teachers expressed 
that the educational videos that they have watched before attending to the classes, helped them to 
learn and grasp the nature of the application before introducing the software to the students. One of 
the teachers, T1, commented that “With the help of the videos, especially the fourth one, we were 
able to lead the students in the right direction”. T2 added that: “The videos were sufficient, I received 
STEM education last year, I knew nothing. In a year I learnt about STEM education and some of the 
questions were given to us that are in the videos.”  

Furthermore, some of the teachers had to get help from various resources because they felt that they 
did not have sufficient knowledge. 

I am a science teacher, when I was studying on it, I got help from my husband who is a mathematician, (I asked 
about) upper quartile, lower quartile etc. I taught students with the information I got from him too. I also got 
tremendous help from the educational videos. (T3)  

This view also showed that teachers also had an opportunity to discover knowledge related to other 
disciplines. A teacher had sufficient technological knowledge and even integrated STEM education 
to work with a software simultaneously.  

I thought about what I could do, I set up a meeting with the students from 9th and 10th grades. A student said that 
we should test its (LabStar’s) accuracy. We tested it and it was accurate. We conducted two experiments, firstly 
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we created sound waves and measured its decibel. We have a software called Scratch; we created the sound 
waves then integrated it with LabStar. The data were almost equal. We used it to compare the sound waves, their 
wavelengths. I found it usable for advancing in physics. It is a nice software (T4). 

The teachers started their lessons with introductory activities to motivate students. T1 stated “We 
asked the students about number of cases of covid-19. Then we led them to the relevant website.”. 
T2 added “I asked the properties of microscopic life forms. With the feedback I have received, I 
mentioned about the bacteria then gave the table”. Although T2 did not ask anything before the lesson, 
she let the students explore by themselves. This allowed the students learn by discovery. 

I did not ask anything, I let them do experiments because I was experimenting too. When I asked what do you 
see, they told me that the wave is increasing, I asked how a wave can increase? Is it on the direction x or y? Then 
we got data, but now they tell numbers instead. Are they increasing or decreasing? We call them data. As the 
waves increase, the numbers increase, what do we call it? Wavelength. (T4) 

Some teachers worked as a group to put out the lesson plan. 

We worked as a group. I usually build interdisciplinary relations with mathematics, but I always get help from 
the biology. We do gas pressure, sound waves, they are all about biology. There were machines in STEM 
laboratory, I used the distance sensor there. (T4) 

The teachers explained that they plan to apply their knowledge into their other lessons too. 

Maybe it is not possible to apply it to all topics, since physics, chemistry and biology are different. But for 
velocity, race, order of the velocity, density of a matter, there can be data and it can be commented on. I think 
that it could be integrated depending on the area. (T2) 

T4 also asserted that, “I will use it to explain illumination density. I have the topic movement on 10th 
grade, location, distance, translocation, I will use graphs. It is fun to make students active in 9th and 
10th grades.”  

In-class implementation   

This theme has emerged as the teachers expressed their experiences about the application of a STEM 
lesson in a class. A problem occurred because of the mismatch between the current grade’s curricula 
and the statistical terms in the tool. T1 claimed that “Some terms were troublesome since they did not 
fit to my class”. T2 added that “In my opinion it was not suitable for 5th graders, the terms mode, 
median in the graphs”. T1 further explained that: “The students didn’t know the terms and their 
meanings since the terms do not fit to fifth grade’s curriculum. They did not understand it because 
they did not learn it, and I did not pre-teach the terms.”  

Some teachers had problems because of the students’ technological skills being insufficient. T1 
claimed “Some students found it hard to transfer data to an Excel sheet”, She further said “At first 
they found it hard to create a table. There were students who did not know the shortcuts”.  

The teachers explained that they were not able to hold the attention of the whole class nor make all 
students participate in the activity. T2 claimed that “If you have 50 students, only 10 students give 
positive feedback. There were students who did not download the mobile application or participate 
in the lessons”.  
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The teachers who had the mobile application but not the physical tool claimed that they could have 
reached to more students if they had the physical tool to collect real time data.  Some teachers 
observed that some students were interested in the lesson:  

There were many students who were interested in the lesson. There was data related to basketball, it drew the 
attention of male students. If the topics were different there could be different things. But I received positive 
reactions, some students asked if they could collect and analyze another data. (T2) 

Views about the mobile application and the tool 

This theme has emerged as the teachers stated their views about the mobile application and the tool 
that they have used to carry out their STEM lesson plans.  

Another challenge was born because of the language of the application being English. This was a 
common problem amongst all teachers. T1 stated “The only problem was the application being in 
English, it could be in Turkish. If they don’t know English, they need to use translation”. Some 
schools did not receive the physical tool, but they only had the mobile application. The teachers 
believe that they need the tool itself.  

It would be better if we had the tool. For instance, in a 7th grade, I have conducted a lesson about darker colors 
absorbing light thus being colder. I used heat and light sensor simultaneously to observe the graph. It was a 
brilliant lesson. I did not have such fun in any lesson before. So, it would be better if we had the data collection 
tool. (T3) 

T2 claimed that. “It is vague for 5th graders, for a fifth grader, the tool being here and the process of 
collecting the data is necessary. It needs to be concrete”. There were some problems that originated 
from the application and technology use. Overall, the teachers were satisfied with the experience they 
had with LabStar. T2 claimed “The teachers can use LabStar easily and create STEM lesson plans.”, 
T4 added “LabStar can analyze data, it is accurate and fun”. 

Statistical Investigation Environment  

The teachers have different expectations about the statistical terms that the students must know and 
express in a statistical investigation environment.   

It is crucial to be able to read the graphs, where is the peak, what is the increment this month, being able to 
comment, creating a cause-and-effect relationship is important for science. Mathematical interpretation, peak 
point, outliers. I believe that LabStar application is related to mathematics at most. (T2) 

The students do not know how to read the graphs, they cannot even read tables. They have learnt how to do it; I 
believe that that is the significant contribution. (T3) 

The teachers claimed that STEM integration made observing statistical terms easy. 

In the topic waves, there are fundamental notions. Frequency, amplitude, and wavelength. You can create a sinus 
wave, you can observe the wavelength, then we can measure it. We talked about range and modes, we created 
2-3 waves, x wave and y wave then we compared them. At first, they talked about their image, then we compared 
them as data. (T4) 
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Some students were not interested in terms related to statistics. When teachers were asked if the 
students asked about statistical terms, T2 said “No, they did not ask. In 6th and 7th grades the activities 
would be more efficient. However, since the total number of lessons are less in 5th grades, it limits 
us.” T1 added that, in online environment, only the students who are passionate about mathematics 
asked, but we did not have a whole-class discussion. Since the number of curious students were low, 
they contacted us through private messages. (T1) 

Discussion 
The teachers reported that by seeing the graphs live, students grasp the concepts of mathematics and 
statistics in a fun and interactive way. This may be because in most cases formal statistics teaching 
leaves students in a confused state as most of the time they are not able to apply the theoretical 
knowledge into real life (Bakker et al., 2017), whereas the fun factor comes into play with the 
activities. The teachers worked together with other teachers to set up a multidisciplinary context, this 
is because  developing mathematics, and integrating it with the other disciplines in STEM is the main 
aim in STEM education (Li & Schoenfeld, 2019). Even though context integration should be used to 
teach STEM (Kertil & Gurel, 2016), the teachers most of the time failed at integration of STEM with 
other disciplines, they mostly worked on their own disciplines. Therefore, creating statistical 
investigation environments was evaluated to be essential (Anderson & Li, 2020).  

Teachers used real data from various resources to analyze with the mobile application and believed 
that real life situations are shown with excellence by using the tool and mobile application. it is 
probable that go prepare students to real world and its requisites, they feel that real life problems 
should be the main scope of the curriculum and the lessons in the schools to provide problem solving 
skills  in which they need to provide a solution, a model to achieve the goals clearly (English & 
Watters, 2005). The teachers preferred experimenting with the students mostly because In the 21st 
century, using computers and being proficient is necessary and in STEM education, for the most of 
the educators experimentation is the preferred way rather than the computation (Li et al., 2020). The 
teachers dealt with problems that arise from the statistical terms, but they were caused from the 
curriculum not including the related terms, and the teacher’s lack of self-awareness to do a pre-teach 
session. Future research was recommended to investigate teachers’ professional development 
opportunities to integrate meaningful statistical practices in their lesson plans.   
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Introduction
The thematic working group TWG6 takes on the importance of exploring the role of mathematics 
when it is used and applied in the study of real-world phenomena in educational contexts. TWG6 
considers the interplay between empirical research results and theoretical approaches to the teaching 
and learning of applications and mathematical modelling, in mathematics and other subjects, at 
primary, secondary and tertiary school levels, as well as in teacher education. It started at the fourth 
ERME Congress (CERME4) in 2005 and has since then continued to be an active thematic working 
group in the following nine congresses. In total, more than 200 papers and posters have been presented 
in the TWG6. In CERME12 the TWG6 received 36 submissions, resulting in a total of 25 papers and 
5 posters presented. See Figure 1 for a summary of the TWG6 contributions in the different CERMEs.
At CERME12, we have discussed theoretical, methodological, and empirical research contributions 
aiming to address a variety of topics, such as application, modelling and simulations in connection to 
other subjects, the use and impact of technology and other resources to support modelling, teacher 
education for applications and modelling, and assessment practices for mathematical modelling, 
among others. The contributions discussed at the congress revealed a strong and fruitful diversity in 
the research questions considered, the school levels addressed, the theoretical approaches chosen and 
their methodological development.

Figure 1: Evolution of the papers and posters presented in TWG6
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A total of 45 participants participated in the online CERME12, representing 14 countries –most of 
them from Europe, but also from South and Central America, Israel, South Africa and Japan. The 
papers and posters were divided into six leading themes (see Table 1), so that in each session papers
and posters were discussed on one of the themes.

Table 1: Leading themes (LT) defined and number of contributions in the proceedings

Leading themes Papers Posters

LT1. Theoretical and methodological developments in modelling 3

LT2. Modelling in STEM topics and extra-mathematical topics 3 2

LT3. Design and analysis of modelling tasks and processes – Learning modelling at primary 
or secondary school education

6 2

LT4. Design and analysis of modelling tasks and processes – Teaching and learning of 
modelling at tertiary education

6

LT5. Teacher education for mathematical modelling and application 4 1

LT6. Technology and other resources in mathematical modelling 3

In the first leading theme, the reader can find papers focusing on theoretical and methodological 
developments of tools for the analysis of the modelling tasks and practices. The second theme focuses
on the interplay and connections between mathematical modelling and other subjects, referring to the 
STEM topics and/or engineering context. The third and fourth themes address different strategies to 
support the design and analysis of modelling tasks and of the strategies to foster students’ work on 
modelling tasks. These contributions are organised into two sub-topics according to the educational 
level the research contributed to: primary or secondary school education (LT3), or university
education (LT4), the latter also including university students who are being prepared to become 
teachers. This last sub-topic links coherently with the fifth one, which covered teacher education for 
modelling and its applications, presenting several instructional proposals for preservice and in-service 
teacher education for application and modelling. Finally, the sixth theme focuses on the use of 
technology and other resources in mathematical modelling, mainly about how to combine different 
resources with technology in concept development by means of real word contexts. Table 2 
summarizes the papers and posters included in the proceedings of CERME12, which we elaborate on 
in this introductory report discussing the leading themes.

Leading themes and overarching questions 
LT1: Theoretical and methodological developments in mathematical modelling 

This first theme focuses on proposing research tools and methodologies to analyse modelling 
practices beyond the cognitive aspects and to discuss the rationale and specificities of mathematical 
modelling in comparison to other domains or disciplinary approach to modelling. Firstly, Vos and 
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Frejd present a suggestion for extending the modelling cycle by the dimensions of metacognitive 
strategies, tool use and social norms. Secondly, the paper of Ärleback and Frejd considers a dual 
integrated modelling approach to the teaching and learning of mathematics and the teaching and 
learning of mathematical modelling at the same time. Thirdly, Kawakami and Ärleback present a 
review on the characterization and comparison among the rationales of statistical modelling and
mathematical modelling. In all three contributions it became clear that the teaching of modelling and 
the analysis of modelling processes should not be limited to modelling competencies but should also 
include other aspects such as mathematical concepts, metacognition, affect, social norms, group work 
and tool use. Some questions for discussion emerge for future developments on this topic: 

What might a modelling cycle as an analysis tool look like, that includes aspects such as 
metacognition, affect, tools, social norms or group work, in addition to the analysis of sub-
competencies?
What would a concept for teaching look like, in which modelling competencies and 
mathematical concepts or knowledge about the context can be taught at the same time?
To what extent is it necessary to distinguish between mathematical modelling and, for 
example, statistical modelling? Does statistical modelling represent a sub-form of 
mathematical modelling?

LT2: Modelling in STEM topics and extra-mathematical topics

The LT2-papers study the role of mathematical modelling in extra-mathematical, engineering, and 
STEM contexts. The paper by Kacerja and colleagues presents an analysis of teachers’ discussions 
on the modelling involved in the body mass index (BMI). Vásquez and colleagues discuss a study and 
research path (SRP) for the teaching of modelling in secondary school in relation to the evolution of
COVID-19, which connects to the poster from Donner and Bauer on a modelling project about the 
pandemic for grades 9 and 10. The poster by Fleischmann and colleagues presents the design of an 
SRP about modelling climate change. Finally, Pablo-Díaz and Romo-Vazquez present the design of
a didactic activity for engineering education based on the Hazen-Williams model. The main areas and 
driving questions of the discussion with respect to LT2 can be summarized and highlighted as:

The complexity of realistic and real-world (ill-defined) problems. How to deal with and 
conceptualize the extra-mathematical domain? How to transpose complex real-world 
modelling problems into different grade classrooms without losing authenticity, relevance and 
richness? How to support or motivate students to validate their results with the real context?
Critical perspective, ethical considerations, and sensitivity towards students. How to support 
a critical perspective on the use of models in society (e.g. when addressing issues related to 
Covid-19, BMI)? How to consider in classrooms the potential implications of using the 
models for decision-making?
Implications of using real data in modelling activities. How to foster a critical stance towards, 
and thinking about, data in students? Starting from the given data: what questions can be 
answered? Starting from questions: what data is needed in order to provide an answer?
The role and importance of various aspects of posing questions. What is the role of problem 
posing in the context of applications and mathematical modelling? What can students learn 
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from posing questions with respect to modelling and extra-mathematical questions? How to 
support students in posing productive and answerable extra-mathematical questions?
The nature of the models used and developed: To what extent are STEM contexts and 
activities providing new and different types of models to explore?

STEM and other extra-mathematical contexts provide rich sources for modelling problems but
introduce new types of challenges and demands for students, teachers and researchers. We need to 
conceptualize and theorize about how to design activities and learning environments (including 
technology) that fundamentally connect to, and use, knowledge from other disciplines and extra-
mathematical domains.

LT3: Design and analysis of modelling tasks and processes – Learning modelling at primary or 
secondary school education

The papers related to this topic refer to different strategies to support students when solving modelling 
problems, teachers when guiding their implementation and strategies for the design and analysis of
modelling activities. As one of the themes that are grouping more contributions, we can distinguish 
different focuses and issues raised. 

Firstly, Elias and colleagues focus on examining the notion of the rate of change in modelling 
problems. The authors examine which aspects of the notion of rate of change are prone to subjective 
reasoning by learners, due to their structure or due to missing information, and which aspects are 
objective. Secondly, some contributions focus more on some particular steps of the modelling process 
and analyse, for instance, the influence of students’ beliefs about modelling or the interest in the 
context of modelling tasks. Geisler focuses on the steps of validation and investigates how students 
validate their models within modelling tasks with experiments. Additionally, Kanefke and Schukajlow
focus on the difficulties of students noticing when data are missing from some modelling problems.
They aim to analyze the extent to which students noticed missing data while processing modelling 
problems with missing data. Furthermore, the poster from Kaemmerer presents a comparison between 
students’ work on modelling tasks when they have an interest (or do not) in the real-world context 
where the task is proposed. The poster from Surel discusses strategies for a better comprehension of 
modelling tasks related to students’ engagement. Some common questions for discussion linked to 
these contributions are about:

What impact do students’ beliefs about the nature of mathematics (e.g., exactness of 
mathematics) have on students’ approaches to working with (missing) data? How can we 
influence students’ beliefs, so they are able to be more flexible with their models 
(adaptations/reformulation/validation)?
Are students’ affective reactions dependent more on the type of modelling task or the phase 
in the modelling process? Are there important differences in students’ affective reactions?

Thirdly, other papers are more focused on the proposal of analytic tools for the ideal, individual, or 
collective modelling routes. The paper from Schneider and colleagues investigates whether and to 
what extent knowledge about ideal-typical modelling processes have an influence on phase transitions 
in individual modelling. Göksen-Zayim and colleagues present an observation instrument to study 
collaborative modelling. The authors use three main components: collaborative learning, 
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mathematical modelling and the language that students use while working together. Moreover, Bassi
and Brunetto are interested in the affective factors, cognitive and motivational, that can be associated 
with the different modelling activities. Some common questions about these contributions refer to:

To what extent does group work condition the modelling process? How to take into 
consideration the aspects related to group work conditions?
Which tools are more useful for the systematic analysis of the influence of interactions on the 
resolution process? 

LT4: Design and analysis of modelling tasks and processes – Teaching and learning of 
modelling at university

This fourth leading theme, closely related to the previous and the next ones, is now focused on the 
design and analysis of mathematical modelling at university level. Most of papers on this topic choose 
the university students who are in fact preservice teachers. 

Zhou and Hansen investigate how the introduction of the pedagogical method “mathematics in three 
acts” to preservice teachers influenced their mathematical modelling. Hartmann and colleagues 
investigate the modelling activities that take place when posing problems that are based on given real-
world situations and the extent to which modelling activities occur with different problem-posing
activities. Segura and Ferrando aim to categorize the different types of errors when university 
students solve some modelling tasks involving estimations and to inquire into the efficient use and 
learning from errors to improve initial teacher training. Sevinc and Ferrando analyze the 
commonalities and divergences in the resolution of a group of Turkish and Spanish preservice
mathematics teachers’ ways of modeling approaching a Fermi-based modeling problem. The 
contribution from Andresen aims to inquire about learning trajectories in the context of modelling
with differential equations. Textual analysis of the reports from teachers in a masters’ program
implied the marking of notions and terms related to progressive, horizontal and vertical 
mathematising,

We can divide the main topics into three areas. They are school-university transfer, modelling 
processes and modelling tasks. In the school-university transfer, the importance of the transfer of 
studies from school to university, was discussed. Here, the question arises, how to compare the 
conditions under which the implementation runs and the results. Another question discussed is for 
example: How to take into account the university context and the institutions to which some 
modelling tasks are to be transferred? 

In the context of modelling processes, the question of understanding reality and mathematics in the 
modelling process as “part of the world” was discussed. Modelling is seen, especially at university, 
as a way to learn new advanced mathematics rather than just using familiar university-level content. 
The connection between mathematical modelling and problem posing and the importance of their 
relationship was also pointed out here.

The discussion of modelling tasks for university students includes criteria for evaluating the “quality 
of the problem” (for example openness and complexity). Fermi tasks also have great potential as 
modelling tasks at the university. They provide an opportunity to analyse possible errors in more 
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detail. Modelling tasks examples at university, if used in teacher education, should also be considered 
in terms of their pedagogical significance. Looking to the future with respect to this fourth topic, 
questions arise about:

What differences between engineering students and preservice teachers are relevant to the 
construction of modelling opportunities?
What are the main differences between mathematical modelling in university and 
mathematical modelling in the school?

LT5: Teacher education for mathematical modelling and application (professional content 
knowledge and competencies)

This fifth theme is focused on teacher education, based on the acknowledged need for preparing 
preservice and practicing teachers for the teaching of applications and modelling. Papers on this 
leading theme are closely related to the previous ones. As mentioned before, papers in LT4 present
the analysis of preservice teacher activity (considered as university students) and, in the current one, 
the focus is on professional content knowledge for mathematical modelling, pedagogical knowledge 
for modelling and simulation, and/or on teachers modelling skills. 

On the one hand, Greefrath and colleagues consider the professional content knowledge of 
mathematical modelling as a competence facet of teachers to present and discuss the development 
and use of a test instrument. In this same direction, but referring more to pedagogical knowledge, 
Gerber and colleagues propose a theory-based model and subsequently present items of an associated 
test instrument to measure the preservice mathematics teachers’ professional knowledge for teaching 
simulations and mathematical modelling with digital tools. On the other hand, Montejo-Gámez and 
colleagues present the characterization and the analysis of the kinds of assumptions made by a group 
of preservice teachers on the models considered and the impact on modelling outcomes and teachers’
skills. The poster presented by Ulbrich and colleagues focuses on developing mathematical modelling 
skills for mathematics teachers through 3D Modelling and 3D Printing. Some main issues and 
questions related to this leading theme are about: 

Content knowledge (CK) and Pedagogical content knowledge for mathematical modelling (PCK):
Considering the specificities of the knowledge domains (mathematics, stochastics, grade level, ...),
how can we describe mathematical, technological and modelling knowledge involved in PCK in order 
to design assessment tools for measuring PCK?

Noticing mathematical modelling processes: How is teachers’ noticing competencies and knowledge 
(regarding metacognition) in modelling and its development related to one another?

Validity and replicability of research in teacher education: How do we deal with the question about
validity and replicability in our field of research (in particular, in teacher education for mathematical 
modelling)? What might be the impact of teacher education for modelling on teachers’ practice? How 
can we replicate studies in light of the diversity of conditions (and limitations) under which teachers 
can act? In the future development of our field of research, questions arise about what knowledge on 
technologies (which tools, when to use tools, black boxing, instrumental genesis, ...) might also be
involved in the discussion of teacher knowledge for mathematical modelling and of teacher education.
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LT6: Technology and other resources in mathematical modelling

This theme focused on the use of technology and digital resources in mathematical modelling. Touma
and Olsher explore the design principles of computer-based modelling activities. From design-based 
research, the results show that technology plays several relevant roles, namely simulation, 
investigating scenarios, and simplifying procedures. In her study, Jessen aims at characterising the 
roles of digital resources in mathematical modelling, by using the Anthropological Theory of the 
Didactic in terms of media-milieu dialectics. The digital tools are seen both as media and milieu. 
Lieban and Bueno examine students’ use of 2D and 3D resources to find out how ideas from the Three 
Worlds of Mathematics come into play. They conclude that connections result from experimentation, 
exploration, understanding, and manipulation, in physical or digital environments. Some of the 
matters largely discussed were:

Contributions of digital tools to the modelling activity: What is the relationship between simulation 
and modelling? In considering the different roles that digital tools can play in the modelling process, 
to what extent does technology define the modelling activity? How does technology trigger students’ 
creativity in the modelling process?

Design of technology-based tasks and environments: How can we find a balance between the 
teacher’s and the students’ intervention in a modelling task? How to design good tasks that foster the 
students’ modelling competencies using digital tools? How to develop modelling tasks considering
the diversity of students’ knowledge of technology in a class? How to promote student’s self-
confidence on the use of technology for modelling?

Teachers’ knowledge on mathematical modelling with digital tools and STEM practices: Is there a 
specialized PCK concerning the implementation of mathematical modelling with technology? How 
can technology be used as a communication tool and a collaboration tool in modelling activities? Is 
it possible to establish a relationship between a modelling task and the technology that is more 
effective to carry out some or all the steps of the modelling process? 

In the future development of our field of research, we need more studies on technology-based 
modelling activities. New conceptualizations and theoretical approaches concerning mathematical 
modelling with technology are also necessary. The design of modelling activities with digital tools is 
important in feeding the research on this theme.

Concluding remarks and perspectives
The leading themes addressed by the TWG6 show again the variety of research approaches and 
questions the papers dealt with (Carreira et al., 2019; Kaiser & Sriraman, 2006). Furthermore, the 
educational levels spanned from primary to tertiary education, also covering preservice and in-service 
teacher education. With the overview presented in the previous section, we now focus on each of the 
six leading themes central in CERME12 and summarize the main driving questions of the discussion, 
as well as some remarks and questions, looking ahead for future research with respect to each leading 
theme.

The first leading theme (LT1) discusses research tools and methodologies to analyse modelling 
practices beyond the cognitive aspects, suggesting extending the modelling cycle by considering 
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metacognitive strategies, social norms, affect, group work and tool use. Moreover, this discussion is 
complemented by the comparison between mathematical modelling with modelling in other domains, 
such as statistical modelling, to discuss their possible meeting point in terms, for instance, of their 
rationale or conceptualisation. The second theme (LT2) argues the role of mathematical modelling in 
extra-mathematical, engineering and STEM contexts (or more in general, interdisciplinary contexts).
There is a long tradition in TGW6 of discussing examples under this theme. The discussions highlight 
the need to conceptualize and theorize about how to design activities and learning environments that
connect disciplinary knowledge, in particular mathematical and mathematical modelling knowledge,
to other disciplines and extra-mathematical domains.

The third and fourth themes are more associated with the design and analysis of modelling tasks and 
processes in primary and secondary education (LT3) and tertiary education (LT4). These two themes 
group about half of the contributions. LT3 groups the papers that refer to different strategies to support 
students when solving mathematical modelling problems and strategies to design and analyse 
modelling activities at primary and secondary school levels. Closely related to the previous one, LT4 
is focused on the design and analysis of mathematical modelling at tertiary education. Most of the 
papers choose the university training of preservice teachers to analyse what future teachers do when 
they are being trained (as students) at university.

The fifth theme (LT5) focuses on teacher education, based on the need of preparing preservice and 
in-service teachers for the teaching of applications and modelling. LT5, with the previously 
mentioned LT4, included many papers, continuing with the dynamics initiated in the previous 
CERME11. Teachers and their initial and continuous professional development are crucial for the
integration of mathematical modelling into mathematics education at all school levels. Some 
questions about the linkages and replicability of teacher education and its impact on teachers’ practice 
remain open for future research. Finally, the sixth theme (LT6) is focused on the use of technology 
and digital resources in the teaching and learning of modelling. Questions about the need for 
theoretically-based designs of modelling activities with digital tools or the need for extending 
research on teacher education for the use of simulations and modelling remain highlighted for future 
development of our field of research.
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This paper presents a study of students’ learning mathematics by modelling. In the study learning 
was conceptualized in terms of emergent modelling following the four-layer model by Gravemeijer 
et al. (Gravemeijer, 2020). Aim of the study was to inquire learning trajectories in the context of 
modelling with differential equations in 21 students’ reports. Textual analysis of the reports implied 
the marking of notions and terms related to progressive, horizontal and vertical mathematising, 
followed by the linking of them with the four layers. The paper focuses on one case of students’ 
modelling in one report. It demonstrates how the students’ learning trajectory was identified and 
determined, for interaction between populations as an emergent sub-model of a differential equations 
model. Thereby it contributes to the discussion of i) conceptualizations of modelling and its relations 
to learning, and ii) methods for research in students’ learning.   

Keywords: Mathematical models, learning processes, active learning. 

Introduction. 
The issue of this paper is to interpret students’ learning mathematics from modelling with differential 
equation (DE) systems in terms of emergent models, by vertical and horizontal mathematising 
(Gravemeijer & Stephan 2002). The study’s students do not build up the model from scratch. The 
study’s conceptualization of learning from modelling is in contrast with cases of ‘learning by 
modelling’ that refer to learning about/developing competence in modelling (see Blomhøj & 
Ärlebäck, 2018). The present study was part of a more comprehensive study of data, consisting of the 
21 reports described below. In the presentation of the larger study by Andresen (2021) the methods 
used in the present study were described and discussed. The larger study also encompassed another 
case study, going into details about the interplay between the DE model, the problem modelled, and 
the tool used for modelling, presented in Andresen (2020). 

Theoretical framework 
In this section the basic idea of emergent models is presented and operationalized into a tool for 
textual analysis, following the larger study by Andresen (2021). Whereas the presentation in 
(Andresen, 2021) concentrated on conceptualizations of learning in terms of emergent modelling, the 
aim of this paper’s study was to trace and identify the students’ learning trajectory for cyclic 
interaction between populations in the predator – prey DE model as an example of learning about a 
mathematical concept by modelling.  

Emergent mental models of mathematical concepts and relations 

Gravemeijer and Stephan (2002) expressed modelling in terms of emergent models. The notions of 
emergent models and modelling originated in Realistic Mathematics Education (RME) which sees 
mathematics as a human activity (see Freudenthal, 1991). One of the basic principles of RME was 
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students’ horizontal and vertical mathematising, described by Gravemeijer and Stephan (2002) as the 
passing of four levels of activity where a new mathematical reality is created at each level. The levels 
of activity were: 

1. situational level with descriptions in natural language and own wording,  

2. referential level where a ‘model of’ is created and inquired. A ‘model of’ is identified by the 
students’ use of situation related terms and half-way formalized explanations, for example, that ‘the 
number of sick persons will grow exponentially over time’,  

3. general level with creation and handling of a ‘model for’. A ‘model for’ is identified by the 
students’ use of general expressions and terms with no visible relation to the situation, for example, 
that ‘We find that the graph of I(t) hits the maximum value if the parameter has a value of 0.259’,  

4. formal level with general reasoning and considerations. For example, considerations and 
reflections about modelling with DE. 

Horizontal mathematising is described as the passing from first to second level, vertical 
mathematising as passing further up. This four-layer model was the basis for the design heuristics of 
emergent models that aim to support the students’ processes of emergent modelling (Gravemeijer & 
Stephan, 2002). Gravemeijer (2020) described emergent modelling as an incremental process in 
which models and mathematical conceptions co-evolve. Central to the emergent modelling design 
heuristic is the use of a series of sub-models. Together they substantiate an overarching model which 
develops from a model of informal mathematical activity to a model for more formal mathematical 
reasoning. The overarching model is mental, with Gravemeijer (2020) mentioning, for example, the 
concepts of ‘distribution’ and ‘function’. In this view, modelling is not separated from mathematics 
nor from ‘reality’. The two goals, modelling for the sake of mathematics and mathematics for the 
sake of modelling, mentioned by Niss and Blum (2020), are here intertwined. 

According to Cobb (2002, p. 193) the four-layer model might ‘facilitate (…) the analysis of 
mathematical learning in instructional situations (…). The explication of a mapping between a 
situation and a model might then be viewed as a description of the way that the situation became 
structured during modelling activity’. Based hereon, the four-layer model was in this study 
operationalized into a tool for textual analysis of reports to interpret the students’ mathematical 
concept formation. Signs, displayed by the wording in reports, of students’ activity were stratified 
regarding the levels. The progressive mathematization, then, was detected as progressive variation 
between the levels and interpreted as steps of the students’ concept formation, in the form of sub-
models evolving into an emergent model. Accordingly, the mathematical learning outcome was 
conceptualized as emergent models of essential mathematical concepts, following Cobb (2002). This 
paper’s case study of modelling with DE was focused on sub models in the form of details of the 
interaction between populations. The overarching (mental) model was the mathematical idea to model 
interaction between two populations, namely foxes and small rodents, by the predator – prey 
differential equations model (Figure 1). 
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Students’ mathematical modelling

The modeling took place in a group of Norwegian teachers in a 
masters’ program that requires 60 ECTS in mathematics and 
two years of professional practice as a mathematics teacher. 
The teachers, in the following called students, attended the 
course ‘Modelling in and for mathematics teaching and 
learning’ which is a 15 ECTS course in a masters’ program in 
mathematics education. 

The DE part of the course was based on Blanchard et al. (2002) 
which progressively build up the DE models and examples, and 
balance between qualitative, quantitative, and numerical 
methods. Hereby inspired, groups of students (2-3 persons) 
under sparse supervision were asked to formulate, complete, 
and present a project that encompassed a simple DE model, and 
to report the project. Each group choose what DE model they wanted to study. The course’s individual 
examination included an interview about this project (10 minutes). The students were expected 
stepwise to establish an overarching DE-systems model in a process, contrasting with bare application 
of a model, i.e., contrasting with picking out a ready-made model and fit its parameters with data. 
However, the students would not be able to establish a model stepwise from scratch, purely based on 
progressive mathematising and formation of sub-models. Therefore, they were free to involve and 
build on ready-made models like the predator-prey model and its modifications.

Methods
The research question was formulated in terms of a goal, i.e., the aim of the study was to identify the 
students’ learning trajectory for cyclic interaction between populations in the predator – prey DE 
model. The research question, hence, was: What appearance can a learning trajectory have in a 
modelling process? The study’s case was picked out of 21 reports prepared in 2014–2020 and 
evaluated by the author. The students were not familiar with De-models nor modelling in advance. 
For this presentation the cyclic interaction between populations was used as the example of an 
emergent sub-model. In the case, the students’ collective learning processes were documented by 
their own descriptions of the mathematical modelling activities, and by the reflections reproduced in 
the reports. The descriptions and reflections were reported in a convincing way: they used a first-
person perspective in their writings in the report which is mentioned as a sign of being an active 
learner by Ju and Kwon (2007). This impression of validity was supported by the interviews under
the individual examinations. The reliability of the analysis rested on the condensation of meaning 
from units of the convincing texts in accordance with the qualitative methodology described in Kvale 
(2001). The meaning of each unit was interpreted in accordance with the emergent modelling 
framework.

The textual analysis, presupposing that the students’ mental activities were reflected by the wording 
in their reports, served to stratify the mathematical learning process in terms of passing through the 

Where x is the number of prey, y is the 
number of some predator, 

dx/dt and dy/dt represent the 
instantaneous growth rates of the two 

populations, t represents time, and α, β, ɤ, 
and δ are positive real parameters 

describing the interaction of the two 
species

Figure 1: The predator  prey DE model
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four levels, situational, referential, general, and formal. Each appearance of a mathematical concept 
or its related notions in the text was assigned to a level of activity in the four-layer model 
(Gravemeijer & Stephan 2002). Thereby, the marking served to stratify the signs of mental activity 
concerning the emergence of sub-models into the four levels of progressive mathematising. These 
signs constitute the study’s documentation of the students’ learning path or learning trajectory in the 
example.  

Data 
During the textual analysis all elements were coded and subsequently sorted by their (related) 
mathematical content. This case considers emergence of the sub-model cyclic interaction. The result, 
hence, of the textual analysis was a cluster of signs of activity at different levels concerning 
interaction between the populations of foxes and small rodents in the predator – prey DE model. Table 
1 displays, chronologically, some of the excerpts in the cluster concerning (cyclic) interaction. The 
numbers in Table 1’s most left column refer to the complete cluster. The level of activity refers to the 
four-layer model by Gravemeijer and Stephan (2002). 

 

Table 1 

Num
ber 

Excerpt, translated from Norwegian by the author Level of activity 

1 In the work with our model, we start from a simple model, and on the basis 
of the changed model, we study what happens to the prey population and 
the predator population. We will then expand the model and look at factors 
that are significant for prey-predator interaction. (…). 

Situational -> 

referential; 

Horizontal 
mathematising 

3 (…). It turns out that the number of mountain foxes varies in step with the 
number of small rodents (…). At population peaks of lemmings and other 
small rodents, we see that there is a large increase in mountain foxes. 
Correspondingly, there is a significant decline in the population of mountain 
foxes when the population of small rodents declines. In other words, 
reproduction increases for the arctic fox when the supply of prey increases. 
(…). 

Referential level; 
number of foxes and 
number of small 
rodents are half-way 
formalized but still 
linked with the 
situation. The same 
goes for the peaks of 
lemmings and other 
small rodents, and the 
large increase in foxes. 
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5 

 

Figure 2 

General level; 

Except for the figure 
text the graphs have no 
connection with the 
situation 

 

9 Cyclic oscillations 

It is often the case that predator populations and prey are interdependent and 
that populations fluctuate depending on the number of the other species. If 
there is one species that eats another species, then we have two sizes that 
vary with time. In such a model, we will thus have two dependent variables, 
both of which are a function of time. 

Situational -> 

referential level 

(horizontal 
mathematising) 

12 Two of the factors are important to clarify the sign of: 

• −  will always be negative, except if  and / or  is equal to 
zero, because >  

• +  will always be positive, except if B and / or R are equal to 
zero, because >  

This means that if the prey population increases, then the growth rate of the 
predators will increase. 

A solution of this first-order system will be two functions, B (t) and R (t). 

•  ( ) describes the prey population as a function of time. 

•  ( ) describes the predator population as a function of time. 

General -> referential 

level 

The first two bullets are 
at general level (no 
links with the situation), 
the text and the last two 
bullets interpret / link 
them with the situation 

24-26 We perform the calculations using spreadsheets and draw the curve in 

Geogebra:  

We see that this curve has a characteristic oval shape that reflects that the 
number of individuals in the populations changes cyclically. 

General level, 

General -> referential 

level 

Interpretation of the 
shape of the curve in the 
referential level 
(number of individuals 
changes cyclically) 

36 (…) Phase diagram for different values of α: 

Initial conditions: (B0, R0) = (1, 0.5) 

General level.  

The phase diagrams, 
though, are interpreted 
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(…) What happens when a = 1? 

 

See that there will be nice, smooth cyclical fluctuations. Predators (red 
curve) depend on prey (green curve). Can imagine that there are limited 
external factors that affect. 

What happens when a = 2? 

 

See that there are smooth, cyclical oscillations. The peaks of the curves are 
higher than the peaks of the curves when a = 1. These curves are more 
similar to our starting point. (…) 

and linked with the 
situation: The activity 
at general level is 
followed by 
experiments at 
referential level with 
different values of α 
(the model’s parameter) 
in graphic 
representation, and then 
followed by 
interpretation into the 
situation of the results 
of the experiments 

 

Comments to Table 1 

Ad 1: Prey population and predator population and their interaction are at the situational level. The 
simple model is seen by the students as a means for study of the interaction between them on the one 
hand, and the study is intended to enrich and develop the model on the other hand.  

Ad 3: Here the sub-model emerges; Peaks of small rodents give large increase in foxes and decline 
of small rodents give decline in foxes. Reproduction increases for the fox when the supply of rodents 
increases. 

Ad 5: The emergent sub-model in a new graphic representation, re-produced by the students using 
GeoGebra. 

Ad 9: The mentioning of two dependent variables is (cyclic) interaction at an early stage 

Ad 12: Increase in prey population gives increase of growth rate of predators; this is initial 
characterization of interaction. 

Ad 24-26 Solution curve, reproduced by the students. The number of individuals in the populations 
changes cyclically in accordance with the sub-model. 

Ad 36: The cyclic interaction is identified in the graphs. 
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Results 
The aim of the case study was to identify the students’ learning trajectory for cyclic interaction 
between populations in the predator – prey DE model. As illustrated by Table 1, the report displayed 
signs of activity at situational, referential and general level and, in total in the report, shifts in both 
directions between these levels. Besides, the students’ demonstrated representational literacy by 
shifting between plain language and wordings, formal language and formulars, and graphic 
representations in the report. In contrast with an (ideal?) smoother passing up through the four levels 
from situational to referential and further up to general, their learning trajectory can be identified as 
the complex cluster of their activities.  

Learning trajectory for cyclic interaction as a cluster of activities 

A brief sketch of the activities starts with the introduction in plain language (3) based on observations 
of population curves from a Norwegian official web site. Next, the students reproduce population 
curves in GeoGebra (5) and compare these. Then they introduce models for growth of populations in 
general terms. This introduction is detached from the graphs and from the plain language description. 
After the presentation of the general predator – prey model the students mention cyclic interaction 
for the first time (9) before they proceed to discuss qualitative and quantitative methods. They use 
Euler’s formula and GeoGebra to prepare a curve that illustrate the cyclic interaction (24-26). Finally, 
they prepare a series of graphic representations (36) to compare with their initial data to control the 
cyclic interaction.   

Perspectives 
This cluster of activities can be seen as the result of the rich environment for the students’ modelling. 
They had the general predator – prey model, series of authentic data, tools in the form of GeoGebra 
and others, and their own prior mathematical experiences as the resources to include. The students’ 
initial task was open, and they had little guidance during their project and preparation of the report. 
At a first glance, the process and the report might appear messy with no clear goals and direction. In 
a classroom context, such unstructured student activities could easily trigger the teacher to act and 
make an intervention like, for example, asking the students’ leading questions and guide their process. 
Taking the students’ evident learning outcome into account in the present study, as it was evaluated 
in informal conversations and in the interviews at the oral examination, though, the process in which 
the students to a high degree worked without guidance from the lecturer showed to be fruitful. There 
seems to be a paradoxical discrepancy between the messy and unstructured process documented in 
the report on the one hand, and the learning outcome on the other hand. 

Conceptualization of learning in terms of emergent modelling and models seems to be one promising 
way to explain this apparent paradox. In particular, the idea of learning trajectories as clusters of 
activity in these terms, may contribute to widen and nuance the discussion of the relations between 
mathematics modelling and the learning of mathematics. Metaphorically speaking, the non-linear 
learning fits well with the non-linear modelling represented not only in the four-layer model but also 
in the traditional modelling circle by Niss and Blum (2020). 
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Besides, the study presented in this paper can give inspiration to the development of research methods 
for inquiry of students’ learning: the tool for textual analysis presented in this paper may be useful 
for studies based on data in the form of students’ written reports and other materials.    
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mathematical modelling teaching experiences 
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In the present work preliminary results about strategies to enhance students’ learning and 
achievement in mathematical modelling teaching experiences are presented. The results confirm the 
importance of employing real world problems which are perceived as important by students. 
Moreover, they also suggest that the design of teaching experiences in which the initial steps of the 
modelling cycle can be carried out with a few or even any mathematical language could enhance 
students’ perception of self-efficacy, thus providing a motivational push also for the subsequent steps, 
where specific disciplinary language must be employed. Finally, also the use of ICT and 
mathematical tools which are perceived by the students as belonging to the university and 
employment world can increase students’ perception of value. 

Keywords: Real-world problem, enjoyment, self-efficacy, modelling cycle. 

Introduction and theoretical background 
In the last decades mathematical modelling (MM) has been recognized as relevant both by scholars 
and educational policies for teaching mathematics (Barquero et al., 2019). However, bringing MM 
within the mathematical curriculum is demanding both for teachers and students, so that in everyday 
mathematics teaching practice, there is still relatively few genuine modelling (Blum, 2015). Indeed, 
MM requires mathematical and extra-mathematical knowledge, as well as appropriate beliefs and 
attitudes, especially for more complex modelling activities (Blum, 2015; Niss, 2003). We agree with 
the scholars that claim the relevance of affect factors for teaching and learning mathematics exploiting 
MM. In particular, we agree with the fact that using MM to deal with real world situations increases 
students' enjoyment and interest, motivates them and makes them retain longer what they learned. 
The research problematique of the present paper frames within two of the five leading themes 
emerged during the discussion of the thematic working group TWG6 at CERME 11 (Barquero et al., 
2019), namely T1. Analysis of modelling process when solving modeling problems and T3. Strategies 
to support design and implementation of modelling. To that end, in this work we present the findings 
of a preliminary study about MM in high school. 

Mathematical modelling and modelling cycle 

The term mathematical modelling indicates the process of translating between the real world and 
mathematics in both directions (Blum & Borromeo-Ferri, 2009). More precisely, a mathematical 
model is a “deliberately simplified and formalized image of some part of the real world” (Blum, 2015, 
p. 77), such as nature, society, everyday life and other disciplines. The purpose of building and 
making use of a model is to understand how to tackle problems related to the real world (Niss et al., 
2007). For our purpose, we focus on the modelling cycle (Blum, 2015; Greefrath, 2011), which is 
composed of seven steps within and between reality and mathematics (see Figure 1).  
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Figure 1: Blum’s modelling cycle with added influence of digital tools (red terms) 

The first two steps are within the reality and allow to move from the real situation to situation model 
(understanding) and to the real model (simplifying); the third step (mathematizing) bring to the 
mathematical model within the mathematics domain, where it is possible to work mathematically 
(step 4) reaching a mathematical result. The further two steps allow to go back to reality interpreting 
(step 5) and validating (step 6) the results. In the last step, the results (if any) are presented in the real 
situation. According to Greefrath (2011), we share the importance of digital tools along such a cycle. 
For instance, a digital tool may support the learner to calculate in step 4. Teaching mathematics using 
MM means to carry out all steps of the modelling cycle and drive students through them. To achieve 
that, certain competencies or sub-competencies are required (Niss, 2003), for instance understanding 
a given real world situation or interpreting mathematical results in relation to a situation (Blum, 2015). 
Modelling competency means the ability to construct, to use/apply mathematical models by carrying 
out appropriate steps as well as to analyze or to compare given models (Blum, 2015). Moreover, non-
mathematical and extra-mathematical knowledge are required for MM. As a result this activity is 
highly demanding: several studies (see Blum (2015) and the references within) have shown that each 
step can be a cognitive barrier for students, even the first one “understanding the situation and 
constructing a situation model”. 

Affect framework 

The role of affect factors, such as “emotions”, “beliefs” and “attitudes”, is pivotal in learning 
mathematics, also when students deal with problems (Schukajlow et al., 2012; Hannula, 2012). The 
characterization of affective factors is challenging for the researchers, because affective variables 
tend to form a cluster (Liljedhal, 2018). But in one of the possible classifications, Hannula (2012) 
identifies three types of affects: i) cognitive (e.g., beliefs), ii) motivational (e.g., values), and iii) 
emotional (e.g., feelings). Cognitive type refers to the affect variables that concern the beliefs towards 
the learning process and the achievement. We dwell on the self-efficacy belief (Bandura, 1977), 
which is the engine for mathematical thinking and doing (Andrà et al., 2020). More precisely, self-
efficacy is a major factor in whether students will attempt a given task, how much effort they will put 
on it, and how resilient they will be when difficulties arise. Self-efficacy beliefs can be represented 
with the variable “I can”, that range continuously from zero (lack of) to a maximum (strong) (Andrà 
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et al., 2020). Motivational type concerns value and interest. The value is the perceived importance 
attributed to something (Eccles & Wigfield, 2002), while the interest concerns a specific relationship 
between a person and something in one’s “life-space” (Krapp, 2000, p.111). Value and interest are 
nuances of motivational factors, for instance one can recognize that mathematical skills are valuable 
for obtaining a specific job but has not any interest in developing mathematical skills because that 
job is not part of one’s “life-space”. Finally, emotional types are all those feelings which do not 
belong to the previous ones. Emotions prepare our actions, accompany these actions, and influence 
reflection about their outcomes (Schukajlow et al., 2012). Among them, we distinguish positive and 
negative emotions (Pekrun et al., 2002), that can be task- and self-related or social related. For 
instance, hope, boredom and anxiety are task- and self-related emotions, while sympathy and 
antipathy are social related. In this paper we strongly focus on the emotion enjoyment, since it has 
been proven that there is a positive correlation between students' enjoyment and academic 
achievement (Pekrun et al., 2002). The levels of enjoyment can be seen as nuances of the variable 
“like” (Di Martino & Zan, 2015), that can range continuously from zero (boredom) to a maximum. 

Research questions 

We recall that the rationale behind the present study is the problematique of finding possible strategies 
which can be employed in the design of mathematical modelling teaching experiences in order to 
enhance students’ learning and achievement. In particular, due to the strong connection between 
learning process and affective factors, we formulate the following specific questions: RQ1. Which 
activity carried out during the project the students enjoy the most? And RQ2. Which affective factors, 
cognitive and motivational, linked to the emotion enjoyment, can be associated to the different 
activities of the project? 

Methodology 
The research context 

The present study, which is part of a wider MM project, involved two researchers (the authors), 18 
students (grade-11) and their teacher. The data analyzed in this work has a peculiarity because the 
didactical situation stems from a real-world problem posed by a stakeholder. The alderman to the 
culture of a small town wanted to know how young people use and what they would like to find in 
the municipal library. The stakeholder involved the local high school for answering her question. The 
project was carried out through eight meetings of two hours each. The first three meetings, delivered 
as frontal lessons by statistics experts, aim at providing some fundamental statistical instruments. The 
remaining five meetings, delivered by the authors of the paper, had a student-centered approach such 
as group work and classroom discussion and focused on the mathematical modelling process. Such 
methodologies have been used since they have proven to be particularly suited for modelling activity: 
they are able to activate students both cognitively and metacognitively (Blum, 2015) and they have a 
positive impact in terms of enjoyment, interest and self-efficacy (Schukajlow et al., 2012). Since the 
question posed by the stakeholder is open-ended, as highlighted in (Blomhøj et al., 2003), this could 
generate in the students a feeling of “perplexity due to too many roads to take and no compass given”. 
For this reason, the students have been guided through the modelling process by means of the 
activities described in the following subsection. 
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The mathematical modelling activities 

The question posed by the stakeholder (how young people use and what they would like to find in 
the municipal library) has been investigated by means of a survey which has been built and 
successively analyzed by the students using statistical and ICT instruments. In the last part of the 
experience the students wrote a scientific report which has been delivered to the stakeholder. The 
activities were designed to allow students to pass through all the steps of the Blum’s modelling cycle, 
but the ones considered in this work are related to steps 2, 3, 4 and 5. More precisely, during activity 
A1 (Proposing the more relevant questions) students were asked to work in groups and propose 
questions for the survey, suggesting them to take inspiration from surveys to which they answered in 
the past and from the internet. Then, they were asked to identify which dimensions (e.g., frequency 
of attendance, reason for attendance) of the phenomenon “library” their questions aim at exploring. 
Finally, the questions were classified according to such a criterium. Therefore, students discarded the 
questions which were not relevant with respect to the stakeholder’s request. Thus, A1 is related to the 
“step 2. simplifying/structuring” of the Blum’s modelling cycle. While activities A2 (Formulating 
the questions for the survey) and A3 (Formulating the answer options for the survey) are linked to 
“step 3, mathematizing”. Indeed, during such activities, the students were asked to work in groups on 
the formulation of questions and answers to make them as clear as possible for the participants to the 
survey, to reduce possible ambiguities in their answers and to answer effectively to the initial 
stakeholder’s question. The main part of such activities concerns the characterization of variables 
beyond the identified dimensions. Roughly speaking, the students decided which form to give to a 
particular question (e.g., Likert scale, open question, multiple choice). Even if it isn't written in 
mathematical language, the survey produced by the students is the mathematical model of the initial 
problem posed by the stakeholder. Activities A4 (Using the statistics software R) and A5 (Analyzing 
the results of the survey) are strongly intertwined. In activity A4, a lesson-tutorial about the software 
R has been delivered to the students and the students were asked to practice with the software, with 
given datasets and with some preliminary data coming from the first draft of the survey. While during 
activity A5, the students were asked to work in groups with the software R to analyze and to interpret 
the results of the survey. We can then relate both activities A4 and A5 to step 4 (“working 
mathematically”) and 5 (“interpreting”). In particular, the software R support the students in 
“calculate” and “visualize” (Greefrath, 2011). 

Data gathering and method of analysis 

The participants of this study are 18 high school students (grade-11), 4 male and 14 female. The 
average grade of the class in maths is good (6.9 over 10), according to their last report card. To 
address the above research questions, one survey has been developed and administered online by 
google form the day after the last meeting. The survey is composed of a set of Likert (5 levels) 
questions and a set of open questions, according to the narrative analysis (Di Martino & Zan, 2015). 
Question Q1 and Q2 investigate the “like” and “can” variables, respectively. They ask students to 
rank each of five activities according to their level of “like” and “can”, more precisely: Q1. Consider 
the following activities you took during the project and indicate how much you liked them from 1 (I 
didn't like it at all) to 5 (I liked it very much). Q2. Consider the following activities you took during 
the project and indicate how much you perceived it as easy from 1 (Not easy at all) to 5 (Very easy). 
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For questions Q1 and Q2 and for each activity the mean of the answers has been computed. Cognitive, 
motivational and emotional factors related to the emotion enjoyment have been investigated more in 
detail by means of the following two open questions: Q3. Choose the activity that you liked MOST 
among the options of the previous question and describe what you liked of that activity and why. Q4. 
Choose the activity that you liked LESS among the options of the previous question and describe what 
you DIDN'T like of that activity and why. 

The answers to both questions have been qualitatively analyzed based on the affective types which 
can be retrieved in them. These types have been identified in students’ answers by means of keywords 
and sentences. For example, the answer “Formulating the questions for the survey because we had 
interesting discussions and it was also easy” is labelled as both motivational type (interest) and 
cognitive type (self-efficacy). Finally for each activity, the frequency of a particular type has been 
computed. 

Data analysis and findings 
Figure 2 (left) summarizes the analysis of the responses to question Q1 and Q2. For each activity, we 
employed the mean of the score assigned for the level “like” and “can”. In this way each activity can 
be seen as a point in the cartesian plane. We can notice that the activities which have been enjoyed 
the most were activities A2 (Formulating the questions for the survey) and A3 (Formulating the 
answer options for the survey), closely followed by activity A1 (Proposing the most relevant 
questions). We then find at an intermediate level activity A5 (Analyzing the results of the survey), 
while activity A4 (Using the software R) has been considered as the less enjoyable one. Figure 2 is 
also a first indication about the fact that, as expected, high levels of enjoyment (I like) correspond to 
high levels of perceived control and self-efficacy (I can), even if for all the activities the “I like” level 
is greater than the corresponding “I can” level. 

 
Figure 2: Left: Graphical representation of the dimensions I can – I like. Right: Frequencies of 

emotional, motivational and cognitive types for the different activities 

In order to identify which cognitive, motivational and emotional factors, related to the emotion 
enjoyment, are reported by the students when carrying out different activities (RQ3), we analyze the 
answers to the open questions Q3 and Q4. Figure 2 (right) shows the overview of such an analysis, 
and in the following we report detailed examples of the students' responses.  
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Considering activity A1, 5 students have indicated it as the preferred one. Analyzing their answers, 
we notice that the motivational factor (interest) is the more frequent justification for their enjoyment, 
as can be seen from the following answer: “thinking about the questions because they are tightly 
bound to reality”. In other answers we can retrieve the emotion of task related enjoyment and the 
self-efficacy: “because in general I like sharing my point of view with other people and discussing 
points of view different from mine [...]” and “We have been challenged in finding questions inherent 
to the project which had to be carried out”. Activities A2 and A3 have been indicated as the most 
enjoyable ones by 6 out of 18 students. Also for these activities interest was the most popular 
justification. Moreover, confirming the trend highlighted in Figure 2, also the self-efficacy and 
perception of control emerge: “[...] because we had interesting discussions and it was also easy”. As 
we can notice in Figure 2, even if activities A1, A2 and A3 have been appreciated by the majority of 
students, their score in terms of “I like” is not the maximum possible. Analyzing the open question 
Q4, we can infer that these activities have sometimes triggered negative emotions, like boredom: 
“[...] because, for what I am, I didn’t find this activity exciting and sometimes boring”. We now 
consider activity A4, using the statistics software R, which has been chosen as the less enjoyable 
activity by 15 out of 18 students. Confirming the trend reported in Figure 2, we can notice that the 
lack of control and self-efficacy is the most frequent reason for their choice, as can be seen from the 
following answer: “I wasn’t able to use the software as I would have to”. In other cases, the activity 
also triggered negative emotions, as anxiety and boredom: “Using R needs precise codes and high 
attention in every little detail of them otherwise an error is computed” and “The initial approach was 
difficult and, since we spent many hours using R, the activity seemed quite repetitive to me. Overall, 
it was however interesting learning this new language”. Notice that in the last few lines of the 
previous answer also the interest factor comes out. Even if activity A4 was the less preferred activity 
for the majority of students, 3 students out of 18 have indicated this activity as the preferred one. Also 
in their answers we can recognize the types of interest and value: “Using the statistics software R is 
the activity I enjoyed the most because it was a new experience and mostly because it can be useful 
for my future studies”. Activity A5 was preferred by only 3 out of 18 students, due to value and 
interest: “To me it seemed the most useful and interesting thing among the different activities”. 
Summing up, for activities A1, A2 and A3, which have been considered as the most enjoyable, 
enjoyment is mainly associated to positive types such as interest and, to a lesser extent, task related 
enjoyment and self-efficacy, even if also the negative emotion of boredom emerges. Activity A4, 
which has been evaluated as the less enjoyable, triggers mainly negative types. The most frequent 
one is the low self-efficacy. However also positive motivational types, such interest and value, come 
out. Finally, in activity A5, which has received an intermediate score with respect to enjoyment, 
positive and negative types are more balanced: we find in similar proportions value, interest and lack 
of self-efficacy and lack of interest. 

Discussion and conclusions 
This study focuses on the relation between the emotion enjoyment and mathematical modelling 
activities. More precisely, we wonder which activity the students enjoy the most and which cognitive 
and motivational types can be associated to the different activities. Briefly, we were able to identify 
self-efficacy and lack of self-efficacy, concerning the cognitive factor; value, interest and lack of 
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interest for the motivational factor; task enjoyment, boredom and anxiety for the emotional factor. 
Back to the MM, in Section 4 we argue the correspondence between activities and steps of the Blum’s 
modelling cycle. Focusing on “Simplifying” step (activity A1), Blum (2015) argues that this step is 
usually challenging for the students since they are not used to making assumptions by themselves. 
However, in our case students show a high sense of self-efficacy. An explanation could be the strong 
link with reality of activity A1, which could have enhanced students’ interest. This is a confirmation 
of the fact that the employment of real-world problems felt as important by students is fundamental 
in order to make students interested. Also for the “Mathematising” step, a potential cognitive barrier, 
students’ answers show high levels of self-efficacy. In this case an aspect which could have impacted 
is the fact that this step has been realized without employing explicitly specific mathematical 
language. In fact, in activities A2 and A3 only common language was employed. The design of 
teaching experiences in which a few specific mathematical language is employed in the 
“Mathematising” step, could increase students’ perception of self-efficacy, thus providing them a 
motivational push also for the following steps of the modelling cycle. On the contrary, in activities 
A4 and A5, associated to the Blum’s step of “Working mathematically” and “Interpreting”, the 
students’ difficulty in dealing with mathematical language and problems linked to instrumental 
genesis strongly come out: the lack of self-efficacy is the cognitive factor more frequently reported 
in their answers. However, also for these steps, which have been perceived as difficult, the students 
reported positive motivational types such as interest and value. In particular, value was instead absent 
in the students’ answers referring to the “Simplifying” and “Mathematising” steps. An explanation 
for this could be that students perceived the statistical and ICT tools as close to the university and 
employment world, thus contributing to raising the perceived value of the “Working mathematically” 
and “Interpreting” steps. The use of such tools could be important to enhance the value students 
attribute to the modelling experience. In order to verify the hypotheses just exposed we are planning 
to extend the present study by involving more students and by designing additional modelling 
teaching experiences based on different real-world scenarios. 
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This paper elaborates on the theoretical conceptualization of a so-called dual integrated modeling 
approach to the teaching and learning of modeling and the teaching and learning of mathematics 
through modeling. Departing from a sociocultural perspective on teaching, the models and modeling 
perspective, and using the previously developed theoretical constructs of the Teaching Triad and the 
Expanded Mediated Triangle, we discuss modeling in terms of (i) micro modeling in which modeling 
is used as a vehicle to teach and learning other curricula content; and (ii) macro modeling in which 
modeling is a self-standing mathematics curricula goal. We illustrate this dual integrated approach 
by analyzing and discussing a lower secondary teachers’ implementation of a modeling activity 
focusing on a simple statistical investigation and measures of central tendency in statistics. 

Keywords: Dual integrated modeling approach, expanded mediational triangle, measures of central 
tendency, models and modeling perspective, teaching triad. 

Introduction 
There are different goals and rationales for implementing modeling tasks in the teaching and learning 
of mathematics (Blum & Niss, 1991; Kaiser & Sriraman, 2006). One way to broadly characterize 
these is to draw on Julie and Mudaly’s (2007) discussion of modeling as either a self-standing 
mathematical content or as a vehicle for learning other more specific (mathematics) ((curricula)) 
objectives (see also Niss & Blum (2020)). By enabling the option to put ‘mathematics’ and ‘curricula’ 
in brackets in the last sentence, “(mathematics)” and “((curricula))”, the latter category then includes 
socio-critical and discursive perspectives on modeling (cf. Barbosa, 2006) as well as ethnomodeling 
(Orey & Rosa, 2021). There are plenty of examples of research studying modeling as understood 
more or less exclusively in one or the other of these two categories. In the case of modeling as a self-
standing mathematical content much research focusing on the development of students’ modeling 
competencies qualifies, see Cevikbas et al. (2021) for examples. Regarding modeling as a vehicle for 
learning other more specific (mathematics) ((curricula)) content, Barbosa (2006) and Orey and Rosa 
(2021) illustrate this strand of research, as do much of the research carried out based on the realistic 
mathematics education (RME) programme (cf. Gravemeijer, 1999). However, theoretical and 
empirical research on integrated modeling approaches, combining both rationales and goals outlined 
above and given close to similar emphasis on both, is to our knowledge spares. Even in the so-called 
educational modeling perspectives (cf. Kaiser & Sriraman, 2006), which potentially have pedagogical 
as well as subject-related goals, are commonly divided into two strands focusing either on didactical 
modeling or conceptual modeling. 

In this theoretical paper, we seek to start building and elaborating on a theoretical foundation for a 
dual integrated modeling approach based on the models and modeling perspective (MMP) (Lesh & 
Doerr, 2003). We use the MMP to at the macro level of teaching focus on modeling as a self-standing 
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mathematical content in its own right (macro modeling), as well as at the micro level of teaching 
using modeling as a vehicle for teaching more specific mathematical content matter (micro modeling). 
In terms of Blum and Niss’ (1991) six basic approaches to include applications and modeling in 
mathematics teaching and learning, our conceptualization of this dual integrated modeling approach 
is akin to what they term “[T]he interdisciplinary integrated approach” (p. 61, italics in original). 

As part of our initial work and ongoing thinking, we in this paper outline our current theoretical 
conceptualization of this dual integrated modeling approach. We also report on a first attempt to apply 
this framework as an analytical lens, to discern its adequacy to capture aspects and challenges of 
teaching that arises when the dual approach is implemented in the classroom. The question guiding 
our theoretical exploration in this paper is: What teaching challenges come to the fore in the initial 
phase of when a teacher tries to adapt a dual integrated modeling approach in his/her teaching? 

To further theorize, we use a sociocultural perspective on teaching to try and capture and describe 
teaching challenges on both the micro- and macro level of the teaching and learning of, and through, 
modeling, when a lower secondary teacher implements a modeling activity involving a simple 
statistics investigation focusing on measures of central tendency in statistics. 

Theoretical considerations 
We now elaborate on the notion of the dual integrated modeling approach adapted in the paper, and 
how we conceptualize modeling at both a micro- and macro level (micro- and macro modeling) using 
the Teaching Triad (Jaworski, 1994) and the Expanded Mediational Triangle (Engeström, 1998). 

The models and modeling perspective 

The perspective on modeling adapted in this paper is the models and modeling perspective (MMP), 
in which a model is defined as a general system consisting of elements, relationships, rules and 
operations that can be used to describe, predict, make sense of, or explain some other system. A 
mathematical model focuses on the structural characteristics of the system at hand (Lesh & Doerr, 
2003). Learning from a MMP is understood as developing useful and generalized models consisting 
of a set of concepts and procedures. The concepts are used to describe or explain the mathematical 
objects and aspects in the context relevant to the phenomenon studied using or re-using the procedures 
to engage in or create goal-directed constructions, manipulations, or predictions (Lesh & Harel, 
2003). In the MMP three different types of structurally related activities organized in so-called model 
development sequences can be used to purposefully support students’ learning towards a given 
learning goal: model eliciting activities (MEAs) which aim to elicit the students’ ideas they bring to 
the activity; model exploration activities (MXAs) that focus on the underling mathematical structure 
elicited by students; and model application activities (MAAs) were students apply their models in 
similar or new contexts (Lesh et al., 2003). In all three types of activities students iteratively engage 
in expressing, testing, revising, and developing their models (Lesh & Doerr, 2003; Lesh et al., 2003). 

The Teaching Triad and the Expanded Mediational Triangle  

Following Jaworski and Potari (2009) and Jaworski et al. (2017) we in addition stress the 
sociocultural aspects of teaching as a mediating process connecting the content of mathematics, 
students, and teachers. In particular, we elaborate on the notions of micro- and macro modeling from 
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both an institutional perspective and the nature of more local interactions between teachers and 
students engaged in modeling activities. 

The Teaching Triad (TT) captures three interdependent and interlinked dimensions of teaching (see 
Figure 1a): Management of Learning (ML) aims at describing the organization of the learning 
environment by the teacher such as the planning and orchestrating of tasks and activities, use of 
resources, and forms of working in the classroom; Sensitivity to Students (SS) focuses on students’ 
affective-, cognitive- and social needs and the ways in which these are considered by the teacher in 
interactions; and Mathematical Challenge (MC) on what mathematical content, thinking and 
activities are offered to students in the learning environment including for example posed questions, 
sets and sequences of tasks, and metacognitive demands and processing. 

 
(a) 

 
(b) 

Figure 1: (a) The Teaching Triad (Jaworski, 1994); and  
(b) The Expanded Mediational Triangle (Engeström, 1998) 

The Expanded Mediational Triangle (EMT; see Figure 1b) by (Engeström, 1998) models the structure 
of human activity built around Leont’ev’s three levels of human activity where the concepts activity, 
action and operation are central and dialectical theoretical constructs. An activity is described as a 
complex evolving structure of mediated and collective human agency connected to specific motive 
that both distinguishes activities from each other and gives the activity directionality. Activities are 
constituted by actions directed toward specific and conscious goals that realize and sustain the 
activity. Actions in turns are constituted of operations that realize the actions in the activity and are 
carried out under the premises determined by the conditions of the activity and the environment in 
which the activity takes place (Leont’ev, 1979). In the EMT, the subject transforms the object into an 
outcome using tools and artifacts. However, the mediation facilitating this transformation is both 
supported and conditioned by the culture and community carrying out the activity. Here, the rules 
account for norms, conventions and regulations within a community or activity, whereas the division 
of labour highlights both the actual division of labour and responsibility for achieving the goal/motive 
of the actions/activity and status- and power relations within the community (Engeström, 1998). 

The dual integrated modeling approach: micro- and macro modeling in terms of TT and EMT 

In terms of EMT, we consider the activity in the dual integrated modeling approach to be the teacher 
teaching mathematics with the overall motive of the activity for the students to learn mathematics 
within the boundaries of the teacher’s and students’ school setting. The actions that constitute the 
activity are the actions of the teacher as s/he based on her/his set goals interact and engage with the 
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students to support their learning. One of the goals in the dual integrated modeling approach is for 
the teacher to draw on and implement the ideas and principles of the models and modeling 
perspective, and indeed to for the students to learn modeling, meaning for the teacher to make the 
students cognizant about the modeling processes that inherently comes with the way of working based 
on the models and modeling perspective and with model development sequences (macro modeling). 
In realizing the actions, the teacher carries out various operations conditioned by the conditions 
manifested in the activity and the institutional and cultural setting in which the activity is carried out. 
In other words, and analogous to Jaworski et al. (2017), we conceptualize the teacher as the subject 
in the activity with the objective to teach and support students to learn and make sense of 
mathematical content (such as modeling as a self-standing mathematical content – macro modeling). 
The teacher does this using various tools in mediating the mathematics – including pedagogical and 
didactical strategies and theories – and in particular the elements of the models and modeling 
perspective and micro modeling (modeling as a vehicle). However, the mediation of mathematics is 
in addition supported as well as conditioned by the cultural norms of the schooling (community), the 
school’s norms and regulations (rules), and status- and power relations between actors in the 
classroom (division of labour). 

In the dual integrated modeling approach this framing using the EMT is complemented by the TT 
framework to really focus in on the acts of teaching and how the teachers’ actions and managing of 
the learning are related to the mathematical content and the students’ learning – and in particular the 
role and function of all aspects related to micro modeling (the use of modeling to teach other content) 
and how these relate and support developing macro modeling as a mathematical content to be learnt.  

An example of the use of the dual integrated modeling approach  
The example we will now discuss and theorize on comes from a grade 7 classroom of 22 students of 
which the majority was girls (86%). The class was considered to be somewhat loud and challenging 
to keep on track in order to not lose focus on the topic at hand and the work needed to be done 
(providing clues about governing behavioral- and interactional norms in the class (community) as 
well as the power- and status relations in the classroom (division of labour)). The teacher had taught 
the class for almost a year at the time when the modeling activity, The Paper Helicopter Activity, was 
implemented. 

The teacher participated in a project aimed at developing the teaching of statistics using the MMP, 
and he was familiar with, and had some prior experiences with, the fundamental philosophy and ideas 
of this perspective. In the context of this paper, the adoption of the MMP as the framework guiding 
and supporting the design of the learning opportunities for the students, induced principles for how 
to implement micro modeling in terms of model development sequences. With respect to the content 
matter of statistics being in focus in the project, simple statistical investigations and measures of 
central tendency in statistics, macro modeling in the context of this paper is (somewhat artificially) 
equated with the whole statistical (model) investigating process.  

In addition, one of the goals the teacher expressed for participating in the project was to be able to 
work more independently from the textbook used in the school (breaking an established rule) and for 
his students to be comfortable in not relying on the textbook all the time as the sole source for 
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mathematical knowledge and truth, and hence wishing to change the epistemic status of the textbook 
(a community norm) as well as its authoritative status (shifting the division of labour).  

Within the project focusing on the teaching of statistics, the teacher and the two authors together 
developed a sequence spanning 12 lessons of on average 60 minutes covering the statistical content 
prescribed in the curricula; mainly descriptive statistics, simple statistical investigations, and 
measures of central tendency (mean, median and mode). The allocated amount of time and predefined 
mathematical subject-matter content establish natural conditions on what actions and operations were 
feasible to implement and enact to support the students mathematical learning. To document the 
teaching, the classroom was videotaped using two cameras: one following the teacher’s movement 
and actions in the classroom which in addition picked up all his interactions and conversations (using 
a small portable microphone); and a fixed camera in the back of the classroom facing front to capture 
the dynamics of the classroom. The teacher also recorder short pre- and post-lesson audio-memos to 
document the teachers thinking regarding the goals and plans made before the lesson, and then the 
teacher’s reflections on what happened in the classroom in relation to these goals and plans during 
the lesson. All audio-memos were collected, as were all the written work done by the students. In the 
account provided here we only draw on the video and audio data. Next, we use data from this project 
in a first attempt to apply and evaluate the outlined dual integrated modeling approach as a lens to 
identify and teaching challenges that surfaced during an implementation of a modeling activity 
involving a simple statistical investigation and focusing on measures of central tendency in statistics. 

Identifying of teaching challenges applying the dual integrated modeling approach as a lens 

As part of the sequence of the 12 lessons on statistics the teacher introduced an adapted version of 
the paper helicopter activity originating from the work by Box (1992) who used it to teach 
experimental design to engineering students. The activity has also recently been used as a modeling 
activity involving conjecturing, experimenting, and evaluating 10-11-year-old students’ ideas about 
statistical distributions (Kawakami, 2017). In the activity, the students were presented with a scenario 
to evaluate three competing designs of airdrop devices by conducting a small statical investigation of 
miniature replicas of the designs in terms of paper helicopters (see Figure 2). The aim for the students 
were to decide which helicopter (a) had the longest flying-time; and (b) which 
was the more accurate in terms of coming closets to the airdrop target – and also 
considering if difference in the loaded weight might influence the decisions. 
The class worked on the activity on and off during four consecutive lessons 
(lessons 6-9 in the sequence), whereby we will focus on the first two lessons.      Figure 2. Helicopter  

In the first lesson, the teachers used 20 minutes to introduce the activity using a by the researchers 
pre-prepared PowerPoint presentation (a new tool) aimed at raising the students’ interest and provide 
a meaningful as well as motivating framing for the activity. This had the effect that the class fell dead 
silent and focused all their attention on the teacher’s introduction. This behavior was atypical for the 
class in question, indicating that the use of this type of presentations might be an effective strategy in 
managing the learning (ML) to tackle this class’ students’ attitudes toward mathematics and what it 
means to do mathematics in a, for the students, intriguing and inspiring way (SS), and hence make 
them better prepared to engage in the mathematical challenges (MC) to come. The introduction ended 
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with the teacher leading a MEA-inspired whole class discussion around the questions What features 
of the paper helicopter affects its (a) precision (how far from the intended target it lands)? (b) travel 
time (time spent in the air after being released? and How do you think these different features affect 
the precision and travel time of the helicopter? The features suggested by the students to affect the 
precision were wind, distance to fall, air pressure and gravitational force. Features suggested to affect 
the travel time were the size of the rotor blades, the weight of the helicopter, the body-shape of the 
helicopter, and the falling velocity. Note that all the features related to precision are about external 
factors that might affect the behavior of the helicopter rather than actual features of the helicopter. 

The second lesson (70 minutes) began with the teacher recapitulating and discussing the students’ 
suggested ideas of what factors might influence the paper helicopter. The teacher explained that the 
class were to evaluate three competing paper helicopter designs by collecting and analyzing data to 
determine which design is the best. In addition, the teacher also qualified the explicit goal of the 
activity to in addition investigate (i) if heavier load decreases the travel time? (ii) if heavier load 
increases the precision?  (iii) if larger rotor blades increase the travel time? and (iv) if larger rotor 
blades increase the precision? After having established these goals, the teacher turned to illustrate an 
airdrop with a prepared cut out paper helicopter, explicitly showing how to fold the rotors of the 
helicopter to form a suitable angle relative to its body, how to hold it to minimize interference on its 
trajectory, and from what height to drop the helicopter (the edges of the ceiling lamps). In doing this, 
the teacher also multiple times explicitly stressed the need for the students to be consistent in their 
experiment procedure and data collection. Initially, this way of managing the learning (ML) was 
interpreted as being over-sensitive to the students’ needs (SS) just to get them to understand the 
mathematical challenge at hand (MC). However, this later turned out to be an important clarification 
act by the teacher to eliminate misconceptions, as the students’ following discussions revealed that 
some of the student had the impression that the task dealt with real maneuvering helicopters. 

Most of the time in the second lesson were spent on collecting and analyzing the data in groups. The 
students took measurement series of 10 values using either 0, 1 or 2 paperclips as helicopter wight. 
At this point the students were not totally free to explore the data and think about how their data set 
could be used to answer the posed questions. Rather, they were implicitly prompted by the semester 
overall planning listing the content for the week as “mean, median and mode” as well as explicitly 
by the teacher’s statements like “I wonder what the mean, median and mode of that data will tell us 
about which helicopter is best?!”. Here, a tension between two conflicting goals came to the fore: the 
teacher’s goal for the students to engage in realistic statistical investigation and to freely explore the 
data set (macro modeling) on the one hand, and to use the activity as a context for the students to 
learn more about (and apply) mean, median and mode (micro modeling). This tension was then 
accentuated when the nature of the students’ collected data not in all cases was suitable for 
determining the mode of the data. 

In summary, the first attempt to apply the dual integrated approach as a lens on a teaching sequence 
provided information on teaching challenges related to establishing student’s autonomy for learning 
both micro and macro modeling simultaneously. The teachers’ role, highlighted by our theoretical 
analysis, of directing students on what to learn and at the same time leave enough space and time for 
students’ own experience in both micro and macro modeling is at the core of the teaching challenges. 
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Discussion and conclusions 
This paper provides the first steps of theorizing toward a theoretical conceptualization of a so-called 
dual integrated modeling approach to the teaching and learning of (i) modeling; and (ii) mathematics 
through modeling. In this initial work, a potentially fruitful interplay between what is discerned from 
the TT- and the EMT-related framing of the ongoing teaching has come to the fore. On the one hand, 
the EMT provides a background helping to contextualize and deeper understand the relationships and 
dynamics revealed in the TT-based analysis of students’ learning as mediated by the teacher’s actions 
in managing of the mathematical challenges (MC) while being sensitive to students’ various needs 
(SS) given the organized and planned management of learning (ML). An example of how the EMT 
elevates the effect of the teacher’s actions, is the effect the use of the introductory PowerPoint had on 
focusing the students and making them more susceptible and ready to engage with the mathematical 
content. On the other hand, challenges for the teacher in obtaining the learning goal revealed by the 
TT-based analysis highlight conflicts and tensions between the micro level of teaching as constrained 
by institutional and cultural aspects manifested at the macro level provided by the EMT. As such, the 
TT-based analysis might be helpful in pointing at more systemic oriented changes needed in the EMT 
to improve the teachers’ possible actions to increase the students’ opportunities to learn mathematics 
in the classroom. This could for example be introducing a new tool such as a pedagogic strategy or 
assessment tool that facilitate the teacher in transforming his/her objectives for the students to learn 
mathematics toward the desired outcome, or to pin-point where measures need to be taken, such as 
replace dysfunctional power relationships (division of labour) or classroom behavioral norms (rules). 

The development of the dual integrated modeling approach is just in its infancy, and all notions and 
concepts still need to be further concretized and elaborated. However, our analysis shows that the 
dual integrated approach as a lens provides some useful information for developing teaching practice, 
and we hope that what we have presented in this paper can spark an interesting discussion and result 
in productive suggestions for how to continue develop this line of thinking and theorizing. 
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Method and Description of the research topic 
In the framework of topic-specific design research, see e.g. Gravemeijer and Prediger (2019) and the 
literature cited therein, we consider dynamical systems both from content and design perspective. We 
report on the introductory two steps of the design research cycle according to the FUNKEN model 
by specifying and structuring the content and discussing initial ideas for design development. As a 
result, we outline a first teaching-learning arrangement dealing with discrete epidemic models. 
Design experiments are to follow in a next step. 

Specifying and structuring the content, design principles 

On a formal level (Gravemeijer and Prediger, 2019, p.47), Epidemiology is both an interdisciplinary 
field and highly relevant for understanding the global issues in treating the Covid-19 pandemic and 
therefore chosen as underlying topic. The professionally recognised basic model is the SIR model 
according to Kermack and McKendrick (1927), which is used both in a discrete and in its continuous 
variant. Our design goal is a teaching-learning arrangement for grades 9 and 10, so for curricular 
reasons only discrete models can be considered. On a semantic level the proposed arrangement is 
intended to tie in with exponential growth, the idea of iteration and simultaneously to enable a wide 
range of modelling activities. As a design principle, we use the four-step model "Mathematise → 
Mat. Work → Interpret → Validate" (Blum, 2015, p. 82). Our second design principle is visualisation 
to support structuring. Students are asked to work with the aid of flow-charts throughout the intended 
tasks, which is an excellent tool for clarifying complex iterative processes by providing a stringent 
pictographic representation (Sommer and Venke, 2020). For an example of a possible flow-chart see 
Figure 1. The teacher should focus on supporting students by translating the flow-charts into formal 
difference equations. The use of a spreadsheet program (e.g. Excel) and the graphical representation 
of the results scaffolds mathematical working. 

Sketch of the developed design 

We organise the modelling activities according to runs of the modelling cycle. In each step, a 
difference equation is set up (mathematisation), implemented with help in a spreadsheet programme 
(inner-mathematical work), the result is displayed graphically, interpreted and validated. 

Exponential model: . Focus in this step lies on the effective contact rate  giving the 
average rate of contacts of an infected person leading to a new infection. Problem: Exponential 
growth. After a while there is nobody left, who could be infected. 
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SI-model: In addition to the class of the infected , the class of susceptibles  is introduced. The 
probability that the contact person of an infected is susceptible is modelled by the Lagrange 
probability  where is the size of the whole population  leading to the difference 

equations  and . Compared to the formulation of the 
infection term as (Ableitinger, 2011), the parameter  retains its meaning here in the transition 
from the exponential model to the SI-model. Problem: In the end all people are infected. There is no 
recovery and immunisation. 

SIR-like model: The group  is split into several groups, depending on the number of days a person is 
already infected. After a few days, the exact number has to be specified – here we assume 8 days –, 
the infected recover. The final model is depicted in Figure 1. 

 

Figure 1: Flow-chart of a discrete SIR model with age structure 

In subsequent modelling runs, contact restriction measures, testing and quarantine strategies, 
vaccinations and different virus variants can also be taken into account. Initial experiments show that 
students can arrive at sensible models here, at least at the pictographic level. 
As a next step, this proposal is going to be empirically studied and further specified and improved. 
Our first questions are: To what extent 1) do students form a semantic understanding of the terms 
and parameters involved, 2) are students enabled to translate flow-charts in difference equations, 
and 3) are students enabled to break down complex real-life situations in epidemiological contexts 
into easier sub-problems through this teaching-learning arrangement? 
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The concept of Rate of Change (RoC) is often presented in an Extra-Mathematical Context (EMC) 
which evokes subjective judgments due to interpretations of the described real-life situation and of 
the missing information in the problem. In this study, we investigated different learners' 
interpretations of several EMC problems involving RoC, with the aim to examine which aspects of 
the notion of RoC are prone to subjective reasoning, due to their structure or due to missing 
information, and which aspects are objective. We found that while the problems raised subjective 
thoughts for different learners, analysis of both the EMC and the mathematical concepts can help 
predict which aspects of the mathematics are prone to be subjective, and which are not. 

Keywords: Rate of change, context, calculus, missing information. 

Introduction 
Mathematics is often regarded as a domain in which students do not have much room to express their 
opinion, but rather one in which they need to find the correct answer. Problems that are based on 
Extra-Mathematical Context (EMC), offer an opportunity in this sense: the interpretation of the 
described real-life situation and of the missing information in the problem may allow for personal 
interpretation, and as a result, the problem may have several correct answers. Among other rationales 
for using EMC, Rubel and McCloskey (2021) claim that it motivates students to learn mathematics, 
supports learning mathematics, as well as how to solve everyday problems. 

EMC based problems assume students have some factual knowledge and experience with the context 
of the problem. This, together with the need for reading comprehension, may lead to missing 
information situations. These situations require interpretation, which is necessarily subjective. 
Furthermore, the content of EMC problems may bring into play students’ subjective thoughts and 
experience about the given context. These characteristics give EMC based mathematical problems a 
subjective shade that must be taken into consideration. 

Personal thoughts, subjective by nature, may be based on objective or subjective considerations. 
Objective considerations include agreed paradigms, whereas subjective considerations include 
personal life experience. It seems that mathematics students have learned that only objective 
considerations are acceptable by the system, but in EMC problems, students react differently than in 
"pure mathematics" problems.  

The concept of rate of change (RoC) is a central concept in calculus. A central issue for mathematics 
educators is how to make fundamental ideas of calculus, such as RoC, meaningful for students. From 
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a mathematical point of view, in the concept of RoC (and in many other mathematical concepts) there 
are aspects that are prone to subjective judgments. The study presented here aims to examine which 
aspects of the notion of RoC are prone to subjective reasoning, due to their structure or due to missing 
information, and which aspects are objective.  

Missing information and subjectivity in word problems 
Word problems found in textbooks are typically well-defined with all the necessary information 
given. This is because such problems are explicitly designed to provide a way for students to practice 
the mathematical procedures they have just learned. De Lange (1995) introduced categories of 
context, one of which is referred to as “camouflage context”. These "artificial" word problems are 
situations where the context is used only to “dress-up” the mathematical problem. The frequent use 
of "dressed-up" word problems has caused students to develop restricted beliefs about word problems. 
Specifically, such beliefs are that all of the relevant information is given and that every problem has 
a single precise numerical answer (Reusser & Stebler, 1997). Thus, in these problems, students 
usually do not apply subjective ways of thinking. 

Problems with missing information are an important part of mathematics education as well as real 
life (Blum, 2015). Solving problems with missing information requires skills and solution strategies 
that are different from the ones required to solve well-defined problems (Jonassen, 2000). For 
example, Fermi problems are what Ärlebäck (2009) defines them as "open, non-standard problems 
requiring the students to make assumptions about the problem situation and estimate relevant 
quantities before engaging in, often, simple calculations" (p. 331). For example: How long would it 
take to count to a million? Or: How many cups of water are there in a bathtub? Ross and Ross (1986) 
recommend teachers present such problems, because it gives the students a more nuanced picture of 
mathematics, showing that doing mathematics is not always about executing well-defined procedures. 

Krawitz et al. (2018) compared students' performance in solving word problems that are problematic 
from a realistic perspective versus quantitative problems with no numerical information, such as 
Fermi problems. They found that students did not notice the missing data in the word problems and 
as a result developed unrealistic solutions. In Fermi problems, when no numerical data are given but 
a numerical answer is required, the missing information is obvious. On the other hand, in questions 
in which students fail to notice the missing information, this may prevent them from arriving at a 
realistic response. An example for a question that is problematic from a realistic point of view: "A 
man wants to have a rope long enough to stretch between two poles 12 m apart, but he has only pieces 
of rope 1.5 m long. How many of these pieces would he need to tie together to stretch between the 
poles?". In this question, students have to notice that some length of rope will be used to tie knots, 
and this has to be taken into account. How much rope exactly is needed for a knot, is not given in the 
problem, although other numbers are given. Thus, with problems that have missing information, a 
student needs to first notice the missing information and then deal appropriately with the situation. 

Missing information in a problem brings into play different subjective ways of thinking that students 
use to fill in what they don't know. These subjective thoughts are important to understand when 
teaching different mathematical concepts with EMC. 
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Rate of change 
The concept of RoC, a central concept in calculus, describes how one quantity changes in relation to 
another quantity and is expressed as a ratio between a change in one quantity relative to a 
corresponding change in the other. Herbert & Pierce (2011) state that while rate is an important 
mathematical concept with many everyday applications, it is commonly misunderstood. Thompson 
(2013) made the point that the notion of RoC “entails a complex coordination of understandings of 
quantity, variation, relative change, accumulation, and proportionality” (p. 60).  

From a mathematical-epistemological analysis of the concept of RoC, the following aspects seem 
vital for the existence of RoC in an extra-mathematical situation: (1) RoC always involves the 
measures of two quantities; (2) The quantities involved are varying ; (3) The change is continuous 
(or at least intuitively perceived by the student as continuous); (4) The nature of the relationship 
between the variables is relevant - The notion of RoC is closely related to that of function. A function 
describes a relationship between two quantities, while the RoC describes how one quantity changes 
with respect to the other. Not any relation between two quantities can be described by a function. 
There needs to be some specific sort of relationship between two variables for their connection to be 
fit to be described by a function, and thus potentially have a RoC of one with respect to the other. 
The definition of that relationship is relatively simple when we talk about pure mathematics but is 
not straightforward when the real world comes into play. 

Some of these aspects seem to be objective (for example: in a situation in which one variable is 
described, it can be concluded without using personal judgment, that there aren't two variables in the 
situation) and other aspects seem to be subjective (for example: the nature of the connection between 
the variables). Others maybe objective at times, and subjective at other times, depending on the 
familiarity with the described situation (for example: whether the variable is discrete or continuous). 

Methodology  
The aim of our research study was to investigate which aspects of RoC tend to elicit subjective 
reasoning and which aspects tend to elicit objective reasoning, in an EMC based discussion. In the 
instrument used in this study, various situations were selected according to the aim mentioned. These 
situations differ in the sort of information which is given, the sort of information which is missing, 
and the characteristics of the situation: the number of quantities involved in the situation, the kind of 
quantities involved, whether the quantities vary and how they vary (continuous vs. discrete), and 
whether they co-vary or not (in our opinion). While these are not classic Fermi problems, since they 
require no numerical estimations, they are of the same character: open problems requiring the students 
to make assumptions about the problem situation. Based on the analysis of pilot trials, the situations 
as well as the formulation of the questions were repeatedly modified. 

The final situations and questions have been used as base for semi-structured task-based interviews 
(Goldin, 2000). The interviewees were students and prospective teachers that were asked whether, in 
their opinion, it made sense to talk about RoC in these situations. The interviews were recorded and 
transcribed. When analyzing an interview, we identified which aspects of RoC were judged as 
relevant for each situation by the interviewee. We needed to establish which utterances are indicative 
of an interviewee's subjective considerations. To do this, we identified several relevant criteria, which 
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helped us tag utterances as subjective considerations: (1) Statement of opinion – utterances explicitly 
qualified by the interviewee as their own belief, opinion or interpretation; (2) Non institutionalized 
(mathematically) argumentation – the utterance contains non-general arguments that are determined 
by personal life experiment or/and non-formal personal interpretations; (3) Adjustment completion – 
the utterance contains interviewee's use of concepts and ideas that were not a part of the given 
situation, which make the situation more logical and complete for the interviewee. The interviews 
were analyzed by the authors using content analysis methods (Smith, 2000) using the above 
mentioned criteria of subjectivity. 

Findings and their discussion 
Here, we present the preface to the final version of the interview, and three of the situations, as they 
were presented to the students. For each situation, a few representative student answers are given. 
The students were interviewed one by one, but the answers are presented here together. The quotes 
in this chapter symbol that the text is presented as was presented to the interviewees. 

Preface 

“Students learned in class about rates of change of quantities in different situations. Two situations 
were discussed in class: (1) A car that drives on a road. In this situation, they agreed that the distance 
driven by the car changes with time and it makes sense to talk about the RoC of the distance with 
respect to time. This RoC is the speed of the car. (2) Water flows into a tank. In this situation, they 
agreed that the volume of water in the tank changes with time and it makes sense to talk about the 
RoC of the volume with respect to time. After class, the students continued discussing this topic for 
other everyday situations." 

Boris' situation 

"Boris said: I am thinking of the rate of the dollar to the shekel and the temperature of the 
Mediterranean Sea. Does it make sense to talk about rate of change in Boris' situation? If it does – 
what is that rate of change? If it doesn't – why doesn't it make sense?" 

Boris describes two variables, with a questionable connection between them. In this situation there is 
missing information regarding the nature of the connection between the two variables, meaning that 
the aspect of RoC which may be considered subjective, the type of connection between the two 
variables, is at the core of the situation. We ignore potential continuity issues of the exchange rate. 
The following are responses to Boris' situation (translated from Hebrew):  

Tina There is no connection between these two variables. One does not influence the other. It isn't 
possible to treat one as a function of the other. 

Rob The temperature of the Mediterranean Sea doesn't influence the rate of the dollar, so there's no rate 
of change. 

Oliver They're asking me how the rate (of the dollar to the shekel) influences the temperature? […] In this 
case it doesn't make sense to talk about rate, because it's difficult to find something that connects 
them. Maybe there's an oil company that works in the Mediterranean, and if the exchange rate goes 
up, the company will work harder, I don't know. […] Maybe in the summer the rate of the dollar 
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goes up and in winter it goes down? But no, I don't think so. [After discussing different situations, 
Oliver returned to Boris' situation] You can talk about a rate of anything. The question is if it makes 
sense… If there is some benefit in it for me. […] If there's no connection, then one doesn't influence 
the other; then the rate of change will be zero, because it isn't having an influence. 

Typical for this type of open-ended questions, the respondents gave answers at different levels of 
complexity. Tina and Rob both stated that one variable has no influence on the other, but each of 
them drew a somewhat different conclusion. Rob drew the immediate conclusion that if there is no 
influence then there is no RoC. Tina answered indirectly, and considered one not being a function of 
the other a satisfactory answer to the question she was asked, about the existence of RoC. Oliver, on 
the other hand, gave the impression that he was fearing that he lacked some knowledge regarding the 
connection between the two variables. Tina and Rob made an assumption regarding the connection 
between the variables, maybe without being aware that this is an assumption, since obviously they 
may lack some unknown knowledge regarding the situation. Oliver tried to "find the answer", 
although it is an impossible mission. Later on, Oliver reached two surprising conclusions. The first is 
that for a situation to have a RoC, there needs to be some benefit to the discussion of RoC in the given 
situation. The conclusion regarding the benefit of the discussion, is the effect of basing a mathematical 
problem on EMC. The second surprising conclusion is that no connection means the RoC equals zero. 
This is a confusion. Zero RoC means no change, rather than no connection.  

All students characterized the connection between the variables (or rather the lack of such a 
connection) as the criterion for the inability to talk about RoC in this situation. Oliver's response was 
labeled as subjective due to the 'non-institutionalized (mathematically) argumentation' expressed by 
the issues raised (oil company, summer-winter). 

Anat's situation 

"Anat said: While I am driving to the Dead Sea, I am thinking of my height above sea level and my 
distance from the Dead Sea. Does it make sense to talk about rate of change in Anat's situation? If it 
does – what is that rate of change? If it doesn't – why doesn't it make sense?" 

Anat describes two continuously changing quantities which are closely related. This is a situation in 
which RoC is objectively relevant (or at least, it may be assumed that all the vital aspects for RoC are 
present), if the student is familiar with it. The following are two responses to Anat's situation:  

Tina Yes. You can talk of the rate of change of the distance in relation to the height. 

Tanya If the speed is constant then the distance and the height will change accordingly. Speed multiplied 
by time equals distance. So if I want to know the rate of change then I will divide the distance by 
the time. The distance changes here, and so does the time [variable]. The magnitudes here are 
changing all the time but I don't know if you can estimate the rate of change. The question is how 
you define rate of change. No, I can't estimate the rate of change. As time goes by, the distance 
changes and so does the height above sea level. […] You can talk about the speed in respect to 
distance and height. Maybe the height changes with respect to the distance I've traveled. I think that 
there is a time parameter here, a distance parameter and a height parameter. 
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While Tina immediately stated her answer, Tanya had trouble talking about the RoC of distance with 
respect to height (or height with respect to distance). In this situation, “time” isn’t explicitly involved 
and Tanya imposed it, presumably because she found quantities that “change over time” to be easier 
to discuss, than two non-temporal quantities changing one with respect to the other. This is what 
Jones (2017) called “invoking time”. This is a tendency for some students to insert time into what are 
otherwise time-less contexts. “For some students, invoking time seemed to be beneficial since it 
helped them to organize the covariation between the two quantities and to reach those higher 
covariational reasoning levels in which changing rates of change are considered.” (p. 107). Due to 
the 'adjustment completion' used to invoke time, which was not part of the described situation, Tanya's 
reply was labeled as subjective. 

Hadas' situation 

"Hadas said: I am thinking about the fact that nurses at baby-care centers weigh the babies, and each 
baby has its own weight. Does it make sense to talk about rate of change in Hadas' situation? If it 
does – what is that rate of change? If it doesn't – why doesn't it make sense?" 

Hadas describes one magnitude only, which is, objectively, a situation in which RoC is not relevant. 
The following are responses to Hadas' situation: 

Rob  Every baby has his or her own weight. In rate of change we talk about rate between two things, 
right? […] I don't understand – the weight in respect to what? 

Oliver  I see only one variable here. […] You can talk about rate of change but it would be… There's no 
connection between the babies. It [the RoC] would be difficult to measure and it wouldn't give me 
anything. Would I be numbering the babies? […] You can talk about rate of change but it would be 
degenerated. You can talk about change, but not about rate of change because it's not continuous. 
[…] If you weigh 10 babies every hour then you can force the rate in here. 

While both students understood that this is a situation with only one variable, Rob was quick to 
determine that one variable is not enough to talk about RoC. Oliver, on the other hand, expressed 
some confusion, although he stated clearly that he only sees one variable in the situation. We witness 
him trying to find a second variable (numbering the babies) and reasoning why this wouldn't solve 
the problem. Of the aspects which are vital for the existence of a RoC of one variable with respect to 
another, the one which is relevant in this situation is that two quantities need to be involved. This 
aspect was considered objective by the researchers and witnessed in practice as objective. Although 
subjective thoughts have been raised (for example "numbering the babies" which uses 'adjustment 
completion') the criterion remains central and valid. 

It is interesting that Oliver talks about the number of babies that are weighed per hour, since it has to 
do with the influence of language. In Hebrew, the words 'rate', 'rhythm' and 'pace', are the same word. 
Oliver talks about the pace of work that the nurses manage as an option to insert rate into the situation. 
This has nothing to do with the mathematical concept of RoC which is not relevant in this situation. 

In general, our findings in this study include notions which are considered necessary for the notion 
of RoC. Some of these were considered objective, which have one "correct" judgment (having 2 
quantities involved in the situation or having quantities that “change” – related to as quantities that 
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takes on different values). The findings demonstrate how, in objective situations, students still bring 
in their subjective ways of thinking (such as invoking time or completing a missing variable by 
numbering a single variable). 

Other notions are subjective, and different interviewees had different opinions, none of which were 
incorrect. The first is "A connective relationship" – Students argued that in order to talk about RoC, 
two quantities need to be connected, meaning that one influences the other: “There’s no RoC because 
there’s no connection between the two variables”. This is a subjective judgment, and different 
interviewees found different levels of relationships in the same given scenario. The second subjective 
notion is "Having a benefit" – Students stated that in real-life scenarios, some benefit must come out 
of talking about RoC: “you can talk about RoC, but the question is what you get from it”.  

Conclusion 
It seems that, in the case of the concept of RoC, EMC has a considerable influence on students’ 
interpretation of the concept and on their decision-making process. Interviewees based their decisions 
on their own life experience and their personal ways of thinking. Regarding the different aspects of 
RoC, even aspects that the researchers thought to be objective proved to elicit subjective thoughts 
when the design of the task was based on real-life situations. Missing information played a significant 
role when the two described variables had a vague connection. While some students assumed (without 
stating the assumption) that no connection exists between the variables, others tried to fill in the 
missing information with imaginary connections. 

Viewing mathematics as a basis for many engineering and scientific fields makes working with EMC 
vital for a proper mathematical education. But working with EMC elicits subjective ways of thinking, 
which are difficult to foresee and not easy to analyze. Understanding which knowledge elements are 
more prone to be objective, and which inherently propose a situation in which there is missing 
information, may enable mathematics educators to combine EMC in a more constructive manner. As 
a benefit, students learn that assumptions must sometimes be made, in order to solve a mathematical 
problem, sometimes there is information which is missing in the problem, and sometimes there is 
more than one correct answer - doing mathematics is not always about getting exact answers by means 
of well-defined procedures. 
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Dealing with simulation and modelling tasks with digital tools in mathematics lessons puts high 
demands on teachers when it comes to the preparation and implementation of lessons. These must be 
met in teacher education. To measure the pre-service mathematics teachers’ professional knowledge 
for teaching simulations and mathematical modelling with digital tools, we propose a theory-based 
model and subsequently present items of an associated test instrument. Using a one-parameter Rasch 
model, we show that the underlying model can be confirmed empirically and discuss the potentials 
and limitations of the results. 

Keywords: Mathematical modelling, simulations, digital tools, pedagogical content knowledge, 
measurement. 

Introduction 
Large-scale studies – such as Kunter et al. (2013) and Blömeke et al. (2014) – have shown how the 
pedagogical content knowledge of mathematics teachers can be described theoretically and 
empirically. Wess et al. (2021b) were able to use these conceptualizations and other research results 
from recent years to examine the pedagogical content knowledge of pre-service mathematics teachers 
specifically for mathematical modelling. Due to the increasing importance of digitalization in 
teaching and learning, it now seems sensible to integrate digital tools into this existing concept and 
to reinterpret the construct of Wess et al. (2021b). Based on this, the first results of the development 
of a test instrument that focuses on the professional knowledge for teaching simulations and 
mathematical modelling with digital tools will be presented in the following. The main question is: 
To what extent can the pre-service teachers’ pedagogical content knowledge for teaching simulations 
and mathematical modelling with digital tools be empirically captured as a construct? 

Theoretical Background 
The term mathematical modelling describes the investigation of extra-mathematical processes and 
relations with mathematical tools. This includes the structuring of the extra-mathematical situation, 
the well-justified construction of a model to describe the reality, translation processes between the 
extra-mathematical and intra-mathematical world (in both directions), mathematical considerations, 
and the interpretation and validation of the results obtained (Niss et al., 2007). These modelling 
processes can sometimes be carried out several times as well. 

If a mathematical model, which can be used for experimentation, of a reality-related situation is 
already available, simulations can also contribute to the exploration of reality. Simulations then 
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enable dynamic, experiment-like processes that provide insights into the real system represented in 
the model (Greefrath & Siller, 2018). Simulations can also help to validate and optimise the 
mathematical model (Greefrath & Vorhölter, 2016). 

Digital tools that are used in mathematics education represent a subcategory of digital media. While 
digital media are used, among other things, to communicate and document information, digital 
mathematics tools specifically support mathematical learning processes and the investigation of 
mathematical relations (Drijvers et al., 2016; Hillmayr et al., 2020). For example, they can generate 
and process larger amounts of data, visualize interrelationships dynamically, take over calculation 
processes, reduce complex function terms and offer new possibilities for information research 
(Greefrath et al., 2018). Thus, on the one hand their use therefore enables – especially in simulation 
and modelling processes – the treatment of previously inaccessible content. On the other hand, other 
focal points in mathematical considerations are now made possible (Greefrath & Siller, 2018). 
Examples of digital mathematics tools (we will speak of “digital tools” in the following) are Computer 
Algebra Systems, Dynamic Geometry Software, spreadsheets, and function plotters. 

Several authors, such as Molina-Toro et al. (2019), investigated the integration of digital tools in 
modelling processes. They showed that digital tools can be used to support various processing phases 
and sub-competencies of mathematical modelling. Communication with the digital tool is essential 
here: on the one hand, mathematical descriptions must be translated into the language that the digital 
tool can understand and process and on the other hand, the results of the digital tool have to be 
translated back into the mathematical terms and operations. Greefrath et al. (2018) therefore extend 
the modelling cycle of Blum and Leiss (2007) by a technological world that takes into account the 
translation processes with the digital tool (Figure 1). 

 
Figure 1: Extended modelling cycle (cf. Greefrath et al., 2018, p. 235) 

Concrete functions of the digital tool can be implemented in different modelling phases: investigate, 
experimentalize, visualize, simulate, calculate, control (Greefrath et al., 2018). As mentioned above, 
mathematical simulation fits into reality-related contexts as an experiment-like process with the 
already existing mathematical model. 

To investigate professional knowledge for teaching mathematical modelling, Wess et al. (2021b) 
developed a structural model of professional competence for teaching mathematical modelling. It 
serves as the initial basis of our test instrument and uses the model of Kunter et al. (2013) and research 
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by Borromeo Ferri (2018). Therefore, the pedagogical content knowledge for teaching mathematical 
modelling includes a theoretical dimension (e.g. knowledge about modelling cycles as well as aims, 
perspectives and criteria for the use of modelling tasks), a task dimension (e.g. knowledge about 
solution processes, analyses and development of modelling tasks), a diagnostic dimension (e.g. 
recognition of modelling phases and difficulties in the modelling process) and an instruction 
dimension (e.g. knowledge about interventions during students’ modelling processes) (cf. Borromeo 
Ferri, 2018; Wess et al., 2021b). 

For the current test development to measure the pedagogical content knowledge for teaching 
simulations and mathematical modelling with digital tools, mathematical simulation is included 
in this structural model at the above-mentioned intersection with mathematical modelling. 
Additionally, the four teaching competencies are focused on the use of digital tools (cf. Figure 2). 

 

 Figure 2: Pedagogical content knowledge for teaching simulations and mathematical modelling with 
digital tools (following Wess et al., 2021a) 

Test construction 
Based on the model shown in Figure 2, we developed 84 items in a deductive test construction to 
empirically (quantitatively) capture the construct described above in four dimensions. The 
preliminary test design was first qualitatively pre-piloted with experts on simulation, modelling, and 
digital tools (N = 11). Based on their feedback and edits, the content of the test draft was revised. We 
then presented the test draft to ten pre-service mathematics teachers at the University of Muenster 
and the University of Wuerzburg for further qualitative pre-piloting. Using think-aloud and verbal 
probing methods, items that were difficult to understand were identified and then revised or 
eliminated. Finally, a test draft with 79 closed items in the four theoretically derived dimensions aims 
and perspectives (13 items), tasks (10 items), processes (28 items) and interventions (28 items) was 
developed. As an example, we would first like to present one item each from the dimensions aims 
and perspectives (Figure 3) and tasks (Figure 4): 
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 Figure 3: Example item of the dimension aims and perspectives 

 

 Figure 4: Example item of the dimension tasks 

Following Wess et al. (2021b), the scales consist of multiple-choice and combined-true-false formats, 
which are to be evaluated dichotomously. Both items (as well as the following) were initially 
constructed in German and then translated into English for this paper. 

The dimensions processes and interventions are captured with case-based text vignettes. The text 
vignettes each contain a simulation and/or modelling task and associated conversations between 
students in a concrete processing phase of the task with digital tools. The text vignette “Traffic Jam” 
serves as an example here (cf. Figure 5, task, and Figure 6, conversation). 

 
 Figure 5: Task “Traffic Jam” (following Maaß & Gurlitt, 2011; Wess et al., 2021b) 
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Figure 6: Conversation of the students while solving the task “Traffic Jam” 
 
Based on the task and conversation, the participants should subsequently diagnose the students’ 
problem in the solving process (cf. Figure 7) and derive suitable interventions (cf. Figure 8) in these 
situations by answering the corresponding items. 

 

 

Figure 7: Example item of the dimension processes 

 

Figure 8: Example item of the dimension interventions (following Wess et al., 2021b)  
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Evaluation methods and results  
To make the quantitative evaluation of the test design in the context of ongoing item revision and 
selection possible, the test was presented to a suitable sample under standardized conditions. The 
sample consisted of N = 128 pre-service mathematics teachers from the University of Muenster, the 
University of Wuerzburg and the University of Erlangen-Nuremberg. 

The four dimensions were each scaled with a one-parameter Rasch model (cf. e.g., Rost, 2004). For 
the calculations, the software R with the packages TAM (Robitzsch et al., 2021) and eRm (Mair & 
Hatzinger, 2007) was used. Following PISA (OECD, 2012), items with a discrimination index under 
0.2 were removed from the test. In line with Bond and Fox (2007), we only left items with adequate 
mean square fit (MNSQ) statistics in the test. Thus, items whose infit and outfit values were not 
between 0.8 and 1.2 were gradually eliminated. We made an exception for two items from the 
dimension interventions. The two items show an overfit that, however, is not significant at a level of 
five per cent. Since the two items are of great importance from a didactic point of view, they remain 
in the test nonetheless and only their phrasing is revised. In future evaluations, they are to be critically 
examined again. 

After selection and revision, the test contains 54 items in the four dimensions. The one-dimensionality 
of the scales was tested globally with the help of Andersen tests (cf. e.g., Rost, 2004). According to 
Lienert and Raatz (1998), the EAP reliabilities of the individual dimensions are sufficient for group 
comparisons. The results of the tests are summarized in Table 1. 

Table 1: Results of the analyses 

Scale Number of 
items 

EAP reliability Andersen test MNSQ Pt.-bis. corr. 

Aims and persp.  9 .57 1 0.82* to 1.15 

* Exception: 
Two items are 
closely below 
0.8 (overfit). 

> 0.22 

Tasks 9 .56 .95 

Processes 18 .62 .26 

Interventions 18 .78 .16 
 

Summary and Outlook 
This article focused the extent to which the pre-service teachers’ pedagogical content knowledge for 
teaching simulations and mathematical modelling with digital tools can be empirically captured as a 
construct. Based on the structural model of professional competence for teaching mathematical 
modelling (Wess et al., 2021b), items were constructed using a deductive test theory. It was found 
that – in the studied group – pedagogical content knowledge for teaching simulations and 
mathematical modelling with digital tools can be adequately captured as a construct using the 
developed test instrument. The data collected confirms the four scales tasks, aims and perspectives, 
processes and interventions. Nevertheless, the scales tasks and aims and perspectives need to be 
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focused on separately in the further course of the investigations due to the comparatively poorer EAP 
reliabilities. It needs to be checked whether a multidimensional approach, which takes into account 
correlations between the latent traits, increases the EAP reliabilities. 

Combined with the results obtained from the Andersen test and in the Mean Square Fit (MNSQ) 
statistics for the two scales, the developed test in its current form seems to enable the measuring of 
pedagogical content knowledge for teaching simulations and mathematical modelling with digital 
tools. At the same time, the results are to be confirmed again in cross-validation. 

The promising results must be viewed – analogously to Wess et al. (2021a) – against the background 
that the dichotomous item construction has to allow for definitive true or false answers. Particularly 
in the field of reality-based tasks, this leads to an additional narrowing of an already very narrow 
construct, so that many items and text vignettes had to be excluded at the outset. In addition, the 
scalability and meaningfulness of the current test instrument have so far only been demonstrated for 
the participating universities. Although we have taken into account the representativeness of the 
sample according to objective parameters (e.g., study progress, subject combination, previous 
achievements if applicable) in our evaluation, differences in teacher education in the area of reality-
based tasks cannot be ruled out. The question of generalizing the present results therefore remains 
open for the time being. 

In addition to the previous results, pedagogical content knowledge, beliefs and self-efficacy will now 
also be evaluated and presented in a structural equation model. The complete test instrument will then 
be used in the coming semesters in courses at the University of Muenster and the University of 
Wuerzburg in a pretest-posttest control group design. 
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Collaborative learning is a well-established approach to elicit reasoning. The ability to solve 
mathematical modelling problems depends much on the ability to reason, because mathematical 
modelling problems are usually presented to students through texts. Decisions have to be made at all 
stages of the mathematical modelling cycle, for instance on assumptions, simplifications and 
feasibility of the model. In this paper we present an observation instrument to study collaborative 
modelling. There are three core components: collaborative learning, mathematical modelling and 
the language that students use while working together.  

Keywords: Mathematical modelling, collaborative learning, observation, language proficiency.  

Introduction  
In the Netherlands, mathematical modelling has become a small but obligatory part of the upper 
secondary curriculum.  However, it is missing in the greater part of lower secondary education. To 
improve the vertical coherence in the curriculum, our research focuses on modelling assignments in 
lower secondary education.  

The purpose of our larger research is to determine whether the open-ended group assignments we 
developed promote collaborative mathematical modelling. In this study, we aim to construct an 
observation instrument. The research question we address is: How do we examine the quality of 
students’ collaborative learning in tasks that aim at mathematical modelling? 

Theoretical framework 
Many studies have shown that collaborative learning has a positive effect on students’ mathematics 
learning (e.g. Dekker & Elshout-Mohr, 1998, 2004; Pijls, 2007; Webb, 2009; Webb et al., 2020; 
Yackel et al.,1991).  Discussions in small groups can also promote the development of modelling 
competencies (Maaβ, 2006; Galbraith & Clatworthy, 1990). We discuss three features of the 
interaction between students, that - based upon the literature - can be considered relevant when aiming 
at mathematical modelling with group tasks: (1) collaborative learning, (2) mathematical modelling 
and (3) the language that students use while working collaboratively on the modelling task. 

Collaborative learning: Various researchers have shown that collaborative learning in heterogeneous 
groups raises the level of abstract reasoning as suggested by van Hiele and Freudenthal when the task 
enhances students to verbalize their understanding, to explain their thinking to one another and to 
criticize one another’s way of thinking (Calor et al., 2019; Dekker & Elshout-Mohr, 1998; Palha, 
2013; Pijls, 2007; Yackel et al., 1991).  

Dekker and Elshout-Mohr (1998), for example, defined four key activities in their Process Model for 
structuring small group discussions of students when working at a mathematical task. Initially the 
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students are working individually on the same mathematical task. Their works will be different. After 
some time, they compare the findings: they show their own work, they explain their own work, they 
justify their own work and eventually reconstruct their own work. 

Collaborative learning activities that have been identified as key activities for mathematical level 
raising, such as explaining and justifying, have also be mentioned by scholars who focus on features 
of productive collaborative learning (Mercer, 2006; van Boxtel et al., 2000; van der Linden et al., 
2000). According to Mercer (2006) three types of talk can be discerned: disputational talk, cumulative 
talk and exploratory talk. Disputational talk is characterized by disagreement and individualized 
decision making, cumulative talk takes place when students share knowledge but contributions are 
uncritically accepted by the group. In exploratory talk students engage critically and constructively 
with each other’s ideas.  

Mathematical modelling: In the field of mathematical modelling various definitions of the modelling 
cycle are found. The modelling cycle starts with a situation or problem in the real world. Thus is it 
important to understand the situation. Blum and Leiβ (2005) define this understanding of the original 
situation as the situation model. Then, the given situation has to be simplified, structured and made 
more precise, which results in a real model (Blum & Leiβ, 2005). In the first step of the modelling 
cycle it is essential to become aware of the meaning of the problem. Furthermore, modelling 
encompasses various activities that are carried out consecutively, including mathematising, working 
mathematically, interpreting, and validating (Blum & Leiβ, 2005). Maaβ (2006) identifies specific 
sub-competencies related to the mathematical modelling process and argues that modelling 
competencies include more than the steps of a modelling process. Assumption making is one of these 
sub-competencies to understand the real problem and to set up a model based on reality. 

The use of language: The language used at school often forms an obstacle to learning mathematics 
(Van Eerde & Hajer, 2009). Plath and Leiβ (2018) point out that a low language proficiency may 
result in comprehension problems and a low performance on modelling tasks.   

Mathematical modelling problems are usually presented to students through texts in context-rich 
assignments. In the context of modelling tasks, it is important to examine what language students use 
while modelling. Cummins (2000) distinguishes between Basic Interpersonal Communicative Skills 
(BICS) for communication every day and Cognitive Academic Language Proficiency (CALP) for 
communication in education. During collaboration, students may explain difficult words to each 
other, and use mathematical terminology during their collaborative work. Webb (1991) classifies this 
as the explainer: the learner who translates unknown vocabulary into language that is known to other 
students. Especially for modelling tasks is it important to understand the situation of the given 
problem (Blum & Leiβ, 2005). 

Method 
In this study, a series of five different modelling tasks for the domains algebra and geometry have 
been developed for grade eight students (age 13-14). In the Netherlands, grade eight is part of lower 
secondary education. The modelling tasks were developed according to design principles that we 
derived from Galbraith (2006) and Geiger et al. (2021) and literature on collaborative learning.  

Proceedings of CERME12 1060



 

 

For collaborative learning, a task should be complex and rely on multiple skills (van Boxtel et al., 
2000; Cohen, 1994). Furthermore, the designed modelling tasks are open-ended problems that require 
making the necessary assumptions, are linked to the real world and motivate students (Galbraith, 
2006; Geiger et al., 2021). The tasks were improved using feedback from educational experts, 
mathematics teachers and a pilot with grade eight students.  

In total, five secondary schools with ten classes and seven mathematics teachers, located in an urban 
environment participated in this research. The collaborative learning groups consisted of three 
students. Each group worked on one task during one lesson. Three or four randomly selected groups 
in each class were video-taped and audio-recorded, and the written group products of all groups were 
collected. In each class, the tasks were introduced with the same introduction and brief information 
about mathematical modelling.  

To analyze students’ verbal interaction while collaborating on mathematical modelling tasks, we need  
a valid and reliable observation instrument. This observation instrument was designed in three steps: 
(I) development of the instrument based on theory about collaborative learning and mathematical 
modelling and recordings of three randomly selected groups; (II) a pilot study in which we used six 
randomly selected video-recordings of group conversations to further operationalize the categories in 
the instrument and to investigate the reliability of the instrument; (III) adjustment of the instrument.  

Results 
First design of the observation instrument: Recordings from three randomly chosen groups were 
selected to design a first version of the observation instrument. A variety of two tasks was included. 
We defined three main categories of student interaction while working collaboratively on 
mathematical modelling tasks, that can be considered relevant: (1) collaborative learning, (2) 
mathematical modelling and (3) the language that students use while working collaboratively on the 
modelling task. In addition, to improve the designed open-ended group assignments, it is important 
to examine questions students ask the teacher about the modelling task. This additional category is 
named questioning. Furthermore, for each subcategory, we added space to note comments. 

Collaborative learning: It is important to discern whether students work primarily individually or 
together at our tasks. Therefore, the first subcategory in the main category collaborative learning is 
collaboration. The second subcategory is critical considerations focused on the solution strategies 
(critical considerations and strategies). The next four subcategories are the four key activities of 
Dekker and Elshout-Mohr’s (1998) Process Model. The last sub-category is the type of discussion. 
According to Mercer (2006) three types of talk can be discerned: disputation talk, cumulative talk 
and exploratory talk. 

Mathematical modelling: Mathematical modelling encompasses various activities that are carried out 
consecutively. For these activities we make use of the modelling cycle of Blum and Leiβ (2005). The 
steps in the modelling cycle are sequentially added as subcategories to the main category 
mathematical modelling of the observation instrument. In the first step of the modelling cycle it is 
essential to get aware of the meaning of the problem. Therefore, we first focus on whether students 
have understood the problem by observing whether students clarify the purpose of the modelling task 
(clarifying). In the second subcategory we observe if students discuss how to tackle the problem 
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(addressing). In the third subcategory, we observe whether students understand the problem and if 
they transform the problem for reasoning (transforming). The fourth subcategory, we observe whether 
students simplify or structure the problem (simplifying). In the next subcategories we observe the 
assumption making, mathematizing, working mathematically, the way students are solving the 
problem (solving strategies), interpretation of the solution (interpreting) and whether students validate 
(in between or at the end) throughout the modelling process (validating).  

The use of language: In the first subcategory we observe the use of everyday language (BICS). To 
find out whether the designed tasks contain difficult words for the students, we observe whether 
students explain certain words to each other while collaborating on the modelling task. In the second 
subcategory we observe the extent to which students use mathematical terms (CALP).  To support 
coding, a list has been added with the most common mathematical concepts for the designed 
modelling tasks. In the third subcategory we observe whether students explain the mathematical 
concepts to each other (CALP to BICS). The last subcategory focuses on students’ use of modelling 
language. We investigate whether students formulate their solution in the context of the modelling 
task (formulating) and whether they use specific modelling language in the solution process.  

Questions about the task: The last category is added to examine if the students are asking the teacher 
a question and to write down the question(s) asked (questioning).  

Results of the pilot study: Six randomly chosen video-recordings were coded by two researchers (the 
first two authors). The percentage of agreement between the researchers are shown in Diagram 1. For 
the main category collaborative learning the subcategories with the least agreements are: explaining 
their own work, justifying their own work and reconstructing their own work. For the main category 
mathematical modelling the subcategories with the least agreements are: clarification of the purpose, 
assumption making, mathematization and validation. For the main category use of language the 
agreement is acceptable. This is also for the additional category: questioning.  

Revision: As a result of these findings, the categories with a low percentage of agreement, were 
revised. Clarifications have been added to the key activities. For example, what is meant with to show, 
to explain, to justify and to reconstruct. The fourth category, with subcategory to explain, of the 
observation instrument is shown in Table 1. 

Table 1: Fourth subcategory of the observation instrument for main category collaborative learning 

Collaborative learning  Notes 

4. To Explain 
Explaining or clarifying the way of working or thinking 

A. No student explains his way of working or thinking to the rest of the group   

B. One student explains his way of working or thinking to the rest of the group  

C. Several students explain their way of working or thinking to the rest of the group  
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An explanation has also been added to the main category mathematical modelling, subcategories
making assumptions and validating. In the main category collaborative learning, critical 
considerations focused on solution strategies have been adapted into two subcategories. Critical 
considerations students make with each other while collaborating is still a subcategory of 
collaborative learning. Solution strategies have been moved to the category mathematical modelling, 
because it fits more in the processes for solving modelling problems. With this category we examine 
whether students apply one or more strategies to solve the modelling problem. 

We also adjusted the sequence of the subcategories in the main category mathematical modelling. In 
the revised instrument, we started with the subcategory clarification of the purpose of the task, 
followed by addressing the problem, understanding and simplifying the problem, and assumptions
making. After that, the findings of a mathematical model or mathematization were noted, followed 
by mathematical solution, interpretation and validation. As discussed above, another subcategory had 
to be added, namely the solution strategies. As a result, the revised observation instrument included
ten subcategories for mathematical modelling. By choosing an order that best suits how students work 
through the task, it becomes easier to observe.

No adjustments were made for the components: language proficiency and question to teacher. 

Diagram 1: Percentages of agreement in each subcategory for the pilot with the observation
instrument (six collaborative learning dialogues)
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Conclusion and discussion 
In order to evaluate the quality of students’ conversation, we have developed an observation 
instrument with which we can analyze the students collaborative learning while solving mathematical 
modelling problems. We observe the data on basis of three main categories. The first category is 
collaborative learning of students. We are using the Process Model (Dekker & Elshout-Mohr, 1998) 
to observe how students work together to increase their mathematical understanding. The second 
category is mathematical modelling, using the phases of the modelling cycle (Blum & Leiβ, 2005). 
The last category is the language that students use while working collaboratively on the modelling 
task. We observe the way students explain difficult words to each other, the use of language related 
to mathematics and modelling.  

For the main category collaborative learning, the least agreement has been reached for the key 
activities of Dekker and Elshout-Mohr’s (1998) Process Model. One reason for this could be that 
these key activities are applied by Dekker and Elshout-Mohr to students who initially work 
individually on the same task and then compare it with each other. While the students in our study 
work together on the tasks throughout the modelling process. For the main category mathematical 
modelling, subcategories have also been identified in which a low agreement has been reached. These 
subcategories, have been supplemented with an explanation that has been added or adjusted. 
Therefore, the revised observation instrument should be retested.  

Successful solving of a mathematical modelling problems requires modelling competencies (Maaβ, 
2006), but also metacognitive strategies in solving complex modelling problems in groups (Vorhölter, 
2019). In the instrument we focus on the students’ multiple solution strategies, but we do not observe 
whether students are (collaboratively) engaged in task orientation or planning. It is difficult to include 
that, because we want to use the observation instrument to know whether the developed modelling 
tasks are suitable. If there is a lot of regulation during collaboration, it can mean that the task is too 
open or complex, but it can also mean that students discuss this well. In addition, the developed 
assignments were performed in groups without teacher guidance and this can lead to confusion of 
students' thinking (Goos et al., 2002). A more qualitative analysis would then be necessary to gain 
more insight into this. Follow-up research could focus on how these metacognitive activities and 
teacher guidance could be included in the observation instrument. 

In our next study, we will apply this observation instrument to investigate the quality of student 
interaction in order to evaluate the suitability of the group tasks we developed in order to develop 
students’ mathematical modelling competencies.  
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Modelling competence is a central concept in research on teaching and learning mathematical 
modelling. Numerous studies support the theoretical foundation of modelling competence as well as 
the existence of tested and already modified test instruments for different age levels. In addition to 
other aspects of professional competence, such as pedagogical content knowledge, pre-service 
teachers must also possess modelling competence themselves. Even though test instruments for 
modelling competence already exist, the aspect of professional content knowledge of mathematical 
modelling as a competence facet of teachers has received less attention thus far. In this theoretically 
oriented paper, first theoretical considerations for the development of such a test instrument are 
presented on the one hand, and on the other hand, ideas for further development are discussed based 
on sample items. 

Keywords: Professional competences, content knowledge, test instrument, mathematical modelling. 

Introduction  
The importance of pedagogical content knowledge in mathematical modelling teacher education has 
already been highlighted as significant, but only more systematically in recent research. Therefore, a 
focus will now also be placed on the content knowledge of modelling. In this paper, we mainly present 
theoretical considerations regarding the content knowledge of modelling in the overall context of 
teacher education on modelling. In addition, we present examples of concrete items. Accordingly, we 
would like to address the challenge of developing a test instrument, which will differ from already 
existing tests in the still pending development process.  

Therefore, we first review the following theoretical foundations, which form a theoretical framework 
for us as a basis for the systematic construction of items. This concerns professional competence in 
the models of Kunter et al. (2013) and Shulman (1986). Especially regarding Krauss et al. (2013), we 
derive our considerations of levels of mathematical expertise, which we concretise with respect to 
calculus, with which we start as a mathematical subject area with item construction. Relevant aspects 
of modelling sub-competencies follow, as well as a discussion of existing test instruments. Finally, 
the item examples illustrate first considerations and show the challenge of construction. The main 
goal of this paper is to demonstrate we need a new test instrument for the content knowledge of 
mathematical modelling in teacher education, including which aspects of test construction need to be 
considered. 
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Professional competence  
The professional competencies of mathematics teachers and pre-service mathematics teachers have 
been extensively studied (e.g. Blömeke & Delaney, 2012; Kunter et al., 2013). The concepts of 
professional competence developed in these studies share key commonalities. In particular, 
professional knowledge is seen as consisting of different knowledge domains: content knowledge, 
pedagogical content knowledge and pedagogical−psychological knowledge (Shulman, 1986). In 
addition to these cognitively oriented knowledge dimensions, affective aspects are also considered. 
Further conceptions of pedagogical content knowledge for mathematics teachers, some of which also 
include content knowledge and pedagogical−psychological knowledge, are relevant (Depaepe et al., 
2013). The importance of teachers’ content knowledge is highlighted in various studies (Blömeke & 
Delaney, 2012). The high correlation of content knowledge and pedagogical content knowledge is 
well known (Krauss et al., 2008; Yang et al., 2021), highlighting the importance of the content 
knowledge of pre-service teachers in particular. 

Levels of mathematical content knowledge  
Mathematical content knowledge can be described using different models. Based on Shulman (1986), 
Krauss et al. (2013) proposed four levels to describe mathematical content knowledge. They 
distinguish everyday mathematical knowledge, the mastery of school-level mathematical knowledge, 
a deep understanding of the content of the secondary school mathematics 
curriculum and university-level knowledge (Krauss et al., 2013, p. 155). This classification begins 
with a first level of mathematical content knowledge that all adults must possess. The second level is 
school knowledge. At this level, we consider competence to use mathematics in the context of the 
knowledge usually taught at school. This school mathematical competence goes beyond everyday 
mathematical competence and includes, for example the competences required to complete a task in 
the Abitur examination (KMK, 2012). A third level describes the mathematical content knowledge 
required for a deeper understanding of the subject content at the secondary level. We refer to this 
level as in-depth school mathematical competence. This includes elementary mathematics from a 
higher standpoint (Klein, 2016) as taught at university. The fourth level can be called university 
competence. This includes mathematical knowledge taught at university with virtually no connection 
to the school curriculum, for example algebraic number theory (Krauss et al., 2013). Depending on 
the course of study, in-depth school mathematics competency or university mathematics competency 
are achieved at university in a teaching degree with mathematics as a subject. Content knowledge, as 
conceptualised in COACTIV, lies between the second and the third level, as shown in the published 
example item ‘Is  a prime number?’ (Krauss et al., 2013, p. 152).  

Modelling cycle and sub-competencies of modelling 
Mathematical modelling processes can be illustrated by a modelling cycle that depicts the sub-
processes or sub-competencies of simplifying, mathematising, interpreting and validating. Former 
research describes many cycles that vary mainly in the number of individual sub-processes 
(Borromeo Ferri, 2006). The modelling cycles from applied mathematics (Pollak, 1977) describe the 
processes deterministically in three or four phases. In didactically oriented discussion, there are four-
phase, but also six- and seven-phase cycles (Blum & Leiß, 2007) or extended cycles concerning the 
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use of technologies (Greefrath et al., 2018). Regardless of the number of sub-processes, modelling 
competence is required. In this context, modelling competence is understood as the ability to identify 
a real-world problem in a given situation, translate it into mathematics and interpret and validate the 
solution to the corresponding mathematical problem about the given situation (Niss et al., 2007). 
Global modelling competence refers to the entire modelling process and to general competences, such 
as a structured and goal-oriented approach to tasks, reasoned argumentation and independent 
reflection on the modelling process (Kaiser & Brand, 2015). The sub-competencies of mathematical 
modelling, however, refer to the sub-processes in the modelling cycle mentioned above or identified 
in the various cycles (Maaß, 2006). 

The assessment of students' modelling competencies using tests has already been empirically 
demonstrated in many studies for different age groups (Haines et al., 2001; Hankeln et al., 2019; 
Kaiser & Brand, 2015). Two basic principles can be distinguished. On the one hand, there are items 
that focus on the sub-processes of modelling (atomistic approach) and, on the other hand, items that 
require the complete pass through of a modelling cycle (i.e. a holistic approach; Blomhøj & Jensen, 
2003). In our test construction, we prefer an atomistic approach and limit ourselves to the sub-
competencies simplify, mathematise, interpret and validate. 

Mathematical modelling and analysis 
In his characterisation of applied mathematics and modelling, Pollak (1977) attributed early special 
importance to analysis. To work on a modelling task, a knowledge of mathematical content is required 
in addition to process-related competences, which are described within the framework of the German 
educational standards for the Abitur examination. The central subject here is calculus (KMK, 2012).  

Textbooks often contain examples from calculus as modelling tasks, for example for modelling 
growth processes. These tasks are particularly suitable for students because of their accessibility 
through a reference to real life and use of a well-known mathematical topic. With the help of 
differential calculus, many real or application situations can be modelled, such as topics in the context 
of traffic (Siller, 2013). Simultaneously, calculus is a central subject area in the German Abitur 
examination and in mathematics teacher education; it is receiving special attention in research (Rach 
& Heinze, 2017).  

Development of a test instrument 
Previous test instruments on university students’ modelling-specific mathematical content knowledge 
use either rather clear Level 2 mathematical content knowledge for modelling, that is the school level 
(Yang et al., 2021), or Level 3 to Level 4, that is university knowledge or knowledge clearly beyond 
the secondary level (Czocher et al., 2021; Haines et al., 2001). While Level 2 may seem too low for 
pre-service teachers in higher semesters, Levels 3 to 4 may overwhelm some pre-service teachers. 
Sample items from the test of content knowledge from COACTIV could be used as a guide for items 
on modelling specific content knowledge between Levels 2 and 3.  

Based on the previous considerations, we design an atomistic test instrument for the modelling-
specific content knowledge of pre-service teachers with subject-specific content at Levels 2 to 3 from 
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the subject area of calculus and the focus on one of the four selected sub-competencies: simplify, 
mathematise, interpret and validate. Four example items will illustrate this direction in the following. 

Example item 1 (mathematising) 

Spruces represent an important timber species in Germany. The temporal development of the 
thickness of spruces is modelled by a function d. The planted seedling has a diameter of 0.04 m. After 
160 years, a spruce has typically reached a diameter of 0.96 m. Which of the following mathematical 
models best fits the problem described? 

 

 

 

 

 

 

 

 

•  •  •  •  
Example item 2 (interpreting)  

In 2009, Usain Bolt set a new world record over 100m running with a time of 9.58s. In the figure, the 
course of his speed during the world record race is approximated. 

 
Describe the progression of Bolt's speed during the race, considering the real-world context of the 
record run. 

Example item 3 (interpreting)  

Tim and his friends are standing on a federal highway in the slow-moving traffic that has seemingly 
formed ‘out of nowhere’. Caro is annoyed: ‘These damn 70 
zones! If they would lift the speed limit here, then everyone 
could drive faster, there wouldn't be so many vehicles piling 
up, and we'd get there sooner!’ 

Tim has come up with the following ‘half-speed rule’: : 

v = speed 
 l = vehicle length 
d = distance between two vehicles 
S = route of the convoy 
D = vehicle throughput per hour 
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Tim achieves an approximate vehicle throughput of 1,600 vehicles per hour.  

What did Tim calculate with his result? 

a) The throughput grows infinitely with increasing speed. 
b) The risk of rear-end collisions increases due to a guideline speed of 50km/h. 
c) The throughput grows limited with increasing speed. 
d) The maximum vehicle throughput is only achieved at a higher speed. 

 

Example item 4 (validating)  

The shape of a road between two existing roads should be modelled mathematically. The roads can 
be presented in the coordinate system as follows.  

 
The missing piece of the road between A and B should be modelled mathematically. The model 
chosen was the appropriate arc of the function . Explain why this result would 
not be used by engineers in reality.  

Discussion and Conclusion 
Previous research shows that there is a need for a special test instrument on professional content 
knowledge in mathematical modelling, which is, on the one hand, more demanding in content than 
average modelling tasks for school students and, on the other hand, below the level of university 
students who study mathematics as a major (cf. tests by Czocher et al., 2021; Haines et al., 2001). 
Furthermore, it is desirable that sub-competencies of modelling are considered atomistical, so a 
separate consideration of sub-competencies becomes possible. In this case, there is already experience 
with modelling tests for students (e.g. Hankeln et al., 2019; Kaiser & Brand, 2015), whereas in Haines 
et al. (2001), there is a focus on the first steps of the modelling cycle and no aim at a distinction 
between sub-processes. Another aspect concerns the common mathematical content of teacher 
education. Here, several items from the well-established test instrument of Haines et al. (2001) seem 
less suitable, as they mainly target linear optimisation. Therefore, we focused on calculus as a well-
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known subject area from upper secondary education and developed items for (pre-service) teachers 
that go beyond the content of lower secondary education, such as in Yang et al. (2021). 

Example item 1 refers to finding a suitable mathematical model in the context of exponential 
functions. Hence, it is an important sub-area of calculus that is also covered in school. Not all the 
models given (e.g. logistic growth) are typically school subjects, but go beyond this. Therefore, this 
test item is to be placed between Levels 2 and 3 of mathematical knowledge. Basic experience with 
(plant) growth is sufficient to identify the appropriate mathematical model. Based on the problem, 
the participants can consider which type of growth is appropriate for this problem. The possible 
answers include linear growth, exponential growth, and logistic growth. A backward validation by 
inserting values is not necessarily goal-oriented because the terms available for selection correctly 
represent the boundary points in each case. The mathematical properties of the function must 
therefore be recognised from the properties of the real problem. The item, then, targets 
mathematising. For an objective evaluation, a multiple-choice task is recommended here. The task 
format is like well-known tasks by Haines (2001), but the level of difficulty is adapted to the target 
group.  

Example item 2 describes a world record race using a graph of a function. This graph represents speed 
and needs to be interpreted. This belongs to the subject area of calculus and can be assigned to 
secondary level II. Like example 3, it belongs to interpreting, because the results of a mathematical 
model need to relate to the respective situation. In example item 3, the mathematical content goes 
beyond the school material. Example item 4 addresses validation. Students must critically examine 
the mathematical model used (Item 4) in the context of the real-world situation. Item 4 addresses a 
familiar high school context with a functional equation not usually used in that context. Further 
additional items for simplification can be taken from the test by Haines et al. (2001), if necessary. A 
broad coverage of sub-competencies seems important to us to obtain a valid measurement instrument 
that considers all steps of the modelling cycle for pre-service teachers. 

All items, therefore, can be assigned to the subject area of calculus and use school material from 
upper secondary school or surpass it. The mathematical requirements, then, are implicit. It should be 
discussed whether explicit items on working mathematically should also be included. In various test 
instruments for students (Hankeln et al., 2019), this has not been done. The reason in this case was 
that the processes of modelling were the focus of the study and the test length should remain within 
certain limits. The question of the test length is also to be discussed here. Other test instruments 
(Kaiser & Brand, 2015), however, consider holistic tasks and implicitly include mathematical work. 
However, we also consider it attractive for teacher educators to use items precisely for certain sub-
competencies, so that a very focused diagnosis is possible. 

Some of the items developed thus far can be objectively coded using multiple choice items, while 
others are evaluated using criterion-guided coding manuals in the partial credit model. In addition to 
the items presented here, further items for a complete test of professional content knowledge for 
modelling need to be developed and empirically tested. A prerequisite is a discussion of the 
competencies to be tested (atomistic or holistic), level of difficulty, item format and mathematic 
subject area. 
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Modelling while problem posing – A case study of preservice teachers  
Luisa-Marie Hartmann1, Janina Krawitz1, and Stanislaw Schukajlow1  
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Because problem posing might enhance activities that are necessary for solving real-world problems, 
it has the potential to foster modelling. However, systematic research on the connection between 
problem posing and modelling is largely missing. Therefore, in the present study, we investigated (1) 
the modelling activities that take place when posing problems that are based on given real-world 
situations and (2) the extent to which modelling activities occur with different problem-posing 
activities. To address these questions, we asked seven preservice teachers to first pose a problem 
based on a given real-world situation and then to solve their self-generated problem. A qualitative 
content analysis revealed that modelling activities that are close to the real-world situation (e.g., 
understanding, simplifying, and structuring the given pieces of information) are involved in problem 
posing. This result indicates that problem posing has the potential to foster mathematical modelling. 

Keywords: Problem posing, modelling, teaching approach, preservice teachers. 

Introduction  
Modelling is one of the key competencies of mathematical learning as it enables students to 
understand their environment with the help of mathematics (Niss & Blum, 2020). However, 
modelling is a demanding process for both students and teachers alike (Schukajlow et al., 2018). 
Therefore, beneficial approaches for fostering mathematical modelling are needed (Schukajlow et al., 
2018). Problem solving research has indicated that problem posing has a positive influence on 
problem solving because problem posing has been claimed to trigger important problem solving 
processes, for example, analyzing the given situation in an in-depth manner (Cai & Leikin, 2020). As 
modelling can be characterized as real-world problem solving and begins with a given real-world 
situation that has to be understood, simplified, and structured, it is possible that problem posing based 
on given real-world situations (i.e., modelling-related problem posing) is beneficial for fostering 
mathematical modelling. Surprisingly, there is only a little research on modelling through problem 
posing. To investigate the potential of problem posing for modelling, we aimed to analyze the 
connection between problem posing and modelling from a cognitive perspective in this study 
(Schukajlow et al., accepted).  

Theoretical Background 
Mathematical Modelling 

Mathematical modelling can be characterized by a demanding process of translating information 
between the real world and the mathematical world with the goal of solving a real-world problem 
with the help of mathematics (Niss & Blum, 2020). The modelling process can be described as 
idealized in a circular theoretical model consisting of various activities (Blum & Leiß, 2007). The 
process begins with activities that are located in the real world. The given real-world situation, which 
is often presented as a textual description, first has to be understood by reading the text and 
supplementing the information with experience, thus ending up in the construction of an individual 

Proceedings of CERME12 1075



 

 

situation model. In the next step, the situation model has to be transformed into the real model by 
simplifying and structuring the given situation. Through mathematization, the translation from the 
real world into the mathematical world begins. The real model is translated into a mathematical model 
or problem. By working mathematically, a mathematical result can be calculated, and then it has to 
be interpreted with respect how it applies to the real world so that a real result is achieved. Finally, 
the real result must be validated with respect to whether the existing models and results are 
appropriate for describing the given situation.  

Each of the activities described above can be demanding for students and may represent a potential 
barrier in the solution process (Blum & Leiß, 2007; Schukajlow et al., 2018). Especially the activities 
located in the real world (understanding, simplifying, and structuring) are challenging as real-world 
aspects are often neglected (Krawitz et al., 2018). Therefore, there is a need for approaches that can 
help overcome these barriers. 

Problem Posing 

In recent years, problem posing has become an important topic in mathematics education as it has 
great potential for both the teaching and learning of mathematics (Cai & Leikin, 2020). Problem 
posing includes a variety of processes. In addition to the generation of new problems, it also 
comprises the reformulation of given problems that can take place before, during, or after problem 
solving (Silver, 1994). Further, different stimuli can initiate problem posing. In addition to the 
categorization of these stimuli on the basis of the structure of the given situation (Stoyanova, 1997), 
the stimuli can also be differentiated on the basis of their connection to reality. With regard to the 
differentiation of real-world problems (Blum & Niss, 1991), problem posing can be initiated by 
situations with and without a connection to reality. In our study, we define problem posing as the 
generation of new problems on the basis of given real-world situations before problem solving and 
refer to this type of problem in the following as modelling-related problem posing. An example of a 
given real-world situation is depictured in Figure 1. An exemplary question that can be posed based 
on the “Cable Car” situation is a question about the length of cable needed for the new cable car. 

 
Figure 1: Real-world “Cable Car” situation 
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Mathematical Modelling in Problem Posing 

The connection between mathematical modelling and problem posing can be regarded from two 
perspectives. On the one hand, questions can be raised during modelling (e.g., Barquero et al., 2019). 
On the other hand, modelling activities can be already involved in posing a problem. In the following 
we want to focus the latter connection. In out-of-school modelling scenarios, even though discovering 
or generating a problem typically takes place before the problem is solved, not much research has 
investigated the relationship between problem posing and modelling. On the basis of theoretical 
considerations, generating one’s own problems can have a positive influence on the subsequent 
modelling process. To pose problems that are based on given real-world situations, the given situation 
has to be understood and explored with regard to possibilities for posing a problem by distinguishing 
relevant from irrelevant information and establishing relationships between the relevant information 
(Bonotto & Santo, 2015). Based on these relationships, possible mathematical problems can be 
generated and evaluated with respect to whether or not the given information is coherent and 
sufficient for solving the problem (Bonotto & Santo, 2015). The associated in-depth analysis of the 
situation might therefore already involve the modelling activities that are needed to construct an 
adequate real model and have benefits for the solution process (Hartmann et al., 2021). Empirical 
research on modelling-related problem posing has supported this assumption. Bonotto and Santo 
(2015) showed that students included real-world aspects in their solutions when solving self-
generated problems using real-world artefacts as problem-posing stimuli (e.g., supermarket bills, 
restaurant menus). Further, empirical results indicate that the sequence of posed problems is guided 
by the problem-solving strategies that are typically employed (Cai & Hwang, 2002). Therefore, it is 
possible that problem posers are involved in problem solving while posing a problem that is based on 
given real-world situations by planning possible solution strategies. As part of planning a possible 
solution strategy, students might therefore already be engaged in the activities (e.g., structuring and 
mathematizing) that are needed to solve the self-generated problem. However, an open question is 
which modelling activities are already taking place during problem posing. 

Research Questions and Method 
The goal of the study was to analyze the connection between problem posing and modelling by 
investigating the occurrence of modelling activities in problem posing process. Therefore, we focused 
on the following research questions:  

1. Which modelling activities take place when posing problems based on given real-world 
situations?  

2. With which problem posing activities do the modelling activities co-occur?  

Sample  

To find an answer to these research questions, we conducted a study with seven preservice 
mathematics teachers from a large university in Germany (3 men, 4 women) between the ages of 20 
and 26 years old (M = 22.86, SD = 1.95). Five of them participated in a program for a higher track 
secondary school teachers’ degree and two of them for a middle track secondary school teachers’ 
degree. All of them already had experience in solving modelling problems and six of them in problem 
posing. We used heterogeneity sampling to select preservice teachers with different mathematics 
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performance levels, with different levels of experience in problem posing and solving, and who were 
participating in different university programs.  

Procedure and Instruments 

To collect the data, we used a qualitative design that included thinking aloud and stimulated recall in 
order to get deep insights in cognitive processes. The preservice teachers were given three real-world 
situations and were asked to first pose a problem that was based on the given situation and after 
posing it to solve their self-generated problem while thinking aloud. We recorded both processes. To 
supplement the thinking aloud data, we conducted a stimulated recall for every posing and solving 
process. We used the recorded videos of their posing and solving processes, including their writing, 
speaking, gestures, and facial expressions, to stimulate the processes. As stimuli for problem posing, 
we used real-world situations as they are described in modelling problems and extended them by 
adding further authentic information to allow them to pose a variety of problems. An example of a 
real-world situation is displayed in Figure 1. 

Data Analysis 

For data analysis, we first transcribed the videos that had been recorded of the problem posing and 
stimulated recall and paraphrased the transcripts into sequences, each describing an activity in the 
process. Then, we analyzed the transcripts by using Mayring’s (2015) content analysis. The coding 
scheme is based on the problem posing and modelling activities described in the literature, and the 
problem-posing activities were extended on the basis of the given material. The coding schema for 
the problem-posing activities and the modelling activities are presented in Figure 2. The activity of 
understanding is included in both coding schema and conceptualized in the same way. 

 
Figure 2: Coding Schemes for Problem Posing and Modelling Activities 

All data were coded by the first author, and over 50% of the data were coded by a second well-trained 
rater. Interrater reliability was at least moderate for problem posing (Cohen’s Kappa between κ =.81 
and κ =.95) and for modelling activities (Cohen’s Kappa between κ = .76 and κ = .92).  To gain an 
overall picture to which extent the modelling activities are already involved in the problem posing 
process, we analyzed the transcripts regarding the duration (time of sequences) and the frequency 
(number of sequences) of the sequences assigned to individual modelling activities. 
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Results 
To assess the occurrence of modelling activities in problem posing, we analyzed the frequency and 
duration of the sequences in which modelling activities took place while participants posed a problem 
(see Figure 3). The figure shows that all modelling activities except validation took place during the 
problem-posing process. However, there were strong differences in the frequencies of the individual 
activities. Simplifying and structuring could be identified most frequently in problem posing. Second 
most, understanding could be identified during problem posing, whereas mathematizing, working 
mathematically, and interpreting could be identified only rarely in the problem-posing process.  

Regarding the duration of the individual activities, the overall picture was similar, but it was 
noticeable that the duration of understanding was significantly higher when compared with the 
number of sequences. Accordingly, the sequences to which understanding was assigned included a 
long duration. Overall, participants spent most of their time understanding, simplifying, and 
structuring, whereas they addressed the activities of mathematization, working mathematically, and 
interpreting for only very short periods of time.  

 
Figure 3: Frequency (left) and duration (right) of modelling activities during problem posing 

To understand the connection between mathematical modelling and problem posing, it is important 
to analyze the co-occurrence of modelling and problem-posing activities. Table 1 presents an 
overview of the co-occurrence of these activities.  

Table 1: Co-occurrence of problem posing and modelling activities 

Problem Posing 

Modelling 

Understanding Exploring Generating Problem Solving Evaluating  

Understanding 49 0 0 0 0 49 

Simplifying/ 
Structuring 

0 94 6 14 21 135 

Mathematizing 0 0 0 12 0 12 
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Working math. 0 2 0 2 0 4 

Interpreting 0 1 0 1 0 2 

Validating 0 0 0 0 0 0 

Overall, the results revealed that the modelling activity of understanding exclusively occurred with 
the problem posing activity of understanding. Simplifying and structuring took place most often when 
participants were exploring the given situation. In the following excerpt, Max is exploring the given 
real-world situation by filtering relevant from irrelevant data.  

Max: Let’s take another look at the data for the old Nebelhornbahn. Um, I find the large-cabin 
aerial tramway rather irrelevant now. Weight empty cabin 1,600 kg and full cabin 3,900 
kg. 

However, simplifying and structuring also occurred during generation, problem solving, and 
evaluation. In the context of generation, simplifying and structuring occurred while participants were 
making assumptions or mentioning relevant information for solving the problem in the formulation 
of the self-generated problem. For example, in the following excerpt, Nina supplemented her self-
generated problem (What is the best way to shorten the waiting time for the new cable car?) with the 
information that the number of people and the speed should be taken into account when solving the 
problem.  
Nina: (Supplements problem) Consider the number of people and speed. Something like this. 

During problem solving, simplifying and structuring occurred when participants were planning the 
solution steps they would follow to solve the self-generated problem. In the following excerpt, Max 
is planning a possible solution for his self-generated problem.  
Max:  But then we also have the travel speed of 8 m/s. This means that one could theoretically 

also determine the travel time if we have the length of the route. How long the cable car 
needs from one station to the next. That would be the next solution step so to speak. 

In the context of evaluation, the possibility of solving the self-generated problem is evaluated by 
checking whether all the information is given. For example, in the following excerpt, Lea evaluated 
her posed problem by identifying the information that was relevant for checking whether all the 
information needed to solve the problem was given in the situation.  
Lea:  Because we know how fast it is, we know where it starts, we know how it’s going, and 

we can say that it’s just going straight, so it’s kind of going up as a linear function; Then 
you could/This is a nice question. 

Mathematizing came up exclusively for problem solving and working mathematically, and 
interpreting occurred during exploration and problem solving. 

Discussion and Conclusion 
In the present study, we investigated the connection between problem posing and mathematical 
modelling and in particular the occurrence of modelling activities during modelling-related problem 
posing. The analysis of the problem-posing processes of seven preservice teachers revealed the 
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involvement of nearly all modelling activities. We found that especially the modelling activities of 
understanding, simplifying, and structuring were already involved in posing a problem that was based 
on given real-world situations. Understanding was involved in problem posing because it is an 
essential part of both conceptualizations (problem posing and modelling). Simplifying and structuring 
are similar to the problem-posing activity of exploring as they are aimed at analyzing the given 
situation in an in-depth manner, and they typically co-occurred with this activity. Hence, while posing 
a problem, a situation and real-world model might already be developed. Mathematizing is less 
involved in the problem-posing process, but it typically co-occurred with the problem-posing activity 
of problem solving. Problem-solving activities while posing a problem may help problem posers to 
plan possible solution steps by creating a partial mathematical model. The other modelling activities 
(i.e., working mathematically, interpreting, and validating) occurred only rarely or not at all, and 
therefore, these activities might not be triggered by posing a problem.  

Our results indicate that especially the modelling activities located in the real world occur while 
posing a problem. Consequently, problem posing might stimulate an in-depth analysis of the context, 
something that is important to do for modelling. This result contributes to a theoretical model of the 
relationship between problem posing and modelling, and it needs to be examined in future studies. 
As the modelling activities in the real world represent a major cognitive barrier (Krawitz et al., 2018), 
posing a problem with respect to a real-world situation might help problem solvers overcome these 
cognitive barriers. Some indication about the importance of problem posing for modelling activities 
in the real world comes from results in a study by Bonotto and Santo (2015) who found that after 
problem posing, students often considered real-world aspects of the problem. Further research should 
investigate how self-generated problems are solved and whether problem posing can affect modelling 
performance. As a practical implication, our results suggest that modelling-related problem posing 
could be an innovative and fruitful approach for teaching modelling activities that are located in the 
real world.    

Our study has some limitations that we want to acknowledge. We used a qualitative research approach 
with a small sample to describe the connection between problem posing and modelling in an in-depth 
and detailed manner. Due to the design, we could make only hypothetical generalizations, which must 
be verified in future studies. Further limitations result from the real-world situations we used. These 
limitations should be kept in mind when interpreting the results of the study. Despite the listed 
limitations, the study allowed us to contribute to research on modelling by qualitatively exploring the 
connection between problem posing and modelling. We conclude that there is a close relationship 
between problem posing and modelling and that, therefore, modelling-related problem posing has 
great potential for fostering modelling.  
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Characterising the roles of digital resources in mathematical 
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Over the last decades digital resources of various kinds have entered mathematics education 
including mathematical modelling. In this paper we present the a priori analysis of a modelling 
activity based on Study and Research Path using the notions of media-milieu dialectic and Herbartian 
schema from the Anthropological Theory of the Didactic. We use these notions to differ between 
resources: digital tools, textbooks, data and to differ between the pragmatic and epistemic value of 
the resources. Finally, we discuss how task design can benefit from addressing the potential roles 
resources can play in modelling processes. 

Keywords: Mathematical modelling, media-milieu dialectics, Herbartian schema, digital tools, study 
and research paths. 

Introduction  
Through computers, with numbers of digital tools, and smartphones students have access to numerous 
resources potentially supporting their mathematical work including modelling. Initially, emphasis has 
been put on Dynamic Geometry Software (DGS) and Computer Algebra Systems (CAS), but other 
resources emerge continuously. The presence of the resources affects the objects, techniques and 
practices, students are engaging with in mathematics. Artigue claims that “mathematical objects are 
not absolute objects but are entities which arise from the practices of given institutions” (2002, p. 
248). Thus, when institutions allow the use of more resources it changes the practices for example 
within mathematical modelling and during the last CERME, the following questions were raised: 

”How can digital and physical tools change ways of approaching modelling problems? How do 
they change the meaning of “working mathematically” today? Do we need to rethink the definition 
and conceptualizations of the steps of the modelling processes when using technology and 
simulations?” (Barquero et al., 2020, p. 1108) 

Though still open, the questions are not new. Previously, Siller and Greefrath (2010) have argued 
how the merger of modelling and technology might serve both pedagogical, psychological, cultural 
and pragmatic aims for the teaching of modelling where more advanced calculations and realistic 
problems can be addressed. They have described the modelling process with an addition (an extra 
cycle) to the modelling cycle representing the role of computational media (Greefrath et al., 2011). 
Doerr, Ärlebäck and Misfeldt challenge this representation of the merger arguing that this approach 
does not capture the potentials of the new resources: “computational media both empower the 
mathematical processes involved in modelling activities by providing new “worlds” to explore and 
potentially shape the world we try to model.” (Doerr et al., 2017, p. 79). In other words, emphasis 
must be put on epistemic values just as much as pragmatic values. Though more realistic problems, 
requiring more advanced calculations, and larger amounts of data might favour the pragmatic value 
of computational media. Hence, the role of computational media should be central in our studies. 
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Greefrath et al. examined this in a study where performances by students who employed GeoGebra 
compared to those using pen and paper, did not differ. Though students’ attitudes towards GeoGebra 
and self-efficacy related to the program, were predictors for their modelling competence. They 
conclude that technological tools “cannot simply be seen as a facilitator of learning mathematical 
modelling, at least not if the tasks are not changed.” (Greefrath et al., 2018, p. 243). Thus, the need 
for analysing and understanding how we can design learning environments providing high-quality 
modelling education, which draw on “experimental materials and technology in modelling” (Carreira 
et al., 2019, p. 48) is still an open question. Schukajlow et al. (2018, p. 11) recommend authors in the 
future to “[...] take into account how technologies can be used for modelling or more generally what 
interaction between humans and media are meaningful […]”. This aligns with the claim of Artigue 
(2002) and the notion of instrumental genesis, which she argues works in two directions: 
instrumentalization and instrumentation. Trouche formulates the processes as: “the instrumentation 
process is the tracer of the artifact on the subject’s activity, while the instrumentalization process is 
the tracer of the subject’s activity on the artifact” (Trouche, 2020, p. 410), where the artefact can be 
DGS, CAS or others. In other words, when tools are used for pragmatic purposes, the students operate 
the tools to gain certain answers, which can be considered instrumentalization. When we identify 
instrumentation, it is often linked to more epistemic purposes, where students’ thinking is shaped by 
the tool and the explorations done within the tool. Thus, to capture the needs formulated by 
Schukajlow et al. (2018) and Carreira et al. (2019) we might need to link instrumental genesis with 
mathematical modelling, as done by Geiger (2017). He discusses the role of instrumental genesis and 
teachers’ orchestration through a technology rich modelling task capturing traits of authenticity, 
open-endedness and connectivity as characteristics of high-quality modelling education. He 
concludes that “by improvising and revising his approach to orchestrating students’ learning the 
teacher promoted changes in students’ schemas of instrumented action related to both the digital tool 
and also the task” (Geiger, 2017, p. 299). He continues by stating the need for further research on 
requirements for designing modelling problems, where technology acts as enabler for other design 
principles, implementation, and the learning of mathematical modelling.  

To address the challenge of designing and implementing modelling activities, where technology acts 
as enabler, we propose to explore the potentials of the Anthropological Theory of the Didactic (ATD) 
in terms of media-milieu dialectics and the Herbartian schema when designing Study and Research 
Paths (SRP).  

The media-milieu dialectics and Herbartian schema 
Below we present a generating question, , initiating a SRP modelling total income for persons with 
different levels of education. The question invites students to study of the extra-mathematical and 
mathematical domain further. Thus, we consider the modelling activity a driver for learning 
mathematics as seen in (Jessen, 2017). This paper presents the a priori analysis of the design. This is 
one of the four main components of didactical engineering from the perspective of ATD (Barquero 
& Bosch, 2015). The a priori analysis explore the potential role of digital resources for modelling and 
afterwards we discuss how this might inform design principles. From an ATD perspective, the 
modelling activity unfolds as a dialectic between study and research processes initiated by . Students 
pose derived questions, which leads them to study some media. The new knowledge gained from the 

Proceedings of CERME12 1084



 

 

media is reworked into partial answers to the derived, and hereby the generating question. This is the 
research process or reconstruction of knowledge, which takes place in the milieu (Jessen, 2017). The 
quality of the reconstructed knowledge is validated against the milieu. In ATD we use the Herbartian 
schema (Chevallard, 2008) to explain the media-milieu dialectic and identify factors affecting the 
dialectic. The schema describes the didactic system  working together for the development of an 
answer to the modelling problem : 

 ♥ 

 represents the group of students (which can be a singleton),  represents the group of teachers 
supporting ’s study of the question . Y can be a group, a single teacher, , or  in case of self-
study. The  indicates that the system of  and  bring into being a personal answer ♥ to the 
modelling question. ♥ is different from answers found in any resource, as it is the result of the 
personal or joined modelling process of a class. The modelling process in ATD is characterised as  
and ’s interaction with the milieu , which is “a fuzzy and changing set of didactic “tools” of 
different kinds that , acting under the supervision of , has to bring together ( )” (Chevallard, 
2008, p. 2). The entire process can be depicted as: 

 ♥ 

 

The elements of the milieu are media which “designate here any representation system of a part of 
the natural or social world addressed to a certain audience” (Chevallard, 2007, p. 1, our translation). 
The  denote existing answers being students’ previously learned knowledge. This includes 
instrumented techniques and ability to draw on different digital resources. The  cover resources to 
be studied during the modelling process. This can be a page of a textbook, web searches of different 
nature (Khan Academy, encyclopaedia etc.). The  denotes data in various forms. Chevallard (2019) 
argues that data can be of quantitative or qualitative nature. Students might generate data (from 
experiments or simulations), they can be found in databases, or they can be part of the formulation of 
the modelling problem. Thus, the milieu of the Herbartian Schema is the media brought together with 
the purpose of nurturing the study of the modelling problem . Note that the milieu can have an 
element of a-didactic potential as known from the work of Brousseau (1997), where “a system of 
objects acting as a fragment of “nature” for , able to produce objective feedback about its possible 
answers” (Kidron et al, 2014, s. 158). Thus, for modelling problems, their real-world contexts become 
objects to be studied by students when developing and validating an answer A♥.  

We consider the notions of media-milieu and Herbartian schema tools for designing the rich 
environments for high-quality modelling education as suggested by Carreira et al. (2019). Below we 
draw on elements of didactical engineering from the perspective of ATD when we address the 
research question of this paper: How can media-milieu dialectic and Herbartian schema support the 
characterisation of the potential roles played by digital resources in the SRP on modelling?  

A modelling problem on total income 
The generating question for the SRP has been designed to introduce the notion of piecewise linear 
functions in Danish upper secondary mathematics in grade 10 building on the notion of linear function 
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from lower secondary mathematics. In Denmark the students are allowed to use CAS-tools for their 
written exit examination and to visit webpages previously used in class (Danish Ministry of 
Education, 2017). Therefore, the students are used to search all sorts of information online and 
familiar with basic uses of CAS-tools. The problem is formulated as: 

Three friends completing lower secondary school in Denmark discuss their plans for further 
education. One is planning to get a job without pursuing further education. The two others plan to 
become a nurse (bachelor degree) and upper secondary teacher (master degree) respectively. They 
discuss when each of the different strategies have given the larges total income? Below you find a 
table of average income in Danish kroner (DKR), as result of years of completed education. 

Table 1: The table of average income corresponding to years of education 

Years of 
education 

9 12 14 16 18 21 

Average 
Income/year  

210.000 
DKR 

310.000 
DKR 

365.000 
DKR 

370.000 
DKR 

490.000 
DKR 

520.000 
DKR 

The entries correspond to completing lower secondary, upper secondary, short further education, 
bachelor’s degree, master’s degree, and the PhD degree. The idea behind the problem is to create the 
need for piecewise defined functions and the specific notation linked to this. The teacher can enlarge 
the milieu by the end of the modelling process, introducing a work, , presenting the notation. The 
idea of enlarging the milieu with intentions of the a-didactical situations has been reported on by 
Grønbæk & Winsløw (2015). Striving to promote self-study element on complex numbers for first 
year students, they designed media and milieus for students to explore. They argue for their design 
choice by stating “when students study and encounter an inference they do not follow, they are 
supposed to consider the text as a milieu that resources and constraints their efforts to fill the gab” 
(Grønbæk & Winsløw, 2015, p. 2132). The same idea has been explored by Jessen (2017), who 
explicitly designed a repository offered to the student to consult, when and if they encountered 
shortcomings of their existing knowledge and techniques. We will return to this idea later.   

An a priori analysis of the SRP   
As Grønbæk & Winsløw (2015) we here present the potential paths of students working with this 
SRP, not having a repository. We present the potential strategies, which serve as an argument for 
generating power of . Not all strategies require the use of digital resources. Basic pen and paper 
methods allow students to add income for each person. This requires knowledge about educational 
length for nurse and upper secondary teacher. This can be found online through webpages or 
educational guides. This represents data, , brought into the milieu by the students. The strategy can 
be eased using spreadsheets as indicated in figure 1, where blue fields mark the years where the 
nurse’s total income is largest, the orange is when the teacher exceeds both. This strategy draws on 
existing answers, , in terms of arithmetic, and instrumented techniques if using spreadsheets.  

Some students might consider the spreadsheets tables, they can create scatter plots from. Some might 
experiment with linear regression using Excel, GeoGebra, etc. Both instrumented techniques and 
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existing answer, …The tables can be considered self-generated data, . When the digital tool plays 
the role of media it provides the students with answers. When exploring what function fits data, we 
consider the digital tool the milieu for exploration. Thus, the scatter plot might be yet another answer 
or experiments with different types of function. It depends on the context and the students discourse 
regarding the problem of fitting data. If new knowledge is reconstructed, we consider it research and 
the digital tool is the milieu supporting this.  

Other students might recall the notion of linear functions, , identify the average income as the slope 
of a linear function. The -axis represents time measured in years. When the linear function is 
expressed as , where  is total income in thousands of DKR, they need to determine 
the constant . For the person without further education, we have . In this scenario the students 
need to determine  for the nurse, where , since it takes 6.5 years 
to complete nursing school. The slope of the function is 370, and students 
should solve the equation . Which means . 
This reasoning requires several notions and formulas (known answers, 

 ) put together in new ways. The students’ interaction with the 
milieu provides the students with new answers and further practiced for the 
teacher. 

Some students might choose to use CAS-tools and the ‘solve’ command to 
do the same. Depending on their instrumental genesis, this might affect their 
conception of the models developed. The pragmatic use of the CAS-tool 
provides them with an answer to be studied, , and incorporated with the 
models they are building. From here the intersection points can be found 
solving the equation where two functions are equal or using apps 
in the CAS-tool. This leads to the construction of different 
mathematical knowledge. The simple models of total income are 
presented at the left side of figure 2. When shared with classmates, 
the models become new answers brought into the milieu by students for their classmates to study. 
The different approaches will provide them with broader perspective on choices made during the 
modelling process.  

For some students the real world will drive them to elaborate their models. Most students know that 
Danish government provide financial support to students after turning 18. The amount depends on 
whether you live at home or away from home, and the parents’ income. These data, …, are to be 
found online and to be use in the models describing the nurse and the teachers’ total income. Other 
income from student jobs might also be included providing new pieces in each model. 

This can be modelled by adding numbers by hand or in spreadsheets as an elaboration of the strategy 
shown in figure 1. Again, students might choose to experiment with scatter plots and linear regression 
for certain domains. Here the digital tools have epistemic value, when students’ partial answer 
becomes objects to be explored further using notions, works and existing answers. Alternatively, they 
might try to use the strategy of being able to find the slope of each part of the function using the 
potential amounts of income (financial support, student jobs etc.). 

Figure 1: spread sheet solution 
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Figure 2: Two different solutions with linear and piecewise linear functions respectively 

Then the strategies will be like those used to produce the models of the left side of figure 2 taking 
each domain into consideration. For this strategy the digital tools will mainly have pragmatic value. 
Though the tools allow the development of still more elaborate models to be done faster, using CAS-
tools. This is valuable, when engaging students in continuously improving their models against the 
extra-mathematical context. Finally, when the teacher elaborates the milieu by introducing the 
notation for piecewise linear function and syntax for this using CAS-tools, the teacher provides the 
students with the a-didactical potential of formalising their previous work. Simple examples of 
models based on this new knowledge is presented at the right side of figure 2.  

Not all students will be able to use this notation, why it is important to orchestrate validation of the 
different models by asking the students to compare and contrast their answers, helping them to realise 
which piece of the scatter plot is representing the blue fields from the spreadsheet and how is this 
represented in the formal notation of piecewise linear functions? 

Discussion and concluding remarks 
From the a priori analysis we can argue that media-milieu dialectic and Herbartian schema allow us 
to identify the roles played by digital resources in the SRP on modelling as being the provider of data, 
and new answers or work to be studied. In some cases, the tools might function as reminders of 
notions or tools taught previously. Also, the digital resources represent the perceived reality against 
which hypotheses, notions, newly constructed answers, and still more elaborated models are explored 
and validated. Moreover, SRP and the media-milieu dialectic seem to provide the students with the 
autonomy to enlarge the milieu or to choose known methods and answers as starting point for their 
modelling process. We can argue that SRP based modelling activities where the media-milieu 
dialectics are explicitly considered in the design process offers a richness in terms of number of 
strategies, students might pursue depending on previous learning. It allows students to experiment 
with data from various resources, and different uses of technology. We consider this the outset for 
high-quality modelling education as requested by Carreira et al., 2019. The notion of Herbartian 
schema naming resources as answers, works or data, which all can shift between being media to be 
studied or milieu employed in research processes can highlight changing roles that enrich modelling 
and enable us to harvest the pedagogical, psychological, cultural, and pragmatic aims of merging 
modelling and digital tools as Siller and Greefrath (2010) argued for. Jessen (2017) draw on media-
milieu dialectics and Herbartian schema for the a posteriori analysis. If we do the same for technology 
rich modelling activities, we might be able to describe the potential meaningful interaction between 
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humans and media as asked for by Schukajlow et al. (2018). This resonates with the instrumental 
genesis approach adopted by Geiger (2017), though his framework does not capture episodes where 
the digital tools provide new knowledge in terms of search for data or works to be studied. The study 
process might be the most novel contribution to modelling activities: to explore the potential of small 
elements of direct instructions, brought into the milieu by the students. Therefore, when Doerr et al. 
(2017); Geiger (2017) and Greefrath et al. (2018) argue that the presence of technologies in 
mathematics education calls for a change of tasks designed for modelling activities to capture new 
potentials. We propose to consider the digital tools and technologies both as media and milieu 
facilitating students’ exploration of modelling as a dialectic study and research processes. Thus, from 
a task design perspective, we need to experiment with ways to nurture both study processes and 
research processes. We need to explore how technology and different tools can nurture those 
processes. What is gained, what is lost in the shaping of mathematical modelling? And if the 
modelling functions as driver for learning mathematics, how does this approach shape the 
mathematical object constructed through the modelling process?  
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The study presented in this paper focuses on primary school teachers engaging with the Body Mass 
Index (BMI) as part of a university course. The BMI is seen as an example of prescriptive modelling 
where mathematics is used to keep track of the obesity phenomenon. Four categories are developed 
to characterize the teachers’ discussions: the mathematical aspects of the BMI formula, meta-
validation, the consequences of the use of the BMI and other indices in society, as well as on their 
teachability in the classroom. The results can contribute to developing an understanding of 
prescriptive modelling processes from a critical perspective. 

Keywords: Prescriptive modelling, teachers’ discussions, critical perspective. 

Introduction 
In this paper, we investigate the processes some in-service teachers go through when they discuss a 
task about a mathematical model like the BMI and its inclusion in mathematics education. Blum 
(2015) highlighted four purposes for using mathematical modelling in education: helping students to 
use mathematical knowledge to make sense of extra mathematical situations (pragmatic); developing 
argumentation and modelling competencies (formative); exploring the relationship of mathematics to 
real life and the mathematics’ role in shaping society (cultural); and affective issues such as students’ 
interest in mathematics (psychological). The study presented here is particularly situated in the 
cultural perspective, with a specific focus on a critical view of mathematics’ role in society. 

In mathematics curricula around the world, such as in the Department of Basic Education (2011) in 
South Africa, in the Common core state standards initiative (2010) in the USA, and in the Australian 
curriculum, assessment and reporting authority (2015), modelling and applications play a key role. 
Similarly, in the mathematics curriculum in Norway, modelling & applications is one of six core 
elements and concerns students’ insight on how mathematical models are used to describe everyday 
life, work-life, and society, as well as students’ competence to solve problems from reality by using 
mathematics (Ministry of Education and Research, 2020). Democracy & citizenship is an inter-
disciplinary topic in mathematics, aiming at students’ awareness of the prerequisites and premises of 
the mathematical models used in society by giving them opportunities to work with real data sets 
from different fields. Modelling and models are seen as a possibility for students to understand the 
role of mathematics in society, which is the focus of socio-critical modelling and connected to the 
cultural arguments for using mathematical modelling in education (Blum, 2015). Barbosa (2006) 
defined this perspective as modelling as critic, where students’ ability to criticize the mathematical 
models is achieved through the learning of mathematical concepts and modelling competencies. 

Niss (2015) distinguished between two types of modelling. In descriptive modelling, the aim is to 
find a model that can be the answer to a problem from extra-mathematical domains. In prescriptive 
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modelling, the aim is “to pave the way for taking action based on decisions resulting from a certain 
kind of mathematical considerations, in other words ‘to change the world’ rather than just ‘to 
understand the world” (p. 69). The differences between the two types of modelling centre around the 
process of modelling. While examples of research in mathematics education focus mainly on 
descriptive modelling, Niss (2015) called for research on prescriptive modelling because of the 
impact such modelling has on society. Indices, like the BMI, are examples of prescriptive use of 
models in our society. We consider the term index as a measure of one or several chosen variables 
connected to a relatively large sample taken from a population or set. BMI is computed as the ratio 
between the weight (m) of a person in kilogram, and the squared height (h) in meters: m/ . The BMI 
values should be between 18.5 to 24.9 kg/  for an adult to be considered of normal weight. The 
model is used extensively e.g. in medical contexts, in keeping track of obesity in individuals and 
populations, even though it has known limitations (e.g. Hall & Barwell, 2015; Kacerja et al., 2017).  

Given the emphasis on modelling in the curricula, mathematics teachers across the world have the 
task to make mathematical modelling an integral part of students’ learning of mathematics and 
connect it to students’ development of critical competence and critical citizenship. Following Niss’ 
(2015) call to focus on prescriptive modelling, we have used the BMI with in-service primary school 
teachers (grades 1.–7.) to facilitate discussions about the mathematical models’ impact in society. 
The novelty in our study consists in the use of prescriptive modelling examples in teacher education 
settings and in collecting empirical data from teachers’ discussions about indices. According to Niss, 
little is known about the processes when people engage with prescriptive modelling. In this paper, we 
address this gap by exploring the research question: what characterizes teachers’ discussions about 
indices and how they, the BMI in particular, can be used in mathematics education? We include a 
critical mathematics perspective to provide insights into teachers’ understanding of indices’ roles in 
education and society.  

Theoretical considerations 
Several researchers have described processes involved in mathematical modelling. Niss (2012) 
defined the mathematical modelling cycle as the process that starts with “some extra-mathematical 
domain, moving into some mathematical realm so as to obtain mathematical conclusions and 
translating these back to the extra-mathematical domain” (p. 50). A model of the modelling cycle 
which is often referred to is the one by Blum and Leis (2007) with two connected worlds: the 
mathematics and the real world. Even though there are different modelling cycles presented for 
descriptive modelling, there are some common elements we find in all of them. An extra-
mathematical problem is the starting point. Then through discussions, the problem is translated into 
a mathematical problem, and mathematical concepts and processes are used to find one or several 
models as solutions to the problem. An important phase of the modelling process is the de-
mathematization of the solution, choosing the best solution (model) while interpreting it in relation 
to the original problem. If the solution does not make sense for the problem at hand, then a new 
modelling process must start. 

In the socio-critical perspective in modelling, Rosa and Orey (2015) emphasized that “students are 
expected to understand, reflect, comprehend, analyze, and take action to solve problems taken from 
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their own reality” (p. 390). They presented a social-critical mathematical modelling cycle, where the 
real problems are environmental, political, social etc. This focus is in line with the purpose that the 
socio-critical perspective applies for mathematical modelling, where students should understand the 
role of mathematics in society, and develop tools for their social-critical efficacy, which they can 
further apply in other cases as well. In the modelling process, the emphasis is on the individual 
modeller, and it includes action since the aim is for students to be able to act upon reality. 

Doerr, Ärlebäck and Misfeldt (2017) underlined the necessity to have several representations of 
mathematical modelling to capture the multiplicity of perspectives in mathematics education. The 
modelling cycles such as the ones by Blum and Leis (2007) and Rosa and Orey (2015) are different 
and capture different aspects of modelling. They are however not enough to describe students’ 
working processes when involved with prescriptive modelling (Niss, 2015). By exploring three 
examples, one of which is the BMI index, Niss argued for some of the limitations of the existing 
modelling cycles that “become very rudimentary when applied to the BMI model” (p. 71). In our 
study, while exploring an existing model such as the BMI index, the processes of idealizing the extra-
mathematical situation and mathematizing the question posed, become trivial in the sense that the 
index already exists. As Niss (2015) discussed, the mathematical treatment reduces into replacing the 
weight and the height of a person into the BMI formula and the de-mathematization process reduces 
into finding the interval in which the person can be placed based on the number obtained (p. 70–71). 
Niss (2015) argued that two aspects of the modelling cycle that need to be more developed in existing 
models to adapt it to prescriptive modelling are meta-validation and critique of the model. Meta-
validation requires looking critically at three points: how the modelling results influence the discourse 
around the problem that was modelled; how the obtained model is compared to other potentially 
relevant alternatives; and how a change in the requirements influences the modelling and its 
outcomes. An important contribution from our study is the attention towards teachers’ reflections 
upon the possible uses of BMI and other indices in their classroom teaching. In this paper, we analyze 
the teachers’ discussions to characterize how they talk about including the BMI in their teaching and 
which of these three, and other processes, they go through. This can be seen as a first step in 
developing an understanding of prescriptive modelling processes and their use in school settings.  

Method 
The participants in our study were twelve in-service primary school teachers who attended a course 
on Numeracy across the curriculum. After a teaching session in which one teacher educator presented 
some uses and misuses of mathematics and the idea of an index, the teachers were divided into two 
groups and given 60 minutes to work with the BMI task. The task had three sets of questions: the first 
included questions about what BMI is, the formula and purpose of the BMI, what it measures, and 
how it could look differently; the second concerned the use of the BMI in different contexts in society 
and the meanings of the use; and the third focused on the teachers’ thoughts on using indices in their 
teaching of mathematics, possible reasons for including or excluding such topics in schools, as well 
as thoughts about similar index-related examples they have used. A picture of a muscular rugby player 
with a high BMI value was included. The purpose of the BMI task was to structure and guide the 
discussions towards the mathematics in the indices, the role that indices have in our society, and how 
teachers see possibilities and challenges in using indices to promote critical thinking with their 
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students. There were two teacher educators present, one in each group, to observe the discussions and 
provide a better understanding of what the teachers said, and make sure that the teachers addressed 
all three sets of questions of the BMI task. After a few minutes of discussion, the groups were given 
the BMI formula and the cut-off points for six weight categories. The teachers did not follow the 
structure of the question sheet, they jumped back and forth, but in the end, they had covered all the 
questions. The discussions were audiotaped and transcribed. 

All the authors of this paper worked together through several cycles to analyze the data applying a 
thematic analysis approach (Braun & Clarke, 2006). The three sets of questions from the question 
sheet were used as initial, overarching codes, combined with the recommendations by Niss (2015) on 
meta-validation and critique of the model. The teachers' utterances were analyzed within the framing 
of the question sheet. We went systematically through some initial parts of the data as a whole group 
and analyzed the teachers' utterances according to the different codes. Then we continued the coding 
process in smaller groups to complete the first coding before we as a group compared and refined the 
coding to generate the final categories. The initial analysis was based on the question sheet, but the 
succeeding code and retrieve process was based on what the teachers said. The analytical process was 
therefore twofold in which the main part of the categories and subcategories were generated 
inductively from the data. We also used premade categories deductively, but also these categories 
were refined based on what the teachers said.  

Results 
In Table 1 below, we present the results – the categories developed from the analysis of the teachers’ 
discussions: 

Table 1: The categories (underlined categories are generated from the data, the others are premade) 

A Investigating the index (BMI) concept and formula 
A1 What is an index (BMI) 
A2 What does it measure? 
A3 Variables 
A4 Reflections about previous knowledge 

B Evaluating alternatives (meta-validation) 
B1 Formula - how could it look differently 
B2 Challenges (neglected variables, measurement 

inaccuracy etc.) 
B3 Point out existing alternatives, compare with 

alternatives, adapt the index 

C Influence and use in society 
C1 Pros of using BMI 
C2 Cons of using BMI 
C3 Seeking/giving information 
C4 Critical 
C5 Examples 

D Teachability 
D1 Reflections, appropriateness mathematically 

and thematically 
D2 Reflections, appropriateness ethically 
D3 Reflections on own knowledge about indices to 

use them in teaching 

Categories A (investigating the index) and B (evaluating alternatives) include the teachers’ utterances 
when addressing mainly the first set of questions from the question sheet. Here the meta-validation 
questions by Niss (2015) are integrated as part of category B to characterize the discussions when 
teachers look at alternative formulas and point out challenges of the existing formula. Category C 
(influence and use in society), including critique, stems mainly from the teachers’ discussions of the 
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second set of questions. Here the notion of critique by Niss (2015) is found on discussions where the 
inappropriate use of the model is criticized (cons) and the results of such use on the discourses around 
the obesity problem are brought forward. Category D (teachability) is connected to the third set of 
questions from the question sheet.  

Investigating the index (BMI) concept and formula (category A) 

The following discussion takes place at the beginning of the discussion in group 1, where the teachers 
have not yet seen the formula of the BMI (the teachers are anonymized and numbered like this: T1, 
T2 …). One of the groups starts the discussion with T1 reading aloud the first question: "What is 
BMI?" T2 answers "it has something to do with the body", focusing on what the index measures (an 
A2 category utterance). T3 includes variables, “it has to do with height and weight” (A3) and adds 
“it is a ratio” (A2). The teachers search for answers together by saying what they think BMI is and 
what they seem to remember concerning body, height, weight, and ratio. They have not yet seen the 
formula, but they are closing in as the ratio is between the weight and the square of height. 

Towards the end of the group discussions, when talking about how to teach about something like 
indices, the teachers go back to their initial reflections trying to make sense not only of the BMI but 
also of what an index is or can be. The question by T4, “When we measure temperature and rainfall, 
do we work with indices?”, is such an example, where the teachers are trying to find out what qualifies 
to be an index. Similarly, T5 asks: “if you some days in advance get a considerable increase in the air 
pressure, you quite often see an improvement of the weather […]. Is that an index?”  In this category, 
the teachers focus on what they know about BMI: what an index is and BMI in particular (A1); 
discussions about what it actually measures, usually related to different uses of BMI they know about 
(A2); the variables used to measure it, such as the weight and the height (A3); and in addition, they 
talk about their previous knowledge (A4) about BMI. The categories from A1-A3 are nuances of 
teachers’ investigations of the BMI as they try to make sense of it. It is difficult to distinguish between 
the three subcategories as the answers are often intertwined, but they are valuable for being able to 
nuance the discussions. 

Evaluating alternatives, meta-validation (category B) 

Another question in the first part of the question sheet asks if the formula could look differently. This 
question is connected to the meta-validation process as introduced by Niss (2015). To answer the 
question, the teachers present examples of the different uses of the BMI they know about. One such 
example is the picture of a rugby player on the question sheet with a muscular body, but with a BMI 
of 35.98 kg/m2 is placed in the obese class II according to the cut-offs provided by the BMI model. 
T4 compares the rugby player with a person “who does not train, that has eaten too much, right. It 
does not say they are in the same shape; it just says they have the same weight”. There is a discussion 
of muscles weighing more than fat, and how this is not taken into consideration in the BMI formula. 
This aspect is categorized as a challenge (B2) in terms of neglected variables in the formula. 

Other examples, such as the use of weight and height graphs for small children, which even though 
they are not direct examples of the use of BMI, are referred to in the discussions. These graphs 
monitor children’s development to ensure they grow as they should by comparing a child’s measures 
to the curves of the average children at the same age. In these examples, the teachers focus more on 
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how the BMI or other indices are used, sometimes without considering geographical factors. Other 
challenges of the BMI are taken into the discussions, such as measurement inaccuracies (B2) and the 
effect these can have on the results of the formula. The teachers point out existing alternatives such 
as waist circumference as a better measure that in some respects takes into account the fat vs muscles 
issue. They often express the need to combine those two measures to get a better picture of someone’s 
health. These discussions are categorized as B3, as adaptions or alternatives to the BMI.  

Use and influence in society (category C) 

When the teachers in group 2 discuss the question “What do you think about BMI’s role and use in 
society?”, they use examples to illustrate their answers (C5). Examples vary from personal ones about 
themselves or their family members, to examples of extreme cases where the formula does not fit. A 
representative example is T6 saying “I am worried about who shall decide what is right about weight”. 
T6 gives an example about a 14-year-old girl who was told her weight was a little high, but T6 did 
not agree with this at all. The example is personal (C5), and T6 is critical (C4) towards the uncritical 
use of BMI, without considering other factors besides the number from the BMI formula. The critique 
is also directed to the ones who use the formula and have decision power. The example can also be 
seen as being against the use of BMI (C2). Among the examples that support the use of the BMI (C1), 
we find: “I think, from a society perspective and when used sensible, that this is a good tool. What 
else shall health nurses or I use … if we don’t have standards?” The reasons for accepting the use of 
the BMI are often connected to the need of having standard tools. In these discussions, the teachers 
often elaborate on the examples by arguing for why the formula is necessary (C1), or on the contrary, 
giving reasons for why the formula should not be used (C2). They often ask questions seeking for 
information or giving information (C3), and it is usually when taking into consideration the different 
examples that they are critical towards the use of the index (C4). 

Teachability (category D) 

The last section on the question sheet is connected to the participants’ work as teachers and their 
thoughts about the possible use of indices in school teaching. In the following example from group 
2, the participants are trying to make sense of the BMI formula, and T7 says, “I think it is very difficult 
to think that one also measures area”, and T8 adds, “yes, surface area”. At the same time, the teachers 
are thinking about their students, and T7 says: “Talking with the students about this and then you take 
kilos and then you divide it by the area of the body”. T7 is thinking aloud about how to present the 
topic so that students can make sense of it from a mathematical point of view, which is an example 
of discussions of the mathematical appropriateness of the BMI (D1). T7 adds immediately after “hm 
... there is something wrong, isn’t it?” showing uncertainty on how to present it since the teachers 
themselves are having problems with figuring out how to talk about this with the students (D3). 

In the teachers' answers, we identified several reflections about the BMI and other indices’ 
appropriateness to be used in teaching. They discuss both thematic appropriateness in terms of the 
mathematical level (D2) and ethical appropriateness in terms of BMI representing obesity that can be 
a sensitive topic for their students (D1). All of these aspects came in addition to their discussions of 
teachers’ knowledge about indices to include them in their teaching (D3). At this point, they often 
ask themselves the question: what is an index? 
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Discussion and concluding comments 
In this paper, the focus has been on in-service primary school teachers’ discussions of the BMI and 
the use of indices in education. We have looked at the discussions from a critical perspective where 
the aim is to facilitate an understanding of and criticize the role of mathematics in shaping society. 
As we found through the categories in the study, the teachers engaged in discussions about the 
mathematical aspects of the BMI formula and their knowledge of it (A); about alternatives to the BMI 
and its limitations, or meta-validation processes (B); about the BMI’s use and influence in society 
(C) as well as about teachability of BMI and indices in general (D). These categories were also 
nuanced with subcategories that capture different aspects of teachers’ discussions.  

Like in several of the mathematical modelling cycles (e.g. Blum & Leis, 2007; Rosa & Orey, 2015), 
the starting point of the discussions in our data is an extra-mathematical situation, the BMI and its 
use in society. However, the discussion of the mathematics in prescriptive modelling is different from 
the aforementioned descriptive modelling cycles, as also Niss (2015) pointed out. In our data, teachers 
discuss an existing mathematical formula (categories A and B), by comparing it to alternative models 
(B3) and pointing out weaknesses such as missing variables (B2). Similarly to the socio-critical 
modelling cycle (Rosa & Orey, 2015), the teachers discuss the role of the BMI model in society 
(category C). At this point, our data allowed us to nuance the way teachers did this by weighing pros 
and cons for using BMI (C1 and C2), by being critical (C4), by seeking further information (C3) and 
by providing examples (C5). The categories and subcategories made it possible to further develop the 
aspects of meta-validation (B) and critique of the model (B and C) as processes of the prescriptive 
modelling cycle that Niss (2015) called for. Our study adds the teachability aspect (D) to prescriptive 
modelling. Since we work with teachers and their competence to engage students with examples of 
the uses of mathematics in society, it is important for us as teacher educators to know the teachers’ 
challenges and possibilities for working this way. This adds another perspective for understanding 
ways of implementing these examples in teacher education and school mathematics.  

The categories and subcategories are a step towards finding ways to represent working processes in 
prescriptive modelling. The importance of such representations was emphasized by Doerr, Ärlebäck 
and Misfeldt (2017) and Niss (2015). The representations can be used in further research about 
prescriptive modelling and socio-critical perspectives in modelling, but also for teaching about the 
mathematics' role in society. The categories show that the teachers were given the possibility to 
engage in critical discussions of BMI and indices in general, from different angles. Given this 
possibility, indices can be a starting point to develop a critical perspective in mathematics. As Niss 
(2015) and Hall and Barwell (2015) also recommended, focusing on such models allows for 
developing insights both into the mathematical and the societal aspects of the models and their 
consequences, which lies at the heart of the critical mathematics perspective. 
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Motivation 
Modelling means solving a real-world problem with the help of mathematics. A modelling process 
can be analyzed using an ideal modelling cycle with the steps: understanding, simplifying, 
mathematising, working mathematically, interpreting, validating and exposing (Greefrath & 
Vorhölter, 2016). Consequently, dealing with modelling tasks not only entails dealing with a 
mathematical problem, but also with the real-world situation described in the task. In a classroom 
there are children with a variety of personal interests. Thus, the question arises to what extent these 
personal interests influence the working on a modelling task. This study therefore compares the use 
of the real-world context by individual students when working on two modelling tasks in which 
students have much/little personal interest in the real-world context.  

Theoretical framework  
The person-object conception of interest differentiates between two types of interest: 1) Situational 
interest which is aroused by the conditions of a situation. 2) Personal interest which is a longer lasting 
characteristic of a person that goes along with a high subjective esteem, positive emotions for the 
content (Krapp, 2000) and a lot of knowledge about it (Renninger et al., 2002). 

Ainley et al. (2002) identified a connection between interest in the topic of a reading task and 
persistence and learning outcome. When working on mathematical word problems in a context of 
high or low developed personal interest, Renninger et al. (2002) found out, that the influence of the 
context can be different depending on the interest in mathematics itself and the mathematical ability. 
The way of dealing with the real-world context of a modelling task can be very individual and 
variable. However, Busse (2011) was able to distinguish between “four different ideal types of 
dealing with the real-world context: reality bound, integrating, mathematics bound, ambivalent” (p. 
38). Concerning mathematical application tasks Stillman (2000) showed that prior knowledge of an 
application task context can help students to engage with the task or check results for reasonableness. 
Nonetheless, the prior knowledge might still have negative or neutral effects as well. Krawitz and 
Schukajlow (2018) examined the impact of prior mathematical knowledge on the solution of 
modelling tasks. They discovered that it depends on the appropriateness of the activated knowledge, 
whether the prior knowledge promotes or interferes with the solution process. Since personal interest 
is often accompanied by a lot of knowledge, it could be interesting to investigate, whether the effects 
of prior knowledge are applicable in a similar way for personal interest.  

Research questions and Methods 
As there are hints to both positive and negative effects of interest on the working on a mathematical 
or reading task, the present study aims to investigate the impact of personal interest in the context of 
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a modelling task on the working progress. The following research questions are examined:  

 At which points in the working process do students refer to the real-world context of the 
modelling task when they have much or little interest in the context? 

 At which points is personal interest mentioned by students when working on a modelling task 
in which they have a personal interest in the real-world context? 

 To what extent does the personal interest in the real-world context of a modelling task have 
an impact on the working on the task? 

The study consists of two parts: First, a class of 7th grade is presented an interest questionnaire. Based 
on the results students are selected for participation in the next step. Second, 10-15 students work 
individually on three modelling tasks using the “think-aloud” method. One task with a high personal 
interest in the context and one with low interest, respectively. In between there is a buffer task as a 
distraction. The tasks are followed by a short interview about the working process.  

Outlook 
Data collection is currently being carried out. Using a qualitative content analysis, the working 
process will be divided in the steps of the modelling cycle. For each student, a comparison is made 
of whether the points, at which the context is considered in the work, differ depending on whether 
there is much or little interest in the context. Also, the points, where interest or prior knowledge is 
used, are coded, so one can see if there are differences for tasks with much/little interest in the context. 
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The problems that are found in the real world, mathematics, and science are usually ill-defined 
problems. By contrast, the problems given in classrooms tend to be well-defined. It can be useful for 
students to solve modelling problems so they can learn how to deal with ill-defined problems. In a 
qualitative study of ninth to eleventh graders (N = 12) in different secondary school tracks in 
Germany, we investigated how students process modelling problems with missing data. We found 
that students have difficulties noticing when data are missing from some problems. When students 
notice the missing data, they notice it at the very beginning of their processing, after understanding 
the problem, or while validating the mathematical results. After noticing, either the students were 
able to make a realistic assumption about the missing data using various strategies, or they made no 
assumption at all. The theoretical and practical implications of the study are discussed. 

Keywords: Mathematical modelling, ill-defined problems, missing data. 

Introduction 
Having students solve problems is an integral part of mathematics teaching all over the world. The 
problems that are typically given in school have a clear structure, include all relevant data, do not 
include any superfluous data, and have exactly one solution. This type of problem is known as a well-
defined problem. By contrast, the problems encountered in everyday life and at work are often ill-
defined and have multiple solutions. Consequently, their solution processes differ from the processes 
needed to solve well-defined problems. In mathematics education, ill-defined problems are defined 
as problems situated in a specific context, where one or more aspects of the problem are not well 
specified, the problem description is not clear, or all the data needed to solve the problem is not 
provided in the description (Jonassen, 2000). One important type of ill-defined problem is a problem 
with a connection to reality (e.g., a modelling problem). Modelling problems are characterized by a 
demanding process of transferring information between the real world and mathematics. Modelling 
problems can be ill-defined in different ways, for example, when the initial state of the problem is 
unclear and the initial data are missing, so-called modelling problems with missing data or open 
(-ended) modelling problems. Modelling problems as ill-defined problems have rarely been the focus 
of research yet. In this study, we aimed to analyze how students process modelling problems with 
missing data and how they overcome the difficulties that occur while solving these problems. The 
theoretical foundations of this research are theories about the processes involved in solving modelling 
problems (Blum & Leiss, 2007) and problems with missing data (Krawitz et al., 2018). 

Theoretical background and research questions 
Modelling problems 

Mathematical modelling is an important competency that is part of mathematical literacy and is 
included in many national curricula and in mathematics teacher education. Modelling problems have 
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been found to be difficult for students to solve due to the cognitive complexity of such problems. In 
order to describe which activities students need to engage in to solve modelling problems, several 
approaches and numerous theoretical models of the solution process have been developed in previous 
research (e.g., Blum & Leiss, 2007; Galbraith & Stillman, 2006). An idealized process for finding a 
solution to a modelling problem proposed by Blum and Leiss (2007) is the following: The first phase 
involves understanding the problem and constructing an individual situation model. Second, the 
students have to construct a real model by simplifying and structuring the situation model. 
Afterwards, the real model is transformed into a mathematical model. The mathematical model allows 
the student to apply mathematical procedures to compute a mathematical result. Then the 
mathematical result is interpreted with regard to reality in order to obtain a real result that should be 
validated with respect to the real situation. The validation can lead to the need to revise the solution 
and the constructed models by applying the modelling cycle again. There are various types of 
modelling problems with different characteristics (Maaß, 2010). An important characteristic of 
modelling problems that is particularly relevant to this study is that they often do not contain all the 
data needed to find an accurate solution (i.e., the initial state of the problem is unclear). Following 
Maaß (2010), such modelling problems will be titled modelling problems with missing data. An 
example of a modelling problem with missing data is the “Fire Brigade” modelling problem (see 
Figure 1). Missing data for this modelling problem include the position in which the fire engine is 
parked or the height of the fire engine where the ladder is attached.  

 
Figure 1: The “Fire Brigade” modelling problem, modified from Schukajlow and Krug (2014) 

Characteristics of modelling problems with missing data 

In ill-defined problems, the data, goals, and operators are not clearly specified (Jonassen, 2000). 
Modelling problems with missing data share these important characteristics with ill-defined 
problems, including the opportunity to develop different solutions to the same problem. From a 
normative point of view, the ability to solve modelling problems with missing data can be useful for 
students' actual and future lives because most of the problems that occur in their daily lives and at 
work are ill-defined. Schukajlow and Krug (2014) identified benefits of prompting students to find 
multiple solutions to modelling problems with missing data on students’ interest, experiences of 
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competence, and autonomy. In another study, a feeling of autonomy that came from solving 
modelling problems with missing data was found to be one of the important sources of students’ 
interest in these problems (Schulze Elfringhoff & Schukajlow, 2021). In previous research, many 
studies have used modelling problems with missing data without emphasizing that data were missing, 
which is an important feature of the problem. A typical class of modelling problems with missing 
data are Fermi problems, where a large amount of information is missing, and reasonable assumptions 
and a series of estimates are necessary for finding a solution (Ärlebäck & Bergsten, 2013), much 
more than in the problem presented in Figure 1. Therefore, the special type of problem used in this 
study is characterized as unique because it is missing relatively little data, but the data that are missing 
are crucial for the solution with respect to reality.  

In order to solve modelling problems with missing data, such as the one in Figure 1, three steps seem 
to be crucial from a theoretical point of view (Krawitz et al., 2018): (a) Students must identify the 
problem as an ill-defined problem by noticing that the numerical data given in the problem is not 
sufficient to solve the problem adequately; (b) they must identify which quantities have to be 
estimated; and (c) after noticing which data are missing, they have to make assumptions about how 
to deal with the missing data. In order to make assumptions, students need to conceptualize the real-
world situation, which requires realistic considerations and extramathematical knowledge. Further, 
estimation skills and strategies, such as the reference point strategy, are necessary. For the “Tree 
Track Adventure Park” modelling problem (Figure 2), students must notice during their processing 
that Mr. Meier needs enough rope so that the rope that will connect the two trees can be securely 
attached to each tree. Thus, students must estimate how many meters of additional rope will be needed 
to securely attach the rope to each tree by wrapping the rope around the trees. To make an assumption, 
students can either just estimate how much rope will be needed, or they can compute the amount of 
rope that will be needed after estimating how thick the trees are and how many times the rope will be 
wrapped around them.  

 
Figure 2: The “Tree Track Adventure Park” modelling problem, modified from Schukajlow and Krug 

(2014) 

If the students neglect the real-world aspect of attaching the rope, they can still calculate how many 
meters of rope are needed between the trees and give this as an answer, thus concluding that Mr. 
Meier has enough rope, but this is in fact an unrealistic answer. The rope that is available is not 
enough because Mr. Meier needs more rope to attach the rope to the trees, so he needs to buy more 
rope.  

Proceedings of CERME12 1103



 

 

No or inappropriate assumptions in a modelling problem can also result in an inadequate situation 
model and an inadequate mathematical model for the problem situation (Chang et al., 2020). Thus, it 
is important for students to master the steps needed to solve modelling problems with missing data. 
Previous studies have pointed out that students have trouble solving modelling problems with missing 
data because they seem to separate their knowledge of the real world from their mathematical 
knowledge and tend to ignore the context of the problem (Galbraith & Stillman, 2001). However, in-
depth research on students’ individual work and thinking with respect to the demands of such 
problems is rare.  

Research questions 

In this study, we addressed students’ processing of modelling problems with missing data. Thereby, 
we first analyzed the extent to which students noticed missing data while processing modelling 
problems with missing data. Second, we investigated whether students made assumptions about the 
relevant missing data in the modelling problems used in this study. Thus, we posed the following 
research questions:  

1. How do students process modelling problems with missing data?  
a. To what extent do students notice that data are missing?  
b. Did students make assumptions about the missing data? 

Method  
Participants 

Participants were 12 students (seven girls and five boys) from different secondary school tracks in 
Germany. Participants came from high-, middle-, and low-track classes. They were between the ages 
of 14 and 16 and were in Grades 9 to 11. All students participated voluntarily in the study with their 
parents’ permission. To select the participants, we followed the principle of maximum variation. 
Thus, we chose students who varied in gender, age, and mathematical performance. To assess 
students’ mathematical performance, we considered students’ math grades, the types of classes they 
were taking, and the types of schools they were attending. Students’ grades ranged from very good 
to deficient. It was ensured that all participating students had already covered the unit on the 
Pythagorean theorem, which was required to solve the problems in the study, in previous mathematics 
lessons.  

Procedure 

In order to address the research questions, we conducted a three-step procedure that combined the 
methodological approaches of thinking aloud, stimulated recall, and interview. The procedure began 
with instructions for the think-aloud method, where students watched a video with a demonstration 
of the think-aloud method and practiced the method to solve a nonmathematical task. After the 
instructions, first, all students worked individually on the same given modelling problems with 
missing data using the think-aloud method. Students were videotaped as they processed the modelling 
problems. Second, after solving all the given problems, the stimulated recall was conducted. Video 
recordings of students working on all the problems administered in the study were shown to the 
students immediately after they finished working on the problems. Students were asked to pause the 
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video recordings whenever they wanted to add something that was going through their minds about 
the situation that was shown on the screen. If the interviewer thought that the situation shown in the 
video recording was relevant to the research question, and the students did not pause the video 
recording, the researcher could pause it too. By doing this, the insights from the first step could be 
intensified. In the third step, the students were administered a semi-structured interview with in-depth 
questions about their work on the three problems. In particular, questions were asked about how 
students handled the missing data from the problems.  

Modelling Problems 

In this study, we used two modelling problems with missing data. Both problems could be solved by 
applying the Pythagorean theorem, which is part of national and international curricula. The two 
problems—“Fire Brigade” (Figure 1) and “Tree Track Adventure Park” (Figure 2)—were modified 
from prior studies (Schukajlow & Krug, 2014). For our study, the relevant data that was missing was 
always numerical. Thus, students needed to make assumptions about the missing quantities in order 
to solve the problems correctly. All problems were developed so that students were also able to 
perform calculations without noticing that important data were missing. For the “Fire Brigade” 
modelling problem, the height of the fire engine, and for the “Tree Track Adventure Park” problem, 
the additional rope needed to attach the rope to the trees were considered the relevant pieces of 
missing data.  

Data Analysis 

The transcripts of students’ responses were analyzed using a qualitative content analysis (Mayring, 
2014). The deductively developed coding scheme was used to code the sequences with regard to 
modelling activities from the modelling cycle by Blum and Leiss (2007). Another coding scheme was 
used to code how the students dealt with the characteristic demands of modelling problems with 
missing data (Krawitz et al., 2018). More specifically, we coded whether students had noticed the 
relevant missing data from the modelling problem and had made a realistic numerical assumption.  

Results 
We analyzed whether the students noticed that relevant data was missing from the problems 
(Research Question 1a). In the solutions given by 7 of the 12 students for the "Fire Brigade" problem, 
the students noticed that the height of the fire engine was missing (Figure 3). Among other objects, 
Anton’s mathematical drawing included the fire engine with its height (Figure 3, left). 

 
Figure 3: Excerpts from students’ solutions to the “Fire Brigade” modelling problem 

In the sequence presented below from Anton’s processing while thinking aloud, he commented:   
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Anton: Okay. (…) Here is a house wall, I don't know how big it is yet. (...) The safe distance 
must be seven meters. Seven. (…) And the height of the fire/the turntable ladder is 
thirty meters. (...) The turntable ladder is not completely on the ground.

By contrast, in the drawing made by Paula (Figure 3, right), data about the height of the fire engine 
was not considered. The sequence presented below illustrates that she was not thinking about the
missing data while making her drawing. 

Paula: The turntable ladder is thirty meters and uhm (…) the safe distance of seven meters. 
So that's seven meters. And then (…) the ladder would have to be angled so thirty
(…) thirty meters. And that is then (…) the height.

For the “Tree Track Adventure Park,” students were less likely to notice the relevant missing data
(only 2 out of 12 students noticed). For the “Fire Brigade” problem, we investigated how students’
noticing of the missing data interacted with their modelling process by analyzing when (i.e., between 
which sequences of modelling activities) the students noticed that the height of the fire engine was 
missing. Figure 4 illustrates Anton’s modelling process with its modelling activities (Blum & Leiss, 
2007), and the arrow indicates when he noticed the missing data. It took Anton four minutes and 17 
seconds to process the “Fire Brigade” modelling task. 

Figure 4: Anton’s modelling process  

Anton noticed the height of the engine between sequences in which he was simplifying/structuring. 
Students usually noticed the missing data in one of two different phases in the modelling process. 
First, the relevant missing data were noticed at the beginning of the modelling process after an initial 
understanding and after or during simplifying/structuring, but usually before working 
mathematically. An example of this case is Anton. Second, some students noticed the missing data
after they had completed the modelling cycle activities (i.e., after mathematizing and working 
mathematically and usually between the validation sequences). These students noticed the missing 
data after they had already obtained an initial mathematical result. In the validation phase, students 
noticed that the answer they had calculated was not appropriate for the problem situation. In this case, 
some students began to correct their previous solution by considering the missing data, whereas other
students stuck with their inadequate solution without making any changes. Further, noticing the 
missing data was not related to the activities of mathematizing or working mathematically. After 
students noticed that the height of the fire engine was relevant data, they should make a numerical 
assumption about the missing data and consider this assumption in the next steps of their modelling 
process. However, only five of the seven students who noticed the missing data also made a numerical 
assumption. The other two of the seven students did not make any assumptions. An illustration of this 
can be seen in a sequence of Julius’ solution while thinking aloud.
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Julius: Although, (…) the vehicle height, but I think it doesn't matter. 

Julius does not see the height as being particularly important for solving the problem. In order to 
answer Research Question 1b, we analyzed the extent to which the students made appropriate reality-
based numerical assumptions. Comparing the students’ numerical assumptions with the real data, we 
found that all the students’ assumptions were within an acceptable range around the real data. 
Different strategies for making a numerical assumption were found. For example, how Berta made 
her numerical assumption is described in the following sequence from the stimulated recall.  

Interviewer: How did you do that? 
Berta: I (…) when you look outside, you can see the trees, and then I thought to myself, 

or in the climbing forest, there are sometimes trees like that, and then I thought to 
myself that (…) yes, if you just put an arm around it, I don't know, then that's (…) 
usually a meter or two, if you, if those are thicker trees. 

Summary and Discussion  
We investigated students’ processing of modelling problems with missing data (i.e., real-world 
problems where the initial state of the problem is ill-defined). In this study, we analyzed whether 
students noticed relevant missing data and whether they made realistic assumptions about the missing 
data. An important finding of the study was that students seem to have trouble noticing the relevant 
missing data in the modelling problems. One possible explanation for this finding could be that 
students fail to think about the real-world situation of the modelling problem and just take the 
quantities given in the problem description and then work mathematically with these quantities. This 
idea would contribute to previous research on mathematical modelling by pointing out that students 
do not appropriately consider the real-world context of a problem when they process problems with 
missing data. The modelling problems used in this study were designed to analyze how students deal 
with missing data and to make it possible for students to perform calculations without noticing the 
missing data. However, ignoring the missing data in these tasks leads to unrealistic answers. As the 
necessity of noticing missing data can easily be overlooked, an intensive consideration of the real-
world context was essential for solving these problems. As the number of students who noticed the 
missing data varied considerably between the modelling problems, this finding suggests that whether 
students notice missing data depends on the specific characteristics of the task. These characteristics 
might be the context of the problem or the use and nature of the missing data. With respect to the 
modelling cycle (Blum & Leiss, 2007), we found that some students noticed the missing data directly 
after reading the problem description, indicating that these students try to develop a more in-depth 
understanding of the given situation before continuing to process by mathematizing and working 
mathematically. In the other cases in which students noticed the missing data, the in-depth 
understanding of the real-world context took part at the end of the processing, after mathematization 
and working mathematically. Another important finding of our study is that students who noticed the 
missing data did not always make a numerical assumption, but when students did make an 
assumption, the assumptions were realistic. This indicates that measurement skills or estimation 
strategies are not the key obstacle to making assumptions. One possible explanation for the results 
regarding difficulties in including assumptions in processing might be that problems with missing 
data and the ability to make assumptions might not be a part of students’ mathematics classes. Another 
possible explanation may be students’ conceptions and beliefs about mathematics.  
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A practical contribution of our study is that students need practice processing modelling problems 
with missing data in school. Therefore, teaching methods should address students’ ability to notice 
missing data and make assumptions. As the results of our study show, close attention should be paid 
to the phases of simplifying, structuring, and validation that were particularly relevant for the noticing 
of missing data. Teaching methods need to stimulate these phases intensively.  
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This study developed and discussed a framework for characterising rationales for using statistical 
modelling from a mathematical modelling perspective based on a systematic literature review. We 
used this framework to provide an overview of the distributions of these rationales in the analysed 
studies, focusing on statistical modelling. The results identified three categories of rationales for 
using statistical modelling, namely, competency, content, and socially oriented types. This work 
discussed how the conceptualised rationales for using statistical modelling in the teaching and 
learning of statistics can guide the initial step in task design and curriculum development related to 
statistical modelling. These rationales may also serve as a common point of departure for discussions 
and collaboration between the mathematics and statistics education communities on the use of models 
and modelling. 

Keywords: Statistical modelling, mathematical modelling, rationale, systematic review. 

Introduction 
Research on the teaching and learning of statistical modelling (SM) has increasingly gained attention 
in the statistics education community (e.g. Langrall et al., 2017; Pfannkuch et al., 2018) and 
mathematics education communities (e.g. Ärlebäck & Frejd, 2021; Frejd & Ärlebäck, 2021; 
Kawakami & Mineno, 2021). This trend owes its rise to the advent of data science and the need for 
models to address uncertainty, and underpinned by the worldwide growth of mathematical modelling 
(MM) in education research (e.g. Kaiser, 2017; Niss et al., 2007) and the rapid technological 
development. 

The present study is part of an overall research goal to elaborate on the connections, boundaries, and 
boundary-crossing approaches between the teaching and learning of MM and statistics or SM. In this 
study, MM refers to the generic modelling process involving back-and-forth transitioning between 
the extra-mathematical world and mathematics (Niss et al., 2007). SM refers to ‘any one of a number 
of practices: the development of a distribution (empirical or descriptive model) from data; the process 
of creating a theoretical (probability) model from an empirical model; and the practice of sampling 
from a theoretical model (simulation)’ (Langrall et al., 2017, p. 502). MM and SM both include the 
generation, use, evaluation, and revision of models, and both emphasize the real-world context. 
However, a characteristic of SM that is not always found in MM is that of making uncertainty and 
variability central aspects of modelling (Langrall et al., 2017). 

Pfannkuch et al. (2018) highlighted interpretations of SM and frameworks for describing students’ 
reasoning with SM in statistics education literature. However, the design guidelines for SM tasks and 
curriculum components related to SM have not been identified and elaborated. As with MM in 
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mathematics teaching and learning (Niss et al., 2007), such guidelines are essential for including SM 
as a significant component of statistics teaching and learning at all levels of education. This study 
examined the rationales for using SM, given the particular significance of rationales in designing SM 
tasks and curricula related to SM. Studies on teaching and learning SM have employed various 
rationales for using SM (Kawakami, 2019; Pfannkuch et al., 2018), but these rationales have yet to 
be systematically organised and structured. To facilitate the work of researchers, teachers, and 
curriculum developers in systematically designing purposeful SM tasks and to position SM practices 
appropriately within the statistics and mathematics curricula, this study aimed to (i) develop and 
discuss a framework for characterising the rationales for using SM from an MM perspective based 
on a systematic literature review; and (ii) provide an overview of the distributions of these rationales 
in studies focusing on SM.  

Theoretical framework 
Commonalities between rationales, goals, theories, and practices in research focusing on MM and 
SM have been noted and broadly pointed out (Frejd & Ärlebäck, 2021; Langrall et al., 2017). To 
investigate some aspects of these commonalities in more detail, we used the rationales for using MM 
in mathematics education to clarify the characteristics of SM from an MM perspective. 

Rationales for using MM in mathematics education 

The reasons for including the teaching and learning of MM in mathematics education have been 
discussed from at least two perspectives. Niss and colleagues (2007) introduced dual rationales for 
using MM: modelling as a means for developing competency in applying mathematics and building 
mathematical models and modelling as a means for learning mathematics. The former uses MM to 
develop a general MM competency (analysing and constructing mathematical models of extra-
mathematical contexts and situations) by focusing on the use of mathematics in real-world contexts 
and problem solving. The present work referred to this rationale as competency oriented. The latter, 
modelling as a means for learning mathematics, uses MM to support the learning of mathematical 
contents through modelling activities ‘by offering motivation for its study as well as interpretation, 
meaning, proper understanding and sustainable retention of its concepts, results, methods and 
theories’ (Niss & Blum, 2020, p. 28). Our work referred to this rationale as content oriented. Niss 
and Blum (2020) stressed that these two rationales are not dichotomous but can be pursued 
simultaneously. However, the priority of either can change the aims and designs of mathematics 
lessons. In addition to these two rationales, Barbosa (2006) proposed a third rationale from a critical 
mathematics education perspective, namely, modelling as a means for reflecting on the nature and 
role of mathematical models in society. This perspective uses MM to ‘emphasize critical thinking 
about the role of mathematics in society, the role and nature of mathematical models, and the function 
of mathematical modeling in society’ (Kaiser, 2017, p. 274). We referred to this rationale as socially 
oriented. 

Three potential rationales for using SM in the teaching and learning of statistics 

Pfannkuch et al. (2018) noted and listed four distinct educational purposes for using SM in the 
teaching and learning of statistics: (P1) enculturating students engaged in the discipline with an 
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approximation of professional statistical practice and reasoning, thinking, points of view, and beliefs; 
(P2) instructing students in key statistics knowledge and concepts; (P3) developing students’ notions 
of the power, nature, role, purpose, and utility of SM; and (P4) enabling students to gain insights on 
particular situations. However, these four objectives have not been elaborated upon, nor are their 
relations discussed systematically. In this study, we sought to elaborate on the rationales for using 
SM by relating these four purposes to rationales for MM.  

P1 employs SM as a means for developing students’ statistical competency. In statistics education, 
such a statistical competency is often framed and discussed in terms of statistical literacy, statistical 
reasoning, or statistical thinking (Garfield & Ben-Zvi, 2008). According to Garfield and Ben-Zvi 
(2008), statistical literacy is the ability to interpret, evaluate, and communicate statistical information 
and messages; statistical reasoning is the ability to connect statistical concepts and explain statistical 
processes and results; statistical thinking is the ability to use statistical models, methods, and 
applications in advancing statistical investigation, such a PPDAC cycle (Problem–Plan–Data–
Analysis–Conclusion) (Wild & Pfannkuch, 1999). In terms of the rationales for using MM, P1 can 
be described as competency-oriented SM. P2 and P3 employ SM for promoting the learning of 
statistical contents, such as statistical knowledge and concepts (e.g. variability, distribution, sample, 
and sampling) as well as knowledge and concepts related to statistical models and modelling. 
Employing the rationales for using MM, P2 and P3 can be described as content-oriented SM. Lastly, 
P4 employs SM for decision making in the real-world, social, and societal contexts, in which data are 
embedded and, in some cases, for developing a critical understanding of the use and role of statistics, 
statistical models, and modelling in these contexts. In terms of the rationales for using MM, P4 can 
be described as socially oriented SM.  

In summary, we have elicited three potential rationales for using SM in the teaching and learning of 
statistics: (R1) competency-oriented SM, (R2) content-oriented SM, (R3) socially oriented SM. These 
three rationales for using SM, as well as the rationales for using MM, are not in opposition to one 
another. Indeed, multiple ones may merge within a single practice. As the priority of any of these 
rationales can influence the aims and design of statistics lessons, we make a distinction among these 
three rationales. The present study addressed two questions: (i) How can rationales R1–R3 be further 
elaborated and understood based on the use of SM as also done in empirical research? (ⅱ) What is the 
use distribution of rationales R1–R3 in empirical research on SM? 

Methodology 
We conducted a systematic literature review of peer-reviewed research on SM in mathematics and 
statistics education. Research papers from the following influential mathematics education journals 
were identified: Educational Studies in Mathematics (ESM) (May 1968–July 2021), ZDM: 
Mathematics Education (ZDM) (1997–July 2021), Mathematical Thinking and Learning (MTL) 
(1999–July 2021), Journal for Research in Mathematics Education (JRME) (1970–July 2021), and 
Journal of Mathematical Behavior (JMB) (1995–July 2021). Research papers from the following 
internationally recognised journals in statistics education were also included: Statistics Education 
Research Journal (SERJ) (2002–July 2021) and Journal of Statistics Education (JSE) (1993–July 
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2021). The paper selection process is illustrated in Figure 1. As part of the systematic review process, 
we read all identified 63 papers, and then coded the rationales for using SM in the papers by assigning
them into the three categories R1, R2, and R3. The coding was determined based on the explicit 
description(s) of the rationale(s) for using or investigating SM or modelling in the papers by focusing 
on the (1) purpose and position of the study; (2) intentions and purposes of the used teaching 
materials, curriculum, and teaching practices; as well as (3) research questions in the papers. 
Examples of such descriptions and their coding are shown in Table 1. The first author conducted the 
first analysis, which included classification, and the second author independently checked the
assigned papers and the first analysis. Where discrepancies occurred, the authors discussed and 
resolved these issues.

Figure 1: Paper selection process

Table 1: Examples of the descriptions from which categories R1–R3 were determined

Category Examples of the description in the papers
R1 In this article, we have examined one approach to developing primary school students’ statistical 

literacy, namely, through modelling with data. (English & Watson, 2018, p. 113)
R2 The study relied on classroom video and student artefacts to analyse aspects of the students’ 

modelling experiences which exposed them to powerful statistical ideas, such as key repeatable 
structures and dispositions in statistics. (Makar & Allmond, 2018, p. 1139)

R3 Statistical modelling needs to become a tool for critical democracy. (Zapata-Cardona, 2018, p. 1220)

Results
Table 2 presents the identified rationales for using SM in the analysed literature with the frequency 
and examples within each category. 

Table 2: SM rationales in the literature in terms of categories R1, R2, and R3 (n = 63)
Category Freq. (%) Examples (listed by author only given space constraints)
R1 19 (30) Doerr & English (2003)JRME, Biehler et al. (2017)SERJ, Doerr et al. (2017)SERJ, Noll & 

Kirin (2017)SERJ, Dvir & Ben-Zvi (2018)ZDM, Leavy & Hourigan (2018)ESM

R2 13 (21) Prodromou & Pratt (2006)SERJ, Lesh et al. (2008)ESM, Ainley & Pratt (2017)SERJ, Büscher 
& Schnell (2017)SERJ
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R1 & R2 21 (33) English (2012)ESM, Manor & Ben-Zvi (2017)SERJ, English & Watson (2018)ZDM, Kazak 

et al. (2018)ZDM, Makar & Allmond (2018)ZDM, Patel & Pfannkuch (2018)ZDM, van Dijke-
Droogers et al. (2021)ESM 

R1 & R3 5 (8) Simonoff (1997)JSE, Biehler et al. (2018)ZDM, Wilkerson & Laina (2018)ZDM 
R2 & R3 2 (3) Zapata-Cardona (2018)ZDM, Zapata-Cardona & Martinez-Castro (2021)MTL 

R1, R2, & R3 3 (5) Jacobson et al. (2009)JSE, Garfield et al. (2012)ZDM, Kazak et al. (2021)MTL 

Only R1 rationale: Competency-oriented SM 

Papers in which R1 was the only rationale used comprised the second largest category of papers, 
accounting for about 30% (n = 19). These studies typically used SM to develop statistical 
competencies (e.g. statistical literacy, reasoning, and thinking) as well as statistical processes (e.g. 
statistical inquiry in the sense of Wild and Pfannkuch [1999] and informal statistical inference in the 
sense of Makar and Rubin [2009]). These studies emphasised the role of statistical models and 
modelling in developing statistical competencies; for example, ‘[m]odels are important concepts in 
statistics and key components of learning to think statistically’ (Noll & Kirin, 2017, p. 213). 
Exclusively, R1-coded papers often described SM as applicable for real-world problem solving and 
stressed the applied nature of statistics, emphasising the use of actual and authentic data in the 
educational setting. 

Only R2 rationale: Content-oriented SM 

Papers in which R2 was the only rationale used comprised the third largest category of papers, 
accounting for about 21% (n = 13). These papers used SM to elicit, develop, and deepen the 
understanding of a wide range of statistical contents, including an aggregate view of data, measures 
of distribution, signal and noise, variation, population, sample and sampling, theoretical distributions, 
statistical models, SM process, causality, and statistical inference. These papers tended to reframe 
statistical concepts and knowledge as models or modelling constructs in support of the notion of 
emergent modelling (Gravemeijer, 1999) and model-eliciting activities (Lesh & Doerr, 2003); for 
example, ‘measures are understood as models, which can either be used to make sense of a given 
situation or to reason about the statistical measures themselves’ (Büscher & Schnell, 2017, p. 144). 
Exclusively, R2-coded papers often expressed SM as an epistemic practice of statistics and a 
pedagogical tool. 

Combined R1 and R2 rationales: Competency- and content-oriented SM 

The largest category of papers employed both R1 and R2 (approximately 33%, n = 21). These papers 
used SM to combine and integrate statistical competencies (R1), such as statistical reasoning and 
informal inference, and statistical contents (R2). In these papers, the emphasis was not only on real-
world problem solving, transiting between the real (data) and model (data) world, but also on 
conceptual developments within the model world. Some papers considered statistical literacy and 
reasoning as competency to carry out SM, comparable to MM competency. For example, Patel and 
Pfannkuch (2018) framed SM reasoning as the ability to transit between the physical and model 
worlds involving the following activities: starting with understanding of the real-world problem, 
applying structure to it toward a transition to the model world, refining the model and analysing 
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simulated data, and interpreting the results back into understanding regarding the original real-world 
problem. R1-and-R2-coded papers often used SM as an integrator between statistical methods and 
statistical content.

R3 rationale: Socially oriented SM

R3 was the least commonly discerned rationale in literature (approximately 16%, n = 10). None of 
the papers used it as the sole rationale, only using it in tandem with R1 and/or R2. These studies used
SM to enhance critical thinking on real-life, social, and societal contexts and to examine the power 
and limitations of statistical models and modelling. In some cases, the discipline of statistics 
embedded in these contexts were examined using the notions of authenticity, critical citizenship, 
ethics, and publicity. These papers focused on the role of statistical models and modelling in thinking
critically about life and society. For example, Zapata-Cardona (2018, p. 1220) observed that 
‘[s]tatistical modelling needs to become a tool for critical democracy’ and ‘[m]odelling activity 
should focus on the functions of the applications in society’. R3-coded papers often described SM as 
a means and object of social criticism and decision-making based on data. They also emphasised the 
use of social issues and contexts in education.

Discussion and conclusion
Our analysis showed that all three rationales for using SM in research on the teaching and learning of 
statistics were used to various extents in empirical studies. In other words, SM is seen as a 
multifaceted means of achieving applied, epistemic, and social critical-related goals in the teaching 
and learning of statistics. However, based on the results of the systematic review in terms of R1 to 
R3, SM can also be understood more holistically: (i) R1 can be seen as stressing SM as a component 
of statistical competencies, i.e. the use of statistical models/modelling as a key element for promoting 
real-world problem solving and statistical inquiry (e.g. Noll & Kirin, 2017); (ⅱ) R2 can be taken to 
promote SM as integrating aspects of statistical contents, meaning that the structure of statistical 
content is rooted and reflected in statistical models/modelling (e.g. Büscher & Schnell, 2017); and 
(ⅲ) R3 portrays SM as shaping and influencing real-life, social, and societal decision making, 
indicating that statistical models/modelling form the basis for data-driven decision making (e.g. 
Zapata-Cardona, 2018). Figure 2 summarises these three conceptualised rationales for using SM in 
the teaching and learning of statistics. In each rationale in Figure 2, the goal–means relation is 
depicted with arrows. Inclusionary relations between the goal and means are shown by the ellipses.

Means MeansMeans

(R1) SM as a component of
statistical competencies

(R2) SM as integrating aspects 
of statistical contents

(R3) SM that shapes real-life, social,
and societal decision making

Goal GoalGoal

Figure 2: Three conceptualised rationales for using SM in the teaching and learning of statistics
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The review results also revealed that these three rationales can be used together in one lesson, unit, 
curriculum, or project. Indeed, the exclusive use of R3 was not found in any of the 63 analysed papers. 
This is in contrast to the research on MM, where the lone use of the socially oriented rationale is 
common (cf. ethnomodelling). The combination of R1 and R2 was the most common category, with 
three papers using all three rationales (R1–R3). Hence, combining rationales is common in the context 
of SM, in contrast to much of the research on MM. These results may be related to the nature of 
statistics, which pertains to statistical methods, statistical content, and data with context (Wild & 
Pfannkuch, 1999). However, a more detailed review of MM literature is needed to establish further 
the viability of these differences between SM and MM.  

The goal–means relations in Figure 2 support the hypothesis of the learning trajectory of SM. For 
example, learners can advance competency-oriented SM (R1) using contents constructed through 
content-oriented SM (R2). They can then perform socially oriented SM (R3) by making full use of 
competency and contents acquired through the other types. The inclusive relations in Figure 2 also 
suggest that different rationales have different domains and assumptions in which statistical models 
and modelling are placed and that, in practice, the functions/roles of statistical models and modelling 
can be changed dynamically. Therefore, it is also necessary to review the meaning of statistical 
models, modelling, and the description of SM specified in each study. 

The conceptualised rationales for using SM in Figure 2 can guide the initial step in task design and 
curriculum development related to SM for researchers and teachers. It can also serve as a common 
lens for shared discussion and collaboration between the mathematics and statistics education 
communities on issues related to the teaching and learning of models and modelling (e.g. English & 
Watson, 2018; Langrall et al., 2017). However, to provide more concrete design guidelines, additional 
research is needed to identify and elaborate on more aspects and characteristics of SMs. The review 
results specifically demonstrated the applicability of the findings of MM education research to SM 
education research in terms of goals and rationales. A natural next step is to clarify the similarities 
and differences in teaching and learning SM and MM. It is also necessary to clarify to what extent 
we need to distinguish between MM and SM, or whether SM is a sub-form of MM. These, in turn, 
will shed light on the nature and role of models and modelling, and the underlying assumptions and 
hypothesis in, and for, MM research.  

Acknowledgement 
This paper is a revised and extended version of a short presentation at ICME14 (Kawakami & 
Ärlebäck, 2021). This version included more studies in the analysis. The results and conclusions are 
likewise revised and updated versions of the short presentations. 

References 
Ärlebäck, J. B., & Frejd, P. (2021). The red book activity—A model eliciting activity to introduce 

and initiate a section on statistics focusing on variability and sampling. In. F. K. S. Leung et al. 
(Eds.), Mathematical modelling education in East and West (pp. 595–605). Springer. 
https://doi.org/10.1007/978-3-030-66996-6_50 

Proceedings of CERME12 1115



 

 
Barbosa, J. C. (2006). Mathematical modelling in classroom: A socio-critical and discursive 

perspective. ZDM, 38(3), 293–301. https://doi.org/10.1007/BF02652812 
Büscher, C., & Schnell, S. (2017). Students’ emergent modeling of statistical measures—A case 

study. Statistics Education Research Journal, 16(2), 144–162. https://doi.org/hph2 
English, L., & Watson, J. (2018). Modelling with authentic data in sixth grade. ZDM Mathematics 

education, 50(1/2), 103–115. https://doi.org/10.1007/s11858-017-0896-y 
Frejd, P., & Ärlebäck, J. B. (2021) Connections and synergies between the teaching and learning of 

statistics and modelling—A pilot study. In. F. K. S. Leung et al. (Eds.), Mathematical modelling 
education in East and West (pp. 607–617). Springer. https://doi.org/gmt7mn 

Garfield, J., & Ben-Zvi, D. (2008). Developing students’ statistical reasoning: Connecting research 
and teaching practice. Springer. https://doi.org/10.1007/978-1-4020-8383-9 

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. 
Mathematical Thinking and Learning, 1(2), 155–177. 
https://doi.org/10.1207/s15327833mtl0102_4 

Kaiser, G. (2017). The teaching and learning of mathematical modelling, In J. Cai (Ed.), Compendium 
for research in mathematics education (pp. 267–291). NCTM. 

Kawakami, T. (2019). Review of international trends in research on the teaching and learning of 
statistical modelling: Prospects for statistics education in Japan. Journal of Japan Society of 
Mathematical Education, 101(3), 15–27. https://doi.org/10.32296/jjsme.101.3_15 

Kawakami, T., & Ärlebäck, J. B. (2021). The rationales of statistical modelling in education research 
from a mathematical modelling perspective. Paper presented at the 14th International Congress on 
Mathematical Education (ICME14). https://doi.org/10.13140/RG.2.2.31715.68645 

Kawakami, T., & Mineno, K. (2021). Data-based modelling to combine mathematical, statistical, and 
contextual approaches: Focusing on ninth-grade students. In. F. K. S. Leung et al. (Eds.), 
Mathematical modelling education in East and West (pp. 389–400). Springer. 
https://doi.org/10.1007/978-3-030-66996-6_32 

Langrall, C., Makar, K., Nilsson, P., & Shaughnessy, J. M. (2017). Teaching and learning probability 
and statistics: An integrated perspective. In J. Cai (Ed.), Compendium for research in mathematics 
education (pp. 490–525). NCTM. 

Lesh, R. A., & Doerr, H. M. (Eds.). (2003). Beyond constructivism: Models and modeling 
perspectives on mathematics problem solving, learning, and teaching. Routledge. 
https://doi.org/10.4324/9781410607713 

Makar, K., & Allmond, S. (2018). Statistical modeling and repeatable structures: Purpose, process 
and prediction. ZDM Mathematics Education, 50(7), 1139–1150. https://doi.org/10.1007/s11858-
018-0956-y 

Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical inference. 
Statistics Education Research Journal, 8(1), 82–105. https://doi.org/10.52041/serj.v8i1.457 

Niss, M., & Blum, W. (2020). The learning and teaching of mathematical modelling. Routledge. 
https://doi.org/10.4324/9781315189314 

Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum et al. (Eds.), Modelling and 
applications in mathematics education, The 14th ICMI Study (pp. 161–170). Springer. 
https://doi.org/10.1007/978-0-387-29822-1_1 

Noll, J., & Kirin, D. (2017). TinkerPlot™ model construction approaches for comparing two groups: 
student perspectives. Statistics Education Research Journal, 16(2), 213–243. 
https://doi.org/10.52041/serj.v16i2.191 

Patel, A., & Pfannkuch, M. (2018). Developing a statistical modeling framework to characterize Year 
7 students’ reasoning. ZDM Mathematics Education, 50(7), 1197–1212. 
https://doi.org/10.1007/s11858-018-0960-2 

Pfannkuch, M., Ben-Zvi, D., & Budgett, S. (2018). Innovations in statistical modeling to connect 
data, chance and context. ZDM Mathematics Education, 50(7), 1113–1123. 
https://doi.org/10.1007/s11858-018-0989-2 

Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International 
Statistical Review, 67(3), 223–248. https://doi.org/10.1111/j.1751-5823.1999.tb00442.x 

Zapata-Cardona, L. (2018). Students’ construction and use of models for informal inferential 
reasoning. ZDM Mathematics Education, 50(7), 1213–1222. https://doi.org/10.1007/s11858-018-
0967-8 

Proceedings of CERME12 1116
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In this work, high school students were assigned to investigate a problem which involves the 
transition from 2D to 3D interpretation using the method of exhaustion, one of the cornerstones ideas 
of Calculus. For this approach, the authors sought to develop the study through an exploratory 
modelling task, under the lens of the Three Worlds of Mathematics theory. In this scenario, the 
students were supported by an initial discussion based on Calculus early ideas and with the use of 
current technologies, such as GeoGebra and laser cutting machines. The data collected in this study 
came from a video recording of this initial discussion and from the portfolios of three students who 
explore the volume of the solid generated by the rotation of a cycloid, comparing it with classical 
results in two dimensions. 

Keywords: Three worlds of mathematics, method of exhaustion, cycloid, GeoGebra. 

Introduction 
In this work, high school students were assigned to investigate a question which involves the 
transition from 2D to 3D interpretation using some of the cornerstone ideas of Calculus. For this 
approach, the authors sought to develop the study through an exploratory modelling task, under the 
lens of the Three Worlds of Mathematics theory (Tall, 2013). In this scenario, students were supported 
by an initial discussion based on Calculus early ideas and with the use of current technologies, such 
as GeoGebra and laser cutting machines. In this regard, dynamic simulations were digitally 
represented based on a physical model to initialize the discussion and enhance students’ mathematical 
ideas. Observing the interactions during an online meeting and students' portfolios, the authors of this 
paper aimed to identify (or not) the benefits coming from either physical and digital prototypes and 
how they can support one another. Based on these ideas, the following research question emerged: 
how do students understand and combine ideas from the Three Worlds of Mathematics while using 
2D and 3D resources and prototypes to build basic ideas of Integral Calculus? 

Motivation 

The nature of slicing a 3D shape to develop mathematical concepts goes back to Archimides, who 
resorted to the method of exhaustion in order to have a more rigorous proof of his theorems, 
particularly following his goal to determine the volume of a sphere (Bueno, 2020). Nevertheless, it is 
not hard to identify such a technique in day-by-day contexts and this can be a natural reason to connect 
2D and 3D representations in geometric studies and working with modeling. These practices take part 
of the Conceptual Embodied world (Tall, 2004), which is developed by students’ perceptions and 
actions in manipulating such shapes and its slices. The examples in Figure 1 illustrate some 
possibilities in this sense. While the tomato and sheets of paper easily connect to daily life contexts, 
the artcraft lighting shows an example developed by students in a Calculus undergraduate course. 
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The central picture is a physical model developed through the integration of GeoGebra and laser 
cutting techniques and it was used to spark the discussion with the students in this study.

      

Figure 1: Conceptual Embodied world through shapes sub-divided by slices

Once the math behind the strategy to obtain the right volume of solids of revolution might rely on 
Integral Calculus, the problem posed to high school students was to approximate such volume based 
on geometrical concepts and supported by GeoGebra. Particularly, the task was to estimate the 
volume of the solid generated by the revolution of a Cycloid when it is turned around its symmetrical 
axes. The challenge is to investigate whether there is, or not, a straight connection with the circle that 
generates the Cycloid, since there is a known result in the 2D version of this problem, regarding their 
areas (Toffolo et al., 2020). To support the students’ ideas, and in addition to the physical model that 
was shown, GeoGebra applets1 were shared and discussed with student participation during an online 
meeting, when the problem was presented.

Theoretical Framework
David Tall, aiming to understand how mathematical thinking is built, developed the Three Worlds of 
Mathematics theory, which involves early perceptions about counting and arithmetic, reaches 
algebraic symbolism and goes on until mathematical border research. By creating the Conceptual 
Embodied, Operational Symbolic and Formal Axiomatic worlds, Tall (2013) brought ideas capable 
of supporting important thoughts about mathematics teaching and learning.

In this regard, Tall (2013) highlights that mathematical thinking development is more complex than 
the simple sum of new ideas to a fixed structure of pre-existing knowledge. Mathematical thinking 
is built, in fact, by a continuous rearrangement of mental conexions that evolve to reach, in time, 
knowledge structures more and more sophisticated.

Geometry study, for instance, starts with real objects manipulation. These objects have their physical 
particularities described by students in an informal way using the common spoken language. With 
time and development of news ideas, these particularities start being defined in a more accurate way 
and evolve until reaching more formal ways, like Euclidean Geometry. Some students who go to 
college to study exact sciences can go further and learn even more complex ideias, like Differential 
Geometry, for instance.

1 https://www.geogebra.org/m/hacg6ex6 and https://www.geogebra.org/m/tykauqhp.

C t l E bbbb di ddddddddd ld t
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Arithmetics knowledge grows in a different way, because it is related to actions done with objects 
and not just with its embodied particularities, like shape or size. Therefore, the focus of arithmetics 
is counting, grouping and ordination, for example. These activities occur, inicialy, on the perceptual 
world and evolve until the use and manipulation of mathematical symbols that arise from operations 
and go further until its manipulation without great conscient cognitive effort. 

Algebra arises from the generalization of the perceptions built with arithmetics. New rules are 
understood and fill out the blanks of previous studies until the moment that equations and functions 
start being used as cognitive resources to solve problems. With this gradual mathematical thinking 
sophistication, functions can be understood, for instance, by visualizations of the cartesian plane. In 
the long term, some algebraic structures can be formulated with axiomatic systems, generating fields, 
rings or groups. 

According to Tall (2004) theory, ideas of the Conceptual Embodied world are developed by 
perceptions and actions that happen in the real world and evolve until the creation of  mental images 
becomes more and more sophisticated. Conceptions that don’t belong to this real world are built in 
an abstract way, like a perfect straight line. 

The idea of embodiment, as stated by Lima (2007),  is related to observation, action and thought about 
situations with physical objects, but that evolve until the development of mental experiences. In this 
case, with abstract thoughts, objects (reals or imaginary) start being manipulated and observed by 
using only thoughts, generating new ways to perceive these actions. 

A relevant alternative for this embodiment complexification can be the use of digital resources to 
manipulate objects. Therefore, with tools like GeoGebra it is possible to develop actions and, in a 
blink of an eye, verify its implications on the screen. Beyond that, with 3D printers and laser cutting 
machines, many mental constructions can be brought to life in the real and physical world and help 
teachers in their class, illustrating important ideas and supporting individual and collective 
mathematical perceptions. 

Tall (2003) understands that educators should use new technologies to help them to build more 
meanings in Mathematics studies. With GeoGebra, 3D printers, laser cutting machines and other 
resources it is possible to change ways to teach and learn mathematics, going beyond algebraic 
manipulation and static graphics and reaching discussions and learnings from embodyments made 
possible by digital technologies. 

The Operational Symbolic world, as highlighted by Tall (2013), arises from symbols used in 
arithmetics, algebra or even Calculus. It begins with actions that, with some time and thoughts, can 
evolve and until it is perceived as mathematical processes or even as mathematical concepts. In this 
regard, some people reach only the process idea while others go further and understand symbols as 
processes to do and also as concepts to think about. 

Discussing this duality of mathematical symbols, Gray and Tall (1991) brought the idea of “procept”, 
understood as the amalgamation of process and concept. According to Lima (2019), if some 
individual understands symbols as “procepts” he/she will end up developing “proceptual” thinking. 

The Formal Axiomatic world, as suggested by Tall (2004), can be characterized by axiomatic 
developments that generate definitions, theorems and corollaries (among others) that have its ideas 
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deduced from mathematical demonstrations. In this mathematical environment thoughts are not 
restricted to embodiment objects and thoughts are expanded to reach mental experiences even more 
sophisticated that end up with constructs that provide mathematical abstract structures such as an 
abelian group. Even knowing that this world begins to be studied only in college it is important to 
perceive that “in any mathematical activity formal mathematics ideas can be found, because a student 
doesn't understand new mathematical concepts without some presence of its formal characteristics” 
(Lima, 2019, p. 8). 

According to Tall and Mejía-Ramos (2004), each one of the Three Worlds of Mathematics has its 
ways to warrant the truth. In the Conceptual Embodied world the truth is built from human intuition 
to, on a more advanced level, be grounded in mental experiments. In other words, something is proved 
right if it seems to be true or if some experiments end up occurring in the expected way. 

In the Operational Symbolic world a formula is proved right because it can be developed by a 
sequence of algebraic manipulations. In the Formal Axiomatic world a theorem is proved right if it 
can be built by formal logical developments based on axions and mathematical definitions.  

To an individual to trill his/her journey through the Three Worlds of Mathematics and develop 
knowledge, some previous ideas are necessary. Some of this previous knowledge leads to increasing 
progress while others lead to alternative paths that can, in some cases, lead to erroneous conclusions. 

Tall (2013) calls this previous knowledge as met-before and uses this term to describe how new 
situations can be understood from the perspective of previous experiences. Met-before, although, 
can’t be restricted only to experiences because it is linked also to any memories generated by those 
previous experiences and held on into the brain and that can affect new cognitive constructs. 

Methodology and Methods 
The explorative nature of the study demanded an interpretative approach comprising qualitative 
methods such as observation, data collection, and analysis (Cohen et al., 2011). Our experiments were 
carried out with high school students through an online course in Brazil and lasted a period of three 
months with meetings in every second week on average, to follow the students’ progress. At the phase 
of the course when the problem was proposed, all participants had already been introduced to 
GeoGebra and it is important to highlight that students were free to choose which problem they would 
work with, among three alternatives. Beyond the cycloid problem, the other two were related to 
combinatorial studies (applied in a logical game) and fractals. From 19 students who achieved this 
investigative and exploratory task, 3 of them chose the cycloid problem (12 chose the game task and 
4, the fractal task). Nevertheless all problems were introduced and initially discussed with the whole 
group. 

The data collected in this research came from two different sources: i) a video recording from the 
initial session (~30min) when the problem was introduced and discussed with the whole group, and 
ii) the portfolios of the three students who dealt with the cycloid problem, in which they extended the 
discussion started at the whole group session and developed their ideas, research and calculation. 
During the online session with students, the mediator (one of the authors of this paper) emphasized 
that despite this problem could be tackled using Calculus techniques, the main goal would be to 
explore the basis of these techniques, it means, the math ideas behind the Calculus (or supporting it). 
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From this point, the mediator asked if the participants had seen anything about cycloid before and 
one of the students mentioned some animations with a circle generating the curve that she had already 
seen online (in a math blog and also in a GeoGebra applet). These animations as well as some 
experiments that give the cycloid its known alternative names – brachistochrone and tautochrone – 
were then shared and mentioned some reasons why this curve has an important role in the field of 
sciences. Some short math videos (from the Portuguese Mathematics show “That is Mathematics”2) 
was also recommended. Finally, the problem was presented, with an important remark that it had 
been motivated by the genuine curiosity of a former student a few months earlier. 

Data Analysis and Results 
The starting point for this problem, as mentioned in the previous sessions, was the initial online 
meeting, when the physical model composed by the slices of the solid obtained by the cycloid rotated 
was shared. Therefore, the discussion was introduced from ideas of the Conceptual Embodied 
world.  In the same class, the mediator shared with the students two digital applets. 

Before sharing such physical (through the cam, only) and digital representations, nevertheless, an 
introduction about the relevance of the Cycloid and some of its characteristics were explained and 
this step was crucial to attract students’ attention and contributions. Despite the fact that online 
communication has been challenging in general, some students did not hesitate to express their 
guesses when they were asked about the ratio between the solid generated by the rotation of the 
cycloid and the correspondent sphere. At this moment, they already had seen that the area under the 
cycloid was three times the area of the correspondent circle through the first shared applet. After 
discussing some free guesses, they looked suspicious and uncertain (some guesses suggested the ratio 
would be kept as the planar situation). Then, the second applet was shared, with a 3D interactive 
representation, so they could rotate the cycloid and visualize the final shape of the generated solid. 
This second applet allowed users to approximate the solid by a set of slices, starting with a cone, 
through the interaction with two sliders and facilitate the comparison between the original shape and 
its approximation by the set of truncated cones. Such interaction supported students’ interpretation 
regarding the strategy to approximate the unknown volume (adding up slices as thin as desirable, they 
will tend to infinity), but their task was still open. 

From this point and based on the group discussion, three students developed their digital 
representations, shown on Figure 2, to approximate the volume, but the analysis of their portfolio 
shows they had slightly contrasting approaches.  

 

 

 

Figure 2: Shapes sub-divided by slices leading to ideas from the Conceptual Embodied wor 

 
2 https://www.youtube.com/istoematematica 
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Despite all three strategies arose from the Conceptual Embodied world, their goals were not exactly 
the same. Whereas one of them (student 1) sought to generalize an expression based on an arbitrary 
number of slices, the other two concerned to calculate the volume based on a particular example. In 
these last two cases, one of them (student 2) sought to determine the unknown ratio as accurately as 
possible, while the other one (student 3) tried to convince herself whether such a ratio was three, or 
not, since this was the ratio in the planar case, regarding the areas of the figures (cycloid and circle). 
These students’ approaches indicate how the participants were able to recognize 3D shapes’ 
properties and compare 3D shapes (in this case, solids of revolution), as well as understanding and 
visualizing the internal structure of the solid to calculate the volume of solids in the sense of 3D 
geometry abilities described by Pittalis et al. (2009). 

Considering the case of student 1, who tried to generalize the formula of the volume, it seems that he 
reached Operational Symbolic world ideas once he used digital algebraic descriptions to understand 
how developed ideas could be extended to more and more cases. Even though he did not obtain a 
final formula, he was able to generalize in some steps. In Figure 3 (right side), it is shown how he 
started defining the height related to the basis B1, to obtain the height (named htv) related to an arbitrary 
basis Bv using similarity of triangles, understood by the authors as a met-before. The colorful remarks 
on the left side were added by the authors to illustrate the idea described in digital symbolic language 
by the student. 

        

Figure 3: Similarity of triangles to generalize a formula in the Operational Symbolic step 

The other two students, as already mentioned, focused on calculating the volume of the truncated 
cones, also considering the radii from consecutives slices as their bases. In this case, news ideas 
arrived from this met-before (truncated cones). Particularly, student 2 used an online calculator to 
obtain the volume of the truncated cones and organized all data in a  spreadsheet, as shown below, in       
Figure 4 (right side). The representation on the left side (Figure 4) is from one of the applets shared, 
but the notes (r and R) are from student 3.  

 

                      
 
 

 

 

 

Figure 4: Calculating the volume of the truncated cones 
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Despite both pictures above came from different students, they reveal the same strategy, with different 
number of slices. The ratio obtained by student 2 and student 3 were, respectively, 8,99 (with 16 
slices) and 7,71 (with 4 slices), which are rather close to the real ratio, 9,10. 

Conclusions 
Physical and digital resources were combined in this research to support students in an exploratory 
modelling task, which the aim was to investigate the volume of the solid generated by the rotation of 
a cycloid around its symmetry axis. As motivation for the task developed in this paper the authors 
considered the interpretation from daily contexts of slicing and historical aspects that retrieve 
Archimedes’ studies and the method of exhaustion, an important and cornerstone topic of Calculus. 
Using the Three Worlds of Mathematics as theoretical framework, the study intended to observe how 
the connections with such resources that use current technologies (GeoGebra and laser cutting 
machines) might help students on their journey through the Three Worlds of Mathematics – 
Conceptual Embodied, Operational Symbolic and Formal Axiomatic. Based on students’ interaction 
during an online meeting and the portfolio of three students, the researchers found evidences that 
connect the conceptual embodied and operational symbolic in this task, specially connecting ideas 
from classical geometry, understood as met-before, to introduce seminal ideas of calculus. 

In addition, this study is in line with Carreira (2019), who consider that modelling problems require 
a certain kind of mathematical thinking that could be called modelling thinking. For her, such thought 
aims to establish connections, analogies, similarities and relationships between different systems, 
among which mathematics is obviously included. These connections, according to the author, as well 
suggested by the evidences in this work, arise as a result of experimentation, exploration, 
understanding, conceptualization and manipulation of reality (in different environments, whether 
physical or digital). Although the problem in this study is sparked by the exploration of a 
mathematical object – the cycloid curve – the strategy applied might be naturally adapted for (and 
motivated by) other solids of revolution coming from the real world, such as illustrated in Figure 1. 
Thus, as highlighted by Carreira, the processes of mathematization, prototyping, experimentation and 
simulation take place in a cycle that involves the construction of a model (based on mathematics) 
that becomes multidimensional as the relationships among its variants (real model, physical model, 
mathematical model, computational model) are strengthened and consolidated.  

The outlined examples are part of a set of experiments and activities developed in our practices. In 
future papers, we hope to report additional insights into connecting physical and digital modeling 
approaches, seeking to align with related and pertinent theories and pedagogies.   
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This paper characterises the mathematical models that prospective elementary teachers develop to 
solve a modelling task, as well as its dependence on those information and assumptions that students 
use without justification when developing the model. For this purpose, a sample of 74 prospective 
elementary teachers (45 women) was chosen to estimate the distance a ship is from shore when it 
sees the lighthouse on the horizon. The use of an analysis tool specific to characterize models and the 
analysis of those statements that individuals use in their models without justification showed a wealth 
of models. The relationship between individuals’ awareness of certain information and the validity 
of such information was also suggested. Several assumptions on the curvature of the earth’s surface 
or on the height of the ship resulted to had an impact on the models analysed. 

Keywords: Mathematical models, educational research, prospective elementary teachers. 

Introduction 
Nowadays, mathematical educators in general and researchers in mathematics education in particular 
acknowledge the benefits of modelling at all levels of education. In the scope of teacher education, 
particularly, several authors point out the potential of the modelling activity to provide prospective 
teachers with challenging experiences allowing to explore mathematics content, serve as examples of 
teaching and help to manage students’ beliefs (see Fernández-Ahumada & Montejo-Gámez, 2019 and 
references therein for a discussion on the benefits of modelling in teacher education). This makes 
modelling a field of great interest to researchers in mathematics education and teacher educators. One 
of the most relevant and differentiating skills of mathematical modelling is linked to taking actions 
that facilitate the application of mathematical tools to obtain knowledge about real systems, which 
are usually complex. In other words, modelling implies simplifying or organising a real system, in 
order to bring it closer to a mathematic formulation. Within Ärlebäck and Albarracín (2019) activity-
based approach, for instance, those actions devoted to facilitate the application of mathematics are 
encompassed in the “Modelling” sub-activity. Under a modelling-cycle approach, on the other hand, 
they are included in the Simplifying/Structuring transition.  

The role of assumptions in the transition of Simplifying/Structuring 

Previous research has emphasised that difficulties in modelling are especially obvious when real-
world situation has to be simplified (Dede, 2016; Kaiser et al., 2010), and there are studies describing 
the actions involved in the simplifying/structuring process of a real system (see e. g. Czocher, 2016; 
Maas, 2006; Montejo-Gámez & Fernández-Plaza, 2021). These include drawing/sketch of such real 
system, identifying and naming variables, operationalising relationships or patterns, introducing 
outside knowledge and estimating data, carrying out systematic experiments and using and 
formulating assumptions. In particular, there is consensus among the different authors on the 
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importance of the management of assumptions within the modelling activity. However, some studies 
suggest that much of the difficulty in the simplification process arises when making assumptions 
(Dede, 2016; Hidiroğlu et al., 2014 cited by Dede, 2016), and the focus of teaching is hardly focused 
on the formulation, use or discussion of the assumptions of a model. On the other hand, Wozniak 
(2012) highlighted the importance of prospective teachers being able to explicitly express the actions 
carried out during the modelling activity. Consequently, it is appropriate to help students to become 
aware of the information they apply when modelling. 

Research on the impact of this information on the modelling activity is not very extensive. Fernández-
Ahumada and Montejo-Gámez (2019) introduced the term premises to refer to mathematical 
statements used in a model without prior justification. The analysis of this type of statements allowed 
the detection of difficulties in the modelling activity. Other studies made emphasis on the formulation 
of the assumptions. At this respect, Wozniak (2012) found ‘mute praxeologies’ when analysing 
prospective elementary teachers’ activity: they used hypotheses, but generally did not formulate them. 
These studies suggest the usefulness of making visible the information that prospective teachers may 
assume when solving a modelling task and measuring the influence that this may have on the 
modelling outcomes. This leads to the following research question: what information do prospective 
elementary teachers assume as valid when approaching a modelling task and what is its impact on the 
models developed? To give an answer, this study aims to analyse written productions in order to 
access the assumptions made during the transition simplifying/structuring. The methods used are 
explained below. 

Methods 
A qualitative methodology was used for the development of the research. The sample used was made 
up of N = 74 students of the degree in Primary Education at the University of Granada (45 women 
and 29 men). The participants were organised according to the usual working groups in class for 
them: 1 group of two people, 12 groups of three people and 9 groups of four. The 22 groups worked 
for an hour and a half, without interactions between groups, to solve the following task, adapted from 
Kaiser (2014): The Cabo Mayor lighthouse is situated at the North of Santander. The focus of this 
lighthouse is situated 91 m above sea level; thus, it is useful to warn ships that they were approaching 
the coast. How far, approximately, is a ship from the coast when it sees the lighthouse for the first 
time? The work of the groups generated 22 written productions that reflected the models proposed by 
the students.  

Analysis procedure 

The research question was approached on the basis of a three-stage analysis. (1) The first one was to 
characterise and categorise the models developed. For this, the instrument and procedure presented 
by Montejo-Gámez et al. (2021) were used, which are schematised in Figure 1. The procedure starts 
by deciding what is to be considered mathematical content. Next, per each written production, the 
representations used in such production were identified, categorised and then analysed: On one hand, 
the questions of the system and the mathematical questions of the model were identified (depending 
on whether or not they contained mathematical content). On the other hand, the statements involved 
in the representations drove to identifying the relations of the system (those without mathematical 
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content) and mathematical results (those with mathematical content) of the model. Then, the entities 
referred to in the relations were identified as the objects of the system, whereas the relevant quantities 
involved in the results were identified as the variables of the mathematisation. Finally, the underlying 
mathematical properties from the results were abstracted, and hence, the concepts involved. In this 
way, the system and the mathematisation that made up the mathematical model in the written 
production were obtained. The synthesis of the differentiating elements provided a summary 
characterisation which gives an overall idea of the model developed and highlights its main attributes 
(see Table 1 below). Once this was done with all the written productions, models were organised into 
emergent categories, according to such attributes and the validity of the models (to provide a 
reasonable answer to the task).  

 

Figure 1: Flux diagram of the procedure used to characterise the models from the written productions 
in the first stage (Montejo-Gámez et al., 2021, p. 6) 

(2) The second stage of the analysis consisted of identifying the information that students assume to 
be valid in their models, which was based on Fernández-Ahumada and Montejo-Gámez's (2019) 
notion of premise. In this way, the relations and the results and properties of the models analysed in 
the first stage were retrieved, and those statements that were used without prior justification were 
selected. Note that such statements were obtained from the representations of the models. For 
example, the first pictorial representations in Figure 2 below (from a to e) indicate that students 
assume as valid the flatness of the earth's surface. Once the statements assumed as valid were 
recovered, they were organised into emerging categories with a common meaning, and each category 
was assigned a synthetic formulation that summarises this meaning. These categories were obtained 
by two of the researchers independently and then discussed and reviewed by the third researcher. In 
order to find out the incidence of each category, the following variables were quantified: frequency 
of appearance in the productions, contextuality (percentage of statements in that category that were 
represented without any reference to mathematical content), awareness (percentage of statements in 
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that category that the authors recognise as assumptions in an obvious way) and validity (percentage 
of statements that have been used in an acceptable way in the context in which they were used). For 
example, the 82.4% validity shown in row S6 in Table 2 indicates that 82.4% of the times students 
used the Pythagorean theorem it was to apply it to right-angled triangles (on the remaining occasions 
they used it in situations where it does not apply). (3) Finally, in the third stage, the distribution of 
the statements that students considered valid according to each type of model was obtained. These 
data made it possible to visualise the impact of the information students assumed to be valid on the 
models produced. 

Results 
The characterisation and categorisation of the models developed by the students (first stage of the 
analysis) started from the choice of what was to be considered mathematical content: arithmetic 
operations, units of measurement, geometric properties of the circle and the Pythagorean theorem, 
content that belongs to the syllabus of the university course in which these students were enrolled. 
This first stage resulted in six categories, which are summarised in Table 1 and illustrated in Figure 
2. The most repeated models (11 of the 22 models analysed) were those based on a right-angled 
triangle with the sea surface (flat) and the lighthouse. Nine of these constitute the M1 category and 
the remaining two make up the M2 category. M1 consists of the models that correctly identified the 
height of the lighthouse. None of them were valid for solving the task, as four of them assumed ad 
hoc data on the angles (Figure 2, a and b) and four others assumed values for the sides of the triangle 
(Figure 2, c and d). A final group gave no answer after considering the right-angled triangle.  

Table 1: Summary characterisation and validity of the models developed by students 

Model  Frequency Summary characterisation Valid? 
 M1 9 A right-angled triangle whose base is the Earth's surface (considered to be flat). The 

lighthouse height datum is correctly identified (Figure 2a-d). 
No 

M2 2 A right-angled triangle whose base is the Earth's surface (considered to be flat). The 
lighthouse height datum is incorrectly identified (Figure 2e). 

No 

M3 1 Circle of radius 91 m (Figure 2f). No 
M4 5 Right-angled triangle whose legs are the radius of the Earth and the lighthouse-horizon 

line of sight. The height of the ship is neglected (Figure 2g). 
Yes 

M5 3 Triangle whose legs are the radius of the Earth plus the height of the ship and the 
lighthouse-ship line of sight. The triangle is assumed to be right-angled (Figure 2h). 

No 

M6 2 Two right-angled triangles with common leg the radius of the Earth, and uncommon legs 
the ship-horizon and lighthouse-horizon lines of sight, respectively (Figure 2i). 

Yes 

M2 is made up of the models based on a right-angled triangle that misidentified the 91 m height datum 
(Figure 2e). The remaining categories use the circumference to address the task. In particular, 
category M3 has been assigned to a single model that interpreted the range of the lighthouse as 91 m 
and described the situation using a circle, which could not lead to an answer to the question posed 
(Figure 2f). In turn, category M4 encompasses the 5 models that used the curvature of the Earth's 
surface to model the situation and disregarded the height of the ship, which allowed them to obtain 
close-to-reality solutions (Figure 2g). Category M5 includes models that did not disregard the height 
of the ship but considered right-angled triangles that are not really right-angled, which was the case 

Proceedings of CERME12 1128



 

 

for two of the groups (Figure 2h). Finally, M6 comprises models that considered the ship's height and 
used two right-angled triangles to calculate the ship-to-horizon and horizon-to-lighthouse distances 
(Figure 2i). 

 
Figure 2: Pictorial and symbolic representations corresponding to the models found 

Table 2, regarding the second stage of the analysis, summarises the information that students 
considered valid for the development of the models without the need for justification. There were 116 
such statements, which were organised into seven categories. Four of them included statements 
expressed with hardly any mathematical content (rows S1-S4 in Table 2), and the remaining three 
were mostly expressed in mathematical language. In the case of S1-S4, we found hypotheses that 
students used without showing evidence that they were making assumptions. Of particular note were 
the assumptions of the flatness of the Earth's surface, the assumption that the height of the ship can 
be neglected, and different approximations to useful numerical parameters (angles in the M1 models, 
triangle side lengths in the M1, M2 and M3 models, and the radius of the Earth in M4, M5 and M6). 
In contrast, those models that used the curvature of the Earth or the height of the ship showed a higher 
degree of awareness. Furthermore, data indicate that statements with a higher degree of awareness 
have higher validity within the corresponding model. With regard to the last three categories (rows 
S5-S7 in Table 2), which describe applied mathematical knowledge, it is observed that students 
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generally use valid mathematical content (the Pythagorean Theorem in most cases) without justifying 
it, and that they assume its applicability as a matter of course. However, about a quarter of the 
statements in S5 expose that the students show explicit awareness of having identified a variable 
whose numerical value provides the answer to the task. 

Table 2: Categories of statements that students considered valid in their models 

Synthetic formulation Frequency Contextuality Awareness Validity 
S1a. The Earth's 
surface is flat 

S1b. The Earth's 
surface is curved 12  10 100%  100% 8.3%  80% 0%  100% 

S2a. The height of the 
ship is negligible 

S2b. The height of the 
ship is not negligible 18  4 100%  100% 0%  50% 100%  100% 

S3. A variable has a certain numerical value 21 90.4% 28.6% 57.1% 
S4. There are no clouds or haze 2 100% 100% 100% 
S5. Calculating certain information answers the 
problem (identification of the unknown). 22 4.5% 22.7% 81.8% 

S6a. Pythagorean Th. 
is applicable to solve 
the problem 

S6b. Trigonometry is 
applicable to solve 
the problem 

17 2 0%  0% 0%  0% 82.4%  100% 

S7. When the ship starts to sight the lighthouse, 
the ship-lighthouse line is tangent to the Earth.  8 0% 12.5% 100% 

Regarding the impact of the statements that students used without justification, Table 3 shows the 
distribution of these statements in the different models. In particular, row S1 shows that the use of 
the curvature of the Earth was decisive in the development of the models, so that M1, M2 and M3 are 
based on the flatness of the Earth's surface, while the remaining three types of models are based on 
taking advantage of its curvature. Among the latter are also concentrated the claims related to the 
tangency of the ship-lighthouse line of sight (line S7 in Table 3), although it seems reasonable that 
these claims are a consequence of using the curvature of the Earth, rather than a cause of the 
development of the models. In contrast, the use of ship height does discriminate between M4, which 
disregards it, and M5 and M6, which introduce it as a model parameter (row S2 of Table 3). As for 
the rest of the statements, the applicability of certain mathematical contents such as trigonometry 
could be a differentiating feature of the models (especially with regard to mathematics), but it has not 
been considered as such due to its residual nature in the context of pre-service education. Finally, it 
is observed that statements related to the adoption of values for the parameters and the identification 
of the unknown are evenly distributed across the different models, so that they did not exert any 
relevant influence on the students when constructing their models either.  

Table 3: Distribution of the statements that students considered valid according to each type of model 

Synthetic formulation M1 (9) M2 (2) M3 (1) M4 (5) M5 (3) M6 (2) 
S1a. The Earth's 
surface is flat. 

S1b. The Earth's 
surface is curved. 9  0 2  0 1  0 0  5 0  3 0  2 

S2a. The height of the 
ship is negligible 

S2b. The height of the 
ship is not negligible 9 0 2 0 1  0 5  0 1  2 0  2 
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S3. A variable has a certain numerical value 7 3 1 5 3 2 

S4. There are no clouds or haze 0 0 0 1 1 0 

S5. Calculating certain information answers the 
problem (identification of the unknown). 9 2 1 5 3 2 

S6a. Pythagorean Th. is 
applicable to solve the 
problem 

S6b. Trigonometry is 
applicable to solve the 
problem 

6 2 1 0 0  0 5  0 3  0 2  0 

S7. When the ship starts to sight the lighthouse, the 
ship-lighthouse line is tangent to the Earth.  0 0 0 4 2 2 

Note: The number in brackets next to Mi indicates the number of models that fell into the i-th model category 

Discussion and conclusion 
This paper characterises the mathematical models developed by prospective elementary teachers 
when dealing with a task in which a property of the reference system, which is not explicit in the task 
but known to all participants, is key to finding a valid answer. The aim of this study was to analyse 
the information that prospective elementary teachers put into play without justifying it and its impact 
on the models developed. The main novelty of this paper is the analysis strategy used for this purpose 
and the first results found about this impact.  

Analysis of the statements that prospective elementary teachers assumed to be true without 
justification revealed a large volume of information that was used in the models without obvious 
justification, with a balance between mathematical and extra-mathematical information. These results 
are aligned with those of Wozniak (2012), who found a large amount of mute praxeologies during 
modelling activity of prospective elementary teachers. In addition, it was observed that statements 
that students consciously impose are more valid for the model than those that are assumed without 
obvious awareness. As for the impact of these types of statements on the models developed, it was 
found that the use of the flat or curved character of the earth's surface was decisive. Indeed, all three 
types of models that assumed the flatness of the Earth led to non-valid answers, while two of the three 
types of models based on the curvature of the Earth did provide reasonable answers. The use of ship 
height was not decisive for the validity of the models, but it did differentiate them. On the other hand, 
data or information on the applicability of certain mathematical content had less impact on the models 
developed. 

In brief, it has been found that the information that students use without justification when developing 
a model (especially in the simplification and structuring of the initial contextualised situation) can 
determine the modelling outcomes. Therefore, knowing this information is useful for understanding 
their models, finding difficulties (Fernández-Ahumada and Montejo-Gámez, 2019) and accounting 
for the contextual mathematical knowledge of prospective elementary teachers. The present study 
highlights the usefulness of written productions when studying this information that is used without 
justification and provides an analysis strategy for this purpose. The instrument developed by Montejo-
Gámez et al. (2021) has been used, although tools for analysing written productions such as that of 
Ferrando et al. (2017) could also be used for this purpose. The didactic implication that emerges from 
this study is the relevance of expressing the mathematical knowledge that is activated during the 
modelling activity, which is especially necessary in prospective elementary teachers. Tools such as 

Proceedings of CERME12 1131



 

 

the Study and Research Paths (Barquero et al., 2019) or the implementation of modelling tasks 
focused on the specific activities of using, formulation or detection of hypotheses could be useful in 
this sense. Exploration of these possibilities will be developed as future work. 
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The research presented is focused on engineering education, framed in the Anthropological Theory 
of Didactics (ATD), whose objective is to design a didactic activity of mathematical modelling. For 
this purpose, didactic engineering is considered. The starting point is the analysis of a civil engineers’ 
workplace. A praxeology based on the Hazen-Williams model to design pipelines is identified using 
notions of hydraulics, topography, and mathematics. A didactic transposition on this praxeology is 
performed. A mathematical modelling activity is designed and implemented with students in the fluid 
mechanics’ course. The central task is to determine the diameter of the pipe and ensure a water flow 
rate of 50lts/s. The handling of the mathematical model requires a qualitative analysis of the variables 
at stake and to relate knowledge of various kinds. 

Keywords: Mathematical models, higher education, engineering education. 

Introduction 
Linking the mathematics that engineers use at work with the mathematics they study at university is 
a social demand, highlighted by Pollak (1988). Indeed, some research has been conducted in the 
workplace to identify the mathematics being used (e.g., Frejd & Bergsten, 2016; Gainsburg, 2007). 
Their results show the fundamental role of mathematical models, the management of which requires 
other knowledge, such as computational, practical, and engineering, and particularly, from 
experience, which is fundamental in decision-making, what Gainsburg (2007) calls the engineer’s 
judgement. These types of mathematics can occur in training through didactic proposals that are 
inspired or based on the analysis of mathematics in the workplace, as suggested by Frejd and Bergsten 
(2016). In this line, this research was carried out within the framework of the Anthropological Theory 
of Didactics (ATD), in proposing to relate the workplace and specialised training as a first step for 
designing didactic proposals for the mathematics classroom. We mainly raise two research questions: 
What kind of activities of engineer’s workplace can be transposed to engineering courses through 
mathematical modelling teaching proposals? Furthermore, what institutional conditions make it 
possible to integrate these proposals into engineering courses? 

Some elements from ATD 
The ATD proposed by Chevallard (1999; 2019) defines a model for analysing human activity in its 
institutional dimension. The praxeology  is a minimal unit of analysis of human activity. 
Its four components are the task type ( ), the technique ( ), the technology ( ), and the theory ( ). 
The ‘task’ refers to what is to be done; the ‘technique’ is how it is to be done; the ‘technology’ is a 
discourse that produces, justifies, and explains the ‘technique’; while the ‘theory’ produces, justifies, 
and explains the ‘technology’. Doing mathematics is a human activity closest to mathematical 
modelling because doing mathematics in this frame consists of and acting (produce, teach, uses) on 
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mathematical models, as stated in Barquero et al. (2019). Institutions offer resources and conditions 
that allow their subjects to develop specific activities and establish restrictions. There are different 
types of institutions, and a subject may belong to several institutions, occupying various positions 
(e.g., teacher, student, parent, citizen). According to Chevallard (1999), praxeologies can circulate 
between institutions, undergoing, in effect, transpositive processes, i.e., transformations. To analyse
this phenomenon in the case of the training of future engineers, Romo-Vázquez (2009) classified 
institutions according to their relationship with knowledge into three types: production, teaching and 
use. Production (or research) institutions are those that produce praxeologies, such as disciplines (e.g., 
mathematics, hydraulics); teaching institutions are in charge of transmitting praxeologies (e.g., school 
mathematics, school hydraulics) and using institutions are those in which praxeologies are used (e.g., 
industry, workplace). This classification is made considering the primary vocation of each institution. 
Still, it does not mean that praxeologies are not created or taught in the workplace or that no 
praxeologies are taught in the disciplines. However, when a disciplinary praxeology is taught, it 
undergoes a didactic transposition. It means that it is transformed to become an object of teaching. 
Thus, mathematical praxeologies become school mathematical praxeologies (Chevallard, 1991). The 
didactic transposition process is illustrated by Bosch & Gascón (2006, p. 56) as follows (figure 1):

Figure 1: The didactic transposition process

In the case of training of future engineers, specific didactic transpositions can be performed. For 
example, transposing mathematical modelling praxeologies from the workplace to mathematics or 
engineering education, as suggested by some research (e.g., Frejd & Bergsten, 2016; Romo et al., 
2017), as represented in figure 2.

Figure 2: Transposing mathematical praxeologies from the workplace to teaching institutions

Performing this kind of transposition from Workplace to Engineering education demands identifying
a local1 mathematical modelling praxeology in a specific workplace of engineers W: 

. Here, is an engineering type task and the technique to perform this 
type of task has mathematical and engineering elements. The technology that justifies the 
technique is a mathematical model used in engineering, whereas the theory is from engineering.
Praxeology Pw is then transformed into a school mathematical modelling praxeology Ps that can be 
constructed in engineering teaching (ET) as illustrated in figure 3.

1 Praxeology with the same logos block for different practical blocks. It corresponds metaphorically to a modelling topic 
composed of various sub-topics.
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Figure 3: Scheme of transposition workplace praxeology to teaching praxeology

The process of transposition demands considering the institutional conditions: workplace and 
teaching, and the way of the original praxeology can be transformed to live in the teaching 
institutions. Likewise, Pw is conceived like an epistemological model reference in the sense proposed 
by Barquero, Bosch and Gascón (2019). Thereby, Pw must be a local modelling praxeology. 

Methodology: Didactic engineering
Didactic engineering constitutes a solid research methodology (Artigue, 2020), which allows the 
design of tasks. Its four phases are preliminary analysis, activity design and a priori analysis, 
experimentation, and a posteriori analysis. Based on this, we design and analyse a didactic activity of 
mathematical modelling for engineering education, as illustrated below.

Phase 1. Preliminary analysis: Civil engineers’ mathematical modelling praxeology of hydraulics.
This analysis focused on characterising a mathematical modelling praxeology of hydraulics used by 
civil engineers to design pipelines in their workplaces. It was carried out jointly by a mathematics 
education researcher and a civil engineer with 29 years of experience, who is also a university 
professor (first author) of mathematics and engineering courses and a PhD student in mathematics 
education. Analysing his professional practice is a difficult task because some knowledge is no longer 
recognised, then a researcher in mathematics education questioned and asked for explanations. Civil 
engineers’ mathematical modelling praxeology of hydraulics is represented as

, where h represents hydraulics and m mathematics. Thus, task type is Th: Design a pipeline to 
transport water between two points taking advantage of the effect of gravity. Technique τhm and 
technology θhm: Step 1. Recognise the project’s requirements and the minimum initial data to 
calculate the difference in level between the supply and distribution reservoirs and the total length of 
the pipeline path. Step 2. Determine the whole
length of the pipeline path (L) using an established 
reference system (see figure 4). Step 3. Determine 
the hydraulic head of the system (ΔH), calculating 
the difference between supply and distribution 
reservoirs. ΔH is always greater than zero since the 
level of the distribution reservoir is lower than that 
of the supply reservoir, ensuring that the effect of 
gravity generates the flow of the fluid (figure 4). 

Step 4. Select the material of manufacture of the 
pipe, considering the roughness of materials employing the Hazen-Williams coefficients (C)2. A
material with high roughness will have a lower coefficient and a lower flow rate for the same pipe 
diameter. In contrast, the lower roughness of the material will have a higher coefficient and a higher 

2 See for example Alegret & Martínez (2019, p. 45).

Figure 4: Schematic illustration of the 
pipeline path
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flow rate. Step 5. Determine the flow rate (Q) using the Hazen-Williams mathematical model: 
 where: Q = Flow rate at the pipe (m3/sec); C = Hazen-Williams coefficient 

(dimensionless); D = Diameter of the pipe in meters (m) and S = hydraulic head loss per length of 
pipe (dimensionless factor) obtained with the following formula:  where: ΔH = hydraulic 
head, expressed in meters, L = Total length of the pipe path interconnecting both reservoirs. The 
applicable limits of this formula are debatable; in the third edition of Hydraulic tables by Williams & 
Hazen (1933), the pipe diameters to be used were limited to 0.05 m (2 in.) < D < 1.85 m. (6 ft.). 
Furthermore, it is recommended to be used for flow velocities values below 10 ft./sec (3.05 m/s) and 
is valid only for water flowing at ordinary temperatures (5 °C - 25 °C) (Alegret & Martínez, 2019). 
It is worth mentioning that, in the case of not complying with the described parameters, the 
mathematical model could give results different from reality. Step 6. Verify that the flow rate (Q) 
obtained is the closest (approaching from a higher value) to the project’s required flow rate (Qp); Step 
7. Check the water velocity (v) at the pipeline, which should be less than 10 ft/sec (3.048 m/sec). Step 
8. Report the pipeline design results. To perform these eight steps requires that engineers properly 
use the Hazen – Williams model, recognising the mathematical relationship of the variables involved 
and how they can be satisfied from experimental conditions. Sometimes it is necessary to adjust data 
and, above all, to contrast the results obtained by the model with the existing pipe diameters on the 
market. The theory Θe is hydraulic engineering. 

Phase 2. Didactic transposition of the civil engineers’ mathematical modelling , design of the 
didactic activity and a priori analysis. A didactic transposition was performed on the , obtaining 
a school praxeology . The task type is the same; the technique is organised in Ps through three 
stages using subtasks Tn.m. The technology in both praxeologies is the Hazen-Williams mathematical 
model, and the theory is hydraulic. However, in school praxeology, the fluid mechanic’s course is 
also involved, see figure 5.  

 

Figure 5: Scheme of didactical transposition from Pw to Ps 

Thus, the school praxeology is described in this way. Th: Design a pipeline to transport water between 
two points taking advantage of the effect of gravity. The technique has three stages. In stage 1, the 
requirements and initial data of the project are recognised through three subtasks. Firstly, T1.1. 
Identify the required flow rate (Qp) at the distribution reservoir. This is the project’s main datum, for 
example, 50lts/sec; T1.2. Analyse the topographic data (see Table 1), draw up a scheme and visualise 
the general conditions of the system to be designed. This is a first approach to the establishment of 
the reference system: location of the supply point as an initial point of the system, establishment of 
scales to use and labels to identify the implicit elements in the system. Finally, T1.3. Drawing up the 
topographic profile for recognising the natural terrain and identifying key points for the design of the 
pipeline. Civil engineers usually use the software like AutoCAD, favouring parameter manipulation 
for better visualisation and detailed analysis. Students can use GeoGebra, which provides an elevation 

Proceedings of CERME12 1136



view and elements necessary in a simplified two-dimension drawing to apply the Hazen-Williams 
model (see figure 6). Stage 2: designing a pipeline to transport water between two points by taking 
advantage of the effect of gravity involves five subtasks. T2.1. Determination of the pipeline’s total 
length is important for calculating the hydraulic head loss per length of the pipe. The lengths of the 
pipe sections are calculated from point to point where the changes of direction in the path occur and 
add together. Students can perform these calculations in GeoGebra. T2.2. Calculation of the hydraulic
head, a dominant factor for the natural movement of the fluid through the pipe. This is the difference 
in level between the point of supply and the point of distribution calculated in meters. T2.3. Selection 
of the type of pipe considering three main conditions: 1) installation needs, 2) cost of the pipe, and 3) 
the related Hazen-Williams coefficient, depending on the material of manufacture. The students do 
not have information on conditions 1 and 2, so they should focus on the efficiency of the material for 
fluid conduction, evaluating the Hazen-Williams coefficient. T2.4. Determine the flow rate. This is 
the central task and consists of the application of the Hazen-Williams mathematical model. Although 
their use is not identified in professional praxeology, it is considered that students could propose an 
initial value of the pipe Diameter using the continuity equation , where v is the limiting 
velocity of the water in the pipe, Q, the flow rate for which the design is made and A, the cross-
sectional area of the pipe. Considering the formula of the area of a circle, it is feasible to obtain an 
initial datum for the Diameter. For the students to perform this same procedure, avoiding an initial 
random proposal of Diameter, they will be provided with a table that favours the qualitative analysis 
of relationships between variables. T2.5. and T2.6. Verification of compliance with limitations or 
restrictions of the method, guaranteeing the correct operation of the mathematical model to obtain 
results following reality. 1) Pipe Diameter limited to 0.05 m (2 inches) < D < 1.85 m. (6 ft.); 2) Design 
flow rate greater than or equal to that required in the project [Q ≥ Qp]; 3) Fluid velocity in the system 
must be less than 10 ft. per second (3.05 m/s). To verify it, the formula is used again.
Suppose any of the restrictions are not met. In that case, students are expected to propose another 
diameter, develop the procedure, checking whether all the restrictions are met again, i.e. an iterative 
process is generated until the pipe Diameter that meets the restrictions of the method is found. As a 
means of verification (immediate feedback) and approaching the professional reality, students can 
use “Epanet”, specific software for the design of 
piping systems in which the Hazen-Williams 
mathematical model is encapsulated or implicit.
Stage 3) Report the pipeline designed results. A T3.1 
subtask is proposed to elaborate a report of the 
pipeline designed results.

The objective of the didactic activity is to allow students to construct or reconstruct the school 
praxeology Ps in the classroom. For this purpose, a situation similar to those faced in workplace 
practice is proposed: “A team of engineers has to connect two reservoirs for the supply of water for 
domestic use in some town, whose flow rate average required is 50 lts/sec, according to the results of 
previous studies carried out by specialists. The topographic study carried out on the path of the 
pipeline that will connect these reservoirs yields the following data on the obligatory points (Table 
1), to carry out the least amount of excavation possible.”

Figure 6: Topographic profile in GeoGebra
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Table 1: Topographic data of pipeline 

 
Phase 3. Experimentation. The study was developed at the Universidad Cristóbal Colón, Veracruz, 
Mexico, in engineering education. The didactical activity was implemented in a fluid mechanics 
course. The participants were 37 students of the fourth semester, from majors of Industrial 
Engineering and Petroleum Engineering. 

Phase 4. A posteriori analysis. The analysis was performed on the basis of the students’ worksheets 
and the teacher’s notes on this activity. Three teams were chosen to analyse their praxeologies and, 
mainly, how they used the mathematical model, chose the Diameter and justified their solution to the 
project. The criteria for selecting the teams were the clarity and coherence of their reports and the 
students’ commitment to the development of the activity (according to the teacher’s notes). 

Some results 
This section presents a first analysis of the praxeologies developed by three teams of students, 
particularly in three subtasks: the determination of the Diameter and flow rate (T2.4) and the 
verification of compliance with limitations or restrictions of the method (T2.5 and T2.6), which were 
vital in the development of the didactic activity. When the students were faced with subtask T2.4, 
they had calculated the value of S and identified the material for their pipe and the Hazen-Williams 
coefficient C. So, they still had to determine the value of the Diameter D and Q (flow rate) by using 
the Hazen-Williams model: . The students had no previous experience 
selecting pipe diameters; then the teacher provided them with a table with different diameter values. 
So that they could evaluate it in the mathematical model and, depending on the results of the flow 
calculation, continue with the proposal of diameters until they found the one that would provide the 
closest flow to that required by the project. Thus, we tried to avoid using the mathematical model as 
a formula and favour qualitative analysis and the relationship between the variables at stake. The 
students determined the Diameter and verified that it was as close as possible (approaching from a 
higher value) to the flow rate required by the project (Qp = 50Lts/s). (See Tables 2a, 2b, and 2c, 
corresponding to samples of work achieved by the teams 1, 2, and 3, in that order).3 

      Table 2a: Work by team 1              Table 2b: Work by team 2               Table 2c: Work by team 3 

 

 
3 These tables were made by the authors, considering some rows of the original tables. The green highlighted was also 
made by the authors. 
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Team 1 selected a Diameter of 5.8 inches; it is observed that for this selection, they started evaluating 
diameters from the table they were provided (2, 3, 5) until they found values close to the required 
project’s flow rate, then by 0.1-inch diameter approximations (5.7, 5.8, 5.9). They found the closest 
value, approaching from a higher value to the project flow rate (see table 2a). Team 2 selected a 
diameter of 3¾ inches. This team presents errors in the operation of the mathematical model, it obtains 
higher flow rates using smaller diameters; the process of selecting the pipe diameter is very similar 
to that carried out by team 1, with the difference that they use approximations of 1/4 of an inch. (see 
table 2b). Team 3 selected a diameter of 5.744 inches. It can be seen that they used the same procedure 
for diameter selection as teams 1 and 2; in this case, the approximation of the diameter proposals is 
0.001 inches, trying to obtain the value of the project flow exactly equal to that required (see table 
2c). The mathematical model worked as a technology that allowed them to control the technique, not 
considering whether the Diameter obtained corresponds to existing pipes in the market. This 
knowledge is constructed in the engineer’s workplace. Moreover, we could ask students to verify the 
pipe’s existence in a new redesign of the modelling activity. Thus, they would have another element 
to validate the Diameter obtained with the Hazen-Williams model. Concerning the verification of the 
obtained flow rate to be the most adjusted (approaching from higher values), it was observed that in 
all cases the students selected the Diameter that provided the closest magnitude to the required project 
flow rate, always considering values higher than this one. T2.5 Regarding the review of the water 
velocity at the pipeline using the continuity equation: (where A is the cross-sectional area 
of the pipe). It was observed that some teams did not perform it. Where this was done, they only 
indicated that the parameter was not met. However, they did not make any proposal to establish a 
design that meets this requirement.

As an extra activity, and as a possibility for future research, it was proposed to the students to work 
with more specialised software –used in the workplace–, which allows them to check their results and 
receive immediate feedback, favouring reflection on the work carried out, proposals for improvement 
and connection with reality. Modelling the system in Epanet allows inserting geometric data of the 
system (obtained from the topographic profile in GeoGebra, figure 6), characteristics of the pipe 
(diameter, length, material of manufacture), accessories and equipment (e.g., valves, pumps) with the 
corresponding characteristics obtained from the manufacturer. The software also allows an immediate 
validation of the results by consulting 
the design parameters; these are flow 
rate and fluid velocity. This can be seen
on the screen by moving the pointer to 
the desired element (figures 7 and 8).

Conclusion
This research shows an avenue to design mathematical modelling activities for the training of 
engineers that connect using and teaching institutions. Didactic engineering allows performing a 
didactical transposition on the workplace’s mathematical modelling praxeology. In this case, the 
analysis of the Civil engineers’ mathematical modelling praxeology of hydraulics is developed by a 
subject of a using institution and a teaching institution. He analysed his workplace activity, identified 
a mathematical modelling praxeology, transposed it, generated a didactic activity and implemented 

Figure 7: Epanet fluid flow rate   Figure 8: Epanet fluid 
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it. His professional experience as an engineer and as a teacher was fundamental in all stages of 
didactic engineering. The students have no difficulties carrying out this activity, but their lack of 
experience limits the proposed solutions: expensive materials, non-existing pipe diameters, lack of 
practical verifications. The use of GeoGebra allows an approach to mathematics courses in the first 
semesters. In contrast, the possibility of using Epanet’s software allows an approach to professional 
practice, guiding the student in the consideration and analysis of parameters and the relationship 
between them for the generation of the solution with elements very close to reality. From the teacher’s 
perspective, the software used is complementary since GeoGebra provides relevant geometric data 
for modelling the project in Epanet. It is considered that this didactic activity can also be adapted to 
be implemented in a mathematics course, and even more, it can be proposed to be developed by 
students from different semesters with different backgrounds and experiences. 
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Comparing pre-service teachers' errors in individual and group 
resolutions of modelling tasks involving estimations 
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Real-context estimation problems are useful for introducing modelling in primary school classrooms, 
although teachers have difficulties associated with the modelling process and also with measurement 
and estimation senses that may hinder their implementation. Based on a specific categorization, this 
work analyses the errors of N= 224 pre-service teachers when they draw up individual resolution 
plans for a sequence of modelling tasks involving estimations, and when they subsequently solve the 
same sequence in groups and on-site. Individual and group resolutions are compared with two 
objectives: the first is to determine whether working at the problem site and in groups helps to reduce 
the number of errors; the second is to find out whether the types of errors that are made are different. 
This would help to efficiently use learning from errors to improve initial teacher training in solving 
modelling problems.  

Keywords: Fermi problems, errors, measurement, estimation, pre-service primary teachers 

Introduction 
Real-context estimation problems, also known as Fermi problems, are modelling tasks accessible to 
primary school students (Ärlebäck, 2009). Hagena (2015) argues that measurement sense and 
estimation are necessary to successfully solve many modelling tasks. Different studies have found 
that prospective teachers have difficulties and make many errors when solving modelling problems 
(Wess et al., 2021; Moreno et al., 2021). Furthermore, deficiencies have been found in the estimation 
skills of prospective teachers (Castillo-Mateo et al., 2012), especially when they have to reason about 
estimation and measurement in complex situations (Baturo & Nason, 1996). A previous work (Segura 
& Ferrando, 2021) developed a specific error categorization for one type of Fermi problem: those 
that require estimating a large number of elements on a delimited surface. This paper analyses errors 
in the productions of N = 224 pre-service primary school teachers when they are confronted with a 
sequence of this type of Fermi problems, whose statement is contextualized around the Faculty of 
Education building. The experience consists in two phases: firstly, individually and in-classroom, 
they have to make a resolution plan for each problem, secondly, they have to solve the sequence again 
in groups (N = 62) and perform measurements and estimations at the problems' site.  

A comparative analysis allows us to answer the following research questions: Q1. Does group and 
on-site work help to reduce the number of errors made by prospective teachers when solving Fermi 
problems? Q2. Do error types evolve from individual resolution plan to group resolution at the 
problem site? 

Theoretical framework  
Lesh and Harel (2003) define a mathematical model as a system consisting of mathematical concepts, 
symbolic representations of reality, relationships, regularities or patterns, as well as the procedures, 
mathematical or otherwise, associated with their use. The development of a mathematical model is 

Proceedings of CERME12 1149



 

 

made up of phases, and these phases form a cycle (Borromeo Ferri, 2018) that starts from a real and 
open situation that has to be simplified and structured. This process leads to the real model, a 
representation that prefigures the mathematical model. In order to build the mathematical model, the 
real model must be mathematized. The next phase requires working mathematically within the model 
to find a solution to the problem in mathematical terms. Finally, the mathematical result must be 
interpreted/validated in the real situation.  

Estimation tasks can be used as a means of initiation into mathematical modelling (Borromeo-Ferri, 
2018). A specific case of estimation tasks are Fermi problems: these problems present a situation 
where little concrete information is known, forcing students to make assumptions and estimates to 
obtain a solution to the initial question (Ärlebäck, 2009, p. 331). In this study we will use a subset of 
Fermi problems, those that consist of estimating a large number of elements in a delimited surface. 
Ferrando et al. (2020) categorised the productions of prospective teachers when solving these 
problems into four types of resolution (counting, linearization, base unit and density). Productions 
that did not reflect a clear process for arriving at the estimate were classified as incomplete. 

Studying errors made by pre-service teachers can be useful to understand with what competence and 
how they solve modelling tasks. Wess et al. (2021) provide a comprehensive categorization that 
provides an overview of the difficulties at each stage of the modelling cycle. Moreno et al. (2021) 
established a categorisation of errors (simplification error, mathematization error, resolution error, 
interpretation error) that has been one of the bases of the categorisation we have developed for Fermi 
problems. The other basis for establishing a specific error categorisation for Fermi problems 
consisting of estimating a large number of elements on a surface is the work of Castillo-Moreno et 
al. (2012). Their research analyses errors of measurement and estimation of length and area, which 
helps them to establish a categorisation of these errors, both conceptual (errors in perception or 
meaning of the magnitude; errors in the internalisation of the referents) and procedural (errors in the 
conversion of units of measurement or incorrect calculations). Basic understanding of quantity 
management poses difficulties that hinder reasoning about estimation and measurement in complex 
situations (Baturo and Nason, 1996).   

Experimental design  
The starting point of this work is a sequence of four problems. The four problems are contextualised 
in rectangular enclosures located in areas close to the Faculty of Education:  

P1-People. How many students can stand on the faculty porch when it rains?  

P2-Tiles. How many tiles are there between the education faculty building and the gym?  

P3-Grass. How many blades of grass are there in this space? 

 P4-Cars. How many cars can fit in the faculty parking? 

The sample is formed by N = 224 prospective teachers. The experience includes two parts: in-class 
individual work, on-site group work.  

In-class individual work 
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We provided each prospective teacher the written statements of the four problems of the sequence 
and a little image for each problem. They worked individually for 90 minutes on solving the sequence. 
The following aspects were emphasized: in each problem they should raise a possible solution plan 
indicating the measures they would need to obtain the estimation; the work should be done 
individually; they should explain their procedures in written form and may use drawings or diagrams; 
and, finally, they were not expected to obtain a numerical estimate but rather to explain how to get 
the requested estimate. We have called this schematic solution a resolution plan. 

On-site group work  

Pre-service teachers were again confronted with the same sequence of four estimation tasks one week 
later, but they were randomly grouped into N = 62 groups of between 3 and 5 people, and they were 
taken to the real spaces in the Faculty of Education's environment where the problems are located. 
They were also provided with measuring instruments to take data and carry out the necessary 
calculations to obtain a numerical estimate. The session lasted 90 minutes.  

Errors categorization   
The following categorisation of errors (Table 1), specific to the Fermi problems which require 
estimating a large number of elements in a delimited surface, is based on a previous analysis of the 
resolution plans of prospective teachers (Segura & Ferrando, 2021) and on the background review. It 
is organized following the phases of the modelling cycle and also considers essential processes of 
estimation and measurement sense.  

Table 1. Error categories and associated error types for modelling problems involving area and length estimates 

 Simplification error: 

E1. Incomplete real model associated with the lack of consideration of elements of the real situation.  

E2. Incorrect real model due to error of perception of the magnitude.  

E3. Incorrect real model due to inadequate internalisation of referents of the magnitude to be estimated. 

E4. Does not build a real model. 

 Mathematization error: 

E5. Mathematical model incoherent with the real model due to an error in the meaning of the terms of the magnitude.  

E6. Mathematical model incoherent with the real model due to inadequate internalisation of units of measurement of 
the S.I. of the magnitude to be estimated.  

E7. Mathematical model incoherent with the real model due to the use of unsuitable units of measurement. 

E8. Mathematical model is not constructed or is incomplete because elements of the real model are not quantified. 

 Mathematical working error: 

E9. Use of incorrect calculation procedures or calculation errors. 

E10. Error in conversion of measurement units. 
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E11. Incomplete resolution procedure. 

 Interpretation error: 

E12. Absence of measurement units in the results. 

E13. The estimate is clearly incompatible with the real situation. 

Results and discussion 
The analysis of the N = 224 resolution plans and the N = 62 group resolutions combines descriptive 
and qualitative analysis of categories and types of errors. Using the categorisation presented in Table 
1, Table 2 show the overall results of the analysis of the N = 224 individual resolution plans and the 
N = 62 group resolutions.  

Table 2. Frequency comparison of each type of error in individual resolution plans and group resolutions 

Error type/ Category 
Frequency in the N = 224 

individual resolution plans 
Frequency in the N = 62 group 

resolutions 

E1 27 (5,86%) 5 (4,17%) 

E2 100 (21,69%) 7 (5,83%) 

E3 4 (0,87%) 5 (4,17%) 

E4 41 (8,89%) 0 

Simplification error 172 (37,31%) 17 (14,17%) 

E5 66 (14,32%) 7 (5,83%) 

E6 7 (1,52%) 25 (20,83%) 

E7 24 (5,21%) 5 (4,17%) 

E8 87 (18,87%) 3 (2,50%) 

Mathematization error 184 (39,91%) 40 (33,33%) 

E9 44 (9,54%) 7 (5,83%) 

E10 1 (0,22%) 13 (10,83%) 

E11 49 (10,63%) 1 (0,83%) 

Mathematical working error 94 (20,39%) 21 (17,49%) 

E12 2 (0,43%) 3 (2,50%) 

E13 9 (1,95%) 39 (32,50%) 

Interpretation error 11 (2,39%) 41 (35%) 

Total 461 120 

Among the 224 prospective teachers who participated in the in-class individual experience, 166 made 
at least one error, representing 74.11% of the total. The results show that pre-service teachers made 
a large number of errors (461) in their individual resolution plans, giving an average of 2.05 errors 
per solver. In particular, 166 pre-service teachers who made errors had an average of 2.78 errors per 
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solver. On the other hand, when these prospective teachers were confronted with the same problems 
in groups and on-site, they made a total of 120 errors, an average of 1.9 errors per group. 51 of the 
62 groups made errors, or 82.26% of the total. The 51 groups that made an error had, therefore, an 
average of 2.35 errors per group. Thus, a higher proportion of groups made errors when they had to 
find a numerical estimate for each problem, but they made fewer errors than when, individually, each 
group member had to come up with a resolution scheme. 

It is observed that the proportion of errors for each category and for each associated error type is 
different for individual resolution plans and for group resolutions. In the individual in-class 
experience 37.31% of the errors belong to the category of simplification error, when the real model 
has to be constructed from the simplification and structuring of the real situation. Specifically, error 
E2. Incorrect real model due to error of perception of the magnitude is the most frequent (21.69%). 
Qualitative analysis of the individual resolution plans shows that most of these errors are due to 
confusing length and area. It appears especially in problem P2-Tiles, where the surface area between 
the gymnasium and the Faculty of Education is confused with the distance between the two. It also 
appears in P1-People or P3-Grass; in which the width of a person or width of a blade of grass is 
confused with the surface area they occupy. However, simplification errors are drastically reduced in 
the on-site group resolutions, accounting for only 14.17%, the category with the lowest error 
frequency. It is relevant that there is no group resolution that has not developed a real model (E4, 
leading to incomplete productions) while in the individual resolution plans the number was high (41). 

Regarding the category mathematization error, number of errors is very high both in the individual 
in-class experience (39.91% of the total number of errors) and in the group and on-site experience 
(33.33%). However, the nature and severity of these errors are very different. The most frequent 
errors in the individual resolution plans (E5 and E8) are the least frequent in the group resolutions. 
Indeed, E5. Mathematical model incoherent with the real model due to an error in the meaning of the 
terms of the magnitude is a type of error related to the inappropriate use of different quantities in a 
procedure, mixing them without respecting dimensional homogeneity. A qualitative analysis shows 
that many errors of this type appear in individual resolution plans which, in order to obtain the number 
of elements, divide the magnitude measurements of different dimensions. For example, in P1- People, 
dividing the total area of the porch by the width of a person. We also find other examples of E5, such 
as the confusion of the concept of area and the concept of perimeter. On the other hand, E8. 
Mathematical model is not constructed or is incomplete because elements of the real model are not 
quantified relates to resolutions that do not develop the mathematical model sufficiently to know 
which strategy would give the estimate. There are numerous examples of this error in the individual 
resolution plans: for example, in P4- Cars it is mentioned that "the car is measured" and that "the 
parking is measured" but it is not stated precisely what magnitude is plan to be measured are, nor is 
it written with what mathematical procedures the number of cars would be estimated from these 
"measurements". There is a lack of definition of relevant variables for the resolution of the problem 
and the dependencies between these variables, which indicates difficulties in understanding the 
mathematical concepts involved in the real model of the situation. Errors E8 and E5, numerous in 
individual resolution plans (18.87% and 14.32%, respectively) are the most serious in this category. 
They denote important conceptual shortcomings, especially E8 is often linked to resolutions 
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categorised as incomplete. In contrast, in on-site and group resolutions, the most frequent type of 
mathematization error (20.83% of the total number of errors) is E6. Mathematical model incoherent 
with the real model due to inadequate internalisation of units of measurement of the S.I. of the 
magnitude to be estimated. This type of error is caused by assigning a value to an estimation reference 
in conventional units of measurement that does not correspond to reality. We find many examples in 
group resolutions: for example, in P2-Tiles, those who consider that one foot is equivalent to one 
metre. Another example: in P3-Grass, a solver estimates that the dimensions of a blade of grass are 1 
metre wide and 3 metres long. It is clear from these examples that the conventional measures for the 
length of a foot or the area of a blade of grass are not well internalised by the solver. These are errors 
that denote shortcomings in the measurement sense, but do not hinder the development of a 
mathematical model to obtain an estimate. In group resolutions only 2.50% presented incomplete 
mathematical models (E8). 

Regarding the category mathematical working error, number of errors is similar for individual 
resolution plans (20.39%) and group resolutions (17.49%). However, the associated error types also 
change drastically. In the individual resolution plans the most numerous are E9 and E11. For E9. Use 
of incorrect calculation procedures or calculation errors, a qualitative analysis shows that, in 
individual resolution plans, this error is due to the use of the inverse algorithm (Ivars and Fernandez, 
2016), that is, make a multiplication in a situation with a measure division structure. For example, 
the procedure  is inverted to 

. Errors of type E11. Incomplete resolution 
procedure are due to the fact that, in many individual resolution plans, the solver has not explicitly 
written that, in order to find the number of elements of a surface using the area of the surface and the 
area occupied by the element, he/she must divide these data. Solvers do not write down the process 
because, perhaps, it is taken for granted. In contrast, in the on-site group experience the most 
numerous error in this category is E10, which only appears once in the individual plans. E9 and E11 
hardly appear at all. Thus, in group resolutions, numerous errors of type E10. Error in conversion of 
measurement units are made, especially when converting units of area (for example, from cm2 to m2 
by multiplying by 100). 

Finally, the most important change is observed in the interpretation error category: from representing 
only 2.35% of the total errors in individual resolution plans, it becomes the most frequent in group 
resolutions (35% of the total). This is not because working in a group and on-site makes it difficult 
to interpret and validate the results, but because the schematic nature of the resolution plan, which 
did not require a numerical estimate, meant that there was no solution to interpret, as most plans only 
point out how they would get there. In group resolutions, the most frequent error is E13. The estimate 
is clearly incompatible with the real situation, representing 32.50% of the total errors. In fact, it is 
the most frequent error made in all phases of group resolutions. A qualitative analysis shows that 
most of these errors occur because the numerical nature of the result is incompatible with reality. For 
example, a decimal number is given as an estimate of the number of cars that fit in a car park, or 
people that fit on the porch. This error is because the solvers have not checked the mathematical result 
and have presented it as a solution without first interpreting it in the real situation. 

Conclusions 
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The discussion of the results above allows us to answer the two research questions:  

Q1: Does group and on-site work help to reduce the number of errors made by prospective teachers 
when solving Fermi problems? 

Working in groups and on-site does not reduce the proportion of participants who make errors, but 
increases slightly. This may be because the group resolution is more comprehensive than the 
individual resolution plan, as it requires measurements and numerical estimations. A larger number 
of processes may allow more errors to be made. However, working in groups and on-site does slightly 
reduce the number of errors made and, above all, their seriousness. Errors that prevent the 
development of a real model (simplification errors, especially E4) and those that prevent the 
development of a mathematical model (especially E8) are drastically reduced. This explains, from 
the point of view of errors, a previous work (Segura et al., 2021) which shows that, for this same 
sample, the percentage of incomplete productions drops from 15.6% in the individual experience to 
2% in the group productions. Working in groups and on-site, therefore, is a scaffolding tool that, 
although it does not reduce the number of errors committed, it does drastically reduce their relevance. 
Errors made in groups do not impede the development of a model and the achievement of a reasoned 
estimate, even if it may be wrong. 

Q2: Do error types evolve from individual resolution plan to group resolution at the problem site? 

The nature of the errors indeed differs from individual resolution plans to group and on-site 
resolutions. The evolution at each stage of the modelling process is as follows: in group resolutions 
there is a sharp reduction of error rates of the simplification phase compared to individual resolution 
plans. Working in the place of the problem improves the perception of space and, therefore, of the 
magnitudes involved in the real model and which will be quantified in the mathematical model. This 
allows for a low number of incomplete or incoherent real models, when in the resolution plans this 
number was high. 

In the mathematization phase overall proportion of errors does not change much, but their nature 
does. The types of errors associated with this phase in individual resolution plans were mostly serious 
conceptual errors that often impede the development of a mathematical model and result in 
incomplete productions. However, in group resolutions most errors in this phase denote a lack of 
skills in the measurement sense, but do not prevent the development of a mathematical model to reach 
an estimate. Again, working in groups and on-site helps in the modelling process, although the 
detailed measurement work brings out errors in the sense of measurement and estimation. 

The proportion of errors in the mathematical working phase is similar in the individual in-class 
experience and in the on-site group experience.  But the types of error are different in each experience. 
In the individual resolution plans there is a majority presence of errors of a structural type in the 
estimation calculation procedures (use of the wrong algorithm, or lack of calculations). However, in 
the group resolutions, most of the errors in this phase are due to failures in the conversion between 
units of measurement, which implies a poor understanding of the concept. This difference is due to 
the schematic character of the individual resolution plan: it is not required to execute the numerical 
operations, only to explain them, which may lead to errors in the choice of algorithms that would not 
be made if actually executed, but avoids making numerical errors (such as in conversion).  
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The change in the proportion of errors of the interpretation phase is drastic: these errors increase 
considerably in group resolutions. The explanation is obvious: the schematic nature of the individual 
resolution plan makes it unnecessary to interpret the result, as it only explains how to get an estimate, 
and very few solvers provide a numerical estimate. However, in the group resolution they have to 
reach a numerical estimate, and many groups do not reflect on the nature of the result obtained: they 
use decimal numbers to express the number of cars or people, or give clearly implausible estimates 
(e.g. estimating that there are 30 blades of grass in a garden). 
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This study presents a part of a larger project investigating Turkish and Spanish prospective 
mathematics teachers’ ways of modeling in Fermi-Based Modeling Problems. In this particular study, 
we focused on 10 Turkish and 10 Spanish prospective teachers’ models to solve Toilet Paper Rolls 
Problem. We collected their written responses to the Fermi-based modeling problems. The data 
analysis process involved series of coding and categorizing the characteristics of the solutions. We 
presented the models of prospective teachers from two countries separately and articulated the 
commonalities and divergences in their ways of approaching a Fermi-based modeling problem. 
Although most models indicated a numerical approach, we observed that some models were 
pedagogically more powerful than others.  

Keywords: Fermi-based modeling problems, Prospective mathematics teachers, real context. 

Introduction 
In this study, we focused on open-ended and ill-defined Fermi-based modeling problems. Fermi-
problems involve situations that people may face in their daily lives and engage in making strategic 
estimations to identify quantities (Ärlebäck, 2009). Therefore, researchers found Fermi problems 
useful to integrate into a modeling perspective and investigated students’ ways of thinking from the 
modeling perspective (e.g., Albarracín et al., 2019; Albarracín & Gorgorió, 2014, 2019; Gallart et al., 
2017). Considering Fermi problems as a base for modeling is a very recent approach, and much needs 
to be known. For instance, there is still little known about the pre-service or in-service teachers’ 
modeling process in Fermi-Problems (e.g., Ferrando et al., 2021). To address this gap, we designed 
a project to investigate prospective mathematics teachers’ ways of modeling in Fermi-Based 
Modeling Problems that incorporated a global real context, Covid Pandemic. We used such context 
because it was experienced somehow similarly all over the world. Researchers investigating the 
models in Fermi problems argued that the familiarity of the context played a role in problem-solvers’ 
models (e.g., Ferrando et al., 2021). We therefore conjectured that the context of the problem would 
not intervene the models that was produced by the prospective teachers in both countries and so we 
could attend prospective teachers’ ways of mathematical thinking that were provoked by but not 
depend on the Covid Pandemic context. In the larger project, we aimed to articulate the commonalities 
and divergences in Turkish and Spanish prospective teachers’ ways of approaching Fermi-based 
modeling problems. This study, however, presents our initial exploration of Turkish and Spanish 
prospective teachers’ approaches to one Fermi-based modeling problem through an in-depth content 
analysis of their work. Through this exploration, we expect to see a range of solution approaches that 
the prospective teachers might develop in a Fermi-based modeling problem situation.  
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Theoretical Framework 
There are various modeling perspectives addressing different epistemological assumptions (Kaiser & 
Sriraman, 2006). Still, they share a common understanding that modeling involves a transition 
between the real-world and mathematical world, and this transition embraces a series of modeling 
cycles (Sevinc & Brady, 2019). Hence, the modeling process involves a series of express-test-revise 
cycles where the problem-solvers express the real-life situation mathematically, develop and test 
mathematical solutions, and revise the solutions until they satisfy the real-life problem (Lesh & Doerr, 
2003). Since the nature of Fermi problems are “directly related to the daily environment” and 
therefore “offer more pedagogical possibilities” (Sriraman & Lesh, 2006, p.248), they have been 
considered as effective situations to initiate a modeling process.  

Some examples of Fermi problems ask for the time needed to get into the top of the Empire State 
Building using the stairs (Ärlebäck, 2009), estimate the number of elements in a specified area (see 
Albarracín & Gorgorió, 2014 or Ferrando et al., 2021). As seen, these problems are realistic, open-
ended, and do not often involve a numerical value and therefore ill-defined. Due to these 
characteristics of the Fermi problems, researchers considered that they had the potential to initiate 
and develop a model in response to the given problematic situation. Models refer to 

(a) a conceptual system for describing or explaining the relevant mathematical objects, 
relations, actions, patterns, and regularities that are attributed to the problem-solving situation; 
and (b) accompanying procedures for generating useful constructions, manipulations, or 
predictions for achieving clearly recognized goals. (Lesh & Harel, 2003, p. 159) 

According to this definition, models present one’s ways of thinking about a situation. However, those 
ways of thinking needed to be useful for a particular situation and therefore required a goal-directed 
conceptual reorganization.  

In this study, we focused on a Fermi-based modeling problem that was given a realistic context and 
not bounded by cultural issues (see Figure 1). In other words, our Fermi-based modeling problem 
addressed a global situation that people experienced all over the world. Modeling this realistic 
problem required one’s analysis of the situation, making relevant and realistic assumptions, producing 
a solution that will be useful in that situation. Although the problem did not explicitly state, the ill-
defined nature of the problem requires problem-solvers to produce a general model (e.g., a formula 
or a list of steps and/or procedures) that will be applicable in similar situations. In this respect, we 
expect prospective teachers to engage in a series of conceptual reorganizations and produce a model 
that is shareable and re-usable, one of the identifying characteristics of a model (Lesh & Doerr, 2006). 

Methods 
This study presents a small portion of a larger project involving a set of Fermi-based modeling 
problems and 30 Turkish and 34 Spanish prospective mathematics teachers as participants. The 
participants in both countries were senior college students. Particularly, Turkish prospective teachers 
were in their last semester of a four year-long teacher education program. They have been trained to 
teach mathematics in middle schools (i.e., grade 5-8). Similarly, Spanish participants were in the 
second term of the compulsory professional master's degree for secondary school mathematics 
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teachers. Since we are still at the initial phase of data analysis, here, we focused only on 10 Turkish 
and 10 Spanish prospective teachers’ solutions that were randomly selected from the entire data set. 

We collected prospective teachers’ written responses to the problems and, in this study, analyzed 
their responses to one of the Fermi-based modeling problems called the Toilet Paper Rolls Problem 
(see Figure 1).  

 
Figure 1: The Toilet Paper Rolls Problem 

The data analysis process involved series of reading the responses, coding the characteristics of the 
solutions, and categorizing the solutions and characteristics. Data-driven coding process characterizes 
our data analysis process: we did not start with a code list but constructed the one as codes emerge 
from the data. Two authors also met to articulate and refine our interpretations of teachers’ models.   

Findings 
In this section, we present Turkish and Spanish prospective mathematics teachers’ models separately 
and, in the following section, discuss the commonalities and divergences in their way of approaching 
a Fermi-based modeling problem. As we communicate about their ways of solutions, we use T# (e.g., 
T1, T2, …) for Turkish participants and S# (e.g., S1, S2, …) for Spanish participants. 

Turkish Prospective Mathematics Teachers’ Models  

The participants first identified what information was needed to solve the Toilet Paper Rolls Problem. 
Depending on the approach they took, they either identified the needed information with literal 
symbols or numerical values, which were not provided in the problem. For instance, T4 made a list 
(Figure 2a) with estimated numerical values. Not only T4 but five other prospective teachers listed 
them and assigned estimated values to conjecture a solution for the problem. Prospective teachers 
who approached the problem algebraically also listed the same items (Figure 2b), but they listed their 
labels with literal symbols instead of the numerical values.   

 
Figure 2a and 2b: The list of information made by T4 (left) and T1 (right) to solve the problem 
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We observed that five of the ten prospective teachers preferred estimating numerical values and those 
estimations were mostly blind guessing. Only one of them stated that she relied on the picture 
provided in the problem and showed her marking on the given picture. There was one prospective 
teacher who showed both an algebraic solution and a numerical solution and one who provided a 
description of a solution but did not produce an algebraic expression or a numerical value. 

Those seven of the ten prospective teachers considered a regular arrangement of toilet paper rolls. 
The regular arrangement that they described was involving four steps: finding the number of rolls 
that would fit along with (i) the length, (ii) the width, and (iii) the height of one shelf the cabinet, and 
(iv) multiplying that result by 2 to find the total number of rolls that would fit into two shelves of the 
cabinet. Not only the prospective teachers who approached numerically but also the ones who 
approached algebraically considered this regular arrangement. Figure 3 below presents both cases. 

Figure 3a and 3b: Numerical and algebraic solutions based on a regular arrangement

Another algebraic solution was produced by T9 without referring to the arrangement of the rolls. Her 
solution involved a ratio of the volume of the cabinet to the volume of the toilet paper rolls.

Figure 4: Algebraic solutions without a particular arrangement consideration

Although the prospective teachers expressed that the problem was different from stereotypical 
textbook problems, these solutions indicated they followed a procedural prescription of their 
curricular knowledge. There was only one prospective teacher, T6, who considered realistic and 
contextual assumptions and a variety of (regular and irregular) arrangements. In this sense, his model 
was more detailed than other prospective teachers’ models (see Figure 5).

T6 stated that, for the arrangement in Solution 2, he was inspired by his mother’s arrangement of cans 
in a cellar, and this solution resulted in one more row to put toilet paper rolls. For Solution 3, he stated 
that he needed to consider a realistic need – the need for storing as many rolls as possible during the 
pandemic lockdown period – and therefore, he would not care about the shapes of the rolls in such a 
case. So, he decided to distort the shapes of some rolls to fit more into the cabinet. 
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Spanish Prospective 
Mathematics Teachers’ 
Models  

Similar to Turkish prospective 
teachers, we observed that in all 
the productions the variables 
necessary to address the 
problem were identified and, in 
most cases, these were initially 
presented literally (except in the 
case of S7, which, as shown in 
Figure 6a, directly gives values 
to the variables). For example, 
S2 states: “To solve this 
problem, I would need to know 
the dimensions (width, height, 
and depth) of each of the two 
shelves of the cabinet. In 
addition, I would also need to know the diameter and height of each paper roll”, while S6, as shown 
in Figure 6b, with the help of a graphical representation, indicated the quantities he needed to know. 

 
Figure 6a and 6b: The list of information made by S7 (left) and S6 (right) to solve the problem 

Most of the productions did not include indications on how to obtain values of the variables; as we 
will see later on, these productions presented, in almost all cases, algebraic resolutions. However, 
some participants introduced estimated values to the magnitudes involved, sometimes in an 
unjustified way (such as S7 in Figure 6a). In other cases, relying on the image accompanying the 
statement, S3 noted that “From what can be seen in the image, the maximum height per shelf seems 
to be four rolls. We can make an estimate of the maximum depth, also assuming that there are four 
rolls. Finally, we can also get the length of the wardrobe, which seems to be three rolls”. 

The statement of the problem suggests that the rolls are organized in the cabinet, and this is how it 
has been interpreted in practically all the resolutions that propose one or more models for the 
arrangement of the rolls. 

Figure 5: Three algebraic solutions with various arrangement 
considerations 
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Only S4 avoided indicating a specific arrangement of the rolls; however, he explained the following: 
“I first thought that we could reason directly from the volumes of the paper roll and the cabinet, but 
I discard this option because we would not have enough information to know how many could be 
correctly arranged.” As we have already seen in the analysis of Turkish prospective teachers’ 
productions, in some cases, they proposed more than one possible arrangement, both in the way the 
rolls were placed and in the way they were oriented on the shelf (see Figure 7). 

 
Figure 7a and 7b: Different orientation of rolls on the plane (S1) and different arrangements (S5) 

Once the variables were fixed (and, in some cases, their values estimated) and the arrangement(s) 
defined, there were two possible procedures to arrive at the solution. Starting from the estimated 
number of rolls that would fit in rows, columns, and shelves, a final estimate could be obtained. One 
of the prospective teachers defined this as “finding the volume by taking the rolls as the unit of 
measurement.” Another less direct way of arriving at the solution was to reason from the dimensions 
of the elements (the rolls and the cabinet) according to a fixed arrangement. 

Finally, the proposed solutions were categorized according to the language used, following the same 
criteria as in the analysis of the previously described Turkish productions. However, in the case of 
Spain, there was no production that presented the solution both in numerical and algebraic language. 
In relation to the introduction of elements of reality in the resolutions, we have identified two 
prospective teachers who considered particular characteristics of toilet rolls in their resolutions: both 
S4 and S9 commented that it was necessary to determine whether or not the roll could be deformed. 

Conclusion 
As we presented in the previous section, the prospective teachers approached the Toilet Paper Rolls 
Problem in different ways, but they all did make sense of the problem situation. Below, we 
summarized the characteristics of Turkish and Spanish prospective mathematics teachers’ models in 
the Toilet Paper Rolls Problem. As our analysis of the Fermi-based modeling problem indicated, there 
were similarities in prospective teachers’ ways of thinking (see, for instance, Table 1).  

Actually, a considerable number of Turkish and Spanish participants approached the problem 
numerically. We interpreted that those who operated with estimated numerical values did not feel 
comfortable with indeterminacy in the problem and transform the problem into a one that is 
manageable. Although those prospective teachers estimated numerical values to conjecture a solution, 
their solution process involved systematic steps of finding the number of rolls on each attribute and 
multiplying them. 
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Table 1: Characteristics of prospective mathematics teachers’ models 

Step 1. Identification 
of variables 

Numerical Literal 
T2, T4, T5, T7, T8, T10 

 S7 
T1, T3, T5, T6, T9 

S1, S2, S3, S4, S5, S6, 
S8, S9, S10 

Step 2. Estimating 
numerical values to 

use in the conjectured 
operations 

Only estimation Making a 
search 

Relying on the visual 
image 

NO 

T4, T7, T8, T10 
S7 

T6 T2 
S3, S9 

T1, T5, T3, T9 
S1, S2, S4, S5, S6, S8, 

S9 
Step 3. Regular 
arrangement of 

elements 

YES, ONE YES, MORE 
THAN ONE 

NO 

T1, T2, T3, T4, T5, T7, 
T8, T10 

S2, S3, S6, S7, S8, S10 

T6 
S1, S5, S9 

T9 
S4 

Step 4. Procedure Direct from the number of rolls in each 
dimension 

From dimensions of rolls 
and cabinet 

Not specified 

T2, T5, T7, T8,  
S3, S8, S10 

T1, T3, T4, T6, T9, T10 
S1, S4, S5, S6, S7, S9 

 
S2 

Step 5. Structure of 
solution 

Numerical Both 
numerical and 

algebraic 

Algebraic Verbal 

T2, T4, T7, T8, T10 
S7, S8, S10 

T5 T1, T6, T9 
S2, S5, S6, S9  

T3 
S1, S3, S4 

In this sense, the models relying on the numerical approach – and the algebraic ones – indicated ways 
of reasoning that were useful in the situation and are re-usable in similar situations, aligned with Lesh 
and Doerr’s remark of model’s being sharable and re-usable (2006). In addition, we observed a few 
prospective teachers considered realistic and contextual assumptions that influenced their solutions 
(e.g., T6 considering the different arrangements and S1 considering the different orientation of rolls), 
consistent with the research found that students tended not to consider realistic assumptions while 
solving real-life problems (Verschaffel, de Corte & Lasure, 1994; Verschaffel et al., 2000). However, 
even though they were a few, we found these models more sophisticated than others because their 
assumptions and approaches resulted in more than one solution. We believe that such models are 
pedagogically more powerful to develop solid mathematical reasoning for both teachers and students 
because they allow problem-solvers to think different aspects of the situation, which resulted in a 
different solution. In our presentation, we will further address these pedagogical implications. Our 
analysis involved only written responses and therefore hindered us to observe prospective teachers’ 
modeling process. Although it is not in the scope of this particular study, in the data analysis of the 
larger project, we seek for the ways of which final models might signal possible shifts in problem-
solvers’ mind. 
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In the present study, we asked: what are the design principles of computer-based modeling activities 
in mathematics? Using a design-based research approach, we formulated our essential components 
for computer-based modeling activities according to the literature. Next, based on enactment of the 
activities, we redesigned it and formulated five design principles. We describe a four-phases study 
demonstrating the “Head-to-head dice competition” activity.  

Keywords: Task design, mathematical modeling, technology, simulation.

Theoretical background 
A main challenge in learning mathematics is the students’ difficulty in making connections between 
reality and mathematics, and in realizing that math is important and useful for understanding and 
solving reality-related problems. For this reason, one of the goals of the mathematics curriculum 
worldwide is to provide opportunities for developing an understanding of mathematical models,
structures, and simulations applicable to many disciplines (NCTM, 1989), which should infuse
students’ mathematical interest with meaning. 
This paper conceptualizes a model as a system of elements and the relations between them, which 
can be used to describe, explain, or predict the behavior of some other familiar system (Doerr & 
English, 2003). This definition is consistent with Shternberg and Yerushalmy’s (2003) definition of 
a didactic model as “a collection of objects that are familiar to the learner, and operations defined on 
them which support the construction of an understanding of more formal reasoning about 
mathematical concepts and about their essential properties”. The model serves as an accessory to
thinking and a testbed for alternate assumptions, considering that the predictions of the model depend 
on the accuracy of its input data (Wilensky & Rand, 2015). Schwartz (2013) claimed that mathematics 
education is about teaching people how to build and use effective models of phenomena, therefore, 
education should also focus on formulating the relations between the elements of the models, which 
are referred to as measures.  

Modeling problems are authentic, complex, and reality-related situations, in which students connect 
their extra-mathematical knowledge (or knowledge of the context) with the mathematical ideas to 
which they have access (Ferri, 2018). To deal with these reality-related problems, many researchers 
agree that students need to go through a modeling cycle which starts with simplifying and 
understanding the situation of a given problem and ends with interpreting the mathematical results in 
the real world as real results. This process includes getting through constructing a real model of the 
situation, transforming the real model into a mathematical model by working mathematically, getting 
mathematical results, and validating it (Ferri, 2018; Greefrath, 2011). 

Schwartz (2013) stressed that the formulation of measures is an important first step in the act of
modeling, and that in order to have a model students must be able to predict the values of a measure 
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they are interested in. Modeling problems often involves two steps: selecting an already formulated 
model that describes the phenomena given in the question, then selecting the “correct” relation 
between the relevant aspects of the situation and evaluating it quantitatively (Schwartz, 2013).
In recent years, technology has been a great assistance for teachers and learners alike, by offering 
dynamic forms of mathematical representation such as models and simulations, which facilitate 
access to previously unfathomable concepts (Chance et al., 2007) and assist in building students’ 
understanding, facilitating their thinking about the domain by promoting a visualization approach to 
learning (Konold & Lehrer, 2008). Indeed, some researchers claim that technology can play a pivotal 
role in supporting and promoting mathematical modeling (Greefrath, 2011), especially that it 
illustrates the relationships between the different components of the given model, enabling students 
to investigate different contexts and to submit more than one correct solution for various input data 
(Wilensky & Rand, 2015). Greefrath (2011) claims that technology can be utilized at several steps in 
the modelling cycle such as for investigating, experimenting, visualizing, simulating, and calculating 
(see Figure 1). In the present study, we are interested in exploring design principles of computer-
based modeling activities in mathematics that includes models and simulations.

Figure 1: Modelling cycle with added influence of digital tools (Greefrath, 2011) 

Methodology 
The present study is part of a larger research project on the design principles of modeling activities 
in a digital environment, in which we ask which design principles of computer-based modeling 
activities support students’ modeling processes. The project is carried out in Israel.  In the present 
study, we asked: what are the design principles of computer-based modeling activities in mathematics 
that includes models and simulations? We focused on principles related to activity structure, given
tools, and teacher role. 

Research settings 

The design of new educational materials is a crucial part of design-based research in education, and 
it is interwoven with the development and testing of theory through iterative cycles (Bakker, 2018). 
To explore the design principles of computer-based modeling activities, we conducted design-based 
research, focusing on the “Head-to-head dice competition” activity. The research was conducted in 
four phases. In the first phase, we explored the design principles of modeling activities in 
the
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literature, and formulated our essential components for modeling activities. According to the design 
principles we articulated in the first phase, we designed new modeling activities. One of the designed 
activities, “Head-to-head dice competition”, is demonstrated in the research tools section. In the
second phase, we presented, implemented, and consulted about the designed activities with a team of 
mathematics education research and development professionals, and two teacher educators and 
mathematics teachers. During the second phase, we further clarified and consolidated the design 
principles. In the third phase, we implemented the activity in mathematics lessons. As a result of this 
phase, 5 design principles were formulated.  In the fourth phase, we examined and redesigned the 
activities according to the outcomes of the third phase. In this way, we integrated the design and the 
enactment insights derived from the research into the activities. 

Population 

To clarify and consolidate the design principles, in the second phase, we presented the designed 
activities and consulted with three groups: (a) our research team, which included graduate students, 
post-doctoral fellows, content developers, and researchers; (b) two teacher educators with expertise 
in accelerated mathematics teaching; and (c) 30 secondary mathematics teachers who participated in 
a professional development program and were furnished with pedagogical tools for using modeling 
activities in their mathematics lessons. For the third phase, we used a population of accelerated 9th 
grade students who were taught by two teachers in two schools, and who participated in a preparatory 
session to familiarize themselves with the digital environment. Both classes performed the Head-to-
head dice competition activity.  

Research tools 

We used questionnaires, class observations, lessons’ recording, and modeling activity designed in a
digital environment. The Head-to-head dice competition activity includes six tasks, and it deals with 
probability. This activity focuses on the students' strategies for assigning numbers to two fair six-
sided dice, an orange and a yellow one, to create situations of equal and different probabilities of 
winning the game for each die. This activity deals with head-to-head competition in which two 
players play against each other. After asking students to write randomly the numbers 1 to 12 on the 
sides of the dice (Figure 2a), the first player selects randomly a die. Next, the players roll their own 
die. The player who gets the higher number wins a point. The winner of the game is the player with 
the most points. The activity includes a simulation that enables students to model how many times to 
roll the dice, and presents a histogram showing the relative frequency with which each number 
appeared, and the total points for each die (Figure 2b). In addition, tasks 2-6 include two-dimensional 
matrix model in which the first yellow row represents the six sides of the yellow die and the left 
orange column represents the six sides of the orange die (Figure 2c). When writing numbers on the 
sides of the dice, the squares in the matrix are colored according to the winner of the outcome of the 
roll. For example if the orange die shows 1 and the yellow die shows 5 then the square will be colored 
yellow - which means that the player with the yellow die is the one who wins in this case. This model 
allows students to look at the probabilities through an interactive area model. 
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 Figure 2: Head-to-head dice competition activity (a) writing numbers on the dice model (b) histogram 
of the frequency (c) the two-dimensional matrix model 

This activity is considered a modeling activity as it deals with playing a simple game, a head-to-head 
competition, which helps students to understand the difference between probability and statistics by 
presenting probability quantitatively through the two-dimensional matrix model, while the statistics 
are inferred after simulating rolling the dice and interpreting the data obtained from the simulation. 

Data sources 

Data for this report consist of students’ responses (from questionnaires, submissions and observation), 
comments by our research team, reviews of the two teacher educators and the mathematics teachers,
and field notes of the first author taken during the various phases. Because of the COVID-19 
epidemic, learning and meetings were conducted virtually. The lessons were recorded: the screen was 
video-recorded and the students’ voices were audio-recorded. In the course of the meetings, all of the 
participants worked on the activities as students, asked questions, and discussed the various aspects 
of each activity with the designers. The authors took notes and documented the suggestions.  

In the third phase, we implemented the activity in mathematics lessons: each class was asked to solve 
the dice activity during a mathematics lesson. Students worked individually and submissions were 
collected automatically by the digital environment. The students’ notes and conversations were audio-
recorded and correlated with the collected data. During the class observation of the virtual classes, 
we focused on the students’ comments as they were interacting with the modeling activities, and later 
followed up their interaction with the teacher in the class discussion. 

Data analysis 

To answer our research question, in the first phase, we explored the design principles of modeling 
activities reported in the literature (Ferri, 2018; Schwartz, 2013; Greefrath, 2011). To design our 
computer-based modeling activities, we began by formulating our own design principles. We defined 
our designed activities as literacy activities that describe authentic and complex situations related to 
reality, which require students to understand the context, collect data, make assumptions, and evaluate 
their answers. Similar to Schwartz’s (2013) approach, our activities involved formulating measures 
using the given data of the phenomenon we want to describe, arranging the data and describing how 
it is related. According to the design principles we articulated in the first phase, we designed new 
modeling activities. In the second phase, we gathered notes and comments of professionals, and then 
we coded and categorized it according to its relation to the activity structure, the tools for students 
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and teachers, and the teacher role while students interact with the activity. In the third phase, we
gathered the questions that students asked while they were working on the activity, their comments 
during the class discussion, and their responses to a questionnaire concerning the activity. We 
summarized all these data, coded it and categorized it according to how common is each phenomenon.
Then we analyzed submissions to elicit evidence for common phenomena. In the fourth phase, we 
classified the design principles of modeling activities according to the categories we formulated in 
the second phase, after incorporating the insights derived from the third phase. 

Results
The present study focuses on the design principles of computer-based modeling activities. In this 
section, we describe the four design phases. For each phase, we explain and demonstrate the design 
principles that were developed.

First phase: First attempts at formulating design principles

After exploring the design principles of modeling activities reported in the literature (Ferri, 2018;
Schwartz, 2013; Greefrath, 2011), we formulated our essential components for our modeling 
activities. Unlike some other approaches (e.g., Ferri, 2018), our modeling activities already included
models that represent the given situations, which enabled students to work mathematically to 
transform the real model into a mathematical one, then interpret the results in the real world based on 
the mathematical results they obtained.

The main components of our modeling activities were: (a) Simulation: each task of the designed 
modeling activities includes a simulation and digital tools that allow interaction with the various 
components of the model, offloading the student's mathematical work to these tools; (b) Example 
eliciting: the designed modeling activities consist of example-eliciting tasks, asking students to 
submit more than one correct solution for various input data. Example eliciting is a vital element in 
the modeling process, especially given that examples generated by students reflect their 
understanding of particular mathematical concepts, their difficulties, and possible inadequacies in 
their perceptions; (c) Modularity: the modeling activities were designed in a modular way, so that the 
first tasks serve to create familiarity with the context of the activity, whereas the advanced tasks 
require a deeper level of thinking and aim to stimulate students to generalize and consider the wider 
aspects of their solutions.

According to the design principles we articulated in the first phase, we designed a new modeling 
activity: “Head-to-head dice competition” activity.

Second phase: Clarifying and consolidating the design principles using professional advice

In the second phase, we further examined and clarified the design principles with a group of 
professionals. Their experience with the activity resulted in four main suggestions, described below
in the context in which they emerged.

1. Introductory task. During the professional development meetings, teachers expressed a need for an
introductory task that helps students familiarize themselves with the context and the various tools of
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the simulation. Specifically, for the Head-to-head competition activity, teachers suggested adding a 
task after the first task to facilitate the transition between the given models (the dice and the table):

I feel that there is a missing task that asks for a 50-50 probability using the table, which will help 
students understand the transition from task 1 to task 2. The task will help students using the 
example they suggested of a 50-50 probability, to change some of the numbers so they get a greater 
probability for the orange die to win (Orna, a teacher, 4th meeting at the professional development 
program, summer 2020)

2. 5-10-minute videos. Two types of videos were suggested; a technical one that guides students in
using the model and the simulation in each activity, as suggested by one of the teachers: “You should
add a short video that explains how to use the tools and the simulation, and the teacher should be
present in case there are any questions” (Tami, a teacher educator, 2nd meeting, 2020). In addition,
another video was suggested that summarizes classroom performance of the activity and the class
discussion: “I would be happy to hear from other teachers who performed the activities in class, what
are the main points of the discussion they conducted and what are their recommendations to other
teachers” (Marta, a teacher, 5th meeting at the professional development program, summer 2021)

3. Teacher’s guide. Many teachers agreed with the teacher that suggested to have a written guide for
each activity intended for teachers: “As a teacher, to make it easier and more convenient for me, I
would like to have a written guide for each task for whom it is suitable, for which classes, and what
its mathematical topic is” (Toni, a teacher educator, summer 2021)

4. Flexibility of design. Enabling teachers to edit the activity (add or to remove tasks or change other
attributes) to adjust it to their classroom. As one teacher pointed out, teachers can use this feature for
various aims, e.g., to adapt activities to a particular lesson or to change the formulation of the tasks:
“Due to system constraints, I do not have enough time to complete all tasks. I prefer to have the ability
to select some of the tasks from the activity” (Sara, a teacher, 5th meeting at the professional
development program, summer 2021)

Third phase: Enactment of the activity

In the third phase, we implemented the activity in mathematics lessons and examined the students’ 
interaction with the modeling activity and with the teacher in the class discussion. We report the 
results of the students’ work in four parts, according to the various components of the modeling 
process that appear in each activity: 1. Simplifying and understanding the situation of the problem.
Because of the difficulty in understanding the given problem, as observed in the class and reported 
by the students, we found that it was necessary for the teacher to solve and discuss the first 
introductory task together with the students, and to use short videos that explain how to use the 
technological model. One student reported: “I could not always understand the situation on my own. 
I needed the explanation of the teacher, to introduce the activity and then I could work on the other
tasks on my own” (Hana, a 9th grade student); 2. Transforming the real model into a mathematical 
model by working mathematically. The students’ submissions and self-reports indicated that they 
managed the transformation from visual representation (two-dimensional matrix) to the mathematical 
model in the dice activity. However, there is a need to conduct a discussion after each task during 
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which students raise mathematical ideas and compare the various solutions; 3. Obtaining 
mathematical results that are interpreted in the real world as real results. During the class observation, 
students succeeded in interpreting the mathematical results as real results. Most students submitted 
correct answers for the fourth task (Figure 2c), in which they were asked to assign numbers to the 
sides of the dice in such a way that the orange die has precisely a 1/4 chance of winning. Figure 2c
shows an answer that includes 9 orange squares (¼×36=9), as required in the task; 4. Validating the 
results. 83% of students reported that they used the simulation to evaluate their simulation  results,
and that it saved them many long calculations. The class discussion following the activity validated
their answers.

Fourth phase: Evaluation and redesign

Based on the results of the consultation phase and the enactment of the activity, we redesigned it
according to the following principles: (1) Principles related to the activity structure:  (a) In addition to 
the modularity of the tasks, each activity will include an introductory task aimed at assisting students
in becoming familiar with the technological environment and the various tools of the simulation. The 
task is intended to be mediated by a teacher. (b) The teachers will be able to edit the activity (to add, 
to remove, and to edit tasks) according to their needs. (2) Principles related to the given tools for 
students and for teachers: (a) Short videos will be prepared for teachers and students on each activity.
(b) A written guide for teachers that will include teachers’ comments and reviews of the activity. (3)
Principle related to the teacher role: The transition between the tasks will include a discussion with
the students to illustrate the aim of each task. This will be noted in the written guide for teachers.

Note that all principles mentioned above will be applied also to the new activities that will be 
developed as part of the larger research project.

Discussion
In this paper, we described research leading to design principles of mathematical modeling activities, 
giving examples based on “Head-to-head dice competition” activity. As researchers stress, the 
modeling process starts with simplifying and understanding the situation of a given problem (Ferri, 
2018; Greefrath, 2011). In the present study, the results indicate that many students had difficulty in 
understanding the dice problem, which means they needed help in starting the modeling process. This 
points out to the important role of the teacher in introducing the activity, mediating the first task and 
discussing students’ answers after each task. Furthermore, we found that technology played an 
important role as students were solving the tasks: the simulation assisted in checking the results of 
the students’ assumptions and in simplifying difficult procedures. The technology illustrated the 
relationships between the different components of the given model, enabling students to investigate 
different contexts and to submit more than one correct solution for various input data (Wilensky & 
Rand, 2015). Our findings confirm the claim of some researchers that technology can play a pivotal 
role in supporting and promoting mathematical modeling (Greefrath, 2011).

The process of consolidating design principles of modeling activities attests to the value and the need 
for communication tools (e.g., short videos and a written guide), both during the development process 
(Bakker, 2018), to connect between developers and teachers, and during the use of the activities by 
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the teachers. This conclusion will be taken into account in the consolidating process of the design 
principles in the continued research.
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This paper discusses the design of a teacher education proposal aiming to provide tools to secondary 
school teachers to deal with the teaching of modelling in interdisciplinarity contexts. We start by 
briefly presenting the case of a study and research path for teacher education (SRP-TE) about 
disseminating the fundamental role of models and modelling when interacting in the modelling 
process of the pandemics. We then focus more specifically on the last modules of the SRP-TE, when 
some of the interdisciplinary research projects are adapted and transposed to secondary school. We 
present an experience during the academic years 2020/21 with an open teaching project to inquire 
into the impact of the COVID-19 led by a team of teachers from different disciplines intervene. We 
analyze the conditions that facilitate the development of this project and the limitations that hinder 
its progress as a richer modelling activity.  

Keywords: Modelling, interdisciplinarity, study and research paths, secondary school, pandemics. 

Introduction 
Research in mathematics education has recognised the importance of including applications and 
mathematical modelling in mathematics teaching and learning (Blum, 2015). Pollak (1969, p. 401) 
introduces the importance of problem posing stating that “the student has as much right to participate 
in the derivation for the mathematical model and in checking the degree of its validity as he has to 
repeat any experiment to satisfy himself of its validity”. In this sense, including mathematical 
modelling applications involve finding genuine problems for students to pose good questions to study. 

Besides all the progress made in research and the support of educational policies and curriculum 
reforms, implementing a well-established activity on modelling must confront big constraints for its 
long-term and large-scale dissemination. In this respect, we have several examples of major issues in 
our society that require a collective scientific effort working across the boundaries of the scientific 
disciplines, where mathematics and mathematical modelling can be seen and act as service subjects. 

The COVID-19 pandemic has shown more than ever that students and, more in general, citizens need 
to understand how mathematical and scientific advances contribute to understanding societal 
phenomena. In addition, “the pandemic illustrates how the operation of science changes when 
questions of urgency, stakes, values and uncertainty collide (Saltelli et al., 2020). People feel the need 
to understand what mathematical models can provide, how we may interpret the predictions and, 
more generally, how they help understand complex systems such as the pandemics’ evolution.  

There is no doubt about the critical constraints that hinder the long-term “survival” of modelling 
activities in interdisciplinarity contexts in schools. They can be interpreted as a consequence of 
important didactic phenomena that exist in school institutions, such as the isolation of disciplines and 
the prevalence of monodisciplinary curricula (Michelsen, 2006, p. 269), the dominant way to organise 

Proceedings of CERME12 1177



 

 

the teaching and learning of school disciplines (based on the logic of concepts rather than the logic 
of problems), and the inexistence of epistemological and didactic tools to approach modelling in the 
interaction among disciplines. 

When discussing interdisciplinary education, it is clearly related to the importance of STEM 
education (Maass et al., 2019) in three different approaches: twenty-first-century skills, mathematical 
modelling, and education for responsible citizenship. English (2016, p. 362) makes the role of 
modelling in STEM education clear “modelling is a powerful vehicle for bringing features of 21st 
century problems into the mathematics classroom”. 

Within the framework of the anthropological theory of the didactic (ATD), a change of school 
paradigm (Chevallard, 2015) is proposed to overcome some of the main didactic phenomena linked 
to the “monumentalisation” of the taught knowledge. This change has been described in terms of a 
paradigm shift, from the paradigm of visiting works to the paradigm of questioning the world. 
Chevallard characterises the transformation in mathematics education not only at the pedagogical 
level (“how to teach?”) but also includes the changes the paradigm shift may have on the didactic 
level, dealing with the question about “what and how to teach?” In the paradigm of questioning the 
world, the knowledge to be taught is associated with the inquiry of relevant questions. Approaching 
these questions includes moments of study (searching for available answers in the media) and 
moments of inquiry (deconstruction and reconstruction of knowledge to generate one’s answer). 
Implementing question-led study processes helps the knowledge to be taught to become dynamic, 
provisional, and collective (compared to the traditional notion of knowledge in school institutions). 
In the ATD, the so-called study and research paths have been introduced to facilitate the inclusion 
of mathematical modelling in educational systems and, more importantly, to explicitly situate 
mathematical modelling problems at the centre of teaching and learning practices (see Bosch, 2018). 
More recently, our research team have been working with the proposal of study and research paths 
for teacher education (SRP-TE) (Barquero et al., 2018), an inquiry-based process combining practical 
and theoretical questioning of outside and inside school scientific activities.  

Given the fundamental role of models and modelling in the understanding and social dissemination 
of the pandemics, we present our experience with the design of an SRP-TE about decoding the 
evolution of the pandemics. Its design and implementation, developed in the framework of the 
European project IDENTITIES, wanted to work with teachers to question the necessary tools for the 
analysis and design of interdisciplinary projects in secondary school. We then focus on the last 
modules of the SRP-TE when some of the interdisciplinary research projects are adapted and 
transposed into secondary school. We focus on the experience during the academic years 2020/21 
with an open teaching project inquiring into the impact of the evolution of the COVID-19 where a 
team of teachers from different disciplines intervened. In this paper, we continue the study to answer 
the research questions: What are the conditions facilitating the development of this project and the 
limitations hindering its progress towards a more prosperous interdisciplinary modelling activity? 

First contact with the experience with an SRP-TE about the COVID-19 evolution  
In the context of the IDENTITIES project (https://identitiesproject.eu), it has been proposed the 
design of an instructional proposal for preservice secondary school teachers based on an adaptation 
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of the structure of the SRP-TE (Barquero et al., 2018). One of the four proposals has focused on the 
role of models and modelling to understand the COVID-19 evolution. It was developed in a local 
implementation in the University of Barcelona and in an international Summer School, where the 
first two authors were involved, as a participant and as an educator, respectively. The adaptation of 
the general structure of the SRP-TE consisted of four modules. Participants had to assume different 
roles to facilitate questioning together (teachers and educators) the way to describe, analyse and 
design possible modelling activities that could be transposed to secondary schools to address live 
societal questions that emerged during the scientific approach of the pandemics.  

In module 1, participants might act as “explorers” to analyse a set of news and research dissemination 
papers that the researchers-designers had selected to see the evolution of the problems addressed by 
the scientific community and analyse the role assigned to the disciplines, in particular, to 
mathematics. From this first analysis, participants with educators delimited some possible lines of 
inquiry that involved models and modelling and the interaction among different disciplines. The topic 
addressed in each line were: (1) The complexity of delimiting the system to model: analysing data, 
(2) The role of the equation-based models: what can we consider a ‘good’ model? what are models 
for?; and (3) Agent-based models and simulations: Simulating scenarios to help make decisions about 
societal restrictions. Module 2 asked participants to experience an SRP, previously designed by the 
researcher-educators, about the lines mentioned above of inquiry. Participants had to assume the role 
of “student”. The main goal of this module is to make participants carry out an unfamiliar activity 
that could, to a certain extent, exist in an ordinary secondary school classroom. Module 3 refers to 
the collective analysis of the SRP that they come to be experienced as students, but now adopting a 
role of “analyst”. Some specific tools were here introduced to help teachers carry out the analysis of 
the activity carried out. For instance, one of the provided tools takes the form of a questions-answers 
map (Winsløw et al., 2013) which help to make explicit the kind of disciplinary and interdisciplinary 
questions and answers that emerged in their experience with the SRP. In module 4, teachers in training 
worked in the design of an adaptation of the experienced SRP. And, in case they had the chance, they 
implemented them in real secondary school classrooms. The work developed with one of the 
participants (researcher in didactics and the paper’s first author) is the case study we focus on in the 
following sections.  

Design of an SRP about modelling the COVID-19 evolution for secondary school 
Institutional context and conditions for the implementation 

The SRP about modelling the COVID-19 evolution has been implemented twice, in April-June 2020, 
with the beginning of the pandemic, and in February-March 2021. Due to the exceptional conditions 
of the first implementation, this paper focuses on the second implementation as its design was 
improved and the conditions for implementation were more stable (at least, than during the 
confinement). The implementation was carried out at Col·legi Natzaret, in Esplugues de Llobregat, a 
town near Barcelona (Spain), with 60 students of grade 10 (15-17 years old) distributed in two parallel 
groups. It was developed as an interdisciplinary project involving the subjects of mathematics, 
biology, and oral and written expression. Students were organised in working teams of six members, 
with heterogeneity in relation to their academic performance. The SRP run over 17 sessions of 1 hour 
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during the official hours of mathematics, biology and plurilingual expression. It ran under relatively 
regular conditions, although the limitations due to the pandemics: the parallel groups could not 
interact, and each teacher was assigned to only one of the groups. Four teachers participated in the 
implementation: two mathematics teachers (one being the paper’s first author), a biology teacher, and 
an English teacher (both teachers of optional subjects, who each had half of the students). In 
collaboration with her research team, the first author developed the a priori design of the SRP. The 
rest of the teachers had no direct involvement in the design. Still, they got actively engaged in 
deciding how to present the project to students and in the in vivo analysis during its implementation. 
Some special sessions were organised with all the teachers to agree on how to introduce the project, 
the timing, the way to distribute the students and the strategy to manage the SRP. Then, during the 
implementation, the teachers shared a journal where they daily reported their work with the class and 
the teaching materials (their presentations, students’ reports, evaluation criteria, among other 
aspects).  

Students worked collaboratively with online and digital tools. The teachers used a shared google 
presentation to report the progress of each working team. In addition, after each session, the working 
teams worked with the same template to document the advances of their inquiry. They had to report 
on the questions they had addressed, the temporary answers found, the tasks developed individually 
and in groups, and the new questions to follow with. Besides these shared documents, students had 
access to a presentation with some common instructions, indicating what was expected from their 
work and the steps to follow. From the start, the students were informed that they were responsible 
for defining the questions to address and the hypothesis they had about the pandemic evolution. They 
had to update their question-answer map regularly and, in the end, prepare an informative video 
presenting the results from their research to be distributed to the school community. The SRP teachers 
evaluated the students’ presentations, with some invited teachers from other subjects. 

The openness of the generating question of the SRP and its devolution  

One crucial difference with other previous implemented SRP is that this one did not start from the 
same common generating question. On the contrary, students were asked to confront a more general 
extra-mathematical problem of particular social relevance with an excess of news related to the 
pandemic. As the older students in the compulsory secondary school level, they were asked to run an 
awareness campaign for the school about the pandemic and its impact on society. They were 
responsible for providing contrasted and scientifically founded information and defining what they 
wanted to address. 

In the beginning, the working teams were told to approach their research from three complementary 
points of view: from the available data (accessible through the Spanish government website) and the 
mathematical models they could use (Which data may be selected to understand the evolution of the 
pandemic? How can mathematics and mathematical models help us to understand the pandemics 
evolution?); from the biological knowledge of the disease (How is the virus behaving?); and from the 
societal impact of the pandemic (What impact and effects are the pandemics having on our society?). 
The working teams were asked to delimit their focus by always keeping in mind these three 
complementary general questions. Students started by gathering the concerns of the educational 
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community, starting with their own and surveying their classmates and families. This helped them 
define the questions they wanted to address and plan the first steps of their particular SRP. At the end 
of these first steps, each team had to present the general topic and identify three interrelated 
“researchable” questions concerning the mathematical, biological and societal aspects. Some 
examples of the researchable questions they posed are: How long does the COVID-19 survive on a 
surface? What are the characteristics of the virus that make it so deadly? What age groups are the 
ones more affected? What are the physical sequelae of the disease? About the societal questions, 
examples of the ones proposed by the students were: How has the pandemic affected tourism in 
Barcelona? How has confinement affected people’s daily lives? What restrictions were implemented 
in Madrid during the three waves in comparison to Barcelona? Concerning the mathematics 
questions, those with a descriptive nature were more frequent: Which autonomic communities in 
Spain have been more affected? How can we measure if the first wave was worse than the rest? Are 
there important differences between the evolution of the case numbers (infected, death, recovered) 
among the two consecutive years? Moreover, there were also some groups that included questions 
about the evolution of the data: How has COVID evolved in Catalonia? How has it evolved in the 
different counties? As it can be read in the project presentation (available at https://bit.ly/3tRQpPz), 
the whole implementation followed three main phases. The first phase with the (a) generation of 
researchable questions, (b) exploration of databases, and (c) presentation of specific questions and 
hypotheses to address. A second one is where they focus more on (a) looking for and organising the 
most relevant data for their inquiry, and (b) analysing data and proposing models to fit data and/or 
predict the evolution of the pandemics. A third and last step, where students had to work on the 
informative video. In the following section, we focus on the students’ work in the first two phases, 
paying special attention to the researchable questions with a mathematics intervention.  

Results of the experienced SRP about the COVID-19 evolution 
During the sessions guided by the mathematics teachers, the different working groups addressed their 
researchable questions. To facilitate their work, the mathematics teachers were asked to follow a 
structured report. On the one hand, each working team had to make explicit the main questions they 
wanted to address, their hypothesis or preliminary answers, and the data they worked with. On the 
other hand, they had to fill out their map of questions and answers to describe the particular study 
and research trajectory they were following. This device, which was used during the whole 
implementation, took a crucial role for several reasons. First, it allowed students to have a common 
instrument for all the sessions and make explicit the evolution of the inquiry. Second, it facilitated 
that the teachers from the different disciplines could follow the work of the working teams. Moreover, 
students used this organisation to address the questions of each discipline with the corresponding 
teachers. Additionally, at the end of the implementation, the assessment of these maps considers the 
completeness and classification of all the elements, the relevance of the questions, their creativity and 
accuracy. 

Five sessions were devoted to the first phase of the project. During these sessions, students were 
provided with a database from the Spanish ministry that regularly updated the data about the evolution 
of the pandemic since its beginning. Students found different spreadsheets with accumulated data on 
cases, deaths, ICU admissions. These worksheets also included information by sex, age groups, 
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provinces, and communities. This large amount of data created important limitations. On the one 
hand, they had to be very careful in defining what they were interested in looking at, that is, to delimit 
and construct the system, as well as the particular questions they wanted to address. That is why the 
teachers were especially attentive to help them on delimiting the system by selecting the variables to 
consider, formulating the initial hypothesis to contrast, etc. On the other hand, they needed to learn 
some techniques to work with Excel to manipulate big spreadsheets easily. They had some experience 
with Excel but as beginners’ users. Then, the mathematics teachers had to dedicate some common 
sessions to respond to these necessities. For instance, students were asked how to sort a list of data 
by value, how to filter by defining some criteria (e.g., provinces or age groups), among other utilities.  

In the particular case of Team A, they were first interested in this initial question: “Q0-Team A: Which 
has been the “worst” wave of the pandemics in Spain? Has the second wave been worse than the first 
one (as said in the media)?”. In these first steps, they started to define what they wanted to address 
(length, number of infections, hospitalise and death, in global and by different groupings): 

Q1_dates: How long did each wave take? 
Q1.1: When do we start counting the beginning of a wave and its ending?  

Q2_infections: How many infections have there been in each wave? 
Q2.1: How many deaths by sex were there? In total? By sex? By age group? 
Q2.2: Which was the age group more infected? 

Q2.2.1: How many are infected between 0-9 years old? Between 10-19? Between 20-29?... 
Q3_hospitalizations: How many people were hospitalised during the first wave? 

Q3.1: How many deaths by sex were there? In total? By sex? By age group? 
Q4_deathss: What is the number of deaths in each wave? 

Q4.1: How many deaths by sex were there? In total? By sex? By age group? 
Q4.1.1: What can explain that men seem more likely to die?  
Q4.1.2: Do we have the same tendency of deaths growth by each group age? 

These questions mainly correspond to delimiting the system and representing the data numerically 
and graphically. The same happened with the rest of the groups, who mostly worked on the graphical 
representation of the data (once selected and manipulated). For groups who pose some questions 
about the pandemic evolution, the most common was the graphical representation of data concerning 
time. For instance, we present the questions made by Team B:  

Q0-Team B: Which wave has affected Madrid the most? 
Q1:  Which wave shows the highest speed in the increase in the number of cases? And less? 
 Q1.1:  What is the date with the most cases registered? Q1.2:  How long has each wave 

lasted? Q1.3: Why are there fewer registered cases on the weekends? Q1.4: How do restrictions 
affect the registration of cases? 

Q2:  Which wave has the highest number of cases, regardless of its duration? 
Q3:  Which wave presents the highest number of cases, considering its duration? 

This team wanted to analyse the variation in the number of cases. They defined and calculated the 
speed of the number of cases using variation taxes. However, none of them started to propose 
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equation-based models to fit the data and forecast what can happen in the future. All the groups posed 
questions to describe the data or compare them by age or place, but none of them tried to go further. 

In the last session, the teams made presentations to their peers. They discussed questions and 
suggestions. Interesting ideas emerged: which is the correct way of comparing the data from two or 
more provinces? From this discussion, they concluded that it was necessary to introduce relative 
variables, dividing the cases by the population, to compare them with accuracy.  

Conclusions and discussion for future implementations 
In this paper. we want to focus on the ecology of the SRP. More concretely, about what conditions 
and limitations the SRP reveals. About the conditions that facilitate the implementation of the SRP, 
we can detect three different aspects: (1) the a priori design of the SRP, (2) the SRP’s management 
tools, and (3) the questions and answers maps.  

When preparing the design of the SRP, the choice of the initial question is essential, but so can be the 
development of the path that will lead to the potential mathematical activity. For this, teachers must 
develop the pathway in advance: mastering, at a professional level, the activity of mathematical 
modelling, so that they can identify the student’s processes and know-how to redirect them without 
forcing them or giving them the feeling that they are being deprived of the ability to decide the process 
of the research. But also, to identify when students open different lines of inquiry and distinguish 
whether these will lead to a rich mathematical activity. About the SRP management tools, we note 
the shared teacher diary as a tool that helped teachers keep an overview of the process, even when 
they did not share it with all the students. On the other hand, the scoring system for student 
contributions, where teachers had a daily record of which students had made a positive contribution, 
helped generate class discussions where students shared their progress and commented on their 
opinions of other students’ work. Finally, the questions and answer map was found by the students 
as a rich tool. These students were used to working with this kind of tool, so they had no problems or 
difficulties understanding what was being asked of them. Also, as it was recommended to build since 
the beginning of their research, they used this tool to keep track of their daily progress and to present 
the final product. 

Related to the constraints that hindered the progress of the SRP, we can identify (1) the lack of 
coordination time available, (2) the awareness of the interdisciplinary concept, and (3) the time slots 
available to do the project. We can highlight the lack of coordination time available to teachers, who 
rarely have time to share and reflect on what happened in class and have to use moments between 
corridors or before entering the classroom. Interdisciplinary work needs quality time for the teachers 
to share opinions and make decisions. The responsibility of this aspect belongs to the school, which 
has to provide teachers with resources to facilitate the success of the teaching activity. Besides, 
teachers also have some responsibility for the success of the SRP. They need to be aware of the 
difference between carrying out a multidisciplinary project or an interdisciplinary one. In this study 
case, teachers had not been explicitly given this difference. In the next experimentations, we will try 
to introduce this difference to see if teachers become more involved in disciplines other than their 
own. Finally, the last constraint to be considered was the time organisation of the project. All the 
students were taking mathematics, but others were not taking biology or multilingual expression. 
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They were taking technology, which was not involved in the project. Therefore, some students 
dedicated more hours than others to the development of the project. In the same way, the mathematics 
teachers spent 4 hours per week and the teachers of the optional subjects only 3 hours per week. This 
was an important constraint for both teachers and students, who were unequally involved. This causes 
hierarchies in the project production and sometimes results in students not being able to participate 
as they feel disconnected from their team’s progress. 
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The modelling cycle is a theoretical construct frequently applied in research studies on mathematical 
modelling. On the one hand, the modelling cycle highlights essential aspects of modelling, which 
makes it a tool for conceptualizing. On the other hand, the modeling cycle can be used as a research 
tool for analysis of students’ work. In the latter case, it has the limitation of primarily yielding results 
of a cognitive nature. We sought ways to include other aspects to analyze, such as metacognitive 
strategies, tool use, and social norms. These aspects support and change the cognitive activities 
involved in mathematical modelling practice. Rather than the standard modelling cycle, we propose 
an enriched modelling cycle with overarching layers for analysis of results. The enriched modelling 
cycle is a wider theoretical framework with interacting dimensions that affect the phases in the 
modelling cycle. We discuss potentials and challenges of this framework for new research studies. 

Keywords: cognition, mathematical modelling, modelling cycle, social norms, theoretical frame. 

Introduction 
In this theoretical paper, we focus on theoretical constructs applied in many research studies on the 
teaching, learning, and assessing of mathematical modelling. Review studies on research on 
mathematical modelling education have been published by Cevikbas et al. (2021), Geiger and Frejd 
(2015), Kaiser and Brand (2015), Schukajlow et al. (2018) and Stillman (2019). These reviews show 
that a considerable number of studies apply a modelling cycle (MC) as theoretical framework for 
analysis of data in their research. With this paper, we aim at opening a discussion on benefits and 
limitations of MCs as a tool for analysis. This leads us to present possibilities to enrich the MC as 
theoretical framework, so it can assist researchers in further analyzing and theorizing mathematical 
modelling education1. 

This paper arose from a discussion on the importance of collaboration in mathematical modelling, as 
also noted by Blum (2002): how can aspects of groupwork, such as agency and accountability be 
analyzed in research applying an MC? Also, we discussed that research using a MC-based framework 
observed students having blockages in the modelling process, and that these were of a cognitive 
nature, that is, in students’ minds (e.g., Galbraith & Stillman, 2006). However, students’ problems 
could also be blockages caused by the norms of the didactical contract (Brousseau, 2002), where 
students are taught, for example, to avoid using extra-mathematical knowledge in mathematics task. 
When analyzed as blockages caused by the environment, the research results shed light on underlying 
mechanisms that hinder change; blockages in the educational environments may be more persistent 

 
1 This paper extends a short paragraph in Frejd and Vos (2021), where we presented the enriched modelling cycle. In the 
present paper we have more room for backgrounds and elaborations. 
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and harder to remove than cognitive blockages in students. So, why does research applying a MC-
based framework yield cognitive blockages and not socio-cultural blockages?  

Our discussion led to studying the essence of MC-based frameworks, regarding their benefits and 
limitations in analyzing aspects in modelling activities. This inspired us to develop an enrichment 
perspective on MC-based frameworks, so these can zoom out and yield analytic results that could be, 
for example, social in nature. This enrichment perspective should assist researchers of modelling 
education to create new angles in their data analysis, and thus reach new research results. 

The modelling cycle as tool for conceptualizing and analyzing 
Much research on mathematical modelling describes mathematical modelling through a modelling 
cycle (Niss & Blum, 2020; Geiger & Frejd, 2015). A MC is a schematic diagram showing 
mathematical modelling as a cyclic process, which consists of subsequent phases. See Figure 1 for 
an often-used example from Blum (2015), which shows seven phases in the modelling process; other 
MCs may have fewer or more phases and other wordings (Perrenet & Zwaneveld, 2012). 

The MC in Figure 1 builds on an earlier version by Blum and Leiβ (2007), in which the 1st phase was 
named understanding, to indicate that the modeling process starts from a problem situation that needs 
to be understood. In the new version of this MC (Blum, 2015), it is written constructing to indicate 
that a modeller needs to create a mental model of the problem and the task ahead. After this start, the 
modeller goes through different phases by structuring and simplifying the problem context (e.g., 
making a rough drawing of the problem situation), which is mathematizable (e.g., by creating 
algebraic formulas), and which can be worked on mathematically (e.g., by manipulating the algebraic 
formulas). The mathematical results thereof can be interpreted and validated considering the original 
problem. In case the results are considered inadequate for the real situation, the entire modelling 
process is repeated. If the modeller is ‘ready’, the results can be exposed, that is: presented to others.  

 
Figure 1: Modelling cycle from Blum (2015) 

When students are given a modelling task, students follow other routes than what is described in a 
MC, ‘jumping’ back-and-forth between phases (Borromeo Ferri, 2006; Ärlebäck, 2009). However, 
most phases are somewhere observed in students’ activities. Thus, a MC does neither show what a 
modeller does step-by-step, nor is it a recipe to be strictly followed. Niss and Blum (2020) explain 
that a MC “should be understood as an analytic (ideal-type) reconstruction of the steps of modelling 
necessarily present, explicitly or implicitly, as an instrument for capturing and understanding the 
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principal processes in mathematical modelling” (p. 14, italics by the authors). Thus, a MC is a tool 
for researchers and teachers to apprehend, comprehend, recognize, explain, and analyze important 
aspects in modelling, independent of whether it is done by an expert or a novice. Thus, a MC does 
not offer a definition, that is, it does not offer an explicit statement clarifying what mathematical 
modelling is. Also, a MC does not characterize mathematical modelling; that is, it does not offer 
qualities of modelling. Rather, a MC conceptualizes mathematical modelling; that is, it offers an 
abstract and structured idea of essential aspects, which is simplified so it is practical for use in teacher 
education, in educational-political discussions, and in research. In other words, a MC is a model. 

The advantages of conceptualizing mathematical modelling through a MC are manifold. For instance, 
MCs show that modelling is complex, and that each phase affects others dynamically. Also, MCs 
show that modelling starts from real life and returns to it, and that mathematics is a useful toolbox in 
the solution process. Also, MCs show that modelling is not a purely mathematical activity, yet that 
mathematical activities play a central role. Also, MCs show that modelling differs from ‘applying 
mathematics’, which starts from a mathematical object, concept or algorithm that subsequently is 
used in a non-mathematical context, regardless of whether then a problem will be solved. 

Apart from using MCs as conceptualization tool, researchers use MCs as an analytic tool to analyze 
their data in light of the different phases that a MC distinguishes. For example, we see that MCs are 
used to analyze students’ activities regarding when they are in which phase (e.g., Ärlebäck, 2009), to 
analyze students’ modelling competences regarding whether students are able to ‘pass’ a certain 
phase (e.g., Haines, Crouch, & Davis, 2000), to analyze mathematics tasks for certain emphases of 
modelling (Frejd, 2011 ), or to analyze classroom culture for an emphasis on certain modelling phases 
(Brady & Jung, 2021). The use of MCs as analytic tool yields a rich body of knowledge. 

The modelling cycle with other dimensions than the cognitive dimension 
When MCs are used as analytic tool in research of mathematical modelling, the results will be framed 
by it. The standard MC describes cognitive activities, which are activities that a researcher can 
observe in, or deduct from, a modeller’s speech, gestures, writings, reactions and other explicit or 
implicit expressions. More generally, cognitive activities involve mental efforts to use and make 
sense of information. Activities such as speaking, listening, reading, remembering, non-routine 
problem solving, decision making, and sense making are mentioned as examples of cognitive 
activities. Cognitive activities can be learnt through experience or by being taught.  

When an analytic framework has a cognitive focus, the research results will accordingly be primarily 
of a cognitive nature. This means that these have an individual’s or a group’s mental activities as unit 
of analysis. With an emphasis on cognitive aspects, the research may not capture other aspects that 
also play a role in mathematical modelling. Below, we give a few aspects that are not immediately 
captured by a theoretical framework based on the cognitive activities in a MC. 

A dimension for metacognitive strategies 

Successful mathematical modelling involves metacognitive strategies (e.g., Maaβ, 2006; Stillman, 
1998, Vorhölter, 2018). These are needed for regulating and coordinating the many processes in 
modelling, both individual and group processes. During the modelling work, aims and outcomes need 
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to be coordinated and regulated considering (1) goals in the task, (2) resources present, (3) the 
didactical contract from the teacher, and so forth. Different metacognitive strategies can be linked to 
each of the different phases in a MC, see Table 1. For instance, when starting, students need to ‘read’ 
the intentions into a task description and anticipate what they can do to reach a satisfying answer. In 
each of the phases in the MC, they can expect unexpected situations and may reflectively change the 
initial plans. They need to anticipate, reflect, plan, monitor, etc. From a research point of view, to 
analyze metacognitive strategies, one needs a different theoretical framework than for cognitive 
activities. Yet, metacognitive strategies and cognitive activities are intertwined. So, one can perceive 
the metacognitive strategies as an overarching layer over the standard MC, whereby the 
metacognitive strategies and the cognitive activities are two dimensions in one theoretical framework.  

A dimension for tool use 

Another aspect in mathematical modelling not captured in the standard MC is the use of tools. 
Therefore, Greefrath (2011) drew an alternative MC describing functions of digital tools in each 
phase of the MC. We want to extend this idea, building on Vygotskian theory (Williams & Goos, 
2013), which explains that any cognitive activity is always mediated by tools, such as pens, 
blackboards, or digital tools. Mediation entails that the tool changes both the results of the activity 
(e.g., a mathematical answer becomes more precise), but also changes the cognitive activities (e.g., 
writing down intermediate steps off-loads memory demands). When starting on a modelling task, a 
modeller can try to understand the problem by using Wikipedia as inquiry tool. Another tool at the 
start of a modelling process is the task sheet, which offers students the information to be used and the 
guidelines to follow. Important tools in modelling are paper and pencil for making notes and sketches. 
At the very end of the modelling process, a modeller will present the results of the activity, possibly 
in written form or in an oral presentation to an audience. Thus, tool-use can be another analytic 
dimension that can be an overarching layer over the standard MC, see Table 1 and Figure 2.  

A dimension for social norms 

Another analytic dimension for research on mathematical modelling can be social norms. These are 
socially shared, implicit or explicit standards of acceptable behavior. As Blum’s (2015) MC shows, 
modelling takes place in two worlds: the ‘mathematical world’ and the ‘rest of the world’, in which 
there are different social norms. For instance, in the ‘rest of the world’, number answers can be 
estimations and, hence, not so mathematically precise. Yet, when presenting the final answer of the 
problem to the client, a modeller will abide to presentation norms (e.g., correct spelling, attractive 
lay-out). Regarding norms in the mathematical world, Yackel and Cobb (1996) described socio-
mathematical norms, such as the use of preferred symbols (e.g., x and y) rather than creative 
inventions (e.g., Ꜣ and ͼ), and the specific way to justify claims (by giving a proof rather than a few 
examples). Also, there are classroom norms, also known as the didactical contract (Brousseau, 2002). 
Also, in groupwork, there may be competing norms, with some students making the effort because 
they consider the activity relevant, whereas others do it to pass the exam (Hernandez-Martinez & 
Vos, 2018). Thus, social norms will impact any modelling activity in many ways, and these may 
differ between the phases. We put some norms indicatively in Table 1 without claim of completeness, 
since research on this theme is still scarce and recent (e.g., Bonotto, 2020; Dede, 2019). Table 1 shows 
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the phases in the MC with analytic dimensions for metacognition, tool use, and social norms that all 
differently interact and modify the cognitive modelling activities. 

Table 1: Phases in the modelling process with indicative dimensions for  
cognitive activities, metacognitive strategies, tool use and social norms 

 Cognitive 
activities 

Metacognitive strategies Tool use Social norms 

1 Con-
structing 

strategies to understand and 
reformulate the problem, to 
use additional information 

Interpret task sheet, 
investigate resources 

(e.g. Wikipedia) 

Norms within the team, in the 
classroom, norms of the owner/client 

of the problem 

2 Simpli-
fying/ 

structuring 

strategies to select and 
organize information, develop 
plans, anticipate later actions, 

to monitor progress 

Experiment with pen-
and-paper (p&p), 
sketch & drawing 

tools, spreadsheets, etc. 

Norms within the team, in the 
classroom, norms about what aspects 

to choose and the extent to which 
creativity is permitted  

3 Mathema-
tizing 

strategies to organize infor-
mation, develop & implement 

plans, to monitor progress 

Visualize and organize 
with p&p, spreadsheet, 

plotter  

Norms within the team, in the 
classroom, norms on using standard 

methods and being creative  

4 Working 
mathema-

tically 

strategies to implement plans, 
to monitor progress 

Calculate & simulate 
with pen-and-paper, 
Geogebra, CAS, etc, 

Norms within the team, socio-
mathematical norms on rigor, 

accuracy, use of common sense 

5 Inter-
preting 

strategies to interpret results, 
to face unplanned outcomes 

Visualize with p&p, 
presentation tools 

Norms within the team, in the 
classroom and with the client in the 

process of interpreting 

6 Validating strategies to verify results, to 
invite critique, to evaluate the 

process and products 

Control using p&p, 
information resources 

Norms within the team, in the 
classroom and with the client on what 

can be regarded as ‘validating’ 

7 Exposing strategies to present results, to 
communicate and convince 

Present using p&p or 
digital tools 

Norms in the team, classroom, with 
the client, focusing on convincing 

Conclusion 
In this paper, we have looked at MC-based frameworks for analyzing aspects of modelling education 
and observed that such research has yielded a rich body of results, but that these are primarily of a 
cognitive nature and may obscure other aspects that play a role in modelling. Therefore, we suggest 
enriching the MC with overarching dimensions, such as metacognition, tool use or social norms, see 
Figure 2. The overarching dimensions can be supplemented or replaced by other dimensions that also 
affect the MC phases in different ways. Examples of alternative dimensions are creativity (Lu & 
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Kaiser, 2021), flexibility (Andresen, 2007) or language (Vorhölter et al., 2013). We suggest that also 
students’ attitudes may differ between the phases; so far, research connecting modelling to attitudes 
has focused on how modelling activities relate to students’ attitudes in mathematics in general 
(Chamberlin & Sriraman, 2019), and not on affect in different phases of modelling  

 
Figure 2: The enriched modelling cycle with four dimensions for analyzing modelling activities  

Mathematical modelling is a complex and dynamic activity, and because of that it deserves to be 
studied from different perspectives. An enriched MC with a variety of overarching dimensions over 
the standard MC may enable modelling researchers to extend and deepen their research. This should 
give theoretical insights into how different dimensions interact and may reveal how students’ 
cognitive modelling competencies are affected by various aspects that haven been obscured so far. 

Of course, any theoretical frame has its limitations. The enriched MC is an analytic tool for 
students’ modelling activities, and not a tool to design modelling tasks or a modelling curriculum. 
Also, it may be overwhelming to novices, and therefore, in teacher education or in educational-
political discussions, the standard MC is more practical to keep a focus on aspects of mathematical 
modelling. However, the enriched MC should enable researchers to zoom out beyond the cognitive 
dimension and to further theorize the learning, teaching and assessing of mathematical modelling. 
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When mathematics in three acts meets mathematical modelling 
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In this article, we investigate how the introduction of the pedagogical method, “mathematics in three 
acts” to preservice teachers influenced their mathematical modelling, while on practicum. We 
analyzed documentation, of groups of preservice teachers, on their experience of teaching modelling 
lessons. One finding was that the groups were able to use “mathematics in three acts” to produce 
modelling problems that fulfilled certain criteria in our selected framework, but they had difficulty 
finding modelling problems for the lower grades (grades 1-3). We also found that the preservice 
teachers appeared to emphasize the subprocess of working mathematically and devalue the 
subprocesses simplifying/structuring, mathematising, and validating, when guiding the pupils 
through a modelling process in a “mathematics in three acts” lesson. 

Keywords: Mathematical modelling, “mathematics in three acts”, modelling problem, modelling 
process. 

Introduction and literature review 
Internationally, mathematical modelling was traditionally reserved for secondary schools. Only in the 
last two decades did researchers begin to see value in modelling for primary education (e.g., English 
& Watters, 2005). In Norway, modelling was introduced to primary school (grades 1-7) in 2020, 
when a new and revised version of the national curriculum included modelling and applications as 
one of several core elements. At our university, mathematical modelling was not part of the teacher 
education for preservice teachers for grades 1-7 until 2018. In 2018, a research project, LATACME1, 
began, which focused on mathematics teacher education for grades 1-7, including a focus on 
modelling. LATACME uses an educational design research approach, that uses an analysis of 
experiences in design cycles, to refine or change teacher education practices in forthcoming cycles 
with the overall aim of improving educational practices and developing theory about those practices. 
According to Borromeo Ferri (2018), educational modelling courses should keep a balance between 
theory and practice. Consequently, at the beginning of the project, the LATACME research-
practitioner team recommended teacher educators to introduce theories about mathematical 
modelling in their work with preservice teachers (PSTs), and to ask the PSTs to prepare and 
implement a modelling lesson when on practicum.  

Research by Paolucci and Wessels (2017) had shown that while PSTs were relatively proficient in 
identifying and presenting relevant real-world problem contexts to young children, they had difficulty 
with formulating problems satisfying certain design principles which characterized "good” modelling 
problems. Reflecting on data from the first-year design cycle (2018-19) researchers in LATACME 

 
1 Learning about teaching argumentation and critical mathematics education in multilingual classrooms (LATACME, 
https://prosjekt.hvl.np/latacme/ ) funded by the Research Council of Norway. The project period is 2018–2022.  
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observed that the modelling problems suggested by their PSTs had been based on real-world 
situations that were familiar to the pupils, but the modelling processes were seldom fully developed. 
More detailed investigations showed that the PSTs had difficulties with balancing pupils’ 
independence when guiding the different work subprocesses (Hansen, 2021). In the next design cycle 
(2019-20), the research-practitioner team recommended the teacher educators introduced the PSTs to 
the didactical method “mathematics in three acts” (MITA) to investigate whether this method could 
assist PSTs in introducing modelling problems which could support pupils with an appropriate 
amount of guidance to work through a complete modelling process. MITA was designed by Meyer 
(2011) to encourage learners to pose and work on mathematical problems and it was further developed 
in Lomax et al (2017). The basic features of the method are illustrated in Figure 1.  

  
Figure 1: Mathematics in Three Acts (inspired by Meyer, 2011; Lomax et al., 2007) 

However, it was by no means certain that MITA would achieve the desired effect. Dogan (2020) had 
found that a group of PSTs were successful in creating problems that were based on real-world 
contexts, but only a part of the problems could be classified as being model eliciting. To study how 
effective MITA was in assisting the PSTs in introducing problems that could be classified as “good” 
modelling problems in Act 1, we decided to evaluate the problems the PSTs adopted in their 
modelling lessons via MITA in terms of criteria to Dogan (2020), who proposed four criteria: reality, 
openness, complexity, and model eliciting. This would form the second cycle of the education design 
research approach for this aspect of LATACME. 

 
Figure 2: Modelling Cycle (Blum & Leiß, 2006) 

After a modelling problem is chosen, solving it involves several subprocesses, which are not usually 
carried out linearly. The modelling process has been illustrated in various ways. As shown in Figure 
2, Blum and Leiß (2006) emphasizes the cyclical nature of a mathematical modelling process and 
describes the common subprocesses, that in return require different competencies involved in solving 
a modelling problem (Maaβ, 2007). 
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While MITA suggests a linear working process (see Figure 1), the modelling cycle (see Figure 2) 
indicates the constant movement between the sub-processes. This suggests that some of the 
subprocesses, such as validating, in typical modelling cyclical processes, may easier to be overlooked 
when engaged in MITA. The second aim of our study was therefore to investigate to what extent 
subprocesses of the modelling cycle (Blum & Leiß, 2006) were present in lessons based on MITA. 

Conceptual framework and research questions 
Borromeo Ferri stated that in modelling lessons, “the selection and the quality of tasks for lessons are 
essential for mathematical understanding, for promoting students’ mathematical practices and 
competencies” (2018, p.41). Synthesizing earlier research, Dogan (2020) proposed four criteria to 
evaluate modelling problems posed by PSTs: reality, openness, complexity, and model eliciting. The 
reality criterion requires that the modelling problem comes from a real-world situation and aligns 
with the reality of the pupils (Lesh & Doerr, 2003; Maaβ, 2007; Dogan, 2020). A modelling problem 
satisfies the reality criterion if it allows pupils to interpret the problem based on their experience and 
their mathematical knowledge. The openness criterion requires a modelling problem to be 
interpretable in multiple ways, open-ended and to allow for different solution paths (Maaβ, 207; 
Dogan, 2020). A complex modelling problem requires the pupils to understand the context and search 
for relevant data, and to be cognitively demanding to solve (Dogan, 2020; Borromeo Ferri, 2018). 
The model eliciting property ensures that a modelling problem should promote the modelling process, 
and requires the students to use mathematics to construct, describe or explain situations (Dogan, 2020; 
Lesh & Doerr, 2003).  

Based on our twin aims for this paper, our research questions are about the MITA lessons described 
by groups of PSTs when reflecting on their practicum: 

RQ1: Which of the four criteria (reality, openness, complexity and model eliciting), were most  
 commonly found to be fulfilled by the modelling problems in the lessons?  

RQ2: Which of the subprocesses of the modelling cycle were present in the PSTs’ descriptions of the 
pupils’ work processes? 

Research Method 
The investigation was conducted by using document analysis (Bowen, 2009). The units of analysis 
were 16 written assignments from groups of PSTs for 1-7 grades. The assignments were classified 
according to the four criteria in Dogan (2020) and the subprocesses of the modelling cycle by Blum 
and Leiß (2006) depicted in Figure 2. 

Research Context and Participants 

These PSTs were in the first semester of their second year of their teacher education. General theories 
on mathematical modelling and MITA were introduced to them through 3 three-hour lectures 
combined with literature reading. The PST-groups were then asked to plan and carry out a modelling 
lesson while on practicum. After practicum, the PST-groups were asked to describe and reflect on 
their modelling lessons. A total of 16 PST-groups with 3-5 PSTs in each group, gave permission for 
us to analyze their assignments. Of these groups, 15 had used the MITA structure for their modelling 
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lessons. One of these groups reported to have performed two different modelling lessons. Therefore, 
we analyzed 15 assignments which contained 16 modelling lessons. 

Data analysis 

To evaluate modelling problems used by the PST-groups in their modelling lessons via MITA (RQ1), 
we used the four criteria reality, openness, complexity, and model eliciting (Dogan, 2020; Lesh & 
Doerr, 2003). After having identified the modelling problems the PST-groups described in their 
assignments, we categorized them according to the four criteria according to the questions in Table 1 
which was based on the work of Dogan (2020). In the next section, we provide an example from one 
of the PSTs’ assignments and a detailed description of how the analysis was carried out. 

Table 1: Criteria for evaluating modelling problems via MITA 

Criteria Guiding questions for each criterion 

Reality 1.Whether the problem sprang from real life of the pupils. 

2.  Whether the problem was suitable for the pupils’ academic level. 

Openness Whether the problem was open for different interpretations or solving methods. 

Complexity 1. Whether the problem was cognitively demanding for the pupils to interpret the 
problem.  

2. Whether the problem could make the pupils to see the need of mathematics. 

Model eliciting Whether the problem required the pupils to generate a model.  

To identify the modelling subprocesses the PSTs described the pupils going through, we analyzed the 
documents using the characteristics of the subprocesses described by Blum and Leiß (2006) (see 
Figure 2).  

Results 
The assignments contained MITA lessons. Some included dialogues from Act 1, while others 
described the dialogues implicitly. We chose here to present an extract from an assignment of one of 
the PST-groups, where the dialogues from Act 1 were described explicitly. This was typical of the 
assignment data and we use it to explain how our data analysis in more detail.  

Extract from an assignment 

This PST group described that they had implemented a modelling session over three lessons of 45 
minutes each, in a grade 4 class with 22 pupils, using the MITA structure.  

The PSTs described that in Act 1 they had presented a video about global warming. The PSTs and 
the pupils talked about this video and tried to understand some graphs about climate change. The 
PSTs described that the pupil had raised many concerns, among which the PSTs had identified two 
interesting questions, “Is it possible to find out how much warmer it will be when I grow up?” and 
“How many years will it take before the sea rises over the dock (Bryggen) in Bergen?” The PSTs 
reported that the last question had been chosen for this modelling session.  
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The document then reported that in Act 2 the PST-group had started the lesson with a discussion 
about what would happen if the sea level continued to rise. They had afterwards asked the pupils to 
think about what they needed to know to answer this question. The PSTs together with the pupils had 
concluded that one must know the present height and how much the sea level rises per year. The PSTs 
then wrote “we found that the dock height above the sea level is 720 mm”, and “… that the sea level 
rises 3.4 mm per year. Since the pupils have not learned decimal numbers, we decided to round down 
to 3 mm per year”. Afterwards, they had provided the pupils with a table with two columns, where 
one column was a list of the years from 2016 to 2022 plus the year 2032, and the other column were 
the sea levels with the first three years’ sea levels 43 mm, 46 mm and 49 mm. In groups, the pupils 
had been supposed to fill in the table, with the PSTs being available for the pupils’ questions. The 
PSTs also mentioned that some pupils were critical about the table, by for example saying that “It is 
not certain the water rises all the time”. 

In Act 3, the PST group had divided the pupils into groups of four. Having their table and calculations 
at hand, the pupils had been asked to answer the question “how many years will it take before the sea 
rises over the dock (Bryggen) in Bergen?”. After about 30 minutes of group work, the PSTs had a 
summary, with one of the PSTs showing a solution method with centicubes.   

Analysis of the example 

The problem “How many years will it take before the sea rises over the dock (Bryggen) in Bergen?” 
was chosen after Act 1. It is likely that Bryggen would be familiar to most pupils in the class and as 
such most pupils would want to find out what could happen in the future, using this as a benchmark 
to understand the implications of climate change. From the PSTs’ description, the mathematics 
involved seemed to be suitable for grade 4 pupils. The problem, therefore, fulfilled the realistic 
criterion. The problem also fulfilled the openness criterion as it allowed several different 
interpretations (e.g., what does “over the dock” mean?) and different solving strategies. It also 
required solvers to orient themselves, simplify, find needed information, and to use mathematics to 
find the solution(s). Consequently, we interpreted it as being complex. As the problem also seemed 
to invite pupils to generate a model, the problem was also classified as model eliciting. Thus, we 
considered the problem to be realistic, open, complex and model eliciting. 

In regard to the second research question, we identified the modelling sub-processes that were evident 
in what the PSTs described the pupils as doing in Act 2 and Act 3 of the modelling sequence. For the 
first subprocess, “understanding”, the PSTs indicated that the pupils had the opportunity to interpret 
the modelling problem in classroom discussions about the consequences of sea-level rise. They also 
had to identify and understand the information they needed to answer the problem. However, from 
what they described, it seemed that the PSTs took over the next subprocess “simplifying/structuring” 
themselves, since they provided the height of the dock and rounded down the height that the average 
sea level rises per year. In addition, they presented a table to represent the situation, an activity that 
we interpreted as part of the “mathematising” sub-process, so that the pupils just had to complete the 
table. By completing the table, the pupils concentrated on the subprocess “working mathematically” 
and implicitly the subprocess “interpreting” in the context of the real model. The subprocess of 
validating was not promoted by the PSTs. 
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General results 

There were 11 problems in total (see Table 2) that satisfied all the quality criteria. Of those which did 
not fulfill all the criteria, most of the problems were for pupils in the first few grades of school. One 
modelling problem for grade 1 failed the reality criterion, and 3 modelling problems for grade 2 and 
1 modelling problem for grade 3 failed the openness, complexity or/and modelling eliciting criteria.  

Table 2: Number of modelling problems that fulfil each criterion 

 Reality Openness Complexity Model-
eliciting 

Number of modelling problems out of 16 15 13 12 12 

Table 3: Analysis of the modelling subprocesses that were present 

 Understanding Simplifying Mathematising Working 
mathematically 

Interpreting Validating 

No. 11 1 6 11 11 5 

We found that where the PSTs’ modelling problems did not fulfil all four criteria in our framework, 
there were also lack of the modelling subprocesses in the descriptions. For four of the modelling 
problems this was because that the complexity of the problems was too low for the grades (complexity 
criterion was not fulfilled). Therefore, we restricted identification of modelling subprocesses to the 
11 modelling lessons in which the modelling problems satisfied all four criteria for good problems. 
Table 3 presents the analysis of the modelling process for these 11 modelling lessons. It shows that 
the sub-processes simplifying, mathematising, and validating were often absent in these lessons. In 
particular, the subprocess simplifying only appeared in one of the modelling lessons. In the one 
modelling lesson that involved all subprocesses failed to repeat subprocesses for one or more cycles, 
suggesting a linear rather than a cyclical approach to modelling.  

Discussion 
When it comes to the first research question, our result showed that 11 out of 16 lessons adopted 
modelling problems that satisfied all four criteria, and 15 of the problems satisfied the reality criterion 
(Table 2). We can compare this with the results by Dogan (2020), who found that PSTs had 
difficulties constructing modelling questions that fulfilled all four criteria (5 out 17 in his case fulfilled 
all criteria, and 12 of 17 fulfilled the reality criterion). In our analysis, we interpreted that through 
MITA the PSTs were able to encourage the pupils to come up with accessible modelling problems 
from familiar contexts. In some of the lessons, the pupils asked a wide range of questions through 
Act 1, which gave the PSTs some freedom to choose open, model eliciting problems with adequate 
complexity. This can be illustrated by an example from a PST group reported having presented the 
pupils with a short video of Usain Bolt running a competition. Some questions that the pupils asked 
were:  how fast did Usain Bolt run in that competition? How many centimeters did he run? How much 
does he earn as a runner? How old will Usain Bolt become?  
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The fact that the 5 cases that failed one or more criteria in Table 1 were for lower grades (1-3 grades) 
is interesting. Paolucci and Wessels (2017) raised also the concern about the PSTs’ capacity to create 
modelling problems for lower grades, especially for grade 1. One of the PST groups stated, “since 
there is not much theory [mathematical knowledge] available for 2nd graders, we choose to look at 
the mathematical curricular goals”. This indicates that the PSTs thought the difficulty lay in the fact 
that pupils in lower grades did not have sufficient knowledge in mathematics, so that there are a 
limited number of mathematical topics to work with. This suggests that PSTs need more guidance 
from teacher educators in designing modelling problems for lower grades. 

In response to the second research question, we found that the main modelling activities took place 
in Act 2 and Act 3. In these acts, the PSTs guided the pupils through the modelling process to solve 
the problems posed in Act 1. Our analysis showed that the subprocess simplifying/constructing was 
missing for 10 of the 11 modelling processes. In most cases the PSTs took over the modelling 
problems and simplified and structured them for the pupils. Only in 6 of the 11 modelling processes 
did the pupils need to transfer the real model to a mathematical model. Ng (2018) and Hansen (2021) 
pointed out similar tendencies among experienced teachers and PSTs respectively that were new 
beginners in teaching modelling, that is, that the teachers and PSTs tended to provide scaffolding 
because they perceived mathematical modelling to be challenging for their pupils. 

The PSTs also did not often include the validating subprocess in the modelling cycle. Only 5 out of 
11 PST groups used this sub-process. Our result showed that in the descriptions in the assignments 
the cyclic nature of the modelling process seemed to be absent in the lessons, whereas the subprocess 
“working mathematically” was always part of the process. We suspect MITA could have affected 
both the cyclicity of the modelling process and the focus on working mathematically. Act 3 in MITA 
was designed to let the pupils to compare and reflect over solution methods, and it did not suggest 
that pupils should go back to re-solve the problem or refine the solution to the problem. Therefore, 
the cyclicity was not part of the process suggested by MITA.   

Conclusion 
There are two main conclusions from this study. The first is that we found through MITA the PSTs 
were able to arrive at modelling problems that included the pupils’ perspective, but that they had 
difficulty to find modelling problems for the lower grades (grades 1-3). The second conclusion is that 
even if the PSTs arrived at appropriate modelling problems together with the pupils, the 
corresponding modelling process through MITA did not necessarily contain all the subprocesses of 
the modelling cycle. In particular, the subprocesses simplifying/structuring, mathematising, and 
validating were often missing. This is interesting, and it asks for more attention towards how to 
instruct PSTs to include these subprocesses in their modelling practice in teacher education. 
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This paper is a summary paper of the Thematic Working Group (TWG) on Adult Mathematics
Education (AME). As the only thematic working group that focuses on adults’ lived experiences of 
mathematics, the research makes an important contribution to the field of Mathematics Education. 
The main themes in this group identify that adult numerical behaviour goes beyond the mathematics 
skills, knowledge, and procedures taught in formal education It is multifaceted, requiring the use of 
higher order skills of analysis and judgement, applied within a broad array of life’s contexts, 
experienced through a range of emotions. The research in this group points to the need to raise the 
profile of research that shows the benefits to adults of learning mathematics but also the long term 
economic disbenefits in the neglect of teaching and teacher training for this group.

Keywords: Adult Mathematics Education, Numeracy, PIAAC, 

Introduction
One thing the pandemic has taught us is that understanding mathematics and its role and influence on 
peoples’ lives really matters. Every day we were shown graphs and charts indicating trends that were 
used to make predictions about the world’s health and economic situations with significant 
implications on our individual behaviour.  We were shown countless exponential graphs, numbers in 
the billions and given numerical risk analyses of actions, which increased the demands on our 
mathematical interpreting, understanding, and reasoning to make sensible decisions on our behaviour 
with huge impact on our lives. Yet the mathematics being learned in schools seemed to be reduced in 
content and unequal in access (Hodgen, Taylor, Jacques, Tereshchenko, Kwok, & Cockerill, 2020), 
distant from what was needed to help understand the situation.

Hoogland and Díez- Palomar (2022, this publication) argue that society is becoming increasingly 
mathematised, and the demands on adults to make numerate decisions that impact on their lives is 
considerable, yet interest in research into the world of adults learning mathematics and life-long 
learning lacks attention. This is already a long-lasting problem. Coben (1994) argued interest in 
research into adult numeracy only started to be recognised for its importance when she highlighted 
the differences in cultures between academic research and those involved in adult numeracy and 
mathematics education. Reinforcing the idea that adults learning mathematics was different from 
school based mathematics, Withnall (1994) further argued rather than it being a set of mechanistic, 
isolated mathematical skills which can be acquired free of context and then applied to real life,
numeracy is better understood in relation to the demands on adults’ lives in their broader contexts, 
where communication skills are key to interpreting the variety of ‘mathematical codes’ encountered 
and on which we are asked to exercise judgement to ensure a useful outcome. 
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Since then, with nearly 30 years of research plus the establishment of a global forum Adults Learning 
Mathematics (ALM), practitioners and researchers have been exploring their understanding of adults’ 
ability to learn and utilise mathematical information. In response to economic, social, and 
technological changes, our understanding of the field of adults learning mathematics has developed,
yet still many citizens lack the numeracy competencies to enable them to fully participate (Gal, 
Grotlüschen, Tout & Kaiser, 2020; Hoogland & Díez-Palomar, 2022, this publication; Yasukawa, 
Rogers, Jackson, & Street, 2018) and few trust numbers enough to deal with, let alone challenge, a 
world in which fake-news can flourish. These factors have profound implications for the way in which 
numerical skills are taught and learnt in adult education programmes. 

Emerging themes in Adult Mathematics Education 
The content of this working group requires us to consider the notion of numerate behaviour in its 
widest sense, exploring a range of ideas, contexts and applications, probing further the relationship 
between numeracy and mathematics.  

Contributions focus on: 

Reflecting on the field of adult numeracy and its relationship with mathematics.
Numeracy as a lived experience of mathematical calculations and procedures in social 
economic and political contexts.
Developing numeracy and mathematical skills with adults, including vocational education.

These themes reinforce the need to recognise that adults’ experiences with mathematics inform 
judgements affecting their lives far beyond the classroom. The breadth of papers in this working 
group reflects the wide scope of the field of Adult Numeracy. The single working group focused on 
adults’ mathematical experiences in this CERME 12 conference points to an important contribution 
that the understanding of adults’ lived experiences of mathematics, both inside and outside formal 
state sponsored education systems, adds to our understanding of Mathematics Education.  Adults and 
their numeracy skills are intertwined with the political, social and economic systems, are shaped by, 
but also shape those lived experiences (Lerman, 2000). In the next paragraphs we introduce the papers 
outlining the contributions to the three areas of focus.

Reflecting on the field of adult numeracy and its relationship with mathematics 
Kaye, past chair of ALM, discusses the historical development of the concept of numeracy. Taking a 
philosophical view, using Thomas Kuhn’s notion of lexicon and incommensurability, Kaye likens 
the development of the field of adult numeracy to a paradigm shift. Emerging from the field of 
mathematics education research, almost in a Darwinian sense (Kuhn, Conant, & Haugeland, 2000, p 
98-101), responding to historical, environmental, and social changes. Kaye seeks to research the 
notion of adult numeracy using Kuhn’s paradigm shift. He argues for the need to find agreement in 
the concepts of what numeracy is, so that it can be utilised to critique mathematics research. Although 
he concedes that many languages do not have a word for ‘numeracy’, he maintains many countries 
and contexts have similar adult learners in similar situations with similar numerate behaviours.

Diez- Palomar and Hoogland (2022, this publication) undertook a literature review into the field of 
adult numeracy over the last 20 years, to identify the topics investigated and where gaps have 
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appeared that could point to new lines of enquiry. The main findings suggest research most often 
cited focused on the contexts of health and social care, followed by articles on numeracy in everyday 
life. Most higher order skills cited were processing information, problem-solving and critical 
thinking. Most of the cited articles were based on quantities and numbers, perhaps not surprisingly 
given the time span, few studies focused on apps or digital skills. When considering dispositions most 
focused on self-confidence.

It is apparent that while many within the field of adult numeracy research are aware of important 
contributions, the work is less well known outside this field and so work needs to be done to raise the 
visibility of our research in other domains and with policy makers. Increased visibility is important 
to inform policies on adult mathematics education, with as main focal point the idea that numeracy 
is a multi-faceted concept.

Adult numeracy is more than mathematical skills, knowledge, and procedures taught in schools. It is 
complex encompassing higher order skills, applied to a broad range of contexts, experienced through 
a range of emotions. The Common European Numeracy Framework (CENF) by Hoogland and Diaz-
Palomar (2022, this publication) brings up to date our understanding of what society requires from 
adults. They identify four aspects to numerate behaviour. Suggesting adults need to be able to 
recognise and apply appropriate mathematical concepts but within many different everyday contexts; 
to use higher order skills to process, reason and analyse the numerical information that influences 
decisions affecting their daily lives. All of this while recognising adults have many beliefs and 
feelings related to mathematics itself, developed through lived experiences, which will affect their 
judgement when dealing with numbers.  Spiegelhalter (2017) also writes about this in relation to the 
notion of ‘trust’ in numbers when surrounded by fake-news. The CENF illustrates a way to research 
aspects of the field of adult numeracy encompassing the lived experience of mathematics education. 
Hoogland and Diez- Palomar further point to the increased ‘mathematisation of society’ through 
technological developments, where people must make numeracy-based decisions all day long. While 
arguing that equipping people with the necessary skills will be a big challenge, they posit this will 
require us moving away from ‘mastering the execution of calculations with pen and paper to 
recognising numeracy as a multifaceted concept needed for the 21st century’. Work related to the 
CENF framework will, in the future be linked with PIAAC as well as the development of teaching 
resources and professional development modules, to help disseminate the ideas futher.

Numeracy as a lived experience of mathematical calculations and procedures, in 
political, economic, and social contexts 
Kelly, (2022, this publication) chair of ALM, explores the financial literacy skills and knowledge 
needed to survive in complex financial systems. She uses the notion of financial vulnerability (Gal et 
al, 2020) to research the extent of global economic need, the impact of western economic systems, 
community influences and individual risk factors. She identifies financial vulnerability as a global 
issue, affecting women more than men, arguing that this has a lot to do with societies’ gendered 
expectations of female and male roles. Other vulnerable groups include those who are disabled, single 
parents and people living in marginalised communities, and the COVID pandemic has made life more 
difficult for those already financially squeezed. Mathematical calculations, such as interest, are key 
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to understanding many financial concepts. But making sound financial judgements in real life also 
requires the ability to analyse, and reason what those interest rates mean, for example, when taking 
out loans.  She found most current national child-focused financial education resources in the UK 
focus on dispositions towards money considering psychological and emotional relationships with 
money and mathematics. While adult numeracy skills and knowledge are essential to making sound 
judgements in financial decision-making, so are literacy and digital capability skills as well as 
understanding emotional attachments.  Kelly argues that financial literacy education can be seen as 
one way to combat financial vulnerability but to be effective needs to focus on learners’ priorities.

Byrne and Harrison (2022, this publication) give an insight into numeracy education in prisons, a
particular but very important context within society. Mathematics education in prison is a basic life 
skill (Council of Europe, 1990) yet Byrne and Harrison found it varies considerably across countries 
and within national systems. Despite this variation the Mathematics in Prisons (MiP) group was 
established by two practitioners, one in Ireland and one in the USA, whose research focus is centred 
upon those learning mathematics within the ‘secure estate’. Prisons over the centuries have been seen 
as agents of the state to reform, to penalize, to encourage desistance from crime, and more recently
to encourage lifelong learning and personal transformation. The MiP group shares the later goals and 
explores similar experiences in the maths classrooms. All tutors work with students who may not 
have chosen to study mathematics were they not in prison. Yet Byrne and Harrison found this 
experience can encourage reflection and become a turning point in an individual’s life, as
mathematics is a gateway to further and higher education. The MiP group plans to support those 
working across international boundaries, overcoming the challenges of variation in language and 
culture, exploring the value of learning mathematics for different groups and aim to use this CERME 
platform to further raise awareness of the group and to recruit members.

Dulam and Hoogland (2022, this puplication) utilise the large database provided through PIAAC to 
explore numbers in an economic context examining the consequences of a mismatch between 
workforce skills and employment on the economy. At individual (micro) level, where skills-mismatch 
can lead to lower job satisfaction and wages. At company (meso) level where mismatch leads to a 
higher staff turnover and inefficiencies and at a country (macro) level, leading to unemployment, 
lower productivity, and lower economic growth mainly due to wasting human capital (OECD, 2013).

They find skill levels vary over time in adults’ lives and with employment opportunities. But they 
also question how reliable the actual measurements of over and under skill levels are. In their research 
they found being over-skilled for a job is more likely for men, younger age-groups, those with higher 
education, and for people who use their numeracy skills often at work. Also, the likelihood of being 
over-skilled increases as the frequency of using numeracy skills at work increases. Further 
consideration needs to be made to fully appreciate the implications of some of the findings. For 
example, employing over skilled men might be due to an inbuilt gender bias within certain job roles 
and industries where males are more likely to be employed over females, which would affect a skills 
mismatch. Also, some countries’ employment policies are attached to certain financial penalties 
which are imposed if people do not accept employment offered, consequently this can ‘push’ over-
skilled people into lower skilled jobs.
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Exploring context as a broader notion of democracy Lindenskov (2022, this publication), considers 
the skills and knowledge essential to understanding how mathematical thinking underpins the very 
essence of our political and social systems. She argues that mathematics underpins our lives both 
inside and outside education, in both formal and informal ways. For example, using the same numbers 
but comparing election outcomes in countries that use ‘first past the post’ algorithms with those using 
a proportional representation system. Lindenskov argues that such exercises give a better 
understanding of how mathematics shapes our parliaments, our laws and our lives.  She further posits 
democracy can influence the classroom through the teaching approaches used, as well as the topics 
covered. This links back to the role that numerate behaviour has in adults’ lives going beyond the 
classroom, and how research into the field of numeracy helps us better understand how mathematics 
can inform, influence, and empower adults’ daily lives.

Developing numeracy and mathematical skills with adults, including vocational 
education.
Investigating mathematics education with adults and different aspects of the mathematical skills and 
knowledge of teachers and their students is a rich source of research into adults learning mathematics. 
This section points to several gaps in teacher training and continuing professional development 
courses for those involved with mathematics education for adults, especially those asked to teach 
numeracy to adults but without the specialist knowledge to support their endeavours. Is it any wonder 
that results from PIAAC and OECD surveys show that in all but one participating country, at least 
10% of the adults are proficient below level 1 of the 6-point scale in literacy or numeracy (Hoogland, 
Kelly & Díez-Palomar, 2019, p.1294)?

Bradtke and Ferri (2022, this publication) explore the mathematical competence of vocational 
teachers whose main subject is economics, comparing prospective teachers who have mathematics as 
a subject in their curriculum with those who have not. In their research they found that most 
vocational teachers did not receive any mathematical training in their studies, although they use, 
among other things, the percentage calculation in business lessons. In a pilot study, an instrument 
was validated to record whether the mathematical model of compound interest is recognised and 
successfully applied in different situations, by the two groups of teachers. The results showed that 
even student teachers with mathematics as a subject have difficulties with its application to the 
economic problems. This is interesting when reflecting on the importance of understanding and 
applying percentage calculations at a global level to economic growth figures, but also to more 
individual financial decision-making when applied to making interest payments on savings and credit. 
It points to an important deficiency in education systems that can have serious widespread 
repercussions, where teachers’ lack of mathematical understanding is passed on to the students, 
known in economic terms as the multiplier effect.

Responding to a national push for problem-solving to be introduced into the mathematics taught in 
schools and colleges in order that it can be utilised more effectively in people’s jobs and lives, 
Faulkner, Breen, Prendergast and Carr (2022, this publication) compare the problem-solving and 
procedural skills of adults in mathematics education in Ireland. They find that adults in mathematics 
education in Ireland have significantly weaker problem-solving skills in mathematics when compared 
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with procedural skills. This lack of problem-solving skills aligns with findings amongst third level 
students in schools, however the same investment/interest in improving the provision of mathematics 
education for adult learners is not present. They further argue that these findings are misaligned with 
one of the key recommendations of the ‘Adult numeracy: Assessment and development’ policy to 
“invest in the development of national capacities to measure and improve adult numeracy” (Gal & 
UNESCO, 2020, p.3). 

This lack of investment in appropriate teacher training for adult numeracy educators is exacerbated 
for those who are asked to take on the responsibility of teaching adults’ numeracy without the 
requisite skills and knowledge, as research shows by Prendergast, O’Meara, O’Sullivan, and Faulkner 
(2022, this publication). Their research highlights an unmet demand for professional development in 
adult numeracy education, with many numeracy practitioners looking for opportunities to develop 
their practice. In response to this need this research group aims to establish a series of online 
‘Numeracy-Meets’ for adult numeracy practitioners. They outline a new model of support that 
focuses on topics such as Family Numeracy and Financial Literacy rather than teaching traditional 
topics such as fractions in isolation. Through the establishment of an informal community of practice 
they aim to meet the professional development needs of practitioners. It is early days for this project 
which, if successful, hopes to expand its reach both nationally and internationally.

Forster, Faulkner and Prendergast (2022, this publication) have also undertaken further study into the 
relationship between psychosocial factors, demographics, the level of mathematics studied and 
progression for Access students. Their findings show that students studying foundation mathematics 
had significantly higher scores for amotivation and neuroticism. While those who chose to study 
advanced mathematics, students had ranked more highly for general self-efficacy (GSE), belief about 
mathematics ability (BMA) and intrinsic motivation to know. Additionally, female students 
were significantly less likely to study advanced mathematics than males. Non-Irish nationals 
studying advanced mathematics were significantly less likely to progress to higher education than 
their peers. All these findings need to be further explored in relation to motivation and reasons for 
study in relation to the notion of success. The research recommends teachers engaging students in 
enactive self-mastery but also the importance of role-modelling and verbal persuasion in encouraging 
progression to higher education and higher-level mathematics studies.

Stacey (2022, this publication) in her doctoral research seeks to explore possible changing perceptions 
in relation to adults’ motivations, mathematics anxieties around mathematics and confidence while 
learning mathematics. Working with adult numeracy learners (19+) returning to the further education 
sector in the UK to study GCSE Mathematics. Although still in the pilot phase, her paper also raises 
several key issues in relation to continuing professional development for numeracy teachers. She 
highlights the very under-researched group of adult learners (+19), as most research on learners’ 
perceptions of mathematics has been conducted with school aged, 16–18-year-olds in further and 
higher education students. She also raises the issue of variation in professional development for 
teachers on offer, highlighting a lack of understanding of how different countries and universities 
organise both full and part time doctoral education as part of their professional development 
programmes. 
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Forwarding the field 
The papers in this workshop show research into the field of adult numeracy has a huge amount to 
offer the teaching of mathematics in schools, as it reflects the lived experience of numbers recognising 
its complexities. Yet as Diez-Palomar and Hoogland (2022, this publication) found, numeracy has 
very little visibility in the research world which means it is out of the reach of policy makers. This is 
undoubtedly a result of Coben’s (1994) ideas of differences in cultures in the research world on school 
mathematics education and the practitioners’ experience of teaching adults. But it can also be seen as 
developing from a historical deficit of political interest and funding in adult education outside 
university level. For example, in the UK until PIAAC identified national skills discrepancies there 
was little interest or investment in developing the numeracy and literacy skills of adults. Researchers 
in the field of adult numeracy need to explore ways to promote the wealth of research that exsits in 
this area, but also the significant gaps. The pandemic and the greater use of technology also offer 
more opportunities for practitioners and researchers to join, network, and promote the benefits of 
adult numeracy.

The papers outline a strong case for interest and investment in adults’ numeracy education, when 
considering the impact on people’s lives and the potential empowering and transforming nature of 
mathematics. However, the research into the resultant effects of an over skilled or under skilled
workforce on global economic inefficiencies, job dissatisfaction, high turnover costs and loss of 
productivity are clearly made. Yet papers in this working group provide clear evidence of 
underinvestment in adult education with the serious consequences it has for learners at all levels. 

Conclusion 
Employers, politicians, and educators want people to have a higher quality of numerate and 
mathematical behaviour to handle numeracy situations effectively in their daily lives, but typically 
use standardized school mathematics tests to assess these qualities. Unfortunately, most of these tests 
are not designed to capture the multifaceted nature of numerate behaviour and therefore provide an
image that is too narrow to reflect such behaviour. The research field of adult numeracy and 
mathematics education recognises the complexity of numerate and mathematical behaviour and offers 
insights into possible approaches that can be used within mathematics education, casting a broader 
light on the intricacies of mathematical and numerate behaviour in the context of everyday life.

The notion that technology is leading to a society becoming increasingly ‘mathematised’ should be 
considered more seriously in research on mathematics education, for instance by using global 
research databases, such as PIAAC (OECD, 2019), that enables us to compare and analyse how 
different societies and countries deal with this issue in their educational policies and practices.

Research in this working group shows the importance of adult numeracy research in relation to life 
opportunities and inclusive societies, yet point to a lack of visibility in academic research with the 
consequent lack of effect in learning from work undertaken into adult numeracy research and practice.
Understandably policy makers are currently focused on the long-term effects of the Covid -19
pandemic on school children and their learning. Yet these few texts indicate a real need for resources 
to be invested beyond schools to respond to the demands on adults’ numeracy requirements to engage 
fully in life chances relating to health, finances, employability and through civic society.
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Theoretical background 
Percentage calculation is one of the most important mathematical topics for everyday life and work 
(Parker & Leinhardt 1995). Vocational teachers focusing on economics use it in their teaching, but 
little is known about their own knowledge of it. It is likely that they may draw on their mathematical 
knowledge from school and their training does not usually include any mathematics education content 
on percentage calculation. Initial studies indicate that their understanding is incomplete (Bradtke 
2018). Therefore, we are investigating the research question: Do vocational teachers focusing on 
economics, who do not specialise in mathematics, have a professional mathematical knowledge of 
the content percentage calculation?  

In German research on mathematics education, the existence of an adequate understanding of the 
concept is examined by checking whether the normative Grundvorstellungen (desired ideas about a 
mathematical content) are present and can also be applied situationally. To test this, vocational 
teachers focusing on economics were asked to solve tasks involving percentage calculation. It is 
argued that if they can solve the tasks, it is likely that they have the appropriate Grundvorstellungen, 
otherwise, deficits are to be expected. Furthermore, the Grundvorstellungen of a mathematical 
concept are considered sustainable if they can be activated in different situations (Padberg & Wartha 
2017). Compound interest also plays a special role in commercial calculations but only with 
solid/broad Grundvorstellungen is one competent in dealing with the mathematical content. 
Difficulties with this operation are also increasingly reported in Anglo-American countries (Parker 
& Leinhardt 1995). 

If we look at the essential mathematical activities of vocational teachers focusing on economics in 
commercial education, then the teacher should be able to solve the tasks him/herself as well as 
recognise errors in the processing of tasks and describe the error. Along these three contexts, we have 
set twelve tasks involving compound interest in order to determine how viable the conceptions of this 
term are. 
Methodology 
In a pilot study, 77 secondary school student teachers’ mathematics was surveyed (semester: mean 
3.44; standard deviation 1.93). The pilot study took place in the winter semester 2021/2022 at the 
University of Kassel. No vocational teachers with a focus on economics were surveyed, as they were 
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held back for the main study due to their low numbers. Participants in the pilot study were secondary 
school student teachers with mathematics as a subject. It is argued if they have difficulties with the 
concept of compound interest, then it is very likely that vocational student teachers without 
mathematics as a subject do as well. The study was designed as an online achievement test. The 
invitation link was sent to prospective students on our course on mathematics education in the first 
secondary school via Moodle. Participation in the study was linked to compensation opportunities for 
academic performance. 

Results 
Compound interest was tested through nine tasks with varying demand situations. On average, 7.4 
tasks could be solved with a standard deviation of 2.54. The scale formed an alpha coefficient of α = 
.755. For three items, the item discriminatory power is slightly below .3. These are to be revised in 
the next pilot study. The distribution of scores is as shown in the histogram (see Figure 1).  

 
Figure 1: Results on the viability of the Grundvorstellungen for multiple changes of the original size 

Discussion 
The secondary school student teachers with mathematics as a subject do not seem to be able to solve 
compound interest problems in all contexts. This suggests that they do not recognise the problem type 
of compound interest in some contexts and therefore cannot apply the Grundvorstellungen associated 
with this problem type.  If student teachers with mathematics already have this difficulty, then it can 
be assumed that this is even more serious for vocational student teachers without mathematics as a 
subject. Whether vocational teacher have difficulties in this regard will be investigated in a further 
study.  
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Mathematics in Prison (MiP) topic group is a new initiative developed by Adults Learning 
Mathematics - International Research Forum (ALM). Our mission is to link practitioners and 
researchers interested in the field of Mathematics education in prisons and correctional education 
contexts. The topic group was developed in response to the ALM virtual seminar series, which 
featured a variety of speakers on various topics related to adults and Mathematics during 2021 and 
2022. Discussions among participants at some events expressed interest in the field, and ALM 
responded by facilitating the development of a dedicated Mathematics in Prison group. Members 
joined from different parts of the world, all with an interest in Mathematics education in the secure 
estate. The group focuses on the challenges and opportunities of learning mathematics in this unique 
and under researched context. 

Keywords: Adults mathematics education, teaching resources, correctional education, desistance. 

Introduction 
The MiP topic group first presented on the work of their work in a workshop at ALM 28, a virtual 
conference from the University of Hamburg. Members of the group presented an informal session 
where each taught a class on ratio, as this is a topic many of the group find is a challenge for their 
adult students. Participants were encouraged to share their perspectives and experiences in this field.  

The two authors of this paper are practitioners in the field who are also researching for a PhD and 
wish to share their teaching experiences. Their research and to connect with practitioners. These goals 
were extended were shared within the topic group, to offers a forum to share good practice, discuss 
methodologies and explore the challenges practitioners and researchers face working in the secure 
estate. The group encourages informal conversations between practitioners and researchers to identify 
common themes and investigate ways that the MiP topic group might support mathematics education 
in this context in the future. Practitioners study experiences, literature, and best practices (Ginsburg 
2019), and investigate topics such as teaching fractions, assessment and technology enhanced 
learning. 

The focus of the paper is to open this topic for discussion and invite others from the field to connect 
with us, from any background, and together we can develop the vision activities of the group. We 
hope in future that we can identify some common themes emerging in the field of mathematics 
education in prisons. As the group has been in existence for a very short time, this paper reflects how 
we opened this discussion rather than describing findings. We would like in future to gather relevant 
literature and give practitioners the opportunity to reflect on the literature as it relates to their practice, 
possibly in the form of a professional book club. 
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The Prison Education Context 

In our meetings we found that Mathematics education in different countries varies in language, 
culture, curriculum, philosophy, delivery, and statutory basis. For example, there are different terms 
within the group’s members for students, for staff, for the education service, and even for the subject 
of Mathematics itself. Our first task was to discuss the language of our work with the others in the 
group so we could communicate in a nonjudgmental way with each other. 

There are many differences in the education services in prisons across the world, and this is reflected 
in the language used. Prisons over the centuries been seen as agents of the state to reform, to penalize, 
to encourage desistance from crime, and to encourage lifelong learning and personal transformation. 
In spite of this, in the MIP group, we felt that we share many similar experiences in our Maths 
classrooms. 

We all work with students who may not have chosen to study Mathematics except that they found 
themselves in prison.  This experience can encourage reflection and become a turning point in an 
individual’s’ life, as mathematics is a gateway to further and higher education.  Many have spent 
years away from formal education and may never have considered returning to education if they were 
not in this context. The process of capturing the stories and experiences of students learning 
Mathematics in informal contexts such as prisons, and workplace education settings (Kelly 2016), 
may help develop insights and understanding for future researchers, teachers, and teacher trainers. 

 Overview of the Mathematics in Prison Topic Group 

As stated, the MiP group grew out of the discussion prompted by the fourth virtual ALM seminar 
“Adults Mathematics in Prison Education”. This was led by Linda Ahl who presented her research 
on the teaching of Adults mathematics in prison education”. After the discussion, ALM trustees 
decided to advertise the first topic group meeting through the ALM mailing list. The first gathering 
included participants from Sweden, UK, Canada, USA, Ireland, Northern Ireland. While some could 
not attend, there was wide interest who wish to keep in touch with developments of the group. We 
have also had queries from Asia. 

The MiP group has permeable boundaries with few barriers to relations with outsiders. We have been 
contacted by approximately twenty people who expressed interest in the group. Not all have attended 
all meetings but remain in touch with the group. Some of the members of the MiP group are currently 
teachers of mathematics in prisons, while others work in universities, and others are researchers. 
People who contacted the group are mostly mathematics teachers and many are teaching at different 
levels from basic to advanced. Generally, education in prison follows the national curriculum of the 
country at many different levels, but this is an area we have not investigated in detail as this group is 
still at an exploratory stage. 

Communication was going to be a challenge for the group, due to the different time zones and the 
digital divide (Hopkins et al. 2015) between those working in prisons and those in the community. 
The impact of this was that the groups was not all able to access video calls in work hours, so the 
decision was made to rotate the times of the meetings, communicate outside our work settings, to 
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communicate online and send content to each other using technology platforms in advance of the 
meetings. 

We reflected on the best way to communicate with those in the group before and during the meeting, 
and we decided to use Google Jamboard. This interactive smartboard enables teachers and students 
to collaborate on a virtual whiteboard, to allow to brainstorm ideas and create sketches (Virto et al 
2020). We set up a link to Google Jamboard with questions composed by the group leaders ahead of 
the meeting. At the meeting, we invited participants to answer the questions and contribute to 
discussions suggested on the Jamboard.  

Table 1: Questions on MiP questionnaire  

Question Purpose 

What is your name? To connect 

What is your workplace? To find out type of institutions, for 
example, secure or open. 

Where s it located? To find geographical context and 
possibly form local clusters. 

What is your specific interest in Mathematics teaching? To develop topic clusters. 

What is your students’ profile? To see age and nationality profile 

What are your students’ goals? To understand motivations. 

What are your goals for the future of MiP? To help plan. 

What are your optimal times to meet? To plan a calendar and rotate times 
for different time zones. 

What dilemmas and challenges do you meet in your work? To understand ethical and moral 
issues relevant to the work. 

What words would you include in our community glossary? Suggestion: include terms for 
students, staff, Mathematics. 

We invited the group participants to answer on Jamboard on topics including their name, their 
workplace, their location, their student profile (general comments on age and nationalities), the goals 
of our students and their Mathematics learning objectives, the best times to meet, dilemmas and 
challenges we experience at work, our specific interests in mathematics teaching, our goals for the 
future of the MiP group, setting up a community glossary relating to our work. We are keen that the 
group remains open to future questions and observations from the existing members and future ones, 
so we plan to be flexible in organizing meetings. We are considering future formats and may look at 
other platforms, such as padlet. 

The disadvantage of Jamboard is that anyone can remove and add material. As participants are 
working in prisons, there is awareness of the need for privacy and security. The decision was made 
to safeguard the group’s discussion by sharing the link during the meeting so people could add ideas 
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and then we closed the link so no one else could change or share it. Finally, we shared a PDF of the 
meeting and brainstorming with the participants. A summary of the discussion was shared with the 
ALM trustees. 

The content gathered indicated that educators were working with a wide range of age groups, in 
different departmental systems and with varied resources. The use of IT within the secure systems 
was diverse and this is one area that could be an important source sharing ideas and approaches to 
developing mathematics. 

One of the challenges in teaching mathematics is this sector is how to be authentic and remain true to 
the needs of our students. Ahl (2020) comments that discussions on prisons can create curiosity in 
those who are not familiar with the field. As Szifris (2018) comments, this curiosity may be fed by 
the lack of educational research. Other professions have researched education in prison, from their 
own professional lenses, whether through the perspective of criminology and the impact ion 
desistance, or from a psychological point of view. The MiP group are clear in our mission, which is 
to support and investigate Mathematics education in prisons, while respecting the dignity and privacy 
of staff and students. 

Rationale and Statutory basis for teaching and researching mathematics in 
prisons 
Education has been a part of everyday life in prisons for centuries, yet it is still generally under 
theorized (Szifris 2018). While adult Mathematics is a more limited field of research than 
mathematics education in mainstream areas (Safford-Ramus et al 2016) yet have skills and 
knowledge and adult Mathematics education in prison is even more limited. Ahl (2020) has recently 
added to the field in a study based on mathematics education in Swedish prisons, and who argues for 
more research into this specialist field. Anecdotal evidence from practitioners in the MiP meetings 
and from research (Creese 2016) suggests that prisoners and people in detention have unmet needs in 
mathematics and numeracy.  

Mathematics education in prison is a basic life skill (Council of Europe 1990). Yet it varies 
considerably across countries and within national systems. Levels of mathematics education have 
been investigated in prisons in the UK (Creese 2016) and the USA (Rampey et al 2016). In Ireland 
priority is given to those in prison with basic educational needs, including numeracy and literacy 
(Irish Prison Service 2019). In the UK, Coates (2016) advocates for development of basic skills in 
mathematics, as well as English, and Information and Communications Technology (ICT). 

Future ideas for activities in the MiP Topic Group  
We look forward to presenting at CERME12 as it will help us to plan for our activities in the future, 
regarding the approach the group will take. We plan to gather more reflections on experiences from 
within mathematics classrooms in this context. This may include instructional strategies, teachers’ 
professional development needs and experiences. We plan to collaborate on the instructional 
strategies and materials and their impact in classrooms that teachers share with us.  Assessment in 
adult education is a core issue and mathematics assessment in prisons is an important concern as 
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mathematics is a gateway subject to further education. We plan to connect with other groups related 
to Mathematics and education in the secure estate and correctional settings. 

We plan to keep the gatherings in our groups as open as possible, some sources for discussion in this 
group include an educator developing a curriculum or resources for a specific group of adult learners.  
Another option may be to pose a problem for the group on a specific problem or project the group 
could reflect on why the students struggle with this topic and offer strategies on how to deal with it.  
Another idea could be to reflect on the impact and relevance for the practitioner of an article or book, 
like a professional book club.  This could lead to activities and experiments in-class in the future 
which may confirm or challenge our original findings. 

Recently two members of the MiP group presented a workshop at the Australian Correctional 
Education Association conference, held online. This opened the topic to a new set of researchers, 
practitioners and policy makers. The topic provoked discussions and interest and we expect to have 
new members in the group in the future, and develop links with related Australasian groups.  

Conclusion 
We anticipate that this topic group will provide a forum, within ALM, where Maths in prison 
practitioners and researchers can connect, share resources, and support each other in their work. The 
group is at an early stage, and we look forward to the developments in the future. 

We hope that this paper and conference will help to publicize the topic group and add to the limited 
research in this field. The meetings have provoked lively discussion and have illustrated that the field 
of mathematics education in prisons has more features in common than it has differences. 

We look forward to developing a dialogue on continuing professional development within this sector 
across national boundaries. This could take the form of pieces about practice, or it may include action 
research from individual practitioners’ or teaching experiments. It may involve learners, their 
communities, and teachers, in line with all appropriate ethical guidelines.  We do not yet have an 
overview of the different policies regarding curriculum and accreditation of Maths education in the 
prison context, so we hope to learn more about the role of governments in education policy on 
different countries. 
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This paper explores the contributions of research to the field of adults learning mathematics (ALM) 
in the last twenty years. The results of the review of the literature on ALM show that the most cited 
studies that have been published in the last twenty years tend to focus on the field of numeracy to 
understand health data (such as understanding how to dose a medicine in a medical treatment). 
However, we know little about key aspects of how adults learn mathematics, what obstacles they 
encounter, and how they overcome them. This paper identifies the main gaps that ALM research faces 
in the coming years. 

Keywords: Numeracy, Adult Education. 

The concept of numeracy 
In its origins, the word numeracy was closely related to the concept of quantitative literacy (Tout, 
2020). Thinking quantitatively has been the focus in educational research focused on mathematics 
since the last century. As Sowder (1989) says, most of the research on how we learn mathematics 
over several decades focused on mathematical intuition, higher-order thinking, mental schemes for 
understanding mathematics, and the development of quantitative thinking. In the last forty years, it 
should be added that research in the field of mathematics didactics has diversified into other areas 
beyond the strictly cognitive. 

However, almost all the research that has increased our understanding of how we learn mathematics 
and how we can develop those innate mathematical skills that we all have, for the mere fact of being 
human beings, focuses on early childhood, adolescence and up to the age of university studies 
(Carpenter, Dossey, & Koehler, 2004). Instead, in "adulthood", there are few investigations, and of 
those that do exist almost all related to literacy, functional literacy, dispositions towards mathematics, 
and mathematics embedded in different contexts (workplace, etc.). There are studies on what 
mathematics we use in adult life, measuring the ‘mathematics’ we know, the challenges that adults 
should know to be ‘mathematically competent’ in today's world and explorations into the 
vulnerability of certain people and certain people social groups who lack certain knowledge and 
skills. Nevertheless, there is a big gap (comparatively speaking) in research into how adults learn 
mathematics, what research has contributed to this regard, and the gaps that need to be filled in the 
coming years or decades.  

The objective of this paper is to review what research is being carried out in the last twenty years in 
the field of ALM, to identify what are the topics that are being investigated, and where there are gaps 
that would open new lines of research in the future on how adults learn mathematics.  
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Background 
The first piece of evidence we have about ALM is that adults already know maths. Mathematical 
knowledge (the ability to think and reason in mathematical terms) is an innate skill. In the same way, 
that speech is a human skill that manifests itself early when children begin to speak. Mathematical 
thinking is also part of our ability to represent the world and solve problems. Therefore, when we talk 
about learning mathematics as adults we talk about academic, formal and ‘pencil and paper’ 
mathematics, similar to what we refer to when we talk about literacy, for example where we speak 
about reading and writing in the printed letter. 

Unlike literacy, where researchers claim that it refers to the knowledge and proficiency in the use of 
texts, in the case of numeracy, the definitions we usually use go beyond defining numeracy as the 
understanding and use of the ‘printed number’. As Tout (2020) says numeracy not only refers to 
mathematical content but is a ‘way of thinking, of reasoning, of acting’. It has more to do with a set 
of skills related to ‘numerated’ behavior that goes beyond the simple use of mathematical objects and 
their representations. That is why it is difficult to establish the boundaries of the concept and, 
therefore, establish the bases of didactic research on how to ‘learn’ numeracy. Numeracy seems to be 
an innate human trait. However, it is also learned and, from the point of view of contents, procedures 
and ways of thinking and reasoning mathematically, it is a complex set of knowledge.  

Another problem is the invisibility that some authors, such as Wedege (2010), have pointed out 
around mathematics and numeracy. That is, there are forms of thought and reasoning that are typical 
of mathematics. However, as they are part of our way of representing and understanding the world 
around us, they are not recognized as ‘mathematics’ (nor as numeracy). Examples that help to 
understand this paradox (well-studied in the field of ALM) are, for example, making estimates, 
identifying quantities, and comparing them with each other, considering risks associated with the 
subjective perception of probability, etc. Many people play the lottery because they are hoping to win 
the prize. They also decide to go out for the weekend after watching the weather forecast on TV. 
However, it is more difficult to find people who, before buying the lottery number, use Laplace's rule 
to calculate the probability they have of winning the prize, we do not make a count using the laws of 
combinatorics of how many different chances there are of obtaining the six winning numbers of the 
weekly lottery (among the 36 possible), nor do we use the density distribution of the event ‘being 
sunny’ or ‘raining’ when we prepare to spend the weekend away from home.  

This apparent ‘over-definition’ of the concept of numeracy poses difficulties, as evidenced by the fact 
that it has been a concept that has been evolving since it first began to be used in the mid-twentieth 
century (Hoogland et al., 2019). During all these years, the concept of numeracy has gone from being 
defined as the knowledge of basic arithmetic objects and procedures (knowing how to add, subtract, 
multiply and divide, and some of the rules and properties of basic operations) to being defined as a 
social practice that involves the use of numbers (and mathematics by extension) to solve problems of 
everyday life, make decisions, value information and act on the world around us (multifaceted 
concept).  
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Teaching numeracy to adults 
Different studies show that when children enter kindergarten at 3 or 4 years old, they already have 
developed what we would call ‘number sense’ (Westwood, 2021). Children know how to make 
comparisons between numbers, they know how to discriminate between quantities, and they know 
how to count accurately. So, when they get to school, what do they learn? According to research in 
our field, it seems clear that what they learn is the ‘academic’ language of mathematics, including the 
written representation of numbers and their characteristics and properties. They learn to reason with 
numbers. They are presented with ‘problems’ and asked to solve them, training them to develop that 
innate capacity that we all have, which is to solve problems. 

Furthermore, that is called ‘teaching math’. According to the type of mathematical object being 
taught, we will discuss arithmetic, algebra, geometry, etc. Mathematical objects, as we know, are part 
of conceptual structures, the components of which are very precisely related. For some, mathematics 
is the ‘language of precision’, such as Ernest (2003) reflects upon when he analyzes the different 
philosophies of mathematics. 

We have some indications of explanatory models of how learning works: for example, Dreyfus and 
Dreyfus (2005) argue that teaching first goes through verbal descriptions and rules, then the second 
phase of association, and a third of automation; they affirm that learning is a more global process 
(holistic), in which holistic patterns are recognized because of interaction with the environment in 
multiple different situations. Hatano (1988) confirms this, claiming that learning goes beyond rule-
based knowledge. 

Nevertheless, what happens when we talk about teaching and learning mathematics in adults? There 
is no accumulated knowledge base on how adults learn mathematics comparable to the work that has 
been done with children and young people.  

Therefore, in this paper, we have conducted a systematic review of the literature, looking for 
everything that has been written about adults and numeracy in the last twenty years to see to what 
extent the previous statement is true (or not).  

Methods 
To answer the research question posed here, we have conducted a systematic review of studies into 
numeracy and adults published in journals included in the Web of Science database from January 1, 
2000, to June 1, 2021. To perform the query, the words numeracy AND adults were used. 

The search generated a first database of a total of 843 articles published in that period. To select a 
sample of them, the following procedure was followed:  

(1) We sorted all articles by the total number of citations, from the one with the most citations 
(1,836 citations) to those with no citations. 

(2) The articles were grouped by quartiles, generating four groups ordered according to citations: 
A, B, C and D, as shown in the attached Table. 
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Table 1: Grouping of articles according to quartile by the level of citations 

 Range of citations  Range of citations 

A (25%) 19- 1,836 C (75%) 2-6 

B (50%) 7-18 D (100%) 0-1 

(3) From each quartile, (the first) ten articles that met the following criteria were chosen:  

- Articles with a defined research question, a clearly explained methodology 
(that meets the criteria of replicability, reliability, and validity), a section of 
results, and conclusions (answer to the research question). We excluded all 
articles of a conceptual, reflective nature and those which are not based on 
empirical research.  

- Articles that deal with the learning of mathematics of adults.  
- Articles that comply with the dimensions and components of empirical studies 

from an adaptation by Taylor et al. (2021), as shown in Table 2.  

Table 2. Criteria characterizing the components used to select the empirical studies on numeracy by 
dimension (adapted from Taylor et al. 2021) 

Criteria Dimension Component 

Clear identified research question(s) Research Design Rigor 

Appropriate unit of study (school, classroom, adult 
learner,...) 

Research Design Rigor 

Clear description of the research design  Research Design  Rigor 

Target population defined Research Design Rigor 

Appropriate statistical analysis Research Design Rigor 

Appropriate qualitative analysis Research Design Rigor 

Clear defined unit of analysis  Research Design Rigor 

Consent forms Research Design Rigor 

Valid and reliable measurement Research Design Measurement validity 

Size and significance effects are reported Research Design Reliability 

Limitations are reported Research Design Reliability 

Use of randomness as criteria for selecting the sample Research Design Reliability 

Triangulation  Research Design Reliability 
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Evidence of transferability to other contexts Research Design Generability 

Adequate description of the sample /intended population Research Design Generability 

Description of the research activities conducted Research Design Replicability 

Clear information about the financial sources (grants, etc.) Research Design Independence of the 
researcher 

Consistent, statistically significant positive effect on an 
outcome 

Effectiveness Overall effectiveness 

Findings are reported across different contexts Effectiveness Consistency of 
effects 

Contributions persist over time Effectiveness Sustainability 

Clear criteria to identify the target population Impact Inclusion criteria 

Detailed documentation of all components of the study 
(how, to whom, and by whom is intended to be conducted) 

Impact Implementation 
feasibility 

A clear description of the intended effects in the consent 
forms 

Impact Implementation 
feasibility 

The total sample of selected articles has been 40 articles, ten from each of the quartiles.  

Results  
Below are the results obtained from the analysis of the sample of forty selected articles.  

First quartile 

Almost all the articles in the group that generate the most citations are articles in the field of health, 
published in journals of medicine, nursing, or health psychology. The most recurrent theme that 
appears in these articles is the study of the extent to which adults who participate in them can read 
and interpret the instructions of the medicines to apply the doses correctly. Many studies investigate 
the skills of nurses to apply the doses of medicines to patients correctly. There are also some studies 
on the understanding of risk and probability in decision-making. From the point of view of higher-
order skills, most of the selected articles focus on the processing information skill or the problem-
solving skill. In half of them, we have identified the skill of critical thinking’ none refer to managing 
situations. Regarding the contents that appear in the selected articles, most focus on quantity and 
number’. The two other contents that appear are ‘pattern, relationships and change’ and data and 
chance. There is no article that talks about the use of the calculator, the use of apps or spreadsheets, 
or digital skills.   

Second quartile  

In the second quartile, we find the same trend as in the first quartile: most of the articles that appear 
are published in health journals (medical research, neurological sciences, neuropsychiatry), although 
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we also find a journal of gerontology and another on literacy and numeracy studies. Finally, there are 
two articles published in a generic journal as Plos One. Regarding the research topics, the topics are 
more diverse than in the case of the investigations of the first quartile. In the previous group, we also 
found some studies on misunderstandings in adults with cognitive impairment when reading 
medication instructions. However, in addition to that topic, we find other research topics: the 
understanding of risk estimates using an online risk calculator when outcomes are expressed using 
integers, the impact of age on non-optimal decision-making, the management of domestic aspects 
using the Internet (shopping and banking skills), the financial literacy of adults, among others.  On 
higher-order skills, unlike the studies reported in the first group, here we find that most refer to critical 
thinking or processing information. We also find somewhere that the problem-solving skills of adults 
are studied. From a content standpoint, most focus on quantity and number. We also find other topics 
more punctually, such as data and chance or the patterns, relationships, and change. It highlights that 
several of them include the use of digital applications.  

Third quartile 

In this third group of articles, some study of the field of medicine continues to appear. Nevertheless, 
unlike previous groups, these types of studies are the minority. The studies in this group are published 
in journals from various disciplines, such as education and development, policies, and assessment.  
As you can see, most are journals in the field of education. The topics studied are numeracy skills 
and labour market outcomes among indigenous populations, comparison between groups of adults 
from different socio-economic classes based on PIAAC results, assessment of objective and 
subjective health about numerical skills, perception of the incidence of specific disease and the 
survival rate, interactions between adults and children in contexts of learning informal mathematics 
(grocery store), etc. From the point of view of higher-order skills, in this group, the studies focus on 
skills such as processing information, problem-solving or critical thinking in the vast majority. We 
found no case of mathematizing or managing situations. Regarding the analyzed mathematical 
contents, those related to the dimension of quantity and number appear above all. In some cases, also 
what refers to data (using and reading statistics) and chance (making predictions, assessing the 
opportunity/risk of making a particular decision).  

Fourth quartile 

In this fourth group, the articles that are most cited are published in education or lifelong learning 
journals, specifically aimed at adult education. There are also some articles in specialized journals of 
mathematics education. In a minority way, journals from the field of health appear. From the point 
of view of the topics studied in the articles of this group, there are studies on how adults solve 
problems in the context of everyday life (evidence problems), the result of tests to measure the level 
of numeracy measured with tests (both standardized, such as PIAAC, and tests created ad hoc). There 
are also several studies related to motivation (emotional dimension), anxiety about mathematics, etc. 
Finally, we also find studies on the type of mathematics and mathematical skills needed to develop 
certain occupations in the labour market, mainly of an ethnographic (observational) nature. From the 
point of view of higher-order skills, in these studies, it is customary to study the skills of analyzing 
situations, processing information, and to a lesser extent, problem-solving and critical thinking. As 
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far as mathematical content is concerned, they usually focus on aspects of quantity and number, or 
data and chance.  

Discussion and conclusions 
The first result we have is that the vast majority of empirical studies are in the field of health and refer 
to aspects such as literacy and numeracy to understand the instructions regarding the dosage of 
medicines, or the understanding and application of medical treatments, or related to considering the 
pros and cons to make a particular health decision. In all these cases, the most outstanding aspect that 
appears in the studies is how adults can understand quantitative data, read the representations of that 
data (graphs, tables; but also, data of absolute frequencies, or percentages), and compare one set of 
data with another, to make decisions based on that understanding. In addition, study aspects include 
the understanding and management of risks and the making of decisions in environments of 
uncertainty with limited information.  

A second result that we have found is that there is an excess of articles which consists of reflections, 
narratives, conceptualizations, etc., with as main content considerations, theoretical points of view, 
which are illustrated with concrete examples, discussions on research already published (meta-
research), and specific cases of the knowledge of the author(s).  

Third, the empirical studies on ALM suggest that adults learn from making connections: new 
mathematical objects are incorporated into our previous cognitive schemes. Several studies suggest 
that adult math learning is contextual: we use our experience knowledge (in the workplace, at home, 
in the supermarket, etc.) to incorporate new mathematical objects into our mathematical knowledge. 
To do this, we usually use skills such as processing information, problem-solving, and critical 
thinking.  

Fourth, this literature review shows that one of the lines of research in ALM is on emotions. There 
are several studies related to the emotional response that adults give to mathematics and its learning.  

Finally, fifth, the most remarkable result we have found is that the actual process of learning 
mathematics by adults is hardly investigated. This is reflected in the topics that appear in scientific 
databases such as WoS (Web of Science) which focuses mainly on what topics adults should learn, 
such as functions, logarithms, derivatives, geometric theorems, spatial thinking, probabilistic 
reasoning and Markov chains. We didn’t find much research on what actually happens when an adult 
is learning a mathematical concept and how s/he solves mathematical problems (Contextually? 
Drawing on everyday experience? Through interactions?). We didn’t find evidence if what we know 
from studies from different perspectives, such as the semantic fields, the cognitivist approach, socio-
cultural studies, also applies to the case of adults.  

Our main conclusion is that much more research is needed in the field of ALM, at least to contrast 
with what we know about research on learning mathematics with children and young people. Does it 
apply in the same way to adults? Or does adult learning works differently and, therefore, do we have 
to teach/support it in other ways (impact on the curriculum), and evaluate it also in other ways (impact 
on assessment, such as PIAAC, for example)?  
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Limitations  
The scientific literature review study presented here is not exhaustive. A systematic literature review 
process has been followed, using WoS (Web of Science) to identify scientific articles on numeracy 
in the field of adults learning mathematics. However, we are aware that despite this effort to 
systematize, it is impossible to have reached the total number of studies carried out in this area and 
on this subject throughout the world.  

The sample has a noticeable bias towards certain topics, because the different fields of research have 
different traditions from the point of view of citations. Thus, for example, in medicine, there is a 
greater tradition of citation than in other areas, which explains the over-representation in our sample 
of articles published in this type of journal. For further studies, it is planned to correct for this effect. 
But on the other hand, we must also consider that the level of citation is also an indicator of the 
visibility of the work. 
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We assess the incidence of numeracy skills mismatch in five countries: Belgium, Chile, Italy, 
Netherlands, and the United States of America. To do this, we make use of a new approach (Brun-
Schamme & Rey, 2021), namely by identifying someone as being mismatched if the score for 
numeracy skills is outside the interval [median – SD , median + SD]. We make use of the PIAAC 
dataset, collected by the OECD, a survey that measures adults’ proficiency in numeracy among other 
type of skills. We find that 14% of the workers are over-skilled, whereas 16% are under-skilled. Being 
over-skilled is more likely for men, younger age-groups, having a high level of education, using 
numeracy skills often at work, and having studied science, mathematics, and engineering.

Keywords: Numeracy, skills mismatch, over-skilled, under-skilled, occupations.

Introduction 
The world has seen major developments in technological progress, human capital formation, and 
labour demand. Numeracy has increasingly become one of the crucial basic skills for adults to cope 
with the digitalised and technologized 21st-century society. Having an adequate numeracy level
determines the success of individuals’ participation in their roles as citizens and professionals. Hence 
there is a need to measure the numeracy proficiency and whether there is a good match between the 
possessed skills and required skills in numeracy. 

Skills mismatch, defined as possessing qualifications or skills that does not adequately meet the 
qualifications or skills necessary for the doing one’s job, has negative effects at all levels of the 
economy: at individual (micro) level, skills mismatch is leads to lower job satisfaction and wages. At 
company (meso) level mismatch leads to a higher staff turnover, and inefficiencies. At country 
(macro) level, to unemployment, lower productivity1 and lower economic growth mainly due to 
wasting human capital (OECD, 2013). The aim of this study is to inform national policymakers on 
lifelong learning especially regarding numeracy and the mismatch of skills.

The Programme for International Assessment of Adult Competencies (PIAAC), a major survey 
conducted by the OECD in over 40 countries, provides the opportunity to measure skills proficiency 
(in literacy, numeracy, and problem solving in a technological rich environment) and the degree to 
which people are well-matched in a harmonized way. This paper focusses on numeracy skills, because 
1) these skills are the most comparable throughout different countries (Perry et al., 2016) and 2) these
skills have a mathematical foundation.

1 Being under-skilled can lead to lower productivity because the worker is performing below the required skills. 
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The OECD (2013) defines numeracy skills as “the ability to access, use, interpret and communicate 
mathematical information and ideas in order to engage in and manage the mathematical demands of 
a range of situations in adult life.” To this end, numeracy involves “managing a situation or solving 
a problem in a real context, by responding to mathematical content/information/ideas represented in 
multiple ways.”

Theoretical background
Human capital is formed by the skills and education an individual gains over time (Wiederhold &
Ackermann-Piek, 2014). Human capital positively affects an individual’s success, and productivity. 
To put skills to effective use, it is important that they are aligned with the required skills at work.
Wiederhold and Ackermann-Piek (2014) discuss the reasons why workers may be over-skilled or 
under-skilled. Factors that may play a role are shifts or changes in the economy, the occupation type, 
the timing in the professional career (experience), discrimination in the labour market, and family 
responsibilities. 

Pellizari and Fichen (2013) developed a theoretical framework to define and measure skills mismatch 
with PIAAC data. In this framework jobs are defined as production functions and skill use, which is 
treated as an endogenous choice of the worker, is considered as the only input. The model furthermore 
assumes that there are fixed costs to carry out the job and that the marginal product of used skills is 
locally constant and that it declines above a certain threshold (it is equal to zero). These assumptions 
lead two critical values in the definition of skills mismatch, namely that workers with a skill 
proficiency below the lower critical value are under-skilled and workers above the upper critical value 
are over-skilled. Furthermore, the model assumes that production technologies of firms do not change
and that the skills mismatch is measured in the short run. 

Several studies (OECD, 2013; Perry et al., 2016, McGuinness et al., 2018, Flisi et al., 2017, Allen et 
al., 2011) have used PIAAC data to measure skills-mismatch in various ways. This paper applies the 
latest approach as developed by Brun-Schammé and Rey (2021) to measure numeracy mismatch. 
Flisi et al. (2017) provide 20 indicators for occupational mismatch for 17 European countries, whereas 
Perry et al. (2016) evaluates six measures for mismatch. The preferred method by the OECD, 
developed by Pellizari and Fichen (2013), is the method where self-reported2 mismatch is identified 
as an objective measure (whether the score for numeracy skills exceeds 95th percentile of the 
distribution within the same occupation or whether it is lower than the 5th percentile of the 
distribution). The main argument against this method is firstly, the bias raised due to overconfidence 
or misinterpretation, and secondly, that the mismatch is measured within one-digit occupational code 
leaving little room for the heterogeneity within the 1-digit occupation. Brun-Schammé and Rey’s 
approach therefore make use of the two-digit occupation code to take some more heterogeneity into 
account (ending up with 40 occupational categories instead of 10). It assesses the skills mismatch for 
France and categorizes someone as being mismatch if the score for numeracy skills is outside the 
mean and one standard deviation. Using this approach, we assess the prevalence of skills mismatch 

2 By asking workers whether they can do a more demanding job or whether they need extra training to their job. 
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in five countries, and look for associations between mismatch and socio-demographic and job-related 
characteristics such as job satisfaction, wages, and skills use.  

Data and methods
The PIAAC dataset is based on an international comparable survey conducted by the OECD in over 
40 countries in three rounds: the first one in 2011-12, the second in 2014-15, and third in 2017. The 
data we use are for Belgium, Netherlands, and Italy from the first round, Chile the second, and the 
USA from the third round. Around 5000 non-institutionalized people per country were surveyed. To 
obtain representative results, the sample was chosen through a multistage clustered design. The 
proficiency scores in the original dataset were based on the Item Response Theory scaling 
methodology resulting in 10 plausible values for each type of skill proficiency in the dataset 
(Yamamoto et al., 2013). 

We perform a quantitative analysis, by measuring the incidence of numeracy skills mismatch 
conforming to Brun-Schammé and Rey (2021) as follows. Firstly, we calculate the median and 
standard deviation of the numeracy skills score3 for each two-digit ISCO occupation. Secondly, we 
qualify a worker as being over-skilled if the score for numeracy proficiency score is above the median 
plus one standard deviation and as being under-skilled if the numeracy proficiency score is below the 
median minus one standard deviation. 

We furthermore perform binary logistic regression to study the association between mismatch and 
socio-demographic and job-related variables. Our sample size is 12,166 in total. 

Table 1 below provides the statistics. We see that on average 14% of the workers are over-skilled and 
16% under-skilled. A critique from Pellizari and Fichen (2013) is that having a mismatch percentage 
of 30% can be attributed to the normal distribution of numeracy proficiency skills score. In a normal 
distribution, for instance, 32% will score below or above one standard deviation from the median. 
Nevertheless, it can be interesting to find out which variables are associated with being over-skilled
and under-skilled respectively.

Table 1: Descriptive statistics

Variable (in percent) Total Belgium Chile Italy Netherlands USA

Over-skilled 14.13 13.56 15.49 14.29 13.18 14.6

Under-skilled 16.37 17.35 16.43 16.66 16.24 14.76

Gender (% of women) 50.64 49.76 50.84 48.69 50.6 53.87

Education level

Lower secondary or less 19.86 11.42 24.38 27.53 25.68 7.63

3 Based on the 10 plausible values of the numeracy proficiency and taking the corrected standard error into account by 
using the Repest command (Keslair, 2020). Occupations with less than 25 observations were eliminated.
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Upper secondary 42.13 41.64 44.8 49.78 40.31 34.02

Post-secondary, non-tertiary 2.16 3.87 1.29

Tertiary – professional degree 12.32 26.29 17.77 0.25 4.34 7.25

Tertiary – bachelor degree 14.93 1.84 11.5 18.69 20.42 11.9

Tertiary – master/research degree 8.61 14.95 1.55 2.47 9.25 24.77

Area of study 

General programmes 12.23 13.1 21.4 8.35 9.31 7.48
Teacher training and education 

science 8.96 9.67 10.15 4.64 7.71 13.27

Humanities, languages and arts 8.76 7 11.41 16.63 3.39 8.87

Social sciences, business and law 20.23 16.62 10.48 21.54 29.47 22.22
Science, mathematics and 

computing 12.01 10.94 11.84 20.08 6.44 14.97
Engineering, manufacturing and 

construction 17.44 24.94 16.27 13.19 16.89 11.42

Agriculture and veterinary 2.3 1.95 2.13 2.32 3.34 1.23

Health and welfare 12.82 12.26 7.81 6.76 19.48 15.9

Services 5.25 3.52 8.52 6.49 3.98 4.63

Age group

24 or less 12.77 9.99 15.61 5.44 16.77 14.12

25-34 22.78 24.11 28.29 20.66 18.63 23.04

35-44 24.93 25.65 20.79 33.71 22.81 23.42

45-54 24.97 29.06 22.05 27.63 25.08 19.85

55 plus 14.55 11.19 13.25 12.56 16.71 19.58

Occupation

Armed forces 6.99 7.85 2 1.09 11.08 11.84
Legislators, senior officials and 

managers 19.46 23.21 11.86 15.22 22.44 23.69

Professionals 17.54 16.15 13.29 21.5 17.62 20.71
Technicians and associate 

professionals 11.73 13.48 11.5 13.64 12.78 5.62
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Clerks 18.12 13.59 22.38 17.1 17.81 20.66
Service workers and shop and 

market sales workers 0.89 0.3 2.65 0.69 0.66
Skilled agricultural and fishery 

workers .62 10.78 10.64 10.43 6.8 4

Craft and related trades workers 6.02 6.57 7.17 10.03 2.52 5.3
Plant and machine operators and 

assemblers 10.62 8.07 18.51 10.28 8.31 8.17

Elementary occupations

Immigrant (born abroad) 8.65 8.15 2.61 9.74 7.9 17.47

Working part-time (< 30 h/ week) 23.05 18.83 17.53 18.34 38.67 15.04

Firmsize

1-10 people 26.18 19.56 37.75 37.12 20.23 18.6

11-50 people 29.16 27.79 28.09 27.09 32.47 29.15

51-250 people 24.54 29.67 19.53 19.77 26.68 25.37

251-1000 people 11.53 14.53 8.68 8.3 11.93 13.85

More than 1000 people 8.58 8.45 5.95 7.71 8.68 13.03

Numeracy use at work

All zero response 26.62 27.22 27.03 36.73 25.93 15.31

Lowest to 20% 15.85 18.02 15.65 13.3 17.43 13.03

More than 20% to 40% 13.77 14.12 13.7 13.84 13.72 13.36

More than 40% to 60% 14.75 14.98 14.76 10.73 15.58 17.36

More than 60% to 80% 14.05 12.09 14.51 12.41 13.47 19.04

More than 80% 14.98 13.56 14.35 13 13.88 21.9

Results
Figures 1-4 below are based on performing a binary logistic regression of being over-skilled on 
gender, age-group, education level (alternated by area of study), migrant status, occupation, working 
part-time or not, firm size, and numeracy use at work. The country was entered as a control variable. 
In the figures we see the probability of being over-skilled by each of these variables. 
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Figure 1: The probability of being over-skilled by gender, age-group, and migrant status

Men are significantly more likely to be over-skilled than women, controlling for other factors. The 
probability is 18 percent for men, compared to 14% for women. The probability of being over-skilled 
declines over years. 

Figure 2: The probability of being over-skilled by education level4 and occupation5

Being higher educated has a significant positive association with being over-skilled, controlling for 
other factors. People in elementary occupations are more likely to be over-skilled than people in other 
occupations. 

4 Legenda: 1 = Lower secondary or less (ISCED 1,2, 3C short or less), 2= Upper secondary (ISCED 3A-B, C long), 3 =
Post-secondary, non-tertiary (ISCED 4A-B-C), 4 = Tertiary – professional degree (ISCED 5B), 5 = Tertiary – bachelor 
degree (ISCED 5A), 6= Tertiary – master/research degree (ISCED 5A/6)
5 Legenda: 0 = Armed forces, 1 = Legislators, senior officials and managers, 2 = Professionals, 3 = Technicians and 
associate professionals, 4 = Clerks, 5 = Service workers and shop and market sales workers, 6 = Skilled agricultural and 
fishery workers, 7 = Craft and related trades workers, 8 = Plant and machine operators and assemblers, 9 = Elementary 
occupations
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Figure 3: The probability of being over-skilled by firm-size and use of numeracy skills6

There is no significant difference in the probability of being over-skilled across firm of various sizes. 
Furthermore, we see that the likelihood of being over-skilled increases as the frequency of using 
numeracy skills at work increases. 

Figure 4: The probability of being over-skilled by area of study7

Being over-skilled is significantly more likely for people who studied science, mathematics and 
computing and significantly less likely for people who studied services. 

Conclusion 
Being over-skilled is more likely for men, younger age-groups, higher education, and for people who 
use their numeracy skills often at work. Also, people who studied science, mathematics and 
computing are significantly more likely to be over-skilled. Our results are largely in line with what 
earlier studies showed, although we used a different measure and other sample set. Further studies 

6 Legenda: 0 = All zero response, 1= Lowest to 20%., 2 = More than 20% to 40%, 3 = More than 40% to 60%, 4 = More 
than 60% to 80%, and 5 =More than 80%
7 1 = General programmes, 2 = Teacher training and education science, 3 = Humanities, languages and arts, 4 = Social 
sciences, business and law, 5 = Science, mathematics and computing, 6 = Engineering, manufacturing and construction, 
7 = Agriculture and veterinary, 8 = Health and welfare, 9 = Services
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should focus on the reasons why certain study areas are significantly associated with the probability 
of being over-skilled and on improving the measure for mismatch. 
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A desire to have students and citizens who are numerate and effective problem solvers is a common 
goal internationally (Gal & UNESCO, 2020). This desire is no different in an Irish context across all 
areas of education including adult mathematics education (SOLAS, 2020). This research used 
diagnostic testing to determine and compare the mathematical problem solving and procedural skills 
of a cohort of adult students in an Irish University. The diagnostic test, which was developed by the 
authors using the second level mathematics curriculum in Ireland as a guide, revealed that all adult 
students had statistically significantly lower mathematical problem solving skills when compared to 
procedural skills. These findings raise concern about the problem solving skills of adult learners. 
Discussion around the implications of such findings for best practice in adult mathematics education 
are outlined.

Keywords: Adult mathematics education, undergraduate mathematics education, diagnostic testing, 
procedural skills, problem solving skills. 

Introduction
The desire of having numerate citizens and students who can problem solve effectively is often driven 
by a nations need to stay economically competitive (Perkins & Clerkin, 2020). Adult mathematical 
numeracy is essential to ensuring job markets, economies and societies prosper in addition to the 
having a key role in improving the lives of citizens (Gal & UNESCO, 2020). Much literature exists 
on the importance of the development of problem solving skills in mathematics (IBEC, 2015) and a 
subsequent need to use effective pedagogical practices to support this (Foshay & Kirkley, 2003). 
Despite these uncontested and commonly reported findings adult mathematics education is often 
overlooked when it comes to providing appropriate provision in terms of its development and 
improvement (Gal & UNESCO, 2020). The aforementioned body of research has resulted in an 
overhaul of the second level mathematics curriculum in Ireland in addition to heavily funded 
government programmes to upskill second level teachers. The same opportunities or investment have 
not been afforded in adult mathematics education. In an era where equality, diversity and inclusion 
are at the fore front of all higher education policies it seems remiss that those less advantaged, i.e.,
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adult students on an 1Access Foundation Programme, are not offered at least the same supports and 
opportunities as the more advantaged in society. Some details of the overhaul to the second level 
mathematics curriculum in Ireland in 2010 as well as some literature surrounding problem solving in 
general and in the context of the new mathematics curriculum in second level education is also 
discussed in order to provide context for the development of the diagnostic test used within this 
research.  

Literature Review 
The second level mathematics curriculum in Ireland  

In 2010 a new mathematics curriculum was introduced in second level education in Ireland entitled 
‘Project Maths’ (PM) (Prendergast et al., 2017). The rationale for the introduction of a new 
curriculum was to change from the traditional ‘chalk and talk’ teaching methodologies predominately 
being employed so that students would have improved understanding of mathematical concepts and 
improved engagement with the subject (Hourigan & O’Donoghue, 2007). The change from more 
traditional approaches to teaching mathematics to more student-centred approaches which focus on 
teaching for understanding was partially due to Irish students' comparative poor performance on an 
international platform (Humphreys, 2015). Another motivator for the change was the emerging 
literature relating to the constant and steady decline in students’ basic mathematics skills on entry to 
third level education over the past two decades (Faulkner et al., 2010).  

Like previous studies in the area Treacy and Faulkner (2015) found that students’ basic mathematical 
skills on entry to third level education, between 2003 and 2013, had declined. This study examined a 
time period which included students pre and post PM. What seemed positive about this study's 
findings however was the suggestion that students' problem solving skills may have improved over 
this time period. An examination of lecturers' perceptions of the change in mathematical 
performances, if any, after the introduction of PM found that lecturers felt that students’ procedural 
skills were still on the decline but that possibly their openness to working with mathematics problems 
and problems that were not familiar to them when compared to previous cohorts of students had 
improved (Prendergast et al., 2017)  

Problem Solving in Mathematics 

The need to document and improve students' problem solving skills through new and innovative 
pedagogical practices is omnipresent in education literature however it is not a straightforward 
practice to implement or even a concept that is very well understood (Kilpatrick, 1969). Despite the 
challenge of defining problem solving in mathematics and understanding the best approaches to 
teaching it effectively it remains to be a skill that is very much desired by both employers and those 
in higher education institutions (Vordermann et al., 2011). The desire for this problem solving skill 
set often stems from it reportedly not being at the disposal of many school leavers (Jones et al., 2014). 

 
1The Access Foundation Programme is a one year preparatory programme for students wishing to peruse an 
undergraduate programme at certificate or degree level in Ireland. The programme provides a root to education 
for students from communities which lack a strong tradition of participation in third level education. 
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Additionally, research in this area emphasises the long length of time that students spend in formal 
education learning mathematical skills which they then find very challenging to transfer to further 
education and/or a working environment (Treilibs, 1979). Such realisations have resulted in many 
countries, including Ireland, trying to change their school curricula in response to the issues students 
are displaying with applying problem solving skills in mathematics upon leaving school (Soh, 2008). 
This “hiatus” between formal mathematics education and the workplace has also been acknowledged 
in research by FitzSimons and Boistrup (2017) who offer some suggestions as to how to overcome 
such issues by recontextualising the mathematics in different types of work and how the 
recontextualization could be incorporated into formal education settings so that the mathematics can 
be identified, and a context can be offered.  The approach to improving problem solving employed in 
second level education in Ireland is considered next.  

Problem Solving and Mathematics Education in Irish Second Level Schools 

Project Maths and Problem Solving 

The second level Project Maths curriculum in Ireland defines problem solving as the following: 

“Problem Solving means engaging in a task for which the solution is not immediately obvious. 
Problem solving is integral to mathematical learning. In day-to-day life and in the workplace the 
ability to problem solve is a highly advantageous skill. In the mathematics classroom problem solving 
should not be met in isolation but should permeate all aspects of the teaching and learning experience. 
Problems may concern purely mathematical matters or some applied context.” 

The description of problem solving outlined in the PM curriculum can be seen to be in line with 
Polya’s (1945) interpretation of problem solving which involves engaging with real problems by 
guessing, discovering and trying to make sense of mathematics. It has also been likened to the 
Programme for International Student Assessment (PISA) which consists of theoretical underpinnings 
focus on everyday problems that often occur when interacting for example with a device that is 
unfamiliar for the first time (OECD, 2014). This could be seen to be in contrast with the previous 
focus of the Irish second level mathematics curriculum in which problem solving was more 
commonly described as ‘an ideal of problem solving’ (McClure, 2013) where the focus is on solving 
a set of ‘problems’ using prescribed and practiced techniques (Faulkner et al., 2021). Details of the 
diagnostic test that was developed, and informed by PM, are outlined in the methodology section 
which follows. 

Methodology 
Measuring Problem Solving: The Diagnostic Test 

A diagnostic test was developed to determine students’ problem solving and procedural skills in 
mathematics on entry to adult and undergraduate education. 

Diagnostic Test Design 

Four mathematics educators from two higher education institutions in Ireland developed the paper 
based diagnostic test. The diagnostic test was designed with a focus on examining the basic 
mathematical skills of students beginning their studies who hoped to pursue degree programmes with 
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an engineering/technology focus. Several controls were put in place to ensure that the test measured 
what it had set out to. Such controls included using the second level mathematics curriculum and its 
interpretation of what constitutes problem solving skills as a guide. The initial draft of the test was 
examined critically by five mathematics education specialists from different institutions around 
Ireland and the feedback was incorporated to improve the test prior to distribution.  

Contents of the Diagnostic Test 

The diagnostic test is broken down into two sections: Procedural questions (Section A) and problem 
solving questions (Section B). Both sections consist of 11 questions in total. Each question in section 
A of the test is paired with a question in section B i.e., the paired questions require the same procedural 
skill(s) to successfully complete them with the section B questions also involving some real-world 
context. All of the section B questions were sourced from state examination papers that second level 
students take when completing their second level schooling in Ireland. It was thought that taking 
questions from the state examination papers allowed for the diagnostic test to directly mirror the 
second level curriculum’s interpretation of what constitutes problem solving (Faulkner et al., 2021). 

Data Analysis 

The Statistical Package for Social Sciences (Version 22.0) was used to analyse and interpret the 
diagnostic test data. Independent samples t-tests were used to test for statistically significant 
differences between the mean performances of participants with different demographic backgrounds. 
Chi-squared tests were used to test for statistically significant associations between the qualitative 
variables. A 5% level of significance was used for all tests and no adjustment were made for multiple 
testing. It should be noted that the aim of the research was purely quantitative in nature, i.e. to 
determine and compare students procedural and problem solving skills in mathematics, rather than a 
more in depth investigation into students approaches to completing the diagnostic test questions.   

Sample  

Within this study 87 students undertook the test. Of these students 34.5% (30) were adult students 
from the Access Foundation Programme. These adult students were enrolled on an advanced 
mathematics module with the intention of pursuing a degree programme which has a 
technology/engineering focus. The advanced mathematics module contains content that mirrors that 
completed by second level students. 65.5% (57) were first year undergraduate students enrolled in an 
engineering programme. These two groups of students were chosen for comparison in this research 
as both were currently/intending to pursue a similar undergraduate discipline (engineering/technical 
focus) and it was of interest to the authors to determine and compare their mathematical skills and 
preparedness. It was also of interest to see if the traditional students coming from second level 
mathematics education were demonstrating equally as good problem solving skills as procedural 
skills in mathematics or did the adult students perform better than the traditional students and could 
this possibly be linked to skills previously learned in the workplace. It should be noted that all the 
Access Foundation Students with the except of 1 were male.  
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Results 
Adult and engineering students were examined as one group initially and the results showed that 
students performed statistically significantly better in the section A ( = 57.2) than they did in section 
B of the test ( = 32.3) (p=0.00).  

The data was then examined by analysing how the adult students’ performance compared to the 
engineering students' performance. This analysis found that the adult students’ performed to a 
statistically significantly lower standard when compared to the engineering students in both section 
A and section B of the diagnostic test (p=0.00).  

Further analysis of the adult students found that they performed statistically significantly worse in 
section B (=18.7) of the diagnostic test when compared to section A (=43.1) (p<0.001). The same 
analysis was carried out for engineering students and found that they performed statistically 
significantly worse in section B ( =39.5) of the test when compared to section A ( = 64.6) (p <0.001).  

Discussion 
All students (adult and engineering) performed statistically significantly better in the procedural 
section of the diagnostic test (i.e., Section A) when compared to the problem solving section of the 
test (i.e., Section B). Therefore, the strengths and weaknesses of each group of students was found to 
be the same despite the adult students performing to a lower standard overall. The demographic of 
students that was most likely to perform better in all aspects of the diagnostic test were those who 
were enrolled on the engineering programme and were male and Irish. Despite this however this 
characterisation of student still performed statistically significantly worse in section B of the 
diagnostic test compared to section A. These findings highlight the apparent challenge that all student 
cohorts within this research have with applying what could be considered basic mathematical 
concepts to applied scenarios. The concepts required to answer the paired questions are the same. For 
example, Q5 in section A asks students to calculate the difference in area between a rectangle and a 
circle and the paired question in section B asks students to determine how much of a pool area 
(rectangular in shape) is taken up by a jacuzzi (circular in shape) 

It is however acknowledged that there is a possibility of some intrinsic difference in difficulty level 
between the questions in each section of the test due to the problem solving questions requiring more 
processing to successfully complete the questions. This is certainly likely to be the case when the 
adult mathematics students are considered as they have not been exposed to a second level school 
system for a long period of time and if/when they did the teaching approach would have been very 
much focussed on chalk and talk teaching methodologies with little focus on context or problem 
solving. The finding is therefore of more note when the engineering students are considered as the 
teaching approaches that they have been exposed to in second level education in recent years (i.e., 
problem solving focussed) might be expected to negate or at least reduce the additional challenge that 
the problem solving questions may present (Faulkner et al., 2021).  

When we consider the example of Q5 previously given in the context of the engineering students it 
raises questions about how traditional students are adapting to learning mathematics in second level 
education which is not solely based on procedural skills and involves some level of real world 
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thinking and contextualisation. Research has indicated that engineers are graduating with good 
knowledge of fundamental engineering science and computer literacy but little ability to apply this in 
practice (Mills and Treagust, 2003). The suggested challenges faced by traditional students in 
undergraduate mathematics who have been exposed to problem solving teaching methodologies in 
second level education should be recognised by those in adult mathematics education wishing to 
employ such teaching methodologies.  

As previously alluded to perhaps it is not as surprising that the adult learners do not perform as well 
as the traditional students predominately entering higher education directly from second level 
education. It is possible that literacy issues also play a key role in the challenge that the adult learners 
face. This has been found to be the case in related research into adult mathematics education 
(Prendergast et al., 2017). Although the anticipated challenge of literacy was considered and 
acknowledged in the development stages of Project Maths it was deemed a necessary challenge for 
those wishing to be successful in problem solving across all disciplines (Foshay & Kirkley, 2003; 
Faulkner et al., 2021). 

So, what can we learn in terms of adult mathematics education? We know that those in adult 
mathematics education display similar patterns of challenges in terms of their procedural and problem 
solving skills as compared with traditional students however to a larger degree. We also know that 
adult learners despite this common initial underperformance and categorisation of being ‘at risk’ of 
failing mathematics often improve to a large degree due largely to engagement with mathematical 
support services (Faulkner et al., 2021). The focus however for those in adult mathematics education 
is so often on remediation rather than on proactive measures to ensure best practice is in place for 
them for example via engaging in mathematics education with appropriately trained mathematics 
educationalists. A focus in adult mathematics education on problem solving skills in mathematics is 
needed for the same reasons that it is advocated and provided for in second level education. Adult 
mathematics education deserves at least the same level of teaching qualifications that those in primary 
and secondary education in Ireland have. There is a new phenomenon in educational research 
currently being examined relating to what have become known as out-of-field teachers of 
mathematics. These are teachers in second level education who are teaching mathematics but not 
suitably qualified to do so. Continuous professional development programmes are now being put in 
place to upskill such teachers (Hobbs & Törner, 2019). The norm is adult mathematics education is 
to have out-of-field teachers and no such measures have been put in place; this needs to become part 
of the national and international agenda. 

Conclusion and Recommendations 
Although initial studies into PM have indicated that students’ problem solving skills may have 
improved in recent years (Treacy & Faulkner, 2015) and that lecturers perceive students as being 
more open to engaging with unseen mathematics problems (Prendergast et al., 2017), this research 
highlights the comparatively weaker skills that those in adult mathematics education demonstrate in 
problem solving in mathematics compared to procedural skills in mathematics. This pattern of 
performance is mirrored amongst those in beginning undergraduate engineering programmes despite 
them coming directly from a second level mathematics education which has come to focus more on 
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problem solving and teaching for understanding. Acknowledgement should be given to future work 
in this area taking into account the greater conceptual challenge faced by students when completing 
the problem solving questions and a more detailed marking scheme than right/wrong should be 
therefore be considered when analysing students’ performance in this area. 

The rationale behind the changes made to second level mathematics education is research based and 
changes/improvements in students' performances on entry to higher education may take time to 
become embedded. Attention must be given however to the relatively similar challenges evidently 
faced by adult mathematics students in problem solving and the lack of provision and investment in 
their mathematics curriculum and teacher training. Such disparity has been raised in this research 
paper and should be investigated further to provide a platform for improved future provision of adult 
mathematics education. The ‘Adult numeracy: Assessment and development’ policy outlines the 
significant numeracy challenges faced internationally and makes 3 recommendations one of which 
involves “investing in the development of national capacities to measure and improve adult 
numeracy” (Gal & UNESCO, 2020, p.3). This international and recent recommendation very clearly 
aligns with the research being outlined.  
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This study examined the relationship between Access students’ psychosocial characteristics, the level 
of mathematics module (advanced, intermediate or fundamental) they chose and their progression to 
higher education. A quantitative approach was adopted for this portion of the study, which took place 
over three academic years, 2017 - 2020. Questionnaires were completed by 184 students in the Access 
programme at Technological University Dublin. Results revealed that students with higher belief in 
their mathematics ability were more likely to study advanced mathematics and more likely to progress 
to higher education. Male students were more likely to study advanced mathematics than females and 
non-Irish nationals who studied advanced mathematics had higher belief in their mathematics 
abilities than Irish nationals but were less likely to progress than their peers.  

Keywords: Access programme, psychosocial, mathematics level, self-belief, progression. 

Introduction 
Higher education has many societal and personal benefits but there are low participation rates for 
students from some sections of society, including students who are socioeconomically 
disadvantaged (Archer et al., 2005) and adults aged 25 – 64 years old (Eurostat, 2019). Access 
programmes have been established to address these inequalities by tackling the social, educational, 
and financial barriers that some students experience in accessing higher education (O’Reilly, 2008). 
To date, there has been little research on Access student progression, particularly in relation to 
mathematics. The goal of this study is to examine whether the psychosocial factors of motivation, 
personality traits, general self-efficacy (GSE) and belief about mathematics abilities (BMA) affect 
the level of mathematics module Access students choose and their progression to higher education.  

Psychosocial Factors Affecting Progression in Higher Education 
Personality traits, including extraversion, agreeableness, conscientiousness, neuroticism, and 
openness to experience (McCrae & John, 1992), play a role in determining a student’s educational 
attainment (Lenton, 2014). The personality factors of conscientiousness and openness have been 
found to affect students’ mathematics grades (Furnham et al., 2009). Lipnevich et al. (2016) contend 
that conscientiousness may be beneficial for mathematics performance because it results in persistent 
and thorough learning, while openness has been linked to deep learning. Personality traits affect a 
student’s likelihood to progress in higher education (Altman, 2017).  

Self-efficacy affects individuals’ perceptions about their abilities related to a given task (Hutchison 
et al., 2006) and their ability to learn (Schulze & Schulze, 2003). Schöber et al. (2018) found that 
self-efficacy affected mathematics achievement. According to Hall and Ponton (2005), positive 

Proceedings of CERME12 1242



 

 

experiences with mathematics increase students’ self-efficacy. Overall, research indicates that 
students with higher self-efficacy are more likely to progress (Erb & Drysfales, 2017).  

Intrinsic and extrinsic motivation have been widely studied. Intrinsically motivated individuals do 
something for the inherent satisfaction they get from a behaviour, extrinsically motivated individuals 
engage in a behaviour for the reward they gain through external control or self-regulation (Ryan & 
Deci, 2000). According to Ryan and Deci, amotivated individuals are not motivated to engage in a 
behaviour and feel they have no control over that behaviour. Some researchers contend that lower 
intrinsic motivation negatively affects student performance (Augustyniak et al., 2016) and their 
progression in education (Vallerand et al., 1997). There is a positive relationship between 
mathematics self-efficacy and students’ intrinsic motivation and progression (Skaalvik et al., 2015). 
This study examined the relationship between psychosocial factors, Access students’ mathematical 
experiences and their progression to undergraduate studies. 

Method 
Technological University Dublin (TU Dublin) offers a one-year Access programme, which provides 
an alternative route to higher education for mature students (students aged 23 years and older) and 
for young adults (students aged 22 years and under) who are socio-economically disadvantaged 
(Technological University Dublin, 2020). Participating students choose one mathematics module 
each semester at fundamental, intermediate or advanced level.  
The main study, which took place over three academic years, 2017 - 2020, adopted an explanatory, 
sequential mixed methods approach. The ethics committee at TU Dublin provided ethical approval 
for the study. During the quantitative phase of the research, Access students completed a 29-item 
questionnaire at the start of the academic year. The questionnaire included the 28-item Academic 
Motivation Scale (Vallerand et al., 1992). It also included John and Srivastava’s (1999) 44-item Big 
Five Inventory, which organizes personality traits in terms of the five dimensions of extraversion, 
agreeableness, conscientiousness, neuroticism, and openness to experiences. Schwarzer & 
Jerusalem’s (1995)10-item General Self-Efficacy Scale was included to assess students’ ability to 
deal with unusual or difficult situations. Additionally, students rated their BMA using a five-point 
Likert scale, where 1 represented ‘excellent’ and 5 represented ‘poor’.  
Progression was measured based on whether students were offered a place at a higher education 
institution or not. The data was analysed using SPSS. Mann-Whitney U tests (U) were conducted to 
compare the mean ranks of data where one variable was dichotomous, and the other variable was 
ordinal. Chi-square tests (χ2) were employed when both variables were dichotomous. Independence 
of observations was observed for all Mann-Whitney and chi-square tests.  

Results  
One hundred and eighty-four Access students completed questionnaires over the three years of the 
study. Forty-nine percent were female, 51 percent were male, 43 percent were young adults and 57 
percent were mature students. Overall, 25 percent of Access students were enrolled in fundamental 
mathematics, 64 percent in intermediate mathematics and 11 percent in advanced mathematics. A 
Mann-Whitney test revealed that students who studied advanced mathematics had significantly 
higher mean ranks for intrinsic motivation to know than their peers (U = 945.5, p = .071). 
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Additionally, students who studied intermediate mathematics had higher mean ranks for extrinsic 
motivation external than their peers (U = 2639.5, p = .033). Students who studied fundamental 
mathematics had significantly higher mean ranks for amotivation than students who studied advanced 
or intermediate mathematics (U = 1732.5, p = .002). Young adult students had a significantly higher 
mean rank for extrinsic motivation than mature students (U = 2197, p = .038). 

There was no significant difference in mean ranks for most personality traits based on the level of 
mathematics students studied. However, students who studied fundamental mathematics had a higher 
mean rank for neuroticism than their peers (U = 1613, p = .020). Additionally, young adults had a 
significantly higher mean rank for extroversion than mature students (U = 1910, p = .001). 

Fundamental mathematics students had a significantly lower mean rank for general self-efficacy 
(GSE) than students who studied intermediate or advanced mathematics (U = 3090, p = .038). 
Moreover, students who studied intermediate mathematics had a significantly higher mean rank for 
self-efficacy than their peers (U = 2732, p = .017).  Although male and female students did not differ 
in their mean ranks for GSE (U = 3409.5, p = .826), males were significantly more likely to study 
advanced mathematics than females (χ2 = 4.93, df = 1, p = .026). Additionally, non-Irish nationals 
had significantly higher mean ranks for GSE than Irish nationals (U = 3999, p = .007) and were more 
likely to study advanced mathematics or intermediate mathematics than Irish nationals (χ2 = 3.58, df 
= 1, p = .059). 

Students who studied fundamental mathematics had a significantly lower mean rank for belief about 
mathematics their abilities (BMA) than those studying intermediate or advanced mathematics (U = 
3562, p = .014), and students studying advanced mathematics had a higher mean rank for BMA than 
their peers (U = 97.6, p < .001).  Additionally, non-Irish nationals had a significantly higher mean 
rank for BMA than their Irish peers (U = 4916.5, p < .001). The findings related to psychosocial 
factors are outlined in Table 1. 

Table 1: A Comparison of Mann Whitney Mean Ranks for Psychosocial Factors by Mathematics 
Level, Age and Nationality 

 Mann Whitney Mean Ranks 

 Mathematics Level Age Nationality 

 Fundamental Intermediate  Advanced Young Adult Non-Irish 

National 

Motivation      

Intrinsic motivation to Know   Higher   

Extrinsic Motivation External  Higher    

Extrinsic Motivation Total    Higher  

Amotivation Higher     
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Personality      

Neuroticism Higher     

Extroversion    Higher  

Self-Efficacy Lower Higher   Higher 

BMA Lower    Higher 

Mathematics and Progression 
Overall, 85% of students who studied fundamental mathematics, 84% of those who studied 
intermediate mathematics and 89% of students who studied advanced mathematics progressed to 
higher education. Statistically, students studying intermediate mathematics were more likely to 
progress (χ2 = 7.57, df = 1, p = .006) than those studying fundamental or advanced mathematics.  

Moreover, mature students studying intermediate mathematics were more likely to progress than their 
young adult peers (χ2 = 8.39, df = 1, p = .004), but non-Irish nationals who studied advanced 
mathematics had lower progression rates than Irish nationals (χ2 = 2.92, df = 1, p = .087).  

There was no statistically significant difference in progression based on students’ mean ranks for 
intrinsic motivation total (U = 2647.5, p = .552) or extrinsic motivation total (U = 2363, p = .969). 
Moreover, students’ mean ranks for amotivation were not significantly different depending on 
whether they progressed or not (U = 3076.5, p = .329). 

Overall, there was no significant difference in mean ranks for personality traits based on whether 
Access students progressed or not – extraversion (U = 2521, p = .909), agreeableness (U = 2245, p = 
.872), conscientiousness (U = 1978, p = .140), neuroticism (U = 2681, p = .856) or openness (U = 
2149, p = .114). 

Additionally, there was no statistically significant difference in progression based on Access students’ 
mean rank for GSE (U = 2815.5, p = .425). However, students who progressed had significantly 
higher mean ranks for BMA than those who did not progress (U = 2807.5, p = .022).  

Discussion 
This study aimed to determine whether there was a relationship between the psychosocial factors of 
motivation, personality traits, GSE and BMA and the level of mathematics Access students study as 
well as their progression to higher education. The findings revealed a relationship between all four 
psychosocial factors and the level of mathematics module Access students studied.  

Access students who studied fundamental mathematics had significantly higher mean ranks for 
amotivation and neuroticism and significantly lower mean ranks for GSE and BMA than their peers. 
Prior performance has been found to be a predictor of students’ self‐efficacy in mathematics (Lopez 
and Lent, 1992), while students with higher self-belief in their ability to succeed in higher education 
mathematics classes have better mathematical skills (Hall and Panton, 2005). Access students with 
lower GSE and BMA may have weaker mathematics skills or their past performance in mathematics 
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may have affected their BMA as indicated by Lopez and Lent (1992). Additionally, research indicates 
that neuroticism creates negative emotions, results in failure to progress and results in a negative 
reaction to the fear of failure (Barthelemy & Lounsbury, 2009). Fundamental mathematics students’ 
lower mean ranks for GSE and BMA, in conjunction with their higher neuroticism scores, may have 
resulted in amotivation, as individuals who are not motivated to engage in a behaviour, may feel they 
have no control over that behaviour (Ryan & Deci, 2000).  

Alternatively, advanced mathematics students had higher mean ranks for GSE, BMA and intrinsic 
motivation to know, which is regulated by the pleasure of learning something. Mueller et al. (2011) 
contended that intrinsic motivation increases self-efficacy and results in the development of more 
favourable tendencies towards learning mathematics, which may have influenced students’ decision 
to choose the advanced mathematics module in the Access programme.  

Although male and female student had similar mean ranks for GSE and BMA, females were less 
likely to study advanced mathematics. This may be because mathematics is seen as masculine 
(Mendick, 2005) and because males are more likely to choose mathematics intensive careers (Law, 
2018). Access students choose the level of their mathematics module based on the higher education 
course they wish to pursue, and male Access students were more likely to aspire to study mathematics 
intensive fields such as engineering, physics and computer science than female Access students. 

Access students with higher BMA scores had higher progression rates than their peers. Students 
generally have a good awareness of their academic abilities (Mattern & Shaw, 2010; Reason, 2003). 
Mattern and Shaw (2010) also found that students with higher BMA had higher GPAs and were more 
likely to progress from first to second year of higher education.  

Although there were no significant differences in progression in relation to personality traits, 
motivation or GSE, mature students studying intermediate mathematics had higher progression rates 
than young adults. Young adult students had higher mean rank scores for extrinsic motivation than 
mature students. Research indicates that students thrive in an educational setting where they are more 
intrinsically motivated (Ryan & Deci, 2000), which may explain the lower progression rates for 
young adults studying intermediate mathematics. Moreover, young adult Access students had 
significantly higher extroversion scores than mature students, and extroversion is negatively related 
to educational attainment (van Eijck & DeGraaf, 2004). 

Non-Irish nationals studying advanced mathematics were significantly less likely to progress than 
their peers although they had higher mean ranks for BMA and GSE. Non-Irish nationals, who were 
non-native English speakers, may have failed to progress because they experienced difficulties in 
modules that required advanced English language skills. Higher education students’ academic 
achievement can be affected by English competency (Harris & Ní Chonaill, 2016). 

Limitations and Recommendations 
The sample size was relatively small, although it represented 67 percent of participants in the Access 
programme over the three years of the study. Additionally, the General Self-efficacy Scale was 
employed in the questionnaire, but a college self-efficacy scale may have been more pertinent. Asking 
participants to complete the AMS and the GSE at the end of the Access programme as well as at the 
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start would have indicated whether Access students’ self-efficacy, BMA or intrinsic motivation 
increased during their studies.  

Future research should examine more closely why Access students choose the level of mathematics 
modules that they do, their previous mathematics performance and the reasons why non-Irish 
nationals studying advanced mathematics are less likely to progress than their Irish peers. This data 
would help to determine whether the relationships identified in the current study are causal 
relationships or whether they are affected by other confounding factors. 

Conclusion 
Although there is no difference in progression, overall, depending on the psychosocial factors of 
motivation, personality and GSE, these factors may affect the level of mathematics modules that 
students choose to study. This in turn may affect the higher education courses students aspire to, as 
mathematics intensive courses may require advanced mathematics. Therefore, it is important that 
students are made aware of the opportunities that advanced mathematics can afford them. 

Given that students with higher BMA had higher progression rates, overall, Access students should 
be encouraged to improve their BMA and their GSE by following Heslin and Kelhe’s (2006) 
recommendations of engaging students in enactive self-mastery, role-modelling and verbal 
persuasion.  
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Adult numeracy – a paradigm shift? 
David Kaye 

Independent researcher, London, United Kingdom; david.m.kaye@btopenworld.com   

I present the ground-breaking theories about scientific revolutions by Thomas Kuhn and his 
development of those theories, particularly the concepts of incommensurability and lexical change. I 
review the long-standing theoretical discussion about adult numeracy and the extensive attempts to 
reach some agreement upon which to build a research domain alongside mathematics education 
research. I propose that Kuhn’s conceptual analysis can be applied to the emergence of adult 
numeracy out of the field of mathematics education research to form a new paradigm of education 
research. 

Keywords: Numeracy, paradigm, incommensurability. 

Introduction 
I will summarise the development of Thomas Kuhn’s theory in the 30 years after the publication of 
The Structure of Scientific Revolutions, (1962) particularly in the works published as The road since 
structure (Kuhn, et al., 2002) with reference to fluid lexicons and incommensurability. I will use these 
philosophical concepts to critique the repeated attempts to explain and define adult numeracy, and 
the many contexts in which mathematics is found wanting in describing an adults’ numerate 
accomplishments. 

My main proposal is to apply Kuhn’s analysis of a scientific revolution to the emergence of adult 
numeracy in the field of mathematics education research. Subsequently can I use the resultant 
research process to establish adult numeracy as a discipline in its own right and initiate further 
research along similar lines? The hope is that such research can produce a body of knowledge that 
will transform how the majority of the adult population views numeracy education and practice. 

Kuhn, scientific revolution, paradigm change 
The concept of the paradigm and paradigm change is central to Kuhn’s argument. Unfortunately, the 
term ‘paradigm’ has been much over-used (see for example Rogers, 2002, p. 487) and so it is worth 
looking at what Kuhn said.  

The transition from a paradigm in crisis to a new one from which a new tradition of normal science 
can emerge is far from a cumulative process, one achieved by an articulation or extension of the 
old paradigm. Rather it is a reconstruction of the field from new fundamentals, a reconstruction 
that changes some of the field’s most elementary theoretical generalizations as well as many of its 
paradigm methods and applications. (Kuhn, 1962, p. 84) 

This makes us realize that that nature of the change involved is deep, significant and conceptually 
challenging. In proposing the theory Kuhn sees a very significant role for the growing dominance of 
a new paradigm making changes to the direction of future research. He says “But paradigm debates 
are not really about relative problem-solving ability . . . Instead, the issue is which paradigm should 
in the future guide research on problems” (Kuhn et al., 2002, p. 156). 
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Revisit Structure –lexicon – incommensurability 

In his later work, revisiting the theory of scientific revolutions and responding to the very many 
criticisms that were made of ‘Structure’ Kuhn puts greater emphasis on the use of language and the 
significance of a research community sharing ‘a core’. The introduction of two additional concepts, 
lexical change and incommensurability, make the theory even more applicable to the emergence of 
adult numeracy as a new research field, as I will show. 

People who share a core, like those who share a lexical structure, can understand each other, 
communicate about their differences, and so on. If on the other hand, core or lexical structures 
differ, then what appears to be disagreement about fact (which kind does a particular term belong 
to?) proves to be incomprehension (the two are using the same name for different kinds). The 
would-be communicants have encountered incommensurability, and communication breaks down 
in an especially frustrating way. . .. What the participants in communication fail to share is not so 
much belief as a common culture. (Kuhn et al., 2002, p. 239-240) 

Kuhn later clarifies what he means by a lexicon. 

A lexicon or lexical structure is the long-term product of tribal experience in the natural and social 
worlds, but its logical status, like that of word meanings in general, is that of convention. Each 
lexicon makes possible a corresponding form of life within which the truth or falsity of 
propositions may be both claimed and rationally justified, but the justification of lexicons or of 
lexical change can only be pragmatic. (Kuhn et al., 2002, p. 244) 

This theoretical approach begins to give us a vocabulary and philosophical approach to explore and 
explain the gulf that has opened up between adult numeracy education researchers and practitioners 
and others in the mathematics education world. 

Revisiting numeracy – again 
I have been involved in examining how numeracy has been used and defined in the particular context 
of Adults Learning Mathematics for twenty-five years and give for reference two conference 
proceedings. (Kaye, 2003 and Kaye, 2015) 

This is continuing a discussion that takes place in every conference about teaching adults' numeracy 
(and mathematics). Making a strong connection with the tradition we are making in CERME here is 
a view of the situation by Kees Hoogland in his introduction to the papers presented at CERME 11. 
This both gives an overview and identifies some of the problems. 

Although there is a broad acknowledgment that an array of psychological and sociological factors 
are important in (the results of) adult education, there is not yet a well-researched set of examples 
how in practice this can be taken into account in a more systematic and effective way. The practice 
of adult numeracy education is still a plethora of different content descriptions and goals that vary 
from very back-to-the-basics to very sophisticated higher-order skills. . .. The twin goals of trying 
to establish a firm definition of numeracy which acknowledges the multifaceted nature of adult’s 
mathematical practices while identifying consistent teaching approaches should be of concern to 
the global AME community. (Hoogland et al., 2019, pp. 1298/9) 
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Two recent summaries published in 2015 and 2020 in the ZDM mathematical journal review recent 
research into numeracy. In the introductory paper by Geiger et al (2015) various statements about 
what numeracy is (or is not) are presented. 

Although what is meant by numeracy varies between countries, it is now broadly accepted that 
being numerate extends beyond the mastery of basic arithmetic skills to how to connect the 
mathematics learnt in formal situations, such as school classrooms, to real world problems. (p. 
531) 

While there is an increasing focus on numeracy internationally, there is not yet a widely accepted 
definition for this construct or of the fundamental characteristics that describe this idea. Thus, the 
meaning of numeracy still varies widely across international borders . . . (p. 532) 

This is followed by a section headed ‘Facets of numeracy’ 

The intrinsic usefulness of mathematics means that it provides a way of reasoning about, and 
functioning within, different societies with diverse social norms, values, cultures, and traditions. 
Unsurprisingly, this gives rise to related but distinct ways of conceptualising and identifying 
numeracy practices. (p. 535) 

We see that numeracy is described as both an ‘idea’ and a ‘construct’; we see repeatedly stated that 
there is no agreement on what ‘numeracy’ means; and we find that ‘mathematics’ creeps into the 
descriptions, without being defined. 

Another useful summary is the survey paper by Gal, Grotlüschen, Tout and Kaiser (2020). The title 
makes clear it has a focus on adults ‘Numeracy, adult education, and vulnerable adults: a critical view 
of a neglected field’ and provides its own definition of numeracy. 

Adult numeracy is a construct related to the ways people cope with the many mathematical, 
quantitative, and statistical demands of adult life. Some definitions of numeracy emphasize basic 
computational skills or focus on emergent numeracy at a young age. In this paper, however, 
numeracy is used broadly to encompass a set of diverse skills, knowledge-bases, dispositions and 
affect, communication abilities, and practices and behaviors, that range from simple to very 
advanced, relate to mathematics and statistics, and that individuals need or use in order to engage 
and manage diverse life situations and tasks in the adult world. (Gal et al., 2020, p. 378) 

Many similar definitions have been given over the years. Other researchers have looked at 
mathematics in other contexts and chosen alternatives to ‘adult numeracy’ such as ethnomathematics 
and indigenous mathematics These fields have seen the debates around ‘numeracy’ as irrelevant (or 
a distraction) and have sought in other ways, and for other purposes, to redefine ‘mathematics’ and 
‘mathematics education’. The use of these terms is part of the lexical change I am drawing attention 
to. 

Ethnomathematics is summarized in this introduction to the topic group on ethnomathematics at 
ICME 13 (2016) 

The application of ethnomathematical approaches allows us the opportunity to examine local 
knowledge systems and give insight into forms of mathematics used in diverse contexts and 
cultural groups. The pedagogical approach that connects this diversity of mathematics is best 
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represented by a process of translation and elaboration of the problems and questions taken from 
daily phenomena. 

In addition, I also wish to reference the works of Gelsa Knjnick (2021) with the Landless Movement 
in Brazil and that of Marta Civil (2021) with parents from mainly Mexican origin in the USA. 

These studies and investigations are often left out of the discussion around adult numeracy. They 
focus on presenting and defending the mathematics within particular cultures, which along with all 
other social, political, and cultural traditions and values have been suppressed. These need to be 
included as they too are trying to redefine mathematics education. 

The mathematics of indigenous people needs to be noted too. One particularly powerful article is 
‘Mathematix: ‘Towards a way of being’ by Rochelle Gutierrez (2019) which presents the case of the 
mathematics (mathematx) of the indigenous peoples of North America.  

In this paper, I seek to analyze some of the specific ways that Western mathematics in US schools 
operates as a form of dispossession and how mathematx addresses the need for Indigenous people 
to continue to remake themselves while interacting with non-Indigenous people.   (p. 67)  

Gutierrez later gives an example in which the relationship to, and naming of, geometric shapes is very 
different to the Western tradition. 

For example, the word for square literally means “it squares itself” which is an action performed 
rather than an enduring property of the object.  Ardoch Algonquin First Nation member and 
Anishinaabemowin teacher Marjolaine LaPointe recounts, I was thinking of this word, kakadeyaa, 
which means a square, but it's not a noun.  It’s a verb which means it’s squaring itself.  And 
kakadeyaa has this k sound, which is a cutting, a grouping, a separating, and when we break the 
language down into those sound-based parts, we start thinking in three dimensions as opposed to 
binaries of “this is this and this is that” and we see relationships between many things.  (pp. 73-
74) 

There are numerous other examples drawing on indigenous numeracy (or ‘mathematics’) making a 
case to have a much wider understanding of what ‘mathematics’ might be. For example, the work of 
Linda Furuto (2018) on the traditions of Hawai’I and the Pacific Also the work of Marcia Ascher 
(2005), which deals with similar indigenous concepts outside of the education sector. And not 
forgetting the trail-blazing publication by Claudia Zaslavsky’s ‘Africa Counts’ (1979) originally 
published in 1973. 

What about mathematics? 
As I have shown in this paper the concept, principle, practice and justification for ‘numeracy’ has 
been repeated many, many times. However, whilst ‘numeracy’ is explained in some way as doing 
something with mathematical concepts (or skills) ‘mathematics’ is very rarely defined. As Coben 
(2006, p. 21) has said “The nature of the relationship between numeracy and mathematics is elusive”. 
Coben (2006, p. 21) noted that “’Mathematics’ is taken to mean mathematics learned and taught at 
any level, including the most basic”. Anecdotally, I re-call having a discussion about this with a group 
of trainee adult numeracy teachers and one contribution was (as I remember it) “Everyone knows 
what mathematics is – there is a degree in it”. I have been thinking about this ever since and have 
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previously given examples of statements about mathematics, alongside those of numeracy, in a guide 
to teachers of adult numeracy (Kaye, 2013). 

Numeracy, incommensurability and lexical change 
I now return to the ideas of incommensurability and lexical change to argue that these need to be 
applied to using numeracy in the context of both adult education and people’s lives. As has been 
shown there is a very strong research tradition that is comfortable with recognizing the importance of 
numeracy in adult education and many of those studies have arisen because of concerns about ‘poor 
numeracy’ in the adult population (O’Donoghue, 2000, p. 103). In fact, these concerns go back for 
about 60 years. All reviews of using numeracy speak of the Cockroft report published in 1982, which 
in turn refers back to the Crowther Report published in 1959. Within paragraphs 35 to 39 of the 
Cockcroft report there is a discussion about the scope and range of ‘numeracy’. As is the case in many 
official and research documents (on mathematics education) the target group is school children. 
However, as I have argued elsewhere (Kaye, 2018, pp. 11-37) once societal, cultural and political 
aspects of life are under consideration this is far more relevant to adult or lifelong learning, than 
school mathematics. What is important is that the argument is still the same between a ‘small 
numeracy’ or a ‘big numeracy’. In the words of the Cockroft report (1982) (emphasis in the original 
report): 

We would wish the word ‘numerate’ to imply the possession of two attributes. The first of these is 
an ‘at-homeness with numbers and an ability to make use of mathematical skills . . . The second 
is an ability to have some appreciation and understanding of information which is presented in 
mathematical terms, for instance in graphs, charts or tables or by reference to percentage increase 
or decrease. . . . Our concern is that those who set out to make their pupils ‘numerate’ should pay 
attention to the wider aspects of numeracy and not be content merely to develop the skill of 
computation. (Cockcroft, 1982, para. 39 p. 11) 

The same discussion has been taking place ever since.  

If the (adult) numeracy research community has been trying to fit numeracy practices into 
mathematics education and cannot find a ‘good fit’ then I think we have a conceptual problem of 
incommensurability. With a broad view of adult numeracy encompassing people’s lives, including 
their work and cultural experiences, coming from every educational, class and ethnic background 
there is no common lexicon with a mathematics education built on the foundations of pure 
mathematics finding truth through logic and proof. 

A new paradigm 
There are indications that some researchers over the last twenty years have become aware of the need 
to question the current research domains and look for developments that establish what I consider is 
a new research paradigm. 

In Jablonka’s (2003, p. 87) section on ‘Mathematical literacy for environmental awareness’, a 
discussion about the fundamental nature of mathematical knowledge is introduced. It concludes 
“Consequently it is argued that mathematical literacy involves an attempt at changing the perception 
of mathematics towards a more human view in the hope that this may eventually even lead to the 
development of new forms of mathematics”. 
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Coben (2006) published the article ‘What is specific about research in adult numeracy and 
mathematics education? She introduced a ‘professional knowledge domain’ and expressed her view 
of the current state of research. 

Research in adult numeracy and mathematics teaching and learning is still in the exploratory phase 
of development. There is much conceptual uncertainty, manifested in shifting relationships 
between numeracy and mathematics and between numeracy and literacy, and reflecting similarly 
shifting relationships between these areas in educational practice. (Coben, 2006, p. 29) 

In a later work on numeracy (and mathematical literacy) curricula Jablonka (2015) expressed a great 
deal of concern about the nature of assessment items used to measure adults’ levels of numeracy. 
Jablonka critiques how mathematics is contextualisesd in the numeracy/mathematical literacy 
assessments. 

The incorporation of N/ML activities into mathematics curricula that specify mathematical 
knowledge in terms of generalisation and specialisation of mathematical meanings entails a 
recontextualisation that brings about a shift of criteria for what counts as an accomplishment of a 
task. This needs to be recognised in any attempt of inserting N/ ML activities into a mathematics 
curriculum (Jablonka, 2015, p. 606/7) 

The reference to N/ML is to Numeracy/Mathematical Literacy and the italics is in the original. This 
again shows that trying to talk about adult numeracy in terms of ‘mathematical meaning’ brings about 
considerable confusion, most of which arises from ‘context’ in its broadest sense. In some ways it is 
not surprising as everything we have looked at so far emphasises that adult numeracy and numeracy 
activities and practices contain or are defined by ‘context’. Mathematics and traditional ‘mathematics 
education’ is considered context free. They are inconmenesurable as previously discussed. 

Conclusion 
This report presents a theoretical approach to research into adult numeracy education and practice. It 
uses the philosophical approach of Thomas Kuhn of the paradigm change, first described in the 
Structure of the Scientific Revolution (published in 1962) and subsequently developed over the next 
30 years. The introduction of concepts like incommensurability and lexicon fluidity allowed this 
powerful analytical tool to be applied to the ongoing debate about adult numeracy. Combining this 
theoretical approach with a well-informed account of defining adult numeracy I have made the claim 
that adult numeracy research represents a paradigm change in the context of mathematical education 
research. There have been repeated attempts to explain and explore adult numeracy with the 
incommensurable lexicon of pure mathematics and its related educational processes, which have 
failed. 

As Kuhn (2002, pp. 97-99) himself says this can only become really apparent if future research 
recognises the lexical divergence and with more and more researchers (and practitioners) using the 
new taxonomy, a new branch of education research evolves as does a new species through Darwinian 
evolution. A new habitat is defined where adult numeracy can grow freely. 
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Despite the clear and obvious need for adults to be proficient in numeracy, international studies 
suggest that many adults continue to struggle in this area. One of the main challenges continues to 
be the availability and quality of adult numeracy education. Research has highlighted an unmet 
demand for professional development in this area with many numeracy practitioners looking for 
opportunities to further develop their practice. Moreover, practitioners have expressed a desire for 
networking opportunities with colleagues to discuss and share their experiences. Thus, this research 
aims to establish a series of online ‘Numeracy-Meets’ for adult numeracy practitioners. These 
‘Meets’ will be an organised but informal community of practice for practitioners to share pedagogy, 
practical innovations, and personal insights into teaching adult numeracy. 

Keywords: Adult numeracy practitioners, needs analysis, professional development model. 

Background to the Research 
The development of a numerate society is an international and national priority in education. 
Governments, policymakers, and educators around the world have stated that numeracy is a capability 
that everyone needs to possess to meet the demands of everyday life (United Nations Sustainable 
Development Goals [UNSDG], https://sdgs.un.org/2030agenda). Numeracy skills are critically 
important for the adult population to allow individuals to meaningfully engage in society; to earn a 
good wage; and to protect their physical and mental wellbeing (Carpentieri, Litster, & Frumkin, 2010; 
Parsons & Bynner, 2005). Research shows that adults with higher competency in literacy, numeracy 
and problem solving in today’s world tend to have better outcomes in attaining a job than their less-
proficient peers (OECD, 2019). On the other hand, low numeracy levels amongst adults can 
contribute to intergenerational cycles of inequality and disadvantage in families (Carpentieri et al., 
2013). For example, research has shown that adults who struggle with numeracy are more likely than 
others to have lower incomes, have trouble finding employment, and suffer from poorer physical and 
mental health (Carpentieri et al., 2010; Parsons & Bynner, 2005). 
Thus, despite the clear and obvious need for adults to be proficient in numeracy, international studies 
suggest that many adults struggle in this area. In the UK, a study conducted by National Numeracy 
(2019) found that 56% of adults displayed numeracy skills which were the equivalent of that expected 
of a primary school child, while only a quarter of the adult population displayed levels of proficiency 
in the area of numeracy at or above the level of that expected of a 16-year-old. In addition to reports 
such as this, the Programme for the International Assessment of Adult Competencies [PIAAC] has 
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also been used regularly by Governments and policy makers worldwide to determine adults’ level of 
proficiency in the area of numeracy. This international assessment measures adults’ skills and 
competencies in a number of different areas, including numeracy, and categorises their skills into one 
of six proficiency levels. When Ireland took part in PIAAC (2012), it revealed that over one quarter 
(25.3%) of adults in Ireland scored at or below Level 1 on the numeracy scale (OECD, 2013). This 
score ranked Ireland 19th out of 24 participating countries and suggested that 754,000 Irish people 
struggle with everyday maths and may be unable to do a simple maths calculation such as subtraction 
(NALA, 2017). In 2015, NALA undertook another analysis of the PIAAC data, this time focusing on 
the themes of skills in the workplace and social wellbeing. When it came to numeracy, the main 
findings showed that: 

- Over half (60%) of the sample with numeracy at level 1 or lower were women. 
- The average age of the respondents with level 1 or lower numeracy was 43 years.  
- Almost half (49%) of the sample with level 1 or lower numeracy had lower secondary education or 

less. 
- Almost one third (31%) of the sample with level 1 or lower numeracy had had no paid work 

in the last five years. 
(NALA, 2017, pp. 15-16)  

The most recent PIAAC study shows that, on average, across all 28 OECD counties surveyed, 22.7% 
of adults are performing at or below Level 1 (OECD, 2016). In essence, these adults are not capable 
of going beyond one-step processes in the area of numeracy nor are they capable of dealing with 
problem scenarios where the numeracy component is not wholly explicit.  

In addition to the aforementioned low levels of proficiency in the area of numeracy, research also 
indicates that many adults also hold negative attitudes towards the domain. According to the work of 
Breen (2003) and Southwood (2011) fear is the emotion often reported by adults when confronted 
with numeracy tasks and it has a negative impact on their willingness to engage with numeracy and 
on their performance in the domain. Mathematics anxiety has been defined by Richardson and Suinn 
(1972) as “feelings of tension …that interfere with the manipulation of numbers and the solving of 
mathematical problems in a wide variety of ordinary life and academic situations” (p. 571). While 
Martinez and Martinez (1996) determine it to be a construct with multiple causes, many link its 
origins to negative classroom experiences from the past. Such experiences may include the use of 
traditional teaching methodologies, where mathematics involves the memorisation of formulas, and 
the following of rules and procedures (Idris, 2006; Prendergast et al., 2014). While there have been 
many changes to the teaching and learning of mainstream mathematics in recent years, Carpentieri et 
al. (2010) determine that in numeracy teaching it is sometimes easier to quantify “bad practice” than 
to define “good practice”. According to Swain (2005), “bad” practice involves the teacher using a 
series of procedures, where the students learn by rote and without understanding. No connections are 
made to other areas of numeracy. With this in mind, and in line with the recommendations of Goos 
et al. (2021), there is much work to be done in relation to facilitating effective continuing professional 
development (CPD) for adult numeracy practitioners to help improve their practice. Effective and 
sustained provision is of huge importance, particularly for those practitioners who may be working 
in isolation in small centres and also those practitioners who may not have a background in the area. 
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CPD is also essential for bringing about the pedagogical transformation and educational culture 
change which is required for the effective implementation of innovative approaches (Bray & 
Tangney, 2017).  

The Irish Context 
In Ireland, adult numeracy provision is provided by the Education and Training Boards (ETBs) 
through their local adult literacy service. Each literacy service is organised by an adult literacy 
organiser (ALO), and numeracy tutors provide tuition on a one-to-one or group basis.  

In addition to numeracy, the literacy service offers a range of programmes that include family 
learning, English to Speakers of Other Languages (ESOL), and workplace basic education. Goos et 
al. (2021) found that many adults are reluctant to admit their numeracy learning needs, and instead 
approach an ETB looking for courses in areas other than numeracy. However, once these adult 
participants develop confidence and comfort in the learning environment of the ETB, tutors and ETB 
staff are alert to opportunities for identifying their numeracy learning needs and directing them into 
integrated courses with a numeracy focus. The vast majority of adult learners engage in ‘mainstream’ 
tuition which consists of either one-to-one or group tuition, typically for two to four hours a week 
during the academic year.  

Adult literacy services across the country design and deliver a wide range of programmes to meet the 
needs of adult learners. Some are accredited at levels 1 – 5 on the National Framework of 
Qualifications; others are non-accredited. The National Framework of Qualifications is a 10-level 
framework of standards for accreditation purposes. Levels 1 – 4 are of most relevance to those with 
basic skills needs and provide an opportunity for certification – often for the first time. Tuition is also 
available in a number of other education settings including community education, Youthreach, 
Community Training Centres, National Learning Network, probation projects, disability services and 
special schools 

Research carried out by NALA (2013) found that over 60% of adult numeracy tutors reported that 
they did not have enough training in teaching numeracy to adults, and 15% reported that they had no 
training at all. More recently Goos et al. (2021) reported that adult numeracy provision in Ireland is 
predominantly dependent on part-time numeracy tutors. Only three ETBs had full-time staff members 
involved in adult numeracy. NALA (2015) developed a framework for meeting the professional 
development needs of tutors of adult numeracy in the Irish Further Education and Training sector. 
This framework recognises that tutors are also adult learners in the context of professional 
development. It recommends that professional development should be underpinned by a broad and 
dynamic view of numeracy that is internationally recognised. The framework also identifies 
important qualities and knowledge that adult numeracy tutors need to possess, including excellent 
understanding of elementary mathematics; digital literacy skills; and a view of mathematics as part 
of everyday life. Goos et al. (2021) recommended that ETBs should consider ways of supporting 
adult numeracy tutors to develop these qualities, and of making such opportunities accessible to tutors 
while avoiding costs to tutors in terms of time and financial commitment 
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The Study 
It is imperative that if we are to meet the literacy and numeracy targets set out by UNSDG 
(https://sdgs.un.org/2030agenda), we must address the teaching of numeracy in adult education. This 
proposal seeks to address Goos et al.’s (2021) recommendation and explore ways of supporting adult 
numeracy practitioners. In doing so, it aims to work with the National Adult Literacy Agency (NALA) 
to help practitioners around Ireland in developing their skills in the teaching of numeracy to adult 
learners. In addition to this, another aim of this project is to create a network of expertise between 
partners in academia and NALA to support practitioners in fostering a positive and engaging 
environment for teaching numeracy within the adult education spectrum. NALA is an independent 
charity committed to making sure people with literacy and numeracy difficulties in Ireland can fully 
take part in society and have access to learning opportunities that meet their needs. They have a long 
track record in the provision of professional development opportunities for adult numeracy 
practitioners in Ireland and the researchers felt that the organisation’s knowledge and networks in the 
area would be a very welcome addition to the project team. 

Thus, this study aims to bring together expertise in the field of numeracy, teacher education, adult 
numeracy education and those delivering courses to adults enrolled in numeracy development 
programmes. 

There are two main objectives to the research, namely to: 
 Investigate the professional development and resource needs of adult numeracy practitioners 

in Ireland. 
 Design, implement, and evaluate a professional development and networking model that 

addresses some of these needs. 

Theoretical Framework – The Numeracy-Meet Model 
We have termed the proposed professional development and networking model as a series of 
Numeracy-Meets. These are based on the TeachMeet model which was developed in Scotland in 
2006 and mainly involved primary and secondary school teachers focusing on teaching strategies and 
classroom practices. According to Amond et al. (2018) a TeachMeet is “an event held after-hours 
between teachers to share practice and ideas, making short presentations and hosting conversations 
in a convivial and playful atmosphere.” Bennett (2012) notes that TeachMeets usually last a couple 
of hours and are focused on teachers sharing ideas with one another based the things that they’ve used 
and found effective in their teaching. While the Meets take an informal structure, they do require 
some sort of facilitation to encourage participation and arrange the running order.  

Although there is currently a dearth of research in this area, TeachMeets fulfil needs for CPD and 
communities of practice (CoP) (Amond et al., 2018; Amond et al., 2020). From an adult numeracy 
practitioner perspective, the TeachMeet model can meet many of the components of NALA’s (2015) 
framework for developing the CPD needs of adult numeracy tutors. For example, the use of the 
TeachMeet model is accessible in terms to time and cost and can focus on understanding of 
elementary mathematics and viewing mathematics as part of everyday life. Thus, this study will adapt 
the TeachMeet model to suit the needs of adult numeracy practitioners in Ireland. It is proposed that 
each Numeracy-Meet will be structured around a theme, thereby allowing attendees to focus on one 
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aspect of the broader concerns. In line with Charles (2021, p.3), our Numeracy-Meet model will be 
developed with the following goals: 

- Create a means of communication around pedagogy 
- Provide a forum for sharing of expertise and insights 
- Create a pool of instructional resources and strategies 
- Gain input in steering instruction and assessment 
- Foster teamwork and enable networking 

Proposed Methodology 
There will be four stages to the study: 

 Stage 1: Preplanning which includes the design of a research instrument for an online scoping 
survey in which practitioners can outline the types of professional development and resources 
necessary to improve their own teaching of numeracy. The design of this instrument is s 
currently underway, and it is anticipated that there will be three sections:  

o Section A will focus on practitioners understanding of numeracy and issues they 
identify around the teaching and learning of adult numeracy in Ireland. 

o Section B will involve a needs analysis in which practitioners can outline the types of 
professional development and resources necessary to improve their own teaching of 
numeracy. 

o Section C will seek to determine practitioners’ perspectives on CoP and to ascertain 
any prior experience they have of engaging in such CoP and other CPD opportunities. 

The survey will be piloted with a group of five numeracy practitioners who will be invited to 
participate on the basis of the expertise they could bring to the research and the contemporary 
experiences they have in similar peer groups to the research participants. 

 

 Stage 2: Needs Analysis to Guide the Design and Implementation of the Numeracy-Meet 
Model (January - February 2022). The research instrument will be circulated online through 
social media and existing networks (including a NALA mailing list of adult numeracy 
practitioners around Ireland who have signed up to be kept informed of their CPD offerings) 
to a sample of numeracy practitioners using a snowball sampling method. It is difficult to 
quantify the number of numeracy practitioners nationally and so a response rate will be 
difficult to quantify. The data gathered will provide an evidence base around the specific 
needs of adult numeracy practitioners and will guide the design and implementation of the 
Numeracy-Meet model.  
 

 Stage 3: Implementation of six Numeracy-Meets (February - May 2022)  
It is anticipated that here will be six Numeracy-Meets hosted between January and June 2022 
(one Numeracy-Meet per month). Potential areas of focus for each Numeracy-Meet will be 
guided by existing research and by the data from Stage 2 but a sample programme may 
include: 

1. Introduction to numeracy 
2. Family numeracy 
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3. Financial numeracy 
4. Numeracy for health 
5. Numeracy in a digital world 
6. Overcoming mathematics anxiety 

Each Numeracy-Meet will have a similar structure, with the exception of the Introductory 
Meet. It is envisaged that each Meet will be facilitated by an expert in mathematics/numeracy 
education who will open the Meet and share some ideas and resources about teaching a 
particular aspect of numeracy. Following this, the Meet will then involve active participation 
from adult numeracy practitioners who are in attendance. These practitioners will have 
volunteered to share their expertise and insights in advance of the Meet. Their involvement 
may see them sharing a resource that they found worked well or a teaching strategy that they 
found beneficial. Any lesson plans or resources discussed in the Meet will be collated and 
packaged by the project team and shared with all participants. As such, a folder of resources 
and plans would accompany each Numeracy-Meet. The Meet will conclude with participants 
completing out a brief online evaluation. 

 
 Stage 4: Evaluation of Numeracy-Meets (February - June 2022) 

In parallel with Stage 3, Stage 4 will focus on the evaluation of the Numeracy-Meets. This 
evaluation will adopt a mixed methods research approach and as such will yield both 
qualitative and quantitative data. As mentioned, on completion of each of the six Numeracy 
Meets, participating practitioners will be asked to complete a brief online evaluation. This 
evaluation will allow practitioners to respond to the material shared during the Meet, outline 
what they feel they gained from the Meet and offer suggestions for future Meets. All 
evaluations will be anonymous to encourage participants to be honest in their responses and 
the project team will use the feedback to shape future Meets and to inform the overall 
evaluation of the project. Furthermore, once all six Numeracy-Meets have taken place, 
numeracy practitioners who attended two or more of these events will be invited to participate 
in a focus group which will be facilitated by the project team. The focus group will be used 
to ascertain practitioners’ insights into their perceived effectiveness of the project and the 
future sustainability of such a community of practice among numeracy practitioners. 

Conclusion 
As recommended by Goos et al. (2021), professional development for adult numeracy practitioners 
needs to be widely promoted and accessible and involve practitioners in sharing their practice as well 
as learning new teaching approaches. It should be coordinated with the aim of establishing CoP of 
adult numeracy tutors while raising the profile of adult numeracy provision. The Numeracy-Meet 
model proposed in this study will specifically address this recommendation and offer a structure to 
CPD activities which are informal and led by adult numeracy practitioners. It is also anticipated that 
it will create a network of expertise between partners in academia and NALA to support practitioners 
in fostering a positive and engaging environment for teaching numeracy within the adult education 
spectrum in Ireland. 
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Introduction
The work of the Thematic Working Group 8 (TWG08) “Affect and the teaching and learning of 
mathematics” started with a revision of the call for papers in 2019. The call for papers included 
theoretical, methodological and empirical fields of research on affective constructs for students and 
teachers. Because of the variety of affective constructs, we could point out in the call only few 
examples of affective constructs in the area of beliefs, attitudes, emotions and motivation. Spreading 
of the COVID pandemic all over the world affected our preparation for the CERME 12 conference, 
which was moved from February 2021 to February 2022. In order to make the communication on 
affect possible, we followed the call of the program committee to offer a short virtual meeting on 
affect in the framework of the virtual CERME in 2021. In this virtual meeting, we presented an 
overview of research on affect and discussed urgent questions for mathematics education (e.g. What 
is the impact of COVID pandemic on research in affect?) and questions of importance for research 
on affect (e.g. Do emotions and motivation affect performance in mathematics?) in small groups and 
in the whole group. We continued with the preparation of the group’s work for CERME 12, which 
was eventually held as a virtual conference. In this chapter, we would like to introduce our work in 
TWG08, discussions on affect in teaching and learning of mathematics and new developments in the 
field.  

The sound number of submissions and participants confirmed the long-term interest of researchers in 
affect-related research in mathematics education. In total, 26 papers and 4 posters were submitted to 
our group and 24 papers and 3 posters were accepted for presentation. Of the presented studies, 23
papers and 3 posters were accepted for publication in the conference proceedings. In addition to the 
different European countries, our group included presentations from Australia, Canada, Israel and the 
United States of America. Researchers from 13 countries participated in the work of our group. Many 
newcomers joined the group, indicating that interest in research in the area of affect is constantly 
increasing. 

We started our work with an ice-breaking activity. Each participant talked about his country and topic 
of research interest to the audience. After the ice-breaking activity, a reflection of the prior work done 
in CERME conferences was presented in the whole group and open questions in research on affect 
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were discussed in breakout rooms. Following a tradition of the TWG08 group regarding importance 
of small group discussions for scientific activities, we scheduled a considerable amount of time for 
this type of work in following sessions. The contributions in each session were assigned to the topics 
beliefs, attitudes, motivation, emotions or other affective constructs. After a short presentation (3 – 5
slides, 5 min) and clarifying questions (3 min) for each paper in a session, we assigned participants 
to breakout rooms with 4 – 6 participants. In order to structure the small group work and to support 
the content of the discussions, at least one co-leader and one of the authors joined each group. Each 
small group could decide which of the presented papers or posters they would like to discuss with the 
author(s) and other group members (25 – 40 min). In the last 10 minutes of each session, we shared 
our thoughts about the topics of discussions with the whole group. In the last session, we presented a 
synopsis of the small and whole group discussion, which were again discussed in breakout rooms. At 
the end, we reminded participants on the importance of revisions of contributions in the final phase 
of the revision process.  

Reflection on prior research in affect
Inés Gómez-Chacón presented an overview of the work that has been done in the past conferences in 
TWG08. An essential part of the overview was presenting the changes in research on affective 
concepts over the past 15 years. A part of the overview was included in the final report about the 
work of TWG 8 that was videotaped by Haser and Stanislaw Schukajlow. 

A review paper by McLeod (1992) serves, usually, as the starting point for systematic research on 
affect in mathematics education. According to this taxonomy, research on affect can be assigned to 
one of the three major categories:  beliefs, attitudes or emotions. In McLeod’s framework, beliefs are 
the most stable in time, less intense and most cognitive. On the opposite side of the range, McLeod 
posed emotions, which are considered as less stable in time, most affective and less cognitive. 
Attitudes are situated between beliefs and emotions regarding temporal stability, affect and cognition. 

In the last decades, researchers elaborated repeatedly on the taxonomy of affect proposed by McLeod. 
One influential model was proposed by Hannula (2011) in CERME 7. He analysed research in 
mathematics education and suggested distinguishing between cognitive, motivational and affective 
dimensions, unstable states and stable traits as well as social, psychological or physiological 
dimensions of affect. 

Another possibility to think about affect is to distinguish between three characteristics: object of the 
affect (e.g., mathematics, problem solving or strategy use), subject (e.g., teacher, students or policy 
maker) or valence (positive, negative or neutral; Schukajlow, Rakoczy, & Pekrun, 2017). Further, the 
theoretical approach, such as acquisitionist or participationist, can be considered of importance for 
research on affect. A strong interdependence of affective constructs is another essential characteristic 
of affect. In research on beliefs, these interdependencies are reflected in the emphasis of the so-called 
beliefs system. A strong interdependence of affective constructs is another essential characteristic of 
affect. An affective system includes different affect components that are closely related to each other. 
Changes in one component of affect system result in changes in other components and vice versa. 
For example, increasing interest in mathematics may positively affect enjoyment and negatively 
boredom. A holistic view on the affect system might be important for getting a comprehensive view 
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on affect and its development in students and teachers. This research perspective calls for using 
multidimensional approach to affect and applying different methods (e.g. qualitative, quantitative and 
mixed methods). 

In the past, we observed growing attention to the clarification of concepts that were used in research 
on affect. As many affective constructs are defined as complex phenomena, different affective 
constructs revealed a conceptual overlapping in some parts. For example, emotions include a part of 
physiological, affective and expressive components, and also cognitive and motivational parts. 
Therefore, an emotion can overlap with motivational constructs, such as interest or self-efficacy 
beliefs, on the theoretical level. 

A relationship between different affective constructs and cognitive outcomes, such as achievement 
related choices and performance, was another topic of high interest in the past. Prevalent questions 
were: (a) What affective reactions can be observed during learning of mathematics? and (b) Whether 
changes in students’ emotions, motivation, beliefs or attitudes are related to students’ learning and 
learning outcomes. The underlying theme of research was often an idea that improving students’ 
affect will increase motivation, positive emotions, growing mindset or positive attitude. 

Contributions in the TWG08
Now we would like to present the papers and posters that are published in the proceeding. Andrà et 
al. found out that mathematical views of undergraduate mathematics students are related to 
achievement and preferences for different teachers’ lesson types.  Haser analysed students’ beliefs 
about problem posing and their place in mathematics-related belief systems. The poster by Brunetto 
and colleagues presented a methodology for clustering students’ mathematical views. Vankúš at al. 
reviewed in their poster the methodology used in the research in affective domain. 

Schukajlow and Rellensmann analysed a relationship between motivational components (self-
efficacy, value, and cost) and gender. Krawitz and Hartman investigated preservice teachers’ interest 
and self-efficacy while posing problems to descriptions of real world situations. Developing and 
validating survey instruments for assessing beliefs and motivation in mathematics were presented by 
Pedersen and Haavold. Capone and Lepore analysed engagement, motivation and participation of 
undergraduate students during Covid pandemic. Pan et al. were interested in indications of students’ 
wellbeing in terms of primary students’ values.

Sumpter et al. investigated gendered self-evaluation in mathematics. Herset and Ghami presented an 
experimental study on difficulty level marking in mathematics tasks. Biton at al. analysed students’ 
perceptions of mathematics learning environment in a virtual communication messenger. Stereotypes 
in a polarized world and their relation to mathematical identity were the focus of the study by 
Kaspersen and Gjøvik. 

Vasilopoulou and Triantafillou presented students’ perspectives on inclusion and peer-collaboration. 
Zakariya et al. analysed the relations between attitudes, prior knowledge, self-efficacy and grades in 
mathematics. Kourti and Potari identified and analysed pivotal teaching moments of emerging 
emotions during decision making. Weber et al. investigated a development of mathematical anxiety 
of prospective elementary teachers. Holm explored mathematical stories of future elementary 
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teachers and shifts in affect in mathematics. Viola and Gambini presented an analysis of cooperative 
group work in game theory activities. Analysis of attitudes of women and racially/ethnically 
minoritized students was presented by Uysal and Clark. Viitala carried out a case study on teacher 
identity and long-term professional development. 

Báró studied changes in affect due to problem posing in Hungary and Romania. Pierri explored 
engagement and affect in the context of storytelling. Liljedahl analysed social persuasion through a 
teacher’s actions in a mathematics classroom. Courtney et al. investigated teacher’s understanding of 
mathematics in a remedial course and the role of affect in the process of understanding.

Evolution of the TWG
This year many passionate young researchers joined the group. The number of contributions 
addressed similar topics as in the past conferences (e.g., self-efficacy expectations). Some new topics, 
such as mathematical well-being and stereotypes, and a new group of research subjects, such as 
marginalized students, were addressed in CERME 12. More studies focused on the relationships 
between affect and cognition. New theoretical approaches emerged in the group. Some examples of 
these approaches are dual process theory, value-fulfillment theory, activity theory, positioning theory 
or model of problem posing. New measurement instruments were developed and analysed by using 
sophisticated qualitative and quantitative methods. In several contributions, researchers addressed 
gender studies and derived implications for research on affect. Different objects of affect in varied 
contexts, of very different sorts, were presented in the group. Some examples of these objects are 
drawing strategy, level marking, social media, pivotal teaching moments, intelligent tutoring systems, 
and digital interactive storytelling.

During our final discussion, we summarized directions for future research. One example was 
expanding the view on affective variables and see them (a) as independent constructs that can be 
manipulated in order to increase performance, (b) as dependent variables that can be affected by, for 
instance, different teaching methods, (c) as mediation variables that can transmit the effects of 
teaching methods on cognition, and (d) as moderating variables that affect the effects of teaching 
methods on cognition. Furthermore, we call for more research on linking affect to cognition, more 
attention to theorising and embodiment, more focus on equity, more longitudinal and comparative 
studies and stronger focus on cross-domain research. 
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We investigate the mathematical views of a sample of undergraduate mathematics students in their 
third year of studies, namely during the semester that precedes the Bachelor degree. We collected 
data about the students’ mathematical views, their personal information and academic achievement, 
analysing the relationships among them. We also study mathematical views’ influence on the 
appreciation of different aspects of teaching. Finally, we investigate the extent to which 
undergraduate studies can change a student’s view of mathematics. Data are collected by means of 
multiple-choice demographic questions and Likert-scale affective questions. Results reveal that 
different views have an impact on third-year undergraduate mathematics students’ achievement, as 
well as on the preference for more transmissive formats of the lesson, or more participative ones, 
based on different mathematical views. 

Keywords: Beliefs, cluster analysis, gender, mathematical views, postsecondary education. 

Introduction 
There is an increasing number of studies on the crucial role of demographic and affective variables 
in tertiary mathematics learning. Gender is an example for demographic variables, especially for the 
clichè for female students of being more diligent, as this has an impact on their learning strategies 
and examination success (Griese, 2018). The students’ views of mathematics is an example for 
affective variables. Roesken, Hannula and Pehkonen (2011) maintain that mathematical views 
comprise beliefs, wants and feelings. The authors also argue about the key role of different school 
backgrounds, different math curricula and different views and expectations towards mathematics in 
undergraduate students. To this regard, Daskalogianni and Simpson (2001) note that some beliefs, 
developed during school days, are carried forward in university, and this may cause difficulties. 
Liebendoerfer and Schukajlow (2017) consider undergraduate students’ mathematics-related beliefs 
with respect to the nature of mathematics during the first year of undergraduate studies, and find out 
that different views of mathematics, hold by the students at the beginning of their studies, predict 
different interest towards mathematics at the end of the first and the second terms.  

Many researches, like the aforementioned ones, focus on the first year of undergraduate studies and 
highlight difficulties in the secondary-tertiary transition. We, instead, focus on the effects of 
mathematical view at the end of undergraduate studies, to examine possible changes with respect to 
the first days at university. We firstly recall the theoretical background of our research. 

Proceedings of CERME12 1303



 

 

Theoretical framework 

Beliefs are propositions about a certain topic that are regarded as true (Philipp, 2007), and tend to 
form clusters as they “always come in sets or groups, never in complete independence of one another” 
(Green, 1971, p. 41). For this reason, according to Grigutsch, Raatz & Törner (1998), beliefs can be 
seen as “world views”, outlining four different views: a process-oriented one that represents 
mathematics as a creative activity consisting of solving problems using different and individual ways; 
an application-oriented view that represents the utility of mathematics for real world problems as the 
main aspect of the nature of mathematics; a formalist view that represents mathematics as 
characterized by a strongly logical and formal structure; a schema-oriented view that represents 
mathematics as a set of calculation rules and procedures to apply for routine tasks.  

Di Martino and Gregorio (2019) underline that mathematical views have an impact on an 
undergraduate student’s choices and can prevent one to enroll in an undergraduate course only 
because there is some mathematics in it. Di Martino and Gregorio (2019) observe that also 
undergraduate mathematics students may face difficulties and they may develop different 
mathematical views that, likewise any student, may prompt them to make certain choices in place of 
other ones. On these premises, our research aims at answering the following four research questions. 
RQ1: Is there a relationship between undergraduate mathematics students’ demographic variables, 
such as gender or school type, and their mathematical views? RQ2: Is there an effect of university 
studies on mathematical views? RQ3: Are there differences in students’ academic achievement, such 
as the exam grade, with respect to their mathematical views? RQ4: Does the students’ appreciation 
of how they are taught mathematics at university differ based on their mathematical views?  

Answering to RQ1 would allow us to shed some light on the origin of different mathematical views, 
while answering to RQ2 would allow us to understand if and how three years of undergraduate studies 
in mathematics can change one’s view. Answering to RQ3 and RQ4, indeed, would allow us to 
examine whether low- and high-achieving students tend to hold specific, yet different, world views, 
and the relations between such views and the aspects of teaching they mostly appreciate. 

Methodology 
The aim of the study is to examine the effects of undergraduate studies on students’ mathematical 
views, in particular the achievement at the end of their studies. Hence, the participants are 93 students 
enrolled in the third (and last) year of undergraduate studies in mathematics at the University of 
Torino. This sample represents 37.8% of the entire population of 246 students enrolled in the third 
year. They participated on a voluntary basis and have been contacted via email, proposing to 
participate in an anonymous online survey, in May 2021. The analyzed sample is composed of 86 
responses, because 7 are incomplete data.  

The investigation of the mathematical views played a central role. The main idea is to figure out 
whether there is any correlation between affective and cognitive variables, expecially between beliefs 
and the students’ ways of relating, in practice, to mathematics (i.e., passing exams, achieving good 
results, being satisfied with one's own choice of the curriculum, etcetera). To collect data on students’ 
mathematical views, we translate into Italian a 5-points Likert-scale questionnaire developed by 
Erens and Eichler (2019), who design a set of 24 statements concerning the nature of mathematics 
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based on the model proposed by Grigutsch et al. (1998). Each statement is assigned to one 
mathematical view. Examples of statements are: “the ideas of mathematics are of general and 
fundamental use to society” (A); “mathematics is a logically coherent edifice free of contradiction 
consisting of precisely defined terms and statements which can unequivocally be proven” (F) “there 
is usually more than one way to solve a task or problem in mathematics” (P), and “Mathematics 
consists of memorising, recalling and applying procedures” (S). 

Students have been clustered with respect to mathematical views through a network analysis 
technique that is called community detection (Brunetto, Tassone and Cravero, submitted). Briefly, a 
network with students as nodes (i.e., with 86 nodes) has been created, and a link has been established 
among two nodes (i.e., two students) if both agree to the same statement concerning a mathematical 
view. We, thus, identified the clusters of students who are, as nodes, the most connected to each other 
if compared to the entire network. Four clusters have been identified and each cluster has been further 
characterized based on the student information collected in the survey (such as the gender, so that a 
cluster can have a majority of males and another one a majority of females, for example).  

In order to answer RQ1, the participants were asked to declare their gender (with the possibility of 
choosing to not declare it), and to indicate their high school type. To this respect, in the Italian high 
school system there is a school type that has a strong scientific and mathematical curriculum, and 
usually the huge majority of undergraduate students in mathematics attended it. However, there are 
significant differences in the extent and depth of mathematics learning that depend on the individual 
teacher in each school (Lombardo, 2015), hence it makes sense to investigate the views developed by 
individual students even if they attended the same school type. We computed the percentages of males 
and females in each group defined by a specific mathematical view. Similarly, we computed the 
percentages of students coming from the school type with a strong mathematical background.  

In order to answer RQ2, we created four 5-points Likert-scale questions and asked the participants to 
rate their agreement about: (a) during the undergraduate studies, one has discovered -in a positive 
sense- aspects of mathematics that she did not imagined before; (b) during the undergraduate studies, 
one has been disappointed by the way mathematics has been taught; (c) one has significantly changed 
her beliefs about mathematics; (d) the undergraduate studies have confirmed the view of mathematics 
one had when she was a freshman. We compared the averages of answers (from 1 to 5) to each 
question in each cluster of views of mathematics, considering an average of 3 as being neutral, an 
average lower (higher) than 3 as discordance (accordance) for the cluster. 

In order to answer RQ3, the participants were asked to self-declare their average score at exams, 
because the questionnaire was anonymous, and it was not possible to recollect student data from the 
university official database. We computed for each group of mathematical views the percentages of 
students with average scores falling into one of the intervals considered “low”, “medium”, “medium 
high” and “excellent” in the Italian university system.  

In order to answer RQ4, we borrowed the questions to be asked from a National survey on 
undergraduate students’ appreciation of various aspects of teaching and assessment. The 
questionnaire is made of four 5-points Likert-scale. We also created a series of Likert-scale questions 
on the distance teaching experienced during the pandemic (March 2020 - June 2021). For each 
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mathematical view, we compared the average of answers at each question, considering an average of 
3 as the group being neutral with respect to a particular aspect, an average lower than 3 as 
disaccordance (and we distinguished different degrees of discordance), and an average higher than 3 
as accordance (at various degrees). 

Results 
We refer to Brunetto et al. (submitted) for more details about how the students have been associated 
with a mathematical view. In short, the community detection algorithm makes out 4 clusters: 

 28 students have a predominately schema-oriented view (labeled S in the following).  
 21 ones have a primarily process-oriented and a secondarily application-oriented (P-a) view.  
 20 ones hold a primarily formalist and a secondarily application-oriented (F-a) view.  
 17 students show an application-oriented (A) view. 

From these data, we can see that students sorted themselves almost equally in four groups with respect 
to mathematical views. Having identified the clusters, the presentation of results is organized in four 
parts, each of one dedicated to answer one of the aforementioned research questions.  

RQ1: Is there a relationship between undergraduate mathematics students’ demographic variables 
and their mathematical views? Within the sample of 86 respondents, 3 students selected “other/I 
prefer not to reveal my gender”. Table 1 shows the distribution of gender in the overall sample and 
within each group of students identified with the same mathematical view. 

Table 1: Distribution of gender in the sample of respondents 

 Overall sample S view F-a view P-a view A view 

Male 35% 26% 32% 38% 53% 

Female 65% 74% 68% 62% 47% 

Looking at Figure 1, we infer that 29 (35%) respondents are male and 54 (65%) are female. We also 
notice that in cluster S there is a higher percentage (74%) of female students compared to the 
percentage of females (65%) in the entire sample of interviewees. Conversely, there is a significantly 
higher percentage (53%) of males in cluster A, compared to the distribution of gender in the entire 
sample of valid responses. Percentages of males and females in clusters P-a and F-a mirror the entire 
sample’s ones with respect to gender. 

As regards the secondary school type, we notice that over 75% of students come from the type of 
school that has a strong mathematical curriculum. Furthermore, this subsample shows to divide itself 
almost equally in the four groups identified for the mathematical views, but a slightly higher 
percentage belongs to the group of those who hold a P-a one. In the group S,, 50% of students come 
from secondary school types where the level of mathematics is lower, while in the other 3 groups the 
percentage of this kind of students resembles the general one (i.e., 25%). 

RQ2: Is there an effect of university studies on mathematical views? Looking at Table 2, we can see 
that students in cluster F-a discovered positive aspects of mathematics even more than the entire 
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sample, for which the average is high, anyway (4.5 points over 5). Only S students are less in 
agreement with this statement. P-a students are the most in disagreement with the statement that it 
was disappointing to be taught in the way it has been during the undergraduate courses. All clusters 
agree that beliefs about mathematics change during undergraduate studies, and all students except    
P-a cluster disagree that “the undergraduate studies have confirmed the view of mathematics they had 
when they were freshmen”. 

Table 2: Averages of agreement to each item in the entire sample and in each cluster. Only in case of 
significant difference with respect to the entire sample, the cluster average is reported 

Statement Entire 
sample 

Cluster 
A 

Cluster 
F-a 

Cluster 
P-a 

Cluster 
S 

During the undergraduate studies, aspects of mathematics, 

which have not been imagined before, have been discovered 

in a positive sense 

4.5 
same of 
entire 

sample 
4.75 

same of 
entire 

sample 
3.9 

During the undergraduate studies, the way mathematics has 

been taught was disappointing 2.5 
same of 
entire 

sample 

same of 
entire 

sample 
2 

same of 
entire 

sample 

My beliefs about mathematics has greatly changed during the 

undergraduate studies 4 
same of 
entire 

sample 

same of 
entire 

sample 

same of 
entire 

sample 

same of 
entire 

sample 

The undergraduate studies have confirmed the view of 

mathematics they had when they were freshmen 
2.7 2.5 2.5 3 2 

RQ3: Are there differences in the undergraduate mathematics students’ achievement with respect to 
their mathematical views? In the Italian university system, exam pass scores range from 18 
(sufficient) to 30 (excellent). Scores between 18 and 20 are considered low achieving, the range        
21-24 is considered medium, 25-28 medium-high and 29-30 excellent. The sample average score is 
summarised in Table 3. From it, we can see that the percentage of excellent students in the A group 
(30%) is higher than the one computed in the general sample (18%), and that the majority of excellent 
students tend to hold a process-oriented view. In this group, also the percentage of medium-average 
students (23%) is lower if compared to the general sample (40%). No excellent student belongs to the 
S group and the percentage of those who have a medium score average (60%) is higher if compared 
with the general sample (40%). F group’s percentages mirror the general sample’s one. These 
observations lead us to conclude that there are differences in the undergraduate mathematics students’ 
scores at exams with respect to mathematical views. 
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Table 3: Average scores at exams and mathematical views. The percentages in brackets refer to each 

total reported in the last row of the table 

 General 
sample 

Application- 

oriented (A) 

Formalist+application- 

oriented (F-a) 

Process+application- 

oriented (P-a) 

Schema- 

oriented (S) 

21-24 35 (40%) 6 (35%) 7 (37%) 5 (23%) 17 (60%) 

25-28 36 (42%) 6 (35%) 10 (53%) 9 (41%) 11 (40%) 

29-30 15 (18%) 5 (30%) 2 (10%) 8 (36%) 0 

 86 17 19 22 28 

RQ4: Does the students’ appreciation of how they are taught mathematics at university differ based 
on their mathematical views? Table 4 summarises the students’ average appreciation of various 
aspects. P-a students tend to like the least step-by-step explanations and many exercises during the 
lessons, but to like the most being prompted to reflect. S students like the least to be provided 
justifications for definitions and methods, but to like the most many exercises.  

Table 4: Averages of appreciation to each item in the entire sample and in each cluster. Significant 
differences with respect to the entire sample are in bold 

Statement Entire 
sample 

Cluster 
A 

Cluster 
F-a 

Cluster 
P-a 

Cluster 
S 

Exhaustive, step by step explanations in frontal lessons 3.1 3.2 3 2.8 3.2 

Justification of the definitions and methods 2 2.3 3 2.2 1.5 

A good number of exercises 2.9 3 2.75 2 3 

Stimulating reflections on a student’s side 2 2 1.5 3 2 

We also asked questions about the at-distance teaching that affected these students because of the 
pandemic, but no significant difference can be seen with respect to the different views. The sole 
exception is a question about the lack of opportunities to talk and interact directly with one’s mates 
during the lockdown, to which A, F-a and P-a students show to be in accordance (rank above 3), 
while S ones are in discordance (rank below 3). 
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Discussion and preliminary conclusions 

The research presented in this paper concerns a sample of undergraduate mathematics students and 
aims at examining the relations among their mathematical views and their academic achievement. 
Having considered only the third year can be seen as a limitation, but in our study this was quite 
unavoidable, since we needed that the students lived at least some semesters at university and we 
wanted that they had experience of this in pre-pandemic times.  

Our results show that a schema-oriented view attracts more females, while an application-oriented 
view attracts more males. Among the students with a strong mathematical curriculum at secondary 
school, a process-oriented view is slightly predominant. This leads us to conclude that, with respect 
to gender and school type, mathematical views are different and, thus, it is possible that the origin of 
one’s view depends also on their gender and/or school type. Our findings connect both to Griese’s 
(2018) ones about females being more diligent, as the S view that seems to be predominant for 
females might be seen as mirroring this schema-oriented approach to learning, and to Roesken et al.’s 
(2011) one that students from different school types hold different views. 

Furthermore, all the students in the sample strongly agree that, during the undergraduate studies, they 
were positively surprised by discovering aspects of mathematics they never imagined before, but for 
the students with a schema-oriented view such an agreement is more modest. Furthermore, for these 
students, it does not hold true that the undergraduate studies have confirmed the view of mathematics 
they had when they were freshmen, hence it seems that, for the students in this group, the mathematics 
that has been faced at university was different, but not always it was pleasant to discover such 
novelties. We know that professors who teach in the undergraduate mathematics course tend to 
promote a formalist, or an application-oriented, or a process-oriented view, hence we interpret S 
students’ more modest appreciation of such a change with respect to school mathematics as an 
indicator of impermeability, of these students, to the novelties embodied in new views of 
mathematics. Liebendörfer and Schukajlow (2017) also remark that application-oriented views are 
positively correlated to interest in the first term, and process-oriented, schema-oriented and formalist 
views do not predict interest in the first or in the second terms. For the schema-oriented cluster, 
Libendoerfer and Schukajlow’s findings seem to be confirmed also for students at the end of the third 
year. If we widen our focus to consider not only students’ mathematical views, but also their 
professors’ ones, we have to admit that, to our knowledge, no research study investigated the effect 
of different views, held by mathematics professors, on students’ achievement and views in 
undergraduate studies. This could be a prompt for future research in this area. 

With respect to the exam scores, we firstly notice that no low achieving student answered our 
questionnaire. This represents a limitation and, in a follow-up study, we will investigate why these 
students did not show up. Secondly, it emerged that no excellent student has a schema-oriented view. 
Conversely, most excellent students have a process- or an application-oriented view. Most students 
with a formalist view have a medium-high average of exam scores, whilst the majority of students 
with a schema-oriented view have a medium one. This leads to the conclusion that to develop a 
formalist, or an application- or a process-oriented view, can be considered a proxy for higher 
achievement at undergraduate studies. We can also notice that the students with a schema-oriented 
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view are those who more strongly disagree with respect to exhaustive justifications of definitions and 
procedures during a lecture, and those who missed less the interaction with their peers during the 
pandemic. Somehow, these students show a sort of passive acceptance of mathematical algorithms 
and models and an individualistic approach to learning. We know that this kind of attitude towards 
mathematical learning are proxies for general weakness in mathematical achievement, as it is also 
confirmed in our data, being these students the ones who achieve the lowest grades.  
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The author of this paper is a mathematics teacher in Romania, and she is interested in students’ 
motivation and attitude towards mathematics. Teachers face challenges in the online learning 
environment, such as fewer direct social interactions, one of the effects of which is a reduced 
possibility of motivation. In collaboration with two academic experts and another teacher from 
Hungary, the research group sought answers to these challenges. In two-round action research, the 
impact of problem-posing on motivation was investigated. Informed by the experience of the other 
teacher in the first round, the author redesigned the second round, with more emphasis on emotional 
factors. The author argues that problem-posing can be successfully adapted during online learning, 
and by incorporating interpersonal interactions into the problem-posing process, the reduced 
motivational effect observed in online learning can be compensated. 

Keywords: Action research, mathematics activities, problem posing. 

Introduction 
The global outbreak of the COVID-19 pandemic affected almost every country and territory in the 
world. Due to the pandemic, lockdown and rules of social distancing have led to closures of schools 
in Hungary and Romania, like in most countries, decreasing social interactions in the learning 
process. When teachers were asked to select their top three concerns about distance learning on 
students, the most common answers were: students’ social isolation, a decrease in student well-being, 
and potential learning loss. Surprisingly, educators ranked students’ social needs above learning loss 
(Flack et al., 2020). Hattie (2008) states that social interaction within classrooms is positively 
associated with learning outcomes. 

The pandemic is also affecting teaching methods. However, teachers cannot give up specific methods 
such as problem-posing and its positive effects on learning. Problem-posing positively impacts 
motivation, while motivation and interest have a close relationship with context personalization of 
students’ tasks (Walkington et al., 2013). Moreover, personalization is an energizing factor, which is 
significant for the student’s motivation (Suriakumaran et al., 2017). Our research team, two teacher-
researchers (including the author) and two experts, implemented problem-posing in an online 
environment. The principle was to use info-communication tools that the learners and teachers were 
comfortable using. In this article, the author focuses on a single aspect of the problem-posing, namely 
its positive impact on motivation (Silver, 1994). The online learning environment reduces 
interpersonal relationships, so the positive effect of problem-posing on motivation in the online 
environment may decrease. Moreover, decreased interpersonal relationships lead to decreased 
motivation since interpersonal relationships in students’ lives contribute to their motivation (Martin 
& Dowson, 2009). As a result, the importance of emotional factors through interpersonal relationships 
in online education should be growing, which implies our research question: Does the increased role 
of emotional factors impact the context personalization and, through this, students’ motivation? The 
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author inferred motivation using content analysis that unfolds context-personalization characteristics. 
An online questionnaire followed the analysis with questions on motivation. 

Theoretical background 
Motivation can be described as the student’s willingness or desire to participate and succeed in the 
learning process. Weiner (1992) defines motivation as an individual’s desire to act in specific, 
personal ways. Walter and Hart (2009) describe sources of motivation as task interest, social 
environment, opportunity to discover, knowing why, using objects, and helping others. Some 
researchers emphasize the importance of context personalization that helps to target students’ out-of-
school interests and experiences (Cordova & Lepper, 1996). Walkington et al. (2013) describe context 
personalization as an approach to learning in school. Personalized problems may make mathematics 
more accessible to students, they may help bring the “real world” problem solving closer to “school 
mathematics,” and they may attract students’ attention and interests to impact motivation (Boaler, 
1994). 

In this paper, the author uses the concept of problem posing in the following sense. 

By problem posing in mathematics education, we refer to several related types of activity that 
entail or support teachers and students formulating (or reformulating) and expressing a problem 
or task based on a particular context (which we refer to as the problem context or problem 
situation). (Cai & Hwang, 2020, p. 2) 

Several aspects of problem-posing (PP) are thought to have meaningful relationships to student 
disposition toward mathematics. For example, posing offers a means of connecting mathematics to 
students’ interests. Within a classroom community, students could be encouraged to pose problems 
that others in the class might find exciting or novel (Silver, 1994). 

Ellerton (2013) proposes the Active Learning Framework (ALF) for PP in mathematics classes, 
defining four steps: 1. The teacher models an example (processing the new content) 2. Students solve 
problems based on model 3. Students pose problems with the same structure as model 4. Finally, the 
class discusses and solves problems posed by students as “My classmate’s problem.” This framework 
considers PP in classrooms an essential activity that allows students to consolidate their knowledge 
and think critically about it. 

The affective domain is defined in many ways in educational and psychological literature. Often it is 
used as a broad umbrella concept that covers attitudes, beliefs, motivation, emotions, and all other 
noncognitive aspects of the human mind (Hannula, 2020). This paper focuses on self-concept, 
anxiety, motivation, perceived usefulness, and enjoyment of mathematics. Mathematical self-concept 
refers to one’s ability to learn and perform mathematical tasks, how confident one is in learning new 
mathematical topics, and one’s interest in mathematics (Reyes, 1984, p. 560). Mathematics anxiety 
is defined as a sensation of stress and apprehension that interferes with mathematics performance 
ability, number manipulation, and problem-solving (Richardson & Suinn, 1972). Perceived 
usefulness refers to how students can relate school mathematics to real-life (Reyes, 1984). Finally, 
the usefulness of mathematics includes liking mathematical terms, symbols, or routine counting, but 
liking mathematics problems as well (Aiken, 1974). 
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The circumstances of the action research 
The challenge of action research is how to adapt the ALF model to the online environment while 
retaining the motivational potential of problem-posing. This question touches on all components of 
ALF, i.e., how to present the model problem, how to practice, how to do the problem creation, and 
how to process the classmate’s task. 

Participants 

The participants of the research are four 6th grade classes from Hungary and Romania. The teachers 
of the two classes in Hungary are the same person. Similarly, the two classes in Romania are taught 
by the same mathematics teacher. 125 students participated in the experiment: 65 from School 1 
(Hungary) and 60 from School 2 (Romania). The language of instruction is Hungarian in both schools, 
being Hungarian the students’ mother language. 

Method 

Curricula and syllabi are different in the two countries, which led us to divide them into rounds of 
our action research. The first round took place in School 1 in the spring semester of 2020, while the 
second one in School 2 in the autumn semester of 2020. The researchers implemented the ALF 
method for the following curricular lessons in both schools. 1. Proportional division (two PP 
activities), 2. Straight and inverse proportionality (two PP activities), 3. Percentage calculation, 
calculation of the percentage base (one PP activity). Both rounds were organized under online 
teaching conditions ordered due to the viral situation. This circumstance allowed us to focus on the 
challenges and experiences gained from the first round and transform them into opportunities. Table 
1 contains similarities and differences between the rounds in each phase of the ALF. 

Table 1: Differences between the two rounds of ALF 

ALF step Round 1 Round 2 

Model problem Slideshow that the student works up 
at home. 

Slideshow that students work on 
with the teacher in an online lesson. 

Practice Self-regulated learning through a 
presentation. 

Teacher-regulated learning through a 
presentation in an online lesson. 

Problem-posing Homework to be sent to the teacher. Homework to be sent to the teacher. 

Classmate’s problem Based on the teacher’s selection. Based on the teacher’s selection. 

  Who is the problem poser? 

 Homework. Online classroom: individual work. 

Evaluating the solution By the teacher. By the problem poser. 
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Round 1: The teacher prepared a slideshow with narration and timing, which included the stages of 
introduction and practice. Students had the opportunity to play the slideshow several times before 
they started the problem-posing activity. After collecting the posed problem, the teacher selects one 
(or two) as “My classmate’s problem” and sets as homework that are also collected. 

Round 2: The teacher prepared the same slideshow, but instead of sending it out, she presented it via 
Google Meet lessons, where students can comment, ask, talk. Problem posing activity is homework 
as in Round 1, but “My classmate’s problem” is also discussed live and solved during online lessons. 
Solving “My classmate’s problem” was preceded by a discussion with the topic: Who is the problem 
poser? Why do you think that? As a new step, after revealing the problem poser’s name and solving 
the problem, they added the story that inspired them in the process of the PP. Solving the classmates’ 
problem was an individual task followed by a discussion of whether the problem poser accepts or 
declines the solution of the class. Through these conversations, emotional factors were given a more 
significant role in Round 2, letting us know each other’s stories. Essentially, it is about bringing the 
task to be solved emotionally close to the students, thus making them more motivated to solve it. 

Collecting Data 

Parts of the research material are students’ work, students’ answers to the questionnaire, video 
recordings of Round 2 lessons, and teachers’ reflections. All the student works were coded, taking 
into account the coding frame for evaluating out-of-school interest (sports, video games, pets, sports, 
info-communication tools, social media, food) based on Walkington et al. (2013). It was also 
identified two other ways (besides out-of-school-interest) that students use to express their presence 
in the posed problems that the author calls personal traits: 

a. Student’s direct presence in the posed problem by using the first-person singular. The 
personalization is given by the conjugation and pronoun “Me/I” and not the activity. For example, 
“My favorite T-shirt was finally on discount.” In the second case, the name of the “hero” in the story 
coincides with the student’s name who posed the problem: “Zsófi does 3 km in 50 mins.” 

b. Actual or happened situations: The written context refers to an event that happened lately. For 
example, the following problem refers to the actual Black Friday: “Peter buys a new laptop, with a 
30% discount it is 1500 Ron on Black Friday. What is the laptop’s original price?” 

Results 
We observed two developmental aspects of affect in Round 2: the role of different emotions, values 
in PP, and the role of affective factors in interpersonal relationships between students, teachers. 

Role of different emotions, values in problem posing 

Having different emotions, values, hobbies, and interests encourages students to remark their 
presence (directly or indirectly) in the posed problems. These interests were discovered in many of 
the students’ work. They include their personal interests in their problems; this is how they express 
themselves and their bonding to the subject. We managed to bring the “real world” problem solving 
closer to “school mathematics” problem solving, which may attract students’ attention; they could be 
saying, “this happened to me/might have happened to me”. 
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The personal trait appears in 9% of all problems (Table 2), and there is no significant difference 
between the two schools (21% in School 1 and 14.8% in School 2; the Fischer test result is 0.12>0.05). 
Thus, this form of personalization follows from the PP activity itself, and the research suggests that 
emotional factors have little influence. 

Table 2: Number of problems with the sign of a personal trait 

Appearance of 
personalization 

Problems with a sign of a 
personal trait 

Problems with no sign of 
a personal trait  

Sum 

School 1 46 173 219 

School 2 28 160 188 

Sum 74 333 407 

In Round 2, we observed that more personalized context appeared in the posed problems (Table 3). 
For example, code “out-of-school-interest” was identified in 67 cases in School 1 (30.6% of all 
problems), while in School 2, this number is 76 (40.4%). 

Table 3: Number of problems with the sign of out-of-school interest 

Appearance of 
personalization 

Problems with the sign 
of out-of-school interest 

Problems with no sign of 
out-of-school interest   

Sum 

School 1 67 152 219 

School 2 76 112 188 

Sum 143 264 407 

Personal interest was more prevalent in the second round, and the difference is significant. Fischer’s 
exact test result is p = 0.047; the result is significant at a significance level of 0.05. We explain the 
difference by the increased role of emotional factors because they felt motivated to use their out-of-
school interest in the posed problems. 

Role of affective factors in interpersonal relationships between students, teachers 

During Round 2, students were asked to guess the author of “My classmate’s problem”. The following 
discussion was transcribed from the second online lesson. 

Teacher: [sharing her screen with the posed problem] Firstly, I would like you to guess who 
could have written this problem? 

Student 66: Mrs. Teacher, it is obviously G. (Student 82). 
Student 62:  This is G. 
Many: Yes, G. wrote it. 
Teacher: Why is it obvious that it is G? She has hens with lice? 
Student 69: She has stories like this. 
Student 62:  She has lived on a farm. 
Many: [laughing] 
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Teacher: G, got your hens lice, or what? 
Student 82: [laughing] No, but my grandma used to have hens. That’s where the idea came 

from. 
Teacher: I love this problem. 

As students talked about the possible problem posers, the teacher could join the conversation and 
observe their relationship. The teacher found out someone’s pet’s name, for example, and who had 
known that before. These conversations offer a social interaction between students, including the 
teacher, improving Walter and Hart’s (2009) motivational factors such as task interest, social 
environment, and helping others. The teacher observed that developing the online social environment 
had been contributing to a more inclusive classroom atmosphere. These problems were very 
memorable; even a few months after the PP activities, some students fondly remembered the lessons, 
suggesting that they liked solving problems about G’s hens. 

Round 1’s ALF included affective factors such as self-concept and motivation via personalization of 
the context. Telling and listening to classmates’ problems added additional factors. Figure 2 shows 
that listening to a story that inspired a classmate arouses other students’ interest, leading to the 
enjoyment of mathematics, decreasing anxiety. By telling the story that inspired the student in the 
process of PP, he or she would pose a more realistic problem, which can change the student’s view 
of the usefulness of mathematics. 

 

Round 1 Round 2 

Figure 1: Affective factors added in Round 2 

Knowing the background story while solving each other’s problems seemed interesting to students, 
such as realizing that their story could have happened, which was revealed from the classroom 
discussions. Analysis of the answers to the questionnaire also supports this observation. At the end 
of the teaching unit, students were asked to answer 16 questions leaving their opinions about this new 
teaching-learning method. Three of them are highlighted here, I6, I8, and I9 (Table 4). We used Likert 
scale items with three grades according to the children’s age specifics: Agree/Cannot 
decide/Disagree. Only definitive answers were evaluated (agree, disagree). Three items were assigned 
to motivation, belief, and emotion. To analyze the data statistically, contingency tables were created. 
The distribution of the answers is shown in Table 4. 

Students enjoyed solving the classmate’s problem in both schools, but the ratio of those who agreed 
with I9 was greater in the second round (95.7% versus 84.8%). However, the difference is not 
significant (p = 0.12). Table 4 also shows that almost 75% of students are happy to pose their 
problems. The author considers this fact as a sign that the adaption of the ALF paradigm was 
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successful in both rounds. The positive answers to I8 suggest the idea that students are aware of the 
fact that their problems are realistic and support our finding that problem-posing positively influences 
students’ perceptions of the relationship between school mathematics and real life. There was no 
significant difference between the two rounds in this respect. 

Table 4: Students’ responses to the three questionnaire items 

 I9: I liked it when the classmate’s 
problem was the homework. 

I6: I liked to come up with my 
own task for math lessons. 

I8: I have created tasks that 
can occur in real life. 

 Agree Disagree Agree Disagree Agree Disagree 

Round 1 28 5 22 8 24 4 

Round 2 45 2 32 11 39 3 

Conclusion 
Although the participants of the two rounds were children from different countries, that could be a 
limitation of the study regarding the statistics, but also an advantage, which suggests a new plan for 
the future. The author desires to try out this method with the same students on different curricula and 
the same curriculum with other students; if the pandemic allows, in situ in the classroom. The author 
found that PP has a motivating effect in the online environment as well, and even this positive effect 
can be increased by including emotional factors. The author also claims that problem-posing opens 
up space for the expression of personality. It is an opportunity for the teacher, even in the online 
environment, to learn what is currently occupying the student, their hobby/circle of friends, even to 
conclude relationships between them. The author finds that students pose more context personalized 
problems by increasing emotional variables and are happier to solve their classmates’ problems than 
with fewer affective factors. By and large, the adaption for the online learning environment went 
successfully. Based on the literature (Martin & Dowson, 2009) and the experiment, the author claims 
that more social interactions promote context-personalization, which triggers motivational factors. 

Acknowledgment 
This study was funded by the Scientific Foundations of Education Research Program of the 
Hungarian Academy of Sciences. 

References 
Aiken, L. (1974). Two scales of attitude toward mathematics. Journal for Research in Mathematics 

Education, 5(2), 67–71. https://doi.org/10.2307/748616 

Boaler, J. (1994). When do girls prefer football to fashion? An analysis of female underachievement 
in relation to realistic mathematic contexts. British Educational Research Journal, 20(5), 551–
564. http://www.jstor.org/stable/1500676 

Proceedings of CERME12 1317



 

 

Cai, J., & Hwang, S. (2020). Learning to teach through mathematical problem posing: Theoretical 
considerations, methodology, and directions for future research. International Journal of 
Educational Research, 102(8). https://doi.org/10.1016/j.ijer.2019.01.001 

Cordova, D. I., & Lepper, M. R. (1996). Intrinsic motivation and the process of learning: Beneficial 
effects of contextualization, personalization, and choice. Journal of Educational Psychology, 
88(4), 715–730. https://doi.org/10.1037/0022-0663.88.4.715 

Ellerton, N. F. (2013). Engaging pre-service middle-school teacher-education students in 
mathematical problem posing: Development of an active learning framework. Educational Studies 
in Mathematics, 83(1), 87–101. https://doi.org/10.1007/s10649-012-9449-z 

Flack, C.–B., Walker, L., Bickerstaff, A., Earle, H., & Margetts, C. (2020). Educator perspectives on 
the impact of COVID-19 on teaching and learning in Australia and New Zealand. Pivot 
Professional Learning.  

Hannula, M. S. (2020). Affect in Mathematics Education. In S. Lerman (Ed.), Encyclopedia of 
Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-15789-0_174 

Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. 
Routledge. https://doi.org/10.4324/9780203887332  

Martin, A., & Dowson, M. (2009). Interpersonal relationships, motivation, engagement, and 
achievement: Yields for theory, current issues, and practice. Review of Educational Research, 
79(1), 327–365. https://doi.org/10.3102/0034654308325583  

Reyes, L. (1984). Affective variables and mathematics education. The Elementary School Journal, 
84(5), 558–581.https://doi.org/10.1086/461384 

Richardson, F. C., & Suinn, R. M. (1972). The mathematics anxiety rating scale: Psychometric data. 
Journal of Counseling Psychology, 19(6), 551–554. https://doi.org/10.1037/h0033456 

Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19-
28. 

Suriakumaran, N., Duchhardt, C., & Vollstedt, M. (2017). Personal meaning and motivation when 
learning mathematics: A theoretical approach. In T. Dooley & G. Gueudet (Eds.), Proceedings of 
the Tenth Congress of the European Society for Research in Mathematics Education (pp. 1194–
1201). DCU Institute of Education and ERME. 

Walkington, C., Petrosino, A., & Sherman, M. (2013). Supporting algebraic reasoning through 
personalized story scenarios: How situational understanding mediates performance. Mathematical 
Thinking and Learning, 15(2), 89–120. https://doi.org/10.1080/10986065.2013.770717 

Walter, J. G., & Hart, J. (2009). Understanding the complexities of student motivations in 
mathematics learning. The Journal of Mathematical Behavior, 28(2-3), 162–170. 
https://doi.org/10.1016/j.jmathb.2009.07.001 

Weiner, B. (1992). Human motivation: Metaphors, theories, and research. Sage. 

Proceedings of CERME12 1318



 

 

Students’ perceptions of learning mathematics in the WhatsApp 
environment through the “Bagroup” project  

Yaniv Biton1, Ruti Segel,2 and Olga Fellus3 

1Shannan Academic College of Education, Israel; YanivB@cet.ac.il  
2Oranim Academic College of Education, Israel; rutisegal@gmail.com 

3University of Ottawa, Canada; ofellus@uottawa.ca   

This paper is part of a larger quantitative and qualitative study that focuses on how teachers and 
students perceive learning of mathematics via WhatsApp. The main objective of the program is to 
allow for both teacher-student and student-student contributions of knowledge and to boost students’ 
sense of self-confidence and authorship in the discipline. The research participants of this study 
comprise 152 Grade 11 and Grade 12 students who responded to a questionnaire distributed during 
the 2018 program. We present a quantitative analysis of the factors that students perceive to be 
pertinent in the WhatsApp Bagroup learning environment.  

Keywords: Social media, communication, WhatsApp in mathematics education. 

Introduction 
The fact that technological social platforms can be useful for the purpose of schooling and education 
is increasingly recognized and studied (Greenhow & Lewin, 2016). Online social networking 
platforms have become highly popular virtual meeting places for youth and adults (Boyd, 2010; 2014; 
Greenhow & Askari, 2017).  
It is not surprising then that, recently, there has been an influx in research focusing on the pedagogical 
benefits of using social media as productive sites for promoting learning. Having said that, an 
examination of recent studies shows that focus has been put on post-secondary settings (e.g., Dyson 
et al., 2015) or teacher education (e.g., Sendurur et al., 2015). Research on the use of social media for 
subject-specific learning purposes, such as mathematics, among K-12 remains understudied. Given 
the prevalence of the use of social media in everyday life especially among teenagers, we conjecture 
that the use of these platforms can potentially increase student-teacher and student-student 
interactions. These interactions around mathematical ideas may allow almost instantaneous response 
and feedback from others and surface mathematical misconceptions and misperceptions that can be 
directly addressed in follow up posts (Biton & Segal, 2021; Freeman et al., 2016). 

Literature review 
Recent studies have explored the use of social media platforms such as Twitter (Carpenter & Krutka, 
2014), Pinterest (Hertel & Wessman-Enzinger, 2017), and Facebook (Biton et al., 2015). These 
studies have suggested that interaction over social media contributes to socializing (Madge et al., 
2009) and increased self-esteem and social capital (Steinfield et al., 2008). Such affordances need to 
be further investigated within mathematics education. With respect to learning and instruction, 
Asterhan et al. (2013), and Asterhan and Bouton (2017) for example, discussed how social media can 
be used to develop innovative, collaborative forms of online learning that extend beyond the 
traditional classroom. Students perceive learning through social media to be very intensive and highly 
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collaborative in nature (Meishar-Tal et al., 2012). From the students’ standpoint, social media 
platforms have been found to also allow for the manifestation of learners’ emerging conceptual 
understanding in mathematics (Baya'a & Daher, 2013; Freiman, 2008).  

Relatively little research focused on students’ perspectives on learning mathematics through 
WhatsApp. A case in point is a recent study by Rosenberg and Asterhan (2018). The researchers 
looked into teacher-student interactions; students’ evaluation of the efficacy of contact with their 
teachers; the social dynamics in these groups compared with that in in-person classrooms. It was 
found that teachers used WhatsApp not only to manage housekeeping-related matters but also for 
instructional and learning purposes that were initiated either by them or by students in the group. 
Some of the drawbacks identified revealed issues regarding information overload, social pressure due 
to the public nature of the communication, and accessibility to WhatsApp. Drawing on this research, 
it still remains to be surfaced how students perceive the use of WhatsApp as a means to learning 
school mathematics, which is where our research aims to contribute to knowledge.  

Methods 
The study presented herein is part of a larger research project that focuses on exploring how students 
and teachers perceive learning over a social network—specifically WhatsApp—and identifying 
learning opportunities to eventually inform pedagogical approaches and instructional strategies. This 
paper particularly aims at identifying and characterizing students’ perceptions of the WhatsApp 
“Bagroup” program learning environment. We formulated five overarching research questions for 
our larger research study. In this paper, we focus on the following: What factors do students perceive 
to be important when learning in the WhatsApp “Bagroup” program environment? 

The “Bagroup” initiative. 

The “Bagroup” is a state-wide program that was set up for the Ministry of Education by the Center 
for Educational Technology. The purpose for this initiative was to offer the use of the WhatsApp 
application to high school students throughout the country and across grade levels in preparation for 
their mathematics matriculation exams (Bagrut in Hebrew). Approximately 4,000 high school 
students joined the mathematics WhatsApp groups 2018. (This was an increase of more than 100% 
with respect to the two preceding years, which had less than 2,000 registrants.) Forty groups were set 
up with 100 students in each. An experienced teacher of mathematics was assigned for each group. 
Group members are generally not acquainted with each other at the outset. Learning is divided into 
various topics each of which are studied over a set time period and led by a teacher. Once every few 
days, the teacher introduces a topic or answers questions raised by the students and uses various 
digital means. The lessons are accompanied by a repository of materials in the accompanying site 
that are available for use by the students. Learning in the group takes place in a variety of ways: text 
messages, voice messages, photos and video-clips, question repositories, presentations, and more.  

The groups ran between two to four months up to the exam date during which hundreds of thousands 
of messages were sent that included mathematical content, questions, and explanations to solutions. 
The Bagroup project offers the following to its students: [1] Support: Students can get an (almost) 
immediate response from a teacher or another student from the group. [2] Equal access: Using the 
freely available WhatsApp technology made it possible for anyone to join at no cost. [3] Use of 
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mobile technology: Students’ digital devices supplemented classroom instruction and extended 
learning to anywhere and anytime. [4] Capacity building: The program is aimed at enhancing 
understanding of mathematical concepts and, by extension, affective dispositions towards 
mathematics. [5] Variety: Students shared multiple approaches to solving mathematical problems.  

The program was launched in 2015 on Facebook for mathematics only and then in 2016, was moved 
to the WhatsApp platform. The program saw a growth from 614 students in 2015 to 8,500 students 
in 2019 (unpublished figures). Also, the 2019 program added the subjects of English and Hebrew.  

Participants and data collection  

Participants comprised 152 students in Grades 11 and 12 who answered a questionnaire that was 
distributed to the students in the 2018 program. Nonprobability sampling was used based on 
participants’ availability and willingness to reply to the questionnaire. The questionnaire was put 
together by the first and third author and revised for accuracy and consistency. The student 
questionnaire included nine open-ended questions and twelve Likert-type questions. The open-ended 
questions invited students to share a memorable experience or an episode they had in any of the 
WhatsApp interactions. They were also invited to share the most obvious advantages and 
disadvantages of using WhatsApp for the purpose of learning high school mathematics and to reflect 
on specific characteristics of WhatsApp that make the mathematical content accessible to the 
students. The open-ended questions also requested possible explanations regarding students who left 
the group. The other part of the questionnaire provided a 6-point Likert-type scale for 12 statements 
concerning the experience of learning mathematics via WhatsApp with 1 = Strongly Disagree and 6 
= Strongly Agree.  

Data analysis  

Students’ responses were analyzed and coded for themes by the first two authors through content 
analysis of the responses to the open-ended questions. A Varimax rotation analysis was used of the 
data, the goal being to detect how the WhatsApp learning environment was perceived by the students 
by demonstrating the items are inter-correlated for internal consistency.  

In this paper, we present an analysis of the quantitative data gleaned from the students’ questionnaires.  

Findings  
Analysis of the twelve Likert-type scales found high internal validity of three categories that 
explained more than half of the variance in the students’ answers (58.06%). The three categories were 
the following: [1] Factors in the WhatsApp environment that support students’ emotional needs. This 
category accounted for about a quarter of the variance among the students’ answers (five statements). 
[2] Factors in the WhatsApp environment that promote learning. This category accounted for 
approximately another fifth of the variance of the students (four statements). [3] Factors that hinder 
learning in the WhatsApp environment. This category accounted for an additional 8% of the variance 
in students’ answers (two statements).  
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Table 1 presents the mean scores and standard deviations of all the statements, divided into the three 
categories. The results indicate that students’ perceptions about learning in the WhatsApp 
environment was varied.  

Table 1: Means and standard deviations of the categories and statements regarding the students’ 
experience learning mathematics via WhatsApp, N = 152 

SD Mean Statement 

1.15 3.51 Category 1: Contribution of the WhatsApp environment made to students’ 
emotional needs

1.65 3.46 I manage to follow the lesson during the WhatsApp discourse

1.30 3.84 I managed to understand the material in the WhatsApp environment at the same 
level as in a regular class

1.68 3.73 WhatsApp allows participation without fear of making errors

1.53 2.80 The written discourse in WhatsApp is preferable over the verbal discourse in a 
regular class

1.61 3.72 Learning through WhatsApp allowed me to meet my specific needs as a learner 
more than in a regular classroom

1.13 3.81 Category 2: Factors that promote learning in the WhatsApp environment

1.61 3.99 Learning via WhatsApp allows me to learn from others more than in a regular 
class

1.40 4.65 The value of a lesson via WhatsApp is different from the value of a regular 
lesson

1.68 3.27 Learning via WhatsApp improved my mastery of available technologies for 
learning mathematics

1.68 3.04 I invest more time and effort in mathematics in the WhatsApp project compared 
to students in a regular class

1.67 4.09 In the future, WhatsApp will become an important tool for students for learning 
math

1.29 3.09 Category 3: Factors that hinder learning in the WhatsApp environment

1.73 3.53 There is some mathematical content that cannot be explained via WhatsApp

1.47 2.66 I can’t manage to cooperate with other students the way I do in a regular class

To facilitate analysis, the levels of agreement were reduced to three: disagree, somewhat agree, and 
agree. Figure 1 graphically illustrates the percentage of students that agreed, somewhat agreed, or 
disagreed with each of the twelve statements.  
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In the first category Contribution of the WhatsApp environment to learners’ emotional needs, the 

highest agreement was with the statement: “I managed to understand the material in the WhatsApp 
environment at the same level as in a regular class.” Looking at Figure 1, we can see that 95.4% of 
the participating students agreed (59.9%) or somewhat agreed (35.5%) with this statement. The next 
highest statement in the category of emotional needs: “WhatsApp allows participation without fear 
of making errors,” with 55.3% and 32.2.% agreeing or somewhat agreeing with this statement, 
respectively. “Learning through WhatsApp allowed me to meet my specific needs as a learner more 
than in a regular classroom” scored third. Here, again, the great majority of students agreed or 
somewhat agreed with this statement (53.9% and 35.5%, respectively). However, the statement: “The 
written discourse in WhatsApp is preferable over the verbal discourse in a regular class” received the 
lowest mean score in this category, but still maintaining a high level of agreement 28.3% and 45.4%).
Under the second category “Factors that promote learning in the WhatsApp environment,” there is a 
high degree of agreement with “The value of a lesson via WhatsApp is different from the value of a 
regular lesson.” Collectively, 91.5% agreed (63.2%) or somewhat agreed (28.3%) with this statement. 
Within this category, a high degree of agreement was also found with the statement: “In the future, 
WhatsApp will become an important tool for students for learning math” demonstrating that 77.6% 
of the students either agreed (36.2%) or somewhat agreed (41.4%) with this statement.

As well, the statement: “I invest more time and effort in mathematics in the WhatsApp project 
compared to students in a regular class” scored the lowest mean points (3.04%). However, overall, 
the great majority of the students still agree 44.7% or somewhat disagree 34.9% with the statement 
and the remaining 20.4% disagreeing with it. Notably, the WhatsApp environment, through students’ 

Figure 1: Proportion of students who agreed, somewhat agreed, or disagreed with the statements 
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perspectives, allows to learn from others with 82.2% agreeing with this statement and 15.1% 
somewhat agreeing with this statement.  

Discussion 
The study examined the popular phenomenon of using WhatsApp, particularly its use to support 
learning through the national “Bagroup” program initiative whose objectives are to prepare students 
for the mathematics matriculation exams and contribute to students’ self-confidence in mathematics. 
This paper reports some quantitative results on how students perceived learning mathematics using 
WhatsApp. The findings demonstrate that, for the most part, students felt that learning through 
WhatsApp contributed to their emotional needs. They were able to understand the material, found 
their peers’ contributions helpful, felt confident to take an active part in the group without fear of 
making mistakes, and perceived the WhatsApp environment as one that was conducive to their 
learning from their peers more efficiently than in a regular classroom. Nevertheless, almost a fifth of 
the participants felt that this environment was not suitable for some mathematics topics. This requires 
further investigation as to the specific content they refer to and the pedagogical and instructional 
approaches to be adjusted. In addition, almost a third believed that the platform did not always allow 
the type of collaboration possible in a normal classroom. Here too, further investigation will shed 
more light on patterns of collaboration and learning mathematical content.  

The findings also demonstrate that students believe that learning in the WhatsApp environment 
promoted their learning of mathematics (second category). with the most notable findings suggesting 
that this environment allows students to learn from each other and persevere more in solving 
mathematical problems (i.e., invest more time and effort in mathematics). We wonder whether 
opportunities to learn from other students (82.2% agreeing with the statement and 15.1% somewhat 
agreeing with the statement) may be associated with other factors such as not fearing making 
mistakes, or with the anonymity that the environment provides where classroom-related social roles 
become blurred and the threat of losing face (Lin & Yamaguchi, 2011) is mitigated. 

The analysis of students’ responses to the open-ended questions may shed some more light on the 
differences in students’ experiences. Specifically, the relationship between students’ perception of 
mathematical content that is not as easily managed on WhatsApp (Category 3) and their managing to 
understand the mathematical concepts that were taught via WhatsApp (Category 1). As well, looking 
into students’ perception of not being able to cooperate with others (two thirds of the respondents 
agreed (31.6%) or somewhat disagreed (38.8%)) while noting their perception of WhatsApp allowing 
them to learn from others in the group (82.2.% agreeing and 15.1% somewhat agreeing).  

The findings of this study suggest that using the WhatsApp environment in learning mathematics may 
provide positive experiences where learners receive opportunities to take ownership over 
mathematical ideas thus developing self-confidence and authorial identity in mathematics. This ties 
with Fellus’ (2019) broad conceptualization of learners’ mathematical identity that offers a unified 
framework to understanding students’ experiences in learning mathematics. Specifically, how 
students talk to and about themselves as learners of mathematics, what opportunities they get to take 
ownership over mathematical content, and the socioculturally available metanarratives about who can 
and who cannot do mathematics. As we further investigate learners’ experiences with the WhatsApp 
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environment, we will be looking more deeply into the relationship between the affordances the 
platform offers and one’s opportunities to take ownership over mathematical ideas and to develop 
tolerance towards errors as ways to deepen conceptual understanding and to foster perseverance.  
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Beliefs are propositions about a certain topic that are regarded as true (Philipp, 2007), they are 
individually held (Erens & Eichler, 2019) and tend to form clusters as they “always come in sets or 
groups, never in complete independence of one another” (Green, 1971, p. 41). A belief is seldom 
isolated, but it is connected to other beliefs, which are part of the same cluster of beliefs. According 
to Green (1971), belief clusters are coherent families of beliefs across multiple contexts. For this 
reason, beliefs can be understood in terms of views of mathematics (Grigutsch, Raatz & Törner, 
1998), namely as epistemological beliefs about mathematics, its teaching and learning. According to 
Grigutsch et al. (1998), it is possible to outline four different views: a process-oriented (P) view that 
represents mathematics as a creative activity consisting of solving problems using different and 
individual ways; an application-oriented (A) view that represents the utility of mathematics for real 
world problems as the main aspect of the nature of mathematics; a formalist view (F) that represents 
mathematics as characterised by a strongly logical and formal structure; a schema-oriented (S) view 
that represents mathematics as a set of calculation rules and procedures to apply for routine tasks. 
Erens and Eichler (2019) operationalised these four views into a Likert-scale questionnaire made of 
24 statements, each of which is assigned to a specific view. Examples of statements are: “mathematics 
helps to solve tasks and problems that originate from daily life” (A), “logical strictness and precision 
are very essential aspects in mathematics” (F), “in order to comprehend and understand mathematics, 
one needs to create or (re-)discover new ideas” (P), “doing mathematics demands a lot of practice in 
adherence and applying to calculation rules and routines” (S). 

In this poster, we aim at showing a methodology for clustering these statements and checking whether 
the four categories defined for the aforementioned four views are a posteriori confirmed by a survey 
administered to 93 students enrolled in the third year of undergraduate studies in mathematics at the 
University of Torino (more details can be found in Andrà, Magnano, Brunetto & Tassone, submitted). 
On one hand, we claim that the need for an a posteriori analysis resides in the importance to verify 
the reliability of the measurement tool. On the other hand, the methodology shown here represents a 
novelty, as it is based on network analysis.  

A network is a set of nodes connected to each other through an edge. Indeed, a network  is a pair 
( , ) where  is the set of nodes and  is a subset of the Cartesian product  × . There are two 
mathematical tools that allow one to analyze a network: (i) the graphical representation of the 
network, and (i) the adjacency matrix, which describes the connections between nodes as its 
component aij>0 if the nodes  and  are connected by a link, otherwise is it null.  
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One of the potentialities of network analysis is the possibility to use clustering tools that do not require 
particular metric definitions. These techniques are called community detection as the goal is to 
identify subnets of nodes characterized by relatively large internal connectivity, namely nodes that 
tend to connect much more with other nodes in the group than the rest of the network. To this end, 
we used the so-called "Louvain method" which is based on the optimization of a quantity called 
modularity ( ). Given a partition into k sub-graphs { 1, 2, . . . , } of the network, the modularity 
( ) is the normalized difference between the total weight of the links inside the sub-graphs  and 
the expected value of total weight in the randomized "null network model" (Newman, 2010). 

It is also important to recall that a network can be built as a projection of a bipartite network, namely 
one made up of two distinct classes of nodes  and , and links can only connect nodes of different 
classes. This is the case of the data analysed in our study, since the network has been built with nodes 
identified by both the 93 students and the 24 items. A student-node is connected to an item-node with 
an edge weighted 1, 2, 3, 4, or 5 depending on the rank assigned to it on a 5-point Likert scale. 
Student-nodes are not directly connected to each other, as well as item-nodes. Another typical 
example of a network of this sort is the Amazon network, where consumers are linked to each product 
if they have purchased it at least once. However, it is possible to define a link between consumers if 
they have purchased the same product, or a link between products if they were purchased from at 
least one same consumer. This method allows one to create a similarity metric between participants 
or between questions in the context of questionnaires (Brunetto, 2017). 

In our poster, we confirm an almost perfect correspondence between a priori classification of Erens 
and Eichler’s (2019) work and our investigation on a sample of undergraduate mathematics students 
a posteriori, and we extend clustering to other aspects of mathematics teaching and learning. 
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This work focuses on Distance Learning during the COVID-19 pandemic to improve undergraduate 
students' motivation, participation, and engagement. Experimentation in a Mathematics STEM class 
evaluated the impact of Distance Learning on students' motivation, participation, and engagement 
levels, computed through a Fuzzy Cognitive Map. It was performed on some affective and interaction 
parameters derived from using an adaptive e-learning platform and from the answers of a semi-
structured questionnaire. The results have been analyzed through Technological Pedagogical 
Content Knowledge and Instrumental Genesis theories. 

Keywords: Virtual environment, fuzzy cognitive map, motivation, participation, engagement. 

Introduction 
Distance Learning (DL), at the time of COVID-19, was a didactic of "being there", as defined by the 
philosopher Heidegger, in the etymological sense of "being-out" (ex-sisto), in which “being” is meant 
as the projection to the future, an opening to possibilistic horizons. DL was characterized by using 
methodologies and technological tools to keep students' participation, engagement, and motivation 
high. It was not just a question of using technologies in teaching but an actual adaptive process to 
using technologies as the only way to learn. This study is framed by the theory of instrumental genesis 
(Verillon and Rabardel, 1995), integrated into the Technological Pedagogical Content Knowledge 
Framework (TPCK), showing how the didactic contents delivered in the presence have taken on a 
new aspect with distance learning (Mishra and Koehler, 2007). Some theories on motivation (Skinner, 
1935; Fredricks et al., 2004) were used to analyze the students' motivation to follow lessons at a 
distance, to be virtually present in the classes (Shonfeld et al., 2020), and to use the teaching tools 
made available by the teachers. It is not rare to find many students who leave the online learning 
course shortly after the beginning; such a phenomenon, called dropout, is always more frequent 
among the students who are not sufficiently engaged and motivated with the learning experience. The 
root causes of students dropping out are the lack of motivation, engagement, and participation (J. 
Keller and K. Suzuki, 2004). Our contribution, in this paper, is to model teaching in an adaptive way 
using adequate technological tools to cope with panic and frustration in which students suddenly 
found themselves trying to stem a possible wide phenomenon of dropout (Capone, 2022). The 
motivation considers the level of interest in the course, the engagement represents the level of 
involvement in the learning experience (Kuh, G. D., 2003), whereas participation (Dominguez, R. G., 
2012) refers to the action of taking part in activities and projects, the act of sharing in the activities 
of a group. For these reasons, a modern course cannot be limited to the simple learning content 
delivery task. Still, it should support the learners in their whole learning experience, leading them to 
reach their learning objectives successfully. A case study was conducted to evaluate whether our 
didactic models adapted to this emergency have helped to maintain a sufficient level of engagement, 
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motivation, and participation. The study was carried out with first-year engineering students of 2019-
2020 in mathematics class. The case study has nomothetic and ideographic intentions by collecting 
quantitative and qualitative data. The quantitative data include the students' interactions on the used 
e-learning platform, the results of the tests, and a semi-structured questionnaire according to the 
Likert scale. In addition, the questionnaire anonymously proposed to students also included open-
ended questions from which to infer, through qualitative analysis, the motivational state of the 
student. Finally, from the qualitative and quantitative data that emerged, a Fuzzy Cognitive Map 
(FCM) was built to derive the levels of the students' engagement, motivation, and participation 
parameters. Based on completely remote teaching, the obtained results are compared with those 
obtained in a previous experiment (Capone and Lepore, 2021). The data seem to show that, thanks to 
the use of an adaptive e-learning platform and restructuration of the educational content through 
technologies, the students have maintained an adequate level of engagement and motivation 
parameters comparable to those of the previous years. On the other hand, participation was lower 
than the previous experience due to a drop in concentration and frustration of being at the computer 
the whole day to follow the online lectures. The dropout was instead contained within acceptable 
values, and in terms of students’ achievement of competencies, the results are comparable. 

Conceptual Framework 
The framework of the Technological Pedagogical Content Knowledge (TPCK), the idea of 
instrumental genesis proposed by Vérillon and Rabardel (1995), and the theory of Fuzzy Cognitive 
Map are tools to describe and model complex systems/environments. 

Technological Pedagogical Content Knowledge Framework 

The Technological Pedagogical Content Knowledge (TPCK) framework conceived by Shulman in 
1986, defines which elements can characterize teaching supported by technologies without neglecting 
the pedagogical aspects and the specific teaching contents of the discipline. We follow Mishra and 
Koehler (2006) that make further clarifications by describing the meaning of the intersections 
between TK and CK, between PK and CK and between TK and PK. They specify the following: 
Pedagogical content knowledge (PCK) is concerned with the structure, organization, management, 
and teaching strategies for how the particular subject matter is taught; Technological content 
knowledge (TCK) is related to how one specific subject matter is represented in technology-rich 
environments. Teaching with technology requires knowing the subject and how subject matter can be 
changed with the application of technology, and this knowledge is called TCK; Technological 
pedagogical knowledge (TPK) is concerned with how teaching and learning change due to integrating 
technology into instruction and how a teacher should choose a particular tool for a specific task 
considering its affordances and limitations. Technological Pedagogical Content Knowledge (TPCK) 
"is an emergent form of knowledge that goes beyond all three components" (p. 1028). According to 
the transformative model, TPCK is different from "knowledge of a disciplinary or technology expert 
and from the general pedagogical knowledge shared by teachers across disciplines" (p. 1029). This 
model helps to interpret the attitude of teachers in the face of innovation in their didactic.  
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The Instrumental Genesis 

The idea of instrumental genesis (Verillon and Rabardel, 1995) seems suitable to describe the use of 
Distance Learning in mathematics education. The instrumental genesis distinguishes an artifact (an 
artificial object/instrument) from an instrument (a psychological construct) by defining the instrument 
as a mixed entity composed of both components related to the characteristics of the artifact and 
subjective components (patterns of use) that come out from the situated instrumented activity or the 
activity involving a subject (as a user), an artifact (as an instrument) and an object (as epistemic 
transformation, for example, the knowledge of functions in two variables). This hybrid entity 
considers the thing and describes its practical use for the subject. A scheme is a systematic procedure 
for using a given instrument to achieve a given purpose. The elaboration and evolution of instruments 
is a long and complex process that Rabardel calls instrumental genesis. It is articulated in two 
processes: instrumentalization, related to the appearance and evolution of the different components 
of the artifact, for example, the progressive recognition of its potentials and limits; instrumentation, 
related to the appearance and development of patterns of use. In our case, the didactic activities 
carried out with AR involved students (as users and protagonists of the didactic-educational path), 
technological objects such as 3D glasses, tablets, and PCs (as instruments), and an object, intended 
in an educational sense as a mathematical item to be recognized, internalized and contextualized (the 
real functions of two real variables). The teacher thus makes use of technological artifacts that 
undergo a triple process of instrumental genesis: from the didactic point of view, because their use is 
aimed at generating knowledge and enhancing skills; from the pedagogical point of view, because 
their use is subordinated to suitable teaching methods activated by the teacher and aimed at the 
construction of mathematical meanings; from a technological point of view, because the use of 
technologies is not an end but implements an effective mobilization of strategies aimed at learning. 

Fuzzy Cognitive Map 

In this work, parameters related to Interaction, Participation, and Motivation, and their causal 
relationships, have been identified and analysed through a Fuzzy Cognitive Map to describe the 
student's state during the course. Kosko defines an FCM as a graph structure for representing casual 
relationships. It can symbolically describe complex systems/environments, highlighting events, 
processes, and states. In an FCM, a node of the graph is called a concept, and an edge is called weight. 
The edge allows for implementing a causal relationship between two concepts. The weight represents 
the strength of the influence of the relationship, described with a fuzzy linguistic term (e.g., low, high, 
very high, etc.).  

An FCM can be formalized through a 4-tuple (N, E, B, f), where:  

1. N = {N1, N2, …, Nn} is the set of n concepts that are represented by the nodes of the graph. 

2. E: (Ni, Nj) → ei,j is a function ( -1,1]) which associates the weight ei,j to the edge 
between the pair of concepts (Ni , Nj); 

3. B: Ni → Bi is the activation function which associates to each concept Ni a sequence of 
activation values, one for each time instant t:  t, Bi (t)  [0,1] is the activation value of the 
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concept Ni at time t. B(0) [0,1] n is the initial activation vector containing the initial values 
of all the concepts; C(t) [0,1] n is the state vector at a specific time instant t.  

4. f: R → [0,1] is a transformation function with a recursive relation for t ≥ 0 between B(t + 1) 
and B(t):  

  (Eq. 1) 

FCM is developed by integrating existing experience and knowledge related to a system. As f (x), 
different functions can be used. FCM can be used to make a what-if inference, starting from a given 
initial activation vector B(0), to understand what will happen next to the modelled 
system/environment. Our FCM has been defined by a team of four experts. Each expert, starting from 
the status model we have defined, has proposed his FCM to identify the causal relationships and 
weights between the available concepts. The weights are represented by seven linguistic terms: no 
impact 0.00, very low = 0.165, low = 0.335, medium = 0.50, almost high = 0.665, high = 0.835, very 
high = 1.00. Then, we aggregate the different maps proposed by the experts to obtain one FCM. 
When some differences arise between the relationships and weights proposed by the experts, we 
asked them to discuss these differences and try to find an agreement, until they achieve a sufficient 
degree of consensus. This allowed us to obtain the FCM widely discussed in D’Aniello et al, 2020. 

Methodology 
The methodology is based on a single case study to identify intervention strategies on the specific 
situation of didactic hardship following the pandemic. Direct observation, understood as student-
teacher interaction through information technologies collected empirical data on teaching 
effectiveness. The approach was both of an ideographic nature based on qualitative methods through 
a questionnaire to students (fully reported in appendix A) and of a nomothetic nature based on 
quantitative data that emerge from the results of the tests, from the responses to the questionnaire 
based on the Likert scale, and from students' interactions with the e-learning platform. Further 
qualitative information was collected from the protocols from the dialogues between students and 
between students and teachers on the e-learning system used. A specially created FCM summarizes 
both qualitative and quantitative data in terms of participation, motivation, and engagement, 
comparing them with the data of the previous cohort. As for the analysis of the disciplinary skills, a 
comparison between the results of the first and second mid-tests of two years was carried out. 

The Case Study 
The didactic experimentation involved the students of the first year of Mechanical Engineering and 
Management Engineering at the University of Salerno, the course teacher, two experts of the 
discipline for the exercises, three students attending the master's degree in engineering with the 
function of the tutor. The course was carried out during the second semester of the first year after 
students had attended and/or taken a Calculus 1 exam. Because of the COVID-19 pandemic, after the 
first two face-to-face lessons, the teaching activities of the Calculus II course were conducted through 
Distance-Learning. They were articulated into Asynchronous Online Learning and Synchronous 
Online Learning. The course has been restructured following the constructive alignment suggested 
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by Biggs and Tang (2010). The course included 90 hours of lessons (six hours per week), divided 
into 54 hours of theory lessons and 36 hours of training; also 24 hours of exercises with the tutors, 
dividing the students into two sub-groups, 12 additional hours of activities for students who have 
reported an insufficient evaluation at the first test. The course has been designed considering the 
indications of the Teaching Council and the Lisbon descriptors. The following online resources have 
been used: custom adaptive e-learning platform (D’Aniello et al, 2020), Microsoft Teams, Doceri, 
Edmodo, the teacher's website, the teacher's YouTube channel, Geogebra AR. The use of these 
resources follows the framework proposed by Bray and Tagney (2016). This approach focuses on 
creating activities within the Transformation space: transformative uses of technology allow 
significant task redesign (modification) or permit the creation of tasks that would not be possible 
without the digital tools (redefinition). These aspects have contributed to implementing this course's 
activities, especially regarding engagement.  The results obtained from the data available for 
completely remote teaching were compared with the data collected in a previous experiment. The 
course was conducted in blended mode, i.e., in the 2018/19 academic year. The Engagement 
parameters have been made available by the systems used through the collection of student 
interactions. The parameters relating to Motivation were determined through the analysis of 
questionnaires administered during the course. The parameters related to Participation or Emotions 
and social activities are established through sentimental analysis on the video streaming of the 
webcams filming the students and through the answers to the questions in the questionnaire. Dropout 
was calculated as the ratio of the number of students who attended the whole course to those who 
were present at the beginning of the course. The data provided by the system for the different 
parameters of interest are analysed through FCM execution to create the student’s status; by 
comparing the parameters of the participants it will be possible to understand if the use of completely 
remote teaching did not negatively affect the status of students. The two classes are made up of 131 
and 112 students respectively. For the experimentation, 60 samples from the first group and 60 
samples from the second group were randomly selected. Cochran’s formula was used to calculate the 
sample size:  (Eq. 2), where: e is the desired level of precision (i.e. the margin of error); p 
is the (estimated) proportion of the population which has the attribute in question; q is 1 - p; the z-
value is found in a Z table. It is s the abscissa of the normal curve that cuts off an area α at the tails 
(1 - α equals the desired confidence level, e.g., 95%); n0 is the sample size. 

In our experimentation the chosen parameters were: Z = 99%; p = 0.90; e = 0.10. 

Fig. 1: a) Participation, Engagement and Motivation results. b) Dropout results               
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The average levels of engagement, motivation, and participation calculated through the execution of 
the FCM are shown in Fig.1a. The parameters used to obtain the motivation level were determined 
by analysing questionnaires administered during the course. The parameters related to participation 
were established through sentimental analysis on the video streaming of the webcams filming the 
students and through the answers to the questions in the questionnaire. At the same time, the 
parameters related to engagement were obtained, analysing mainly the data coming from the e-
learning platform. The decline in student participation in the year 2019/20 compared to the previous 
year seems to be due to the negative impact of the emergency for the pandemic on the emotional state 
of students. In addition, the sense of alienation and frustration has led to a loss of concentration and 
poor social activity. The level of motivation is comparable for students of the year 2018/19, it is 
determined by intrinsic and social motivation for students of the year 2019/20 by an external tax. The 
engagement is slightly greater for students of the academic year 2019/20 who have massively used 
the e-learning platform as the only tool to follow the course and access the content made available by 
the teachers. Finally, the dropout graph shown in figure 1b shows how the two values are comparable 
(6% in the year 2028/19 and 9% in 2019/20) and how they remained below an acceptable threshold. 
The use of an adaptive e-learning platform and the restructuring of educational content using 
technologies, which led students to have a high level of engagement for the course duration, seem to 
have contributed to containing the phenomenon of dropout feared at the beginning of the course 
through distance learning methods. In addition, from the hierarchical questions of the questionnaire, 
it emerges that in the year 2019/20, 69.77% of students answered 4 or 5 on the Likert scale to the 
question of how frequently they confronted each other on the teaching activities of the course; while 
in 2018/19 40%. 92% of the students declared that they had interacted on the e-learning platform 
forum either assiduously or frequently (4 or 5 on the Likert scale) in 2019/20. As they declared, the 
forum allowed them to recreate the study room environment, although virtual, in which to discuss the 
solution of the exercises proposed in class. In 2018/19, however, only 25%. As a further element of 
qualitative analysis, it was decided to compare the data that emerged from the tests during the two 
academic years, shown in Fig.2. 

 

Fig. 2: Results of the tests done by students during the two academic years 

A less critical situation seems to emerge from the data in Fig. 2 than from the qualitative data. There 
is no statistically significant difference between the two data; indeed, it is possible to note that the 
percentage of those who failed the tests in 2019/20 is slightly lower than that of 2018/19. A possible 
interpretation of these data is suggested by having completely restructured the didactic activities. 
TCK, PCK and TPK have been intersected to convey the contents of the discipline using alternative 
teaching methodologies supported by the use of technologies. So, the main findings are: 
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Distance Learning is excellent as an additional and support methodology but highlights the 
ineffectiveness of completely remote teaching; the emergency alters motivation, participation, and 
engagement, and the distance learning used. The motivation went from intrinsic to extrinsic given the 
external constraint to take the online course as the only way to obtain attendance. Participation 
plummeted because the emotional state and the desire for socializing were adversely affected. 
Engagement increased as a result of massive use of adaptive learning platform and all the 
technological tools as the only means to follow the course and feel part of a community; by integrating 
TCK, PCK and TPK to use an adaptive e-learning platform, students have reached adequate levels of 
competence. 

Conclusions 
Distance learning, already widespread in recent years, has taken on a new meaning in this pandemic 
time. It has taken on the role of proximity education, as openness to the world and a willingness to 
enter into a relationship with things and others. It was indispensable for strengthening the web of 
relationships between teachers and students and between teachers. Distance Learning could lead to 
unexpected connections that are not just accessing a server from a client through protocols or software 
but could instead favour synaptic connections that produce cognition and generate positive emotions 
that do not make us become victims of an emotional abduction and transported by fear, by anguish in 
a non-adaptive way. This research focused on distance learning and the virtual environment during 
the Covid-19 pandemic, highlighting how motivation, participation, and engagement are affected. 
The purpose of the experiment was to verify how the use of completely remote teaching influences 
the student's status in terms of participation, interaction, engagement. A student with a high level of 
these indices proved to be more motivated to study the discipline, positively influencing skills 
improvement. It was possible to understand that completely remote teaching did not negatively 
influence the student's status, assessed through FCM, and allowed satisfactory results to be achieved 
in terms of acquired skills. The dropout was contained within acceptable values. The strategies 
implemented by the course lecturers aimed at integrating TK, PK, and CK following the TPCK 
framework. Finally, the processes of instrumentation and instrumentalization have caused an 
instrumental genesis of technological artifacts. The findings of this case study provide a fresh 
perspective and set the stage for future related research. The authors hope to undoubtedly return to 
face-to-face teaching, where human values and relationships take on a concrete and visible form while 
trying to exploit the potential of distance learning, integrating the strengths of the two methodologies. 
Distance learning offered the opportunity to rethink educational action from the point of view of 
contents, methodologies, and student-teacher interactions alike. At the end of the pandemic, as the 
next step, we think that some positive aspects of distance learning can be integrated with traditional 
teaching and enhance a blended modality of didactic action called Integrated Digital Teaching. 
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In this report, we network the documentational approach to didactics and a theory of meanings to 
explore and develop models of one tertiary teacher’s (Evelyn’s) understandings of developmental 
mathematics, its students, and the resources she utilizes to support instruction. In addition, we discuss 
the affective aspects of the schemes of meanings that came to Evelyn’s mind as a result of these 
understandings. Finally, we discuss future research to explore the design of interventions (e.g., 
professional learning experiences) that provoke changes in tertiary teachers’ schemes of meanings 
to more productive structures. 

Keywords: Affect, caring communities, sense of belonging, theory of meanings. 

Introduction 
In the United States, college and university policies typically require new students to be assessed in 
mathematics through some form of placement test. These tests are commonly designed and evaluated 
by a third-party (e.g., ALEKS, COMPASS). Students assessed as needing mathematics remediation 
are required to complete remedial (or developmental) math courses prior to taking a college-level 
math course. The need for remediation in math is not uncommon for students at both 2- and 4-year 
public institutions. Chen’s (2016) analysis of beginning tertiary students’ course taking between 2003 
and 2009 found 59.3% of students who began their tertiary education at a 2-year public institution 
and 32.6% of students who began their tertiary education at a 4-year public intuition, took one or 
more remedial mathematics course. Unfortunately, a large percentage of students enrolled in 
developmental courses fail to pass them. According to Chen (2016), 20% of remedial math course 
takers beginning at both public 2- and 4-year institutions did not complete any of the remedial math 
courses they attempted. There exists substantial research documenting the characteristics (e.g., 
academic preparedness, age, ethnicity, socioeconomic status) of higher education developmental 
mathematics students that relate to retention and success (e.g., Benken et al., 2015). In addition, 
extensive research on efforts to reform developmental mathematics in higher education have focused 
on restructuring coursework, reforming developmental placement, redesigning curricula, and 
enhancing student support (e.g., Bickerstaff et al., 2019). Missing from this research are 
investigations into those at the forefront of attempts to implement such changes—the instructors of 
developmental mathematics courses. In this report, we focus on teaching and learning developmental 
mathematics at the tertiary level and addresses the following research questions: 1) How do tertiary 
mathematics teachers understand developmental mathematics? 2) How do tertiary mathematics 
teachers understand the students enrolled in developmental mathematics? 3) How do tertiary 
mathematics teachers understand the resources they utilize to support developmental mathematics 
instruction?  
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Theoretical Framework 
The study utilizes a networking of theories approach (Bikner-Ahsbahs & Prediger, 2010) to connect 
frameworks and explore the research questions; specifically, we “network” the documentational 
approach to didactics (Trouche et al., 2020) and a theory of meanings (Thompson et al., 2014).  

The Documentational Approach to Didactics  

The documentational approach to didactics (DAD) analyses “teachers’ work through the lens of 
‘resources’ for and in teaching: what they prepare for supporting their classroom practices, and what 
is continuously renewed by/in these practices” (Trouche et al., 2020, pp. 237–238). In DAD, resource 
is defined as anything “developed and used by teachers and pupils in their interaction with 
mathematics in/for teaching and learning, inside and outside the classroom” (Pepin & Gueudet, 2020, 
pp. 172–173). Such resources include text (e.g., textbooks, worksheets, tests) and other material 
resources (e.g., calculators); digital-/ICT-based resources (e.g., online textbooks, GeoGebra); 
discussions between teachers, orally or online; students’ written work; and teachers’ discussions with 
mathematics teacher educators (Pepin & Gueudet, 2020). Integral to DAD is documentational 
genesis, which comprises two interrelated processes (Trouche et al., 2020): instrumentalisation, 
where a teacher’s knowledge guides the choices she makes among various resources and the way 
these resources are appropriated; and instrumentation, where the features of the resource(s) impact 
the teacher’s practice. Documentational genesis “gives birth” to a mixed entity (i.e., a document) 
linking resources and a utilization scheme for these resources, represented by the equation: Document 
= Resource(s) + Utilization Scheme. The concept of scheme, which can be viewed as a structure 
organizing a subject’s activity with a resource or set of resources for a given goal, is central in DAD. 

Theory of Meanings 

Thompson and Harel’s theory of meanings (Thompson et al., 2014; Table 1), is based on Piaget’s 
notion of assimilation to a scheme, and focuses on teachers’ (schemes of) meanings, where a scheme 
is defined as “an organization of actions, operations, images, or schemes—which can have many 
entry points that trigger action—and anticipations of outcomes of the organization’s activity” 
(Thompson et al., 2014, p. 11).  

Table 1: Definitions of Understanding, Meaning, and Ways of Thinking (Thompson et al., 2014) 

Construct Definition 

Understanding  
(in-the-moment) 

Cognitive state resulting from an assimilation 

Meaning  
(in-the-moment) 

The space of implications existing at the moment of understanding 

Understanding (stable) Cognitive state resulting from an assimilation to a scheme 
Meaning (stable) The space of implications that results from having assimilated to a scheme. The 

scheme is the meaning. 
Way of Thinking Habitual anticipation of specific meanings or ways of thinking in reasoning 

As characterized by Thompson and Harel (Table 1), an understanding is a cognitive state of 
equilibrium, which may occur from assimilation to a scheme (i.e., stable understanding). According 
to Thompson et al. (2014), “A scheme, being stable, then constitutes the space of implications 
resulting from the person’s assimilation of anything to it. The scheme is the meaning of the 
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understanding that the person constructs in the moment” (p. 13). Alternatively, a cognitive state of 
equilibrium might be a state the “person has struggled to attain at that moment through functional 
accommodations to existing schemes . . . and is easily lost once the person’s attention moves on” 
(i.e., in-the-moment understanding; Thompson et al., 2014, p. 13).  

Methods 
Since the study attempted to reveal teachers’ understandings and explore how these conceptions 
impacted their teaching of developmental mathematics, it was necessary to make models of teachers’ 
conceptions. The case study described in this report expresses our second- order models of teacher’s 
understandings at various points throughout the study; that is, throughout the activities (i.e., 
interventions) designed to make teachers’ meanings explicit. 

Study Participants 

In this report, we focus on one of two study participants (i.e., Evelyn). Evelyn had 16 years of tertiary 
teaching experience and was teaching a fully remote Beginning Algebra community college course 
during an 8-week summer course with 13 non-traditional college students. The course met twice each 
week for 90-minutes. Although Evelyn’s summer course encompassed 8 weeks, the study itself was 
12 weeks in length and included weekly group meetings before, during, and after the conclusion of 
her summer course. Eleven of the 13 students (84.6%) passed the course, a rate higher than results 
from Chen (2016), indicating Evelyn may serve as a model for effective developmental mathematics 
practices.  

Data Collection 

The study employed a modified version of the reflective investigation methodology (Trouche et al., 
2020) for data collection, a methodology naturally associated with case studies and grounded by five 
main principles: (1) broad collection of resources; (2) long-term follow up; (3) in- and out-of-class 
follow-up; (4) reflective follow-up; and (5) confronting a teacher’s views on her documentation work. 
Due to the length of the summer course and limits precluding in-person interactions, some principles 
could not be strictly adhered to, resulting in a modified version of the methodology. The data corpus 
consisted of Evelyn’s semi-weekly self-recorded videos discussing her lesson plans, with 
accompanying documents and internet links to all materials she utilized during instruction and 
assessment; her reflections of lesson implementations; and video recordings and field notes from 
weekly online discussions designed to probe Evelyn’s understandings in more detail. Data also 
included two tools specific to reflective investigation methodology: reflective mappings of Evelyn’s 
resource system (RMRS) and inferred mappings of Evelyn’s resource system (IMRS). According to 
Rezat et al. (2019) an RMRS is a methodological tool created by a teacher where the teacher is asked 
to draw a map (based on her own reflections) to present her resources in a structured way; whereas 
an IMRS is a methodological tool created by “the researcher based on the observations of and 
interviews with the teachers about their resource work” (Rezat et al., 2019, pp. 357–358). 

Results 
Making sense of Evelyn’s understandings of developmental mathematics and her students required 
us to develop models of Evelyn’s ways of operating—models that represented our interpretations of 

Proceedings of CERME12 1339



 

 

Evelyn’s interactions with study activities and digital resources. Using data generated from study 
activities and reflective investigation, these models were tested, modified, and refined through 
ongoing and retrospective conceptual analysis of the data corpus. Evelyn utilized a student survey at 
the beginning of her course to obtain information about her students’ perceptions of mathematics. 
The survey was posted as an online assignment and asked students a variety of questions, including: 
“How do you feel about taking a math course synchronously/online?”; “What are your strengths and 
weaknesses in mathematics?”; and questions regarding students’ experiences with the institution’s 
videoconferencing application (i.e., Webex) and learning management system (i.e., Blackboard). As 
part of the Week 6 meeting, Evelyn described her initial RMRS. During the Week 7 meeting, the first 
author created an inferred mapping of Evelyn’s resource system (IMRS), based on her RMRS and 
the Week 6 discussion. During the Week 9 meeting, Evelyn was confronted with this IMRS and her 
original RMRS. The Week 9 meeting resulted in the refined IMRS shown in Figure 1, which 
illustrates Evelyn’s resources partitioned into three groups: resources specific to mathematics content, 
tools for communication and dissemination, and tools to deliver instruction.  

 
Figure 1: Refined Inferred Mapping of Evelyn’s Resource System (IMRS) 

Evelyn’s RMRS did not include the arrows. Comments made during group meetings emphasized 
Evelyn’s integration of these three types of resources. For example, whenever Evelyn spoke about 
“Math Resources” she used, she invariably included ideas about and a rationale for utilizing “Tools 
for Communication / Dissemination” and “Tools to Deliver Instruction.” During the Week 11 
meeting, Evelyn indicated her use of guided notes, Khan Academy, Microsoft Word, and ideas from 
her colleagues were “dependent on her students’ needs . . . [and] were provided to help develop, 
promote, and support a caring community in the classroom.” Throughout the data corpus, Evelyn 
indicated her “students’ needs” referred to each student’s individual circumstances and challenges, 
which included (Goldin, 2002; Hannula et al., 2019): math anxiety – “my students are so 
intimidated and scared of mathematics because of bad prior experiences” (Instructor 2, Week 2 
meeting); test anxiety – “testing is always a traumatic experience for these students” (Instructor 2, 
Week 9 meeting); low math self-efficacy – “part of my job is to get these students to believe they 
can actually do the math” (Instructor 2, Week 11 meeting); and frustration – “many of my students 
with families and work get fed up trying to navigate school” (Instructor 2, Week 6 meeting). 
Therefore, Evelyn enacted her intent to “support a caring community in the classroom” through 
listening to and observing her students; demonstrating respect for her students; thinking and 
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reflecting on ways to support her students; being approachable, available, and responsive to her 
students; and creating an environment where caring relations can flourish. 

Throughout the group meetings, Evelyn’s comments also emphasized an image that resources were 
in the foreground of her practice, whereas promoting and supporting a sense of belonging in the 
mathematics classroom was always in the background. Comments and assertions that illustrate this 
image include: mathematical identity – “I want to make sure each student believes they can be . . . 
they are a contributor to the mathematics classroom . . . to view themselves as mathematicians” 
(Instructor 2, Week 6 meeting); and values – “since most of my classes have both traditional and 
nontraditional students, I have to make certain to provide activities that encourage each group to 
value mathematics” (Instructor 2, Week 9 meeting) (e.g., Goldin, 2002; Hannula et al., 2019). 
According to Thompson and Harel (Table 1), the meaning of an understanding is the actions or 
schemes the current understanding implies. Therefore, the meaning of Evelyn’s understandings “to 
develop, promote, and support a caring community in the classroom, dependent on my students’ 
needs” and “to promote and support a sense of belonging in my students, as learners of and 
contributors to mathematics”—what comes to Evelyn’s mind in situations related to developmental 
mathematics and its students—are comprised of affective aspects of her students (e.g., anxiety, 
frustration, identity, self-efficacy, values). Goldin (2002) defines beliefs as “internal representations 
to which the holder attributes truth, validity, or applicability, usually stable and highly cognitive, 
may be highly structured” (p. 61). For Philipp (2007) beliefs are “the lenses through which one 
looks when interpreting the world” (p. 258). Therefore, Evelyn’s stable understandings related to 
developmental mathematics and its students are indicative of her beliefs about developmental 
mathematics and its students. 

Teachers’ Understanding of Remedial Mathematics 

Evelyn exhibited meanings for development mathematics that involved more than just a series of pre-
tertiary math topics (e.g., operations of real numbers, order of operations); rather, as described by 
Evelyn, “Developmental math involves content that is foundational to my students’ future 
mathematics learning” (Week 10 meeting). Evelyn also indicated a desire to prepare students for 
subsequent math courses by helping her students “build or strengthen their mathematics foundation 
for their next course, including study strategies” (Week 3 meeting). Therefore, as characterized by 
Thompson and Harel (Table 1), Evelyn’s stable understanding of developmental math is “content 
foundational to students’ subsequent math courses and dependent on each student’s needs.” Although 
one might question how this stable understanding can be defined as a “cognitive” state resulting from 
an assimilation to a scheme, it is important to note that when “Piaget spoke of schemes, he had in 
mind organizations of mental and affective activity whose contents could be highly nuanced and 
could contain several layers of structure” (Thompson, 2016, p. 432). For Piaget (1973), the “affective 
and cognitive mechanisms always remain interrelated though distinct” (p. 261). Similarly, for 
Vergnaud (2013), “[c]ognition is affective, or it is not, and affectivity is cognitive, or it is not. A 
scheme conveys both characteristics” (p. 52). Therefore, we interpret a “cognitive state” as being 
inclusive of all cognitive, affective, and social activity. This interpretation aligns with A. G. 
Thompson (1992), who referred to teachers’ understandings “as a more general mental structure, 
encompassing beliefs, meanings, concepts, propositions, rules, mental images, preferences, and the 
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like” (p. 130). Finally, since meaning is implicative, Evelyn’s meaning of developmental mathematics 
has implications for her further action. Specifically, Evelyn’s actions focus on highlighting the 
“foundational to subsequent mathematics courses” aspect of development mathematics and affective 
aspects of “each student’s needs” (e.g., anxiety, frustration, identity, self-efficacy, values).  

Teachers’ Understanding of the Students Enrolled in Remedial Mathematics 

In addition to the initial survey, Evelyn also asked her students how they were thinking about the 
course (e.g., what they struggled with, what was useful) throughout the course. Evelyn developed 
models of her students based on her interpretations of students’ responses to these queries. For 
example, one of Evelyn’s students who had not taken a math class for over seven years asserted, “I 
had a lot of college credits, but just [gave] up on myself . . . [and] want to prove to myself and my 
children that it’s never too late.” As such, Evelyn made a point to “check-in” with this student on a 
regular basis to make certain she was feeling comfortable and achieving her goals. Since Evelyn was 
teaching remotely, she provided a live tutorial for her students, where she went through the 
Blackboard and Webex environments, making certain students had a sense for where to find the 
calendar, weekly and daily folders, assignments, assessments, video links, and chat box. Evelyn also 
provided her students with an unlimited amount of time to complete online quizzes, since she wanted 
to “make certain [they] feel like they have enough time to do really good work, to be thorough, and 
to show all of their work” (Week 10 meeting). Evelyn indicated this action helped reduce some math 
anxiety because students were not watching the clock. Furthermore, Evelyn promoted a collaborative 
and supportive environment by encouraging students to use “clapping” and “thumbs up” emojis to 
show appreciation for student or group virtual demonstration work. Finally, Evelyn utilized her 
understanding of her students’ future courses to emphasize concepts and behaviors important to 
students’ continued success. Therefore, Evelyn understood her (developmental) students as 
“individuals with varying mathematics and school experiences in need of a caring environment and 
a sense of belonging as learners of and contributors to mathematics”—indicative of Evelyn’s beliefs 
about her students. Since meanings are implicative, Evelyn’s actions focused on affective aspects of 
her students (e.g., anxiety, frustration, identity, self-efficacy, values). 

Teachers’ Understanding of the Resources They Utilize to Support Instruction 

Evelyn selected resources that provided her students with opportunities to engage in mathematics in 
a supportive environment. This way of thinking is demonstrated by examining those resources Evelyn 
utilized to find and generate mathematics content and environments (e.g., Khan Academy, Microsoft 
Word; see Figure 1). Evelyn indicated she used Khan Academy because most of her students were 
familiar with it, either through a prior high school math course or their own children’s use of the 
resource. Regarding use of her prior notes, Evelyn indicated her students had found guided notes to 
be quite beneficial during asynchronous classes over the past year. As such, she decided to utilize 
these same notes in the remote setting. Finally, Evelyn provided self-made video tutorials 
corresponding to her guided notes, again prepared over the past year, as an additional resource to 
support her students. Evelyn indicated her Word documents could easily be changed to pdf format 
and uploaded to Blackboard Ally, a tool that generates alternative formats for students to download, 
provides accessibility scores, and gives instructor feedback on how to improve their accessibility 
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score. Finally, Evelyn indicated making digital course content more accessible to all her students 
supported her attempts to support student engagement and sense of belonging. Therefore, Evelyn 
understood these resources as “tools to support each student, based on their individual needs, as they 
engage with mathematics and interact with their classmates and herself”—indicative of Evelyn’s 
beliefs about developmental mathematics and her students. Finally, since meanings are implicative—
and as a result of the instrumentalisation process—Evelyn’s actions with respect to these tools 
focused on her students’ “individual needs” (e.g., anxiety, frustration, identity, self-efficacy, values). 

Discussion and Conclusion 
As illustrated here, Evelyn’s schemes of meanings, indicative of her beliefs, focused on affective 
aspects of her students’ varied needs and experiences. Aligned with Hackenberg (2005), we posit that 
Evelyn’s assimilatory structures involve a scheme of decentering (Piaget, 1962), where decentering 
is the attempt to imagine one’s experience from another perspective. Given the case study only 
included one participant, our findings are not generalizable. The study’s small sample size and lack 
of range within teaching styles are a few additional notable limitations. Future research should 
explore the understandings of a larger sample of tertiary teachers of developmental mathematics to 
determine the meanings by which teachers operate; specifically, the ubiquity of schemes of 
decentering. Such research should also include examination of the types of professional learning 
experiences most propitious to fostering schemes of decentering in tertiary mathematics teachers. 
Furthermore, the “networked” approach presented here provides researchers and mathematics teacher 
educators with a framework focused on teachers’ documentation work that supports identification of 
the schemes of meanings with which teachers teach—including teachers’ belief structures—and has 
the potential to support the design of productive professional learning experiences for both pre-
service and in-service teachers. Finally, such research should explore the role the instrumentation 
process might play in transforming teachers schemes of meanings, where the features and teacher’s 
understanding of a resource or set of resources impact that teacher’s schemes as a result of their 
interactions with the resource(s). 
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Beliefs about problem posing 
Çiğdem Haser 
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Beliefs about problem posing are rarely addressed in mathematics education. The study explored 43 
senior preservice middle grades mathematics teachers’ (PTs) beliefs about problem posing and their 
possible place in their mathematics-related belief system with two open-ended surveys and one 
problem posing task. In line with their mathematics-related beliefs, PTs believed that problem posing 
was important because it supported students’ conceptual understanding. However, they believed that 
problems for the low-level students should require applying simple procedures and these students 
would not be able to pose problems. Problems including challenging tasks could be posed for high-
level students and they had skills to pose such problems. PTs’ problem posing beliefs may be linked 
more to their beliefs about students’ learning than those about nature of mathematics and problems. 

Keywords: Problem posing, preservice mathematics teachers, beliefs, belief system.  

Introduction 
Problem posing is (a) producing new problems by rearranging an existing situation to a problem or 
(b) revising existing difficult problems to formulate more solvable problems (Silver, 1994). It is an 
important, challenging, and cognitively demanding mathematical activity as it enhances students’ 
conceptual understanding, reasoning and dispositions towards mathematics (Singer et al., 2013), and 
enables teachers explore students’ mathematical understandings and experiences (Silver, 1994). 
Hence, there is a demand for teachers to encourage students for posing problems (Crespo & Sinclair, 
2008; Rosli et al., 2015). Inservice and preservice teachers’ mathematics-related beliefs influence 
their response to the demands for meaningful mathematical experiences and their conceptualization 
of teaching and learning mathematics (Philipp, 2007). Despite the importance of problem posing in 
mathematics education and of inservice and preservice teachers’ beliefs, beliefs about problem posing 
have received less attention (Li et al., 2020) within the studies about mathematics-related beliefs.  

Middle school mathematics in Turkey aims to enhance students’ conceptual understanding of 
mathematics by guiding them to construct new mathematics concepts on existing ones, focusing on 
conceptual understanding, emphasizing connections to other content area and real-life, and utilizing 
multiple representations (Milli Eğitim Bakanlığı (MEB), 2018). This approach is supported by 
mathematics teacher education programs that train teachers specifically to teach middle school 
mathematics. Problem posing is an effective tool to enhance students’ and preservice and inservice 
teachers’ conceptual understanding of mathematics, yet it is addressed less in teacher education 
programs compared to problem solving (Crespo & Sinclair, 2008). Teachers’ beliefs about problem 
posing may influence their tendencies to utilize problem posing in their teaching (Li et al., 2020). 
Therefore, this study investigated preservice middle school mathematics teachers’ (PTs) beliefs about 
problem posing in the beginning of a short problem posing module to draw conclusions for how these 
beliefs might be related to each other within the web of PTs’ beliefs and inform the teacher education 
programs with the following research question: How are PTs’ beliefs about problem posing related 
to their mathematics-related beliefs and beliefs about problem solving? 
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Belief Systems  
It is often accepted that beliefs are held in belief systems including the following characteristics as 
identified by Green (1971): (i) Beliefs are located in clusters in which we hold non-conflicting beliefs; 
(ii) some beliefs are constructed in relation to others in our belief system, which makes them quasi-
logical, where we have primary beliefs and their derivatives; (iii) strong and important beliefs are 
located at the center/core of the clusters and those that are less strong at the peripheral; and (iv) we 
hold some beliefs evidentially (based on evidence/reason and can be changed by rational criticism) 
and some non-evidentially (not evidence-based and not changed easily). He suggested that teaching 
should aim for developing evidential beliefs and a quasi-logical belief system as logical as possible.  

Beliefs in a cluster may be considered as a web of primary and derivative beliefs (Beswick, 2018). If 
we have experiences that conflict with our existing beliefs, we (our belief system) tend to adapt to 
these new beliefs or try to explain our existing beliefs in different ways as an attempt to limit the 
conflicts. This adaptation takes place when we reflect on our experiences and reorganize our 
understandings from our observations (Philipp, 2007). In the end, we have new beliefs and a new 
(sub-)web of beliefs linked to the existing web, which illustrate adaptation of our belief system when 
there are new experiences and knowledge (Beswick, 2018). 

Beliefs about Problem Posing 
Previous studies revealed that PTs considered having problem posing skills as important and 
beneficial for teachers and students especially to increase students’ interest in mathematics 
(Hošpesová & Tichá, 2015). They also believed that problem posing increased students’ 
mathematical thinking, made students the owners of their mathematical knowledge, and served as an 
effective process to assess their learning (Hošpesová & Tichá, 2015). PTs tended to believe that 
problem posing could help students develop a better understanding of mathematical concepts, think 
beyond solving and posing problems, become more creative, and develop positive attitudes when 
they worked on the problems posed by students (Grundmeier, 2015). PTs mostly believed that the 
connection between real-life and mathematics would be useful for students while posing problems, 
but they did not focus on the benefits on students’ learning (Lee, 2012). 

When PTs posed problems, they paid attention to the difficulty of the problems for the age and grade 
level of students, authenticity of the problems, mathematical concepts in the problems, and realistic 
and understandable nature of the problems (Rosli et al. 2015). Yet, analysis of their problems showed 
that the problems they posed were not in high quality (Hošpesová & Tichá, 2015), did not focus on 
conceptual understanding but promoted memorization (Crespo & Sinclair, 2008), and their solution 
required one or two arithmetic operations (Lee, 2012). PTs did not increase the reasoning and thinking 
skills required to solve the problems; rather, they added another operation for solution to increase the 
complexity of the problems (Leavy & Hourigan, 2020). It is possible that since PTs tended to pose 
problems similar to the ones they solved earlier in teacher-assigned tasks and textbooks because they 
were generally were not given opportunities to pose problems (Crespo & Sinclair, 2008).  

Studies showed that training on problem posing provided teachers and PTs with new perspectives on 
problem posing (Barlow & Cates, 2006; Leavy & Hourigan, 2020). Teachers developed favorable 
beliefs about employing problem posing in the classroom and tended to do so in their lessons because 
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they observed that problem posing helped their students construct mathematics knowledge and 
increased their interest in mathematics and discussions in the lessons (Barlow & Cates, 2006). 
However, teachers and PTs believed that problem posing might be confusing for students in the 
beginning, consume time, result in ineffective mathematics lessons, and students might be more 
inclined to pose simple questions but not problems that require reasoning (Hošpesová & Tichá, 2015).  

PTs can develop beliefs to support their practices for effective learning, such as beliefs about problem 
posing that will enable them to integrate problem posing effectively in their future teaching, when 
teacher education programs address their existing beliefs and aim for new ones (Philipp, 2007). 
However, this process requires knowing how PTs’ existing mathematics-related beliefs are organized, 
where their (probably derivative) problem posing beliefs might be placed within their belief system 
in relation to the other beliefs, and what possible belief connections should be targeted while 
designing problem posing experiences for them. Therefore, the study focused on PTs’ beliefs about 
problem posing in the beginning of a short module aiming to provide initial ideas on problem posing. 

Method  
A basic qualitative research design was employed to explore PTs’ beliefs (Merriam, 2009) by open-
ended surveys and problem posing tasks, which PTs provided written responses. The problems posed 
by PTs during the implementations were not the foci of the study and therefore, not reported.  

Context and participants 

The study was conducted in a four-year middle-grades (5 to 8) mathematics teacher education 
program in Turkey with 43 PTs (6 males and 42 females) who were taking the Practice Teaching 
course and consented for the study. Practice Teaching is offered in the last semester of the program 
and required 60 hours of observation of and teaching middle school mathematics lessons, and two-
hour University component every week to discuss PTs’ experiences and observations at schools.  

Instruments and procedures 

PTs participated in a four-hour module (2 two-hour meetings) on problem posing that took place at 
the University component of the Practice Teaching course. The study focused on the first two-hour 
meeting where PTs completed two open-ended surveys and one individual task. Surveys targeted 
PTs’ thoughts, experiences, and observations about teaching and learning mathematics, problems, 
problem solving and posing. The reason for targeting a broad area of beliefs was to understand PTs’ 
larger web of mathematics-related beliefs and possible derivative beliefs about problem posing within 
(Beswick, 2018). The task asked PTs to pose problems for students with different levels of knowledge 
and skills, and reflect on the process. Information about the data collection procedure is in Table 1.  

Data analysis 

Data analysis started by extracting belief statements after repeated careful reading of all responses 
(Beswick, 2018) where PTs expressed their understandings and reasons (Philipp, 2007) for the 
question content. I developed a code list based on the studies about PTs’ mathematics-related beliefs 
in these programs (e.g., Haser & Doğan, 2012) and based on my repeated reading of the data with 
room for emerging codes especially for beliefs about problem posing. While I kept a list of possible 
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codes from the literature (above) for problem posing, my focus was more on codes extracted from 
the data because I tried to see the connections among the beliefs within this specific data set. After 
determining the initial code list, I coded the data with some emerging codes, revised my coded data 
for consistency, and listed examples of belief statements for the codes. After coding was completed, 
I determined the themes and revised the examples of belief statements and data to ensure an adequate 
representation of PTs’ beliefs by the themes. I summarized the themes narratively to see a clearer 
picture of connections which revealed a web of PT’s beliefs grounded in data and their conflicting 
beliefs. I revised the conflicting beliefs one more time in detail for a better interpretation. 

Table 1: Examples of questions, (*) notes, and the number of PTs responded  

Survey 1: What are the behaviors of a middle school student with an in-depth understanding of mathematics 
concepts? / Based on your observations at schools, what can you tell about what teachers pay attention to in their 

teaching? (43 PTs, 12 questions) 

Survey 2: Based on your observations at schools, how do the middle school teachers address problem solving in their 
teaching? / Can middle school students pose mathematics problems? Why? (43 PTs, 12 questions) 

Task: Pose a problem which requires the multiplication of two simple fractions (and if necessary, other operations 
and thinking) and which low-/mid-/high-level students can solve by spending some effort. Please indicate the grade 

level. ((*)Adapted from Singer et al. (2011). Targeting a 6th grade objective (MEB, 2018), 39 PTs, 3 questions) 

Findings  
Mathematics-related beliefs 

PTs believed that mathematical knowledge was about understanding the reasons and connections 
between the mathematical concepts by asking questions and thorough thinking. School mathematics 
had certain “definitions”, “important terms, [and] proofs” of key importance as they were connected 
to other concepts and daily life. Although PTs expressed the importance of these connections for 
mathematical knowledge, they did not mention abstract concepts and relationships. Rules, formulas, 
the reasoning behind them and their connections were also part of the mathematical knowledge.   

Teachers should “conduct activities that would increase students’ interest”, ask “questions that would 
make students question,” and teach accordingly to ensure students’ learning. PTs believed that 
students should not memorize rules and formulas; therefore, teachers “should reach the rule by 
proving with the students.” Teachers should monitor students’ learning by questions “that require 
making connections with other concepts” and by asking them to try different ways, generalize, build 
patterns, give counter examples, and use multiple representations. PTs criticized teachers’ practice of 
solving several questions in the lessons. They would like to ask questions “that students will inquiry 
the most [and] will build cause and effect relationship” after “teach[ing] the rationale behind the 
concepts”. It is better if students solved questions after the lesson because “they may forget easily 
and not be able to see their missing [knowledge] if they do not solve questions.”  

PTs believed that knowing fundamental concepts and building relationship between them were 
important for students. These required reasoning, questioning, and deeply thinking about the reasons 
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and meanings. They stressed the use of formulas, but were against memorizing them. PTs believed 
that students, who paid attention to their teachers with utmost care and spent effort on learning during 
the lesson, would learn mathematics effectively.  

Beliefs about problems, problem solving, and problem posing 

Mathematical problems were real-life situations for PTs which required “understanding and thinking” 
of mathematical knowledge and “building relationships and logical inferences”. Problems could be 
solved in different ways with multiple results, but not immediately by a procedure or a formula. 
Middle school level problems were the same except for the level of the mathematical knowledge. 
Problem solving at schools, as observed by PTs, was the activity where teachers first asked a question 
and answered it, and then asked a similar question to the students to be solved in a similar way. 
“Unfortunately” they observed that some teachers assigned closed-ended drill-and-practice questions, 
which did not match PTs’ definition of problems, and students were not asked about their reasoning.  

PTs would like to employ problem solving in the future with problems that would target students’ 
mathematical thinking or understanding of mathematical concepts and more difficult than what 
students were used to solve. PTs’ problems would require attention to and discussion of the problem 
situation, and the daily life contexts to be solved. Students were the problem solvers, not the teachers. 

I would like to consider a situation that actually requires a solution. I would like students to follow 
a solution [strategy] by considering what kinds of external factors would influence the results they 
would reach had they been in such a situation, instead of [asking a problem] that they would reach 
a single result directly by multiplication [and] division.  

On the other hand, PTs did not have much experience in problem posing in their courses and only 
some of them were able to design and ask problems in real classroom settings, which received positive 
reaction from students and collaborating teachers. They gained initial ideas for their problems from 
course books or internet resources. Some focused on connections between the mathematical concepts 
and real life problems, and they employed real data.  

The problems PTs posed in the study provided data on PTs’ thinking about problems for students 
with different levels of knowledge and skills, and the factors they would consider while posing 
problems. PTs posed problems requiring more/difficult operations for high-level students and those 
requiring “implementation of a known procedure” or “a memorized operation” for low-level students, 
contrary to their definition of problems and statements disaproving memorization. Although they 
indicated in the survey that problems did not have immediate solutions, some PTs posed problems 
that “would not lead [students] to difficulty and enable them to understand the concept and the 
question.” They did not take into account the properties of problems that they identified when they 
posed problems especially for low-level students. For example, one PT wrote a mathematical 
expression of multiplication of two simple fractions without a problem statement and stated that 
“[Students] will only implement what they have learned. Knowing the rule would be sufficient.”  

PTs stated that they prioritized students’ knowledge, possible difficulties, the national curriculum, 
own experiences from the courses, and daily life connections and links to other mathematical 
concepts while posing problems, and targeted students’ thinking. The problems they posed for low-

Proceedings of CERME12 1349



 

 

level middle grades (5 to 8) students included fundamental concepts most of which were covered in 
the elementary grades (1 to 4), such as the meanings of fractions and fraction multiplication, part-
whole relationship, fair sharing, and part-of-a-part. Their problems for high-level students were about 
connections among the mathematics concepts and the meaning of other fraction operations. Some 
problems required more/difficult operations as students’ level increased: “I identified simple, medium 
[and] difficult level operations and I identified the context of the question for these.” 

Beliefs about students’ problem posing 

Many PTs believed that students had the capability to see the mathematics in daily life because they 
had to deal with several problems in their daily lives, which illustrated the contexts for students’ 
problems. They indicated that students were creative, better and quick learners, and their prerequisite 
knowledge was sufficient to pose problems.  

They have reasoning, they are involved in real life. They gain experiences [and] deal with troubles. 
Don’t these show that they have a natural tendency to solve problems? [So] they can pose problems 
about some of the obstacles/questions that are in front of them while they improve their lives.  

Yet, several PTs believed that middle school students could pose problems only “if [teachers] enable 
them to understand and conceptualize the topics [effectively].” Some believed that students’ 
understanding of problems were limited and “they cannot examine what should be thought [and] 
whether it can be solved in multiple ways or not while posing the problem” because “posing a problem 
is more difficult than solving that problem” and students were “not used to posing problems”. 
Therefore, “[problems] should be posed only by the people who know the concepts well.” 

Discussions and Conclusions  
PTs’ problem posing beliefs and mathematics-related beliefs seemed to be in line. They believed that 
problem posing provided students with deep thinking of mathematics concepts in context, and their 
connections to each other and daily life. These beliefs were probably derivative of PTs’ primary 
beliefs because (a) PTs’ experiences were not sufficient yet to build primary problem posing beliefs 
and (b) they had some observations and experiences of teaching mathematics in classrooms on which 
they were able to elaborate to develop new understandings of problem posing.  

Even though PTs identified certain characteristics for problems, their related problems mostly lacked 
these characteristics. Their problems for high-level students were different from those for low-level 
students in terms of the number of operations involved in the solution, but not the thinking level, as 
can be seen in other studies (Leavy & Hourigan, 2020). PTs believed that problems should point to 
the links among the mathematical concepts, but they illustrated this link in their problems only for 
high-level students to some extent, not for low-level students. These differences showed that some of 
PTs’ problem posing beliefs might be connected to their beliefs about students’ learning more than 
to their beliefs about the nature of mathematical knowledge. They might develop contradictory beliefs 
within the same belief system in different clusters (Green, 1971) with an effort to reach stability by 
adapting to the new problem posing experience (Beswick, 2018).  

PTs’ beliefs about problems to be posed to high-level students (who are good at reasoning and dealing 
with challenge) seemed consistent with their beliefs about problems (challenging situations that 
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required thorough thinking) and teaching and learning mathematics (mathematical knowledge is not 
for memorization). These beliefs, however, conflicted with their beliefs about problems to be posed 
to low-level students (simple problems as they could handle only certain and memorized 
mathematical procedures, but not challenge). PTs possibly observed certain practices at schools 
where teachers posed several questions solved by routine procedures and believed that this practice 
was better for low-level students, even though they criticized it. They might also tend to replicate the 
problems they have seen in mathematics lessons and resources (Crespo & Sinclair, 2008) due to their 
insufficient problem posing experiences. PTs might believe that certain less risky practices would be 
better in classrooms when they lacked problem posing experiences; therefore, tended to pose easier 
problems for low-level students. Although PTs prioritized approaches that would lead students to 
conceptual understanding of mathematical concepts, they might keep a consistent belief system by 
thinking about low-level students as a special case that required a different understanding, and 
accordingly holding beliefs about low-level students in different clusters (Green, 1971).  

Longer and intensive problem posing experiences would provide PTs with opportunities to develop 
more consistent web of beliefs. The beliefs documented here revealed that when PTs did not have 
sufficient problem posing experiences, they tended to develop derivative beliefs, which should be 
explored and addressed carefully when providing PTs with problem posing training. It is advisable 
that such training for PTs should include more and varied experiences of posing problems and require 
reflection on experiences and rationale. Further studies should explore PTs’ initial beliefs about 
problem posing in-depth before they are trained for it and how their problem posing beliefs are linked 
to their beliefs about students, problem solving, and teaching and learning mathematics while 
preparing for and teaching through problem posing.  

It should be kept in mind that the instrument in the study revealed certain beliefs of this specific group 
of PTs, but not the others, limiting the conclusions of the study. The analysis presented here was an 
initial exploration of PTs’ beliefs about problem posing with a more general perspective. Their actual 
belief system could be revealed when a further analysis for each PT is conducted to map their belief 
systems. The present data set would allow only for a limited view of this map. A more comprehensive 
and detailed illustration of belief system can be possible with additional data set including task-based 
interviews with PTs and observation of their problem posing practices in the classroom.  
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The purpose of this pilot study was to investigate the effect of level-marking mathematical tasks on 
students’ time spent on such tasks and correct solutions. The study was conducted among students in 
lower secondary schools in Norway. The effect was measured by comparing the control group with 
the experimental group. An independent samples t-test suggested that even if the students were given 
the same mathematical task, the time spent on the task depended on the level-marking. The results 
suggest that the level-marking of tasks has a significant effect on students’ time spent on solving the 
task. In addition, the preliminary results show a negative effect of level-marking on the correct 
solutions of the given task. 

Keywords: Ability grouping, textbook, self-efficacy, mathematics education, level of difficulty. 

Introduction 
In Norway, it is common to use mathematics textbooks in which tasks are grouped according to their 
difficulty. Several textbooks use different symbols (e.g., geometric figures or colours) to identify the 
level-marking of the tasks and indicate whether the task is easy, medium, or hard. This is called ability 
grouping and is used to adjust teaching to the students’ ability. In this way of grouping abilities, a 
student with low skills in mathematics can choose to work with easy tasks by focusing on the tasks 
marked with a specific colour. The purpose of differentiation is to achieve an optimal learning effect 
and to improve self-efficacy (Dale & Wærness, 2003, pp. 90). The results from TIMMS (Trends in 
International Mathematics and Science Study) show that Norwegian students in 8th grade score lower 
in algebra compared to statistics, geometry, and numbers (Bergem, Kaarstein & Nilsen, 2016). Most 
textbooks in Norway use level-marking on the tasks; for example, in the textbook Faktor 61% of the 
tasks in algebra are grouped according to difficulty level, in Maximum 76% are grouped accordingly, 
and Grunntall has the highest proportion of level-marking, where 98% of the tasks have level 
markings and almost 1/3 of the marked tasks have the level-marking ‘hard’. Therefore, it is important 
to study how this can affect mathematics education. As in Norway, Sweden also uses textbooks with 
ability grouping in mathematics, and Brändström (2005) concluded that tasks have a low difficulty 
level for all students regardless of their mathematical abilities. Earlier studies have shown extensive 
usage of textbooks in mathematics (Dolonen et al., 2016), but although there is a lot of research on 
textbooks in mathematics (Brändström, 2005; Howson, 1995; Jablonka & Johansson, 2010; Stein et 
al., 2007; Tesfamicael & Lundeby, 2019) there is still a lack of research on how the textbooks affect 
student's achievement in mathematics (Fan et al., 2013). The aim of this paper is therefore to study 
how level-marking of tasks in textbooks can affect students' time spent on given mathematics tasks. 
The idea behind this study was drawn from previous research that claims the amount of time spent 
on homework positively affects achievement (Keith, 1982; Cheema & Sheridan, 2015). 
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Theoretical framework and research question 

In Norway, the Education Act § 1-3 states: “Education must be adapted to the abilities and aptitudes 
of the individual pupil, apprentice, candidate for a certificate of practice and training candidate” 
(Opplæringsloven, 1998). Adapted training is characterized by variation in working methods, use of 
teaching materials, varied teaching aids, the learning environment, curricula, assessments, and 
variations in the intensity and organization of the training (Utdanningsdirektoratet, 2020). The focus 
is on pedagogical differentiation, which is implemented by differentiating the teaching in an overall 
class (Imsen, 1997). The teacher can adapt the teaching by varying the degree of difficulty, called 
level differentiation as defined in (Imsen, 1997). This form of differentiation is widely used in 
mathematics teaching, where the teaching is adapted so that the students work on tasks that are 
adapted to their skills. To differentiate the teaching in an overall class, it is therefore suitable to use 
textbooks that contain mathematics tasks with different levels of difficulty so that all students can be 
in the same classroom even if their abilities are different. Diverse studies claim that mathematics 
textbooks are the major resource for planning and executing the teaching and thus have a strong 
position in mathematics teaching (Stein et al., 2007; Jablonka & Johansson, 2010; Howson, 1995). 
Robitaille and Travers (1992) argued that a textbook is ‘‘perhaps more characteristic of the teaching 
of mathematics than of any other subject’’ (p. 706). Howson (1995) also argued for the importance 
of the textbook and claimed that a textbook is one step nearer to the classroom reality than a national 
curriculum.  

As discussed before several studies have investigated the importance of spending time on tasks 
(Cheema & Sheridan, 2015; Keith, 1982), but the hypothesis that more time spent on a given task by 
the student should result in better learning outcomes has not been confirmed. Karrie et al. (2021) 
showed a weak relationship between time and learning, and it has also been shown that the time spent 
on a task is affected by self-efficacy (Multon et al., 1991). Self-efficacy can be explained based on 
the social-cognitive theory of learning, and it is defined as “beliefs in one's capabilities to organize 
and execute the courses of action required to produce a given attainment” (Bandura, 1997, p. 3). Self-
efficacy has significant effects on cognitive, affective, selective, and motivational processes, and it 
influences task choice, effort, persistence, resilience, and achievement (Bandura, 1997; Pajares & 
Miller, 1995; Zimmerman & Martines-Pons, 1990).  

There is a limited number of empirical studies on the effect of level-marking a mathematical task on 
students' time spent on the task. However, there are several studies on how mathematical problems 
with different difficulty levels affect effort and persistence. Chen (2003) showed that the average 
effort judgment decreases linearly as the problems become more difficult. Montague and Applegate 
(1993) concluded that the difficulty of the task has a direct influence on persistence. The concept of 
time spent on a task and effort are related to each other, but they are still different because students' 
time is not necessarily used to do their best to solve the assignment. Persistence is about the person's 
ability to work with relatively high intensity over a long period and can be related to time spent on a 
task if the task is difficult. In the present study, we investigated persistence by measuring the time 
taken to solve a task with a high level of difficulty. Measurements of persistence in terms of students’ 
actual behaviour have been conducted previously by Shen et al. (2016). The authors measured 
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persistence where students were solving challenging mathematics problems, and they claimed that it 
would be problematic to measure persistence based on easy problems because “more competent 
individuals may find solutions more quickly than less competent individuals” (Shen et al., 2016, p. 
42). Based on the previous theoretical and empirical literature, our research questions were 
formulated as:  

- Can the level-marking of the mathematics task affect students’ time spent on such tasks? 

- Can the level-marking of the mathematics task affect whether the students get the correct or 
incorrect answer to the task? 

Method 
This paper is based on the collection of data through an empirical survey among lower secondary 
schools in Norway by distributing an online questionnaire and exploring students’ perceptions of 
level-marking tasks in algebra. A total of 28 female (54.9%) and 23 male (45.1%) participants took 
part in the pilot study. Participants were students in grade eight (80.4%) and grade nine (19.6%). The 
current study compares the questionnaire responses of students concerning students' time spent on 
solving the task. The survey was distributed randomly to the participants, and all students were given 
the same algebraic task (see Figure 1 and Table 1). The experimental groups got Task 1 with level 
marking “Difficult”, while the control group got the same task without level marking. To measure 
time, we chose a task with a high degree of difficulty because the students would take a long time to 
try to solve it. The high degree of difficulty of the task is an important criterion for choosing the task 
in order to provide information about the student's perseverance rather than how fast they solve a task 
(Shen et al., 2016). Given our illustrative focus, a total of 51 students who received Task 1 marked 
as difficult (Hard) (N = 21) and who received Task 1 without marking (N = 30) responded to the 
questionnaire in 2021. The analysis draws on two items from the student’s questionnaire. 

Table 1: Task and description of the groups 

Participant Description Task 1 (Authors’ translation) 

Control group Students who got the task with 
no level-marking 

The father is retired. If you change the position of the two 
digits of the number of his age, you get the son's age. One 

year ago, the age of the father was twice the son's age. How 
old are father and son now? 

Experimental 
group 

Students who got the task with 
difficult level-marking 

The computer measured the time each student spent on solving the task. The students got access to 
the electronic survey, and the computer registered the time from the students opening the 
questionnaire until they pressed the “send” button (see Figure 1). The time spent on the page included 
the time used to read the task and to solve it. The survey did not allow students to navigate between 
pages.  
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Figure 1: The questionnaire for the experimental group (for English version of the task, see Table 1) 

The independent variables in this analysis were the control group and experimental group (see Table 
1). Independent samples t-test was used to analyse the data. 

Results  
In the following, we will investigate and discuss the effect that level-marking of mathematics tasks 
has on students’ time spent on the tasks. To do this, we used an independent samples t-test. Levene’s 
test for equality of variances was significant (p = 0.004 < 0.01), which means that the variances in 
the two groups were assumed to be unequal. The questionnaire responses showed significant 
differences in the time spent when level-marking was used compared to the time spent when level-
marking was not used. These differences are presented in Table 2, which indicates that students in 
the control group reported that they spent more time on the task (M = 223.4 s, SD = 239.3 s) than 
students in the experimental group (M = 109.7 s, SD = 105.2 s; p = 0.027 < 0.05). Note that the 
standard deviation in the control group was larger than the experimental group, meaning that students 
who received the task marked as difficult had less variation in time spent compared with students 
who did the task without level marking. 

Table 2: Students’ time spent on the task and correct solutions 

 N Mean (M) Std. Deviation (SD) Correct solutions  

Control group 30 223.4* 239.3 17% 

Experimental group 21 109.7* 105.2 14% 

Note. Time: Seconds; M: mean; SD, standard deviation. Levene’s test for equality of variances was significant (p = 
0.004). * The mean difference is significant at the 0.05 level (p < 0.05). 

The findings show that the time spent by the experimental group was significantly lower than time 
spent by the control group. The percentage of the students in the experimental group (14% (N = 3)) 
who correctly solved the task was lower compared to the control group (17% (N = 5)) (see Table 2.  
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Discussion 

Due to the strong position of mathematics textbooks in mathematics teaching (Stein et al., 2007; 
Jablonka & Johansson, 2010), it is important to investigate whether level-marking can affect other 
aspects in mathematics education. However, previous research states that there is a lack of research 
on the relationship between textbooks and students' learning outcomes (Fan et al., 2013). In this study, 
we investigated whether level-marking on a mathematical task can affect the student’s time spent on 
the task. The results from the experiment show that the control group spent more time with the 
mathematics task compared to the experimental group. It is therefore reasonable to hypothesize that 
there is a significant relationship between level-marking and time spent on the task. This result is 
important since previous research claims that time spent on a task positively affects achievement 
(Cheema & Sheridan, 2015; Keith, 1982). The preliminary results from our study show a negative 
effect of the level-marking on the correct resolution of the given task. The percentage of the students 
in the experimental group (14%) who correctly solved the task was lower compared to the control 
group (17%), which means a reduction of almost 18% of the percentage of students who solved the 
challenging task without level-marking. As mentioned before, a difficult task was chosen in order to 
measure time spent on the task. This could explain the lower percentage of correct solutions of the 
task in both groups and the slight differences between the two different groups. However, this shows 
the potential of a new research direction for investigating other mathematics tasks. The findings 
suggest that tasks without level-marking will lead students to spend more time on each assignment, 
which can positively affect the correct solutions (Cheema & Sheridan, 2015; Keith, 1982; Multon et 
al., 1991). On the other hand, this result suggests that tasks marked as difficult will lead the student 
to spend less time on the same task. As discussed in the method section, the grade of the chosen task 
was difficult in order to examine the time they spent trying to solve the task rather than how fast they 
solved it. It should also be noted that the interpretations of the findings in this paper have limitations 
related to the voluntary nature of participation in the survey and the sample size. The present study 
investigated only 51 students from nine different schools in Norway, and future research should take 
these limitations into account. 

Conclusion 

The results from this pilot study demonstrate that students’ time spent on a task is predicted by the 
level-marking of the task’s difficulty. Students who got the task with no level-marking spent 
significantly more time on the problem compared to students who got the same task marked ‘hard’. 
Spending enough time on a given task can positively affect performance (Cheema & Sheridan, 2015; 
Keith, 1982). The preliminary results of this study show a negative effect of level-marking on the 
correct solutions of the given task and suggest that we should be careful in marking tasks as difficult. 
It is important to let the student assess the task and spend enough time thinking about the possibility 
of solving the problem. The results show that the standard deviation in the control group was larger 
than in the experimental group. The tasks might have a low difficulty level for all students regardless 
of their mathematical abilities even though they are marked difficult (Brändström, 2005). However, 
more research is needed to fully understand the relationship between level-marking and the time spent 
on the task by collecting larger amounts of data and investigating the relationship with other variables 
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such as grades, gender, and self-efficacy. In addition, it is important to investigate other tasks with 
different degrees of difficulty. 
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Exploring mathematical stories of future elementary teachers: an 
analysis of shifts in affect in mathematics 

Jennifer Holm 
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This research focuses on examining shifts in emotions related to mathematics learning that impacts 
the attitudes that future teachers hold about mathematics. Initial analysis showed that almost half of 
the sample did not hold consistent emotions related to mathematics. In examining the catalyst events 
related to shifts in emotions, many of the shifts to a positive emotional reaction were related to 
internal structures, and those that shifted to a negative emotional reaction were external motivators. 
Understanding the events that lead to changes in emotion is important for supporting future teachers 
in considering how to support future students. 

Keywords: Learning and perceptions, mathematics education, affect, emotions. 

Introduction 
The focus of this paper is understanding the timing and events that influence a change in future 
teachers’ attitudes and emotions towards mathematics. Past research has shown a potential 
relationship between attitude and achievement (Ma & Kishor, 1997), as well as interconnections 
between attitudes and beliefs about teaching mathematics (e.g., Philipp, 2007). In Ontario, the teacher 
education program is a two-year after degree program, so the time with future teachers in a 
mathematics course is limited. If attitudes have an impact on beliefs and beliefs have an impact on 
choices made in the classroom (Wilkins, 2008), then understanding where changes in affect occur, is 
important. Initial research around emotions related to mathematics shows that there is not an exact 
classification of what makes a student enjoy or dislike mathematics with some things that individuals 
enjoy about mathematics (e.g., a focus on right and wrong) are the same reasons that others hate it 
(Holm, 2021). Philipp (2007) notes that in a review of literature around affect, the negative attitudes 
towards mathematics tend to be rooted in their experiences as learners, so this study seeks to explore 
further how previous experiences in mathematics impacts shifts in emotional response. 

Literature Review and Framework 
In Liljedahl and Andrà’s (2020) work with future teachers, they note that “emotions are not to be 
avoided or controlled in mathematical activities, but they have to be provoked, made visible and 
talked about” and strive to include activities in preservice programs to call attention to emotions (p. 
9). In the research study discussed in this paper, the attempt was made to have participants call 
attention to the emotions that have been provoked during their experiences with mathematics through 
recalling and writing about their mathematical histories. Hannula (2002) examines attitude as a 
connection between emotion and cognition in order to understand the influences with attitude, yet 
notes that although emotion and cognition are separate constructs, they are highly connected and 
cannot be fully understood separately. My intention in having participants write their stories was for 
them to understand how their feelings about mathematics were connected to their experiences, their 
attitudes, and their beliefs through reflection. In this research paper, the focus is on how their emotions 
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were connected to their experiences in order to understand more about the factors influencing emotion 
and consequently their attitudes related to mathematics.  

According to Zan et al. (2006) and Antilla et al. (2016), the area of emotions needs further research 
to add to the relatively low number of studies currently, and this research project attempts to continue 
filling this gap in the literature by adding to the discussion. Schukajlow et al. (2019) note that 
“emotions are defined as phenomena that included cognitive, affective, motivational, physiological 
and expressive parts. Affect and motivation are used in this definition thus for characterization and 
grounding of emotions” (p. 3). Emotions are a complex portion of the work in mathematics education 
research, so an understanding of the types of events that can trigger strong emotions (both positive 
and negative) can add to the body of work to support future teachers in moving forward.  

To ground this research within its focus on emotions, the definition of emotions from DeBellis and 
Goldin (2006) is utilized: “Emotions describe rapidly-changing states of feeling experienced 
consciously or occurring preconsciously or unconsciously during mathematical (or other) activity. 
Emotional feelings range from mild to intense, and are local and contextually-embedded” (p. 134). 
Since emotions are tied to particular events within mathematics, participants in my research have 
been requested to write about their emotions connected to mathematical situations, in order to 
understand what events trigger a change in their connection with mathematics. Ekman (1992) notes 
that the basic emotions are anger, fear, sadness, enjoyment, disgust, and surprise, with contempt, 
shame, guilt, embarrassment, and awe being considered basic but share commonalities with the 
others.  

Future teachers will be bringing their emotions about mathematics into their future classrooms, so it 
is important to understand the root causes of these emotions to help future teachers understand the 
impact on their own students. Although it is unrealistic to assume that all students will maintain a 
positive attitude towards mathematics due to the complexities of beliefs, emotions, and affect 
described in the research cited, an understanding of what causes shifts in attitudes can illuminate 
some areas of concern in teaching. 

The study in this paper uses a portion of the framework that Hannula (2002) has suggested for 
understanding and analyzing attitude. Although considering all four categories of the framework 
would have added to the discussion, this paper focuses on two specific areas that could be observed 
in the data set “the emotions the student experiences during mathematics related activities” and “the 
emotions that the student automatically associates with the concept ‘mathematics’” (p. 26). By 
focusing specifically on the emotional aspects of the attitude framework, this report looked at what 
emotionally charged events impacted their attitudes towards mathematics. The basic emotions in the 
work of Ekman (1992) was used to categorize the emotions in the stories. The basic emotions were 
categorized as “positive” if they could conceivably lead to a positive outcome in a classroom if 
presented by the teacher (enjoyment, surprise, and awe), or “negative” if they could conceivably lead 
to a negative outcome if presented by the teacher (disgust, fear, sadness, contempt, shame, and guilt). 
The goal of the study was to understand more about how and when future elementary teachers 
encountered a shift in their emotions related to mathematics. This information will inform how 
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teacher education programs can both support a potential change during a limited time with future 
teachers, and raise awareness of future teachers on the impact of events within their own classrooms. 

Methods 
The data for this research paper focuses on three years of written stories collected from future teachers 
at an Ontario Faculty of Education. The participants would all be in the Bachelor of Education 
program, either in the Primary/Junior program (K to grade 6) or the Junior/Intermediate program 
(grade 4 to 10). The Bachelor of Education is a two-year, after degree program, so the participants 
completed another degree in any subject, including mathematics, although having a mathematics 
degree is rare in our Bachelor of Education program. The majority of participants will be teaching in 
K to 8 schools following the completion of their degree. 

The stories were part of an assignment that all future teachers would complete in their first-year of 
the program as part of their initial mathematics methods course. The description of the portion of the 
assignment relative to this research is as follows: “Create a discussion about your own experiences 
as a mathematics student. Be sure to include a description/picture of your experiences and how you 
felt as a mathematics student.” Participants would complete the initial assignment draft in the first 
two weeks of class (November), and then would have the opportunity to edit or add details to submit 
at the end of the first class (February) to allow for the opportunity for reflection. The research 
questions in this reported study were as follows: When in school do shifts in affect occur in 
mathematics? What do participants indicate causes the shift in affect in mathematics? 

The initial analysis focused on emotions presented by the future teachers by highlighting events or 
portions of the stories related to mathematics activities or emotions immediately associated with 
mathematics (Hannula, 2002), providing a narrower scope for determining when or if a catalyst event 
occurred. Then the highlighted portions were coded based on the emotions in Eckman’s (1992) work. 
The initial data analysis of the stories resulted in sorting them into different categories based on how 
they described their emotions about events in mathematics: neutral (no feeling included), only 
positive (enjoyment, surprise, and awe), only negative (disgust, fear, sadness, contempt, shame, and 
guilt), and ones that showed a shift from one emotion category to another. Initial descriptive statistics 
are presented to gain a picture of the total cohort over the three years. The category of neutral was 
not meant to convey future teachers who did not feel strongly in a single direction but instead a place 
to sort those who did not mention something related to the basic emotions at all in their responses 
related to mathematics. Liljedahl and Andrà (2020) note a concern over using a binary construct for 
considering attitudes and emotions, so this construct was only used as a means to show the range of 
story types, focusing on the ones where participants noted shifts in how they felt about mathematics. 
Approximately ten percent of the total number (18) were randomly selected to be independently 
coded by a critical colleague to determine initial reliability of the sorting of the papers. The 
independent coder sorted the papers as only positive, only negative, neutral, or showing a shift 
(including if positive to negative or negative to positive). Coding was compared to the author’s codes 
showing an initial agreement of 83% (15/18) was achieved and after a conversation, the three 
disagreements were agreed upon between the reviewers further strengthening the lens for coding the 
remainder of the papers. 
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Further analysis was conducted on only the stories that described a shift in emotions for the purposes 
of this paper. These papers were chosen in order to investigate what causes a shift from either positive 
to negative or vice versa. With the Ontario program only being two years and only having two, ten-
week mathematics education courses, time is limited, so it is important to understand how changes 
occur. The stories were grouped into subcategories to explore: those that shifted from positive to 
negative, those that shifted from negative to positive, and those who experienced multiple shifts over 
the course of their experiences. A fourth category was later created for those who did not have a 
“shift” in emotion but did not convey the same emotion throughout the story. These individuals 
related to Hannula’s (2002) category of automatic response as opposed to reactions to mathematics. 
A thematic analysis (Braun & Clarke, 2006) was conducted on the stories in each of the sub-categories 
to understand what caused the shift. Sections of stories where the change was described were initially 
coded with a descriptive term. Descriptive terms were then gathered and collapsed to determine 
overarching themes to describe what caused a change in affect in mathematics. The collapsed codes 
were reviewed by and then discussed with the critical colleague to ensure that all initial codes were 
accounted for in the final analysis. 

Results 
In total 182 different stories were considered for the data analysis. Table 1 shows the stories by 
classification to begin the discussion. Words like “struggle” and “hard” were coded as neutral since 
they were not coupled with an emotion related to the event. Some individuals did attach an emotion, 
but some noted enjoyment because of the struggle and some noted dislike because of struggle. 

Table 1: All stories categorized by emotion 

Type of Emotion Number Percentage 

Positive 38 20.9% 
Negative 50 27.5% 
Neutral 16 8.8% 

Shift 78 42.9% 

Table 2: All stories grouped by the type of shift 

Type of Emotion Number Percentage 

Positive to Negative 37 47.4% 
Negative to Positive 17 21.8% 

Multiple shifts beginning with positive 13 16.7% 
Multiple shifts beginning with negative 6 7.7% 

Multiple emotions throughout 5 6.4% 
Based on the initial data analysis, only 78 were considered for the second analysis to determine what 
impacted a shift in the emotions of the future teachers when discussing their mathematical histories. 
Table 2 shows the breakdown of the new subcategories for this group, and each of the results from 
the subcategories will be discussed in detail below. 
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Positive to Negative Stories 
In examining the stories for when a single shift occurred from positive to negative, only 35 of the 
total 37 stories included an approximate time frame. Table 3 shows a breakdown of the time bands. 

Table 3: When the shift from positive to negative occurred 

Type of Emotion Number Percentage 

Grades 3-5 4 11.4% 
Grades 6-8 (middle school) 3 8.6% 

Secondary school (Grades 9-12) 21 60% 
University 7 20% 

The codes in this group of stories could be sorted into five overarching themes: external motivating 
factors, societal pressure, internal motivating factors, perception of purpose, and content. External 
motivating factors and societal pressure were the most commonly noted themes in this portion of the 
data set. External motivating factors included unhelpful or unapproachable teachers, classroom 
management styles, grades, and teaching pedagogy. Examples of societal pressure included teacher 
humiliation, peer pressure, family pressure, and a fear of looking “dumb” in front of peers. Internal 
motivating factors included frustration, a lack of understanding, fear of failure, and the work being 
harder that previous grades or units. Perception of purpose related to participants finding the 
mathematics unconnected to real life or any real-world application for being studied. Content 
included timed drills, functions, calculus, data management, and algebra. 

Negative to Positive Stories 

All 17 stories of a single shift from negative emotions to positive emotions related to mathematics 
contained a time frame for when the shift occurred. Table 4 notes the breakdown of the times that 
were included. As a note, only grades 11 and 12 were specifically mentioned, other participants noted 
“high school” in general as the time frame for when the shift occurred. 

Table 4: When the shift from negative to positive occurred 

Type of Emotion Number Percentage 

Grades 6-8 (middle school) 4 23.5% 
Secondary school (Grades 9-12) 7 41.2% 

University 3 17.6% 
Adult (after school years) 3 17.6% 

The codes in this category could be broken into four overarching themes: internal motivating factors, 
external motivating factors, perception of purpose, and content. In this subcategory of stories, internal 
motivating factors was credited the most times as being why the shift occurred. Internal motivating 
factors included a feeling of confidence, skills development, success, and a feeling that the 
mathematics made sense. External motivating factors that caused a shift to a positive emotion related 
to mathematics were all related to specific traits of teachers: engaging teachers, feeling understood, 
appropriate pedagogy, and caring. Perception of purpose related to finding a connection with real life 
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and application of the mathematics or being able to support their own children in mathematics. The 
only content mentioned in a positive shift was data management. 

Multiple Shifts 

When considering the stories that had multiple shifts, these were grouped together since their themes 
mirrored most of the categories already presented. In looking at those that started positive and had 
multiple shifts, as well as those that started negative and had multiple shifts, the most common threads 
were the importance of the teacher and the reliance on grades or success. The participants often 
pointed to having a singular moment with a teacher who caused a positive emotion that was often 
shifted by a singular teacher who caused a negative emotion. The feelings of confidence based on 
success in grades, as well as the feelings of frustration based on a lack of understanding were also 
often cited as reasons for going back and forth on the like/dislike of mathematics. 

Multiple Emotions 

Although a much smaller group of the sample, these five participants provided an interesting 
subgroup to consider. These participants did not have an actual “shift” in feeling around mathematics, 
but they included multiple emotions throughout the story that ranged from neutral to positive to 
negative. What was interesting about this group was the reasoning for the changes. Again, the teacher 
played a role in the feelings reported, where the participants would admit they liked mathematics but 
hated the class due to the teacher (or vice versa). Oftentimes it was different content areas or aspects 
of the pedagogy, like collaboration, that were enjoyed but the overall feeling towards mathematics 
was negative. One participant also changed opinions of the subject based on their feelings around 
success or failure in relation to the topic. 

Conclusion/Discussion 
The data from this study pointed to some interesting information of when students shifted from one 
emotion to another, which showed no discernable pattern, although the majority of the participants 
saw a shift in later years. Philipp’s (2007) review of the literature pointed to affect being determined 
before college, but this research does not support this finding. A number of individuals found their 
opinions of mathematics shifted to a more positive outlook in either university or once they were part 
of the workforce and needing mathematics in real-life. University mathematics was also credited by 
multiple participants as causing a shift to a negative emotion towards mathematics. Not reporting on 
shifts in earlier years of school could also be a result of the recency of the events to the time of the 
reflection instead of attributed to the school or mathematics classes in the early years. One limitation 
of this study was that the stories were entirely self-reported, so there could potentially be missing 
details or memories that are not entirely accurate based on the time since the events had occurred. 
Not all stories started from the same point, so some individuals only reported on what they felt was 
most important to tell.  

In comparing the motivating factors that caused a shift from negative to positive and positive to 
negative, it was interesting to note that internal motivation most often was credited for the shift to 
positive, and external or societal pressures were most often credited as a shift towards a negative 
conception of mathematics. Emotions related to motivational elements (Antilla et al., 2016) suggests 
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that attitudes towards mathematics could continue to be affected with negative emotions that would 
lead to a decrease in motivation which could continue a cycle of negativity, raising concerns over the 
impact of emotions with motivation. This finding is particularly interesting for considering preservice 
teachers so that they understand the power they could have over the emotions of their own students. 

The findings showed that some participants credited being challenged in mathematics as being the 
reason that they felt more positively about mathematics, while others noted that perceiving the 
mathematics as harder was the reason they now felt negatively about it. This research links to how 
mindset may affect the entire perception of the mathematics classroom; therefore, the need for a 
growth mindset (Boaler, 2016) as it may shift the entire perception of mathematics overall. The 
findings in this study also link to the caution by DeBellis and Golden (2006) that in their research 
they advocate for developing meta-affect that would allow them to use the negative feelings in a way 
that would lead to productive learning. Developing this meta-affect with future teachers could prove 
to be important, but also to make them aware of how to structure their classroom environment to 
encourage this outlook in their future students. 

The smaller group of participants who reported a range of automatic emotions throughout their stories 
showed that the most prevalent portion of the Hannula (2002) framework in the study was emotions 
connected to mathematics events and not just automatic responses. This highlights the importance of 
considering the emotions related to specific events in teaching. This smaller group showed that their 
responses were caused by mainly external factors in that their feelings towards mathematics were 
entirely influenced by grades, success, or teacher impacts. As soon as grades dropped, success was 
less, or as the teacher was perceived as being unhelpful, mathematics was now seen with negative 
emotions. When the opposite was true, the mathematics was then seen in a more positive light. This 
research finding also aligns with what Philipp (2007) noted that there is a connection between 
perceived proficiency and affect. 

One smaller theme that came out of this data was around English speakers taking mathematics in 
French while in French Immersion programs in elementary and secondary school. Although only a 
small number reported the category, there was a theme around a dislike of math when in the French 
Immersion program that was resolved when returning to an English program. The participants often 
cited they felt like the language was a barrier, so this would be a worthwhile area to study further to 
investigate how this may impact the emotions that a future teacher holds around mathematics. 

Even though Philipp’s (2007) review found no research linking affect to classroom decisions but 
notes that there is support for teachers in developing a positive affect. This research sought to begin 
the conversation about how to support future teachers in developing a more positive relationship with 
mathematics through understanding what causes shifts in their emotions related to mathematics. 
Future research directions could consider the intersections with beliefs and practices in mathematics. 
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Previous studies have indicated that men are stereotyped as more mathematical than women. Since 
these stereotype images have shown psychological effects—particularly for negatively stereotyped 
groups—it is relevant to ask how variables other than gender relate to mathematics. In this study, we 
examined how stereotype characteristics of gender, occupation, political views, and personality 
relate to mathematical identity. From statistical analyses of Comparative Judgement data, we show 
significant associations between mathematical identity and extreme stereotypes (related to 
occupation, political views, and personality). No significant association was found between 
mathematical identity and gender. 

Keywords: Stereotypes, mathematical identity, gender, occupation, political views, personality. 

Introduction 
Men are often stereotyped as more mathematical than women (e.g., Picker & Berry, 2000). 
Regardless of how accurately such stereotype images reflect reality; they affect people (e.g., 
Danielsson et al., 2019; Herzig, 2004; Jugović et al., 2012). An experimental study showed, for 
example, that women underperform relative to equally qualified men when they, incorrectly, are told 
that mathematics achievement tests are gender-biased. When they are not informed about this made-
up gender bias, men and women perform equally (Spencer et al., 1999). Studies like these exemplify 
that stereotype images in mathematics are both real and significant. 

If there exist stereotype images about gender and mathematics, and if these images affect people, then 
similar phenomena might exist for other variables. We argue, therefore, that stereotype research in 
mathematics education should examine: (1) how stereotype images other than gender relate to 
mathematics, and (2) how such images—insofar as they exist—affect people (in particular, how they 
affect those who are stereotyped negatively).  

In the study on which we report in this paper, we addressed the first of these issues. That is, in addition 
to gender, we examined how people associate mathematics to three variables: occupation (income, 
education, and practical/theoretical work), political views (regarding the environment, taxes, state 
regulations, the EU, and immigration), and five facets of personality traits, known as “the Big Five” 
(Goldberg, 1993). We chose these variables based on a conjecture that they represent a tendency in 
Europe and elsewhere, namely that, besides gender, people identify themselves (and others) in 
extreme opposites; people regard themselves and others, not only as males and females, but also as 
left-wingers and right-wingers, practical and theoretical, extroverts and introverts, and so forth. How 
such variables relate to mathematics is unclear. 

Using a Comparative Judgement (CJ) design (which we describe later), 34 Norwegian university 
students were first introduced to the term mathematical identity (MI), which we define in the next 
section. Subsequently, the students were shown multiple pairs of extreme characteristics (e.g., one 
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person who is against eco-friendly policies; another person who has a high education), and they were 
asked to judge which of these characteristics that best reflect a person with a strong MI. The results 
on which we report in this paper answer the following research question: How do stereotype 
characteristics of gender, occupation, political views, and personality relate to MI? 

Theoretical framework 
Mathematical identity 

Similar to Deaux (1993), we view in this paper MI as a relationship between social MI and personal 
MI (e.g., Kaspersen et al., 2017). When we refer to social MI, we mean a set of (relatively) agreed-
upon characteristics of what it means to be mathematical within a specific context. For example, 
“making sense of proofs” is a member of social MI, but only insofar (1) most persons within an 
observed context agree that making sense of proofs is a characteristic of MI and (2) that they interpret 
in similar ways what proofs are and what it means to make sense of them. Limits for what counts as 
“most persons” and “in similar ways” depend on the context of the study. 

When we refer to personal MI, we mean the extent to which individuals identify with the set of 
characteristics that constitute social MI within the activity in which they participate. For instance, if 
a person usually tries to make sense of proofs when she sees one, this characteristic is a part of her 
personal MI, but only if she participates in an activity where the characteristic is also a member of 
the social MI. 

These definitions are motivated to allow sentences that include measures (e.g., “person A has a 
stronger MI than person B”). As described in Kaspersen (2018), these sentences are nonsense unless 
there exists a body of reference, and this is the role of social MI: It is the body of reference to which 
personal MIs can be measured. When people respond to a MI instrument, a rough interpretation is 
this: the items (and their psychometric properties) represent the social MI; how person A responds to 
the items represents person A’s personal MI. 

Twenty characteristics of social MI have proven to have relatively robust psychometric properties 
within (but not necessarily between) a wide range of contexts (Kaspersen, 2018). The characteristics 
include: “liking to discuss mathematics”, “trying to understand formulas/algorithms”, “struggling 
with putting mathematics problems aside”, “taking time to understand why some methods in some 
cases do not work”, and “taking the initiative to learn more mathematics than what is required”. That 
the characteristics have robust psychometric properties means that they can be applied in instruments 
(e.g., questionnaires) that measure MI. 

In this study, the expression “individuals with low MI” means persons who select the lower categories 
(e.g., “never”) when they respond to an MI instrument that contains characteristics of social MI. By 
contrast, “individuals with high MI” means persons who select the higher categories (e.g., “always”) 
when they respond to the same instrument. 

Stereotypes 

Stereotypes have been studied for more than a century (e.g., Brauer et al., 2001; Brigham, 1971; 
Spencer et al., 1999). Nonetheless, researchers disagree on how the term should be defined. In a 
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review of stereotype definitions, Kanahara (2006) documented that some researchers include truth-
values in their definitions. Some define stereotypes as relatively true beliefs; others define them to be 
mostly false. In this paper, we take Kanaharas (2006) position, namely, that the truth-value of a 
stereotype is a question of empirical matters: In some cases, stereotypes are relatively accurate; in 
other cases—for example, when mathematics is portrayed as a male domain—they represent the 
matters of facts fallaciously.  

In his synthesis, Kanahara (2006) claimed that definitions of stereotype share two characteristics: (1) 
they describe stereotype as related to beliefs (e.g., Allport, 1958); and (2) they describe stereotype as 
a group concept (Giddens, 2001; Krech et al., 1962). Accordingly, Kanahara (2006) defined 
stereotype as “a belief of a group of individuals”, and this is the definition we use in this paper. 
Specifically, we report in this paper on how students compare beliefs about several groups of 
individuals—males, females, left-winger, right-wingers, etc. —and how these stereotypical images 
associate with MI. 

The four variables used in the study 

We have studied how students compare stereotype images of persons with different genders, 
occupations, political views, and personality traits. Although none of these variables is dichotomous, 
the students in this study were asked to consider only extreme opposites. For gender, the students 
stereotyped males and females only. For occupation, the students stereotyped persons with six 
characteristics: low income, high income, low degree of education, high degree of education, practical 
work, and theoretical work. For political views, the students stereotyped persons with ten values: 
positiveness towards environment-friendly policies, low taxes, state regulations, the EU, and 
immigration, and negativeness towards these issues. For personality, the students stereotyped persons 
with high or low measures of the facets of the Big Five (Goldberg, 1993), that is, persons with high 
or low measures of conscientiousness, openness, extroversion, agreeable to experiences, and 
neuroticism. These characteristics and measures of how much the students associated them with MI 
are represented in Table 1. 

Methods 
Participants and data collection 

The participants of the study were a convenient sample of 34 student teachers at a Norwegian 
university. In the first phase, each person responded to an instrument for measuring MI (Kaspersen 
et al., 2017), which contained 19 statements of MI (one item in the original instrument is reversely 
coded and was removed in this study). When they had finished, the participants were told that the 
instrument measures MI and that persons who respond in the lower categories have lower MI than 
persons who respond in the higher categories. Moreover, the participants were told that the purpose 
of this first phase was only to familiarise them with the concept of MI. 

In the second phase, each participant responded to items of a CJ instrument. A detailed description 
of CJ methodology and how it can be applied in mathematics education was described by Jones and 
Inglis (2015). Here, we present a rough outline only. Briefly, CJ is based on a psychological principle: 
humans are poor at estimating measures but good at comparing them. For instance, it is easier for 
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teachers and other experts to compare the qualities of two mathematical arguments, two mathematical 
texts, two forms of instructions, and so forth than for them to give measures to each of these things. 

The data collection of CJ follows this principle: multiple individuals compare multiple pairs of items, 
usually using a digital platform. In this study, NoMoreMarking (nomoremarking.com) was used for 
data collection. For each comparison, the participants were asked: “Which of these persons do you 
think have the higher MI?” They could then choose between two stereotype descriptions, each 
holding one of the characteristics listed in Table 1. 

For the personality traits, the respondents were not given category labels (e.g., “highly 
conscientious”), but instead a brief description of those categories (e.g., “a person that is performance-
oriented, orderly, self-disciplined, and thorough”). For simplicity, however, we use the category 
labels when we report the results in this paper.  

A sample task is presented in Figure 1. For the respondents, the pairs of items that appeared on the 
screen seemed to be randomly selected, although they were adaptively chosen by the software to 
increase the statistical information. Each person made 28 comparisons; thus, the data comprised 952 
comparisons in total. To increase the statistical information further, we allowed comparisons of non-
opposite characteristics (as the case in Figure 1 illustrates). 

 
Figure 1: Sample task 

Analyses of CJ data is, in principle, similar to Rasch analysis: A maximum likelihood estimation is 
conducted to estimate the most likely measures of each item (in this study: stereotype characteristics) 
given the observed data. Subsequently, analyses are conducted to assess dimensionality, judge 
agreement (i.e., the extent to which the results depend on individual judges), and reliability. 

Regarding dimensionality, a crucial question is this: does it make sense to compare the items in the 
instrument? For instance, does it make sense to make the comparison in Figure 1? In the CJ paradigm, 
an answer is this: If the judges (here: the students) respond in ways predicted by the Rasch model, 
the items are sufficiently unidimensional; by contrast, if the judges respond unpredictably, the items 
are too multidimensional for comparisons to make sense. Infit Mnsq—an information-weighted 
squared difference between modelled and empirical data—is one indicator of uni-dimensionality. 
Roughly, when the Infit Mnsq of one item is substantially greater than 1 (in this study, we used 1.3 
as a threshold), it indicates that this item is so different from the other items (i.e., it belongs to a 
different dimension) that it does not make sense to include it in the comparisons. 

Regarding judge agreement, a crucial question is whether different judges make different 
comparisons for similar pairs of items. For instance, will different judges make different judgements 
on the task in Figure 1? In the CJ paradigm, each judge is associated with an Infit Mnsq value. The 
interpretation of judge Infit Mnsq is about the same as for item Infit Mnsq: If a judge Infit Mnsq is 
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substantially greater than 1 (in this study, we used 1.3 as a threshold), it indicates that the judge makes 
judgements that differ substantially from the rest of the judges. 

Overall, the analyses showed good psychometric qualities. The reliability was .91, and the largest 
item Infit Mnsq was 1.3 (“a person who has a theoretical work”). Two persons had Infit Mnsq greater 
than 1.3 (1.4 and 1.5 respectively), which means that they in some cases made unpredictable answers 
relative to the rest of the group. However, removing these persons from the analyses had no statistical 
implication. Thus, the results on which we report in the next section represent a shared agreement 
amongst the students who participated in the study. 

When measures for the items had been estimated, we conducted classical t-tests for each pair of 
contrasting items using a Bonferroni adjusted alpha level of 0.004. For instance, a t-test was 
conducted to assess whether the students associated individuals with high income and those with low 
income differently to MI. To more directly compare the null hypothesis with the alternative, Bayesian 
t-tests were conducted. Under the null hypothesis, we expected an effect size of 0, and the alternative 
hypothesis was two-sided. Before observing the data, we assumed that δ followed a Cauchy 
distribution with scale . All analyses were conducted in R (R Core Team) and JASP (JASP 

Team, 2020), and all measures are reported in logit units. 

Results 
Gender 

In contrast to previous studies, the results in this study indicated no significant differences  
in how students related gender to MI. The Bayes factor was , which means that the 
observed data was almost five times as likely under the null hypothesis (i.e., that males and females 
are associated equally with MI) than under the alternative (i.e., that males and females are associated 
differently with MI). 

Occupation 

Three characteristics of occupation—income, education, and work—showed significant ( ) 
associations with MI. In effect, the students stereotyped persons with low income, low education, and 
practical work as having lower MI than persons with high income, high education, and theoretical 
work, who were stereotyped as having higher MI. In all cases, the Bayes factors (  
being the least) showed decisive evidence for the alternative hypothesis, namely that occupation 
characteristics associate differently with MI. 

Political preferences 

Associations between MI and five contrasting political preferences were assessed. The overall image 
is that students stereotyped persons positive towards immigration and environment-friendly policies 
as having a higher MI than persons hostile towards these issues (  and  
respectively). There was no significant difference between left-wing and right-wing values for the 
remaining political issues: attitudes towards taxes, state regulations, and the EU. 
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Personality 

There were also significant differences in how the students connected personality traits and MI. 
Roughly, the students stereotyped conscientiousness persons as having a higher MI; persons with 
high measures on the remaining personality traits—extraversion, agreeableness, openness to 
experiences, and neuroticism—were stereotyped as having a lower MI. The most significant 
differences were found in conscientiousness and neuroticism. That is, persons that are laid-back, 
messy, and careless (low conscientiousness) were stereotyped as having a lower MI as compared to 
individuals that are performance-oriented, orderly, self-disciplined, and thorough (high 
conscientiousness). Moreover, persons that are sensitive, worried, cheerless, and have mood-changes 
(high neuroticism) were stereotyped as having a lower MI as compared to individuals that are 
emotionally robust, handling stress, and balanced (low neuroticism). 

 

Table 1: Characteristics of stereotyped MI 

 

 Stereotyped  
as lower MI 

 
Measure 

      Stereotyped  
      as higher MI 

 
Measure 

 
p 

Gender      

 Male         Female   

Occupation      

 Low income        High income   

 Low education        High education   

 Practical work        Theoretical work   

Political views      

 Non-environmental        Environmental   

 Against low taxes        Pro high taxes   

 Against state regul.        Pro state regul.   

 Against EU        Pro EU   

 Against immigration        Pro immigration   

Personality      

 Conscientiousness (low)        Conscientiousness (high)   

 Openness (high)        Openness (low)   

 Extroversion (high)        Extroversion (low)   

 Agreeable to exp. (high)        Agreeable to exp. (low)   

 Neuroticism (high)        Neuroticism (low)   
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Discussion 
We have maintained that research in mathematics education should examine: (1) how stereotype 
images other than gender relate to mathematics, and (2) how such images affect people (in particular, 
how they affect those who are stereotyped negatively). In this study, we considered the first of these 
issues, and we have shown that there are significant associations between extreme stereotypes (related 
to occupation, political views, and personality) and MI. No significant association was found between 
gender and MI. 

It is worth noting that the format of the questions in the instrument in this study has some 
consequences. That is, the respondents in the study were asked: «compare X with Y; which one do 
you believe have the strongest MI?» They were not asked: «imagine a person with a strong MI; is the 
person an X or a Y?» Accordingly, it is crucial to make clear which inferences we can draw from the 
results presented in this paper. We conclude on the form «X are stereotyped as having higher MI than 
Y»; not on the form «persons with strong mathematical identities are stereotyped as X». 

Having made this distinction, we maintain that the significance of the results presented in this paper 
depend on answers to the second issue, namely, how stereotype images of MI affect people. This is 
an issue on which we have no data. Nonetheless, we propose a working hypothesis for future research: 
stereotype images of MI cause similar effects as they do in nearby domains, namely, a stereotype-
threat (ST) (Spencer et al., 1999) for people who are stereotyped negatively and a stereotype-lift (SL) 
(Walton & Cohen, 2003) for those stereotyped positively. In effect, ST and SL function as a self-
fulfilling prophecy: If people belong to a group that is stereotyped as having a low MI, they will 
develop it as such, and vice versa. 

We emphasise that SL and ST do not depend on stereotype images to be true (e.g., Spencer et al., 
1999). Nevertheless, it is relevant to ask whether the stereotype images presented in this study reflect 
reality accurately. Suppose that persons with certain occupations, political views, and personality 
traits have stronger MIs than others. In that case, we might ask ourselves: how do we establish an 
educational system so that everyone can participate equally (and agree upon the standards) in complex 
questions that require scientific evidence: questions regarding equality, immigration, vaccination, and 
global warming? Alternatively, if the students in this study were inaccurate in their descriptions, we 
might wonder why some groups in society are falsely portrayed as having a lower MI than others and 
what the practical implications of these images are. 

Although we have no empirical answers to these issues, we maintain that future research on 
stereotypes and mathematical identity should confront the most urgent issues in what seems to be an 
increasingly polarised society. 
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The present study focuses on teachers’ emotions in relation to their decision-making in handling 
Pivotal Teaching Moments (PTMs), adopting an Activity Theory perspective. We study a case of an 
experienced mathematics teacher, who participated in a professional development (PD) program. 
Data comes from videotaped lessons, PD sessions and interviews with the teacher. From the first 
interview we identified teacher’s motives and goals. From the other three interviews and the 
videotaped lessons we identified relations between PTMs, emotions and actions. According to the 
results ten PTMs appeared, accompanied by negative, positive, mixed or neutral emotions. Teacher’s 
emotions seemed to reflect his sense of possibility of achieving his goals while his actions move 
towards his goals’ achievement.  

Keywords: Teachers’ emotions, decision-making, activity theory, pivotal teaching moments. 

Introduction 
Emotions set the context for teaching, affect social relations, and reveal effects of power in the 
classroom (Zembylas, 2004). Emotions has occupied much of the international literature, but very 
little research focuses on teachers' emotions (Hagenauer et al., 2015), and much more on emotions 
that arise in mathematics teaching. This is probably due to the methodological difficulties that lie in 
the qualitative study of emotion, due to its ambiguous nature, which is why most of the studies that 
have been carried out, mainly concern quantitative approaches. Teachers' emotions are related to the 
quality of teaching and are a key factor in teachers’ decision making (Di Martino et al., 2013). Bishop 
(2008, p. 30) considers decision making at “the heart of the teaching process” and he argues that if 
we know about teachers’ decisions, we can link teaching to a number of different aspects (e.g., 
objectives, intentions, children’s attitudes, children’s mathematical development) and so search for 
ways of improving its quality (Potari & Stouraitis, 2019). Zembylas (2004) highlights that teachers’ 
decisions are influenced by emotions and reflect teachers’ values and beliefs about teaching. Yet, the 
affective dimension of mathematics teacher decision-making is rarely the focus of research. Teacher 
decision making is triggered usually on what Stockero and Van Zoest (2013) call pivotal teaching 
moments (PTM). The tensions that arise during PTMs are considered stressful for teachers and 
usually negative emotions accompany their management (Pillen et al., 2013). 

Therefore, we attempt deepening our understanding on teachers’ on-the-moment decision-making 
while handling PTMs, and their emotions involved in the process. The study of mathematics teaching 
through these lenses can offer new perspectives on the management and the quality of teaching and 
consequently on student learning. Our research question is: How do emotions relate to teacher's 
decision-making in handling PTMs? 
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Theoretical Framework 
In our study we see emotions being formed within the context of the activity in which the individual 
participates. We adopt the Activity Theory (AT) framework where the activity (mathematics 
teaching) with the teacher as the subject, is directed towards an object (students’ learning) and is 
expressed through actions with conscious goals. Engeström (1999) takes joint activity as the unit of 
analysis focusing on the process of social transformation and emphasizes upon the conflictual nature 
of social practice. The activity is dialectically related to subject’s actions: the motive of the activity 
is concretized as the goal of the action and the action is the one that affects the object of the activity. 
Action is the way in which the subject engages with the object, that is, the way in which the individual 
performs the collective activity. Within this context, emotion is a holistic expression of the subject's 
current state in relation to the object, and the subject's sense of the possibility of success in realizing 
the object/motive he/she has accepted (Leont’ev, 1978). According to Burkitt (2021, p. 13), emotions 
are integral components of social interactions, and “they function in complex ways, not only as 
internal signals to one’s self, but also as signals to others, which are frequently spontaneously 
expressed in the moment without full consciousness of our intention”. Thus, the emotion moves 
together with the activity as a whole, and is one of its manifestations in the actions of the subject in 
the effort to achieve his conscious goals. Instability, tensions and contradictions, that may occur, may 
affect subject’s emotions in relation to its goals, and thus his actions, reforming the whole activity’s 
context. According to Ekman and Cordaro (2011) the basic (seven) emotions are discrete 
physiological responses to fundamental life situations that have been useful in our ancestral 
environment. Plutchik (2001), in his three-dimensional model, presents the characterizations of the 
primary emotions’ intensity and also refers to the “primary dyads” emotions, that are mixtures of two 
of the primary emotions.  

Stockero and Van Zoest (2013, p. 127) define a pivotal teaching moment (PTM) to be “an instance 
in a classroom lesson in which an interruption in the flow of the lesson provides the teacher an 
opportunity to modify instruction, to extend/change the nature of students’ mathematical 
understanding”. When a PTM occurs, the teacher should at first recognize it and then decide how to 
handle his/her interruption. Five types of PTMs were identified: extending, incorrect mathematics, 
sense making, mathematical contradiction and mathematical confusion.   

The teachers trying to manage the PTMs that occur in their classrooms, they are called to take on the 
moment decisions. According to Engeström (2001, p. 281) “decisions are not made alone; they are 
indirectly or directly influenced by other participants of the activity (e.g., students in the classroom, 
other teachers). Decisions are typically steps in a temporally distributed chain of interconnected 
events”. In terms of responsibility and power, decisions have moral and ideological underpinnings. 
Decisions shape the future of the broader activity system within which they are made, not just the 
ostensible problem or task at hand (Engeström, 2001). 

Methodology 
The context of the study and the case of the teacher 

The present study is a case study of one high school mathematics teacher in Greece with 30 years 
teaching experience, a master’s degree in special education and rich professional development (PD) 
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experiences. This study is carried out in the context of a professional development program 
EDUCATE (http://www.ucy.ac.cy/educate/en/general-information/the-project), aiming to support 
teachers to balance differentiated learning and mathematical challenge.  In the context of EDUCATE, 
he worked in a video club setting with five other high school teachers to conceptualize the meaning 
of differentiation and mathematically challenging tasks and enact them in the classroom teaching. In 
particular, seven two- hour PD sessions took place along a period of a school year (2017-2018) and 
in between the teachers had to plan lessons, enact in their classrooms to address the focus of 
EDUCATE and share video-excerpts from their lessons with the other teachers in the PD sessions. 
The teacher of our study designed three lessons two for grade 10 class and one for grade 11 class 
(mixed ability classes). The aim of balancing differentiation and mathematical challenge, to which 
the teacher is called to respond, is a fertile ground for creating PTMs and the emergence of emotions 
as it is new and demanding enough for him. The above process was followed by all the teachers in 
the group but in this article, we focus on the teacher with the characteristics we described above. 

Data and Data Analysis 

The data has been generated from the three videotaped lessons, the seven PD sessions and four semi-
structured interviews with the teacher. Initially, we analyzed the videotaped lessons to identify the 
PTMs, teacher’s emotion(s) and his actions dealing with each incident, drawing additional data from 
teacher’s reflections on his lessons during the PD sessions. The interviews were conducted by the 
first author. The first interview’s aim was to outline the teacher’s teaching profile and his overall 
teaching goals. For each one of the other three interviews, the teacher was asked to watch the 
videotaped lessons and identify incidents that he considered important and/or that indicate emotions 
from his side. In the first part of each interview, we discussed the moments chosen by the teacher, 
while in the second part the moments chosen by the researcher, in relation to his emotions and actions. 
Some of the questions addressed to the teacher, when discussing about each incident, are: Why did 
you choose to discuss this incident? How do you feel at that moment? Why do you feel that way? 
How you usually feel in similar moments? How did you act/react? Why did you act that way? 

Table 1: Coding PTMs, emotions and actions 

E
m

ot
io

ns
 

Basic (and intensity) Dyads 

Joy (Pleasure, Enthusiasm),  

Sadness (Disappointment), Fear, Surprise, 
Anticipation 

Pride (Pleasure + Satisfaction), Delight (Joy + Surprise), 

Anxiety (Fear + Anticipation), Disapproval (Sadness + 
Surprise) 

PT
M

s Extending (E), Incorrect Mathematics (I.M.), 
Sense-making (S.M.), Mathematical 

Confusion (M.C.), General Confusion (G.C.) A
ct

io
ns

 Extends and/or Makes connections, Pursues 
student(s) thinking, Continues as planned, 

Ignores/Dismisses, Giving extra time to students 

To identify the PTMs and teacher’s actions during teaching we used an expansion of Stockero and 
Van Zoest’s (2013) framework. To identify teacher’s emotions during the PTMs, we used semiotic 
tools such as gestures, facial expressions, gazes (see Ekman & Friesen, 2003) and voice pitch. Then 
we transcribed the interview data and grounded analyzed them in order to verify teacher’s emotions 
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and find relationships between the PTMs, decision-making and teacher’s emotion(s). Our emotion 
characterization was based on a synthesis of Plutchik's (2001) and Ekman and Cordaro’s (2011) 
models. Through this process, the coding schemes used for the analysis of PTMs, teacher’s actions 
and teacher’s emotions, are presented in Table 1. Categorizing the data about “why” the teacher feels 
or acts in this way, we captured the categories that are presented in Table 2 along with their meanings. 

Table 2: Coding the “why” 

W
hy

 fe
el

s t
ha

t w
ay

? 

Expecting goal: the teacher expects the goal to be achieved 

Moving away from goal: the teacher feels that he is moving away from achieving his goal 

Slow on goal: the teacher feels that the process of achieving the goal is delayed 

Conflicting goals: when his thought is attracted in different goals at the same time 

Achieving goal: the teacher thinks he is approaching his goal 

Contributing to goal: when he contributes more than intended to achieve the goal 

W
hy

 a
ct

s t
ha

t w
ay

? Redirecting to goal: when acting so that the lesson progresses back to achieving his goal 

Holding on to goal: when acting in such a way that the flow of the lesson doesn’t deviate from the 
achievement of the goal 

Processing goal:  when a goal has been achieved and he extends it through his actions 

Globalizing goal: when he had a goal about one student and momentarily makes it a goal for all the students 
of his class 

Results 
Motives and goals 

Through the initial interview some information was gathered about teacher’s motives and goals. 
Below is an excerpt from the interview with the teacher: 

Interviewer: What characterizes your teachings? 
Teacher: Students’ engagement.  
Interviewer:    What do you mean by that? 
Teacher:       It’s obvious. It makes no sense to just copy a solution from the board into their 

notebook or “parrot” procedures and operations to be able to solve an exercise. It is 
necessary for them to get involved in the resolution process….to think. Only then 
is it possible for them to make sense of what they are doing, to see some utility, and 
I am referring to the mathematics they use. 

Interviewer:    I see that this is of great importance. But it is also difficult to succeed. How do you 
do that?  

Teacher:          I improvise a lot. Depending on where the flow of the class will throw me or I will 
think what I want to do. 

Interviewer:    So? 
Teacher:           (pause) So, I try to play, challenge them with questions and arouse students' interest. 

It is important because the student will be bored, and secondly, I am bored too 
talking all by myself (laughs).  
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The above extract illustrates teacher’s image of the object (motive) of the activity which is students’ 
engagement and making sense of mathematics. To achieve students’ engagement, he poses two main 
goals, to attract students’ interest and to involve as many students as possible. He rejoices when the 
majority of students interact with each other and with him during the lesson as he considers learning 
a collective process. He wants even for the students that won’t follow a mathematical orientation, to 
develop a mathematical way of thinking. It is also important for him to build a safe classroom 
environment for the students to feel free to express their ideas.  

Emotions and Decision-making: Approaching “why”  

In our data ten PTMs appeared: four are accompanied by negative emotions (I.M., M.C., G.C and 
E.), four by positive emotions (S.M., M.C., G.C. and E.), one by positive and negative emotions 
(S.M.) and one by neutral emotion (M.C.). In Table 3 we illustrate our findings about five out of the 
ten PTMs, the most representative of each category (based on the intensity of emotions’ expressions). 

Table 3: PTMs, emotions, actions and “why” 

1st PTM (Incorrect Mathematics): The teacher asks why we use the root symbol. Students give insufficient or 
incorrect answers. The teacher seems a bit irritated. He listens to all students’ answers without correcting them. After 

summing them up, they come to a correct conclusion. 

N
eg

at
iv

e 
E

m
ot

io
ns

 

Anxiety 

Disapproval 

Why? Interview’s Excerpt 

Expecting goal 

Moving away from goal 

“it is a crucial point what the students will answer for 
the development of the lesson” … “this knowledge 

should have been acquired in previous classes”. 

A
ct

io
ns

 

Extends and/or 
Makes connections 

Pursues student(s) 
thinking 

Ignores/Dismisses  

Redirecting to goal 

“It is important to hear all the views of the students 
so that there is a “game” between them.” … “when 
something is heard from their classmate, it is more 

easily accepted by the students because it is not 
something “alien sounds” that is heard by the 

authority”. 

2nd PTM (Extending): A student presents an alternative (correct) way of solving that goes beyond the mathematics 
that the teacher had planned to discuss. The teacher doesn’t seem to fully understand it at that moment and skips it. 

N
eg

at
iv

e 
E

m
ot

io
ns

 

Anxiety 

Why? Interview’s Excerpt 

Slow on goal “Because then I didn’t fully understand what the student 
were saying”. Also, “there was no time to devote to it” and 

had to remain in the original lesson plan. 

A
ct

io
ns

 

Ignores/Dismisses  

 

Holding on to goal “You want to move forward, you also have a flow, a path 
of thought and you skip it”.  
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3rd PTM (Mathematical Confusion): There is interaction between the students. They ask questions, they are 
confused about the concepts of decimals with infinite number of digits and irrational numbers. A student says “it is 
not possible to draw a length of 1.4… and infinite decimals, right?”, he is troubled. The teacher tells him that if he 
gives him a ruler, he can draw it. After a few minutes of talking with the students, he states that this problem has 

preoccupied the Pythagoreans, and that in another lesson they will prove/construct the line segment with length . 

  Why? Interview’s Excerpt 

Po
si

tiv
e 

E
m

ot
io

ns
 

Delight Achieving goal 

 

“This shows that the lesson works, there is 
interaction, the students have entered the “game” and 

it starts working in their mind, the student has 
something to say and the teacher has something to 

teach”. 

A
ct

io
ns

 

Extends and/or 
Makes connections  

Ignores/Dismisses 

Continues as planned 

Holding on to goal “I didn’t want to escape tangible planning. The goal 
for this course was to reach the definition of the ninth 

root, so time would not be enough.”. 

4th PTM (Sense Making): A student unfolds his thinking and explains everything very correctly and in detail. The 
teacher does not confirm anything and asks for the others students’ ideas. 

 

Joy 

Disappointment 

Why? Interview’s Excerpt 

M
ix

ed
 

E
m

ot
io

ns
 

Conflicting goals “Because the student has understood from a previous 
lesson what he says and reproduces it now… I don’t 

want it to end like this for the other students”. 

A
ct

io
ns

 Ignores/Dismisses 

Pursues students’ 
thinking 

Globalizing goal “If I had verified that this was the correct answer, the 
other students would have never tried to do 

something like that”. 

5th PTM (Mathematical Confusion): In classroom they complete the root-definition (on board) and a student does 
not understand why the constraint θ≥0 is needed since it is in the square. Then the teacher asks them: if  
then  and then  He uses a non-example so that the student can see the error in his reasoning. He 

had “expected the students to have difficulty with the constraint”. 

Neutral Emotion 
Why? Interview’s Excerpt 

Achieving goal 
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ns
 Pursues students’ 

thinking 
Processing goal “I don’t feel anything. The use of a constrain is a 

common confusion-point for the students, you know 
that too. Every year with each class we have the same 

talk about constrains and their use.” 

The first and the second PTMs are accompanied by negative emotions which are seemed to be created 
due to the unexpectedness of these incidents and their potential to make the teacher deviate from the 
initial lesson planning and his goals. Nevertheless, teacher’s actions seem to target on redirecting or 
holding on to his initial goals. Teacher’s positive emotions in PTMs seem to be created due to the 
positive outcomes of his interaction with the students in relation to his goals. Although in the third 
PTM it could be expected that his feelings were negative, he feels surprised and pleased because his 
students’ mathematical confusion is a sign for him that the lesson he planned, triggered their 
mathematical thinking, something that is of extreme importance for him. In the fourth PTM, on one 
hand he is joyed due to his student’s understanding and rigorous explanation but on the other hand 
he feels disappointed because he thinks that if he confirms the correctness of this answer, the other 
students’ engagement would be minimized. His decisions once again align with his main goals and 
are oriented in confronting that negative emotion. The neutral emotion that accompanies the fifth 
PTM may be due to the fact that the teacher had been expecting this to happen. This also can be 
confirmed by his readiness to deal with this incident in such procedural way.  

Discussion 
In our study we try not just to describe the teacher’s emotions and decision-making in handling PTMs, 
but also to find a way to make sense of his on-the-moment decisions through his emotions. Our 
teacher’s case indicates that his emotions aren’t directly dependent upon the type of each PTM (e.g., 
3rd PTM in Table 3), but they reflect his sense of possibility of success in realizing the motive he has 
accepted (Leont’ev, 1978). Our findings agree with what Schoenfeld (2011, as cited in Potari & 
Stouraitis, 2019) claims that decisions are consistent with the teachers’ goals consciously or 
unconsciously.  Through his decisions, the teacher seems to be led by his need to refocus his thinking 
and actions on the aspects of his environment (classroom interaction and management) they could 
change for achieving his goals, but also to be able to push back on the unpleasant emotions and try to 
maintain a positive disposition. A number of appraisals such as valence, goal congruency, 
expectedness, or controllability are assumed to influence human emotions; they can be classified as 
situational appraisals and appraisals about the self (Scherer et al., 2001, as cited in Schukajlow et al., 
2017). The teacher’s long teaching experience may justify his flexibility in how he moves towards 
his goals (Westerman, 1991) and in handling his emotions, but further research into this aspect is 
necessary. The study of teachers’ emotions in relation to their decision-making in more cases of 
teachers could give us insights for understanding better how these interrelate in the complex context 
of mathematics teaching and learning. 
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Problem posing is considered to have great potential to foster students’ motivation because it 
provides the opportunity to create problems on the basis of individual interests and abilities. 
However, whether learners indeed use this opportunity is an open question. The aim of the present 
study was to investigate the role of interest and self-efficacy expectations in problem posing. In 
interviews, we asked preservice teachers (N = 7) why they decided to pose a certain problem, and we 
focused on their interest and self-efficacy expectations when we analyzed the data. The most 
important factor was preservice teachers’ interest in the answer to the posed problem. Self-efficacy 
expectations have been also revealed as important for their decision to pose a certain problem. 
Preservice teachers wanted to be able to solve the problem or to master problem posing by posing 
multiple problems or a problem with adequate difficulty. 

Keywords: Problem posing, interest, self-efficacy, real-world problems, preservice teachers. 

Introduction 
Problem posing has recently been receiving greater attention from the scientific community. 
Researchers have emphasized that problem posing has the potential to help students learn 
mathematics and may be particularly beneficial for students’ motivation (Cai & Leikin, 2020). 
Problem posing conveys the experience of autonomy and control by allowing students to generate 
problems that fit their own interests, needs, and abilities. Consequently, learners’ interest and self-
efficacy expectations can be expected to be important for their problem posing processes. There is 
little research on the relationships between interest, self-efficacy, and problem posing, and prior 
studies have rarely addressed how interest and self-efficacy can influence the posing of problems. 
The present study is aimed at gaining a better understanding of the roles that interest and self-efficacy 
play for problem posing by investigating learners’ beliefs about factors that affect the development 
of self-generated problems. 

Theoretical background 
Problem Posing 

Problem posing is typically defined as the generation of new problems and the reformulation of given 
problems (Silver, 1994). It is considered a powerful learning approach for improving students’ 
motivation and problem solving abilities and is also an important learning goal in itself (Cai et al., 
2015). Even if some progress has been made in recent years, problem posing is still a rather young 
and evolving field in which scholars are just beginning to develop an understanding of the processes 
that take place and the benefits problem posing can have for the learning of mathematics. Here, we 
look at problem posing from the perspective of modelling and applications in mathematics education. 
We focus on modelling-related problem posing, which we define as the generation of real-world 
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questions that can be solved with the help of mathematics on the basis of stimuli that are connected 
to the real world (e.g., textual descriptions of real-world situations, pictures, or artefacts from the real 
world) (Hartmann et al., 2021). An example of problem-posing stimuli used for modelling-related 
problem posing is depicted in Figure 1. 

 
Figure 1: Real-world situation used as a stimulus for modelling-related problem posing 

Problem posing and interest in solving self-generated problems 

Motivation is an important variable that affects students’ behavior, decisions, and performance 
(Middleton & Spanias, 1999). Closely related to students’ intrinsic motivation is students’ interest, 
which is defined as a person-object relationship that refers to both the state of attention and affect 
toward a particular topic (situational interest) and an enduring predisposition to reengage with a topic 
over time (individual interest) (Hidi & Renninger, 2006). Learning environments can foster the 
development of individual interest by triggering situational interest and building upon prior individual 
interest (Hidi & Renninger, 2006). Problem posing provides opportunities to generate problems 
according to a person’s own interests, and thus, incorporating problem posing in class has the 
potential to improve students’ motivation (Cai & Leikin, 2020). Prior research has shown that 
teaching interventions that include problem-posing activities positively affect students’ individual 
interest in mathematics (Xia et al., 2008) and their situational interest in the topic that is being 
addressed in class (e.g., algebra) (Walkington, 2017). However, the extent to which students’ interest 
influences their decision to generate a certain problem is an open question. Learners’ affect and more 
specifically learners’ interest could refer to different objects (Schukajlow et al., 2017). For modelling-
related problem posing, they could either center their interests on the real-world context or on an 
inherent intramathematical topic. In addition, the people whose interests are being evaluated might 
differ. If teachers pose problems for their students, they might refer more to what they think their 
students find interesting than to their own interest. Preservice teachers might already identify with 
their role as teachers, but it is also possible that they still identify more with the student role, 
particularly because they do not yet have students of their own to relate to. 
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Problem posing and self-efficacy in solving self-generated problems 

Self-efficacy is defined as the perceived ability to successfully perform an action in the future 
(Bandura, 1997). Prior research has demonstrated that self-efficacy is positively related to 
performance and is an important factor that influences students’ decisions while learning (Pajares, 
1996). For problem posing, the criteria for estimating students’ success varies according to the goals 
of constructing a problem. Voica et al. (2020) showed that self-efficacy in problem posing occurs in 
relation to several goals. The preservice teachers investigated in this study reported on their self-
efficacy to construct a large number of problems, difficult problems, original problems, or problems 
that matched the abilities of a problem-solver. Further, a person’s problem solving self-efficacy could 
also influence his or her decision to pose a certain problem because learners might generate only the 
kinds of problems that they are confident they can solve. This could explain why learners tend to pose 
simple and closed-ended problems (English, 1998; Hartmann et al., 2021). The present study is aimed 
at shedding some light on this potential reason. As the participants of our study were preservice 
teachers, it is also possible that their expectations refer more to the success of their students than to 
their own expectations of success with respect to being able to solve the problem. However, it is also 
possible that preservice teachers consider it as particularly important that they are themselves able to 
solve their self-generated problems, because they might imagine their future selves as teachers. The 
study of Marschall (2021) shows that preservice teachers’ self-efficacy appraisal is closely related to 
narrative self-schema and the development of professional identity. Thus, it is important to take into 
account the different perspectives they adopt when evaluating their problem posing process or the 
potential success of a student in solving the problem.  

Research questions 
The aim of the present study was to investigate the role of interest (RQ1) and self-efficacy 
expectations (RQ2) in problem posing. In particular, our research questions were: 

RQ 1a: What are the objects of interest that preservice teachers refer to when posing problems? 

RQ 1b: What are the perspectives of preservice teachers when they evaluate interest? 

RQ 2: What are the goals that preservice teachers’ self-efficacy refers to? 

Method 
Sample and data collection 

Seven preservice teachers (three women, four men; between the ages of 20 and 26 years) from a 
German university participated in the study. The preservice teachers participated voluntarily in the 
study and were selected under maximum variation sampling criteria in order to gather information 
rich data and to analyze the existence of patterns across the variation. As selection criteria, we focused 
on their mathematical performance levels, their experience with problem posing and solving, and on 
their study programs. Five of the preservice teachers studied for a teacher profession at high track 
secondary schools and two of them for a teacher profession at middle track secondary schools. Four 
of them were in a master program and three in a bachelor program. Pseudonyms were used for the 
names of participants. In a laboratory setting, each of the participants received three real-world 
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situations (Cable Car, Fire Brigade, Chopsticks) with the request to first pose problems on the basis 
of the given situation by instructing them “Read the description of the situation aloud. Then you think 
about what mathematical question you can ask yourself about the situation.” and afterwards to solve 
their problems. One of the situations is depicted in Figure 1. A shortened version of the other problems 
is presented in Table 1. After posing and solving the problems, the participants were asked in 
stimulated recall interviews about why they generated the particular problems at hand. The interviews 
were video-recorded, the video material was transcribed and sequenced into classification units.  

Table 1. Shortened version of the additional problem posing stimuli  

Fire Brigade. The Muenster fire department has a total of 16 locations in downtown Muenster, so that there is a 
maximum distance of 6 km from a burning house. On average, a truck manages to drive about 40 km/h in Muenster 
city traffic. A central component of the Muenster fire-brigade is a fire engine with a turn-ladder. The dimensions of 

such a fire engine with a 30 m turn ladder are specified in the fire department’s guidelines. [Table with data about the 
fire engine]. Using a fire-engine the fire-brigade can rescue people from great heights. The rescue is carried out via a 

cage attached to the end of the ladder. […] So called HAUS-rules, in which minimum distances of the vehicle are 
specified are applied [List with distance rules]. [Picture of a fire engine] 

Chopsticks. Lisa is looking online for a gift for her mother’s birthday. […] Lisa decided to buy her mother 
chopsticks. She finds the following offer: [Picture with product details including the price, and the length of the 
chopsticks, and the number of product reviews]. Lisa finds a nice storage box for the chopsticks [Picture with 

product details including measures, weight, price and product rating]. To save some money, Lisa researches online 
for a discount promotion. She discovers a discount promotion where she gets a 10% discount on her entire purchase 

if her purchase is worth 20€ or more, and a 20% discount if her purchase is worth 30€ or more. 

Data analysis 

A qualitative approach was used for this study to gain in-depth insights about preservice teachers’ 
reasons for posing a certain problem. We focused on preservice teachers’ interest and self-efficacy, 
because these constructs revealed as important during the interviews. The transcripts were analyzed 
using a qualitative content analysis. A category system was developed using a data-driven approach. 
The sequences were coded with regard to the objects of interest, the perspective of interest, the goals 
of self-efficacy expectations and the perspective of solving expectations. The material was analyzed 
by a trained coder; the coding was discussed among the members of the research team using 
consensual coding principles and checking for reliability (Cohens’ κ ≥ .662).  

Findings 
An overview of central categories and sub-categories that were derived from the material is presented 
in Table 2. 

Table 2. Categories for reasons that explained the self-generated problems  

Main category Subcategory Description Example 
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Objects of 
interest 

Interest in the 
answer 

Interest in the answer to the posed 
problem 

…because I was interested in 
knowing whether the chopsticks 

were free. 

Interest in the real-
world situation 

Interest in specific aspects of the real-
word situation 

…because if I think about what 
I find most interesting... 

Interest in the 
mathematical topic 

Interest in the mathematical topic that is 
related to the problem 

…because I like to have tasks 
with functions. 

Perspective of 
interest 

One’s own interest Statement of interest refers to the 
preservice teacher’s own interest 

…what I am personally 
interested in. 

Interesting to the 
protagonist 

Statement of interest refers to the 
protagonist’s interest 

…I thought about what Lisa 
wanted to know. 

Interesting for 
students 

Statement of interest refers to the interest 
of the imaginary students who would 

work on the problem 

…because I thought that would 
be interesting for the students to 

know. 

Goals of self-
efficacy 

expectations 

Solving Reasons that address the problem-
solver’s self-efficacy with respect to 

solving the problem 

…that I am able to solve the 
problem. 

Posing Reasons that address the problem-
solver’s self-efficacy with respect to 

mastering problem posing 

…that I am able to construct a 
problem with an adequate level 

of difficulty  

Preservice teachers’ interest in posing problems 

Interest was often mentioned by the preservice teachers when explaining why they decided to pose a 
certain problem. Thereby the participants refereed to different objects of interest. Most frequently 
they were interested in the answer of their self-generated problem (18 sequences, 5 out of 7 
participants). For example, Anna posed the following problem to the Chopstick task: “How much 
money can Lisa save?” She explained that she posed this problem because she wanted to know 
whether or not the chopsticks would be free. 

Anna: (Chopstick task) Hm, [.] Definitely interesting for me too, because [.] I was also 
interested in whether the chopsticks would ultimately be free, that is, were given 
for free. 

Their interest in aspects of the real-world situation was also often mentioned by explaining their 
decision to pose a certain problem (9 sequences, 5 participants). For example, Theo said that he 
included his personal interests in his problem posing process. 

Theo: (Cable car task) […] and then I have linked the [.] knowledge [.] [.] with what would 
be of further interest to me personally. [.] So [.] How does it look if I [.] in particular 
limit the people to the window seats [.].  
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In addition, interest in the mathematical topic behind the problem was mentioned by three participants 
(3 sequences). 

Further, differences were found regarding the perspective of who might find the problem interesting 
(Perspective of interest). Most preservice teachers referred to their own interest or what in general 
could be seen as interesting (15 sequences, 6 participants). However, some participants took the 
perspective of the protagonist of the given real-world context and generated a problem that they 
thought would be interesting for this person to solve (7 sequences, 4 participants).  

Theo: (Chopstick task) So practically I put myself in her [the protagonist’s] position [.] 
and thought I would like to save money on the one hand, but also have as many 
chopsticks as possible [.].  

One participant (Lea) also took the perspective of an imaginary student who could work on the 
problem (2 sequences). 

Lea: (Fire brigade task) Because I also thought that the students might be interested in 
this. Or because they understand why they / because they don't think: This is a 
useless task [..] well, because somehow you [.] understand why you want to know.  

Preservice teachers’ self-efficacy when posing problems 

Regarding self-efficacy, we found that the preservice teachers in our sample often referred to their 
self-efficacy expectations to explain why they posed a certain problem. In particular, their 
expectations that they would be able to solve the self-generated problems played a major role in 
posing the problem. (12 sequences, 5 participants). 

Fabian: (Chopstick task) It was not a known task, but of course a task that I could solve 
myself, that / exactly. Um, now with this task, I already had my solution method in 
my head. So, I knew straight away how / how to / so I didn't have to think about the 
right solution for a long time but already knew the procedure, um how to proceed. 

In addition, their self-efficacy expectations of mastering problem posing was also mentioned by two 
of the participants (4 sequences). Thereby, the preservice teachers set different goals that they wanted 
to achieve. One of the participants (Leon) wanted to pose multiple problems with increasing 
difficulties. For each situation, he constructed at least three problems, beginning with an easy problem 
and ending with a difficult one. 

Leon: (Cable car task) Again from easy to difficult. In the beginning, it was [.] the simple 
task with the Pythagorean theorem [..] um, and then it should get more and more 
difficult with a variable [.] that has to be calculated. 

For the cable car situation, Leon generated the following four problems (Figure 1): “How long is the 
distance between the valley and the mountain station? How much time does it take to go one way? 
What is the maximum number of times per hour that the cable car can run? How many people would 
be in the cabin on average?” 

Lea had a different goal, for her it was important to construct problems with an appropriate level of 
difficulty.  

Lea: (Cable car task) So it was a compromise between: It's not too difficult, it's not too 
easy, it's somehow feasible. 

Proceedings of CERME12 1389



 

 

The preservice teachers’ expectations for solving the problem mainly referred to their own self-
efficacy (11 sequences, 5 participants). However, the one participant (Lea) who considered students’ 
interest also took into account students’ potential solving success and constructed a problem that she 
was confident the students would be able to solve.  

Summary and discussion 
In the present study, we investigated how interest and self-efficacy contribute to preservice teachers’ 
decisions to pose a certain problem. Our findings support the idea that problem posing could be a 
powerful tool to foster motivation (Cai & Leikin, 2020). The preservice teachers in our study often 
posed problems to which they were interested in knowing the answer. This indicates that learners use 
the opportunity that problem posing provides to integrate their interests in their problem-posing 
processes. Their interest in the answer of the self-generated problem might have benefits for their 
perseverance and the effort they put into problem solving or might positively affect their interest in 
the math that is needed to solve the problem (Walkington, 2017) or might contribute to their interest 
in mathematics in general (Xia et al., 2008). Future studies should investigate how this potential of 
problem posing can be used in learning environments that are aimed at fostering students’ motivation. 
Our findings highlight the importance to distinguish between objects of interest (Schukajlow et al., 
2017). Besides interest in the answer and in certain aspects of the real world situation, interest in the 
mathematical aspects behind the problems was also a reason for preservice teachers’ self-generated 
problems. Further, preservice teachers mostly referred to their own interest, but they also took other 
perspectives and generated problems that they thought would be interesting to the protagonist of the 
real-world situation or to the students who would be working on the problems.  

In addition, we focused on the role that preservice teachers’ self-efficacy expectations play in problem 
posing. We found that some of the learners stated that it was an important criterion for the self-
generated problems that they were confident they could solve the problems themselves. This 
contributes to explaining learners’ tendency to pose simple problems as found in prior studies 
(English, 1998; Hartmann et al., 2021). However, in line with the results from the study conducted 
by Voica et al. (2020), their self-efficacy referred not only to their expectation that they would be 
able to solve the problem but also to their expectation that they could successfully pose a problem. 
Thereby, constructing multiple problems and constructing problems with an appropriate level of 
difficulty were identified as problem-posing goals. This finding exemplifies the idea that preservice 
teachers’ self-efficacy appraisal is linked to their different roles such as their role as future teachers 
(Marschall, 2021). In addition, it shows the importance to take into account different goals associated 
with problem posing. For further research it seems necessary to better understand these goals to 
develop evaluation criteria to assess problem posing performance. 

As a practical implication, our study shows that it was important for the preservice teachers to 
construct problems that they were confident they would be able to solve. When teaching problem 
posing in class, it therefore seems necessary to encourage students to also pose difficult problems that 
allow for progress in their learning. In addition, teachers should be aware of the different goals that 
come up with problem posing (e.g., posing multiple problems) and make them transparent to the 
students. 
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Actions Speak Louder than Words: Social Persuasion through 
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What a student believes about their abilities to do mathematics has a significant impact on the ways 
in which they then do mathematics. If they believe they can solve a problem they behave very 
differently than if they believe they cannot. As such, the development of self-efficacy needs to be 
paramount in the conversation of what it means to teach mathematics. In this paper, I look at the 
subtle ways in which students’ self-efficacy is developed within the specific teaching paradigm of 
Building Thinking Classrooms. Results indicate that what a teacher does is just as important as what 
a teacher says when it comes to developing student self-efficacy in mathematics.  

Keywords: Self-efficacy, affect, social persuasion, thinking classrooms. 

Introduction 
Henry Ford is famously credited with stating that “whether you think you can, or think you can’t … 
you’re right”. Ford believed that beliefs in your abilities to achieve something are central 
determinants on whether or not you do, indeed, succeed. Believe you can—and you likely will. 
Believe you can’t—and you probably won’t. This maxim likely emerged from Ford’s belief that 
success is the product of hard work. And in order to persevere in the face of the work that is needed 
to succeed you have to first believe that your hard work will be met with success.  

Bandura (1997) refers to this belief in your abilities to succeed as self-efficacy and argues that these 
beliefs affect how a person thinks, feels, and behaves within a given situation. “It affects the choices 
they make, the effort they put forth, the perseverance they display in challenges, and the degree of 
anxiety or confidence they bring to the task at hand” (Rouleau, Ruiz, Reyes, & Liljedahl, 2019). And 
because these self-efficacy beliefs affect the way you act, they “can powerfully influence the level of 
accomplishment that people ultimately realize” (Pajares, 2006, p. 341).  

Self-efficacy has long been seen as having a significant influence on student performance in 
mathematics (Hackett & Betz, 1989; Hannula, 2012; Skaalvik et al., 2015). As such, helping students 
to develop positive self-efficacy beliefs about their mathematical abilities should be an important part 
of what it means to teach mathematics. In this paper I look at how this is achieved through a teaching 
paradigm called Building Thinking Classrooms (Liljedahl, 2020).  

Development of Self-Efficacy  
Whether a person believes they can, or believes they can’t, Bandura (1986, 1994, 1997) argues that 
these beliefs emerge from an individual’s encounters with one of four sources—mastery experiences, 
vicarious experiences, social persuasions, and emotional/physiological reactions. The first of these, 
mastery experience, is the most influential of the four and is the result of one’s previous experiences 
with success and failure. If you have had a lot of experiences of success you are more likely to believe 
that you can be successful in future endeavors. Likewise, if you have had repeated experiences of 
failure, you are less likely to believe that future efforts will be met with success. In essence, self-
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efficacy is strengthened by success and weakened by failure and that once a trend is established, 
single contradictory experiences are less likely to affect a person’s overall self-efficacy belief. That 
is, if a person is accustomed to succeeding and has, as a result, developed positive self-efficacy 
beliefs, a single encounter with failure is unlikely to affect their overall positive belief in their own 
abilities (Skaalvik, Federici, & Klassen, 2015). Conversely, a person with negative self-efficacy is 
unlikely to change their view of their abilities after only one encounter with success unless that 
encounter was an AHA! experience (Liljedahl, 2008) or occurred on a task others found especially 
challenging (Bandura, 1997).   

The second source of self-efficacy is through vicarious experiences—seeing a peer experience 
success or failure through their actions. This source of self-efficacy is greatly heightened when they 
perceive a strong similarity between themselves and the peer they are observing. For example, a 
student watching a friend be successful at solving a mathematics problem will create a stronger belief 
in their own abilities than watching a teacher solve the same problem. The teacher is perceived as 
being too capable and too knowledgeable for their successes to be seen a reasonable approximation 
of what will occur when the student tries it on their own. A friend’s success, on the other hand, is a 
better proxy—similarity trumps expertise.  

The third source of self-efficacy, social persuasion, draws on persuasive communication and 
evaluative feedback to build up beliefs about one’s abilities. Unlike vicarious experiences, social 
persuasion is enhanced when coming from a source perceived to be knowledgeable. That is, the words 
of a teacher expressing confidence in a student or reminding a student what they are capable of is 
more effective at building up their self-efficacy than the same words from a peer. For social 
persuasion, expertise trumps similarity.    

The final source of self-efficacy is emotional/psychological reaction and comes from how a person 
perceives their own emotional reaction to a situation. For example, if a student works very hard to try 
to solve a problem, persisting in the face of much frustration and several failed attempts, they may 
perceive this experience in a number of different ways. They may focus on the time it took and how 
much of that time was spent being frustrated and how many failed attempts there were and conclude 
that they are not good at solving problems. Alternatively, they may focus on the fact that they endured, 
persevered through the hardship of frustration and failed attempts, and conclude that they are strong 
and capable. The same experience can result in different reactions which, in turn, can result in 
different self-efficacy forming. “It is not the sheer intensity of the emotional and physical reactions 
that is important but rather how they are perceived and interpreted” (Bandura, 1994, p. 3). 

Building Thinking Classroom 
Building Thinking Classrooms (Liljedahl, 2020) is a teaching framework that was developed in 
response to the realization that much of what happens during a mathematics lesson is not thinking. In 
particular, the baseline data that emerged from this research showed that in a typical lesson about 
20% of students spend approximately 20% of the time thinking—8-12 minutes per hour—while the 
other 80% of students spend no time thinking (Liljedahl, 2020). Research has shown that the 
normative practices present in many classrooms are promoting, in both explicit and implicit ways, 
non-thinking behaviors such as mimicking among students (Liljedahl & Allan, 2013). These 
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normative structures permeate classrooms around the world and are so entrenched that they transcend 
the idea of classroom norms (Yackel & Cobb, 1996) and can only be described as institutional norms 
(Liu & Liljedahl, 2012)—norms that have extended beyond the classroom and have become 
ensconced in the very institution of school and fabric of what it means to teach.  

Much of how classrooms look and much of what happens in them today is guided by these 
institutional norms—norms which have not changed since the inception of an industrial-age model 
of public education. Yes, desks look different now, and we have gone from blackboards to 
greenboards to whiteboards to smartboards, but students are still sitting, and teachers are still 
standing. Although there have been many innovations in assessment, technology, and pedagogy, 
much of the foundational structure of school remain the same. If we want to promote and sustain 
thinking in the classroom, these norms are going to have to change (Liljedahl, 2020).  

Over the course of 15 years, and through the conducting of thousands of micro-experiments with over 
400 practicing teachers, a series of 14 practices emerged that break away from the aforementioned 
institutional normative ways of teaching and have been proven to get more students thinking and 
thinking for longer (Liljedahl, 2020). Each of these 14 practices is a response to one of the following 
14 questions:  

1. What are the types of tasks used? 
2. How are collaborative groups formed? 
3. Where do students work? 
4. How is the furniture arranged? 
5. How are questions answered? 
6. When, where, and how are tasks given? 
7. What does homework look like? 
8. How is student autonomy fostered? 
9. How are hints and extensions used? 
10. How is a lesson consolidated? 
11. How do students take notes? 
12. What is chosen to evaluate? 
13. How is formative assessment used? 
14. How is grading done? 

Although each of these 14 practices, on their own and in concert, have been empirically shown to 
increase student thinking in the classroom (Liljedahl, 2020) the visually defining qualities of a 
thinking classroom is that students work together to solve thinking tasks in random groups of three 
while standing at vertical whiteboards (see figure 1).  
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Figure 1: A thinking classroom 

When put together, these 14 practices build a classroom ethos, routine, and culture of students 
thinking individually and collectively to do and learn mathematics. And it radically improves on the 
baseline data stated above. Rather than 20% of students thinking, we are now seeing upwards of 90%. 
And rather than thinking for 8-12 minutes students are thinking for 50 – 85 minutes.  

Aside from getting students to think, building a thinking classroom has also been seen to 
fundamentally change other aspects of the student experience, one of which is their self-efficacy 
beliefs. The repeated and ubiquitous opportunities to persevere and be successful through the use of 
thinking tasks creates mastery experiences. In addition, the constant work in groups provides ample 
opportunities for vicarious experiences to occur. And the close proximity within which they work 
allows for the spread of positive emotional reactions.  

What I am more interested in, however, and what is the phenomenon of interest for this paper, is the 
ways in which social persuasion manifests within a thinking classroom. Whereas social persuasion is 
most often seen as explicit verbal encouragement, in this paper I am going to look at the more subtle 
forms of social persuasion that are communicated through the thinking classroom practices. 

Methodology 
Data from this study are harvested from the aforementioned larger research project into building 
thinking classrooms that involved hundreds of teachers and thousands of students and took place 
across a wide range of grades (K-12) and settings (low socio-economic—high socio-economic, 
private—public, French—English). Regardless of grade and setting, however, the research followed 
a general research methodology that I refer to as rapid prototyping wherein the unit of analysis was a 
two-week micro-intervention. That is, for two weeks, a given teacher would enact a unique practice 
within their classroom and we would study the effect that this change in practice had on student 
thinking behavior—were more students thinking and were they thinking for longer than they had 
prior to the intervention? Based on the results of this micro-experiment, adjustments would be made 
to the intervention to try to increase the amount of thinking that was happening in the room and the 
teacher would enact this adjusted practice for the next two weeks. And so on. Once the data showed 
convergence towards an effective practice that practice was distributed to many different practitioners 
and longer studies were conducted (6 weeks – 10 months), and more adjustments to the practice were 
made. Despite the fact that we were focused on student thinking behaviors, a number of other aspects 
of the student experience were also captured—in particular, their reactions to the interventions. It is 
from these reactions, across a wide variety of micro-experiments that the data for this study were 
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harvested. That is, the data does not come from any one study. As such, participants vary in ages from 
5 to 18 and were in classrooms in varying socio-economic settings and geographic locations.   

Results 
In what follows, I use excerpts from these data to showcase the subtle and surprising ways in which 
three of the thinking classroom practices communicate social persuasion.  

Thinking Tasks 

If we want our students to think, we need to give them something to think about—something that will 
not only require thinking but will also encourage thinking. In mathematics, this comes in the form of 
a problem-solving task, and having the right task is important. The research (Liljedahl, 2020) revealed 
that when first starting to build a thinking classroom it is important that these tasks are highly 
engaging non-curricular problem-solving tasks. The tasks, the research showed, need to have a low-
floor (accessible to everyone in the room), a high ceiling (evolving complexity), and be novel 
(because thinking is what we do when we don’t know what to do). For example, see figure 2.  

 

For this image, can you see a path from one letter to an adjacent letter that 
spells the word KAYAK? Can you see another one? Another one? How many 
unique paths are there that spell KAYAK? 

 

 Figure 2: A thinking task 

When these types of tasks were used, we saw a significant increase in student thinking in the 
classroom. We also saw an increase in student self-efficacy as their efforts were met with success 
(master experiences). More subtle, however, was what began to emerge in the data after students’ 
third or fourth experience with such thinking tasks. Consider this excerpt from week five of a three-
month longitudinal study into the effects a teacher using the first three thinking classroom practices 
in a grade 8 (ages 13-14) classroom (thinking tasks, random groups, vertical non-permanent surfaces). 

Researcher Before you start, any thoughts about this task? 
Kyla  Hmm! This one looks hard.  
Researcher Hard? 
Kyla  Yeah! I mean, I don’t even have a clue how we would start. 
Researcher So … what does that mean? 
Kyla It means we better start. 
Researcher Oh?!? 
Kyla Yeah. I mean, we almost never know where to start, but we always get there in the 

end. I’m sure it will be fine.  
Researcher How do you know? 
Kyla Our teacher wouldn’t give it to us if she didn’t think we could do it. 

The repeated positive experiences with these types of tasks were not only building mastery 
experiences. These experiences were also building a confidence in their teachers’ confidence in them. 
That is, the teacher was communicating to the students, through the use of carefully selected thinking 
tasks, that they were capable of solving the tasks at hand.  
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Visibly Random Groups 

Once we have the thinking task students need someone to think with. We know from research that 
student collaboration is an important aspect of classroom practice because when it functions as 
intended, it has a powerful impact on learning (Hattie, 2009). How groups have traditionally been 
formed, however, makes it very difficult to achieve the powerful learning we know is possible. 
Whether students are grouped strategically (Dweck & Leggett, 1988; Jansen, 2006) or students are 
allowed to form their own groups (Urdan & Maehr, 1995), 80% of students enter these groups with 
the mindset that, within this group, their job is not to think (Liljedahl, 2020). However, when frequent 
and visibly random groupings were formed, within six weeks 100% of students entered their group 
with the mindset that they were not only going to think, but that they were going to contribute. In 
addition, frequent and visible random groupings was shown to break down social barriers within the 
room, increase knowledge mobility, and increase enthusiasm for mathematics (Liljedahl, 2014).  

Visibly random groups gave lots of opportunity for both mastery and vicarious experiences to occur. 
But it also proved to provide social persuasion. Consider this excerpt from week two of a two-week 
micro-experiment into using random groups in a grade 7 (ages 12-13) classroom. 

Researcher So, the teacher has had you working in groups for a few weeks now. Any thoughts? 
Sara I love it.  
Researcher  Why? 
Sara I love being in random groups. It’s like a new adventure every day.  
Researcher Do you think this is why she does it? 
Sara Sure. But I also think she does it randomly because it doesn’t matter what group 

we’re in. We’re all the same. We can all do it.  

By forming the groups randomly, the students were interpreting this to mean that the teacher believed 
that they were all the same—that they were all capable. Incidentally, the students did not say the same 
things in classrooms where the teacher grouped students strategically. In those settings, the teacher's 
deliberate and careful selection of groups communicated the exact opposite—that some student were 
capable and some were not.  

How we answer questions 

In an institutionally normative classroom teachers answer between 200 and 400 questions in a day 
(Liljedahl, 2020), all of which fall into one of three categories: 

1. Proximity questions: These are questions asked only because the teacher is close. 
Interestingly, in 90% of the cases, students make little or no use of the information they gain 
from the teacher’s response. They are only asking the question to show that they are on task—
that they are being a good student. 

2. Stop-thinking questions: These are questions student ask to get the teacher to help them avoid 
or to stop thinking. These are most often of the form “is this right”, “are we doing this right”, 
“are we going in the right direction”, or “is this what you wanted”. Thinking is difficult and 
if they can convince the teacher to help them, things would be easier.  

3. Keep-thinking questions: These are questions that students ask so they can get back to work 
and are most often clarifying or extending questions. Often the students are in a hurry because 
they want to get back to the thinking.  
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To build a thinking classroom, only keep-thinking questions should be answered (Liljedahl, 2020). 
But this still leaves the question of how to answer proximity and stop-thinking questions. In the 
research, we found that the simplest way of dealing with these types of questions is to smile and nod 
as they are asking the question and then, when they are done, simply turn and walk away. At first, 
students hate this. But an interesting thing begins to happen after a few weeks. Consider this excerpt 
from week three of a three-month longitudinal study into not answering students’ proximity and stop-
thinking questions in a grade 9 classroom (ages 14-15). 

Researcher What was that? You asked her a question and she just smiled and walked away.  
Morgan Yeah. She does that a lot. 
Researcher She does!?! What does that mean? 
Morgan It means she thinks we can figure out for ourselves. 
Researcher What do you think? 
Morgan Yeah. We probably can. She’s usually right about these kinds of things. 

By smiling and walking away, it turns out that the teacher is communicating to the students that she 
believes that they are capable of figuring this out on their own.  

Conclusions 
The 14 building thinking classroom practices emerged out of empirical work wherein the goal was to 
increase the number of students who are thinking in class and for how long they are thinking during 
a lesson. Aside from achieving this, the research also produced a number of other results pertaining 
to how students experience mathematics, one of which pertains to their self-efficacy beliefs. Although 
this was not the intention of the research, data from across a wide variety of interventions and settings 
showed that aspects of the thinking classrooms improved students’ self-efficacy beliefs. And although 
these changes are happening in part through the ubiquitous opportunities to have mastery and 
vicarious experiences, and to interpret those experiences with their peers, changes in self-efficacy is 
also happening through the non-verbal ways in which these practices communicate social 
persuasion—that the teacher has faith in the students’ abilities. What these practices seem to 
communicate is not that “you can do it” but, rather, that “I believe you can do it”. This is a subtle 
difference, but it intimates that before a student believes in their own abilities, someone else needs to 
believe in them. And the students need to see these beliefs. Before students can have confidence in 
their own abilities, they need to have confidence in their teacher’s confidence in them.  
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Introduction 
Mathematics problem solving is a complex cognitive task that requires solvers to activate their 
mathematical knowledge, cognitive and metacognitive abilities, as well as their positive math related 
beliefs. The present study addresses the relationship that reasoning abilities and math beliefs system 
have with problem-solving efficacy and academic achievement in Mathematics, focusing not only on 
problem solving accuracy but also on cognitive reflection and math beliefs measures. Secondly, we 
tested the predictive capacity of these variables on Mathematics achievement in secondary school 
students. 

Different theoretical approaches have been proposed to explain mathematical reasoning. Among 
them, this study is based on the dual-processes theories of thinking and reasoning (e.g., Evans & 
Stanovich, 2013). These theories assume two types of thinking processes: (a) Type 1 thinking is fast, 
guided by data, intuitive and believe based; and (b) Type 2 thinking is relatively slow and reflective, 
guided by will and conscience.  

The balance between intuitions and conscious reflection on the mathematical reasoning is key. The 
Type 2 thinking is particularly relevant in problem solving when problems combine complexity with 
novelty and require explicit conscious, effortful reasoning to solve, whereas people have to detach or 
disregard what they already believe. In this line, Cognitive Reflection Test (CRT; Frederick, 2005) 
constitutes a mathematical instrument that evidences the propensity to be reflective, to think 
analytically despite having what initially appears to be a suitable response.   

Dual process theories have associated Type I processes with various kinds of cognitive bias. For the 
purposes of this research, the effects of beliefs based biases on reasoning are particularly relevant in 
the field of mathematical learning and problem solving (see, e.g., Gómez-Chacón et. al, 2014; Stavy 
& Tirosh, 2000). Particularly, we consider the role of students' math related beliefs (e.g., beliefs about 
learning and solving math problems, maths self-efficacy) in problem solving performance that 
requires analytic reasoning processes.  

Research study  
Hypoteses 

We argue that cognitive reflection and maths related beliefs are involved in mathematical problem 
solving students commonly face at school and, at the same time, underlie academic achievement in 
Mathematics. Accordingly, we hypothesized that 1) measures of cognitive reflection and beliefs 
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should correlate with measures of problem solving accuracy, and that all these measures should 
correlate positively with Mathematics academic achievement; and 2) we expected that those three 
variables should show evidence as predictive measures of mathematics achievement.  

Method 

The study involved 121 students attending the 2nd grade of secondary school (age 13-14), each of 
whom performed three testing instruments, corresponding to the three aspects of this study: (1) 
Cognitive reflection Test (CRT); (2) Mathematics-Related Beliefs Questionnaire (CreeMat; adapted 
and validated by Gómez-Chacón et al., 2014); (3) Math problem-solving task (MPST).  

The CRT assess cognitive reflection processes in the context of problem-solving tasks. We measured 
percentages of correct and superficial/intuitive answers in CRT. The MPST evaluates participant´s 
ability to solve math problems that require analytic thinking. It was also measured a students´ 
estimation of self-perceived task difficulty. Concerning the CreeMat, several measures were 
considered: students' beliefs about mathematics, beliefs about learning and solving math problems, 
and students’ beliefs about oneself. Academic achievement was assessed by student´s grades in 
Mathematics. 

Results and Conclusions 
Results in both cognitive reflection and mathematical problem solving tests showed a greater number 
of superficial responses than correct solutions (CRT: t(120)=6.88, p<.001; and MPST t(120)=6.95, 
p<.001). Considering the metacognitive component of CRT, participants underestimated the 
difficulty of the problems (r= -.18, p<.05). As expected, we found a pattern of correlations between 
the cognitive reflection, math beliefs and math problem solving measures are significant, 
corroborating previous findings (Gómez-Chacón et al., 2014). Regression analyses showed the 
specific roles played by CRT and self-efficacy on the mathematical achievement (r=.21, p<0.01). 

Findings indicate Type I thinking processes are more commonly used than Type 2 thinking by 
students (Evans & Stanovich, 2013). The results confirmed the association of students´ reasoning 
processes, as measured by CRT, with problem-solving processes efficiency and, ultimately, with 
mathematical achievement at secondary school. They also indicate that the metacognitive processes 
are not efficient enough at this stage of development.  
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Self-evaluation is considered one of the key concepts when trying to understand motivation, and it is 
gaining more interest especially when looking at the age span 15-18 years. Previous studies in self-
evaluation and mathematics tend to use data from international large scales assessments, arriving 
with rather ambiguous conclusions, and smaller studies tend to use only one measure without control 
factors. The aim of this paper was to test the hypothesis that boys are more confident than girls in 
mathematics, while using Swedish as a control subject. A questionnaire was handed out to 399 upper 
secondary school students from different regions in Sweden, both vocational programmes and 
programmes preparing for further studies. Using both non-parametric analysis and linear 
regression, the results support the hypothesis. The relationship to the idea of confidence gap is 
discussed. 

Keywords: Gender, mathematics, self evaluation, upper secondary school. 

Introduction 
One of the key concepts in affect in general and motivation in particular is self-evaluation (Nagy et 
al., 2010; Pajares, 2005). It contributes to perceived self-efficacy (Bandura, 1997), and can be seen 
as students’ self-perceptions of their competence or ability. Previous studies have concluded that 
students base their mathematics self-concept largely on their experiences and history of achievement 
(Usher, 2009), and sex differences in grades cannot explain the gendering of career choices (Dekhtyar 
et al., 2018). In addition, meta-studies have concluded that girls most often have higher grades than 
boys, with the largest difference in language and smallest difference in mathematics (e.g. Voyer & 
Voyer, 2014), meaning that differences in self-concept most likely are not only due to grades. On a 
micro-level, self-evaluation as a concept is relevant since studies indicate that when students are 
asked to self-evaluate their capabilities or progress in learning a particular task, it encourages them 
to develop a higher level of competence and their self-efficacy beliefs are strengthened (Ramdass & 
Zimmerman, 2008). On a macro-level, some gender patterns have been identified where the overall 
conclusion is that boys tend to report higher levels in measures of self-evaluation (OECD, 2013), but 
studies also report that gender differences in mathematics self-concept are smaller in more egalitarian 
countries (Goldman & Penner, 2016), and that students’ mathematical self-concept was strongly 
linked to their mathematical achievement, and that students that have low scores were the ones who 
overestimated their mathematical competence (Chiu & Klassen, 2010). It appears to be no unified 
picture how gender, mathematics, and self-evaluation is connected. The specific age span (15-18 
years) is also of interest since this is when children/ adolescents are developing their academic self-
perception, something that is gaining more attention especially with respect to gender differences 
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(Nagy et al., 2010). One interesting case is Sweden, a country with a reputation of its gender equality: 
Sweden is a country that is both wealthy and egalitarian, and a possible conclusion is that students 
should either have little gender differences and indicate low self-concepts (e.g. Goldman & Penner, 
2016), or close connections with self-concept and achievement (e.g. Chiu & Klassen, 2010). Previous 
research signal mixed finding (e.g. Frid et al., 2021; Sumpter, 2012), including indications of gender 
confidence gap (e.g. Zander et al., 2020). This paper aims to look closer at upper secondary school 
students’ self-evaluation in mathematics with respect to grades. We test the hypothesis that boys are 
more confident than girls in mathematics, a hypothesis that functions as the research question. 

Background 
The starting point for the overview of the concept self-evaluation here is Festinger’s (1954) theory of 
social comparison processes, where the focus is on social standards with the conclusion that there are 
no objective standards. The focus then was mainly on interpersonal comparisons, which was extended 
to include intergroup comparisons (Tajfel, 1974), that group membership provides a basis for self-
evaluation. Other concepts describing similar aspects are self-concept (Shavelson, et al., 1976), and 
self-beliefs specific to one’s perceived capability which includes, for instance, task-specific self-
concept, self-concept of ability, and academic self-concept (Pajares, 2005). Here, the focus will be 
on self-evaluation, emphasising the process of evaluation: “the evaluation or judgment of ‘the worth’ 
of one’s performance” (Klenowski, 1995, p. 146). Looking at gender, the chosen theoretical stance 
is that gender is a social construction, more than just a consequence of a biological sex (Connell, 
2006). It means that gender is a pattern of social relations, which means that definitions of women 
and men depend on the context and under constant negotiation. In order to understand these patterns, 
one can divide gender into four different aspects: structural, symbolic, personal, and interactional 
gender (Bjerrum Nielsen, 2003). Structural gender covers social structures, and symbolic gender 
focus on the gender as attributed symbols and discourse. The symbols could be attributed in both 
ways. It can be that an object or an abstract concept that is considered male or female, such as the 
idea of mathematics as a male domain (e.g. Brandell & Staberg, 2008). It could also be about how 
men and women are perceived such as the ‘the hard working female’ and ‘the male genius’ (Leslie et 
al. 2015). Such symbols inform us what is considered normal and what is deviant (Bjerrum Nielsen, 
2003).  The third aspect, personal gender, focuses on how the individuals perceive the structure and 
the different symbols, which includes self-evaluations. The fourth aspect, interactional gender, covers 
interactions of individuals that take place within this context that comprises the structure and symbols.  

Regarding the process of determine one’s value, studies have shown that students are using multiple 
frames of reference when evaluating their mathematics ability and these self-evaluations are pretty 
robust (Skaalvik & Skaalvik, 2004a).  Self-evaluations that were made using other students in class 
as an external frame of reference, and on comparison of mathematics achievement with achievement 
in other school subjects which function as an internal frame of reference, were both strong predictors 
to mathematics self-concept and self-efficacy. This implies that when studying self-evaluation in one 
subject, such as mathematics, using other school subjects as well calibrates the evaluations. Recent 
studies have shown that social economic status can play a role (e.g. McConney & Perry, 2010), but 
due to space the focus here is on gender. When following students from grade 7 and onwards, in the 
beginning boys expressed more positive self-concept and these differences persisted over time (Nagy 
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et al., 2010). Studies on older students reported similar results (e.g. Skaalvik & Skaalvik, 2004a). 
Others confirm the gender confidence gap: despite having higher or similar grades, girls reported 
lower self-evaluation/ self-efficacy and self-esteem in mathematics (Brandell & Staberg, 2008; 
Sumpter, 2012; Zander et al., 2020), but there is also indication that there is no significant difference 
looking at students (age 15) at lower secondary school (Frid et al., 2021). Further, when comparing 
mathematics with language, studies has indicated that male students, with respect to mathematics, 
signalled not only higher self- concept, intrinsic motivation, and self-enhancing ego orientation but 
also higher performance expectations compared to the female students (Skaalvik & Skaalvik, 2004b). 
However, when the focus was on language, women expressed higher intrinsic motivation. 

Methods 
The data was generated through an online questionnaire that was part of a study of upper secondary 
school students and their work with a mathematical model exploring segregation (see Tsvetkova et 
al. (2016) for more information of the full study).  In the study, a questionnaire was included with 
questions such as “How would you evaluate yourself in mathematics?” and a control question using 
an equally important subject, Swedish. The scale was Very good/Good/ Average/ Below average/ 
Weak, the same scale as in previous research allowing us to make comparisons (e.g. Brandell & 
Staberg, 2008; Frid et al., 2021). There was also a question about which grade they got in mathematics 
and Swedish in their latest course. There were also questions about factors related to their social 
economic status such as what their parents worked with and if they were planning to go to university. 
These questions are not analysed in the present study. In total, 399 participants (233 boys, 166 girls) 
from 20 upper secondary school classes were part of the study. The classes came from three different 
regions in Sweden (east, middle and west), covering all three grades meaning the age span was 16-
19. Each class had between 13 to 25 students and they came from different educational programmes, 
both vocational ones and programmes preparing for university studies. The data were analysed in two 
stages. In the first stage we adopted a non-parametric approach, looking at the difference in proportion 
of combined answers to the two questions. For each self- grade, we calculated the proportion of girls 
and the proportion of boys who gave each of the five possible answers to the “How would you 
evaluate yourself in mathematics?” question. We then took the difference and expected a strong 
correlation between self-reported grades and self-evaluation, and by looking at differences within 
each grade division we could visualise differences for each grade independently. In the second stage, 
the data were analysed using linear regression to predict self-evaluation from self-reported grades, 
stated gender, and whether one parent (or more) was born in Sweden. In order to perform the 
regression, we converted both the self-reported grades and the self-evaluations to a numerical scale. 
Such a transformation is never entirely justifiable (hence the first stage of the analysis) but they can 
be seen as reasonable given the nature of the grade scale and self-reporting. Again, we expected that 
self-evaluation to be correlated with self-reported grades, so we included the variable in order to see 
how much additional predictive power gender has over and above this relationship. The background 
of parent was included as a control variable, allowing us to see whether one factor linked to social 
economic status could play a role (e.g. McConney & Perry). 
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Results 
The first results are about the responses about students’ stated grades in mathematics and Swedish, 
see Table 1: 

Table 1: Distribution of stated grades in mathematics and Swedish, n(%) 

Subject/  Grade A B C D E/F No reply Total 

Mathematics 

Boys 

Girls 

79 (19.8) 

43 (18.5) 

36 (21.7) 

73 (18.3) 

39 (16.7) 

34 (20.5) 

100 (25.1) 

53 (22.7) 

47 (28.3) 

72 (18.0) 

47 (20.2) 

25 (15.1) 

57(14.3)/ 8(2.0) 

43 (18.4) 

22 (13.2) 

10 (2.5) 399 

233 

166 

Swedish 

Boys 

Girls 

92 (23.1) 

37 (15.9) 

55 (33.1) 

123 (30.8) 

64 (27.5) 

59 (35.5) 

115 (28.8) 

80 (34.3) 

35 (21.1) 

34 (8.5) 

24 (10.3) 

10 (6.0) 

20(5.0)/ 1(0.3) 

18 (7.7) 

3 (1.8) 

14 (3.5) 399 

233 

166 

In Table 1, Grade E and F is joined since so few students reported F. Girls report higher grades both 
in mathematics and in Swedish. The distribution of the self- evaluation was the following (Table 2): 

Table 2: Distribution of self-evaluation with respect to gender, n(%) 

Subject/ Self-
evaluation 

Excellent Good Average Below average Weak No reply   Total 

Mathematics 

Boys 

Girls 

60 (15.0) 

39 (16.7) 

21 (12.7) 

134 (33.6) 

75 (32.2) 

59 (35.5) 

147 (36.8) 

84 (36.1) 

63 (37.9) 

36 (9.8) 

20 (8.6) 

16 (9.6) 

12 (3.0) 

7 (3.0) 

5 (3.0) 

10 (2.5) 399 

233 

166 

Swedish 

Boys 

Girls 

85 (21.3) 

38 (16.3) 

47 (28.3) 

165 (41.3) 

95 (40.8) 

70 (42.1) 

116 (39.1) 

75 (32.2) 

41 (24.7) 

15 (3.8) 

13 (5.6) 

2 (1.2) 

4 (1.0) 

2 (0.8) 

2 (1.2) 

14 (3.5) 399 

233 

166 

Table 2 illustrates that boys tend to rank themselves higher compared to girls in Mathematics, but 
vice versa in Swedish. To analyse the different distribution presented in Table 2, which is only 
descriptive, we looked at students’ self-evaluation in mathematics and stated grades in relation to 
expressed gender. As a calibration of the results, Swedish is used as a comparison. The results are 
from the calculation of the proportion of girls and boys evaluating in each category for each grade, 
then taking the difference. The darker blue colour indicates a more common answer by boys, whereas 
a darker red colour means a more common answer by girls, see Figure 1: 
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Figure 1: Difference in proportion of boys minus girls’ self-evaluations for each self-reported grade 

Figure 1 shows how the difference in self-evaluation between boys and girls depended on grade for 
both Swedish and Mathematics. For mathematics, we see that girls with a self-reported grade ‘A’ 
were more likely to rank themselves as ‘good’ than boys, while boys were more likely to rank 
themselves as ‘excellent’ than girls. Similarly, boys with a self-reported D were more likely to report 
themselves as ‘average’ than girls. The same pattern was repeated over all grades except E/F. In 
Swedish, the control factor, no such pattern was observed, with the possible exception of the self-
reported grade ‘E/F’, where boys took ‘below average’ and girls took ‘weak’. Based on this analysis, 
the conclusion is that girls under-valued themselves or boys over-valued themselves. The limitations 
are the small numbers, and therefore the next step is to validate these results using linear regression: 

Table 3: Titles of tables, figures, diagrams, are in the style FigTitle, no dot at the end 

Mathematics: Self-evaluation Coefficient Std. Error t p 

Reported grade 0.512 0.031 16.20 < 0.001 

Male 0.206 0.059 3.50 0.002 

Swedish parent -0.030 0.105 -0.28 0.782 

Constant 1.83 0.127 14.32 < 0.001 

Swedish: Self-evaluation     

Reported grade 0.454 0.045 10.04 < 0.001 

Male -0.015 0.076 -0.19 0.848 

Swedish parent -0.016 0.076 -0.20 0.841 

Constant 2.20 0.210 10.47 < 0.001 

The linear regression, Table 3, showed a strong relationship between self-reported grades and self-
reported confidence in both mathematics (t = 16.20; p < 0.0005) and Swedish (t = 10.04; p < 0.0005). 
This reflects the correlation we see in Figure 1, model R-squared of 0.520. Only in mathematics did 
the ’boys’ factor statistically significant in predicting self-reported grades (t = 3.50; p = 0.002). Table 
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3 provides non-standardized coefficients so we could reasonably interpret being male is associated 
with an average increase in self-evaluation of 0.206 points (where 1 point indicates a shift from 
average to good, or from average to excellent, etc.). In Swedish, being male was not statistically 
significant (t = -0.19; p = 0.848). The model R-squared was lower at 0.343. A control variable, 
whether the respondents had a Swedish-born parent, was not statistically significant in either 
regression. Taken together, these results strongly support the hypothesis that boys give themselves a 
higher level of self-evaluation compared to girls in relation to stated grades in mathematics. 

Discussion 
The aim of this paper was to study upper secondary school students’ self-evaluation with respect to 
stated grade and gender. The overview of the grades show that they are higher for girls, both in 
mathematics and Swedish, which is in line what have been reported earlier (e.g. Voyer & Voyer, 
2014). The hypothesis that we tested was that boys are more confident than girls in mathematics. Just 
as in previous studies, both national (e.g. Brandell & Staberg, 2008; Sumpter, 2012) and international 
(e.g. Nagy et al., 2010; OECD, 2013; Skaalvik & Skaalvik, 2004a), the results, from the non-
parametric analysis and linear regression, confirmed that boys choose higher self-evaluation in 
relation to stated grades compared to girls. The results are to some degree in contrast to Frid et al. 
(2021), and compared to the PISA study (i.e. Chiu & Klassen, 2010), boys overestimated their ability 
at all levels or girls undervalued themselves. It indicates that several studies are needed in order to 
understand the concept self-evaluation from a gender perspective: since individuals are using multiple 
frames of reference when they judge their evaluations (e.g. Skaalvik & Skaalvik, 2004a), such 
discrepancies can be related to which frame that is in focus (e.g. Sumpter, 2012). Given that the 
present study used a limited scope of the definition of self-evaluation compared to Klenowski (1995), 
there are room for further development of the instrument that was used.  

Nevertheless, combining the results from the present study and previous research, the conclusion is 
that boys appear to over-value themselves or girls tend to under-value themselves. This supports the 
so-called confidence gap (Zander et al., 2020). In the present study and the results from the non-
parametric analysis, the confidence gap was visible mainly in mathematics and only partly in Swedish 
where in the group of self-reported grade ‘E’, boys more often picked ‘below average’ and girls more 
often took ‘weak’. Here, the results differ slightly from what has been previously reported regarding 
girls and language (e.g. Skaalvik & Skaalvik, 2004b). This could be interpreted as an indication of 
patterns within a more general pattern in self-evaluation. Also, if students construct their mathematics 
self-concept on their experiences and history of achievement (e.g. Usher, 2009) and girls have better 
grades (Voyer & Voyer, 2014), the history of achievement appears to be cancelled out. If we, for 
instance, want to understand why we have gendered careers (e.g. Dekhtyar et al., 2018), we need to 
look beyond grades. The confidence gap is nonetheless an interesting phenomenon especially if used 
to blame girls for being not confident enough, given that they are already confident (e.g. Sumpter, 
2012) or not having good enough grades (e.g. Dekhtyar et al., 2018). This is important when ideas 
such as ‘the hard-working female’ and ‘the male genius’ (e.g. Leslie et al. 2015) still exists. 
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We present our findings from a pilot study that was conducted between Spring 2019 and Spring 2020. 
Our overall project goal was to gain a deeper insight into women and racially/ethnically minoritized 
students’ experiences during the secondary school-tertiary transition in mathematics. In the report, 
we used aspects of the three-dimensional model of attitude (Di Martino & Zan, 2010). The model 
consists of three dimensions, which are vision of mathematics, perceived competence, and emotional 
disposition toward mathematics. We particularly focus on emerging mathematicians’ conflicting 
perception of competence in mathematics and address the concomitant emotions. We documented 
voices of women and racially/ethnically minoritized students to address gender stereotypes and raise 
awareness about their struggles for a sense of belonging in mathematics from affective and 
sociocultural standpoints. 

Keywords: Affect, gender, inclusion, women and minoritized students, perceived competence. 

Introduction 
Many scholars have researched the phenomenon of the secondary school-tertiary transition (STT), in 
mathematics considering cognitive, didactics, sociocultural (De Guzman et al., 1998), and affective 
dimensions. The nature of mathematics at university is different than secondary school mathematics, 
resulting in certain affect-related outcomes that prevent students from becoming competent 
mathematicians (Di Martino & Gregorio, 2019). Holding a positive attitude about ourselves is one of 
the key aspects of meaningful participation along with the ability to effectively communicate 
mathematically in becoming involved in a new community (Lave & Wenger, 1992). Women rate a 
lower mathematical self-conception than men even though mathematics has a slightly better gender 
representation in mathematics than other STEM domains (Sax et al., 2015). However, increased 
representation does not always provide women and racially/ethnically minoritized students with equal 
representation in public mathematical spaces, such as classrooms. Because of the strong beliefs of 
men on self-concept, they are more likely than women to be identified as full participants in 
mathematics environments (Mendick, 2005). It is documented that women in mathematics often 
experience challenges in a way that positions them at the periphery of mathematical participation 
(Solomon, 2007). Women have difficulties in acknowledging their potential in mathematics due to 
gendered stereotypes in many mathematical communities (Solomon, 2007). When women are 
exposed to environments with fixed ability views and gender stereotyping, their sense of belonging 
and perception of competence tend to decline (Good et al., 2012). STT research is limited in its ability 
to address the intersectionality of identities such as race, gender, or ethnicity in the examination of 
affective dimensions of mathematics learning. Therefore, we examined the obstacles in the STT by 
using affective aspects such as perception of competence in mathematics, particularly among 
racially/ethnically minoritized populations. We also highlighted perceived competence in 
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mathematics (Di Martino & Gregorio, 2019) with an emphasis on emotional expressions, as well as 
the notion of belonging considering legitimate peripheral participation of women (Solomon, 2007). 
Further, we point out gender stereotypes and some concomitant emotional states play a role in how 
women construct their identities as they become members of mathematical communities (Solomon 
et al., 2011). Accordingly, our guiding research question is: How do women and racially/ethnically 
minoritized students in the mathematics major position themselves as mathematics learners 
considering their perceptions of mathematical competence? 

Theoretical Perspectives 
The three-dimensional model for attitude (TMA) characterizes attitudes in relation to beliefs and 
emotions (Di Martino & Zan, 2010). We adopted the TMA for our conceptualization of the 
relationship between beliefs and emotions as components of students’ experiences with mathematics 
in university. The three dimensions are vision of mathematics, perceived competence in mathematics, 
and emotional dispositions towards mathematics. Students’ vision of mathematics as being more 
relational or instrumental (Skemp, 1978) are linked to their beliefs of mathematics. Students’ beliefs 
about themselves as mathematics learners, which are influenced by their vision of mathematics, can 
be thought of as perceived competence in mathematics (Di Martino & Gregorio, 2019). Finally, Di 
Martino and Gregorio (2019) identified associations between the vision of mathematics and perceived 
competence, which often manifested through emotional responses. In the study, we particularly 
addressed the component of perceived competence on students’ mathematical experiences. We also 
discovered that the notion of belonging deserved more attention when it comes to the identity 
development of women and racially/ethnically minoritized mathematics students (Good et al., 2012). 
The TMA offered useful perspectives in analyzing the perception of competence as students reflected 
on their mathematical experiences from affective perspectives. 

Method 
Participants and Settings 

We conducted a pilot study, the Women and Underrepresented Minorities in Mathematics 
(WURMM) study, from Spring 2019 to Spring 2020 in which 13 students participated. The pilot 
study focused on mathematics majors who were from racially/ethnically minoritized populations 
(e.g., students of color, women). The pilot study consisted of multiple data sources such as interviews, 
survey responses, students’ reflection diaries, and seminar1 artifacts. Considering our aim to address 
students’ perceived competence, our paper focuses on the activity conducted in the second seminar 
which was held in Spring 2020 with four participants. We report data from three of the four 
participants (Table 1) for whom we have complete data profiles. Two students were pure mathematics 
(PM) majors and one student was a secondary mathematics teaching (SMT) major. The goal of this 
seminar was to gain insights into students’ STT experiences from affective perspectives. We 

 
1 We use the term “seminar” to describe the intervention we included during the pilot study. These seminars (one in 
Summer 2019 and one in Spring 2020) consisted of four sessions each (each session was 2- to 3-hours in duration), and 
included mathematical tasks, discussions, and short presentations. 
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prompted students to talk about the attributes of mathematicians by addressing perceived competence 
in mathematics and mathematical identity during the seminar activities. The data sources for this 
paper consist of video recordings from four seminar sessions (two hours each) conducted in Spring 
2020. We also collected data through students’ written artifacts from the fourth seminar session’s 
activity and post-survey responses. Finally, we draw on interviews conducted in Spring 2019, which 
included information about demographic, secondary school experiences, perception of mathematics, 
and perceived competence in mathematics. We were able to analyze the affective components of STT 
experiences by comparing secondary school to university experiences related to perception of 
competence and vision of mathematics. 

Table 1: Demographic information of selected participants 

Participants Major/Year Gender Ethnicity 

Dana PM/Sophomore Female Hispanic/Latino 

Manuel SMT/Sophomore Male Hispanic/Latino 

Sunny PM/Sophomore Female Non-Hispanic/Latino 

 

Session 4 activity: Exploring attributes of mathematicians 

We designed an activity to capture the salient attributes of a mathematician’s identity. The activity 
was useful in prompting students to articulate the attributes of a competent mathematician and 
accordingly to understand students’ beliefs on their perceived competence in mathematics. Also, the 
activity enabled us to observe students’ emotions while they talked about mathematical competence. 
We shared a Google document with students which was divided into four quadrants with a guiding 
question for each: (1) Who is a mathematician?, (2) What does a mathematician do?, (3) What does 
a mathematician say?, and 4) What do you consider a mathematician is not? 

We asked participants to individually think about their responses to the questions and then each 
participant populated the Google document with their comments. Since participants were asked to 
use only short phrases or terms within the document, we also facilitated a discussion in which 
participants could more thoroughly share their perspectives. The activity helped elicit students’ 
opinions on mathematicians’ identity attributes and how they relate to emergent characteristics. We 
asked the same questions in the post-survey to provide students with a chance to express their personal 
opinions, without being influenced by responses from other participants. 

Preliminary Findings 
Using aspects of the TMA, we highlight our findings related to perceived competence and 
accompanying emotions. We present excerpts that reflect students’ views on the attributes of a 
competent mathematician, as well as the emotions evoked when they reflect their own mathematical 
competence. 
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Attributes of a mathematician 

Participants reflected on the attributes of a competent mathematician (Figure 1) including 
mathematicians’ identity, discourse, and actions. Sunny used the expressions of “creative and logical” 
by stating that a mathematician communicates by “clearly indicating logical processes and reasoning 
as well as the goal of the problem” (Post-survey, 2020). Sunny valued logic and clarity as part of a 
competent mathematician’s identity. Manuel similarly articulated that a mathematician is a “problem 
solver and logical” and asks “why?” Dana’s reflection included: “The way in which they 
communicate automatically provokes thinking critically and stimulates conversation” (Post-survey, 
2020). Dana’s response underlined the importance of communication aspects. That is, she valued a 
mathematician who contributes to the common discourse within a community of practice. 

 
Figure 1: Students’ artifact from the activity for exploring the attributes of mathematicians 

Next, students elaborated on the prompt which was related to how mathematicians can change their 
confidence. Sunny reflected on the prompt from a personal standpoint and responded with “expanding 
her course work and exploring more areas of mathematics” as a way to help her to improve her 
confidence. Interestingly, Manuel referred to a mathematician’s identity as a “title” rather than an 
“action” (Post-survey, 2020), which he thinks could help to improve how mathematicians do 
mathematics. We speculated that the basis of this idea of a mathematician might have its roots in the 
conventional view of a mathematician, which positions them as naturally capable in society regardless 
of their actions. Dana responded with: “by ‘doing’ more mathematics, and by surrounding themselves 
in a supportive environment that promotes intellectual conversation about mathematics without 
rejecting the ideas of others” (Post-survey, 2020), which aligned with her earlier comment during the 
seminar. Dana’s responses reflected her perceptions of a competent mathematician that were closely 
related to social participation in mathematical communities. Dana valued a mathematician who is 
also precise in communicating mathematical ideas and creates a dialogue. From her perspective, the 
latter also stressed the significance of discourse, which was aligned with social aspects of a 
mathematician’s identity. 
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Perceived competence in mathematics 

We asked further questions about students’ perception of their competence in mathematical 
communities. Dana’s mathematical confidence was supported by her vision of mathematics. That is, 
she emphasized a key aspect of her mathematical confidence related to being able to develop 
relationships between abstract concepts as she progressed through the course work. 

I feel as if in a way... it has made me feel more confident, but also less confident2 for different 
reasons. Like, I feel more confident because of these higher-level math courses. I’m learning about 
math as this abstract concept and the more I’m just learning about these different concepts and I’m 
able to connect different relationships that are allowing me to just form different connections. And 
so, in that way, I begin to feel more confident. (Seminar, 2020) 

We also noticed certain negotiations concerning perceived competence in mathematics in Dana’s 
articulations. It appears that Dana’s perceptions of a competent and confident mathematician that she 
described earlier was conflicted with how she felt about participating in mathematical spaces. In the 
preceding excerpt, Dana outlined some perturbations in her perceived competence, including doubts 
when surrounded by “brilliant people” and questioning of her abilities in mathematics. 

…But also [I’m] just less confident. The more I’m surrounded by people that are just really brilliant 
and I just, I tend to… I don’t know how to explain it. I feel as if, even though I am in the same 
classes as them and I do have a right to be there, I always just, never built up enough confidence 
to, like, for example, just ask a question or just be involved and I feel, not to turn this into a whole 
gender thing, but I feel as if… Because like STEM and mathematics still are more of a male-based 
subject, it’s hard for me to really voice my opinions and voice what I feel. When I am in a group 
of all guys during a study group or like when I’m just doing partners, you know, I just tend to get 
less confident. (Seminar, 2020) 

Dana’s negotiations of her perceived competence in mathematics accompanied by emotional states 
and doubts about her belonging to her mathematics community. Affect was not only associated with 
vision of mathematics but also certain sociocultural factors in her experiences. When we raised the 
notion of societal norms that shape women’s perceived competence in mathematics, her responses 
reflected a feeling of underrepresentation in mathematics classes starting in high school and dealing 
with norms and stereotypes regarding women’s abilities attached to it. The next excerpt captures 
Dana’s sensemaking of her participation in mathematical spaces, in which she reflected on her 
experience in high school and her ongoing negotiation of a sense of belonging in a mathematics 
community. 

...I think we all know our capabilities and we all know that we deserve to be where we are in the 
mathematics department, but I also think, you know, we hear all these things and we hear these 
societal standards that it’s hard to just ignore those facts, you know? And it’s hard to just push 
that aside… I don’t think as much in the university as it was in high school... in math classes 
where, at least for me, I would be one of the only few girls and sometimes the only girl in some of 

 
2 Italics are used to indicate expressions which we considered aligned with the emotional dimension of TMA. 
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my math classes. And I know that just inhibited my ability to ask questions and to, you know, 
participate as much as all the other people in my class because I just felt as if I ...wasn’t worthy 
enough to ask these questions, but just scared and just that I don’t know, I just felt like always out 
of place because of that. (Seminar, 2020)  

Dana pointed out that gender-related factors hindered her participation in the mathematical discourse 
during high school mathematics classes. It is worth noting that Dana went to a small, private, and 
predominantly White high school in the southeastern United States. Her expression of 
discouragement to participate in such mathematical discourses focuses attention on the stereotypical 
positioning of women as dissociated from the mathematics discipline. Tensions surfaced during 
Dana’s negotiation of her mathematical identity, specifically in the case of taking part in 
mathematical spaces. Her experiences in high school mathematics classes, such as being one of few 
females, made her question her belonging to mathematics. Moreover, Dana articulated her challenges 
with rejecting societal norms against women, which may have restricted her participation in 
mathematics classes despite her achievement. 

Sunny also expressed her perception of competence in mathematics in emotionally laden ways, which 
raised questions regarding the definition of competence for students in the major. Considering Sunny 
had grades of over 90% (out of 100%) in her major, it was remarkable to detect conflicting patterns 
in her beliefs about confidence in mathematics during the seminar. The following excerpt highlights 
how Sunny attributed aspects of her self-concept to both the nature of mathematics being broad and 
unknown as discipline as well as to the social comparison. 

Sunny:         I don’t think I’ll ever be confident in mathematics, to be honest, I feel like 
there’s, it’s just such a wide thing. And there’s so much to learn. And 
there’s so much that goes into it. I feel like I could like, have a Ph.D., and 
have like 10,000 awards and still not feel confident beyond it… 

Interviewer: And there is nothing to change that? 
Sunny:         Oh, I don’t think there is. I mean, in my case. I’m always going to feel like 

there’s more to learn. And there are people who know more than I do. 
Her negative statement about her confidence seemed to contrast with her previous view regarding 
improving her competence by expanding her course work. Though Sunny did not mention gendered 
discourses, her identity as a young woman in mathematics might have been shaped by the masculine 
nature of mathematics. Her reflections aligned with Dana’s statement that being around smart people 
led to doubts about one’s competence in mathematics. Finally, Manuel’s reflection on the perceived 
competence in mathematics differed from those of Dana and Sunny regarding being surrounded by 
other smart people in the classroom. Manuel expressed that “I find more … drive and competitiveness 
about the idea that they know more than I do. I understand more” (Seminar, 2020). Evidently, Manuel 
distanced himself from his peers in his perception of competence in mathematics. 

Discussion and Conclusion 
We captured students’ ideas of a competent mathematician and how those perceptions related to how 
they view themselves as competent in mathematics. We noticed that the nature of mathematics 
becoming an abstract and broad discipline had some favorable influences on how Dana and Sunny 
reflected on their competence. Talking about perceived competence in mathematics elicited some 
emotions for students such as being scared away from participation (Di Martino & Zan, 2011). 
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Moreover, we explored perceived competence of women and minoritized students in mathematics 
while illustrating the negative influences of gendered discourse on their identity development. We 
detected issues in the participatory nature of mathematical spaces, which seemed to exclude women 
from becoming full participants in it (Solomon, 2007). The emotional tensions we observed on 
competence could be an outcome of the patriarchal society’s limited options for available identities 
as a woman and a mathematician (Solomon et al., 2011). While Sunny articulated her perceived 
competence in mathematics similar to that of Dana’s, interestingly, Manuel, a male student, referred 
to becoming a confident mathematician as being subtly connected to one’s personal qualities. Manuel 
possibly felt tasked to negotiate his masculine mathematical identity as a way to “prove” his abilities 
due to societal norms that value innate mathematical abilities (Mendick, 2006). 

We also explored how women are challenged emotionally, which led to identity negotiations 
regarding their capabilities. While Dana believed that she was a capable mathematician (as evidenced 
by other survey data), gendered stereotyping (Leyva, 2017) may have created barriers for her towards 
participation in mathematics. In fact, Dana and Sunny were both emerging women mathematicians 
who possess superb mathematical ability and were extremely enthusiastic. Our analysis also 
uncovered alternative forms of becoming successful in the discipline of mathematics (Solomon, 
2007) including legitimate peripheral participation (Lave & Wenger, 1992). In our investigation of 
perceived competence and emotions, we also gained insights on the need for belonging, particularly 
for women and racially/ethnically underrepresented groups participating in mathematical 
communities (Good et al., 2012). Belonging and perceived competence seem to be interrelated 
(Lahdenperä & Nieminen, 2020) and are specific to women and minoritized groups’ participation and 
persistence in mathematics. Considering that small numbers of women and racially/ethnically 
minoritized students pursue mathematics related fields (NSF & NCSES, 2019), mathematics 
environments should foster inclusion for these populations (Pinheiro, 2021). 
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Introduction 
Mathematics-related affective domain we understand using the framework of Hannula (2012) as 
having three different types of affect: cognitive (e.g. beliefs), motivational (e.g. values), and 
emotional (e.g. feelings). All these three aspects of mathematics teachers’ affective domain are 
important to determine if they lead their students to an active and creative approach to mathematics 
learning (Boaler, 2015). Therefore, we decided to research key points during the university study, 
which influence affective domain of future mathematics teachers. In this poster we prepare 
a theoretical background for our research. We do this by reviewing methodology of related journal 
articles to identify methodological practices in the research on this topic. We hope that our paper will 
inspire discussion about the best methods to study mathematics-related affective domain and also 
possible collaboration with our team in this subject.  

Literature Review 
To obtain the journal articles suitable for our review we performed the search in the Web of Science 
Database on 18th July 2021. The search terms were ‘mathematic*’ combined with a Boolean operator 
AND with the terms ‘teacher*’ and with three words characterizing affective domain combined with 
a Boolean operator OR: ‘attitude*’, ‘belief*’, ‘affect*’. The refined specifications of the search were 
that articles need to be open access and the publication years should be 2020 or 2021, to include just 
the newest and accessible papers. The papers were carefully studied, with the focus on the 
methodological parts and the finding were compared and discussed by both authors. 

Results 
Altogether, based on the search in the Web of Science database, 15 journal articles were included in 
this methodology review. One article was excluded because of focus on primary students instead of 
teachers. The list of the articles with complete references is because of the page limitation of the 
poster here: www.comae.sk/reference1.pdf. The most used research approach was quantitative 
(10 articles - for example Jeong & Gonzalez-Gomez, 2021, published in the journal Mathematics), 
followed by mixed approach (3 articles - for example Liebendorfer & Schukajlow, 2020, published 
in the journal Educational Studies in Mathematics). The least used approach was qualitative 
(2 articles - for example Lo, 2021, published in the journal International Journal of Instruction). 
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Following topics were researched in articles using quantitative approach: (1) self-efficacy - 
relationship with other constructs, impact on intention to leave profession, (2) (epistemological) 
beliefs about the nature of mathematics, (3) beliefs about teaching and learning mathematics, 
(4) development of attitude towards mathematics and (5) attitude to students’ struggle when learning 
mathematics. In all 10 quantitative studies, a questionnaire was used as an instrument for data 
collection, containing various statements scaled by a Likert scale. Statistical methods were used to 
analyze the quantitative data, mostly analysis of variance and various correlation analysis methods. 

Following topics were researched in articles using mixed approach: (1) perception of attitudes 
towards mathematics, (2) interest in mathematics and (3) attitude to student’s struggle when learning 
mathematics. All three articles in this category used a questionnaire as an instrument to gather 
quantitative data. In these articles, additional qualitative data was gathered as a support either to 
ensure validity of the interpretations of the questionnaire data, or to uncover new themes (variables), 
which could be then analysed quantitatively. Open-ended items in questionnaires, written reflections 
and semi-structured interviews were used to gather such qualitative data. 

Following topics were researched in articles using qualitative approach: (1) beliefs about 
mathematics and language and (2) beliefs about teaching mathematics. The only method used to 
gather qualitative data was a semi-structured interview. In both articles, the interviews were audio-
recorded, transcribed and analysed either thematically or inductively. 
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Finding my way: a search for teacher identity 
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Ashley, a lower secondary mathematics teacher has a personal goal for professional learning: to find 
a teaching method that feels her own. She participates in a 1-year problem-solving intervention that 
aims to increase pupil thinking and engagement in mathematics classrooms. The purpose of this 
paper is to explore the opportunities that Ashley has, to develop her mathematics-related teacher 
identity within the problem-solving project. The results show that while the problem-solving 
intervention creates rapid change into Ashley’s classroom practices, it also succeeds to influence 
positively the development of her mathematics-related teacher identity. 

Keywords: Professional development, teacher identity, tensions, mathematics. 

Introduction 
The descending trend of Finnish pupils’ mathematics performance and interest to study mathematical 
sciences on a tertiary level has brought about national discussion about mathematics teaching in 
schools. While policymakers have slowly recognized the need to take actions to stop the alarming 
development, on a local level, mathematics teachers have witnessed the descending trend of pupils’ 
performance and problem-solving skills for over a decade (cf. Vettenranta et al., 2016). The 
descending trend in mathematics performance, coupled with Finnish pupils’ low emotions, attitudes 
and self-efficacy beliefs in mathematics (Metsämuuronen & Tuohilampi, 2014) challenge teachers in 
their everyday practices. 

The needed changes in classrooms do not happen without motivated teachers. Generally, teachers 
who agree to participate in a professional development project can be considered as motivated to 
develop their teaching. However, previous studies indicate that teachers tend to receive new 
information as well as accept and adapt it into practice at different rate (see e.g. Laine, Näveri, Ahtee, 
Pehkonen & Hannula, 2018). This might be due to the different needs and goals teachers have for 
professional learning that also affect their openness to learn new knowledge and to adapt it into their 
classroom practices (Liljedahl, 2014). 

This paper is about one teacher, Ashley, and her search for a mathematics-related teacher identity 
within a professional development project. Ashley takes part in a radical problem-solving 
intervention in lower secondary mathematics classrooms with four of her colleagues. All five teachers 
report to be highly motivated to try new methods in their mathematics classrooms (Viitala, accepted). 
However, they all have somewhat different goals for their professional learning within the project. 
While these goals in most parts are connected to enhancing pupil engagement in mathematics, one of 
the teachers, Ashley, emphasises also a more personal need: finding a teaching method that would 
become a natural part of herself (Viitala, accepted).  

Ashley’s personal need for the professional development project motivated me to look closer into 
Ashley’s teacher identity and mathematics teaching within the project. I was curious of the reasons 
behind her feeling of incompleteness as a mathematics teacher, and how the problem-solving 
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intervention succeeds to answer her needs for personal development. The feeling of incompleteness 
as a mathematics teacher connects affect to Ashley’s mathematics-related teacher identity (see 
Lutovac & Kaasila, 2018) that in this paper is studied through view of mathematics (Op’t Eynde et 
al., 2002). Furthermore, the feeling of incompleteness is a strong motivational aspect for Ashley to 
participate in the professional development project. This emotional strain can positively impact the 
transition from professional learning into the mathematics classrooms (cf. Andrá et al., 2019).  

The purpose of this paper is to explore Ashley’s mathematics-related teacher identity through her 
view of mathematics and changes in her teacher identity, as well as through the link between identity 
and teaching practices (see research themes in Lutovac & Kaasila, 2018). These issues are studied 
through affective lenses, that have seldom been done in the case of mathematics teachers, with an 
individual emphasis, a view that has often been neglected (Lutovac & Kaasila, 2018).  

The paper aims to answer the following research questions: (1) How does Ashley characterise the 
growth of her teacher identity over time? (2) What kind of tensions can be found between Ashley’s 
experienced teacher identity and her view of good mathematics teaching? (3) How does the problem-
solving intervention answer to Ashley’s needs for professional development? 

Mathematics-related teacher identity 
Many review papers on identity emphasise the importance of studying teacher identity in connection 
to professional learning but, at the same time, highlight the vast variety of views on identity and the 
lack of clarity in its definitions (see e.g. Lutovac & Kaasila, 2018). This realisation stresses the 
importance of situating the study within the field. 

Following Lutovac and Kaasila (2018), in this study, the term mathematics-related teacher identity is 
used to emphasise the context (mathematics) in which teacher identity is discussed. Teacher identity 
is understood as a dynamic construct that changes over time. It is influenced by several factors, such 
as prior experiences, beliefs, attitudes, emotions, work environment and colleagues, and it develops 
through social interactions in different contexts.  

Although identity is seen as a social construct that is developed in, and influenced by different 
communities of practice (Wenger, 1998), identity in this paper is studied from an individual 
perspective (cf. Lutovac & Kaasila, 2018). This means that the discussion about Ashley’s 
mathematics-related teacher identity is mostly guided by Ashley’s thoughts and feelings about who 
she is as a mathematics teacher, how she describes her professional development over time, and how 
her affective trait (Hannula, 2012) influences her mathematics-related teacher identity. 

Teachers’ mathematics-related teacher identity is also influenced by tensions between experienced 
and ideal mathematics teaching, and between view of oneself as a mathematics teacher and view of 
a good mathematics teacher (cf. Beijaard, Meijer & Verloop, 2004). In this study, tensions are 
considered as “pairs of contrasting forces that pull a teacher in two different directions” (Andrá et al., 
2019, s. 3). These tensions are used to recognise the (conscious or unconscious) needs for the 
professional learning within the project, and together with Ashley’s experiences from the project, 
evaluate the opportunities that the problem-solving intervention offers for professional development. 
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The problem-solving intervention 
Together with four of her colleagues, Ashley takes part in a professional development project that, 
by integrating collaborative problem solving into everyday mathematics activities, aims at increasing 
pupil thinking and engagement in mathematics classrooms. To reach sustainable change in these 
mathematics classrooms, the traditional teaching and learning practices as well as the physical 
learning environments are challenged from several fronts, and the mathematics classrooms are treated 
as systems (Stigler & Hiebert, 1999).  

The project utilised a teaching method called building thinking classrooms (Liljedahl, 2020). The 
teachers implement the new teaching method in their everyday practices in mathematics classrooms. 
The core of the method constitutes of three activities: Every lesson starts with a problem, the pupils 
work in visibly random groups, and they work standing on vertical non-permanent surfaces 
(Liljedahl, 2020). These core activities also resonate with the Finnish curriculum, which emphasises 
for instance collaborative learning and physical activities as opposed to sedentary lifestyle (see 
Finnish National Board of Education, FNBE, 2016). 

The teachers in the Finnish problem-solving project implement these three core activities in their 
lower secondary mathematics classrooms from the beginning of the school year. The rest of the 14 
teaching practices they implement into their teaching gradually throughout the school year. For this, 
they receive intensive support through workshops and informal meetings with the researcher. 

Methods 
Participant 

The teacher, Ashley, is a mathematics, chemistry, and physics teacher at a lower secondary school in 
Finland. She has 3 years of teaching experience after graduating from a university, where she majored 
in mathematics. Ashley takes part in the project with two mathematics groups, one group from 8th 
grade and one group from 9th grade (13-16 years old pupils). 

Data collection 

The data were collected during the first semester of the intervention through two interviews, 
classroom observations and informal discussions with Ashley between the lessons. The interviews 
were audio-recorded, while other data supports on field notes. 

To answer the first two research questions about Ashley’s teacher identity and view of mathematics, 
the data were collected from the first interview that took place in the beginning of the intervention. 
The interview was about Ashley’s educational background, previous professional development 
projects, her prior and current teaching, insights into her possible future teaching, and about her hopes 
and needs for the intervention (cf. view of mathematics in Op’t Eynde et al., 2002). She was also 
asked to explain how certain she is about her knowledge and skills in mathematics. 

The data for the third research question about Ashley’s professional development were collected 
through the second interview about two months after the start of the project, classroom observations 
and informal discussions over the time of the first intervention semester. These data focused on the 
experiences from using the new teaching method in Ashley’s mathematics classrooms. 
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Alongside with implementing the new teaching method into her teaching, Ashley took part in 
workshops that were built around the building thinking classroom–method. She was introduced to 
the main ideas and prior results of utilising the method in mathematics classrooms and given hints on 
how to deal with challenging classroom situations that might occur during the intervention. It is 
important to recognise the possible influence of the workshops on Ashley’s professional learning. 

Data analysis 

The data were analysed through data-driven content analysis. The first part of the analysis focused 
on the first research question about the growth of Ashley’s teacher identity. The analysis followed 
the professional developmental path that Ashley describes in the interviews from university studies 
to the beginning of the problem-solving intervention. Ashley’s narrative made it possible study the 
affective factors that are central for her (Di Martino & Zan, 2015). Moreover, the issues that she 
highlighted from her past were interpreted as instances relevant to the development of her 
mathematics-related teacher identity (Lutovac & Kaasila, 2018). 

To answer the second research question about tensions, Ashley’s mathematics-related teacher identity 
was contrasted with the view of herself as a mathematics teacher and how she experiences her own 
mathematics teaching (cf. Op’t Eynde et al., 2002). Tensions between the experienced and ideal 
mathematics teaching, as well as experienced teacher self and ideal mathematics teacher, were 
interpreted as (perhaps unconscious) needs for professional learning (cf. Andrá et al., 2019).  

To answer the third research question, Ashley’s expressed goals for professional learning together 
with the needs arising from tensions are discussed in the light of the opportunities that the problem-
solving intervention offers for professional learning, and what changes in her mathematics-related 
teacher identity Ashley experiences during the first semester of the intervention. 

Results 
Developing mathematics-related teacher identity over time 

Ashley is a young mathematics teacher with a strong need to find a teaching style that feels her own. 
She has been pursuing towards this goal since being a mathematics teacher student at university. 
While the university failed to give her enough opportunities to rehearse her mathematics teaching in 
practice (she reports only having two practice lessons in mathematics), and thus help her to develop 
a strong mathematics-related teacher identity, she has been testing different teaching methods 
systematically in her own secondary mathematics classrooms. 

By the time of the problem-solving intervention, Ashley has been teaching in this specific lower 
secondary school for two years. During this time, she has pursued towards more pupil-led teaching 
practices. She has tried different methods, such as task cards, to support pupil autonomy in learning. 
She has been guiding pupils to take more responsibility of their own learning and to study 
mathematics at their own pace. The pursued changes resonate well with the current national 
curriculum (see FNBE, 2016). She has also tried to differentiate learning especially upwards to create 
challenges also to high achievers. In Finnish lower secondary school, extensive learning support is 
given for low-achievers by law, but whether and how the high-achievers receive suitable challenges 
is dependent on the individual mathematics teachers. 
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After the first year of working individually towards developing her teaching, Ashely started to 
collaborate more with two other teachers in her school. This community of practice (cf. Wenger, 
1998) has become an important resource for her. The teachers share ideas as well as plan and develop 
their mathematics teaching systematically together. On the classroom level, their goal has been to 
engage pupils more in learning mathematics. The three teachers also participate in the reported 
problem-solving intervention together.  

Despite the many professional development projects, implemented individually or with colleagues, 
and even though she has found methods that engage pupils more in mathematics lessons, Ashley feels 
that these attempts have not been successful in the sense of finding a teaching method that ‘feels her 
own’ (her own words). 

Tensions in mathematics-related teacher identity 

There are many tensions in Ashley’s experienced and ideal mathematics teaching. She is aware of 
these tensions when she talks about them but, at the same time, it seems that despite the many attempts 
she has not been able to find tools to answer these needs in her mathematics teaching.  

The first tension is between the teacher-led and pupil-led teaching methods. Ashley pursues towards 
pupil-led learning where pupils take a bigger responsibility in their own learning. In some groups, 
using the task cards is a step in this direction. However, she finds herself talking a lot in the lessons 
and explaining mathematical content to the pupils instead of guiding them towards more self-
regulated learning. 

The second tension is between the processes and the outcomes of solving tasks in mathematics 
lessons. Ashley explains how she tries to emphasise the solution processes over the correct answers. 
However, what she experiences in classrooms is that pupils concentrate heavily on the correct answer. 
Even a small miscalculation can lead to the pupil thinking that the whole task was incorrectly solved. 

The third tension is about the number and quality of tasks solved in mathematics lessons. At the 
university, she realised that mathematics is more about the thinking processes and having a small 
number of good tasks, rather than solving a big number of routine tasks. As a mathematics teacher, 
however, she feels that she has moved back to teaching through calculations, as she was taught self 
in school. Even if all pupils have the freedom to select tasks, the emphasis is on calculating and not 
on thinking. 

Ashley’s view of herself as a mathematics teacher is very close to her view of a good mathematics 
teacher. She explains that, similarly as a good mathematics teacher, she is easily approachable, she is 
genuinely interested in pupils’ learning, she is fair, and treats all pupils equally. Additionally, she 
likes mathematics, but is highly self-critical towards her teaching. The researcher’s notes from 
mathematics lessons and after-lesson discussions support these self-reflections from the interviews. 

In the interview, Ashley emphasises that a good teacher also masters the content, adapts to different 
situations, is up to date, and can revise her own teaching. These are all elements that Ashley can be 
related to through her self-efficacy beliefs of mastering the mathematical content to the purposeful 
development of her own teaching. Hence, even though not explicitly said, my interpretation is that 
Ashley sees herself as a good mathematics teacher. 
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Learning from the problem-solving project 

When asked explicitly, Ashley’s goal for the problem-solving project is (free translation): 

To find a way to teach mathematics that motivates pupils, so that it would be nice to come to the 
classes, it would be nice to be there, I would enjoy being there, and that we get things done. And 
that everyone is included, everyone gets some kind of support even if not originating from the 
teacher, and everyone gets experiences of success. 

While the explicit goal for the project is more on the affective level, similarly as the need to find a 
teaching method that feels a natural part of herself, the tensions stemming from the interview data 
highlight more concrete needs; Ashley wants her teaching to be more pupil-centred, tasks to 
concentrate more on thinking rather than calculations as well as to the processes rather than the 
answers, and learning to be more qualitative instead of rushing through a long list of tasks.  

The goals reflecting the tensions in Ashley’s mathematics teaching are well in line with the building 
thinking classrooms–method (see Liljedahl, 2020). Already after two months of implementing the 
building thinking classrooms–method into her mathematics classrooms, Ashley starts every lesson 
with a problem (pupil-centred learning that fosters thinking), divides pupils visibly into random 
groups using playing cards (social gains, among other things), and have pupils work standing on 
vertical non-permanent surfaces (blackboard, whiteboard tape and windows). She has also paid 
attention to answering pupils’ questions, creating tasks that support group discussion and the 
processes of learning, how to level learning in classrooms, and how to organise the physical classroom 
environment to support the desired classroom activities. 

The changes in Ashley’s classroom practices have been rapid. Only after two months, Ashley explains 
that she has found the basic idea behind the building thinking classrooms–method, and she has been 
able to adapt the method into a natural part of her teaching. The building thinking classrooms–method 
has answered to her needs, especially those viewed through tensions. She also feels that the 
intervention has had a positive impact on pupils’ learning and on classroom climate. Whether the 
change is sustained over time, we will see after the problem-solving intervention is over (delayed 
interview and classroom observations). 

Discussion 
The purpose of the paper was to explore Ashley’s mathematics-related teacher identity through view 
of mathematics and changes in her teacher identity, as well as through the link between identity and 
teaching practices (see Lutovac & Kaasila, 2018). These issues were studied through affective lenses 
with an individual emphasis.  

The first research question drew attention to the development of Ashley’s teacher identity. This 
question revealed a severe deficiency in Ashley’s teacher education that led her to systematically 
search for teaching methods that would fit to her view of good teaching. The question also revealed 
the importance of the social aspect in creating a mathematics-related teacher identity. When Ashley 
talked about her previous professional development projects, she highlighted the importance of other 
mathematics teachers at her school. This community of practice (Wenger, 1998) has been a great 
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resource for her in developing teaching and mathematics-related teacher identity. As a result, Ashley 
has high self-efficacy beliefs and confidence towards classroom inquiries.  

The second research question focused on the tensions between Ashley’s experienced teacher identity 
and her view of good mathematics teaching. There were no tensions recognised between Ashley’s 
view of herself as a mathematics teacher and a description of a good mathematics teacher. This 
indicates a quite well-established teacher identity. Ashley was very aware of her strengths and 
weaknesses in mathematics, and she recognised many tension in her mathematics teaching (cf. Pillen, 
Beijaard & Brok, 2013). However, what was not recognised was the tension between the verbalised 
goals for the intervention and the tensions in Ashley’s mathematics teaching. This realisation takes 
us to the third research question about Ashley’s needs for professional development.  

While novice teachers traditionally are willing to rethink their teaching practices (Liljedahl, 2014), 
Ashley was ready to reject bigger parts of her teaching. Ashley’s needs for professional learning were 
connected to the teaching and learning activities rather than to mathematical content (Lutovac & 
Kaasila, 2018). As a result, the problem-solving intervention seemed to have a very positive impact 
on Ashley’s identity building and professional development. After a short period of implementing 
the new teaching method into her mathematics teaching, Ashley started to see changes in the 
classroom practices (addressing tensions) and in the emotional atmosphere in the classroom 
(addressing goals), resulting in a method that ‘feels her own’. While these results are encouraging for 
the success of the intervention, they also confirm some previous research results and raise questions.  

First, it seems that the tensions Ashley recognised were at least partly solved. This confirms prior 
research about the nature of tensions, that is, previously incompatible tensions can be solved (Andrá 
et al., 2019). Second, teacher identity is a social construct (Wenger, 1998) that is influenced not only 
by colleagues but also by pupils in the classroom. The positive impact that the intervention had on 
Ashley’s teacher identity was highly influenced by the pupils’ actions and reactions in the classroom.  

The questions that raised from the study are connected to the interrelation between tensions (needs) 
and goals (wants) in novice teachers’ identity building and professional development. Ashley 
reported being successful in terms of pupils’ learning and motivation also in her previous 
interventions. What seems to be different this time is, that the intervention also addressed the tensions 
in her teaching positively. Indeed, what seemed to be a challenge for Ashley was to identify the 
tensions as concrete goals for her professional development. So, are solving tensions more powerful 
tool for professional development than fulfilling teacher’s goals? There is a need for further studies 
on the interrelation between tensions and goals in professional development projects that aim to 
improve classroom practices and teacher identity. 
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The purpose of our paper is to analyse the effectiveness of group work and the role of the emotions 
in game theory activities. Such a setting, unfamiliar to most of the students, allows to build activities 
with more than one solution and more than one solving strategy. In particular, the activity concerning 
a cooperative game is reported and, following Kagel and Cooper's studies, it is highlighted how 
students involving in groups activities have a more strategic and successful approach than those who 
tackle them individually. One of the aims of this paper is to study the change of the vision of the 
mathematics after these activities, using the lenses of the Di Martino and Zan framework. 
Furthermore, this research looks at the metacognitive activities that are stimulated during the 
resolution and how they lead to the construction of shared knowledge.  

Keywords: Cooperative learning, metacognition, game theory. 

Introduction and theoretical framework 
Problem solving and argumentation are essential skills, and they are one of the objectives of many 
educational systems (i.e., OECD PISA, 2021). These processes can be supported by collective work, 
that if it is done correctly, it triggers the process of collective metacognition that leads to the 
construction of shared knowledge. This study was carried out on game theory activities because this 
context allows us to analyse the students' ability to apply the knowledge acquired during their studies 
in unfamiliar situations (Antonini, 2019).  This choice is justified by the desire to create a conducive 
environment to the development of the problem solving and the argumentation processes (Cramer, 
2014). 

Schoenfeld’s research shows that in order to solve a mathematical task correctly, there is a need to 
apply control processes. These processes involve understanding the text of the task, planning a 
strategy, controlling the situation, and managing one’s resources. Schoenfeld highlights the 
importance to be aware of one’s resources to be able to manage them. Furthermore, he analyses causes 
of failure or successful in activities of problem solving. The central elements are the beliefs and the 
individual’s perception of themselves. The beliefs depend on previous experiences with mathematics, 
and they influence the individual’s ability to use his or her knowledges (Schoenfeld, 1983). Beliefs, 
emotions, and attitude are very important elements in approaching mathematics; in fact, they are also 
essential in decision-making process. Emotional experiences are given by the combination of a 
cognitive and a psychological insight: the interruption of actions or a difference between facts and 
expectations can lead to an arousal (a general state of activation of the nervous system in response to 
internal or external stimuli). The emotional experience of the individual is given by the arousal and 
the formative evaluation of the experience. It is therefore clear that it is not the experience itself that 

Proceedings of CERME12 1468



 

 

arouses emotions, but the subject's interpretation of the situation, which depends on the individual's 
beliefs.  

Di Martino and Zan highlight the importance of emotional component of the beliefs, in fact, the same 
belief can arouse different emotions in different individuals. They underline the need to use tools able 
to investigate the structure of the beliefs’ system and to bring out the link between cognitive and 
emotional component. To analyse the data that emerged from their research, a model consisting of 
three dimensions was used (Di Martino & Zan, 2011): emotional disposition towards mathematics, 
perception of one’s abilities and vision of mathematics. 

 

Figure 1: Di Martino-Zan three dimensional model for attitude (Di Martino & Zan, 2011) 

It is possible to focus on the link between beliefs and emotions, in particular, negative emotional 
disposition, due to a negative approach with mathematics. A negative emotional disposition may be 
due to many characteristics that students assign to mathematics. This implies that there is a link 
between emotional disposition and vision of mathematics. The perception of one’s abilities in 
mathematics influences the emotional disposition: in fact, the idea of successful in mathematics 
affects emotional disposition and thus the perception of one’s competences. 

There are many conceptions about idea of successful: 

 successful identified with perception of the knowledge of rules and their correct application; 
 successful identified with perceived knowledge of the meaning of the rules and their 

connection; 
 successful identified with scholar successful. 

The failure is often due to the link between negative emotional disposition and low perceived 
competence. Weiner classified the causes of the failure into (Weiner, 1986): 

 local inside/local external: inside local causes depend on the subject, while external local 
causes depend on exterior features; 

 stable/instable: whether or not it is possible to change them over time; 
 controllable/uncontrollable: whether depend on the beliefs of subject. 

Negative emotional disposition is a cause of failure in mathematics for some students. Low perceived 
competence and negative emotional disposition may be two independent dimensions: some students 
have a high perceived competence, but a negative emotional disposition and vice versa. 
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The development of activities in the game theory makes it possible to highlight how a collective 
performance promotes the activation of metacognitive processes to a greater extent. According to 
Kagel and Cooper (2005), those who tackle tasks in groups act more strategically than those who 
carry out them individually. Kagel and Cooper (2005) state that communication between individuals 
is a possible explanation for the more strategic approach taken by groups. Therefore, through 
confrontation with others, more ways to resolution were explored.  

Cooperative learning is an approach in which small groups are created with students of different 
ability levels. The members of each group work together to achieve a common goal. The positive 
aspects of cooperative learning are group goals or positive interdependence, in which students must 
work together to achieve group success, and individual accountability. In other words, we mean the 
responsibility of everyone for the success of the group, which involves the motivation of each student 
to help to achieve the success of the whole group (Slavin, 1990). Efficient group work maximises the 
learning of each student.  

Furthermore, organisational, cognitive, and metacognitive factors must be present for a group to 
successfully tackle problem solving activities. (Chalmers, 2009). Tuckman and Jensen's model of 
organisational factors consists of five phases that should be developed in the group activity: forming, 
storming, norming, performing and adjourning (Tuckman & Jensen, 1977). The first phase involves 
the setting up of the group work; in the second phase there is a comparison between the group 
members and the third phase is reached when a meeting point is found between the various ideas 
proposed. In the fourth phase the group members work together and in the last phase the work is 
reviewed. On a cognitive level, students need to develop shared knowledge in order to successfully 
complete the group work. Metacognition is defined as the student’s awareness of her or his learning 
process; in the case of collective metacognition, each participant must be aware of his or her own and 
other group members mental processes through discussion and comparison. Collective metacognition 
requires that strategies of orientation, planning, monitoring, evaluation, reflection and elaboration are 
developed. Orientation is carried out before the problem occurs. Planning, monitoring and evaluation 
take place during the resolution of the task, while reflection and elaboration take place at the end of 
the task. These actions allow students to structure a solution strategy, monitor the processes involved, 
evaluate and interpret the results obtained and express the solution (Van der Stel et al., 2010). 
Comparison, along with the presentation of different points of view and questions from the group 
members help the construction of shared knowledge, allowing any individual difficulties to be 
identified and overcome. Each group member has their own solution strategy before determining the 
joint one, but previous studies have shown that groups perform better than they would have done 
individually (Frith, 2012).  
By comparing with other group members, it is possible to produce different solution strategies to 
reach the final goal. Cooperative work, therefore, makes it possible to develop interaction between 
students, integration and to improve self-esteem (Slavin, 1990). Collective metacognition, moreover, 
helps to reduce the individual anxiety of failure by distributing it among all group members. The 
existence of a shared solution increases motivation to carry out such activities. Difficulties that may 
be encountered during a group activity are communication between individuals and cultural 
differences, aspects that may compromise collective metacognition (Chiu & Kuo, 2009). 
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Furthermore, one purpose of this research is to analyse, through two questionnaires, students’ 
emotions and beliefs regarding mathematics and their vision about this discipline. It is important to 
understand the presence of a change about the student’s vision on mathematics after carrying out 
activities.  

Methodology 
This experiment consists of two activities carried out within the game theory. One of the objectives 
of this research is to stimulate problem solving and argumentation processes, to make people take on 
different points of view, and to promote group activity and comparison between peers. At the end of 
each activity, an interview was conducted in order to capture the difficulties encountered during the 
task and some impressions regarding the group work. In addition, two questionnaires were proposed 
to the students: one at the beginning of the first task and one at the end of the second task. One of the 
purposes of the two questionnaires was to investigate the students’ emotions and their vision on 
mathematics, and the second questionnaire also asked questions focused on the tasks carried out. The 
second questionnaire, moreover, analyses the change about student’s vision on mathematics. Two 
questionnaires were created following Di Martino and Zan’s researches (Di Martino & Zan, 2011): 
there were open questions to leave students free to express their emotions and closed ones to analyse 
specific aspects. Two questionnaires were compilated individually, while the interview was 
conducted during the final discussion about the activities’ results.  

Participants who took part in the experiment were 81 secondary school students, grade 9, 11 and 13, 
of the Italian education system (14-, 16- and 18-years old students). Three classrooms participated to 
experiment:  

 classroom of grade 13 is composed by 29 students. In this classroom half of the students 
solved tasks individually; 

 classroom of grade 11 is composed by 25 students; 
 classroom of grade 9 is composed by 27 students. 

In addition to these, the two activities were submitted to a "control group" consisting of 
mathematicians and non-mathematicians, to investigate the similarities and differences between the 
approaches adopted by high school students, mathematicians, and those with no specific 
mathematical skills. The control group was composed by people with different ages. In the control 
group there were 16 individuals, 10 students of master’s degree in mathematics and 6 students of no 
mathematical course. 

The experiment was carried out entirely remotely using platforms such as Zoom and Google Meet 
due to Covid-19 pandemic. Thanks to these, it was possible to create virtual rooms in which students 
could work in groups. The class of grade 13, due to classroom attendance regulations, was half in the 
classroom and half at home, so the task was carried out individually by those in the classroom and in 
groups by those remotely located. These roles were reversed in the second task. The control group 
took the task individually. 

Each task took about two hours to complete. One hour was left for the students to solve the task in 
groups or individually. The remaining time was devoted to a collective discussion in which the 
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students were able to compare and share the solutions they had arrived at and the reasoning for 
applying a particular strategy. During the discussion we noted students’ statements to analyse their 
process of problem solving. In the following section we report some students’ statements taken by 
interview’s notes and answers to the questionnaires. 

Analysis of the collected data 
In this paper we focus on the data collected on the first task. The text is the following: 

"In a shopping centre there are three shops, AltaModa, BlueJeans and CookLover, which need a new 
lighting contract. They have been offered several alternatives: if they take out the contract 
individually, they will pay €250, €200 and €350 per month respectively; if they decide to take out an 
overall contract, they will pay €600; alternatively, if they agree in pairs, the prices will be €350 per 
month for AltaModa and BlueJeans, €450 per month for AltaModa and CookLover and €420 per 
month for BlueJeans and CookLover. 

Try to explain the offer and how the three shops could agree on the best offer. Give reasons for your 
answers." 

The table below shows the solutions proposed by the test takers. 

Table 1: Proposed solutions. A, B and C indicate expenses for A, expenses for B and expenses for C. 
% groups and % individuals represent the percentual of students’ solutions. 

Proposed solutions A B C % groups % individuals 

Equal division of the total contract 200 200 200 47% 65,5% 

Proportional division of the total contract 187,50 150 262,50 31,5% 24% 

Other solutions    21,5% 10,5% 

 

The data comparison of this experiment shows, as argued by Kagel and Cooper (2005), that groups 
act more strategically than individuals. Students who took the test individually were unlikely to go 
beyond the first interpretation, namely the equal division of the overall contract. Analysing the 
response frequencies of both the students and the "control group", it emerges that less than 50% of 
the groups gave as their solution the equal division of the overall contract. On the contrary, among 
those who took the test individually, more than 60% supported this solution. 

Equal division of the total contract is the most intuitive answer, to which everyone approaches at first 
stage; some individual students and most groups manage to move away from this first idea, planning 
other solution strategies.  

Some students believed that the equal division was fairer because everyone pays less than or equal to 
the single contract, while others wondered if there was a division that provided savings for everyone, 
and this led to the formulation of new hypotheses for solving this task. In this way, those who reflected 
on these aspects showed that they implemented metacognitive actions such as monitoring and 
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evaluation, as they were able to analyse and interpret the proposed strategies in the context of the 
problem. These considerations were more frequent in those who worked in groups. Groups that 
worked efficiently went through all the stages of Tuckman and Jensen model. The groups also took 
longer to reach a conclusion due to a more thorough analysis of the proposed strategies.  

Kagel and Cooper research suggest that the groups should be able to arrive at an appropriate solution 
if it is proposed by at least one member of the group. The analysis of the group discussions shows 
that most of the times when a member proposed a strategy different from the first interpretation, the 
group was able to come up with a solution that deviated from the instinctive response, i.e., dividing 
the total contract equally. From the discussions in the groups, it is evident that the confrontation with 
others allowed the emergence of different points of view that led to various solution strategies. 
Sometimes some members of the group disagreed with the solution proposed by the team, on which 
occasions the students defended their ideas. At the end of the time allotted for solving the activity, 
most groups proposed an agreed solution. 

Thanks to the interviews and questionnaires, it was possible to ask the students about their 
impressions of the interaction between groups. In the class in which the two activities were carried 
out by both individuals and groups, it was also possible to compare the two ways of carrying them 
out. For example, one request of questionnaires regarded the students' vision on mathematics. This 
question is proposed before and after the tasks. The why of this choice is justified by the needful to 
investigate the change of mathematics vision after carrying out the tasks. By students' responses 
emerged that their mathematics vision is changed thanks to this experience.  

Some students stated: 
Student 1: “I think my approach is changed: greater depth and focus on different strategies, without 

stopping at the first insights”; 
Student 2: “We often think that mathematics is a strict science with certain rules, but in this 

activity, we were able to observe the existence of different points of view and 
different solutions”. 

Moreover, in questionnaires, we asked them their impressions about interaction between groups. 

Some students stated: 
Student 3: “Group work helps, by exchanging ideas and thoughts you eventually reach the choice 

that is closest to the correct one”; 
Student 4: “Every idea was made explicit to the whole group”; 
Student 5: “initially I did not understand the problem very well, then the other members helped 

me to understand it”; 
Student 6: “some ideas we had thought individually were changed by the analysis of the whole 

group, and others emerged thanks to the collective activity”; 
Student 7: “it was a good confrontation, it was a ‘thinking together’ rather than a union of 

individual ideas: we perfected each other intuitions by helping each other.” 

From the students own words, the comparison with others was useful for a better understanding of 
the problem: “...they helped me to understand it”. It also emerges that working together helped them 
to consider more strategies “...more emerged from the collective activity”. As Frith reports in his 
research (Frith, 2012), each student hypothesises his or her own solving strategy, but thanks to the 
collective activity, a better performance is achieved, by placing each proposed strategy under 
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collective analysis. In some groups, the pupils advised their peers to identify with the situations or to 
consider the activities in a real context. This approach made it possible to concretely analyse the 
planned strategies and consider their possible implementation in real life.  

Conclusion 
In this paper we analysed capacity of students to act exploration of the problem, planning of strategies 
to be implemented, identifying objectives to be achieved. In particular, we focused the attention on 
the problem solving and the argumentation process and their implementation in group activity. In 
most cases, the collective performance of such tests ensured, the planning of a greater number of 
solution strategies and a more in-depth analysis of the procedures implemented and the results 
obtained. Each participant observed the work of the others, which made it possible to assess the 
effectiveness of the strategy. Through the exposition of different points of view and the analysis 
carried out by each component, almost all the groups managed to build a shared knowledge. Difficult 
students put their doubts to their peers and thanks to the explanations, sometimes repeated, of the 
other group members, they overcame their critical points. From the previous statements, moreover, 
we can see the implementation of metacognitive activities that led to the construction of shared 
knowledge. In fact, thanks to the support and the analysis of each group member, they were able to 
refine their initial ideas and make their peers understand things that were not clear. 

The students themselves acknowledged that working efficiently in a group is better than working 
individually: 

Student 8: “I think that by working well in groups you can do more than you would do               
alone”. 

Those who had the opportunity to work on the activities once individually and once in a group stated 
that they enjoyed better working collectively. The development of individual metacognition, 
therefore, was supported by collective metacognition. In this way, thanks the collective work to 
achieve a shared solution, the motivation to carry out tasks was increased. In a few groups, the work 
was not conducted fruitfully, with little participation by some members. In such situations, however, 
collective metacognition was compromised, as students did not compare, preventing the construction 
of shared knowledge. The data collected through questionnaires allow to analyse subjects’ emotional 
approach in these activities. From responses to the first questionnaire, some students stated that they 
had a good emotion regarding mathematics, but more than 60% of the students stated: “I like 
mathematics because I obtain good results”. This highlights a strong link between emotional 
disposition and the idea of successful on mathematics (Di Martino & Zan, 2011). An interesting fact, 
obtained by responses to the second questionnaire, is the change of the students regarding the vision 
on mathematics. After these activities the students have more perception about the usefulness of the 
mathematics in the real life and they have had the opportunity to do mathematics in a different way. 

As the tasks were solved, many groups stated that they were satisfied with the work done. Collective 
activity, in fact, helps to reduce the individual anxiety and fear of failure, distributing it among all the 
components. In fact, the answers given in the first questionnaire show that many students have 
contrasting emotions regard mathematical activities, but these students stated, in the second 
questionnaire, that they valued the group work positively. These results underline how cooperative 
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learning is a positive element for a better approach with mathematics, but also for improving the 
emotional disposition towards mathematics. Observing the work and discussions of the groups, it 
emerged that in the classes where students are used to working in groups, there was more interaction 
and better organisation. 
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Some people develop math anxiety whenever they are confronted with tasks that require mathematical 
skills. Math anxiety influences learners and their performance negatively. Furthermore, the math 
anxiety of teachers has an impact on their students. Therefore, one challenge of elementary teacher 
education is preventing and reducing math anxiety, especially at the beginning of the teacher training 
program. In this study, we investigate the development of math anxiety in prospective elementary 
teachers in Germany during the first semester at university. We provide the first results regarding 
the influence of math anxiety on dropouts at the beginning of the teacher training program. Finally, 
we describe differences regarding the development of math anxiety of prospective elementary 
teachers at three universities. 

Keywords: Math anxiety, first-semester changes, transition, teacher training. 

Introduction 
Research on math anxiety covers a large field of work with different directions and focuses (Hembree, 
1990; Zhang et al., 2019). Math anxiety is defined as ”a feeling of tension and anxiety that interferes 
with the manipulation of numbers and the solving of mathematical problems in a wide variety of 
ordinary life and academic situations” (Suinn & Winston, 2003; Visscher & White, 2020). The math 
anxiety of a prospective teacher not only affects her/his performance at university (Hembree, 1990; 
Pekrun et al., 2006; Zhang et al., 2019) but also as an elementary school teacher. Therefore, teachers’ 
math anxiety affects learning situations (Visscher & White, 2020) and the performance of their 
students (Beilock et al., 2010). Whereas math anxiety and math teaching anxiety are two separate 
constructs, both are related (Brown et al., 2011). Math anxiety can lead to anxiety about teaching 
mathematics (Brown et al., 2011; Hadley & Dorward, 2011; Zhang et al., 2019). Because of the 
influence of math anxiety on teaching, elementary teacher training in mathematics is a big challenge 
for universities. Particularly at the beginning of the teacher training program since first-year students 
often exhibit a transition shock (Gueudet, 2008) which may increase the math anxiety. 

Elementary teacher training in mathematics is supposed to substantially educate prospective 
elementary teachers and simultaneously prevent or even reduce their math anxiety. According to the 
definition, there are various dimensions of math anxiety, and the question arises which dimensions 
are crucial for elementary teachers. Based on the national curriculum in Germany, math education in 
elementary school is supposed to promote problem-solving, argumentation, and communication 
(KMK, 2004). Accordingly, elementary teacher education targets to qualify prospective teachers for 
problem-oriented teaching (Eichler et al., 2022). From this perspective, two dimensions of math 
anxiety are relevant for teacher training: problem-solving and explanation anxiety (Visscher & White, 
2020). Hence, we focus on the development of both dimensions in our study.  

In Germany, there are specific training programs for elementary teachers. Mathematics is a 
compulsory subject in most of those programs, and prospective elementary teachers are obliged to 
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attend courses in math education. In our study, we focus on the teacher education of prospective 
elementary teachers and analyze the development of their math anxiety in the first semester. 

Aims and questions 
The presented study targets to answer three questions on math anxiety of prospective elementary 
teachers. Based on the negative influence of math anxiety we investigate the transition from school 
to university by examining those in their first semester at three German universities.  

RQ1: Does the math anxiety of prospective elementary teachers change in the first semester?  

RQ2: Does the development of math anxiety of prospective elementary teachers differ at different 
universities in the first semester?  

RQ3:   Do prospective elementary teachers who dropped out of the math course show a different 
 level of math anxiety at the beginning of the study than those who passed the course?  

The third question refers to those prospective elementary teachers who filled out the questionnaire at 
the beginning of the semester but not at the end. We do not know the exact reasons for these dropouts, 
but we assume most of these prospective elementary teachers did not complete the math course in 
their first semester. The question arises if there is a different level of math anxiety at the beginning 
of the semester in prospective elementary teachers who completed the course and those who dropped 
out.  

Methodology 
Instruments 

For measuring math anxiety, it is relevant to use scales of math anxiety that align well with the kind 
of math we are asking teachers to teach mathematics in the classroom. Therefore, we collected data 
with the math anxiety scales from Visscher and White (2020) that include Likert scales for answers: 
”Not at all”; ”A little”; ”A fair amount”; ”Much”; ”Very much”. Table 1 shows the original scales. 
For collecting data in German universities, we translated these scales into German. Table 1: Math 
anxiety items (Visscher & White, 2020). 

Table 1: Items of math anxiety constructs 

Factor 1 – Problem-solving anxiety 

1 Working on a math problem for which you are not sure where to start. 

Items pertaining 
to difficulty of 

problem 

2 Being given a math problem that does not look like any problem you have seen before. 

3 Being asked to solve a math problem when you are not sure which formulas to use. 

4 Working on a math homework problem and not making any progress for 5 minutes. 

5 Being assigned an extra-long math homework set. Items pertaining 
to length of 
problem set 6 Beginning to work on a multi-page math worksheet. 
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Factor 2 – Explanation anxiety 

7 When you are partway through figuring out a math problem, being asked to share your 
thinking with a classmate. 

Items involving 
internal doubt 8 Sharing your solution with a small group of classmates when you are not sure it is 

t
9 Explaining your attempt at a math problem to a classmate, even though you are not 

very convinced that it is right. 

10 Describing to a small group of classmates how you went about a homework problem 
on which you received a perfect score. 

Items involving 
external 

validation 
11 After reaching an “aha!” moment on a problem on your math worksheet, being asked 

to explain your solution to a small group of classmates. 

12 Being asked by a classmate to go through your correct solution more slowly. 

13 Being asked to further justify why your mathematical solution is correct to a classmate 
who is not yet convinced. 

Items involving 
external doubt 

14 Having to convince a classmate that your different way of solving a math problem is 
equally valid. 

15 Continuing to explain your mathematical solution, even though a classmate doubts it is 
correct. 

Procedure 

The study followed a pre-post design. Data collection took place in the winter semester 2019/2020 in 
math courses for prospective elementary teachers in their first semester (in the first and the twelfth  
lecture). We created a pseudonym for each participant to merge the paper-based questionnaires from 
the pre-and the post-test. Figure 1 shows the design and the differences between the three universities. 

 
Figure 1: Design of the study and university differences 
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Sample 

We decided to include prospective elementary teachers from three universities with three different 
math courses for beginners. The sample comprises 583 prospective elementary teachers; 400 
participated in both surveys (University 1: 183; University 2: 150; University 3: 67); 183 only 
participated in the first survey, and we assume these are dropouts. 

Analysis 

There are several missing values in this data set which we excluded. If values are not randomly 
missed, deletion of cases with missing values biased the data. Despite a non-significant Little-Test 
(Little, 1988) ( =454,418, p = 0,251) for item-nonresponse data, we assume the data is biased 
because of several unit-nonresponse data. We compared the scores of math anxiety of dropouts 
(missing data at the second survey time) with the complete data sets. The goal was to disclose 
differences between both groups and detect whether math anxiety at the beginning of the term can 
increasingly lead to the termination of the math course. 

To check the quality of the data on an empirical basis (because we translated the items into the 
German language), we perform factor analysis. The Kaiser-Meyer-Olkin measure was .823 and 
showed a relatively good factor analysis. Bartlett´s test of Sphericity was significant (p < .001), 
indicating that correlations between items were sufficiently large for performing factor analysis. 
Based on the five dimensions of the scales of Visscher and White (2020), we used the maximum 
likelihood method and a varimax-rotated five-factor solution. Kaiser´s criteria and the scree-plot 
justified the extraction of five factors. One of the five factors has an eigenvalue just below 1; four 
factors have eigenvalues >1. In total, these five factors explain 55,91% of the total variance. Most of 
the items loaded highly on one factor. Only item 4 loaded on two of the five factors: comparably low 
on both. Therefore, it was excluded from the subscale about the difficulty of problems. 

For reliability analysis, we calculated Cronbach’s alpha to assess the internal consistency (Table 2):  
Table 2: Internal consistency of the math anxiety scales 

 Problem solving anxiety Explanation anxiety 

Whole 

scale 

Difficulty 

of problem 
Length of 

problem set 
Whole 

scale 

internal 

doubt 
external 

validation 
external 

doubt 

First survey Time .80 .79 .75 .83 .84 .68 .78 

Second survey time .85 .82 .82 .87 .82 .70 .82 

The first question was answered with a repeated measure t-test for contiguous samplings. To answer 
the second question, we use the data from prospective elementary teachers who participated in both 
surveys and perform a variance analysis with repeated measures. Regarding the third question, we 
assume all prospective elementary teachers who participated in both survey times completed the 
course regularly; all those who did not participate in the second survey terminated before the end of 
the semester. Therefore, we use the data of the first survey time and compare dropouts and prospective 
elementary teachers who complete the first semester in full. We consider this a limitation of our study 
since there are several reasons for not taking part in the post-test. Since the Levene-Test was not 
significant, we can assume variance homogeneity and perform the t-test for unpaired samples.  
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Results 
Table 3: Development of math anxiety 

 df t(df) p Cohen´s d  

Problem solving anxiety 399 - 2.82             .005** 0.14 

       Difficulty of problem 399 - 2.10             .036* 0.11 

       Length of problem set 399 - 1.53             .127  

Explanation anxiety 399 - 3.94          < .001** 0.20 

       internal doubt 399 - 3.02             .003** 0.15 

       external validation 399 - 1.93             .054  

       external doubt 399 - 3.84          < .001** 0.19 

Table 3 illustrates that the problem-solving anxiety decreased significantly over the first semester 
with weak Cohen’s d effect sizes. Looking at the results of the problem-solving anxiety subscales, 
we see two opposing developments: a significant decrease within the difficulty of the problem but no 
significant development within the length of the problem set. The explanation anxiety decreased 
significantly over the semester, too. For the subscales, we can see that the internal and external doubts 
decreased highly significantly over the semester, while the external validation subscale barely 
reached statistical significance. The effect size of all significant developments of the subscales is 
weak, too. Therefore, we can speak of a weakly decreasing math anxiety in the first semester. 

Table 4: Differences in the development of math anxiety 

 df F p partial η²  Cohen´s f 

Problem solving anxiety 2; 397        2.40 .092*   

       Difficulty of problem 2; 397        7.47 .010* .036 .19 

       Length of problem set 2; 397          .21 .809*   

Explanation anxiety 2; 397          .01 .986*   

       internal doubt 2; 397          .31 .388*   

       external validation 2; 397          .05 .952*   

       external doubt 2; 397          .81 .443*   

Table 4 illustrates the differences in the development of math anxiety in prospective elementary 
teachers at several universities. While we found no statistical evidence of differences regarding the 
development of problem-solving and explanation anxiety among prospective elementary teachers 
from different universities and no differences in 4 of 5 subscales, we found significant differences in 
the development of the subscale difficulty of a problem. The Cohen’s f effect size is .19, and therefore 
a weak effect. Bonferroni-adjusted post-hoc analysis revealed no significant difference between the 
universities in a pairwise comparison (University 1 vs University 2: -0.001, 95%-CI[-0.17, 0.17]) 
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(University 1 vs University 3: 0.127, 95%-CI[-0.0917, 0.35]) (University 2 vs University 3: 0.128, 
95%-CI[-0.10, 0.35]). This determined the interaction effect, but the post-hoc test does not clarify 
which universities are different. Figure 2 illustrates that subscales about the difficulty of a problem 
increased at university two, whereas they decreased in universities one and three. For these 
differences in development, we did not find statistically significant results. However, the 
development of this subscale may not always be the same.  

 
Figure 2: Problem-solving changes regarding the difficulty of a problem 

Table 5: Dropouts 

 Mean difference df t(df) p 

Problem solving anxiety 
.013 

95%-CI [-0.10, 0.13] 
581             .22             .829 

         Difficulty of problem 
- .025  

95%-CI [-0.16, 0.10] 
581             .39             .699 

         Length of problem set 
.028 

95%-CI [-0.13, 0.18] 
581           - .35             .723 

Explanation anxiety 
.003 

95%-CI [-0.09, 0.09] 
581             .07             .947 

         internal doubt 
– .047  

95%-CI [-0.19, 0.10] 
581           - .65             .515 

         external validation 
.018  

95%-CI [-0.06, 0.10] 
581             .44             .661 

         external doubt 
.021  

95%-CI [-0.09, 0.13] 
581             .36             .721 

In summary, results reveal no differences in problem-solving and explanation anxiety at the beginning 
of the semester of prospective elementary teachers who terminated and those who completed the math 
course (see Table 5). 

Discussion 
The results show that math anxiety decreased over the first semester, despite the transition shock 
(Gueudet, 2008). We conclude that math courses in the first semester can help to reduce the problem-
solving and explanation anxiety of prospective elementary teachers. In addition, results suggest that 
the directions of the developments are similar. Regarding the development of explanation anxiety, 
first-semester training helps to reduce both internal and external doubts, but explanatory anxiety does 
not decrease significantly after external validation. To summarize, the first semester can have various 
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impacts on problem-solving and explanatory anxiety. Teachers generally avoid situations in the 
classroom that could cause anxiety for themselves or their students (Visscher & White, 2020). In this 
respect, our results are promising because lower problem-solving anxiety of teachers might lead to 
more problem-solving activities in school, and lower explanation anxiety might lead to more and 
better explanations in classrooms. Moreover, the transition between school and university, also called 
transition shock (Gueudet, 2008), does not impair the math anxiety of the prospective elementary 
teachers at the three universities. In this respect, it is possible the transition is either not perceived as 
a shock or has been mitigated and does not affect the math anxiety of prospective elementary teachers. 
However, reducing math anxiety in the first semester is desirable since it may indirectly support 
problem-oriented teaching.  

We predominately see similar patterns in the development of problem-solving and explanation 
anxiety at the three universities. All three math courses similarly influence the problem-solving and 
explanation anxiety, despite the differences in content, learning concept, structure, lecturer, and 
participants. There is only a significant difference with a weak effect in the subscale of the problem-
solving anxiety regarding the aspect difficulty of a problem.  

In general, our results suggest the math course during the first semester influences the development 
of math anxiety in prospective elementary teachers, and it is possible to reduce math anxiety in this 
period. Due to the design of our study, the results only allow general statements about the 
development of math anxiety of prospective teachers, but no conclusion regarding the impact of a 
specific approach. However, the significant differences in the subscale “difficulty of a problem” 
might indicate that the different concepts of the math courses (see Figure 1) influence prospective 
elementary teachers’ development of math anxiety differently. Since math anxiety can lead to anxiety 
to teach mathematics (Brown et al., 2011; Hadley & Dorward, 2011; Zhang et al., 2019), there is 
further research required to get detailed information about the effect of specific teaching approaches 
for university math courses.  

Finally, the problem-solving and the explanation anxiety at the beginning of the math course has no 
influence on the progression during the first semester. Our results suggest the degree of math anxiety 
prospective elementary teachers exhibit at the beginning of the teacher training program is no crucial 
factor for passing the math course. Instead, the development of math anxiety within the first semester 
might have a higher impact on dropouts. However, based on our results, we only can draft this 
assumption but not empirically prove it. We do not know whether the participants who missed the 
second survey were dropouts or had other reasons, such as illness, individual problems, other 
appointments, delays, or refusal to answer the questions. This missing knowledge is a limitation of 
our study. To investigate the influence of math anxiety on dropouts, we need a study design for future 
research that measures math anxiety several times: at the beginning, in the middle, at the end of the 
semester, and one measure parallel to the final assessment. Possibly, this allows us to conclude the 
development of math anxiety and its influence on dropouts. 
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The purpose of this study is to analyse relations between students’ attitude towards mathematics, 
prior knowledge, self-efficacy, expected grades, and performance in mathematics among 115 first-
year engineering students. We combine two statistical techniques to analyse the data we generated 
by questionnaires and two tests. First, item-level modeling, in terms of confirmatory factor analysis, 
which we use to compute the factor scores of construct-validated measures, and to control for 
measurement errors. Second, composite modeling, in terms of path analysis, which we use to test the 
research hypotheses. The findings show that both self-efficacy and expected grades have substantial 
effects on students’ performance. Prior knowledge has a non-trivial effect on self-efficacy which, in 
turn, plays a significant role in students’ grade expectations. All other hypothesised relations are not 
significant. We argue that these findings confirm some basic tenets of social cognitive theory.  

Keywords: Affect, higher education, item-level modeling, path analysis, self-efficacy. 

Introduction 
Affect in mathematics education 

Students’ affect is critical not only to their well-being but also to their performance in mathematics. 
Following the lines of thought proposed by Hannula (2012), we define affect in mathematics 
education research as a general concept that encapsulates factors, other than purely cognitive ones, 
such as attitude, beliefs, emotions, feelings, goals, moods, motivation, norms, values, and self-
efficacy. Thus, each factor that constitutes a unit of mathematics-related affect is regarded as an 
overlap between cognition, emotion, and motivation of varying stability with psychological, 
physiological, and social dimensions (Hannula, 2012). Prominent among the mathematics-related 
affect factors are attitude towards mathematics and self-efficacy. It is arguable that the former is 
prominent for its incoherent conceptualisations within mathematics research community (Di Martino 
& Zan, 2010) while the latter is prominent for its high predictive power of performance and its causal 
relation with students’ mathematics performance (Roick & Ringeisen, 2018; Zakariya, 2021a).  

Attitude towards mathematics 

In line with the theoretical framework proposed by Hannula (2012), attitude of students towards 
mathematics (henceforth, attitude) shares a boundary between cognition (e.g., knowledge), emotion 
(e.g., likes and dislikes), and motivation (e.g., internal and external drives to approach or refrain from 
mathematics activities). It can be operationalised and measured using self-report psychometric 
research measures. Empirical evidence shows attitude is predicted by prior mathematics knowledge 
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(henceforth, prior knowledge) and it predicts students’ subsequent performance on mathematics tasks 
(Chen et al., 2018; Lipnevich et al., 2016). Students that belief in their mathematics ability, those that 
like mathematics, and those that approach mathematics with its pre-conceived utility for future 
aspirations are usually successful in mathematics tasks. On the flip side, students that do not belief in 
their mathematics knowledge, those that dislike mathematics, and approach mathematics with ill-
conceived utility of mathematics for future aspirations are usually unsuccessful in mathematics tasks. 
Some researchers (e.g., Kiwanuka et al., 2020) have also shown that there is a reciprocal effect 
between attitude and performance in mathematics. That is, high achievers tend to develop positive 
attitude. In return, students with positive attitude tend perform well on mathematics tasks. Thus, 
attitude plays a crucial role in students’ success on mathematics tasks.  

Mathematics self-efficacy  

Self-efficacy has its roots in social cognitive theory as propagated in decades of work by Albert 
Bandura.  It entails “beliefs in one’s capabilities to organize and execute the courses of action required 
to produce given attainments” (Bandura, 1997, p. 3). As it relates to mathematics learning, self-
efficacy is students’ self-evaluation of competence to proffer correct solutions to mathematics tasks 
(Zakariya, Nilsen, et al., 2020b).  It is a combination of confidence in ones’ capacity and an estimation 
of outcome that follows ones’ effort. There are four sources of self-efficacy – mastery experience, 
vicarious experience, social persuasion, and affective states – among which mastery experience i.e., 
self-interpretation of previous attainment has the highest influence on self-efficacy (Zientek et al., 
2019). An accumulation of evidence suggests that self-efficacy is one of the best predictors of 
mathematics performance. Students with high sense of self-efficacy have low mathematics anxiety, 
adopt deep approaches to learning, and perform well on mathematics tasks (Rozgonjuk et al., 2020; 
Zakariya, Nilsen, et al., 2020b). Evidence supports consistency of a model of reciprocal effect 
between self-efficacy and mathematics performance with generated data across 24 countries 
(Williams & Williams, 2010). Moreover, Zakariya (2021a) provides a tentative evidence for causal 
effect of self-efficacy and performance in mathematics. Thus, self-efficacy is a critical factor for 
students’ success in mathematics. 

Relations between attitude and self-efficacy 

The relationship between attitude and self-efficacy coupled with their combined effect on 
performance has been sparingly studied. Yet, the results of the available studies are promising. 
Randhawa et al. (1993) using structural equation modeling show that attitude significantly predicts 
self-efficacy which in turn predicts students’ performance in mathematics. More so, the effect of 
attitude on performance is partially mediated by self-efficacy in a non-trivial way. However, the study 
by Randhawa et al. (1993) is relatively old and focuses on high school students whose findings may 
not be of direct relevance to undergraduate students. In a more recent study involving seventh graders, 
Recber et al. (2018) show that there is a non-trivial positive correlation between attitude and self-
efficacy. Further, both constructs are significant predictors of performance in mathematics (Recber 
et al., 2018). Regrettably, correlation between two variables has limited value in terms of inferential 
deductions and tangible conclusions. A similar limitation can also be ascribed to the study by Öztürk 
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et al. (2019) who report a correlational analysis between attitude and self-efficacy, and their predictive 
effect on performance of middle school students in mathematics.  

The present study 

The intention of the present study is to provide an evidence-based model of relationship between 
attitude, self-efficacy, prior knowledge, and undergraduate students’ performance (expected and 
actual) in mathematics. This study differs from the previous attempts in many ways. First, we 
approach the analysis from structural equation modeling (SEM) perspective, instead of correctional 
analysis, which avails us the opportunity to test theory-based hypotheses. Second, we focus on 
undergraduate engineering students, who have mathematics as a core subject but whose affect (i.e., 
relations between attitude and self-efficacy) appears not to be given much attention. The inclusion of 
other factors such as prior knowledge and expected grades in our model constitutes another difference 
from the previous attempts. In specific terms, the present study addresses the following research 
question: To what extent do attitude, self-efficacy, prior knowledge, and expected grades predict each 
other and undergraduate students’ performance in mathematics? 

To address the research question, we draw on theoretical foundations and some insights from 
literature to hypothesise that attitude, expected grades, and self-efficacy predict performance and are 
predicted by prior knowledge. We admit that there is a possibility of reciprocal effect between attitude 
and self-efficacy. However, we ensure temporary precedence by collecting attitude data eight weeks 
before collecting data on self-efficacy. As such, we hypothesise that attitude has a non-trivial positive 
effect on self-efficacy. Given that outcome expectancy is an integral part of self-efficacy, we 
hypothesise positive effect of self-efficacy on students’ expected grades.  

Methods 
Participants and measures 

One hundred and fifteen undergraduate students (90 males) voluntarily gave consent and took part in 
the study that lasted for a semester. These students, average age between 21 – 25 years, followed a 
first-year calculus course in a Norwegian university. They completed attitude towards mathematics 
questionnaire (AtMQ) and sat for a test of prior mathematics knowledge (TPMK) in the third week 
of the semester. On the one hand, the AtMQ is a five-item measure (sample item: I’m interested in 
what I learn in math) designed to expose a single construct on a four-point Likert scale from strongly 
disagree to strongly agree. On the other hand, TPMK is a 16 – item (22 subitems) test of basic algebra, 
functions, and geometry. Previous studies show that both AtMQ and TPMK demonstrate appropriate 
validity and have acceptable indices of reliability of .92 and .78, respectively (Zakariya, Nilsen, 
Bjørkestøl, et al., 2020; Zakariya, Nilsen, et al., 2020a). Further, we administered calculus self-
efficacy questionnaire (CSEI) at the end of the semester. The CSEI is 13-item measure on which 
students are to rate their competence to solving presented exam-like first-year calculus tasks on a 
scale of 100 points, whose validity and reliability indices have been previously studied with 
promising results (Zakariya et al., 2019). As a measure of expected grades, an item was appended to 
CSEI that asks students to report their expected grades in forthcoming calculus exam, at the time. 
The students’ final exam scores in the calculus course serve as a measure of performance in 
mathematics. The full measures are available as appendices in the referenced validation studies. 
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Data analysis 

We analysed the generated data using some techniques of SEM in two stages. Stage one involves 
evaluating measurement models for AtMQ, CSEI and TPMK, using confirmatory factor analysis. 
The rationale for this analysis is to detect and correct misspecification errors in the measurement 
models prior to hypothesis testing. Simultaneously, we confirm construct validity of each of the 
measures and compute the factor scores. The second stage of the analysis involves testing the 
hypothesised relations between the research constructs. We evaluate the structural models using 
robust maximum likelihood (MLR) estimator. The models are assessed for their global fits of the 
generated data using a combination of criteria. The model exhibits an exact global fit of the data if 
the chi-square value is not significant. There is an excellent fit of the data if the comparative fit index 
(CFI), Tucker-Lewis index (TLI) are greater than or equal to .95, and root mean square error of 
approximation (RMSEA) is either ≤ .06 or its 90% confidence interval (C.I.) contains 0.06 (Chen, 
2007). The model exhibits an appropriate global fit of the data if the ratio of chi-square value to the 
degree of freedom is less than 3, CFI and TLI are close to or greater than .90, and RMSEA is less 
than .08 (Bentler, 1990; MacCallum et al., 1996). Significant parameter estimates show that the model 
exhibits a local fit of the data. We run all the analyses in Mplus 8.5 software.  

Results and discussions 
Measurement models 

The first set of results concern evaluations of measurement models for each of the measures. For both 
AtMQ and CSEI, we evaluated a one-factor model each using MLR estimator. Following the 
recommendation by Zakariya (2021b), we correlated disturbances of item 2 and item 4 of AtMQ to 
improve the model fit. In a similar manner, we correlated disturbances of item 9 with item 11 and of 
item 12 with item 13 to achieve a model fit as recommended by Zakariya (2021a). Further, we 
evaluated a one-factor model of TPMK using robust unweighted least squares (ULSMV) estimator. 
This estimator takes care of the categorical scoring of the TPMK. The best 17 out of the 22 subitems 
of the TPMK are used for this analysis as recommended by Zakariya, Nilsen, et al. (2020a). The 
results are presented in Table 1.  

Table 1: Goodness of fit statistics of measurement models of the research measures 

Global fit indices AtMQ model CSEI model TPMK model 

Chi-square estimate (  7.846 99.151 129.769 

Degrees of freedom ( ) 4 63 119 

p – value .097 .003 .236 

 1.962 1.574 1.090 

RMSEA [90% C. I.] .091 [<.001 - .186] .071 [.042 - .096] .028 [.042 - .056] 

CFI .982 .905 .968 

TLI .954 .882 .964 
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The presented results in Table 1 show that there are exact fits of both AtMQ and TPMK models with 
the generated data. The non-significant chi-square values coupled with RMSEA, CFI, and TLI values 
that are within recommended ranges support the claim of exact fits of both AtMQ and TPMK models. 
That is, both AtMQ and TPMK measure the constructs (attitude and prior knowledge, respectively) 
they are purported to measure. More so, Table 1 reveals that CSEI model exhibits an appropriate 
model fit of the generated data. The chi-square value is significant but its ratio to the degree of 
freedom is less than 3. More so, the RMSEA value is less than 0.08 and both CFI and TLI are close 
to .90. These values support the appropriate fit of the CSEI model. That is, the CSEI measures the 
calculus self-efficacy of students it is supposed to measure.  

Hypothesis testing (Addressing the research question)  

After the evaluation of the measurement models of all the measures, we compute the factor scores of 
both AtMQ and CSEI using the default maximum of the posteriori distribution in Mplus because of 
the continuous nature of their datasets. On the other hand, Mplus uses maximum a posteriori method 
to compute the factor scores of TPMK because of the categorical nature of the dataset. Then, we 
saved the scores and use them to evaluate the hypothesised structural model of relationships between 
the research constructs. This evaluation avails the opportunity to test the research hypotheses and 
address the research questions. Figure 1 presents the goodness of fits statistics and the final evaluated 
model.  

 
Figure 1: Evaluated hypothesised model of relationships between the research constructs with 

significant parameter estimates in bold faces 

The presented results in Figure 1 shows some interesting findings. From the model fit perspective, 
Figure 1 shows that there is an exact model fit. That is, there is consistency between the hypothesised 
relationships and the generated data. In line with the postulations of the present study, Figure 1 
confirms that self-efficacy and expected grades are significant predictors of students’ performance in 
mathematics. That is, both high sense of self-efficacy and high students’ expectations in the exams 
lead to high performance in mathematics. These findings corroborate previous studies (Rozgonjuk et 
al., 2020; Zakariya, 2021a) that have shown non-trivial relationships between self-efficacy and 
performance in mathematics.  In support of the hypothesis of the present study, prior mathematics 
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knowledge significantly predicts self-efficacy. This finding confirms a tenet of social cognitive theory 
that says that mastery experience (students’ prior attainments) is an integral source of self-efficacy 
(Bandura, 1997). Figure 1 also provide empirical support for the non-trivial effect of self-efficacy on 
students’ expected grades. This finding confirms the postulation of social cognitive theory that 
theorised outcome expectation as an integral part of self-efficacy (Bandura, 2012).  Admittedly, it is 
logical that expected grade has a reverse effect on self-efficacy. However, we acknowledge this fact 
and take care of it by ensuring temporary presence with self-efficacy measure coming before the item 
on expected grade during the questionnaire administration. We recommend that future studies should 
be designed with this intention. 

Contrary to the postulations of the present study, attitude fails to predict both self-efficacy and 
students’ performance in mathematics. This assertion is deduced from Figure 1 that shows that the 
path coefficients (.016 and -.088) between attitude and the two variables (self-efficacy and exam) are 
not statistically significant. This finding that attitude does not predict mathematics achievement is 
aligned with some previous studies (e.g., Fernández-Cézar et al., 2021) although it does not support 
other studies that have reported substantial relationships between attitude and both self-efficacy and 
performance (Chen et al., 2018; Öztürk et al., 2019). It is possible that the findings of previous studies 
are not generalisable to our context. Another explanation for these unexpected findings could be a 
defect from the measure of attitude. Perhaps, the students had a different interpretation of AtMQ 
items from what the researchers intended. A future study may be designed to explore students’ 
interpretations of these items. More so, Figure 1 shows that there is no evidence in the present study 
to substantiate non-trivial effects of prior knowledge on both the students’ expected grades and 
performance in mathematics because the path coefficients (.012 and .136) are not significant. These 
findings are unexpected as well. A possible explanation could be a lack alignment between the 
knowledge assessed by PKMT and that of the current course. This observation requires further 
investigation. In sum, the results of the hypothesis testing address the research question by showing 
the extent to which attitude, self-efficacy, prior knowledge, and expected grades predict each other 
and undergraduate students’ performance in mathematics.  

Conclusion 
We made some attempts in the present study to disentangle the complex relations between attitude, 
prior knowledge, self-efficacy, expected grades, and performance in mathematics among engineering 
first-year students. We combined item-level structural equation modeling techniques with composite 
modeling by using confirmatory factor analysis to compute factor scores which we further used in 
path analysis. This combined analytical procedure offers two advantages. First, we minimize biases 
from measurement errors by incorporating them in the item-level analysis. Second, we evaluate a 
complex model using a relatively small sample which would not have been possible, otherwise. The 
findings provide empirical support for substantial effect of self-efficacy and expected grades on 
students’ performance in mathematics. They also confirm some theoretical postulations such as the 
crucial role of self-efficacy in students’ outcome expectations on mathematics tasks. By implication, 
the findings support interventions on self-efficacy as a proxy to improve students’ performance in 
mathematics.  
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This paper is a summary of the work and discussions of Thematic Working Group (TWG) on 
Mathematics and Language. In this paper we provide an overview of both the presentations within 
the working group and of the main themes arising through the discussions. We highlight the diversity 
and richness of theoretical approaches, methodologies and research foci that lead to the rich 
discussions we have at CERME conferences. This richness also arose through a joint working session 
with TWG01 on argumentation and proof that brought different perspectives to the analysis of 
argumentation in interaction. We also consider the impact of the global pandemic on our data 
collection but also on the focus of our research within TWG09.

Keywords: Language, interaction, gestures, semiotics, written texts.

Introduction
The thematic working group 9 (TWG09) in CERME focuses on all aspects of language and 
mathematics, drawing on a diverse range of theories, methodologies and contexts. The importance of 
researching the role of language in mathematics is firmly established (Barwell et al., 2019; Erath et 
al., 2021; Morgan et al., 2021) and the working group contributions focus both on the mathematical 
content and the social, cultural or interactional context when researching the nature of this role. Over 
time the discussions of the working group have evolved and continue to evolve in line with 
developments in the field, and advance the work from previous ERME conferences. There is a great 
deal of richness and diversity in the range of methodological approaches, research foci, and 
contributions from the members of TWG09. This is partly as a consequence of the significant overlap 
the research included within the theme has with other working groups within the conference.
Common connections include a focus on specific mathematical topics and practices such as 
multiplication, argumentation, or functions, as well as contexts of teacher professional development
or mathematics teaching and learning in diverse and multilingual contexts.

Language is more than the medium through which the concepts and techniques of mathematics are
taught and learnt, and this is widely illustrated in the work of TWG09. Research in this group is often 
characterised by the role that language can have in the learning of mathematics, in developing 
students’ understanding of what it means to do mathematics, but also in terms of the barriers and 
obstacles it can raise for groups of learners. The research within TWG09 pays attention to how 
language, interaction and communication influences these processes of learning and teaching 
mathematics.

This diversity of perspectives, methodologies and connections both enriches the work of TWG09 but 
also poses a challenge for the group. This was already pointed out by Planas et al. (2019) with respect 
to the challenges related to presenting language-sensitive mathematics education research both during 
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a conference and in papers and posters. CERME12 saw changes to the template that have made it
easier to share transcripts in a way that respects the language of the participants, respects the 
theoretical approach used by the researchers, and made members of this working group able to more 
effectively share their data. However, research within this group relies heavily on the analysis of 
interactions; interactions between teachers and students, interactions within groups of students, and 
interactions between students and tasks. The global pandemic has seen huge changes in the nature of 
these interactions with large scale school closures, a move to online synchronous and asynchronous
forms of interaction, alongside greater concerns over privacy and data protection. These changes pose 
challenges to both the collection of interactional data and the presentation of data to illustrate findings
from the work within this group.

The relevance of language in the various domains of mathematics education research has also been 
previously highlighted (Planas et al., 2019). During the 2022 conference, the methodological domains 
of descriptive and interpretive research for understanding teaching-learning processes in more detail, 
design research studies aiming at both theoretical insights and teaching-learning arrangements, and 
intervention studies were addressed. In TWG09 on mathematics and language, there is often a clear 
focus on qualitative studies with only Quabeck and Erath reporting from a larger-scale quantitative 
study and Kortüm et al. giving an outlook on planned quantitative research in their poster. Looking 
at the presented research at the conference from the perspective of the age of the participants, we gain
insights moving across primary and secondary schools, across studies in Higher Education, towards
studies with teachers with varying degrees of classroom experience. This shows how language and 
interaction matter for the learning of mathematics right from early years to the point of learning to 
teach mathematics that continues throughout a career. This diversity of perspectives and foci is 
illustrated through the keywords of the papers as illustrated in Table 1.

Table 1: Keywords from the papers and posters in TWG09

Language 
theories, 
constructs and 
approaches

Communication, Dialogism, Discourse analysis, Discourse, Gestures, 
Interaction (analysis), (Interactional) Quality, Language as resource, Language 
diversity, Language, Lexicalization, Linguistic complexity, Literacy, 
Participation, Register, Revoicing, Semiotic mediation, Semiotic 
representations, Social semiotics, Syntax, Teacher talk, Verbal tools,  

General 
Theories, 
constructs and 
approaches

Abduction theory, Conceptual learning, Diagnostic, Epistemology/Epistemics, 
Images of mathematics, Interpretive research (paradigm), Learning 
opportunities, Literature reviews, Operationalization, Professional Identity, 
Professional knowing, Progression, Qualitative research, Responsiveness, 
Video study  

Mathematical 
content

Argument/Argumentation, Combinatorics, Diagrammatic reasoning, Dynamic 
Geometry, Explanations, Generalisation, Geometry, Graphs, Inquiry-
based/inquiry-oriented learning, Multiplication/multiplicative structures, 
Problem-solving, Reasoning, Time telling, Word problems, Writing 
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Contexts Artifacts, Bilingual education, Classroom/teaching practice, CLIC, Educational 
television, Learning disabilities, Multilingualism/ Multilingual classrooms/ 
Multilingual teachers, Pandemic, Pluriliteracy, Primary school/elementary 
school, Prospective/preservice teachers, Reading, Teachers, Textbooks, Web-
based/Digital tools 

The richness and diversity of research within TWG09 is not only visible in relation to contexts as 
well as the age and role of participants (see the Contexts in Table 1). It is also represented in the 
theoretical backgrounds of the presented studies as researchers drew from semiotic, dialogic, 
epistemological, pedagogic, sociological and interactionist perspectives (as shown in the range of 
theories, constructs and approaches in Table 1).and in some cases also connected different 
perspectives  These theories and approaches have also been used to focus on different aspects of 
mathematics, with many focusing on specific mathematical topics and others focusing on 
mathematical processes and skills.

Organisation of TWG09’s work
The working group included presentations of 18 papers and 6 posters, with a total of 47 participants 
from 11 countries. The contributions are characterised by a strong and fruitful diversity in the contexts 
explored, research questions considered, and the theoretical and methodological approaches taken.

In the 7 sessions the papers and posters were discussed and organised around some common themes,
although some of the papers could have been included in more than one of the identified themes. In 
organising the themes, we strived to enable connections and thus to foster possible future 
collaborations. Furthermore, as the groups’ diversity can also be a challenge for discussing each paper 
in depth (Planas et al., 2019), the organisation around common themes was intended to help the 
audience focus and think deeply on one (maybe not so familiar) aspect of language and interaction in 
mathematics education.

In each of these 7 sessions, emphasis was placed on the time for discussion for each paper individually 
with depth. This was realised with a short 5 minutes to highlight the key features of a paper by authors 
followed by a 10-minute reaction focused on raising questions and generating discussions. The in-
depth discussion of the individual papers within each session was made possible through the breakout 
discussions enabled by the technology. However, this also resulted in the group splitting into four 
smaller groups and each member of the group choosing which one paper to discuss with the authors
in more depth.

Furthermore, one session was dedicated to discussing larger themes across the specific papers or 
posters for identifying new trends, common challenges, ideas for future collaborations, etc.

Contributions and themes
We first present a brief summary of each of the contributions presented in the TWG during the 
conference. The themes running through the contributions include the multimodality of language,
topic-specific language demands including argumentation, interactional perspectives, written and 
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textual features of mathematics, and teacher education informed by language and mathematics 
research. We then conclude with some remarks on future challenges and directions highlighted during 
the discussions.

We opened with a paper from Huth that focused on the different functions of gestures in diagrammatic 
reasoning in primary school children’s interactions. This was complemented with a poster 
presentation from Kimber and Smith on the relationship between speech and gestures in online 
teaching videos. Both these contributions focused on the different roles gestures can take in 
interaction in ways that both support mathematics learning, but also in ways that can constrain it.
These different roles were also visible in the paper from Moutsios-Rentzos on multimodal 
argumentation in the joint session with TWG01 (Argumentation and Proof).

Several contributions from TWG09 focused on topic-specific language demands and semiotic 
representations that learners draw upon. Pacelli, Pellegrino, Carotenuto and Coppola reported on a 
project focusing on primary school learner’s explanations when working with multiplication
algorithms and the accompanying artefacts, presenting the specific case of Napier’s bones. Also 
focusing on multiplicative reasoning in primary schools, Rønning distinguished between the 
multiplicative reasoning involved when working on different combinatorial problems that depended 
upon the semiotic representations used. The poster presentation by -Gür shifted the focus to 
calculus and learners aged 14 to 16 years by describing a design-research study to foster conceptual 
understanding in mathematical and language integrated learning-arrangements for qualitative 
calculus (i.e., understanding based on informal meanings of amount and change). Later contributions 
in the TWG sessions also included a focus on geometry in combination with digital technologies such 
as dynamic geometry software as discussed below.

The papers by Palm, Kapland and Bergvall and Planas focused on linguistic features and their role in 
the learning of mathematics. Palm et al. analysed how the changes in referents in textbooks for the 
final year in Swedish primary schools constructed opportunities for mathematical generalising. Planas
drew on the notion of language as resource to argue for lexicalization as a potential resource for 
communicating mathematical meanings by reporting on her work with secondary school teachers.
The papers in this session and the one that followed all focused on mathematics and language in 
interaction but in different ways. Bräuning and Feskorn focused on supporting interactional and 
communicative development of young learners in elementary school. Using an epistemological 
approach to the analysis of teacher-student interactions they illustrated how one teacher nurtured the 
students’ development of mathematical interaction skills. Beck and Vogler continue this theme by 
examining responsiveness in interactions and the restrictions on primary school students’ 
opportunities to participate resulting from particular teacher moves. Gíslason’s focus on internally 
persuasive discourses also highlights the often restrictive nature of mathematical interaction, in that
it often centres around visual or superficial features of a task rather than mathematical forms of 
argumentation and justification, this time arising from the students’ interaction with dynamic 
geometry tasks.

Some contributions particularly focus on working with teachers with different levels of experience.
Coppola, Ferrari and Miranda analysed student teachers’ assessments of the written arguments made
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by undergraduate students which revealed a lack of attention to argumentative structures and a focus 
instead on precise use of language and the mathematical content. The poster presentation of Perlander 
offered a different lens focusing on newly graduated teachers use of mathematical reasoning 
demonstrated in classroom interactions. In a later session, this focus on teachers and teacher education 
was continued in a poster presentation from Dafnopoulou who looked at how teachers’ professional 
identities are developed in multilingual mathematics contexts.

Quabeck and Erath shifted the focus to look at how quantitative approaches have been used to capture 
the quality of mathematics classroom interaction. Their analysis reveals that only a focus on discourse
practices, that many of the qualitative studies in TWG09 had, is sufficient to capture the relevant 
differences in classroom interaction rather than a focus on teacher moves or analysis at the task level 
that are commonly focused on in larger-scale studies. Ingram also examines differences in approaches 
to the analysis of classroom interactions, illustrating differences in the use of the term revoicing 
depending upon the theoretical perspective taken that have consequences on how we understand the 
relationship between teaching and learning of mathematics.

ETC7 on Language in the Mathematics Classroom already highlighted that the inclusion of digital 
learning environments and tools is an upcoming theme in the international research on language, 
interaction and learning mathematics (Ingram et al., 2020). In addition to the paper from Gíslason
above, two other papers considered the role of digital technologies in the relationship between 
language and mathematics. Meaney and Rangnes focused on digital tools including programming
and the importance of how teachers use them with multilingual learners. They made a distinction 
between tools that acted as translators and tools that were used more broadly and consequently were 
more supportive in developing multilingual learners’ mathematics and their language in mathematics. 
Baschek explored the use of PrimarWebQuests in Content- and Language-Integrated Learning 
(CLIL) settings in primary school illustrating the motivation of authentic contexts for students to use 
different working languages and offering an illustration of one such context in the webquests. This 
focus on CLIL was continued in the paper by Schüler-Meyer who suggested the notion of pluriliteracy
as an alternative in CLIL with a shift in emphasis on learners becoming proficient in mathematics 
using multiple languages, rather than the common target language in focus in the CLIL settings.

In the final session the focus shifted to written mathematics continuing the development of this work 
across several ERME conferences. Malik and Rezat’s paper focused on identifying specific linguistic 
features that cause learners difficulties in word problems by presenting a literature review. Teledahl,
Ahl, Helenius and Kilhamn also analysed several research frameworks for assessing students’ writing
and illustrated by their literature review that further research is needed to develop research that attends 
to the different dimensions of students’ writing. Kortüm, Meininghaus, Mentrop, Hußmann A.,
Hußmann St. and Nührenbörger also shared their work on developing a supportive diagnostic tool to 
assess reading and mathematical competencies and their interconnections. The TWG09 sessions 
ended with a final presentation from Tatsis and Maj-Tatsis that focused on the public discourses
around educational television programs in Poland during the pandemic.
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Argumentation and a joint session with TWG01
There was a joint session between TWG09 and TWG01 to bring together the overlapping focus of 
argumentation that often features in the papers of TWG09. During the virtual pre-CERME12 event, 
members of TWG09 discussed the idea of a joint session with another TWG at CERME12 as well as 
which other TWGs to approach. In this way, the members of TWG09 wanted to further embrace the 
CERME spirit and promote communication, cooperation and collaboration. Fortunately, the leaders 
and members of TWG01 on Argumentation and Proof were as enthusiastic about this idea as TWG09. 
Even though, there was always exchange between different TWGs, we are proud to be part of the 
first official joint session in CERME history and hope that there will be many more at upcoming 
conferences. 

The joint session included two papers from TWG01 focusing on theoretical debates around the 
conceptualisation of argumentations and two papers from TWG09 focusing on examples of 
argumentation in practice. The paper of Moutsios-Rentzos began by challenging us to consider the 
multimodal aspects of argumentation and offering a tool to support the identification of specific ways 
in which verbal and non-verbal semiotic systems are both explicitly and implicitly used in 
mathematical argumentation. This paper drew on Toulmin’s scheme of argumentation which is 
widely used by researchers in both working groups. In the next paper Cramer and Kempen challenged
the extent to which this scheme can reveal all aspects of structures of argumentation, highlighting the 
limitations of the scheme as revealed through recent work within TWG01. The two papers from 
TWG09 focused on discourses of argumentation with Körner and Meyer illustrating the generalising 
process over time focusing on addition with zero and tracing one learner’s development of 
argumentation during an interview. Toro and Castro then shifted our focus to mathematics teachers’ 
argumentation during class discussions and how features and purposes of argumentation can be 
recognised through an interactional and communicative theoretical perspective.

The joint discussion in this session highlighted the different theoretical perspectives and approaches 
to the analysis of mathematical argumentation, and the nature of mathematical argumentation itself,
yet with a common focus on identifying and recognising features of argumentation used by both 
teachers and learners. 

Themes and challenges going forward
One session during the conference was organised without the presentation and discussion of particular 
contributions. Instead, it was organised as a collaborative working session with a focus on identifying 
and discussing themes and challenges going forward. The group members split in three smaller 
groups to focus on 1) how different theoretical perspectives can complement each other, 2) research 
issues challenging the field at the moment, and 3) implications for the professional development of 
mathematics teachers. 

Over several CERMEs and ERME topic conferences there has been continuing focus on the use of 
different theoretical perspectives to research mathematics and language (e.g. Planas et al., 2019; 
Ingram et al., 2021). This is partly as a consequence of the range of fields research in mathematics 
and language draws from but also theoretical diversity is needed to address the complexity of the 
relationship between mathematics and language, particularly in the messiness of interactions.
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Susanne Prediger illustrated this in her plenary presentation where she illustrated the range of 
theoretical perspectives and methodologies she has used in her work over a research agenda across 
several years (Prediger, 2022). Furthermore, as discussed in the joint session, since mathematics 
communication includes writing, talking, pictures, formulas, gestures, we need more refined 
theoretical tools than existing models (such as Toulmin's model) to capture its nature.

As already indicated at the beginning, one research issue challenging the field at the moment is that 
many researchers were not able to collect new data of language use and interaction in classrooms or 
even of small groups in schools due to school closures and restrictions. For researchers whose analysis 
often depend on video-taped interaction or who are interested in data from the same classroom in a 
more longitudinal perspective, this poses a huge challenge. Whereas more senior researchers may go
back to “old but still rich” data, early career researchers and researchers starting new projects 
particularly struggle. In this context, it was also reported from different contexts, that (as schools are 
more and more challenged by the pandemic and other factors) access to schools becomes increasingly 
difficult, particularly in contexts in which, for example, teachers cannot be rewarded for their 
participation in research efforts. A third discussed point is that after a period of some political 
awareness for language and learning mathematics, other aspects are highlighted (as for example 
distance learning or digital tools) and more and more funding is directed towards subfields of 
mathematics education research without explicit connection to language and interaction. 

The topic of teacher education has become particularly prominent in several recent CERMEs and 
topic conferences (e.g. Planas et al., 2019; Ingram et al., 2021), and is growing in importance as a 
focus of much of the research within this working group. Many of the participants are teacher 
educators and recognise the complexity of supporting teachers to recognise, identify and adopt 
linguistic features, teacher moves or interactional practices that support mathematics learning.
Furthermore, it can be noticed that some projects on the classroom level reported in earlier 
conferences are now developed into a basis for the design of professional development programs 
focusing on language, interaction and learning mathematics.

Concluding remarks
The themes addressed by TWG09 show the variety of research questions, theoretical perspectives 
and methodologies that the papers and posters dealt with. Whilst this conference maintained this 
richness in the research and data shared, we have shifts in the focus of the research included. This 
may be a consequence of the nature of data it has been possible to collect and work on during the 
global pandemic, with fewer studies focusing on interactions within classrooms. In addition, there 
might be a general increase of attention to digital communication settings. It may also illustrate the 
interactions and connections with other working groups where many members welcome discussions 
that result from connections with these other groups. The joint session with TWG01 highlights how 
connections between working groups can add to this richness by offering different perspectives at the 
intersections of our research.
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WebQuests in Content and Language Integrated Learning Classes on 
Primary Level 
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In a research project on Information and Communication Technology usage in bilingual settings, 
pupils were observed by video recording while working with a bilingual PrimarWebQuest. The main 
research project focuses on the mathematical knowledge as well as linguistic aspects which pupils 
might acquire in CLIL-settings while using PrimarWebQuests. In this paper the pilot study is 
presented which focused on the interactions in such learning settings. It will be explained what 
Content and Language Integrated Learning (CLIL) means in a European context and to which 
components attention should be paid while planning the use of PrimarWebQuests in CLIL lessons. 
The fitting of CLIL and PrimarWebQuests will be described to outline the potentials of this approach. 
Its basic idea and its implementation in bilingual settings will be defined. Afterwards, the framework 
of the pilot study and first results will be described to conclude next steps of the main study.  

Keywords: Bilingual education, primary schools, inquiry-oriented, web-based, time telling. 

Research Aim 
The advancing language competence of bilingually taught pupils has been proven, for example by 
Bechler (2014) or Kersten et al. (2010) and is caused by the higher frequency of language contact. In 
addition to Basic Interpersonal Communication Skills being in the front of traditional foreign 
language classes, bilingual classes deal with a Cognitive/ Academic Language Proficiency (Cummins, 
1979). In a Canadian research project Bournot-Trites and Reeder (2001) could show that there are 
positive effects on mathematical learning when students are taught in two languages. Schubnel 
(2009), who investigated German-French speaking bilingual mathematics classes, suspects the 
additional linguistic access, which the pupils receive, as a reason for this phenomenon. Moschkovich 
(2002) describes a multiple-meanings perspective as one of three perspectives for describing bilingual 
students learning mathematics which seems to underline Schubnel’s theory. The multiple-meanings 
perspective expands the complex role of language for learning mathematics as it highlights the idea 
of pupils developing and negotiating meanings of mathematical terms in bilingual settings. 

As the pupils’ everyday use of ICT, specifically the Internet, offers various possibilities to experience 
foreign areas, the research project investigates the combination of ICT and CLIL. Using ICT allows 
access to multilingual sources, which enables the pupils to work with authentic and multi-media 
material, including linguistic reality (Schmidt, 2013). The aim of the research project is to find out 
about the contribution of the PrimarWebQuest approach regarding the pupils’ learning of a 
mathematical topic as well as the academic expressions which go with each topic. But for this pilot 
study the main goal was to describe and analyze the interactions between pupils, teachers and the 
material in a bilingual and digital learning setting for exploring the chances for CLIL lessons offered 
by PrimarWebQuests. 
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Bilingual Learning
Bilingual teaching and learning in Germany refer to educational situations in which a subject or even 
just a selected topic is taught in a different language for a fixed or an enduring time. The term Content 
and Language Integrated Learning (CLIL) is used as a generic term for bilingual learning models in 
Europe which can be implemented in different ways. It is the core philosophy of the European Union 
that each citizen of the EU should be able to functionally use at least two more European languages 
in addition to their mother tongue. This approach aims to connect content learning and language 
learning in an integrated way. It is seen as an effective method for learning a foreign language with 
the aid of authentic topics. The language abilities of bilingually taught pupils go beyond everyday 
speech, the so called Basic Interpersonal Communication Skills (BICS). In bilingual classes pupils 
should acquire a more technical terminology, the so called Cognitive/ Academic Language 
Proficiency (CALP) which is necessary for demanding topics (Cummins, 1979).

Most studies about CLIL have been conducted at the secondary level. First results about CLIL at 
primary schools have been published (Elsner & Keßler, 2013). In Germany, the idea of CLIL-classes 
in mathematics has not been greatly accepted (Viebrock, 2013). There are only a few conceptual ideas 
in secondary schools as well as at primary level. There are even fewer teaching materials why it is 
necessary to fill this gap. One possibility for having access to more material seems to be the Internet.

In this pilot study, Coyles (2006) 4Cs Framework was used for creating PrimarWebQuests for CLIL 
classes. In her framework she describes the four components Content, Communication, Cognition
and Culture for planning CLIL lessons (see Figure 1). The Content of bilingual classes should be
geared toward curricular guidelines of the subject, in this case Mathematics. The aim is a double and 
profound knowledge acquisition as well as the pupils’ understanding with regard to the content. In 
Germany, the pupils’ subject-based knowledge is defined by a curriculum. It describes mathematical 
skills and specific content areas pupils are supposed to achieve. In this study the pupils should deepen 
and expand their knowledge about times. Communication refers to extending pupils’ language 
knowledge and abilities to qualify them for an academic interaction in class, like using the right 
expressions for talking about different parts of a day during mathematics classes. The component
Cognition contains all cognitive abilities which can be established, such as strategy learning or 
metalinguistic knowledge which could be developed in discussions about different time telling 
expressions or during calculating activities of different time spans. Particularly in bilingual settings,
pupils have to develop a reflexive attitude vis-à-vis their own and other Cultures. For behaving in an 
empathic way, it is important to think about various perspectives, opinions or feelings and to switch 
between them. The cultural component of the framework is touched by the task to help two people 
from another country by comparing German and English times for describing the differences to them.

Figure 1: Curricular Framework for CLIL Classes according to Coyle (2006, p. 10)

g
Communication

Cognition Content

Culture
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PrimarWebQuests in Bilingual Classes
The method WebQuest, invented by Dodge and March in 1995, is an inquiry-oriented and web-based 
learning approach for using internet sources (Dodge, 1997). Even though it is offered on the Internet, 
the pupils can use online as well as offline sources which have to be chosen by the teacher in advance. 
WebQuests should give a structure for using the internet sources in an efficient and target-oriented 
way (Baschek & Schreiber, 2020). Schreiber adapted the method for primary school children in 
Germany. He called it PrimarWebQuest. A PrimarWebQuest contains various sources in order to 
deal with mathematical concepts and issues. It can set a focus on important aspects and reduce the 
complexity of available information which can be found on the Internet. The pupils learn in small 
groups how to conduct their research with online resources themselves (Baschek & Schreiber, 2020). 
Media competences like searching for, selecting and using online information as well as cooperating, 
presenting and reflecting can be trained with the small version of the original World Wide Web which 
is designed by a PrimarWebQuest. The requirements of a PrimarWebQuest should be made 
transparent for the pupils before beginning. They must be able to self-evaluate their learning process 
and the learning product (Schreiber & Kromm, 2020). 

Figure 2: Part of the introduction of the bilingual PrimarWebQuest with the topic of times

Before starting their work, the pupils are split into small groups and get an introduction for using 
PrimarWebQuests. In the following sequence, the pupils look for more detailed information of their 
topic independently in their small groups. The teacher only supports them when she or he is asked to 
do so by the pupils. After the first working phases, there is a sequence for reflecting the working 
process up to this point. This sequence also offers the possibility to talk about crucial mathematical 
aspects. The pupils start to prepare their solution for the task and present their results at the end of 
the unit. When all presentations are done, the teacher reflects with everyone about their group work.
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Generally, bilingual PrimarWebQuests (German/English) and monolingual German ones follow the 
same structure. On the web pages of bilingual PrimarWebQuests, pupils can read all information and 
instruction in both languages, despite the chosen sources. Because of two different language columns, 
they can choose the working language independently in every group. When opening one of the sites, 
the pupils only see the English text in the beginning. By clicking on an English paragraph, the German 
translation appears (see Figure 2). There are sources in both languages as well, so every group, 
regardless of which working language they choose, has the possibility to use both languages for 
research. The sources are mostly realistic web pages made by native speakers (Baschek & Schreiber, 
2020). Bilingually designed PrimarWebQuests can motivate the pupils to switch between the 
languages. When the pupils are motivated to do so by the PrimarWebQuest or the teacher, they 
practice to work language-sensitively while switching. Additionally, the pupils can get into a 
collaborative dialogue because of the open-ended nature of the task. Discussing new terms with their 
classmates offers them the possibility to check their understanding of mathematical terms. 
Nevertheless, an adaption to the pupils’ linguistic knowledge is necessary for a beneficial use of 
bilingual PrimarWebQuests and to ensure a successful learning experience for all (Baschek, 2020). 

Pilot Study 
The pilot study was undertaken for describing interactions in a bilingual and digital learning setting 
to discover chances for CLIL lessons offered by PrimarWebQuests. The group activities were video 
and audio recorded. Transcripts are and will be generated out of crucial sequences of the collected 
data, such as discussions about mathematical facts or language-sensitive activities, and will provide 
the foundation for the processes of analysis and interpretation. By using the interaction analysis 
(Krummheuer, 2002), the way, in which individuals create and negotiate taken-as-shared meaning, is 
reconstructed. The aim is to reconstruct any interactions in situations that are meaningful for the 
participants and to construct as many interpretations of these actions as possible. Every utterance is 
closely examined and analyzed in small groups for providing multiperspectivity. The utterances need 
to be kept in chronological order. Interpretations can only be justified and linked backwards as they 
can only be based on utterances made previously. These initial interpretations are then reinforced or 
rejected in order to ensure the most convincing interpretation of the episode.  

A bilingual PrimarWebQuests1 about time telling was tested with six third graders of a German 
private primary school offering bilingual classes (German/English) in multiple subjects. Mathematics 
is taught part-time in English and in German. The school follows the German curriculum and uses 
German and Irish textbooks. Most of the participants’ mother tongue is German, one participant was 
raised bilingual. As not all pupils of the class were involved, the six participating pupils worked in 
two groups of three while their classmates did the regular tasks in their classroom. The two groups 
worked in one room at the same time and were supported by an English-speaking as well as a German-
speaking teacher which were the researcher and an assistant. The pupils did not know this method 
before but were asked to use the bilingual PrimarWebQuest while the working language was chosen 
freely by them. The explanation for Porter and Bailey, who need the pupils’ help for arrival and 

                                                
1 The bilingual PrimarWebQuest can be found here: https://math-primwq-bilingual.sd.uni-frankfurt.de 
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departure times in the PrimarWebQuest, had to be in English (see Figure 2). As the topic of time 
telling is dealt with mainly in second grade of German schools, on the one hand, this PrimarWebQuest 
should activate the previous knowledge of the pupils for deepening it. For instance, the difference of 
points in time and time spans turns calculating into a complex activity which needs to be practiced 
multiple times. Additionally, fractions, which are no topic of German primary schools, are used for 
time telling expressions. Instead of only learning the right expressions by heart, the pupils need 
enough time to think and talk about their conceptual meaning of those expressions for developing an 
understanding of fractions. On the other hand, using the shown task indented the pupils to learn the 
differences of time telling in the languages as an intercultural aspect. For example, using am and pm 
does not only mean to learn the right vocabulary. It also needs the pupils to think about the different 
time spans of every day and how times can be located in those parts of a day as this phenomenon 
does not exist in German time telling.  

The different sequences of PrimarWebQuest usage offer several possibilities for supporting the 
mathematical language skills of bilingually taught pupils. To highlight possible learning opportunities 
of a PrimarWebQuest, pupil interactions are described and analyzed. During a group working 
sequence, the pupils discuss English and German vocabulary they will need for talking about different 
points of time. In the following example, the pupils know a German term and try to find the English 
translation together. Originally English utterances are typed in SMALL CAPITALS, whereas originally 
German utterances are typed in normal style. Gestures, activities and additional information are typed 
in italics. 

Person Translated utterance 
Teacher: OKAY. THE NEXT WORD IS THE BACKGROUND OF THE CLOCK WHICH IS WHITE. DO 

YOU KNOW HOW IT IS CALLED? IN GERMAN OR IN ENGLISH? GIOVANNA. 
Giovanna: Ziffernblatt? 
Teacher: Ziffernblatt IS THE GERMAN WORD. RIGHT (attaches the word card to the black 

board). AND DO YOU KNOW THE TRANSLATION MAYBE? LUKAS. 
Lukas: NUMBER PAPER. 
Teacher: NO IT’S NOT THE DIRECT TRANSLATION. LAURA? 
Laura: FACE. 
Teacher: FACE IS RIGHT AND ONE WORD IS MISSING. LUKAS? 
Lukas: NUMBER FACE? 
Teacher: NOO. 
Laura: (puts her hand in front of her face and whispers) HAND FACE. 
Teacher: NO IT’S NOT A HAND FACE. WHOSE FACE IS IT (points at the clock which is attached 

to the black board)? LAURA? 
Laura: EH NUMBER NO EH CLOCK FACE? 
Teacher: (nods) CLOCK FACE. RIGHT. WELL DONE (attaches the word card to the black 

board). 

In this sequence it is possible to see how the pupils use both languages. Knowing the German term 
and supported by the teacher, they try to figure out the English translation. Lukas who was raised 
bilingual starts with an almost direct translation of the German term. Laura remembers face as a part 
of the translation. She could have gotten this information from the informational texts of the 
PrimarWebQuest. Listening to the teacher’s hint, Lukas tries to build a word with number again and 
puts the two words together, calling it number face. The discourse seems to motivate him to use his 
metalinguistic knowledge. Laura instead thinks of further vocabulary by using the term hand face 
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which probably refers to the hour and the minute hand and can be an expression she learned from the 
informational texts. Supported by the teacher, Laura finds the right translation clock face. As the 
specific terms of this topic are similar to everyday language, the main goal for the pupils to learn is 
using the right expressions. All pupils show a proper use of the terminology in both languages. In 
fact, they speak more German than English, but they think of the English expressions when writing 
down notes for their explanations. During the working sequences, the pupils read and interpret the 
given authentic sources and they need to gather and check suitable information details. It was possible 
to observe a subject-based discourse in both groups motivated by the PrimarWebQuest. Specifically, 
the pupils discussed a lot about the difference between am and pm because they developed an idea 
which parts of the day are addressed. 

The following sequence shows how the pupils work together and discuss in a group spurred on by 
the PrimarWebQuest. They are divided over pm being the morning or the evening of a day and try to 
find an answer together. For solving their problem, they think of the information which the given 
texts contain and use a graphic which they copied from a text. The group work helps them to 
communicate successfully about new information and to get to a mutual solution. 

Person Translated utterance 
Teacher: YOU ALSO READ THE INFORMATION ABOUT AM AND PM, SO YOU CAN THINK ABOUT 

IT. WHETHER IT IS IN THE MORNING OR THE EVENING. 
Julia: IT’S IN THE EVENING. EH MORNING. 
Laura: So that means…Where is this piece of paper (unintelligible) it is here. 
Julia: Why was it there? 
Laura: We are, so PM IS IN THE MORNING (points at the afternoon of a plan of a day with its 

times). 
Julia: No, PM IS EVENING. 
Laura: I see, right.  
Julia: IT’S IN THE EVENING. 
Laura: IT’S IN THE EVENING. 
Teacher: RIGHT. 
Julia: What is two o’clock in the evening? 
Laura: They could, she can come to school. 
Eva: Two o ‘clock is in the morning. 
Julia: Two o ‘clock can also be in the evening. Namely after one. At one o ‘clock you eat 

and at two… 
Laura: But it is PM. 
Julia: Two o ’clock is fourteen o ’clock. 
Eva: Yes. 
Laura: Yes, but it also can be PM. It is PM anyway. 
Julia: It says PM, so it is fourteen o ‘clock. 
Laura: Noo, PM is in the evening (uses the wrong German article). 
Julia: Yes, therefore fourteen o ‘clock. 
Laura: (hits her head with her hands) 
Julia: But it says, noo, fourteen. 
Laura: Yes okay, do what you want. 
Julia: Yes have a look Laura. Two o ‘clock is fourteen o ’clock. 
Laura: Yes I understood that. Yes I understood that. 

In the beginning, the three girls think that a pm time belongs to the mornings. The teacher needs to 
suggest to check their assumption. During the conversation with the teacher a change from one 
language to another can be observed. After the switch Julia does when the teacher comes to help the 
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group, a multiple switching between the two languages can be observed. This shows that the pupils 
use their languages in a flexible way and adapted to their communicative intention as well as the task 
of the PrimarWebQuest. Set off by the group work, they need to describe their own thinking processes 
while comparing their assumptions and they can learn to verbalize their understanding of the 
informational texts on their own. In this sequence two different opinions can be observed, but the 
girls don’t seem to be able to explain their assumptions. By naming examples, Julia tries to convince 
Laura and Eva. Working together, they seem to find out that 2 o’clock pm means 14 o’clock. The 
open-ended task of the PrimarWebQuest supports their subject-based discourse while preparing the 
explanation for Porter and Bailey because the pupils need to come to a mutual result.  

Conclusion 
To begin with, the pupils seem to feel safe because of the open choice of working language. They use 
the English language when talking to the English-speaking teacher or when preparing their 
explanation for Porter and Bailey. Therefore, the setting motivates the pupils to work with both 
languages in an authentic way. In retrospect, it can be considered the pupils learned some new 
vocabulary or rather time telling expressions and could deepen their existing knowledge. Both groups 
had the opportunity to improve their strategies in mediation, as most of their discussions are German 
and their explanation for Porter and Bailey has to be in English. Especially in the working sessions 
with both groups, most of the pupils showed advanced metalinguistic skills (Cognition). 

The open-ended task allows an individual main focus during the working sequences. If the content of 
the sources is too complex for the pupils, the PrimarWebQuest can purposefully guide their work on 
the task by helping them structure their working steps. Specifically, the intercultural topic of using 
am and pm encourages them to think about the informational texts and to use their copied graphics 
(Culture). This unknown content motivates the pupils to negotiate new terms or knowledge with their 
working groups for developing new concepts (Content). This cooperation can support language 
learning as well as a proper language use. Additionally, the pupils seem to be able to communicate 
adequately to mathematics classes as they can explain their calculating of times and use expressions 
which contain fractions easily (Communication). Besides the language and mathematical learning, 
the pupils also worked on their media competences while multiple internet sources.  

To conclude, using the method PrimarWebQuest can be advantageous for CLIL in mathematics 
classes. For many topics there is not enough material for CLIL lessons in mathematics. The Internet 
and its diversity can be a support. The method enables dialogues, offering the possibility to investigate 
the pupils’ understanding of mathematical terms either for teachers or for researchers. 
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Since mathematics is universally abstract in a sense that other scientific disciplines are not, the 
teaching and learning of mathematics face major challenges. This is especially true at elementary 
school level when children start experiencing mathematics in formal instructional settings for the 
first time. One of these challenges – both for teachers and learners – is the development of 
mathematical communication skills to share ideas, create meaning, clarify understanding. Looking 
at two examples from grade 1 and 4 we aim at exemplifying how a teacher responds to this challenge. 
The epistemological analysis of the teacher-student-interaction reveals that the teacher constantly 
nurtures the students’ development of mathematical interaction skills and that teacher and students 
undergo a mutual process of mathematical socialization from grade 1 to grade 4. 

Keywords: Elementary school, language, epistemology, interaction, problem-solving. 

Introduction: Mathematics and classroom discourse 
Within the last decades, researchers have come to the conclusion that teaching practices highly 
influence students’ learning opportunities and a paradigm shift in education from teaching to learning 
was found. This new rationale led to seeing the learning of mathematics beyond the mere acquisition 
of rote facts and procedures. Instead, a perspective that acknowledges students’ mathematical 
learning processes and outcomes as tied to individual and reciprocal aspects came into being. 
Evidence shows that language is an integral part of this (Pimm, 1987; Erath et al., 2018) and 
communicative practices in the teaching of mathematics are required. Looking back at Cobb et al. 
(1997, p. 258), this idea does not seem to be new: “The current reform movement in mathematics 
education places considerable emphasis on the role that classroom discourse can play in supporting 
students’ conceptual development.” Still, the question remains how to establish ways that will 
cultivate content-related rich discourses. This appears to be especially challenging for three reasons: 
First, mathematical objects are abstract concepts that can only be accessed through concrete 
representations that do not speak for themselves; actual words are needed to interpret meaning. 
Second, elementary school students are only at the beginning of encountering those abstract concepts 
and depend on experienced others. Third, (mathematical) communicative skills are only learned by 
actually communicating (mathematically). These three aspects point out that (mathematical) language 
is both a goal in itself and a means for attaining the goal. The uniqueness of this manifold situation 
calls for closer attention and many researchers do so (e.g. Krummheuer, 2011; Erath et al., 2018).  

The aim of our research project “PrimaL” (A Longitudinal Study of Problem-Based Mathematics 
Teaching in Inclusive Learning Environments) in this article is connected to take a more detailed look 
at teacher-student-interactions in the everyday mathematics inclusive classroom of a public 
elementary school. A peculiarity of the research project is the fact that the teacher does not undergo 
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any training in planning communicational-sensitive math lessons. Furthermore, the lessons do not 
take place in a laboratory setting but reflect actual teaching and learning situations. On the theoretical 
basis of interactional (Krummheuer & Voigt, 1991) and epistemological (Steinbring, 2005) 
approaches, single case studies are analyzed to pin down the teacher’s communicative factors that 
presumably lead to the construction of mathematical knowledge. For the purpose of this article, two 
task introduction episodes are chosen to investigate the following research question: What 
characteristics in teacher-student-interactions can be observed in grade 1 and grade 4 from an 
interactional and epistemological point of view? Differences between the teacher’s communicative 
actions towards beginning and advanced learners of mathematics become obvious. Furthermore, a 
student-centered participatory classroom culture seems to emerge as the teacher carefully withdraws 
from the teacher-student-interaction. 

Theoretical and methodical background: Teacher-student-interactions in the 
mathematics classroom 
Generally, mathematical signs and symbols have a dual function: On the one hand, they are the 
mathematical content that students are required to learn. On the other hand, they constitute the central 
elements of communication. “In this regard, a learning student cannot be compared with a 
professional mathematician. The latter has many years of experience in mathematical communication 
[...]” (Steinbring, 2005, p. 15), while the former is only beginning “to develop and perfect such forms 
of mathematical communication with his classmates” (Steinbring, 2005, p. 15) and – as will be shown 
later – her/his teacher. From this point of view, the uniformity that is usually associated with 
mathematics cannot be taken for granted and learning processes are less uniform, but rather 
individual, divergent, and heterogeneous. Within those learning processes, (unfamiliar) mathematical 
signs and symbols need to be both interpreted and constructed. Due to Steinbring (2005), this 
interpretation and construction takes place in a triad of mathematical content, student, and teacher 
with communication as their linking element.  

The most prevalent interaction pattern that is widely discussed in the field of (mathematics) education 
is the IRE pattern (teacher’s initiation, student’s response, teacher’s evaluation) (Mehan, 1979). 
While many researchers describe this pattern as doing only little to enhance students’ learning 
opportunities, some authors point out that a difference needs to be made between the pattern itself 
and how it is used. Wood (1998), for example, stresses the organizational benefit of the pattern 
(coining the “term recitation pattern”, p. 172) while warning teachers to misuse it as an engrained 
way to wait for their intended answers to be given by the students. Instead, a series of IRE sequences 
can be used to orchestrate students’ verbal contributions by e.g. highlighting, asking for clarification 
and reasoning or summarizing. On the surface, this may seem similar to the form of the initially 
proposed IRE pattern since the sequence teacher – student – teacher remains. However, the content 
of discourse changes as the students’ thinking becomes the focal point of discourse. It is our intention 
to concretely shed light on this special discursive interplay between a teacher and her students. 

Usually, when it comes to interactional research, mathematics teaching is observed and analyzed to 
describe empirical phenomena with the goal to develop empirically grounded local theories by 
understanding the actions of individuals (Krummheuer & Voigt, 1991; Krummheuer & Brandt, 

Proceedings of CERME12 1518



 

 

 

2001). However, in these analyses the interactional perspective is the main focus (e.g. Jung, 2019) 
whereas the mathematical learning content fades into the background. Within this article, we try to 
include the mathematical perspective by considering the interplay of both interactional and 
epistemological aspects by using the analytical instrument “Formal-In” (Forms of teachers’ 
mathematical interaction) (Bräuning & Steinbring, 2011). Within Formal-In, Bräuning & Steinbring 
(2011) seek to identify particularities in the teacher’s verbal behavior that support children’s 
interactive constructions of mathematical knowledge. They propose a methodical grid (see Figure 1) 
to analyze reciprocal teacher-student-interactions to “better understand how teachers can develop 
practices that foster mathematical communication” (Bräuning & Steinbring, 2011, p. 929). Although 
Formal-In was originally provided as a framework to analyze one-to-one teacher-student-interactions 
it also appears suitable for use on teacher-student-interactions within groups (Bräuning et al., 2020).  

                                                  ID 
ED            

Instructive Intervening Explorative Moderating 

thing-like concrete use     

symbolic relational use     

Figure 1: The analysis grid Formal-In 

The interactive dimension (ID) goes along with a teacher’s orchestration of students’ verbal 
contributions and consists of four patterns: instructive, intervening, explorative, and moderating. 
Interactions of the explorative and instructive type refer explicitly to the mathematical content in 
question whereas moderating and intervening interactions depict “the form and play” (Bräuning & 
Steinbring, 2011, p. 929) of communication. Furthermore, explorative and moderating interactions 
are understood as ways to find out about students’ understanding of a mathematical phenomenon. In 
contrast to that, instructive and intervening interactions happen when interaction is “‘transformed’ 
into communication about the information intended by the teacher” (Steinbring, 2005, p. 77).  

Because the learning of mathematics at elementary school level is initially bound to concrete material 
as embodied carriers of the non-perceivable and ideal structures, an epistemological dimension (ED) 
is included. In dealing with particular objects, both students and teachers can either stick to a thing-
like concrete use with a focus on observable properties, which may hinder the interpretation of these 
objects as representations of something else, or move towards a more appropriate interpretation of 
symbolic-relational structures that become generalizable (Steinbring, 2015, p. 289).  

Research context 
The two sample episodes that will be presented in this article are taken from a first-grade and a fourth-
grade classroom. Both classrooms are of particular interest as the learners have been taught by the 
same math teacher (female, in her late 30s, four years of teaching experience) from the beginning of 
their first day at school so that a look at the teacher-student-interactions in grade 1 compared to grade 
4 seems to be possible in the form of a quasi- longitudinal study. The teacher-student-interactions 
were video- and audio-recorded throughout the school year. Building on the work of many other 
scholars concerned with the impact of students’ language (proficiency) in the learning of mathematics 
(Prediger et al., 2018), it is important to mention that the school is located in a low-income and 
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socially disadvantaged area. Most children are native German speakers whereas few are German 
learners. However, both native and non-native speakers deal with lacking vocabulary, limited 
language skills, and language-induced learning obstacles.  

The following interpretative discussion of the chosen examples deals with the interaction that arose 
between the teacher and her students while approaching the following tasks: Grade 1: On a meadow, 
there are dogs and birds. There are 7 animals. Together they have 18 legs. How many dogs and birds 
are there? Grade 4: In a stable, there are horses and flies. There are 15 animals. Together they have 
72 legs. How many horses and how many flies are there? Both tasks are identical in their structure, 
that is two animal species, the total number of animals, and the total number of legs are given while 
the exact number of each species is to be found out. Mathematically, the tasks represent Diophantine 
equations. Didactically, they can be classified as problem-solving tasks (Heinrich et al., 2015).  

Analysis of transcript 11: Grade 1 (end of the school year) 
The students sit in a semi-circular arrangement in front of the blackboard. The task is visually 
presented on the blackboard. In addition to that, pictures of seven dogs and seven birds are put up on 
the blackboard. The teacher presents the task to the students but does not give any instructions2. 

The transcript (l. 1-89) can be divided into the following units of meaning (UM): UM1 silent impulse 
and students’ initial ideas (l. 1-7), UM2 teacher reads out task and students come up with first ideas 
(l. 9-16), UM3 clarification of total number of animals (l. 17-28), UM4 total number of animals is 
seven (l. 28-33), UM5 clarification of total number of legs (l. 34-45), UM6 question about possible 
assignment for group work and summary of preceding task clarifications (l. 46-71), UM7 teacher 
proposes a solution (l. 71-85), UM8 teacher asks students to question her proposed solution (l. 85-
89), UM9 summary of task clarification and transition to group work with clear instructions (l. 89).  

Using Formal-In as an analysis tool, the teacher takes a moderating role in UM1 by asking two 
students to read out the task. On an epistemological level, UM1 cannot be characterized since no 
mathematical idea is negotiated.  

UM2 is characterized by an intervening interaction of the teacher:  
9 Teacher: I will read out the task again. So everyone listens. 

It can be assumed that she read out the task again to increase the students’ attention. One student 
immediately says she knows the answer (7 birds and 7 dogs). However, it becomes clear that her 
answer is based on the number of animal illustrations attached to the blackboard. So in UM3, the 
teacher points out the illustrative function of the pictures but also offers the opportunity to use them 
as hands-on material to solve the problem. Therefore, UM3 is classified as an instructive interaction. 

In UM4, the teacher intensively talks with a student, Zoe, in a one-to-one interaction. She asks Zoe 
to put seven animals on the blackboard but does not specify the number of dogs and the number of 

 
1 The numbers used here are number lines taken from the original transcript. Full transcripts are available on request from 
the authors. 

2 We call this a silent impulse. The students (both in grade 1 and grade 4) are used to this way of starting a lesson. 
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birds. In this respect, the interaction is both instructive and explorative as the Zoe on the one hand is 
told to do something but on the other hand is not bound to detailed specifications. Zoe takes away all 
the birds so that seven dogs remain on the blackboard. UM 5 follows in which the teacher points out 
the discrepancy between the task (18 legs) and the number of legs that seven dogs have. She does not 
say how many legs seven dogs have. So Zoe points to two dogs and states that together they have 
eight legs. She moves on to the next picture and adds another four legs by counting in steps of one. 
She stops when reaching 20: 

42 Teacher: Do you have eighteen legs now? 
43 Zoe:  No. 
44 Teacher: So there’s something wrong here. There aren’t eighteen legs.  

In this phase, the teacher takes on a moderating and explorative role. She moderates the discourse but 
lets Zoe figure out on her own that seven dogs mean more than 18 legs. In the beginning, Zoe uses a 
symbolic-relational understanding in appointing eight legs to two dogs at once. Since first graders are 
usually only asked to master numbers up to 10, Zoe then moves on to counting the legs by ones which 
means that she uses the pictures to concretely represent numbers. However, when stopping at 20 the 
symbolic-relational mode can be assumed as Zoe seems to refer back to the given task.  

In UM6, the teacher asks seven different students what is important about the task and what the task 
requires the students to find out: 

53 Teacher: What do you have to keep in mind? Fio? 
54 Fio: We are supposed to think about how many legs there are. 
55 Teacher: It’s already written on the blackboard. Eighteen legs. Valentina? 
56 Valentina: We are supposed to consider so if we have dogs and birds, consider how many legs there are. 
57  Teacher: The task says eighteen legs. Seven animals with eighteen legs. What are you supposed to find 

out? Zoe?  
58 Zoe: We are supposed to think to find out how many animals have eighteen legs. 

With her frequent questions, the teacher wants the students to set a mutual starting point. She 
highlights they mathematically relevant aspects (total number of animals, total number of legs) so 
that her interaction can be classified as instructive, explorative, and moderating. She constantly 
connects the students’ statements to the given task (instructive) while also incorporating their 
understanding of the task (explorative, moderating).   

In UM7, the teacher proposes an idea and puts five birds and four dogs up on the blackboard. One of 
her students says that there are nine animals now, and the teacher takes away two birds. By giving a 
concrete solution and asking for the mathematically relevant aspects of the task, an instructive 
interaction develops in which teacher and students seem to work in the sense of heuristic trial and 
error. It is followed by UM8: 

85 Teacher: The question for you to answer is how many dogs and how many birds are there. Student1 
says that there are three birds and four dogs. Is that right? Is that the answer to the question? 

Two students confirm that this is true but Zoe intervenes by saying that the number of legs still is not 
consistent with the task. The interaction is characterized as explorative because the teacher constantly 
requests from her students to think about the given solutions. 
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Finally, in UM9, the teacher transitions a group work. On the epistemological dimension, the teacher 
implicitly encourages her students to take a symbolic-relational perspective by highlighting again that 
the total number of animals needs to correspond to the total number of legs.  

Analysis of transcript 2: Grade 4 (in the middle of the school year) 
The students sit in a circle in the front of the classroom. The task is written twice on two sheets of 
paper lying in the middle of the circle. Moreover, there are two flies and two horses as illustrations. 
The teacher presents the task visually but remains silent. 

The transcript (l. 1-17) can be divided into the following units of meaning (UM): UM1 Silent impulse 
and Nelly's first idea (l. 1-2), UM2 Jason's solution (l. 3-7), UM3 Jonas' solution (l. 8-14), UM4 
summary of the task clarification as well as transition to group work with task assignment (l. 15-17).  

UM1 begins with the silent impulse. Starting in grade 1, the students are socialized in such a way that 
one student, here: Nelly, reads out the task and already comes up with a first solution. Since the 
teacher directly asks Nelly to read out the task and Nelly shares her mathematical ideas with her 
classmates, this can be seen as an explorative-moderating interaction.  

2 Nelly: I think there are more flies than horses because flies have more legs than horses. 

It becomes obvious that Nelly refers to a thing-like-concrete idea of counting the legs at first but then 
moves on to a symbolic-relational understanding.  

In UM2, Jason offers a solution and Jeremy responds. He picks up Jason's idea and elaborates it: 
4 Jason: Fifteen times seventy-two? 
7  Jeremy:  I would rather say multiply four until you reach seventy-two. 

During the whole process, the teacher does not contribute to the discourse or interfere with the 
students’ ideas. She only calls the students by name. Therefore, the interaction is characterized as 
moderating and characterized as explorative since two students' ideas become present. 

In UM3, Jonas comes up with a further idea: 
8 Teacher: Jonas 
9  Jonas:  We can count the flies or horses first because we always have to calculate because I just did 

that in my head. Ten times four is forty. That’s just ten horses and there are fifteen animals 
and there and then I have to calculate the flies. So we still have to calculate the flies.  

10 Nelly: Huh? 
11 Teacher: What’s the matter, Nelly? 
12  Nelly: It just occurred to me if you now have two flies that make twelve and then you just have to 

add four more flies. 
13 Student: Five flies. 
14  Nelly: I mean five flies.  

After 2 minutes, Jonas and Nelly are about to solve the task. Again, the teacher only moderates the 
interactions and lets the students express their ideas which obviously result in first tries to come up 
with a solution.  

In UM4, the teacher asks the student to start working in groups to finally solve the task. She frequently 
points out that she expects them to think about the following:  
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17  Teacher: Can that be true? Why? Why not? Which possible solutions did you find? 

This interaction is explorative and shows that thinking about and justifying different solutions are 
important aspects to the teacher.   

Comparison of the two transcripts 
When comparing the analysis results, it becomes clear that in grade 1 slightly more instructive and 
intervening than explorative and moderating interactions occur. This is also evident in the number 
and frequency of turn-takings: Throughout the transcript, the teacher and one student alternate 
consistently for the most part, so that the teacher assumes a controlling and focusing function. On the 
epistemological dimension, only a few phases can be determined. This is probably due to the fact that 
the first graders still have to get acquainted with the way mathematical tasks are talked about and 
mathematical meaning is negotiated. In grade 4, explorative or moderating interactions occur and are 
more dominantly linked to the epistemological dimension. The transcript shows that the teacher only 
says the students' names in order to orchestrate their verbal contributions whereas the students are 
responsible for the mathematical content. They work to a large extent independently and thereby 
almost come up with a final solution of the problem-solving task.  

In general, the analysis tool Formal-In allows for comparing the transcripts with regard to the 
interplay of interactional and epistemological level. With the help of these two transcripts, a change 
can be shown: From grade 1 to grade 4, the teacher constantly withdraws from the interactions. With 
her interactive discourse movements, the teacher supports the students to move from the thing-like 
concrete towards the symbolic-relational understanding of mathematics. It is interesting to note that 
in the two transcripts the epistemological dimension occurs exclusively in explorative or moderating 
interactions. This is presumably due to the fact that the examples are the introduction to the lesson. 

Conclusion 
Our analysis of the two presented episodes and the extensive watching of the video recordings have 
led us to conclude that the teacher manages to establish a discursive classroom culture in which the 
students are encouraged to explore mathematical problems independently. Despite methodical 
limitations (small sample size, restricted contexts), we can outline that an explorative-moderating 
teacher-student-interaction pattern seems to be fruitful as it is also shown in Bräuning et al. (2020). 
Our investigations into this area are still ongoing. However, the findings presented in this article are 
promising to add to the existing body of research in the field of mathematics education. Our future 
work within the research project PrimaL will focus on finding more evidence for the characteristics 
of the explorative-moderation interaction pattern. 
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Introduction 
Language diversity constitutes an overarching notion enclosing terms referring to the multiplicity or 
variety of language(s) used by teachers or/and learners at the school and societal level, such as 
multilingualism, bilingualism, second language, or varieties of the same language (Barwell et al., 
2017).  Multilingualism describes both the teachers and the context, at the current stage of the study, 
as multiple languages may be present in the school context even though they are not all used.  

The need of broadening our understanding of teachers learning processes for teaching in multilingual 
contexts has recently been posed (Barwell et al., 2019). Even though teachers’ teaching dilemmas in 
multilingual classrooms have been studied (Barwell et al., 2017), scares is the research on identity 
issues in cases of multilingual teachers in language diverse contexts, especially in Sweden (Delacour, 
2020). Multilingualism is recognised in the Swedish educational system, while the role of teachers of 
all subjects, thus of mathematics, is to use and reinforce students’ linguistic repertoires in the learning 
process (Skolverket, 2021). Therefore, the aim of this project is to provide empirical evidence and 
develop an understanding of the formation and development of multilingual mathematics teachers’ 
professional identity and of their relation to school and multilingual mathematics classroom contexts. 
The following leading research questions being posed are:  How does teaching in multilingual 
mathematics classroom, as well as other past and present experiences influence multilingual 
mathematics teachers’ professional identity? How do multilingual mathematics teachers’ 
professional identities transform over time? 

Theoretical background  
Conceptualising identity is viewed as more than self-image or reflection, and its dynamic nature is 
highlighted as being seen as ‘a process of layering of events of participation and reification, in which 
our experiences and its social interpretation inform each other’ (Wenger, 1998, p. 151). The 
theoretical framework of Patterns of Participation (PoP) (Skott, 2018) will be followed.  Incorporating 
the work of Wenger and Holland and symbolic interactionism, it provides an understanding of 
teacher’s professional identity in cases they are not part of predefined practices, like professional 
development program. PoP by focusing on teacher’s interactions within their profession and in the 
classroom investigates how prior practices and figured worlds contribute to teacher’s experiences of 
being, becoming and belonging as they engage with others in their profession and what changes may 
exist in the interplay of those over time (Skott, 2018).  

Methodology  
Being at the designing process, a multiple case study (Baxter & Jack, 2008) for a longitudinal period 
of 18-24 months, is proposed, understanding of teachers’ professional identities in the long term. The 
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study of three cases of multilingual mathematics teachers in lower secondary mathematics classrooms 
in Sweden are to be followed. The cases are proposed to be diverse school settings so as possible 
contrasts may provide multiple insides on those teachers’ identities. Multilingual teachers will be 
selected according to the use of languages other than Swedish or English in different context, rather 
than their languages proficiency, while mutual linguistic repertoires with some of their students will 
be looked for. An ethnographic approach will be followed. Regarding the data collection process, 
multiple sources will provide a holistic view of teachers’ identity (Skott, 2018). For that reason, semi-
structured interviews and observations will be conducted regularly along the longitudinal period. 
Interviews will be used for informing about past and present experiences of the teachers about their 
education, teaching and language, also discussing issues emerging from the observations along the 
study. Observations will focus on the teacher, specifically teachers’ interactions with multilingual 
students in instances that are related with language and mathematics. Following PoP, analysis will be 
conducted along with the data collection period, without predefined codes or categories, informing 
the data collection process.  

The poster aims to discuss the contribution of such a project in the field and the methodological 
decisions for the specific aim, for the data collection process to start following the poster presentation.  
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The purpose of this paper is to explore students’ discourse when working in small groups on 
mathematical problems using GeoGebra. Specifically, the interest lies in to what extent the discourses 
are internally persuasive and to what extent they are alien to the students themselves. The data 
analysed are drawn from an upper-secondary class of students with histories of low attainment, 
focusing on functions and the Cartesian connection between algebra and geometry. Discourses of 
visual appearance were more present than academic mathematical discourse, and discourses of 
school as compliance counteracted students’ appropriation of mathematical discourses into their 
own internally persuasive discourses. 

Keywords: Classroom communication, discourse analysis, inquiry-based learning, dialogism, 
dynamic geometry software. 

Introduction 
Mathematics teachers and educators want students to integrate mathematical ways of thinking and 
communicating into their own thinking and communicating. According to sociocultural theories, the 
main goals of learning consist in expanding the students’ action- and meaning potentials (e. g. Wells, 
1999, p. 48), and other researchers have also argued for the motivating satisfaction that people derive 
from being able to “do something one could not do before” (Papert, 1980, p. 74). Unfortunately, for 
many students, mathematical ways of thinking and communicating stay alien to a large extent. 
Mathematics is only ever thought of as the words of authority, to be imitated in order to satisfy the 
requirements of the teacher, and ultimately, the school system. Many students thus rarely use 
mathematics studied in school in order to think or communicate about anything except school tasks.   

The affordances offered by dynamic geometry software to visually perceive representations of 
mathematical objects, including the covariation of variables, have the potential to facilitate student’s 
experiences of being able to do something one could not do before. Yet, there is a lot to learn about 
how students interact with such software in the classroom and the different types of learning made 
possible by different didactical designs. I therefore explore dynamic geometry problem solving 
discourses in an upper-secondary mathematics classroom of students with histories of low attainment. 
Here discourses refer to sequences of utterances. 

Learning and authoritative and internally persuasive discourse 
When we communicate, we are always responding to, and making use of context, which includes 
social and physical settings. What we assume to be our common ground, our shared assumptions 
about the world and the situation we are in and what it is we are trying to achieve, is crucial. When a 
group of people frequently interact in some sphere of shared activity, they develop patterns and types 
of utterances that are relatively stable. Bakhtin refers to these types as speech genres (1986, p. 60).  
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The goal of learning mathematics, from a dialogical perspective, is that students expand their 
discursive repertoires to include mathematical discourse—the historically established ways of 
communicating that competent users of mathematics employ (e.g., Sfard 2008). This constitutes the 
speech genre of mathematical discourse. But not all talk in mathematics class is directly related to 
mathematics. An important explicit theme as well as background assumption of communication in 
classrooms are the demands that the school and the teacher make on students. This I refer to as 
schoolwork discourse – utterances that refer to, or seem interpretable only in the context of the school 
as an institution that makes demands on students to finish certain work to some standard. 

I relate learning to Bakhtin’s concepts of authoritative discourse and internally persuasive discourse. 
The former is a type of discourse that demands acceptance, and derives its power from social 
authority, “independent of any power it might have to persuade us internally” (Bakhtin, 1981, pp. 
110–111). For example, when mathematics functions as prescriptive rules to be followed, without 
justifications that are convincing to students, it is an authoritative discourse. On the other hand, a 
discourse is internally persuasive when it becomes tightly interwoven with “one’s own word” 
(Bakhtin, 1981, p. 345). It is discourse that enters into an interaction and struggle with other internally 
persuasive discourses, which are all the other “available verbal and ideological points of view, 
approaches, directions and values” (Bakhtin, 1981, p. 346). It connects with and has an effect on our 
own discourses, being partly assimilated, partly modified, and always subject to our own creative 
intentions. In other words, it expands our discursive repertoires. 

While a discourse can be internally persuasive without any observable indicators, some types of 
behaviour would imply that discourse is internally persuasive: when students explicitly make, test 
and modify mathematical conjectures themselves, they show that the mathematical discourse is 
interwoven with their own discourse and that mathematics interacts with their other internally 
persuasive discourses. In contrast, when students apply rules for calculation, without making sense 
of the rules themselves, after which they ask the teacher “is this right?”, the teacher’s (or the textbook) 
discourse has not become internally persuasive, it is only authoritative and remains alien to the 
students. The research question guiding this study is: How do everyday, mathematical and 
schoolwork discourses intertwine and interact in the problem solving discourses and to what extent 
do mathematical discourses become internally persuasive for students? 

Method 
This paper builds on my longitudinal case study of the classroom. In prior papers I described whole 
class discussions on contextual (paper-based) tasks (Gíslason, 2019), and a dynamic geometry task 
(Gíslason, 2021), while here the focus is on students in interaction with peers, while working on tasks.  

The setting of the study is an upper-secondary school classroom in which most of the students have 
a history of low achievement in mathematics. The teacher of the class did not rely on textbooks 
available on the market, but rather found, translated, and adapted tasks from various sources, and 
made working with dynamic geometric software (GeoGebra) a centrepiece of classroom work. 

The data analysed in this paper is drawn from two lessons, all involving the solving of tasks that are 
intended to make students aware of the Cartesian connection between algebra and geometry, more 
precisely on concepts of functional dependency and the interpretations of graphs. I recorded pairs of 
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students selected at random, with a hand-held video camera that followed my focus of attention. My 
role was generally passive, but I was not invisible and the students sometimes addressed me, both to 
chat and to ask about mathematical tasks. All verbal utterances were transcribed verbatim in Icelandic 
and finally excerpts chosen to be presented in this paper were translated to English. 

In analysing the data, I followed a dialogical approach. This means that I interpreted communicative 
actions (such as an utterance, gesture, or an input to a computer program) in context, as responses to 
what was said and what happened before and as initiations to further responses. The interpretations 
are also informed by my experience as a mathematics teacher and researcher and I began the 
exploration with an a priori theoretical distinction in mind, that of discourse being either closer to 
everyday discourse or closer to mathematical discourse. In the iterative process of analysis, it became 
clear that these often were intertwined, and the third major category became apparent, that of 
schoolwork discourse. Finally, I noticed that sometimes students seemed to be convinced by 
themselves that they had found an answer to a question, while at other times they sought external 
confirmations from an authority. I took this difference to correspond well to Bakthin’s notions of 
internally persuasive discourse for the former and authoritative discourse for the latter.  

Analyses of episodes 
In the following I present two sequences of dialogue, selected to illustrate the three main types of 
discourse, how they intertwine, and function as internally persuasive and authoritative discourse. The 
students have all been given unique pseudonyms. 

Whether to believe one’s eyes: everyday speech and alienated mathematics (episode 1) 

Ragna and Drífa have created a straight line using the line-tool in addition to the line that is modelled 
with the parameters m and b (which may be changed by moving sliders). The intention of the teacher 
was that students would use the sliders to change the line in accordance with task-directions. The first 
question asked the students to make it horizontal and go through a fixed point (that they had chosen 
freely at (4,2)). In this sequence the students address me, as I am recording them, treating me as an 
authority on the mathematics. Underlining indicates vocal emphasis.  

1 Ragna: So you want this to go [Addressing me, the researcher.]     

2 Drífa:  through? [Ragna moves the slider for m back and forth, the line changes slope.]    

3 Researcher: We want this line to go through the point, and be … and be horizontal.   

4 Drífa:  Okay. [The line now approximately going trough P but it is not horizontal yet.]   

5 Ragna:  It isn’t horizontal.    

6 Researcher:  Then you must change it so that it will become horizontal.  

7 Drífa: You have to move this one. [Drífa points on the slider for b (y-intercept).] 

8 Ragna:  Oh, okaaay. [Ragna moves the slider for m so that the line goes trough P, and then she moves 
the slider for b which moves the line in parallel off the point. This way does not work.]   

9 Ragna:  “No can do”. [In English.] [Ragna now adjusts the slope, until m=0, and the line is horizontal, 
but does not go through P.]   

10 Drífa:  Yes! Yes like this. And then you move, no. [Ragna increases and decreases the slope (m), 
back and forth. Drífa points her finger to the point P.]   
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11 Drífa:  I think you should do …    

12 Ragna: Aargh. Difficult to own a mac. [Tinkers with the slope until the line is horizontal.]     

13 Drífa:  Woah. [Swiftly moves the line, so that it goes through the point P.]     

14 Ragna:  What is up!? [A phrase used to express surprise or joy.] [They open the note where they have 
copied the task-questions.]   

15 Drífa:  Tada! ... And then m gives zero and b gives two. Doesn’t it?   

16 Ragna: Yeah [They start typing in the note: m=0] Okay   

17 Drífa:  Okay. Isn’t that right?    

18 Ragna:  Is it correct? Please tell.    

19 Researcher: Is this a horizontal line through the point P?    

20 Drífa: Yes.   

21 Ragna: It lies!    

22 Researcher:  Yes.   

23 Ragna:  Totally horizontal.    

24 Researcher:  So why are you asking me? 

At the beginning of episode 1, the students show that they want to comply with what the authority 
wants. In turn 1, they seem to assume that I, the researcher, is in the same authoritative position as 
the teacher and that they are responding to the perceived demand of the schooling situation. I respond 
with the “we” pronoun, as is common for teachers, possibly to try to frame the task as shared, 
something to be achieved together. I take this to be an example of schoolwork discourse, as the goal 
of “finishing the job” is an ubiquitous assumption of schoolwork. 

In episode 1, students expressed joy when they managed to adjust the sliders to get a horizontal line 
(turns 13–15). Their first attempt was to move the slider for the variable b (constant term), until the 
line coincided with the fixed point, and then change the value of m (slope) to make the line horizontal 
(turns 4–9). They claim that this is impossible, perhaps perceiving that the “center of rotation” of the 
line is not in the fixed point. They then try the other way around; change m to make the line horizontal 
and then change the constant term to translate it (turns 10–14). In turn 15 Drífa reads the parameter 
values, m = 0 and b = 2, from the algebra window. By doing so, and noting “the answer”, they show 
awareness that the mathematical object has both an algebraic representation and a graphical 
representation. They both express joy that they have found the solution (turns 16–17). However, as 
far as can be discerned in their talk and interaction with GeoGebra, they relied solely on slider 
manipulation and visual appearance, without any use of meaningful links between the algebraic and 
the graphical representations. For example, they did not mention that the slope should be zero to get 
a line parallel to the x-axis, nor did they express indications of recognising this after the fact. They 
achieved their goal using mainly everyday speech, more or less bypassing mathematical vocabulary 
and reasoning based on properties. Having found an answer, they were not fully persuaded by the 
visual appearance, and rather than linking their work to mathematical concepts themselves, they 
asked me, in turn 18, as an authority, to confirm the answer. In turn 19 and 24 I strongly imply that 
they should trust their own eyes, which can be interpreted as validating their visual, trial-and-error 
approach, rather than challenging them to explain their reasoning. It is possible that their experience 
with mathematics tells them not to trust their senses, and it is indeed important to reason on the basis 
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of properties and not only from appearance. In summary, Drífa and Ragna did not make much use of 
mathematical discourse and it was not present in their internally persuasive discourses. Their 
everyday discourses were up to the task, and they produced a solution. At the same time they did not 
fully trust that they had an answer that would satisfy the teacher. Perhaps they had some awareness 
that appearance can be misleading, and therefore they sought additional confirmation for themselves 
through an authority.  

Internally persuasive mathematical discourse (episode 2) 

One main goal of the class was to get students to appropriate the language of variables. An experience 
of covariation can be made possible by creating a variable (represented by a slider) and linking that 
variable to a screen object, functionally dependent on the variable. The task text was as follows: 

Draw the following in GeoGebra:  

a) Make a square that can be enlarged and shrunk with a slider. 

b) Add a new slider that moves the square horizontally. 

c) Add another slider that moves the square vertically.  

The link between a variable and a screen object is not given in the above task, unlike the task in 
episode 1. It is expected to be created by the student. The variable will create an interactive visual 
effect, closely linked to mathematical properties. 

The teacher assisted students in constructing a dynamic square with vertices (a, a), (a, -a), (-a, a) and 
(-a, -a). In the following episode, two girls, Lilja and Anna, talk to each other and with the teacher, 
working on the second question, trying to create a slider that can move the square horizontally on the 
screen. In the first utterance Lilja suggests a modification, making it possible to move the vertex of 
the square via a slider determining a variable called b. 

1 Lilja: Plus x times b. [Might mean “add one unit, b times” to the x-coordinate, although a more 
streamlined way is to say “add b to the x coordinate”.] 

2 Teacher: Plus x times b? [Neither affirming nor rejecting, opening for further elaboration. He either 
does not follow or does not want to make the interpretation for the student.] 

3 Lilja: No [Shakes head, looks at the teacher].   

4 Anna: No... oh … I can’t remember which is x and which is y. 

5 Teacher: Okay the first number is always x and the second number is y. 

6 Anna:  Okay should I then do .... aaah [Frustration, both hands waving]. 

7 Lilja:  We just want the x you know. [Referring to her knowledge that horizontal movement is 
described by a change in the x-coordinate.] 

8 Anna:  Yeah the x is here, I am at the x you know. [Referring to the first coordinate as “x”.] 

9 Teacher:  Yes. 

10 Anna:  Okay, what should I do just ... plus? 

11 Teacher:  Yes, yes what. 

12 Lilja:  After the brackets. [Points toward the screen of Anna.] 

13 Anna:  After the brackets? 
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14 Teacher:  Na then you add both to the x coordinate and the y coordinate if you do that. [The teacher 

knows that (a, a) + b in GeoGebra results in (a + b, a + b). It’s unclear that this has an impact 
on the following turn.] 

15 Lilja:  Then not, you should do before the second number ... hooo [Breaths in, throws head back, 
opens arms, visibly excited.] Before the second number do plus b! [Smiles, increased voice 
volume and much higher pitch.] 

16 Teacher: Okay that’s y, then you move it to the y. [The teacher seems to interpret the suggestion as to 
write something equivalent to (a, b + a).] 

17 Lilja: No, that, before the first number. [She seems to sense what the teacher meant and the need 
to make it clear that she means (b + a, a) or equivalently, as she tried to express in turn 15, (a 
+ b, a)].   

18 Teacher: Okay by the first number. 

19 Anna: But why plus b?  

20 Lilja: Because, because when. 

21 Anna: But there is an a there you know. 

22 Teacher: Yes, but yes but it… 

23 Lilja: I got it, I got it! [Visibly excited and joyful.] 

24 Teacher: Okay, show me. 

25 Lilja: Wait, wait. 

26 Teacher: You did a plus b. 

27 Anna: I did something wrong ... I first want to see that she can do it right, then I’ll trust you ... first 
learn to do this plus. 

28 Lilja:  Gurrrl gurrrl, gurrrl, gurrrl, gurrrl. Look … oh … gurrrl, gurrrl! [Outburst of joy, smiling and 
using a higher pitch and volume. Lilja now modifies her coordinates, her suggestion finally 
implemented as she has meant it, in the software.] 

29 Anna: Okay, uhm, how did you do it? 

30 Lilja: Look, gets bigger and smaller. Just do plus b after the second number.  

31 Anna:  Plus b?  

32 Lilja: You know.  

33 Anna: Yes a plus b. 

34 Lilja: Just a plus, ... there ... minus you do also plus a, no, plus b. That’s always the first number ... 
plus b. Now you won’t flunk this class! ! [This is accompanied by pointing by her finger on 
the screen of Anna. She is directing Anna to type, first a + b in the first coordinate place and 
then -a + b in the first coordinate place of the next vertex. Then she gives a generalisation: 
always the first number (implied: of the first coordinate-place) plus b.] 

Lilja now has a square that can be moved via the slider for variable b. Her square consist of the 
vertices (a + b, a), (-a + b, a), (-a + b, -a) and (a + b, -a). In episode 2 the students do not immediately 
solve the problem, which indicates that the mathematical symbolic language of variables and 
coordinates (as represented in the software) was not initially a part of their internally persuasive 
discourses. In turn 15 Lilja expresses her excitement in having grasped the nature of the connection 
between the symbolic slider-controlled variable and the visual behaviour of the screen object. She 
has not yet implemented her idea, which only happens in turn 28 when she modifies her coordinates 
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and sees the results, verifying her solution. It is as if (this aspect of) symbolic algebraic mathematical 
discourse suddenly makes sense to her, using the Cartesian link to her own intent, incorporating it 
into her internally persuasive discourse. At first the teacher does not follow her “before the second 
number, do plus b” (turn 15), an everyday type of utterance, describing spatial arrangement. Lilja 
wants to replace (a, a) with (a + b, a) using the variable b to control a horizontal movement of the 
point. She uses everyday discourse to orient to the positions of symbols on the screen, “after the 
brackets”, “before the first number”, and the screen object “gets bigger and smaller”, yet 
mathematical discourse is internally persuasive for her and is evident in her input to GeoGebra. 

Lilja’s partner, Anna, seems not to understand Lilja’s description, and she seems to be more or less 
stuck at trying to imitate (Lilja’s) authoritative discourse, grasping for step by step instructions. In 
turns 6, 8, 10, and 13 she seems to be trying to follow instructions (from Lilja and the teacher) as to 
what she should type into the software, without consideration of meaning. The mathematical 
symbolic system seems alien to her, it is only authoritative discourse that does not touch her own 
internally persuasive discourse. In turn 19, she asks “why plus b”, which I see as her attempt to bring 
the authoritative discourse into contact with her own internally persuasive discourse. She wants the 
words that she has used to give commands to the computer to have meaning for her. Because what 
she has typed doesn’t work, she expresses doubts as to whether Lilja has really “got it” (turn 27). 
Lilja describes her solution to Anna only on a syntactical level in everyday language (what symbols 
to type in and where) but never addresses her why-questions. Instead she tries to encourage Anna that 
she will not “flunk this class” (turn 34), reminding us that we are in school, talking in a voice from 
the schoolwork genre. Both Lilja and Anna are concerned to pass the course, but in this episode the 
mathematical content became internally persuasive only to Lilja. 

In contrast with Drífa and Ragna in episode 1, Lilja does not need a confirmation from an authority. 
She is convinced that she has grasped the symbolic language and the link between that language and 
the visual representation. She communicates to the computer through the input text: “P = (a + b, a)” 
and experiences directly an expansion of her action potential. Her outburst of joy preceded her actual 
typing in of the command – it was not a response to seeing it work out (perhaps luckily, through trial 
and error, as was the case in episode 1). Afterwards, she was quick to also add a functional variable 
for vertical translation, generalising the method for translation of points in the coordinate system.  

Conclusion 
In the first episode the students were occupied with the task as a piece of schoolwork to be finished.  
While they expressed pleasure of having a result (achieved by trial and error), they made no explicit 
connection between the visual result and mathematical concepts, and also requested confirmation of 
their answer from an authority. Their satisfaction was due to having finished a job, not with having 
made mathematical discourse their own. Thus, the schoolwork discourse can be interpreted as being 
in this case not conducive to learning, or worse, actively working against learning.  

In the second episode one student, Lilja, suddenly grasped the relationship between the mathematical 
symbolism and the visual representation. While she confirmed her answer visually, she was 
convinced that she knew what needed to be done before she gave any input to the software. I interpret 
her satisfaction as stemming from having made mathematical discourse internally persuasive. Her 
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partner, Anna, did not show any indication of having made the discourse internally persuasive. The 
schoolwork discourse’s assumption that students should finish the tasks set by the teacher frustrates 
Anna as she was concerned that she might fail the course. Lilja tried to help Anna finishing the task, 
but described only a step-by-step recipe, without reference to meaning. Lilja, therefore, was not hurt 
by the schoolwork discourse in this case, while Anna’s learning suffered.  

The two tasks worked on provide different opportunities to use mathematical discourse to achieve 
goals. In episode 1, the students manipulated ready made sliders to observe covariation of parameters 
and a visual representation. This did not make the mathematical relationship the center of attention. 
In episode 2 the students were expected to create sliders for variables and then define the mathe-
matical objects themselves, using the variables. This required students to use mathematical discourse 
as a semantic tool, which means incorporating it into internally persuasive discourse. One of the 
students did so, while the other did not. 

In their problem solving, students drew on everyday discourse to describe visual elements, both the 
visual representations of geometric objects and strings of symbols. They also assumed the everyday 
practice that to be persuaded of something, it is both necessary and sufficient to empirically check its 
appearence. Mathematical discourse was present in their discourses to a much lesser extent, and in a 
way that focused more on the surface (the syntax), rather than the conceptual meaning. Schoolwork 
discourse was always in the background if not explicitly apparent in talk about failing the course. 
Schoolwork discourse seems push students to imitate authoritative discourse, that is, using 
mathematical discourse without having made it their own. In other words, schoolwork discourse does 
not bring authoritative mathematical discourse into contact with internally persuasive discourse. 
Rather, it functions to keep mathematics only authoritative, and alien to the students themselves.  
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It is a well-investigated fact that human interaction implies a huge range of expressive modes. 
Unsurprisingly young learners although do so when doing mathematics together. In the last decade, 
more and more research has been concerned with this so-called multimodality in mathematical 
situations. Diverse modes and their interrelations were under investigation, like gestures, speech, or 
written expressions, sometimes actions. A systematic description of potentially mathematically used 
gestures by young learners as a part of this mix of modes is still missing. The paper is theoretically 
framed by an interactionist-semiotic approach wherein mathematics is seen as a social activity of 
using diagrams. The subject-specific role of gestures is to be clarified: Do gestures play a constitutive 
role in and for mathematical interactions, literally as a handicraft to work diagrammatically? The 
exemplary analysis reveals different functions of gestures in the diagrammatic work of the learners.  

Keywords: Functions and forms of gestures, subject-specific gestures, diagrammatic reasoning. 

Introduction  
Observing young learners while doing mathematics together reveals the use of different expressions: 
Speaking, writing, using a tool (digital or analogue), gesturing or using facial expressions are 
perceivable as a kind of interwoven mix of modes. Theoretically, this mix of modes is often framed 
by the concept of multimodality (Arzarello, 2006; Radford, 2009). Radford (2009) states, “[…] that 
mathematical cognition is not only mediated by written symbols, but that it is also mediated, in a 
genuine sense, by actions, gestures, and other types of signs.” (p. 112). This genuine sense of 
multimodality, and also of gestures for mathematics learning is often seen as given in advance (Huth, 
2018, p. 219). A theoretically supported rationale for this assumption is missing, or at least not 
described in existing approaches to gestures in mathematics education. The present paper opens up a 
theoretically grounded view on gestures as signs in mathematical interactions by dint of the 
theoretical concept of diagrams and diagrammatic reasoning after C. S. Peirce. Diagrammatic 
reasoning in this sense includes the construction of a diagram, the observation of relations in that 
diagram and the formulation of general conclusions. It potentially leads to mathematical insights and 
further developed diagrams (Peirce, 1931, CP 1.54). The use of diagrams, which can be of various 
forms (Schreiber, 2010), is still perceptible at a very early state in the mathematics learning process. 
The question arises, if the use of modes in mathematical interactions of young learners and their use 
of diagrams are interwoven as well. For this purpose, the paper will first consider multimodality in 
mathematics learning, then offer a definition of gestures in mathematical interaction, and describes 
gesture as a sign after Peirce. Finally, the diagrammatic theory is used to focus the subject specific-
role of gestures in the analysis. It should be investigated, whether gestures represent or rather (co-
)generate leaners’ diagrammatic reasoning by the following question: Do gestures play a constitutive 
role in and for mathematical learner interactions, literally as a handicraft to work diagrammatically? 
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Multimodality: A systemic feature of language – and of mathematics learning? 
Radford (2013) claims, that thinking is deeply interwoven with bodily acting in the material world. 
In this sense, thinking in general, especially mathematical thinking, is shaped and performed by using 
different expressive modes. In line with these ideas, Arzarello (2006) advocates his theory of the 
semiotic bundle to describe a bunch of signs which are used by participants in mathematical 
interaction. This concept unites e.g., speech as a conventionalized, rule-based semiotic system, and 
also gestures as a more non-conventionalized mode. It intends to break down the rigid boundaries of 
considering exclusively semiotic systems in mathematical situations. Krause (2016), in line with 
Azzarello (2006), emphasizes the representativeness of gestures in mathematical interactions. She 
investigates mathematical occupations of upper school pupils and describes a “multimodal sign” 
(Krause, 2016, p. 49) of speech, gestures and inscriptions. The representative role of gestures is 
grounded in the view, that mathematical objects are not directly accessible because of their alleged 
abstractedness (p. 16) – a different perspective than it is supposed in the present paper. With regard 
to the concept of multimodality, Radford (2013) and Krause (2016) refer on the psychological theory 
of sensuous respectively embodied cognition. It emphasizes a mind-body-embeddedness in thinking, 
generating and experiencing the world. Sensuous cognition breaks down with a dualistic view of mind 
(internal and external). Body and mind are no longer separated, but related parts of human cognition.  

In linguistic approaches, multimodality is grounded in the system of spoken language itself. Fricke 
(2012) proves a systemic relevance of gesture in spoken German language. In sentence constructions, 
gestures can be integrated in speech to fulfil syntactical positions (so-called code-integration, p. 75). 
In addition, gesture reveals features of language in their structural use, like e.g., recursion1 (so-called 
code-manifestation). Some utterances show aspects of content exclusively coded in gesture. 
Sometimes, gesture is even obligatory e.g., for using some deictic expressions (p. 74). In addition, 
gestures can lead to conventionalized forms in interaction, using the same gestures for the same meant 
recurrently. Multimodality in this sense is seen as a kind of characteristic of the language system. This 
idea of a fundamental grammar of speech and gesture underlines the constitutive role of gestures for 
using language in human interaction. In psychological approaches McNeill (2005) admittedly 
assumes an “‘unbreakable bond’ of speech and gesture” (p. 24) and coined the idea of an integrative 
language system. However, he also states a language-gesture dialectic, where gestures can never be 
part of grammar in his view. In line with Fricke (2012), the present paper locates multimodality in 
the language-systemic sense, whereas gestures and spoken language construct this system.  

Gestures: Definition, and its significance in interaction 
To meet the plenty of manifold definitions of gestures, Andrén (2010) summarizes two main 
perspectives: The first includes nearly every body movement to be a gesture: movements of hands, 
arms, head, mimic or facial expressions, gaze, action, etc. In the second perspective, the gesture 
definition is more narrowed (p. 11). It is leaned on Kendon (2004) who investigates how body 
movements are interpreted by interlocuters in interaction and due to the situational context (pp. 14–

 
1With a finite number of elements and well-defined rules of using these elements one can generate an infinite set of 
language constructions (Chomsky, 1983, quoted after Fricke, 2012, p. 120). 
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15). He basically describes gestures as “visible actions” (p. 7) and with “features of manifest 
deliberate expressiveness” (p. 15). The gesturer is ascribed a “voluntary control” of his gestures which 
are “being done for the purpose of expression” (p. 15). Goldin-Meadow (2003) differentiates gestures 
from functional acts at objects or persons (p. 8), e.g., adjusting the glasses. In her view, such actions 
are not seen as gestures, even though they can be done parallelly to speech. She defines gestures based 
on two criteria: (1) Gestures are hand motions uttered while the communicative act of speaking, and 
(2) are no functional act on persons or objects (p. 8). The criteria appear to be mutually exclusive and 
obviously strictly separates actions from gestures. It can be questioned what is meant by a functional 
act on an object or person and if there could be rather such acts which includes a communicative act. 
A simple example is the (maybe wordless) placement of a chair to broaden an ongoing discussion 
group while a delayed person enters the room. Can’t we assume here a communicative act, although 
a functional act is performed on the chair? The placement is readable as a communicative act by the 
participants, e.g., as an invitation to participate in the discussion, the where and how. Theses 
interpretations are based on a culturally grounded commonly shared background and the actual 
situation in which the participants act with and to each other mutually and interactively. Thus, the 
existence of a communicative act attributed to an action or a gesture is rather the result of an 
interpretation and not independently given, or ascribed from an outer view. In mathematics education 
Sabena (2008) also focusses a separative definition of gestures while doing mathematic: She claims, 
they “are not a significative part of any other action (i.e. writing, using a tool, …).” (p. 21). As a 
distinguishing feature, she constates, that actions are intentional and goal-oriented (p. 35). Gestures 
in Sabena’s sense obviously cannot be manifest deliberate like Kendon (2004) claims. They are to be 
seen strictly differently than writing or using a tool. However, Arzarello (2006) speaks of gestures 
that can be fixed in written signs in an ongoing mathematical occupation (p. 291). Harrison (2018) 
emphasizes the communalities of actions and gestures. He claims, that gestures are performed 
according to the material world and that some actions show comparable structures with gestures in 
their co-expressiveness with speech. A person sitting next to another person and performs a 
description of a direction may draw gesturally a kind of map on his or her thigh. The thigh is used as 
a paper to draw gesturally the map on. It is interpreted as a part of that gesture which in turn depends 
on this thigh-paper-map. With this in mind, it seems less useful to strictly distinguish gestures from 
actions or body touches. Their interwovenness is also reconstructed by Vogel and Huth (2020). For 
mathematical learning they found an intersecting action-gesture-use in chronology, the semantic 
attribution of meaning, and in function (pp. 241–243). Billion (2021) also takes a look at gestures and 
their intertwining with actions in mathematical situations to reconstruct diagrammatic interpretations 
of learners. This paper adopts Kendon's (2004) definition of gesture and draws on Harrison's (2018) 
view of gestures and actions: Gestures are those movements, which are ascribed the “features of 
manifest deliberate expressiveness” (p. 15) by the interlocutors. Material-use or exclusive body parts 
are no exclusive criterion. This definition can be linked to the considered interactionist-semiotic 
perspective on mathematics learning, where the interpretation of the participants is of core interest.  

Mathematics learning: Diagrammatic reasoning in interaction 
To focus the role of gestures in mathematical interactions of learners, the nature of mathematics 
learning has to be described in line with an interactionist-semiotic perspective. Krummheuer and 
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Brandt (2001) claim, that interactions in peers and with an experienced opposite constitute 
mathematical learning. From a semiotic view, the use of diagrams is the core of doing mathematics 
(Peirce, 1931). Both approaches combined, mathematical interactions provide a space for 
experiencing “a social practice with, on, about, and through diagrams” (Dörfler, 2006, p. 105). 
Accordingly, mathematics learning depends tremendously on being and interacting with others about, 
on and with diagrams to increase one’s own proficiency in acting mathematically. Learners gain a 
kind of autonomy in using mathematical signs and argumentations and develop from the role of 
participant to an autonomous actor (Krummheuer & Brandt, 2001, p. 20–21). In the ongoing process 
of negotiation, the interlocuters form together the content of interaction and commonly coordinated 
interpretations. These interpretations can be used as a kind of template to contrast and adopt one’s 
own insights. The common coordination tends to offer stabilization, and that is, what Schreiber (2010, 
p. 59) calls the framing of the situation in line with Peirce’ ground of signs (1932, CP 2.228). 
Consequently, Krummheuer and Brandt (2001) claim a social responsibility for utterances in 
interactions, even if one interlocutor produces its perceivable form. It emerges from the social. 
Utterances in multimodal designed mathematical interactions of learners can be described as signs of 
different kind with a triadic structure (Peirce, 1932): They consist of a representamen, an interpretant 
and an object. If a gesture is perceived as a sign, it can be described as a sign. It has a perceivable 
outer form – its representamen. The gesture sign evokes an interpretation in the mind of the sign 
reader – the interpretant – related to the probably referenced object of the sign (Schreiber, 2010, p. 
32). The sign interpretation of the sign reader is shaped by his/her ground of the sign which can be 
named as the activated framing in the above-explained interactionist view. It includes theories, habits 
and experiences as an interpretation background. This concept of framing assigns a contextual, 
cultural and social dimension to the interpretation of signs. The interpretant of the sign is describable 
as the effect of the sign in the mind of the sign reader. It can be uttered again, and used as a new 
representamen. An endless process of semiosis emerges. In the Peircean semiotic, the concept of 
diagrammatic reasoning and the use of diagrams is central according to mathematical occupations. 
This approach shifts the view from supposedly abstract mathematical objects to mathematics as using 
signs and diagrams that are materially perceptible and manipulable by hands (Dörfler, 2006). 
Diagrams are rule-based fixations which show particular relations to each other and can be of different 
kind: written, created on a screen or even developed by material arrangements (Schreiber, 2010, p. 
27). The relations and rules of the diagram are not given in advance, but are based on social 
negotiation (p. 41). They can be seen as a part of the ground of the sign or diagram interpretation.  

Empirical example: Gesture use of learners while doing math 
In the follwoing extract of analysis the main research question is: Do gestures play a constitutive role 
in and for mathematical learner interactions, literally as a handicraft to work diagrammatically? 
Two second graders, Maya and Dennis, ought to find all possible permutations of three elements, 
presented by plastic animal figures (white tiger, brown tiger, elephant). A hugh amount of paper cards 
with the animal’s faces are available for documentation. An accompanying person B offers the 
mathematical problem and the material. Maya and Dennis put in total 7 rows of paper cards (one of 
them twice) in front of them. They are finally sure ‘we found all of them’. For the analysis, the 
situation was videotaped and transcribed: First, an interaction analysis (Krummheuer & Brandt, 2001, 
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p. 90) is applied. Based on this, a semiotic analysis (Schreiber, 2010) is conducted with the 
multimodal adopted semiotic process-cards (SPC) to map graphically the chronological sign process 
(Huth, 2018). Every utterance is pictured by two sign triads, one for speech and one for gesture 
respectively with R (representamen), I (interpretant) and O (object). The gesture-speech triads are 
connected via a common interpretant. Simultaneous utterances are mapped with a and b in one row.  

 
Figure 1: SPC, excerpt 1, Maya’s observation instruction to Dennis 

Maya starts with an observation order that refers to a first idea of a recognized generalization across 
all card rows: Dennis should check whether each animal has already been twice in the middle position 
(triad 1). Maya emphasizes gesturally the number with two similar fingers. She performs this gesture 
in relation to her speech in front of herself, not to the diagram of card rows, and refers to the 
mathematical idea of fixing points. In the SPC (Figure 1), it comes to the fore, how strongly gestures 
and actions are interconnected in the learners' diagrammatic reasoning: After a question of B (triad 
2) the explanation of Maya is performed on the diagram of paper cards in both modes (triad 3 & 4b). 
The fixing point is emphasized gesturally by pressing on the middle position, and in action by leaving 
this position unaffected. The interchangeable positions are quickly typed or briefly swapped and 
returned. As activated framings we can assume a systematic review of the card rows based on a 
mathematical idea of fixed points. B’s framing is additionally didactically overdyed. Figure 2 shows 
a later excerpt of the same SPC. Maya generates a new or more developed diagram mainly in her 
gestures (triad 23 & 25) after B asked why there are no more rows to find. Maya initially justifies her 
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answer in the quantity of available animals. Then she uses the generated diagram of all rows to expand 
n to n+1, enriched with her idea of fixed points.  

 
Figure 2: SPC, excerpt 2, Maya’s gestural diagram construction and manipulation, rows out of n+1 

Maya extracts gesturally one row out of the card-diagram to generate an example of a row (n+1). A 
new diagram next to the initial diagram is generated. In a Peircean sense, in her gesture she creates a 
new diagram and generalizes the fixing point idea to see, if it holds for all comparable diagrams. 
Maya gesturally outlines the contour of the new row (n+1), starting with an arched sliding gesture 
from the last to the first position over the table. Then she establishes a new first position in the outlined 
row, by using a kind of pantomiming action-like gesture with which she lays down exactly an animal 
card on the new front position (triad 25). With her speech, she indicates how to use the initial rows 
with n elements to generate rows with n+1 by referring to the concrete animal. Maya relates both 
diagrams to explain how to generate the second out of the first. Her gestures are used as mathematical 
signs to build a further developed diagram and to manipulate this gestural diagram again by gesture. 
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Dennis seems to honor Maya's ideas in a special way and marks it as important due to his ear-pinning 
listening gesture (triad 21a).  

Conclusions 
The example shows, that gestures play a constitutive role in and for the mathematical interactions of 
learners. They can be literally used as a handicraft to work diagrammatically on initially generated 
diagrams (Dörfler, 2006; Peirce, 1931). With Fricke’s (2012) theory of a systemic relevance of 
gestures for language, one can conclude, that gestures in the Peircean sense have a comparable 
systemic relevance for acting mathematically: In the learner’s diagrammatic reasoning, gestures are 
an integral part of mathematical constructions, like here the idea of fixed pints (mathematical code-
integration). In addition, perceivable in the diagrammatic reasoning, the commonly negotiated use of 
gesturally generated new mathematical diagrams is observable (mathematical code-manifestation). 
In the shown example, the performed gestures forms range from an explication of speech (triad 1), to 
gestures, which create links between parts of the diagram (triad 3), until gestures, that are closely 
related to actions and the material world (triad 3 & 4b). The central mathematical idea is that of fixing 
points in permutations, which is first explained on one row, and then extended for the gesturally 
constructed new diagram. In line with Vogel and Huth (2020) gestures and actions are closely 
interrelated: Both modes are used in a subject-specific sequence to expand the generalization of a 
mathematical idea to n+1. Thus, with regard to the used gestures’ functions, one can reconstruct a 
subject-specificity. They (1) structure the mathematical interaction (triad 21a & 21b), (2) which are 
used to clarify the framing (triad 1, 3 & 4b), (3) which are used to present a mathematical idea (triad 
1), (4) which manipulate the diagram (triad 3, 4b, 23 & 25), and, (5) which are used diagrammatically 
to a general idea (triad 25). Considering that gesture mode is flexible due to its functions and forms, 
these descriptions should not be taken exclusive. In mathematics education research the focus should 
be shifted on such gesture functions in interaction to apply them to a larger database e.g., in different 
ages of learners. From this, suitable concepts can be developed to consider and foster the gesture use 
in mathematics classroom as a constitutive mode for handmade diagrams of learners and teachers. 
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Teachers frequently repeat students’ words and in doing so they are doing a wide variety of actions.  
In the mathematics education literature different names are given and distinctions made to the 
different types and forms of repetitions. This has led to ambiguity in the meaning and use of terms 
like revoicing, yet the distinctions made have important consequences for the negotiation of 
knowledge in mathematics classroom interaction.  In this paper two examples are offered to illustrate 
one such distinction focusing specifically on the use of revoicing in the mathematics education 
literature, considering specifically the influence these distinctions have on epistemic rights and 
responsibilities within the interaction. 

Keywords: Revoicing, repeating, epistemics, interaction.  

Introduction 
When teachers repeat students’ words they could be doing a wide variety of actions. This repetition 
is also referred to by many different names in the literature, sometimes synonymously, sometimes 
drawing distinctions based on the form or the function of the repetition. These terms include for 
example: repeating, rephrasing, reuttering, reporting, recasting, reformulating, revoicing, 
rebroadcasting, repairing, and restating. These different terms often reflect the theoretical framing of 
the research study and are now often used without definition or explanation. Yet the differences 
between these terms are important when considering the function and role of repetitions in interaction 
in the management of epistemic access, rights, and responsibilities. In this paper I will offer some 
illustrations of a few of the distinctions made with a particular focus on revoicing as used by a range 
of authors within mathematics education, and the impact these distinctions have on the negotiation 
of knowledge in the mathematics classroom. 

Revoicing 
O’Connor and Michaels have defined revoicing as “at a minimum, this revoicing involves the teacher 
repeating or rephrasing some part of the student’s utterance, and then opening up the next turn for the 
student to (tacitly or explicitly) agree or disagree with the teacher’s revoicing” (2019, p. 167) building 
on their initial identification of this teacher move in their 1993 paper (O’Connor & Michaels, 1993). 
They describe revoicing as involving the teacher drawing an inference from the student’s 
contribution, offering the student and other students the opportunity to validate or challenge this 
inference. They describe a range of interactional structures of revoicing including the use of discourse 
markers such as ‘so’ and turns returning to the students in contrast to the common IRE structure, but 
the emphasis is on the students’ rights to accept or reject the inferences, and thus evaluate them. 

Many researchers now use the term revoicing in their own analyses of classroom interactions, without 
definition or explanation (e.g., Takker & Subramaniam, 2019; Walshaw, 2017) suggesting that it has 
now become an accepted term within the field, but often to describe moves that only include some of 
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the features originally described by O’Connor and Michaels (1993). The term is also being used 
synonymously with repeating, reuttering, rephrasing, reporting or reformulating (Forman, et al., 
1998; Franke et al., 2007), recasting (Gardner & Forrester, 2010; Moschkovich, 2015), marking and 
rebroadcasting (Wilson et al., 2019), repairing (da Ponte & Quaresma, 2016; Hintz & Tyson, 2015), 
restating (Herbel-Eisenmann, et al., 2009) and building on or expanding (Forman et al., 1998; 
O’Connor & Michaels, 2019), as well as encompassing reformulations that involve moving from one 
named language to another (Enyedy et al., 2008).  Some authors (and teachers (Herbel-Eisenmann et 
al., 2009)) make a distinction between repeating or reformulating and revoicing (O’Connor & 
Michaels, 2019; Walkington, et al., 2019) whilst others do not (Barwell, 2016; da Ponte & Quaresma, 
2016).  

This multiplicity and ambiguity in use can be explained by the different theoretical perspectives and 
constructs these researchers are drawing upon, including Goffman’s notion of reported speech 
(Forman et al., 1998; Goffman, 1981; Krummheuer, 2007), Stubb’s notion of meta-commenting 
developed by Pimm (1987), the notion of positioning as described within positioning theory (Harré 
& Van Langenhove, 1999; Herbel-Eisenmann, et al., 2015) and the notion of voices from Bakhtin 
(Bakhtin, 1981; Barwell, 2016). It can also be explained by the fact that when a teacher repeats what 
a student has said, they can do so in many different ways and achieve many different actions with 
this move. However, what is important is to consider the implication of these differences on students’ 
learning and experiences of mathematics. 

One way to look at revoicing is to focus on the form of the teachers’ repetition of a student’s 
contribution. What is said is often not an exact repeat of the student’s contribution. Teachers can 
select, delete, paraphrase, and otherwise transform what the student said. The repetition can also 
include other discursive features such as the use of discourse markers like ‘so’, and direct or indirect 
references to the student whose contribution is being considered e.g., by using their name or using 
personal pronouns like ‘you’ combined with a laminating verb such as ‘think’ or ‘said’ (Herbel-
Eisenmann et al., 2009; O’Connor & Michaels, 1993). Each of these features can alter the epistemic 
access, rights, and responsibilities within the interaction. 

Many definitions or descriptions also consider the function or purpose of revoicing. Many of these 
include some way of foregrounding or drawing attention to some aspect of the student’s original 
utterance. These include enabling the idea to be heard (Hintz & Tyson, 2015) or appreciated by the 
rest of the class (O’Connor & Michaels, 2019), summarising or amplifying the idea (Hintz & Tyson, 
2015), supporting mathematical practices such as abstracting, generalising or attending to precision 
(Enyedy et al., 2008; Moschkovich, 2015) and supporting the use of mathematical language (Battey, 
et al., 2016; Moschkovich, 2015). Other functions relate to the positioning and ownership of the 
mathematics under discussion and include giving students credit for the idea (O’Connor & Michaels, 
2019), acknowledging a student’s idea (Hintz & Tyson, 2015), attributing authorship (Enyedy et al., 
2008), competence or ownership (Battey et al., 2016), asking other students to agree or disagree with 
an idea (O’Connor & Michaels, 2019), positioning in relation to other students’ ideas or in relation 
to the academic task being undertaken (Enyedy et al., 2008; O’Connor & Michaels, 1993), facilitating 
student debate (Enyedy et al., 2008), as well as positioning in relation to accepted mathematics or 
sociomathematical norms (Alibali et al., 2019; Enyedy et al., 2008).  Other descriptions include 
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focusing on misunderstandings, creating a sense of engagement, giving teachers more time to think 
or make decisions about what to do next (O’Connor & Michaels, 2019), or establishing the role of 
contributing to the construction of knowledge within the classroom (Forman & Ansell, 2002) and 
maintaining and demonstrating common ground (Alibali et al., 2019).  

Yet the key structural feature emphasised by O’Connor and Michaels (1993, 2019) is that the 
teacher’s reformulation (or repetition, recasting, etc.) is followed by the opportunity for the student 
to accept, affirm, reject, refute, deny, or clarify the teacher’s interpretation as evident in their 
reformulation. Only a few of the examples offered in subsequent literature illustrate this aspect (e.g., 
Heyd-Metzuyanim, et al., 2019; Ingram & Riser, 2019; Moschkovich, 2015). This diversity in use of 
the term leads to the question of whether some of the distinctions being made matter with respect to 
the negotiation of knowledge in mathematics classrooms. 

Interactional management of knowledge 
In this paper an Ethnomethodological Conversation Analysis (EMCA) approach is taken to examine 
the negotiation of epistemic status, rights, and responsibilities where teachers repeat students’ words 
in mathematics lessons. From this perspective, the negotiation of epistemic issues is made visible in 
interactions between teachers and students. For example, Hellerman (2003) and Macbeth (2004) used 
EMCA to show how the prosody and modifications of teachers’ repetitions of students’ answers to 
questions influenced how this repetition was treated in the interaction as accepting the student’s 
answer or as rejecting the answer. 

EMCA examines how actions such as eliciting or access to knowledge are managed in interaction 
(Heritage, 2012, 2013; Ingram, 2020, 2021). Epistemic asymmetry can be considered to be a defining 
property of classrooms (Solem, 2016), with teachers usually asking questions to which they already 
know the answer and also evaluating students’ responses to these questions. The analysis below draws 
on Stivers et al.’s (2011) three dimensions of epistemic management: epistemic access, epistemic 
primacy (or rights) and epistemic responsibility. Epistemic access refers to who has access to the 
information. Epistemic primacy refers to who has the rights to tell, inform, assert, or assess 
something, and these can vary between classrooms depending upon the norms of interaction within 
them. Epistemic responsibilities can also vary between classrooms and refer to what information 
participants have the rights or obligations to know. 

Data 
The extracts used in this paper are taken from a corpus of videos of secondary mathematics lessons 
that were naturally occurring. The lessons were recorded by the teachers themselves and shared with 
the author who transcribed the whole-class interactions using Jefferson transcription (1984) 
(simplified to adhere to the publication guidelines). 

Analysis 
In this paper two examples are offered of interactions where the teacher has repeated students’ words. 
Each of these examples shares some of the structural features of revoicing but not all, and these 
similarities and differences have interactional implications for the negotiation for epistemic access, 
rights, and responsibilities. 
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In the first example the lesson is focused on linear sequences. The students have been asked to find 
the twelfth term of a sequence that begins 5, 9, 13, 17, 12, …. 

Example 1 
177 Tanya: why? 
178 Stevie: you add twenty-eight to it and then that 
179 Sid: what? 
180  (1.0) 
181 Stevie: no no, 'cause if you times four by seven, we have seven until we reach like 

the number at the top, seven ‘til we reach twelve, and then 'cause you're 
adding four every time, it's four times seven, like that, so that's twenty eight. 

182 Tanya: so four times seven is, 
183 Stevie: twenty-eight 
184 Tanya: so you think the answer is there's twenty-eight sticks, do you 
185  (1.9) 
186 Stevie: u:m:= 
187 Tanya: =no, we agreed there was actually forty-nine sticks. 

In this first extract we can see two partial repeats of Stevie’s answer by the teacher Tanya. The first 
of these in turn 182 repeats only a small part of what Stevie said in turn 181 and uses a designedly 
incomplete utterance (Koshik, 2002) which Stevie completes in turn 183. Whilst Tanya’s turn is a 
partial repeat and includes the initial inference marker ‘so’, it does not invite Stevie to agree or 
disagree with the repetition, rather it invites Stevie to add the missing part of this repetition. This 
repetition shows that Tanya has heard what Stevie said, but not necessarily that Tanya has understood 
in that there is no interpretation or inference drawn as part of this turn (Sacks, 1992; Ingram, 2020). 
However, the ownership of the contribution remains with Stevie. 

The next repetition in turn 184 is doing something different. The twenty-eight is repeated but 
additional details are added by Tanya including that she has understood Stevie as saying that the 
answer is twenty-eight and connecting this ‘answer’ to the original question by adding the qualifier 
‘sticks’. The inclusion of ‘you think’ means that the ownership of this answer again remains with 
Stevie, however the addition of ‘do you’ at the end, as well as the prosody of the turn, indicates that 
there is a problem with this answer. The lengthy pause and Stevie’s hesitation following this turn 
show that Stevie also treats there as being a problem. Whilst the ‘you think’ attributes the answer to 
Stevie, this problematisation brings into play the teacher’s expertise and knowledge to make an 
evaluation of this answer, even though there is no explicit evaluation. The negative evaluation is then 
made explicit in turn 70, where the use of ‘we agreed’ attributes the knowledge that the answer is 49 
sticks to the whole class. 

In the first example turn 184 has many of the structural features of revoicing described by O’Connor 
and Michaels (1993) and can also be described as summarising, enabling the rest of the class to hear 
what Stevie has said, acknowledging his contribution and giving him authorship of what is being said, 
and positions Stevie in relation to the academic task. Yet in turn 187 the teacher closes down the 
potential to build on, facilitate a student debate, or offer the opportunity for other students to agree or 
disagree with Stevie’s turn. So, whilst turn 184 shares many of these structural features, its actions 
within the interaction itself treat the students’ contribution as problematic, rather than as an idea to 
be used and argued with in a way that gives students some agency over the mathematics. It does not 
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give Stevie ‘a voice’ in the ongoing interaction. Later in the interaction it turns out that Steve’s 
contribution answers one of the questions the class has been working on, but is the answer to how 
many more sticks are needed (28), rather than how many sticks in total are needed (49). 

Example 2 

In this example the students are analysing a mechanics problem in a revision lesson focusing on 
moments, where a simple diagram is drawn on the board. The students have already suggested that 
the question is about taking moments and the teacher is now asking where the students should take 
moments about. 

455 Tess: …so where do you think would be a good place if this is what I'm trying to 
find, to decide to consider the moments about that particular place. (.) just 
pick something and if it's wrong we can talk about 

456 Sam: if you're measuring from A, 
457 Tess: from A, so take moments about A. okay what you think about that Skylar. 
458 Skylar: er would B be easier, as we know the distance is one. 
459 Tess: so you want to take moments about B 
460 Skylar: yeah 
461 Tess: Sian: 
462 Sian: if you take moments about A you can ignore the reaction on A. so it's 

probably better to take about A 
463 Tess: because what would happen if we do what Skylar says. 
464 Sasha: then you would have another unknown,  
465 Tess: so then you'd have to do a bit more work because then you'd need another 

equation, and then you'd have to solve them simultaneously. so what are you 
suggesting, are you agreeing with Sian Sasha. 

466 Sasha: yep 
In turn 457 Tess reformulates Sam’s suggestion in a more complete, and mathematically appropriate 
way within the context of this task and this classroom. The turn includes the discourse marker ‘so’, 
but the next turn is not offered back to Sam to affirm or deny that they are suggesting that moments 
should be taken about A. Instead, Tess invites another student to comment on that suggestion. In turn 
459, Tess reformulates again into a more mathematically appropriate way and in a way that is 
consistent with her reformulation in turn 457, again using the discourse marker ‘so’, but this time she 
returns to the turn to Skylar to affirm her interpretation (turn 460). Sian then offers an argument for 
why they should take moments about point A. Tess then prompts for a justification for why Sian 
would not choose Skylar’s suggestion of about point B, which Sasha gives, before adding additional 
reasons to Sian’s argument, using the discourse marker ‘so’ and the pronoun ‘you’. Tess ends this 
turn by returning the turn to Sasha to affirm or deny whether they agree with Sian. 

In this second example none of the teacher’s turns have all of the structural features of revoicing 
described by O’Connor and Michaels (1993) but do have many of the functions such as supporting 
mathematical argumentation, supporting the use of mathematical language, giving students credit for 
ideas and attributing authorship and ownership, and asking other students to agree or disagree with 
the idea being revoiced. The teacher also positions students in relation to other students’ ideas and in 
relation to the academic task being undertaken, as well as positioning in relation to accepted 
mathematics. 
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Conclusion 
The precise features of teacher repeats of students’ words influence the negotiation of epistemic rights 
and responsibilities within the interaction.  Revoicing is different from rephrasing, repeating or 
reformulating in the epistemic roles and responsibilities teachers and students have.  With revoicing 
the responsibility for the knowledge in interaction remains with the student(s), but also the students 
have the right and the responsibility to evaluate the knowledge that is being repeated. This is in 
contrast to rephrasing, repeating or reformulations where the teacher takes on this role and 
responsibility. There are consequently important differences between revoicing and other terms 
which have consequences for the status and negotiation of knowledge in mathematics interaction.  
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Study background 
Developing understanding of graphs and change involves alteration in students’ mathematical 
discourse and teachers play a critical role in developing this through their own language and gestures 
and their responses to students (Schleppegrell, 2007). Prediger and Şahin-Gür (2020) have explored 
changes in students’ language as they worked on qualitative calculus tasks involving complex 
situations such as decreasing positive rates. In pre-calculus contexts, research has found persistent 
difficulties with students confusing high rates with high values and in grasping that a graph represents 
a relationship between variables (Watson et al., 2013). In this pilot study we combine techniques from 
Systemic Functional Linguistics (SFL) and gesture analysis to explore teachers’ discourse in online 
teaching videos about graphs. Our research question is ‘How are graphical concepts constructed 
through teachers’ choice of language and gestures?’  

Theoretical Framework 
SFL characterizes written or spoken text as the product of choices in a system of language and practice 
(Halliday & Martin, 1993). SFL techniques permit analysis of the ideational, interpersonal and textual 
functions of a text. In our context, these functions tell us, respectively, about the nature of graphs, 
and how teachers and students interact around that knowledge, via discrete texts. SFL is a way to 
identify features and functions of the mathematical register, such as characteristic grammatical 
structures and technical terms (Halliday & Martin, 1993), and to analyze school texts (Morgan, 1998).  

Mathematics teaching videos combine language, diagrams, symbolism and gesture and can therefore 
be viewed as multimodal, dynamic texts. We are interested in how moving between modes supports 
use of different representations in building mathematical arguments. We are also exploring types of 
gesture to help analyze mathematical reasoning, particularly pointing, depictive gestures and tracing 
gestures (Alibali et al., 2013) and how language and gestures together contribute to the ideational, 
interpersonal and textual functions of these multimodal texts.  

Method 
Even before the rapid growth in online teaching due to COVID-19, there was a growing phenomenon 
of online videos published by mathematics teachers and watched by thousands of teachers and 
students. These videos offer an opportunity for researchers to explore teachers’ language and gestures 
when introducing particular topics or presenting worked examples in a planned environment. The 
videos provide information about what the teachers deem important in explanations and may indicate 
what difficulties they anticipate students might have. 

Two teachers gave consent for us to study five of their published videos in pre-calculus and calculus 
courses. The videos provide simultaneous access to speech, gestures and annotations. We used SFL 
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to analyze transcripts alongside the videos to retain their multisemiotic nature. We then analyzed 
gestures accompanying each clause and how they related to diagrams or annotations. Here we present 
our approach to analysis, with examples from a video about estimating the gradient of a curved graph.  

Preliminary findings 
From the video transcript we identified participants and processes, which contribute to the portrayal 
of mathematics. The teacher’s language choices interweave mathematics as human activity, such as 
We want, Do you remember…?, Let’s pick (in which humans participate in mental or material 
processes), with mathematical objects participating in material and relational processes: a line which 
touches the curve, the gradient’s becoming quite steep. We conjecture that changes from human 
participants to mathematical objects mark shifts from episodes of demonstration to mathematical 
argument and vice versa. We also found human activity and explanation interjected within relational 
processes concerning mathematical objects: ‘the gradient // which we sometimes use m to denote // 
is going to be the change in y // so these are the y values //… // over the change in x //…’ This may 
be a feature of a teaching register, concerned with connecting what the teacher is doing to the 
mathematical register, since this episode concludes with a densely-packed nominal group ‘So [the 
gradient at [this particular [point on this curved graph]]] is 3’, which is more typical of the 
mathematical register. 

Gestures can expand the meaning of text. Here we noted their use alongside repeated speech. For 
example, ‘x is 2’ accompanies pointing to an equation and is repeated while pointing at 2 on the x-
axis and tracing vertically up to the curve. This may emphasize the shift in representation as well as 
creating a point on the curve from a correspondence perspective, so has textual and ideational 
functions. 

Our poster will elaborate our analysis of teachers’ multimodal discourse on graphs. 
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Linguistic features of word problems that cause difficulties for 
learners across the curriculum: A literature review 
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Word problems can be challenging for learners of all ages on different levels. In this paper, specific 
linguistic requirements and features of word problems contributing to the difficulties for learners will 
be discussed. For this purpose, first results of a literature review are presented. The literature was 
analysed according to the model of genre features (Rezat & Rezat, 2017) as a theoretical framework. 
In the course of the literature review, a system of categories was developed to differentiate the 
linguistic features addressed in the respective studies. The studies that were assigned to the feature 
of linguistic complexity are discussed in detail with the aim of identifying specific linguistic features 
of word problems that cause difficulties for learners. The curricular context and the mathematical 
content of the studies will also be discussed. 

Keywords: Word problems, literature reviews, syntax, linguistic complexity. 

Introduction 
In the sense of the spiral curriculum, applications are regarded as a topic that should be treated in an 
appropriate way at different grade levels (Müller & Wittmann, 1984, p. 4193). Word problems are a 
central type of task of teaching applications of mathematics at all ages. Therefore, they can be seen 
as a specific genre of mathematics education. A genre is defined as a “pattern of cultural-social 
interaction in a particular context” (Rezat & Rezat, 2017, p. 4193). In general, language and language 
use made for didactic purposes is an issue in every subject (Schleppegrell, 2004). Schleppegrell 
(2004, p. 82) points out that "[s]chool is a culture with its own expectations for particular ways of 
using language. [Therefore,] students need to learn about genres of schooling and the purpose for 
which they are useful." 

Research has shown that learners at all ages have difficulties with word problems. Daroczy et al. 
(2015) point out that those features of word problems, which generate difficulties for learners can be 
at mathematical, factual-semantic, and linguistic-syntactic levels. However, it is unclear which 
specific challenges these are, in which grades and for which mathematical contents these are relevant, 
how they develop within the curriculum, and whether difficulties in one mathematical context can 
also be transferred to other mathematical content areas. Furthermore, Daroczy et al. (2015) highlight 
that a comparison of previous research results related to word problems is usually not possible. 
Verschaffel et al. (2020) reinforce this statement. They point out that various (international) research 
projects on word problems focus on different perspectives about the research topic. Therefore, there 
is a need for a systematic analysis of pre-existing research results that addresses the requirements and 
the characteristics of word problems that generate difficulties for learners from a curricular 
perspective. The systematic analysis of the research findings presented in this paper will focus on the 
results related to linguistic features of word problems and how they impose difficulties on learners. 
The following research questions will be addressed: 
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Q.1: What are linguistic features of word problems that cause difficulties for learners across primary- 
and secondary1 level curriculum? 

Q.1.1: What specific linguistic features of word problems have been investigated in previous 
research? 

Q.1.2: Which of these specific linguistic features of word problems affect the learners' 
solution processes and quality of solutions? 

Theoretical framework of the literature review 
In order to be able to systematically represent the research results with regard to linguistic task 
features, the model of genre features (Rezat & Rezat, 2017) was used as an instrument. It is grounded 
in the pragmatic linguistic approach. In the model, a genre is described as a connection between the 
type of act and the text type. The authors describe the relationship of both main categories in the 
model as follows: "The type of act directs the expectation of the text type while features of the text 
type, especially the formulation patterns, indicate the type of act." (p. 4196). The main category type 
of act was defined based on Halliday‘s (1985) modelling of the situation of the text, integrating the 
three social functions of language: field, tenor and mode. Structural features (structure of the text) 
and linguistic features (language features) are assigned to the main category text type. The main 
category text type is used as a framework in the literature review to systematically identify studies in 
which linguistic and structural features of word problems are discussed. On basis of the systematic 
literature review, the genre-specific language features of word problems are determined. Language 
features that cause difficulties for learners are defined as features that impair learners' solution 
processes and/or quality of solutions. 

 

 

 

 

 

 

 

 

 

 

Figure 1: model of genre features 

 
1 The differentiation between primary and secondary school is based on the international standard. Primary level is 
understood up to and including grade 6. 
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Methodology of the literature review 
In this section, the procedure of the literature review, which was conducted systematically is 
presented. Based on a specific literature search via the online literature database ERIC 
(https://eric.ed.gov)2 a corpus consisting of 354 scientific articles (peer reviewed) was identified. The 
identified corpus was analysed based on qualitative content analysis according to Mayring (2015). 
The main category text type of the model of genre features with the subcategories structure of the text 
and language features was used to systematise the results. The category language features, which is 
the focus of this paper, comprises studies that analyse specific lexical or grammatical features of a 
text. Considering these criteria, a review of scholarly publications was conducted to determine the 
extent to which structural and language features, especially the lexical or grammatical features of 
word problems were addressed. For the review of the whole corpus, exclusion rules were also set and 
used for the analysis. This led to the removal of contributions that are not relevant in connection with 
the research questions. Consequently, papers that discuss the performance of learners with word 
problems (presentation in first and second language) and do not discuss the influence of linguistic 
features of the task, that analyse teachers’ behaviour with word problems, and those that present 
interventions of teaching methods were excluded. Furthermore, studies that focus on interaction 
processes between learners, studies that address word problems from preschool or adult education 
and studies that address language/mathematical difficulties of learners with disabilities are excluded. 
The remaining corpus was analysed using the deductively developed categories and, if necessary, 
was extended by inductively formed categories.  

Results 
By means of the procedure described above, a total of 20 scientific publications were identified in 
which specific language and structural genre features of word problems in different grade levels are 
addressed. Of these 20 papers, 14 papers were assigned to the subcategory language features. The 
following section presents the results related to research question 1.1, followed by the results related 
to research question 1.2. 

Results of the literature review in terms of investigated language features 

The categories of language features provided in the model of genre features (Rezat & Rezat, 2017) 
were too general to allow for a differentiated view of the specific linguistic features of word problems 
that have been addressed in previous research and how they impose difficulties on learners. Therefore, 
the 14 scientific publications assigned to the category language features were inductively classified 
into different subcategories in order to be able to differentiate the particular language features that 
were investigated in these studies. In total, 5 subcategories could be developed.  

Table 1 shows the subcategories describing the language features addressed in the respective studies 
and their definitions as well as the grade levels, in which the language features were investigated.  

 
2 The following search term was uses: (“Word problems” OR “Story problems”) AND (language OR syntax OR “text 
structure” OR “word order” OR lexicology OR “visual aids” OR “illustrations”) 
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Table 1: Inductively formed category system of the literature review 

Inductive 
category 

Definition of the category: Studies, … Number of 
studies 

Grade 

(In-) 
consistency  

of language 

… in which the influence of (in-)consistent language in the task is 
addressed in relation to the solution or comprehension processes. 

5 1, 2, 3, 
4 and 5 

Personal 
pronoun 

… in which the influence of personal pronouns in the task is discussed 
in relation to the solution or comprehension processes. 

2 1 and 4 

Vocabulary 
… in which the influence of the vocabulary of the word problem and 

the vocabulary of the learners are addressed in relation to the solution or 
comprehension processes. 

3 1, 7 and 
8 

Linguistic 
complexity 

… in which the influence of lexical and/or grammatical features and/or 
features of the information structure related to the solution or 

comprehension processes are addressed. 

5 1, 2, 5, 
7, 8, 9 
and 10  

Deictics 
… in which the influence of deictic expressions in the task is discussed 

in relation to the solution or comprehension processes. 
1 10 

The category syntactic/linguistic complexity comprises studies in which a combination of several 
individual linguistic features was varied at once in order to determine the influence of this variation 
on students’ solution processes and/or quality of solutions. Since this feature is linguistically 
conceptualised differently, an overview of which linguistic features were (systematically) varied in 
the related studies is given to discuss this category in more detail. The linguistic modifications of 
word problems that were made in the study of Abedi and Lord (2001, p. 221) included: Unknown or 
rare words were changed, passive verb forms were transformed to active ones, long nominals were 
shortened, conditions were replaced by separate sentences, or the order of conditional and main 
clauses was changed, abstract or impersonal utterances were made more specific, complex questions 
were simplified by using simple question words. Leiss et al. (2019) increased the linguistic challenges 
of word problems by modifying four features: vocabulary, use of connectives, complexity of 
grammatical structures and information structure. In another study, a higher linguistic complexity 
was created by combining three original sentences of the tasks into one complex sentence (Muth, 
1984). The following linguistic characteristics were varied individually in the study of Walkington et 
al. (2019): number of sentences, word hypernymy, pronouns, word concreteness, consistency of 
sentences, the topic of the task. Ambrose and Molina (2014) see linguistic complexity at the level of 
syntax and vocabulary.  

Summarising this overview, it becomes apparent that on the one hand there are studies that focus on 
individual linguistic features of word problems, while on the other hand some studies focus on a 
combination of linguistic features. These studies generally relate to syntactic/linguistic complexity. 
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However, the notion of syntactic/linguistic complexity is defined differently in the studies and 
comprises different combinations of individual linguistic features.  

Results of the literature review in terms of how language features impose difficulties on learners  

In the next step, the results of the studies in the different categories were interpreted in terms of how 
the language features affect students’ solution processes or quality of solutions. The studies that have 
been assigned to the category (in-)consistence of language show controversial indications of the 
extent to which this feature influences the solution processes and quality of solutions. The two studies 
assigned to the category pronouns show no evidence that this feature influences the solution processes 
and the quality of solutions by learners. The overall view of the studies that were assigned to the 
category vocabulary, however, suggests that there is a fundamental translation problem on the 
procedural and conceptual level on the part of the learners and that possible difficulties cannot be 
explained by the feature vocabulary alone. The study that was assigned to the category deictics 
showed evidence that a certain type of error occurs particularly frequently in the field of algebra when 
the tasks contain indexical expressions. Since only one study was assigned to this category, a more 
comprehensive view of this language feature is not possible.  

This broad overview already suggests that the hypothesis that difficulties of learners working on word 
problems can not necessarily be attributed to individual linguistic features. This is also supported by 
the study by Walkington et al. (2019). They analyse the influence of linguistic complexity by varying 
individual linguistic features of word problems separately and systematically. In this study, in total 
451 American students from different school districts from grades 7 to 12 participated. The students 
were asked to complete different task variations that were presented on a free online homework 
platform. For this purpose, the word problems from the content area of linear functions were used. 
The tasks were systematically varied with regard the six different linguistic features mentioned 
earlier. Each feature was also varied in terms of three levels of difficulty. Students were not given 
any special instructions that they were taking part in a research study. The accuracy of the solutions 
and the reaction time were determined with the help of the digital platform. Overall, the authors were 
able to show that there is little evidence that individual linguistic features have a significant influence 
on students’ performance in solving the word problems in the different grades. Therefore, the results 
of the studies classified as investigating linguistic complexity will be discussed in a differentiated 
way with regard to research question 1.2. Table 2 provides a more detailed overview of the studies in 
which the feature of linguistic complexity is discussed.  

Table 2: List of studies on linguistic complexity of word problems classified by grade levels 

Studies on linguistic complexity of word problems 

Grades 1 and 2 Grades 3 and 4 Grades 5 and 6 Grades 7 und 8  Grades 9 und 10 

Ambrose and 
Molina (2014)  

 

 

 

Muth (1984) 

 

 

Leiss et al. (2019) 

Abedi and Lord (2001) 

Walkington et al. (2019) 

Walkington et al. 
(2019) 
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Abedi and Lord (2001) investigated the influence of language in word problems on learners' 
performance. For this purpose, the authors conducted two separate field studies. The first study was 
a perception study. For this reason, in total 36 eighth graders at four school sites in the Los Angeles 
area were presented original NAEP (National Assessment of Educational Progress) maths items and 
parallel revised tasks in simplified language. The mathematical requirements were kept constant. In 
a standardized interview, learners were asked which tasks they would choose in an exam situation. 
Each learner had to answer this question for four pairs of tasks (original and modified). This study 
shows that the majority of the learners preferred the modified tasks to the original tasks. In the second 
study, the Accuracy Test Study, 1174 American students in grade 8 from 39 classes were given a 
paper-and-pencil math test. The test included 10 original NAEP math items, 10 items with linguistic 
modifications as described above, and five noncomplex control items. Two different test booklets 
were developed where the original items are modified were developed comprising original and 
modified test items. Here, the students’ scores on the original and linguistically modified items were 
compared. In principle, the linguistic modification also led to a significant difference in the 
mathematical performance of the learners. The modified tasks could be also handled better by the 
students, certain groups of learners particularly benefited from the linguistic modifications. 

Leiss et al. (2019) reconstruct and investigate learners' comprehension processes when solving word 
problems and, among other things, address the question of what role task characteristics (complexity 
of the situation, linguistic complexity) play for the comprehension process. In their study, 55 seventh-
grade German-speaking students attending three comprehensive schools were asked to complete three 
reality-based tasks on the topic of linear functions, which were systematically modified in terms of 
the complexity of the situation model and the linguistic requirements. The sessions took place under 
laboratory conditions and the students were required to solve the tasks by using the Think Aloud 
Method (p. 137). In this context, it was shown that the linguistic complexity influences the learners' 
comprehension more than, for example, the context into which the tasks are embedded.  

The studies by Abedi and Lord (2001) and Leiss et al. (2019) showed that English-speaking learners 
are more likely to work on tasks with lower linguistic complexity. This means that the variations in 
the linguistic complexity (as defined by the authors) of the tasks resulted in a better understanding of 
the mathematical requirements by learners. In this context, it was also observed that tasks with lower 
linguistic complexity yielded higher rates of correct solutions. The results of Leiss et al. (2019) 
showed that the linguistic complexity of the tasks influences the comprehension of German-speaking 
learners more than the context of the task. At this point, it can be assumed that higher linguistic 
complexity (of different linguistic characteristics) can be understood as a feature that creates 
difficulties for learners.  

In the two other studies, the feature of linguistic complexity was investigated using task examples 
from primary level. The main purpose of the study by Muth (1984) was to determine the relative 
importance of computational ability and reading ability to the solution of arithmetic word problems. 
Furthermore, Muth (1984) investigated how learners deal with different requirements imposed on 
them by different word problems. In this context, 200 sixth graders from two middle schools were 
asked to solve word problems that were modelled on NAEP tasks. Adding irrelevant information to 
the word problems forms a computational/problem solving demand in this study (p. 206). The 

Proceedings of CERME12 1576



 

 

variation of syntax represents a reading-related demand (p. 206). These tasks were used to test 
learners' skills in addition, subtraction, multiplication, and division. Four versions of the test were 
created by developing two versions with variations in the additional information and two versions 
with variations in the complexity of the syntax. The results showed that the variation of syntax had 
no influence on the accuracy of the solution. Ambrose and Molina (2014) were able to show in a 
study that it were not so much the superficial linguistic features of the text, including syntax and 
vocabulary, that hindered the children's successful interpretation, but rather the situations and the 
limited information provided about them that affected comprehension. The study involved 18 first 
grade Spanish/English bilingual learners who were asked to retell and solve word problems in their 
first and second languages. Addition/subtraction and division tasks served as the mathematical 
content here. This contradicts the above-mentioned results by Leiss et al. (2019). There, the context 
of the task did not have as strong influence on the understanding of the tasks as the linguistic 
complexity for learners in seventh grade. A possible interpretation of these contradicting results of 
the two studies might be that learners in higher grades have more in-depth contextual knowledge than 
primary grade learners. The latter may need more detailed explanations on the context of the tasks in 
order to develop an appropriate understanding of the factual situation to be able to solve the task.  

In summary, studies that varied single linguistic features show no clear influence on the learners' 
performance (Ambrose & Molina, 2014; Muth, 1984; Walkington et al., 2019). Studies in which 
several linguistic parameters were varied show evidence that lowering linguistic complexity leads to 
higher rates of correct solutions (Abedi & Lord, 2001). 

Discussion 
Summarising the results of the literature review to answer research question 1.1, it was possible to 
provide an overview of linguistic features that were investigated in previous research on word 
problems. Within the framework of this review, the following language features could be found: (In-) 
consistency, personal pronoun, vocabulary, syntactic/linguistic complexity and deictics. From these 
categories, linguistic complexity is conceptualized in different ways in the studies.  

To answer the research question 1.2, first insights from the review of all studies were summarised 
and a differentiated review of the studies which were assigned to the category linguistic complexity 
was conducted. The language features (in-)consistency, personal pronoun, vocabulary and deictics 
appear to be features that are defined and used in the studies in a widely consistent way. Even if the 
research subjects in the studies differ to some extent, it is possible to draw careful conclusions about 
features that cause difficulties for learners. Considering the studies on linguistic complexity, which 
are linked to secondary school content, multiple variations were made (Abedi & Lord, 2001; Leiss et 
al., 2019). The results of these studies suggest that the features that generate difficulties cannot be 
attached to individual linguistic features, but rather the language as a whole system controls how 
mathematical demands of the task need to be perceived and mastered by learners. It has become 
apparent that learners perform better with reduced linguistic complexity (Abedi & Lord, 2001). The 
studies in which selected linguistic features were modified seem to confirm this hypothesis (Ambrose 
& Molina, 2014; Muth, 1984; Walkington et al., 2019). Linguistic complexity as a genre feature 
seems to be a phenomenon that takes on different forms.  
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In terms of limitations, it should be noted that only a small number of studies were considered in this 
paper and the conclusions need to be substantiated by further studies. In the further course of this 
project, the analysis presented in this paper will be used as a starting point to carry out a task analysis 
with the aim to describe the connection between the language and the mathematical content in a more 
differentiated way with a particular focus on how the mathematical and linguistic demands of word 
problems develop across primary and secondary mathematics curriculum. 
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In this paper, interviews with teachers and preservice teachers are analysed to understand their views 
about using digital tools in mathematics classrooms, connected to language-diverse students’: 
communication; potential for learning; and available identities. When digital tools were seen only as 
providing ways to utilise the home language so that existing mathematical knowledge could be used 
to complete tasks in the language of instruction, then language-diverse students’ available identities 
were reduced to becoming like their non-immigrant peers. In contrast, when digital tools were 
considered as providing opportunities for utilising a wider range of their language resources, then 
preservice teachers broadened their views about language-diverse students’ potentials for learning 
and available identities. 

Keywords: Digital tools, multilingual classrooms, teachers, preservice teachers. 

Introduction 
Researchers have suggested that digital tools, both software and hardware, can facilitate language-
diverse students learning mathematics (Le Pichon et al., 2021; Freeman, 2012). However, most 
research, such as that of Le Pichon et al. (2021) and Freeman (2012), used individualised computer 
programs, which provided instruction in the home language. The rationale for these studies was often 
based on teachers needing support in interpreting students’ mathematical work, because with the 
“variety of languages present in the classroom, teachers do not always have the necessary tools and 
expertise available to appeal to every pupil’s home language” (Van Laere et al., 2017, p. 98). These 
approaches raise two concerns: teachers became almost redundant in the teaching process; and only 
the student’s home language was considered a resource for learning mathematics.  

Yet, as Libbrecht and Goosen (2016) stated, “the introduction of ICTs into mathematics teaching 
brings different ways to express and perceive mathematical activities, concepts, and phenomena” (p. 
217). For example, dynamic geometry programs, such as GeoGebra, are considered as providing easy 
manipulation of multiple representations, “the use of dynamic representations promotes geometric 
thinking and provides visual, algebraic and conceptual support for the majority of students” 
(Dockendorff & Solar, 2018, p. 67). Thus, digital tools could utilise language-diverse students’ range 
of resources for learning mathematics, because the different modes, such as graphs and symbolic 
algebra, contribute to meanings about a mathematical idea being developed. Nonetheless, little is 
known about how teachers use digital tools to support language-diverse students to activate their 
repertoire of resources. In this study, we analyse interviews with teachers and preservice teachers 
about using digital tools to support language-diverse students to learn mathematics.  

Knowing what teachers do and the possibilities that they see for using digital tools to teach 
mathematics in multilingual classrooms is important for designing appropriate teacher education 
courses and professional development experiences. In Norway, concern has been expressed that 
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teacher education is not providing adequate support for preservice and inservice teachers to 
incorporate digital tools into their teaching (Søby, 2013). A survey by Guðmundsdottir and Hatlevik 
(2018) of newly-qualified teachers found that nearly half felt that their professional digital 
competency was poor because of poor initial teacher education. Yet, in the most recent Norwegian 
mathematics curriculum “digital skills” are highlighted as one of five “basic skills” for students, with 
programming being a required part of mathematics education in schools (Kunnskapsdepartementet, 
2019). As well, concern has been expressed about mathematics teacher education, in Norway, 
providing adequate support for preservice teachers to facilitate language-diverse students to utilise 
their language resources (Rangnes & Meaney, 2021). Therefore, there may be a mismatch between 
what language-diverse students need from experiences with digital tools, both for learning 
mathematics and for later life, and with what teachers know how to provide. Thus, designing 
appropriate courses for preservice and inservice teachers is important based on what they already 
know as well as what they do not know. 

In this paper, we explore how teachers and preservice teachers (PTs) consider digital tools could be 
used in multilingual mathematics classrooms. As so little research has been done in this area, there is 
a need to scope the field and identify what kinds of connections can be made between language-
diverse students, digital tools and mathematics teaching and learning. The data is from five individual 
teacher interviews and one focus group interview with five preservice teachers. For the analysis, we 
use a theoretical model from earlier research (Rangnes & Meaney, 2021) to describe some of the 
complexity of teachers’ views. 

Theoretical framework 
The “multimodalities, signs and signs-maker in a social context” (MSSM) model was developed as 
part of a larger project exploring how preservice teachers learn about teaching argumentation for 
critical mathematics education (LATACME) in multilingual classrooms. This model is designed to 
understand how respondents, such as teachers, describe the possibilities they see as being available 
to another group, such as students, when particular resources, such as dynamic geometry and 
Minecraft, are considered to be vehicles for carrying meaning – semiotic resources. 

 
Figure 1: Multimodalities, signs and signs-maker in a social context (Rangnes & Meaney, 2021) 

MSSM was built on Bezemer et al.’s (2012) work on multimodal social semiotics. In Figure 1, the 
oval symbolizes the social context, in which interactions, involving language-diverse students and 
digital tools, are embedded, as described by the (preservice) teachers. In any interaction, semiotic 
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resources carry meanings. The potential for semiotic resources to be considered as appropriate 
meanings becomes recognisable, as a result of previous interactions. Therefore, the interaction is not 
separated from the wider context. Kress and van Leeuwen (2001) described how semiotic resources 
carry extra meanings, through provenance and connotation. Provenance describes how meanings are 
imported with the use of signs/semiotic resources from one context (culture, social group, etc.) to 
another, such as when Minecraft is seen as a play activity in a mathematics classroom, because of 
students’ home experiences. As a result, the kind of meanings that students consider that Minecraft 
can carry is limited to what is usual in the home situations. The connotations connected to a sign, 
such as a block house in Minecraft, through the use of a particular mode, the graphic representation, 
are the socio-cultural values and backgrounds that provide extra information, such as a house being 
associated with somewhere to live. Participants in an interaction use the meanings from the 
provenance and connotation of a sign to make interpretations in an interaction, even if the sign maker 
had not intended for it to be understood as having these extra meanings. 

In Rangnes and Meaney (2021), preservice teachers described the sign makers’ (the students’) choice 
of modalities, such as spoken or written language, to produce and interpret signs that carried meaning 
for the students in mathematics lessons. Interpreting PTs’ descriptions of the use of different modes 
in the interactions provided insights into how PTs considered the students’ communication, potential 
for learning and the available identities affected and was affected by the social context of the 
mathematics lesson.  Communication occurs in interactions between people and between people and 
artefacts. Communication is linked to learning potential as it is through interactions that there is a 
potential to meet and engage with new ideas. In our study, we analysed (preservice) teachers’ views 
on how language-diverse students could produce mathematical meaning, using different digital tools 
as a way of identifying learning potential. Similarly, we consider available identities to be the kinds 
of identities that the teachers implied were available to language-diverse students, when making use 
of digital tools as semiotic resources.  

Methodology 
The data was collected as part of larger, Norwegian-wide, research projects that both authors 
participate in. The focus group interview with preservice teachers was done by project colleagues and 
the five individual teacher interviews were collected by master students. Both the preservice teachers 
and the teachers taught grades 5-10 in Norwegian schools. The semi-structured interviews used a 
similar set of questions about a wider range of topics to do with using digital tools in mathematics 
classrooms. In this article, we only investigate responses about multilingual classrooms, which came 
towards the end of both sets of interviews. The format of the interviews and the different interviewers 
means that although the questions about digital tools and multilingual classrooms were similar in 
intent, they were not the same. However, as our intention is not to compare the results but to identify 
issues of interest, we consider that the interviews are sufficiently compatible to do a similar analysis. 

In the previous research with this model, the preservice teachers had discussed specific episodes 
where students engaged with mathematics outdoors (Rangnes & Meaney, 2021).  In the interview 
data, the (preservice) teachers sometimes described specific examples, but often described the 
potential with digital tools at a general level. Therefore in the analysis, we considered how the 
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(preservice) teachers described aspects of modes, communication, available identities and potential 
for learning at a general level. The modes were the different kinds of representations that the 
(preservice) teachers identified as being important in multilingual mathematics classrooms. We 
identified comments to do with communication as those which talked about the purpose of 
communication in multilingual mathematics classrooms. Available identities were comments that 
(preservice) teachers made about language-diverse students as mathematics learners, while learning 
potential were comments about the kinds of learning that was made available in the mathematics 
classroom to language-diverse students. By considering how each of the aspects interacted together, 
we were able to consider how the (preservice) teachers considered the complex relationship between 
mathematics, digital tools and language-diverse students. 

In the next section, we first describe our analysis of the teacher interviews and then the focus group 
interviews with the preservice teachers, by considering the modalities, the communication, the 
available identities and in the discussion and conclusion section, we discuss the results across the two 
data sets and what it means for teacher education programmes. 

Teacher interviews 
Modalities  

The modes that the teachers highlighted in the interviews were mostly spoken and written language, 
including symbolic mathematics. Generally, mathematics was considered to be universal in these 
modes, “there are a few other words for things. But otherwise, it is exactly the same mathematics. It 
is generally valid” (Teacher2). As a result, the teachers focused on digital tools which translated 
instructions or translations of the students’ answers. This would be through audio input or videos in 
the students’ home language, which would enable the students to make sense of instructions 
illustrations and calculations, presented in Norwegian. T4 summarised that “the strength of the digital 
is that it is visual and a bit with being able to translate things”. The benefit of visualisation was 
mentioned also by T1 as good for developing students conceptual understanding, but here 
visualisation seemed to just be referring to watching a replacement teacher on a video, not 
visualisation as described by Dockendorff and Solar (2018). The focus on these modes may have 
been because the teachers expected students to learn from listening to a teacher and reading a 
textbook. These expectations, or provenance (Kress & van Leeuwen, 2001), produced from earlier 
experiences, of mathematics teaching could lead to the assumption that if the student was unable to 
understand the teacher or the textbook, then they would be unable to learn mathematics.   

Communication 

In the interviews, the teachers highlighted the purpose of communication as being to gain access to 
the mathematical meanings that the students conveyed in their written work, with an assumption that 
the teachers needed to evaluate it, “it is a pity that one (the student) does not get to show their 
mathematical competence just because it is the wrong language” (T4). T2, T3 and T5 described how 
they could talk with students who spoke English as a second language, but, as T2 stated, students who 
used Polish would be problematic because the teachers would not understand. Consequently, T2, T3, 
T4 and T5 valued translation programs, such as Google Translate, or the opportunities in Excel, 
GeoGebra to change the language, because the students were then able to demonstrate their 
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knowledge. For example, in written argumentation, the students could use translation programs to 
write in Norwegian well enough for the teacher to understand. To achieve this purpose, translation 
opportunities were highlighted by all the teachers, particularly when the students had limited 
Norwegian or English, which the teacher could understand. 

The teachers also identified the purpose of communication as being for students to understand what 
was expected of them in class. Translation programs were considered as supporting this to happen, 
“it’s a bit like doing nothing to actually work” (T4). T2 provided a story about a successful 
mathematics student who used it to understand what he had to do. However, T2 also noted that 
translation programs were only useful, “if they can then write in their own language, then you have 
to be good at math, but weak in the language”, with “the language” referring to Norwegian.  

Potential for learning  

The teachers identified potential for learning as occurring when the students could follow the in-class 
teaching and completing textbook exercises. Digital tools were not discussed as supporting students’ 
mathematics learning except for the access they provided to material provided by the teacher or the 
textbook. As a result, digital mathematics textbooks were valued because they had less text (in 
Norwegian) than ordinary textbooks (T3), making them easier to follow for language-diverse 
students. T2 and T5 described how students could watch YouTube videos on a mathematical topic in 
their home language, “I do not know if they (on the video) do it right, but they (the student) can see 
the video and I can see the calculation” (T5). The written calculation allowed the teacher to evaluate 
the students’ learning. However, when language-diverse students had not previously learnt the same 
topics to the same degree as the other students in the class, then the potential for learning was limited. 
They considered that language-diverse students who had gaps, in relationship to what they were 
supposed to do in Norwegian classrooms, were not able to use translations programs or video lessons 
to bridge into the current mathematics classroom learning.  

Available identities 

The teachers were focused on bridging language-diverse students into existing classroom practices. 
Consequently, the students were described as having available identities either of being high achiever 
in mathematics from their previous countries or being low achievers with gaps in their 
understandings. As T5 stated, “to learn mathematics you have to have a foundation consisting of 
concepts and a language, and then be able to build on it”. The high-achieving group could benefit 
from using Google Translate. However, language-diverse students with gaps in their mathematics 
education and limited Norwegian, were unable to take advantage of translation programs and so 
digital tools were not considered to provide any possibilities for supporting their meaning making,  

Often they are not necessarily bad in maths, they just have a lot of gaps and have to work with 
completely different things, things that they should have learned in 5th grade. Some have not got 
instant recall of basic facts to ten, then it becomes very difficult to add twelve and 18. It takes a 
long time (T2).  

When language-diverse students came with such gaps, then digital tools were not considered as 
providing possibilities for supporting mathematical learning. 
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Preservice teachers focus group interview 
Modalities 

In the focus group interview, although they talked about different digital tools when they came to the 
questions on multilingual classrooms, the preservice teachers were asked specifically about 
programming. They described mathematics and programming as types of “language”, where 
language had an implicit taken-for-granted meaning of natural languages. However, there was no 
details about whether they considered written set of instructions as programming or the modes that 
were available when the programs were run. 

Communication 

The preservice teachers’ focus on mathematics and programming seemed to be about expressing ideas 
easily, “But as if there are people with both English and Norwegian, different word choices and in 
general. So I think it’s easier, maybe? With programming because it’s so distinctive” (PT2).  Yet, 
what the meaning were that programming could provide were not discussed. Instead, programming 
was described as more precise and distinctive, making it easier to carry meanings. As well, the 
receivers of the meanings, expressed through programming, were not identified. It could be the 
teacher, or it could be other students who were the expected recipients of the communication.  

Potential for learning  

The preservice teachers discussed very generally what language-diverse students would learn from 
using programming. The preservice teachers had recently experienced learning programming and 
recognised that programming languages were unlike English or Norwegian, “so the language they 
use is also different. So, we became a little more aware of what that might mean” (PT3). As a result, 
they considered that programming, as another kind of language, was potentially easier for language-
diverse students to learn. When they began programming, they used “a lot of trial and error”. As well, 
they had been in a classroom and saw that programming was well received by the students “So that 
they wanted more challenges, and then programming had to be good” (PT1). As learning 
programming could be done through trial and error, the preservice teachers considered that the 
students had agency to control what they were doing, in contrast to “complete all the tasks in class” 
(PT1). Therefore, the potential for learning could be seen as being on a metalevel, learning about 
learning strategies rather than about learning specific mathematics or programming skills. 

Available identities 

As with the teachers, the preservice teachers also considered language-diverse students to be students 
with “language difficulties” (PT2). Yet, the precision of the programming language meant that 
students, who were not fluent in Norwegian, or had “language difficulties” could be challenged to 
learn programming. As well, given that few students had experiences with it, then all students would 
be learning it on an equal level: 

Yes, and so maybe most students are equal then, in programming. That not everyone has that much 
experience in it. So, one is in a way on an equal level, or, yes. It is equally unknown, equally 
known to all. And then you are not so outside. (PT2) 
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These reflections provided the PTs with the possibility to consider students as wanting to be 
challenged and not just complete tasks in the textbook and as having equal possibilities to learn 
programming.  

Conclusion 
Digital tools have been promoted as supporting students to learn mathematics by being able to convey 
meanings in a variety of ways (see for example, Dockendorff & Solar 2018). However, when the 
purpose of communication was to access students’ mathematical knowledge, then the possibilities for 
using digital tools were reduced to having the students use translation programs. These programs 
provided the students with ways to show what they could do mathematically while they were learning 
the language of instruction. The use of translation programs provided opportunities to determine 
whether or not the students could become like the Norwegian students in the class, by showing they 
were capable mathematics students. On the other hand, using some digital tools, such as 
programming, allowed language-diverse students to be considered as capable learners, regardless of 
their fluency in the language of instruction. The features of programming language, although not 
discussed in any detail, seemed to provide opportunities to see language-diverse students as being 
similar to their classmates, in that they wanted to be challenged and they had the same capabilities to 
learn, perhaps more so because they had experiences of learning other languages. 

The use of the MSSM to analyse the interviews provided insights into how the purpose of 
communication was connected to the potential for learning and the available identities for language-
diverse students. However, it was more difficult to analyse the focus group interviews than it was to 
analyse the individual interviews because of the level of details provided by participants.   

For teacher education, there are some not-so-simple findings from this research. The teacher 
interviews suggest that if programming is introduced into all classrooms, as the Norwegian 
curriculum (Kunnskapsdepartementet, 2019) now demand, and teachers only see the main role of 
communication in the classroom as interpreting and evaluating students’ work, then it is unlikely that 
language-diverse students would be viewed in alternative ways. The provenance (Kress & van 
Leeuwen, 2001) connected to mathematics teaching, as being predominantly done through textbooks, 
would not allow for alternatives to be noticed. Similarly, even if learning programming does provide 
teachers with ways to see alternative identities for language-diverse students, but connections are not 
made to students’ potential for learning mathematical content then the outcomes for these students 
will be limited. Unless teachers gain insights into how to make connections to mathematical ideas 
and value these connections, then programming can take on the connotation (Kress & van Leeuwen, 
2001) of being game-like and so not a legitimate way for teaching mathematics to any student, 
including language-diverse students. 
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In this pilot, opportunities to engage in mathematical generalization were identified in a section of a 
textbook from year 6. From a social-semiotic perspective, we explored how these opportunities were 
constructed linguistically. While passive verb forms and nominalizations constructed an independent 
character of mathematics, logic expansions constructed limitations for the generalizations. Changes 
in referents constructed opportunities for generalizing actions. 

Keywords: Mathematical generalization, social semiotics, transduction, textbooks, primary school. 

Background 
Mathematical generalization (henceforth MG) has been raised as a big idea in mathematics, for 
example through scaffolding algebraic reasoning, functional thinking and many other mathematical 
activities (e.g., Dörfler, 1991). It is also known that students often have difficulties with, among other 
things, expressing generality and using generalized language (Mason, 1996). Generalized language 
may here be interpreted as a part of disciplinary literacy (Shanahan & Shanahan, 2008), as specialized 
texts and literacy skills are expected of students at more advanced levels of studies. However, big 
ideas are also a part of primary school mathematics (Madej, 2021). Therefore, the expected literacy 
skills and specialization are important to scrutinize also in texts for primary school. 

Despite its importance MG is not in focus in the 2011 Swedish steering documents. The course plans 
hardly mention aspects of generalization (Hemmi, Lepik & Viholainen, 2013), and it has been shown 
that Swedish primary school textbooks after 2011 contain very low proportions of generalized 
arithmetic (Bråting, Madej & Hemmi, 2019). Still, textbooks largely seem to organize the teaching 
in Swedish primary school classrooms (Koljonen, 2020). This makes Swedish textbooks an 
interesting starting point for understanding opportunities to engage in MG. 

Different aspects of language have been compared for various school years in Swedish textbooks in 
various subjects (e.g., Österholm & Bergqvist, 2013). Aspects of language have also been studied in 
textbooks in other countries (e.g., Alshwaikh, 2016). While the degree of abstraction and 
generalization has been studied in Swedish educational texts for social science, natural science and 
literature (Edling, 2006), to our knowledge so far, the ways in which MG is presented have not been 
investigated from a linguistic point of view. Therefore, this pilot study aims to explore and describe 
linguistic aspects of MG in a section of a textbook. The research questions are: 

 What opportunities for mathematical generalization can be identified in the textbook section? 
 In what ways are linguistic resources used to construct the mathematical generalization? 
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Mathematical generalization and a social semiotic perspective on mathematics 
MG entails both generalization as an object or conclusion, and generalizing as an act or process (Ellis, 
2007; Harel & Tall, 1991; Mason, 1996). It has been regarded as e.g., mental processes or social 
interaction across agents and within specific contexts, and may be expressed through gestures, images 
and other semiotic resources, as well as formal symbols or words (Dörfler, 1991; Harel & Tall, 1991; 
Radford, 2018). Ellis (2007) takes an actor-oriented perspective and empirically identifies different 
ways that a learner may engage in MG. In her taxonomy, these ways are described as the generalizing 
actions of relating, searching and extending, and the reflection generalizations of identification or 
statement, definition and influence. Generalizing actions are inferred through activity and talk, while 
reflection generalizations are inferred through statements or the use of a result of a generalization. 
Since textbooks are always oriented towards the students using them, Ellis’ actor-oriented perspective 
seems useful for the present study. However, it is not what students actually do, say or write when 
using textbooks, or students’ mental processes, which are in focus here. Adapting Ellis (2007), we 
look at explicit opportunities in the textbooks to engage in generalizing actions, to read or state 
reflection generalizations or to read or use a result of such a generalization. 

To understand how MG is constructed through written language and other semiotic resources in 
textbooks, we build on a social semiotic perspective and Systemic Functional Linguistics, SFL (e.g. 
O´Halloran, 2005). Central in this perspective is that in any act of communication we make choices 
of language in order to construct a certain meaning (e.g. Halliday & Matthiessen, 2004). This is also 
the case for semiotic resources such as mathematical notation and images (O´Halloran, 2005). 
Further, a change in the semiotic mode, the process of transduction, includes ontological shifts 
(Kress, 2010). Through the “re-articulation of meaning from the entities from one mode into the 
entities of the new mode” (Kress, 2010, p. 125), we believe such shifts may be important for the 
ontological construction of MG. In this paper, various semiotic resources are analysed with SFL to 
understand opportunities to read and write MG in a primary school textbook section. 

Methods 
A textbook for year 6, the final year of Swedish primary school, was considered suitable since MG 
is often considered rather difficult for students to master (Mason, 1996), and therefore, it can be 
expected that a book for older students will contain the largest proportion of opportunities for MG. 
The text analysed in this study is taken from a year 6 book translated from Finnish into Swedish. This 
particular book seemed to include a large variety of opportunities for MG, compared to others.  

In this pilot, we test the methods of analysis. We do not identify all textbook sections where MG is 
offered. Therefore, we selected an initial section on patterns, which was spontaneously deemed to 
offer MG. The selection is small, but we do not seek to generalize the findings in this pilot to a larger 
body of texts. To answer the research questions, two analyses were conducted. Both analyses were 
conducted by one of the researchers, checked by the other, and then discussed until agreed. 

The analysis of mathematical generalization 

To identify the opportunities to engage in MG, we used a taxonomy of mathematical generalization 
(Ellis, 2007). It is presented in our version adapted to textbooks in Table 1. 
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Table 1: Questions for identifying opportunities to mathematical generalization  

MG (Ellis, 2007) Questions posed to the text 

Generalizing action Do the students have the opportunity to … 

Relating  relate situations through the formation of an association between two or more 
problems or situations? 

 relate objects through the formation of a similarity between two or more present 
objects? 

Searching  detect a stable relationship between two or more objects. 

 test if a procedure remains valid for all cases? 

 check whether a detected pattern remains stable across all cases? 

 determine if the outcome of the action is identical every time? 

Extending  expand to a larger range of cases than that from which the phenomenon originated? 

 remove particulars to develop a global case? 

 operate on an object to generate new cases? 

 repeat an existing pattern to generate new cases? 

Reflection generalization Do the students have the opportunity to write (in tasks) or read (in introductory text) … 

Identification or 
statement 

 the identification of a property? 

 a statement of commonality or similarity, or of a general phenomenon? 

Definition  a definition of a class of objects all satisfying a given relationship, pattern or other 
phenomena? 

Influence  an implementation of a previously developed generalization or an adaption of an 
existing generalization to apply to a new problem or situation? 

The SFL-analysis 

Linguistic generalizations may be constructed through choices of referents and nominalizations 
(Halliday & Matthiessen, 2004). These are the main features explored in this analysis. 

Referents are experiential elements in the text. Different types of noun phrases, and how they change, 
indicate different ways of using language (Halliday & Matthiessen, 2004). Referents can have an 
everyday character or be technical, and they may be presented in a variety of semiotic modes (Kress 
& Van Leeuwen, 2006). They may also be placed on scales between physical and abstract, specific 
and general (Edling, 2006). A move in the text from a specific to a general referent may realize a 
linguistic generalization in the text, whereas a move from a concrete to an abstract referent instead 
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may realize a linguistic abstraction in the text (Figure 1). When a referent is changed into a different 
semiotic resource it is called a transduction which at the same time re-articulates the ontological 
meaning of the referent (Kress, 2010). For instance, a picture of 5 apples which then is followed by 
the number 5 entails an ontological shift from concrete to abstract meaning. Linguistic changes of 
referents including transduction may thus indicate opportunities in the textbook for MG. This will be 
explored in the analysis. 

 
Figure 1: Abstraction and generalization in different referents, adapted from Edling (2006) 

A nominalization is an incongruent expression, or grammatical metaphor (Halliday & Matthiessen, 
2004), where a noun (e.g. subtraction) is used instead of the corresponding verb or adjective form 
(e.g. subtract). Nominalization is a means of constructing generalization because an operational 
process, expressed by a verb, is reified into a general concept by the nominal form. Operational 
processes are mostly tied to specific situations where calculations are needed, whilst general concepts 
describe mathematical relations without necessarily linking to specific situations. Nominalization 
also hides human participation, since there is no explicit human agent carrying out the action. This 
downplaying of human agents further accentuates generalization. Therefore, generalization may also 
be indicated through a passive verb form, e.g. in the phrase “can be used” instead of “you can use”. 
Our analysis explores in what respect nominalizations and passive verb forms contribute to MG. To 
avoid overlooking other important linguistic features, the instances of MG in the textbook section 
were read, reread and discussed with respect to the semiotic resources used in them. For instance, 
expansions of clause complexes show in what ways a text may be developed (Halliday & Matthiessen, 
2004); this might contribute to MG. However, the analysed text mostly consists of main clauses. 

Finally: In a certain sense, textbook tasks comprise one half of a dialogue where the textbook author 
asks questions and the students answer. We acknowledge that in such a dialogue, any feasible 
reflection generalization will be constructed in the answer and not the question. Since this study does 
not look at actual answers, opportunities for reflection generalization are therefore not linguistically 
analysed in the tasks, only in the introductory text. 

Results 
Opportunities to engage in mathematical generalization, MG, are given in the form of generalizing 
actions and to some extent in the form of reflection generalization. To answer the research questions, 
the results are structured by what is identified in introductory text and tasks respectively. All 
translations from the textbook section are ours. 
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Nominalizations and passive verb forms constructing an independent character 

The introductory text provides opportunities to engage in generalizing actions and read reflection 
generalizations. The top of the page question and the two following sentences (Fig.2) constitute a 
prompt to search for relationships, and thus models searching in the form of detecting a stable 
relationship between objects. A similar statement is made for decreasing number sequences using 
subtraction and division. Finally, “You can also find out the rule …” models extending to other ways 
of investigating number sequences. All three statements “If the number sequence [increases/ 
decreases] …” and “You can also ...” are descriptions of general strategies for investigating patterns 
and therefore examples of reflection generalization as identification or statement. Hence, in the 
introductory text, the generalizing actions and reflection generalizations seem to coincide 

 
Figure 2: The textbook section Find patterns in number sequences 

The written referents in the three statements in the introductory text mentioned above, e.g. “patterns 
in number sequences” and “the following number” change to the specific numbers e.g. “2, 5, 8, 11, 
14”. The ontological meaning in this transduction shifts from generalized to specific. The specific 
number sequences in the introduction thus function to explain and unpack the reflection 
generalizations. The nominalizations in the four arithmetic operations in these statements construct 
the number sequences as structures: it does not matter which specific numbers are added, multiplied, 
subtracted or divided, because it is the operations in general which are relevant, not their results. The 
passive verb form “are doubled” constructs searching as something independent from human beings: 
the activity does not render different results (e.g. as tripling instead of doubling), depending on who 
performed the investigation. This independent character is a quite fundamental aspect of MG. Finally, 
the introductory text is expanded logically in the reflection generalizations “If the number sequence 
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[increases/decreases] …” constructing a condition for when the procedure described in the main 
clause is valid. These expansions thus limit the range of the generalizations. 

Generalizing actions in tasks constructed through changes in referents 

Task 1 prompts a re-articulation of the number of sticks in a given pattern into a number sequence. 
Through forming a similarity between the two objects, an opportunity to relating is constructed. The 
ontological meaning is re-articulated through a transduction from the generalized-concrete sticks to 
specific-abstract numbers. An opportunity to engage in searching is given through writing the rule 
for how the pattern changes. Here, the ontological meaning shifts from the specific-abstract numbers 
to the generalized-abstract rule, formulated as “+3 (add three)”. 1c prompts to continue the number 
sequence and generate a new case, the “seventh figure”. Here, the transduction re-articulates the 
generalized-abstract “a rule”, to the specific-abstract number of sticks which is supposed to be 
calculated. In this way, the ontological shift supports a control of the identified rule and the test for 
new cases, thus extending by continuing the pattern. The last part of task 1 gives the opportunity to 
write an identification or statement. However, this opportunity could not be analysed linguistically. 

Task 2 is fairly similar to task 1. It prompts to re-articulate specific-abstract number sequences as 
generalized-abstract rules for the sequences and thus gives an opportunity to searching. The prompt 
in the last part is to re-articulate new cases of specific-abstract numbers, which gives an opportunity 
to extending. Since no concrete figures are given, this task does not comprise relating. The picture of 
the checkered piece of paper in the task and what is written on it, explicitly models how to engage in 
searching and extending the number sequences. In task 1 and 2, searching is then constructed through 
transduction from specific-abstract to generalized-abstract, whereas extending is constructed through 
the ontological shift back from generalized-abstract to specific-abstract meaning.  

Task 3 gives the opportunity to a reflection generalization as an influence since the previously 
developed generalization of how to work with patterns is adapted to a new situation, consisting of 
coordinates which constitute successive sets of ordered pairs. The first step prompts to “[w]rite the 
coordinates … in the fourth image”, so focus is on extending through continuing the pattern, to 
generate a new case. Relating and searching are thus not supported ahead of extending, as in the 
previous tasks. 3a prompts “draw” and “write”. It could be argued that these requests include relating 
the points A, B, C and D in the sequence of graphs to their more abstract re-articulations as sets of 
ordered pairs of numbers. However, it is only the points and “coordinates of the fourth image” which 
are explicitly asked for. In 3b, the question “How are the new x- and y-coordinate formed?” could 
include searching for a stable relationship between the points A, B, C and D in the sequence of graphs. 
Just as in 3a, only the “new” coordinates are asked for. The picture of the checkered piece of paper 
in task 3 is different from in task 2. It supports writing down the coordinates for one set of points A, 
B, C and D, and to write the “Answer”. 

To solve task 3, learners thus need to recognize the steps of relating and searching the pattern in the 
first three graphs without a prompt to do so. Extending to the fourth picture is the only explicit request. 
The steps include transductions from the graphical mode to numbers (3a), and from the numbers to 
formulating the rule of the pattern (3b), respectively. As in task 1 and 2, searching seems to be 
constructed through an ontological shift from the specific-abstract to the generalized-abstract. The 
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graphs are interpreted as concrete referents in this study since they have a spatial extension. Relating 
in task 3 is thus constructed through an ontological shift from concrete to generalized meaning. 

Concluding remarks 
This pilot analysis of a section of a mathematics textbook has revealed opportunities to engage in 
generalizing actions, as well as reading and writing reflection generalizations. However, no 
opportunities to read or write definitions are given, nor to read a reflection generalization as influence. 
Swedish textbooks have low proportions of generalized arithmetic (Bråting et al, 2019) and 
mathematical generalization, MG, include many aspects (Ellis, 2007). We therefore believe that a 
forthcoming comparative study of textbooks would reveal differences in opportunities for MG. 
Further, different proportions of searching might be a distinguishing feature since searching has been 
prominent in the textbook example analysed in this study. A study of students’ solutions or work with 
the textbook section may contribute to the understanding of what MG actually takes place.  

In the introductory text, opportunities for reading identification or statement are constructed through 
nominalizations of the four arithmetic operations. The range of two statements about patterns are 
constructed through logical expansions in the text. Moreover, passive verb forms and nominalizations 
construct patterns as structures, independent of human agents. In this sense, the identification or 
statement does not only model reflection generalization, but also expresses the general character of 
mathematics. These linguistic features may be interpreted as a part of the disciplinary literacy 
(Shanahan & Shanahan, 2008) which is expected of students, in order to understand MG. Finally, the 
reflection generalizations in the introductory text are unpacked and explained through the ontological 
shift which occurs in the transduction from written text to number sequences. In this way we can see 
that various semiotic resources are used to express MG. 

Opportunities for generalizing actions in the analysed tasks are mainly constructed through different 
transductions, i.e. changes in the referents’ semiotic mode. When relating, the ontological meaning 
shifts from concrete to more abstract; when searching, it shifts from specific-abstract to general-
abstract. When extending, the ontological meaning shifts back from generalized-abstract to specific-
abstract referents. Therefore, for a textbook to support opportunities for learning generalizing action, 
we believe that transduction may be a key feature. Further, to enhance opportunities for MG attention 
should be paid not only to the change between concrete and abstract referents, but also between 
referents which are specific and generalized, and referents presented in different semiotic modes. 
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Elaboration and use of sentences for specialized mathematical 
meanings in classroom teaching talk  
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Language as resource is a challenging research approach in mathematics education because it 
examines whether, how and why language can function to support mathematics learning and 
teaching. The approach originally started to develop in response to discourses of non-mainstream 
languages and cultures as problems or obstacles to mathematics teaching and learning. While in the 
past language as resource has been mostly examined with respect to the languages and cultures of 
school learners of mathematics and more recently to the orchestration of mathematical discourse 
practices, a mathematical-linguistic focus is proposed for extending the notion/approach in the study 
of and work with mathematics teaching talk. For this, a verbal tool in language –lexicalization or 
giving sentences with specific meaning potential into a content register– is presented and discussed 
in relation to school teaching and developmental work with mathematics teachers.  

Keywords: Language as resource, mathematics teaching talk, developmental work, lexicalization. 

Introduction  
Planas (2018) built on two related arguments to explain the complexity and importance of the 
language as resource approach, namely: 1) all languages of learners own the potential of producing 
mathematical meanings; and 2) obstacles and supports to the realization of such a potential are critical 
to the generation of mathematics learning opportunities in classroom interaction. The view of the 
language complexity of mathematics learning was not specifically linked to the view of the language 
complexity of mathematics teaching. The current widening to include the languages of mathematics 
teachers in teaching talk represents substantial progress. The communication of mathematical 
meaning in classroom teaching talk is not always sufficiently explicit or precise. Communication in 
the mathematics classroom, as in all other language contexts, is made up of communicative intent 
and intended meaning on the one hand, and communicative function and interpreted meaning on the 
other. Mathematics teaching and teachers need to support learners in their communication of the 
intended mathematical meaning, but also need themselves to successfully resolve their 
communicative intents of mathematical meaning. Given the challenge with mathematics teaching talk 
that the intended content meaning be always communicated as clearly as expected, a question is: How 
a focus on language at the sentence level can support research and work on mathematics teaching?   

Language in/for the study of mathematics teaching 
In this first part, I address the critical accomplishment of content communication of mathematical 
meanings in classroom teaching talk. In Planas (2019, 2021), I initiated this discussion for algebraic 
contents through the examination of instances of two teachers’ talk. That discussion was built on the 
identification of specialized meanings within the algebra of equations and of their communication in 
classroom teacher talk. In the teaching of the equation concept, explicitness of specialized meanings 
for algebraic equivalence and equal sign was particularly revealed as crucial and critical, and some 
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tools in language were preliminarily explored. With inspiration in the Mathematics Discourse in 
Instruction frame (MDI; Adler, 2017, 2021) and in the Systemic Functional Grammar theory (SFG; 
Halliday, 1978, 1985), the next section offers some progress on the theorization of the verbal tool in 
language called lexicalization. The mathematical-linguistic focus in this report is not to say, however,
that the study of content mathematics teaching can be limited to the study of vocabulary and grammar. 
Words and sentences are tools interacting between them, within the large system of tools and modes 
in language, and with the many discourse practices ongoing in any social setting. The selection of a 
mathematical-linguistic focus to illustrate an extended interpretation of language as resource is part 
of a more general attempt to rectify the imbalance I see in recent classroom research on mathematics 
teaching and language, where varied interests in discourse practices or strict interests in vocabulary
and word names, have led to a certain disregard of what is linguistically said and how in mathematics 
teacher talk. Even though learners and teachers listen to and talk to each other in the classroom, and 
hence teaching is discourse in interactional practice (Erath & Prediger, 2021; Ingram, 2021), words
and sentences in teacher talk mediate mathematical discourse practices with and between learners. 
Figure 1 puts together, not in opposition, content-specific verbal language of the teacher and 
mathematical discourse practices in the talk with learners. I see these two dimensions as made of 
related nodes and itemised into diverse discourse practices and verbal tools. 

Figure 1: Elements for/in content-specific school mathematics teaching 

Content teaching talk at the sentence level  
With forms that have become lexical units or words and sometimes names in a language, we can 
produce combinations which, in turn, can be grammatically correct and at the same time semantically 
open. ‘Raining cats and dogs’ is grammatical and meaningful (i.e. ‘raining heavily’) in English; 
nonetheless, when beginning learners of English first listen to this sentence, they can find the form 
familiar but semantically open or even absent of meaning because its use in the English language 
system has not been learned yet. The form remains only a group of words as long as nothing more is 
known about it. Lexicalization is then the reductive process, from a semantic point of view, in which 
a grammatical form or sentence becomes lexical or with meaning into a precise language or register. 
In brief, grammaticalization is about structured forms (i.e. combination of words according to 
established rules or operations in a language system), and lexicalization is about specialized meanings 
(i.e. combination of words in a grammatical way and with precise meanings attached beyond those 
embedded into individual units or words) (Halliday, 1978, 1985; Lehmann, 2002).

Mathematical content 
classroom teaching

Mathematical discourse practices 
(enhanced by the teacher)

Explanatory Argumentative

Content-specific verbal language 
(used by the teacher) 

Naming Lexicalization
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Rather than a ‘defect’ in mathematics teaching talk, semantic openness is a consequence of the 
ubiquitous plurality in language, as well as an opportunity for the exploration and realization of 
mathematical meaning potentials. Here, lexicalization is the reductive process for the communication 
of precise mathematical meaning within languages of mathematics. Like the learning of word names 
and of specialized meanings behind them in naming, lexicalization involves more than learning the 
forms of grammar in a language. In Planas (2019, 2021), the frequent naming of the word name in 
Catalan for the equation concept without talking mathematical qualities and connections behind the 
name revealed a number of hidden conceptual meanings in lessons from the participant teachers. 
Paying now attention to the angle concept and given the option in language of producing grammatical 
forms with the word name for angle that are semantically open, lexicalization into geometry for 
conceptual teaching of angles is an issue. There are always sentences in teacher talk not intended to 
support conceptual understanding, with unfocused or implicit specialized meanings behind word 
names, functioning to promote pedagogic issues (e.g. ‘Look at the angles in the table’) or routine 
procedures (‘Always add the angle type’). There must be, however, teacher talk aimed at providing 
specialized (newer) meanings for mathematical objects encoded in (un)known words and sentences.  

Just as how the MDI frame refers to naming in instructional research and to word use in 
developmental work with teachers, lexicalization –or lexicalizing to emphasize the process over the 
result– can be seen as the verbal tool available in language interpreted, in the work with teachers, as 
the elaboration and use of sentences with the potential to make mathematical meaning explicit and 
precise in classroom content talk. That is, work oriented to discuss how particular sentences function 
or not for content teaching, and how they might more ideally function to do so. ‘Angles made of a 
vertex and two rays’ is grammatically correct and it encodes specialized meanings into static plane 
geometry for the angle concept, but it could more ideally function to do so. While it is not a linguistic 
or grammatical obligation, the additional choice of the complement ‘… and the space between them’ 
would function to communicate the relevance of the region contained. More complements would still 
support meanings for ‘between them’ in relation to the two regions in principle delimited by the two 
rays. In ‘Angles from which the view is good’, for example, verbal complements for elaborating on 
angle view would function to encode language accounts of meaning into spatial geometry.    

Table 1 summarizes the thinking of lexicalization from the use of meaning-focused sentences in 
languages for communication to its more ideal use in languages for communication of specialized 
mathematical meanings in classroom talk. There are bigger lexical unities above words and sentences 
in talk as well as multimodal accounts of meaning in communication; content communication cannot 
thus be theorized by the linguistics of words and sentences only without considering the wider 
communicational multimodal system and the representations of the contents at play. At the same time, 
the macro analyses of lesson teaching talk in search of communicational patterns do not tend to 
provide the grain detail of instances of lexicalization of content meaning. Words and sentences totally 
conforming talk, and accounts of meaning conformed at the expense of verbal representations made 
of words and sentences are both illusions. The intricacies and limitations of underestimating the 
effects of these illusions will require more study. For now, the current stage of theorization of the 
function of lexicalization orient the second part of the report on the function of language as resource 
in developmental work on mathematics content teaching with teachers.  
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Table 1: Lexicalization in mathematics content teaching 

MATHEMATICAL LEXICALIZATION – SENTENCE USE  

General function 
What does lexicalization do …  

in language for communication? 

Specific function 
What does lexicalization do …  

in language for mathematics content communication? 
It encodes  
- more or less complex clusters of meanings 
for words and forms of grammar  

It encodes  
- specialized mathematical meanings for words and forms of 
grammar within content-based mathematical languages 

Language in/for work on mathematics teaching  
Over the last decade, in order to improve the impact of mathematics professional development on 
classroom practice, increasing attention has been given to work with teachers guided by their teaching 
needs (e.g. Kazima, Jakobsen & Kasoka, 2016). It is an assumption that work with teachers on 
teaching is especially productive in terms of professional learning when the teachers take 
responsibility for the identification and interpretation of challenges. The four teachers (Jana, Maia, 
Anna and Roc) in the second round of the research and developmental project partially reported in 
Planas (2019, 2021) expressed various concerns with the teaching of the angle concept. They all had 
several years of mathematics teaching experience, and worked in the same secondary school at the 
time of the collaboration. Their professional knowledge and my mathematical-linguistic view of the 
MDI and the SFG frames were the points from which we explored angle-specific teaching. Although 
they were very much focused on their individual classrooms, had prepared lesson plans together and 
experimental tasks with dynamic geometry software. The results of the learners in the tests, however, 
had continued to show views of angles as static only, in disconnection with space, openness and 
inclination and as means for classifying figures. Anna especially linked the poor learning of 
specialized meanings for angle to common difficulties in the later understanding of classes of 
triangles with equal values for trigonometric functions, and of the slope of functions in calculus.       

My response to the demand of the teachers was to interrogate their talk in the school lessons on angles. 
In most of my experiences of work with teachers, they do not normally feel that the mathematical 
richness of the classroom practices can be hampered by under specificity in talk. My response, 
though, was not a surprise, at least for Jana and Maia since they had participated in the first round of 
workshops about noticing choices in talk for teaching the equation concept (Planas, 2019, 2021). We 
agreed on exploring the improvement of angle teaching through improving angle teaching talk. Four 
of the 90-minute five sessions (S1 to S5) were task-driven workshops. Even though the four teachers 
graduated in mathematics, S1 was for revising mathematical knowledge on polysemous meanings for 
angle as: 1) static shape and dynamic turn; 2) object and means; and 3) region or sector and inclination 
or openness. S2 and S3 were for work on the language-based tasks, and S4 and S5 for work on 
explanatory tasks (Adler, 2017, 2021) of comparing angles, and of expanding the Pythagoras theorem 
to the obtuse/acute triangle. Developmental work thus supported mathematical knowledge, more 
ideal ways of choosing and using words and sentences for specialized communication, and 
mathematical discourse practices. Given the focus in this report, I present one of the language-based 
tasks. Task 1 was designed on the thinking of word names and sentences as related resources for 
mathematically situating the angle concept in teaching talk. The goal was to compare and eventually 
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give sentences with angle-related word names, forms of grammar and meanings. Each workshop was 
organized to include the presentation of the task, the discussion of the teachers in group, and the final 
reflection with me. The pandemic circumstances recommended the synchronic online mode for all 
sessions. In the next section, the illustration of Task 1 is exemplary towards the argument that the 
realization of content teaching talk can be revised and practised throughout participation in 
workshops on mathematically and linguistically informed choices and uses of words and sentences.  

A developmental task for discussion of angle-focused sentences   
In S2, the participant teachers were given Task 1. An English version is offered in Table 2, with word 
names in the geometry of angles and pairs of related sentences written to represent those in Catalan, 
the source language, without pretending to be word-to-word translations or exactly equal in meaning. 
In the preparation of Task 1, I particularly drew on my knowledge of mathematics and of students’ 
challenges in learning angles (for this, I built on my past experience as school teacher of mathematics, 
but also on Devichi & Munier, 2013), as well as on conversations with the teachers about their 
teaching needs and the local curriculum for low secondary mathematics specific to angles. On this 
basis, I considered emphases on dynamic turn vs. static object, object vs. means, and inclination or 
openness vs. region or sector, as well as angle-related word names that low secondary school learners 
usually know (e.g. point, vertex, orientation, measure) and which have extremely rich meaning 
potential in Catalan everyday languages. The original sentences came from talk of the teachers (T) in 
online recorded lessons at the pandemic time in 2021, and were chosen to illustrate instances with the 
potential of encoding specialized meanings for the concept. In all of them, the word for angle was 
named but important angle-related specialized meanings remained implicit or unclear. I invented the 
paired sentences to offer alternative sentences in the sense of more ideal, amongst many other 
possible, for the communication of specialized (newer) meanings for angle and related word names.  

Alongside the centrality of the mathematical content in the design of Task 1, the linguistic 
particularities of Catalan, the language of instruction in school at my place and of the participant 
teachers, were also central. This is in line with what Halliday tells us (1978, 1985), as well as 
mathematics education research (e.g. Kazima & Adler, 2006) on the centrality of the form-meaning 
relationship in meaning making. When looking for angle-related word names that had been said by 
the teachers in the online lessons, I selected ten name words (first column, Table 2) in Catalan whose 
meaning inside and outside languages of mathematics was shaped by the words as put in interaction 
with other words. Triangle was one of these names. In a lesson in which Roc had asked his learners 
to draw an example of angle, some learners drew a triangle and then indicated with an arrow an 
internal angle of the figure. The view for angle as measure and means for describing triangles, and as 
part of a whole, was present in lessons from the other teachers, too. Since the name of triangle was 
common in the lessons aimed at the conceptual teaching of angles, I looked for opportunities in the 
languages of the teachers to relate triangles and angles in mathematically meaningful ways through a 
number of possible verbal complements. For this, I selected “A triangle contains one hundred and 
eighty degrees.” I can imagine other word names and candidate sentences in an English version of 
the task and the study. As far as I know, in this language and regardless of being or not common in 
teacher talk, the choice of angle as verb is available, and specialized meanings for angle as action can 
be encoded through sentences about placing an object at an angle or about changing its direction. 
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Table 2: English version of the worksheet with Task 1 

Task 1. Word use into angle-focused sentences 
Which are the meanings behind the word names and the sentences? 

Words What does T say? What could T say? 

Angle The angle rotated around the point.  The segment line rotated around the point makes the angle. 

Turn  One turn of an angle is the circle. One complete turn of a segment line around a point draws a 
circle. 

Point An angle is an angle at a point. An angle is a rotation of a segment line around a fixed point 
in a plane or in space. 

Vertex Angles are made of a vertex and two 
rays. 

Angles are made of a vertex, two rays, and the space 
between them. 

Sides  Sides are not important in angles. The length of the sides is not a characteristic of angles. 

Orientation The angle is different because of the 
orientation. 

The angle is different because its rotation has opposite 
orientation. 

Measure The angle is different because of the 
measure. 

The angle is different because the measure of the rotation is 
different. 

Right Perpendiculars intersect at a right angle. Perpendicular lines intersect at four right angles. 

Straight   Straight angles look like zero.  Straight angles and zero angles look similar but the turn 
implied is different.   

Triangle  A triangle contains one hundred and 
eighty degrees. 

The three internal angles in a triangle add to one hundred 
and eighty degrees.  

 
Since the four teachers accepted recording the working sessions, I could take notes at different 
moments in time. They were given the document with the task and were asked to comment on each 
word name and the sentences two by two, and to reflect on encoded specialized mathematical 
meanings possibly different to those already known by the school learners. On the one hand, the 
teachers noted that many words could be assumed to be known by learners although not necessarily 
in relation to the angle concept. The Catalan word name for ‘right’, recte, was particularly discussed. 
Recte is used in the everyday language to qualify objects with no curvature; the angle-related 
meanings for recte cannot thus be understood through the meanings behind the word that may have 
been learned and, in addition, the word is mathematically polysemous in the geometry of angles as it 
can function to encode the ninety-degree measure and the notions of inclination and perpendicularity. 
On the other hand, the teachers noted that any of them could have said the original sentences (second 
column, Table 2) in their teaching. They became engaged in distinguishing what was said from what 
was possibly intended, and so in assessing these aspects separately. Regarding “Sides are not 
important in angles”, for example, Anna said to miss some explanation of the reasons for why they 
are not important, and hence found the alternative sentence more ideal. We all agreed on the need to 
produce teacher talk aligned with mathematical discourse practices of content explanation. 
Two of the teachers had referred to, “The angle rotated around the point” (first column, Table 2) in 
their lessons. This sentence was selected for Task 1 to pay attention to the specialized meaning as 
dynamic turn encoded in the name for angle. Attention to meanings behind some preposition words, 
however, soon led to enhanced talk about the choice of spatial prepositions such as at/around (a point) 
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and on/around (a segment line) as words with implications on the communication of angle-related 
meanings. The four teachers knew that the Catalan compound word al voltant de (of which the 
English one-word ‘around’ might be a feasible counterpart) can express spatial or plane relationships, 
or relative location and directional motion of the subject object. The Catalan version of “The angle 
rotated around the point” is then grammatically correct and mathematically meaningful but the basic 
meanings implied are not about the angle as dynamic turn as in the Catalan version of ‘The segment 
line rotated around the point.’ In the former sentence, we work with angle as means to produce in the 
plane or in space other mathematical objects included the solid angle (which is not a curricular content 
of low secondary mathematics); in the latter, we work with segment lines to produce Euclidean plane 
angles. At the end of the developmental session, the mathematical meanings encoded behind 
prepositions in interaction with other word meanings had been discussed intensively, and related to 
the choice of words and sentences in content teaching. Anna, for example, introduced the discussion 
of how differently it was ‘around the point’ from ‘rotated around the point’ in that the two expressions 
encoded two different sets of paths or sequences of positions enclosing the point.    

Language accounts of meaning matter but so do other accounts    
The interpretation of ‘more ideal’ in Task 1 is not independent of the circumstances in which the 
sentence might be said in the school classroom, of the discourse practices ongoing, and of the broader 
talk and modes of communication accompanying the teaching. The inseparability of all these aspects 
was addressed in S4 and S5, in the discussion of promoting the communication of angle-related 
meanings more largely across mathematical discourse practices resourced by languages of content 
teaching. The fact that these are classrooms with multilingual learners is not insignificant although it 
was hardly brought up by the teachers in their comments over the workshops. Like the efforts here to 
reproduce in English word names and meaning-focused sentences originated in Catalan without 
missing the mathematical-linguistic points intended, Jana, Maia, Roc and Anna teach angles, 
equations… by moving across forms of academic and everyday Spanish and Catalan in ways that 
may favor the communication of some specialized mathematical meanings in one language only at a 
time. These teachers flexibly use their languages as resources in their content teaching of mathematics 
with the possibility of encoding different mathematical meanings in each language.  

Behind the arguments of improving the clarity and coherence of teaching at the sentence level of 
language, there is the Vygotskian assumption that opportunities of mathematics learning are 
generated through exposition and attention to specialized mathematical talk and texts, or by active 
listening to others who are more knowledgeable. Making available specialized mathematical ways of 
talking is critical for school learning, and hence there are consequences of opening and of closing 
opportunities for mathematics learning through teaching talk, be it an ever present and highly visible 
or almost a disappearing feature of classroom communication. These arguments also apply to 
multilingual mathematics teaching with multilingual learners and those belonging to cultures that 
have developed non-verbal ways of communication. The nodes and tools in Figure 1 fall short if 
teachers are confronted with the communication of specialized mathematical meanings for names and 
grammars to learners who are learning some of the words and sentences as used in the language of 
instruction, and who can well recognize some of the specialized meanings when encoded in other 
linguistic forms or semiotic modes. Teachers cannot assume that multilingual learners who are 
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learning the (sign) language of instruction do not know some of the mathematical meanings involved 
in classroom interaction, and teaching thus needs to facilitate their participation and sharing through 
mathematical discourse practices entailing the use of the various semiotic modes in language.  
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Choice of representations in combinatorial problems 
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This paper is based on classroom sessions where Norwegian 9-year-old (Grade 4) children work on 
combinatorial problems. The classroom sessions are part of a four-year long research project where 
the topic of multiplicative structures was central. I will investigate to what extent the pupils recognise 
the combinatorial problems as multiplicative and identify possible connections between the semiotic 
representations chosen in the solutions and in the formulation of the problems.  

Keywords: Combinatorics, multiplicative structures, register, semiotic representations. 

Introduction 
This paper is based on data from the project Language Use and Development in the Mathematics 
Classroom (LaUDiM)—a four-year collaboration project between researchers at the Norwegian 
University of Science and Technology and two primary schools. In this project, a central theme was 
multiplicative structures, and a recurring question was to investigate connections between the 
formulation of a problem, the pupils’ choice of semiotic representations to solve the problem, and to 
what extent they recognised a given situation as multiplicative.  

In this paper, I study pupils in Grade 4 (nine-year-olds) working with two combinatorial problems 
(see Figures 1 and 2). The problems were presented with no previous instruction that could give an 
indication about what mathematical knowledge and techniques that would be helpful for solving the 
problems. Pupils worked in pairs, and work in selected pairs as well as in whole-class sessions were 
video recorded. I pose the following research question: In what ways can the context of a situation be 
seen to influence the choice of registers in the solution, and how can the chosen registers provide 
evidence about the extent to which the situations are perceived as multiplicative?   

Theoretical framework 
The concept of register is used in somewhat different ways by different authors. Duval uses the term 
register to mean a semiotic representation system (e.g., natural language, symbolic systems, graphics) 
and emphasises that “[c]hanging representation register is the threshold of mathematical 
comprehension for learners at each stage of the curriculum” (Duval, 2006, p. 128). I follow Duval’s 
usage of the term, which is also in accordance with the usage by Prediger and Wessel (2013) in their 
model concerning changing and relating registers. This model entails a transition between different 
registers - a concrete representational register, a graphical representational register, different verbal 
registers and a symbolic-algebraic or symbolic-numeric register (Prediger & Wessel, 2013, Fig. 1, p. 
437). This resembles the process described by O’Halloran when she writes that language is used to 
introduce and describe a mathematical problem, later to visualise the problem, and then the problem 
is solved using mathematical symbolism (O’Halloran, 2005, p. 94).  

Before discussing the classroom situations, I will define what is meant by a multiplicative structure, 
or a multiplicative situation. Steffe defines a multiplicative situation as a counting situation where “it 
is necessary to at least coordinate two composite units in such a way that one of the composite units 
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is distributed over the elements of the other composite unit” (Steffe, 1994, p. 19). This is the basis for 
my discussion of multiplicative structures. There are several different classifications of multiplicative
structures to be found in the literature (see e.g., Greer, 1992). I will rely on the classification given 
by Vergnaud who splits multiplicative structures in three classes: Isomorphy of Measures, Product of 
Measures, and Multiple Proportions (Vergnaud, 1983, p. 128). The latter will not be discussed here.
Isomorphy of Measures is defined as a structure involving a direct proportion between two measure 
spaces, and (Vergnaud, 1983, p. 129). Situations like equivalent groups and multiplicative
comparison (Greer, 1992) fall into this category. Further, Product of Measures is defined as a 
structure involving a mapping from a product of two measure spaces into a third measure space,

(Vergnaud, 1983, p. 134). Combinatorial problems (Cartesian products) and
rectangular area problems fall into this category. Rectangular array problems (Fosnot & Dolk, 2001), 
to find the total number of items laid out in a row-column pattern with a certain number of items in 
each row and each column, may look similar to area problems but they actually belong to the class 
Isomorphy of Measures, with = [number of rows (columns)] and = [number of items in each
row (column)]. Unlike many other Isomorphy of Measures-problems, these are symmetric (Rønning, 
2012). In combinatorial problems, the measure space may not be initially present. is where
the counting unit is situated, and that this space may initially be unknown, represents a challenge 
when solving such problems. This is also connected to the phenomenon that the counting unit is of 
indefinite quantity and that there is not always a clear strategy to determine when the problem is 
actually solved (English, 1991; Shin & Steffe, 2009). 

The tasks given to the pupils
The first task given to the pupils is presented, in its simplest version, in Figure 1, the second task in 
Figure 2. The tasks were given on two different days of the same week. No instructions were given 
on how to solve the tasks, and what strategies that might be helpful could also not be inferred from 
what the class had worked with immediately before the sessions where these tasks were presented. 

Figure 1: Task 1

Figure 2: Task 2 (Ms. Hall is the teacher in the class)

After agreeing on a solution, each pupil in the pair was asked to produce a written account of the 
method used. Both tasks induce a mapping , with containing shapes in Task 1 and
trousers in Task 2. contains colours in Task 1 and sweaters in Task 2. In Task 1, contains
coloured shapes (biscuits). It could be argued that since in Task 1 contains coloured shapes, the

How many different gingerbread biscuits can we make if we have cutters

in these four shapes and we have white, green and red icing?

Ms. Hall has 3 pairs of trousers and 5 sweaters. The trousers are in the colours blue, black,
and grey. The sweaters are in the colours blue, red, black, green and purple. She will 
use one pair of trousers and one sweater each day, and she will combine different pairs of 
trousers with different sweaters. How many days in a row can Ms. Hall wear different outfits?
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measure space is not really new, it is a variation of . A more precise representation of the
mapping in Task 1 could therefore be , where denotes coloured shapes. In Task
2 one may think of a mapping , where contains outfits and contains days
of the week. and are isomorphic, so this transition would be expected not to be challenging.

In the language of Steffe (1994), one can say that it makes sense to distribute the composite unit from 
over the elements of , or the other way around, which means that the situation is symmetric

(Rønning, 2012). Both problems can be seen as a matrix product c of two vectors, a and b, where a
and b represent the composite units from and , respectively, and c (see Figure 3).

Figure 3: Matrix structure of a combinatorial problem

Each element, aibj, of the product matrix c represents one possible combination (composition). This 
representation shows that the dimension of equals the product of the dimensions of and .

The discussion above shows that although the problems in the two tasks are computationally 
equivalent, the mappings between measure spaces are somewhat different.

Design and method
The project LaUDiM was based on interventions consisting of two-three classroom sessions dealing 
with the same mathematical topic, preceded by planning meetings where teachers and researchers 
met. Between and after the sessions, reflection sessions were held. The design of the classroom 
sessions was based on the Theory of Didactical Situations (Brousseau, 1997).

The classroom sessions contained whole-class activities and activities where pupils worked in pairs 
with given tasks. For each session, the work of two pairs was video-recorded, as were all whole-class 
activities. Attempts were made to choose pairs to be recorded differently for each session, so that the 
pupils should not feel that only a few participated in the project. The pairs were determined by the 
teacher, based on her expectations of who would collaborate and communicate well. The school from 
which data for this paper come, lies in a well-established, middle-class neighbourhood. The pupils all 
have Norwegian as their first language. Data consist of video-recordings from the sessions, as well 
as pupils’ written work, collected from all pupils, not only those who were video-recorded. 

The analysis is based on the thematic development of the dialogue in the pairs, as well as the written 
work, including work from the pupils not video-recorded, in order to identify statements that show
the choice of the representational registers and also serve as evidence for the pupils’ possible 
perception of the situation as multiplicative. Parts of the video-recorded discussions have been 
transcribed and translated into English. In the analysis I will follow Naomi and Roger in Task 1 and 
Naomi and Filipa in Task 2. This means that I present data from one pupil (Naomi) in her work with 
both tasks. Therefore, I will pay most attention to her work in the pairs. 
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Analysis of the work in pairs
Task 1 (Naomi and Roger)

Naomi and Roger start looking at the task and Roger’s first suggestion is that there will be seven 
different possibilities since there are four shapes and three colours. Then Naomi starts drawing the 
four shapes in one row and she colours the heart red. She indicates that she can continue to draw new 
rows with the same shapes and change the colour for each row. She does not complete the drawing 
in detail but on the video recording it can be seen that she indicates three rows with four shapes in 
each row (a matrix structure). Then she counts, one-two-three, four-five-six, seven-eight-nine, ten-
eleven-twelve, tapping on the drawing column by column as she is counting. I interpret from her 
gestures and utterances that she has identified a countable unit. She indicates groups of three, but still 
she counts the shapes one by one. She now considers herself finished with the task and Roger does 
not object. Since Naomi and Roger solved the first task so quickly, I challenged them to find out what 
would happen if they had eight shapes and seven colours. They cannot really think of eight different 
shapes, so Naomi just draws eight circles in a row and fills in with more circles below these. They 
start to colour each row in one colour (purple, blue, red, …), until they have used all seven colours 
and hence got seven rows. The result is shown in Figure 41. To the right is shown the calculation the
pupils wrote on their worksheet. The drawing shows that they have marked four groups of 14 circles 
(dots). In the calculation I interpret the first line (14 14) to represent the first two groups, added to get 
28 (second line). Then another 14 is added to get 42 and finally another 14 (not written) to get 56. 

a) b)
Figure 4: Naomi and Roger's solution Figure 5: From Naomi’s solution in “Our method”

As part of the task, each pupil should fill in a sheet with the heading “Our method for the biscuits 
task”. Naomi wrote (referring to a version of the task with three colours and six shapes):

We thought that we took a star like this with the three colours beneath [indicated by an arrow 
pointing to Figure 5 a)]. Then we did the same with all shapes, like this [indicated by an arrow 
pointing to Figure 5 b)]. Finally, we counted all the dots. We could also take them in small groups 
like this 3+3+3+3+3+3=6+6+6=18.

In Figure 5 b), Naomi has not drawn all the shapes. Based on her text quoted above, I assume that 
she has imagined the last three shapes, without a need for drawing them.

1 They did not colour the first row of circles, so they put in eight green dots at the bottom. The three encircled shapes at 
the bottom of the drawing do not belong to this solution.
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The representational register used in the formulation of Task 1 consisted of a text and the iconic 

representation . This drawing, endowed with colours, formed the starting point for the 
work in all the pairs. The pairs worked more or less systematically but the solutions shown in Figures 
4 and 5 are representative for many of the pairs, as evidenced by the worksheets. The preferred
representations show a matrix structure where each entry consists of one particular shape and one 
particular colour, mimicking the matrix product in Figure 3. Each entry has the form aibj where ai

represents a shape and bj represents a colour. An emerging multiplicative structure can be seen,
represented graphically as well as numerically. In the solution shown in Figure 4, Naomi and Roger 
have made groups of two and two columns, and in her description, Naomi writes “[w]e could also 
make them in small groups like this 3+3+3+3+3+3=6+6+6=18”, indicating six groups of three or 
three groups of six. It is not clear what reasoning lies behind the representation
“3+3+3+3+3+3=6+6+6=18”, since the only evidence is what Naomi has written. It could be that she 
groups each 3+3 into 6 and then gets three groups of six. Another possibility is that she sees 
3+3+3+3+3+3 by counting on the columns and 6+6+6 by counting on the rows (Figure 5). 

Task 2 (Naomi and Filipa)

The two girls start by drawing five sweaters and three pairs of trousers and then they colour each 
piece, using different colours for each piece in the same category. On the video can be seen that 
Naomi draws a line from the red sweater to the grey pair of trousers and writes “man” (Monday) 
above this line. Filipa connects the red sweater with the brown pair of trousers and writes “tir” 
(Tuesday). The girls continue in the same way, ascertaining that for each new combination they find, 
it is not already taken. After having written Tuesday for the second time, a break can be observed on 
the video, and it seems that they struggle to find new combinations. Gradually, they find new 
combinations and when they have found 14, they think they are done.

1 Naomi: All the trousers on this [points to the brown sweater] because this has three 
lines. [Looks at the sheet] I think we have made it. 

Filipa gets a new sheet. Naomi looks further at the drawing.
2 Naomi: Oh, we can have one more. [draws a line between the green sweater and the 

blue pair of trousers]
Naomi writes 2 weeks and 1 day. 

3 Naomi: I will ask if it is correct. 
One of the researchers comes to the table and asks if the pupils have found a solution. 

4 Naomi: We think we have figured it out. We think it is two weeks and one day
Naomi puts emphasis on ‘think’, which I take to mean that they are not sure, and they ask the 
researcher for confirmation. When the researcher is reluctant to give an answer, the girls call upon 
one of the other researchers, and the following conversation takes place. 

5 Researcher: Is that what you found? How did you find that out? 
6 Naomi: We took everything together. So there are three lines for each outfit. 
7 Researcher: Three lines for each outfit? On each sweater and each pair of trousers? 
8 Naomi: No, for each sweater and each pair of trousers … For the trousers, it will be 

… five lines. 
9 Researcher: Are you sure you have drawn lines between all? Have you found all the 

outfits? 
10 Naomi: I think so. Is it correct? 
11 Researcher: You have to try to convince me. How are you thinking to make sure you 

have found absolutely all? It can be easy to forget to draw a line, right?
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12 Filipa: Yes. 
13 Researcher: Have you found a strategy to be sure that you really have taken all the 

sweaters with all the trousers? 
14 Naomi: It is not so easy to see if we have taken all. 

The result of Naomi and Filipa’s work can be seen in Figure 6. The lines are marked with 
abbreviations of the weekdays and to the right is written “2 weeks and 1 day” (2 uker og 1 dag).

What appears from the pupils’ discussion of Task 2 is a less systematic approach, uncertainty about 
whether they have identified all possible outfits, and a solution based on counting one by one. There 
is some evidence of grouping when Naomi says “three lines for each outfit” (#6) and later adjusts to
three lines for each sweater and five lines for the trousers, after being questioned by the researcher.
Still, there is no evidence of seeing the problem as a situation of five groups of three or three groups 
of five. The representation chosen by Naomi and Filipa in Task 2 (Figure 6) is much further away 
from a matrix structure than Naomi’s representation in the solution of Task 1 (Figure 5). As an 
example of a grouping emerging also in Task 2, I show a solution produced by Frances (Figure 7).
She made five groups, each group containing one coloured circle representing a sweater and three 
coloured circles representing three pairs of trousers. One of these groups is showed in Figure 7. Inside 
each group she had written “tre dager” (three days). She also wrote “take three times 3 times 3 times 
3 times 3, which is 15”. Hence, she got the correct answer but wrote “times” instead of “plus”. Other 
indications of an emerging multiplicative structure are shown by Roger and Nora, when they say that 
they have “five lines for each pair of trousers” and “three lines from each sweater”, and then they say 
that they take “all the sweaters with all the trousers and all the trousers with all the sweaters”. 

Discussion
Prediger and Wessel’s (2013, p. 437) model shows a relation between a concrete representational 
register, a graphical representational register, different verbal registers and a symbolic-algebraic or 
symbolic-numeric register. Both tasks start with a verbal representation, in Task 1 also a graphical 
representation. In both tasks, all the pupils made use of a graphical register in the solution process, 
(evidenced by the worksheets), but also other registers could be identified.

The formulation of Task 1 used a verbal register and an iconic graphical register (Duval, 2006, p. 
110), the picture of the shapes. This picture turned out to be instrumental in the pupils’ solutions. All 

Figure 6: Naomi and Filipa's solution Figure 7. One of Frances’ five groups
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pupils started by copying the picture of the shapes and then they started to colour the shapes. Almost 
all pupils ended up with a matrix structure similar to what is shown in Figures 4 and 5. Most pupils 
got several examples to work on, with different number of shapes and colours, and the representations 
developed into being more systematic and refined for each new example. I described Task 1 as
involving a mapping , with containing shapes, containing colours, and
containing coloured shapes. The elements of are, in a concrete sense, a product (combination) of
the elements of and : “shapes times colours gives coloured shapes”. For combinatorial
problems, an issue is that the target measure space may not be present from the beginning, and that it 
is not clear when to stop counting (English, 1991; Shin & Steffe, 2009). The strong relation between 
the measure spaces in Task 1 may have reduced this challenge. 

Task 2 involves a mapping , where contains outfits and contains days
of the week. Here, the connection between the measure spaces is weaker than in Task 1. Task 2 was 
formulated purely in a verbal register, but the dominating register used in solving the task was an 
iconic graphical register. The solutions were heavily based on drawings of the clothing items. The 
lack of a stopping strategy was evident in Task 2, as exemplified by Naomi and Filipa: “We think it
is two weeks and one day” (#4) and “It is not so easy to see if we have taken all” (#14). They stopped
because they were not able to find more possibilities, not because they were convinced that the 
solution was correct. There are some occurrences of statements “three times five” in the data material, 
but with no clear reasoning about why three times five is a representation of the given situation. 

Although a graphical register was used in both tasks, the representation chosen for Task 1 was much 
closer to a symbolic-algebraic representation (matrix) than was the case with Task 2. In Task 1, 
Naomi also introduced a symbolic-numerical representation by writing 3+3+3+3+3+3=6+6+6=18. A 
similar representation as in Figure 6 could be found in many of the pupils’ worksheets, and some 
indications of grouping could be found in the graphical representations (Figure 7) as well as in the 
discussions. However, there is a significant difference in the chosen representations and in the extent 
to which the situations are perceived as multiplicative. Despite utterances like “three lines for each 
sweater” and “five lines for each pair of trousers” in Task 2, there are very few indications of grouping 
and counting of composite units. The counting is done one by one, sometimes using tally marks when
a new connection between a sweater and a pair of trousers was discovered. I interpret this difference
to be due to two aspects: The difference between the representations in the formulation of the tasks, 
and the nature of the target measure space. It turned out that in Task 1, many of the pupils could 
generalise to other numbers, whereas no such generalisation was observed in the work with Task 2. 
Mathematical symbolism, seen by O’Halloran (2005) as the final stage in a solution process, is 
generally used to a very limited extent. 

In Task 1 the target measure space is a variation of the measure space . This makes the situation
close to a rectangular array situation (Fosnot & Dolk, 2001), with shapes (biscuits) laid out in a row-
column pattern. Therefore, Task 1 is not a genuine Product of Measures situation, but more like an 
Isomorphy of Measures situation, and hence less challenging (Vergnaud, 1983). 

In this paper, I have shown how the choice of representations and the difference between the measure 
spaces can influence pupils’ solution strategies. In Task 1, the pupils found a systematic solution 
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strategy, which they also could generalise to larger numbers. The nature of the measure spaces in 
Task 1 made this situation closer to a rectangular array problem than was the case with Task 2. 

References
Brousseau, G. (1997). The theory of didactical situations in mathematics: Didactique des 

mathématiques, 1970-1990 (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Eds. & 
Trans.). Kluwer.

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. 
Educational Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/s10649-006-
0400-z

English, L. D. (1991). Young children’s combinatoric strategies. Educational Studies in Mathematics, 
22(5), 451–474. https://doi.org/10.1007/BF00367908

Fosnot, C. T., & Dolk, M. (2001). Young mathematicians at work. Constructing multiplication and 
division. Heinemann. 

Greer, B. (1992). Multiplication and division as models of situations. In D. A. Grouws (Ed.), 
Handbook of research on mathematics teaching and learning (pp. 276–295). Simon & Schuster 
Macmillan.

O’Halloran, K. (2005). Mathematical discourse: Language, symbolism and visual images.
Continuum. 

Prediger, S., & Wessel, L. (2013). Fostering German-language learners’ construction of meanings for 
fractions – design and effects of a language- and mathematics-integrated intervention. 
Mathematics Education Research Journal, 25(3), 435–456. https://doi.org/10.1007/s13394-013-
0079-2

Rønning, F. (2012). Symmetrisation of an asymmetric multiplication task. In G. H. Gunnarsdóttir, F. 
Hreinsdóttir, G. Pálsdóttir, M. Hannula, M. Hannula-Sormunen, E. Jablonka, U. T. Jankvist, A. 
Ryve, P. Valero, & K. Wæge (Eds.), Proceedings of NORMA 11, The Sixth Nordic Conference on 
Mathematics Education (pp. 553–563). University of Iceland Press.

Shin, J., & Steffe, L. P. (2009). Seventh graders’ use of additive and multiplicative reasoning for 
enumerative combinatorial problems. In S. L. Swars, D. W. Stinson, & S. Lemons-Smith (Eds.), 
Proceedings of the 31st annual meeting of the North American Chapter of the International Group 
for the Psychology of Mathematics Education (Vol. 5, pp. 170–177). Georgia State University. 

Steffe, L. P. (1994). Children’s multiplying schemes. In G. Harel & J. Confrey (Eds.), The 
development of multiplicative reasoning in the learning of mathematics (pp. 3–39). State 
University of New York Press.

Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landau (Eds.), Acquisition of 
mathematics concepts and processes (pp. 127–174). Academic Press.

Proceedings of CERME12 1628



Content-specific teaching practices to enhance learners’ concise 
language use while dealing with amount and change

Dilan Şahin-Gür

Technical University Dortmund, Germany; Dilan.Sahin-Guer@math.tu-dortmund.de

Keywords: Teaching practice, content-specific, explicit language use.

Content-specific teaching practices to increase conciseness
In their research survey on language-responsive approaches, Erath et al., (2021) observe that so far, 
planning and interaction dimensions of scaffolding have been investigated separately and call for 
investigating the mutual relationship: “Future research should strengthen the efforts to combine the 
analysis of dimensions that have formerly been researched separately” (p. 258). In particular, little is 
known about how macro-scaffolding is supported by micro-scaffolding strategies as Pöhler (2018)
outlined while addressing this question to some extent by investigating the impact of micro-
scaffolding prompts on intended teaching-learning processes. Even if a few studies already show that 
students’ language development can be enriched by teaching practices (e.g., Smit et al., 2013), further 
studies are requested (Erath et al., 2021).

One part of my PhD thesis will contribute to reducing this research gap by showing the impact of 
spontaneous support through adaptive micro-scaffolding practices on students’ language use while 
dealing with amount and change and their relationship.

In previous empirical studies we have already shown that conceptual challenges in dealing with 
amount and change, e.g., confusing the levels (Nemirovsky & Rubin, 1992), can be
overcome successfully when a concise meaning-related language is developed (Prediger and Şahin-
Gür (2020) differentiated conciseness topic-specifically into explicitness of level references and 
preciseness of change process comparisons). In addition, we have observed that teachers' prompts for 
making references explicit are crucial for developing conciseness of language. These have given us 
important hints for the further development of the teaching-learning arrangement. At the same time 
these insights emphasize the need to provide opportunities for enhancing students’ explicit and 
concise language while dealing with deep mathematical concepts such as amount and change.

So far much is known about students’ processes of extending their individual lexicon, but too little is 
known about explication and preciseness and even less is known about the effective support of more 
and more explicit and precise language expansion. This allows me to present a poster sketching the 
research on the following research questions:

What teaching practices repeatedly emerge in relation to learners' increasing explicitness of 
language use while dealing with amount and change? And how are these teaching practices related 
to varying degrees of explicitness and particular concepts of amount and change?

Methods
Data collection. The data collection for the complete PhD study comprised design experiments with
16 pairs of 10 and 11th graders (14-16 years old), and the author as the design experiment leader. The 
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research reported in the poster focuses on data from design experiments in laboratory settings with 
nine pairs of 11th graders. Two sessions of 45-60 minutes each were completely video-recorded for 
each pair (around 1000 minutes of video material). 

Data analysis. In order to analyze the connection between teachers’ practices and students’ topic-
specific explicitness and preciseness of their language use, the qualitative data analysis proceeds in 
three steps needs to coordinate two theory-driven deductive codings: 

Step 1. Locating students’ and teachers’ utterances in the topic-specific degree model for conceptual 
conciseness (explicitness and preciseness) (Prediger & Şahin-Gür, 2020) 

Step 2. Depicting the chain of utterances (Prediger et al., 2020), marking and connecting the pathways  

Step 3. Based on these coordinated, theory-driven codings, the teachers’ questions and prompts are 
coded and typical recurring practices are identified in sequences or questions and prompts, following 
the analytic procedure suggested by Prediger et al. (2020). 

Conclusion 
The necessity to elaborate vague student language has already been identified in other transcripts 
from qualitative calculus (Prediger & Şahin-Gür, 2020). The poster will reveal first content-specific 
insights on what is crucial to pick up and connect in students’ thinking (e.g., identifying and 
explicating the levels) by identifying relevant teaching practices. 

Outlook for the physical poster. The poster will list in bullet points the theoretical approaches and 
show the research question. I would like to spend a large part of the poster on empirical findings, 
illustrated in an exemplary transcript and the related analytic scheme of the identified practices. 
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During the Covid-19 pandemic, we have experienced the broadcasting of educational television 
programs in Poland, which were offered as an alternative to classroom teaching in all subjects, 
especially for the students who did not have access to online courses. “Szkoła z TVP” (“School 
with TVP”) was such a program; a total of 1,600 lessons were broadcasted within this program, 
with a total duration of 1,440 hours. Concerning mathematics, this program has sparked a lively 
debate among different agents, including academics, mathematics teachers, journalists, parents, as 
well as students, who were the target group of these series. The aim of the present study is to 
analyse the images of mathematics, as they emerged in discussions among the aforementioned 
agents. The data came from 1202 texts published in educational fora (closed Facebook groups), 
social media, emails, websites (articles, interviews, and comments) and communication platforms. 
We view the image of mathematics as consisting of: stated attitudes, feelings, description/metaphor 
for mathematics, beliefs about the nature of mathematics, views about mathematicians and their 
activities, beliefs about mathematicians’ ways of knowing and warranty of mathematical 
knowledge, description/metaphor for learning mathematics, aims for school mathematics, memories 
of best/worst mathematics lessons, beliefs about mathematical ability and beliefs about sex 
differences in mathematical ability (Lim & Ernest, 2000, p. 195). Based on these, we performed a 
thematic analysis (Boyatzis, 1998) by assigning codes to the utterances contained in the texts. The 
codes were then combined, to identify emerging themes, which constituted the different images of 
mathematics.  

Results and selected examples 
Our analysis led us to four overarching images of mathematics: a) mathematics is unambiguous, b) 
mathematics teachers are expected to act as motivators, c) mathematics lessons are expected to be 
interesting and lively and d) mathematics teaching should not be based on rote memorisation. Due 
to space limitations, we present examples only of the first two images. 

Mathematics is unambiguous 

This image emerged from two codes: the first one referred to the teacher-presenter’s mathematical 
errors (ERR), while the second referred to the nature of mathematics (MATH):  

Without a doubt, the content that has reached us contains gross errors. (ERR) Basic 
mathematical skills and concepts are so clearly defined that there is no doubt that there are no 
two points of view concerning the correctness of the content contained in the program. (MATH) 
(“Nauczycielka o lekcjach matematyki w TVP: To jest przestępstwo popełniane na umysłach 
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naszych dzieci” / “Teacher on mathematics lessons at TVP: This is a crime committed on the 
minds of our children”, 2020) 

Mathematics teachers are expected to act as motivators 

This image emerged from codes related to the teachers-presenters’ verbal (QUEST) and non-verbal 
behaviour: 

The lessons are such that there is a person or two in front of the camera and a whiteboard. Some 
people act as if they stand/sit in front of a normal class, ask questions to non-existing children 
(QUEST), listen, and then answer by themselves... (Papuzińska, 2020) 

We may relate this to the ‘Teacher as motivator’ role described by Munter (2014): “the teacher 
must be energetic and captivating so that students will be sufficiently motivated to learn with no 
mention of what the teacher should do with respect to content” (p. 600). 

The images identified in our study are related to images that appear in the literature. It seems that 
the television programs have enhanced specific images of mathematics teaching, especially those 
related to rote memorisation. Bakker and Wagner (2020) mention that “Several colleagues worried 
that quick adoption of new technology will lead to falling back to less favorable pedagogy” (p. 2). 
Our study’s contribution is twofold: towards the improvement of educational programs (and 
eventually online courses) and towards the improvement of the public’s images of mathematics. 
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We present a literature review with the aim to identify and characterise research frameworks that 
propose standards for assessing the quality of students’ mathematical writing. Eleven studies that 
investigated students’ solutions to problems, journal writing, essays, or instructions, and proposed 
frameworks for analysing such writing, were identified. The analysis sought to characterise what the 
frameworks attended to in students’ mathematical writing and whether they described a progression 
with a reference to quality of the writing. The main result is that the frameworks mainly attend to the 
content and that there is little attention to form. Further, quality is most often regarded as a question 
of content, if the text contains for example an explanation, then the explanation is seen as a sign of 
quality with no reference the form. Our review concludes that research rarely describes levels of 
quality in students’ mathematical writing, something we believe further research should do.  

Keywords: Writing, quality, progression. 

Introduction 
The universal practice of having students present their solutions to mathematical problems in writing 
and using this writing to draw conclusions about students’ proficiency, has been common for 
centuries (Morgan, 1998). Reporting mathematical work in writing requires knowledge on how to 
represent mathematical investigations, conclusions, justifications, and arguments. In many curricula 
communication is presented as a competency and as such it can develop so that students over time 
could exhibit a progression, for example in the quality of their mathematical writing. In this paper we 
have investigated the question of quality in mathematical writing through a literature review where 
we set out to answer the questions: Does research provide standards for assessing the quality of 
students’ mathematical writing (MW) and if so, what are these standards? 

A theoretical point of departure is the idea that competence in mathematical communication, in our 
case in writing, is a skill that can be analytically separated from other skills. This idea is captured by 
the concept of communicative competence (Hymes, 1972), which suggests that in a particular social 
situation all things said are not communicated with equal competence (Craig & Muller, 2007; 
Rickheit et al., 2008). The simplest criteria for what can be considered competent communication are 
efficiency and appropriateness (Rickheit et al., 2008). Efficiency relates to the idea that 
communication takes place to fulfil a goal and if you achieve your goal then the communication is 
effective. Appropriateness connects with the social aspect of communication: to communicate well 
in a social situation is to be familiar with all the ways of making meaning within that situation. 
Wittgenstein referred to this social localisation using the metaphor of a language game. He suggested 
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that competent communicators are those who know and abide by the rules of the language game that 
the social situation constitutes (Wittgenstein, 1953/1986). It can thus be argued that what is 
considered good communication changes with the situation. This idea is fundamental to the 
movement labelled Writing Across Disciplines which has advocated the differentiation of writing 
skills in relation to different academic disciplines of which mathematics is one (Bazerman et al., 
2005). 

In line with the ideas presented above it can be noted that modern communication in mathematics is 
a special kind of communication which has developed over two centuries (Solomon & O'Neill, 1998) 
and is defined by its multi-semiotic nature (O'Halloran, 2005). Because mathematical concepts are 
often difficult to articulate in ordinary language, mathematical symbolism has developed to express 
meaning beyond what can be expressed by ordinary language (Schleppegrell, 2007). It has been 
proposed that MW can be decomposed into a formal logical structure in which we find definitions, 
theorems and proofs, and a complementary informal structure in which motivation, analogies, 
examples, and explanations have their place (Steenrod et al., 1973). The logical structure relies on 
mathematical notation and symbolism which owe their strengths to their universality and 
independence of context (Sfard et al., 1998). The complementary structure relies on natural language, 
which owes its strength to its flexibility, offering a nearly endless number of ways of conveying 
meaning through multiple modes. 

Mathematical writing takes place in relation to different objectives and prompts. Students use writing 
to personally make sense of, record or explore mathematical ideas, but also to document processes, 
explain, describe, and make arguments in social situations with peers or teachers (Casa et al., 2016; 
Morgan, 2001; Stylianou, 2011). Within these different categories there is a difference between 
writing in mathematics and writing about mathematics (Bosse & Faulconer, 2008). Writing to 
personally make sense of mathematics and writing for others such as teachers and peers represent two 
very different processes, but commonly, they are concurrent in school mathematics (Morgan, 1998). 
The definition for MW used in this paper is borrowed from Casa et al (2016) and encompasses both 
these categories. MW is understood to be writing to reason (personal) and to communicate (with 
others) in an educational and mathematical context. We assume that standards for assessing the 
quality of students’ mathematical writing apply to either one specific form of writing or several forms.  

Review methodology 
We conducted a literature search in ERIC (EBSCO) where we searched abstracts using the following 
search words: [writing AND (mathematical or mathematics) AND (pupil* or student* or children*)]. 
The search words were chosen with the intent to capture research in which students’ mathematical 
writing is treated as an object separate from communication in general (Schleppegrell, 2007; Steenrod 
et al., 1973). The search was performed on the 24th of May 2021. We found 806 peer-reviewed 
articles fitting the inclusion criteria (see table 1).  

Using the software Covidence to manage our literature review, each paper was screened by two 
reviewers. The screening was made in two steps. First, we screened the title and abstract to forward 
relevant studies to full-text review. In cases where we were hesitant, we chose to forward the paper 

Proceedings of CERME12 1642



 

 

to full-text screening. In the full-text screening, papers were included if they contained frameworks 
or guidelines on how to write, or explicit descriptions of progression or levels of writing.  

Of a total of 141 papers, 50 remained after the full-text screening (see table 1). These were categorized 
according to what was investigated in the paper in terms of: Studies that compare different 
frameworks for analysing mathematical writing (1); Studies that create a framework for analysing 
mathematical writing, but where the research question concerns something else (the framework 
created is a means to study for example the way digital technologies influence students’ writing or 
how writing affords learning) (26); Studies that use a pre-existing framework for analysing 
mathematical writing (the framework is a means) (12); and finally, Studies that result in a framework 
for analysing mathematical writing (11). In this study we have chosen to focus on the latter category 
to investigate only research that focuses exclusively on students’ mathematical writing as an object. 

Table 1: Screening process 

  
Inclusion Criteria Exclusion Criteria Excluded 

Title and 
abstract 

screening 

806 studies 
imported 

Mathematical writing 

Students 

Frameworks for assessing writing 
or identifying aspects of writing 

Journal writing without guidance for 
assessing writing 

No instruction or identification of 
aspects of writing or frameworks for 

assessment 

665 studies 
irrelevant 

Full-text 
screening 

141 studies 
imported 

50 remained for 
data extraction 

Frameworks for how to write 

Guidelines for how to write 

Explicit ideas for progression 

Descriptions for progression or 
levels of writing 

Meta-reflections on the benefits of 
writing 

Not a research article 

No criteria for analysing or assessing 
mathematical writing 

Full text not available. 

Not about mathematical writing 

57 

21 

8 

5 

 
The literature review is a configurative review (Gough et al., 2012) aimed at identifying, interpreting, 
and characterising research frameworks that propose standards for assessing the quality of students’ 
mathematical writing. After an initial review of overarching data such as age groups and types of 
writing (Bosse & Faulconer, 2008; Casa et al., 2016), the analysis focused on the proposed 
frameworks. The first part of this analysis sought to characterise the frameworks in relation to what 
they attended to, and the second part was concerned with investigating hierarchies or descriptions of 
progression in relation to quality, within the identified frameworks. 
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Results 
The types of mathematical writing that was investigated varied across the studies in the sense that the 
writing samples were collected through different prompts. They were, however, all examples of 
accounts of writing that communicated mathematics, i.e., the texts were created with the 
understanding that they were supposed to be read by someone other than the student herself. The 
most common were prompts related to documenting and reporting solutions to mathematical 
problems. This type of writing was found in six of the eleven studies that were part of the review 
(Hughes et al., 2019; King et al., 2016; Kosko & Zimmerman, 2019; Morgan, 2006; Pugalee, 2004; 
Teledahl, 2016). The remaining prompts concerned proofs (Lew & Mejía-Ramos, 2019), journals 
(Clarke et al., 1993), essays (Stonewater, 2002), and instructions (Kline & Ishii, 2008; Shield & 
Galbraith, 1998). The writing samples were collected from different age groups, three from students 
in higher education, two from students aged 17-19 and the remaining from different constellations of 
students aged 6 - 16.  

In our characterisation of what the frameworks attended to, we were originally interested in questions 
of form and content, inspired by previous research in which content and form in students’ MW 
emerged as contrasting qualities. In our analysis, content and form proved to be useful categories 
although they failed to capture everything the frameworks attended to. Beyond these categories, we 
identified attention to the meta-functions of language as the focus of one of the frameworks. Our final 
characterisation therefore consists of the categories meta-functions of language, content, and form, 
which will be presented below. 

Meta-functions of language 

Only one of the proposed frameworks attended to the meta-functions of language and communication 
(Morgan, 2006). Morgan suggested using tools from systemic functional linguistics (SFL) to analyse 
students’ MW. Such an approach would enable us to understand how students represent their 
understanding of who does mathematics, what kind of objects are involved in mathematics and what 
relationships are constructed (the ideational aspect); who the participants are in the written 
mathematical communication including their relationship to each other and to mathematics (the 
interpersonal aspect); and what the written text does (the textual aspect).  

Content 

The most common question that the frameworks attended to was what?, i.e., there was a concern with 
content in all but one of the studies. A typical framework lists several textual elements that should 
appear in the MW. In the studies investigating problem-solving accounts or solutions, such elements 
could include recounts of the steps of the problem-solving process, explanations, accounts of 
reasoning, and referrals to context (Hughes et al., 2019; King et al., 2016; Kosko & Zimmerman, 
2019). Mathematical language or the use of mathematical terms can also be viewed as elements of 
MW that are either present or not in the text, hence it becomes a question of content (King et al., 
2016; Kline & Ishii, 2008). One of the studies characterises the content of the MW as descriptions of 
sub-processes in the problem-solving process (Pugalee, 2004). There is an orientation element, an 
organizational element, an execution element, and a verification element, all of which correspond to 
processes in students’ problem-solving behaviour. The studies that describe types of writing other 
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than solutions to problems also list content. These include descriptions of context, descriptions of 
steps, exemplars, kernels, goal statements, justifications, links to prior knowledge, dialogue, 
summaries, and recounts (Clarke et al., 1993; Kline & Ishii, 2008; Lew & Mejía-Ramos, 2019; Shield 
& Galbraith, 1998; Stonewater, 2002). 

Some of the content elements described in these frameworks are described with a reference to quality. 
The most common quality articulated is mathematical. The term mathematical is attached to textual 
elements such as steps, descriptions, explanations, language, and reasoning. There are, however, no 
descriptions of how a textual element qualifies as being mathematical. 

Form 

Three of the proposed frameworks address the question of mode or form. One of the studies (Teledahl, 
2016) lists empirically identified modes of communication in MW together with their apparent 
function in the MW. Two of the studies investigating proofs (Lew & Mejía-Ramos, 2019) and essay 
writing (Stonewater, 2002) attend to students’ use of mathematical notation and in the case of poofs, 
and in particular their adherence to rules of academic language and the formality of the proof.  

Hierarchies or progression 

Only four of the eleven studies address the question of hierarchies or progression in students’ MW. 
The remaining seven either do not mention any differences in quality or treat quality as a question of 
whether the MW contains a desirable element or not or how often it appears. The two studies that 
address quality describe three (Clarke et al., 1993) or six (Kosko & Zimmerman, 2019) levels of 
writing and details the differences between these. In the case of Kosko & Zimmerman the analysis, 
and subsequently the quality criteria, details the difference in quality between six different ways of 
expressing an argument in students’ MW. Two other studies describe elements of MW that were 
highly valued by respondents in relation to writing an instruction (Kline & Ishii, 2008) or an essay 
(Stonewater, 2002). The latter is the only study that mentions form as something that affects the 
quality of the MW. Stonewater suggest that “Highest scoring writers use both a greater number of 
algebraic, numeric, and graphic representations […] and a greater variety of these representations to 
augment their written work than do the lowest scoring writers” (2002, pp. 330-331). 

Discussion 
The review aimed to identify research-based frameworks that propose standards for assessing the 
quality of students’ mathematical writing. The results indicate that while there were several 
frameworks that in different ways describe students’ mathematical writing there are very few that do 
so with a focus on different levels of quality. Of the four frameworks that describe quality beyond 
the inclusion of different elements in the MW, only one investigated accounts of problem solving. 
This framework however focused on a specific part of such accounts: the expressing of an argument. 
The other three studies investigated other types of mathematical writing. 

If quality is thought of as something that can be decided based on which elements are included in 
MW, then there are more examples of frameworks. The choice whether to include specific features 
in MW can be related to what prompted a student to write the text or to her idea of the discourse in 
which the text is written. The simplest of the criteria for communicative competence are 
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appropriateness and effectiveness (Rickheit et al., 2008) both of which depend on knowledge about 
the discourse or, to use Wittgenstein’s words, the rules of the language game (1953/1986). Adherence 
to rules and conventions regarding the form and content of MW is connected to the appropriateness 
as well as the effectiveness of the communication. If you communicate in ways that let readers 
recognise the writing as mathematical discourse, then this is appropriate and if readers understand 
what is communicated then the writing is effective. In the written discourse of mathematics there are 
conventions and expectations (Schleppegrell, 2007; Sfard et al., 1998) particularly in mathematical 
domains such as proofs that rely heavily on mathematical notation (Steenrod et al., 1973). The result 
of this review, however, indicates that in school mathematics such conventions and expectations are, 
if not missing, then at least not described in research, neither regarding content nor form. It is possible 
that this is connected to the fact that communication in school mathematics, because the students are 
young and/or still learning, rely more on natural language than other modes of communication (Sfard 
et al., 1998).  

In preparing for the review, we assumed that we would find research that had taken an interest in how 
the use of different representations or forms of communication could contribute to an increased 
quality of MW. Not only did we encounter very few frameworks that addressed the issue of different 
levels of quality at all, but we only found one that mentioned form. The study that mentioned form, 
however, proposed that a greater number of different representations together with a greater variety 
of forms of representations was a sign of high-quality writing without addressing the appropriateness 
of the representations in relation to the context. How students communicate in writing is, from what 
we can conclude, not an issue connected to the quality of the writing. If we instead turn to content, 
we still encounter a lack of agreement on the features that signal quality in accounts of problem 
solving. The idea that the quality of MW increases if it contains arguments and/or justifications is 
only visible in frameworks that investigate other types of writing. Considering the small number of 
papers in our study it is likely that our scope was too narrow and that our study will yield different 
results when we, in the future as part of our longitudinal study, include also studies that propose 
frameworks for analysing MW while investigating something other than the quality of the writing 
itself. But this issue pinpoints our concern regarding the separation of MW as a means from MW as 
the primary object of interest. Our aim was to identify studies in which the focus was on the MW 
itself, as an object worth investigating in detail. 

Considering that the studies investigated different types of writing from different age groups, one 
might ask if we should expect agreement or universal ideas on quality in student MW? Is writing not 
intimately connected to different curricula, different contexts, and different levels of mathematics? 
We believe there could be universal ideas on some elements of MW, for example the inclusion of 
arguments and/or justifications in students’ accounts of problem solving. It is our hope that future 
research will attend to such ideas. 
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This paper presents the research results whose aim is to understand the mathematics teacher’s 
argumentation during classroom tasks discussion. Aspects of a theoretical stance are used, on the 
one hand, to show how the teacher’s argumentation can be described in the mathematics classroom 
and, on the other hand, to specify aspects of the discourse in the mathematics classroom. The analysis 
is illustrated with one episode in a tenth-grade classroom, where the teacher and her students discuss 
the solution of a task about trigonometric ratios. The results allow recognizing features of the 
teacher’s argumentation features, purposes, and conditions that activate it. 

Keywords: Argumentation in mathematics classroom, discourse in mathematics classroom, learning 
opportunities, professional knowing. 

Introduction 
The argumentation of the mathematics teacher during teaching requires specifying aspects about the 
participation and discussion in mathematics class. On the one hand, it can be observed how research 
on and with mathematics teachers has grown in the last two decades, which in addition to being 
multifaceted, has a broad scope for teaching and learning mathematics (Chapman, 2016). On the other 
hand, interest in discussion and participation in mathematics class, particularly in the discussion of 
tasks, is associated with the way in which learning is conceived, this is from a participatory 
perspective (Krummheuer, 2011), where learning is conceptualized as participation in classroom 
discourse. The interest here is focused on the teacher, in what some authors have called the Teacher's 
mathematical discourse (e.g., Planas et al., 2016), that is, consider the teacher's communication of 
mathematical content in his interaction with his students. In addition to investigating the learning 
opportunities that these pragmatic considerations can promote; it is interesting to recognize links 
between the teacher's argumentation and student participation. 

Given this concern and considering that: (1) argumentation can be used to deepen the decisions and 
practices of teachers (Metaxas et al., 2016); (2) there are elements or qualities in the communication 
between teacher and students that are important for learning mathematics (Drageset, 2014); (3) to 
describe the discourse in the classroom, detailed frameworks with categories and concepts are needed 
to describe individual turns (Drageset, 2015), and (4) argumentation in the educational field can be 
conceived as a social space and discursive (Ayalon & Hershkowitz, 2018). This paper proposes to 
answer the question: how is the argumentation of the mathematics teacher during class task 
discussion? The data analysis is illustrated through one episode of a mathematics class lesson in a 
tenth-grade teacher (15-16-year-old students) in the city of Medellín (Colombia).  

Proceedings of CERME12 1649



 

 

Theoretical background 
This section comprises two sections; the first one presents considerations on argumentation and the 
second one presents concerns on class discourse. 

Considerations on argumentation  

Like different authors, the definition of argumentation presented by van Eemeren and his colleagues 
(2014, p. 7) is taken up:  

Argumentation is a communicative and interactional act complex aimed at resolving a difference 
of opinion with the addressee by putting forward a constellation of propositions the arguer can be 
held accountable for to make the standpoint at issue acceptable to a rational judge who judges 
reasonably 

This consideration regarding argumentation seeks to attend to complex interactions in mathematics 
classroom, where the teacher and his students argue during the development of a lesson regarding a 
certain task. It also implies that the object of this research, the mathematics teacher’s argumentation, 
tries to isolate itself from the classical position, in which argumentation is assumed as a set of 
premises and conclusions formulated with the help of formal symbols, to assume a position closer to 
language and communication. Considering the argumentation under this theoretical assumption, 
consists of seeing the argumentation as a type of activity with purpose or intention, so that the activity 
is recognized as a process whose representation is the use of language and, therefore, the structure of 
the constellation. of propositions must be analyzed as speech acts that are part of the resolution of 
differences of opinion. 

The difference of opinion does not necessarily take the form of a disagreement, dispute, or conflict, 
but there is one party that has a position and another that doubts whether to accept that position (van 
Eemeren et al., 2014). In mathematics class, it is possible that there are doubts regarding a statement, 
indication or explanation of the teacher, doubts about an answer or procedure different from the one 
presented by the teacher, or different answers to a task in the students’ work, where the teacher’s 
argumentation is required. 

This position regarding argumentation also requires considering the process and the product of 
argumentation. In this document, the process is analyzed based on three dimensions, the first is the 
communicative dimension, which refers to what the teacher says and why he says it, that is, 
statements, questions and purposes; the second is the interactional dimension, which refers to the 
place where he says it and to whom he says it; and since the argumentation takes place in an 
educational context, the epistemic dimension is considered, which refers to how he says it and why 
he says it. The product includes each of the episodes selected for the analysis, which begins with an 
argumentative intervention, in which the difference of opinion on the part of the teacher or a student 
is made explicit and ends with the closing. In the episode, the professor seeks to convince his students 
from his point of view, for which he draws on his knowledge and professional experience. 

Given the purpose and object of research of this study, an adjustment is made to the conditions that 
should occur in the mathematics class for the development of the argumentation proposed by Solar 
and Deulofeu (2016). In this way, the following conditions are recognized: (i) Communicative and 
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interactive strategies, (ii) Focus of the lesson, (iii) Task focus, and (iv) Professional knowledge. The 
indicators for each dimension emerge from the respective analysis. 

Considerations on discourse 

Given that the argumentation is expressed mainly orally and by a group of participants (Knipping & 
Reid, 2015), it is pertinent to consider some class discourse elements. Discourse and its terms are 
frequently used in studies in Mathematics Education (Lim et al., 2020). However, the term discourse 
is usually related to different approaches and traditions, which implies that no single interpretation is 
used (Ryve, 2011). However, as other researchers (e.g., Moschkovich, 2003) and given the 
perspective in which this work is inscribed, we adopted the notion of discourse presented by Gee 
(2008, p.161): 

A Discourse is a socially accepted association among ways of using language and other symbolic 
expressions, of thinking, feeling, believing, valuing, and acting, as well as using various tools, 
technologies, or props that can be used to identify oneself as a member of a socially meaningful 
group or “social network,” to signal (that one is playing) a socially meaningful “role,” or to signal 
that one is filling a social niche in a distinctively recognizable fashion 

Discourse is considered something more than speaking or writing (Moschkovich, 2003), considered 
the language in use since it can be interpreted differently depending on the context. Furthermore, 
discourse refers to multiple processes through which people communicate (Planas et al., 2018), which 
implies considering it as a means and objective (Gee, 2008). For example, a discursive means of the 
teacher in class around the discussion and resolution of tasks and a goal is teaching-learning objects 
(Planas et al., 2018). This position is consistent with the purpose of the research since it is interesting 
to know what the teacher says and how he says it, the identity he takes when he says it, and the acts 
accompanying it. 

In this paper, mathematical discourse is understood as the interventions by the whole class or in small 
groups, where the teacher and his students discuss mathematical tasks that take into consideration the 
understanding of concepts, operations, procedures, and their interrelations (Walshaw & Anthony, 
2008). The mathematical discourse also includes “not only ways of speaking, acting, interacting, 
thinking, believing, reading, writing, but also mathematical values, beliefs and points of view” 
(Moschkovich, 2003, p. 326). 

Likewise, this study explores the teacher’s mathematical discourse, which is considered an essential 
component of educational mathematics practice. It is understood as the selection, sequencing, 
explanation, adaptation, and argumentation of multiple situations. The teacher communicates with 
his students during the solution of a task in class to raise generality mathematics [italics added] 
(Planas et al., 2018). 

It is not possible to characterize discourse as a series of individual actions, but rather as a social 
practice, where each intervention is related to previous interventions (Drageset, 2014). Therefore, the 
typification of teacher reactions to student intervention proposed by Ruthven and Hofmann (2016) is 
used, which includes: Approve, Disapprove, Repeat, Restate, Translate, Redirect, Probe, Expand, 
Revert and Devolve. 
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Method 
This research corresponds to a study with a qualitative interpretive approach, where observation is 
used as a tool for data collection. It is intended to explore and describe environments and situations 
in mathematics class and produce in-depth interpretations to analyze the individual and collective 
actions of the mathematics teacher. 

This article reports on Emma’s class (pseudonym), a tenth-grade class with 32 students (pseudonyms 
used) whose ages range from 15 to 17 years (female group). In preparing her lessons, Emma follows 
the curricular plan designed by the educational institution, which is consistent with the statements of 
the Colombian National Curriculum Standards. The data correspond to six lessons guided by Emma. 
The episode presented in this article corresponds to one of these lessons, where Emma and her 
students discuss the following task: Finding the value of trigonometric ratios of notable angles. The 
task was developed during two lessons. In the first lesson, Emma, together with her students, finds 
the value of the sine, cosine, and tangent. In the second lesson, there is an autonomous work by the 
students accompanied by Emma interventions. The episode that is presented take place during the 
second lesson. Each episode begins with an argumentative intervention and ends with the closure. 
The argumentative intervention is preceded by turns that contextualize it. Not always, there is an 
argumentative intervention and a closure. More than one argumentative intervention or more than 
one closing may occur.  

For data analysis, discourse analysis techniques are used in two actions: fragment and connect 
(Boukafri & Planas, 2018). Fragment to obtain more manageable units and connect to discuss data 
and results that have been treated separately. According to Boukafri and Planas (2018), the 
reiterations of fragmenting and connecting lead to three units of analysis: turn, episode, and lesson. 
At first, the analysis episodes in each of the lessons are identified, for them a tracking is made in each 
of the turns, both teacher and students, of the argumentative interventions, and of the respective 
closings, which indicates the beginning and the end of the argumentation. Then, in the unit turn, the 
reactions to the students’ interventions are identified in response to the teachers turn, using the 
framework of Ruthven and Hofmann (2016). Responses are taken either when the teacher’s turn starts 
the episode or when a student starts it. The turns are analyzed in the three dimensions: communicative, 
interactional, and epistemic. The actions of the communicative dimension relate to the framework of 
Ruthven and Hofmann (2016). Regarding the episode unit, argumentative interventions and closings 
are retaken, to identify purposes of the teacher’s argumentation. And in a third moment, in the lesson 
unit, the adaptation to the proposal of Solar and Deulofeu (2016) is used to identify the conditions 
that activated the argumentation in the different episodes within a specific lesson. 

Data analysis and findings 
The analyzes are exemplified from an episode, where Emma is explaining the procedure that allows 
us to calculate the value of tan30 °. Together with her students they have reached the expression 1 / 
√3, the students seem to realize that they must rationalize, to which Emma asks them why they do 
this, marking the beginning of the episode. Given the interventions of the students, it seems that there 
is a certain level of understanding of the procedure to follow. Then, however, there is an intervention 
by Sofia and Mia, which reveals difficulties and requires the teacher’s attention. 
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253 Emma: [...] At what point do we rationalize? Why do we have to rationalize? 
254 Students: Because there is a root below. 
255 Emma: Because the root can’t be left below and what is that called below?  
256 Students: Denominator.  
257 Emma: Denominator. Well, then it would be a tangent of 30 ° ... here it would be 

equal to 1 per root of 3, how much does that give me? 
258 Students: Root of 3. 
259 Emma: Root of 3 over the root of 3 by root of 3. 
260 Sofia: 3 root of 3. 
261 Mia: Root of 6, right? 
262 Emma: Well, let's look at what did we say, last class? Turn back in the notebook. 
263 Alice: Root 3 square. 
264 Emma: Root of 3 square, root of 3 by root of 3 gives me root of 3 squared and what 

happens here? 
265 Students: They are canceled. 
266 Emma: What is canceled? 
267 Bianca: The exponent in the root. 
268 Emma: The exponent in the root? ... The exponent with the root. I have a tangent of 

30 ° is equal to the root of 3 over 3 
In this episode there are two situations that deserve attention within the teacher’s argumentation. The 
first one, the anticipation of a difference of opinion through Emma’s questions in [253], also 
considered as the first argumentative intervention. The responses of the students in the interventions 
[254, 256] allow Emma to identify a certain level of appropriation in said procedure, her intervention 
in [225, 257] consists of supporting the justification of the students and therefore presenting a partial 
closing. And the second situation, based on the interventions [260, 261] of Sofia and Mia respectively, 
show a difference of opinion and therefore correspond to the second argumentative intervention, since 
in addition to presenting different answers, they warn errors, before which Emma does not explicitly 
declare the error, but directs the justification for the students to realize it and convince themselves of 
the expected response, presenting the closure in [268]. 

Regarding the communicative dimension, it is identified as a question from Emma, with which she 
seeks to probe the appropriation of what it means and implies rationalizing an expression, marks the 
beginning of the episode. This question is preceded by interventions from the students, before which 
Emma raises statements with which she approves, translates, restates, or reverts. Even though in a 
previous episode the notation of irrational expressions seemed to have become clear, a certain 
procedure takes place in turn [257] before which the students express in [258] √3 as an answer. Emma 
intervenes in [259] to restate it, to which Sofia raises 3√3 as an answer, and Mia √6 as an answer. In 
the following interventions, Emma uses questions and assertions, with which she takes up procedures 
that have already been discussed. Also, in the intervention [255] distinguishes another type of 
reaction: request, which, given the purpose of this research, makes it necessary to continue expanding 
the table proposed by Ruthven and Hofmann (2016). 

In the interactional dimension of this episode, participation, media, and class norms, convincing and 
discussing, stand out as characteristics. The intervention [262] seems to be interesting, in which 
Emma refers to previous lessons by inviting the students to review her notebook. In addition to 
involving them in the answer to a question, she attends to a question of the students in handling with 
roots, using an indication to be followed by all, because she knows that it is a question that had been 
discussed. 
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On the other hand, they are characteristics of the epistemic dimension: treatment of the mathematical 
object when requesting clarity [255], taking up other lessons to verify the use of a certain procedure 
[262], error handling [262] and, procedures and answers to verify [253, 255, 257, 264, 266, 268] and 
validate a given answer [268]. Emma’s actions described in this dimension allow us to suggest how 
her experience in this degree of schooling allows her to justify to the students the use of a certain 
procedure, insist on when and why it should be done and anticipate possible difficulties with the 
treatment of the same. 

Before describing the purposes of the professor’s argumentation in this episode, the particularity of 
it is highlighted, in it an argumentative intervention is identified [257] during an explanation process, 
which alludes to the fact that within the professor's mathematical discourse also of explanations there 
is also argumentation, and it reaffirms the consideration of explanation as a different process from 
argumentation. Emma seeks to justify the procedure for solving the task, to achieve this, she poses a 
question [253], considered here as an auxiliary argumentative intervention, which is preceded by 
interventions by the students, in which answers to the question [255, 257] and therefore a first closure. 
However, the episode does not end there, it is only until the intervention [268] that the closing of the 
episode can be recognized, when Emma states the answer to the task. In this way, the purposes in this 
episode are highlighted: to clarify the properties of the mathematical object, the root, involved in the 
solution procedure of the task [253, 255, 257, 264, 266], to clarify the solution procedure of the task 
[255, 257, 262, 264, 266, 268], and dealing with different points of view that do not match the 
expected response of task [262].  

In relation to the conditions that triggered the argumentation, the following are identified: (1) The 
communicative and interactive strategies, the questions associated with the task solution procedure 
draw attention, in which Emma seeks to retake procedures, so much so that they were treated in the 
same lesson or in previous lessons [257, 262, 264], which seems to be related to the statement of the 
task “Finding the value of the trigonometric ratios”. It seems that the students still have difficulties 
in handling procedures: rationalization, root management, and fractional operations, necessary to 
respond to the task. (2) The approach to the lesson, the argumentative intervention refers to 
understanding, that is, Emma observes the work of her students and begins the argument by asking 
the reason for a procedure [253]. And (3) professional knowledge, Emma seeks to link the work done 
in previous lessons [262], since she seems to be aware that, to respond to this type of task, the students 
should be able to handle different concepts and procedures. In addition, it is repetitive the action of 
inviting students to name mathematical objects in an appropriate way [255, 266].  

Conclusions 
We can affirm that the argumentation of the mathematics teacher constitutes a complex formed by 
three articulated dimensions: communicative, interactional, and epistemic, whose objective is to 
educate students in mathematics. The primary intention of the teacher is for students to understand 
mathematical objects, and for this she puts into play resources that are in these dimensions. The use 
of the teacher’s reaction typology for the identification of own actions in each characteristic stands 
out as a success, and the contribution of this research by expanding said typology is worthy of note. 
It is important to point out how communicative actions allow observing the participatory perspective 
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of learning, to which the research alludes, where not only the teacher’s intervention is recognizable, 
but also that of the students. 

We recognized how Emma links her students in answering questions or situations in a class lesson, 
how she raises justifications to convince students of a certain answer to a task or question, and how 
they use students' concerns to open the space for discussion and participation, and how she seems to 
be interested in the students not only correcting an answer but also being participants and aware of 
the errors when carrying out a procedure for solving a task. The link between the actions of the 
epistemic dimension with professional knowledge is also evident, since Emma’s actions indicate her 
experience, which is, it can be corroborated in how she raises justifications for certain procedures, 
insisting on when, how and why they should be made. 

The purposes of the argumentation warn how Emma in addition to presenting the solution of a certain 
task, she is interested in having her students participate in the class lesson. It was useful to recognize 
the argumentative interventions and the closings in each episode, which in addition to delimiting said 
episodes, allowed us to recognize situations in math class lessons where the teacher argues. The 
conditions that activate the argumentation are recognized both in the interventions of the students and 
of Emma, they account for specific moments of a class lesson where the teacher should be attentive 
and prepared to face them.  
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Scope and focus
Thematic Working Group 10 has been active since CERME3 in 2004 and is focused on discussing 
mathematics education within the realms of the cultural, the social and the political. TWG10 builds 
on the premise that mathematics education is always more than an encounter between an individual 
and a mathematical object in a classroom setting. Instead it views such encounters as shaped, 
produced and reproduced in the context of wider cultural and societal contexts that are inherently 
social and political (Black et al, 2021). At the same time such encounters are viewed as contributing 
and constituting the contexts in which they are embedded in ways that reproduce, challenge or disrupt 
power relations. Research in this group is characterized by multiple efforts to reflect its own double-
role in analyzing, shaping and reconfiguring mathematics education practices. 

The group is specifically interested in research that investigates how diversity and difference is 
produced through mathematics education and how this process affects the possibilities, opportunities, 
obstacles, privileges and disadvantages associated with mathematics education. This includes issues 
of gender, race and ethnicity, language, socio-economic status, social class, disability, life 
opportunities, aspirations, worldviews and ideologies, school systems, governance structures, space, 
and settings. Additionally, diversity and difference may occur in relation to who is doing the research 
and who is being researched, posing methodological issues of an ethical, ontological and aesthetic 
nature. As all these multiple diversities and differences intersect, a reflective approach is expected in 
reporting what might be the effects of specific mathematics education reforms but also in discussing 
the effects of particular theoretical frameworks that attempt to frame and discuss mathematics 
teaching and learning in praxis. The group strives to unravel and contradict power relations between 
fields and how research depends on both theoretical and empirical assumptions in practice. Hence, to 
decenter oneself as a researcher is a strategy and joint endeavor in the team's collaborative work 
during the conference.

Organisation of TWG 10’s work
Understanding research as a practice that is situated within diverse cultural, social, and political 
contexts has implications for practicing research in situ. During the conference, we organized the 
group to work in a way that 1) cultivated a change of perspective and fostered reflexivity and 2) 
created awareness about the effects of power relations that are always embedded in efforts to 
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understand, theorise and research diverse practices in mathematics education. Hence, we began our 
work in the group by posing core questions that are ongoing and have been a theme throughout the 
years in TWG10:

What forms of exclusion or inequality are being created through mathematics education and 
how their visibility or invisibility becomes framed or narrated?

What possibilities or opportunities are there for disrupting inequalities or exclusion in 
mathematics education? 

Due to the rapidly changing landscape in education following from the pandemic, we added the 
questions:

What new forms of exclusion or inequality has the COVID 19 pandemic created or made 
visible for mathematics education? Or are existing inequalities merely amplified?

What possibilities or opportunities has the COVID 19 pandemic created for disrupting 
inequalities or exclusion in mathematics education? 

In an attempt to make poster contributions visible to the whole group, they were also presented in the 
first session.    This potentially stabilized the hierarchical distinction between papers and posters by 
ensuring they were reported and discussed by the group.

The development of reflexivity was sought by following the principle of peer presentation, namely 
that authors do not present their own paper, but give a short (5 minutes) presentation of a colleague’s 
paper. This peer presentation included a description of the main ideas from the perspectives adopted 
in the paper and the formulation of questions from the presenter’s own perspective. This was followed 
by a discussion in smaller break-out rooms between the author and reader - but also other TWG 
participants joined and added their reflections to the discussion. We finally held a joint discussion on 
interesting, important and challenging topics to put forward. In this way we sought to recognize
research as a collective assignment that takes place in a network of social practices of dissemination, 
reflection, writing and problematizing as we shared and developed ideas, methodology and theory. 

In order to encourage and also facilitate drawing connections between papers, they were grouped in 
sessions that were broadly thematic in some way. A number of papers focused on mathematics in a 
range of out-of-school settings provoking us to think about how localized mathematical practices 
relate to the mathematics curriculum. Ferrarello et al. presented findings from their project on 
Mathem-ethics in a prison setting in Italy, Solares-Rojas & Goizueta looked at the embedded 
mathematics utilized by Hñañu women embroiderers in Valle del Mezquital, Mexico and Francois & 
Vandendriessche reported on their ethnographic study of local activities described as string figure 
making in Northern Ambrymese society, Vanuatu. These papers raised debate regarding the paradox 
of validating mathematical knowledge from marginalized communities using academic mathematics 
and whether this really legitimates embedded mathematics or simply marginalizes in a different way. 

Another common focus across the papers was teachers’ understandings and experiences of 
marginalization and diversity. Gildehaus & Liebendorfer highlighted how a group of pre-service 
teachers often experience being positioned as less valued in comparison to mathematics majors on 
university mathematics courses. Xenofontos et al. explored teachers’ perceptions of the causes of 
marginalization in school mathematics in Scotland highlighting the dominance of social class in 
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teachers’ perceptions. Hummel & Bohlmann reported on pre-service teachers’ understandings of 
diversity and their desire to acknowledge diversity in their future mathematics teaching but with 
limited knowledge of how to do so. 

A third commonality between some of the papers was the recognition of diversity between students 
and how this might be both a challenge and a resource within classroom practices.  In relation to 
gender, Foyn & Solomon focused on the challenges faced by a high performing girl, Sarah, whose 
experiences in the mathematics classroom are dominated by male performances of ‘smartness’. The 
paper by Tiedke et al. focused on factors that influence the construct of low attainment prescribed by 
teachers - also highlighting the role of gender, in addition to self-concept and the quality of classroom 
management. A third paper by Ay highlighted differences between privileged and non-privileged
students in their approach to modelling tasks outlining how more privileged students are able to 
unpack real world assumptions more readily when engaging with such tasks. Two papers also focused 
on recognizing differences between students as a resource for generating social transformation and 
change. Carrijo identified racial differences as a resource for investigation in the mathematics 
classrooms so that students may see their own lived realities in their mathematics activities. The paper 
by Ryan et al. focused on multilingual students’ relocating of academic school mathematics across
the home-school boundary - which, they argue, is a useful focus for pedagogic approaches that try to 
recognize home and community practices as a resource for learning mathematics. 

Assessment was another theme that was addressed in two papers. Makrakis looked at how time and 
speed in national high stakes mathematics tests in Greece produces exclusion from mathematics. By 
contrast, Nieminen focused on an alternative framework that emphasizes students as co-designers of 
assessment (Universal Design for Learning), and explored how assessment frameworks may be 
designed to increase rather than hinder participation in mathematics and open up access for students 
with disabilities. 

A larger group of papers investigated how research in mathematics education can produce social 
transformation both within the classroom and in society. Steflisch discussed teachers’ perceptions of 
innovation in the mathematics classroom and categorized their responses into three types. The paper 
argues that those who struggle to stick to their pedagogic ideals rather than reverting to traditional 
pedagogic strategies may offer the most potential in terms of bringing about change. Lo Sopia et al. 
also focus on teachers’ perceptions - but in relation to creativity in problem solving activities in the 
context of schools where there are high levels of student drop out. In addressing resistance to 
pedagogic change at a local level, Reinholz et al. discuss EQUiP - an observation tool which offers 
teachers/mathematics faculty with data on the link between social demographics and student 
participation in their own classroom as a tool for professional development. Plunger highlighted the 
necessity of learners’ reflective processes for using mathematics to critique society - particularly, in 
relation to context orientated reflection. Buttitta & Di Paola discussed the concept of cultural 
transposition as a means to decentralise a didactic practice from a specific social and cultural context.  
Finally, Wright introduced the concept of socio-mathematical agency to critical mathematics 
education, which he defines as “the ability to use mathematics effectively to argue collectively for 
social change”. 

Another theme focused on developing critical thinking through mathematics education in ways that 
question socio-political bias and inequalities. Steffensen et al. presented findings on students’ views 
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of the pandemic that demonstrate their ability to identify and use mathematics-based argumentation 
as a means to question a range of social inequalities. Andersson et al. highlight the challenge in doing 
this, outlining how discourses regarding the necessity of mathematics to democracy and citizenship 
make the development of critical thinking with mathematics difficult. Kollosche focused on questions 
regarding the epistemic status of mathematical knowledge itself. He proposed the ‘styles of 
reasoning’ framework as useful to critical mathematics education since it can help highlight the socio-
political bias of mathematical knowledge without dismissing its objectivity altogether. 

Finally, several papers discussed the COVID 19 pandemic and the way it has made visible hidden 
inequalities produced and reproduced through mathematics education. Vosbergen highlighted how 
the pandemic created a mathematics teacher shortage in the Netherlands which manifests a break 
down or blurring of the distinction of public and private education leading to questions regarding the 
quality of teaching and de-professionalization. Abtahi et al discussed the ethical issues made visible 
by the pandemic in doing mathematics education research. Lastly, Applebaum et al. pinpointed the 
pandemic as an example of a dystopic crisis that should be embraced by critical mathematics 
education suggesting the need to appropriate the tools of dystopia for local and indigenous struggles. 

Common conclusions and open questions 
TWG10 historically is orientated towards perspectives and methods that are more visibly located in 
other related disciplines of reference but not yet established within the field of mathematics (Abreu 
et al.). There is a strong emphasis on critical social theories and the questioning and deconstruction 
of concepts that are often taken for granted in mathematics education more broadly. CERME 12 was 
no different in this respect - group discussions on the above papers led to questions around the 
epistemic status of what we might term as ‘academic mathematical knowledge’ and how mathematics 
circulates across institutional boundaries with everyday practice. What are the power hierarchies at 
work here? This led us to consider whether the pandemic has created further in/out relations in 
mathematics education which linked back to the first session and indeed the conversations held within 
TWG10 in the CERME11 ¼ pre-conference meeting.  

Additionally, a key tension in the group was around modelling and its function in critical mathematics 
education. Clearly, global crises such as the COVID 19 pandemic and climate change are generating 
more interest in modelling as a way to develop awareness and action for social justice. But the group 
also questioned how far modelling a role plays in the hegemonic reproduction of injustice and 
inequality and how we might prepare teachers to discuss this with students. This leads to a broader 
question: are we, as mathematics educators creating the problems of injustice that we are trying to 
solve? 
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Ethics is an important aspect of any mathematics education research. The two projects referred 
to in this report were designed to explore the experiences of migrant and/or Indigenous 
students and teachers in mathematics classrooms. Both were disrupted by the COVID-19 
pandemic’s shift from in-person to online data collection. The disruption led us to become 
aware of ethical aspects of the research that were not previously evident to us. We present and 
discuss several such moments of awareness, including the “shielding” role of school making 
some injustices invisible, and challenges of participatory online interaction.  

Keywords: Research ethics, migration, ethical awareness, mathematics learning, mathematics 
teaching 

Introduction  
The presence of migrant or Indigenous pupils in mathematics classrooms can create 
educational and cultural vulnerabilities, as well as opportunities for transformation and 
adaptation. Generations of Indigenous students may have experiences of tensions in classrooms 
through acts of assimilation and colonization. Students and teachers can experience tensions of 
transformation and adaptation as they engage in classroom practices on the basis of what they 
know about their own and the community’s history and culture (Gutiérrez & Rogoff, 2003). 
Within mathematics education, there is a long history of research focusing on challenges and 
possibilities experienced by migrating pupils (e.g., Planas & Civil, 2013) and Indigenous pupils 
(e.g., Meaney et al., 2012). In our two projects, in Canada and in Norway, we study the impact 
of migration and the history of colonialization on mathematics learning from the perspectives 
of students and teachers. Each project aims to examine potential richness afforded by students’ 
multiple cultural, linguistic, and educational experiences of mathematics (education): e.g., 
different ways of doing, learning, and thinking about mathematics. The aim of the Canadian 
project is to promote intercultural dialogue. The Norwegian project aims to develop strength-
based pedagogies. We will describe the projects and then elaborate on the data collection 
methods and how they changed as a response to the pandemic. Finally, we discuss some of the 
ethical issues which emerged in relation to this transition. 

The Canadian project: Migration in Mathematics Classrooms (MMC) 
More than 500,000 children in Canada come from migrant backgrounds (Statistics Canada, 
2011). The Canadian study defines migrant students as those who, as a result of a change of 
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residence, experience differences of culture and language in school. Thus, migrant students 
include those whose families have moved for economic or employment reasons, refugees, and 
Indigenous students whose families have moved between Indigenous settings and an urban 
school. We ask: how does migration affect students’ and teachers’ experiences of school 
mathematics? We designed the study to create multivocal, intercultural dialogue among 
families, children, teachers, and school systems, in relation to the learning and teaching of 
mathematics, by highlighting “unfamiliar” mathematics for teachers and for students following 
Tobin (e.g., 1989). Initially there were to be two phases of data collection. In the first phase, 
our research group would visit ten schools and work with five students in each school. These 
students would take the role of co-researchers, gathering accounts of their prior and current 
experiences of mathematics, from their parents, and in their mathematics classes. Near the end 
of our meetings, students would synthesize their collective experiences in the form of collages 
to communicate students’ experiences with teachers. At the end of the group meetings, a round 
of interviews with each individual student would take place. The second phase would focus on 
teachers’ experiences. We would share each collage with teachers from the school, to 
understand their responses to students’ experiences of migration. Teachers, as co-researchers, 
would collect observations of their own practice, noting shifts arising from their new 
understanding of their migrant students’ experiences. At the end of this phase, teachers from 
the ten participating classes would compare the collages created in their schools, their 
responses to them, and resulting shifts in practice. 

The project was interrupted by school closures from the COVID-19 pandemic. We redesigned 
our data collection, shifting it online, but continued with a multivocal, dialogic, layered 
approach. In the redesigned project, the two data collection phases are maintained but their 
character has changed. In the first phase, we planned ten virtual math clubs, each with six 
children in, meeting. virtually for five sessions and engaging in both synchronous tasks and 
“take home” activities to work on with parents/siblings to share at the next session. At the end 
of each math club, we hold interviews with each student and, if they wish, a family member. 
The second phase will include six virtual groups of mathematics teachers who will meet twice. 
We will share and discuss the student participant profiles with teachers, as well as examples 
illustrating children’s cultural-historical repertoires with respect to mathematics. Teachers will 
be asked to reflect on information shared, their reactions, and implications for practice. So far, 
we have collected data from two groups of children: 11 sessions of online mathematics 
activities with 7 children ages 8 to 12. 

The Norwegian project: Mathematics Education in Indigenous and 
Migrational contexts (MIM) 
The Norwegian project investigates challenges in mathematics education in times of societal 
changes and movements. The aim is to promote education responsiveness to diversity, and 
through participatory research methodologies develop and evaluate strengthening pedagogies. 
These are research-based pedagogies building upon participants’ strengths and assets. They 
may be identified by examining past positive experiences; encouragement of hope and 
optimism and development of emotional satisfaction with the present (Seligman & 
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Csikszentmihalyi, 2000) moves away from cultural-deficit orientations and instead promotes 
achievement for all students. We address how different languages and cultures may either 
challenge or support the mathematics learning of two groups in Norway, Indigenous and 
migrated students. 

Migrated students perform lower than their Norwegian peers on national tests in mathematics 
(SSB, 2019), as do Sami (Indigenous) students (Udir, 2018). Sámi mathematics teachers are 
decolonizing their school mathematics through developing culturally based examinations 
(Fyhn et al., 2016), interdisciplinary teaching (Nutti, 2013) and activities building identity and 
pride based on cultural heritage combined and language revitalization 
(Huru, Räisänen & Simensen, 2018). 

We had planned to collect data in four rounds including: (a) conversational interviews, (b) 
video- and audio- recordings of planning and enacting of various practices and pedagogies, (c) 
collection of artefacts from discussions and classrooms (e.g., student work), and (d) collective 
discussions to reflect on the work together. Starting with the students, then teachers, and if 
required, school leaders, community members, we would start with the “core” and work our 
way out to the periphery. Moreover, because history and context are central to this work and 
to shed light on the other findings, the final phase of the project would include collection of 
relevant policy documents and media analysis.  

This plan was interrupted by school closures in the pandemic. Our researchers were not allowed 
to visit schools for at least the first year of the project. Thus we flipped the order of data 
collection to start with a larger media analysis and online interviews with school leaders and 
community members. Participatory work features a democratic model that challenges 
traditional ideas of who can produce, own and use knowledge. It honours and grapples with 
tensions from bringing together ways of knowing and generates new forms of knowing (and 
being) (Morales, 2016). The pandemic interfered with this important principle for data and 
analysis. 
Ethics in mathematics education 
In each project, the research team grappled with the disruption of the pandemic and became 
aware of moments of interactions that led to ethical perplexity. A conversation among the 
teams emerged, focusing on ethics. Varela (1999) explains that acquiring ethical know-how is 
a: 

skillful approach to living […] based on the pragmatics of transformation that demand 
nothing less than a moment-to-moment awareness of the virtual nature of our selves. In its 
full unfolding, it opens up openness as authentic caring. These are radical ideas and strong 
measures for the troubled times we have at hand, and the even more troubled ones we are 
likely to have. (p. 75) 

In the troubled time of the pandemic, we made changes to our practices. To remain ethical 
demanded ‘nothing less than our moment-to-moment awareness’ of ourselves as researchers 
and of our practices. In doing research, our approach to ethics is pragmatic and relational and 
promotes equity. It is pragmatic because we understand that rules and standardized 
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procedures can lead to inequity and can even be unethical. As researchers, being ethical as we 
conduct research involves working to develop an ethical awareness and to make decisions 
with this awareness (Varela, 1999). The ethics are relational because our research involves 
relationships with participating students and teachers. Moreover, we understand that our 
practices as researchers are produced in relation to our understanding of our participants, and 
their responses are similarly in relation to us. In this sense, research ethics are dialogic.  

Some ethical awarenesses  
In this section, we report on some ethical awarenesses about relationships that arose as a result 
of the pandemic’s disruption—in some cases, relating to new approaches to data collection, but 
in other cases, relating to broader aspects of the research. By nature, crises are unique. Thus, 
the ethical dilemmas arising for mathematics education researchers in this pandemic are 
unprecedented in many ways. Nevertheless, there has been some discussion (probably not 
enough) considering research in contexts of social conflict. Vithal & Valero (2003) pointed to 
the impact of conflicts on research questions and the theories that relate to the questions. So 
far, the pandemic has not changed the fundamental research questions in either of our studies, 
though it is changing the order in which questions are addressed in Norway. Further, we know 
that when we write papers we often adjust the research questions from the ones we foresaw. 
Thus, we expect some adjustment to our questions. Nevertheless, Vithal and Valero suggested 
a move toward critical theories and participatory research in conflict situations, and both of our 
projects already take these approaches. 

Relationships with children and their families no longer mediated by school 
In any research project, relationships are built between researchers and participants. We hope 
that these relationships extend beyond what is necessary to obtain data. The transition to online 
data collection made visible schools’ roles in facilitating such relationship-building. If we had 
been visiting schools, the schools would mediate the relationship between researchers and 
students and their families. In Canada, we are now attempting an online approach that reaches 
out to families directly using the connections we have in the group—at least one participant 
school had an established relationship. The Norwegian project started later and has not been 
able to establish such relationships. 

Given that the children are minors, it is appropriate that researcher interaction with them is 
mediated. Schools are well-positioned to do this normally because the system has experts who 
are at least somewhat familiar with educational research. The families and children may trust 
the researchers on the basis of their trust in the teachers who invited the researchers into their 
classrooms. When the mediation of the school is removed, then who plays this important role? 
Community organizations may feel ill-equipped to mediate in this way due to their 
unfamiliarity with this kind of research. In Canada, participating students have joined the 
project through their parents. What if students were not as interested in the math club as their 
parents?  

Questions arise when schools do not mediate research relationship: What is the nature of a 
school’s mediating role in relationships between researchers and children/families? If the 
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school is not there (e.g., in this pandemic) how can/should researchers manage relationships 
with families and children? 

Different mathematical knowledges are valued differently 
Whose mathematical knowledge is highlighted? The Canadian data collection methods entail 
doing mathematical activities with students with a migration background. The Norwegian 
research addresses minoritized students which includes Norwegian Indigenous children whose 
voices rarely, if ever, are heard. While designing, conducting, and reflecting on mathematical 
exchanges, a tension emerges about whose mathematics is highlighted.  

In the original Canadian project, the goal was to get insight into migrant students’ experiences 
of the ‘standard’ mathematics taught in school. By participating as researchers in their own 
classes, their account of these experiences would be important data (rather than our own 
observations of the class). In the revised project, the mathematics activities are facilitated by 
members of the research team. The distance in the original design is lost. We acknowledge that 
these tensions cannot be resolved. We all bring our ideas and experiences of mathematics (our 
repertoires) to the project, and we ‘see’ participants’ repertoires through our own. In the revised 
project, we are now more entangled in the interaction between different mathematical 
repertoires. 

In the Norwegian project, the plan was for participatory research with schools in northern and 
southern Norway. We planned for close collaborations with students, practicing and becoming 
teachers and school leaders. We had planned to start the participatory work as the heart of the 
research, in close partnerships with students and teachers in their classrooms. However, the 
pandemic forced us to reconsider. Instead of being present in the classrooms: noticing, 
interviewing and observing for positioning and storyline analysis (e.g., Andersson & Wagner, 
2019), we changed our plans and started from the periphery. We decided to analyze the societal 
discourses first through a media analysis, and second, zoom-interviews with all school leaders 
and some some of the teachers. Through the media analysis we identified positionings that 
were made available to migrated and Indigenous mathematics students in this public discourse 
through seven prominent storylines about youth from minoritized cultures and/or languages in 
Norwegian news media (Andersson et al., 2021). The ethical question we ask ourselves is, how 
will our knowledge about these storylines in the public discourse influence our data collection 
and analysis when we as researchers now move from the periphery towards the center, into 
these schools in the post-pandemic Norway? Careful ethical considerations are needed in every 
stage of the research to make it possible for us to avoid reproducing the public storylines in our 
analysis and research texts. 

Relationships online 
In both projects, we became aware of how the online environment has the potential to change 
relationships. In the Canadian project, as the location of data collection changed from school 
to the virtual space (as students and researchers are physically at their home), aspects of the 
role of school are made visible to us. School conceals differences among students; the four 
walls of the school appear to be shielding students from these differences and to offer a sense 
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of security. Inspired by Fasheh’s (1998) question, “Which is more fundamental? Outward 
peace or being true to our humanity?”, we ask: What sort of an “outward peace” is created by 
schools and what becomes invisible by this portrayal of peace? What deeply rooted inequalities 
are given permission to be ignored in an “equal school”? 

In Norway, zoom-interviews also show this approach.  Some of our researchers are insiders, or 
at least known, in some of the northern and Indigenous communities where we do our research, 
getting interviews has been relatively easy. In (most) Indigenous communities where we do 
not have those types of connections this has been harder. This reminds us of the importance of 
establishing trust in research in tight communities. Experiences of colonization enhances the 
need for members of the communities to know where we as researchers are coming from and 
understand at least some of the underlying history and storylines (see Battiste, 2007). Our 
research is based on participatory practices, and we wonder how we can be truly participatory 
online? Are we able to establish partnerships and trust in the schools and communities during 
a pandemic and in post-pandemic periods? We also wonder to what extent the research 
incorporates the insider’s perspective online, especially in the participatory context and with 
participants as co-researchers. How do we build trust in a video-conference medium? 

We note that answers to this question will help us think about how we build trust, incorporate 
insiders’ perspectives and take care of those participating in face-to-face interaction too. But 
now, we are interested in trust-building in the new mediums. How do we as researchers 
understand the context of participants if we cannot physically observe the context? As both 
projects’ original plans were interrupted and we do not know the extent of online and virtual 
data collection in the new ‘normal’, we need to be concerned with how our understanding is 
impacted. We are becoming more aware of the impact of our observations outside the formal 
data collection on our interpretation Practices. 

Concluding thoughts 
Through this presentation, we have described some of the ethical awarenesses that have arisen 
for us as we reworked two research projects in the context of the pandemic. We have focused 
on awarenesses about relationships in mathematics education research, focusing on the role of 
the (absence of) schools, the impact on how different knowledges are valued, and the effect of 
the online environment on relationships. We hope that the conversations with the CERME12 
community will not only help us reflect on the ethical dilemmas that we are facing, but will 
also open up a discussion about ethical issues related to data collection in cyberspace and 
beyond. 
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The use of people’s online digital traces has given rise to concerns for democracy. The digital 
traces may affect the individual’s life in unexpected and negative ways. Such traces may also be of 
importance for understanding the spread of disinformation and the like. This paper reports on a 
Foucault inspired discourse analysis of the Swedish upper secondary mathematics curriculum. Two 
discourses are construed in the intersection of critical thinking, democracy, and this new 
technology. Skovsmose’s concept of mathemacy is used to identify what is critical knowledge and 
what is not. The first construed discourse is, “With knowledge in formal mathematics, critical 
thinking on democracy will follow.” The second is, “Rather a personal career than a critical 
citizenship.” Neither of the discourses promotes a need for mathematics education to change due to 
new technology with regards to critical thinking.   

Keywords: Critical mathematics education, digital traces, democracy, discourse, curriculum. 

Introduction 
We leave digital traces of our actions online. They are used in algorithms that update the feed in 
social media and provide us with search engine results. This enhances experiences and makes them 
more personalized. However, most users do not know the exact mechanisms behind what is seen on 
the screen. In conjunction with research across various fields, this gives rise to concerns about 
citizens’ ability to critically assess mechanics of democratic elections, economic exploitation of 
vulnerable social groups, and the flow of (mis)information, etc. Our interest in this paper is in how 
this critical gaze is highlighted in school and in governing school documents, especially in 
mathematics education.  

This paper reports on a discourse analysis of the current Swedish mathematics curriculum for upper 
secondary school, adopted in July 2021. The analysis is inspired by the viewpoint that teaching 
mathematics is a political activity due to its contingency and sociological impact (Gutiérrez, 2013; 
Valero & Orlander, 2018). Since society is in a state of constant change, there is always a need to 
assess whether the curriculum is in tune with contemporary societal challenges. The analysis takes a 
particular interest in potential issues for democracy related to the new technology of collecting and 
mining people’s digital traces. By democracy, we mean a way of living together in a society with a 
shared belief in values such as equality and equity, and where different opinions can meet in debate 
without any hampering interference from misinformation. One incentive for writing this paper is to 
contribute to an exploration of how critical thinking for democracy can be nurtured within 
mathematics education, as in e.g., critical mathematics education (Skovsmose, 2005). The specific 
aim of the paper is to investigate curriculum aspects of the current situation of critical thinking in 
relation to democracy and this new technology. This could inform future explorations of what can 
be improved (C. H. Andersson, 2021). The research question is: what discourses can be construed 
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in the intersection of critical thinking in relation to democracy and the changing role of mathematics 
in society due to the new digital technology? 

Digital traces and democracy  
The following examples are intended to illuminate some topics that we view as possible to draw on 
in a version of mathematics education which includes a focus on critical thinking in relation to 
digital traces and democracy.  

Digital trace data is processed in algorithms to extract information that was never explicitly there. 
This fuels the new technologies of machine learning and artificial intelligence that are increasingly 
becoming a driving force in the economy (Villani et al., 2018). Data can be, and is, used to prey on 
vulnerable social groups with targeted advertising (O’Neal, 2016). If the workings of the new 
economy are opaque to most citizens, democracy has few regulatory controls to alleviate such 
ramifications. With knowledge of how targeted advertising works, citizens could also start to think 
critically about it in new ways. When machines learn from human behaviour, there is a risk that 
undesirable attributes flaws such as racism and sexism may be embedded in the algorithms and lead 
to discrimination (Villani et. al., 2018). If this happens to the algorithms that steer and select 
information online, these algorithms could become a structure that reproduces social injustice. The 
risk is exacerbated if the algorithms are believed to be neutral. 

Social media can be used to change voting behavior (Bond et. al., 2010), which has been attempted 
on a large scale to support a particular candidate through the use of digital traces (Sabbagh, 2020). 
This means that the digital trace you leave can act as someone else’s tool without your knowledge, 
and furthermore be used against your interests. It is debatable to what extent this is successful, 
nevertheless the strategic use of digital traces has become an integral part of election campaigning. 
Attempts to swing public opinion can also operate through personal digital traces since they cluster 
people into groups with similar interests. Such groups are used as levers in disinformation 
campaigns where group members’ views are cultivated and directed (Starbird et al., 2019), 
demonstrating another way for the digital traces to act as tools for others.   

Digital traces are relevant to take into consideration when understanding search engines. One 
example is how  these attributes more relevance to clicked links (Shah, 2021). When sensational 
(mis)information is uploaded, the resulting clicks out of users’ curiosity increase its visibility in 
new searches, which then result in even more clicks, and a relevance feedback loop that changes 
further search results. The interaction between human behavior and the algorithms can propel the 
visibility of the sensational, rather than the relevant. This knowledge may be the basis of a new 
perspective and critical thinking in relation to news found with search engines, for example.  

Previous research in mathematics education 
Critical Mathematics Education (CME) has a long history through the work of Freire, Frankenstein, 
Skovsmose, and others, of engagement in how mathematics education could support democracy 
(e.g., Skovsmose, 2005). There is research addressing topics around new technology and 
democracy, for instance how people meet new technology albeit being unaware of how 
mathematics operates in it (e.g., Straehler-Pohl, 2017), the need for mathematics education to 
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address computer science (e.g., Borovik, 2017), and students’ ethical reasoning when data science 
is discussed in mathematics education (Register et al., 2021). However, we have been unable to 
locate any research with a specific interest in mathematics in relation to critical thinking on the 
ramifications for democracy of digital traces, the specific interest of this paper.  

Democratic values aimed at in governmental documents in Sweden  
Democracy occupies a salient position in the Swedish Education act (Sveriges Riksdag, 2021), 
stipulating that education shall convey and anchor the “fundamental democratic values “on which 
Swedish society rests” (4 §, chapter 1, our translation). It is not specified, however, if this means 
merely conveying democratic values as such, for example how education is organized, or whether 
students furthermore should attain specific knowledge that supports the sustainability of democracy, 
such as through developing argumentative speech skills. Other steering documents and government 
agencies have the option to add such levels of detail. Concerning search engines, Sundin (2015) 
showed that the Swedish primary and lower secondary school curriculum treated them as neutral, 
and thereby hindered critical media literacy. More recently though, the Agency of Education has in 
different ways started to express the need for compulsory school pupils to be informed on how the 
algorithms of search engines work (C. Andersson, 2021). The mathematics curriculum subject to 
analysis in this paper is thus enacted in a time of increasing awareness of the importance of online 
algorithms, and is a part of a collection of documents that have the overarching of aim of conveying 
and anchoring democratic values.  

Theory 
This paper takes a dynamic view of theory, meaning that theory adapts to the questions asked. The 
paper coordinates (Prediger et al., 2008) Foucault’s (e.g., 1995) framework with CME (e.g., 
Skovsmose, 2005). Coordination is achieved through using Foucault’s framework for how 
knowledge, practice, and the dynamics of structure and agency are intertwined within institutions; 
while CME is used to pinpoint the characteristics of mathematical knowledge from mathematics 
education that, if the discourse allows, could benefit the development of critical thinking. 
Coordination of the two frameworks takes place only within the frames of this paper’s research 
question.   

Foucault’s (2002) framework defines discourse as language use, norms, habits, artifacts, 
institutional praxis, etc. A discourse is a collection of such matters together with the discourse’s 
rules of formation that act as gatekeeper for the creation of objects (including abstract) that can be a 
part of the discourse. There is also an enunciative function of statements which is the action 
performed by them (Foucault, 2002). Through the limits of what is said and acted, including what 
cannot be said within the discourse, discourses portray structure-agency dynamics and how 
knowledge and power are produced and linked. This can be related to agency in educational 
institutions or within an educational system (Boistrup, 2017). 

The second theoretical framework has a CME perspective, since we draw on Skovsmose (2005) to 
introduce mathemacy as a competence that is a “reference to mathematics, in the broad sense of the 
term, but also reference to a notion like democracy interpreted as a way of living … [and] a 
capacity to modulate, and to see a situation as open to change” (pp. 187). Critical thinking is 
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similarly defined in this paper as the competence to think beyond the most common practice of the 
local milieu, realize the contingency of situations and evaluate alternatives. The similarity enables 
us to use characteristics of mathemacy for critical thinking. Skovsmose (2005) addresses three 
distinct types of knowledge related to mathematics, rephrased by us as (1) mathematics knowing 
itself; i.e., dealing with mathematics notions (2) pragmatic knowledge; i.e., applying mathematics 
notions in different situations, and (3) critically reflecting on such applications including the 
consequences of different mathematical decisions in people’s lives. The third knowledge type, 
reflective knowledge, is an important characteristic for the development of mathemacy, whereas the 
other two are not always required. This has affected the analysis, which is described below.  

Methodology and Process 
Data 

The 27-page national mathematics curriculum for upper secondary school in Sweden begins with a 
preamble followed by the general aim of the subject. Then follow 11 course titles, each of which is 
described by two sections: central content to be taught and the knowledge requirements for each 
grade (The National Agency for Education, 2021). The 11th, and last, course’s central content does 
not stipulate any specific content but just give examples of possible content, and is excluded from 
our analysis. The ten remaining courses are divided into three parallel tracks, vocational education, 
social sciences and art, and science and technology. Many words and phrases in the central content 
are repeated across courses, or in the descriptions of grades within or between courses. The 
document is in Swedish. Quotes in this paper are translated to English by the authors. 

Method of analysis 

The analytic procedure was a  back-and-forth process between three steps, though, for clarity, they 
are described as three steps following each other. The first step was to formulate codes. Codes were 
allowed to be intersectional to encompass interplay between concepts. The code individual was 
used throughout the analysis corresponding to when students were mentioned separately and in 
subgroups. Two codes were related to the first two knowledge types identified by Skovsmose 
(2005), i.e., (1) mathematical knowing itself and (2) applying mathematics. The code to-do 
encompasses limited and specific tasks within the realms of either of the knowledge types (1) or (2). 
The code to-know concerns mathematical knowing, either in (1) mathematics itself, or (2) in 
relation to applications of mathematics. Two codes were needed to pinpoint Skovsmose’s third 
knowledge type, critical reflections of mathematical applications (called reflexive knowing). One of 
these codes is to-judge, which concerns all instances where there is a judgment of mathematical 
methods or other mathematical acts. The other code needed for fulfilling the reflexive knowing is 
society, which concerns instances where mathematics is connected to the wider context beyond 
school.  

The second step was to use the analysis program Nvivo. Using the program’s tool cases, the 
document was divided into overlapping sections: preamble, aim of the subject, central content, 
knowledge requirements, and the different educational tracks. Every piece of coding was thereby 
labeled with at least one case referring to its locality in the document. The outcome was analyzed 
by both quantification and interpretation. An example of the former is statistics on the simultaneous 
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appearance of codes. An example of the latter is investigating whether codes tend to appear close to 
each other, e.g. in the same sections of the text. Another example of the latter is reinterpretation of 
statistics due to the repetitive nature of the text. 

The third step was discourse analysis inspired by Foucault. This analysis was based on the first two 
steps of analysis, which gave information about patterns of what is written and what is not. This 
informed us about what the rules of formation of objects for a construed discourse could be. At this 
stage there were many alternatives for such rules and, consequently, for possible construed 
discourses. To reduce this complexity, we followed Foucault’s (2002) suggestion to start with what 
appear to be tensions in relation to our research question. Discourses are broad and general in the 
sense that both sides in a conflict within an institution or a discipline can use them, or they can 
remain invariant across other kinds of tensions. Consistency was achieved by identifying an 
enunciative function for the statements, so that what first appeared to be a tension or contradiction 
was dissolved in light of how the rules of the particular discourse work. Each such consistent view 
on the research question, based on rules of formation of objects and specified enunciate functions 
for statements, became a construed discourse named with a phrase capturing its central theme.     

Main findings and construed discourses 
The construed discourses in this paper are (1) with knowledge in formal mathematics, critical 
thinking on democracy will follow, (2) rather a personal career than a critical citizenship, and (3) 
society as an aim but not to be assessed. Since the third discourse differs from the others with its 
focus on assessment, it is outside the scope of this paper and will not be described in the findings. 

The first discourse, with knowledge in formal mathematics, critical thinking on democracy will 
follow, has formal mathematics as a vehicle to have mathematics education updated to the new 
digital technology and any related issues with democracy. The curriculum’s preamble posits, “as 
society is digitized, mathematics is used in increasingly complex situations” (The National Agency 
for Education, 2021, pp. 1). However, the document never explicitly follows up on what this change 
means for mathematics education, nor does the curriculum make any statements that can be 
construed as being about critical thinking. One of the codes for critical thinking is to-judge, and it 
has a textual separation from the other codes. For instance, it has few simultaneous appearances 
with other codes, and it is separated by punctuation from other codes in a way that is not typical of 
the rest of the text. A similar textual separation of codes exists for the code society. This does not 
only mean that to-judge and society are separated from other codes, but it also means that they are 
separated from each other. Hence, the text does not connect the markers whose simultaneous 
appearance could have indicated critical thinking on a societal level. There is only one instance of a 
simultaneous appearance of to-judge and society: “[f]urthermore, the teaching must contribute to 
the students developing knowledge about the significance and use of mathematics in other subjects 
as well as in a professional, social and historical context” (The National Agency for Education, 
2021, pp. 1). The coding of to-judge is too weak here for critical thinking, and derives only from the 
word “significance” (Sw. betydelse) as a value-laden word. Instead of explicitly describing critical 
thinking, or how the new digital technology is affecting mathematics education, the curriculum 
describes mathematics education in other ways. It is described as something that the students shall 
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be able to-do (307 occurrences) and to-know (145), and to a lesser degree to-judge (57). When 
“judging” occurs, it is typically found in students assessing the plausibility of their answers in 
problem solving, which further emphasizes to-do as the most prominent since it concerns the 
outcome of students doing. The closest the text ever comes to students questioning, not only 
answers but also methods, is in the central content: “[e]valuation of properties and limitations of 
mathematical models” (pp. 3). However, there is no discussion of alternative models or any 
arguments for choosing between them. Overall, the text mainly describes mathematics education as 
something that concerns separate individuals and their ability to perform tasks. This can be seen as 
situated within Skovsmose’s description of mathematical and pragmatic knowledge, with little 
reflective knowledge. This is underpinned by the analysis of the tandem appearance of codes, which 
clearly shows a strong link between to-do and individual. The occurrence of this pair is most 
common in the knowledge requirements. The absence of any explicit statements on critical thinking 
in relation to democracy, and the absence of anything on new technology after its mention in the 
preamble, have the same root in this discourse. They are interpreted as redundant by the in lieu 
salient position of performing mathematical tasks. In this discourse, it is sufficient for students to 
know formal mathematics. This knowledge will provide them with a sufficient toolbox, and since 
formal mathematics does not change, no further pointers on how to use it in the context of 
democracy or new uses of digital traces in society are needed. The rules of formation do not allow 
the creation of the object student’s mathematically guided critical thinking on democracy, because 
that object is subsumed into the object student’s knowing mathematics. The discourse does not in 
any way dispute the need for mathematics education to engage in critical thinking or democracy; on 
the contrary, the enunciative function for statements on mathematical tasks is to show how to do 
this. Formal mathematics resolves the issue! 

The second discourse, rather a personal career than a critical citizenship, is orientated around 
tensions within the text. One tension from the viewpoint that steering documents may concretize 
overall aims, is that the code society first has a clear presence in the preamble, is reduced in the aim 
of the subject, only mentioned sparsely in the central content, and is non-existent in the knowledge 
requirements. Navigating through the steering documents from the overarching aim in the 
educational act down to individual students’ learning goals seems to leave a trace of diminishing 
pronounced societal aims. The only other topic in the text that goes beyond the classroom setting is 
in mathematics for professional life. In contrast to the societal aim, however, the notion of 
mathematics to support a career is still clearly present in the central content. There is even a 
separate subsection only for this in the courses for vocational education; for other tracks there is 
specific content included that resonates with their education track, such as geometric sums (useable 
for calculations on loans) for economically oriented study-programs, and vectors (for physics) for 
science and technology. In relation to our research interest, this discourse does not promote the need 
for mathematics education to engage in critical thinking related to democracy, including in relation 
to any new technology such as use of digital traces. When the text mentions society  these functions 
as lip service to the overarching aim in the education act. The enunciative function in this discourse 
for society thereby creating a hindrance to any actual engagement with it.  
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The two discourses described above can both be connected to previous research. The discourse, 
with knowledge in formal mathematics, critical thinking on democracy will follow, has similarities 
with Valero and Orlander’s (2018) description of an implicit assumption in mathematics education 
of the intrinsic power of mathematics that automatically gives students access to powerful and 
universal reasoning. They describe it as an often dominant view in curricula formulation, and note 
that a tension has been identified in research between this view and views that center more on uses 
and applications of mathematics. The discourse, rather a personal career than a critical citizenship, 
resonates with Jablonka’s (2003) description of mathematical literacy for developing human capital, 
which emphasizes economic growth for both the student and society.  

Discourse analysis is an interpretive process that can take different routes. The analysis in this paper 
provides merely one way of viewing the mathematics curriculum. In this case, the construed 
discourses challenge the notion of a curriculum that is regularly updated due to new uses of 
mathematics in society. Taking the (self)regulation induced by discourses into account, a change 
towards a more vivid ambition to nurture critical thinking for the benefit of democracy in a rapidly 
changing society would therefore be held back by the inertia of these discourses. Therefore, it 
would be interesting to investigate if teachers and students also engage in these or similar 
discourses when reflecting on digital traces, and critical mathematics education, vis-à-vis 
democracy. In that case, it might be possible to identify if, and how, they engage in other discourses 
which may alleviate some of the official resistance to change. 
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We suggest that Mathematics Education theory and practice can find new directions through recognizing 
their dystopic characteristics, and embracing them as both the source of challenges and method of 
response. This contrasts with the generally utopic approach of most scholarship. We offer critical 
ethnomathematics education as a model for such an approach, since it has its own origins in lingering 
dystopic legacies of colonialism. A perpetual hopelessness and disempowerment is one implicit 
curriculum of contemporary mathematics education, where the mathematics once learns might help to 
describe things, yet hardly assists in transforming the reification of power and agency in society. 
Embracing dystopia rather than trying to circumvent it helps us see that it is more crucial to re-think 
curriculum than pedagogy. 

Keywords: Critical ethnomathematics, curriculum studies, ethnomathematics. 

An Introduction 
We began our study with the recognition that school mathematics does not necessarily prepare 
society to respond to the most pressing crises of our epoch: severe weather and climate change, 
refugees from war and climate change, human trafficking and global economic injustice, etc. In 
early 2019, the world seemed unprepared for the COVID-19 pandemic, whether individually or via 
social policy. In particular, the situation created by the pandemic transformed many aspects of 
social reality globally (Możgin, 2020), as well as school reality (Bond, 2020; Niemi & Kousa, 
2020), spreading fear and insecurity, and making people feel unprotected. In general, we live in a 
time of acceleration (Virilio, 2012; Rosa, 2013), with precarious scenarios of evolution; yet the 
daily experience of the COVID-19 pandemic, in and out of school, leapfrogged doomsday 
pronouncements away from mythology or Revelation, and into a visceral idea of the end of the 
world. The focus on the pandemic can also be understood as a primarily “first world problem,” in 
the sense that there were and continue to be far more urgent crises outside of the highly 
industrialized nations, in what is sometimes referred to as the “global south.” This aspect of crises 
helps us to think simultaneously about whether school mathematics prepares humanity for 
anticipating and responding to global crises, and at the same time whether it enables humanity to 
recognize the legacies of colonialism that influence what is even appreciated as a crisis in the first 
place.  

We apply strategies from “critical ethnomathematics education” for understanding parallel concerns 
of equity (opportunity and outcome) and curricular content choices. We do this because critical 
ethnomathematics has already demonstrated techniques for educators to theorize paradoxes of 
global crisis. “Critical ethnomathematics education” makes sense of mathematics education, both 
for preparing people to anticipate and respond to global crises, and for practicing pedagogies that 
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address seemingly insurmountable, “dystopic,” crises in our environment, geopolitics, and the 
future of our planet as ever-present yet necessarily livable.  

Social and Political Mathematics Education as Context 
Ole Skovsmose (2021) proposes three types of relationship between mathematics and crises: 
Mathematics can (a) picture a crisis, (b) constitute a crisis, or (c) format a crisis. Are there parallels 
for mathematics education? Even as numerous mathematics educators would agree that significant 
cultural, historical, and political knowledge is needed to make sense of complex global issues (e.g., 
population movements of refugees and migrants (Xenofontos, 2015; Planas & Gorgorió, 2004), 
climate change (Barwell, 2013; Appelbaum & Stathopoulou, 2020), species extinction (Radakovic, 
et. al, 2018), local community problems (Gutstein, 2006; Hunter & Sawatzki, 2019)), typical school 
curricula worldwide is primarily formal, decontextualized (academic) mathematics, a manifestation 
of Western thought, Cartesian logic and ‘rationality’ rooted in a logic of domination and human-
centric thinking, sometimes termed a logic of domination (Warren 1990). In this conception, 
purpose lies in generalizability, wide applicability to decontextualized concepts/methods, and in 
structures that manipulate variables across specific cases. This bird’s-eye view of human experience 
and deeply-rooted cultural patterns undergirded by Western assumptions of domination over nature 
are increasingly recognized as creating interrelated challenges of climate change, extreme weather, 
food production, and species extinction, demanding new directions of relation centred in social 
justice and alter-global social movements (Warren 1990, Appelbaum, 2018). Persistent dichotomies 
(e.g., people of Western culture(s) and Others) project one of the pair as the epitome of progress 
(despite its ignorance of other knowledge traditions and practices): mathematics education is seen in 
this was as a tool of power, oblivious of its failings (Gerofsky, 2010). Educational experiences 
curate forms of knowledge and exclusion, function as processes of normalization and epistemicide 
(Santos, 2007; Paraskeva, 2020), and structure the identification of differences across teacher, 
student, family and community cultures. 

The catastrophic COVID-19 emergency demonstrated these processes of normalization and 
epistemicide more clearly than pre-COVID mathematics simply because it placed ongoing learning 
and teaching practices in a new context. Initial discussions -- politicians, media, medical experts, 
educators -- often amplified feelings of confusion and disempowerment. Some well-intending 
mathematics educators seized on the “teachable moment.” Remote education simplifies some 
aspects of instruction, complicates others. Some mathematicians and mathematics teachers used the 
virus to make mathematical concepts and skills accessible (Sullivan et al., 2020). An unprecedented 
number of blogs, websites, news articles, Tik-Tok videos, Instagram feeds, etc., used visual 
representations and analogies to explain exponential growth, the nature of meaningful evidence, 
model mathematical inquiry, or demonstrate the importance of mathematics in the study of a global 
pandemic.  That is, we lived through parallel experiences: for school mathematics, the questions 
mostly became a matter of how teaching will be continued through distance learning, not a moment 
of curricular reconsideration; for public pedagogy, this was an explosive moment of graphs, 
metaphors, and a contestation of knowledge, demonstrating the superiority of social media over 
school in making mathematics relevant. Although public pedagogues successfully provided 
resources, and although there are many ways in which they created examples of how mathematics 
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can help the public to understand their situation, feel informed and to witness themselves as in 
control of knowledge, we ask whether this was nothing more than a shifting of focus from school to 
popular culture of a more insipid and disempowering form of education, constructing a dystopian 
version of knowledge and knowing. We claim most of our many resources on using mathematics to 
solve real-world problems are caught in the trap of social and cultural reproduction, despite their 
claims to a certain overarching ‘natural goodness’ (Swanson, 2017). COVID-19 is an example: the 
majority of school and public pedagogy mathematical lessons focused on mathematical models of 
the behaviour of the epidemic, and not on a broader framework for interpreting the models of the 
world, or our experience of it (regarding modelling and problem solving, see English & Watson 
2018; Kaiser & Brand 2015; Houston et al. 2010; Lingefjärd & Meiter 2010). Such public pedagogy 
(Appelbaum, 1995) mirrored standard textbook approaches –simplified, artificial models, glossing 
over details, confounding variables -- even as it dressed up key concepts and relationships in 
engaging video and animation. The more general observation is that the focus on the pandemic 
distracted from the enormous crises around the world that existed pre-pandemic, and continue to 
this day, inadequately addressed. This latter point indicates one more way in which mathematics 
education and its impact on problem generation and solving can have far-reaching consequences for 
what becomes the focus of attention, reproducing and amplifying global legacies of power, as well 
as related assumptions about what is a universally agreed-upon “urgent need.” 

Embracing Dystopia 
Critical mathematics education embraces coloniality as both the problem and the method of social 
change; mathematics education can embrace coloniality and dystopia as its problem and method. 
Rather than searching for solutions to the legacy of colonialism, critical mathematics education 
recognizes the dystopia of coloniality as here to stay, and appropriates both western mathematics 
and the coloniality of school mathematics as its own tool, not for “dismantling the master’s house,” 
but for accomplishing local and indigenous goals of dignity and reconciliation (Appelbaum & 
Stathopoulou, 2020). This contrasts with the pursuit of utopian dreams. Those working to 
implement curricular reform imagine a post-dystopic vision; they try to overcome dystopia, and are 
doomed to failure no matter what gestural leaps they attempt. As Stein, et al. (2020) argue, 
“decolonization is increasingly treated as a site and subject of consumption and accumulation, not 
only of material benefits, but also of knowledges, relationships, experiences, and even critique 
itself” (p.44). This is why we urge avoidance of “decolonial critiques,’ as is fashionable academic 
currency, arguing instead against solutions and alternatives to colonization within existing 
paradigms, regimes of property, and comfort zones. We understand “colonial patterns of 
relationship and colonial habits of being are reproduced at the very moment they supposedly 
become unsettled … when efforts made under the umbrella of decolonization are re-routed back 
into the same desires and entitlements that produce colonization in the first place,” so that “the 
transformative possibilities and ethical responsibilities of decolonization are eclipsed, and 
decolonization itself becomes weaponized as an alibi to continue colonial business as usual.” 
Fantasizing a possibility of decolonization is a fallacy, as is curricular reform. It is better to 
appropriate methods and resources of dystopia for alternative, local goals. In has sometimes been 
coined ‘creolization’ (Appelbaum, 1995, 2008). 
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This approach critiques reform efforts in general as typically enacting a utopian-fueled fantasy of 
leaping out of the current dystopia (see Popkewitz 2018, Lim & Apple 2016). A caricature of 
reform efforts would describe policy-makers as saying, “Oh, this didn’t work. Let’s try something 
else, which would be so great!” Instead of imagining utopias, designing them and promoting new 
curricula, teachers, and students to act as utopian characters, we urge the following: start with 
acknowledging that the current curricula, teachers, students, and policy-makers are currently actors 
in a dystopia. Instead of trying to escape that dystopia, we could appropriate tools of the dystopia 
for local and indigenous struggles. The dystopia is both the problem and the method. Even as we 
pursue local and indigenous appropriation of tools and practices of coloniality for locally-identified 
purposes, we recognize the problematic term “indigenous” as preserving and maintaining 
distinctions of colonialism. One might say that we are perpetuating the dystopia. A ‘composite’ 
definition of both terms, utopia and dystopia, understands how most utopias are linked by their 
commitment to a form of enhanced sociability, or a more communal form of living, sometimes 
associated with ideals of friendship, while their dystopian counterparts are substantively connected 
by the predominance of fear, and the destruction of ‘society’, as a polar opposite of friendship. 
Perhaps we can reframe indigenous in this sense of an ‘enhanced sociability;’ where enhanced 
sociability has been maintained for some period, “utopia” has been lived to some extent (Claeys 
2013); and where the opposite occurs, “dystopia” is the relevant descriptor. Fundamentally, utopia 
and dystopia are mutually determining.  

Mathematics Education in the time of war in Ukraine, in the time of COVID, in the time of mass 
migration from severe weather and famine … are here to stay, as is mathematics education in the 
time economic inequality, the breakdown of democracies ... Mathematics and mathematics 
education are at the heart of each crisis, serving at once as forms of knowledge with which we 
describe and come to know each aspect of the global crises together, and in erasing alternative 
forms of knowing and coming to know about our world and its future. Inherited from critical 
mathematics education is the key concept, “abyssal gap of coloniality” (Santos 2007) -- that 
separation literally and epistemologically between metropolitan and colonial societies. Even today, 
people who live in or whose origins are in former colonial countries -- and women, refugees, etc. -- 
are framed as inferior by structures of coloniality. This distinction also concerns people’s 
knowledge, a distinction that ignores the intrinsic value of various bodies of knowledge in favor of 
dominant social, political and economic structures. This knowledge is excluded and essentially 
erased, because the people who produce this knowledge are excluded as creators and finders of 
knowledge. Epistemological clashes between different kinds of knowledge, in particular, between 
scientific and non-scientific forms of truth, are only recognized once one takes a critical stance. One 
kind of knowledge—counting as true—is on the one side, while the ‘other side’ is relegated to mere 
“beliefs, opinions, intuitive or subjective understandings” that at best are issues for scientific 
inquiry. In this way “abyssal thinking” consists of distinctions and dichotomies that construct a 
divided world (Santos 2007, p. 45). It is supposed that people stay in a static situation – the dystopia 
does not change placement relative to the abyssal line. Yet people are also different, even if they 
share elements that define them on one side or the other (López, 2019; Benson, 2019). “Kinds of 
people are cemented through research and administrative apparati, but also through uprising and 
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revolt” (p. 164). People are constructed in these kinds of ways for governmentality’s purposes, but 
at the same time, since people are not just the object of static nominalism (Hacking, 2006), and not 
merely “passive receivers of imperial administration and control,” they react in resistant ways. 

Mathematics education expresses coloniality and other characteristics of power relationships 
through languages of accountability and global economic competition. Mathematics education is 
both experience and cause of this dystopia. We can explore ways to open imagination, giving 
learners spaces for creativity and knowledge of self, and in using problems posed by the students 
themselves; such a utopian imaginary of mathematics education can challenge the perspective of 
globalization, exploring for example alter-globalization (Appelbaum, 2018)–where there is space 
for solidarity, participation, self-determination, dignity, and reconciliation. However, there is no 
magic in pursuing utopia, as in contemporary rhetoric and its dreams of “Mathematics for All”, 
“Life skills”, “Citizenship”, “Problem Solving,” and “Mindsets.” Language such as deregulation, 
climate, and inequality, relegated to those ways in which people “solve problems,” establishes the 
abyssal gap between politics and life (Latour 2018). a language of culture, survival, justice, 
existence, land, and land reform might describe what is at stake with necessary clarity. Such 
language is central to critical ethnomathematics. What would mathematics education look like if 
culture, survival, justice, existence, land and land reform replaced numeracy, life skills, problem 
solving and mindsets in our rhetoric, framing of research and practice, policy documents, to dwell 
in dystopia rather than fantasies of various utopias? 

Latour (2020) proposed a within-dystopia response to the pandemic: “Let us take advantage of the 
forced suspension of most activities to take stock of those we would like to see discontinued and 
those, on the contrary, that we would like to see developed.” We advocate an analogous approach 
for mathematics education through the following questions, paraphrased from Latour. 

What are the mathematics education activities, in and out of school and remote school learning, 
now suspended, that you would like to see not resumed? 

Describe why you think those activities are harmful/ superfluous/ dangerous/inconsistent, and 
how their disappearance/suspension/substitution would make the activities you favour easier/ 
more consistent. (Make a separate paragraph for each of the activities listed in the first question). 

What measures do you recommend to ensure that the workers/employees/agents/entrepreneurs 
who will no longer be able to continue in the activities you are removing find support for their 
transition toward other activities? 

Which of the now-suspended activities would you like to develop/resume or even create from 
scratch? 

Describe why your newly developed or resumed activities seem positive to you, and how they 
make it easier/ more harmonious/ consistent with other activities that you favour, helping to 
combat those that you consider unfavourable. (Make a separate paragraph for each of the 
activities you list). 
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What measures do you recommend to help workers/ employees/ agents/ entrepreneurs acquire 
the capacities/ means/ income/ instruments to take over/ develop/ create these favoured 
activities? 

In those places in the world where COVID-19 was experienced as the most urgent crisis, there were 
three main mathematics-related trends: (a) The greater need than we might have previously realized 
for the wider public to comprehend and interpret the mathematics behind models, graphs, etc., 
related to the pandemic, and in general as preparation for any crisis. (b) Perpetuating the same 
curriculum that did not prepare people for understanding the crisis in the first place even as schools 
focused during the pandemic on how to make (mathematics) teaching more accessible. (c) 
Inconsistencies between what the public needs and what schools are doing. To understand why 
these trends unfolded, we analysed school mathematics and mathematics education as dystopia. 
Critical ethnomathematics is a model of how to embrace dystopia rather than to try to overcome it 
or avoid it. Critical ethnomathematics education is an approach that addresses dystopic elements of 
contemporary mathematics education practice while centering attention on coloniality and the need 
to exploit traditional school mathematics in ways that serve local cultural, political, and 
environmental needs, in a broader, ethnomathematical commitment to local and indigenous 
mathematical practices.  
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Social (in)equality through mathematical modelling? – Results of a 
case study 
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Solving realistic mathematical tasks with multiple possible solutions can require many 
competencies. At the same time, they can allow students to engage with a situation mathematically 
according to their own preferences. Previous studies seem to indicate that – through socialisation – 
socio-economically privileged students are more likely to acquire skills dealing with such tasks. 
This paper approaches the described issue qualitatively by comparing modelling processes of 
privileged and unprivileged student pairs. It turns out that privileged pairs, on average, spend more 
time on making real-world assumptions and they show a broader spectrum of assumptions 
compared to unprivileged pairs. Thus, it is discussed to what extent differences and similarities can 
be traced back to students’ habitus and how modelling tasks may thus increase both social 
inequality and social equality. 

Keywords: Social (in)equality, mathematical modelling, qualitative content analysis, Bourdieu. 

Introduction 
In a variety of studies social background is associated with school success (e. g., OECD, 2019). 
This can be explained, among other things, by parents who are more or less likely to support their 
children’s learning financially, culturally, socially and psychologically (OECD, 2019). Moreover, 
certain characteristics tend to be taught in socio-economically privileged households, such as 
argumentation and communication, discussing learning strategies or perseverance in problem 
solving (e. g., Weininger & Lareau, 2009). In the German educational standards for mathematics 
(KMK, 2004) such characteristics are described as competencies students are meant to develop. It 
seems that privileged students internalise a habitus through socialisation (Bourdieu, 1994/1998), 
which rather finds acceptance in school. Furthermore, in mathematics class students should apply 
their knowledge in real-world situations in order to be able to view natural, social and cultural 
phenomena from a mathematical perspective (KMK, 2004). The role of the social background when 
dealing with real-world tasks is, thereby, controversially discussed. While, for example, Piel and 
Schuchart (2014) show social class differences to be more likely to occur for reality-based tasks 
than for purely mathematical tasks, Ay et al. (2021) find socio-economic status to be less strongly 
related to the solving of modelling tasks compared to other tasks. This paper focuses on this field of 
research from a modelling perspective, by analysing and comparing modelling processes of 
privileged and unprivileged student pairs qualitatively (Schreier, 2012). Using Bourdieu’s habitus, 
it thereby shall be discussed to what extent differences can be explained by students’ socialisation 
and in what way results from other fields of research can be confirmed. 

Theoretical framework 
This raises the question of why socio-economic status can be related to certain school behaviours. 
For instance, the number of books on the shelf cannot yet explain how social inequality occurs. 
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According to the sociologist Pierre Bourdieu, there is a connection between one’s socio-cultural 
position and the individual lifestyles. A mediator, Bourdieu calls habitus, stands between social 
position and individual patterns of thought and action. Hereby, one’s habitus represents the 
disposition towards the world, such as habits, ways of life, attitudes, values, aesthetic standards, etc. 
According to the habitus-theory, most actions of individuals do not pursue an intention, but are an 
expression of their acquired dispositions (Bourdieu, 1994/1998). The habitus creates a scheme that 
individuals use to classify and judge other situations, objects, persons, actions etc. – and ultimately 
themselves. However, individuals usually do not consciously activate these schemes. Clearly, 
people from the same social class do not completely match in their habitus. Nevertheless, they are 
most likely to have had more similar experiences and, thus, match more in their behaviour than 
people from other classes (Bourdieu, 1972/1977). Thereby, a person’s habitus can often be detected 
in little things.1 

Social (in)equality and the processing of tasks 

When addressing social (in)equality, a variety of factors such as migration background, language, 
gender and school systems, can be relevant. In this study, socio-economic status is considered as a 
central distinguishing characteristic since it measures family resources and their social position and 
thus aligns with Bourdieu’s concepts. For some time now, empirical studies based on sociological 
theories regard how children process tasks. In one study, children are given 24 pictures showing 
food. They are asked to group the pictures so that they fit together well. It turns out that the 
unprivileged children sort the pictures more often according to their own experience, such as ‘tastes 
good’, while the privileged children are more likely to sort the pictures according to more abstract 
criteria such as ‘vegetables’ (Holland, 1981). Similar results can be found in other studies. Students 
are shown sketches of two tables showing pizzas and seats. On one of the tables, there is one more 
pizza, but also two more people can be seated here. Students are asked which table they would join 
and why (Lubienski, 2000). In her study, the unprivileged students are more likely to focus on real-
world concerns (e. g., arriving late) instead of using the task to learn generalizable methods (using 
relations to make comparisons). The author states that this experience-based orientation could 
hinder unprivileged students in understanding the mathematical ideas behind the situation. On the 
other hand, the author finds several instances of unprivileged students being concerned with getting 
the algorithm that solves the task, getting frustrated and giving up more quickly when facing 
barriers.  

However, looking at social diversity in a fruitful way also entails considering the needs and 
strengths of unprivileged students. Previous research suggests that it might just be topics that are 
problematic, communicative and relevant to students’ real world that enables them, regardless of 
social background, to participate in the classroom according to their own abilities and experiences 
(Nasir & Cobb, 2007).  

                                                 
1 Bourdieu's habitus-theory is often accused of determinism. Bourdieu argues that individuals can be free and creative 
within a certain frame. According to him, certain life courses are not predetermined, but more or less likely. 
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Mathematical modelling 

Mathematical modelling can be defined “as the solving of a realistic problem” (Maaß, 2010, 
p. 288). Modelling problems are often accompanied by authentic situations, missing relevant 
information and multiple possible approaches. During a modelling process students need to identify 
and collect relevant information, translate a respective situation into mathematical terms, structures 
and relations, work within the mathematical model, interpret and check results with respect to the 
corresponding situation (KMK, 2004). This distinguishes modelling from embedded tasks, as 
embedded tasks use contexts from the real-world, but “have no real relation to reality. The factual 
context is of no importance regarding the solution” (Greefrath et al., 2017, p. 933). Following the 
rules of the game of embedded tasks, students can usually be successful in the mathematics 
classroom if they ignore the context of a situation, use recently learned formulas and don’t question 
the motivation as well as the action of involved persons (Verschaffel et al., 2000). When 
approaching modelling tasks, these rules hardly apply. Instead, real-worlds assumptions and 
everyday knowledge are crucial for modelling. 

Synthesis and research questions 
Now, why should one draw on Bourdieu’s concepts of habitus when discussing social (in)equality 
in mathematical modelling? The metaphor of a game might clarify this. When playing a game, 
players need a practical sense or a feel for the game. That is the “mastery of the logic or of the 
immanent necessity of a game – a mastery acquired by experience of the game, and one which 
works outside conscious control and discourse” (Bourdieu, 1987/1990, p. 61). This construct 
coincides to some extent with the game in mathematics classroom (Verschaffel et al., 2000). Both 
have rules to be followed in order to be successful, have an inherent logic that is not revealed and 
are acquired through experience. Looking at previous empirical findings, it seems that many 
unprivileged students lack a feel for the game when they draw tasks with (seemingly) multiple 
possible solutions on everyday experiences rather than more abstract constructs such as the 
mathematics beyond (Cooper, 2007). According to the “habitus as the feel for the game” (Bourdieu, 
1987/1990, p. 63), different immanent rules apply in different fields so that habitual behaviours are 
manifested in social classes. Bourdieu (1984) describes the habitus of lower social classes as a taste 
of necessity, focusing in everyday life on practical, functional and technically necessary things, on 
conformity and on immediate satisfaction of needs. Such taste may thus become apparent when 
observing students organising food according to their desires (Holland, 1981) or discuss planning to 
meet their friends (Lubienski, 2000).  

It remains unclear, to what extent these concepts can be applied to mathematical modelling. While 
the inclusion of reality-based experiences is highlighted in other studies as being disadvantageous 
for task processing, it might just be seen as an advantage in modelling. For example, assumptions 
are essential and, thus, a real-world model is still being developed. Therefore, characteristics 
attributed to unprivileged students might be advantageous here. Still, a wide set of competencies 
which can be seen as useful for modelling has been attributed to privileged households in various 
studies (e. g., Weininger & Lareau, 2009). This leads to the following research questions: 
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To what extent do socio-economically privileged and unprivileged pairs differ in making 
assumptions in the modelling process? To what extent can conclusions be drawn about students’ 
habitual behaviour? 

Methodology 
A qualitative approach is chosen with the aim of understanding, reconstructing and interpreting 
contexts and processes. 24 tenth-grade students (around age 15) from two urban secondary schools 
in western Germany belonging to four different classes partake in this study. The student body of 
both schools is considered culturally diverse and heterogeneous in performance due to schools’ 
locations and concepts. Pairs of students are shown a picture of a giant pizza 
(www.bit.ly/2WRXOSU) and get the information that they are planning a party for 80 people and 
the task to figure out how many pizzas to order. The context comprises a realistic situation and the 
giant pizza can be ordered in the students’ home region and, thus, may have a connection to their 
everyday life. To enable drawing conclusions, the pairs are put together according to their socio-
economic status. Therefore, student and parent questionnaires are carried out for measuring 
students’ HISEI (Highest International Socio-Economic Index of Occupational Status of both 
parents). The HISEI is determined by the professions of the parents and takes income and 
educational level into account (Ganzeboom et al., 1992). Students who fall into the upper quartile of 
the nationwide comparison of the HISEI are considered socio-economically privileged. Reversely, 
students from the lower quartile are considered unprivileged. The survey is divided into the three 
phases of observation, stimulated recall and interview. A qualitative content analysis (Schreier, 
2012) serves as foundation for the data evaluation. Therefore, all phases are being recorded, 
transcribed, and coded. The evaluation follows a quantitative-qualitative approach by comparing 
categories quantitatively, identifying qualitative differences and supporting concise differences by 
means of transcript excerpts. To ensure coding quality, codings were carried out and compared by 
two independent persons. In addition, inductive subcategories were developed based on the research 
interest. For example, processes that serve to develop a real-world model are divided into 
subcategories like simplifying, organising and assuming. Simplifying contains e. g. repeatedly 
reading text segments or identifying missing information. Organising is often reflected by students 
drawing or measuring, and assuming entails that assumptions and premises are set or estimated 
using everyday knowledge. Whereas simplifying represents a surface-level processing strategy, 
organising and assuming represent deep-level processing strategies (Schukajlow et al., 2021). This 
paper will present some results on these subcategories. For readability and recognition, privileged 
students are assigned a three-syllable name and unprivileged students a two-syllable name. 

Results 
The modelling task Giant Pizza allows multiple possible approaches and solutions. The students can 
decide individually, which meaning they attach to the photo, to what extent they estimate using 
everyday knowledge and objects of comparison and to what extent they use mathematics to solve 
the task. Accordingly, a wide variety of approaches are found. Firstly, there are five pairs (Dominik 
& Krystian, Vivien & Oliver, Tobias & Benedikt, Samuel & Nathalie, Dawid & Leon) who choose 
a mathematical approach by estimating the diameter of both the giant and an ordinary pizza, 
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determining their areas, comparing them and generating a real result. Secondly, some pairs (Julia & 
Florian, Samuel & Nathalie, Michael & Paulina, Kaia & Mila, Ronja & Hürrem) choose an extra-
mathematical procedure by dividing the giant pizza visually and concluding the number of giant 
pizzas to be ordered. Thirdly, there are pairs (Amba & Bahar, Lena & Pia, partly Sofi & Aram) 
where the result is rather guessed. Regardless of their approach, all couples come to a final solution. 

 
Figure 1: Contribution of the categories 

Figure 1 shows that privileged and unprivileged pairs differ regarding their processes. On average, 
the unprivileged pairs deal more extensive with simplifying processes, whereas privileged pairs put 
a stronger focus on organising and assuming. In many processes, estimations play an important role, 
although not all students use them as part of a solution approach. Only the five initially mentioned 
pairs use everyday knowledge to estimate the diameter of the giant pizza. As objects of comparison, 
they use parameters such as the height of people or the dimensions of trailers. Additionally, there is 
a variety of other estimates and premises that pairs consider relevant (see Table 1). 

Table 1: pairs’ everyday knowledge and objects of comparison 
… observed only in unprivileged pairs … observed in both groups … observed only in privileged pairs 

size of the angle of a pizza slice 
 

diameter of an ordinary pizza; 
pizza per guest; width of a person; 

gender / age of the guests; 
comparison with the school class 

 

height of a person; size of a family 
pizza; size of a salami slice; length 

and span of a hand; length of a 
forearm; size of a pizza plate; 

dimensions of a trailer; size of a bun; 
thickness of the giant pizza; duration 

of a party; other foods at the party 
On average, the privileged pairs do not only spend more time on assuming, they also show a 
broader spectrum of assumptions. Some are used to compare sizes, others for visualisation and 
others for validating the results. Five pairs use visualisations to generate a real result. Two of them 
(Julia & Florian, Michael & Paulina) thereby express objects of comparison, such as the hand of the 
women and the size of a pizza plate, to develop their model. Taking a look at the process of Kaia & 
Mila shows that they also use visualisation as basis for their approach. “How many pizzas do you 
think you can fit in here, normal ones? […] 1, 2, 3, ((tracing circles)) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14, 15, 16, 17, 18, shall we just say 20?” (Kaia, 04:42) As other students, Kaia carries out the 
visualisation without sketching. The pair does not estimate the diameter of the giant pizza and does 
not express objects of comparison to find out the number of ordinary pizzas that match the giant 
pizza. In the interview Kaia explains: “And there’s the picture, then I have a rough idea of it and 
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can put a guess in there accordingly.” (01:18) Even though she does not include any objects of 
comparison explicitly, she seems to have a sense of the size. Instead, she expresses other 
assumptions: 

02:40 Kaia: [...] if you're planning a party […] you have to assume that people are our age. 
02:54 Mila: Okay. 
02:55 Kaia: […] if I we’re planning a party (.) I would do about half boys, half girls, right? 

[…] 
03:07  Let's say then that women usually eat a little less than men […] 

Kaia thus relates the task to a situation that is close to her life: “It says YOU and a party with 80 
people. […] people at a young age, they certainly invite people from their grade or from some 
hobby area, football or something else.” (03:07, stimulated recall) Other pairs are rather guessing a 
result. Amba & Bahar, for example, keep discussing what the intention of the task might be. Bahar 
explains what to do instead of calculating. “I don’t think we’re supposed to calculate anything there 
[...] we’re just supposed to say how many pizzas, whether that’s enough.” (03:22) Asking Amba 
about this during the stimulated recall she explains: “it’s a task where you just have to estimate and 
not really calculate. You can tell by feeling how much you need or don’t need. […] You don’t have 
to think much.” (01:16) Although they make a few assumptions and visualise to some extent, they 
mostly go back to repeatedly reading the task to find some hidden information. In the end, they 
guess a result. 

Discussion 
The aim of this paper is to uncover differences and similarities in the modelling processes of socio-
economically privileged and unprivileged students as well as to draw conclusions about habitual 
behaviour. For this, 12 pairs of students work on the modelling task Giant Pizza. All pairs are 
organising or assuming in some way, for example sketching or using everyday knowledge. 
Nevertheless, the pairs differ noticeably in how deeply they engage with these processes and 
whether those lead to a further development of their models. The work assignment of the modelling 
task does not indicate that estimation is to be done using everyday knowledge or that 
mathematisation should be carried out. It stays hidden, to what extent reality is to be considered. 
Five pairs choose to calculate and compare the areas of the giant pizza to an ordinary one using 
estimation and everyday knowledge. Four of those pairs are assigned to the socio-economically 
privileged group. Five pairs divide the giant pizza visually and conclude the number of pizzas to be 
ordered. Here, all of those who expressed objects of comparison for their visualisation are socio-
economically privileged. This is also reflected in the quantitative comparison. The unprivileged 
pairs engage more in reading repeatedly and talking about the relevance of the text elements, 
whereas the privileged pairs spend more time organising and assuming. Further, the processes of 
privileged pairs are characterised by a wider range of estimates and objects of comparison, which 
they use to develop their models and verify their results. It seems like surface-level processing 
strategies (Schukajlow et al., 2021) are rather used by unprivileged pairs while the privileged pairs 
tend to focus more on deep-level strategies. Relating these results to Bourdieu's game (1990), there 
are inherent necessities or logics in the modelling task. It seems that the privileged pairs are more 
likely to recognise them (as stated by Cooper, 2007). These necessities are contrary to the rules that 
usually apply for embedded mathematical problems (Verschaffel et al., 2000), where the situation 
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has no relevance for processing. Those school socialised routines do not apply here, and thus 
habitual differences may be meaningful in explaining the observed differences. 

With regard to the taste of necessity of lower social classes (Bourdieu, 1979/1984), the process of 
Kaia & Mila in particular stands out as one of the few unprivileged pairs who intensively deal with 
assumptions and everyday knowledge. While most privileged pairs estimate measurements and use 
objects of comparison, Kaia & Mila make assumptions regarding the organisation of their own 
party, for example the gender balance, the age of the guests and the leisure activities people are 
invited from. In accordance with the findings of Bourdieu (1984), Holland (1981) and Lubienski 
(2000) one could say, that the approach of Kaia & Mila conforms to everyday useful purposes. A 
notable difference to Lubienski's study however is that she considers it less appropriate when 
students refer to everyday experiences. Here, using everyday knowledge is not inadequate, but 
conversely, of central importance. Yet, differences are apparent in the use of everyday experiences. 

Nevertheless, socio-economically unprivileged pairs appear across all described approaches. 
Besides, even though they are less likely to bring in estimates, a few seem to have a sense of 
dimensions of objects of comparison. Also, all pairs still achieve a final result, although the 
approaches vary in depth and adequacy. Unprivileged students who are more likely to give up 
(Lubienski, 2000), cannot be observed – despite frustration. Further, three unprivileged pairs use 
adequate mathematical or visual approaches to find a result. In addition, also pairs who follow a 
guessing approach show organising and assuming to some extent. Due to mathematical errors or 
misconceptions, such processes remain partly infertile or get stuck. 

At this point, some aspects should be discussed critically. Bourdieu does not operationalise his 
constructs essentially, and his empirical findings refer to France in the 1960s. Thus, his constructs 
run the risk of being overinterpreted and his work can hardly consider more recent phenomena such 
as educational expansion. Nonetheless, current empirical studies can confirm Bourdieu's findings to 
some extent and, thereby, make his constructs more tangible. Bourdieu's theories and constructs are 
primarily sociological in nature and not directly designed for application in didactic research. Other 
factors that may be relevant here but are not (or can’t be) controlled include other characteristics of 
social background and the individual school context in which the students find themselves. 
Moreover, it could also be fruitful to analyse this data through the lens of Bernstein's work on 
realisation rules and language codes. For methodological reasons, a dichotomization of socio-
economic status is carried out into privileged and unprivileged pairs. This represents a 
simplification of reality, as socio-economic background is a complex construct that entails 
individual pathways in specific cases (Weininger & Lareau, 2009). In addition, more cases need to 
be studied to confirm the results. 

In this paper, systematic differences and similarities between socio-economically privileged and 
unprivileged pairs of students in mathematical modelling can be identified. Thereby, behavioural 
patterns become apparent which may be attributed to students’ socio-economic background, be it in 
relation to Bourdieu's habitus or to more recent empirical studies. At the same time, many fertile 
approaches are evident regardless of socio-economic status. Overall, mathematical modelling tasks 
seem to contain aspects that are rather difficult for unprivileged students. At the same time, the case 
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analysis provides evidence that all students in some way can engage in the context and achieve a 
result (for a quantitative comparison see Ay et al., 2021). This paper, thus, provides indications that 
mathematical modelling contains aspects that may increase social inequality as well as social 
equality. In addition to investigating these findings further, it needs to be discussed what must be 
done so that all students can benefit from mathematical modelling regardless of their background. 
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Several situations of racism and xenophobia indicate the need for the school to consider means to 
promote the recognition of diversity and foster inclusive learning practices considering immigrant 
students. Racism fosters prejudice and intolerance based on stereotypes that can limit the 
foreground of the students. Fighting racism requires recognizing differences. Meeting amongst 
Differences in mathematics classes call immigrant students to collaborate, and differences can be 
resources for investigation in mathematics classes. They can choose themes referring to their own 
realities. This is related to students' motives for learning mathematics for social transformation. 
Keywords: Foregrounds, Racism, Mathematics education, Immigrant student.  

Introduction 
According to the United Nations International Migration Inventory, in 2019, around 3.5% of the 
population on the planet are migrant people1. Education systems across the world are becoming 
increasingly more diversified and are being called upon to rethink their policies and structures in the 
understanding that migration is a human right that includes the right to education.  

The debate on immigration and its impact on education are not new. However, it is a relevant and 
complex theme that demands constant reflection. Several situations of racism and xenophobia 
indicate the need for the school to consider means to promote the recognition of diversity and foster 
inclusive learning practices considering immigrant students. 

Education is a political act because it is at the service of certain proposals (Freire, 1972; 1998). It is 
therefore not disjointed, disinterested and neutral and can take a democratic or authoritarian 
position. Education can consider the demands of subordinate groups such as people with 
disabilities, women, LGBTQIA+ people, black people, immigrants, and other members of 
marginalized groups. It can be exercised in the sense of anti-racist practices. 

Skovsmose (2020) argues that mathematics can shape society, and this requires considering an 
ethical dimension in the face of a series of social implications. Mathematics education has a 
political and social dimension and must propose reflections that express concerns about oppression 
and exploitation, poverty and economic inequalities, racism, democracy, and ecological crises. 

Consequently, mathematics education is also not neutral and apolitical. It can give power to a group 
of people by making them more accepted in society's decision-making abilities. This fact is directly 
related to racism, not only in relation to access to mathematical knowledge, but also to the different 
types of knowledge that are considered or not in school. Also because of the misuses of 

                                                 
1 Retrieved April 4, 2021, from https://nacoesunidas.org/estudo-da-onu-aponta-aumento-da-populacao-de-migrantes-
internacionais/ 
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mathematical knowledge and skills in the hands of exploiters to keep privileges of certain groups 
according to racist assumptions. 

This essay is a result of doctoral research reflections. It is in the process of qualitative research in 
the phase of data production through interviews with immigrants and teachers who teach 
mathematics. The research is structured around understanding the possibilities of mathematics 
education for the inclusion of immigrant students (Carrijo, in progress—a). 

This essay aims to foster the debate on the possibilities and challenges that contemporary migratory 
processes present to the field of mathematics education. Therefore, it seeks to problematize, reflect, 
and signal the learning possibilities that migrations and cultural diversity provide. 

For presenting a theoretical discussion on themes addressed in my doctoral research, I will, in the 
first section, discuss racism and how it can shape the foregrounds of immigrant students. Next, I 
discuss meeting amongst differences as a learning opportunity for mathematics classes. Then, I 
address the necessity to include themes with political and social implications in the process to 
consider immigrant students' differences as a resource for mathematics education with antiracism 
proposes. 

Immigrant students and racism 
Racism is part of a larger, structurally based racial system and it is constantly being brought up to 
date. It is a systematic form of discrimination through practices that produce disadvantages or 
privileges for individuals, depending on the racial group to which they belong. Not only black 
people are victims of oppression of a racialized system. Latinos, Arabs, Persians, Gipsies, Jews, 
Asians are included in this system (Bonilla-Silva, 1997; Marinucci, 2018; Romero, 2008).  

In terms of a globalised world, the inequalities are intense and based on ideas of belonging and not 
belonging, and of favouring and disfavouring. This includes precarious public services, social and 
political instability, and social and economic vulnerability. In this context, populations in migratory 
movements experience several forms of exclusion and violence centred on racialisation. In other 
words, racism fosters prejudice and intolerance based on stereotypes and produces xenophobic 
practices that perpetuate the oppression and subordination of migrant populations. In the social 
context of exclusion, differences can be used to degrade, a variant that combines fear and contempt. 

Racialized societies reflect the ways in which the school reflects privileges and exclusions. Thus, 
racism permeates the way diversity can be understood as a problem and is often ignored or fought. 
In culturally diverse environments with the presence of students of different nationalities, this may 
be even more evident. 

The denial of diversity in the educational context can mean barriers to learning. Vandenbroeck 
(2013) points to the following misconceptions: Believing that all students should all be treated the 
same way: This can put the teacher in a position to consider the criteria of a “standard” student, an 
ideal student. In this case, this “standard” student may be in the teacher's imagination a student who 
corresponds to a white, middle-class child who lives in a traditional family. Reduce the student to a 
nationality or a cultural group: it denies the enormous diversity present in cultures. There is a risk 
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of having the stereotyped idea that the child of African origin will be a good dancer or that they will 
eat with their hands, for instance. 

Because of stereotypes, students can be excluded from mathematics opportunities. Barros (in 
progress) has noticed that social stereotypes might shape and limit the foregrounds of groups of 
people. A foreground is constituted by the person's hopes, priorities, perspectives, aspirations, and 
possibilities in life (Skovsmose, 2014). In this sense, racism can limit the foregrounds of immigrant 
students by belittling and oppressing them. 

About schools in the USA, Danny Martin (2019) states that black children routinely experience 
different forms of systemic violence in mathematics education. For Black students, teacher 
evaluation was nearly as powerful a predictor as math performance. The white frames and white 
imaginations of Black children’s intellectual inferiority also emerge to produce injurious intellectual 
violence against Black children. 

Also, for Carneiro (2005), the epistemicide acts beyond the annulment and disqualification of the 
knowledge of the subjugated peoples, but also by the restriction of access to quality education, by 
the processes of intellectual inferiority, underestimation of the cognitive capacity and 
discrimination present in the educational processes. 

Fighting racism requires recognizing differences. And this demands educational processes that 
challenge and deconstruct homogenizing practices that do not recognize differences. For this, it is 
necessary to create spaces, actions and activities that encourage the overcoming of exclusion and 
social injustice. 

In this context, the challenge for mathematics education is to mobilize inclusive ways of connecting 
to diversities. This includes seeking forms of understanding them as a learning possibility. That is, 
transforming differences into a pedagogical advantage and creating spaces, actions and activities 
that encourage overcoming exclusion and social injustice. 

Meeting amongst differences for learning together 
Racism is a narrative based on the oppressor-oppressed power relationship. The oppressed are 
transformed into almost a “thing” and subjected to domination, alienation, or marginalization. The 
dehumanization of non-white people guaranteed white supremacy and justified exploitation and 
social inequalities.  

In this sense, the humanization process through education must raise awareness of people who are 
capable to reflect, analyse, critically position themselves and make ethical decisions in society.  
Mathematics can bring possibilities to understand the world critically, pointing out that situations of 
social inequalities need to be transformed. 

According to Skovsmose (2019), the Meeting amongst Differences in mathematics classes 
highlights the meeting between people with different life experiences, cultural backgrounds, 
different fulfilled and frustrated dreams. Also, with different hopes, priorities, opportunities, 
perspectives, and aspirations. It is about the meeting between students with different backgrounds 
and foregrounds. 
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The meeting between immigrants and nationals in school and non-school environments demands 
respect for diversity. It requires valuing all the knowledge and experiences involved. This meeting 
is a possibility to learn about cultural, linguistic, religious, physical multiplicities, and so on, 
through mathematics. 

Gutstein (2006) points to the possibility of reading and writing the world with mathematics. It 
means involving students in issues related to social justice. This can help to create space for human 
rights reflections and students can discuss reality and engage in social change. In this sense, 
immigrant students, through mathematics, can interpret their life contexts. Furthermore, they can 
recognize themselves as agents of change and use mathematics to change their realities into a sense 
of belonging. When writing about the world, the students can use mathematics to find solutions. 
When students want to understand, for example, the situation of labour market, they can identify 
themselves or members of their communities, schools, or churches as potential victims of work 
analogous to slavery. They can engage in denunciation and understanding the needs to combat 
precarious work circumstances, for example. 

In a social racialized system mathematics can be used as a tool for oppression and dehumanization.  
Also, the access to mathematics, and hence to economic opportunities, is selective in protecting 
white and male privilege rather than being truly democratic in nature (Martin, 2013). 

But on the other hand, the Meeting amongst Differences in the mathematics classroom together with 
reading and writing the world with mathematics can create an environment in mathematics 
classrooms to learn collaboratively. It is a possibility for students who are culturally and 
linguistically different, poor students, students with disabilities, and immigrant students or children 
of immigrants, for example, to have mathematics learning opportunities. This space is invited for 
Dialogue Across Differences. 

Dialogue Across Differences supports place across differences by establishing dialogues between 
different worldviews. The participation of students in the educational process takes place in a 
dialogic educational process in which each student can express their worldview, can be heard, and 
be considered. Any kind of differences with respect to cultural backgrounds, religions, nationalities, 
economic conditions, or abilities is considered to provide learning environments where all students 
can learn together (Skovsmose, in progress). 

Moura (2020) reports in his research the possibility of meeting between deaf and hearing students in 
mathematics classes. This context provides to students the movement to see the other, to wanting to 
be together with each other and to learn from each other, promoting cooperation and building 
equity. 

Considering diversity at school goes through valuing and using student diversity as a resource for 
education and taking responsibility in the search for social justice and equity (Akkari, 2018). In this 
process of being together and being able to see the other as possibilities to learn together, the 
differences that students bring to the mathematics classroom are considered an important 
contribution to the construction of knowledge. 
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Immigrant students need to be considered in mathematics classes. Respect for diversity goes 
through recognition. This is the way to combat racism that mutually feeds practices in society and at 
school. The themes addressed in mathematics classes are also important bridges between 
differences. 

Political and social implications issues in mathematics classes 
Thinking about the issues that can create barriers in the mathematics learning of immigrant students 
goes through many issues. A widely debated point involves mathematics classes in linguistically 
diverse contexts. Barwell et al. (2016) point out that diversity in language can create hierarchies and 
exclusion since not speaking according to a standard form of the local language can put students in 
the position of “less educated”. One must consider that each participant in a mathematics 
classroom, including the teacher, brings their own combination of languages, varieties and modes of 
speech that must be considered to strengthen dialogue. 

On the other hand, speaking the local language is essential in the learning process context but does 
not guarantee that immigrant students are considered as equals in mathematics classes. Although 
the immigrant students speak the local language without any indication of foreign accent, it does 
not prevent them from exclusion and to be labelled as “foreigners” (Baber, 2007).  

I consider it is also important to include themes with political and social implications in 
mathematics classes to support an inclusive environment. These themes can involve issues of 
interest of the students and mathematics can help in understanding and reflecting on different 
realities. Themes such as distribution of wages and wealth; racism and xenophobia; migratory 
contexts; housing and living conditions; or about representation in social media, are some examples 
of real contexts that can be explored. Immigrant students are called to collaborate, and differences 
can be resources for mathematics classes. 

Skovsmose (in progress) proposes the landscape of investigation Erosions of Democracy focused 
on some specific issues. Students can imagine the functioning democracy of many countries with 
extreme differences between rich and poor, investigate the distribution of welfare and share 
particular interests. Also, Britto (2013) planned mathematics lessons that relied on the investigation 
into the visibility of black people in Brazil. Through a landscape of investigation, he proposed an 
investigation to some students about the presence of black people in magazines. Students had to 
look for pictures of children and consider whether these children were being registered in positive 
or negative contexts and reflect the visibility of black people. 

These two examples illustrate the possibility of proposing investigation in mathematics classes 
focused on themes with political and social implications. Students can look and reflect on these 
questions and understand the reality in a broader way. Mathematics is a tool to understand society's 
injustices and adopt a critical stance towards inequalities. In classes with immigrant students, these 
themes can refer to their own realities. 

However, considering social and political issues goes beyond simply bringing certain issues into the 
planning of mathematics classes. It is crucial when considering topics referring to the context of 
immigrant students, not put them in the place of “folklorization”, of exotics. Also, the mistaken 
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perception of “foreigners” as inferior intellectually and culturally, would contribute to the exclusion 
process. 

According to Akkari and Maleq (2020), citizenship refers to belonging to a global community. 
Education must include demands for local and global challenges. In this sense, it is important to 
consider the global context in the themes addressed in the classes. In the landscape of investigation 
Global Visibility Matters (Carrijo, in progress—b), I consider Global Citizenship and the necessity 
to enable students to understand global issues in mathematics classes. It includes an awareness of 
other perspectives, a perception of oneself as part of the global community. It can help to develop a 
sense of social responsibility and solidarity towards less privileged groups of people. This 
perception is also part of the process to fight against racism. 

Such an education demands a critical and transformative approach. It means considering and 
respecting diversity in mathematics classrooms, ensuring inclusive and equitable quality education, 
and promoting learning opportunities for all. Such an education must also value diversities in 
mathematical knowledge, which means considering and learning together with others, and acquiring 
different kinds of mathematics knowledge.  

Concern about how racism can create exclusions within and outside the school context must be part 
of the teaching and learning process with immigrant students reflecting on their expectations for the 
future. I see the concerns of mathematics education moving towards combating racism by using 
social-political themes as tools to read the world with mathematics. But beyond that, you must write 
the world with mathematics. And this is related to students' motives for learning mathematics as it 
relates to their own future possibilities for life and social transformation. 

Concluding Remarks 
In a society strongly marked by great inequalities, the coexistence of differences in the same 
educational space has been a challenge in building education systems that truly consider everyone.  

Only the access of immigrant students to school, supported by legislation, does not guarantee 
support to immigrant students in the process of belonging that is crucial to immigrant people. 
Racism can create a learning barrier for immigrant students because of stereotypes that can limit 
their foreground. They can feel excluded in the mathematical learning process, or they don't see that 
mathematics plays any significant role in their futures. 

Mathematics education has a political and social dimension and must propose reflections that 
express concerns about racism. It is necessary to embrace differences and consider the contexts and 
knowledge that students bring to school, developing actions that can impact the inclusion of 
immigrant students.  

Meeting amongst differences for reading and writing the world with mathematics together makes it 
necessary to address political and social issues. These themes can refer to the immigrants’ reality 
and by investigation, students can learn together. 

The next steps of the doctoral research will bring an analysis of reports of experiences lived by 
immigrants and also discussions with teachers who teach mathematics in Brazil about possibilities 
in mathematics classes with immigrant students. 
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This paper discusses some theoretical/methodological observation and some qualitative results 
coming from a Cultural Transposition experience, implemented in the Italian school context (grade 
8), according to the methodology of variation, as one of the most significant problem solving 
approach in Chinese schools. The framework of the Cultural Transposition and the methodology of 
variation are presented as an important condition for “decentralizing” the didactic practice from a 
specific social and cultural context. We argue that looking at different teaching/learning 
mathematics strategies coming from East-Asia cultures can favor some cultural contaminations at 
school and allow students to a significant and unusual thought about “inclusion” and “diversity” 
in mathematics. Our variation problems are designed on 3D Geometry and are aimed to guide 
students in discovering the relationship between pyramid and cone areas/volumes. 

Keywords: Cultural Transposition, Chinese problems with variation, Teaching Geometry. 

 
Introduction 
In a society dominated by cognitive zapping (Veen & van Staalduinen, 2009), which is constantly 
changing due to socio-cultural transformations, school is also changing. Learning and teaching 
trajectories are in fact, in many cases, varying in all countries. Looking at the new scenarios that the 
school is experiencing in recent years, the classroom realities that teachers and students observe are 
in fact nowadays changing, enriched by new approaches, new stimuli, new routines, new didactical 
processes that come from inside and outside social and cultural classroom contexts. These scenarios 
are in many cases complex and difficult to study for the mathematics education Communities. One 
pioneering work (Bishop, 1988) highlighted the importance of recognizing mathematics practices as 
social phenomena that are embedded in those cultures and those societies that generated them. 
D’Ambrosio (2010) pointed out that taking care about cultural and social issues into mathematical 
practices contributes to the understanding of cultures and the mathematics itself. Nowadays the 
awareness of taking into account cultural and historical contextualization in Math classroom 
teaching practices and the crucial assumption that culture permeates mathematics education 
practices is well known by all the mathematics education Communities. As Radford underlined, it 
has to be clear for teachers that the “configuration and the content of mathematical knowledge is 
properly and intimately defined by the culture in which it develops and in which it is subsumed”. 
(Radford, 1997). Barton’s research (Barton, 2008) reinforced the importance of a cultural 
perspective to study mathematics education phenomena, looking for example at different languages, 
and cultural manners. Agreeing to this perspective, we argue that culture gives students an 
opportunity to engage in mathematics focusing on concepts of inclusion, integration … to discover 
diversity as a resource! In some cases, the participation of many countries in international student 
competence tests (such as PISA) gives also the opportunity not only to compare different counties 

Proceedings of CERME12 1704



 

obtained results (Schleicher, 2019), but also to reflect on the educational practices, social, political 
and cultural environments that determined these performances. The last good results (as the 
previous ones) obtained by students from East Asia, especially those from Hong Kong and 
Shanghai, have prompted comparisons to reflect on the “reasons” for this educational success. It is 
well known (Spagnolo & Di Paola, 2010) that in these countries some learning approaches that 
compared to those of their Western peers produce different mathematical skills, in many cases more 
useful. According to Di Paola (2016) and Mellone et al. (2019; 2021) in these learning/teaching 
approaches there are many cultural factors linked to different cultural assumptions, educational 
practices and related cognitive styles (Bartolini Bussi & Martignone, 2013; Mellone et al., 2019). 
The same feeling is nowadays claimed by many teachers and researchers around the world: they in 
fact confirm how, in many cases, East Asian students, already educated in their own country, show 
more developed knowledge and skills in many mathematics subjects.  

 

Theoretical framework 
Bartolini Bussi & Martignone (2013), studying  didactical phenomena discussed in the previous 
paragraph, emphasized the possible correlation between mathematical knowledge and the cultural 
context, cultural beliefs, in which they are and have been inserted and in which, therefore, 
mathematical knowledge is elaborated, assimilated and transmitted. In recent years, some other 
research works, through qualitative and/or quantitative approaches (Bartolini Bussi et al. 2017; Di 
Paola 2016; Mellone et al., 2019) pointed out how the cultural diversity could become, in this 
sense, an opportunity in mathematics Education (Kaiser, 2018). Researchers and teachers, coming 
into contact with educational practices adopted in other cultural contexts, are able to deconstruct 
(Derrida, 1967) them, reconsidering the themes of educational intentionality defined as background 
of their educational practices. Mellone at al. (2019), inspired by the Skovsmose’s (1994) approach, 
defined the framework Cultural Transposition as “a condition for decentralizing the didactic 
practice of a specific cultural context through contact with the didactic practices of different cultural 
contexts”. Cultural Transposition (CT) is a perspective that can allow the meeting between 
different mathematics education school practices/approaches, coming out from different cultural 
contexts, and define a potential space for reflection and awareness, and also development for 
researchers, educators, teachers, students (Mellone et al., 2021). CT involves those who 
implement/observe math teaching practices, coming from other cultures, to a “deconstruction” 
process useful to a re-interpretation of their own thought and consequently a possibility to 
change/improve personal (cultural) beliefs, values, and didactical principles. As Derrida stated 
defining the deconstruction, “an analysis of the different levels in which a culture is stratified” 
(Derrida, 1967). According to this perspective it is possible to recognize, valorize and include 
possible differences coming from “other” cultural Communities, linked to different values, 
principles, beliefs systems, happens, for example, in schools Communities (Mellone et al. 2021). To 
“get in touch” with different educational practices, coming out from different social and cultural 
contexts, can help researcher and teachers not only to become more aware of their social and 
cultural paradigm in regards to the classroom teaching practices but also to deconstruct their 
thought decentralizing their cultural expectation and assumptions and rethinking mathematics 
educational practices (Bartolini Bussi et al, 2013) in terms of “inclusion” and significant us of 

Proceedings of CERME12 1705



 

possible social, cultural “diversities”. Of course this “changing process” is complex and needs more 
and more opportunities for reflection and contamination (Bartolini Bussi et al., 2017; Jullien, 2006). 
From the school student’s perspective, diversity and difference in learning mathematics strategies 
appears, in this sense, a great opportunity, a good chance for something that maybe should not be 
favored without this “revolution” of prospective and without this change in the cultural system of 
reference. This could permit us to look at diversity and difference in mathematics and in 
mathematics teaching within the realms of the cultural, the social and the political. Spagnolo & Di 
Paola (2010), a pioneer of this kind of subject, presented this approach as a continuous open 
dialogue between cultures, societies, histories … useful to cross the didactics of mathematics. In the 
last years several researches (e.g. Bartolini Bussi et al., 2013; Di Paola, 2016; Mellone et al., 2021; 
Spagnolo & Di Paola 2010) discussed different CT experiences in Western school contexts. Several 
of them look to Chinese culture and in particular the use of Chinese practices of “problem with 
variation” for an early approach to Algebra in Primary school. What is a rather new (Leung, 2003), 
research subject discussed in this paper, is the use of this methodology in teaching/learning 
mathematics in Middle school and, in particular, in teaching/learning Geometry.  

“Problems with variation” is considered one of the most significant mathematics education tools 
used in Chinese Primary school (e.g. Bartolini Bussi et al. 2017; Fan et al., 2004; Mellone et al., 
2019; Sun, 2011). In the last twenty years, many researchers underlined the importance of the 
variation approach as a necessary condition for deep learning (e.g. Marton & Booth, 1997; Sun, 
2011) and in particular for the learning of mathematics. variation is typically expressed by Rowland 
(2008) as a practice in structured exercises which varies considerably from country to country and 
from text to text. Sun (2011) underlines the use of variation problems as a tool “to discern and 
compare the invariant features of the relationship among concepts, solutions and contexts, and 
provide opportunities for making connections, since comparison is considered the pre-condition to 
perceive the structures, dependencies, and relationships that may lead to mathematical abstraction.” 
(p.107). In Chinese language it is Bianshi ( ,) where bian stands for “changing” and shi means 
“form.”. Yakes and Star (2009) looked to variation as a critical means for comparing and 
developing flexibility for learning mathematics already from the first school years. In China, the 
variation approach to problem solving is linked to many disciplines and used in all school levels 
from the first grades. The issue of variations in problems perfectly reproduces one of a Chinese 
proverb: “no clarification, without comparison”, and it is “in contrast” to the assumption used in 
many textbook in different countries: “to consolidate one topic, or skill, before moving on to 
another” (Rowland, 2008). According to Rowland, comparing this problem solving approach with 
the one used, in many cases, in the Italian school (textbooks and/or practice), it is in fact possible to 
point out a strong difference, in some cases, common in several Western countries and related to the 
use of isolated problems/exercises, organized in progressive steps, strongly partitioned between 
them and so not very useful to define a possible abstract thinking looking relationships between 
concepts, strategies, algorithms (Cai & Nie 2008; Spagnolo & Di Paola, 2010). These 
considerations can be useful to underline the significant opportunity to proceed with contamination 
experiments (Jullien, 2006) aimed to get in touch with different “good practices”, coming from 
different cultural contexts and linked to different language; different historical tradition; ideologies; 
school systems; governance structures… In this sense, the contamination appears as an important 
condition for teachers to “decentralize” their own didactic practice of a specific cultural context to 
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something more wild, different, and in many cases more useful for their own  mathematics students 
and could be included. Bartolini Bussi et al. (2013), Di Paola et al. (2016), Mellone et al. (2021) 
discussed this approach in Italian schools for an early approach to Algebra in Primary school. As 
we already discussed, very few research papers refer instead to the inclusion and the use of 
“problem with variation” in teaching/learning mathematics in Western Middle school (grade 8) 
and, in particular, in Geometry. The CT discussed in this paper is aimed to look at a different 
teaching/learning mathematics practice, coming from East-Asia cultures, as an important 
opportunity for a significant and unusual (for the Western culture) 3D Geometry problem solving. 
In particular the proposed variation problems are aimed to guide Italian students in discovering, 
almost autonomously, the relationship between pyramids and cones area/volume. According to the 
declared aim, our lens was focused on students' reaction to this approach and, in particular, the 
research question to which we tried to answer was: What kind of process do grade 8 students of 
Italian (Western) culture show in variation geometric problem solving?  

 

Methodology  
In this section we discuss our CT in teaching/learning Geometry, implemented in the Italian school 
context (four classrooms of grade 8), according to the methodology of variation. It is important to 
underline that our intention was not an attempt to translate, or even worse import a Chinese 
practice/teaching strategy into the Italian culture and more in general in the Western one. On the 
contrary, the educational path we analyze, developed by the author of this paper and the group of 
teachers and researchers with whom we have collaborated for some years, is aimed to create a real 
CT, with an interesting inclusion of the different Chinese model into the Italian didactical practice 
in grade 8. With the aim to reply to the research question expressed before, our CT was particularly 
focused to help students to transfer their mathematics knowledge from a well-known context to 
another apparently different context, using the variation approach. The two contexts refer to 3D 
Geometry and in particular to the concepts of pyramid, cone and their area and volume. Authors of 
this paper were involved in all phases of the education path, the design, the implementation of it 
with school teachers and the analysis of the collected data. The grade 8 students (around 100) were 
engaged for almost 20 hours. All of them were conscious about experimenting with a pedagogical 
method from another culture; during the CT path they explored it, initially by themselves, after 
being guided by the Authors of this paper.  

According to the declared aim and what the literature discusses about educational practices based 
on the same research subject (e.g. Bartolini Bussi e al., 2017, Mellone et. al., 2019), the sections of 
the CT path referred to the proposed mathematical subject were designed following this frame:  

1. Pre/Post-questionnaire about 3D solids knowledge (pyramid and cone and their 
area/volumes),  

2. Single students resolution of different variation problems about pyramid and cone solids. 

3. Students interview about their own variation problem solutions (difficulties and mistakes 
personally implemented CT). 
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Before to start the first phase, with the aim to propose useful tasks in all research phases of the 
implemented educational path, we provided a structured and very fine a-priori analysis of Chinese 
and Italian textbooks (schemes, images, writing, task …) and of methodological implicit 
assumptions that variation approach could have had on the involved students about the inclusion of 
this didactic methodologies in the one commonly adopted by Italian teachers. All research phases 
were video and audio recorded. These collected data were qualitatively and quantitatively analyzed 
(with cluster and implicative analysis). Researchers and teachers studied these data step by step 
during all CT path phases in order to eventually redefine and redesign the path frames. According to 
the contamination theory, protocols and interviews were examined with a specific focus on possible 
interesting used of different sings (words, pictures, arrows, colors, …) useful to describe students 
approach to variation and, in particular, to underline possible difficulties or readiness to define 
relationship and among concepts, solutions and contexts. Cluster and implicative analysis gave us 
the possibility to put in evidence possible stable behaviors in the analyzed students sample. In this 
paper we don't present these data; we are referring only to some qualitative findings.  

An example of an implemented variation problem task (the first triplet) is shown in Figure 1. 
Starting from a problem concerning only the pyramid solid and its area (first problem on the left), 
we asked the students to solve two more problems on the cone solid (regarding its area and 
volume). According the variation problems theory and the contamination one, discussed before, the 
defined triplet was structured in order to favor the possibility to find, independently, the 
relationships (similarities and differences) between the two proposed texts and the images of 
geometric solids, without an explicit “presentation” by the teacher of the second one (about the 
cone).  

 

 

 

 

 

 

As we also mentioned before, all students knew the concept of pyramid and its area and volume 
calculation and properties; none of them knew (we formally tested it) the cone solid. Students, to 
solve this task needed to autonomously “transfer” (using variation approach) knowledge and skills 
acquired on the pyramid solid, to the cone. In the three problems the graphical representation has 
been also inserted in order to help students to better focus on the relationships and possible links in 
area and volume calculation. This choice retraces what Chinese textbooks and Chinese teachers 
commonly propose in classrooms.    

 

Empirical findings and first conclusion 

Figure 1. Our CT: an example of a first triplet of variation problem 
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In order to give an overview of the obtained results and related discussion, in this section, we 
briefly present some finding, come from the analysis of students protocols referred to the phase 2 of 
the implemented CT path and some data coming from a qualitative analysis of the same two 
students interview (phase  3 of the CT) about their own variation problem solutions.

Maria’s and Valentina’s protocols appear interesting for replying to our research question. In both 
students sheets it is, in fact, possible to observe an noteworthy and autonomous use of the colors in 
the proposed variation problems. Maria used colors to highlight analogies and relationships between 
part of solid. A solid that she knows and a solid that she doesn’t know.  Valentina did the same but 
taking into account the solving strategies and the formulas, instead of the graphic solid 
representation. Thanks to the Chinese variation approach, she autonomously discovers a 
relationship between two used formulas. In both cases (we found similar approaches in many 
student protocols) the opportunity to be contaminated by the Chinese variation methodology 
(Mellone et al., 2019, 2021) guided them in discovering in the problem solving activities something 
new as the relationship between pyramids and cones area/volume. Their approach to variation 
problems and their “surprise” to the possibility to autonomously learn “new mathematics' ' (Maria 
used these terms during her interview), clearly emerged also during their subsequent interview. The 
following part of the dialogue between Maria and her teacher, appears interesting:

Teacher: Could you better explain to me what you mean?
Maria: I highlighted with the same color what behaves in the same way. 
…
Maria: Here I have something that I know and something unknown into the same 

problem. I tried to look, to search for analogies and relationships. It's a interesting 
problem. I like it.

Teacher: What did you find?
Maria:   All are right triangles, the first two are just the same ... same numbers! So I 

highlighted them the same way.
…
Maria: Prof., could we do the same argumentation between Prisms and Cylinders? We 

studied them… We could find a general “rule”, we could use less memory and 
more variation. Problem solving can become more “simple”.

Teacher: You can try, …
Maria: It is great. I didn't know anything before today about it. We have to look also to 

other countries (smiling) …

Figure 2. Maria’s and Valentina’s variation problem protocols
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As Maria, almost all students benefited from the Chinese contamination of variation problems. they 
declared that working with this methodology, they became more aware of their knowledge and they 
were able to construct step by step a general solving approach to this kind of problems (the same 
finding in Cai & Nie, 2008). Of course a few of them (Giovanni, Marco and Francesca speeches are 
some examples) didn't immediately reach up to this expertise.  

Giovanni: We haven't studied the cone solid, the teacher was wrong … that's why I only solved 
  the pyramid problem. 

Marco:  I don't know the cone and I don't remember the pyramid, sorry. 

Francesca:  We have not studied the cone, but the teacher gave us a task with the pyramid and 
  the cone; we don't know anything about the cone ... I tried to use what I knew about 
  the pyramid but I couldn’t find the way.. why did the teacher put the pyramid next to 
  the cone? I will try to think about it. We didn’t do this same kind of problems before 

As we said before, this “changing process” is complex and long (Bartolini Bussi et al., 2014); 
Giovanni, Marco and Francesca need more and more opportunities for reflection and 
contamination. 

According to Spagnolo & Di Paola (2010), Sun (2011) and Mellone et al. (2021) findings, our 
students approach underlines how the implemented CT path gave them a good chance to stimulate 
and improve a possible abstract thinking, finding relationships between concepts, strategies, 
algorithms in variation problems. The defined variation problems gave them an important 
opportunity to deepen abstract geometrical thinking - structure, strategies, relationship, concepts … 
- (Leung, 2003) than does typical isolated problems on the two investigated solids as, in many 
cases, happens in Italian (but also in other Western countries) school context. They discovered a 
“new”, “diverse” culture and different related problems solving approaches that enrich their 
teaching practices and, according to our finding, their mathematics learning (Barton, 2008). Thanks 
to the CT path they had the opportunity to engage in mathematics through a cultural lens, helpful to 
discover and use diversities as resources for their future teaching. This gave us, as researchers, the 
chance to rethink our own cultural expectations and assumptions about possible important cultural, 
social and political issues in Mathematics Education research.    
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The aim of this paper is to investigate the potential power of mathematics in a socially difficult 
environment, as a high-security prison. More, we ask whether mathematics can enhance social 
skills (ethic skills, in particular), not only in prisoners: we present a mathematical experimentation 
involving prisoners, as those who, by means of mathematics, first learn ethic skills and then teach 
ethic skills to people from outside the prison, with a methodology we call “Mathem-Ethics”. The 
theoretical framework we work with is Horizontal Teaching, which provides a way to learn for both 
learners and teachers. We briefly discuss some results of the experimentation, in terms of its 
efficacy on people from inside and outside the prison. 

Keywords: Mathematics education, ethics, social change, horizontal teaching. 

Introduction. 
“Mathematics is bad for society”, said Arvid, an 11 years old student, in a challenging tone (Ryan et 
al., 2021). What Arvid was brave to say, is perhaps, shared by many students of different ages. As 
Wright (2019) highlighted, quite often mathematics is reduced to a set of rules and procedures to 
memorize and apply (OFSTED, 2012; Foster, 2013), resulting in many children (and adults) 
continuing to exhibit alienation from mathematics (Nardi & Steward, 2003). Nowadays education 
aims more and more towards functional mathematical literacy, that refers to the capacity of creating 
and applying mathematical knowledge when required in real life (Jablonka, 2003), and many efforts 
are taken from researchers and teachers to enhance mathematical skills in students that are useful 
for developing citizens able to solve real life problems that require mathematical literacy. But still, 
it is a common idea among students that these mathematical skills are only technical, and are not 
useful in social life. If mathematics is not bad for society, at least it is seen as useless for society, 
not connected to ethics and not useful to contribute to a life change. “Discussions about the 
connections between mathematics and democracy amongst the general populace have not been 
explicitly well rehearsed, other than to either assume that mathematics has nothing to do with 
anything political, being neutral in form and practice, so it has nothing to do with democracy, which 
is something political; or that it is implicitly democratic.” (Swanson, & Appelbaum, 2012, p.1). 
However, mathematical literacy is relevant to both social and economic needs and to an individual’s 
participation in today’s democratic society (Jablonka, 2003; Skovsmose, 2007). If there are those 
who think mathematics is a tool to obtain social training in obedience, an industrial trainer (Ernest, 
2019), Swanson and Appelbaum ask whether disobedience to the evocative power of mathematics 
could be itself a democratic action. Democratic teaching practices may have a positive influence on 
students’ learning outcomes in the mathematics classroom. This may be because successful 
democratic teaching and learning is conceived as situations where “individuals are able to think for 
themselves, judge independently, and discriminate between good and bad information” (Dewey as 
in Orrill, 2001, p. xiv). Therefore, there is a need to rethink teaching, taking into account the social 
dimension. Both Vithal (1999) and Aguilar and Zavaleta (2012) pointed to the need for empirical 
studies to experiment with existing theoretical ideas on the connection between mathematics 
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education and democracy.  Daher (2019), for instance, presents a study to assess four democratic 
practices (freedom, equality, engagement and justice) in the mathematics classroom. If mathematics 
education can be used to develop citizens’ skills to sustain a democratic society (Aguilar and 
Zavaleta, 2012), it should be even more important to develop it in a context where the students are 
prisoners. This has not been investigated so much and it is the focus of this paper. Several 
mathematical activities with students that are inmates have been successfully carried out in Swedish 
prisons (Helenius and Ahl, 2017; Ahl and Helenius, 2020). The authors highlight that successful 
mathematics education in prison can play a role in producing identity change increasing 
opportunities for re-entry in the society. In this paper we present a project, called Vietato non 
toccare (Don’t not touch), carried out in a high-school in a high-security prison in Sicily (Italy). 
This project aimed to enhance mathematical skills in inmate students through a laboratorial 
approach, in order to improve motivation of students and their sense of self-efficacy, i.e. confidence 
of success in handling a problem (Bandura, 1997). More, we aimed to use mathematical education 
for ethical purposes, with a methodology that we call Mathem-Ethics, experimenting with a way to 
use mathematics to achieve a change of life. We call Mathem-Ethics a methodology to teach/learn 
mathematics, giving precise ethical meanings to mathematical concepts. It is possible to design 
mathem-ethical activities, with the precise target of enhancing both mathematical and social skills. 
Our research questions are: “Is it possible for inmate adults to acquire ethical skills by means of a 
mathem-ethical path that will help them with a real life change?” (RQ1), “Is it possible to enhance 
social skills in people by means of a mathem-ethic path in prison?” (RQ2). In this paper, we first 
present the theoretical framework as the basis of our activity, Horizontal Teaching. Afterwards, we 
briefly describe the whole project and the methodology. Then we present the mathem-ethic path 
that was carried out. We end with some discussion and conclusions regarding the efficacy of the 
experimentation for those involved. 

Theoretical framework. 
Ethics or moral philosophy is defined as that branch of philosophy that involves systematizing, 
defending, and recommending concepts of right and wrong behaviour. Ethics is born, already with 
Socrates and many Greek philosophers, to answer questions of human morality by defining 
concepts such as good and evil, right and wrong, virtue and vice, justice and crime. It is a common 
opinion that social sciences, like literature, art, history, are didactically useful for ethics 
investigations in students. It is our opinion that mathematics too can be used to learn concepts 
useful for students’ lives, in general, and to ethics, in particular. The theoretical framework we use 
to achieve ethical goals is based on Horizontal Teaching (HT) (Ferrarello et al., 2013). In 
teaching/learning environments, the actors are the one who teaches, the teacher, and the one who 
learns, the student. These two figures generally have distinct roles and, in traditional environments, 
the teacher transfers his/her knowledge to the student, we might say in a “vertical way”, top-down. 
In HT, on the other hand, there is a teacher’s awareness: the teacher is willing to challenge 
him/herself and expand his/her knowledge by entering the sphere of the student's knowledge. In 
fact, in HT, the two sets of knowledge, the one of the student and the one of the teacher, are placed 
at the same level and initially have an intersection (Figure 1a); the teacher must be able to enter into 
this intersection and expand it, so that the knowledge shared is greater than at the beginning of the 
process, expanding not only the student's knowledge, but also his/her own (Figure 1b). The 
expansion of the teacher's knowledge takes place not only in terms of content, but also with respect 
to the students' experiences, their interests, their learning styles. The expansion of students' 
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knowledge is not only about content, but also about the way they learn, contributing to enhance 
their mathematical literacy (Jablonka, 2003). So it is not only the student who absorbs from the 
teacher's knowledge but also the teacher expands his/her knowledge: this is the fundamental 
characteristic of Horizontal Teaching. 

 
Figure 1: Horizontal Teaching 

In the HT model, learners are seen in relationship with themselves, but also with the other learners 
and the world, just as in Maheux & Roth (2011), where the authors describe a way of thinking 
about knowing, namely relationality, starting from the biological theory of cognition, (Maturana & 
Verden Zöller, 2008). Human beings are theorized as complex biological “learning systems” that 
coordinate with the co-emerging environment that they “bring forth” (Maturana & Varela, 1998) 
and in knowing mathematically, the learner and the knowledge are not independent entities. The 
novelty of HT, with respect to this model, is the role of the teacher, who becomes a learner too, 
sharing with the other learners (the students) their participation in creating a new world of 
knowledge. 

Description of the project and Methodology. 
Vietato non toccare (Don’t Not touch), https://sites.google.com/view/dontnottouch/home, is a 
project conceived in 2017, when one of the authors won the Italian Teacher Prize, promoted from 
the Italian Ministry of Education. It was carried out with adult inmates in the high-security prison of 
Bicocca, within the high-school “K. Wojtyla” of Catania. It aimed to create an exhibition of 
mathematical objects in prison, and it consisted of three steps: 3D-printing of some objects, (Step 
1); mathematical training of inmate students on the created objects (Step 2); guided tours of the 
exhibition (Step 3). The exhibition consisted of four sections (see Table 1).  

Table 1: Sections of the exhibition 

Section 1 Not orientable surfaces: Möbius strip; Klein Bottle. 

Section 2 Pantographs for geometric transformations: Pantograph for homothethy; Pantograph for axial 
symmetry; Pantograph for central symmetry. 

Section 3 Conicographs: Cone with conics’ sections; Ellipsograph with antiparallelogram; Ellipsograph 
with rhombus; Hyperbolograph with rhombus; Parabolograph. 

Section 4 Archimedes’ machines: Parabolic mirror; Coclea; Lever. 

 

Most of the objects of the exhibition are mathematical machines (Bartolini Bussi & Maschietto, 
2006). The authors led the training course for the inmate students (Step 2), to help them understand 
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the functioning of all the objects: 15 students were enrolled, just 3 became guides of the exhibition, 
because the others were moved to other prisons or got out of the prison. The training consisted of 20 
meetings, held according to the methodology of the Mathematics’ Laboratory (ML) (Anichini et al., 
2004). In the ML, students are guided to discover and construct the concepts, supported by the 
teacher and their peers, in a collaborative and/or cooperative way. In fact, the ML is a set of 
activities carried out by students and teachers aimed at the construction of meanings of 
mathematical objects. In the ML, students do not study mathematics, but rather do mathematics, 
dealing with a problem, exploring, conjecturing, proving, applying. During the training (Step 2), 
every object was introduced by means of a problem, typically: “What does it do? And why?”. The 
object was manipulated by students working together and under the guide of the teachers they 
developed an understanding of what the object does and why and they constructed the mathematical 
meaning lying within the mathematical object. At the same time, they were introduced to the ethical 
meaning of each section (see next paragraph). Learners are not only invited to touch, but rather they 
have to do it, in order to make visible and comprehensible the mysterious operating forces of 
mathematics, often remaining unrevealed (Roth & Maheux, 2015). Once the students finished the 
training course, they became guides of the exhibition and the gates of the prison were opened (Step 
3). Visitors were students from school and university, teachers of all school grades, both 
mathematics teachers and not, university professors, both mathematics professors and not. Also the 
exhibition was organized as a mathematical laboratory: visitors were invited to touch the objects 
and manipulate them in order to understand their functioning. Together with the guides, visitors 
were assisted by the authors of the paper, who explained the ethical part of the various exhibition 
sections. Being in a high-security prison, we could not videotape the students or the visitors. We 
conducted a qualitative analysis, based on the spontaneous comments of students. They did not gain 
any kind of advantage in taking part in the project and they were not forced to write those 
comments. As for visitors, we administered a questionnaire with two questions. The first one differs 
according to whether the visitor was a student (question QS) or a teacher (question QT). QS: “Has 
your visit to the exhibition had or do you think it will have an impact on the way you conceive 
mathematics? (e.g. in relation to the social role that mathematics can play)”; QT: “Did your visit to 
the exhibition have or do you think it will have an impact on the way you teach? (e.g. with regard to 
methodologies, attitude towards students, topics etc.)”. The second question was the same for both 
(QST): “Did or do you think the visit will have an impact on the way you behave in society?” 

The Mathem-Ethic path. 
At the guided tours of the exhibition, all sections were presented according to their mathematical 
meanings and ethical meanings (Ferrarello et al., 2021) that we briefly describe here. Section 1- 
“Not-orientable surfaces: when inside and outside merge together”: The objects we see every day 
have generally orientable surfaces, i.e. they have an inside and an outside, separated by a boundary, 
which we are forced to cross whenever we want to pass from inside to outside or vice versa. In life, 
we often classify things and people, by placing them inside or outside a certain set, with a very clear 
boundary. What we discovered, working with ‘bad-by-definition’ people in prison, is that, indeed, 
these boundaries are not as clear as we paint them, but rather blurred. Objects in this section were 
symbols of the meeting among people from inside (the prisoners) and from outside (the visitors) in 
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the neutral field of mathematics. Section 2 - “Pantographs for transformations: transform yourself 
by remaining true to yourself”: In geometry, it is possible to transform a figure into another one, 
maintaining certain properties. A task of education should be to make students grow and evolve, by 
changing some things about them (transform yourself) and maintaining some of their features 
(remaining true to yourself). The school does not replace the students with new people, but rather 
transforms them. Objects of this section were symbols of the transformation of students and 
visitors. Section 3 - “Conicographs: Conditions for being in a locus”. Conic sections are curves that 
can be described as geometric loci, i.e. we can describe a mathematical condition for a point, 
satisfied if and only if the point belongs to the curve. Being in a locus (a geometric one or, in a 
metaphor, in a real place) therefore depends on the conditions that one sets. Our behaviors (the 
conditions, in the mathematical metaphor) determine the effects on our life (the geometric locus, in 
the mathematical metaphor). If you really want to change the locus, then you have to start by 
changing the conditions. The ethical meaning of this section is the importance of self-determination 
to encourage students and visitors to own their own lives, taking them in hand and setting new 
conditions, to achieve new loci. Section 4 - “Archimedes’ machines: Sicily, land of mathematics!”. 
The place where the project has been carried out, Sicily, is often covered by prejudices associated 
with facts, people and ideas, which are not universal in Sicily: it is also the land of a millenary 
culture. Our exhibition is pleased to host a section of machines attributed to the Sicilian genius of 
Archimedes. In this section we want to remember Sicily for other facts, people, ideas and those that 
have contributed to our scientific culture: it is not only the land of mafia, but also the land of 
mathematics: like a person is not only a prisoner, but also, in this case, a guide of a mathematics 
exhibition (and much more). 

Brief discussion and conclusions. 
In this paragraph we briefly discuss the efficacy of the HT in the third step of the project: the guided 
tours of the exhibition, hosting people from outside the prison. In the following, we report in Italics 
some parts of the spontaneous comments from prisoners and answers from visitors. We underline 
where, as per the HT framework, students (blue set in Figure 1) can be also teachers (let us recall 
that visitors were teachers and students from outside), while teachers (pink set in Figure 1) are 
inmate students after becoming guides of the exhibition. In order to answer our first research 
question, RQ1 (“Is it possible for inmates adults to acquire ethical skills by means of a mathem-
ethic path to help them in a real life change?”) we take into consideration the teachers’ expansion, 
i.e. what the inmates, as guides of the exhibition, learned. We report some of their spontaneous 
comments. This project brought into my life something unique and unimaginable. I didn't believe I 
could reach so much, and this makes me understand that also I have the skills and possibility to 
yearn for a future rich of occasions, and to give a turning point to my life; and more. This project 
involved a cultural change for us, but above all a personal one. At the beginning we were very 
enthusiastic but not very motivated, just because we gave limits to our potentialities, to our 
knowledge and intelligence. But by attending classes with commitment and passion we managed to 
get great results, making calculations, conjectures and evaluations. Until a few years ago, we 
would never have imagined debating on mathematical concepts. … [We thank the teachers who 
succeeded] to illuminate the way of our journey to a better future, believing from the beginning in 
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us, teaching us that in life we must look beyond our expectations. But above all, thanks to 
mathematics, we know who we are and who we will be. Remembering that mathematics is not only 
made of numbers and sums, but also of much more! Thanks again for believing in us, and that we 
believed that the only thing you can't do in life is to divide by zero!. We underline that the inmates 
we worked with are all incriminated for mafia association (n. 416 bis of the Italian criminal code). 
Some of them are, by “family tradition” involved in crime and also did not have school education 
until they entered prison. Some, even if they are Italians, had difficulty also in speaking proper 
Italian, because they used to speak dialect. Moreover, inmates did not gain anything in taking part 
in the project. Little by little, they made our project their project and felt proud of being part of it. It 
is too early to see long term effects of this adventure, but for sure, from their word, we can say that 
a change already started. The 3 guides just finished high-school in prison and they are planning 
their future, even enrolling to university. In order to answer our second research question, RQ2 (“Is 
it possible to enhance social skills in people by means of a mathem-ethic pathin prison?”) we take 
into account the answers to the questionnaire by the visitors. As for QS, students visiting the 
exhibition expanded their knowledge seeing mathematics in a different way: they recognize that it 
is possible to make mathematics also with a social role, a role of unity and education because it can 
be a tool for educating, growing, learning, not only for well-educated students, but for all. The myth 
of the social role entrusted mostly to social sciences has been dispelled. As for QT, teachers visiting 
the exhibition had the opportunity to test the efficacy of the ML, whether they were math teachers 
or not. Only those who play an active role in the learning process really learn: it is fundamental to 
let students having the pleasure of discovery. Asking the right questions, leaving space for silence, 
listening, observing together, providing tools, stimulating curiosity, are much more important 
activities than simply providing data and ready-made answers. Student as actors and not audience 
are happier and more effective (from A. and P., not math-teachers that already work in a 
laboratorial way: the visit confirms their belief). We want to underline the position of N., a math 
teacher, who is revising his teaching practice, and he claims that the visit has accelerated this 
revision process. The teacher learned that you cannot set a standard model to which the students 
must adapt, but the reverse process is needed: the teacher must adapt to the students. Then all 
teachers benefit from visiting the exhibition expanding their knowledge in terms of teaching 
methodology. Let us move to QST. Teacher P. wrote that the way of behaving towards society has 
become more conscious. The project breaks down many commonplaces about prisons and prisoners 
because the project shows that the polarity of reality is a scam: true/false, good/bad, 
ignorant/knowledgeable, right/wrong, the polar view of reality is limiting, reductive, excluding 
(target of Section 1 of the exhibition). Visitors (students and teachers) discover wonderful people 
with a great desire for redemption, and they found that everyone needs to be recognized: trust, 
sincere appreciation, a smile, kindness, can help everyone grow much more than through 
disapproval and punishment (target of Section 2 of the exhibition). Thanks to education, and also to 
math education not always those who have committed a crime are bad people and can never 
change, [they] improve or try to take a new and better path (target of Section 3 of the exhibition). 
Visitors saw in their eyes (the prisoners) the desire to escape from a past that, now thanks to the 
experience made with the project, was “narrow” (target of Section 4 of the exhibition). This led 
them not to be prejudiced and do not judge too quickly, because the social, economic, cultural 
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situation of each person varies according to the society in which they are born and grow up and 
they cannot choose that. While it is all of us who together can do something different and we can 
benefit from it all together! Visitors are inspired to do their best in a view of I care. A last 
consideration is the reciprocal relation amongst the people involved in the project. At every tour, 
the discourse always started with mathematics, and became more and more mathem-ethic. During 
the flow of the tour visitors and guides entered more and more into a confidential conversation. 
Usually, at the end, there was no more distinction between “inside people” and “outside people”. 
One of the guides said that he succeded to enter in to a relation with people, this was always my 
flaw. The same happened to visitors. In the intersection of blue and pink sets (Figure 1), we find no 
difference between teachers and learners: a full Professor, visiting the exhibition, said “I have had 
the pleasure of feeling ignorant in a singular place, where the last prove to be the first”. We hope 
that future mathem-ethics paths taken in prisons could open the doors to the development of social 
skills both in prisoners and in math educators. More to come! 

Acknowledgment 
This research was supported by was supported by the research project “Programma Ricerca di 
Ateneo UNICT 2020-22 linea 2”, Equazioni Ellittiche: Esistenza e Proprietà qualitative & Didattica 
Laboratoriale e a Distanza and Engineering solutions for sustainable development of agricultural 
buildings and land. 

References 
Aguilar, M. S., & Zavaleta, J. G. M. (2012). On the links between mathematics education and 
democracy: A literature review. Pythagoras, 33(2), Art. 164. DOI:10.4102/pythagoras.v33i2.164 

Ahl, L. M., & Helenius, O. (2020). Bill's Rationales for Learning Mathematics in Prison. 
Scandinavian Journal of Educational Research, 65(3), 1–13. 
DOI:10.1080/00313831.2020.1739133 

Anichini, G., Arzarello F., Ciarrapico, L., & Robutti, O. (2004). Matematica 2003. Matteoni stampatore.  

Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman. 

Bartolini Bussi, M.G., & Maschietto, M. (2006). Macchine matematiche: dalla storia alla scuola. 
Springer Verlag Italia. 

Daher, W. (2019). Assessing students’ perceptions of democratic practices in the mathematics 
classroom. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of 
CERME11 (pp.1854–1861). Utrecht, the Netherlands: Freudenthal Group & Freudenthal Institute, 
Utrecht University and ERME. 

Ernest, P. (2019). The ethical obligations of the mathematics teacher. Journal of Pedagogical 
Research, 3(1), 80-91.  DOI: 10.33902/JPR.2019.6  

Ferrarello, D., Bellia, G., Pastura G., & Vespa, S. (2021). Vietato non toccare. Matematica, Cultura 
e Società – Rivista dell’Unione Matematica Italiana, 1, 6(2), 161–182. 

Proceedings of CERME12 1718



 

 

Ferrarello D, Mammana M.F., & Pennisi M. (2013). Teaching by doing. In: Benedetto di Paola 
(Eds) Proceedings of CIEAEM65. Quaderni di ricerca in didattica, 23, 466–475. 

Foster, C. (2013). Resisting reductionism in mathematics pedagogy. The Curriculum Journal, 24(4), 
565–585. 

Frankenstein, M. (1989). Relearning mathematics. Free Press  

Helenius, O., & Ahl, L. (2017). Identity change through inner and outer driving forces for studying 
mathematics in the swedish prison education program. In A. Chronaki (Ed.) Proceedings of the 
Ninth International Mathematics Education and Society. (pp. 247–251). Volos, Greece.  

Jablonka, E. (2003). Mathematical Literacy. In A. J. Bishop, M. A. Clements, C. Keitel, J.  
Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education. 75–
102. Kluwer Academic Publisher. 

Maheux, J.F. & Roth, W.M. (2011). Relationality and mathematical knowing. For the Learning of 
Mathematics, 31(3), 36–41. 

Maturana, H. R, & Varela, F. J (1998). The Tree of Knowledge: The Biological Roots of Human 
Understanding (Revised edition). Shambhala. 

Maturana H R., & Verden-Zoller, G. (2008). The Origins of Humanness in the Biology of Love. 
Imprint Academic. 

Nardi, E., & Steward, S. (2003). Is mathematics T.I.R.E.D.? A profile of quiet disaffection in the 
secondary mathematics classroom. British Educational Research Journal, 29(3), 345–367. 

OFSTED. (2012). Mathematics: Made to measure. Manchester: The Office for Standards in 
Education, Children’s Services and Skills. 

Orrill, R. (2001). Mathematics, numeracy, and democracy. In L. A. Steen (Ed.), Mathematics and 
democracy (xiii–xx). Princeton, NJ: National Council on Education and the Disciplines. 

Roth, W.M., & Maheux, J.F. (2015). The visible and the invisible: the immanence of doing 
mathematics and mathematics as revelation. Educational Studies in Mathematics, 88, 221–238. 

Ryan, U., Andersson, A., & Chronaki, A. (2021). ‘Mathematics is bad for society’ : Reasoning 
about mathematics as part of society in a language diverse middle school classroom. In A. 
Andersson, R. Barwell (Eds) Applying Critical Mathematics Education. 144–165. Brill. 

Skovsmose, O. (2007). Mathematical literacy and globalisation. In B. Atweh, A. C. Barton, M. C. 
Borba, N. Gough, C. Keitel, C. Vistro-Yu, & R. Vithal (Eds.), Internationalisation and 
globalisation in mathematics and science education (3–18). Springer.  

Swanson, D.M. & Appelbaum P. (2012). Refusal as Democratic Catalyst for Mathematics 
Education Development, Pythagoras, 33 (2), Art. No.:189. 

Vithal, R. (1999). Democracy and authority: A complementarity in mathematics education? ZDM, 
31(1), 27−36. 

Proceedings of CERME12 1719



 

 

Wright, P. (2019). Visible pedagogy and challenging inequity in school mathematics. In U. T. 
Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of CERME 11 (pp. 1994-
2001). Utrecht, the Netherlands: Freudenthal Group & Freudenthal Institute, Utrecht University and 
ERME. 

Proceedings of CERME12 1720
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In this paper we explore the co-construction of identity in a Norwegian lower secondary school 
mathematics classroom. Focusing on one high-performing girl, Sarah, we analyse the role of male-
dominated performance of “smartness” in her positionality in the figured world of Class A. While 
Sarah can be simply understood as making herself “invisible” in this dynamic, her teacher’s 
account draws our attention to the impact of gender performance on what she sees and values in 
her students. We argue that Sarah’s positionality is the result of a twin dynamic between girls’ 
cultural invisibility and her teacher’s failure to see, indicating a need for greater awareness of 
girls’ situation in mathematics classrooms, particularly where - as in Norway - gender is seen as 
“no longer an issue”. 

Keywords: Classroom dynamics, gender performance, invisibility, equity.  

Background and literature  
Although Scandinavian countries are often seen as a “beacon” of gender equity, women’s 
participation in science, technology, engineering and mathematics (STEM) lags behind other 
countries (Talks et al., 2018), particularly in Norway: only 1 in 3 STEM graduates are women 
(Confederation of Norwegian Enterprise NHO, 2018). Talks et al. (2018) suggest that part of the 
problem is the common perception that Scandinavian countries have “fixed” the problem of gender 
inequity. In this paper, we explore girls’ experiences of mathematics in the crucial years before they 
choose their final educational pathway, in a setting where gender equity in the sense of a level 
playing field is assumed to follow from an emphasis on equal opportunities. We find that, on the 
contrary, being a successful student is marked by a highly gendered performance within a 
classroom dynamic that goes unquestioned by all participants, including the teacher. Focusing on 
the case of Sarah, a consistently successful girl, we argue that the gendered performance of 
“smartness” in the classroom renders her invisible, and contributes to her teacher’s failure to see her 
achievement: everyone is surprised by her marks except Sarah herself.  

The link between classroom culture and students’ mathematical identities is well established. Black 
(2004a, 2004b) notes the role of interaction between teacher and students in the construction of 
mathematics knowledge in a British primary school, with particular implications for girls. Rather 
than engaging with the girls about mathematics, the teacher “somehow negotiated with these girls a 
coping mechanism where they stayed silent on the periphery of the classroom in whole-class 
discussions, but were praised for neatness and presentation elsewhere” (Black, 2004a, p.49). Girls 
who laid claim to a higher profile were “positioned out” as in the case of Sian, a girl whose ability 
was publicly acknowledged, but was exploited by the teacher to work as a “pace-maker”, 
contributing minimal responses which enabled the boys to continue in more productive dialogue 
with the teacher: “it is because of Sian’s compliance with the teacher’s agenda ... that the [high 
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performing] boys … were able to engage in more dialogic talk .... it involves using the right kind of 
input (or response from the teacher) to signal and be recognised as ‘high ability’” (Black & 
Radovic, 2018, pp. 280-281).  

Similarly, Foyn (2021) investigates how being good at mathematics is performed in a Norwegian 
lower secondary school. She argues that gender is refracted through a cultural model of “smartness” 
signified by “effortless” work, interrupting the teacher or challenging her mathematical 
competence, leading to a collectively held claim that there are no gender differences, but that the 
best students are boys (since they act in this way). Hence the gendered nature of high achieving 
girls’ self-censorship away from activities that are connected to the performance of smartness goes 
unchallenged. In an earlier study, Foyn et al. (2018) focused on “clever’ girls” positionality in an 
upper secondary school classroom in Norway, finding that they subtly positioned themselves as 
clever without performing in the same way as the boys in the classroom. However, their 
performance was restricted by a gendered discourse in which they both “policed” each other and 
“self-policed” in order to (re)enforce particular rules for combining being female and being good at 
mathematics: performing in terms of visible “natural ability”, flair and competitiveness was 
unacceptable as “feminine” behavior, and indicators of ability (e.g. ability group membership, 
marks) were expected to be noticed but not commented on. The case of girls’ visibility in 
mathematics is also elaborated on by Walls (2009), who identifies gender differences in the way 
students express their response to mathematics. She argues that, in order to survive, girls and 
women in mathematics “are required to don a cloak of invisibility that affords them temporary 
status as honorary males in a male domain” (Walls, 2009, p.47). 

The teacher’s role in how students develop their positionality is illuminated by Jaremus et al. 
(2020). They found that teachers assumed three main categories of students: the gifted, 
characterized by their perceived natural ability, speed and achievement; the “dedicated”, 
characterized as hard working; and the utilitarian, having specific career goals (mostly “masculine”) 
which required mathematics. These subject positions “were not equally available to girls and boys” 
(p. 226): the utilitarian and gifted groups were predominantly male, while the dedicated group was 
mostly female. Jaremus et al. argue that the “naturalization” of mathematics as masculine excludes 
girls from the “gifted” subject position, whereas the normalization of effort makes the dedicated 
position available to them; the utilitarian position is available only if they can subscribe to the 
normalized aspirations to male-dominated careers. Both Walls’ and Jaremus’ research took place in 
Australia, while Black worked in Britain.  As noted above, Scandinavian countries, Norway 
included, lay a strong claim to gender equity, yet Foyn’s earlier work questions this. In this paper 
we explore the twin dynamics of girls’ (self-) imposed invisibility and teachers’ assumptions about 
their capability in the Norwegian context further.  Hence our research question is: What are the 
dynamics of gender (in)visibility in a Norwegian classroom?  

Theoretical framework – positionality in a figured world 
In this paper we draw on Holland et al.’s (1998) theoretical framework to see the mathematics 
classrooms as a figured world, a “socially and culturally constructed realm of interpretation in 
which particular characters and actors are recognized, significance is assigned to certain acts, and 
particular outcomes are valued over others” (Holland et al., 1998, p. 52). A figured world is “a 
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social reality that lives within dispositions mediated by relations of power”, where actors see 
themselves as having “more or less influence, more or less privilege, and more or less power” (p. 
60). Importantly, though, figured worlds are not independent of other worlds, and the structuring 
effects of major discursive forces such as class, gender and ethnicity which underpin power and 
privilege in surrounding worlds impact on local worlds too. Thus,  

social categories also can have meaning across many figured worlds. [...They] separate those 
who are routinely privileged from those who are not. Cross-cutting markers tend to become 
stereotypically associated with these social categories, if not actually demanded (p. 130).  

In the Western world at least, gender as a positional force may lead some female students to see 
themselves as not having access to significant acts in the classroom such as participating in 
discussion about mathematics: “gendered dispositions to participate, or not, in given activities, 
develop in places where gender participation in activities is treated as a claim of gender specificity” 
(Holland et al., 1998, p. 143). Actors in a figured world get to know “their” position in relation to 
others as they participate in its everyday practices; in a mathematics class, students (and the 
teacher) learn to live out the figured world in terms of what they are “allowed” to say or do, what is 
expected of them, and what is valued. To understand girls’ positionality in a mathematics 
classroom, we need to notice the mundane activities of the classroom, its norms, rules and habitual 
acts:  

They come to have relational identities in their most rudimentary form: a set of dispositions 
toward themselves in relation to where they can enter, what they can say, what emotions they 
can have, and what they can do in a given situation (Holland et al., 1998, p.142–143).  

Thus students’ acts in the classroom are based on a blend of figurative identity - “signs that evoke 
storylines or plots among generic characters” - and positional identity - “acts that constitute 
relations of hierarchy, distance, or perhaps affiliation” (Holland et al., 1998, p. 128). Hence being a 
female “clever student” or a male “clever student” is “normally” played out differently in the same 
figured world, and position becomes disposition, ways of being that are frequently unconscious and 
“out of awareness” (p. 139). Habitual acts may thus lead towards situations of exclusion and 
inclusion of which actors in the figured world are unaware. As Holland et al. point out,  

even in situations where all students are admitted to the arena of learning, learning is likely to 
become unevenly distributed .... Teachers will take some students’ groping claims to knowledge 
seriously. … Others, whom they regard as unlikely or even improper students of a particular 
subject … are less likely to receive their serious response (p. 135).  

The mundanity and ordinariness of acts of exclusion or inclusion mean that noticing, resisting and 
countering these norms is unlikely or difficult, because “the everyday aspects of lived identities . . . 
may be relatively unremarked, unfigured, out of awareness” (p. 140). In this paper, we focus on the 
ordinariness of acts of inclusion/exclusion in the mathematics classroom on the basis of gender, and 
how this mundanity appears to prevent such acts from becoming visible.   
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Methodology  
The data for this paper derive from a larger ethnographic study tracking a Norwegian lower 
secondary school mathematics class (“Class A”) from grade 8 to grade 10 (Foyn, 2021). Just 
outside Oslo, the school is in a high socio-economic status area with a fairly homogenous 
population mostly comprising native Norwegians and native Norwegian speakers. The school 
prides itself on its high grades. Students are assessed in the national system with grades from 1-6, 
where grade 6 is the best. Grades 5 and 6 are considered to be at a “high level”. Grades awarded 
correspond with the goals set for each grade, so achieving grade 5 in two consecutive years requires 
making the improvement required to meet the higher goals of the later year. All students follow the 
same curriculum. We draw on a variety of data collected by the first author in this ethnographic 
study: fieldnotes from participant observation; focus group interviews with the students in 8th and 
9th grade; individual narrative interviews at the end of 10th grade; interviews with the teacher, Miss 
A, at the end of 8th and 9th grade; and copies of the teacher’s assessment record and students’ diary 
notes.  

In this paper, we focus on one case study student, Sarah, whose 10th grade interview about her 
grades and performance, work effort and experience of mathematics is of particular interest because 
of her comments on her marks. However, the ontological implication of taking a figured world 
approach means that it is not possible to investigate any act, event, or statement in isolation, 
because it occurs between people in a context over time. Thus analysis focuses on story structure, 
collective storying and their connection with collectively spoken and enacted norms and values.  

Sarah’s and the other students’ stories were analyzed in terms of narrative structure. 
Operationalisation of important concepts are exemplified in Table 1.  

Table 1: Operationalization of narrative concepts 

Concept Definition About Operationalization  

Positional 

utterances 
About relations to groups or actors Positionality Describing/explaining oneself in 

relation to subgroups/persons 

Flow Narrative structure, choice of 

incidents, combination of ideas  
Style of 

authorship 
Sequencing of events, connections 

 
Contradictions  Conflicting/contradictory issues in 

the talk  
Ruptures  Contradictory claims/voices 

Interviews with Miss A and the students take place within the figured world of Class A.  Table 2 
illustrates the operationalization of the central concepts of norms/rules and values in the figured 
world.  

Table 2: Operationalization of central concepts of figured worlds 

Concept Definition About Operationalization 

Norms/Rules Expected 

actions or 

moves 

Habitual 

events 
Observations - what is repeatedly observed? Expected actions 

based on previous experiences in observations 
Narratives - descriptions of characteristic actions in the class 

Co-constructions in focus group interviews 
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Values  
 

Perceived 

importance of 

actions or 

objects 

How artefacts 

are employed, 

positional acts 

Observations –acts that seem to give credit to the actor 
Narratives – description of what is important to do in order to 

claim status 
Co-constructions in focus group interviews 

In addition, the analysis draws on fieldnotes and observations of student movement within the 
classroom to gain a broad access to the figured world of Class A. Interviews were transcribed in 
Norwegian and translated into English. In our translations we have aimed to keep as close as 
possible to our understanding of intended meaning in the original Norwegian. This study followed 
the research ethics practices of the Norwegian Centre for Research Data, and all names are 
pseudonyms. 

Analysis: Sarah in Class A  

SARAH: Is seen as mediocre by the teacher. She keeps on working. Enjoyed maths in primary 
school. I think she is overlooked by the teacher, because when I talk to Sarah in the classroom, I 
get the feeling that she is getting the concepts and does understand the connections. Easygoing, 
natural way of acting. Is improving her grades, got a rock solid 5 in the final test this year.  

(Fieldnotes, end 9th grade) 

This summary impression of Sarah remained unchanged through 10th grade, with reference to both 
the way she acted in the classroom and her assessment record: she performed steadily at grade 5 
throughout the year. Not being noticed seemed to be her “destiny” in this mathematics classroom, 
and her interview at the end of 10th grade revealed that Sarah was aware that this was the case.  

Sarah’s story – everyone is surprised by her good results, except herself 

A typical feature of Sarah’s story is her straightforward attitude when she describes her work in 
mathematics. Even though she is ambivalent about the way they work with mathematics, she just 
gets on with it: “In 10th grade we kind of had to learn it quickly and then it wasn't as much fun 
because I didn't quite get it, but I learned it”. It seems that Sarah tends not to like the fast pace, but 
she accepts the situation and goes along with it. However, this doesn’t affect her performance, 
because her marks indicate improvement in Miss A’s assessment protocol and Sarah says that this 
will continue: “I think it might go upwards if I'm working to make it go up”. Despite this 
confidence, she hesitates to position herself among the students who are doing well in mathematics, 
instead positioning herself as ordinary: “I guess I've always been somewhere in the middle in 
maths, really. I find something difficult while something is very easy, surely like most of the other 
students, so like many or most of them, actually”. Furthermore, she declines to query her marks: “I 
don’t often dare to say that I deserve a higher or lower grade, I’m more that what she gives me is 
what I get”. 

Given this apparent acceptance of the situation, the most striking moment in Sarah’s story is her 
account of her teacher’s excited response to her final test score. Mid-sentence, she suddenly mimics 
Miss A: [Excited voice, imitating the teacher’s bright tone] “Wow! This is really good, aren’t you 
surprised? [Continues in her own tone, with indignant emphasis] I was just like, ‘no thanks!’ I 
wasn't surprised”. Her rejection of Miss A’s storying of her results as a surprise returns when she is 
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asked how she thinks the others in the class, including the teacher, see her: “I think she [the 
teacher]is a bit like the others in the class, who think I'm a bit dumber or not as good as I am”. She 
continues; “people might think I'm going to get slightly worse grades than I get, or they go like 
[parodying puzzlement]‘are you smart?’” Clearly aware of her positioning by others, Sarah’s 
resistance goes no further than parody. To understand further, we turn to an analysis of the figured 
world of Class A.  

The figured world of Class A - Sarah’s position within the performance of smartness 

Although the students describe Class A as a unit storied with a ‘we’ in which everybody does their 
best and works together despite differences, this image cracks the moment achievement is 
mentioned. Eva admits that “There are some who get 6s in every single test, also there are quite a 
few who are average, and also some who can’t do it, the special group”, while Elias says “There’s 
a group that is quite a lot better than the others, at a higher level than the others ... They do more 
difficult tasks, help others a bit more, give explanations and discuss a bit more with Miss A”. Sarah 
is aware of this group as well. Asked who is very good at mathematics in Class A, she replies, “I 
feel boys or people think that. At least in our class, the guys are the smart ones good at maths, but I 
think that it differs from class to class” She adds: “We have a lot of very extraordinarily smart 
boys, at least, who are doing maths for upper secondary school and things like that, so I think a lot 
of people think they're smart”. She describes the boys as smart, but it is notable that she doesn't 
accept this argument unreservedly - twice she says this is “what people think”. She goes on, perhaps 
reflecting her own experience: “But I think the girls are keen to do well, maybe, more than the boys 
too”.  

Miss A’s account adds to this complex picture of how things are seen in Class A. In her interview at 
the end of 8th grade she is asked if there is any subject the students connect to status. She replies: 
“In this class we have a whole bunch of special boys …, who are very interested in mathematics 
and science. And getting good grades in mathematics is high status”. As for the girls, she says: “I 
have the impression that they like to do well, but I haven’t picked up any indication that 
mathematics is particularly significant. She goes on: I think maybe they are thinking a bit more in 
the direction of language, for those who like to write”. She repeats this account of the boys in her 
9th grade story of Class A: “I have to mention this group of boys, “the smart boys”; they are a 
driving-force, academically. They easily affect others in a positive way”. Miss A’s comments on the 
girls’ assumed favoring of language over mathematics are by her own admission speculative, and 
appear to be based on the fact that the girls do not act like the boys. Both teacher and students 
described how this group of boys performed smartness through acts which have particular 
significance in Class A: acting as “assistant teachers”, engaging in discussion with Miss A and so 
on. Miss A stories the girls very differently. Only two high performing girls are presented as high 
achievers in mathematics alongside the “smart boys” in Miss A’s narrative of the class, but they 
have a less prominent position than the boys, being mentioned in either the 8th or the 9th grade, but 
not both. Neither are described as particularly interested in or focused on mathematics, and they 
appear in Miss A’s narrative as stereotypical girls in mathematics While the “smart boys” are 
presented as enjoying discussion of a subject they are interested in -“Erik and Ross, they are the 
same, they think that the subject is interesting and like to enjoy it and discuss”, Emilia is presented 
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as hard working - “I have to say Emilia works extremely hard and tackles challenges head on and 
wants to stretch herself”. Equally successful, Kine is portrayed as lacking in confidence: “Kine can 
feel a bit of performance pressure … when she really trusts herself and comes up with something 
it’s really great”. 

Although Sarah is also a consistent high performer, she is not mentioned alongside the “smart 
boys”. In 8th grade Miss A describes her as being in the group of students who are in the middle, 
both in terms of achievement and how they work in mathematics. She comments that some of the 
girls, including Sarah, are doing better in other subjects: “I think I can say that Sophie, Maya, Kine, 
Josephine and Sarah are all typically better in social science and religion”. At the end of 9th grade, 
Sarah is still not mentioned among the best students, even though we know that her achievement 
has improved. Instead, repeating her emphasis on hard working girls, Miss A places her among a 
group of girls she labels “the sporty hard-working girls”, characterized as “just chatting girls, 
laughing […] they spend a lot of time together in their spare time. Also, they are sporty girls”. 

Sarah, whose results in mathematics are improving all the time, is barely mentioned in Miss A’s 
storying of Class A, even though achievement is clearly important in this classroom culture. It 
seems that good marks are not enough for Sarah to be recognized as a good student in mathematics, 
since she is positioned outside of the highly gendered performance of “smartness”.  

Discussion: the twin dynamics of invisibility and failure to see  
In this paper we have focused on just one girl, who interested us because of her critical parody of 
her teacher’s surprise at how well she had performed on a test. Our analysis is not intended as a 
basis for generalization about girls’ experiences – other girls in Class A have different experiences. 
However, Holland et al.’s (1998) framework emphasizes that Sarah’s positionality cannot be 
understood in isolation from her context; it takes place within the dynamics of the classroom as a 
figured world, hence our research question: “What are the dynamics of gender (in)visibility in a 
Norwegian classroom?”. We have seen how Miss A fails to see her achievement as worthy of the 
label “good at mathematics”, but Sarah herself doesn't resist her positioning as a mediocre student 
beyond a private parodying of the teacher and the other students, even though she is aware and 
resents the fact that her competence in mathematics is not recognized. For us, Sarah’s positionality 
is a double bind: she is caught between others’ failure to see - students and teacher are blinded by 
the “smart boys” performance of smartness - and her invisibility in that she is unable or unwilling to 
perform smartness. 

Holland et al’s (1998) theory provides tools which enable us to understand the dynamics behind this 
double bind. We argue that Sarah’s positionality and the fact that her mathematical competence 
goes unrecognized in Class A are two sides of the same coin. Miss A and Sarah both act within the 
norms and values of the figured world of Class A, caught by the same dynamics of power and 
privilege in connection to the smart boys’ performance of smartness. It is as though this 
performance is a significant marker of being good at mathematics which goes beyond results. As 
Holland et al. (1998) point out, actors in a figured world get to know “their” position in relation to 
others as they participate in its everyday practices; they learn to know what they are “allowed” to 
say or do, what is expected of them, and what is valued. These relations take place within the 
mundanity of the classroom, its rules, norms and habitual acts. In Class A, the performance of 
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smartness is inextricably linked to gender – we see that not just from Sarah’s account but from the 
other students and Miss A herself. Its habitual nature means that exclusion is hidden in plain sight, 
since Sarah can only make herself visible by her good results, and these go unnoticed, remarked on 
only with surprise as though this was an unusual event. Without access to those acts which signify 
smartness - interest, discussion, helping the teacher, Sarah is invisible, and described at best as 
“hard working”, echoing Jaremus et al.’s (2020) finding that female students are excluded from the 
position of “good at mathematics”. We argue that in fact she has no means for countering these 
norms in Class A - Foyn et al. (2018) drew attention to how difficult and even risky it can be to 
break out of gender dynamics, or challenge gendered norms in the classrooms, since “discourse 
border guards” ensure that gender lines are not permeable.  

As Holland et al. (1998) emphasize, the mundanity of everyday lived identities makes them difficult 
to challenge. It might be argued that Sarah could change her behavior in order to publicly resist her 
positionality, but Sarah’s double bind means that this isn’t easy. This is not to say that change is 
impossible, but making Sarah’s situation visible goes beyond Sarah’s and Miss A’s acts alone - it 
requires a collective recognition and action. The implications of Sarah’s story in the figured world 
of Class A are that gender dynamics in mathematics classrooms need to be discussed in classrooms, 
school departments, and teacher education; arguably this is particularly so in a country such as 
Norway where gender inequity is assumed to be in the past, and mundane classroom practices go 
questioned.  
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In this article we explore the possibility of implementing local mathematical practices in the current 
mathematics curriculum of the studied area. This research relies on two theoretical frameworks 
that focus on the value of culture in relation to the study of science and scientific practices in 
relation to the learning process. The analysis is based on an empirical long-term ethnographical 
investigation in the Northern Ambrymese society (Ambrym Island, Vanuatu, South Pacific). The 
local activities investigated in this empirical research can be described as string figure-making. By 
improving our understanding of the implementation of local mathematical practices in the current 
mathematics curriculum, we will show the added value and provide a guideline for best practices. 

Keywords: Ethnography, local mathematics curriculum, practical turn, social turn, learning theory. 

Introduction 
Research on local mathematical practices and the implementation of these practices in the main 
school mathematics curriculum relies on two theoretical traditions. The first of which is the 
practical turn within the philosophy of sciences; the second, the social turn in learning theory. Both 
traditions share a similar concern for the fusion of both scientific practices and learning processes in 
a given sociocultural environment. In the theoretical section, we shall conduct a brief overview of 
the way in which both traditions evolved over the past decades and how the research we are 
reporting on is a continuation of these traditions. In the empirical part, we report on the 
ethnographical investigations of the local mathematical practice of “string figure-making” and its 
historical, cultural, social and political connections to argue for the value of implementing these 
practices in the current school curriculum of mathematics.  

A practical turn in philosophy of science 
The relation between mathematics and culture was one of the first investigations (Powell & 
Frankenstein, 1997) undertaken, mainly in non-western culture. The topic also became of interest in 
the study of western mathematical practices (Larvor, 2016a, 2016b) with a large research 
community (e.g. Association of the Philosophy of Mathematical Practice (APMP) founded in 
2010). The practical turn was further developed in situating knowledge related to the body. 
Haraway (1991) speaks in this context about situated knowledge as knowledge that is constructed 
from a particular and specific embodiment. It is based on these partial perspectives that an 
“objective” vision can be constructed. Specifically related to mathematics, Lakoff and Núñez 
(2000) set the paradigm of the embodied mind holding that mathematics results from the human 
cognitive apparatus. It was further investigated by de Freitas & Sinclair (2014) by emphasizing a 
non-reductionist role of the body in constructing knowledge, as we elaborated on in François 
(2017). The body is part of a mathematical practice that produces mathematical knowledge as 
specific kinds of “transmaterial assemblages”. This way of building knowledge, as a co-
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construction based on an embodied practice can have an important implication when it comes to the 
teaching of mathematics. 

A social turn in learning theory 
The second aspect of our article focuses on the implementation of local mathematical practices in 
the school mathematics curriculum. The theoretical background of this research topic relies on the 
social turn within learning theory and the emphasis on the fusion of the learning process into a 
sociocultural environment. Social sciences have developed during the last decades three main 
learning theories, each of them with a specific focus on the learning process (François & Pinxten, 
2017). Whereas (i) behaviorism focuses on the input-output mechanisms ignoring the black box in 
between (ii) genetic psychology mainly focuses on the black box and what is going on in the 
student’s mind. The (iii) sociocultural theory considers the environment in which the learning 
process is taking place. The social turn within the learning theory became of interest in the field of 
mathematics education (Bishop, 1985) mostly as a reaction to the huge dropping out of pupils from 
a specific socio-cultural background. Even in countries with high scores in international 
comparative research (which doesn’t imply our support of these tests) one can easily conclude that 
migration and language backgrounds are an important determinant of failure in mathematics 
(OECD, 2014). Sociocultural theory elaborates on the learning theory of the Russian Lew Vygotsky 
(1978) and his concept of a zone of proximal learning (ZPL). The concept can be understood as the 
cognitive field of the pupil, which can be spotted at the fringe of the background knowledge and the 
out-of-school worldview. It is the zone of learning where the pupil will be able to connect 
insightfully to new knowledge because of the intrinsic relation between background knowledge and 
new inputs. Background and out-of-school knowledge are integrated in formal learning as a 
stepping-stone for acquiring new knowledge, new meanings and new mental frames. The concept of 
ZPL was an inspiration for later developments of socio-cultural learning theory and such central 
concepts as the pupils’ background and foreground (Vithal & Skovsmose, 1997; Skovsmose, 2005). 
Lave & Wenger (1993) elaborated on the ZPL concept and developed a more specific notion of 
legitimated peripheral participation (LPP). They emphasize that the learning process is always a 
situated learning that considers the student holistically. The student is an agent who is active within 
a specific world context and all these aspects are mutually constitutive for the learning process. 
Learning is not perceived as the reception of factual knowledge or robust information. It is a social 
activity that takes place within a community, at first legitimately peripheral. Later, it increases 
gradually in engagement and complexity. Participation in social practices is the fundamental form 
of learning. It implies more than connecting the immediate context to the instruction. It is even 
more important “to consider how shared cultural systems of meaning and political-economic 
structuring are interrelated, in general and that they help to constitute meaning within communities 
of practice.” (Lave & Wenger, 1993, p. 54). This concept of LPP will be an important tool to 
analyze our data on informal learning practices in the local communities and to understand the 
importance of implementing them into the formal schooling and learning environment. François & 
Pinxten (2017) state that we have to consider out-of-school knowledge and skills the child 
possesses and uses when first coming into contact with mathematics education. We have to 
investigate the background knowledge that children actually bring to school and how we can 
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introduce their learning context in the teaching of mathematics at school. Blindness and ignorance 
concerning the local culture, local practices and knowledge may well explain the gap between 
success and failure, in a formal mathematics classroom. In the following section we will examine 
the possibilities of implementing local practices within the school curriculum.  

String figure making as a local mathematical practice 
For over a century, string figure-making practices have been observed by anthropologists in many 
regions of the world, especially within “oral tradition” societies (Paterson, 1949; Maude, 1978; 
Braunstein, 1992). Some mathematicians have also regarded string figure making as a worthy topic 
within their discipline. At the beginning of the 20th century, Cambridge mathematician W. W. 
Rouse Ball (1850-1925) devoted a chapter to string figures in his popular book on mathematical 
recreations (1911) which is—to our knowledge—the first attempt made by a mathematician to 
demonstrate the connection between mathematics and string figure-making (Vandendriessche, 
2014a). Thereafter, a few mathematicians have developed mathematical and modeling tools in order 
to formalize this practice (Amir-Moez, 1965; Storer, 1988). 
In the Vanuatu Archipelago (southwestern Pacific), string figure making was first documented in 
the 1920s by anthropologist L. A. Dickey (1928). Called the New Hebrides by the British navigator 
James Cook in the 1770s, this archipelago—consisting in a chain of 80 inhabited islands, located 
1,750 kilometers east of northern Australia—was managed through a Colonial French & English 
Condominium from 1906, until its independence in 1980 and the foundation of the Republic of 
Vanuatu. Consequently, this country has been engaged in a (long and difficult) process of 
decolonization, and particularly in the field of Education. For about a decade, the Republic of 
Vanuatu has undertaken a reform of the National Curriculum (inherited from the colonial period), 
with the goal of taking more into account the various local cultures i.e. the various vernacular 
languages as well as traditional knowledge and practices.  
Conducted in Northern Ambrym (Central Vanuatu), since 2006, Vandendriessche’s 
ethnomathematical project is devoted to the study of different practices with a mathematical 
character such as the making of string figures. It is based on a long-term ethnography (around the 
village of Fona) and carried out in collaboration with both local people (practitioners and local 
educators in particular), and actors of the “Vanuatu Cultural Centre” (national institution working 
for the preservation and the promotion of different aspects of Vanuatu’s culture). In François, 
Fantinato, Vandendriessche & Mafra (in press) we investigated the specific topic of “The researcher 
as the ‘other’” as well as the ethical issues raised while conducting ethnomathematical field 
research, and collaborating with local people and institutions. We will therefore not elaborate 
further on these fundamental issues here. 
In Vanuatu, making a string figure requires creating a loop by knotting the ends of an 
approximately two-meter-long string—which is made with a thin slice of a pandanus tree leaf. The 
activity then consists in applying a succession of operations to the string, using mostly the fingers, 
and sometimes the wrists, mouth, or feet. This succession of operations, which is generally 
performed by an individual and sometimes by two individuals working together, is intended to 
generate a final figure, whose name refers to a particular being or thing. Our ongoing 
ethnomathematical project aims at collecting various types of data: 1) the procedures leading to the 
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various figures (using an original symbolic writing system for noting/recording them) 2) the 
vernacular (technical) terminology linked with the studied practices 3) the oral texts and/or 
discourses which are sometimes associated with the latter. At a second stage, the collected data are 
analyzed—and put in perspective with other ethnographical sources—to comparatively analyze the 
mathematical dimension of the latter procedural activity in their relationships with other forms of 
knowledge (Vandendriessche, 2014b). Indeed, a string figure can be seen as the result of a 
“procedure” (or “algorithm”) consisting of a succession of “elementary operations”. Most of these 
operations can be defined as “geometric” operations whose purpose is to modify one 
configuration/state of the string to transform it into another (see database in progress 
http://emergences.huma-num.fr/items/show/13, Vandendriessche, 2015).  

              

Figure 1: Elementary operations. Left: “picking up” a string. Right: “twisting” a loop 

The activity of creating new string figure procedures can be regarded as mathematical at different 
levels. Their production very likely required an intellectual task of selecting the elementary 
operations and organizing them in procedures and “sub-procedures” (i.e. ordered sets of elementary 
operations either iterated within a given procedure or repeated identically within several different 
string figure algorithms of the same corpus). Based on an algorithmic practice, the production of 
string figure algorithms is also of a “geometrical” and “topological” order, insofar as it is based on 
investigations into complex spatial configurations, aiming at displaying either a 2-dimensional or a 
3-dimensional figure. Several recurrent phenomena confirm this point: the concept of “iteration” 
(iteration of a pattern or a sub-procedure) and the concept of transformation (of the final figure 
“geometry” i.e. combination of motifs) are ubiquitous in this practice. Finally, some Ambrymese 
string figures suggest that practitioners have elaborated some procedures by altering one or several 
operations involved in the making of another string figure. 

Local mathematical practice as knowledge transmission 
In Vanuatu, there are no less than 120 different vernacular languages, corresponding to different 
cultural areas in the archipelago. A large number of string figures can be found in various linguistic 
areas, whereas a few string figures seem to be more locally practiced. However, there are 
significant linguistic variations (from one area to another) related to string figure making, in the 
names given to the activity as well as to the final figures, and in the use of technical expressions. In 
Northern Ambrymese society, string figure making is locally termed using the vernacular 
expression “tu en awa” (literally “to write with a string”), suggesting that this activity is perceived 
in this society as an encoding of information. Some other vernacular expressions are used by 
practitioners to refer to the (basic) movements involved in string figure making. In particular, the 
(elementary) operations implemented to the string are designated through action verbs; the subjects 
being the finger names (for instance, pokolam hu pokokiki, the thumb picks up the little finger i.e. 
implicitly a string running from the little finger). A few (short) “sub-procedures” (ordered 
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sequences of a small number of elementary operations) are also named. These technical expressions 
are used in instances of transmission from one person to another, although not consistently. The “tu 
en awa” procedures are indeed taught or shown most often without any technical comments. 
However, the existence of these expressions is an indicator of the perception by the actors of 
orderly sequences of operations, suggesting a local perception of the notion of “elementary 
operations” and “sub-procedures” revealed by ethnomathematical analysis. Furthermore, vernacular 
terms explicitly express the property of “symmetry” (shared by a number of these figures) and the 
“iteration” of a pattern or a sub-procedure. It seems that string figure making is mostly transmitted 
to children by their mother and/or grandmother. The long “sub-procedures” (made with more than 
three elementary operations) are nameless for the Ambrymese practitioners. However, they 
spontaneously relate one string figure procedure with another when both “tu en awa” procedures 
share an “ordered set of basic movements”. The practitioners do so by pointing out that from a 
given stage of a string figure procedure, “You do it in the same manner as you do it in another 
procedure”. While working with Ambrymese children, we often noticed their ability in making such 
links between string figure procedures. This suggests that “sub-procedures” play—for these 
practitioners—a major role in the process of memorizing the making of string figures. In Ambrym 
(and more generally in Vanuatu, and even in Melanesia), the practice of string figure making is—or 
was—meant to record, memorize and/or express a particular knowledge of mythology, cosmology, 
geography, social rules, and ritual prescriptions (Vandendriessche, 2014b, 2015). For instance, the 
Ambrymese string figure named bulbul algon (literally “canoe lizard”) is related to the story of 
Yaulon, one this society’s mythical heroes. Bulbul designates this hero’s canoe, while algon (lizard) 
recalls the symbol of one of the seven grades of the chieftainship system, whose conception is 
attributed to this local mythological hero. In this society, string figures are preferably performed 
during the yam harvest (from February to July), while their usage is prohibited outside this period, 
the making of such figures being perceived as having a negative impact on the growth of the plant’s 
stem winding around the stake: it would favor the entanglement of the stem, slowing down the 
plant’s growth. The practice of string figure-making can thus be analyzed as a method for the 
organization and the transmission of knowledge (mythological, cosmological, etc.), involving the 
use of (ethno-) mathematical concepts. When learning how to make string figures, Ambrymese 
children become acquainted with a technical activity (with a geometric and algorithmic character), 
requiring dexterity and concentration, and, at the same time, they develop their knowledge of their 
cultural environment. 

A pedagogical application 
Based on social learning theory and more specifically on the concepts of ZPL as developed by 
Vygotsky (1978) and later on elaborated on by Lave & Wenger (1993) as outlined in the theoretical 
sections, we can now analyze the added value of implementing local mathematical practices in the 
school curriculum. From social learning theory, we have evidence that pertains to the pupil’s 
background information (Vithal & Skovsmose, 1997; Skovsmose, 2005), which is essential for the 
learning process. Pupils attending classes need to be apprehended in their entirety, as agents who 
develop extracurricular skills, and who live and interact in a complex environment (Lave & 
Wenger, 1993), where they share common cultural systems and social rules. Most of which are 
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handed down through informal learning systems by the community. The Vanuatu National 
Curriculum (VNCS, 2010) is a good example of what we mean with the integration of local 
practices into the formal curriculum. It recognizes the value of traditional knowledge and 
practices—such as string figure-making, mat making, and sand drawing in particular—for calling 
upon the latter practices in formal education. Teachers should begin with the children’s background 
before introducing unfamiliar knowledge, skills and attitudes. The VNCS (2010, p. 52) claims that 
“Teachers need to breathe life into the curriculum and demonstrate its relevance to children and 
students by using local examples whenever possible”. It is implicitly recognized that some of these 
traditional practices are sometimes in decline and prompt the members of each community to 
“assist the children in learning about these art forms and make simple mats and other objects”. 
Therefore, the Vanuatu Cultural Centre has given its (mandatory) assent for our project in 
ethnomathematics providing it leads to pedagogical applications. Beyond this institutional 
incentive, another motivation for undertaking such educational research is that Northern 
Ambrymese people generally welcome with interest the idea of using their traditional practices in 
the curriculum. Whereas the purpose of ethnomathematical (theoretical) research is clearly not 
perceived as vital as we think it is, indeed, its educational valorization makes sense for these people 
because they consider it as a way of preserving their local culture. Aware of these practices’ decline 
in their community and asserting that young people are no longer interested in traditional 
knowledge, they consider this valorization as a way of preserving their local culture. In this context, 
pedagogical materials will be elaborated in an attempt to help local teachers in experimenting with 
the use of culturally related mathematical string figure-making practices “as such”, in and of 
themselves. A pedagogical mathematical sequence (say in Northern Ambrymese 6th year 
classrooms) related to string figure-making could start by the collection of the string figures (and 
their vernacular names) that the pupils do remember. They should be prompted to use their local 
vernacular language for expressing the various operations involved in the making of these figures, 
as well as the symmetries and the iteration of patterns. The set of string figures thus collected could 
be then completed with other “tu en awa” procedures known to the elders of the community. 
Previous studies on string figures’ value in mathematics education suggest that practicing string 
figure making may develop vital skills necessary for practicing mathematics—such as 
concentration, self-evaluation, spatial relation consciousness, or conducting step by step ordered 
sequences of instructions (Moore 1988; Murphy 1998). Beyond this analogy between string figure-
making and mathematical practice, the pedagogical sequence might continue through an in-depth 
analysis of a set of procedures, bringing to light the (elementary) operations involved, their impact 
on the string configurations and their organization in sub-procedures. The teacher might induce 
pupils to reflect on how a string figure has sometimes been transformed into another, and how the 
iteration of an ordered set of operations may allow the iteration of a given motif. Ambrymese string 
figures sometimes differ on one—and only one—elementary operation. This remarkable property 
implies a methodology to create new string figures (Ball, 1911; Murphy, 1998) by altering a few 
operations within some “tu en awa” procedures, the pupils would become creators of new string 
figures themselves. This pedagogical (ethno-) mathematical sequence on string figure-making will 
not be isolated from the other forms of local knowledge imbedded within this activity. One way to 
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do so, would be to include this sequence in an interdisciplinary pedagogical project, bringing into 
the classroom the cultural and cognitive complexity of this practice. 

Concluding remark 
In this concluding remark, we will emphasis the added value and we will offer a guideline to 
implement local practices in the school curriculum. As we could see from the empirical example, 
local mathematical practices are embedded in the social and cultural environment. They take part in 
the communities’ social networks, their histories and their languages. They enmeshed with their 
natural environment and have a deep connection with nature, with a circular timeline, and with 
seasons, e.g. string figures are performed during the yam harvest (February–July). The idea of 
sustainability is implicit. Local practices are also part of the social interactions, social relations and 
of the informal learning processes in these communities, outside of school. String figure making is 
practiced by children of the Ambrymese community to play without any deeper meaning given to 
this practice. Connections to the broader cultural tradition are analyzed in the case of string figure 
making, e.g. knowledge transfer, storytelling–related to mythical heroes of that society, and 
encoding information. Out-of-school practices can be of interest in the formal mathematics 
curriculum. String figure making, with an emphasis on the mathematical analyses of the procedures 
(e.g. symmetry, iteration) shows how a local practice can be analyzed as a method for the 
organization and the transmission of knowledge. Implementing these practices in mathematics and 
school curriculum acquaint pupils with a mathematical (e.g. geometric, algorithmic character) 
activity. At the same time, pupils develop knowledge of their own cultural environment and they 
learn to value local traditional practices and knowledge as a means of preserving their culture. This 
way we create a continuum between informal and formal learning which relates to the socio-
cultural learning theory, the concept of a zone of proximal learning (ZPL) and the concept of 
legitimated peripheral participation (LPP). The local practice we studied is performed in a situated 
context, it is connected to the daily life experiences and related to broader cultural traditions and 
transmission of knowledge. The guideline we take from this analysis is that local practices can 
serve as a tool to connect to pupils. When implemented in a formal school curriculum, they remain 
connected to the pupils’ background and their out-of-school worldview. Pupils will be able to 
connect insightfully to new (mathematical) knowledge because of the intrinsic relation between 
local practices and the mathematical procedures that underlie the local practices. Even new 
pedagogical materials shall never be isolated from the other forms of local knowledge they are 
imbedded in. This clears a path for interdisciplinary activities and the integration of mathematical 
knowledge in a lively and meaningful context. A situated learning process considers the student as a 
whole person as is the case in the out-of-school transmission of the local practices we studied. The 
challenge for further research will be the application of this study to a variety of cultural 
environments and how the implementation of local practices in formal (mathematics) curricula 
should work. 
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Different systems (e.g. concurrent and consecutive), knowledge (e.g. CK, PCK, SRCK, PK) and 
interventions (e.g. bridging courses) in teacher education are widely discussed. Facing a loss of 
interest in mathematics and often claimed irrelevance of subject specific content, we investigate 
preservice teachers’ participation in university mathematics from an identity perspective, taking 
their social context into account. Three group interviews of 14 preservice teachers in a mixed 
concurrent setting (one course specific to preservice teachers, one general mathematics course for 
major students as well) were analyzed, showing that they experienced a position of being less 
valued in the mixed course. We identify different ways of students’ self-authoring, which partly 
explain their disaffection and consequent learning behavior. Consequences for institutional settings 
are discussed.  

Keywords: Preservice teachers’ education, university mathematics, identity, participation.  

Educating preservice mathematics teachers 
Although there are many different school and training systems internationally, the discourse about 
content or pedagogical knowledge, pedagogic content knowledge or school related content 
knowledge (Dreher et al., 2018), scientifically or practically oriented teacher training is evident in 
almost every context – especially for preservice higher secondary teachers. While there are 
additional or dual training programs in some countries, the main form of teacher education in most 
countries remains the preservice education at universities (Durand-Guerrier et al., 2010). These 
trainings can be organized differently, mainly in an either concurrent or consecutive way. The 
concurrent model of initial teacher training involves a study program that combines general, 
theoretical, and practical training from the outset. Students gain a teaching specific degree, mainly 
with two different subjects. This is the case for example in Austria, Poland, Sweden, or Turkey. In 
the consecutive model, preservice teachers first obtain a general qualification (e.g. a university 
degree in mathematics) followed by further studies to gain an additional qualification for teaching. 
They often (but not always) study one single subject. Examples for consecutive systems are France, 
Georgia, Italy, Malaysia, or Singapore (see Tatto et al., 2012 for details). 

Largely independent from the concrete organization, the often-challenging transition from school to 
university mathematics and the overall faced double discontinuity (Klein, 1932) reveal further 
challenges for preservice mathematics teachers. It seems, that many students worldwide question 
the relevance of their studies, being dissatisfied and feeling treated as second-class students which 
are no “real mathematicians” (Tatto et al., 2012; Bauer & Hefendehl-Hebeker, 2019).  

In this paper, we focus on the mainly concurrent system for preservice higher secondary teachers in 
Germany with its rather mixed setting: In contrast to the consecutive system, preservice teachers 
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enroll in specific teacher training programs at the beginning of their studies and have to choose two 
subjects. However, they usually attend some subject specific courses together with major students 
of the respective subject – sometimes also subject-specific courses designed specifically for 
preservice teachers. Additionally they have, courses on subject-specific pedagogical content 
knowledge as well as general teacher training courses on pedagogical content knowledge together 
with preservice teachers of other subjects. Hence, preservice mathematics teachers share part of 
their courses with mathematics major students.  

Differences in cognitive prerequisites between mathematics majors and preservice teachers are 
rather small at the beginning of their studies (Bauer & Hefendehl-Hebeker, 2019). However, an 
overall disaffection and different participation, based on a perceived exclusion and lack of 
relevance, can be seen for some preservice teachers, after the first semester: they lose interest in 
university mathematics more than the major students do, describe themselves as being excluded 
from the mathematics community, especially in courses that are shared with mathematics major 
students (Ufer et al., 2017; Liebendörfer, 2014), they think about dropping out more often, report to 
both copy homework and use surface learning strategies more often. They report to be very 
disaffected with their study content, criticize university mathematics as being irrelevant for their 
future profession, and demand more practice-related content (Gildehaus & Liebendörfer, 2021 with 
further references). 

To better cater to preservice teachers’ demand for more practically relevant content, many 
universities adapt or supplement their teaching, e.g. with specific tasks connecting university 
mathematics with school mathematics. However, the main critique often sustains, right after 
specific tasks are finished (Bauer & Hefendehl-Hebeker, 2019). Making the relations to school 
content more visible may raise students’ utility value but not their interest or personal relevance 
(Rach, 2020).  

To better understand preservice teachers’ disaffection with and perceived exclusion from 
mathematics, we suppose to broaden the perspective by including the social context: Preservice 
teachers need to negotiate and integrate their own competing interests and self-images between their 
subjects and pedagogy facing competing subject cultures and corresponding attributions. This may 
explain specific values and motivation that could explain different participation, as well as an 
overall rejection of university mathematics content (Gildehaus & Liebendörfer, 2021). We therefore 
take identity as a theoretical perspective to examine preservice teachers more closely within the 
social context of university mathematics (Graven & Heyd-Metzuyanim, 2021). Investigating their 
sometimes-perceived exclusion from university mathematics in line with different participation, we 
focus students’ positioning and authoring.  

Identity in figured worlds of university mathematics 
“Identity is a concept that figuratively combines the intimate or personal world with the collective 
space of cultural forms and social relations” (Holland et al. 1998, p. 5). Hence, identity covers 
specific career aspirations and interests of preservice teachers as well as the social context of 
university mathematics and the exclusion mentioned above.  
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According to Holland et al. (1998), identity is mainly produced and developed in figured worlds 
which are “socially and culturally constructed realms of interpretation in which particular characters 
and actors are recognized, significance is assigned to certain acts, and particular outcomes are 
valued over others” (p. 52). University mathematics as a figured world possibly includes major 
students, preservice teachers, professors, and tutors as relevant actors, where specific outcomes (e.g. 
knowledge, solutions of tasks) would be valued.  

The transition from school to university mathematics can be seen as a phase of identity 
development, a situation where a new figured world is entered and orientation of specific actors, 
roles, positions, and practices are sought. Students may search for “new guidelines” (Hatt, 2007) 
within this new world of university mathematics. Certain roles within this figured world help to 
define who one is. The so called “positional identity is a person’s apprehension of her social 
position in a lived world: that is, depending on the others present, of her greater or lesser access to 
spaces, activities, genres, and, through genres, authoritative voices, or any voice at all” (Holland et 
al., 1998, p. 151). Along with day- to-day social interactions, one claims position and positions 
others by social interaction and on the ground relations of power (Hatt, 2007). In terms of the 
experienced exclusion that some preservice teachers described and the feeling of being perceived as 
“less valued”, it may thus be a question of their position and positioning within the figured 
university mathematics world.  

Based on Bakhtin’s thoughts on dialogism, the concept of “authoring” refers to how individuals 
construct their own identities (Urrieta, 2007). Since one’s positioning within a world may also 
determine one’s space of answering and negotiating one’s own identity, Holland et al. (1998) 
introduce the “space of authoring”. Hereby, authorship is not a choice, because within social 
situations every action or inaction would be a reaction and response to the situation (Urrieta, 2007). 
Thus, the interactions between characters and actors (e.g. preservice teachers, major students, 
professors, and tutors) of the figured world, might indicate insights of the individual’s space of 
authoring and negotiating of their perceived position. E.g., the described position of preservice 
teachers feeling “less valued” may be integrated or negotiated within students self-authoring 
process.   

Research questions 

Facing the disaffection of preservice teachers in mathematics from an identity perspective, we aim 
to examine their position and authoring within the social context of a mixed concurrent model: 

RQ1: How do preservice mathematics teachers describe and experience their perceived position and 
positional identity in a mixed concurrent teacher training system?  

RQ2: How do preservice mathematics teachers author their own spaces and voices in this situation?  

Method 
Our study is located at a German university where in their first semester, preservice higher 
mathematics students attend one course (linear algebra, LA) together with mathematics majors and 
one course specific for preservice teachers (introduction to mathematical thinking and working, IC). 
This latter course is designed as a bridging course, which aims to facilitate the transition from high 
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school mathematics to abstract, formal mathematics at university. Thus, its overall content 
requirements are lower than the ones in the LA.  

Three semi-structured group interviews with four to five preservice mathematics teachers each 
(n=14; 8 female, 18 to 23 years old) were conducted in winter term 2019/20 at the University of 
Paderborn two months after the first semester had started. The interviews took place in person, after 
students answered an open call voluntarily. The call addressed groups of students already e.g. they 
had been working together on homework before. This was chosen to comfort them to freely discuss 
their perceived position and limit the influence and power of the interviewer. It also gave the chance 
to directly contrast different authoring between the students. They were guaranteed anonymity and 
in no further contact or relation with the interviewer. The participants represented diverse second 
subjects (e.g. sciences, foreign languages, sports or social science).  

The interviews focused on the students’ experiences and their identity. The guide included 
questions like: “To what extent do you identify yourself with university life here? How much do 
you feel as mathematicians? How would you describe to your parents what mathematicians are and 
do?” Students were not explicitly asked whether they perceived differences between the two 
courses. Only during data analysis, this occurred to be a dominant theme and was therefore 
included.  

For data analysis the interviews were coded deductively and inductively (Saldana, 2016), firstly 
identifying passages along students perceived positions (e.g. their scope of action, their ways of 
participation), as well as their authoring (e.g. their reasoning narrating themselves). The different 
themes that emerged within these categories (e.g. writing to the board, asking questions) were then 
combined into broader categories (e.g. being valued, being competent, and access to spaces) and 
later analyzed with the specific focus on the different courses. Keeping and gaining different 
perspectives in the interpretation, themes were frequently discussed with researchers from different 
backgrounds (e.g. mathematicians and preservice teachers, males and females). In the following, all 
presented quotes were translated from German by the first author.  

Results 
RQ1: In line with the separate study programs, the perceived position of preservice teachers was 
described as “different” and divided from the mathematics major students. This difference was 
present in all spaces, e.g. during the mixed courses, but also during general learning at university:  

Student 3: So, computer scientists and mathematicians always sit together and preservice 
teachers always sit together somehow. And I think that it just doesn’t come 
together at all. 

Consistent with their further career aspirations, large differences were reported concerning the value 
of explaining and teaching mathematics to other people:  

Student 4: So, math is fun to me, as a teacher. It’s not that I’m happy in my math world like 
a mathematician, but I would like to teach it to someone. 

Within the two courses, they described differences how these attributes were valued in the different 
courses: 
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Student 3: In IC, I think, there are only people who are really teachers and you can say that 

they (…) really try to explain things to you (…). In LA there is just less, yes, 
somehow motivation to explain. 

In line with this, they felt relatively respected and accepted in their position in the IC, even though 
they were mainly passive receivers of knowledge and realized that the content was “far from what 
is done in school already”:  

Student 3: Well, I think it works to a certain extent in IC. So, you can still keep up well.  
Student 2: IC gives a good feeling, especially in contrast to LA. 

Within their LA course, however, and in general in comparison with the major students, they 
described to feel less valued and as second-class students. Mainly they referred to other students:  

Student 1: I think it’s always a pity when people come and say, oh yeah, you’re only doing a 
teaching degree. 

Similarly, they referred to the lecturer of the LA course: 
Student 6: But you always have the feeling that he doesn’t really think much of teachers 

either. // He doesn’t say that precisely, but always  
Student 4: So, you always notice that you’re talked down to.  
Student 6: Like: “Yes, we do that so that the future teachers sitting here can teach their 

students that, so they can then solve the math problems of tomorrow.” And then 
you think to yourself: “are we too stupid for that or what?”  

Preservice teachers’ access to activities and spaces was also limited in comparison to mathematics 
majors, who were remarkably more present in terms of what “counted” in this figured world, hence 
in relation to the specific power of knowledge (even though they were fewer people): They were for 
example using the whiteboards in the university, visibly discussing mathematical problems. They 
were described as “asking questions in the lecture” and “making jokes with the professor”, while 
the interviewed students did not see such voice for them:  

Student 5: They [mathematics majors] are more on the professor’s level than on ours. 
Student 6: Well, they always get along really well with him, and he also makes jokes with 

them.  
Student 4: But we just don’t understand it.  

Their institutionally different and divided positioning became also clear, as they were not attending 
the second course for major students “Analysis I”: 

Student 3: And then he says yeah, you might know that from Analysis (…).  
Student 4: Then you sit there and think to yourself, well, I’m studying to be a teacher, I don’t 

have Analysis in parallel (…). How am I supposed to know that?  

Hence, some described feeling misplaced, since they felt not addressed or valued by the professor in 
the LA course:  

Student 5: I think it’s true that you sometimes have the feeling that you really notice that the 
lecture is tailored to mathematicians. So that he always addresses them, the 
mathematicians rather, and you as a preservice teacher are just like (…) okay, 
somehow I’m a bit out of place here.  

RQ2: The most dominant topic in students’ ways of authoring was to find a voice at all, since they 
all felt more or less overwhelmed in their current situations. However, we found remarkable 
differences between some students:  
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One way of authoring was that of quickly accepting the perceived position of being less valued and 
use this image of “just a teacher” to legitimize less participation and lower performance in the LA 
course, including the acceptance of being perceived as less competent in mathematics:  

Student 1: I would never call myself a mathematician, for that I also see more and more in 
the homework that it’s just not like that (…) I’m just a freshly started teacher 
student. 

Student 1: So, my entire first half of LA [referring to necessary point in exercises] is not 
based on my own knowledge, but that is just sometimes a thing. 

This was underlined with the idea, that the LA course would not be very relevant, and one would 
somehow do the same in the IC course anyways. Hence, the IC course was seen as very relevant 
and useful and perceived competence was taken out of this: 

Student 1: I now have at least one lecture where I can still follow (…) and once you have 
that in a somewhat weakened form, it really doesn’t hurt, I think.  

Other students, in contrast, struggled with their perceived position and tried to renegotiate it, mainly 
referring to their self-image of “always been good in mathematics”. These students tried to find a 
voice and participate, but realized that their actions were not valued:  

Student 6: When they [tutors in the LA course] roll their eyes when you ask something.  
Student 5: There you already don’t dare to ask a question. 

What followed this failed participation was a rejection of the mathematical content of the LA 
course, as being irrelevant and major students and tutors of this course being unsocial (see 
Gildehaus & Liebendörfer, 2021 for details). While those students participated successfully in the 
IC course, they used it to legitimize the irrelevance of the LA course. They authored themselves as 
mathematics teachers, who are just not competent in the LA course, because it did not suit their 
specific needs as preservice teachers.  

In addition to these two ways of authoring, there was one more way presented by a rather 
exceptional student: She agreed on being positioned as a (less valued) preservice teacher but tried to 
renegotiate her position to be recognized as full mathematics student as well. She valued both 
courses for their individual strengths and reported to participate successfully in both courses (e.g. 
she was asking questions in the tutorials for both courses and sometimes chatting with the tutors). 
Thus, this student was also exceptional in that she was mathematically able to participate in both 
courses. At the same time, she clearly distanced herself from the teaching profession:  

Student 2: A lot of people here are like, yes, teacher is my dream job, but I’m not like that. 
(…) I don’t know yet if I’ll eventually be a computer scientist instead of a teacher, 
I don’t know. Why can you only be one thing, // why can’t you be everything? 

Discussion  
Preservice mathematics teachers are often disaffected with their studies, question the relevance of 
the content, and aim for more practical relevance. Using an identity framework, we expanded the 
theoretical perspective from the individual to the social context of university mathematics. We 
analyzed group interviews of first-year preservice teachers in a mixed concurrent setting in 
Germany, where they attend one specific preservice teachers’ mathematics course and one 
mathematics course together with major students.  
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RQ1 investigated the perceived position of preservice teacher within the social space. Even though 
preservice teachers were the vast majority in the mixed course, they felt positioned as a 
marginalized minority: they described exclusion (insider jokes, mismatching addressing) and being 
less valued and perceived less competent by professors, tutors, and major students. RQ2 focused 
students’ different ways of self-authoring along this perceived position. One way of negotiation was 
to accept the position including lower performance and less participation in the LA course. Another 
way was to reject being less valued despite finding no voice in the LA course, followed by a 
rejection of the content and staff of this course. A third way was finding an exceptional position 
claiming to be both a preservice teacher and a mathematician.  

The first two presented ways of authoring eventually lead to accepting and integrating the perceived 
position of “just being a teacher” legitimating students’ minor engagement (e.g. copying homework, 
as Student 1 describes) with university mathematics contents, as they consider the contents as not 
relevant for them. Yet, students following the second way were clearly seeking participation in 
university mathematics. Their rejection and claimed irrelevance followed after not finding a voice.  

Despite initially small differences (Bauer & Hefendehl-Hebeker, 2019) preservice teachers are soon 
positioned as less competent than mathematics majors. Their performance might in fact be lower as 
they study a second subject and miss synergies with the Analysis course. However, within the 
mixed setting preservice teachers are so strongly positioned as less valued group that even 
exceptionally able students can hardly escape attribution to the teachers’ group only. The 
positioning as preservice teacher builds on very visible categories like attending the Analysis 
lecture and students’ physical positions in the LA lecture and thus becomes very dominant. Our 
research also confirms that almost only high-performing students may legitimately participate in the 
university mathematics discourse (Solomon, 2007). In concurrent teacher education with mixed 
settings, preservice teachers may then have severe trouble participating equally. This calls for a new 
pedagogy that allows legitimate participation like asking “stupid” questions without tutors rolling 
their eyes. 

Specific bridging courses seem double-edged: They help students participating in a discourse. 
However, the courses may also be used to legitimize the irrelevance of lectures like LA, since they 
are not “real teaching lectures” and thus not important for “just teacher students”. Thus, an 
intervention to accommodate students in their transition to university mathematics, can also lead to 
additional distancing. 

We conclude that if we want to address the dissatisfaction and alleged content-irrelevance reported 
by preservice teachers, we should not focus (only) on the usefulness of the content for the 
profession but find ways for students to participate mathematically on an equal level with any other 
group attending the same courses. Taking these results into the wider context of concurrent and 
consecutive teacher training systems, the consecutive model, not having an institutional distinction, 
could reduce the perceived differentiation between the major and teacher students. At the same 
time, individually (as well as systemically) different values and images of “becoming a teacher”, 
“valuing explaining” remain and might not prevent from similar positioning and related self-
authoring.  
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Limitations and further research implications 

The presented results mirror one specific institutional system, with the data highly pending on their 
specific social context. Future research should include different institutional systems in an 
international perspective to draw conclusions on preservice teachers’ identity formation if they have 
only shared courses with mathematics majors or only their own courses. Including the perspective 
of mathematics major students and teaching staff would also help depicting preservice teachers’ 
identity formation in the shared social space. It remains unclear how major students, that might 
struggle with the contents could find a voice to participate, as the “just teaching” image is obviously 
not available for them.  
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Preparing future teachers to be aware of students’ diversity and enabling them to teach 
responsively in order to create equal opportunities is considered an important part of teacher 
education. Realizing this for mathematics education is commonly associated to various approaches 
to promote equity. In this contribution, we focus on the innate views of pre-service teachers on 
diversity-aware teaching of mathematics to investigate their initial understanding. We present an 
explorative study that surveyed the views of 105 primary school pre-service teachers by means of a 
questionnaire. Those views were categorized by a qualitative content analysis. The results show 
that pre-service teachers most likely want to be and act aware of diversity when teaching, but rarely 
show sensitivity or knowledge of the particularities of school mathematics. 

Keywords: Pre-service teachers, diversity-aware teaching, mathematics teacher education. 

Introduction 
Notions like ‘diversity’ or ‘equity’ have gained in significance in the last twenty years in the realm 
of education as well as in other discourses and society in general. Despite conceptual and 
terminological vagueness around these terms, in education they are commonly linked to the idea of 
creating an education for all, i.e. overcoming socio-economic inequalities and providing all students 
with equal opportunities to participate and succeed in the education system. This idea results in 
certain demands for teacher education as well as research attempts to conquer the lack of theoretical 
and practical knowledge how to reach this goal. Responding to students’ diversity is associated with 
knowledge, awareness and acceptance of other cultures (including demographic factors such as 
race, gender and age) and results in responsive teaching to and through students’ personal and 
cultural strengths and experiences (Gay, 2010). Considering that within the German education 
system the term of ‘cultural awareness’ is highly associated with intercultural learning – which does 
not necessarily provide an intersectional perspective on all markers of difference in students – we 
used the terms ‘diversity awareness’ and ‘diversity-aware teaching’ to represent the associated 
meanings as stated above. 

Preparing future teachers for diverse classrooms is a complex issue which includes, among others, 
practical, theoretical, philosophical, ethical and affective aspects. In this paper we want to focus on 
the aspect of diversity-aware teaching, which (for us) combines being aware of differences among 
students, appreciating those differences as well as taking actions to promote equity. These aspects 
play into the perception what teaching a diverse classroom could look like and are tangent to 
reflecting on the relation between teaching and (structural) learning disadvantages. This process can 
be labelled as ‘doing pupil’ and is highly normative (Schönknecht & de Boer, 2008, p. 255). 

Apart from certain general characteristics of diversity awareness, every school subject has specific 
peculiarities that result in subject-related attributes of diversity-aware teaching. Since mathematics 
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education is widely known as a gatekeeper to successful participation in school and society, it is 
attributed with a significant role in creating equal opportunities (e.g., Stinson, 2004). We regard 
diversity-aware teaching as central to a pedagogy that seeks to overcome social inequalities and see 
special importance in investigating diversity-aware teaching in the realm of mathematics education. 
However, there is no consistent concept for diversity-aware teaching of mathematics and there is 
still little known about how to develop according dispositions. Considering these two aspects of 
unclarity we seek to investigate pre-service teachers’ innate views on diversity-aware teaching for 
mathematics. This, in turn, should give us information about how to improve mathematics teacher 
education in order to enable pre-service teachers to reflect on their own view on diversity-aware 
teaching before engaging with a certain approach and eventually develop responsive dispositions. 

In our study we surveyed the views of 105 primary school pre-service teachers by means of a 
questionnaire. We will first discuss the state of research on pre-service teachers’ views on diversity-
aware teaching of mathematics, before we present our empirical study on the pre-service teachers’ 
views.  

Literature review 
Terminological and conceptual aspects of diversity awareness and diversity-aware teaching of 
mathematics  

Although the concept diversity awareness is considered as central for teaching (Mason, 2008; 
Turner et al., 2012), it is rarely defined or described explicitly. Notions that are used as synonyms 
or underlie a similar understanding are diversity sensitivity or cultural awareness. Furthermore, 
there are parallels to the concept of culturally responsive teaching. Besides the fact that there is no 
common understanding or widely accepted definition, we find a terminological inconsistency 
whether diversity awareness is an attitude, a set of attitudes, a competence, or a belief. Despite the 
terminological inconsistency and conceptual ambiguity, there is consensus that diversity awareness 
is not a passive mindset of being tolerant. It moves beyond merely tolerating differences and is 
rather about appreciating, understanding and valuing personal differences. This includes perceiving 
differences as normal and reflecting on standards and norms (such as heterosexuality, Christian 
socialization or whiteness) as well as developing agency to promote equity. All of these aspects of 
diversity awareness feed into potential conceptualizations of diversity-aware teaching. In 
accordance with Eickhoff and Schmitt (2016) diversity-aware teaching requires 

- to recognize differences (and commonalities) between individuals, 
- to accord everybody equal rights, 
- to recognize unintentional attributions, stereotyping, stigmatization or discrimination and 

work against them, 
- to perceive existing inequalities, to name them and finally to reduce them. 

Due to its historical development and its special attributes, school mathematics inheres structures 
and practices that result in inequitable access to achievement and participation for certain groups of 
students. It is in particular non-native speakers, female students, students with disabilities, 
immigrant students, students of colour and socially or economically disadvantaged students who 
face difficulties in school mathematics. Diversity-aware teaching in the realm of mathematics 
education requires knowledge and reflectivity about discriminating structures that are specifically 
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inherent in school mathematics. This includes, among others, the fact that mathematics is primarily 
an abstract science, which is hierarchically organized and requires prior knowledge. Mathematical 
knowledge is often framed as intellectual with little integration of the body and of physical learning. 
Furthermore, high school mathematics is often characterized by problem solving activities which is 
difficult to reconcile with the desire of female students who tend to prefer clearly structured 
activities (Budde, 2009). 

Conceptual frameworks for mathematics education referring to, and thus being aware of students’ 
diversity in international literature are often presented as ‘equity in mathematics education’ 
(e.g., Civil, 2007; Gutiérrez, 2012; Turner et al., 2012), ‘culturally responsive mathematics 
education’ (e.g., Parker et al., 2017) or ‘teaching mathematics for social justice’ (e.g., Gutstein, 
2006). Implementing those concepts in teacher education as well as addressing the contradictions 
within researching social injustice and mathematics education (e.g., Aguirre et al., 2017; Bartell et 
al., 2017; Hauk et al., 2021) are vivid contributions. However, although significant contributions 
around equity in mathematics have been done (see, e.g., Atweh et al., 2011 for a compilation of 
international work on that topic), there is a need of more research on how to achieve equity and 
social justice in mathematics education. 

Studies on pre-service teachers’ views on diversity-aware teaching of mathematics  

In our study we investigate pre-service teachers’ innate views on diversity-aware teaching of 
mathematics in order to provide a reference for the development of mathematics teacher education. 
Following Felton-Koestler (2017), we focus on and use the term ‘view’ for a number of reasons. 
First, encouraging pre-service teachers in unpacking their views about teaching is a key component 
to developing reflective practitioners. Second, our data consists of written responses to a 
questionnaire, with a small number of selected questions. The answers might enable us to capture 
students’ views, but not something like beliefs, which are often framed as relatively stable and 
difficult to access (Felton-Koestler, 2017). For the same reason we did not focus on the interplay of 
pre-service teachers’ identity and their views, even though views on diversity as well as on 
diversity-aware teaching are always connected to the perception of oneself and personal schooling 
experience (e.g., White et al., 2020). We perceive ‘view’ as a manifold influenced mode of looking 
at or regarding something and/or as an opinion or judgment.  

To our knowledge there are no studies that focus on pre-service teachers’ innate understanding of, 
or views on diversity-aware teaching of mathematics. Bitterlich and Jung (2019) found that pre-
service teachers see major challenges in responding to students’ diversity, especially in 
mathematics, and that they are missing concrete positive experiences they could associate to this 
diversity (p. 620). These findings deliver further evidence that diversity-aware teaching of 
mathematics is seen as very difficult, which highlights pre-service teachers’ valid concerns and 
feelings of unpreparedness, but do not present how pre-service teachers view diversity-aware 
teaching of mathematics initially.  

In line with these findings, the need to prepare pre-service teachers for diverse classrooms is a focal 
point in related research, whereas most studies discuss pre-service teachers’ development of views 
or skills before and after attending a certain course. These pre-post-study designs are based on 

Proceedings of CERME12 1750



specific conceptualizations or approaches for equitable mathematics education, instead of 
determining pre-service teachers’ innate views.  

Connecting children’s mathematical thinking and their cultural funds of knowledge can be seen as 
one approach of diversity-aware teaching which works towards equitable mathematics teaching. 
Turner et al. (2012) focused on the development of pre-service teachers’ learning trajectories for 
engaging with children’s multiple mathematical knowledge bases, considering and including the 
diversity in community or culture-based experiences and knowledge. Pre-service teachers framed 
drawing on community-based knowledge for mathematics learning as a possibility to position 
“children, their families, and communities as valuable knowledge resources” (p. 74). This proposes 
a view on diversity-aware teaching which purposefully incorporates multiple mathematical 
knowledge bases in instruction and was thereby consistent with the learning trajectories goal to 
promote equity. But other comments of pre-service teachers showed deficit-based views of 
children’s families or communities, e.g., by framing certain characteristics of some families as 
detrimental to children’s learning. Those results picture diversity-aware teaching more as an 
approach that has to compensate for collectivized deficits. These findings highlight an important 
notion to diversity awareness, since being aware does not necessarily equal appreciating diversity.  

White et al. (2016) implemented a cultural awareness unit for pre-service teachers aiming to 
develop awareness of the role of culture in the teaching and learning of mathematics. One goal of 
the unit was for pre-service teachers to explore strategies to teach mathematics to all students (and 
therefore to reflect on their own view of diversity-aware teaching). They were assigned to search for 
journal articles that discussed the teaching and learning of mathematics with students that were 
culturally different from themselves. Stating that most pre-service teachers were drawn to a 
“particular culture or strategy for teaching diverse students” (p. 167) when choosing an article, the 
findings suggest that pre-service teachers’ tend to break down diversity-aware teaching into specific 
or even isolated perspectives on diversity. These findings relate to the importance of acknowledging 
how difficult the conceptualization of diversity-aware teaching of mathematics is and was taken 
into consideration while attending to the pre-service teachers’ answers in our study. The approach 
to elicit pre-service teachers’ perspective of teaching mathematics for equity through literature-
based reflective tasks can also be seen in Jackson and Jong (2017). They stated that even though 
students were aware of “the necessity to incorporate students’ backgrounds in the classroom […] 
they did not realize the importance of doing this in a mathematics class” (p. 76). 35% of 
participating pre-service teachers had not thought about how to connect culture with mathematics 
education.  

Summarizing, these findings led us to our research interest to what extent pre-service teachers view 
diversity-aware teaching of mathematics as linked to social constructs and socio-political context. 

Methodology: data collection and analysis 
The aim of our qualitative study was to examine pre-service teachers’ views on diversity and 
diversity-aware teaching of mathematics. For this purpose, we designed an online questionnaire 
with a small number of open questions on diversity and inclusion in the context of mathematics 
education. The study was conducted in April 2021 with a group of pre-service teachers from 
Saxony (a federal state in the eastern part of Germany and former GDR) who were in the third year 
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of their academic teacher training. The student population in Saxony is predominantly white, 
middle class and without confession or of Christian denomination. 105 students finished the 
questionnaire (gender identity: 1 diverse, 11 male, 93 female; average age: 23,5 years). Our 
investigation is to be seen as an explorative study, which serves as a starting point for further 
research, and additionally as impetus to modify the ways and contents of our own teaching. In this 
paper we focus on two questions of the questionnaire: 1) What is your understanding of diversity? 
and 2) What is your understanding of diversity-aware teaching of mathematics? The data consists of 
written responses to each question which differ in length between single words up to several 
paragraphs (approx. 160 words). 

As a tool to analyse the data, we used a qualitative content analysis. This approach aims at the 
establishment of categories that are supposed to be developed while doing the text analysis. In our 
study we deployed an inductive category formation as there is no specific theoretical background 
that could be used and as we wanted to analyse the data as open as possible. The inductive ongoing 
“aims at a true description without bias owing to the preconceptions of the researcher, an 
understanding of the material in terms of the material” (Mayring, 2014, p. 79). We applied an open 
coding procedure, formulated and revised the categories while working through the text. 

Results 
First, we will focus on the pre-service teachers’ views on diversity. The analysis showed differences 
in the conceptual understanding of diversity. We could identify a large number of vague and 
descriptive answers, simply pointing to differences (among students) or mentioning supposed 
synonyms (such as heterogeneity or variety) (88 out of 105 responses). Some of the pre-service 
teachers specified those differences in terms of individual characteristics (special skills, appearance, 
needs, interests etc., stressing the individuality of every single person) or in terms of group-related 
characteristics (social or cultural background, first language, race, gender, religion, etc.). Some of 
the answers mentioned that the notion diversity implies valuing differences, mutual respect or 
seeing it as a chance and enrichment for a classroom and/or society (26 responses). Only few 
students additionally pointed to a reflective mindset, e.g., considering diversity as normal or 
desirable or questioning structural inequalities as result of a constructed norm (13 responses). 

Second, we will look on the pre-service teachers’ view on diversity-aware teaching of mathematics. 
Here, a large number of the answers referred to a teacher’s mindset towards diversity. Most of the 
participants stated the need to be aware of differences and/or students’ individuality as well as to 
react to it (63 responses). Segments we coded accordingly can be seen as unspecific (e.g., not 
suggesting any implications for adapting the teaching), and do not allow a deeper analysis of the 
(conceptual) understanding of the awareness for differences or how it could affect teaching. About 
10 % of the answers showed a positive reference to diversity for teaching/learning interactions, e.g., 
claiming appreciation or promotion of diversity as well as valuing individuality. Here we could 
clearly recognize links to the pre-service teachers’ conceptual understanding of diversity. 

Another 20 % suggested a reflection on what is perceived as diverse or as normal (referring to 
students’ characteristics, identity or learning pathways) as part of diversity-aware teaching. Some of 
the pre-service teachers also mentioned the need for teachers to reflect on their own perceptions and 
pointed to the influence of attitudes or of normative assumptions for classroom interaction. Almost 
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a third of the answers were coded as socio-political perspective. Here we found reflections on 
internalized stereotypes within teachers, reproduced stereotypes in narratives or teaching material or 
on structural relations between educational disparities and social/societal disadvantages. 

44 responses referred to certain methods, specific tasks or organizational adjustments for teaching a 
(however defined) diverse group of learners in order to respond to students’ diversity. We 
summarized these answers as teaching strategies. Most of the strategies aimed at reducing 
inequalities or at valuing diversity within teaching/learning interactions. If specific methods, tasks 
or organizational adjustments could be identified as typical or specific for mathematics teaching, we 
coded them as specific structural aspects of mathematics education. Here we found references to 
the negatively attributed reproduction of stereotypes or discrimination within certain materials, 
narratives or organizational aspects that are characteristic for mathematics education. For instance, 
some of the pre-service teachers mentioned the particularities of word problems whose narratives 
run danger to reproduce stereotypes or do not represent the lifeworld experiences of certain groups 
of students. Others were concerned with gender-related differences and called for methods, 
activities and contexts that enable especially girls to successfully participate in the mathematics 
classroom. We could also find references to mathematical tasks that allow for different approaches 
and/or different results (such as natural differentiation), or to linguistic challenges and necessary 
support in teaching and learning mathematics. Some mentioned specifically ‘fast calculators’ or 
students ‘with poor counting skills’. However, only 19 % of the answers showed such references to 
specific structural aspects of mathematics education. 

Discussion 
The majority of the pre-service teachers in our study presented a view on diversity-aware teaching 
which simply put being aware of differences in and individualities of students as an essential part of 
teaching. Most of them presented themselves as well aware of the diversity in current and future 
classrooms. Significantly less answers framed diversity-aware teaching within a view that explicitly 
valued or mentioned the promotion of diversity. The transfer of being aware of diversity into 
teaching strategies seems to be a major obstacle, since not even half of the pre-service teachers 
mentioned any strategies or approaches to do so. This tendency becomes even more apparent when 
focusing on the elicited views on diversity-aware teaching which could specifically be related to 
mathematics teaching and learning: Only 20 out of 105 pre-service teachers linked diversity-aware 
teaching to specific structures or characteristics of mathematics education. Within those subject-
related answers most stated some sort of appreciation of diversity and referred to (responsive) 
teaching strategies specifically for mathematics. This highlights that pre-service teachers most 
likely want to be and act aware of diversity when teaching mathematics (whether due to an 
appreciative attitude or due to the sheer necessity to do so), but rarely show sensitivity or 
knowledge of the particularities of school mathematics. This also points out another tendency 
within the study: If a connection between diversity and mathematics education was made, it 
predominantly referred to tangible interactions or strategies of teaching rather than to structural 
contingencies. None of the given answers reflected on mathematics as a gatekeeper or on the 
influence of mathematics education for paving educational pathways. These findings are well in line 
with current research reflecting on mathematics teacher education (e.g., Jackson & Jong, 2017) and 
deliver implications for our own further teaching.  
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Within the stated tangible strategies for diversity-aware teaching of mathematics, the expressed 
connections between mathematics teaching and diversity awareness mainly referred to the very 
apparent level of representation. More than half of the elicited views on diversity-aware teaching 
that specifically referred to teaching mathematics emphasized the need for the representation of 
diversity in teaching materials (e.g., illustrations in textbooks or chosen contexts for word 
problems) or they stated the need to avoid stereotypes or discriminating language when phrasing 
tasks. Making a deeper connection between diversity-aware teaching and structural disadvantages in 
mathematics education could only be identified in four answers. These answers presented a view on 
diversity in students (cultural, community or family) backgrounds and experiences as relevant for 
mathematics education. This view can be interpreted as a first step to recognizing the complex 
interdependencies of mathematics education and socio-politics. For us, these conceptions represent 
a higher reflective level when debating diversity-aware teaching of mathematics.  

Addressing mathematics pre-service teachers views on diversity can be seen as a key component in 
preparing them for diversity-aware teaching. Eliciting those initial views was one of the goals in our 
study. To us, the results highlight the importance of referring diversity-aware teaching explicitly to 
mathematics education and emphasize the need to discuss the role of (school) mathematics as a 
gatekeeper in teacher education – despite or even because of the vagueness when pinning it down. 
Even though there are numerous significant contributions in mathematics education research on 
equity (e.g., Atweh et al. 2011; Gutiérrez, 2012; Aguirre et al., 2017), there is no shared or well-
defined understanding of ‘equity’ and how it can be achieved in mathematics education. Following 
the call of Gutstein and colleagues (2005), that each of us “has a responsibility to both think about 
and act on issues of equity” (p. 98), we consider becoming aware of one’s own understanding of 
diversity and diversity-aware teaching as one of many steps to deepen the understanding of equity 
in mathematics education. In addition, according to the identified categories in this study, a 
theoretical framework combining socio-political and subject-specific aspects for diversity-aware 
teaching of mathematics seems to be a necessity in future research. 
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Background 
Due to migration many students attend classrooms where they cannot learn mathematics in their 
home languages because of prevailing monolingual curricula and classrooms norms. This is the 
case in mainstream mathematics classrooms in Sweden where Swedish is the language of 
instruction and where this study was conducted. It is regulated in Skolförordningen [the Swedish 
School Ordinance] (SFS 2011:185 chapter 5 §4), that a student can receive study guidance in the 
mother tongue (SGMT), if the student needs it. Thus, SGMT in mathematics is grounded in the idea 
of the home language as a resource for multilingual students’ mathematics learning. SGMT is 
provided by SGMT tutors. There are no formal educational requirements for tutors. According to 
Skolverket [Swedish National Agency for Education] (2015) it is desirable that tutors have subject 
knowledge, knowledge about the students’ prior and current educational systems and pedagogical 
practices, and a developed linguistic awareness about differences and similarities between Swedish 
and the mother tongue. This places special demands on tutors’ resources. Further, it means that they 
need to handle epistemological dimensions of language and mathematics in their everyday work as 
SGMT tutors in mathematics. Thus, it is of interest to explore, with an epistemological focus: How 
are a mother tongue study guidance tutor’s languages and knowledges employed (or not) as 
resources for multilingual students’ mathematics learning in a mainstream school? 

Theoretical approach: The Language as resource model 
To explore how SGMT tutors’ resources can be employed as resources in mathematics activities 
from an epistemological perspective we use “The Language as resource model” (The model) (Ryan, 
et al., 2021). It builds on previous research concerning the language-as-resource idea, more 
specifically the epistemological potentials of multilingual language use and mathematics identified 
in this research (see Ryan & Parra, 2019). The model has two axes that make up an interface, which 
holds epistemological language-as-resource potentials that move from separating to synthesizing 
languages and mathematics (see Figure 1). For example, potentials of translation activities are 
activities in which languages are used in a separated manner, as separating first- and second 
languages, whereas translanguaging (García & Wei, 2014) activities are examples of activities in 
which languages are used in a synthesized manner. That is languages are used without clear 
boundaries and students use their full range of language resources, that is all words, grammatical 
structures, idioms etc. that are available to a speaker. Actualizations of language-as-resource 
potentials in multilingual mathematics activities move dynamically over this surface, that is among 
the language-as-resource ideas’ epistemological potentials for language use and mathematics. The 
x-axis displays a continuum of epistemological potentials of mathematics that move from separating 
ways of knowing mathematics to synthesizing plural ways of knowing mathematics, for example 
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from separating informal and formal mathematics to synthesizing a plurality of mathematics 
acknowledging mathematics as cultural activity. The y-axis displays the continuum of 
epistemological potentials of multilingual language use that move from separating named languages 
to synthesizing new language practices. The surface holds two named potentials; the ‘lever’ 
potential that can move students from informal mathematics talk in their mother tongue to formal 
mathematics talk in Swedish, and the ‘one-new-whole’ potential that constitute prerequisites to 
produce new ways of languaging and knowing mathematics which requires interknowledge among 
the languages and plural mathematics. These two potentials are implicit in Rosén et al.’s (2020) 
conclusion that SGMT can be viewed as support through the student’s mother tongue but rather 
should be regarded as a translanguaging practice that challenges linguistic and cultural boundaries.  

 
Figure 1: Framework for epistemological potentials in multilingual mathematics activities based on the 

language-as-resource idea. 

The poster presentation 
In the poster we present an example of an analysis of an excerpt from an interview with a SGMT 
tutor (in Arabic) to illustrate how the model can be used for analysing how SGMT tutors’ resources 
can be employed as resources in mathematics activities from an epistemological perspective.  
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2+2=4? Mathematics lost between the pitfalls of essentialism and 
alternative truths 
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This essay problematises the epistemic status of mathematical knowledge. It is based on the 
observation that essentialist epistemologies provide no solid basis while relativist epistemologies 
have not yet convincingly succeeded to explain the objectivity of mathematical knowledge. I will 
start with three examples from popular media which illustrate that awareness for the problem 
discussed here has already reached the interested public. I will shortly address popular answers to 
the problem, only to refute them. I will end the essay by discussions which stay close to the example 
of 2+2=4, ending with the presentation of possible directions for further understanding and 
research. 

Keywords: Mathematical reasoning, epistemology, relativism, alternative truth, styles of reasoning. 

Debates on 2+2=4 
Surprising as it may seem, the question whether 2+2=4, which so prominently demarcated the 
border between ‘truth’ and ‘doublethink’ in George Orwell’s novel Nineteen Eighty-Four, has 
recently become the object of public attention. One example is the award-winning short film 
Alternative Math (Maddox, 2017), which is an alternative-facts parody, where the mathematics 
teacher’s rejection of a student’s claim that 2+2=22 kicks off a chain of events in which the teacher 
has to face outraged parents, a public mob and undiscerning officials. It begins with the teacher 
showing the primary school student his test with 2+2=22 marked wrong and with the teacher 
explaining 2+2=4 with markers to the disavowing child. In the next scene, we see the teacher and 
the boy’s parents discussing the issue. When the parents ask the teacher who says that 2+2=22 is 
‘not the right answer’, the teacher replies ‘says maths’, whereupon the father asks ‘Who are you to 
say that your answer is right and his is wrong?’ Later, when a board of officials asks the teacher to 
proclaim that she is ‘open to the possibility there might be multiple correct answers’, the teacher 
replies ‘there is only one correct answer’. In the end, the teacher is fired but manages to 
demonstrate the consequences of allowing 2+2=22, at least for the school’s finances. While the 
comedy of the short film builds on applying the logic of alternative facts to something as 
consensual as mathematical facts, the irony is that the teacher offers little more than authority and 
dogmatism to legitimise the epistemological claim made, which eventually does not dispel but 
invite further scepticism. Why does 2 plus 2 equal 4 and nothing else? 

A different episode was brought to us by James Lindsay, a graduated mathematician, blogger and 
critic of post-structuralism. As a parody of the logic of post-structural narratives, Lindsay had 
posted the following on Twitter: ‘2+2=4: A perspective in white, Western mathematics that 
marginalizes other possible values.’ What followed were intense debates on social networking 
services whether 2+2=4 had to be accepted as a true statement and if 2+2 could equal 5. Lindsay 
(2020) provided an (obviously factionary) overview of the discussions and rejected different 
proposals for 2+2 not equalling 4. The proposals included non-trivial mathematical interpretations 
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of the expression 2+2 (e.g., in a ternary numeral system, where we might note 2+2=11, or in the 
residue system modulo 3, where we might note 2+2=1), as well as peculiar contextualisations, for 
example, interpretations of addition as the bringing together of animal populations which might 
result in procreation or in the consumption of some specimen. Such proposals may be useful 
philosophical exercises that help us to explain what we mean by 2+2=4, but in all cases the 
expression 2+2 has been changed to mean something different than intended, thus losing its relation 
to the original problem. 

A last example comes from the United States and even made it into the newspaper and television 
news in Germany and Austria. In early 2021, the Oregon Department of Education offered a course 
for in-service teachers based on the materials provided by the project ‘A pathway to equitable math 
instruction’ (Cintron et al., 2000). Most uproar was caused by the question whether mathematics 
was racist, but debates also kindled over the question whether or not mathematics provides 
unambiguous knowledge. Cintron et al. stated that ‘the concept of mathematics being purely 
objective is unequivocally false, and teaching it is even much less so’, that ‘upholding the idea that 
there are always right and wrong answers perpetuate objectivity as well as fear of open conflict’, 
that focussing ‘on getting the “right” answer’ is an instance of ‘white supremacy’, and that teachers 
should instead encourage students to ‘come up with at least two answers that might solve this 
problem’ (p. 65). Consequently, the material was interpreted by many by claiming that mathematics 
does not produce unambiguous knowledge, and that claims that it would were establishing 
mathematics as a racist endeavour. Meanwhile, the project leaders clarified on their homepage that 
this is not what they meant and changed their material, avoiding the problematic passages. The echo 
in the media with many rather emotional than epistemologically educated responses however 
indicates that there is a growing fear that the objectivity of mathematical knowledge may be called 
into question sooner or later.  

Two popular explanations and their problems 
Lindsay (2020) presented himself as a mathematical realist and argued that mathematics deduces 
propositions such as 2+2=4 from fundamental premises (axioms) which are ‘relatively simple and 
connect to the real world in a very obvious way’. Considering the axiom of induction from Peano’s 
axiomatisation of natural numbers, such fundamental premises do not at all appear to be ‘relatively 
simply’, nor do they ‘connect to the real world in a very obvious way’. But there is a more 
fundamental problem: Axioms for arithmetic were provided by Peano only at the end of the 
nineteenth century. Before that, it was impossible to prove the statement 2+2=4 in the way 
described by Lindsay. So, does the validity of the statement 2+2=4 really depend on mathematics as 
a deductive discipline? In fact, we could argue that we constructed mathematical theories in a way 
that provides for the truth of 2+2=4 (and Lindsay implicitly does so as well when arguing ‘if we 
chose to start with different fundamental assump¬tions, we’d have a different mathematics that 
doesn’t seem remotely interested in reality at all’). 

A different explanation is that 2+2=4 is abstracted from experience. (Remember the teacher 
explaining 2+2=4 with markers in the above-mentioned short film.) We see that two and two apples 
make four apples, that two and two cows make four cows, that two and two fingers make four 
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fingers, and by induction we presume that 2+2=4 holds true in general. But even if induction was 
the reason that we hold 2+2=4 to be true, how about 74+26=100? Surely, we would not claim that 
we saw 74 of something and 26 of that same thing make 100 so often that we hold the abstract 
74+26=100 to be true in general. Even worse, Greer (2005) made a strong point that ‘whether a 
situation is appropriately modeled, or not, by the equation 2+2=4 [is] a matter of complex 
interpretation’ (p. 297). Already Frege (1884) had established that the use of arithmetic presupposes 
a specific interpretation of one’s perception, and Bishop (1988) informed us that the corresponding 
epistemology of what he calls ‘objectism’ has to be understood as a Western particularity. 
Consequently, it is not convincing either to establish the truth of basic arithmetic through induction. 

The epistemological problem in more general terms 
The discussion whether or why 2+2=4 holds true is intimately (although often not explicitly) 
connected to an unresolved struggle in epistemological enquiry between essentialism and 
relativism, which can only be presented here in a brutally abridged version: Robertson & Atkins 
(2019) proposed that ‘essentialism is the doctrine that (at least some) objects have independently of 
how they are referred to (at least some) essential properties’. They add that such views have been 
fundamentally objected lately. In this sense, Lindsay (2020) argued that 2+2=4 is a truth that exists 
independently of humans and can only be discovered. In contrast, relativism supposes that ‘things 
have the properties they have […] only relative to a given framework of assessment’ (Baghramian 
& Carter, 2019).  

In the philosophy of mathematics, the most prominent essentialist position is Platonism, where it is 
assumed that mathematical objects have a mind-independent and unalterable existence, that they 
provide shapes for the composition of our perceivable world, and that their properties can be 
discovered by the human mind. Linnebo (2018) reported that ‘platonism has been among the most 
hotly debated topics in the philosophy of mathematics over the past few decades’ and that ‘a variety 
of objections to mathematical platonism’ includes that ‘abstract mathematical objects are claimed to 
be epistemologically inaccessible and metaphysically problematic’ (p. 1). 

In mathematics education research, the best-known objections against essentialism come from 
radical constructivism and post-structuralism. While the former stressed that humans lack the 
sensual apparatus to create an unbiased understanding of the world, and that knowledge is therefore 
necessarily relative to the limits of perception and interpretation (Glasersfeld, 1995), the latter was 
more interested in the refutability of truth claims and the historical deconstruction of their relations 
to power. For example, I discussed elsewhere how the laws of logic are far from natural or 
necessary but cultural products, which allied with specific social interests (Kollosche, 2014). So, is 
2+2=4 a ‘perspective in white, Western mathematics that marginalizes other possible values’ after 
all? 

Interestingly, scepticism based on post-structuralism is not only guiding progressive research on 
equity in mathematics education and beyond, it also laid the epistemological ground for the 
phenomenon of alternative truth. As McIntyre (2018) documented in much detail, the intellectual 
pioneers of alternative truth explicitly adapted the post-structural claim that every discourse is 
necessarily constructed and socio-politically biased to a technique that then allows to refute any 
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truth claim. The very real effects of this development can be observed in the course of the denial of 
anthropogenic climate change or the COVID-19 pandemic by leading politicians. MacMullen 
(2020) argued that this epistemological scepticism is no longer only the academic background of 
the alternative truth phenomenon but an explicitly held position of some citizens. Elsewhere, I 
claim that this problem is not appropriately addressed in mathematics education research 
(Kollosche, 2021a). 

Koertge (2017) regarded the phenomenon as a result of fundamental problems of relativism. She 
agreed that ‘all observations are laden with theory’ but questioned whether this means ‘that there is 
no objective/impartial perspective from which we can appraise and compare the truth-value of 
claims’ (p. 809). She warned that, ‘if it really were true that scientific assessments of truth and 
falsity could never be objective and could never be more than warring opinions, then we would be 
left with nothing but a clash of civilizations’ (p. 810). Indeed, it is one of the central problems of 
relativist epistemologies that they cannot sufficiently explain how we can avoid a situation where 
anybody can claim anything, how some sort of epistemic commitment can be guaranteed, and how 
specific ‘frameworks of assessment’ become accepted as scientific while others do not. 

Skovsmose (2012) was early in warning the community of mathematics education researchers that 
post-structural deconstruction might be insightful but not productive in legitimising knowledge. In 
the light of the spread of alternative truths in public debate, Marcone et al. (2019) recently 
wondered if the fight of some scholars in our discipline against ‘the uncritical faith in mathematics’ 
and ‘the ideology of certainty’ has played a part in the post-factual ignorance of scientific facts (p. 
186). They felt that ‘our arguments against universality and neutrality [of mathematics] have been 
trivialized and turned back against its original intention’ (p. 187). But have they? The fact that 
relativist arguments have been adopted by post-fact politics neither solves nor disvalues the original 
philosophical problem. It invites us to rearticulate it with greater urgency. Thus, we may ask: How 
can we explain the objectivity of mathematical knowledge without falling back to essentialist 
epistemologies? 

Getting back to 2+2=4 
In a way, the above question is typical for Wittgenstein’s Remarks on the Foundations of 
Mathematics (1956), which I cannot address any further in the limits of this contribution. Recently, 
I have only seen the question further discussed by Azzouni (2006). I recommend to read his 
chapter, but this is not the place for me to discuss his sometimes fruitful and sometimes problematic 
ideas. Instead, I want to return to my initial example of 2+2=4. Staying with such a basic example 
allows us to ground our complex philosophical thoughts in a matter that stays somewhat simple.  

Let me shortly present my own understanding of why 2+2=4 or 74+26=100 holds true in a non-
essentialist epistemology: We experience that there are several situations in which two of something 
and two of that same thing make four of that thing. There may also be situations in which this 
addition does not make sense. In the course of abstracting our experiences to the statement 2+2=4, 
we also learn in which situation it makes sense to see 2+2, and in which it does not. However, we 
do not arrive at the knowledge of 74+26=100 this way. Instead, we arrive at the knowledge of 
74+26=100 through a line of algorithmic argumentation. From our empirically-based handling of 
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small numbers, we abstract a certain logic of calculation, which is suitable to inhabit our most 
simple and inductively true calculations and can be extended to quantities well beyond our 
experience. The study of the teaching and learning of arithmetic is a prominent field in mathematics 
education research and investigates such processes, in which the handling of large numbers is again 
and again made sense of through our handling of small numbers. We could say that calculation is a 
kind of reasoning that allows us to establish 74+26=100 as a true claim, even though it is no longer 
directly connected to experience, nor are its truths established deductively. 

A more sophisticated description of such an understanding has been provided by Piaget (1971) 
through the distinction of empirical and reflecting abstraction. Lensing (2018) discussed the 
importance of this distinction for mathematics education research and provides a good introduction. 
In short, empirical abstractions abstract from observables, while reflecting abstractions abstract 
from human action. In this sense, 2+2=4 might be an abstraction from empirical cases of counting 
and adding, but the logic that lets us arrive at 74+26=100 has been gained through an abstraction 
from our actions with numbers in easier cases. Piaget’s distinction and its application to 
mathematics education shed light on the complex interplay of different epistemic processes that 
lead to the justification of knowledge. I will end this paper by a presentation of a more complex 
description of such processes and their interplay not from a psychological but from an 
epistemological perspective. 

Styles of reasoning as a way out of the epistemological dead end 
Here, we might pause and wonder whether there are fundamentally different ways to establish the 
result of an addition of natural numbers as a true claim. Such results might be abstractions from 
empirical observations, they may we won through the manipulation of material models such as 
markers, they might be products of an algorithmic technique, and they might be theorems proven in 
axiomatic theories. These ways to establish a truth claim such as 2+2=4 reach the same judgement, 
but it is interesting that they arrive there by very different activities, which, each for itself, has the 
power to establish a claim as true. If we do not want to allow ourselves to fall back to essentialist 
explanations, this power and the consensus reached here are curiosa that demand an explanation. 

Elsewhere, I have proposed to elaborate on Hacking’s (1992) framework of styles of reasoning in 
order to arrive at a possible explanation (Kollosche, 2021b). A style of reasoning includes methods 
of argumentation for reaching truth claims, therewith also a set of statements whose truth-or-falsity 
can be decided scientifically, therewith also a set of objects that enter the scientific discourse in the 
first place. Hacking (1992) drew on the work of science historian Crombie (1994) who described 
the historical development of six distinct styles of reasoning: the postulation style, the experimental 
style, the modelling style, the taxonomic styles, the statistical style, and the genetic style.  

It is already interesting that nearly all styles (maybe not so much the genetic style) are used in 
mathematics or use mathematics themselves: postulation in the axiomatic-deductive theories of 
mathematics, experimentation in experimental approaches to mathematics and in experiments on 
the suitability of mathematical models for specific applications, modelling for the understanding of 
our world through mathematics but also for gaining knowledge of mathematics objects through 
models such as diagrams, taxonomy as a principle for concept development in mathematics, and 
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statistics as a mathematical technique itself. Further, Hacking (1992) proposed to add ‘algorismic’ 
reasoning to Crombie’s list (p. 8), and was open to further additions or changes. We can recognise 
the postulation, the experimental, the modelling, and the algorismic styles of reasoning in our 
above-mentioned explanations of why 2+2=4, which already shows the potential of this framework.  

Here, I want to return to more general philosophical considerations one last time. Hacking’s (1992) 
framework of styles of reasoning clearly proposes a relativist epistemological position. However, it 
does not appear completely defenceless against the objections issued against epistemological 
relativism. Let us address Koertge’s (2017) concern that, in relativist epistemologies, ‘truth and 
falsity could never be objective and could never be more than warring opinions’ (p. 810). Note that 
opinions are individual views that do not require any justification (although opinions can be 
elaborated upon). I may hold the opinion that twelve is the most beautiful number, and may even 
present my thoughts associated with this opinion, but this does not establish ‘twelve is the most 
beautiful number’ as any kind of justified knowledge. When Koertge warns that relativism would 
degrade truth claims to opinions, she fears that we would be lost in opinions and that shared and 
accepted knowledge would no longer be possible. In the styles-of-reasoning framework, this is not 
the case. Here, we have a limited number of historically established frameworks of assessment, 
which are shared amongst people and used to justify knowledge on an interpersonal level. 
Especially, styles of reasoning do not allow to present just any opinion as knowledge, just as a 
mathematical theory does not allow to proof any statement whatsoever. 

Admittedly, one might not be completely satisfied with the merely historical explanation of why 
Hacking’s (1992) styles of reasoning are accepted as truth-makers in science. Should there not be 
reasons specific to the respective styles which explain why they are acceptable for scientific inquiry 
and why other frameworks of assessment such as astrology are not? It is not easy to give an answer 
here. Hacking underlines that relativism implies that there is no objective ground from which the 
suitability of a framework of assessment for scientific enquiry can be decided. This means that 
answers can only be found in the styles and their interplay. He furthermore stresses that the 
acceptability of frameworks does underly historical changes, that all styles have appeared sooner or 
later in history, the statistical style being the most recent, that once-accepted styles such as the logic 
of resemblance as described by Foucault (1966) appear utterly ridiculous to us today, and that we 
cannot foreclose that new styles may emerge and gain acceptance. It may be productive to focus on 
the interplay of different styles of reasoning. Ruphy (2011) introduced the concept of ‘ontological 
enrichment’ to capture that styles of reasoning do not only create new objects of scientific inquiry 
(in the way that Peano’s axiom system created numbers as axiomatic-deductive entities), but that 
these new objects mirror already-known objects (such as numbers as algorismic entities). Despite 
these ontic differences, we act ‘as if’ we were speaking about the same object in both styles, which 
allows us to gain understanding by studying this object in the various styles. Is it a fruitful 
hypothesis that new styles of reasoning gain acceptance through reproducing the knowledge gained 
by already-accepted styles while adding some new possibilities for understanding? For example, see 
how the postulation style mathematics of Ancient Greece as documented in Euclid’s Elements 
reproduced the already existing algorismic and diagrammatic mathematical knowledge of the time 
while adding new possibilities of expressing, justifying, ordering and interrelating knowledge – at 
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least until incommensurability problems provoked serious doubts concerning the suitablity of this 
acting ‘as if’. I assume that the history of mathematics would be a good field to study the 
fruitfulness of this hypothesis, not only for the philosophy of mathematics itself but for 
epistemology in general. 

Back to mathematics education 
While the above considerations have been very philosophical and theoretical in nature, the mathe-
matics classroom demands specific action. I cannot claim that I have thought-through 
recommen¬da-tions for the mathematics classroom, but I have pressing questions, which 
mathematics education research might want to consider: 

 While the styles-of-reasoning framework proposes that mathematics is an integral part of many 
styles of reasoning, the public image of mathematics and research in mathematics education 
focuses on one specific style of reasoning, namely on mathematical proof (Kollosche, 2021b). 
In how far does this bias hinder us to study mathematical reasoning more broadly in research 
and to address different forms of mathematical reasoning in the classroom? In how far is this 
bias socio-politically functional, for example for upholding an ‘ideology of certainty’ around 
mathematics? 

 As the styles-of-reasoning framework allows to preserve both the ideas of relativism and of 
justified knowledge, may it be helpful, for example in the context of studies on what US-
Americans call ‘race’ and mathematics, to articulate a critique of the socio-political bias of 
mathematics without questioning its objectivity altogether? 

 In how far would a differentiated understanding of mathematical reasoning in the framework of 
styles of reasoning allow to deconstruct exactly which epistemic practices may interact with the 
preferred styles of knowing of possibly disadvantaged social groups without questioning the 
epistemic value of mathematical reasoning in general? 

 Assuming that the growing public scepticism towards scientific knowledge leads to demands 
that schools should provide some sort of an epistemological education, that is education about 
the justification of knowledge, then would mathematics education not be a privileged place, 
given that mathematics is intimately connected to nearly all styles of reasoning? What would 
such an epistemological education in the mathematics classroom look like? 

Eventually, answers to be above problems might also help to articulate in how far mathematics 
education helps adolescents to develop their reasoning skills – a claim that reoccurs in mathematics 
education research and educational policy in connection to mathematical argumentation, mathe-
matical modelling, and problem solving in mathematics. Rethinking these fields from the 
perspective of a relativist epistemology can allow to articulate their theories more clearly, while the 
relativist framing would allow to more easily include a socio-political perspective in these fields of 
research. 
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In this paper we investigate mathematics teachers’ creativity in offering problematising activities 
and promoting inclusion and positive attitude toward school in territories with worrying dropout 
rates. This is an initial study in which we interviewed four teachers working in this kind of 
territories and very active in designing and implementing inclusive and visionary mathematics 
activities. From the analysis of the answers to two particular questions, we outline the perceptions 
of these teachers on the sources of their educational creative work, identifying peculiarities and 
communalities. In particular, a common intention to achieve citizenship education objectives 
emerges. 

Keywords: Mathematics teacher, creative teaching, inclusion, problematising education. 

Introduction 
Equity, inclusion, and fair opportunities were felt as crucial issues by researchers in mathematics 
education already before the pandemic and have become even more urgent issues during it (Bakker 
et al., 2021). In particular, the pandemic, as “a magnifying glass on issues that were already known” 
(p. 1), revealed even more clearly the inability of the school education to properly include pupils in 
disadvantaged contexts and its responsibility in creating several unacceptable phenomena of social 
marginalization and exclusion. Indeed, nowadays, the educational outcomes of younger generations 
are still determined to a large extent by the socio-economic background of their parents rather than 
by their own potential. Promoting inclusion1 and equity in education and training is thus 
fundamental in breaking these patterns. In the suburbs of many cities, school lacks resources to 
properly include children and teenagers experiencing socio-cultural disadvantage and ends up 
losing its institutional value in the eyes of pupils and their families. Hence, there is risk of early 
school leaving and, in some particular contexts, also the consequent serious danger for children and 
teenagers to be approached by gangs and organized crime. For this reason, it is of fundamental 
importance that educational research reflects on the endogenous factors of early school leaving 
(Morgagni, 1998), i.e. factors that are internal to the educational system. An effective struggle 
against this phenomenon should aim to create the conditions for every student to create her own 
identity within the school. In particular, this possibly implies the need that the mathematical 
activities proposed at school should (re-) build a positive attitude towards mathematics (Di Martino 

                                                 
1 Here, the term “inclusion” is used in a general sense, as in the Italian educational system. By inclusive educational 
environment we refer to the participation in mathematical activities both by students with claimed disabilities and by 
students with special educational needs. The latter group also includes students with very critical cultural disadvantages, 
such as limited Italian language proficiency or lack of cooperation, if not hostility towards the school, by their families. 

Proceedings of CERME12 1768



 

 

 

& Zan, 2011) for the students which are most in difficulty. In socially disadvantaged contexts, this 
means proposing to pupils tasks which are meaningful in their eyes and improving their perceived 
competence in mathematics.  

For several years our research group has been engaged in educational projects in collaboration with 
schools to implement highly inclusive mathematics education environments, aimed at preventing 
the phenomena of early school leaving. In these contexts, inspired by the vision of active pedagogy,  
we have tried to design mathematics education activities as engaging and captivating as possible, 
for example by activating students body movement inside schools, but and also in outdoor 
environments; by creating narrative frames that allow students to link the exploration of the 
mathematics worlds to the exploration of cultural and naturalistic city sites (such as museums, art 
galleries, parks, site of urbanistic interest and so on) and critically connect pupils to the territory in 
which they live. The theoretical background of reference for these mathematics education activities 
design has been the informal mathematics education (Nemirovsky et al., 2017), which concerns 
non-compulsory activities, with very fluid boundaries between disciplines and with no formal 
grading. 

Working on these educational projects, we have also tried to involve the school teachers in the 
design and implementation of these visionary informal mathematical activities. Indeed, our main 
research interest in informal mathematics education projects is to investigate how to create an 
intertwining between the highly engaging approach of mathematical activities implemented within 
them and curricular teaching. We recognize the centrality of school teachers in these transformation 
projects: they are called to be guides capable of creative inclusive mathematics education activities, 
in a continuous dialogue with the territories in which they work. With this gaze, in this paper we 
present a first research attempt to capture and describe the kind of mathematics education creativity 
needed for teaching in socio-cultural disadvantaged contexts, and elsewhere. Our research aims to 
investigate teachers’ creativity, both in design and implementation of mathematics activities 
responsive to students’ interests, in order to foster inclusion and thus prevent early school leaving. 

Theoretical framework 
Our research is framed in active pedagogy, born at the end of the 19th century, that considers the 
student as the active protagonist of the educational process and the relationship between the subject 
and the environment as central. Therefore, according to this point of view, it is essential to organise 
educational and school contexts in such a way that the environment can foster creativity, plurality 
of opinions and the freedom of pupils to experiment on their own. Moreover, the educational 
experience cannot disregard the everyday life in which the subject lives. 

In this scenario, the educational proposal of Paulo Freire was to create an emancipatory pedagogical 
process aimed above all at that part of society that lives in a situation of oppression (Freire, 1970). 
According to Freire, the action of the educator is characterised by two essential moments: the 
preparation of the lessons and the meeting with the students; it is by analysing these two practices 
that it is possible to distinguish a depositary education from a problematising education. In the first 
case, the educator, during the preparation of her lessons performs an act of knowledge in relation to 
the knowable object. Then, during the meeting with the students, she narrates and discusses the 
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object on which she has performed her act of knowledge. The task of the students, in this 
perspective, is to know or learn by heart what is narrated and delivered by the educator (student 
seen as a patient or a docile recipient of content). Depository education does not allow the students 
to perform a true act of knowledge, since what is delivered or deposited to them is a possession of 
the educator and not a mediator of the critical reflection of both (Freire, 1970). In the case of 
problematising education, on the other hand, there is not a clear distinction between the moment of 
preparing the lessons and the moment of meeting the students. The latter is characterised by 
dialogue, which is fundamental for the educator in order to review – through the re-visioning of the 
students – what was objectified in the preparation of the lesson. Problematising education becomes 
an act of knowledge: both when preparing the lesson and when meeting the students, the educator is 
a knowing subject. With the problematising practice, the educator makes the students become 
critical researchers, in a permanent dialogue with the educator, who is a critical researcher herself. 
According to Freire (1970), it is only through a problematising education that it is possible to carry 
out an emancipatory pedagogical process that pushes the students for learning to face their world by 
putting knowledge into play, developing creativity and constant reflective critical capacities. The 
educator, therefore, has to reflect on what to propose to her students and, from the constant dialogue 
with them, imagine original themes to be returned as concrete problematic situations, challenging 
and motivating for the students, which allow them to reflect on significant dimensions of reality, 
promoting a critical understanding.  

In this frame, our research aims to explore teachers’ creativity in the strictly intertwined processes 
of designing and implementing mathematical problematising education activities (Freire, 1970) in 
socio-cultural disadvantaged contexts. In literature, there are several studies on the mathematical 
creativity of professional mathematicians. For example, Hadamard (1945) in his seminal work 
collected the perceptions of contemporary mathematicians on the mechanisms by which they 
produce new mathematics. He outlined the existence of unconscious mental processes and tried to 
capture the phenomenon of illumination in doing mathematics. Later, Liljedahl (2004) updated 
Hadamard’s work, focusing on the specific context of mathematical problem solving. In particular, 
he confirmed the experience of mathematical illumination, perceived as caused by a sudden coming 
to mind of an idea. He analysed preservice teachers’ logbooks, together with reflective anecdotal 
accounting from undergraduate mathematics students and prominent mathematicians of our times. 
Here our focus is on mathematics teachers’ creativity and very few studies can be found about it 
(see for example Levenson, 2021).  

Methodology 
Participants 

In order to investigate the particular kind of creativity of the mathematics teachers we are interested 
in, we identified two Italian informal education projects that offered very innovative mathematical 
problematising education activities (Freire, 1970) to primary and secondary students from socio-
culturally disadvantaged areas of two different cities, Naples and Turin. Within these projects, we 
involved four teacher-researchers, as they are responsible for educational design: Perla, Nadia, 
Riccardo and Claudia (pseudonyms). The first two are high secondary school math teachers in 
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Naples (Italy) and partners of the cultural association “Matematici per la Città” (MPC). The 
association was born in 2013 with the aim of realising urban math walks through the suggestive and 
fascinating streets of Naples, bringing mathematics out of the classroom, in a less formal, more 
comfortable and enveloping scenario. Currently, MPC collaborates with several primary and 
secondary schools in Naples, often located in disadvantaged districts of the city. It promotes extra-
curricular educational paths with the aim of stimulating and encouraging children and teenagers to 
observe reality with curiosity and critical sense. In all its activities mathematics is strongly 
intertwined with other disciplines, such as art, music, history, chemistry, and above all with 
citizenship education. The other two teachers, Riccardo and Claudia, are lower secondary school 
math teachers in Turin (Italy) and both took part in the design of the educational activities of the 
“Next-Land” project. The project, promoted by the cultural association Next-Level, started in 2020 
and is still underway. So far, it has involved lower secondary school students from the most 
disadvantaged Turin’s neighborhoods. Next-Land offers educational paths on STEM disciplines, 
which are intertwined with the arts. It is characterised by a widespread, laboratorial educational 
action, which is hosted in the city’s museums, open spaces, research places and in digital 
environments. Among the transversal aims of the project there is the fight against the gender gap in 
study and work contexts.  

Data collection and analysis 

Data collection consisted of oral and semi-structured interviews, inspired by the Explicitation 
Interview method2 (Vermersch, 1994), audio-recorded and transcribed. Due to space constraints, in 
this paper we present only the analysis of the responses to two particular questions, which we 
consider to be the most interesting in the context of an exploratory study of teacher creativity. Here 
we refer to the selected two questions as Question 1 (Q1) and Question 2 (Q2): 

Q1. In designing a teaching activity, do you feel more like ideas emerge all of a sudden or that 
they originate from a process of investigation? 
Q2. Referring to your design choices, do you think that, in general, they also consider your 
personal background and the social and cultural dimension?  If so, to what extent do you think 
that the personal, social and cultural dimension can influence the creation of educational 
activities? Could you refer to a specific anecdote or a particular moment to support your 
thinking? 

Q1 is inspired by a particular question used by Hadamard (1945) and later by Liljedahl’s (2004). 
This question refers to the dichotomy, already emerged in the community of mathematicians at the 
beginning of the 20th century, between a vision of mathematical activity that emphasizes intuition 
and another one that tends to emphasize the rigour and formalism of deductive reasoning. In our 
context, in which we are not reflecting on mathematical activity but on the design of teaching 
activities in mathematics, we ask teachers whether they attribute their creative acts to a spontaneous 
arising of ideas or to a work of reflection that we might consider more methodical and goal-

                                                 
2 The Explicitation Interview is a method based on techniques for the formulations of the re-launchings aimed at 

facilitating and attending the a posteriori verbalization (in the sense of putting into words) of a particular experience 
(Vermersch, 1994). 
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oriented. By this question we want to collect the teachers’ perceptions on how the creative acts at 
the basis of their educational work originate. 

Q2 aims to investigate teachers’ perceptions about the causes behind such creative acts, and in 
particular whether and how they would connect them to the social and cultural dimension of their 
lived lives. The answers to this question could provide some information about the teacher’s 
personal and professional experience, which she relates to her work in instructional design. 
Therefore, with this question we expect to outline some aspects that are at the origin of the 
creativity of the interviewed teacher, which determine her uniqueness. 

At this stage of the research, we have analysed the answers, highlighting commonalities and 
peculiarities. Next, we will move on to enlarge the sample of teachers and, alongside this type of 
analysis, we will analyse the recurring themes. 

Findings 
Answers to Question 1 

Q1 asked to choose between two alternatives: the teacher could attribute her creative acts to a 
spontaneous arising of ideas or to a more methodical process of investigation. All four teachers 
chose the first alternative and all shared, as an argument to their answer, what they believe to be the 
sources behind what is currently a spontaneous arising of ideas in their design activity. As we will 
show shortly, the reasons that the teachers identified are all different from each other. We draw 
attention to the fact that the other question, Q2, was formulated precisely for the purpose of 
investigating the origin of the creativity of the interviewed teacher. However, in the analysis we 
preferred to keep the answers to Q2 distinct from the argumentations accompanying the answers 
given to Q1, because of the characteristic of spontaneity of the latter  

Perla: So look, I’ll tell you that I usually get ideas all of a sudden [...] with an association, which 
is often instinctive, of elements that are apparently very far away. [...] I am quite convinced that 
this fact, which is quite easy for me, more than anything else I find it instinctive to put together 
apparently distant worlds, is a consequence of my mathematical education, in the sense that it is 
a bit like when you have the data of a problem or the hypothesis of a theorem and you have to 
put them together and arrive at the final result or proof of the theorem, I have the feeling that 
when I come up with a project idea, in the end, I actually think in this way [...] 

Perla attributes what she considers a “sudden” and “instinctive” emergence of ideas in her design 
work to her mathematical education, which taught her to put seemingly distant elements into 
communication with each other, as when from the data of a problem one seeks a solution or from 
the hypotheses of a theorem one arrives at its thesis.  

Nadia: [...] Some conditions have been created, even with the association I belong to [MPC], to 
design together, to reflect together, so when I find myself alone in designing an activity, I don’t 
know how much it is accidental or how much it is actually the result of this continuous process 
of sharing and building together and so, sometimes, I say: “Is it mine? Did it come to me 
spontaneously?” and maybe, even this approach of building activities in this way, in my opinion, 
leads me to think spontaneously about things, but it is a spontaneous in some way conditioned. 

Nadia talks about a “conditioned” spontaneity. This conditioning leads her back to the experiences 
of collective reflection and shared planning, within the association MPC. Moreover, in the 
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interview, Nadia links her design choices also to post-university education. In particular, she refers 
to courses for teachers or conferences on mathematics education that over the years she has 
carefully selected because they gave space to collective design activities and because they promised 
to provide first-hand experience of laboratories. 

Riccardo: Most of the ideas that come to me come out of the blue while I’m doing something 
else. [...] while I’m shopping, while I’m jogging, while I’m reading a book that has nothing to do 
with anything, I get ideas and then I try to develop them later. So, I can’t tell you whether 
actually, I mean whether to classify them as ideas that come out of the blue or that are the result 
of a process. They are certainly, in some way, the result of a process of which, however, I am not 
always aware here. It seems to me that they happen suddenly, but I also wonder how much this 
suddenness is due to the stimulations I had, to the thoughts I had [...]. 

Riccardo relates the spontaneous arising of ideas, during the preparation of the lesson or the 
meeting with the students, with a process of which he is not always aware, but which he recognizes 
as being conditioned by external stimuli and previous reflections. 

Claudia: It depends! Maybe we need to distinguish between the planning of the mathematical 
activity itself (a longer process of investigation, which leads me to search among books, 
websites, ideas from notes taken during conferences...) and the [laboratory] methodology to be 
used (more improvised creative ideas). 

Finally, Claudia prefers to distinguish between the spontaneity of some ideas, which initiate the 
planning – which at the beginning of the interview she recognizes to be connected with the places 
or the artefacts she has available – and the work of defining the activities, which she considers a 
work of investigation for which she uses different sources.   

Answers to Question 2 

In reference to Q2, the answers of the teachers interviewed return some salient aspects of their 
personal and professional experience. 

Perla: [...] my dimension of life has a profound influence on the creation of the activities, that is, 
in those activities there is really me! This is a certain fact and often, I try to put in what I think is 
important for children to discover, to know, that is, that can form them in some way as citizens. 
[...] the example of the project on the enlargement of the map of municipalities, where did that 
come from? It came from the fact that over the last ten years, for personal reasons, I have 
interfaced a great deal with the administrative bodies of my city [...] and I have realized how 
important it is for a citizen to know how the administrative machine works [...]  

In answering Q2, Perla asserts that what she proposes to students is strongly determined by personal 
interests and curiosities – the books and articles she reads or the movies she watches – but also by a 
range of social and cultural experiences that she has collected over time. The excerpt contains one 
of the examples she gave us, in which she recounts how her political commitment led her to 
instructional designs in which mathematical goals were intertwined with goals of citizenship 
education she recognized to be of crucial importance for her students. 

Nadia: All the activities that we realize with the association [MPC] always try to work on 
breaking distances in some way: breaking distances within the city, within a territory, within a 
class, this is a climate that I feel I always carry inside. I experience it externally in the places I 
frequent and it also influences the type of activity. 
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Nadia, as in her answer to Q1, refers first of all to her activity within the association MPC. She 
claims that the sharing of “educational responsibility” and the possibility of experiencing it as a 
“collective process” offered by the association influences the way she relates to her students and the 
dialogue she strives to create in the classroom. She also finds that her teaching choices have been 
influenced by her movement from a small town to a big city like Naples, where she currently lives 
and works. Naples gave her the opportunity to relate to a broader cultural environment and meet 
people from different cultures, drawing her attention to issues such as migrant rights, gender 
equality, or what it means to be a citizen. As shown by the excerpt, this influenced her goals as an 
educator and in particular her desire to educate to “break the distances” among individuals. 

Riccardo: Certainly, personal background comes up a lot in the design of activities. [...] To make 
students feel good in school, to make them feel good together with others and to make them feel 
free to express their opinion [...] is something that I, in some way, trace back to my personal 
background, to my life experience, to my school experience as a student, [...] but maybe also to 
the very motivation for which I decided that I would be a teacher in life. More than teaching 
math, really more about having the opportunity to interact with students to help them bring out 
their potential to interact with others. 

Riccardo believes that his personal experience as a student and his own motivation in wanting to 
become a teacher- which is characterized by the desire to educate students in comparison with 
others and in collective living – greatly influences his design choices. 

Claudia: I have been a researcher in the history of mathematics, and most of the activities created 
by me take cues from my knowledge in this discipline and my passions. I love history! And I 
really enjoy doing activities that can leave my students surprised, because I myself love finding 
myself fascinated by mathematical content when it has been presented to me in a “creative” way! 

As shown in the excerpt, Claudia believes that her previous experience as a researcher in the history 
of mathematics and her personal tastes as a student, fascinated by creative and surprising didactic 
actions, have influenced her design work the most. Moreover, answering to Q2, Claudia recognized 
that her creative attitude in didactical design was influenced by the successful professional 
experience in a particular school, situated in a poor neighbourhood of the city of Turin, which is 
characterized by the presence of many families of recent immigration.  She said: “Once I figured 
out how to ‘catch’ these guys (each in their own way, of course), my creative streak increased, 
because I could see how much my effort paid off.” Finally, she noted that the presence of students 
from different countries motivated her to design mathematical activities involving different 
cultures, such as one on number-words to reflect on the decimal number system. 

Although in different ways, all four teachers believe that their personal backgrounds and their social 
and cultural dimensions influence the work of creating teaching activities. 

Discussion 
In this first study we tried to inquire the way in which these four mathematics teachers, which are 
responsible for the educational design inside two very innovative informal mathematics projects, 
tell about their experience of creating mathematical activities and how they link it with their 
personal and cultural background. Looking at the interviews, in particular at the answers to Q1, it is 
possible to recognize in their description that the way in which the design of the mathematics 
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activities emerges is characterized by illuminating moments, but also by a “conditioned” 
spontaneity, as Nadia says. Moreover, the answers to Q2 helped to catch how the different teachers’ 
personal, professional and cultural experiences play a key-role in the realization of the very 
innovative mathematical activities they propose, both during the preparation of the lessons and 
during the meeting with the students (Freire, 1970). Perla referred to her personal interests and to 
her experience of collaboration in the administrative bodies of her city. Nadia told about the 
influence of her social commitment, through the militant activity in the association MPC, and 
beyond. Again, Riccardo referred to his school experience as a student and his educational objective 
of educating for collective living, which he sees as a priority. Finally, Claudia told about her 
research experience in the history of mathematics field and about her professional experience in a 
challenging reality, which required great effort on her part to engage the students. The answers to 
Q1 and Q2 show a very varied picture on these teachers’ perceptions regarding the sources of their 
creative educational work. Nevertheless, the same answers reveal a point of contact in the teachers’ 
pedagogical goals. All of them aim at educating at democratic citizenship through mathematics. 
Perla spoke about a project exploring with students the administrative bodies of the cities; Nadia 
referred to her (and her association) action of breaking distances, at all social levels; Riccardo 
declared his desire to educate at a collective living; finally, Claudia told how she used mathematics 
to create meeting among different cultures. In this sense it is worth to emphasize how Freire’s ideas 
were of great inspiration for the field of critical mathematics education (see, e.g., Skovsmose, 
1994). One of the most recognized pedagogical aims in this field is the intertwined development of 
critical citizenship consciousness and mathematical competencies: 

[…] mathematics should be a vehicle for students to deepen their grasp of the sociopolitical 
contexts of their lives, and through the process of studying their realities -using mathematics- 
they should strengthen their conceptual understanding and procedural proficiencies in 
mathematics. (Gutstein, 2007, p. 109). 

References 

Bakker, A., Cai, J., & Zenger, L. (2021). Future themes of mathematics education research: an 
international survey before and during the pandemic. Educ Stud Math 107(2), 1–24. 

Di Martino, P., & Zan, R. (2011). Attitude towards mathematics: A bridge between beliefs and 
emotions. ZDM Mathematics Education 43(4), 471−482. 

Freire, P. (1970/1998). Pedagogy of the oppressed. (M. B. Ramos, Trans.). Continuum. 
Gutstein, E. (2007). Connecting community, critical, and classical knowledge in teaching 

mathematics for social justice. The Montana Mathematics Enthusiast, Monograph 1, 109–118.  
Hadamard, J. (1945). The psychology of invention in the mathematical field. Dover Publications. 
Levenson, E. S. (2021). Exploring the relationship between teachers’ values and their choice of 

tasks: the case of occasioning mathematical creativity. Educ Stud Math 109(6), 469–489. 
Liljedahl, P. G. (2004). The AHA! experience: Mathematical contexts, pedagogical implications 

[Unpublished doctoral dissertation] Simon Fraser University. 
Morgagni, E. (1998). Adolescenti e dispersione scolastica. Carocci. 

Proceedings of CERME12 1775



 

 

 

Nemirovsky, R., Kelton, M.L. & Civil, M. (2017). Towards a vibrant e socially significant informal 
mathematics education. In J. Cai (Ed.), Compendium for Research in Mathematics Education, 
(pp. 968-980). National Council of Teachers of Mathematics. 

Skovsmose, O. (1994). Towards a philosophy of critical mathematical education. Kluwer 
Academic Publishers. 

Vermersch, P. (1994). The explicitation interview. French original ESF. 

Proceedings of CERME12 1776



 

Students’ thoughts on time and speed in high-stakes mathematics tests 
Nikos Makrakis 

University of Klagenfurt, Greece; nimakrakis@edu.aau.at 

Time and speed are important aspects of mathematics education and assessment. Students are 
expected to produce results in prescribed time frames, which means that they have to perform at  a 
specific pace. How does this affect students’ engagement with a mathematics test? How can a high-
stakes strictly-timed mathematics test increase the focus on speed? How can these conditions 
produce exclusion in mathematics assessment? We discuss these questions through an interview 
with a student a few weeks after she took the mathematics test of the Greek national exams of June 
2021, which is a nation-wide, high-stakes and strictly-timed mathematics test. 

Keywords: Time in education, speed in mathematics, time in assessment, mathematics assessment. 

Time and speed in mathematics assessment 
Time is an important dimension of education and affects every aspect of it. There are very specific 
time frames for every school activity and there is a predefined pace at which students and teachers 
are expected to work. In assessment, students are expected to work within very specific time limits 
and also at a specific pace (Adam, 1990). 

In mathematics assessment, research has studied the effect of speed on students’ performances. 
Some results show that students who are more mathematically anxious (Boaler, 2014) may be 
affected by the time limits of mathematics tests more than students who are less anxious (e.g. 
Hembree, 1987; Tsui & Mazzocco, 2006). There are conflicting reports on this issue and it has not 
been studied enough. 

Boistrup (2010) studied mathematics assessment through the analysis of assessment acts. One 
assessment discourse which she analyses is “Do it quick and do it right” (p. 166), which describes 
emphasis on a quick and correct final result of the student’s work in an assessment task rather than 
on the thinking process that produces this result.  

For high-stakes mathematics tests with strict time limits, the issue of the effect of time on students 
can be more complicated. High-stakes tests influence teaching, students’ preparation and learning 
very much. Teaching shifts from issues that focus on knowledge and meaningful skills towards a 
narrower focus on the tasks which are regularly included in a specific test, a phenomenon that is 
described in research as “teaching to the test” (Cankoy & Tut, 2005, p. 235). This also affects 
learning as 

more time spent focusing on procedural skills such as drills, test taking, or practice with tests 
from prior years, with little connection with conceptual understanding and qualitative reasoning, 
can distract students and encourage them to memorize procedures and to search for a single path 
to a single answer (Cankoy & Tut, 2005, p. 242). 

Research on mathematics assessments suggests there are important non-content factors that affect 
students’ performances, for example, test familiarity (Hembree, 1987). Furthermore, high-stakes 
testing increases the phenomenon of shadow education or private tutoring, which increases 
inequalities, because low-income families cannot afford it (NESSE, 2011).  
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These high-stakes tests are, often, nation-wide mathematics tests that states need for assessing and 
ranking masses of students with the minimum cost and in a manageable time frame. But, 
mathematics tests which focus on the mathematical content and not on other factors, usually, have 
to be longer, and require more time to design and to score, and more time from the students to 
complete (Suurtamm et. al, 2016). This potentially creates a tension. Firstly, time limits are imposed 
that, sometimes, can be very strict and, secondly, speed is imposed as an important skill in 
mathematics literacy. Students may be interpellated by this double imposition and form themselves 
as governable (Kollosche, 2018) subjects who are supposed to find speed with mathematics 
important and act accordingly. Thus, speed becomes a characteristic of informal social norms or 
rituals (Lundin & Christensen, 2017) of mathematics education. It, also, may be related to the value 
of efficiency that is highlighted in contemporary society and economy (Chronaki, 2017). These 
impositions provide forms of exclusion which everyone agrees on without consciously knowing and 
which, ultimately, are necessary for the economic and ideological function of mathematics 
education (Pais, 2014). 

There are questions raised by these issues about the position of the students in this framing 
(Makrakis, 2021). How are students affected by time limits in high-stakes mathematics tests? How 
do time limits of mathematics tests affect students’ preparation for them?  How do students view 
the fact that speed is expected of them in a strictly-timed mathematics test? How are these issues 
connected to the sociopolitical character of mathematics education? 

Methodology: Data collection and framework of analysis 
I will discuss these questions presenting preliminary results of interview data from a broader study 
that I am carrying out. I focus on one interview of a student that had just participated in the 
mathematics test of the Greek national exams of June 2021. Greek national exams are taken just 
after high school graduation and largely determine a student’s admission to higher education after 
students’ performances are compared to each other. Their grade in mathematics may contribute 
even more to their final score. Greek national exams in mathematics present some general 
regularities and trends as far as the preferable tasks are concerned (Thomaidis, 2021). The Greek 
national mathematics exam has a three-hour time limit, which is often insufficient (Mavrogiannis, 
2017). The test always contains four tasks, task Α asks about theory and the other tasks Β, Γ and Δ 
are mathematical problems. 

This semi-structured interview was taken, recorded and transcribed a few weeks after the exam 
through Skype (for COVID-19 safety) and a whiteboard was screen-shared. I interviewed a 17-
year-old student, Litsa (name changed), who performed well at the test. I have taken interviews 
with 13 students for my general project and Litsa was one of the typical cases. The interview 
questions were about time, speed, anxiety, and her decisions during the test in relation to the time 
limit. The interview was conducted and transcribed in Greek and translated by me for the needs of 
this paper. 

I will briefly discuss excerpts of the interview. In my comments I will include some elements of 
discourse analysis particularly, from approaches that are derived from Lacanian Discourse Analysis, 
which view discourse not as a closed structure but study of the emergence of elements from the 
Real (Lacan, 2006) behind the signifying structure, which may, also, act retrospectively. They view 

Proceedings of CERME12 1778



 

discourse in reference to the issue of the agency of the split subject and they study not only what is 
being said, but, also, latent elements, which are present through their absence (Frosh, 2014) and, 
also, nonsensical elements of discourse (Parker, 2014). 

Results 
Nikos: You said “concerning your preparation”. Did you mean (…) Did you have tests of 

prior years in order to prepare for the time limit? 
Litsa: Yes, yes, I did have tests of prior years. I, also, took mock tests held by the 

tutoring school which I attended and I timed my completing the test, uhm, in 
order for me to use less than 3 hours for sure. 

Litsa thinks that completing the test in time needs special preparation. She did past exam papers in 
order for her to be more familiar with the circumstances of the actual test. Tutoring schools 
organize mock tests (which they call “simulation tests”) which simulate the test of the Greek 
national exams. Litsa evaluates the fact that she took such a test as important for feeling prepared 
for the time limit. Apart from the timing of the test which the tutoring school held, she says that she 
also timed herself, imposing a limit of her own for less than 3 hours, in order for her to be sure that, 
when she takes the actual test, then the three-hour limit will be enough. Taking the initiative to time 
yourself is a different experience than having a time limit imposed on you, because it means that 
you have internalized the need for synchronization and performance in the expected time frame and 
you posit yourself as the one who regulates it. She tries to fit herself to the standards expected of 
her, synchronize herself and become the one who delivers the expected performance on time. 

Nikos: How anxious did you feel before and when you were taking the test? 
Litsa: All in all, before taking the test I was feeling only a bit anxious. I am not anxious 

in general. I knew that I had done the appropriate preparation. OK, I knew that it 
is mathematics – you can get stuck somewhere. But that didn’t make me feel 
anxious. When taking the test, I wasn’t anxious, I just kept writing, I didn’t even 
have the time to feel anxious. So OK. 

Litsa evaluates the fact that she had done the “appropriate” preparation as important for feeling not 
too anxious. Preparation for the test is somewhat specific. Every student is expected to have done 
past exam papers and to have solved most of the tasks that are included in the official school 
textbook and one of the 3-4 most popular books which are written to prepare for the Greek national 
mathematics exams. So, Litsa, having done this expected preparation, feels not too anxious. She, 
also, recognizes that, in mathematics, having done what is expected may not be enough, as you may 
get “stuck somewhere”. Τhat is, in a task you may not think of something to do in a given time, 
which you cannot predict beforehand. She, also, says that this did not make her feel anxious as she 
“kept writing” and “didn’t, even, have the time to feel anxious”. She, maybe, recognizes that she 
has reasons to feel anxiety, she recognizes that she cannot do anything about those reasons, and 
then she just has to perform. She knows that time may not be enough if you think too much, or if 
you feel too unsecure. She can cover those reasons by “just writing”. She, also, identifies herself as 
someone who is not anxious “in general”. So, she acts and poses as a person who is not one of those 
that get anxious, but one that just keeps writing, because she is supposed to and prepared to do so. 

Litsa: Surely, I tried to prepare to complete the test at least half an hour earlier. So, I 
started with huge rush, let’s say, to complete as soon as possible task Α and B, in 
order to have time for Γ and Δ. 

Nikos: OK. What do you mean by saying “huge rush”? 
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Litsa: As quick as possible. I wasn’t thinking much during tasks A and B. I did them 

(…), I tried to do them mechanically. That is, for them to be something I had 
already seen, so as not to waste time on this. 

Litsa says that she set a personal limit of 2-and-a-half hours to complete the test and half-an-hour to 
check again her answers. She evaluates different tasks as needing different amount of time to be 
spent on. Task Α on theory needing the least along with task Β which is considered the easiest 
problem and tasks Γ and Δ, which are considered the most difficult, needing the most time. So, 
Litsa thinks that she had to work at different paces during the test. 

Litsa says that she has to be quick, especially at some tasks. When asked to explain her “rush”, she 
says that she has to do them “mechanically”. She is describing herself as having to work very 
quickly on something so familiar that she does not even have to think about it, because she must do 
so in order to be on time and because she is prepared to do exactly that. She makes the sentence “to 
be something I had already seen, so as not to waste time on this” which is a syntactically incorrect 
collation of two phrases in order to just show that they are connected in her mind. She evaluates 
having seen similar tasks as very important in order for her not to spend time thinking how to solve 
them, because this would have been a “waste” for her, as it would result in her spending less time at 
tasks Γ and Δ, as they, actually, require thought. She evaluates writing as the only thing that she is 
expected to do at tasks Α and Β, instead of both writing and thinking.  

Nikos: Task B3 asked you to compute the asymptote line and compute a limit. Do you 
maybe remember which of the ways a., b. or c. did you try in order to compute it? 

Litsa: Huh, I don’t remember. I think, huh, just a minute, because I remember nothing. I 
think b., I’m not sure. I moved (…) I wanted to get rid of this the fact that this 
expression is indefinite. I moved one of those to the denominator, so (…) I don’t 
remember how I thought of it (…) 

Nikos: Did you do it on the first or the second try? 
Litsa: On the second. I think. I’m not sure. 
Nikos: (…) If you tried it with way b, then it couldn’t be computed. It could be computed 

with ways a. and c. So, you began with way b, and then moved on to a. 
Litsa: I did it for sure. For this kind of tasks I begin using one way or the other and then 

I see if it can be computed. If not, then I do the other way. 
Nikos: OK. Do you think that there is a way to think which of those two ways can 

produce the outcome? Or do you choose by luck? 
Litsa: By luck mostly, but… because  (…), I don’t remember now, when you 

compute the derivative, I think that it cannot produce the outcome, right? Do you 
move that to the denominator? I did this mostly by luck, I didn’t think about this 
with enough (…) mechanically. I didn’t remember. 

Nikos: So, then, you choose a way by luck, but you knew that it may not be able to 
produce the outcome, and then you would try another way, right? 

Litsa: Yes, yes, yes. That’s what I do usually. 
Here Litsa was asked which way she chose in order to try and compute the limit . The 

three possible ways were: a.  b.   and c. . Only ways a. and c. can 

produce the required outcome. She remembered that she tried way b. and then moved on to try way 
a. and finally did manage to produce the required outcome. When asked if she chose this specific 
way by luck, she agreed. She is aware that for this task she could not know which way would 
produce the required outcome before making the necessary computations. So, she says that she had 
to choose by luck and if the way she had chosen failed, then she had to try another one and not 
think about this any further. Here, she makes a syntactical error just to squeeze the word 
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“mechanically” into her sentence. She thinks she is not supposed to think about this point, but just 
to choose a way, and if she hits a dead-end, she tries again, in an automated process, in order for her 
to be on time. She says that she usually does so. She expects this to happen and she isn’t surprised 
by it. She shares no thought that this approach may make her lose time. 

Nikos: Do you think that in order for someone to succeed at the mathematics national 
exam it is required of them to be quick at doing mathematics, and why? 

Litsa: Uhm (…), I would say yes. Because national exams tests have a narrow time 
frame and if you get stuck somewhere (…) uhm (…) and you do not move on 
quickly to the next tasks, you won’t be able to spend the time that you want on it. 
So, generally, yes. To be fast to complete the first tasks quickly, because the next 
ones really require to put thought on. So, if you don’t have this time, then you 
can’t solve it. 

Here Litsa evaluates speed as important and relates it to the “narrow time frame”. Since you are 
expected to operate in this narrow time frame, you really have to be quick and not “get stuck 
somewhere”. For her, being quick means not getting stuck, because if you do get stuck, then you 
spend more time than what you are supposed to. And this is not the same for each task, as she 
repeats that she feels that the first tasks require more time than later ones. So, if you do not do the 
first ones quickly, then you will not have the time “you want” on the later ones. She says “you 
want”, but who is the one that wants? Is it herself? Is it what is wanted of her by others or, maybe, 
what she thinks is wanted of her? 

She says that the last tasks are the ones where you are required to “put thought on”. For the first 
ones you are not, you just have to complete them as fast as possible and this means without 
thinking. Therefore, no thought somewhere is described as the precondition for thought elsewhere, 
with time being the key here. 

The tasks where you do not have to think, tasks Α and B, assess theory and basic problems. If you 
complete them without mistake, then you get half marks and you score about average. But Litsa is a 
good student who expects and is expected to perform very well. So, she may not have to “put 
thought on” the tasks that get you just average performance. She may think that it is almost self-
evident for her to do them without thinking. And just to do them quickly in order for her to “put 
thought on” the tasks that really matter for a student of her expected performance, tasks Γ and Δ, 
which are always more difficult. 

Nikos: Do you think that in order for someone to be good at mathematics, they have to 
be, also, quick at doing mathematics and why? 

Litsa: OK, maybe. In the sense that (…) I don’t know, actually. Yes, I usually correlate 
it with quickness, so OK, someone can be good and solve a task for many hours 
and so on, but I find better someone who solves them fast. Uhm (…), it comes to 
their mind automatically. It doesn’t require much time and so on. Which means 
that they have done more practice. They have worked on them more, so, 
consequently, they can solve more complex problems faster. 

Nikos: Uhm, so you are saying that being good relates to speed at doing math in your 
opinion. 

Litsa: Yes, it relates to a point, in my opinion. 
Nikos: And you say that displaying speed, they show that they have practiced enough on 

what they are solving and this is an element which you say that it shows that they 
are good. Is that what you mean? 

Litsa: Yes. Of course, this doesn’t go for every case. There are people who find it more 
difficult and need more time. Or people who have not practiced at all and they 
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solve the tasks quickly. But, on average, I think that the one that solves the tasks 
quickly is the one that has practiced a little, just a bit more than the rest. 

Nikos: You said that [the one that] has practiced more, but, also, the one that shows that 
they have practiced more. Right? So you believe that it matters to be shown that 
they have practiced more. Is that what you mean? 

Litsa: What do you mean? In quickness? To show that they have practiced more? 
Nikos: For them to show their familiarity with what they are dealing at that moment. 
Litsa: Yes, certainly. When someone is solving a problem fast and so on, yes, it is 

shown that they are pretty familiar with it. They go qui (…), their mind is inside 
this process. It works mathematically. So, reasonably, they are more familiar. 

Nikos: OK. What do you mean by saying “their mind works mathematically”? 
Litsa: Generally, every mathematics problem has a certain process to be solved. So, a 

deductive (…), a deductive way of thinking. You begin. You draw conclusions. 
You analyze them. Then, you connect them in order to find the solution to the 
problem. Surely, it is something that you can acquire very difficultly, let’s say. 
And it is the most difficult part in mathematics, for you to get in the process of 
thinking in this way and analyzing every piece of data that you are given and 
drawing conclusions. So, this particular part is that which need the most work and 
which shows who has acquired a mathematical way of thinking. 

Nikos: And for you, do you believe that this is shown when they do it faster, also? That 
this is something that helps you do that? 

Litsa: Yes, this is an indication, yes. 

Here, Litsa says that she considers someone is better at doing mathematics when they solve 
something faster than someone who actually solves it but takes many hours. She says that the 
reason for this is that the first solves it automatically and it comes to their mind “automatically”. 
Automatically, like mechanically, means that they do not have to do something, they do not have to 
think or process something, they just solve it. Here, in her descriptions of the difference between 
someone who is and is not good at mathematics, we can find a gap. She repeats that being faster at 
solving a task means being better at doing mathematics, because this shows that you have spent 
more time practicing. Having practiced shows as familiarity and quickness, and this allows you to 
be considered better at mathematics. Is there a possibility that someone has practiced a lot, but this 
doesn’t show as quickness? She says yes, but “on average” no. “On average” is a statistical 
measure, but in common speech it can mean other things, too, like “normally”. It may be used as a 
manifestation of a norm, which may have exceptions, but still counts. 

She, then says that the person who does mathematics quickly and shows being familiar with the test 
indicates that “their mind is inside this process” and “works mathematically”. She explains this as 
having deductive thought. She uses the Greek word “Παραγωγική”, which, apart from “deductive”, 
also means “productive”.  When she describes it, of course she does not describe deductive 
reasoning, but another process. She describes that a student facing a task may start by making some 
initial results that can be drawn firstly by the data. After that, they have to find ways to connect 
these results in order to achieve the requested outcome of the test. In order to do that the student has 
to have experience and also to try out different things which may fail. The process of course takes 
time, so this is in contrast with what she says earlier. Students who take less time, are those who 
actually take the time to do what is asked. Here she appears to describe a situation in which the 
students that are supposed to solve it, are the ones to actually solve it. She says that “this particular 
part is that which need the most work and which shows who has acquired a mathematical way of 
thinking”. So, she thinks that there are students that have acquired this “mathematical way of 
thinking” and others that have not. And speed at doing mathematics is an “indication” of that. 
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Discussion 
The timed conditions of high-stakes, strictly-timed mathematics tests shape the way students view 
and prepare for them. Students may feel that the performance expected of them requires very 
specific preparation according to time. Students may feel that they have to fit the pace by which 
they solve tasks to a required time frame. They may view this as fitting a norm which is considered 
familiar and relevant to mathematics a type of social synchronization in doing mathematics. 
Students may view their speed at doing mathematics as a characteristic that defines their identity as 
students of mathematics, i.e. as those who perform in the required time frames or as those who do 
not. Students are interpellated by this framing. 

This, maybe, produces a fantasy of the ideal student of mathematics assessment, who does not only 
know mathematics, but also preforms mathematics in a quick and automated way, in a minimal time 
frame, and this is reflected directly and objectively in their assessment score. Students who do not 
fulfill this fantasy may be excluded, and this fantasy itself retrospectively justifies their exclusion. 
That is, mathematics assessment tests are supposed to assess if you are good at mathematics. But if 
there is a latent belief that being good at mathematics also means fast, then some mathematics tests 
assess speed, too. So fast students will, mostly, succeed and then the fantasy of the ideal quick 
mathematics student will be fulfilled retrospectively. This fantasy acts as one of the ideological 
presumptions, which normalize the exclusion produced by mathematics education and assessment 
and, also, make possible its reproduction in the future. 

If doing mathematics is described as a ritual influenced by social and discursive norms, then this 
ritual is, also, a ritual that happens in time. In mathematics assessment tests with strict time limits, 
the line that shows what is mathematical and what is social is even more difficult to recognize. This 
affects the identifications that students make in relation to mathematics. And this produces 
exclusions which have less to do with mathematics than we commonly think. 
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Introduction  
The study of educational reform initiatives is not a neutral enterprise. It needs to take into 
consideration – among other factors- the social and cultural heritage in which the given reform is 
situated (Ball & Lewis, 2008). In other words, for a reform in mathematics education to be socially 
accepted and practically effective, it needs to be bought into by the actual stakeholders in closest 
relation to learners and by the learners themselves. Hence, we can consider these social 
stakeholders as pillars of capital that make or break the reform initiative enactment. Building on this 
contextual view of educational reform, this poster is underpinned by a historical investigation of 
reform patterns in Egypt. It utilises a widened perspective on forms of capital, in an attempt to 
analyse patterns of societal buy in that have evolved over the years and that can be traced as part of 
the recent reform initiative in mathematics education in Egypt.  

Theoretical Underpinning  
This poster is based on the forms of capital theory, in which Bourdieu (1986) distinguishes between 
three types of capital; namely: economic, social and cultural capital. The latter two refer to the 
power of societal buy in and cultural heritage to contextually determine how a given initiative gets 
received and practiced. These three forms of capital are underpinned by what Bourdieu (1986, 
p.256) refers to as “the historical baggage” of a given context. “The historical baggage” is marked 
by eras that have shaped the cultural and societal topology of power dynamics. For the scope of this 
poster, based on the historical inquiry process (Hicks & Doolittle, 2008), I present a work-in-
progress literature review covering three main eras of educational reform along the modern Egypt 
educational historiography, namely the post-colonial era (1914-1922), the republican era (starting 
1967) and the era of global and open economy (1971 onwards). Patterns noted in these times serve 
as a lens for better investigate the current social tension around the current educational reformation, 
which aims to move away from a longstanding tradition of memorisation based instruction 
(Megahed, 2018).  

Three eras of mathematics education in Egypt  
Centered around the depiction of a historical baggage, the poster uses the historical inquiry process 
to illustrate the aforementioned three selected eras of societal transition in educational policy in 
Egypt, which show a repeating trend of societal power dynamics, presented more elaborately 
below.  
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Mathematics education in post-colonial Egypt: Two-tier structure 

During the British colonisation, the modern Egypt was exposed, over an extended period of time, to 
a westernised education system in mathematics, which focused on creation and problem solving. 
This philosophy was socially foreign to the local eastern educational culture at the time. The 
westernised curriculum was only available to the elite, which resulted in the mainstay of a societal 
and cultural divide. This divide in educational ethos triggered the first, so called two-tier structure 
of education in Egypt which was largely sustained even after the colonisation (Heyworth-Dunne, 
1968).  

Mathematics education in the Republic of Egypt: Centralised Governance Model 

In an attempt to offer equal opportunities for all, the government of Egypt, in 1967 took the radical 
step of unifying the curriculum across contextual affordances. The curriculum was centrally 
controlled by the government. The idea was to ensure the same curricular enactment is replicated 
irrespective of educational context, thereby closing the longstanding socio-cultural gap, which was 
created by the two-tier structure and safeguarding the system against extremist stimuli 
(Sayed,2006).  

Mathematics education in the open economy of Egypt: Back to two-tier structure 

President Sadat practiced a relaxed policy of open economy, which in turn gave rise to western 
investment in national education. Despite being heavily controlled by the national agenda for 
education, the elite had the opportunity to be educated differently; a societal trend that again gave 
rise to the return of the two-tier structure. Memorisation based instruction was again the ethos of the 
mainstream channels for education, while problem solving was taught selectively (Sayed, 2006).  

Discussion 
With this toggling trend of access, the mainstream of educational stakeholders have over the years 
solely been exposed to memorisation based instruction. This explains the reality which fostered the 
mainstay of the socio-cultural divide. Shifting suddenly to a different mathematics instructional 
model is understandably perceived as foreign to the mainstream and unwelcomed by the elite. The 
growing need to include Egyptian students, often refugees, at European schools gives rise to the 
importance of understanding the contextual reality that these learners come from and how they 
relate to western educational practices. This makes this poster relevant beyond the case of Egypt.  

References  
Ball, D.L. & Lewis, J. (2008). Making mathematics work in school. Journal for Research in 
Mathematics Education. 14, 13-201.   

Bourdieu, P. (1986). The forms of capital. In I.Szemann & T. Kaposy, Cultural Theory: An 
anthology (pp. 81-93). Oxford: Wiley Blackwell.  

Heyworth-Dunne, J. (1968). An introduction to the history of education in modern Egypt. Bristol: 
Burleigh Press.  

Proceedings of CERME12 1786



 

 

Hicks, D. & Doolittle, P. (2008). Fostering analysis in historical inquiry through multimedia 
embedded scaffolding. Journal of theory and research in social education. 36(3). 206-232.  

Megahed, N. (2018). Voices of teachers in academic and vocational secondary schools in Egypt: 
Perceived consequences of educational reform for quality and equality. Journal of Education and 
society inequality in the global culture. Ain Shams: Springer.  

Sayed, F. (2006). Transforming education in Egypt: Western influence and domestic policy reform. 
Cairo: The American University in Cairo Press.  

Proceedings of CERME12 1787



 

 

Universal Design for Assessment in mathematics 
Juuso Henrik Nieminen 

The University of Hong Kong, juuso@hku.hk 

Universal Design for Learning (UDL) is a commonly used framework for designing accessible 
learning environments. While UDL has been reportedly applied to testing situations, much less is 
known about how classroom assessment (e.g., formative assessment) could be designed accessible 
to support the learning of all students. In this conceptual study, the previously introduced idea of 
Universal Design for Assessment (UDA) is reformulated in the context of mathematics. It is argued 
that in the test-driven assessment culture of mathematics, UDA holds specific promise; recent 
studies have noted that mathematics assessment does not enable students with disabilities to 
participate fully due to inaccessible practices. The proposed framework discussed how UDA could 
promote the following guidelines in mathematics assessment: i) partnership, ii) diversity, and iii) 
dialogue. 

Keywords: Mathematics assessment, Universal Design, accessibility, diversity, ableism. 

Introduction 
It is a publicly known secret that classroom assessment has been unable to meet the needs of 
students with disabilities. In assessment, disabilities are not seen as something to be celebrated but 
as something to be overcome. Assessment with both its summative and formative purposes largely 
draws on individualised assessment accommodations rather than on inclusive practices; students 
with disabilities are seen as the problem to be fixed, not assessment itself (Nieminen, 2021). 

While recent contributions have critically examined how mathematics education constructs 
disabilities through inaccessible teaching practices (e.g., Lambert, 2015; Nardi et al., 2016; Tan et 
al., 2019), much less attention has been given to assessment. This is surprising given how test-
driven the assessment culture of mathematics is. As shown by Nieminen (2020), mathematics 
assessment plays a crucial role in disabling students. The test-driven culture of mathematics does 
not only create barriers for learning but for inclusion and participation by excluding students with 
disabilities from other mathematics learners both physically and socially (Bagger, 2022). 

In this conceptual study, the commonly used framework of Universal Design for Learning is used to 
rethink mathematics assessment as an inclusive endeavour. This study draws on earlier critical work 
to understand ableism in mathematics education (Padilla & Tan, 2019): how assessment produces 
an ideal of certain normality and then excludes students who do not fit this ideal of a normal, able 
student (Nieminen, 2022). Rather than focusing on the pitfalls of current assessment practices, this 
study reaches further by formulating a framework for Universal Design for Assessment to guide 
future research and practice in mathematics education. First, Universal Design is introduced. 

Universal Design for Learning 

Overall, Universal Design refers to accessible design for everyone, originating from the field of 
architecture. In education, Universal Design has been largely promoted through the pedagogical 
framework of Universal Design for Learning (UDL). UDL refers to accessible pedagogical design 
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that “proactively builds in features to accommodate the range of human diversity” (McGuire et al., 
2006, p. 173). Due to such underpinnings, UDL is often connected with the social model of 
disability that does not understand disabilities as a deficit to be cured but instead sheds light on 
educational practice that actively disable students. While UDL has been most commonly used to 
design accessible practices with disabilities in mind, recent contributions have expanded the notion 
to address, for example, racism (Waitoller & Thorius, 2016). The UDL model encompasses three 
main principles, as formulated by CAST (2011): 

 Engagement (the ‘why’ of learning): Multiple ways for stimulating interest. 
 Representation (the ‘what’ of learning): Multiple ways for representing knowledge. 
 Action & Expression (the ‘how’ of learning): Multiple ways to express knowledge. 

UDL builds specifically on the very idea of design: rather than drawing on retrospective, individual 
adjustments it instead shifts our gaze to careful design of learning before the learning process itself. 
While UDL has been largely promoted in educational policies and practices, thus far such designs 
have been rarely reported in mathematics education. 

Universal Design for Assessment 

While UDL has been widely promoted in education, its implementation in assessment has received 
less attention. Accessible design in test item design has been noted, and indeed Universal Design for 
Assessment (UDA) has so far focused on how to design accessible large-scale exams (see Ketterlin-
Geller et al., 2015). It is fitting that the seminal study by McGuire and colleagues (2006) only 
referred to UDL in assessment in terms of large-scale national testing. 

Some more holistic conceptualizations have been offered. Ketterlin-Geller (2005) defined UDA as 
“an integrated system with a broad spectrum of possible supports so as to provide the best 
environment in which to capture student knowledge and skills” (p. 5). Ketterlin-Geller and 
colleagues (2015) discussed UDA in terms of target and access skills in assessment. According to 
the authors, assessment is intended to ‘measure’ certain skills and abilities (target skills), while 
other skills might also influence students’ performance while demonstrating their mastery (access 
skills). Through careful pedagogical design, the interference of access skills can be minimized (e.g., 
a large font size ensures accessibility in a test so that the test item measures the intended 
mathematical skill). 

However, to date, earlier studies have not built a critical framework to guide the design of 
classroom assessment in all its diversity beyond test design (e.g., self- and peer assessment) 
(Nieminen, 2022). Moreover, there is a need for a mathematics-specific UDA framework to address 
the ableism and inequity related specifically to mathematics assessment. 

A socio-political, mathematics-specific framework for UDA 
In this conceptual study, UDA is reformulated in the context of mathematics education. Recently, 
there has been a call for critical approaches to challenge ableism in mathematics education 
regarding students with disabilities (Tan et al., 2019). This is exactly the approach taken in this 
study. In fact, the UDL framework has been criticised for its focus on pedagogical design over 
challenging ableism and injustice, trading disability activism into an ‘activation of neural networks’ 
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(Nieminen & Pesonen, 2020). In the words of Hamraie (2016), UDL has become “emblematic of a 
depoliticized orientation toward disability” while largely ignoring “systems of oppression such as 
racism, sexism, or ableism” (p. 302). Following Hamraie, this study uses UDA as an inspiration but 
ties it with a critical approach. The UDL framework is reformulated as a novel UDA framework for 
mathematics assessment (Table 1). While introducing the UDA guidelines in the following sections, 
the main issues in mathematics assessment are introduced from the viewpoint of equity and 
disability rights. The study mainly focuses on the viewpoint of students with disabilities, but the 
framework holds promise for intersectional work too (Nieminen, 2022; Waitoller & Thorius, 2016). 

Table 1: The reformulated framework for Universal Design for Assessment in mathematics 

Original UDL principle Engagement Representation Action & Expression 

Revised UDA principle 
in mathematics 

Partnership Representation & 
Diversity 

Dialogue 

 

UDA principle 1: Partnership 
The issue: In test-driven assessment cultures, students are merely the targets of assessment rather 
than active agents. In other words, students are objects in assessment, not subjects. Even when ideas 
such as Assessment for Learning are promoted, the process tends to be dominated by teachers’ 
actions and choices. As students are not enabled opportunities to co-design assessment practices, 
they might learn to be dependent on teachers’ actions rather than to truly ‘own their own learning’. 
The effects of such unilateral idea of assessment might be more prevalent for students with 
disabilities who have historically been dependent on teachers’ actions (Nieminen, 2021) and in 
mathematics education (Lambert, 2015; Tan et al., 2019). As the medical model of disability 
dominates in assessment, students are dominantly seen as the objects of support services determined 
by others. 

The first UDA principle draws on the ideal of democratic education that understands learners’ 
rights to take part in actions and decisions that concern themselves. This is achieved through the 
principle of partnership that provides students with opportunities to act as co-designers of 
educational practices (Cook-Sather et al., 2018). Matthews and colleagued (2021) noted that while 
co-design practices has been reported widely in educational literature, such approaches have been 
rare in assessment. This highlights the urgency of the first UDA principle, especially in the test-
driven context of mathematics assessment. The first UDA principle taps into the design-based roots 
of UDL (McGuire et al., 2006). Traditionally, UDL has emphasised that accessible educational 
design benefits everyone. The design process should hear the voice of the end users: designing for 
students with disabilities is not enough as assessment needs to be designed with them. This was 
noted by Nieminen and Pesonen (2020) who reported a university mathematics course whose 
design drew on UDA. As the design process only heard students’ perspectives after the course 
design, the process was certainly not inclusive; a worthwhile lesson for both the authors and the 
readers! Importantly, the first UDA principle emphasises that all students need to be heard in 
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assessment design processes, but marginalized students in particular to enable accessibility 
(Cooker-Sather et al., 2018; Matthews et al., 2021). 

In practice, the first UDA principle means that students are enabled possibilities to design the 
mechanisms of assessment. The principle disrupts the individualizing nature of assessment by 
rendering the mathematics assessment design process as a collaborative, communal project (see 
Matthews et al., 2021). Traditionally, it is the teacher who determines the learning goals and then 
designs assessment accordingly. While seeing students as partners, they need to have their voice 
heard in terms of which assessment practices are used and how. Experiences of co-design might be 
especially powerful for students with disabilities as this way they could feel sense of agency in how 
their mathematical skills are assessed: they indeed become subjects in assessment. 

Students might co-construct a rubric with the teacher and, in the process, engage in a discussion 
about the relational standards regarding mathematical skills and knowledge. Students could design 
novel assessment practices, perhaps drawing on accessible digital technologies. Students with 
disabilities have been shown not to be able to fully participate in mathematics tests (Bagger, 2022; 
Nieminen, 2020); students could co-design other, more accessible forms of both summative and 
formative assessment. Even tests can be communally co-designed as reported by Rapke (2016) in 
the context of university mathematics. In Rapke’s study, students have an opportunity to co-design 
a mathematics exam, as sitting an exam was required by the regulations of the university. This way 
this summative practice became a communal process instead of an individualised practice in one 
given time. 

Assessment co-design processes (e.g., students taking part in constructing digital assessment forms) 
could promote students’ understanding of mathematical knowledge and how this could be validly 
assessed: this is assessment literacy in action. As students learn the ‘hidden mechanisms’ of 
mathematics assessment, they also learn to examine their own assessment actions reflexively. For 
example, Nieminen and Lahdenperä (2021) discussed how mathematics students’ preference for 
traditional assessment practices resulted from an assessment culture that undermines students’ 
assessment literacies. Instead, students could be trained to critically examine how mathematics is 
and should be assessed, and what their active role in the process could be. Fostering assessment 
literacy is especially important for students with disabilities. This way students can learn not to only 
determine themselves as mathematical learners through the assessment information provided by 
others. 

UDA principle 2: Representation & Diversity 
The issue: Mathematical knowledge is most often presented in the form of text. While graphs and 
graphical illustrations are an important part of presenting mathematical knowledge, in the end, what 
is considered as the most powerful form of representation is abstract mathematical text and 
notations. In mathematics assessment, time has been another crucial determinator of mathematical 
knowledge. This is most imminent in controlled testing situations. These very boundaries of text 
and time are not accessible for all learners (Bagger, 2022; Thomas et al., 2015). While inaccessible 
representation of knowledge can exclude learners from mathematical communities in overt forms 
(e.g., by dividing students with hearing and vision impairments to segregated classrooms), covert 
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forms are also present. For example, students with dyslexia might feel they do not belong in 
mathematical communities due to the dominance of visual text format (Nieminen, 2020). 

Much like the original UDL principle, the second UDA principle promotes the idea that 
mathematical knowledge can be represented through a variety of ways. This UDA principle 
promotes multiple forms of media in presenting mathematics. For example, mathematical 
knowledge could be presented in the forms of images, videos, and embodied ways such as dance, 
gestures, signs and movements. In assessment situations, and especially in summative assessment 
tasks, enough time should be provided for students for whom time management itself might be an 
access skill (see Ketterlin-Geller et al., 2015). Mathematical concepts are often presented in 
unnecessarily complex ways, especially in high schools and universities. The UDA principle 
reminds about the ableist underpinnings of abstract mathematical text and the preferred fast pace of 
mathematical learning and assessment. Sometimes it is simply colors and images that are enough to 
provide accessibility; even such simple ideas might disrupt the ableist norms of mathematical 
representation. This UDA principle ensures that the need for individual assessment 
accommodations is lowered, supporting not only students with disabilities but also, for example, 
those needing extra support with language (Thomas et al., 2015). 

In order to be successful, UDA needs to disrupt the ableist norms of mathematics assessment (cf. 
Nardi et al., 2016; Padilla & Tan, 2019). Nieminen and Lahdenperä (2021) showed how 
mathematics assessment sets boundaries for what counts as mathematical knowledge, thus setting 
epistemic boundaries for who can know mathematics and how. Even if teaching practices would 
promote conceptual understanding of mathematics through multimodal ways, assessment might 
override such representations by reminding what is truly important: individual performance textual 
summative assessment. Indeed, students in Nieminen and Lahdenperä’s (2021) study expressed that 
the knowledge produced through self- and peer-assessment is invalid. According to the students, 
such formative assessment practices could be used, but exams show what one’s real mathematical 
skills are. Such a hegemonic role of tests is ableist, as students with disabilities are excluded not 
only socially but epistemically. They are taught to understand themselves as the ‘others’ who are 
not able to fully participate in one of the most sacred rituals in mathematics education: the exam. 

The second UDA principle holds promise for many marginalised forms of knowledge. Mathematics 
assessment always privileges certain forms of knowledge over others. What students with 
disabilities learn in mathematics assessment is that their personal epistemologies – the knowledge 
about themselves, their very personhood through which they operate as mathematical thinkers and 
doers – are something to be overcome, not celebrated. This of course aligns with the harmful idea of 
disabilities as deficits (Lambert, 2015). Thus, this UDA principle calls for assessment practices that 
allow students to inclusively use their “cultural repertoires, identities and out-of-school activities” 
in assessment (Waitoller & Thorius, 2016, p. 384). In this way, marginalized forms of knowledge 
can be valued in assessment by offering students various ways to understand themselves as 
mathematicians. For example, both formative and summative assessment tasks could draw on the 
language (in its both verbal and nonverbal forms) and cultural knowledge of students themselves. 
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UDA principle 3: Dialogue 
The issue: As noted, mathematics assessment is globally built around testing. Even when other 
forms of assessment are introduced, tests still remain in the very centre of assessment and grading 
mechanisms of mathematics. Yet it is tests in particular that causes barriers for students with 
disabilities (Bagger, 2022). To foster inclusivity, mathematics assessment needs to diversify its 
practices to enable all learners to show their skills and capabilities. 

The UDL principle of Action & Expression promotes various actions through which students can 
demonstrate their skills and knowledge. The second UDA principle is built on this premise: it 
reminds that all students have the right to be assessed through a diverse menu of practices (e.g., 
self- and peer-assessment, portfolios, group assessment…). Such practices should also be provided 
through multiple forms of media (cf. UDA principle 2). UDA principle 2 focused on the 
presentation of knowledge, but the third principle emphasises that diverse assessment should be 
used to widen the very idea of what it is to do mathematics. The principle draws on earlier work 
that has promoted very similar ideas in terms of mathematical tasks (e.g., Nardi et al., 2016). 

This UDA principle promotes dialogue as the main purpose of assessment. When assessment draws 
strongly on summative practices, assessment becomes a monologue. The concepts of ‘dialogic 
assessment’ and ‘dialogic feedback’ have been used to emphasise how the learning potential of 
assessment is best achieved when students have an opportunity to use feedback (Steen-Utheim & 
Wittek, 2017). This means that assessment is not primarily used as the last word but that students 
could utilise feedback to enhance their mathematical work and understanding further. Importantly, 
such feedback could be produced in a dialogue not only with the teacher but with other students as 
well – or even with non-human actors such as computers (e.g., through automatic digital feedback). 

The learning benefits of dialogic feedback and assessment are discussed elsewhere (Steen-Utheim 
& Wittek, 2017), but here the focus is on how such practices promote inclusivity and accessibility. 
As summative and formative assessment are both understood as forms of dialogue, focus can be 
shifted from only discussing the ‘validity’ and ‘reliability’ of assessment (as is often the case in 
mathematics assessment). Just as in any dialogue, the importance of content should surely not be 
neglected: for example, inaccurate feedback does not promote learning nor inclusion. Viewing 
assessment as a dialogue it becomes possible to notice all aspects of interaction and dialogue, such 
as expression of mathematical language (Thomas et al., 2015) and bodily expressions such as 
gestures and signs. In a dialogue, students with disabilities need to have their voice heard: what 
novel assessment innovations are yet to be discovered (cf. UDA principle 1)? Could mathematical 
knowledge be demonstrated through a dance? Tests might have their place in mathematics 
assessment, but only as a part of dialogue. For example, perhaps students might wish to back up 
their test results with a digital portfolio where they could save evidence of their learning in various 
forms (video, images, social media posts…). 

Dialogue in mathematics classrooms rarely happens only between the teacher and a student. The 
third UDA principle also includes the idea of communal interaction within the whole learning 
community in the classroom and beyond, extending to families and school communities. In 
mathematics assessment, students often produce artefacts only for the purposes of assessment (e.g., 
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tests or essays). However, through communal assessment it is possible to challenge the epistemic 
idea that mathematical abilities are purely individual (Nieminen & Lahdenperä, 2021) by producing 
something concrete and useful as a part of the assessment task (Nieminen, 2022). For example, it is 
possible to conduct assessment in the form of a communal real-life project. Perhaps students might 
want to demonstrate their statistics skills by conducting a survey about inequities in their school 
context. In such communal projects, all students can participate through their personal ways of 
communication and interaction, everyone working inclusively toward a communal goal. 

Just as any dialogue could take multiple and sometimes even surprising turns, mathematics 
assessment now becomes a risky business. As students with disabilities learn to use assessment and 
feedback for their own purposes (call it ‘assessment literacy’ or ‘critical thinking’), the results 
might not be what educators wanted it to be in the first place (students might even decide they do 
not want to engage with mathematics at all!). This is the beautiful risk of democratic education. A 
sustainable dialogue cannot be dominated by any actor, which also holds true for mathematics 
assessment. 

Conclusion 
UDA offers a valuable framework for mathematics education to strive for accessible ways to assess 
students’ mathematical skills. While offering practical tools, UDA is, above all, a way to examine 
mathematics assessment through a critical lens. It offers mathematics educators a way to render 
assessment – traditionally a major source for inequity (Bagger, 2022; Nieminen, 2020, 2021) – as a 
tool for inclusion. Thus far disabilities have been understood as deficits in assessment: if we wish to 
celebrate diversity in mathematics classrooms, assessment simply must be rethought. 
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Background 
The overall goal of the research project presented here is to investigate and produce knowledge 
about how students and teachers are learning mathematics when presented with mathematics in the 
context of climate change. Climate change offers a timely and to many people relevant problem, 
and this problem consists of amongst other things ethical considerations. There are no easy 
technical solutions to the problem of climate change and the norms and values to address the 
problem differs around the world (Block, 2019). These norms and values are based on ethical 
standpoints. It is these that will be discussed and exemplified in mathematical examples in a series 
of lessons in school-based research. 

School-based research 
For my coming school-based research, a series of lessons will be created to exemplify how ethics 
and mathematics are intertwined and, in the classroom, there will be discussions about ethical 
considerations concerning climate change. Different ethical standpoints and perspectives will be 
presented to the students, illustrating the complexity of the problem of climate change. Articles 
dealing with the ethical implications concerning climate change are multiple in the research 
community. Gardiner (2011) argues that climate change plays a fundamental role due to decision 
making, which affect animal and future generations. Gardiner (2011) also point out some reasons 
why it is hard to be ethically sound. Local emissions have a global effect. A decision in one place 
may have implications in a totally different place in the world. Raymond (2004) argues for an ethics 
of commons. The atmosphere is a global common good and he proposes that the emissions should 
be allocated between nations. It could be done by using the principle of equal burden. Meaning that 
nations should reduce their emissions based on the burden of this reduction. Another approach 
based on equal human rights would be to allow an emission level per capita. Shue (1999) concludes 
that “whatever needs to be done by wealthy industrialized states or by poor non-industrialized states 
about global environmental problems, the costs should initially be borne by the wealthy 
industrialized states” (p.111). He then describes the reasoning behind this conclusion and how 
proportional and progressive burden can be explained. All these suggestions mentioned above are 
based on different ethical assumptions, and are examples of what can be presented and discussed in 
a mathematics classroom regarding ethics and climate change. They also deal with mathematical 
concepts, for instance proportionality and progression, that can be used as examples. The 
mathematical examples the teacher make to illustrate climate change, through graphs, diagrams and 
tables influences how the discourse is formed and has implications on the finding of possible 
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solutions to climate change. These choices and implications are something both the students and the 
teachers must be made aware of. 

Methodology and analysis 
In the upcoming project, data will be collected through interviews with the students and the 
teachers. The analysis of the data will be performed using actor-network-theory (ANT). It is a 
methodological approach to study social phenomena where everything exists in a continuously 
changing network of relationships (Latour, 2005). As Latour (2005) describes, everything that 
happens in a social situation takes place on the same level. So, for instance, humans as well as 
objects have agency, and both play a role in creating a social situation. In ANT there are two central 
concepts, mediators and intermedieries. Mediators “transform, translate, distort, and modify the 
meaning or the elements they are supposed to carry”. (Latour, 2005, p.39). Intermedieries on the 
other hand, is what transports meaning without transformation: “defining its inputs is enough to 
define its outputs” (p.39). But how do we distinguish between mediators and intermediaries? Latour 
mentions that to learn ANT is nothing more than to “become sensitive to the differences in the 
literary, scientific, moral, political, and empirical dimensions of the two types of accounts” (p.109). 
I will look at the student as an actor and mathematics as an actor and how the two-trough translation 
is changed into a mathematician - an actor-network - a new entity with new agency. What are the 
necessary interactions for this translation to be successful? 

Discussion questions 
 What are suitable mathematical examples based on ethical standpoints that can be useful 

when teaching and learning mathematics in a climate change context? 
 What should be the main focus when using ANT as methodology in this research, is it the 

students, teachers as actors or maybe Climate Change as a token, and how these are changed 
by the interaction in the classroom? 
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This paper presents an investigation in which eight-grade students (14 to 15 year olds) are 
encouraged to engage in context-oriented reflection related to the mathematical measurement of 
geometric shapes. The contribution of such reflections to societal and socio-political challenges is 
not primarily aimed at critiquing society or mathematics. Rather, the objective of this study ends 
one step earlier by providing students with a better grounding for such critique (be it positive or 
negative). By means of interviews, data are produced to provide a deeper look into the students’ 
reflective processes. Evaluation results show that, in their work, students address the context of 
buildings and their furnishings. This and other aspects are used to analyze reflection processes and 
results of varying profundity. 

Keywords: Reflection, mathematical literacy, geometric shapes, calculative measurement of sizes.  

Introduction 
Context-oriented reflection is advocated by various authors (e.g. Skovsmose, 1998; Schneider, 
2019). For the present investigation, the definition of context-oriented reflection is based on that of 
Schneider (2019), in whose research project I am involved. Here, context-oriented reflection means 
reflecting on mathematical concepts and the effects that arise from using them in different contexts 
of our world and society. Thereby, reflecting means thinking about the characteristics, connections 
and relationships that cannot be read off by the given fact (Schneider, 2019; Plunger, 2021). What 
can be read off by given facts or not depends on the prior knowledge of the reflecting individual. 
Context-oriented reflection thus has to be an individual process or experience which focuses on new 
insights related to effects, characteristics and connections of mathematical concepts in their 
application to different contexts. The product of this process should be a fund of knowledge, which 
might simply be communicated. However, the mere repetition of such knowledge cannot be a sign 
of reflection. For different perceptions of mathematical literacy, several types of reflection seem to 
be an essential contribution to a mathematical education for societal participation and the 
development of society (Plunger, 2021). Context-oriented reflection enables diversity in access to 
mathematics learning, especially as a contribution to societal and socio-political challenges. First, it 
is about examining mathematical content for its effects and functions in society and characterizing 
this activity itself as relevant content for mathematics education. Second, the activity of reflecting 
forms a counterpart to the widespread calculus-oriented, repetitive activities in learning 
mathematics: insights into characteristics, connections and effects which initially seem to be hidden 
in the given facts, are generated through independent reflection. Third, learners are given the 
opportunity to make reflections related to society on the basis of personal, subject-related 
experiences of learning mathematics and supra-subject-related experiences from their lifeworld 
(including school) with the thematized mathematical concept. The reflection process should provide 
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insights into the extent to which the mathematical concept contributes to our life together, or what 
would change without it.  

In this paper, I will rely on data collected within the framework of my PhD project. The intention 
was to use special tasks to encourage students aged 14-15 to engage in specific types of reflection 
on different mathematical contents. Here, the results of the task that aimed at context-oriented 
reflection related to the mathematical measurement of geometric shapes are discussed. In this 
regard, three questions will be addressed in the following sections. (1) What contribution can 
context-oriented reflection make to mathematics learning from a theoretical perspective? (2) How 
can students be encouraged to engage in context-oriented reflection? (3) What context-oriented 
reflections do students engage in when they are encouraged to do so through specific tasks and 
settings?  

Theoretical Perspective  
In this section question (1) is addressed. In 2012, Fischer presented his ideas about (mathematics) 
teaching in our society based on the division of labour, where it is not possible to be an expert in 
every discipline. Thus, according to him, the goal of general education should be to enable learners 
to make independent evaluations and to be able to form appropriate judgments for themselves, 
relating to mathematical content. Calculus-oriented mathematics education, as described by 
Kollosche (2019, p.105), seems to work against such a purpose, because it seems to prepare 
students “to repeat the same procedure again and again, also following rules which are set by others 
and whose purpose might not be fully understood” (Kollosche, 2019, p.107). The challenges facing 
our societies today require an education that empowers critique (Steflitsch, 2021). Critical 
awareness involves the ability to perceive multiple facets, both positive and negative. Skovsmose 
(2011) contrasted the modern, very positive conception of mathematics with a critical one (p.60). In 
order to give students access to such a critique, he made them take a closer look at applications. In 
doing so, he encouraged a series of reflections that focus on the effect of mathematics in this 
concrete application (e.g. ibid., pp. 72-75). Fischer’s approach to mathematics is a more neutral one. 
In 2005, he stated that mathematics is indispensable in modern society “because it materialises 
abstract things and thus makes them accessible to individual thought as well as to communication” 
(p. 293). Furthermore, he argued that such materialisations offer a dialectical potential in the sense 
that they can be used to hold on to what is described as well as to overcome it (Fischer, 2005, p. 
24). In both cases mathematics is seen as a tool. According to Skovsmose such a tool brings with it 
very specific effects in a certain situation, which should be analysed. According to Fischer 
mathematical concepts provide the chance to materialise certain aspects of a situation to make them 
accessible for discussion. 

In my conception of context-oriented reflection, mathematical concepts are also interpreted as tools, 
but they are dissociated from one specific context insofar as different contexts of application for one 
of these tools are taken into consideration. The comparison between these different contexts should 
help to compare the distinct characteristics of this tool and might provide an insight into what is 
gained through mathematization, but also into its limitations. This ultimately should enable one to 
make a more informed judgement about the use of this tool on the one hand, in relation to other 
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concrete situations, but also in general to better estimate how and when this tool can be used. With 
this type of reflection, the reflective activity ends before there is the concrete occasion to engage in 
criticism related to the subject or society. Rather, the mathematical concept is seen as a kind of tool 
and an awareness is created that its use can bring along a range of effects. This raises the following 
questions: Which of these effects are grounded in the concrete materialisation (mathematization 
through the tool of the mathematical concept)? Moreover, which ones are grounded in 
interpretations of this mathematization? Thus, through context-oriented reflection deeper insights 
may emerge related to the mathematical concept and to the contexts under consideration. However, 
the essential interest of context-oriented reflection lies in the effects that are made possible by the 
mathematical concepts. Thinking about such effects should afford a differentiated stance between 
the two poles of an exclusively positive and an unreflectively negative conception of mathematics. 
This creates a basis that contributes to more well-founded subject and social criticism.  

Data production by means of interviews 
This section discusses the methodology used to produce the data in response to question (2) How 
can students be encouraged to engage in context-oriented reflection? In my PhD-project I focused 
on model- and context-oriented reflection and decided to investigate this question by means of 
interviews with pairs of students aged 14 to 15 years; I conducted interviews with eleven pairs of 
students who participated voluntarily and from three different schools (four different classes) in 
Carinthia. Each pair participated in three interview sessions focusing on varying mathematical 
contents (arithmetic, statistics, geometry). It was ensured that the required content was already 
addressed through school lessons, but the concrete lessons of the different classes were not further 
analyzed. On each interview date students were asked to deal with two tasks in partner-work, the 
first task aiming at model-oriented reflection, the second task aiming at context-oriented reflection. 
At the end of each interview a short discussion followed about affective issues related to the 
processing of the task. The interviews are documented by audio recording and its transcripts. The 
task for the context-oriented reflection on the content of geometry is reported in Figure 1; It was 
presented to the students on the first or third interview date, after a task that was intended to 
stimulate model-oriented reflection which dealt with the determination of the air volume in a 
classroom by means of a cuboid. 

Geometric Shapes 

In mathematics lessons you have learned to calculate lengths, areas or volumes of different geometric shapes. 

What are the advantages of being able to calculate lengths, areas or volumes of different geometric shapes? 

Figure 1: Task, headed “Geometrische Figuren und Körper”, translated by C.P.  

The intention of the task in Figure 1 is that students think about the consequences that (can) result 
from the mathematical determination of various geometric shapes. Possible lines of thought are (a) 
that geometric shapes have the potential to be seen in many objects of our environment, and the 
possibility of calculating certain sizes from such objects can be helpful. (b) Geometric shapes can 
be used as models for buildings, e.g. a swimming pool, which can facilitate planning since 
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necessary material for the construction can be calculated in advance, as well as the water capacity. 
(c) If geometric shapes are used as models for buildings, there is the possibility of testing different 
solutions, e.g. with regard to material consumption: a cube-shaped-house offers more space with 
less material consumption than one with an elongated base. (d) Lengths can easily be measured 
physically, but this is not true for areas and volumes. (e) Computational methods can provide more 
exact numbers for lengths than physical measurement methods in selected cases (e.g. for the 
diagonal of a unit square). 

The task itself may stimulate reflection, but reflection also needs an environment that invites it. In 
conducting the interviews, it was important to me to create such an atmosphere. The students should 
understand that it is their thoughts, their reflections that matter. By noticing and feeling that there is 
real interest in their personal thoughts, they should be encouraged to reflect. Additionally, I tried to 
apply some reflection-inviting features, but they seem to be dialectically related to each other. 
Working in pairs vs. individual work: communication seems to be essential for reflection because 
through communication new perspectives and ideas can be exchanged and further developed. On 
the other hand, individual reflection is also a prerequisite for successful reflection in 
communication, and reflection is also possible individually, for example, when one enters into an 
inner dialog. In the interviews individual work is scheduled to grasp the task and first deal with it 
for the first 2-5 minutes. This also should increase the likelihood that both partners have individual 
ideas that can be exchanged and discussed. Working in pairs additionally provides the possibility to 
get closer to the thoughts of the students, because a conversation with a classmate should favour a 
natural and spontaneous exchange about the results and thoughts that led to them. A one-to-one 
dialogue between student and scholar seems to inhibit such natural exchange. Speaking vs. writing: 
aiming for a predefined written product may inhibit reflection, on the other side writing would 
demand more clarity and thus deeper reflections. During the work with the tasks, the students were 
given paper and pencil for notes but were not required to create a written product. Free 
conversation vs. interventions: the interest in the thoughts and pair-working processes was 
emphasised in the introductory phase of the interview and a conversation between the two students 
was encouraged above all in the beginning of the working process. Yet, interventions provide the 
opportunity to ask for more detailed explanations of statements or to stimulate alternative directions 
of reflection. As an Interviewer I used guided and free interventions focusing on general or content-
related aspects. The first interventions usually consisted of general questions such as Look at the 
question again - did you answer it? Is it possible to approach the question in a different way? Try to 
explain how you came up with the different ideas/aspects. Only in a second step, interventions 
should become more content-specific in order to obtain a scale for the evaluations. Content-specific 
interventions for the task discussed here were, e.g. Try to consider this question separately for 
lengths, areas and volumes. What possible alternatives are there to mathematical calculation? Try 
to address this task in the sense of what would be the consequences if there were no way to 
calculate lengths, areas or volumes. Such interventions were chosen freely during the interview, 
depending on what I as interviewer considered the students’ processing required. This allowed me 
to ask for more detailed explanations or review the processing as well as stimulating alternative 
ways of reflection where this seemed appropriate. Nevertheless, it remains a challenge to maintain 
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the balance between interventions for the purpose of focusing the core of the given task and a 
natural exchange of thoughts in a conversation between students.  

Reflection processes of learners 
This section addresses question (3), What context-oriented reflections do students engage in when 
they are encouraged to do so through specific tasks and settings? In general, in the interview-parts 
that refer to different tasks on content-oriented reflection it became evident that students found it 
very unfamiliar to engage in such reflections. They were able to draw on appropriate contexts, 
nevertheless they had difficulties to concentrate on the core of the question. Depending on the 
mathematical concepts on which the task focuses, positive but also negative effects of the 
mathematical tool are observed by the students. Across the different tasks it can be noticed, that the 
students do not take a critical look at their results, hardly putting them into perspective or 
considering the possibility of differentiation. Such attitudes might hinder the understanding of 
mathematical concepts but especially deeper-founded critique towards mathematics or society.  

Regarding the task presented in this paper, three characteristics that are consistently observable in 
the corresponding interviews are described in more detail. For their reflections, learners draw on the 
context of buildings, especially houses, and their furnishings. In doing so they have difficulty 
differentiating where length measures and where area measures are required. An effort to find 
positive examples is recognizable, while negative aspects are not illuminated. In the following, the 
reflection processes of one interview pair, Klara and Joelle (all names changed) are examined in 
more detail and accompanied by spotlights from other couples. This allows an insight into how 
these three characteristics develop and how differentiated the underlying statements are.  

Klara and Joelle initially had different approaches to the task. Joelle saw the geometric shapes and 
their calculability as personally relevant to her because she wants to become an interior designer. 
She justified this importance for interior designers with the fact that one must know the surface area 
in order to know what fits into this space, Joelle’s first comment on the task (all transcripts 
translated from German by CP) was: 

Joelle: […] So, what is important for me, for example, because I want to become an 
interior designer, is exactly this kind of thing, because if you have to put 
something in a room, you also have to know the surface area and everything, so 
that it really FITS in the room, because well, you can’t, I don’t know. [Into] a 
three meter long room you can’t put a four meter long bed, ok that’s maybe a bit 
exaggerated, but that would just be an example, you can’t put it in, because. For 
that it is once practical.  

This indicates one aspect of thought line (a), that it can be helpful in a situation to determine the 
area of a particular object. Implicitly, it must be assumed that (a) geometric figure(s) can be seen in 
this area. However, the further description of such a situation (does the bed fit into the room?) 
reveals that even more differentiated considerations would be possible here, Joelle herself indicated 
that this is not a well-suited example. In the ongoing conversation, the importance of the 
computational determination of geometric shapes for furnishing was put into perspective, 
presumably from personal experience with furnishing (Klara mentioned that sizes like length, 
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width, height are usually indicated), but not explicitly related to what these measurements can and 
cannot contribute (e.g. that a number that expresses the area of a room is not helpful to determine 
whether an object like a bed fits well in it). Later in the conversation, Klara justified the area 
calculation of a house or apartment by knowing “how much living space a person has in the house”. 
Klara’s first contribution to the task addressed precision as an important element of calculating, but 
together they failed to come to a coherent justification for themselves. 

Joelle: And if you just calculate it could be even more exact, because you have, for 
example, decimal numbers or something, because that’s what you have when you 
measure normally, yes, ok, it could be, but. Yes, hmh. That was not so now, smart 
{Both laugh}.  

In this conversation it is repeatedly recognizable that the two had difficulties in differentiating 
where mathematical measurement methods are possible and where physical measurement methods 
are necessary:  

Klara: Yes, such a house is something that should be beautiful. Especially because 
people are going to live inside it and 

Joelle: Yes. And. 
Klara: It is perhaps simply important that one can calculate all the areas and so, hmm, 

because I would not go to a house now, the tape measure from one corner to the 
other and then perhaps even in the height. It is perhaps intelligent if you know the 
dimensions and can then calculate how many rooms will fit into the house and. 

Even in other interviews, for example with Chris and Vedran, problems with differentiating the 
need for physical measurements and possible calculations of sizes arose. Following a statement that 
the benefits of calculating are being more precise, taking less time and effort I requested them to 
explain in more detail what this means through a dialogical conversation. Vedran told Chris to start 
by gauging a length, a width and a height. Taking these sizes would take about 30 minutes, while 
these few numbers could be calculated much faster using mathematical calculations. Then the 
volume of the room could also be calculated to know how much space there would be for a 
cupboard and find something that would fit in the room. Chris did not contradict this, on the 
contrary, he affirmed several times throughout these remarks and anticipated Vedran’s statement 
that afterwards furnishings that fit the room have to be found. In this case again, we see that the two 
do not take into account that a number expressing volume is not suitable for finding fitting 
furnishings. Further, like other pairs, they do not recognize that a physical determination of lengths 
is a prerequisite for being able to determine concrete numbers for areas and volumes in which 
geometric bodies are seen. In any case, Chris and Vedran do not relate these facts to the example 
they outline. Mark and Nicolo, on the other hand, recognized that when they thought of the need to 
determine lengths, only examples where lengths can be determined physically came to their mind. 
This is probably based on the fact that lengths are easier to measure physically than areas and 
volumes – an approach to line of thought (d). Nevertheless, an intervention from my part with the 
question of how areas or volumes can be determined without calculating, and their adequate 
response to it, did not help to address aspect (d) explicitly. They continued to look for situations in 
different contexts where a computational determination of lengths seems necessary. They 
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mentioned very complicated constructed situations where different lengths had to be added and 
geometric figures played only a secondary role. Other examples referred to the fact that desired 
areas or volumes were given and suitable lengths had to be found. 

For other students the fact (d) that areas and volumes cannot easily be determined by other means 
was a starting point: 

Gina:  But I think that you might not be able to estimate a volume very well, if you could 
not 

Hannah:  No. 
Gina:  determine it mathematically like that, because or at least I can’t. 
Hannah:  (Uncomprehensible.) 
Gina:  And that this is indeed helpful. 
Hannah:  It is indeed very helpful, yes. 

Almost all pairs took up the context of buildings and their furnishings for their reflections without 
noticing that the specification of a number for the area is not very helpful. As can be seen from 
excerpts of the interview with Klara and Joelle, both tenable examples and those that require a 
closer examination are mentioned together during one interview. An explicit evaluation of such 
examples is rather not done by the students and occasionally these examples are kept until the end 
of the interview. All in all, critical aspects are rather faded out, whereas benefits are often 
mentioned with emphasis, without backing up them by reasonable statements.  

Discussion 
The interview results show that although the students take up similar contexts on the one hand, they 
come to different depths with different approaches and at different points. What all pairs of 
interviews have in common is that they have difficulties in keeping their focus on the core of the 
question, which is the calculative determination of sizes of geometric shapes. Nevertheless, they 
make a great effort in the interview to engage with the question and to work on it with their 
reflections. It is remarkable that the students only look for positive aspects and tend to ignore 
critical aspects or at least do not examine them in detail (e.g. suitability of an area measurement for 
the equipment of a room). On the one hand, this may be due to the task, which explicitly only asks 
for advantages, but in the interview I did ask for more precise explanations at such points. On the 
other hand, it may also be due to the selection of the participants for the interview, who were 
willing to engage in such interviews to reflect on the use of mathematics. Such student might have a 
more positive attitude towards mathematics in general. 

According to the theoretical perspective context-oriented reflections should contribute to 
independent evaluations, appropriate judgements and the analysis of effects emerging from the use 
of mathematical concepts. At the same time, these aspects provide a kind of solid groundwork for a 
well-founded subject and social criticism, because they seem to facilitate the ability to adopt a 
critical stance. This would also include differentiating considerations or careful examination of 
arguments, which regrettably could not be largely observed in this study. However, it must be 
recognised that this is only a first step in the demand for more reflection in learning mathematics. It 
investigates the reflection processes of students who had little experience with this in their 
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mathematics classrooms. The students are not involved in a systematic classification and 
differentiated consideration of their reflections outside the interviews. This is not possible within 
the framework of my PhD project. The students themselves see a need for further processing insofar 
as some of them ask for feedback in the follow-up conversation or express an interest in exchanging 
results with other pairs. From a teacher’s perspective, the students’ reflections would offer potential 
to look at the results on this question even more deeply and to develop a more differentiated picture 
of the collected “advantages”. This seems to be significant in relation to this one mathematical 
concept of the calculability of geometric figures and solids, but it would also promote a further 
development of the ability to reflect and a transfer of this ability to other contents. 

In the follow-up conversations to the interviews, almost all participating pairs described their 
processing of the tasks as being meaningful. This indicates that the students are willing to engage in 
the analysis of the use of mathematics in contexts they are familiar with - what seems to be a very 
important prerequisite in the development of a critical attitude. The positive effect of reflection for 
the students should be used as a potential in learning mathematics in order to draw a more 
differentiated picture for the use of mathematical concepts, especially as a basis for a well-founded 
and if necessary differentiating critique towards society or mathematics. 
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Postsecondary mathematics education often plays a gatekeeping role in STEM higher education. 
Accordingly, research highlights the need for pedagogical change to promote more equitable 
mathematics classrooms. However, mathematics faculty often resist change, grounded in 
rationalizations such as “math is just hard.” In this manuscript, we offer a concrete approach to 
overcoming such resistance. The approach uses classroom data generated by the observation tool 
EQUIP. We provide reflections from one participating mathematics faculty member on his 
experiences engaging in this process. We discuss implications for using this approach at scale. 

Keywords: Change, classroom observation, data, instructional change, pedagogy, reflection. 

Introduction 
Mathematics is widely recognized as a gatekeeper to higher education, especially within STEM 
fields (Martin et al., 2010). Cultural narratives position mathematics as largely white, masculine, 
and able-bodied (Reinholz, 2021). As a result, mathematics plays an integral role in the persistent 
marginalization of students based on race, gender, disability, and other identities (National Center 
for Science and Engineering Statistics, 2021). Mathematics instruction is typically guided by a 
number of purportedly neutral logics, which in fact disproportionately impact students based on 
their identities (Leyva et al., 2021). Logics include, “mathematics as universal and objective,” 
“math is challenging,” “some people are simply not math people,” and that the role of mathematics 
instruction is to “weed out incapable students so the best ones remain” (Reinholz & Dounas-Frazer, 
2017; Seymour & Hewitt, 1997). Given that such logics are regularly deployed in mathematics 
instruction, how can the field make progress towards more equitable and anti-racist teaching 
practices? 

In this manuscript, we offer an approach for making progress despite this seemingly intractable 
problem (cf. NCSES, 2021). Our approach is organized around classroom observation and data 
analytics. First, we document concrete events in a context that is relevant to an instructor – their 
own classroom. Next, we use these as grist for interrogating taken-for-granted cultural logics. To do 
so, we use the classroom observation tool EQUIP (Reinholz & Shah, 2018), which provides data 
analytics describing patterns of inequity in classroom participation, disaggregated by social marker 
identities. By providing such data to an instructor, we first demonstrate concretely how inequities 
arise in everyday classroom interactions. Next, we work with instructors to change their teaching 
practices, and accordingly, demonstrate that changing such participation patterns is within an 
instructor’s locus of control. This serves for the basis for discussions of why such inequities existed 
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in the first place, and why they align with what one would expect based on historical patterns of 
marginalization in mathematics. To illustrate this approach and learning process, we provide 
reflections from a single mathematics faculty member who participated in an EQUIP learning 
community in Spring 2020. Our goal is to spur conversations on how this approach can be scaled up 
and used across contexts. 

Background 
Participation in classroom discussion is highly valued across mathematics education (Hufferd-
Ackles et al., 2004). The reason for this focus is that participation in discussion contributes both to 
learning and identity development for students (Reinholz & Shah, 2018). It follows then, that 
students who participate are more likely to succeed and persist in mathematics. Yet, simultaneously, 
research shows that these patterns of participation are inequitable across identities such as race and 
gender (Ernest et al., 2019; McAfee, 2014). Thus, participation is one concrete site within which 
inequities arise in the mathematics classroom. Moreover, patterns of participation are relatively 
easy to capture through classroom observation, and once captured, changing such patterns is within 
an instructor’s control. 

We used EQUIP to capture participation (Reinholz & Shah, 2018). To efficiently facilitate the use 
of the EQUIP protocol, we used the free, open source and customizable EQUIP web app 
(https://www.equip.ninja). EQUIP describes classroom participation at multiple levels – 
individuals, groups, and the whole class – through a variety of data visualizations. The unit of 
analysis in EQUIP is a contribution, which consists of a sequence of talk from a single student. 
Each time a new student talks, a new contribution begins. For each contribution, a coder (in this 
study, a graduate student observer who was trained to use EQUIP) codes several aspects of the 
contribution, such as the length (1-4 words, 5-20 words, or 21+ words) and type of student talk 
(why, how, what, or other), and an instructor’s questions (why, how, what, other, or N/A). Because 
all these facets of classroom practice are attached to specific students, analytics can be 
disaggregated at a student level. By including demographic information, a user can then generate 
analytics about particular student groups (e.g., Black women, Latinx men). The specific 
demographic categories and codes used can be customized according to the local context. In this 
way, EQUIP represents a particular methodology for tracking classroom participation, which is 
instantiated according to local needs. 

Method 
Participants and Context. We report on work that took place at a large, research intensive 
Hispanic Serving Institution (HSI) in the US.1 Participants were recruited through an open call to 
the university. The second author of this manuscript (Professor C) participated in a cross-
disciplinary learning community during the Spring 2020 semester. During Spring 2020, instruction 
began in a face-to-face modality, and transitioned online mid-semester in response to the global 
coronavirus pandemic.  

                                                 
1 HSI is a federal designation that denotes at least 25% of the student population is classified as Hispanic. 
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The second author is a member of the Mathematics Division, whereas the first author is a member 
of the Mathematics Education division. This difference in affiliation manifests in a strong 
difference in professional obligations between the two authors, with the second author expected to 
publish regularly in highly specialized technical journals, pursue external funding, supervise theses 
in mathematics research, and promote an overall culture of “competitive” mathematical ability 
within the department with an eye towards maintaining standing in the larger international research 
community. This role directly reflects the second author’s educational background and 
acculturation within mathematics. In large part, the role of the second author then is to find and 
select the “best” students to follow the same professional trajectory at the second author. This 
institutional pressure differs from an approach that would instead focus on helping all students 
succeed as much as possible. 

Focal Course. Professor C taught Introductory Real Analysis (also called Advanced Calculus, in 
the US), which met three times weekly during 50-minute sessions. The student population in this 
course is diverse in terms of race, gender, and mathematical focus. Some students are focused 
primarily on becoming mathematics teachers, whereas others are working towards STEM-intensive 
careers. In either case, Real Analysis is a critical course for all mathematics majors and is seen a 
difficult course. Students enroll in this course during their 3rd or 4th year, after completing three pre-
requisite courses. For students transferring from local community colleges, this may be their first 
mathematics course in a new learning environment. Given all these factors, the student population 
is very heterogeneous. 

There were 33 students in the course (22 women, 11 men). The racial demographics were: 12 White 
(36%), 5 Asian (15%), 9 Latinx (27%), 1 Pacific Islander (3%), and 6 Unknown (18%). These data 
were collected from a survey of students, and missing information was filled in based on the 
instructor’s perceptions (which is the reason for unknown results in the race category). The racial 
demographics are somewhat less diverse than the campus as a whole. We recognize that instructor 
perceptions may not always align with student self-identification, but we note that an instructor’s 
biases are most likely to align with their own perceptions, so they were still useful for an 
intervention to reduce bias and promote equitable teaching. The gender demographics were notable 
because 3rd/4th year math courses tend to skew heavily towards men but did not in this case. 

On the target campus, the deadline to withdraw from classes is two weeks after the semester begins. 
Given that this date is so early in the semester, students may realize that the course does not fit into 
their schedule or work/life balance only after this deadline. As a result, there are sizable populations 
of students that essentially “drop” the class by ceasing to participate for the majority of the 
semester. These students can be become especially frustrated at their lack of success and finding 
effective strategies to keep them engaged or get them reengaged in the course is nontrivial.  

Design. The six faculty participants in the learning community met on a regular basis (typically 
every few weeks) to work collaboratively to improve equity in their classrooms. The learning 
community was organized around iterative reflection cycles. In each cycle: 1) instructors were 
observed teaching (through a video recording), 2) the teaching was coded and feedback was 
provided, and 3) there was a feedback meeting to debrief and plan next steps. By including multiple 
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reflection cycles over the course of a semester, instructors had multiple opportunities to reflect, 
change practices, and observe changes in the data. There were five debrief meetings throughout the 
semester. In this manuscript, we focus on a Professor C, who was the only mathematics faculty 
member in the learning community. 

A total of four lessons were video recorded and coded by a graduate student who was trained in the 
EQUIP protocol. In the beginning of the semester, instruction was recorded in the classroom using a 
video camera, which was later coded. In the second half of the semester, Zoom virtual meetings 
were recorded and coded. In the classroom recordings we could only capture whole-class 
discussions (due to data collection limitations), whereas in the Zoom recordings we captured both 
whole-class discussions and breakout rooms. Instructional practices were coded along several 
dimensions, including the length and quality of student talk, and the type of instructor question. The 
coded data from each observation were provided to Professor C in a written report, which outlined 
key highlights in the data, as well as possible suggestions for revision to practice. Detailed notes 
from each meeting and well as records of feedback were retained to support data analysis and 
interpretation. 

Analyses. In this brief manuscript, our analyses focus primarily on the Professor C’s reflections 
(the second author), with some reference to the analytics generated in the process. Prior work has 
documented changes to instructional practices through EQUIP communities (Reinholz et al., 2019, 
2020). Here, our goal is different. We are focused on longer-term changes to an instructor’s logics, 
and how EQUIP could support such self-reflection. 

Results and Reflections 
Initial Approaches. Even though Professor C was a member of the mathematics division, he had a 
personal commitment to do his own studies of feminist and anti-racist literature. This is somewhat 
unusual for core mathematics faculty. The impetus for this reading was grounded in his general 
worldview and attention to equity. This background work provided him with a foundation to start 
thinking about students’ intersecting identities with varying degrees of existing privilege. However, 
most of this reading was in more general settings and not specific to mathematics. This also meant 
that he did not have specific instructional moves that he could apply to mathematics teaching. This 
was a primary motivation for joining the learning community. While he was aware of issues, he was 
not sure how to approach solving them. Moreover, he was less aware of how his own demeanor and 
particularly privileged identity (white, hetero-passing, cis-male) influenced the nature of 
discussions in his classrooms.  

There is a general perception within the department that students should be “mathematically 
mature” by the time they enrolled in Advanced Calculus. Given these broader narratives within the 
department (and mathematics writ large), Professor C initially felt that if a student was not “ready” 
by the time they enrolled, then there was little chance of them doing well. Professor C reflected on 
this bias of his and its origins in his own educational experience. Even as he questioned his own 
assumptions, there was still the larger issue of developing effective strategies and alternate 
pedagogical approaches to help enhance participation and success for all students in his class. One 
strategy that Professor C did use from the beginning of the semester was breaking students into 
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groups of 3-4 students who would work collaboratively on problems. A rationale was that 
“stronger” students would serve as the de facto liaisons with Professor C, providing a kind of cover 
for students less willing to engage in what had been described as a “coldness”, “lack of patience”, 
or “condescending attitude” from Professor C (quotes taken from prior student reviews). As we note 
below, Professor C later came to question this idea of stronger students being the ones to support 
their peers, and he looked for ways to engage more students directly in the class. 

Data Analytics. We begin with data from two of the four EQUIP observations that focused on in-
person teaching. Across the two observations, what is perhaps most notable is that 23/33 (70%) of 
students logged no interaction at all. This issue of such a marked absence of classroom participation 
then became a topic of focus during the learning community meetings lead by Professor R, which 
occurred after observations. In addition, of the 35 interactions logged, they were disaggregated by 
the following racial demographics: 18 White, 14 Unknown, 2 Latinx, and 1 Asian. Thus, while only 
36% of the class was White (12/33), 51% of contributions were from White students (18/35). By 
gender, they were: 11 by men, and 24 by women, which largely matched the class demographics of 
11 men and 22 women. This shows that there were clear patterns based on race, but not so much 
based on gender. Largely underlying these patterns was the fact that 18 of the contributions 
belonged to just three students (a white man, a white woman, and a woman of unknown race, with 6 
contributions each). The fact that a few individual students could dominate the discussion became a 
focal point of discussion within the learning community. Notably, the presence of a dominant 
subset of students was consistent with the notion of “de facto liaisons” to the professor. What is 
important from the perspective of anti-racist teaching, is recognizing that this small subset of 
dominant students often belongs to privileged racial groups in the discipline, and thus better 
distributing their participation would be a move towards racial equity. 

The final two observations were conducted during virtual teaching. Whereas the initial observations 
focused on whole-class discussions, the primary teaching method in the online setting was through 
breakouts, which were easy to code using the virtual medium. Across these observations, there were 
61 contributions logged, from 18/33 students (55%). The breakdown of contributions by race was: 
18 White, 27 Unknown, 11 Latinx, and 5 Asian. By gender, it was 13 by men, and 48 by women. 
It’s notable that the patterns of participation were more equitably distributed by race, with far more 
contributions from Latinx and Asian students than in the original two observations. This may 
partially be explained by the closer interactions between instructor and student being documented in 
breakout rooms. In addition, we suspect that strategies developed (e.g., using student names 
directly) provided Professor C with tools to engage more students and increase racial equity. This 
allowed him to shift the patterns that were present in the first two observations. 

Transformed Practices. By the end of the semester, through looking at the EQUIP data and 
interacting and receiving feedback from the other faculty and classroom monitors in the discussion 
group, Professor C began to develop a better sense of the need to use more personally identifying 
features of students, such as first names, when engaging in classroom/Zoom discussions. These was 
particularly profound in a subject matter like mathematics, which is typically seen as objective and 
depersonalized. Likewise, he developed an emerging sense of trying to ask questions related to 
tasks at hand that were not only directed towards getting the answer, such as “What were some 
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difficulties that came up while trying to solve problems?” or “What was the most interesting part of 
the discussion for you?” to give more students an opportunity to participate and thereby integrate 
themselves into the classroom dynamic. This was important because mathematics is usually seen as 
right or wrong, and the goal is to get the right answer as quickly as possible. Changes in questions 
can be seen in Table 1. 
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 Why How What Other N/A Total 

Face-to-Face 3 (8.6%) 1 (3%) 3 (8.6%) 7 (20%) 21 (60%) 35 

Zoom 2 (3%) 0 10 (16%) 38 (62%) 11 (18%) 61 

Table 1: Transformation of teacher question types 

There are two notable shifts. In the first two sessions, 60% of questions were coded as N/A, which 
meant students shouted out answers without a specific question from the instructor. This decreased 
dramatically in the Zoom sessions, reflecting the instructor’s increased role in managing the 
discussion. This is important, because prior EQUIP work has shown that when students simply 
shout out answers, dominant students tend to dominate the discussion. Also, there was a larger 
increase in “other” questions (from 20% to 62%), reflecting the alternative types of process 
questions the instructor was asking. 

Overall, Professor C developed a much greater sense of and strategies for addressing the need to 
keep as many students as possible actively engaged in classroom dynamics as a means towards 
enhancing equity in the classroom. He recognized that without such strategies, students who were 
from dominant racial and gender groups were most likely to dominate. Thus, these general 
strategies of involving students who may not be participating are an important step towards being 
able to monitor racial and gender equity in an ongoing way. In future classes, if similar patterns 
become visible, Professor C was now equipped to utilize strategies to engage individual students 
within particular identity groups to better bring them into the classroom discussions.  

Reflecting One Year Later. Since the time Professor C participated, he taught Calculus 2 via 
Zoom to 130 students. Admittedly, the online environment did not readily facilitate implementation 
of the techniques explored and cultivated in the Spring 2020 EQUIP discussion group. However, he 
will soon take over the role of coordinator for the course and will be responsible for the educational 
experience of approximately 450 students. This involves Professor C coordinating across two to 
three Instructors as well as seven to eight Teaching Assistants. Having seen the inadequacies of 
online instruction for what is for many students an especially demanding and stressful course (e.g., 
in limiting meaningful interactions between instructors and their students), from his experience with 
EQUIP, he is keenly aware of the need for implementing strategies to keep students engaged in as 
equitable of a fashion as possible, and that doing so is critical to student success. This will include  

1. Engaging in discussion with Teaching Assistants and Instructors about the need to 
encourage different groups of students to participate in class and to find novel strategies 
to facilitate that participation. Such strategies include soliciting replies to questions 
which do not directly deal with the mathematical problems at hand, or explicitly finding 
ways to elevate the voices of students that otherwise might be quiet.  

2. Developing the capacity for Teaching Assistants and Instructors to personalize 
interactions using names or other means of identification to reinforce students’ personal 
involvement and investment in the classroom environment. For students who might not 
feel as though they belong “by default,” instructors need mechanisms to explicitly create 
a sense of belonging. 
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3. Facilitating conversations among Teaching Assistants and Instructors about the role 
implicit bias may be playing in their teaching and ways in which they could work to 
address said bias. This is especially salient with regards to social markers such as race 
and gender, which are visible in the classroom and are also known sites of inequity in 
mathematics education. 

These implications for practice and coordinating the learning experiences of students were informed 
by Professor C’s opportunity to reflect on his data and his own biases in teaching with EQUIP data. 
Outside of the classroom, Professor C also reflects on the role of larger movements. For example, in 
response to the Black Lives Matter movement as well several other social justice movements 
involving Latinx, Asian, and Native American peoples, Professor C views part of his role as a 
tenured member of his department and as a course coordinator as involving anti-racist work, which 
he views as essential to ensuring equitable access to success in STEM. His participation with 
EQUIP provided invaluable tools and insights for performing this kind of action in concrete ways in 
the classroom. It helped bridge the gap from theory to practice. In this way, although the EQUIP 
community was ostensibly focused on classroom teaching, it provided impetus, support, and 
strategies that could be transferred to other venues such as course coordinating, departmental 
policy, and civic engagement. 

Discussion 
Mathematics long has a history of gatekeeping and weeding out students. There is also a history of 
divide between Mathematics and Mathematics Education faculty within mathematics departments. 
In this paper, we share preliminary work that aims to bridge both divides, by applying mathematics 
education techniques to teaching mathematics, and by building a meaningful partnership from 
faculty in both branches of the department. The approach is grounded in data. Especially for faculty 
working in Applied Mathematics, there is a facility and disposition towards using data that makes 
the approach particularly appealing.  

Here we illustrate how the data were helpful in overcoming inertia associated with the weed-out 
culture of mathematics. Initially, Professor C was coming from the perspective that some students 
simply would not succeed, so it was important to center efforts on those who would most likely 
succeed. Working with concrete data and a supportive community, this shifted over time to building 
greater awareness of the sociological aspects of teaching and how to develop concrete strategies for 
bringing more students meaningfully into the mathematical discussions.  

This preliminary work has the potential to scale. Given that EQUIP is a fully customizable tool, it 
can be used to consider equity issues relevant to any context. While some of the issues related to 
race are specific to the US context, racial dynamics can play out differently in other places, and 
there are other forms of hierarchy (e.g., language, immigration status). Another issue to consider in 
scaling is the process of observing and facilitating professional learning. As the work continues, we 
will explore further models for self-study and self-reflection, which provide a greater variety of 
opportunities. 
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Multilingual students’ talk about their work to relocate school 
academic mathematics in home-school transitions 
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We interviewed groups of students in a language diverse school, where the prevailing language 
norm was Swedish only, to answer the question; What do students say about relocating school 
academic mathematics in transitions between home and school? The students mentioned relocating 
school academic mathematical concepts, problem solving and arithmetical methods from home to 
school and vice versa. The relocating work provided resources for mathematics learning and 
feelings of being smart and mathematically knowledgeable and the opposite. We conclude that 
pedagogical designs that enhance students’ first languages and home cultures as resources may 
benefit from considering students’ work with relocating school academic mathematics to enhance 
opportunities for mathematics learning. 

Keywords: multilingualism, mathematics, transitions, home, school. 

Introduction 
Multilingual students are far from a homogeneous group either in, or across contexts. However, 
multilingual students are often from marginalized groups whose home languages and cultures may 
not be acknowledged in mainstream society in general or in mathematics learning in particular (see 
for example Källberg, 2018). First-language-as-resource and culturally responsive and relevant 
pedagogics are pedagogies that have been advocated for some time. They are designed to enhance 
mathematics learning opportunities that recognize non-dominant languages and cultures as 
resources for mathematics learning. The latter approach often emphasizes colloquial, non-academic 
mathematics as part of non-dominant languages and cultures. Experiences with out of school 
academic mathematics may also be significant resources for multilingual students’ mathematics 
learning (Abreu et al., 2002). However, for multilingual students to use school academic 
mathematics experiences as learning resources, transitions between in and out of school may 
require work to relocate school academic mathematics in conversations outside of school and vice 
versa (Abreu, 2008). We are interested in what students say about relocating school academic 
mathematics in conversations about mathematics in and out of school since relocating school 
academic mathematics influences multilingual students’ relations with and expectations of 
mathematics education (Meaney & Lange, 2013). This influences their opportunities for 
mathematics learning and ultimately their future prospects. Therefore, in this paper we investigate 
the question; What do students say about the work they do to relocate school academic mathematics 
between school and home and vice versa? We use the metaphor work because to re-locate 
something in the physical world requires work. In the same vein we think that relocating school 
academic mathematics requires work. 
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Transitions between different cultures of school academic mathematics 
In Sweden and elsewhere, language and cultural diversity is rapidly becoming the demographic 
norm in society and hence also in mathematics classrooms (Meyer et al., 2016). In most places it is 
possible to identify a dominant language and culture to which non-dominant cultures and languages 
often are positioned as subordinated. This connects to asymmetric power relations which motivates 
us to investigate multilingual students’ work with relocating school academic mathematics in 
transitions between home and school. Mathematics learning is often perceived of as trajectories 
from informal, colloquial cultures of mathematics articulated in home languages to formal school 
academic cultures of mathematics articulated in the dominant language (see for example Webb & 
Webb, 2016). In this paper we consider cultures of formal mathematics as cultures of school 
academic mathematics. Cultures of informal mathematics we think of as colloquial every-day 
mathematics. In processes of transitions between informal and formal mathematics, students may 
find some of their everyday out of school experiences and languages valued and useful while they 
may find other experiences and languages not valued or even rejected (Crafter & Abreu, 2011). 
Despite that experiences with non-hegemonic cultures and languages (e.g. indigenous, immigrant or 
working class) can provide rich resources for mathematics learning (Huru, et al., 2018; Planas & 
Setati-Phakeng, 2014), they are often viewed as deficits (Gutiérrez, 2008; Källberg, 2018) which 
may stigmatize transitions and ultimately diminish some students’ opportunities to learn 
mathematics. In addition to experiences with informal mathematics, multilingual students may have 
experiences with school academic mathematics out of school. Consequently, when mobilizing 
resources for thinking and doing mathematics, multilingual immigrant students may move among 
language and cultural resources where the dichotomy informal-formal may apply, but they may also 
move among various cultures of formal school academic mathematics. Albeit still debated, the 
notion of mathematics (as a plural noun) as cultural products is widely accepted. Different cultures 
have developed mathematical practices that share resemblance, but hold distinct features (Ryan & 
Parra, 2019). School academic mathematics could be considered one type of cultures of 
mathematics among other mathematical cultures. Transitions between cultures of school academic 
mathematics is not a straightforward matter. To relocate school academic mathematics as resources 
among sites require intellectual work (Prediger et al., 2019). Multilingual students often need social 
and pedagogical support to successfully conduct such intellectual work (Abreu, 2008; Meaney & 
Lange, 2013). Moves among different school academic mathematics are not neutral. Rather, they 
signify values of normative appropriateness (Abreu et al., 2002). Consequently, who is appreciated 
as mathematically knowledgeably may shift among such moves. This means that multilingual 
students may find themselves positioned as mathematically knowledgeable in one location while 
being positioned as less knowledgeable in a different location when for instance using the same 
algorithm. Such experiences may evoke stigmatization and is ultimately an issue of social justice 
(Meaney & Lange, 2013).  

Theoretical framing: migration and re-location work 
To capture the work that students do to relocate school academic mathematics we recognize that in 
migrational contexts, motion and mobility are metaphors to think about identities, cultures and 
societies. Mobility suggests discontinuous states of being and knowing that dialogue with where 
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one came from (Keating, 2009). This means that issues of dislocation and re-location that pertain to 
here-and-now and there-and-then are present in conversations for instance when multilingual 
students talk about mathematics in and out of school. People speak in and from spaces and times 
that project particular values, social orders, authorities, and affective attributes (Dong & 
Blommeart, 2009). As people move in spaces (physically or metaphorically) of for instance school 
academic mathematics, they may find themselves or others as highly capably to think and do 
mathematics in some spaces, while they may find themselves as incapable in other spaces. This is 
not because of lack of competences, but because the values and norms that organize the spaces in 
particular ways have changed (Dong & Blommeart, 2009). Therefore, time and space are 
constitutive because they shape how people connect to each other and to mathematics. When 
mathematics is discussed in families with migrational experiences, family members may speak 
about mathematics from times and spaces that are located prior to migration. Their talk may project 
values and norms that connect to times and spaces prior to migration that relate to for example 
curricula content, social classroom norms, methods, and to what is valued as mathematical 
knowledge. In conversations for example about homework these values are relocated and 
experienced against the values and social orders that organize the time and space of the student’s 
experiences with mathematics at school. Simultaneously, the student’s experiences with 
mathematics at school that project the values of the dominant societies’ school mathematics are 
relocated and experienced against times and spaces before the family’s migration. We use the 
expression “experienced against” to echo Garcia and Wei (2014) who discuss multilingual 
translanguaging as a re/production of language, in which the “enaction of language practices that 
use different histories … are experienced against each other in [multilingual] speakers’ 
interactions” (p. 21) because we see the enaction of different mathematics practises in the same 
vein. Paying attention to what language and mathematics norms are experienced against each other; 
who is positioned as knowledgeable; and what affective attributes are present in acts of relocation 
allow us to illuminate some work that multilingual students do to relocate school academic 
mathematics in and out of school. 

Methodology 
Three mathematics teachers at a school located in a city center in south Sweden invited the authors 
to participate in a project about enhancing multilingualism and language responsiveness as 
resources for mathematics learning. As part of the project the authors conducted three group 
interviews to learn what students themselves say about thinking, doing and talking about 
mathematics in multilingual contexts in and out of school. At the school most students were 
multilingual but quite a few students spoke only Swedish, the language of instruction. The three 
teachers selected students who were willing to share their experiences for the interviews, while at 
the same time aiming for as diverse groups as possible with respect to gender, languages, 
experience of migration and mathematics achievements. When asked, most students in the 
interviewed groups claimed that their school was a good school and that they learnt a lot. We asked 
about languages that were part of the students’ everyday life. The students in the three groups 
mentioned Arabic, Bosnian, Kurdish, Polish, Spanish, Swedish, and Turkish. The Grade 4 group 
(aged 10-11) consisted of one boy and three girls. The Grade 7 (aged 13-14) group consisted of one 
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girl and four boys. The Grade 8 (aged 14-15) consisted of three girls and two boys. Most of the 
students in the groups were multilingual. In the groups some students had experiences of attending 
school in other countries, some were born in Sweden by immigrant parents. The interviews that 
lasted about one hour were semi-structured (Patton, 2002). We (the researchers) had a battery of 
issues that we wanted to talk about, but we were sensitive to peruse issues that appeared to be 
crucial to the students during the interviews. School academic mathematics transitions between 
home and school were one of the salient issues that the students wished to discuss. We started by 
discerning excerpts that comprised talk of transitions of school academic mathematics between 
home and school. We found 26 excerpts, 9 of them were selected for in depth analysis based on that 
they focused students’ intellectual and/or affective work to relocate school academic mathematics 
in transitions between home and school in conversations with others. By intellectual work we mean 
for example work to move among languages or mathematical methods. By affective work we mean 
moving among different kinds of emotions. Each of the 9 excerpts were analyzed with respect to 
norms and values, who is positioned as knowledgeable and to affective attributes. 

Multilingual students’ work to relocate school academic mathematics 
We present findings on transitions from school to home and then from school to home.  

Transitions from school to home 

One student says1:  
Student 1: If you learn math in Turkish, but Swedish math, it may be difficult for Turks, 

because they are not used to it. They do not have the same mathematics as us. 

This student of Turkish descent talks about moving between two spaces of school academic 
mathematics (the Swedish and Turkish) in connection to internet conversations with his Turkish 
cousins. The quote shows that it is the different kinds of mathematics (problem solving methods in 
this case) that are at heart. When this student experiences Swedish and Turkish school academic 
norms against each other he finds that:  

Student 1: I do not know Turkish mathematics. I have not studied their mathematics. I have 
only seen it [Turkish mathematics] when my cousin does it. When he read [a 
textbook problem] I did not get a thing. They have a whole different way of 
solving the problem. 

This student seems to be aware of how moving between spaces means encountering different school 
academic values and norms. He appears to experience that because he doesn’t know the norms and 
values of Turkish school academic mathematics, he cannot engage in the problem solving. By 
saying “I did not get a thing” it seems as if he finds himself unknowledgeable in the Turkish school 
academic space. Although that he does not explicitly mention affect, experiences of not 
understanding mathematics are usually not positive ones.   

Another student shares that:  
                                                 
1 To recognize the equal value of all languages we wanted to provide readers with quotes in the original language 
together with English translations. This was not possible for space reasons. 
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Student 2: Here in Sweden you learn in one way, but in our home country we learnt in a 

different way. Sometimes there are faster ways than those that you find in the 
textbook, so then I have a plus that he [the student’s father] wants to help me. He 
says “Yes but you could just do this”. 

To move among different spaces of school academic mathematics norms seem to be a resource for 
this student. The relocation of at-school mathematics to home allows her to add the methods that 
her father shows her to her mathematical repertoire. Here both the father and the daughter appear to 
be positioned as mathematically knowledgeable. The daughter positions her father as a knower of 
mathematical methods that she grasps. The affective attributes in the excerpt shows that she is 
positive about the situation and finds her father’s mathematical knowing beneficial (a plus) to her 
learning. 

One of the students talks about using mathematical concepts in Arabic at home. Her parents 
encourage her to speak about mathematics in Arabic at home to maintain her Arabic language 
skills. In a sense, norms and values that relate to spaces and times prior to the family’s migration 
are relocated to the here and now space and time. On the one hand this student seems to be positive 
about that and mentions for example that knowing several languages is a plus when applying for 
jobs in the future. On the other hand, she says that she speaks Arabic with her parents “because I 
have to”: 

Student 3: I speak Arabic with my parents because I have to. They want me to improve and 
extend my [Arabic] vocabulary. When I do it [talk about school academic 
mathematics] in Arabic then I feel a bit less smart. I always use some Swedish 
words to be able to do it [talk about school academic mathematics] in a good way. 

This student works intellectually to relocate school academic mathematical concepts to the Arabic 
language that her parents want her to use. She explains that since she learns mathematics in 
Swedish, she does not know all the mathematical concepts that she knows in Swedish in Arabic. 
This influences how she sees herself as mathematically knowledgeable. When she talks about 
school academic mathematics in Arabic, she says that she feels less smart. To appear more 
knowledgeable in conversations about mathematics with her parents she “always use some 
Swedish”. It is not because of lack of knowledge but because of moving between different 
(language/conceptual) norms and values that this student finds herself positioned as mathematically 
less knowledgeable (than at school) in conversations with her parents.   

Transitions from home to school 

Some students share experiences with school academic mathematics transitions from home to 
school. In the quote below the student talks about methods for problem solving that her parents 
taught her which they learnt in their home country. When she brings those methods to school the 
teacher seems to reject the student’s work to relocate school academic mathematics methods that 
she brought from home:  

Student 3: And when I show it [the methods that his parents taught him] [the teacher’s name] 
says that it is wrong. He says “It is this way that you should count. It [the 
student’s method] is not wrong but it is this way not that. 
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Here to appear mathematically knowledgeable in the classroom space, the student’s work to 
relocate school academic mathematics from spaces and times prior to migration, to school requires 
that she ignores the mathematical methods that she learnt at home. It seems like the teacher 
indirectly positions the parents’ mathematical knowing and the school academic mathematical 
norms of their home culture as subordinated to those of the majority society. To show that both 
methods could be appreciated the interviewer comments that it is good that the student knows both 
methods. The student replies in a downhearted tone:  

Student 3: Yes, but that will not help me. 

In contrast, another student reports positive feelings with relocating school academic mathematics 
methods from the home country to school. He says:  

Student 4: It is always a plus because then you show that you have different methods for 
calculating. The teacher might ask a question, and then you can say several 
different ways to calculate it. 

This teacher seems to welcome different methods in the classroom and appears to consider knowing 
a variety of methods as an indicator of mathematical knowledgeableness. Hence, the teacher’s 
approach seems to position the student’s home school academic mathematics as equally important 
and appreciated as those of the majority society. This appears to support the student’s cognitive 
work with relocating school academic mathematics. Potentially the relocation work is a resource for 
his learning and a source for positive feelings about himself as mathematically knowledgeable.  

Implications and closing remarks 
In this paper we investigated what students say about the work they do to relocate school academic 
mathematics in transitions between home and school and vice versa. One reason for that is that the 
students that we interviewed were interested in sharing their experiences with relocating school 
academic mathematics. This may be because some of the students had experiences of schooling in 
countries where they were born. We noted, in line with the findings of for example Prediger et al. 
(2019), that students with migrational experiences in their families need to conduct intellectual 
work to relocate school academic mathematics among sites. We found that the students needed to 
do affective work because school academic norms and values change when they talk about and do 
school academic mathematics in mathematics spaces that connects to times and spaces before and 
after migration. For some students this meant that they felt mathematically knowledgeable in one 
school academic space while at the same time finding themselves unknowledgeable in another 
school academic space. Although that the notion of transitions and the dichotomy informal-formal 
mathematics consider students’ out of school experiences with colloquial home cultures and 
languages (Abreu, 2008; Webb & Webb, 2016), it does not fully grasp the intellectual and affective 
work that multilingual students engage with when relocating school academic mathematics in 
transitions between home and school. Language as resource and culture responsive teaching 
approaches may benefit from including attention to students’ work with relocating school academic 
mathematics. Lessons could include discussions in small language homogenous groups about the 
mathematical concepts that are at stake. In such discussions the home language is both a resource 
for mathematics learning in the language of instruction and a learning object in its own right. The 
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discussions could be summarized on the board in a table that shows the concepts in the languages 
present in the classroom. In the same vein different arithmetic or problem-solving methods could be 
focused. In this way the intellectual work that students do with relocating school academic 
mathematics may be a resource for learning rather than evoking stigmatization as for example 
discussed by Meaney and Lange (2013). In addition, it would give a broader range of students the 
opportunity to perform and be viewed as mathematically knowing subjects in the classroom (see for 
example Ryan et al., 2021). It could mitigate experiences of being positioned as unknowledgeable 
at school and/or at home. This is important because as Crafter and Abreu (2011) mentioned, 
multilingual students’ mathematics learning transcend the physical school building. Ultimately 
attention to students’ work with relocating school academic mathematics is a sociopolitical issue 
because it revolves around encounters between dominant and non-dominant languages and cultures 
(Planas & Setati-Phakeng, 2014). Pedagogical designs that appreciate and make explicit both 
dominant and non-dominant school academic mathematics norms recognize that multilingual 
students need access to the dominant language and mathematics to be recognized as mathematically 
knowledgeable in the dominant society where they may conduct future studies and compete on the 
labor market. However, to merely ask multilingual students to (re)produce dominant mathematics 
may cause harm (Le Roux & Rughubar-Reddy, 2021) because their relocating work is then ignored 
or rejected. This may cause stigmatizing feelings which diminish multilingual students’ 
opportunities to learn mathematics. 

We are grateful to the Research Programme LIT (https://litresearch.se/) at Malmö University. 
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We present some results of an ethnographic perspective-based study of mathematically significant 
knowledge of Hñañu women embroiderers from Valle del Mezquital (Mexico). In this contribution, 
we focus on an interview throughout where one embroiderer and the researchers encounter and 
dialogue about the realization of embroideries ordered by the clients (the researchers). This 
encounter (Radford, 2021) gave rise to a joint discourse built through the discourses from the 
culture of the embroiderers and that of the researchers. Based on these results, we reflect on the 
possibility of constructing encounter opportunities in classrooms between school mathematical 
knowledge and knowledge about embroidery. We consider that the construction of such encounters 
requires the active participation of members of the – historically marginalized - indigenous 
communities so that the school will not be a space for the domination and homogenization of people 
and their knowledge. 

Keywords: sociocultural studies, indigenous knowledge, ethnomathematics, cultural education. 

Introduction 
The discussion we propose takes place in the diverse context of studies regarding the knowledge of 
cultural groups and how they relate to mathematics and school. These studies are plagued with 
encounters and ruptures between the Western mathematical tradition and knowledges from other 
cultures and peoples (D'Ambrosio, 2014, 1985). The Western mathematical tradition is often 
presented as a parameter, setting out development levels and promoting a deficiency-based 
approach to other cultures’ knowledge (Albanese et al., 2017; Bishop, 1991; D’Ambrosio, 1985; 
Radford, 2020).  

The need to overcome this deficiency-based approach has led several authors to reconceptualize the 
idea of mathematical knowledge (Ascher, 1991; Bishop, 1991; D’Ambrosio,1985). In turn, 
mathematics education research has developed several proposals seeking to integrate these forms of 
knowledge into schools (D’Ambrosio, 1985; Kisker et al., 2012; Lipka et al., 2019; Stathopoulou, 
2020; Pradhan, 2020; Sharma & Orey, 2020; Albanese et al., 2017; Gracas & Marinho, 2015; 
Verner, 2019). However, integration processes into school practices are not simple; they are 
entangled in a complex mesh of continuity and discontinuity between the activities and knowledge 
of cultural groups and those specific to schools (Solares et al., 2016; Trinick et al., 2017).  

We based our study on critical approaches to cultural-centric positions to widen our understanding 
of mathematical knowledge and to include, among others, forms of knowledge involved in practical 
activities recognizable from the Western mathematical tradition (Bishop, 1991; D’Ambrosio, 1985, 
2014), which we have named mathematically significant knowledge.  
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This contribution gives an account of local expressions of mathematically significant knowledge of 
Hñañu women embroiderers from Valle del Mezquital (Mexico). Through the analysis of 
interviews, we give an account of the dialogue between the embroiderers and the researchers in 
which they negotiate and discuss meanings related to embroidery and mathematics knowledge. We 
have named this polyphonic and incipient dialogue as a discourse-for-us (Venegas-Thayer, 2019), a 
jointly built discourse that emerges from the discourses of the cultures of the embroiderers and the 
researchers. 

Theoretical framework 
We chose to articulate complementary theoretical notions from the Ethnomathematics Program 
(D’Ambrosio, 2014) and the Theory of Objectification (Radford, 2021). According to D'Ambrosio 
(2014), we understand mathematical knowledge in a broad sense as the "bodies of knowledge 
elaborated based on qualitative and quantitative practices, such as making comparisons, ordering, 
classifying, inferring, and the code systems of measure, weight, and quantity [numbers], which have 
been accumulated through generations, in certain natural and cultural environments" (p. 102). Thus, 
when we speak of Western mathematical knowledge, we mean that which has been developed – and 
is still being developed – in what today we call the Western culture. 

This broad conception of mathematical knowledge allows us to refer to the explanation and practice 
systems that shape embroidery and are recognizable from the Western mathematical culture. Thus, 
for example, we say that an embroiderer counts, adds, or subtracts stitches, reflects a motif 
according to a symmetry axis, etc. In other words, we associate the knowledge mobilized by the 
embroiderers to perform specific actions with knowledge that is part of Western mathematical 
knowledge. It is this knowledge, developed in this specific region and culture and mobilized by the 
embroiderers, that we call mathematically significant knowledge.  

Concerning the specific manifestations of these explanatory and procedural systems in a culture, we 
take up the distinction between knowledge and knowing proposed by Radford (2021) in his Theory 
of Objectification. Knowledge is not simply present in a group and transmitted to its new members 
or something each subject constructs when facing reality. Knowledge is a social, historical, and 
cultural product. It is accessible and shared by groups of people who use it in recognizable and 
significant ways inside the group. Knowledge is potentiality, instantiated in specific moments and 
circumstances through actions performed by particular persons. Following Radford, we call these 
instantiations knowing. Thus, knowing is not an atemporal construction of the subject but an 
instance of knowledge that occurs inside the cultural group and activities that give it meaning 
(Radford, 2021). 

Methodology: A Study in Two Phases 
The methodological design of the study included two phases. In the first phase, we describe and 
classify many traditional embroideries of the Hñañu culture of the Valle del Mezquital through 
plane isometric transformations that allow creating their geometric motifs (Barquera y Solares, 
2016). During this first phase, the contact with the embroiderers has allowed us to become 
conscious of the distance between how we understood the embroidery activity and its products and 
how the embroiderers do it. This understanding led us to design the second phase, in which we 
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adopted an ethnographic perspective (Lave, 2011) to understand the knowledge the embroiderers 
mobilize in their activity.

We used the results from the first phase as a starting point for the second; mainly, to design the 
interviews with a family of embroiderers and field observation guidelines. In this contribution, we 
focus on the results of our interview with Alejandra.

Interview Design

At the time of the study, Alejandra was 24 years old and had completed high school studies. Her 
first language is Spanish and, although she understands Hñañu, she does not speak it. The interview 
with Alejandra took place in two parts: in December 2016 and in March 2017. Here we focus on the 
second interview, organized around a few embroideries we asked her to do as clients.1  Figure 1 
shows the embroideries we ordered (el encargo, in Spanish): a tortilla napkin and a shirt.

Figure 1a Figure 1b

Figures 1a and 1b: Embroideries ordered in the interview with Alejandra

We chose motifs related to translation, rotation, and proportionality tasks, typical of school 
mathematics. For each of the ordered embroideries, we performed an a priori analysis from the 
perspective of academic geometry. That is, the mathematical reference knowledge we wished to 
relate to the mathematically significant knowledge observable in Alejandra´s activity. Table 1 
presents the embroidery ordered for the napkin and the task we asked her to perform.

Table 1. Embroidery Task of a Tortilla Napkin with Geometric Motifs

Task: to embroider a tortilla napkin with geometric motifs

Academic mathematical knowledge involved: axial symmetry, translations, reflections

Task formulation during the interview:

                                                
1 An important part of the activity of the embroiderers from Valle del Mezquital is selling their embroideries. The order, 
fabrication and sale of the embroideries guide a significant amount of the activities they perform.

Dirección vertical en que no se
continua usualmente este motivo

Vertical direction in which this 
motif is not usually continued

Horizontal direction in which 
the motif is usually continued
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“I want a napkin with this embroidery at the center 
but repeating it four times, in this direction (pointing 
horizontally with the hand) and in this direction 
(pointing vertically).” 

Also, informed by our previous field observations, we anticipated the possible procedures and 
difficulties Alejandra might find when doing the embroidery as a basis for discussion during the 
interview.  

Interview Analysis. 
What follows is an analysis of some of the dialogues we had with Alejandra concerning the napkin 
embroidery. 

Reflection and Little Rows: Embroidery Knowledge Encounters Academic Geometry. 

Based on the a priori analysis, we believed the task could be solved by reflecting or translating the 
central motif (Figure 1a). However, when presented with the task, Alejandra immediately noted that 
“this cannot be continued because it ends in a little flower, it ends in a tip,” pointing at the tip of the 
motif’s flower. Alejandra explained that the problem making the embroidery was that the motif’s 
flower tips would end up stuck or joined together. This is not relevant from the – academic and 
formal – point of view of axial symmetry, and, thus, we did not think it would be so for the task. 
However, for Alejandra, this aspect was fundamental because the flower tips should not be joined, 
possibly responding to aesthetic criteria. Thus, we had contradictory ways of understanding the 
solution for the task – doing the embroidery. Alejandra believed it could not be done. In contrast, 
we believed it was not only doable but that the “obstacle” Alejandra anticipated was not 
understandable in terms of our academic knowledge since all geometric objects in the plane can be 
reflected on an axis. 

After several minutes of explaining and despite the anticipated problem, Alejandra agreed to fulfill 
the order and try to satisfy the clients’ petition. First, we must note that this negotiation between the 
clients’ request and the embroiderer’s work is common practice in embroidery. As Alejandra put it: 
“It is like they say, if it is what the client wants, we have to do it.” 

About one month later, we returned to get the embroidery. Alejandra told us she had managed to do 
it and then explained how she did it. 

Dialogue. The Little Row as a Solution 

Alejandra:  Yes, because, in fact, I tried once or twice, and I could not do it. Then I undid it again and restarted it, 
and I said: “You know what? I will leave one thread, a little row”. So, I left a strip of thread here, 
so I could start again, to do it again, repeat the same [motif]. [She pointed out in the napkin one 
small space she introduced between the motif and its copy]. 

Interviewer: There is a space here? [Pointing out at the space between the motif and its copy]. 
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Alejandra: Uhuh, that is why it seems like a little hole here in the middle. Because I was trying to join it to the other, 
but it was going to look weird, it would look ugly. So, I thought: “I had better leave one [space] 
and then start the other one so that it will look well [...]”. 

Alejandra:   Now, if you placed a mirror here, it would reflect the same one over here, like this. Also, it is the same 
thing [using her hand as a make-believe mirror, placing it on the space she left between the motif 
and its copy; using her right hand to point out the copied motif]. 

In contrast with the possible reflections and translations we anticipated, Alejandra introduced a 
novel solution to perform the requested embroidery. It was an unexpected and non-academic 
response to the task. Furthermore, Alejandra displayed a specific knowing we were not expecting: 
the introduction of space between the motifs – the little row (la filita, in Spanish). This allowed her 
to do this unique embroidery keeping the motifs from being conjoined and, thus, "looking weird, 
looking ugly". Simultaneously, this solution satisfied the buyer’s request and her aesthetic criteria. 

When describing how she performed the task, Alejandra used the mirror metaphor2. Although we 
do not know if this metaphor is part of the embroiderers’ knowledge or if they use it in their 
everyday activities, after its introduction, both Alejandra and the interviewer used it on different 
occasions to continue talking about the embroidery and how it was done. 

These dialogues, together with the words and metaphors – such as little row and mirror – 
introduced and negotiated throughout the interview, account for the “voices” of the other.  
Alejandra and the interviewer gradually established a negotiated discourse that allowed them to talk 
about embroidery and how it is done, despite the differences between their respective knowledge. 
This is the discourse we call discourse-for-us (Venegas-Thayer, 2019). 

In the interview, they continued discussing the motifs that “can be continued and those that cannot.” 
For Alejandra, it was essential to make it clear to us that some embroideries “can be continued” and 
some cannot, both materially (i.e., is it feasible to do them with embroidery techniques) and 
aesthetically (i.e., they do not look ugly or weird). According to her explanation, some motifs “can 
be [continued] in both directions,” that is, in the direction of the fabric’s both weave and warp3 
(which, from the point of view of academic geometry, would be equal to a tessellation of the plane). 

To explain which motifs can be continued and which can’t, Alejandra resorted to a classification: 
there are “cut-off” motifs, and there are “finished” motifs. 

Dialogue. Cut-off and Finished Motifs 

Interviewer:  And how do you know it is possible [to continue a motif]? 

                                                 
2 It’s a metaphor commonly used when studying axial geometry in elementary schools in Mexico. You imagine the use 
of a mirror perpendicular to the plane of the motif you wish to reflect, placed over the reflection axis. 

3 The embroidery is done on a base fabric, created with two perpendicular groups of thread interwoven in a regular 
pattern. Regarding the embroiderer’s body, the threads that run from the right to the left form the fabric’s weave, while 
the series of threads that run perpendicular to them form the warp. Thus, weave and warp shape an orthogonal grid. 
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Alejandra:  Because here you can see one half [Figure 2a]. Pretend we only have one half of this here [she points out 
half of one of the motif’s diamonds; Figure 2a]. It is as if it had been cut-off like this [she points 
out the halves of the diamonds, in the directions of both the weave and the warp]. Then it can still 
be continued upwards, downwards, and sideways. 

          When you see it is cut-off, then it can [be done]. 

          However, for example, these ones are finished. Therefore, they are finished [motifs from Figure 2b]. 

              

Figure 2a. Example of a cut-off motif  Figure2b. Examples of (horizontally) finished motifs 

According to this explanation, cut-off motifs (motivos mochados, in Spanish) are those we can 
imagine as continuing but have been cut off, like the diamonds in the motif in Figure 2a. These 
motifs can be continued precisely in the direction in which they were cut off. In contrast, some 
motifs are already finished and cannot be continued. For example, the motifs in which the figures – 
flowers, stars, etc. – appear complete or finished, there is no need – or aesthetic possibility – to 
continue them. In this case, Alejandra uses embroidery knowledge to explain why some can be 
continued and some cannot, proposing a classification of embroideries. 

Discussion and Final Reflections 
The interview with Alejandra was designed as a space for an encounter (Radford, 2021) between 
the knowledge of embroidery and academic geometry. The order had the double purpose of creating 
a conversation around the act of embroidery and facilitating the emergence of mathematically 
significant knowledge. This interview’s analysis allowed us to showcase some tensions between the 
knowledge of embroidery and academic geometry concerning the carrying out and the classification 
of the embroidery motifs. During the conversation, these tensions led the participants to introduce 
and articulate different semiotic resources (words, gestures, metaphors, etc.), which reflect/refract 
their knowledge rendering it intelligible. 

In this encounter, with its communicational possibilities and limitations, both the embroiderer and 
the interviewer were able to talk and make progress in their conversation about embroidery 
categories in a significant way, from the point of view of both embroidery knowledge and Western 
mathematical knowledge. We observed the interlocuters progressing in their conversation, 
progressively negotiating and providing common meanings for the terms, which allowed them to 
bring out their ideas, accepting each other in a joint reflection of the subjects that interest them. 

Based on these results, we wonder about the possibility of building bridges between academic 
mathematical knowledge and embroidery knowledge. For example, is it possible to create in 
schools encounters between academic mathematical knowledge and embroidery knowledge in a 
way that benefits educational activities? 
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Even acknowledging the importance and validity of the knowledge of the embroiderers and other 
cultural groups, taking it to school is not trivial. Taking the tasks of the embroiderers from Valle del 
Mezquital to the classrooms would imply many reformulations and adaptations of the conditions 
and demands characteristic of the educational institutions and communities (Traoré y Bednarz, 
2009). From the point of view of school mathematics we wonder, how to acknowledge and dialogue 
with the mathematically significant knowledge of embroidery? What is it desirable and possible to 
take to school to create new academic meanings? 

We believe these encounters between the school knowledge and the knowledge of other cultural 
groups require changes in our ways of understanding, teaching, and learning mathematics, changes 
in the current curricular organizations, teachers' education, and the creation of didactic proposals. 
To create these proposals, we need active and significant participation from indigenous 
communities, who have been historically marginalized, so that schools are no more a space for the 
domination and homogenization of people and knowledge. In this way, these encounters will allow 
the “the creation of reflexive and ethical subjects who critically position themselves in historically 
and culturally constituted mathematical discourses and practices, and who ponder new possibilities 
of action and thought” (Radford, 2021, pp. 15-16). 
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Worldwide, students have experienced the impacts of the COVID-19 pandemic. This paper 
investigates students’ reflective discussion of the consequences of measures taken during the 
pandemic in Norway. Socio-critical mathematics perspectives are used as a theoretical framework 
when analysing 13–14-year-old students’ discussions of the pandemic. The students read, discuss, 
and present findings from media articles provided by their teacher. We found that the students 
identify and use mathematics-based argumentation when reflecting on cultural, social, economic, 
and political aspects from their own real world. They ask questions, investigate, listen to peers’ 
argumentation, show awareness of, and discuss challenging issues such as mental health, increased 
violence during home-schooling, unemployment, loss of income, and rising inequality in society. We 
suggest that mathematics education can promote students’ reflective discussion of wicked problems. 

Keywords: Socio-critical mathematics, mathematical representation, discussion, wicked problems.  

 

Introduction 
The ongoing COVID-19 pandemic is an example of complex real-world problems often referred to 
as wicked problems. Characteristics of wicked problems are that time is running out, no optimal 
solution, conflicting interest, no central authority, and policies discount the future irrationally 
(Levin et al., 2012). During the pandemic, citizens worldwide dealt with a highly mathematics-
based language and mathematical representations. For instance, the Reproduction (R) number 
showing how many people one infected person infects on average is central in describing, 
understanding, and predicting scenarios in Norway. Kollosche and Meyerhöfer (2021) describe the 
R-number as having “formatted our perception of the status of the pandemic” and “justified specific 
political measures” (p. 10). They highlight that although substantial measures are taken partly based 
on this number, the significance of the R-number remains questionable.  

In the Norwegian mathematics curriculum (MER, 2019), it is stated as vital that students critically 
reflect on models, statistical representations, and mathematical argumentations to make justified 
stands in essential issues in their lives and society. In this paper, we are inspired by Nakling’s (the 
third author) master thesis, involving 13–14-year-old students’ mathematical argumentation about 
risks of infection control measures of COVID-19. The students used media articles to discuss risks 
and impacts for groups in society. In this paper, we use the empirical data to consider how students 
can engage in wicked problems. Specifically, we investigate How do students apply mathematics to 
critically reflect on the consequences of measures taken during the COVID-19 pandemic?   
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Socio-critical perspectives in mathematics education 
The use of models in the pandemic is often connected to statistics, for instance, in reporting 
numbers of infected. Weiland (2017) argued that students should learn “to tackle complex 
sociopolitical issues in conjunction with learning powerful statistical concepts and practices in an 
effort to be able to read and write both the word and the world with statistics as critical citizens” (p. 
45). Reflecting critically on societal issues in authentic applications of mathematics in real life can 
involve empowering students in discussions about the consequences of using mathematics, 
statistics, or mathematical models in society (Barbosa, 2009; Blomhøj, 2009; Gibbs, 2019). Barbosa 
(2009) emphasised that students’ reflection of the nature, criteria and consequences of mathematical 
models in society is crucial and should be the primary goal for socio-critical discussions. Relatedly, 
Blomhøj (2009) described that critical reflection may concern “the societal issues where 
mathematical modelling and models are used as means for analyses and critique of political 
decisions or societal phenomena” (p. 13). However, Gibbs (2019) found limited empirical research 
on students’ socio-critical perspectives and reflexive discourse during modelling. She argues that 
such discourse is crucial to move from modelling as a school activity to understanding the role of 
mathematics in society and that reflecting through mathematics can make it clear that a reduced 
representation can be an incomplete representation of the social phenomenon. 

When students engage in socio-critical modelling activities, they “make assumptions about 
variables and quantities needed for their models” based on their own identity and history (Brunner 
et al., 2021, p. 139). However, the foundation, variables, and quantities may be invisible when using 
existing models or statistical representations. Therefore, when working with mathematical 
representations, it is essential to consider the properties of models or the statistics, what variables 
are included, and perhaps more importantly, what is not included. For instance, the R-number gives 
important estimates nationwide of health issues regarding changes in numbers of infected, 
hospitalised, etc. However, it does not include the impact of the pandemic on variables such as 
mental health issues. 

A democratic society needs to develop competence in the general population “to critique 
mathematical models and the ways in which they are used in decision making” in society (Blomhøj, 
2009, p. 11). The prevalence of mathematical applications in the pandemic, and the use of these in 
decision-making, call for students’ awareness of consequences of these applications so that they can 
critically reflect on such as the foundation, who has chosen the variables, what kind of variables are 
considered as important, and what does the models, statistics, and numbers tell us. Hattori et al. 
(2021) describe how socio-critically open-ended problems could foster critical mathematical 
literacy. They emphasise that students should develop abilities to critically perceive mathematics 
according to the situation and make social decisions based on values using mathematical thinking. 
They described how students discussed problems related to the pandemic in groups and argued for 
solutions based on personal values and mathematical argumentation.  

Rosa and Orey (2015) highlight mathematical modelling as a teaching methodology to develop 
students’ social-critical efficiency. They encourage investigating familiar problems to the students 
so that the content becomes the stimuli for students’ critical reflections on the role of mathematics 
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in society, showing that mathematics applied is not neutral. Cultural, economic, environmental, 
political, social, and natural aspects of reality are contents they suggest as essential for socio-critical 
modelling. The COVID-19 pandemic is an issue with multiple aspects, as regulations have a range 
of impacts. One could say that pandemic regulations are based on a model of reality, where 
different facts and considerations are taken into account. However, it is only partly mathematical, as 
sub-models, numbers and statistics, together with some weighting of concerns, as elements of a 
rather unarticulated model. While Rosa and Orey (2015) emphasize the importance of engaging 
students in the whole modelling process, it is also of value to critically reflect on their suggested 
aspects through numbers, statistics and modelling presented in the media together with the role of 
these numbers. In this paper, we ask how students apply mathematics to critically reflect on the 
consequences of measures taken during the COVID-19 pandemic. We investigate students’ 
utterances in light of Rosa and Orey’s (2015) aspects and pay attention to aspects that may be in 
conflict with each other. 

A Norwegian context during COVID-19 pandemic 
The Norwegian Government has various policies to limit and delay COVID-19 outbreaks, such as 
restrictions on travels and group meetings, prohibiting public events, and closing schools and 
national borders. In the initial stages of the pandemic, the government designed a strategy based on 
keeping the R-number below 0.9, the so-called suppress strategy. This strategy was partly based on 
the capacity of hospitals and uncertainties regarding treatment, potential vaccines, and how the 
virus would affect people and the nation. Closing schools and borders severely impacted citizens 
and the national economy, and later, a shift in the policy focused on social consequences such as 
loneliness and unemployment. The Norwegian population shows significant trust in authorities, e.g. 
they trust the information provided by the government, and there is an estimate of 90% vaccine 
coverage.  

Teaching in Norway varied between digital home-schooling and physical attendance at school, with 
varying restrictions on social distancing. The students in the empirical data experienced a long 
period of home-schooling during their last year of primary school. In their first semester at lower-
secondary school, teaching varied much between home and school, and when at school, students 
were grouped into so-called cohorts. Their mathematics teacher, Nakling, did his master thesis in 
his class.  

Method 
To investigate students’ discussions, we used empirical data from Nakling’s master thesis. Nakling 
designed the lessons, and Hauge and Steffensen participated in the collection of data. The teaching 
took place during a two-week project and consisted of four lessons, each lasting 2 x 45 minutes. 
The students were 13–14 years old, the class consisted of 30 students, and they worked in groups of 
five, a total of six groups. Their teaching plan can be described in three parts. During the first part, 
the students worked with graphs to ensure students’ understanding of what they represented. For 
example, the teacher showed a graph that simulated the progression of hospitalised infected 
individuals over time compared to the capacity of hospitals, with and without societal interventions. 
The students were prompted to consider potential consequences whether measures were taken too 
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early or too late. In the second part, the student worked in groups. Each group was assigned one role 
from society: nurses, parents, unemployed, psychologists, university students, and teachers. The 
teacher had selected 3–4 media articles for each of the groups, who were to present the situation of 
their assigned role based on mathematics-based content. The third part was a plenary activity. Here, 
each group first presented their findings orally, followed by a plenary classroom discussion about 
the pandemic and risk assessment for groups in society.  

The students’ utterances were video recorded during group work and in the plenary part. Only 
students who had given consent were recorded, resulting in data from four of the six groups. When 
analysing students’ utterances, we took starting point in the six aspects of reality described by Rosa 
and Orey (2015). The cultural, social, economic, political, environmental, and natural aspects were 
used to identify and categorise students’ utterances. While some of the utterances overlapped 
different categories, others did not. The idea behind this categorisation was to get an overview of 
the width of the student’s reflections. The categories are used to structure the discussion part. The 
theoretical described above are used to understand, interpret, and support the discussions.  

Students’ discussion on cultural, social, economic, and political aspects 
In the following, we analyse excerpts from the students’ group work, plenary presentations and 
plenary discussion to show students’ reflexivity related to Rosa and Orey’s (2015) aspects of 
reality. We connect these to mathematical models, here broadened to include applied mathematics 
and statistics in general. We further discuss this in relation to how their experience with the 
pandemic possibly has influenced their reflectivity.  

Cultural and social aspects 

The media articles provided by the teacher included a range of cultural and social aspects as a 
consequence of the handling of the pandemic, such as increased violence towards children during 
home-schooling and mental health issues. In the group discussing risks for parents, a researcher 
asks if they have considered any risks. Chris starts by saying it is relatively easy to handle the 
pandemic and suggests that laws could regulate people’s behaviour and that people who violate 
these could get punished. He declares: “If you say you get the death penalty if you walk out the 
door”, indicating that if people just stayed at home, the virus would not spread. In Norway, 
relatively few were fined for violating COVID-19 regulations. On the contrary, many restrictions 
were encouraged rather than forced, basing restrictions on people’s trust in authorities and their 
wish to contribute to the common good. This reflects a cultural and social aspect of Norwegian 
society. However, this careful approach was criticised in the media when the number of infected 
people increased. Chris’ only concern seems to be to stop the pandemic without introducing other 
concerns.  

As a response to Chris, Kari says she has read about some of the risks of home-schooling. She 
argues it will affect children because parents get strained during lock-down:  

Kari: Some take the stress out by being violent to their children [...] primary students 
are less followed up by teachers […] 1 of 3 parents was angrier at their children. It 
was more violence, and parents had anxiety, depression and stress symptoms. 
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Kari’s argumentation challenges Chris “simple” solution that everybody should stay at home. She 
brings forward new perspectives, namely that if you impose people to stay at home, this can have 
severe consequences. The numbers are taken from one of the media articles her teacher has 
provided to support her argument. She further reflects on youth managing home-schooling better 
than children in primary school. Kari connects this to her and her peers’ own reality and identity, as 
highlighted as relevant by Brunner et al., 2021, when making assumptions about real-world 
situations. Kari’s critique of Chris’ claim is partly supported by numbers and is related to humans’ 
well-being and what is considered appropriate behaviour. She thereby draws on cultural and social 
aspects. 

Later in the group discussion, Chris says: 
Chris: I now think the problem is that it is hard to justify a choice if we do not have all 

the facts or know all the risks. If you compare them, which is most important if 
there is a great danger of many dying if we go for it? But it can have such big 
consequences. Then we have to find out which one weighs the most. And in that 
way, we can decide. But if we do not know all the risks, it can be very difficult. 

Chris problematises the group discussion, including his previous claim. He critically reflects on 
decisions based on limited facts and knowledge of risks. Perhaps he still believes in a shut-down 
and penalties for leaving home without permission, but he realises there are competing concerns 
that must be weighted and with unknown consequences. Critical reflections on facts and 
uncertainties are essential in modelling, and when Chris uses his hands to visualise the weight of 
each risk, he communicates a model for decision-making. The pandemic is surrounded by 
uncertainty about facts and perceived risks, so Chris points to a highly relevant political aspect: 
what, how and who to choose.  

Ingeborg raises concerns about mental health issues when presenting her group’s findings in the 
plenary activity (from the psychologist group): 

Ingeborg: Almost 40% between 16 and 25 year- olds state they are unhappy with life in the 
pandemic. About 1 of 3 Norwegians feel lonely during the pandemic. During 
spring 2020, there is an increase of 45% in pills against anxiety, depression, and 
insomnia. 

Ingeborg uses mathematics-based language, emphasising numbers such as 40%, 45% and 1 of 3 
when she presents the magnitude of concerns. Statistics is thereby used to critically reflect on a 
social issue. Her tone of voice is serious, and she keeps eye contact with her classroom peers. Later, 
in the plenary discussion, students continued to elaborate on mental health issues. For instance, 
Anna (from the student group) said: “It was rather lonely, really. They just said ‘don’t be with 
others, just stay home’, and it came rather suddenly and we didn’t get any information”. She relates 
to the numbers expressing loneliness and voicing her own experience. Other students expressed it as 
important to be allowed to visit some friends during lock-down. In the plenary discussions, the 
teacher asks the students what they would argue as appropriate measures in society if they were 
decision-makers? Iris (from the nurse group) replies: “It is a bit difficult, but cohorts in schools are 
good because it keeps people apart, and at the same time, people don’t need to develop anxiety and 
depression”. When referring to mental health issues, she nodded towards the psychologist group, 
perhaps as a potential solution to the issues they described. She probably referred to cohort 
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regulation as a way to still have social relationships, basing this on personal experiences and a way 
of making social decisions based on values and using mathematical thinking as described by Hattori 
et al. (2021).  

Economic and political aspects 

In the group discussing risks related to unemployment, Miriam says to her group members: “Many 
struggle and many borrow money to survive. Many have become unemployed due to the pandemic, 
and struggle with such strict measures”. Miriam uses the word “many” multiple times to emphasise 
the problem of unemployment. Because she has read articles presenting numbers on unemployment, 
“many” refers to these numbers and communicate that she is concerned about the economic aspect. 
The numbers have thereby contributed to pointing at risks as a result of restrictions. Miriam seems 
to have forgotten the specific numbers when Haavard asks curiously:    

Haavard: Can you tell us a little about those who have lost their jobs? 
Miriam:  Then I will find some numbers. 

Miriam starts looking for numbers. In the following discussion, they use phrases such as “8% have 
difficulties”, “1 of 4 households are affected”, and “15% have no savings left”. There is a distinct 
move from the less precise “many” towards a mathematical-based langue. They also give a more 
nuanced picture of what kind of struggles there are. The move to precise numbers is probably due to 
the task given by their teacher and that they are going to present their findings to the rest of the 
class. Miriam’s use of “many” can be regarded as her interpretation of the situation is severe. 

They use both the Internet and the provided articles, which brings up conflicting numbers. In her 
initial search, Miriam found that 25% of household is economically exposed. A moment later, she 
exclaims, “Oh, no, sorry. Now I entered another website. This is from October tenth”. After 
examining together with Haavard, she continues: “So, 18%, or about 430 000 households, are still 
exposed. This is in December”. After some discussions, she concludes, “The number of 
economically exposed households has thus decreased”. The conflicting numbers resulted in critical 
reflections on the relevance and validity of the numbers in play, which are crucial in developing and 
considering statistics and mathematical modelling. It is also part of reading and writing the world 
and the world with statistics, as described by Weiland (2017). This focus on relevance related to 
updated statistics is seen when they later investigate the issue of people’s savings.  

When asked if they had noticed any risks, Haavard replies: “It may be a bit odd saying this, but they 
risk starving to death. Honestly. Or, it’s unlikely, but they actually can”. So far, the discussions 
have focused on the number of people losing their jobs or struggling without reflecting on how this 
struggle could manifest. Now, Haavard is bringing up the risk of starving. Miriam adds, “But 5% 
need to borrow money for food”. As previously, she provides numbers to strengthen her 
argumentation. Although Norway has a fair welfare system, with no cases of extreme poverty, there 
is an increase in low-income families. Typically, people with low-income jobs took the biggest 
blow financially in the pandemic. The students’ focus on the risks of unemployment brings 
awareness to these aspects.  

The economic consequences were later connected to political aspects. Miriam suggests that in their 
presentation, they should say that, “It will create inequality in society for a long time”. The issue of 
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long-term perspectives of inequality is new, and Haavard struggles to formulate Miriam’s utterance 
on their PowerPoint slide. He asks her about it, and she reformulates: “This crisis can lead to bigger 
differences. And the economy can be destroyed. It will take a long time to recover”. She focuses on 
inequalities and long-term perspectives. In their critical reflection on the consequences of measures, 
they do not explicitly connect and critique the nature of the numbers, statistics, or mathematical 
models themselves, as described by Barbosa (2009) and Blomhøj (2009). The topic of inequality 
and differences in society can, for some students, have strong proximity and for others be at a more 
distance. However, an awareness of this aspect is essential for all students. During their 
investigations and discussions about numbers and statistics of unemployment and people struggling 
economically in the pandemic, they have started to explore the important issue of inequality in 
society.  

Concluding comments 
In this research, we have investigated students’ discussion of the consequences of COVID-19 
measures. The students develop a critical understanding of real-world problems through 
mathematics-based information by showing awareness of and discussing the measures’ cultural, 
social, economic, and political aspects. Rosa and Orey’s (2015) environmental and natural aspects 
might have been included in their discussion if other articles had been chosen for the students. For 
instance, more biological aspects of the virus or reduced CO2-emission due to less traffic and fewer 
flights. The cultural and social aspects in the students’ discussions involved mental health issues 
and family violence during home-schooling. The numbers identified by the students represented 
mental health issues, which Anna, Iris and other students associated with feelings of loneliness. 
When students reflect on these problems with peers, mental health issues can be normalised and 
make them less challenging to discuss. The use of numbers showing the extent of people struggling 
with mental health issues during the pandemic may have contributed to forward discussions on this 
topic. Undoubtedly, the pandemic severely impacted the economic and political aspects of society. 
When governments closed restaurants, hotels, etc., and maintained strict travel restrictions, many 
people lost their jobs and income. Miriam and the other students started to explore some of the 
statistics and numbers related to loss of income and increasing inequality in society. Social 
inequality is a concern in critical mathematics education, and inequality seems to have increased 
during the pandemic (Borba, 2021). 

Although students identified and used the numbers to discuss wicked problems and consequences of 
measures taken, most of the time, they did not critically question statistics or numbers in itself. 
Thus, implications of this research can be that teachers can have an important role by asking 
questions leading to such inquiries. They could encourage them to critically examine what is behind 
the numbers, statistics, and mathematical representation, what they consist of, sources, its use, and 
the consequences of mathematical application in society. Perhaps students could have made a 
model themselves to inform decision-making. Such a critical gaze can bring further awareness of 
the limitation of mathematics, but still how mathematics permeates wicked problems like the 
pandemic. Engaging students in these issues facilitates their understanding of different perspectives 
and as critical mathematical citizens. While this research is limited to a few students in a short 
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period, it provides insights into how students relate to mathematical argumentation during a time of 
crisis.  

Other characteristics related to the student’s discussions involved questioning, listening, 
investigating, and changing perspectives due to others’ argumentation. They moved from giving 
simple solutions to wicked problems towards sharing more nuanced reflections like Chris did when 
reflecting on risk and potential measures. When society deals with wicked problems and decision-
making, it is impossible to predict all consequences. At the beginning of the pandemic, concerns 
were raised about the capacity of health institutions, and mathematical representations heavily 
informed governments in their decision-making. Later, concerns for young children and mental 
health issues were given more significance. Other values came into play. When measures are 
implemented in uncertain times, it is crucial that uncertainty is conveyed and risks are presented 
openly to give citizens reason to follow given advice, as doubting the science behind COVID-19 
can be fatal. However, wicked real-world problems need multi-disciplinary approaches where it is 
essential to consider cultural, social, economic, and political aspects, to understand the complexity 
of the problem and avoid misuse of information, mistrust and polarisation in society. Although 
other school subjects might have added perspectives and depth to the students’ discussions, the 
activity shows that mathematics education has a vital role in involving students in investigating 
mathematics-based information in times of crisis, discussing aspects of their own reality.  
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Various social and political factors within the school environment influence how teachers 
ultimately design their teaching and also their motivation to bring innovation into the classroom. 
The paper presents results of math teacher interviews about their vision of ideal mathematics 
teaching. From these answers, conclusions can be drawn about teachers’ potential for bringing 
innovation into the classroom and the factors that might hinder them. Three different types have 
been derived, with varying levels of motivation to participate in in-service teacher training and to 
further develop the teaching. Teachers that like to teach in the way “it has always been done” show 
the least potential, in contrast to the idealists among teachers, who align their teaching with their 
high standards to design lessons that they believe best for their students’ learning. To narrow the 
theory-praxis gap, the focus should be on the third type of teacher – the struggling ones – who need 
support to stay true to their ideals and to avoid adapting to more traditional patterns.  

Keywords: Teacher socialization, mathematics teachers’ beliefs, theory-practice relationship. 

Introduction 
Working with in-service teachers in professional development courses is not always easy, and 
participants are often reluctant to acquire new knowledge and develop their teaching. “We do not 
have time for this” or “I am experienced enough after teaching for 20 years, I don’t need this 
anymore” are just two statements given at the kick-off event for an in-school professional 
development course for high school mathematics teachers that aimed to elaborate the concept of 
“critical mathematics education” and possible implementations in the classroom.1 These comments 
were made before the teachers even knew in more detail what the course was supposed to be about. 
From the very beginning, one could notice a general aversion to any participation in the 
professional development course. The intended courses at this school were canceled after the kick-
off due to the lack of teacher motivation.  

Continuing professional development throughout the career is seen as an essential part of the 
teaching profession. Teachers need to constantly develop their teaching practices to be effective in 
today’s classrooms. In-service teacher training is a necessary prerequisite for innovations to be 
implemented in the educational system and the classrooms, as it is not enough to rely on next-
generation teachers to bring about changes. It requires the participation of experienced teachers 
(Mayr & Neuweg, 2009). However, it seems that the awareness that teaching is a life-long learning 
process is not very pronounced for some teachers. Some of them might feel that they are 
“conclusively trained teachers” after completing their degrees and do not see a necessity to 
professionally develop further, which is why they articulate their resistance to development work 
(Körkkö et al., 2020). Such a mindset has long been fostered in Austria by the political and 

                                                 
1 All quotes from my interviews are originally in German and have been translated into English by me. 
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structural requirements placed upon teachers since, until a few years ago, high school teachers had 
no obligation to undergo further training after completing their studies. Such regulations might 
therefore influence the image that teachers have of their profession, the demands placed upon them, 
and ultimately the extent to which innovations find their way into teaching practice. As teacher 
educators and researchers work to constantly improve teaching and learning and are eager to bring 
new scientific insights into practice, such attitudes are worrisome. This is especially the case as 
teachers are the ones who are supposed to engage students to evolve, learn new things, rethink old 
habits, and keep up with the times to meet future challenges.  

The theory-practice gap in teacher education – complex reasons 
The issue of the theory-practice gap is an ongoing one and has been discussed intensively in the 
research community. Reasons why it is especially challenging to bring about changes in the 
educational system are complex and multifaceted.  

Teacher education programs might already cause some trouble in letting pre-service teachers link 
theory to practice and might not be structured in a way that counteracts eventually unfitting 
attitudes about the teaching profession. Most of the student teachers start teacher education 
programs a short time after they leave high school. This means they bring a vast amount of 
experience into the system they now want to work in and have strong preconceptions about what it 
means to be a teacher. Changing these preconceptions within teacher education seems to be very 
hard (Joram & Gabriele, 1998). Research shows that new teachers are often highly influenced by 
how they learned the subject matter themselves when they start teaching (Stofflett & Stoddart, 
1994). This influence seems to go deep as even experienced teachers prefer to use teaching styles 
they were getting used to as students. Moreover, as they might think they already know what it 
means to be a teacher (as they have observed teachers more than half of their lives), many do not 
understand the need and the usefulness of the knowledge and competencies they acquire within 
teacher education. Their preconceptions influence the way they understand new knowledge 
(Korthagen, 2010).  

Even if pre-service teachers’ attitudes shift in the course of the teacher education program, it is not 
certain that innovations will find their way into the classroom. Different studies across different 
contexts describe that novice teachers experience a “practice or transition shock” after entering the 
teaching profession (e.g., Corcoran, 1981). As many do not feel well enough prepared and 
experience frustration within their beginning years, they are not using the theoretical knowledge 
and competencies acquired in teacher education. Many then fall back into what they experienced in 
their school carrier as students. Most new teachers tend to adjust their focus to rules and practices in 
school rather than on recent scientific insights. Especially young teachers experience the pressure to 
acquire the school’s culture, following old patterns and standards that other teachers are using, 
which discourages modernization and innovation in teaching. Experienced teachers might pass on 
their attitude that theoretical knowledge and competencies acquired at university cannot be put into 
practice and is just something you needed to learn to get your degree. This “teacher socialization” 
often causes a shift away from initial ideals, as it might seem difficult for an individual to influence 
these existing patterns (Brouwer & Korthagen, 2005). Within this process, even highly motivated 
teachers with the will to change classroom practices towards more innovative and research-driven 
teaching practices might resign and comply with “how it has always been done”. Resisting these 
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dynamics and insisting on one’s ideals usually needs more individual effort. Moreover, it often goes 
hand in hand with resistance from different sides (colleagues, students, parents, principal) as 
schools often have hidden hierarchies keen on maintaining the self-created power structures. 
Consequently, efforts to change often encounter the “school system’s immune system” and are 
either rejected or absorbed and defused (Heintel & Krainz 1998). This already illustrates the 
complex interrelationships and the wide variety of socio-political influencing factors that affect a 
teacher and thus also his or her teaching. 

Nevertheless, some teachers are still eager to design classroom practice in the best possible way for 
students, even if this sometimes requires creative ways to not adhere to all the guidelines or get into 
conflict with more traditionally set colleagues. These are the ones most willing to develop further to 
meet new demands and are therefore also the ones with the most potential to bring changes into the 
classroom.  

Nowadays, mathematics lessons can be carried out in a variety of ways: they can be very traditional 
and exercise-oriented or very application-oriented, the focus can be more on individual performance 
or group work and discussion, the lessons can always be similar or, depending on the topic, always 
different – in short, teachers have many possibilities to design their mathematics lessons. If you ask 
mathematics teachers about the “ideal” mathematics lesson in which they think children can best 
learn mathematics, it becomes apparent that opinions differ widely. Based on the teachers’ answers, 
one can see whether this ideal teaching is implemented in reality or whether they only have an idea 
of it and do not carry it out for various reasons. The paper aims to present results of interviews 
carried out with middle and high school math teachers, who described their view of an ideal 
mathematics class. Looking more closely at their visions of mathematics teaching can also provide 
insights into their motivation to bring about changes to their teaching and the factors that might 
cause resistance.  

Data collection and analysis 
Twelve Austrian mathematics teachers who take part in the professional development course about 
implementing critical mathematics education approaches participated in the semi-structured 
interviews. Ten of them are teaching at a middle school, and two of them are teaching at a high 
school and a middle school (together, they form the entire mathematics teacher team of a middle 
school in Klagenfurt).2 The teacher group ranged from participants with only one year of teaching 
experience to participants with over 30 years of experience. Five of the participants were male, 
leading to a nearly balanced gender distribution. The interviews were part of a larger study on how 
teachers deal with bringing critical mathematics education approaches into their classrooms. One of 
the questions focused on how the teacher would design mathematics classes to make them the best 
possible for their students to learn mathematics. Participants were asked to describe their vision of it 
(or what they would change compared to current practices to make it an ideal math class) without 

                                                 
2 Pre-service teacher education differed between middle and high school teachers in Austria until some years ago. High 
school teachers needed to complete at least five years of studies at university level, while middle school teachers 
participated in a three-year program at the educational college. Therefore, theoretical background about teaching and 
learning mathematics might differ considerably between these two groups which might also influence their answers. 
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thinking about school guidelines or other regulations. Audio records of the whole interviews were 
transcribed and coded, letting themes emerge from the data. Within the process, codes across 
teachers’ answers have been compared in order to find similarities and differences, which led to 
three different themes regarding the question of an ideal mathematics class.  

Findings: The ideal mathematics class – three different approaches 
Results indicated that there are three different approaches to answering this question. From the 
answers given, it can be concluded that depending on which approach the teachers tend to 
correspond to, they also show different potential to bring innovations into the classroom. In general, 
it was striking that many of the teachers needed some time to think about the question. Some 
articulated that they have never thought about it before. Therefore, they had some difficulties 
answering the question, and it was challenging for them not to think about school regulations. That 
already indicates that many teachers do not think beyond their usual image of teaching and are 
quick to comply with the school’s guidelines or “hidden” agenda of their school without reflecting 
on it. As one teacher with 20 years of teaching experience replied after thinking about it for some 
time:  

Hm… Depends on the children. Maybe I would use more visual materials and maybe more time. 
I would really like to explain everything in more detail, but that is not possible in the lessons. 
Perhaps also more examples from real-life… I don’t know. It would probably be good to have 
more math lessons per week… but that is not realistic anyway. We already have four math 
lessons a week, so from that point of view… I don’t really know.  

It becomes apparent that she has never really thought about it and also doesn’t exactly know what to 
answer. In between, she keeps thinking and throws in new ideas, which, most of the time, she then 
discards because the regulations in the school system, in her opinion, don’t allow it anyway. She 
does not elaborate on any of the ideas mentioned but simply lists different approaches. This 
suggests that she does not exactly know how she envisions an ideal mathematics class and that she 
might have never reflected about the socio-political agenda of her teaching as well. It appears that 
this teacher has adapted to the school’s culture and teaches within this framework without feeling 
much need to change or evolve her mathematics lessons. Therefore, it might be assumed that she 
sees less need for regular in-service teacher training.  

That might as well be the case if you as a teacher meet your own standards or ideals of teaching and 
school guidelines fit you well. A younger teacher (7 years teaching experience) responded very 
quickly and short: “I wouldn’t change anything. It suits me just the way it is.” He then explained 
that for his lessons, he often follows the two school books to structure his teaching, using the one 
with explanations for elaborating new content and the other one with examples for giving 
homework. That seems to work well for him and, in his opinion, also for his students. However, as 
school books often mainly focus on exercises and do not foster reflections about the use of 
mathematics, it might be assumed that students will mainly acquire operational and procedural 
skills in such a way of teaching mathematics.  

These examples show that some teachers seem to always have had a clear image of what it means to 
teach mathematics and do not feel that changes or adaptations are needed. As a result, they likely 
are the ones with less motivation to participate in training courses, and when they do participate 
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(which is obligatory for middle school teachers but not for high school teachers who started 
teaching before the school year 2019/20), they might make little use of the new knowledge 
provided in these courses. Therefore, the potential of this group of teachers to bring innovations and 
new scientific insights into the classroom is rather low. As these teachers do not reflect much about 
their teaching practice and are quite happy with their traditional form of teaching mathematics it 
might also be assumed that they will not easily see a necessity for using more critical approaches in 
their mathematics lessons and might not really be aware of a connection between mathematics and 
socio-political issues themselves. They might not change their attitudes towards professional 
development and the teaching and learning of mathematics unless they experience an event that 
causes them to do so (Pehkonen, 1994).  

Other teachers struggle more with meeting their own ideals of teaching mathematics, have a clear 
idea of how it should look but are unsure how to realize it. They articulated their struggles between 
meeting the school systems’ demands and their standards of teaching as an excerpt of the interview 
of a young high school teacher (3 years of experience) shows: 

In any case, [my ideal mathematics class would be] very application-oriented, where you can 
maybe also try things out... That you can touch certain things or you do projects or just always 
have such small fields of application […] Working in a more open framework, where you can 
also work across subjects and not be stuck to mathematical content only. But you are a little bit 
caught in this concept of school, and you need to prepare students for the [standardized] 
matriculation exam. Nothing has happened in this [more open] direction in the last years. 
Everything is already so stuck. But for me [the ideal mathematics class is structured so] that the 
teacher should act more as a coach than a preacher, who stands in front and presents everything. 
That would be the ideal case... (is thinking) … But there is again the question if and when you 
can implement that so easily... I am asking myself whether you can do so much as an individual. 

It gets clear that she is not genuinely practicing what she would see as an ideal mathematics class, 
pointing to constricting structures in the school. Her struggles show how much influence the 
(hidden) structures within the school system and, above all, the school culture itself and the 
associated expectations placed upon her ultimately have on her teaching practice. She is obviously 
experiencing a notion of a discrepancy between her ideals developed during teacher education and 
the pressure of more traditional patterns in school. As Dann et al. (1978) indicated, these 
“discrepancy experiences” lead to a decline in using more innovative teaching practices with whom 
teachers got in contact in pre-service teacher education programs. As a result, they rely more on 
traditional teacher-centered instruction. Others, like Brouwer and Korthagen (2005), indicated that 
this might also cause these teachers to start to doubt (again) whether it is possible to put the 
theoretical and research-based knowledge from education programs into practice. Even if you as a 
teacher are ultimately the one responsible for what happens in your classroom, the guidelines of the 
principal, the attitudes and practices of your colleagues, the expectations of parents and students 
(which are often generated by a certain school culture) might ultimately strongly influence how you 
design your classes. 

Even though these struggling teachers experience obstacles, they do show the motivation to change 
classroom practice. How much of these ideas will find their way to their students might depend on 
how deep their beliefs are settled and how much support they will get to realize them. This is 
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especially important in the first years of teaching as the answer of a novice teacher, who only 
started to teach some months before the interview took place, shows: 

I would say that it [the ideal math class] should be a bit experimental, with group work, problem-
solving, discussing how you find a solution, and where everyone should be able to benefit from 
each other. […] But I still have to get more into it, because you also need all the materials, you 
still have to get everything. But so far, my teaching hasn’t been quite the way I imagine it, I was 
a bit more reserved in the first year, but it should go in that direction if everything is possible. 

This young teacher has an idea of how she would like to design her math classes but hasn’t really 
dared to carry that out in her first year, was still “reserved”, and doesn’t yet exactly know whether 
it’s possible to realize it. This is probably because she first wants to get to know the habits of the 
school and her colleagues to see how far her ideals are from current practices, which is in line with 
research on teacher socialization (Brouwer & Korthagen, 2005). It gets clear that novice teachers 
orient their practices strongly on their colleagues and cannot easily realize their individual visions 
about teaching, which also underlines the power of the socio-political environment in maintaining 
the status quo. However, the motivation of this group of teachers to participate in professional 
development courses might be pretty high (especially at the beginning of their struggles), as these 
courses can be one way of supporting and strengthening their ideals. Moreover, they might get to 
know ways to realize them within their teaching and find others who have similar visions. Though, 
if there is no support from other teachers or from their institution to realize the ideals, these 
struggling teachers may adapt to prevailing rules and patterns and scale back their initial ideals after 
a few months or years. At the same time, their beliefs that theoretical knowledge and competencies 
acquired in teacher education can be useful in practice might fade, and their motivation to 
participate in professional development courses might decrease. This might be especially the case 
for teachers whose ideals were not yet firmly established but only began to change in the course of 
their teacher education.  

Others with stronger convictions might find creative ways within the system to realize what they 
feel is the best possible way to teach mathematics or might otherwise even leave the profession 
when they are not able to do so.  

I arrange my mathematics lessons within the school system in a way that I think the students can 
take away the most – otherwise, I simply couldn’t work there. […] For example, vocational 
orientation is, in my opinion, very important, and that also happens in my math classes, just like 
in other subjects. References to everyday life are always included […]. Because just going in 
[the classroom] and simply calculating examples, then it’s also boring at some point, and then 
you [as a teacher] are just happy when vacations begin again. And I don’t want to be part of that 
[group of teachers], and I only want to do the job as long as I really like doing it! 

For this teacher with about ten years of teaching experience, it seemed natural to always arrange 
mathematics lessons in a way that he felt would benefit students the most. He includes content that 
is not demanded by the mathematics curriculum if students are interested in it (e.g., 
cryptocurrency), setting a focus on building relationships to real-life situations. He clearly 
distinguishes himself from the group of teachers who, in his opinion, equate mathematics lessons 
with calculating examples without really thinking about what students are interested in. Moreover, 
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he articulated that he is keen on constantly developing his teaching further and that he would find it 
a good idea to observe math classes of his colleagues to learn from each other.  

It is apparent that these teachers are more eager to participate in professional development courses 
and are the most likely to bring new ideas and innovations into the classroom. They seem to 
manage to find ways to deal with organizational struggles as well. As their teaching ideals are 
strong, they are willing to put more effort into designing lessons that meet those ideals. But even if 
they are willing to work more on an individual basis, most of them will need support in the school 
community after some time. If this type of teacher finds that, despite great effort, they cannot make 
their ideas a reality and nothing in their environment is improving, they may even leave the 
profession. Therefore, the ones with the greatest innovation potential are also the ones who resign 
first when they realize that nothing is changing and that they, as individuals, cannot do much about 
it.  

Discussion 
In education, there is still a large gap between theory and practice, and as the distribution of types 
of teachers in this small sample shows, a majority of teachers are within the first two types – so they 
are either not seeing any reason for changes or are struggling to implement them. Only two of the 
twelve teachers participating in the study could be categorized into the third, more idealistic type. 
Even though the three approaches were derived from a small sample of 12 teacher interviews, it can 
be assumed that most teachers can identify themselves with one of these categories. Besides, these 
cannot be considered static approaches; instead, teachers can find themselves in several of these 
within their professional life.  

Moreover, it seems that there is a noticeable difference between middle and high school teachers 
when it comes to openness for development work. The initial excerpts in the introduction came 
from experiences with high school teachers with whom it was first planned to carry out the 
professional development course on critical mathematics education. However, as they showed no 
willingness to participate in any professional development course and even expressed a 
discouraging attitude towards anyone not directly anchored in the school system, a new school had 
to be found for the research project. From the beginning, middle school teachers were more open-
minded towards the professional development course and were immediately interested in what it 
will be about in more detail. Even though the interviews show that also among middle school 
teachers, some do not offer much potential for change, these teachers still get involved in in-service 
training on new topics voluntarily. The fact that there are such noticeable differences in this respect 
between these types of teachers might be attributed to a wide variety of reasons: Teacher education 
has been structured differently and anchored at different institutions until two years ago in Austria. 
Regulations concerning professional duties differed as high school teachers had no obligation to 
undergo further training after graduation. This might have led to an image that this is not part of 
their job but more something like a hobby for the over-idealistic. In contrast, middle school teachers 
are accustomed to investing at least 15 hours per year for this purpose (which is still no guarantee 
for developmental work as you only need to be physically present to get your certificate). 
Moreover, the student clientele differs greatly in terms of social background, which makes collegial 
cooperation in middle schools all the more necessary to cope with possible challenges. The list can 
certainly be continued. Still, it does already show that socio-political guidelines and school 
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conventions greatly influence the success of professional development initiatives and how much 
innovative, science-based knowledge actually ends up in the classroom. However, as these 
described differences between high school and middle school teachers derived from the data and 
experiences with a rather small group of teachers of only two different schools, generalization of 
findings can only be done cautiously, and there might be different results in other areas and 
contexts. 

To narrow the gap between theory and practice in the future, it seems particularly important to 
focus on the struggling teachers and strengthen those who have ideas but do not put them into 
practice for various reasons. Much potential for innovation will remain unused if these teachers are 
not supported in ways that allow them to realize what they learned is best for their students. Since 
the reasons for the theory-practice gap are manifold, there will not be one single way to solve the 
issue. Rather, interlocking initiatives at different levels could help move in the right direction and, 
above all, support those open to development and innovation. After all, it became clear that the 
extent to which innovations find their way into the classroom thus depends on a wide variety of 
interlinking governmental, political, cultural and social structures. The individual teachers’ vision 
alone will (most of the time) not be enough for getting new research-based insights into practice. 
Decisions on how teacher education programs are structured, how cooperation between university 
and school institutions is promoted, how traditional the school structures are, and the legal 
framework conditions for teachers can strongly influence how much of the vision is carried out in 
reality.  
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This paper presents a study based on a meta-analysis of 43 case studies on primary school children 
participating in an extracurricular support program for low attaining children named MaKosi 
(‘Mathematische Kompetenzen sichern’). Whereas this program particularly aims at identifying low 
attaining children and supporting their arithmetic skills, this paper investigates social factors that 
can be identified as shared and comprehensive to this group of children attending the support 
program. As part of the case studies, interviews were conducted with the children, their parents, 
and (mathematics) teachers in order to examine factors that may lead to or influence the assumed 
low attainment in mathematics. The results indicate an interplay between individual, social, and 
school-related factors, such as gender, self-concept, and the quality of classroom management. 

Keywords: Low attaining children, case studies, social factors. 

Introduction 
Teachers, parents, and students typically assume that there are children who easily learn 
mathematics – and that there are those who do not. In psychological approaches learning difficulties 
are described as a consequence of dyscalculia or individual learning disorders that need to be 
‘cured’ or, at least, need intervention (Kuhn, 2015). Some mathematics educational researchers 
conceptualise dyscalculia or learning disorders as the result of inappropriate teaching and individual 
difficulties and, therefore, call for improvement of assessment and the quality of teaching. In 
addition, training or intervention programs, e.g., in universities have been implemented (in 
Germany at the universities of Münster, Wuppertal, Bielefeld, and others) linking the identification 
and support of children, the training of student teachers, and research on learning difficulties. 
However, in this paper we follow Uwe Gellert’s assumption that the characterisation of a group 
says more about the characteriser than about the characterised (Gellert, 2013). The phenomenon of 
low-attaining children in this understanding is not a natural or biological description of reality, but 
constructions that emerge in social and political contexts (ibid.). Low attainment can be 
problematised as a consequence of inequality. Consequently, socio-political perspectives on 
mathematics education focus on the contexts of the construction problems, e.g., in classroom 
interactions (Gellert, 2008; Heyd-Metzuyanim, 2013), as a matter of identity (Andersson et al., 
2015) or (auto-)exclusion (Kollosche, 2019). A research desideratum addresses the question of how 
other agents involved such as teachers and parents come to the conclusion that there are learning 
difficulties that cannot be solved in the standard lessons. Complementing these studies, we ask, 
which social factors can be identified regarding primary school children’s attendance at an 
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intervention program for low-attaining children. We would like to change the perspective by not 
examining what these learners need or what their (lacking) competences are, but why they are 
perceived as children who have difficulties and, therefore, are selected for intervention and in what 
way social factors affect this selection. To answer these questions, we draw on data of 43 case 
studies constructed by student teachers about children who are characterised as low attaining 
learners especially in arithmetic and attend an intervention program. First, we give a brief overview 
of the theoretical frameworks with respect to explanations for low attainment in mathematics and its 
construction in classroom interactions. After that, the study’s methodology is outlined and justified 
against the theoretical frameworks. Finally, the results are presented and discussed. 

Theoretical frameworks 
As there are many definitions, classifications, and understandings of having problems in 
mathematics such as a (mathematical) learning disability, special needs in mathematics, 
mathematical learning difficulties, or dyscalculia (Scherer et al., 2016), in this paper we use the 
term low attainment with focus on arithmetic contexts. The term low attainment means that children 
do not show the teacher’s expectations of mathematical performance. It involves individual aspects 
of learning as well as social and cultural factors and, thus, can be seen as a complementing 
perspective on other (psychological) classifications (for an overview see Fritz et al., 2019; for a 
social-political perspective see Straehler-Pohl et al., 2017). 

Low attainment in mathematics (LAM) between school, family, and the child 

From a mathematics education viewpoint (unlike a psychological one) low attainment is 
conceptualised as a psycho-social interplay. Gaidoschik (2017) states that there are no actual 
evidence-based causes of LAM but numerous factors that make LAM more likely. These factors 
can be seen in the realms of school (lack of assessment, teaching mistakes, discontinuity, etc.), 
family (lack of support, anxiety, drill, etc.), or the child itself (self-concept, motivation, etc.). 
Benölken (2016) developed a model of LAM that connects inter- and intrapersonal ‘risk factors’. 
Whereas family, peers, and the context of school are interpersonal factors, there are further possible 
intrapersonal risk factors such as difficulties in concentrating, unfavourable mathematics-related 
self-concepts, or self-efficacy expectations, often as a result of multiple experiences of failure. 
Psychosocial approaches emphasise that such risk factors can exist not only within the individual, 
i.e., due to intrapersonal determinants or processes but also outside the individual, i.e., in their 
social environment: Family conditions are unfavourable, for example, due to an environment that is 
poor in stimulation and experience with regard to points of contact with mathematical content. Until 
now, there is a lack of empirical research on these risk factors and how they are connected to 
learner’s development of LAM, but one can find hints in studies that research learner’s identities or 
give reasons for (auto-)exclusion from mathematics education. Among others, Andersson et al. 
(2015) find out, that the identity of being a ‘math hater’ and corresponding disengagement in class 
can change over time. They state, that the contexts of task, situation, school organisation, and the 
socio-political context matter and that identity narratives change in relation to available contexts. 
Kollosche (2019) asks why learners reject mathematics and describes that auto-exclusion is 
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motivated by the organisation of mathematics education and closely linked to the subject of 
mathematics itself and, therefore, also represents a didactical problem. 

In all these considerations of what may cause LAM, in these approaches it is clear that there is an 
unsatisfactory performance in mathematics and that this must lead to support (Scherer et al., 2016). 
Other approaches, instead, question whether this shown performance corresponds to ‘reality’ at all 
or if it is a result of interactional (co-)constructions. 

Construction of LAM in classroom interactions 

Uwe Gellert and colleagues use Basil Bernstein’s theoretical frameworks of pedagogic codes and 
their modalities of practice:  

When the mathematics teacher poses a problem, students need to respond in a manner that is 
seen as appropriate. They must be able to recognise that particular responses are expected, and 
they must be able to produce a desired response. (Gellert, 2008, p. 218) 

These abilities are distributed unevenly with respect to the different socio-economic backgrounds of 
the children. Gellert shows, that achievement is not primarily based on childrens’ mathematical 
abilities, but on their differential rule recognition responses (Gellert & Straehler-Pohl, 2011). In a 
case study, Heyd-Metzuyanim (2013) shows that ‘learning disability’ is not an individual 
characteristic, but an interactional co-construction between teacher and learner, relying on the 
interplay of following rules and routines in the classroom. In this case, the learner responded to the 
rules of participation, but the mathematical content was mostly inappropriate so that she could not 
negotiate mathematical meaning. She had no choice but following routines without understanding. 
“The implications of these findings lie in highlighting the necessity of taking into account the social 
and affective, as well as the cognitive, aspects of learning difficulties in mathematics.” (Heyd-
Metzuyanim, 2013, p. 362). 

These studies reconstruct the emergence of disparity while participating in classroom interactions. 
In contrast, Straehler-Pohl and Pais (2013) reconstruct mathematics educational failure as a 
consequence of very low academic expectations and, therefore, provoke learner’s resistance. As 
non-participation is no legitimate option for children in everyday lessons, it leads to exclusion. 
Within these perspectives, LAM appear to be an interactional construction caused by practices and 
routines in school. In addition, however, this is criticised as the reasons for inequality can also lie 
outside the school context. 

Researching the connection between social factors and the construction of LAM 

Gutiérrez (2012) reminds us that “[…] learning is intricately connected to the contexts in which it 
occurs” (p. 18). She argues that there is a need to reclaim space for studies that focus on learning in 
context. Researchers must consider the complexity of the phenomenon. Pais criticises that “[a]ll the 
complexity of the social and political life of the student is wiped out of the research focus. The 
student is reduced to a biological entity, likely to be investigated in a clinical way.” (Pais, 2012, p. 
53). Though we do not agree with his overall assumptions, we emphasise taking social factors and 
contexts of learning into account. Our theoretical assumption is that performance in class is not the 
only reason for being assigned as low attaining but it is also a result of social constructions. Yet, the 
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process of these constructions is not alone in the hands of teachers. We assume that there is an 
interplay between the teacher’s and the learner’s views, between the quality of teaching, and the 
learner’s situation. We seek to explore these complex interplays. 

Methodology: Data collection and analysis 
This exploratory study is based on a meta-analysis of 43 case studies on primary school children 
who participated in a support program for low attaining children named MaKosi (‘Mathematische 
Kompetenzen sichern’ – ‘ensure mathematical competences’, translated from German). The long-
term project MaKosi was conducted from 2014 to 2018 under the supervision of Ralf Benölken at 
the University of Münster (Germany) in cooperation with a primary school (Benölken, 2016, 2017). 
It was organised as a ‘learning-teaching-laboratory’, i.e., a project seminar that links student 
teachers’ theoretical and practical education by working with children. It mainly aims at developing 
student teacher’s professional competences and supporting children characterised as low attaining 
in mathematics. In each semester the program took place in the afternoon at the primary school 
once a week over a period of four months. Each 90-minute-session was divided into three parts: at 
the beginning and at the end playful problem tasks respectively games were offered to support 
children’s self-perception and joy of engaging in mathematics. The main part of the sessions was 
the 60-minute diagnostic and support unit in which one student teacher and one child worked 
together in one-to-one-interactions in established teams. During these sessions, the children worked 
on various tasks and the student teachers noted down the children’s ways of thinking as well as 
aspects, that stood out to them and that they considered particularly important and relevant, in an 
observation log. Teachers and parents decided on the children’s participation in the program: First, 
teachers were given information about the program and the theoretical framework. They elected 
children providing a written rationale. Then, parents were asked to fill in a consent form. The data 
we refer to in this study is drawn from the individual case studies that student teachers produced 
following the project MaKosi as part of bachelor’s (in total 18) and master’s (in total 25) theses on 
the children they worked with in the project over the full period. The case study approach provides 
a profound, multi-faceted appreciation of an issue, which is intended to paint a holistic and realistic 
picture of the social world (Lamnek, 2010). In case studies, triangulation of different methods, e.g., 
participant observation or (guided) interviews, is often used in order to capture all significant 
dimensions and facets of an issue and to be able to gain a more precise insight into how the diverse 
factors interact (ibid.). The case studies were primarily aimed at reconstructing the child’s 
difficulties as well as risk factors that could promote these difficulties. In addition to the above-
mentioned observation log on the children’s way of thinking and their task completion, the students 
also used guided interviews with the children, their parents, and the mathematics teachers as data 
collection instruments. From these data, the students worked out how the child’s development 
(including physical and academic development) progressed, how his LAM manifested itself, and 
what aspects they perceived as risk factors for LAM. 

As stated in the introduction, we would like to change the perspective by not examining what these 
learners need or what their (lacking) competences are, but why they are perceived as learners who 
are low attaining. In other words, our aim is to reconstruct factors, especially social ones, that lead 
to these children being characterised as low attaining. Therefore, we conducted a meta-analysis that 
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includes 43 case studies written as part of the project MaKosi. Using qualitative content analysis 
(Mayring, 2015), the risk factors described in the case studies were first coded using three 
categories deductively derived from theory: child, school, social environment (Benölken, 2016; 
Gaidoschik, 2017). Subsequently, five subcategories were formed from the data in conjunction with 
the theoretical models of Benölken (2016) and Gaidoschik (2017) for each of the three 
superordinate categories: (1) The factors relating to the category child included the subcategories 
work habits (e.g., lack of independence, low perseverance or difficulties in concentrating), 
developmental factors (e.g., difficulties in motor skills, perception or language), affective-
motivational characteristics (e.g., unfavourable mathematics-related self-concept or negative 
attitude towards the subject of mathematics), general school-related insecurity (e.g., discomfort, 
feelings of inferiority, or emotional reactions), and relevance (especially not recognising the 
importance of the subject for life). (2) For the category social environment the five subcategories 
lack of stimulation (e.g., an environment that is poor in stimulation and experiences for dealing with 
mathematical topics), learning environment at home (e.g., lack of support, difficult and unsettled 
family circumstances), negative role models (family members who have also been characterised as 
mathematically low-attaining or have unfavourable mathematics-related self-concepts), lack of 
participation (and of interest of parents in school-related matters), and emotional stress (e.g., due to 
divorce of parents or pressure) were formed. (3) The subcategories discontinuity (e.g., class 
repetition or frequent change of teachers), relationship (especially a negative relationship between 
child and mathematics teacher), situation of the class (e.g., restless classes with many learners or a 
negative atmosphere in the class), classroom management (quality of teaching, individual 
promotion) and cooperation (e.g., between teachers and parents or of different professions) are 
subsumed under the category school.  

For each child, it could now be noted whether each factor was perceived as a relevant factor in the 
context of the case study. It was only asked whether the respective factor played a role and not how 
strongly it was perceived, i.e., no weightings were applied. 

Results 
Across the 43 case studies, the comparison of the categories showed that the subcategories 
belonging to the category child were most often perceived as risk factors for the children’s LAM. 
The factors work habits (in total 36 times), developmental factors (32 times), and affective-
motivational characteristics (28 times) were each described in a majority of the case studies. 
Emotional stress (20 times) and lack of stimulation (17 times) were the most frequently perceived 
factors in the category social environment, and in the category school, these were the two 
subcategories classroom management (26 times) and discontinuity (21 times). Relevance (7 times) 
and cooperation (4 times), on the other hand, were rarely assessed as relevant factors. When 
comparing the case studies with each other, the wide range of combinations of the fifteen 
subcategories perceived as risk factors is striking. For example, while only three relevant factors 
were identified for one child (all can be assigned to the category child), there are children for whom 
up to ten different factors were observed. Furthermore, the distribution of the perceived factors in 
the three areas of child, school, and social environment varies depending on the case study. In this 
respect, Figure 1 shows a possible typification of the individual cases in which, depending on the 
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focus of the factors described, they were either primarily assigned to one of the three categories or 
located at the interface of two or all three categories. 

 

 

 

 

 

 

 

 

Figure 1: All cases 

As can be seen in Figure 1, most of the individual cases are located in the centre or the upper-left 
area of the mapping. The focus of reconstructed factors for most of the children was, thus, on 
intrapersonal factors, i.e., category child, or at the interface of this category with one or both of the 
other categories. Furthermore, it can be seen that for none of the children in our case studies a clear 
focus on school factors was described. Nevertheless, as shown above, classroom management was 
one of the most frequently mentioned factors. The meta-analysis also showed that a large proportion 
of the individual cases considered (a total of 30 out of 43, i.e., almost ¾) were female. If we now 
look at the focal points of the factors described in the case studies for girls and boys separately, as 
shown in Figure 2, we can see that the individual case studies of boys are quite scattered.  

 

 

 

 

 

Figure 2: Cases split by gender (on the left: girls; on the right: boys) 

Rather often, however, they include types that combine factors that can be assigned to the area of 
the social environment, but have fewer school-related factors. Many girls, on the other hand, show a 
combination of factors belonging to the categories child and school, whereby an accumulation of 
affective-motivational characteristics is particularly noticeable. Thus, 23 girls were perceived to 
have an unfavourable mathematics-related self-concept. In summary, it can be stated that a 
combination of different factors from the three categories seems to be prevalent in many children, 
whereby in the case studies the students mainly reconstructed factors regarding the category child. 
In the other two categories, individual factors were dominant, for example classroom management 
or emotional stress. 

social environment 

school child 
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Discussion 
The results confirm that there is a complex interplay between perceptions of LAM. Especially girls 
with a negative self-concept and unfavourable motivational factors were selected. Two points seem 
important to us: first, inequality with respect to gender is a well-known and unsolved problem in 
Germany. Cultural factors seem to play a role as there are other countries where these differences 
do not exist to the same extend. Second, the question of individual factors corresponds to the 
assumption of Heyd-Metzuyanim (2013, p. 363): “The problem lies in the permanence of the 
disability title and the apparent disregard for the social and affective processes that may be (at least 
partially) responsible for its development in the first place.” The girls are labelled as having 
problems and see themselves similarly, which, again, has consequences for their performance. In 
addition, the children’s education is characterised by discontinuities. Many of them repeated or 
were repeating a school year. However, Gellert’s (2008, 2013) results show precisely that being 
perceived as high- or low-performing is related to following rules of discourse. If children do not 
have access to these rules, repeating a school year does not change that. Benölken (2016) and 
Gaidoschik (2017) focus on risk factors that lead to LAM. We also found a striking relation 
between classroom management, emotional stress, and school-related insecurity in general. In 
addition to Gaidoschik’s and Benölken’s views we argue that these social factors may indeed have 
an impact, but especially they make a categorisation of children more likely. In our case studies we 
found a low attaining girl who scored high achievements in other mathematical assessments 
conducted by student teachers. All in all, we identify several aspects that seem to influence 
teachers’ and parents’ decisions for selecting children – at least gender and self-concept play a role 
– that appear in mathematics lessons as performance or attainment. These social factors seem to be 
‘hidden’ under the construct of low attainment. At the same time, we recognise a low quality of 
mathematics lessons and teaching, discontinuities in didactics, and an unfavourable learning 
atmosphere. None of this will change by learners attaining intervention programs because the 
lessons and school contexts themselves are problematic. When it comes to supporting learners, it 
seems adequate to focus not only on mathematical, but broader facets like motivation and self-
concept (which is indeed intended in MaKosi). Surprisingly, we could not find any relation to socio-
economic factors. This leads to the limitations of our study. As the program was conducted at one 
school in a relatively privileged region, there were few economically disadvantaged children. We 
see our study as work in progress; more children with various backgrounds and at different schools 
need to be included. 
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How the structural crisis in the labour market impacts the quality and 
identity of mathematics teacher students 
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This paper analyses the impact of two structural context factors on mathematics teacher students. 
First, the Netherlands is coping with a massive mathematics teacher shortage. Second, the Dutch 
knowledge-economy feeds the private tutoring sector. The impact on young teacher-students is 
tremendous; they start working as a teacher too early. Besides successful studying, broader 
professionalization and quality of mathematics education are in jeopardy. A quick-fix for 
mathematics education might do more damage than foreseen.   

Keywords: Teacher students, teacher shortage, shadow education, identity, quality of education. 

 
Introduction  
This paper contains an overview of the current situation in the Netherlands when it comes to 
mathematics education and mathematics teacher training. Many teacher training students start 
working as an unqualified teacher before they finish their teacher training. The shortage of 
mathematics teachers and private forms of education lure teacher students into the work field earlier 
than preferred. Research on this situation seems to be primarily focused on pupils and teachers and 
not on teacher training students.   

 

Quality of  mathematics (teacher) education 
There is no single definition of quality in higher education. Harvey and Green (1993, as cited in  
Onderwijsraad, 2015) distinguish five different definitions of quality. One of them is quality as 
transformation. It stands for a mutual process between provider (teacher training) and participant 
(teacher student). This process adds value to the participants and empowers the participant to 
influence their own transformation into a professional. The educational work field can be seen as a 
connection between teacher student and teacher training through traineeship, in alignment with the 
intentions of both teacher training and teacher student. All from the perspective of safe and solid 
development of professional mathematics teachers.  

Biesta (2020a) states quality is not the right word to use in relation to teacher training, because who 
is against quality? Quality stands for measuring and scoring, which fits the tenor of the knowledge 
economy in which scoring as high as possible is the most important goal. Commissie 
Beleidsevaluatie Lerarenopleidingen (2013) emphasizes it is crucial to keep a broad perspective on 
the development of teacher students. Thinking in competences in teacher education may keep the 
focus on the technical aspects of professionalization and may lead to a ‘training’ model instead of a 
broader ‘forming’ model. Competencies are important, but should be seen in a broader normative 
professionality. This ‘forming’ model and the model of quality of transformation come near to 
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Biesta’s (2020b) vision about education. Education should not be only about knowledge and 
competencies employed from the perspective of the current social order. The pedagogical mission 
of education contains socialization; developing identity and subjectification; being invited to be a 
subject in and with the world, being a ‘self’, all in interaction with and interruption by ‘the other’.  

If mathematics education should involve more than a focus on competencies and qualification, it is 
important to give mathematics teacher students the opportunity to experience mathematics, 
mathematics education and the role of mathematics (education) in society in as much depth as 
possible. The Dutch Knowledge Base is used by universities of applied science to guarantee quality 
in mathematics teacher training and can be found on the website 10voordeleraar.nl. It is composed 
by mathematics teachers and teacher trainers and describes the minimal knowledge an incipient 
teacher should have about mathematics. It states that besides mathematical knowledge (being able 
to do the math), a teacher should develop general mathematical skills. This means for example 
being able to use ICT, specify how mathematics is used in other school subjects and ‘indicate the 
impact of society on the development of mathematics’. A broader perspective would be the addition 
‘how can mathematics be used in other subjects and how does or can mathematics have impact on 
developments in society’.  

In 1980s and 1990s a reform of the Dutch secondary mathematics education curriculum was 
initiated and implemented. The new Realistic Mathematics Education curriculum (RME) had the 
aim of making mathematics meaningful for everyone, being connected to reality and being relevant 
to society (Hoogland, 2020). Students should be supported by constructing their own knowledge 
and developing mathematical insights (Gravemeijer et al., 2016). In the 1980s the market was led 
by mathematics textbooks inspired by RME. The tendency of teachers and textbooks to think of 
instruction in terms of individual tasks and their focus on procedures that generate answers quickly 
are reasons RME-goals weren’t reached (Gravemeijer et al., 2016). Besides that, Dutch 
mathematics teachers have the tendency to depend on their textbooks (Daemen et. al, 2020). A new 
curriculum for secondary education is in development. It seems mathematics education might be 
stuck in a focus on qualification for now, despite the original intentions of RME.  

  

Mathematics teacher education 
The Amsterdam University of Applied Science (AUAS) houses the bachelor-study for becoming a 
mathematics teacher for junior secondary school (age 12-16). The teacher student population is 
diverse. There are students from urban and rural areas, students with a bi-cultural background, 
students with a refugee-background, first-generation-students and students who enter from a 
vocational school or enter from another university. If a teacher-student is successful, the student 
manages to finish within 4 or 5 years. Unfortunately, not all teacher students are successful. To 
illustrate this: from the 63 teacher students starting in 2018, only 43% passed the first year course 
after 2 years of studying. Only half of the 30 full-time teacher-students who started in 2015 with the 
main phase of their study, a 3 year program, graduated 4 years later. Student teachers who take 
more than 5 years to study are called ‘slow students’ (langstudeerders).   
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Different obstacles cause students in general to need more time to finish their study. Elffers a.o. 
(2018) distinguish formal obstacles and informal obstacles. A formal obstacle could be not passing 
exams and informal obstacles are for example being a first generation student or studying with a 
disability. Student-engagement and thorough guidance of students are important factors for study-
success, especially in the first year of studying (Diepen & Elffers, 2019). Although improvement is 
always possible, pre-teacher-education at AUAS is investing in student engagement. The question 
arises if there might be other reasons why a substantial number of students are dealing with a 
substantial study delay. At this point it is time to include factors relating to shortage in the teacher 
labor market and private tutoring.  

 
Teacher shortage: unqualified teachers, freelancers and growing inequality  

The Netherlands has a shortage of qualified mathematics-teachers. A quick search at 
‘www.meesterbaan.nl’, a national vacancy-website for education, shows 85 vacancies for 
mathematics teachers for secondary education (learners age 12-18) at the beginning of the school 
year 2021/2022. Assuming these are vacancies at different secondary schools this means 4,7% of all 
secondary schools in the Netherlands are searching for a mathematics-teacher. Schools are allowed 
by government to hire unqualified teachers, like guest teachers, teacher students or teachers in 
another subject to fill the gaps. It is one of the reasons why it is hard to define the exact shortage of 
qualified teachers (Adriaens et al., 2017). Still the education inspectorate states that in 2016 
mathematics was the school subject with the highest number of unqualified teachers, namely 7,4%.  

The question of supply and demand on the teacher labour market causes a growing number of 
teachers to start freelancing for financial reasons and to avoid workload. The Chamber of 
Commerce claims that the number of freelance teachers in general almost tripled in the past seven 
years. Freelance teachers are more expensive for schools to hire and freelancers have the 
opportunity to make demands. For example one can come to an agreement not to attend meetings or 
seminars at school, do surveillances during examinations or start extra educational projects. This 
undermines schools being a community or a system in which teachers are caring for the 
development of their students and each other not only during class, but also outside classrooms. Or 
put another way, it will reduce schools to institutions for qualification, with less opportunities for 
socialisation and subjectification.  

The number of vacancies is concentrated in the western part of the Netherland. This is the densely 
populated area of the Netherlands and has more urban regions. Figure 1 shows the expected 
teacher-shortage in the Netherlands in 2025 compared to 2019. Mathematics (wiskunde) has by far 
the worst prognoses. De western areas (NH and ZH)  will have a shortage of respectively 57 and 73 
FTEs. A tight teacher labour market increases turnover in highly urban areas and schools with 
disadvantaged children. In urban areas there are less young teachers, which could indicate it is 
difficult to find replacements for leaving teachers (Dijkslag, 2019). When it comes to shortages in 
urban areas: teaching in a superdiverse context requires extra skills. Teaching in general has the 
characteristic of being a lonely job and requires full responsibility from day one (Snoek, 2016). The 
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complexity of teaching in a superdiverse environment causes starting teachers to choose ‘less 
complicated’ schools (Dijkslag, 2019; Gaikhorst et al., 2019).  

The shortage of qualified teachers in 
these areas has a negative effect on 
equality of opportunities for students 
(Elffers, 2019a). The education 
inspectorate states on their website 
that  students in areas coping with a 
shortage of teachers receive their 
lessons more often from non-
graduated teachers. Besides that, 
they have more teachers in one 
school year than schools in other 
areas. A teacher shortage enhances 
inequality of opportunity, stimulates 
a group of teachers to start 
freelancing and the number of 
vacancies for mathematics teachers 
rises. 

 

Shadow education: inequality of opportunity  
The Netherlands has a knowledge economy, which 
brings focus on qualification. Parents put their effort 
into ensuring their children are as highly educated as 
possible. This has contributed to the rise of shadow 
education in the Netherlands. The term shadow 
education stands for privately funded extra 
educational activities for learners after school with 
the intention to improve performance at school 
(Elffers & Jansen, 2019 ). Examples are homework 
guidance, extra private lessons in school subjects, 
training for exams and summer schools. Mathematics, 
being an obliged subject in most routes in Dutch 
secondary schools preparing for university and university of applied science, has been doubtless a 
profitable school-subject for shadow-education in the Netherlands. Figure 2 shows the spending on 
shadow education increased eightfold in almost two decades (Elffers, 2019a). Shadow education 
can cause inequality of opportunity. Not all parents are financially able to pay for private education 
after school. Teachers might spend less time to give extra guidance to their students and refer to 
extra lessons (Elffers & Jansen, 2019).  

 

Figure 1: Extra vacancies teacher per subject and province in 2025 vs. 
2019 (Adriaens et al., 2017) 

Figure 2: Spending on shadow education in the 
Netherlands (Elffers, 2019a) 

Proceedings of CERME12 1866



 

 

After corona: public and private forms of education can start dating again 
Because of the corona-pandemic and its negative influence on education, the Dutch government 
released  8 billion euros to support national education. This ‘Nationaal Programma Onderwijs’ 
gives secondary schools two years of funding to help learners get rid of disadvantages due to the 
corona-crisis. Money can be spent on interventions that are proven to be effective. This can be for 
example: extra lessons, extra teachers, teacher support, summer programs and weekend schooling. 
This support plan is the government’s open invitation for public and private forms of education to 
start to cooperate even more. Shadow education entering public schools is not a totally new 
phenomenon (Bisschop & de Geus, 2017). The market for shadow-education has been growing due 
to the Dutch knowledge-economy. (Elffers, 2019a). It seems, when it comes to private education in 
public schools, in most cases even before the corona pandemic, schools bore the costs or parents 
were asked for compensation. (De Geus, W. & Bisschop, P. 2017)  Both Elffers (2019) and De 
Geus and Bisschop (2017) conclude more research has to be done on the effects of shadow 
education on teachers and pupils. An important group of participants is missing in this conclusion, 
because who are filling the gaps?  

 
Mathematics teachers education students fill the gaps 
Since government allows non-qualified teachers to teach at schools in combination with the current 
teacher shortage, teacher training is coping with schools offering teacher students a job or asking 
them to do extra educational activities, even before they have finished their teacher-training. This 
phenomenon is called green picking (groenpluk) (Diepen & Reumerman, 2018).  

The AOb, a Dutch teachers union, conducted research with 606 teachers younger than 35 years old 
by bureau Investico with the topic ‘starting teachers’. The article indicates that almost 60% of the 
respondents had a job as a teacher before graduation.  

Reasons for students to accept a teaching job include: financial incentives, being ‘honored’ and 
having a ‘good connection with the school’. Not all schools provide proper guidance for starting 
teachers. About 30 % of the teachers quit after 5 years, because of workload and burn-outs. (Pol & 
Tunali, 2021).  

A short inventory by the author about shadow education and green picking among 24 teacher-
students in their first year of study (2020-2021) is shown in Table 1. 12 out of 24 students state they 
have been active in some form of shadow education. 20 students have been active in some form of 
private education, which could be, for example, helping a neighbor’s pupil for a fee.  

 

Table 1: Results inventory on activities in education by first year students 

Question Number of students Percentage 

Have you been working as a mathematics teacher besides your traineeship? 7 29 % 

Have you been offered a job as a mathematics teacher? 6 25% 
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Did you receive more tasks besides your internship? 6 25% 

Did you give exam training through a tutoring company? 8 33% 

So while public education and private forms of education compete and cooperate for employees in 
the teacher labor market, mathematics teacher education students are filling gaps and put effort in to 
getting students to access the highest levels in the knowledge economy.  

 
Possible consequences 
More research on this topic needs to be done, but still possible consequences can be mentioned. Of 
course a positive effect might be that teacher education students gain more experience and have 
context to connect information and activities from their teacher training with their daily practice. 
However, the way in which the Dutch mathematics curriculum for secondary education has been 
handled over the past 30 years does not show an inspiring example for a rich mathematics 
education. Early adoption by the educational field and early development of identity as a 
mathematics teacher might make it more difficult to stay open to other ideas and concepts. Because 
teacher students are busy working they will have less time to be creative and innovative and they 
will have little time to reflect on their experiences being a teacher. The importance of reflection and 
personal professional development might shift to the background, already being ‘on board’. Even 
more, hiring teacher students as an unqualified teacher might make them think they are ready to be 
a teacher.  Like a student stated in van Diepen en Reumerman’s research (2018, pp. 19): ‘Thirty 
hours a week for four years: what is that about? My trainee school says I can be a teacher by the 
end of this year.’  Just like their employer they will be focused on fast qualification. This might 
endorse the mindset of ‘finally finishing the training’ instead of the concept of a lifelong personal 
and professional development. A generation of teachers may stay underdeveloped while being 
absorbed by the field. 

 

Conclusion: narrow teacher training, narrow mathematics education  
Mathematics teacher shortage and shadow education impact the broader development and  
professionalization of mathematics teacher students. It doesn’t matter if students are ‘slow’ or ‘fast’. 
Either way they might have the tendency to be focused on their own quick qualification. 
Meanwhile, they already serve the knowledge economy without room for creative input or any 
healthy criticism. Since the professional development of teacher students seems to narrow because 
of this structural crisis on the mathematics teacher labor market, mathematics education itself will 
stay narrow. This is an alarming situation. Mathematics teachers should not be able to just ‘indicate 
the impact of society on the development of mathematics’. In current times mathematics education 
should take part in addressing challenges like climate change, data-abuse or inequality of 
opportunity and contribute actively to personification and subjectification, a quick-fix for 
mathematics education is creating the opposite. 
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Conceptualising and operationalising socio-mathematical agency 
Pete Wright 

University College London, Institute of Education, London, UK; pete.wright@ucl.ac.uk  

In this paper, I introduce a new theoretical construct of ‘socio-mathematical agency’ (SMA), which 
I define as the ability to use mathematics effectively to argue collectively for social change. I 
present a conceptualisation of SMA which embraces the need to generate powerful mathematical 
knowledge, and which draws on critical mathematics education in foregrounding the need to attend 
to learners’ individual and collective agency. I propose that developing SMA in learning 
mathematics can make a significant contribution towards cultivating the collective knowledge and 
critical understanding needed to address environmental, economic and social challenges facing 
global society. I present some suggestions for how SMA might be operationalized in the classroom, 
which I hope will generate further debate about the efficacy and possible future development of 
SMA. 

Keywords: Socio-mathematical agency, powerful knowledge, student agency, social justice. 

Introduction: What is ‘socio-mathematical agency’ and why is it needed? 
In this paper, I introduce a new theoretical construct of ‘socio-mathematical agency’ (SMA), which 
I define as the ability to use mathematics effectively to argue collectively for social change. The 
need to develop SMA amongst students is highlighted by recent calls from intergovernmental 
educational policy-making organisations for a more humanistic school curriculum that cultivates the 
collective knowledge and critical understanding needed to address the environmental, economic and 
social challenges facing global society (Organisation for Economic Co-operation and Development 
[OECD], 2018; United Nations Educational, Scientific and Cultural Organization [UNESCO], 
2015). I propose that focusing on the development of SMA in learning mathematics can make a 
significant contribution towards these aims. The benefits of SMA are exemplified by the impact of 
a report by the Imperial College COVID-19 Response Team (2020), released soon after the initial 
outbreak of the pandemic, which used mathematical modelling of coronavirus infections to predict 
over half a million deaths in the UK if existing precautions were not strengthened. The report led to 
a significant change in public attitudes towards the virus, prompting the UK Government to 
introduce additional measures, including social distancing, which prevented an even greater death 
toll (Skovsmose, 2021). 

Mathematical skills are widely recognised as essential for solving real life problems. There is 
growing consensus among mathematics education researchers that, to develop powerful 
mathematical knowledge (needed to solve real life problems), students need to be given 
opportunities to experience processes mathematicians go through in generating new knowledge 
(Mason et al., 1985; Schoenfeld, 2012). These include working collaboratively (most new 
knowledge is generated by mathematicians working in teams), posing questions, conjecturing, 
reasoning, explaining, justifying. Gutstein (2006) argues that engaging in complex mathematical 
tasks, through a curriculum that emphasises reasoning, communication and problem-solving, is 
essential for the empowerment of mathematics learners. 
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The recent Covid-19 pandemic has highlighted how understanding mathematical concepts, such as 
exponential growth and moving averages, is necessary for individuals to make sense of data 
presented in the media and hence arrive at rational decisions about behaviours that take account of 
the risks to health. Mathematical knowledge is important in helping generate a wider understanding 
of the many crises currently facing humanity. Coles et al. (2013) highlight how gaining an 
appreciation of the shape of a normal distribution curve, and how this relates to the mean and 
standard deviation, can help to explain why global warming is also associated with more extreme 
cold spells. However, mathematics does not always serve the public good. Skovsmose (2021) 
highlights how mathematics sometimes (as in the examples presented above) helps to ‘picture’ a 
crisis, but at other times can actually ‘constitute’ a crisis, e.g. in situations where complex 
mathematical algorithms have led to a collapse in the stock market or to automated reactions of an 
aeroplane that prevent the pilot from averting a disaster. Mathematics can also ‘format’ a crisis, e.g. 
the choice of mathematical models we use to predict climate change can influence how we interact 
with the climate in future. Careful thought therefore needs to be given to the type of mathematical 
knowledge, skills, behaviours and dispositions that learners need to develop if they are to make 
effective use of mathematics to advocate and bring about future social change for the public good. 

Theoretical framework: Conceptualising socio-mathematical agency 
The content of school curricula has invariably proved contentious, which is hardly surprising given 
the competing ideological perspectives of those different interest groups involved in their 
development (Wright, 2012). Even amongst those who champion the empowerment of learners, 
there is disagreement over how this should be achieved. Social realists, such as Muller and Young 
(2019), claim that some types of knowledge, particularly those which are formal and specialised, 
are inherently powerful. They draw on Bernstein’s (2000) contention that abstract knowledge is 
powerful in that it can extend learners’ horizons by allowing them to think ‘the unthinkable’ and the 
‘not-yet-thought’. It should be noted that Muller and Young’s view of ‘powerful knowledge’ 
includes an appreciation of ‘disciplinary meaning’ (how new knowledge is generated within the 
discipline) as well as understanding abstract concepts, thus endorsing the generally accepted notion 
of powerful mathematical knowledge described in the Introduction. Muller and Young (2019) 
blame the involvement of politicians in curriculum-making for an increasing tendency to prioritise 
the nurturing of skills and competences that are seen as contributing towards economic growth at 
the expense of powerful knowledge. They claim that knowledge is consequently viewed primarily 
as an individual asset, rather than for the public good. 

In contrast, critical realists argue that abstract knowledge alone should not be considered powerful, 
since its power largely depends on the agency of the learner (Manyukhina & Wyse, 2019). Given 
the possibility that mathematics can constitute or format a crisis (Skovsmose, 2021), particular 
attention must be given to developing learners’ agency, to ensure that mathematical knowledge is 
used for the public good. Before going further, it is important to clarify what is meant by ‘public 
good’ and ‘social justice’ in this paper. I draw here on Tawney’s (1964, cited in Reay, 2012) notion 
of ‘the good society’ which strives to eliminate all forms of special privilege within education and 
within society more widely. A socially-just society is one based around cohesion and solidarity in 
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which individuals share a common interest and treat others in the same way they would like to be 
treated themselves. Similarly, a socially-just education system is one which aims to secure for all 
children what a wise parent would seek for their own child. 

Recent events, such as 2020 US Presidential election and the Covid-19 pandemic, have raised 
awareness of how misleading statistics and media reports can influence the voting habits and 
behaviour of millions of people (Alderson, 2020). This, in turn, has refocused attention on the 
school curriculum as a means of fostering the type of critical understanding and collective 
knowledge needed to promote human rights, equality and social justice (UNESCO, 2015), and to 
address the social, economic and environmental challenges facing global society (OECD, 2018). 
Those who misrepresent powerful mathematical knowledge as purely abstract and apolitical and 
ignore the role that agency plays in empowering learners may be diverting attention away from 
tackling these challenges. Locating the power required to advance social justice primarily within 
abstract knowledge is an ‘epistemic fallacy’, which ignores the reality that such power is dependent 
on the agency of the ‘knower’ and rests on the false assumption that school is a level playing field 
(Alderson, 2020). 

Manyukhina and Wyse (2019) describe learners’ agency as having two dimensions: ‘sense of 
agency’ (a feeling of control over their own learning) and ‘agentic behaviour’ (exercising control 
through making decisions and taking actions). Both dimensions need to be present if students are to 
be empowered as autonomous learners. Instilling learners with a sense of agency is of little use if 
they are not provided with real opportunities within the curriculum to exercise that agency. 
Manyukhina and Wyse argue that the structure in which learning takes place and the agency of the 
learner have mutual causality. Providing a context-sensitive learning environment in which students 
have space to explore and to be creative helps develop their sense of agency. Conversely, allowing 
students to exercise their agency and become actively involved in their learning promotes academic 
achievement and impacts positively on learners’ views of themselves and their place in the world. 
There is a danger that knowledge-based curricula, such as the current National Curriculum in 
England, which place too much emphasis on acquiring disciplinary knowledge at the expense of 
shaping learners’ identities, neglect the development of the values and attributes students need to 
contribute towards the public good: 

… it is critical to support young generations in developing the capacity to think critically and 
independently, engage in autonomous decision-making based on informed choice, and act 
effectively in a manner that ensures the essential balance between individual and societal 
interests and priorities. (Manyukhina & Wyse, 2019, p.239) 

Skovsmose (2011) highlights how mathematics teaching around the world tends to be dominated by 
an ‘exercise paradigm’, in which the teacher presents the solution to a closed mathematical problem 
on the board before inviting students to complete a series of almost identical problems. Given the 
status of school mathematics as a gatekeeper qualification, such an approach may be empowering in 
a pragmatic sense, as it is assumed to help learners acquire the qualifications that they need to 
access higher-paid employment. However, it is disempowering in a socio-political sense as it stifles 
opportunities for learners to develop their mathematical agency, i.e. the ability to apply powerful 
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mathematical knowledge in solving real-life problems. Skovsmose proposes an alternative ‘critical 
mathematics education’ in which students reflect ‘through’, ‘with’ and ‘on’ mathematics by: 
participating in meaningful investigations in which they make their own decisions, pose their own 
questions, interact and communicate with other learners; carrying out mathematical inquiries which 
deepen their understanding of their social, cultural, political and economic situations; questioning 
the nature of mathematics and how it can be used to make decisions affecting them and others. 

For mathematical knowledge to be used to advance the public good, consideration needs to be given 
to collective, as well as individual, mathematical agency. Freire (1974) contends, in his theory of 
‘education for critical consciousness’, that genuine understanding can only be achieved through 
learners developing a critical awareness of their own situations and how these relate to their studies. 
From Freire’s perspective, the purpose of education should be to meet the collective needs of the 
community (or society), rather than for individuals to achieve success within the system, through 
raising awareness of, and challenging, structural inequalities. Emphasis should be placed on 
mobilising solidarity with those who are marginalised or oppressed and engaging in collective 
action to challenge exploitation. Freire’s (1972) notion of ‘praxis’, i.e. “reflection and action 
directed at the structures to be transformed” (p. 96), is used by Gutstein (2006) in proposing a 
framework for ‘reading and writing the world with mathematics’, in which students use 
mathematics to “investigate and critique injustice, and to challenge, in words and actions, 
oppressive structures and acts” (p. 4). Through generating an understanding of power relations, and 
how these relate to their own lives and experiences as mathematics learners (both in terms of how 
they may be exploited themselves as well as being complicit in the exploitation of others), students 
develop their sense of social agency and self-efficacy, i.e. a belief that they can influence or change 
society. However, such an approach requires a fundamental shift in students’ orientations towards 
mathematics and in the relationships between mathematics teachers and learners. 

In conceptualising SMA, i.e. the ability to use mathematics effectively to argue collectively for 
social change, I have argued in this section that it is necessary to consider students’ development of 
powerful mathematical knowledge, including an appreciation of disciplinary meaning, as well as 
their ability to apply this knowledge in solving real-life problems (see elements 1 and 2 below). 
However, SMA must also involve a readiness of students to use mathematical inquiries to deepen 
their understanding of exploitative power relationships within society and a disposition towards 
using mathematical arguments to expose and challenge injustices they encounter (see elements 3 
and 4 below). Finally, SMA needs to enable learners to foster a sense of collective agency (see 
elements 5 and 6 below). Therefore, I propose the following conceptualization of ‘socio-
mathematical agency’ (SMA) which incorporates six elements drawn from the theoretical 
frameworks presented above (Gutstein, 2006; Manyukhina & Wyse, 2019; Muller and Young, 
2019; Skovsmose, 2011): 

1) An appreciation of disciplinary meaning (how new knowledge is generated) in mathematics. 

2) An ability to apply abstract mathematical concepts in solving meaningful real-life problems. 

3) A readiness to use mathematics to explore and develop understanding of social justice issues. 

4)A disposition towards using mathematics to expose/challenge exploitation and social injustice. 
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5) A willingness to work with others in using mathematics to construct an argument for change. 

6) Confidence that it is possible to influence society through mathematical argument and action. 

Classroom practice: Operationalising socio-mathematical agency 
In this section I consider what SMA might look like in the classroom and some strategies/conditions 
that are likely to promote its development. Firstly, it is worth stressing that I believe that there will 
always be a place in the mathematics classroom for explaining abstract mathematical concepts and 
practising routine mathematical procedures. However, there are far more engaging ways of doing 
this than resorting to the ‘exercise paradigm’ (described earlier), such as making use of richer tasks 
that provide opportunities for extensive practice through ‘mathematical etudes’, which have proved 
just as effective for attaining procedural fluency (Foster, 2018). Having said that, developing SMA 
necessitates students engaging regularly with open-ended tasks in which they are given greater 
control over their own learning through making their own decisions about the direction this will 
take. They should be encouraged to review their own learning, e.g. by reflecting on any errors they 
make and non-productive paths they explore along the way. Students should also be provided with 
regular opportunities to work collaboratively, explain and justify their mathematical reasoning to 
others, listen to and respect each other’s points of view, and appreciate the fallible nature of 
mathematics in which new knowledge is generated through conjecturing, argumentation and 
arriving at consensus (Hudson, 2018). Frequent opportunities should also be created for students to 
generate mathematical models to solve meaningful real-life problems, which involve making 
simplifying assumptions, choosing which mathematical procedures to apply, and considering the 
limitations of the solution in relation to the initial assumptions (Schoenfeld, 2012). SMA might then 
be demonstrated through students discussing these solutions and presenting their findings to others. 

Findings from the Teaching Maths for Social Justice (TMSJ) research project (Wright, 2017; 2021) 
demonstrate students’ enthusiasm for exploring social justice issues (such as voting systems, 
Fairtrade and measures of inequality) in the mathematics classroom. Identifying and building on the 
strong links that exist between mathematical concepts and social justice issues helps students to 
develop their understanding of both areas simultaneously and to appreciate the legitimacy of such 
explorations in the mathematics classroom. These links also provide starting points for teachers to 
bring social justice issues into the mathematics classroom, whilst navigating the pressures they face 
in getting through an often-demanding scheme of work. An example of an activity that provides 
such a starting point is investigating how various methods for counting votes (including Borda 
Points) can be applied in determining the outcome of an election and then considering which 
method is ‘fairest’ (Wright, 2016). Note that Borda Points are based on assigning terms from 
arithmetic or geometric sequences to different preferences for candidates in an election, which 
means this activity could easily be attempted as part of a unit of work on sequences (students might 
go on to explore other types of sequence and consider whether applying these might be ‘fairer’). 
Findings from the TMSJ research project suggest that, as well as developing understanding of social 
justice issues and related mathematical concepts, such activities also have a positive impact on 
students’ overall engagement with mathematics, as they become more aware of the relevance of the 
subject to their own lives and society in general (Wright, 2017; 2021). 
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Developing SMA necessitates going beyond merely exploring social justice issues and requires 
students to use the increased awareness they gain by doing so to expose and challenge exploitative 
power relationships. Another activity generated during the TMSJ research project highlighted the 
challenges teachers might face in doing this and how it might require a re-evaluation of the 
relationships between teachers and students. The activity involved investigating the proportion of 
the price paid for a chocolate bar that goes to the cocoa producers and other parties (retailers, 
importers, etc.) and comparing differences in these proportions between Fairtrade and non-Fairtrade 
chocolate. One teacher researcher was initially frustrated following a heated class discussion in 
which students began to question the validity of Fairtrade, as they considered the 4% of the price 
for Fairtrade chocolate that went to the producers to be grossly unfair (despite this being eight times 
as much as for non-Fairtrade chocolate). On reflection, however, the research team saw this as a 
positive development, with students beginning to challenge and question commonly held 
assumptions about Fairtrade (which might perhaps be more accurately described as ‘less unfair 
trade’), and subsequently decided to change the title of the activity to ‘How fair is Fairtrade?’ 

In Freire’s (1974) terms, the events described above might be interpreted as students moving away 
from a position of ‘naïve’ awareness towards one of ‘critical’ awareness, as they begin to question 
unequal power relationships within Fairtrade production, which might be indicative of the 
development of SMA. The role of the teacher is crucial in such situations. Freire would argue that 
the teacher should adopt a ‘radical’ perspective by promoting debate and reflection, working with 
learners to develop critical awareness, and helping them to arrive at their own solutions (rather than 
imposing her/his own views). This approach complements the adoption of open-ended and 
collaborative tasks referred to above that aim to develop mathematical agency. Such a ‘radical’ 
stance also requires teachers to reflect critically on their own positions of power, their own views of 
social justice issues and the extent to which they, themselves, may be privileged. Sticking with the 
same scenario, a ‘radical’ teacher might further cultivate students’ SMA by prompting debate 
around whether Fairtrade (despite being only slightly less unfair than conventional trade) might still 
have strategic benefits, e.g. in putting pressure on chocolate companies to make modest 
improvements to the conditions of producers, and the potential for the collective power of students 
(as consumers purchasing Fairtrade products) to impact on the lives of producers in less wealthy 
countries. 

Collective agency, which involves students developing confidence that collaborative action can 
bring about change and working with others in using mathematics to generate powerful arguments, 
is an essential element of SMA. This was apparent in the ‘Making a Change’ activity developed 
during the TMSJ research project (Wright, 2016; 2017; 2021). In this activity, students worked in 
small groups, to choose an issue of interest to them, research it and develop a mathematical 
argument to support a change they would like to see made. Finally, they were asked to present their 
argument to the rest of the class, which prompted further debate amongst students around the full 
range of social justice issues explored. The activity prompted exceptionally high levels of 
engagement amongst students, including those who had previously appeared disinterested in the 
subject. Students were excited by the opportunity to use mathematics to explore an issue that was of 
particular interest to them, which was something of a novelty for most students. 
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The role of the teacher is again of crucial importance in such situations, with the need to maintain a 
balance between allowing students space to follow their own lines of inquiry and providing them 
with the support needed to develop a powerful mathematical argument. During the ‘Making a 
Change’ activity, the support provided by teachers included discussing issues to be considered in 
collecting and analysing statistical data on other students’ opinions on the chosen issue, and 
discussing the difference between mathematical and non-mathematical statements, such as “School 
absence rates have fallen recently” and “The percentage of students with persistent absence (defined 
as missing at least 15% of school days) fell from 12.5% in 2006/07 to 8.4% in 2011/12” (Wright, 
2016, p.45). Encouraging students to plan in advance, and to evaluate their approach after 
completing such activities, is important for developing SMA. For the ‘Making a Change’ activity, 
students might be asked to reflect on questions such as: ‘Is your suggestion for change achievable? 
How effectively did you use mathematics to strengthen your argument? How well did you work 
together as a group?’ Establishing genuine collaboration within groups of students, based on 
solidarity, trust and assigning value to communal effort (Radford, 2012), is an essential aspect of 
SMA. Boaler (2008) offers various strategies for encouraging students to respect each other’s views 
and to take responsibility for everyone’s learning (related to the notion of ‘relational equity’), 
including allocating group roles and recognising the achievements of all students. 

Concluding remarks 
In this paper, I have outlined a new theoretical construct of ‘socio-mathematical agency’ (SMA) 
and reflected on some classroom practice that provides a useful starting point for its 
operationalization. I hope this will stimulate debate amongst researchers and curriculum makers 
around how mathematics teaching can contribute towards the development of the collective 
knowledge and critical understanding needed for today’s learners to address the environmental, 
economic and social challenges facing global society. I plan to work collaboratively with teachers 
in conducting research in schools to further develop and refine the conceptualisation and 
operationalisation of SMA presented in this paper, and to explore the potential of SMA for 
cultivating the collective knowledge and critical understanding needed to address the 
environmental, economic and social challenges facing global society. I aim to report on the findings 
of this research in the near future. 
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Several studies highlight significant differences between the mathematical performances of white 
middle-class boys and several other groups of children with other demographic characteristics. 
Across different countries, discussions about who is marginalised vary. In Scotland, 
marginalisation is typically associated with social class and children’s socioeconomic 
backgrounds. In this paper we explore Scottish teachers’ perceptions of the causes of 
marginalisation in school mathematics. 29 teachers from different school levels participated in 
individual semi-structured interviews. All teachers’ responses reflected the social-class discourse of 
policymakers. Few teachers recognised other marginialising variables (i.e. gender, English 
language competence) as well. We conclude that the intersectional character of marginalisation 
needs to be promoted more explicitly in both initial teacher education and continuous professional 
development programmes.  

Keywords: Teachers’ perceptions, marginalisation, school mathematics, Scotland. 

Introduction 
In recent years, mathematics education has taken a more explicit socio-political turn (Gutiérrez, 
2013), by raising and examining questions regarding, inter alia, who decides what is included in 
school curricula (Appelbaum & Davila, 2007), who gets excluded from school mathematics 
(Xenofontos, 2015), and how concepts like equity and social justice have their place in the field’s 
discourse (Xenofontos et al., 2021). This paper draws on data from a wider project in Scotland 
examining teachers’ perceptions of marginalisation and equitable teaching practices, as well as 
teachers’ understandings of concepts like equity, diversity, inclusion and social justice in relation to 
school mathematics. Here, we explore the following research question: What are teachers’ 
perceptions of marginalisation in relation to school mathematics? Before we present findings from 
our work, we turn our attention to the international literature on marginalisation in mathematics 
education and the importance of transitioning from one school level to another.  

Who is marginalised in mathematics education? 

In an initial conceptualisation of equity, Gutiérrez (2002, p. 153) envisioned a stage at which 
mathematics education stakeholders would be  

unable to predict student patterns (e.g., achievement, participation, the ability to critically 
analyze data or society) based solely on characteristics such as race, class, ethnicity, sex, beliefs 
and creeds, and proficiency in the dominant language. Being unable to predict mathematics 
patterns based solely on certain student characteristics addresses issues of power. Rather than 
expecting that mathematics reform will lead to middle-class White men falling out of power only 
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to be replaced by another group (e.g., students in poverty, Black women), an equitable situation 
is when no group oppresses another. 

Sadly, the current reality is still far from such a stage. Several studies, typically from North 
America and many European countries, indicate large discrepancies between the mathematical 
performances of white male middle-class pupils (the so-called dominant group) and pupils from 
marginalised groups. These groups include, but are not limited to, girls (Stoet & Geary, 2018), 
LGBTQI+ children (Leyva, 2017), those whose home language is other than that of school and 
instruction (Chronaki & Planas, 2018), children with intellectual, emotional, and kinaesthetic 
disabilities (Watson & Gable, 2012), and those from low socioeconomic backgrounds (Gates, 
2019). In fact, things become more complicated when marginalising variables are considered in 
intersectional manners, like, for instance, the intersection of gender and race (for example, Joseph et 
al., 2019, write about black girls and their struggles in the white, patriarchal structures of 
mathematics education). 

It appears that different countries and educational systems, not least at the level of policy-making 
and research, adopt specific lenses through which marginalisation in school mathematics is 
examined (Graven, 2014; Xenofontos, 2019). In the US, the focus is almost exclusively on race and 
ethnicity, specifically in relation to the Black and Latinx communities; in several European 
countries (i.e. Spain, Cyprus) these issues are typically approached in relation to immigration and 
other-language learners, while in China and many Latin American countries discussions mainly 
revolve around rurality. In the UK, marginalisation is typically seen through a social-class lens 
(Gates, 2019), with Scotlish policies being no exemption. Specifically, the Scottish educational 
system explicitly uses the term poverty-related attainment gap (Scottish Government, 2018), to 
describe discrepancies regarding performances and participation rates between pupils who live in 
economic deprivation and those from affluent backgrounds. To identify the extent to which an area 
is deprived, the Scottish Government uses measures across seven domains (income, employment, 
education, health, access to services, crime, housing), and calculates a relative measure of 
deprivation, called the Scottish Index of Multiple Deprivation (SIMD). All areas in Scotland are 
given an integer SIMD value, from 1 (most deprived) to 10 (least deprived). Schools receive direct 
additional financial support, based on how many children from low SIMD’s attend each school.  

Transitioning from one school level to another 

Studies around the world indicate that, as children transition from one school level to another, there 
is a general decline in their engagement with mathematics (Martin et al., 2015), a decline of their 
self-efficacy beliefs, motivation, and performance (Deieso & Fraser, 2019), and a reinforcement of 
stereotypes regarding gender-based mathematics performance (Denner et al., 2018). These observed 
differences are typically attributed to factors such as teachers’ self-efficacy beliefs (Midgley et al., 
1989), teachers’ and parents’ emphases on goal (Friedel et al., 2010), as well as teachers’ different 
approaches in using instructional materials (Fan et al., 2013).  

The Scottish Government (2016) makes clear that central to its political agenda is to “improve 
educational outcomes in communities with a high concentration of children living in poverty” (p. 
25); therefore, “[e]nsuring effective transitions between primary and secondary education is 
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particularly important” (p. 14), especially for children from less affluent backgrounds. A deeper 
understanding of the extent to which teachers’ perceptions converge or diverge will help us pinpoint 
continuities and discontinuities in children’s lived school experiences, and consider how to better 
celebrate or address them.  

Methodology 
Participants  

The General Teaching Council of Scotland (GTCS), the body responsible for teacher registration, 
registers teachers either as primary or secondary (www.gtcs.org.uk). Primary teachers are 
generalists and work with students of ages 3-12, in nurseries and primary schools. Anecdotally, 
some primary teachers self-identify as early-years teachers, due to their preference of working with 
children of ages 3-7. Those using the primary teacher label prefer working with children of ages 7-
12. Secondary teachers teach their specialist subject area and work with students of ages 12-18. 

Participants in this study were teachers working in the Central Belt of Scotland, a large region with 
areas of different affluence levels, but also with those areas with the lowest SIMDs in the whole 
country. Volunteer teachers were sought via the networks of local authorities, our own professional 
networks, and on social media. Teachers who expressed interest passed the details onto other 
potential participants, in the form of snowball sampling. In total, 29 teachers were recruited, 8 of 
whom identified as early-year teachers (EY), 11 identified as primary teachers (PT), while 10 were 
secondary mathematics teachers (ST). Other than one teacher in early-years, two primary and one 
secondary, all other participants had more than five years of professional experience.  

Data collection and analysis  

All participants were invited to an individual semi-structured interview. Each interview was audio-
recorded, lasted approximately 45-55 minutes, and was held at each participant’s school. As part of 
a wider project, the interview protocol included questions about teachers’ perceptions of and 
experiences related to (a) marginalisation and the attainment gap in mathematics, (b) equitable 
mathematics teaching practices, and (c) concepts like equity, inclusion, diversity, and social justice. 
Below, we present some sample questions, to give a sense of the interviews’ content:  

1. As you may be aware, here in Scotland there is extensive discussion on the attainment gap, 
especially in mathematics/numeracy. How do you understand this attainment gap? 

2. Could you give any examples from your own professional experiences where you observed 
gap(s)? How does it impact your day-to-day life as a mathematics teacher? 

3. Why do you think some children do not perform as well as others in school mathematics? 
Why are some children sent to the margins?  

A thematic data analysis was employed. Following Braun’s and Clarke’s (2021) suggestion, we 
moved away from a need to achieve data saturation; we rather aimed at dwelling “with uncertainty 
and recognise that meaning is generated through interpretation of, not excavated from, data” (p. 
201). Due to the exploratory nature of this study, no predetermined coding scheme was utilised. The 
two authors worked separately and together, to generate codes and later collate them to generate 
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themes, in similar ways, grounded theorists discuss moving from open to axial coding (Scott & 
Medaugh, 2017). As a result of focusing on the richness of our data, and not data saturation, we 
were not particularly interested in quantitative measures (i.e. frequencies, percentages, number of 
respondents) in presenting our themes. Instead, we followed a phenomenographic approach. 
Phenomenography explores variation in the ways a phenomenon is perceived by a group of people 
(Cope, 2004), by taking a second-order perspective, mapping people’s experiences and attempting 
to see the world through the eyes of those experiencing it (Marton, 1981). 

Findings 
Data analysis brought to surface two themes related to teachers’ perception about the causes of 
marginalisation. Specifically, all participants talked about social class as the main marginalising 
variable in school mathematics, while very few made scatter references to other variables. Below, 
these themes are presented in more detail.  

Social class as the main marginalising variable 

A great homogeneity was observed regarding what teachers distinguished as the main marginalising 
variable for children’s participation and attainment in mathematics. In ST9’s words, “students from 
more affluent households are more willing to give things a go, perhaps get it wrong, mess it up a 
bit” compared to their classmates from deprived areas. Using vocabulary that reflected national 
policies, all 29 teachers across the three school levels referred to poverty, low socioeconomic status, 
and SIMDs. Some representative examples are presented below: 

“I suppose the attainment gap reflects the, I don’t know what you would call it, the affluence 
gap. I don’t know. Monetary gap. Economic gap. In my experience, they have reflected each 
other almost identically.” (ST7) 

“The school that I teach in has a lot of pupils from low SIMDs. Most of the children are level 3 
in the indication mark-up. There’s a high level of students who get free school meals and as a 
result, our school gets quite a lot of funding from the National Improvement Framework. […] 
And a lot of parents are proud, they don’t want to tell you that they’re struggling or whatever. 
But you’re aware that these children are not getting proper meals.” (PT2) 

Nevertheless, some participants emphasised the important role of teachers and schools in addressing 
all children’s learning needs as they navigate through the challenges caused by poverty. The quotes 
below are representative of an early-years teacher and a secondary mathematics teacher:   

“What’s really nice about the nursery here is that I’ve seen children really flourish, who come 
from a really poor background, a really poor housing area and yet they are doing absolutely 
fabulous work in the nursery just because the educators have got the right way of doing things 
with them and give the right direction, if you like.” (EY1)  

“We’re certainly not a school that feels sorry for itself and where we’re situated. […] We know 
where the school is situated, we know the catchment area, the SIMD values, but 
that’s it. Nothing is mentioned beyond that. […] We’re a school that strives to be the best, it 
doesn’t matter where we are. […] A lot of it comes from leadership, from the staff but often the 
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pupils, too. If there are discrepancies in behaviour or homework, then they are minorities. They 
understand that that’s not how you’re expected to behave here. That’s not the standard that we 
expect from you.” (ST10) 

In summary, teachers’ responses put poverty and socioeconomic status at the center of their 
perceptions of the causes of marginalisation. This is, in a way, unsurprising, as it reflects the 
adoption of a social-class perspective on marginalisation in education expressed by UK policies in 
general (Gates, 2019) and Scottish policies in particular (Scottish Government, 2018).  

Scatter references to other variables 

Few references were made by teachers across school levels about other marginalising variables. 
These can be grouped in two broad areas. The first concerns family-related issues/dynamics, like 
parents’ lifestyles, family structures, and family-school relationships. According to PT6, typically 
“we consider poverty as an indicator, but for some children why they are not attaining has nothing 
to do with poverty ”, therefore, “what’s most important is the school’s knowledge 
of children’s families”. From this perspective, teachers pointed out that low attainment can be a 
result of “the chaotic lifestyles that some families have” (EY1). As EY3 commented, “I’ve seen 
parents’ anxiety and mental health be so prevalent that they won’t allow their child to go to school 
because they can’t be without them”.   

The second area is related to students’ individual differences, such as gender, disability, English 
language competence, and other developmental issues. PT8, for instance, pointed out mathematical 
difficulties faced by children with English as Additional Language (EAL). In her own words, “I’ve 
got children who are in that gap because they’re EAL. They can literally do their simple 1 + 1, but 
they can’t do word problems”. Likewise, ST3, a female secondary teacher, discussed many girls’ 
low confidence as opposed to that of their male classmates:  

“I feel like girls have a very low confidence of maths and they don’t want to put an answer down 
because they don’t want it to be wrong. […] Boys are overly confident and therefore don’t study 
and do worse than they should do, and girls have very low self-esteem, get very anxious and 
don’t want to attempt.” (ST3) 

Interestingly, most references to family-related issues were made mainly by early-years and primary 
teachers, while discussions of students’ individual differences were made by primary and secondary 
teachers. This move from socio-cultural to cognitive/affective concerns appears to be in accordance 
with general trends of mathematics education research on transitioning from one school level to 
another. For example, many recent studies examining transitioning from pre-school or kindergarten 
to elementary school focus on the impact of family-related factors (i.e. Niehues et al., 2021). 
Conversely, recent studies focusing on the elementary-secondary transition are typically more 
interested in cognitive/affective issues and students’ individual differences (i.e. Cantley et al., 
2021).  

Conclusions 
In a sense, it was not surprising that all 29 teachers in our study pointed out that social class, 
poverty, and pupils’ socioeconomic status constitute variables associated with pupils’ mathematical 
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performance and participation. One the one hand, we consider the fact that few teachers talked 
about other marginalising variables (e.g. gender, English language competence, disability) 
encouraging, as those teachers demonstrate some awareness that reality is more complicated than 
focusing exclusively on social class. Nevertheless, we are aware that simple references to other 
variables do not necessarily mean that teachers approach marginalisation from intersectional 
perspectives. As several studies inform us, many teachers have social and political intuition; they 
sense the interplay between school mathematics and political issues, but do not always know how to 
put intuition into practice in ways that help their students (de Freitas & Zolkower, 2009; 
Xenofontos, 2016). Our findings stress an urgency for more intersectional approaches in examining 
marginalisation in mathematics education, something that could originate from research in teacher 
education (both initial teacher education and continuous professional development), aiming at 
having an impact on policy-making, teachers’ practices, and students’ lived school experiences. 
Besides, as Freire’s (1970) writings have taught us over 50 years now, instead of wait for systemic 
changes to happen “miraculously”, those of us involved in education and share values of equity and 
social justice could start by initiating small projects in their immediate professional environments. 

To conclude, our findings concur with ongoing calls for employing more intersectional approaches, 
and critical and nuanced discussions on how inequities and marginalisation are constructed and/or 
even normalised in mathematics education. Intersectionality, as an analytic framework, allows 
scholars in different fields to explore, inter alia, the structural interplay of variables such as race, 
class, gender, sexuality, and disability. Yet, we need to acknowledge that we cannot always capture 
social experience with a finite number of marginalising variables, to describe the intersectional 
identity of a person (Appelbaum, 2002). At best, we can have an approximation based on important 
characteristics of how identity is read by others in a social situation. Teacher education initiatives 
should be designed to address more sophisticated understandings of concepts like marginalisation, 
equity, and social justice. Hence, mathematics teacher education, we believe, must challenge the 
current simplistic understanding of marginalisation and provide targeted support to teachers so to 
rethink their narratives around practices that aim at helping children regardless of background.  
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In CERME12, our working group “Algorithmics” started its work as a newly established TWG. Since 
algorithms have always been at the heart of mathematics and their importance has been steadily in-
creasing since the beginnings of theoretical computer science, the design and analysis of algorithms 
– called algorithmics (Traub 1964, Knuth 1985) – lies at the intersection of mathematics and com-
puter science. For this reason, on the one hand, various algorithms and algorithmic activities have 
their traditional place in mathematics curricula at all levels. At the school level, mathematics and 
computer science have interacted since the 1980s, when many schools set up labs with computers
equipped with programming software. On the other hand, many questions arise in the context of 
teaching and learning algorithms: a first, more applied group of questions aims at algorithms in math-
ematics education and curricula, a second, more theoretical group of questions seeks to clarify the 
concepts of algorithm and algorithmic thinking.

Conference presentations 
Due to the Corona pandemic, the conference was held as a virtual event. Nevertheless, a total of 11 
papers and 7 posters were presented remotely by their authors at the conference, with a total of 24 
group participants from 11 countries. The contributions were considered in four themes, as follows.

Theme 1: Beliefs and domains in which algorithmic thinking occurs 

A first group of papers focuses on the place and importance of algorithms in mathematics in general 
and arithmetic in particular. They assess the beliefs of experts about the role of algorithms in mathe-
matics and mathematics education or their role in mathematics courses.   
· Lockwood, DeJarnette, Thomas and Mørken offer three perspectives on algorithms, particularly 

in computational settings: an algorithmic approach in a mathematical example, the view of a math-
ematician, and the view of an undergraduate students taking a course in mathematics. 

· Geraniou and Hodgen interviewed two mathematics educators who had experience using technol-
ogy to solve mathematical problems, and they, too, shared very different views on algorithms in 
mathematics education, one even not seeing the use of algorithms as a mathematical activity.

· Kortenkamp analyzes an arithmetic course for pre-service primary teachers. He identifies several 
algorithmic activities in the topics covered in the course, such as designing algorithms, specifying 
algorithms, performing algorithms, proving their correctness, and comparing algorithms.
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· Leifeld and Rezat’s poster provides a thorough analysis of the possibilities of certain arithmetic 
algorithms for addition and subtraction to deepen students’ understanding of inverse operations.

Theme 2: Teaching and learning of algorithmic thinking at primary level

Another group of papers focuses on teaching and learning algorithmic thinking in primary school. 
They use different tasks with different goals: Some use algorithmic thinking as a means to an end (in 
the sense of learning a new mathematical concept), some use algorithmic thinking as a goal (in the 
sense of understanding a given algorithm, or developing an algorithm to solve a problem):
· Crisci, dello Iacono and Ferrara Dentice explore how primary school children can be stimulated 

to learn new mathematical concepts by Scratch. In their report, they present a specially designed 
task that required visual programming to complete a given figure so that it becomes axially sym-
metric. The children developed two different strategies to solve this task. For example, they found 
out that points that are axially symmetrical to each other must be equidistant from the axis.

· Funghi and Ramploud are interested in how to teach the standard long-division algorithm so that 
children understand why it “works.” To this end, they had fourth graders compare the optimized, 
digit-by-digit long-division procedure with the procedure in which the divisor is repeatedly sub-
tracted from the dividend. Their analysis of class discussions suggests that this approach could 
actually result in less rote learning, but in more conceptual learning.

· Zindel’s study wants children to acquire algorithmic thinking without using computers. In her 
papers, children are instructed to decrypt and encrypt certain words. They had to articulate the 
necessary steps themselves and record them in writing. Although these texts show great differ-
ences, the author succeeds in reconstructing some constituents of algorithmic thinking.

· In Gaio’s study, too, children are asked to develop algorithms in the sense of systematic proce-
dures, without the help of computers. Here, the tasks given to children of different school levels 
(3rd to 8th grade) are in the context of sorting problems. As the author reports, he can see traces 
of classical algorithms in the procedures that the children have worked out cooperatively.

Theme 3: Teaching and learning of algorithmic thinking at university level

Concerning the development of algorithmic thinking at university, the discussions showed two big 
issues: the development of algorithmic thinking and algorithmics in mathematics, for students, inde-
pendently of their projects, and more specifically, the development of algorithmic thinking in math-
ematics for future teachers, and in particular future primary teachers.

Four papers dealt with algorithmic thinking in advanced mathematics, three at university, and one 
concerning an education program for gifted students. Above them, three were interested in links with 
discrete mathematics, combinatorics, graph theory, which illustrates the specificity of those mathe-
matical fields, at the interface with computer science:
· De Chenne and Lockwood explore the use of programming and computer science in solving basic 

counting/combinatorics tasks in college, and how the knowledge of student in computer science
can influence their solving strategies and support their learning.

· Medová, Milicic and Ludwig study the competencies involved in algorithmic thinking for univer-
sity, and in particular abstraction, modelling, and visualization skills which are difficult to master 
for students, and questions the development of computational thinking in mathematics.
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· Bóra and Gosztonyi analyze the place given to algorithms and what could be seen as algorithmic 
problem solving, in Hungary’s advanced mathematics programs, questioning what can be consid-
ered traditionally as algorithmic in mathematics and its place according to mathematical culture 
of the country.

· The paper of Calor, Palha and Kubbe concerns at the same time advanced mathematics and pre-
service secondary teachers’ education. It deals with analysis, and in particular developing instruc-
tional material concerning differential equations for algorithmic thinking and programming. First 
results show that students did indeed develop algorithmic thinking in their work.

The two other contributions dealt with algorithmic thinking in and for primary teacher training:
· Weber’s paper examines primary teachers’ use of loops to solve a geometrical problem and their 

conceptions of the loop construct. It elaborates some challenges in their conceptions and some 
misconceptions that require deepening their understanding from a teacher training perspective.

· Dobgenski and da Fontoura’s poster presents and reflects on an experience of making pre-service 
primary teachers deal with computational thinking using Scratch.

Theme 4: Concepts related to algorithmic thinking: computational thinking, algebraic think-
ing, problem solving, and mathematical literacy

The last group of contributions deals with different, no less relevant aspects of algorithmic thinking:
· Rafalska’s paper illustrates how tasks could be constructed in order to lead children in mathematics 

lessons (without the use of computers) to algorithmic thinking in the sense of developing a solution 
strategy and which individual learning processes can be triggered by these tasks.

· Pohlkamp and Lengnink’s paper takes a different look at algorithms: It discusses algorithms that 
make decisions and are thus socially relevant. Addressing and studying them in the classroom 
would mean taking more seriously the educational mandate to teach social skills as well.

Finally, two poster proposals deal with two concepts related to algorithmic thinking:
· Rekstad and Rasmussen investigate the question to what extent aspects of computational thinking 

mentioned in the literature are also reflected in teachers’ beliefs when asked about the role of 
computational thinking in mathematics education.

· The relationship between algorithmic and algebraic thinking is the subject of Müller-Späth, who 
plans to investigate how algorithmic thinking (realized by an app) affects the development of the 
ability to generalize and thus of algebraic thinking.

Conference discussions
As mentioned earlier, our working group has just begun its work, and a common understanding of 
the concepts has yet to be developed: What does algorithmics mean in the context of teaching and 
learning mathematics? What is algorithmic thinking? To this end, after the presentations in which 
quite different views were expressed, we worked on the following three questions:

Question 1: Which mathematical algorithms could stimulate algorithmic thinking?

The discussion of this question revealed relatively unanimously five mathematical types of algo-
rithms: i. Algorithms based on the place value system (standard algorithms for addition etc., algorithm 
for calculating logarithms), ii. graph-theoretic algorithms (shortest path problem, Königsberg 
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problem), iii. approximation algorithms (Heron’s algorithm, Newton’s method, etc.), iv. sorting al-
gorithms (heap sort, bubble sort, etc.), and v. miscellaneous (Gauss’s Easter algorithm, etc.). We were 
not in agreement of whether each procedure is also an algorithm. For example, everyday procedures 
(tying shoes, making jam sandwiches, etc.) were not considered by all participants to be suitable for 
addressing and promote algorithmic thinking in its “proper sense” because they show only one char-
acteristic feature of algorithms: the order of steps.

Question 2: Which mathematical topics could promote algorithmic thinking?

The discussion of this somewhat broader question also yielded five topics from which tasks could 
come to stimulate algorithmic thinking: i. number theory (arithmetic, prime number tests, factoriza-
tion), ii. discrete mathematics (graph theory, combinatorics, counting problems, etc.), iii. geometry 
(transformations, algebraic geometry), iv. computer science (cryptography, etc.), and v. games and 
puzzles (Rubik’s cube, tower of Hanoi, etc.). One participant’s question about what properties these 
fields would have in common was discussed intensively and controversially.

Question 3: What (human) activities with algorithms can we think of?

The activities discussed suggest a wide range of possible activities to deal with algorithms: i. creating 
(developing algorithms, improving algorithms, debugging algorithms, optimizing algorithms, trans-
ferring algorithms to an analogous situation, etc.), ii. analyzing (effectiveness and proof, efficiency, 
complexity, stability, similarity etc.), and iii. comparing (comparing different algorithms for the same 
problem, comparing analogous algorithms for different problems, classifying algorithms, etc.). Alt-
hough executing an algorithm without any reflection would be a possible activity with algorithms, 
most participants do not want this to be understood as algorithmic thinking.

Surely the reader can think of further examples or answers to these questions. In other words, the 
three questions need to be discussed further and their answers are still quite open.

Outlook
As the overview of the contributions as well as the first answers to central questions show, there is a 
great variety of approaches (theories, methods) and views (topics, perspectives) in our working group. 
Given that we are entering a young (or at least long-neglected) area of research in mathematics edu-
cation and that we have just begun work in our TWG, it was to be expected that the results would be 
disparate and sometimes controversial. However, in terms of a first step towards a robust and sustain-
able understanding of concepts, this diversity makes us confident that there are many more questions 
around the challenging topic of algorithms and algorithmic thinking that are worth working on. With 
this in mind, we look forward to CERME13 and hope for a fruitful continuation of the work we have 
begun – and that it can then be carried out again as a physical conference.
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Introduction 
Algorithmics is not an autonomous domain required by Hungarian mathematics curricula. The 
introductions of the latest curricula consider the development of algorithmic thinking as an aim of 
mathematics education (together with logical thinking and problem solving), but don’t develop this 
intention further. The teaching of algorithms and algorithmic thinking is included in another 
discipline, informatics, an autonomous discipline since the 1990s (Kőrösné 2009), where 
algorithmics is associated with programming. 

However, algorithms and algorithmic thinking seems to appear frequently in Hungarian 
mathematics education, even if these appearances are not explicit and not associated with 
programming or computers. The identification of (implicit) appearances of algorithmics in 
Hungarian curricula and teaching practices needs further systematic research. Here, we show a 
more obvious example, issued from a (well-known and highly influential) mathematical program 
for gifted students, developed by the mathematician Lajos Pósa. In this program, different problems 
related to discrete mathematics play an important role and several of them can be clearly associated 
with algorithmics. 

Pósa math-camps 
Lajos Pósa has been developing his talent-nurturing method since 1988. He created an environment 
where talented and motivated students can develop their problem-solving skills. The main goal of 
his mathematical “camps” is that students could experience the joy of problem solving. His method 
can be described as a mix of discovery and guided learning approach (Győri & Juhász, 2018). 
Students enter the program typically at grade 7 and leave around grade 12.  

In the Pósa math-camps problems are not stand-alone problems. They are carefully designed and 
organized into complex series of problems (Gosztonyi, 2019) constructed by various problem-
threads. Problem-threads are sequences of problems organized into an intertwining structure of 
problems. Each problem can be a part of multiple sequences. The nature of connection can be 
various such as: topical connection (the topics of problems are related) or the core-ideas of a 
solution are similar. 
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Problems analyzed 
The following 2 problems from the “scale” problem-thread (targeting gifted 12-14-year-old 
students) will be analyzed in the poster. Ideas related to algorithmics appear quite clearly in this 
thread. It starts with a quite well-known problem. In the poster more examples will be represented 
exploring the connection between problems within this specific thread and within the program as 
well. 

1.a We have some weights; one is slightly heavier than the rest. Can you find which one is heavier 
with the help of a balance? Use the least possible number of steps.  

3. We have 8 weights, six of them are 1000g, one is 1010g and another one is 1020g. Can you find, 
with the help of a scale, which weight is 1010g and which is 1020g? (Scales are different from a 
balance. They have only one plate and they indicate the weight of the items on it.) Use the least 
number of steps possible. 

Conclusion 
As our examples will illustrate questions related to algorithms appear repeatedly and to a certain 
degree explicitly in Pósa’s program. Algorithms must be constructed in order to solve certain 
problems. Questions related to the efficiency of algorithms are raised. Related proofs appear, often 
in form of impossibility proof. Coding of information is necessary in certain cases. However, 
computers are used in no case in Pósa’s program. We have good reason to think that ideas related to 
algorithmics appear recurrently in ordinary mathematics education in Hungary as well. 
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Aim and rationale of the study 
In the past decade, computational thinking (CT) has been a hot topic in educational research and 
practice (Grover & Pea, 2013; Selby & Woollard, 2013). CT might have a positive influence on 
learning mathematics (Barcelos et al., 2018). The aspects of CT include algorithms and algorithmic 
thinking (AT) (Shelby & Woollard, 2013). 

AT is a skill that is not easy to develop for students in secondary and higher education. In-service 
teachers should be better prepared to teach in ways that involve AT. There is a lack of instructional 
materials to implement AT in in-service teaching trainer programs. The aim of our research is to 
develop and investigate tasks that enhance in-service teachers’ knowledge about AT. 

The rationale of our study relies on a system of assessments originally used in Computer Science 
Education by Grover et al. (2015, pp 209). It describes eight ideas for a high school curriculum 
involving algorithmic problem solving, two of which involve AT. These are 1) algorithms and 
pseudocode and 2) algorithmic flow of control, particularly sequence, serial execution, and loops. 
We understand AT as 1) understanding how an algorithm works, 2) being able to describe an 
algorithm as pseudocode, 3) knowing how simple loops work, and 4) understanding how commands 
are executed in sequence. 

Method 
Tasks for AT in Dynamical Systems course 

In the Dynamical Systems course of our in-service teacher training program, students learn to find 
exact solutions for differential equations. However, sometimes exact solutions do not exist, and 
solutions need to be approximated with numerical algorithms. To introduce AT into higher teacher 
education, we replaced an optional part of the Dynamical Systems course (fractals) with the subject 
of numerical methods. It is important that students understand numerical algorithms. Students 
should also be able to implement the numerical algorithms in a computer program and test and 
debug the program. In other words, students must learn CT skills, in particular learn to think 
algorithmically, to move from a mathematical model (the differential equation) to a reliable 
approximate solution. The assignment involves Euler’s method to solve a first-order initial value 
problem. The goal is to make students understand that the steps made with Euler’s method form an 
algorithm, which can be described with pseudocode that includes loops. 

We developed a number of tasks that aim to elicit AT. The first design principle regards the context 
in which the AT takes place. Because we wanted to investigate AT in its natural context (in-service 
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teacher training programs), we chose a content topic that was part of the higher education program 
and a subject that involved the use of algorithms in a meaningful way. Therefore, we chose a course 
in differential equations (Dynamical Systems). The second design principle concerns the nature of 
the tasks. We developed tasks existing of activities that require AT, such as creating a pseudocode 
involving serial execution and/or loops (Grover et al., 2015). In this study, we investigated how one 
in-service teacher solved these tasks and engaged in AT in the first design cycle. 

Analysis 

We investigated how the task (the finishing of the pseudocode in Euler's method) can elicit AT 
through task-based interviews and the thinking out loud method (Schellings et al., 2006). In the 
thinking out loud method, the student is asked to constantly articulate his or her thoughts. The 
students were selected by the teacher of the course on the basis of their mathematical knowledge 
level (two with an average mathematical knowledge level and two with a higher-than-average 
mathematical knowledge level, and in each pair of students, one student was chosen at random). 
Each student was interviewed individually by one of the authors of this paper, and the interviews 
were video recorded and then transcribed. Analysis of the transcripts was based on the categories of 
Grover et al. (2015) Here, we report on the results of one student. 

Preliminary results and further research 
Analysis of this student’s think-aloud protocol while solving the task revealed aspects of AT. The 
results showed that the student was able to explain the Euler algorithm and create the pseudocode 
(including loops), which are forms of AT according to our analytical framework. The assignments 
therefore seem to have potential for the development of AT. However, there are aspects that need to 
be improved. The next steps are to further develop our coding scheme for AT and to investigate 
how our research can contribute to teachers’ work on algorithms in their practice. 
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In this work we used visual programming in order to mediate the learning of axial symmetry in 
primary school. More in detail, we designed and implemented an a-didactical activity in the 
Scratch programming environment in which students have to symmetrize figures with respect to 
oblique axes. We tested the learning activity with fifth-grade students with the aim of understanding 
to what extent algorithmics and visual programming influenced the rise of new solving strategies by 
students. Preliminary results from a qualitative analysis seem to show that students were able to 
improve their strategies in the programming dimension and to evoke some aspects of axial 
symmetry.   

Keywords: Elementary school mathematics, programming, symmetry. 

Introduction and theoretical background 
In recent years, several national and international institutions promoted the introduction of 
algorithmics and computer programming in the school. For example, the Italian Ministry of 
Education (MIUR, 2018) and the European Commission (https://ec.europa.eu/education/education-
in-the-eu/digital-education-action-plan_en) encouraged the introduction of computational thinking, 
coding and the creative and critical use of digital technologies since primary school. Already in the 
1980s the research in education was oriented towards the development of new programming 
languages and techniques, increasingly accessible to primary school students. In those years, Papert 
(1980) created the LOGO programming language, used, for instance, by Bideault (1985), Salem 
(1988) and Clements et al. (2001) for learning geometry in primary school. More recently, Bartolini 
Bussi and Baccaglini-Frank (2015) used the programmable robot Bee-Bot in order to deal with 
geometric aspects. Tchounikine (2016) underlines how visual programming and algorithmics are 
suitable tools for conveying content from different disciplines. In this view, many authors (for 
example, Benton et al., 2018; Forster et al., 2018; Zhang & Nouri, 2019) used the Scratch visual 
programming language (https://scratch.mit.edu/) for learning mathematical concepts. Scratch was 
also used in the French project EXPIRE (https://expire.univ-grenoble-alpes.fr/) to deal with 
mathematical contents in primary school (Chaachoua et al., 2018). 

This work arises from the context described above. It is a part of a broader research project whose 
aim is to investigate students’ difficulties related to symmetries (Dello Iacono & Ferrara Dentice, 
2020), and to design suitable learning activities to try to overcome them. In particular, in this work, 
we decided to use Scratch programming language to mediate the learning of axial symmetry in 
primary school. Indeed, axial symmetry, like any non-identical geometric transformation, is 
associated with the idea of movement, as underlined by Ng & Sinclair (2015). Also Jagoda & 
Swoboda (2011) emphasize the importance of associating symmetries with movement, and they 
invite to provide students with tasks and tools that allow them to manipulate objects and to 
experience the action of geometric transformations and their results. In this regard, Scratch 
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programming language could be a suitable tool as it allows students to interact dynamically with the 
environment. So, we designed an a-didactic situation (Brousseau, 1986) in the Scratch 
programming environment that involves the use of algorithmics in the students’ task. Students have 
to work on a digital artefact, with figures to be symmetrized with respect to oblique axes. The 
choice of the oblique axis of symmetry wants to create a cognitive conflict in students (Fischbein, 
1989), who are often accustomed to working with horizontal or vertical axes of symmetry. In this 
way, the intuitive model of an object symmetrical with respect to a horizontal or vertical axis can be 
replaced by the rigorous mathematical model of an object symmetrical with respect to an axis, 
regardless of the position of the latter with respect to a reference system such as a sheet of paper or 
a squared grid. 

We experimented our a-didactic activity in a fifth-grade class. In this work, we show the 
preliminary findings of a qualitative analysis whose aim is to understand to what extent the 
algorithmic and the visual programming underlying the activity we designed influenced the 
emergence of new solving strategies by students, linked to the construction of symmetrical images 
with respect to an axis. 

Design of the digital artefact 
We designed an a-didactic activity requiring students to work on a digital artefact in the Scratch 
programming environment. The scene involves three students from a dance school, Piero, Isabella 
and Giada, moving across a stage to create choreographies for a show. Piero and Giada’s 
movements are already pre-established, while students have to guide Isabella’s movements through 
the creation of a program by dragging and encapsulating some available instruction blocks (see 
Figure 1). 

 
Figure 1: The Scratch visual programming artefact 

The activity begins by clicking on the flag and executing Piero’s program. Piero moves and 
performs a sequence of steps, leaving some markers on the stage (the markers represent the points 
to be symmetrized). Through the digital artefact, students have to provide instructions to Isabella, so 
that she can perform a choreography symmetrical of Piero’s one with respect to a line crossing the 
stage transversely. By clicking on the flag again, students simultaneously display Piero and 
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Isabella’s movements on the stage. In this phase, they can carry out a first visual check on the 
correctness of the program she created for Isabella, by observing if the simultaneous Piero and 
Isabella’s movements create symmetrical choreographies. Finally, students execute Giada’s 
instruction “join the markers”. So, the artefact returns in feedback an image obtained by joining the 
markers left on the stage by Piero and Isabella with a broken line. In this way, students can verify if 
the geometric figure is symmetrical or not with respect to the line (see Figure 2). Therefore, they 
can check (in two different moments and in two different ways, that is by looking at the characters’ 
movements or by visualizing the figure obtained by joining the markers) if the instructions given to 
Isabella’s character are correct or not. If students are not satisfied with the program created for 
Isabella, they can make changes at any time. 

 

Figure 2: Examples of figures to be obtained on the stage at the end of the activity 

The instruction blocks were created in the Scratch environment specifically for this activity by 
collecting different standard instruction blocks, in order to relieve students of the aspects related to 
programming and to not significantly affect their cognitive load. The text in the instruction blocks 
was designed to bring out mathematical meanings related to the concept of axial symmetry. 

Methodology 
The a-didactic activity, involving the use of the digital artefact described above, was experimented 
with 21 students of a fifth-grade class of the primary school of the “Istituto Comprensivo San 
Giovanni Bosco”, near Benevento (Italy). They had already carried out classroom activities with 
their teacher on axial symmetry, but only with vertical/horizontal lines, and they had never handled 
activities related to computer programming. 

The experiment took place in the classroom, during 3 curricular lessons of 90 minutes each, in the 
presence of a researcher and the mathematics teacher of the class. It was conducted during the 
Covid-19 pandemic and the students respected the rules of distancing and the use of masks. In the 
first lesson, the students became familiar with the digital artefact. The researcher presented the 
characteristics of the Scratch environment by means of a video projection and she invited the 
students, divided in groups, to manipulate Scratch on the class computer. In the next two lessons, 
the students were divided into pairs based on their closeness in the classroom (only one group 
consisted of 3 members) and each student worked on her laptop. 

Each lesson consisted of two main moments: an a-didactic moment and a moment of collective 
discussion, at the end of which the researcher carried out the institutionalization. During the a-
didactic moments the students acted on the digital artefact and, for each choreography, they carried 
out the following task: “Create a Scratch program for Isabella to replicate Piero’s movements on the 
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other side of the red line. Then ask Giada to join the markers”. Students communicated with each 
other to verbally validate their strategies. 

Afterwards, the researcher delivered to each group a paper sheet with the screenshot of the stage on 
the PC as it appeared immediately after the execution of Piero’s program, that is, with the markers 
left on the ground by Piero. The students, communicating with each other to agree on shared 
answers, first carried out the following task: “Draw the marker(s) left by Isabella on the other side 
of the line. Then join the markers”. Then, they answered the following open questions: “What do 
you observe looking at the figure?”, “What do you observe looking at the programs of Piero and 
Isabella?”. In answering the questions, they could visualize the work done with the digital artefact. 

We collected the following data: the video recordings of the screens of the PC used by the students; 
the paper sheets relating to each choreography filled in by students after the activity with the digital 
artefact; for each group,  audio recordings of the whole activity with the digital artefact, as well as 
of the collaborative work moments related to the filling in of paper sheets; the audio recordings of 
the collective discussions guided by the researcher; the notes collected in class by the researcher 
and the teacher. To analyze video/audio data, we identified critical events, and transcribed and 
coded them to construct the storyline (Powell et al., 2003). 

Preliminary findings 
In this section, we show the preliminary findings of a qualitative analysis aimed to point out the 
students’ programming strategies during the learning activity. In the analysis, we took into account 
explicit references to the digital artefact - or its characteristics - appeared when the students worked 
with it, or in students’ oral and written productions. Out of respect for ethical requirements, in the 
following analysis students’ names are fictional. 

The first programming strategy we observed is as follows: the students first visualized the execution 
of Piero’s program, then they created a program for Isabella and, finally, they simultaneously 
performed both Isabella’s and Piero’s programs. Only once the students thought they had obtained 
the right programs, they clicked on the flag in order to visualize their execution.  This strategy was 
employed by most students in the initial phase of the activity with the artefact. Table 2 shows an 
example of application of this strategy realized by Sabrina. 

Table 1: The first programming strategy used by Sabrina 

    

min. 2.02: Sabrina clicks 
on the flag and she 

min. 6.06: She clicks on 
Isabella's icon.  

min. 10.33: She creates 
Isabella’s program. 

min. 11.11: She launches 
both Piero and Isabella’s 
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visualizes the execution of 
Piero’s program. 

programs. 

Sabrina visualized the execution of Piero’s program only once (see Table 1, min. 2.02) before 
constructing Isabella’s program (from min. 6.06 on). Later, after completing Isabella’s program, she 
ran both programs simultaneously (see minute 11.11). Nevertheless, after checking the execution of 
Isabella’s program, she understood that the program she created did not satisfy the required task 
(Isabella’s movements on the stage did not correspond to Piero’s ones on the other side of the line). 
At time 11.43, her groupmate Arianna, who had already completed the task, intervened in order to 
help Sabrina in programming, and, while observing Sabrina’s screen, she suggested a new strategy:  

1  Arianna:  Let’s compare it with Piero, I copied from Piero, but… just I changed turn 
in that way, because she has to turn here, do you see? So, go on Piero and 
look that these do not have to be here (she refers to some instruction blocks 
of Isabella’s program)... So, go on Piero… [...]  

2 Sabrina:  (Sabrina clicks on Piero’s icon) 
3 Arianna: Well, do not touch Piero’s program… (Arianna clicks on the flag and she 

performs Piero’s program) This is Piero’s program… Now you have to do 
the same thing with Isabella… Here it is (Arianna scrolls the code area 
until she finds Piero’s program) Here it is… I copied everything from here, 
just I changed...  

4 Sabrina: But so did I... 
5 Arianna: Here it is, now go on Isabella… 

The strategy suggested and clearly explained by Arianna was the following: to “copy” the 
instructions included in Piero’s program, by dragging them, in the same order, in the code area of 
Isabella, reversing the direction of rotations (‘I changed turn in that way, because she has to turn 
here’, see line 1). After Arianna’s explanation, Sabrina seemed to focus on the aspect related to the 
reversing of the direction of rotations (line 4), by saying that she considered this aspect during the 
construction of the program, too. Afterwards, still interacting with Arianna, Sabrina edited 
Isabella’s program, by using the strategy suggested by her groupmate.  
Table 2 shows an excerpt of application of this second strategy. 

Table 2: The programming strategy used by Sabrina discussing with Arianna 

 

 

 

 

 

min. 13.03: Sabrina clicks on Piero’s 
icon and she visualizes Piero’s 
program. 
 

min. 13.24: Sabrina, interacting with 
Arianna, modifies the number of 
steps in Isabella’s program.   

min. 14.09: Still interacting with 
Arianna and visualizing Piero’s 
program, Sabrina correctly builds 
Isabella’s program. 

Proceedings of CERME12 1904



 

 

In this excerpt we see that Sabrina switches from viewing Piero’s program to 
correcting/constructing Isabella’s program. This passage from one character to another is repeated 
several times until Piero and Isabella’s programs appear “symmetrical”. Later in the activity, all the 
students in the class adopted this programming strategy, considered more effective. 

In applying the first programming strategy (see Table 1) students focused on the visualization of 
Piero’s movements on the stage during the execution of the program. The absence of a grid made 
this strategy expensive, as the students had to establish the number of characters’ steps without a 
visual reference. On the other hand, the second strategy (see Table 2) was based on the direct 
visualization of Piero’s program, regardless of its execution. 

As a result of using this second strategy, explicit references to the Scratch programs created by the 
students appeared in several students’ answers in the paper sheets delivered to them after working 
with the digital artefact. In particular, some students explicitly referred to some sentences displayed 
on the instruction blocks, such as “turn ... 90 degrees”, also reporting in written form the symbols of 
the arrows (see Figure 3). Furthermore, from some written productions relating to the question 
“Look at the program you created for Isabella and compare it with Piero’s program. What do you 
observe?”, it emerged that the students recognized that there was a sort of symmetry between the 
two programs. 

 
Figure 3: Some students’ written productions 

As Figure 3 shows, the students spoke of “similarity” (e.g. Miriam) or even of “identicalness” (e.g. 
Enrico) between the programs of the two characters, except for the direction of rotations. Such 
observations became more and more frequent in the written and oral productions of students. 

The use of the second strategy could indicate a purely reproductive (and not productive) students’ 
attitude. However, the reflection on aspects related to computer programming has allowed them to 
identify new strategies, better than the previous ones and more effective. In fact, the students, in 
using the first strategy, were not able to produce “symmetrical images”. It was precisely the failure 
of the strategy that led them to look for a new one, which allowed them not only to produce 
“symmetrical images” but also to identify aspects related to the definition of axial symmetry, such 
as the equidistance of corresponding points from the axis. This emerged, for example, during a 
moment of collective discussion, when a student, Francesco, referred to the movements of Piero and 
Isabella using the expression “the same distance run on one side and on the other side”. 
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Discussion and conclusions 
This research aims to contribute to study how algorithmics and visual programming can be 
integrated into teaching practices as tools for learning mathematical concepts. Specifically, we 
designed an a-didactic activity based on the use of a digital artefact, realized in Scratch visual 
programming environment, for the learning of axial symmetry in the primary school. The task 
requires that three characters, Piero, Isabella and Giada, perform some choreographies in a show. 
The students visualize the predetermined Piero’s movements, and they have to create a program for 
Isabella, by manipulating some suitable instruction blocks, so that Isabella realizes a choreography 
“symmetrical” to Piero’s one with respect to an oblique line. The visualization of the execution of 
the predetermined Giada’s program returns figures that students can verify as being symmetrical or 
not w.r.t. the line.  

We experimented this activity with students of the fifth grade of primary school, who never handled 
classroom activities related to computer programming. The aim was to understand how the a-
didactic activity, involving algorithmics and visual programming, influenced the rise of new solving 
strategies by students, linked to the construction of symmetrical images with respect to an axis. The 
qualitative analysis took into account the programming strategies adopted by students and the 
references to the algorithmic dimension in their oral and written productions. The preliminary 
findings showed the emergence of two main programming strategies. Firstly, most students created 
Isabella’s program only by visualizing Piero’s movements, and not the computer program which 
generated those movements. Such a strategy soon proved to be expensive and ineffective, in the 
sense that only few students were able to perform programs responding to the task. This encouraged 
the rise of a new strategy, also due to the collaboration among the students. The new strategy 
consisted of replying Piero’s program for Isabella, by paying attention to reversing the directions of 
the rotations. Indeed, Piero and Isabella’s programs had to allow their respective characters to move 
symmetrically w.r.t. the line. So, the directions of rotations had to be the one the reverse of the 
other. The emergence of this second strategy was linked to the identification of a sort of 
“symmetry” between the two programs. The new strategy was more effective than the previous one, 
both from an informatic point of view (i.e. students were able to realize “correct” programs) and, 
most importantly, from a didactic point of view (it allowed students to figure out some aspects 
linked to the axial symmetry, as, for instance, the equidistance of corresponding points from the 
axis). Therefore, visual programming could be a valuable learning tool, able to mediate 
mathematical meanings. Moreover, it could enable students to devise (new and more effective) 
solving strategies. In the future, we plan to test the a-didactic activity also with lower and higher 
secondary school students. 
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Listing algorithms for combinatorics problems with variable 
parameter values: a case study 
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In this paper, we explore how a student used computer programming to solve counting problems 
with variable parameter values. We present a case study where a student, Allen, used computer 
programming as an aid in finding a closed-form solution for C(n,k), the number of ways to select k 
objects from a set of n distinct objects. We document some of his difficulties, as well as aspects of 
his solution that were key to his success. We discuss implications for future research that examines 
listing algorithms to find closed-form solutions for general problem types in combinatorics. 

Keywords: Combinatorics, student thinking, algorithmic thinking. 

Introduction 
Combinatorics is an increasingly relevant area of mathematics due to its applications in fields such 
as computer science and information science. Yet, research in combinatorics education indicates 
that students at all levels struggle to learn combinatorics (e.g., Batanero et al., 1997; Eizenberg & 
Zaslavsky, 2004). A repeated conclusion is that attending to the objects being counted in a problem 
(i.e., the set of outcomes) is productive for students (Lockwood, 2014), and there has been attention 
to how listing the outcomes can impact student understanding of underlying counting principles 
(Lockwood & Gibson, 2016; Wasserman & Galarza, 2019). Some of this work specifically focuses 
on students writing computer programs to list the outcomes (Lockwood & De Chenne, 2020; 
Medova & Ceretkova, 2021), where the students solve a counting problem by exhaustively listing 
and counting the outcomes using fundamental tools of Python, such as nested for loops and 
conditional statements. Because this line of research allows for students to construct and reason 
about algorithms for the purpose of better understanding an important area of mathematics, there is 
motivation to examine how similar methods can be applied to other topics in combinatorics. 

In our previous work we have explored students writing computer programs in Python (e.g., 
Lockwood & De Chenne, 2020), and in these studies we have only examined students’ solutions to 
counting problems with fixed parameter values. In these solutions, some of the parameter values are 
encoded as an intrinsic part of the structure of the code, such as the number of loops. However, 
many combinatorial problems, such as binomial identities, have variable parameter values and are 
almost never stated with fixed values. A next step is to examine how students can write computer 
programs to solve counting problems with variable parameter values. This next step has many 
anticipated difficulties, and in particular computational solutions to variable parameter problems 
often require recursion while their fixed-parameter-value counterparts do not. This can be a barrier 
for researchers and students, and researchers might look for alternative ways of addressing 
problems with variable parameter values that do not include the use of additional tools or 
techniques.  
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In this report, we analyze case-study data of a student who wrote a sequence of computer programs 
to aid in finding a closed-form solution for C(n,k), the number of ways to select k objects from a set 
of n distinct objects. In doing so, we distinguish between combinations, which are unordered 
collections of objects, and permutations, which are ordered collections. By presenting these data, 
we seek to better understand (1) how the utility and development of algorithms for problems 
without fixed parameter values differ from those in existing literature, and (2) some of the 
difficulties and successes of the student that are unique to problems without fixed parameter values.  

Literature Review and Theoretical Perspective 
Student difficulties in combinatorics are well documented, and they include difficulty with 
distinguishing between problem types (Batanero et al., 1997) and with verifying that solutions are 
correct (Eizenberg & Zaslavsky, 2004). Lockwood (2014) has proposed a set-oriented perspective 
to counting, which is “a way of thinking about counting that involves attending to sets of outcomes 
as an intrinsic component of solving counting problems” (p. 31). Sets of outcomes refer to the 
collections of elements being counted in a counting problem. This perspective includes examining 
and using properties of individual outcomes, as well as structure in the entire set of outcomes, and is 
reinforced by Wasserman and Galarza (2019) describing how the encoding and conceptualization of 
sets of outcomes can influence solutions for category I and category II combination problems. 

Additional research has investigated combinatorics in a computational setting, such as Medova and 
Ceretkova (2021) quantitatively assessing the relation between computing ability and combinatorial 
reasoning. In line with such work, we have examined ways to use computer programming as a 
means for students to interact with individual outcomes, and to write algorithms that would list the 
set of outcomes (e.g., Lockwood & De Chenne, 2020). We adopt the term ‘listing algorithm’ to 
refer to an algorithm that exhaustively lists and counts the set of outcomes, with the intention of 
being used to design a computer program. We are cognizant that algorithms are far broader in 
general and enumeration algorithms in combinatorics need not be used in a computer program. 
Hence, our use of listing algorithm is not intended to encompass all types of enumerative 
algorithms in combinatorics. When creating a listing algorithm, students must first decide on an 
appropriate way to encode the outcomes so that every outcome is represented, and no outcome is 
represented more than once. Then, the students must decide on an algorithm to list the set of 
outcomes. Hence, students have the opportunity to reason about outcomes individually, as well as 
the set of outcomes collectively, which reflects important aspects of a set-oriented perspective. 
Although there are numerous ways to write listing algorithms, the primary tools in this report are 
for loops and conditional statements in Python.  

Medova and Ceretkova (2021) have reported on computational solutions to problems with variable 
parameter values done by students in a Programming 2 course, but it is unclear how students with 
less programming experience may approach similar problems. We have previously only had 
students write computer programs to solve problems with fixed parameter values, while many 
common combinatorial problems have variable parameter values. For example, a fixed-parameter-
value problem might be “How many ways can you flip a coin 5 times if exactly 3 of the coins 
landed on heads,” while a problem with variable parameter values is “How many ways can you flip 
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a coin n times if exactly k of the coins landed on heads.” Designing listing algorithms for problems 
with variable parameter values presents additional difficulties, which may include learning new 
computational skills such as recursion. We are motivated to examine ways that students can engage 
in generalizing solutions from problems with fixed parameter values. 

Methods 
We present a case study of one student, Allen (pseudonym), who wrote computer programs to aid in 
finding a closed-form solution for C(n,k) during a set of task-based interviews. These data come 
from a study conducted in the United States that examines the role of computing in combinatorics 
education. Allen was recruited from an introductory computer science class; he was selected based 
on a survey, which indicated that Allen had not taken a discrete class, and although he had been 
exposed to some counting problems in high school, he did not appear to recall formulas from that 
period. He also indicated that he had taught himself how to write programs in Python in high school 
and was interested in pursuing a degree in computer science. We chose Allen as a participant 
because he exhibited a strong computer science background. We interviewed Allen in person over 
three 90-minute sessions, and we focus on the last session in this paper. We chose these data 
because they provide an example of a student using computational techniques to solve a problem 
with variable parameter values. We do not claim that other students would produce similar results. 
Indeed, Allen’s mastery of fundamental computer science ideas indicates that most students would 
not produce similar results, but we nevertheless feel our findings have useful theoretical 
implications about using programming to solve problems.  

Task 

These data occurred after Allen compared an incorrect solution to a correct solution of the Book 
Problem, which states “Suppose you have eight books and you want to take three of them with you 
on vacation. How many ways are there to do this?” The solution to this problem is C(8,3) = 56. 
This was the first time the authors presented a problem involving combinations (rather than 
permutations) to Allen, and his original solution was P(8,3) = 336. After the authors asked Allen to 
list the first ten outcomes that a listing algorithm would produce, Allen noticed that his solution 
(which he had developed for permutation problems in previous interviews) was incorrect because it 
produced the same outcome more than once. While Allen was able to create a listing algorithm that 
gave him the correct answer, he was unable at first to justify an appropriate mathematical 
expression by hand. The data we present in this report is of Allen finding a closed-form solution for 
C(n,k) by writing a sequence of computer programs to find specific values of C(n,k) and comparing 
those values to P(n,k), which he could produce by hand. These data were unanticipated by the 
authors, who did not ask Allen to find a closed-form solution for C(n,k), but in the course of the 
interview decided to allow Allen to pursue a solution. Allen’s work occurs in three stages: writing a 
listing algorithm for C(8,3), writing a listing algorithm for C(n, 3) for various values of n, and 
writing a listing algorithm for C(n,k) for various values of n as k increased.  

Allen had previously worked on problems involving Cartesian products, arrangement with 
repetition, and arrangement without repetition. We provided Allen access to a Jupyter notebook on 
a desktop computer while he was being interviewed, which allows users to write computer 
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programs in Python as well as write prose in Markdown. Jupyter notebooks are arranged into cells, 
where computer programs can be written into individual cells in the same notebook. This allows for 
a single notebook to include multiple questions and listing algorithms simultaneously, so that the 
user can easily reference prior work. During the first session, we included a brief Python primer that 
described how to use fundamental tools in Python, such as lists, loops, and variables. Allen had 
already written listing algorithms for problems involving Cartesian products, arrangement with 
repetition, and arrangement without repetition. We provided printed problem statements and paper 
to write on.

Data Analysis

We chose this episode because it demonstrates how a student used computational techniques to aid 
in the development of a closed-form solution for a problem with variable parameter values. The 
first author identified key moments where Allen used his computer programs to reason about the 
relationship between C(n,k) and P(n,k). She then created an enhanced transcript of the episode by 
including pictures of Allen’s work and screenshots of the computer programs he wrote. This 
analytic process allowed us to make a narrative of Allen’s reasoning about C(n,k) as it relates to 
P(n,k), facilitating our articulation of Allen’s case and the role of listing algorithms in his work . 

Results
We categorize the results into three sections: listing algorithm for C(8,3), listing algorithm for 
C(n,3), and listing algorithms for C(n,k); this reflects the chronological order of Allen’s progress, 
and informs us of the difficulties Allen encountered, and how he resolved them. Further, this 
progression demonstrates distinct steps Allen took as he generalized his listing algorithm.

Listing Algorithm for C(8,3)

Allen’s first solution to the Books Problem was , which is the number of ways to arrange 
three of the books. However, this expression accounts for different arrangements of the books as 
distinct outcomes, whereas the question does not. A correct solution is . We 
asked Allen to verify if his solution was correct by describing a listing algorithm, and then writing 
down the first ten outcomes the algorithm would produce. Allen described an algorithm that would 
list all arrangements of three books (which he had implemented in Python for previous problems), 
which is incorrect but consistent with his solution. Allen then wrote the outcomes in Figure 1. 

Figure 1: Allen’s Partial List of Outcomes for the Books Problem

Proceedings of CERME12 1912



In Figure 1, the last outcome in the list was 1, 3, 2, which Allen erased and replaced with 1, 3, 4 
after he realized that 1, 2, 3 and 1, 3, 2 represent the same outcome. This demonstrates that Allen’s 
error was not due to misunderstanding the question; he was aware that the problem counted 
unordered combinations of books, and not arrangements of books. Allen realized that his solution 
was incorrect, but he was not able to find a numerical expression that accounted for different 
arrangements of the books being the same outcome. He then decided to implement a listing 
algorithm that differed from his previous algorithm by requiring that the books be placed in 
increasing order in any outcome. For example, the outcome 1, 3, 2 would not be counted in this new 
listing algorithm because the numbers are not in increasing order. He justified that enforcing the 
increasing order would still produce every outcome, and that every outcome would be produced 
only once because there is exactly one way to place the numbers in increasing order. His 
implementation of this listing algorithm is shown in Figure 2. Allen explains the logic of his code 
as:

Allen: Say I pick book number 5 as my second book. I don’t need to pick book 1, 2, 3, 4, or 5 [as the 
third book] in that case, so I’d only have three books to choose from.

After running his code, Allen realized that the correct solution was exactly one sixth of his original 
but incorrect solution; that is, that P(8,3) = 6*C(8,3). His additional work sought to justify this 
ratio. 

Figure 2: Allen’s Listing Algorithm for C(8,3)

Listing Algorithm for C(n,3)

After Allen realized the correct solution was one sixth of his original solution, he investigated how 
the ratio would change as the number of books increased. He said the following:

Allen: That’s interesting, 8*7 is 56, I’m fairly certain of that. That is interesting, though. Completely the 
third value [the value 6 in 8*7*6, his original solution] didn’t even really matter it looks like … So 
this last one was equal to 8*7. I just want to see if bringing the total number of books down by 
one, does that make it equal 7*6? Is there a relationship there? 

To create a conjecture for the value of C(7,3), Allen reasoned about the mathematical expression 
8*7, indicating that he was attempting to find an empirical pattern in the expressions themselves. 
He seemed to reason that the correct solution would be to take his original solution, and remove the 
last term in the product. We take this to be an instance of empirical pattern matching, where he was 
hoping to recognize a pattern in the numerical solutions without reasoning about why that pattern is 
reflected in the set of outcomes. He was aware that his pattern matching might be incorrect, 
indicating that dividing by 6 “might just be luck.” After changing his computer program to solve the 
new problem, he observed that the correct answer was 7*5, which is one sixth of his original 
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answer, Allen decided to investigate the ratio P(n,3)/C(n,3) for other values of n. This ratio is 6 for 
every n.

To investigate the ratio as n increased, Allen wrote a new computer program. Because the number 
of books in his listing algorithm for C(8,3) was only represented by the 9 in each of his for loops (in 
Python, range(1, n+1) produces the numbers 1 through n), he created a variable book that could be 
changed. By replacing the number of books with a variable, he could create a program to calculate 
C(n,3) without writing a new program for every value of n. Importantly, this change did not require 
restructuring the algorithm to accommodate a variable parameter. Allen wrote the function in 
Figure 3, which inputs the number of books and returns the ratio P(books,3)/C(books,3). By 
iterating through multiple values for books, Allen verified that the ratio was 6 for every value of 
books. 

Figure 3: Allen’s Listing Algorithm for C(n, 3)

Listing Algorithms for C(n,k)

After finding that P(n,3)/C(n,3)=6 for every value of n, Allen decided to see how this ratio changed 
as k increased. Here the number of books being selected was represented by the number of nested 
for loops. This is not easily changed, and creating a function that returns C(n,k) for any value of n
and k would require a significant restructuring of the code. Allen’s goal was not to create a listing 
algorithm for C(n,k), but rather to determine a closed-form solution for C(n,k). While a listing 
algorithm for C(n,k) may have aided him, he was able to pursue other means of generalizing his 
algorithms.

Rather than write a single function for C(n,k), Allen wrote two different functions for k=4 and k=5. 
For each of these, he made conjectures about P(n,k)/C(n,k) before he observed the actual ratios. For 
both values of k, Allen’s computer programs showed that the ratio was constant. Specifically, his 
programs returned that P(n,4)/C(n,4) = 24, and P(n,5)/C(n,5) = 120. Although his conjectures 
seemed to express numerical pattern recognition based on empirical data rather than conjecture 
based on mathematical analysis of the counting problem, his persistent comparisons between 
P(n,5)/C(n,5), P(n,4)/C(n,4), and P(n,3)/C(n,3) showed that the ratio between the ratios followed a 
pattern. In describing this pattern, he states: 

Allen: What I noticed is each time you go up, you multiply by the next number. So 6 times 4 equals 24, 
which multiplied by 5 equals 120, which multiplied by 6 equals 720.

After formalizing this pattern, Allen used his knowledge of a closed-form solution for P(n,k) to 
conjecture a closed-form solution for C(n,k), as shown in Figure 4.
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Figure 4: Allen’s Closed-Form Solution for C(n,k), or C(X,Y)

In this expression, X is the number of total books and Y is the number of books being selected. 
Allen asked the interviewers if there was a symbol for repeated multiplication, and we described the 
notation in the numerator. The numerator of the right side is Allen’s known solution for P(n,k), and 
the denominator is the reciprocal of the conjectured ratio between P(n,k) and C(n,k). While Allen 
found this expression through numerical pattern recognition based on empirical data, he was able to 
justify the closed-form solution by stating that Y! is the number of ways to arrange the selected 
books, so dividing by Y! essentially removes all repeated occurrences of the outcomes. 

Discussion

In these data, Allen appeared to have more difficulty finding an expression for C(n,k) than writing a 
computer program that listed the outcomes to a counting problem. And while Allen used his 
computer program to find such an expression, there were essentially three big ideas that he reasoned 
about: (1) generalizing and implementing his computer programs, (2) conjecturing about the values 
of C(n,k), and (3) formalizing and justifying a mathematical expression for C(n,k). The first idea 
was the one that seemed to pose the least challenge to Allen, after he realized that his original 
solution was incorrect. We differentiate between ideas (2) and (3) because they occurred at different 
points in the data, and because his ways of reasoning about them were different. As Allen wrote his 
different computer programs for C(8,3), C(n,3), C(n,4), and C(n,5), he conjectured about their 
values based on empirical patterns that mostly concerned how the values were written. For 
example, when Allen saw that C(8,3) = 7*8, and his original solution was 8*7*6, his conjecture for 
C(7,3) was 7*6 because his original solution would have yielded 7*6*5. That is to say, his 
conjecture was that the correct solution would be to remove the smallest term from the incorrect 
solution, and his reasoning for this was based on the observations from his computer program. In 
this way, Allen was projecting forward so as to anticipate future values and see if his conjectures 
were true, but his conjectures were based on the cardinalities of the sets of outcomes rather than the 
sets of outcomes themselves. It is difficult to say how much of his conjecturing would have 
remained the same if he had not written the computer programs himself, and instead were given a 
table of values for C(n,k), but we feel that a contribution to his success was repeated conjecturing 
followed by writing a computer program to verify if the conjecture were true.  In contrast, when 
reasoning about (3) Allen reflected on the data he had already found to formalize a mathematical 
expression, and then he reasoned about the sets of outcomes as a means to justify that expression. 
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We do not intend to criticize Allen for his empirical conjectures during stage (2), but as 
mathematicians it is easy and often justifiable to place more value his reflective behavior during 
stage (3). However, we are also aware that stage (3) may never have occurred if not for stage (2), 
and we recommend other researchers to allow times where students can engage in empirical 
conjecturing or reasoning.  

Another difficulty with writing programs to solve combinatorial problems with variable parameter 
values is that the output of the program is not a symbolic mathematical expression, yet 
mathematical analysis typically involves symbolic, closed-form expressions. The outcomes of a 
computer program and mathematical analysis are not the same, so they can be difficult to compare. 
In our data, Allen was able to create an expression for C(n,k) by comparing the value to a known 
similar value, P(n,k), as one parameter varied at a time. Future research could examine ways of 
using and analyzing computer programs with variable parameter values other than as a way to 
compute fixed instances of parameter values. While Allen used his computer programs to compare 
the values to other known values, an alternative method would be to examine the behavior of the 
program as the parameter values changed.  

Allen created and generalized a listing algorithm for a problem that he could not solve by hand. The 
utility of the computer program in Allen’s case was not reinforcing known mathematics, but the 
ability to verify conjectures about unknown mathematics. Because Allen decided on how to proceed 
during his work, we hypothesize that he was partially motivated because he was given agency over 
his mathematics. Future research could examine a computational environment as a means of solving 
unknown mathematics or mathematics that is unfeasible to compute by hand. In combinatorics 
education, this might mean using the computer to reason about sets of outcomes that students can 
create listing algorithms to produce, but that are difficult to count with conventional formulas and 
expressions. In such cases, the end goals might not be to find a closed-form solution that counts the 
set of outcomes, but to reason about how the size and structure of the set of outcomes changes as 
parameter values change. 
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Introduction 
Computational thinking (CT) is a recent topic in most Brazilian schools since it was included in the 
National Common Core Curriculum – NCCC (Base Nacional Comum Curricular – BNCC) in 
2018. NCCC aims to guide school curricula and provide for the development of CT through 
Mathematics teaching (Ministério da Educação, 2018). The purpose of this research is to present 
how elementary pre-service teachers apply CT skills when they design a lesson to teach elementary 
mathematics.   

Theoretical framework 
In this research we consider Selby and Woollard’s definition (2013, pp. 5) of CT: it “is a focused 
approach to problem solving, incorporating thought processes that utilize abstraction, 
decomposition, algorithmic design, evaluation, and generalizations.” This approach combines the 
four CT pillars showed by BBC Learning (n.d) and the Reference Curriculum in Technology and 
Computing (Raabe et al., 2020, p. 19): abstraction, algorithms, decomposition, and pattern 
recognition.  

Code programming using block-based programming languages is a popular form to develop CT 
skills (Hsu et al., 2018). Brennan and Resnick (2012) identified computational concepts by studying 
activities in the Scratch online community. These concepts are common in many programming 
languages and include sequences, loops, parallelism, events, conditionals, operators, and data.  

Methodology 

This research is qualitative in nature and seeks to address the following research question: how do 
pre-service teachers include computational thinking concepts when they design elementary 
mathematics activities from NCCC’s perspective?  To discuss this research question, we analyzed 
an activity developed by three of thirteen participants of a pre-service teacher training process, 
which took place over four months, with one 3-hour session per week, in a Brazilian private 
university in 2021. Due to the COVID-19 pandemic, all classes were remote, synchronous, and 
occurred via a virtual meeting program. The aim of this training process was to discuss CT 
connection with elementary mathematics teaching. Through a teaching experiment, we proposed 
tasks to the students in which they had to think how to design mathematics lessons using unplugged 
and plugged CT for their future primary education classes. Data were collected from pre-service 
teachers’ protocols, training’s video recordings, and Scratch’s programming code from plugged 
activities designed. Data were analyzed taking into account CT definition and concepts mentioned 
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before. The analyses of qualitative data sources were divided to identify the frequencies of CT 
concepts and of aspects of CT definition.  

Statement and discussion of results 

The proposed lesson had to consider one of the elementary mathematics ability previewed in 
NCCC, which introduces the concept of geometric orientation to children. Pre-service teachers 
explored Scratch’s programming language and proposed a pre-made scenario presented in Figure 1. 
They made a small program to provide pupils only with a yellow butterfly flapping the wings.   

 
Figure 1: Plugged activity proposed by students 

In the teachers’ code programming, we found sequences as expected: 16 loops (repeat and forever), 
5 events that occur when the green flag is clicked or a space key is pressed, and 5 parallelism 
actions, three of which begin simultaneously when the green flag is clicked and two happen when 
the space key is pressed. Teachers did not consider conditionals, operators, or data in their code. 

Pre-service teachers’ description about how they constructed this activity reported they did not 
make the code in one step; they had to split it in small parts (like move to the right, move up, move 
down…) and synchronize Scratch’s actors’ movements. Analyzing all data source, we found 
evidence the participants used all the CT pillars to conclude the task (abstraction, algorithms, 
decomposition, and pattern recognition). 
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This paper aims at showing the potential of the synergistic use of algorithms as artifacts for the 
development of mathematical meanings with pupils of primary school. Specifically, we consider two 
division algorithms introduced in 4th grade and we show how a specific task design, that involves a
comparison between the two different algorithms performing the same division, can generate a 
mathematical discussion. In such a discussion we can identify several situated signs potentially 
useful for the development of mathematical meanings related to the algorithms’ functioning. 

Keywords: Sinergy between algorithms; Semiotic Mediation; Artefacts; Canadian division 
algorithm; TI - division algorithm.  

Introduction
This article presents a study on teaching multiple algorithms for calculating divisions, carried out 
within a larger project (see www.percontare.it) aimed at providing Italian teachers with a repository 
of educational activities in Mathematics for primary school that pay particular attention to 
inclusiveness (Baccaglini-Frank, 2015). A fundamental design feature of the activities is their aim 
to help students reach a solid construction of mathematical meanings through the use of artefacts, 
following the Theory of Semiotic Mediation (TSM) (Bartolini Bussi & Mariotti, 2008). This aim is 
prominent also within the set of activities concerning the introduction of different calculation 
algorithms for arithmetic operations. In this study we will focus on the teaching and learning of 
division between natural numbers through two algorithms in fourth grade (age 9-10). 

The first algorithm we consider is the "Canadian algorithm" (Lisarelli, Baccaglini-Frank & Di 
Martino, 2021; Boero & Ferrero, 1988), consisting in a repeated subtraction of the divisor from the 
dividend. The other one is "TI - algorithm” (Karagiannakis, 2018), that is similar, from a
mathematical point of view, to the long division algorithm (see the Methodology section). The main 
difference between these two algorithms can be expressed through the transparency construct with 
respect to the meanings of the division between natural numbers. We want to extend to these
algorithms the definition of transparent and opaque representations of numbers introduced by 
Zazkis & Gadowsky (2001): "A transparent representation has no more and no less meaning than 
the represented idea(s) or structure(s). An opaque representation emphasizes some aspects of the 
ideas and structures and de-emphasizes others" (p. 45). We can say that the Canadian algorithm is 
transparent with respect to the meaning of division, conceived as a progressive distribution, while 
TI - algorithm is opaquer with respect to this meaning. Our research hypothesis is that children can 
make sense of the algorithms, understand why they work, and gain deep understanding of division 
of natural numbers, by becoming fluent with both of them and then comparing them and 
discovering what is behind the opacity of an algorithm like TI -. Our main research interest is to 
test this hypothesis. In the study, we report on our attempt at promoting a mathematical discussion 
overcoming the opacity of the TI - algorithm.
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Theoretical framework 
An algorithm can be considered as a cultural product, designed to solve a given class of problems. 
Schmittau (2003), discussing the role of algorithms within Davidov’s curriculum, expressly talks of 
them as a "symbolic trace of the meaningful mathematical actions required to solve a problem" (p. 
240). In this perspective, an algorithm develops historically and is configured as a cultural tool that 
mediates an individual's knowledge and understanding of Mathematics (Ebby, 2005). The reliability 
of an algorithm rests on a body of knowledge that is not always visible to those who use it.
Traditional algorithms, in fact, are the result of a historical-cultural evolution that has often favored 
the efficiency of algorithms in a mechanical sense rather than their transparency with respect to 
mathematical meanings underlying each step (Bass, 2003). 

In this perspective, we can interpret didactical activities on algorithms for the arithmetic operations 
through the lens of a whole tradition of studies which have shown how it is possible for students, 
through the use of artefacts to accomplish a task, to develop meanings linked to the knowledge 
incorporated in the artefacts themselves (e.g., Bartolini Bussi & Mariotti, 2008). Starting from a 
Vygotskian perspective, Bartolini Bussi and Mariotti emphasize the crucial role of social interaction 
as an engine for student learning, with a focus on the semiotic processes that can occur in the 
classroom starting with an activity with an artefact, triggered and supported by the teacher. 
Nevertheless, unlike most of the studies informed by TSM - which concern the use of only one 
artefact - in this study we chose to use two different algorithms as artefacts. This choice is 
supported by recent studies that have begun to investigate the possibility of introducing more than 
one artefact having a common potential with respect to the development of the same mathematical 
knowledge (e.g., Faggiano et al. 2018; Maffia & Maracci, 2019). These studies confirm that in 
specifically designed didactical activities, the introduction of more than one artefact can result in a 
synergy, which can increase the didactic potential of the activity with respect to activities involving 
a single artefact (Faggiano et al., 2018; Maffia & Maracci, 2019). 

Therefore, conceiving algorithms as artefacts can be useful to make visible to the students 
mathematical meanings related to the body of knowledge that make the algorithms reliable. From 
the perspective of TSM, starting from the use of algorithms to carry out specific tasks, and 
participating in an explicit discussion on this use - intentionally orchestrated by the teacher - 
students can develop knowledge on the nature of the algorithm and the properties of the operations 
to be performed. More specifically, we present a didactic intervention whose aim was precisely to 
develop students' knowledge of the mathematical meanings underlying two different division 
algorithms.  

Research questions 
1. What signs in the discussion can evolve in the direction of the discovery and understanding

of the mathematical meanings underlying the functioning of TI - algorithm?
2. Can (and if so, how can) the synergy of artefacts foster the emergence of signs related to

mathematical meanings in common among the two algorithms involved?
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Methodology 
According to the TSM framework, the didactic activity was designed to include a part of interaction 
with artefacts and a subsequent part of mathematical discussion, to be developed in Distance 
Education (DE) due to the persistence of the SARS-COV-2 pandemic. As showed in other studies 
(e.g., Ramploud, Funghi & Mellone, 2021), in order to face the constraints of DE, teachers have 
sometimes chosen to adapt the framework of TSM to their new conditions. In this case, the teacher 
chose to separate the part of interaction with the artefacts from the discussion: in a first moment 
students had to calculate the division 874:7 with both algorithms, as homework; then, the class was 
divided into 4 heterogeneous groups of 7-8 students each, and the next day for each group a lesson 
in DE of 40 minutes was dedicated to the mathematical discussion starting from the different 
solutions of the students. The lessons were all video recorded and fully transcribed.  

The two algorithms considered were specially chosen in analogy with other studies (e. g., Lisarelli 
et al., 2021) to allow “to discover various mathematical meanings behind the long division 
algorithm [in our case, the TI - algorithm] and their role in unveiling the whys: the role of place 
value, the hidden powers of ten, [...] the meaning of each digit of the quotient, how each remainder 
is obtained.” (ibidem, p. 3). We describe below the two algorithms for the division presented in the 
PerContare project.

Figure 1: An Optimized Canadian algorithm applied to the division 14786:35 (on the left); TI - algorithm 
applied to the division 2504:47 (on the right) 

The first is the Canadian Algorithm in its non-optimized version (Boero & Ferrero, 1988). It works 
like this: the solver identifies a multiple of the divisor that is less than the dividend; then, s/
he subtracts this multiple from the dividend. S/he repeats the same reasoning starting from the result 
of this subtraction (i.e., s/he identifies a multiple of the divisor, which is less than the result of 
the subtraction, and so on) until s/he obtains a number that is less than the divisor (it could be 0). 
The left diagram in Figure 1 shows an optimized version of the Canadian algorithm applied 
to the division 14786:35, where the multiple of the divisor to be subtracted at each step is chosen 
among those that are also multiples of the highest possible power of 10 (i.e., at the first step 35

400 is subtracted, then 35 , then 35 ). The second division algorithm is TI - algorithm. To 
illustrate it, we can start from this example: 2504:47 (see Figure 1 on the right). The first step to 
be carried out consists in writing some useful multiples of the divisor, which we call 
fundamental multiples (on the right in Figure 1). The multiples chosen are 1, 2, 5, 10,
since they are the simplest multiples to calculate (the multiple 5 can be obtained calculating 
half of the multiple 10) and 
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they are sufficient to obtain all the others applying the distributive property (e.g., 47 3=47+94). At 
this point, we can set up the diagram in Figure 1. We can observe that the number of spaces 
reserved to the quotient digits corresponds to the number of dividend digits, regardless of the 
development of the division (in our example, 2504 consists of 4 digits, so the diagram provides 4
spaces for the quotient digits). We therefore carry out the steps according to the acronym «TI -»,
thus explicating its meaning:

Tag the first dividend digit from the left, making a dot above it (in our example, the digit 2);
Insert the number of times the divisor is contained in the tagged digit in the first space
dedicated to the quotient digits in the diagram. In our example, 47 is contained in 2 0 times,
so we write 0 in the first space reserved for the quotient from the left;
At this point (we are at the " " in the acronym) we have to multiply the divisor with the
number found, in our example 47 0 = 0;
Finally, we subtract (we are at the "-" in the acronym) what we obtained from the tagged
digit, in our example 2–0 = 2.

We then repeat the same procedure "TI -". In our example, we now have to tag the digit 5, 
and transcribe next to the result of the last subtraction carried out, so that we now consider it 
as the number 25. Now, 47 in 25 is contained 0 times, so we transcribe 0 into the second space 
dedicated to the quotient, and then we calculate 47 0=0. At this point we subtract 0 from 25, 
obtaining still 25, and so on. We are therefore able to complete the division when we have tagged 
all the digits of the dividend, obtaining 53 as quotient, and the remainder 13 as the result of the last 
subtraction.

At the moment of the discussion we analyze here, participating students had worked since grade 2 
on Canadian algorithm, while TI - algorithm had been introduced for about a month: the students 
had learned to execute it correctly, but no time of the previous lessons was dedicated to the 
deepening of the mathematical meanings underlying its functioning. 

This work focuses on the analysis of the signs that emerged in the mathematical discussion. We will 
distinguish between situated signs, mathematical signs, and pivot signs (Bartolini Bussi & Mariotti, 
2008). Situated signs are signs that arise during the activity with the artefact, so they are contextual 
and understandable only to the participants to the activity at that time; mathematical signs, on the 
other hand, are the formal signs referring to the mathematical knowledge at the basis of the 
task designed by the teacher. Finally, pivot signs are particular artefact signs that the teacher can 
use to support a possible evolution from artefact signs to mathematical signs. We coded the 
transcripts classifying the signs with the labels “situated signs” (SS), “mathematical signs” (MS), 
“pivot signs” (PS). We focus especially on signs that could be related to mathematical meanings 
underlying the two algorithms, in particular those related to positional value of dividend digits and 
to the meaning of the sign to tag dividend digits in TI - algorithm. 

Data Analysis
To answer to our research questions, we chose to analyze two excerpts of the mathematical 
discussion of the first lesson, that we believe to be particularly significant to show the potential of 
synergy for the discovery of relationships between the two algorithms. The mathematical discussion 
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was started by the teacher, who showed on her shared screen the operation 874:7 carried out with 
the two different algorithms (see Figure 2).

Figure 2: Optimized Canadian algorithm (on the left) and TI - algorithm (on the right) to calculate the division 874:4

1 P1: [...] I think that [...] it is not that we do faster in one algorithm, for example 
in the Canadian algorithm with respect to the TI - algorithm, because in the 
Canadian algorithm we subtract bigger numbers, but in the TI - algorithm 
we subtract the numbers... [...] 7, 14, 28, though... [the number 7] counts 
like the hundreds and then it is removed from the hundreds [of the 
dividend]...

2 Teacher: Wait, I'll try to repeat what you said [...] in the TI - algorithm, when I 
subtract 7, for example… what happens, to this 7 here? What do you mean,
P1?

3 P1: It's like... it's like a hundred [he means 7 hundreds], because ... it's below 8, 
but not because it is below 8, because it is used as... hundreds. 

4 Teacher: So, you are saying that this 7 is worth 7 hundreds... okay? And in the other 
algorithm what do we have in the first step, P1? […]

5 P1: In the first step we have 700 [to subtract].1
6 Teacher: Minus 700, ok.
7 P1: It is because it involves all the numbers [the Canadian algorithm], but 

actually I think the TI - algorithm is faster because you have to write fewer 
things.

In this first excerpt, the comparison of the two algorithms applied to the same operation allows P1 
to make an interesting consideration, linked to positional value of dividend digits in TI - algorithm
(see the reference to MS “hundreds” in lines 1 and 3). In line 3, P1 tries to express something about
the dependence of TI - algorithm from some formal choices, such as tagging and respecting digits’
vertical alignment. P1 seems to describe - still at an intuitive level - that the value of 7 subtracted 
from the dividend digit 8 should not be inferred from its vertical alignment, but from a certain "use" 
of 7 as hundreds, not better specified. It is only with teacher's intervention (line 4) that the
identification of subtracted 7 in TI - algorithm and subtracted 700 in Canadian algorithm becomes 
explicit (line 5), so that in line 7 P1 realizes a further step describing a more general difference 
between the two algorithms – namely, TI - algorithm’s articulation digit-by-digit, absent in 
Optimized Canadian algorithm.

1 It is necessary to specify that, unlike in English where 7 hundreds and 700 are both pronounced as "Seven hundreds", 
in Italian 7 hundreds and 700 are pronounced as two different words, "sette centinaia" and "settecento" respectively. So, 
we note that in Italian the correspondence between 7 hundreds and 700 is not as transparent also for linguistic reasons. 

5
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8 P2: I think they are both correct and I also noticed another thing: in the 
Canadian algorithm I see that you will always add a number... if you remove 
the two zeroes from 700 it becomes 7; if you remove the 4 from 174 it 
becomes 17. It is as if in Canadian algorithm you add a number [i.e. you 
write a digit at the end of each subtrahend]. 

[...] 
9 P2: I was just thinking of the end [i.e., to the last subtraction 34 – 28 = 6 present 

as the last step in both algorithms], because when I thought that 700 
becomes 7 when one removes the zeroes, it seemed strange to me that the 
end was identical [in both algorithms] and that you don’t remove 4 from 34,
so that it doesn’t become 3.

10 Teacher: Then you are saying: the last operation is the same. 
11 P2: Yes, because it is as if the division made different calculations but it has to 

arrive at the same point, where there is no other way to get to the result, so
you have to do that ... that reasoning to get to the result. 

In line 8 P2 describes a connection between the two algorithms, but differently from P1 she
does not talk in terms of place value. Instead, she uses SSs "remove the zeros" and "add a 
number [digit]". In the expression "it is as if in Canadian algorithm you add a number", P2 
formulates a simile that constitutes evidence of her attempt to describe something she has 
intuitively grasped but that she is not completely able to express. In this perspective, "add a 
number" and "remove the zeros" have the value of PS, with the potential to lead P2 to discover 
mathematical meanings at the basis of TI - algorithm - in particular, positional reading of 
dividend digits and of numbers to be subtracted in the various steps. As we see in lines 9 and 11, 
this observation triggers P2 to deepen the relationships between the two algorithms. Indeed, P2 
moves her attention to their last part. In the expression "it seemed strange to me that the end was 
identical and that you don’t remove 4 from 34, so that it doesn’t become 3", P2 identifies the last 
subtraction (“the end”) as a common aspect of the two algorithms, but she also observes that this 
correspondence breaks her previous expectation on how TI - algorithm works. The expression 
“you don’t remove 4 from 34” is a PS, which recalls the previous sign “remove the zeroes” in line 
8. Indeed, also this sign - “you don’t remove 4 from 34” - has the potential to lead to the 
discover of positional reading within TI - algorithm: the teacher can exploit this sign to support 
a reflection on the fact that the number 34 does not respect the correspondence identified by P2 
because it must be interpreted in term of unities, differently from the other subtracted numbers 
in the previous steps of TI - algorithm. SS "the end was identical", moreover, signals a 
further step towards a recognition of the common process at the basis of both algorithms, with 
respect to what P2 observed in line 8. In that line, she was still focusing on the perceived 
distance between the two algorithms; in line 9, instead, the identity of their last subtraction 
elicits a feeling of "strangeness", pusheing P2 to formulate in line 11 a more general conjecture 
on the similarities between the two algorithms, moving from a formal description towards 
meanings. Two significant SSs in this respect are “different calculations” and “same point”: these 
are PSs with the potential to evolve towards a discovery of distributive process common to both 
algorithms, presented through different formal steps. 

Discussion and conclusions 
Data analysis shows how the designed task allowed the emergence, in the discussion among the 
involved children, of situated signs potentially significant for a progressive development of 
mathematical meanings that are crucial to explain the two algorithms’ functioning, especially 

Proceedings of CERME12 1926



regarding TI - algorithm. As we observed, in fact, this second algorithm is opaquer than Canadian 
one, with respect to the progressive distribution process underlying to both. Regarding the first 
research question, terms such as "hundreds", "remove the zeros" and "add a number" emerged as 
potentially crucial signs for this development, since they can lead to a reflection on the dependence 
of TI - algorithm on place value of dividend digits. Situated signs as "different calculations" and 
"same point", instead, are significant because they were used to describe a similarity regarding the 
general mechanisms at the basis of both algorithms. These signs, in a TSM perspective, could be 
useful to the teacher to manage the discussion, in order to allow students discover the progressive 
distribution process underlying both algorithms. Regarding the second research question, the signs 
"different calculations" and "same point" emerged in relation with the issue of the identity of the 
last step of both algorithms. As shown by research with a similar approach to the discussion of 
division algorithms (see Lisarelli et al., 2021), this can be one of the key considerations to develop a 
"backward" reasoning to build a real argumentation of the two algorithms’ functioning, using the 
more transparent algorithm to shed light on the steps of the opaquer one. This is particularly 
relevant for the argumentation of the opaquer algorithm’s functioning (for Lisarelli et al. it was 
DMSB algorithm, for us is TI - algorithm) and the discovery of mathematical meanings at its basis.
Therefore, the designed task and the following discussion allowed the emergence of situated signs 
related to mathematical meanings common to both algorithms involved. It is necessary to underline 
that, both in our study and in that by Lisarelli et al., the synergy of artefacts could be seen as a 
substantial identity of distributive process underlying the involved algorithms: the opaquer 
algorithm can be seen as more refined and efficient on a formal level, through an appropriate 
recourse to the digits’ vertical alignment and their reading according to their place value. Using a 
metaphor, we can say that this choice of algorithms as artefacts used in synergy transforms one 
algorithm into a sort of "can opener" of mathematical meanings for the other one. We believe that 
the analysis presented here contributes both to research concerning the introduction and the use of 
artefacts in mathematics classroom and to research concerning the teaching of algorithms in 
primary school. Our study contributes also to discussion about the potential of comparing 
algorithms and procedures as means of development of students’ conceptual and procedural 
knowledge (e.g., Rittle-Johnson et al., 2017; Weber, 2019), since we highlighted the powerfulness 
of synergy of algorithms as artefacts, especially when among them intercours a relationship such as 
the one we described. Further studies are needed to confirm this, and to explore if there are other 
conditions determining which synergies are useful to develop mathematical meanings.
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Introduction and Context 
In the growing field of research of elementary discrete mathematics education, the research wants to 
focus on some aspects of young students, grade 4 to 6, learning about sorting algorithms. Moreover, 
elementary computer science is gaining attention both from the CS education research community 
and from the elementary school teachers and heads (Franklin et al, 2015) and new trends in teaching 
CS in primary education are recently emerging. From a Mathematics Education perspective, we are 
thinking of our work as able to enhance the study of teaching and learning skills of mathematical 
practice through discrete mathematics problems, both general skills, such as reasoning, modeling 
and problem solving skills and others particular to discrete mathematics, such as algorithmic and 
recursive thinking skills. Here, in particular, we want to underline aspects of cooperative dynamics 
emerging from some sequence of tasks regarding the above.  

The tasks we are going to present are part of a preliminary research that were proposed to various 
schools and age groups. In a design research paradigm (Plomp and Nieveen, 2007), the activities 
were tried out many times, always with an a priori analysis together with the teachers and with a 
retrospective look after each lesson. Students from two different schools were involved: a total of 
22 classes in grades ranging from 3rd to 8th. Before this, we did a preliminary survey among
teachers (Gaio & Di Paola, 2018). Teachers, especially at lower levels, admit not to have the 
necessary knowledge to teach discrete mathematics and algorithmic topics in school and are really 
open to explore new possibilities on the topic. 

Background Theory and Methodology 
Teaching methods follow the model of Realistic Mathematics Education (Gravemeijer, 1994) and 
Guided Reinvention of mathematics (Brousseau). Focus is on the activity, on the process of 
mathematization (Freudenthal, 1973). Realistic Mathematics Education (RME) is an instructional 
design theory which centers around the view of mathematics as a human activity (Freudenthal); 
“The idea is to allow learners to come to regard the knowledge that they acquire as their own 
private knowledge, knowledge for which they themselves are responsible.” (Gravemeijer). 

The research methodology is that of design research. For the purpose of this thesis, the 
developmental approach is taken into consideration (Plomp and Nieveen, 2007), the goal being to 
design and develop a, research based, intervention and constructing design principles in the process 
of developing it. The goal is to explore new learning and teaching environments, to verify their 
effectiveness; to develop somehow new methods, instruments, and teaching actions to further 
improve in the field of problem solving and logical thinking, using somehow unusual topics as 
algorithms and cryptography are for primary school students. The design experiment is a classroom 
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experiment in which the researcher (or researchers) cooperates with the teachers in assuming 
teaching responsibilities.  

Tasks and data 

As stated above, in a longer sequence of tasks, we want to focus on some tasks regarding sorting. 
The content goal is to teach something about sorting (numbers, quantities, objects), algorithms 
mode of operation, their speed, and the fact that there might be different algorithms leading to a 
solution. In some activities basic computational complexity is emerging, even if not formally 
introduced to children. We want them to re-discover the algorithm (or algorithms) which is good to 
solve a predetermined problem and get a sense of what it means to order something. Ordering 
themselves in groups, ordering object using a balance scale. At the end of each task a discussion 
follows.  

Data collected is represented by events selected from the video recordings available. We used an 
inductive approach in video selecting, beginning with viewing the corpus in its entirety and focus 
on details later. Some events which were particularly relevant were isolated. We are, with this 
approach, analyzing selected episodes focusing on the same happening and constantly revising our 
finding and new hypothesis. 

Results and perspectives 

As some examples of the results obtained, we have a video-analysis of groups sorting themselves 
into a given order. Looking at the collaboration between students, one can observe that two 
different algorithms translate into two totally different group dynamics. There could be one or two 
students acting as leaders and just giving direction to others in the group, or more cooperative 
oriented groups, or also when a leader is absent. While using sorting networks, for example, the 
importance of discussion and the process of dialectic with peers allows students to discover 
important points in the mathematical situation they are facing, such as a sense of comparison 
between different numbers, according to Vygotsky’s perspective on the zone of proximal 
development. On a similar example, students find out that if they are greedy - or we might say use a 
greedy algorithm - then the group might not success in the final goal and the collaboration with the 
others is important in mathematics, as in many other aspects, to reach (faster and better) results.  

Finally, the belief is that this kind of activities can be relevant, beyond a CS perspective, also from a 
mathematics point of view as described briefly above and deserve a deeper investigation in 
research.  
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This paper reports an investigation of mathematics teacher educators’ views and perceptions on 
computational thinking (CT) and its impact on mathematical learning. We conducted semi-
structured interviews with experienced mathematics teacher educators, all of whom have extensive 
experience with the use of digital technologies for mathematical teaching and learning and report 
on data from two of them. Our aim is to offer insights into how CT is perceived and understood by 
them, to support them in self-assessing their possession of CT practices, and how to support 
mathematics teachers and students in gaining CT. We offer ideas regarding the promotion of CT 
and its integration in mathematics teaching and learning. 
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Introduction 
Over the past decade, there has been upsurge of interest in the teaching and learning of 
computational thinking (CT). The proponents of CT conceive of CT as a critical skill for all that 
will enable humankind to harness the power of computers for the common good (e.g., Wing, 2006). 
As a result, many countries are in the process of introducing CT into their school curricula, either as 
a new dedicated subject, a cross-curricular theme, or integrated within an existing subject, such as 
mathematics (see, e.g., Bocconi et al., 2018; see also, Royal Society, 2018). The relationship 
between CT and mathematics has been of particular interest. Indeed, some see CT as offering the 
potential to transform school mathematics (eg, Perez, 2018), but realising this potential will be a 
challenge, for students, mathematics teachers and mathematics teacher educators (MTEs). 

Teacher education will be critical in enabling mathematics teachers to realise the potential of CT to 
transform mathematics. Yet, to date, educational literature on CT, or computational competency or 
the “new digital age competency” as sometimes is referred to, (e.g., Grover & Pea, 2013, Li et al., 
2020) has mainly focused on students’ CT. In this paper, we address this gap by investigating 
MTEs’ CT and their computational practices. We present initial findings from an exploratory study, 
investigating the views of two experienced MTEs, who both have extensive experience with the use 
of digital technologies for mathematical teaching and learning, including specifically with teachers. 
We discuss their views on CT from a practitioner and a research perspective, debating about 
assessing the possession of CT and how to support mathematics teachers and students in gaining 
CT. We conclude by offering ideas about the promotion of CT and its integration in mathematics 
teaching and learning. 

Computational Thinking and Mathematics Education 
CT was first mentioned by Papert (1980) in his seminal Mindstorms book, it gained more 
momentum when Wing re-introduced it in her 2006 pivotal paper making the case for CT as a 
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critical skill for all. Wing (2010) defined CT as “the thought processes involved in formulating 
problems and their solutions so that the solutions are represented in a form that can be effectively 
carried out by an information-processing agent”. (Cuny, Snyder & Wing, 2010). Many researchers 
(e.g., Brennan & Resnick, 2012; Grover & Pea, 2013) have attempted to clarify this definition. This 
work emphasises that CT is less about the use of technology and computers and more about the 
concepts, practices and processes involved (e.g., Lodi, 2020). In Shute et al.’s (2017) terms, CT is 
“a way of thinking and acting, with or without the assistance of computers” (p.143). 

The consensus of research (e.g., Shute et al., 2017) is that, whilst there are practices in common, CT 
is a distinct and separate discipline to mathematics. However, CT involves practices that are also 
required in mathematics, such as “decomposition, abstraction, algorithm design, debugging, 
iteration, and generalization” (Li et al., 2020, p.156). For the purposes of this paper, we will draw 
on Perez’s (2018) summary of the literature on CT practices and dispositions as outlined in Table 1.  

Table 1: Perez’s (2018) categorization of CT practices and dispositions adapted (see Figure 2, p.428) 

Computational Thinking Practices 

Problem Solving Abstraction & Generalisation 

Assessing and pursuing different approaches and 
solutions to a problem 

Collecting, organizing, manipulating, and representing 
data 

Generalizing and transferring problem-solving 
processes to other situations 

Abstracting the essential elements of a situation or task 

Using incremental and iterative approached, 
decomposing tasks into smaller pieces 

Thinking in levels andunderstanding relationships within 
a system 

Reusing, remixing, and innovating Choosing effective tools and models for working with 
data 

Efficient and effective combinations of resources, 
testing and debugging 

Developing algorithms and automations 

Formulating problems so that they can be analyzed 
using programs and other tools 

Designing and using computational models and 
simulations 

Computational Thinking Dispositions 

 Confidence in dealing with complexity 
 Persistence in working with difficult problems 
 Tolerance for ambiguity 
 The ability to deal with open-ended problems 
 The ability to communicate and work with others to achieve a common goal or solution 

Teachers’ Computational Thinking 
Some research has examined the teaching of CT both in general (see Grover & Pea’s, 2013, review) 
and specifically in mathematics and other STEM subjects (see, e.g., Lee et al., 2020). A particularly 
fruitful avenue of research has investigated the use of Scratch programming in mathematics (e.g., 
Sung et al., 2018) with some potentially promising results (e.g., Boylan et al., 2018). However, the 
efficacy of such pedagogic initiatives is dependent on mathematics teachers’ knowledge, beliefs and 
attitudes about CT. Some small-scale research has begun to examine the issues and challenges in 
this area. Sands et al.’s (2018) survey of 74 US teachers’ views of CT suggests that one challenge 
may be teachers’ limited understanding of CT. For example, they found that most respondents 
viewed CT as synonymous with doing mathematics and using computer or technology. Angeli and 
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Jaipal-Jamani (2018) examined the effects of an intervention on 21 preservice science teachers’ CT 
in a small-scale study. They found that the use of scaffolded programmed scripts resulted in 
increased CT skills amongst the preservice teachers. However, they found that these increased skills 
were limited to lower levels of CT and, hence, their study highlights the difficulty of developing 
higher order CT skills such as generalisation and abstraction. Israel and Lash (2020) carried out a 
study in one US elementary school examining the integration of CT into mathematics teaching, 
mostly using the Scratch environment with some lessons using Code.org materials. They found that, 
despite a very strong commitment from the school and its teachers to CT and integrating CT and 
mathematics, relatively few of the lessons showed evidence of an integrated approach to teaching 
CT and mathematics. Chevalier et al.’s (2020) study suggests ways in which these challenges can 
be addressed. They found out that it is important “not only having a good understanding of CT (e.g., 
not focusing exclusively on acquiring programming skills), but also thinking and planning carefully 
in developing and implementing educational activities to develop students’ CT” (as cited in Li et 
al., 2020, p.154). 

Teacher Education and MTEs’ Computational Thinking 
As Lee et al. (2020) observe, teacher education and professional development are critical to the 
development of effective CT teaching (Weintrop et al., 2016). Yet, we are unaware of any research 
examining MTEs’ knowledge, beliefs and attitudes about CT. To help us reflect on MTEs’ CT 
practices, we decided to have initial discussions with MTE, who have extensive expertise in teacher 
education and research in the use of digital technologies for mathematical teaching and learning. 
Such MTEs’ beliefs can support our investigation on what CT is, what CT practices are, what the 
relationship between CT and mathematical thinking is, how CT practices can be promoted among 
mathematics teachers, why CT practices are useful (or not) and what they offer to mathematics 
education. 

The Exploratory Study 
Our aim was to answer the following Research Questions: What are MTEs’ CT practices? What are 
their views on mathematics teachers’ CT processes and the link between mathematical thinking and 
CT? In order to gain insights to these questions, we carried out an exploratory study and 
interviewed three MTEs with expertise in digital technologies and mathematics. In this paper, due 
to constraints of space, we present vignettes of only 2 of those MTEs, whom we will refer to as 
Carole and Naomi. Both Carole and Naomi have school teaching experience, but also lengthy 
experience as MTEs (Carole over 10 years and Naomi over 7 years). They both have a doctorate in 
mathematics education and their research interests lie in the use of digital technologies for 
mathematics teaching and learning, but also in mathematics teacher knowledge. 

The interviews consisted of 2 parts. In the 1st part, the interviewees had to solve a task, using the 
Think-Aloud protocol (Güss, 2018). We asked interviewees to reflect on (a) the programming 
aspects, (b) mathematical definitions, (c) the structure of the mathematical and the tool’s language, 
and (d) the algorithms. Given that CT is a relatively new area of interest, we wanted a task that 
would enable the interviewees to articulate various aspects of CT practices. Hence, we chose a task 
that they were familiar with and involved a digital tool of their choice. This has an advantage of 
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generating a range of ideas in a relatively short space of time, but has some limitations in terms of 
comparing the MTEs’ beliefs. In the 2nd part, we asked them for their own definition of CT and 
how this relates to the definition by Cuny, Snyder & Wing (2010), which was mentioned earlier and 
states that CT is “the thought processes involved in formulating problems and their solutions so that 
the solutions are represented in a form that can be effectively carried out by an information-
processing agent”. Then, we asked them to reflect upon their own approach to solving their task in 
relation to the CT practices as presented by Perez (2018) in Table 1, identifying which CT practices 
they used. We asked them to (a) Reflect on mathematics teachers’ CT: You have used this task with 
teachers, what aspects would you highlight to teachers in terms of what is different to pen-and-
paper mathematics? How would you design a task to make teachers aware of key elements and 
features relevant to CT?; (b) Reflect on CT and mathematical thinking, knowledge, teaching, 
learning, pedagogy. How is CT linked to mathematics?  What pedagogical strategies regarding 
CT would you use with teachers? 

Carole’s Vignette 
A mathematical task 

We asked Carole to tackle the ‘Rich Aunt’ task, a problem that she has used frequently in teacher 
education at M-level. In this problem, students are asked to decide between one of three gift 
schemes:  

a) £100 now, £90 next year, £80 the year after, and so on; 
b) £10 now, £20 next year, £30 the year after, and so on; 
c) £1 now, £2 next year, £4 the year after that, and so on. 

To solve the task, Carole used Excel to create a table using a formula and dragging across cells to 
create a table and a graph comparing the annual value of each scheme. Carole uses this task to 
enable teachers to “experience the power of Excel”, because, without Excel, it would be more 
“time-consuming”. However, one doesn’t always need to think mathematically: “That's the problem 
with excel you are not even aware that you actually typed in a formula. … Which is slightly 
different to having an awareness of a formula behind it, the mathematical formula behind that.” 

Carole’s definition of Computational Thinking 

Initially, Carole conceived of CT as synonymous with computer programming such as Scratch and 
Logo and didn’t consider the Rich Aunt task involved CT, saying that she had engaged Excel as a 
tool using “a simple formula to generate numbers by copying and dragging cells” rather than 
“thinking the problem through” as would be required for programming. When presented with the 
list of CT Practices [Table 1], she identified several practices that she had used in the task: pursuing 
different approaches, using incremental and iterative approaches, innovating, debugging, 
formulating problems for analysis using tools, organising and representing data and using 
computational models. She did not consider that she had used algorithms or automation, despite her 
use of formulae in Excel. She defined CT as “adapting your mathematical thinking to the tool at 
hand which has got computational power … you think of the mathematics first and then how do I 
go about using this tool …. You almost have a plan of how you’re going to investigate the maths 
problem and really the tool is just a tool that helps you execute that plan.” 
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Carole said that largely CT is part of mathematics, although she felt that algorithms and automation 
are “not necessarily” to be part of mathematics. She considered CT to be more about working with 
what is already known in contrast to mathematics which enables one to work with the “unknown”. 

Naomi’s Vignette 
A mathematical task 

We asked Naomi to tackle the task presented in Figure 1 further below, which she has given to 
mathematics teachers for research purposes. In this task, teachers were asked to explore the 3 
diagrams presented in GeoGebra and discuss how to use them when teaching one of the Circle 
Theorems (“the angle at the centre of the circle is twice the angle at the circumference”) to a 
mathematics class. When discussing this task, Naomi commented on the teachers’ keenness to 
avoid exploring complex diagrams, demonstrating lack of confidence in dealing with complexity. 
Naomi reflected upon the value of looking at a simpler case to support mathematical thinking and 
work towards proving a conjecture. Choosing such a special case to make a conjecture simpler to 
think about, could be considered as decomposing the given task into smaller pieces, which is a CT 
practice as presented in Table 1. Naomi also reflected upon the importance of task design 
considering the constraints of the tool in use. GeoGebra may have been chosen due to its 
dynamicity and the benefit of exploring many different cases, but Naomi argued that you may find 
some level of dynamicity when using pen and paper. In fact there is some rigidity and inflexibility 
in GeoGebra as it follows certain mathematical rules, referring to rounding errors as well as the fact 
that the theorem ‘broke’ for certain extreme cases. She referred to a tension between Geogebra as a 
mathematical tool and a tool for mathematics pedagogy and suggested that this tension may prompt 
productive mathematical thinking.  

Naomi’s definition of Computational Thinking 

Naomi defined CT as “not just about programming, it is about a wider understanding of using 
computers, but even more broader than that digital technology to solve problems […] kind of using 
the software tools for an investigative process” to solve a mathematical problem in our case. She 
later on added that CT is “part of problem-solving or in other words, it’s about incorporating 
another tool into your problem-solving kit”. After being presented with the definition as shared in 
the literature, Naomi reflected: “You need to appreciate that you put things in order… so that could 
be perhaps tending to be an algorithmic process (putting things in order) so that GeoGebra then 
becomes a useful tool, as you construct things”. It is also worth mentioning Naomi’s view on what 
the “information processing agent” is and that it might be restrictive. This phrase may seem to 
imply the use of a digital tool, but Naomi offered her own personal definition mentioning any tool 
that can support the problem-solving processes. “That decision making about what's the right tool to 
use […] is that fuzzy boundary of computational thinking [and] other kind[s] of tool-based 
thinking”. 

When presented with the list of CT Practices [Table 1], Naomi identified several practices that she 
had used in the task: efficient and effective combinations of resources, testing and debugging, 
formulating problems so that they can be analyzed using programs and other tools, abstracting the 
essential elements of a situation of task, thinking in levels and understanding relationships within a 
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system, choosing effective tools and models for working with data. Naomi considered some of the 
practices to be poorly defined. For example, she argued that “thinking in levels and understanding 
relationships within a system” is difficult to interpret as she is not sure what is meant by “levels”, 
although she speculated that it might be related to “different levels of abstraction”. She commented 
that “Reusing, remixing and innovating” didn’t make sense to her. She argued that “testing and 
debugging” should have a more prominent role in CT. To justify this, she gave as an example the 
GeoGebra diagram and when teachers dragged the points to explore the diagram, ‘testing’ special 
cases, such as 360 degrees or 0 degrees, and addressing the pedagogical challenges created by 
rounding errors in GeoGebra.  

 

Figure 1: The GeoGebra task Naomi used for research purposes and discussed during her interview 

Conclusion 
Our study indicated that both Carole and Naomi were skilled in CT and mathematics to solve and 
discuss a familiar task. Unlike the teachers in Sands et al.’s (2018) neither viewed CT as 
synonymous with doing mathematics nor simply using digital tools to do mathematics, although 
both appeared to view CT as closely tied to computers and other digital tools. Nevertheless, their 
understandings and beliefs about CT were somewhat different. Naomi considered CT to be distinct 
from mathematics and involving an understanding of how to use digital tools to investigate 
problems in mathematics and beyond. As such her beliefs were broadly in accordance with the 
consensus of the academic literature, albeit she appeared to believe CT to be closely related to 
digital tools. In contrast, Carol appeared to view CT largely as part of mathematics and synonymous 
with programming. Indeed, she did not consider that using a spreadsheet such as Excel involved any 
CT. We note here that Carol’s views may have been influenced by the particular task she discussed 
in that the automation and iteration involved very well-understood mathematics: addition, 
subtraction and multiplication. Despite Perez’s (2018) claim that the practices identified in his 
review represent a concensus in mathematics education, the two MTEs found some of the practices 
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identified to be unclear and poorly defined. This is despite both MTEs being highly skilled in the 
use of digital technologies in mathematics. Whilst Naomi appeared to believe that constructing 
algorithms provided a focus for thinking mathematically, Carole appeared to believe that using 
algorithms meant that mathematical thinking was no longer necessary. This highlights a tension 
between a common purpose in mathematics education of using digital tools to outsource some of 
the mundane and well-understood mathematical work, whereas in CT, it is crucial to consider, 
construct and adapt some of the less mundane mathematical processes such as analysing, 
generalising and abstracting (Pérez, 2018). Crucially, in CT, such processes are designed to be 
carried out by the information processing agent, which may be, but is not necessarily, a digital tool. 

Our study suggests that MTEs would benefit from opportunities to explicitly engage with the nature 
of CT and its relationship to mathematics and to the application (and non-application) of 
technology. In doing so, a critical research task is to articulate the nature of Computational 
Thinking Pedagogical Content Knowledge (CTPCK) as a new term and its relationship to existing 
work, such as PCK in mathematics and the TPACK (Technological Pedagogical Content 
Knowledge, Koehler et al., 2013), which we hope to discuss in our future papers. Our future work 
entails the investigation of mathematics teacher educators’ perspectives on what CT is and assess 
their CT skills, which elements in particular mathematics teachers possess and which ones they 
should acquire to enrich their mathematics teaching practice.  

References 
Angeli, C., & Jaipal-Jamani, K. (2018). Preparing Pre-service Teachers to Promote Computational 
Thinking in School Classrooms. In M. S. Khine’s (Ed.) Computational Thinking in the STEM 
disciplines, (pp.127-150). Springer International. 

Bocconi, S., Chioccariello, A., & Earp, J. (2018). The Nordic approach to introducing 
Computational Thinking and programming in compulsory education. Report prepared for the 
Nordic@BETT2018 Steering Group: Nordic@BETT2018 Steering Group. 

Boylan, M., Demack, S., Wolstenholme, C., Reidy, J., & Reany-Wood. (2018). ScrtachMaths: 
Evaluation report and executive summary. London: Education Endowment Foundation. 

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development 
of computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational 
Research Association. Retrieved from http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf   

Chevalier, M., Giang, C., Piatti, & Mondada, F. (2020). Fostering computational thinking through 
educational robotics: a model for creative computational problem solving. International Journal of 
STEM Education, 7:39, https://doi.org/10.1186/s40594-020-00238-z  

Cuny, J., Snyder, L., & Wing, J.M. (2010). Demystifying Computational Thinking for Non-
Computer Scientists (work in progress). Retrieved from https://www.cs.cmu.edu/link/research-
notebook-computational-thinking-what-and-why [last accessed 06 September 2021] 

Grover, S., & Pea, R. (2013). Computational thinking in K-12: a review of the state of the field. 
Educational Researcher, 42(1), 38–43.  

Proceedings of CERME12 1938



 

 

Güss, C. D. (2018). What is going through your mind? Thinking Aloud as a method in cross-
cultural psychology. Frontiers in Psychology, 9:1292. https://doi.org/10.3389/fpsyg.2018.01292 

Israel, M., & Lash, T. (2020). From classroom lessons to exploratory learning progressions: 
mathematics + computational thinking. Interactive Learning Environments, 28:3, 362-382. 
https://doi.org/10.1080/10494820.2019.1674879  

Koehler, M. J., Mishra, P., & Cain, W. (2013). What is Technological Pedagogical Content 
Knowledge (TPACK)? Journal of Education, 193(3), 13-19. 
https://doi.org/10.1177/002205741319300303 

 Lee, I., Grover, S., Martin, F., Pillai, S., Malyn-Smith, S., (2020). Computational Thinking from a 
Disciplinary Perspective: Integrating Computational Thinking in K-12 Science, Technology, 
Engineering, and Mathematics Education. Journal of Science Education and Technology, 29,1–8. 
https://doi.org/10.1007/s10956-019-09803-w   

Li, Y., Schoenfeld, A., H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, 
R. A. (2020). On Computational Thinking and STEM Education. Journal for STEM Education 
Research, 3, 147–166. https://doi.org/10.1007/s41979-020-00044-w   

Lodi, M. (2020). Informatical Thinking. Olympiads in Informatics, 2020, Vol. 14, 113–132 © 2020 
IOI, Vilnius University. https://doi.org/10.15388/ioi.2020.09. Retrieved from 
https://ioinformatics.org/files/volume14.pdf  

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc.  

Pérez, A. (2018). A framework for Computational Thinking Dispositions in Mathematics 
Education. Journal for Research in Mathematics Education, 49(4), 424-461. 

Royal Society. (2018). The integration of data science in the primary and secondary curriculum. 
London: Royal Society. 

Sands, P., Yadav, A., & Good, J. (2018). Computational Thinking in K-12: In-service Teacher 
Perceptions of Computational Thinking. In M. S. Khine’s (Ed.) Computational Thinking in the 
STEM disciplines, (pp.151-164). Springer International. 

Shute, V., Chen Sun, & Asbell-Clarke, J. (2017). Demystifying computational thinking. 
Educational Research Review, 22, 142-158. https://doi.org/10.1016/J.EDUREV.2017.09.003 

Sung, W., Ahn, J., & Black, J. B. (2017). Introducing Computational Thinking to Young Learners: 
Practicing Computational Perspectives Through Embodiment in Mathematics Education. Tech 
Know Learn, 22:443–463. https://doi.org/10.1007/s10758-017-9328-x  

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). 
Defining computational thinking for mathematics and science classrooms. Journal of Science 
Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5 

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. 

Proceedings of CERME12 1939



 

 

Wing, J. M. (2010). Research notebook: Computational thinking – What and why. The Link 
Magazine, 20–23. Retrieved from https://www.cs.cmu.edu/link/research-notebook-computational-
thinking-what-and-why  

Proceedings of CERME12 1940



 

 

Algorithmics in Arithmetic: Revealing algorithmic activities in a 
first-year arithmetic course for preservice teachers 
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The science of algorithms, that is, the design of algorithms and the analysis of their correctness, 
complexity or efficiency, is at the intersection of mathematics and computer science, as outlined in 
the scope and focus of the new thematic working group 11 of CERME12. However, one might 
question whether algorithmics is indeed a relevant topic for mathematics education. This paper 
investigates whether algorithmic activities are included in a first-year mathematics course for 
preservice elementary school teachers. Indeed, for 25 of 26 lectures in the course algorithmic 
activities could be identified. 

Keywords: Arithmetic, preservice teacher education, elementary school mathematics, mathematics 
education. 

Introduction 
The new founded TWG11 that meets for the first time at CERME12 is focused on algorithmics, 
which is, according to the description of the TWG, the science of the design and analysis of 
algorithms. In this article, I try to give reasons for including such a group for a conference on 
mathematics education, by identifying algorithmic activities (to be defined later) in a lecture that is 
clearly addressing the needs of prospective elementary school mathematics teachers.  

Before we can describe algorithmic activities, we have to explain what we mean by algorithm. In 
mathematics education, some prominent algorithms usually serve as defining examples, like the long 
division. More generally, according to Cormen (2009) 1 , “an algorithm is any well-defined 
computational procedure that takes some value, or set of values, as input and produces some value, or 
set of values, as output. An algorithm is thus a sequence of computational steps that transform the 
input into the output” (emphasis as in the original text). Of course, the output is not just any output, 
but should be the answer to the problem that is encoded by the input. Thus, the long division 
algorithm is an algorithm that receives a dividend and a divisor as input, and gives the quotient and 
remainder as output. An algorithm that produces the correct answer to any feasible input is called 
correct and is said to solve the corresponding computational problem (Cormen, 2009). 

An algorithm needs to be created or designed by someone in order to be used. It has to be formulated 
or specified precisely in some language, for example in a natural language like English, in (pseudo 
code) as a description in or almost in a programming language, or in hardware that represents the 
algorithm (Cormen, 2009). If there is such a specification, it can be used to carry out the algorithm 
either manually or by a machine (usually a computer). 
                                                 
1 While there is a vast amount of literature on algorithms in theoretical computer science, I refrain from citing all possible 
sources. For further sources that support the general statements on algorithms, please use the overview in the notes for 
Chapter 1 of Cormen (2009). 
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There might be several algorithms that solve the same computational problem. This calls for 
comparing algorithms for the same problem with respect to their efficiency in terms of time (number 
of computational steps needed to solve a problem) or space (usually the amount of memory needed to 
store intermediate results), or both. Here, it is important that these measures are dependent on the 
input, and some algorithms might be better in certain instances than others, even if they solve the 
same problem.  

Other measures that might be surprising at first are elegance or simplicity. The latter can be defined 
by the number of different computational steps (or elementary operations) used by an algorithm, for 
example. Elegance is not as easy to define in general, as it is often the case for solutions to problems 
in mathematics that are called “elegant”. In Aigner & Ziegler (2010) this is discussed briefly for 
proofs of theorems that are worthy to be included in “The Book, in which God maintains the perfect 
proofs for mathematical theorems,” – and they just refuse to define or characterize what constitutes 
such a proof. At the same time, they claim for many of the proofs given, that they are “elegant”, again 
without a proper definition of elegant. For this paper, we can follow their lead and just conclude that 
it is possible to compare algorithms with respect to various measures. 

In theoretical computer science there is much more work about algorithms that we cannot cover in 
this paper, but still we were able to identify several algorithmic activities in the last paragraphs: 

- Design of algorithms: Creating an algorithm applicable to a class of problems 
- Specification of algorithms: Describing the algorithm in a (formal) language  
- Carrying out algorithms: Following the specification of an algorithm step by step 
- Proving the correctness of algorithms: Finding arguments why the algorithm indeed solves 

the class of problems, either formally or pre-formal 
- Comparing algorithms with respect to time (number of steps while carrying out), space 

(memory needed for bookkeeping during execution), elegance, or simplicity 

In mathematics education, algorithms are often associated with mindlessly carrying out algorithms. 
Not only it is possible to carry out algorithms consciously, but this constitutes only a fraction of the 
possible algorithmic activities. For example, Krauthausen (1993) claims that it is a worthwhile 
activity to compare different approaches to written algorithms for multiplication, and Lisarelli et al. 
(2021) describe how 6th graders compare division algorithms.  

There definitely is a common ground for algorithmics both in mathematics and computer science. In 
Knuth (1985) it is discussed to what extend mathematical thinking and algorithmic thinking coincide, 
without a final conclusion, but highlighting several occurrences of algorithmic thinking in a sample 
of mathematics books. Knuth chose nine math books and analyzed the content on page 100 of each 
book, which is a very intriguing methodological approach. 

In our research we want to find out, which algorithmic activities are relevant to mathematics 
education. As a first approach to this question, we analyze a lecture that is part of the study program 
for prospective elementary school teachers. So, to refine the research question, we ask: Which 
algorithmic activities can be identified in a first-year arithmetic course for prospective primary 
school teachers at a German university? 
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Context 
The lecture that will be analyzed is part of the B.Ed. study program “Grundschulpädagogik” 
(elementary school pedagogy) at the University of Potsdam, Germany and has been created by the 
author and a colleague in 2010 at the University of Education Karlsruhe, Germany. It was held every 
year by author since then, and has been adapted to various settings in elementary teacher study 
programs at Karlsruhe (2010-2011), Potsdam (2014-2021) and the University of Halle-Wittenberg 
(2012-2013). The number of students in the course varied between 100 and more than 200, and it was 
always compulsory for the students. In Halle-Wittenberg, also prospective secondary school teachers 
were attending the lecture, and in Potsdam students of inclusive education both for elementary and 
secondary school have to attend the lecture. Starting 2021, the lecture has been made available as an 
Open Educational Resource (OER)2. 

The universities in Halle-Wittenberg and Potsdam are the only universities involved in elementary 
teacher education in their respective states, so all elementary school teachers in the states 
Sachsen-Anhalt (Halle-Wittenberg) and later Brandenburg (Potsdam) who studied mathematics 
during these years should have been affected by the algorithmic activities contained in the course. 

The course curriculum matches the regulations of the module in the accredited study programs. For 
accreditation of the programs it is necessary that they cover the topics and competences as given by 
the Standing Conference of the Ministers of Education and Cultural Affairs 
(Kultusministerkonferenz, 2019), which are based on the more detailed information of the German 
mathematical societies (DMV et al., 2008). While we only consider a single course as opposed to 
surveying all arithmetic courses in Germany, we still have reason to believe that the results are in line 
with other courses at other German universities, as the course adheres to the national standards, has 
been created by two lecturers with different biographies, was used in at least three universities and 
has been based on existing literature. 

The course itself has been designed without an explicit focus on algorithmics. As such, it stands for a 
generic first-year mathematics course in teacher education, or any other elementary mathematics 
course in mathematics teacher education. Our goal is to identify algorithmic activities in existing 
courses, and not to design a course that includes algorithmic activities, thus proving the fact that 
algorithmic activities are relevant in mathematics teacher education. 

Data and Methodology 
The data used for the study are the lecture slides that are provided as PDF files as accompanying 
material (1156 pages). For further details, also the original Keynote presentation (1446 slides) in the 
version of the academic year 2020/21 was available. Due to the Corona pandemic, the complete 
course has been recorded in short video clips of about 5-15 minutes that could be used 
asynchronously by the students. The complete video material (13+13 lectures for winter and summer 
semester, altogether 213 video clips with a total playing time of 28 hours, 19 minutes and 10 seconds, 

                                                 
2 Currently available at https://openup.uni-potsdam.de/course/view.php?id=65 through a guest login. A full version of the 
course in German will be published later.  
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was available for in-depth analysis in cases where the presentation slides did not show the activities in 
detail. 

As a second data source, the accompanying exercises and the interactive materials used in 
demonstrations and for self-explorations by the students is available. However, this study focuses on 
the content that was presented through the video lectures. 

The material was reviewed by the author and each part of the lecture was classified depending on 
whether any algorithmic activity as described above could be identified. As our research question is 
not of quantitative nature, we refrained from asking a second person to code the data. Also, we are 
aware of the limitation that the author of the course and this paper is the same person. 

The data was coded on a per-slide basis, using the slides and videos for clarification in some cases. 
For each video it was noted whether algorithmic activities could be identified on the slides. If so, they 
were categorized in the categories Design (D), Formulation (F), Carrying out (CAR), Correctness 
proof (COR), and Comparison or Analysis (COM). Both the activity and the page number in the PDF 
slides were noted. The involved algorithms were recorded as well, and in some cases additional 
remarks. After coding, the data was aggregated for each episode in both series. 

Results 
The number of clips that contained algorithmic activities is shown in the table below, together with a 
short description of the algorithm involved in these activities. 

Table 1. Algorithmic Activities identified in the lecture on arithmetic (S=Series, E=Episode) 

 

S E German title of episode Algorithms used D F CAR COR COM 

1 1 Mengen Set Product  2  1  

1 2 Aussagen Boolean operations / variables / loops 3 3 3 2 2 

1 3 Beweisbedürfnisse und 
Beweistechniken 

Find number not divisible 2 1 1 1  

1 4 Was machen wir gleich? Change of representation / 
Completing a relation to an 

equivalence relation 

  2   

1 5 Everybody needs somebody to love - 
Abbildungen und Zahlen 

Functions in General 1     

1 6 Zählen von Kardinalzahlen mit 
Ordinalzahlen 

Counting and Peano 2 2 3 2 2 

1 7 Vollständige Induktion Induction / Zone theorem 1  1 2 1 

1 8 Rechnen - Addition und Subtraktion Addition by counting 2 3 1 2 1 

1 9 Rechnen - Multiplikation und 
Division 

Multiplication as repeated addition / 
division in various ways 

4 4 2 4 2 

1 10 GZSZ: Große Zahlen, Schöne Zahlen Repeated bundling, base change 2 4 3 2 1 

1 11 Rechnen in Stellenwertsystemen I: 
Addition und Subtraktion 

Base change 1 4 4 2 2 
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S E German title of episode Algorithms used D F CAR COR COM 

1 12 Mach mal Schräggitter & Wir bauen 
uns einen Computer 

Written multiplication / hardware 
addition 

4 4 3 2 3 

1 13 Division in Stellenwertsystemen Long division 3 3 5 2 3 

2 1 Die ganzen Zahlen  Multiplication of whole numbers 
(sign rules) 

   1  

2 2 Teilbarkeit, Teilen und Reste Divisibility rules 3 6 2 4 4 

2 3 Der Hauptsatz der Arithmetik Euclidean algorithm etc. 4 3 3 4 2 

2 4 Der Chinesische Restsatz Chinese remainder theorem 3 2 1 4 1 

2 5 Von  nach  Solving linear equations 1 1  1 1 

2 6 Wie viele Rationale Zahlen gibt es? Counting fractions 1 1 1   

2 7 Bruchrechnung in der Schule – 
Bruchzahlen 

–      

2 8 Bruchrechnung in der Schule – 
Addition und Subtraktion 

Addition 1 1 1  1 

2 9 Bruchrechnung in der Schule – 
Multiplikation und Division & 

Dezimalzahlen 

Division of fractions 1 1  1  

2 10    – Eine Reise durch die 
Klasse 3-6 in Japan 

Multiplication algorithm 1 1  1  

2 11 Alles wird eins – Arithmetische und 
Geometrische Folgen 

Representation of fractions 1 2 3 3 1 

2 12 Reelle Zahlen Approximation using Heron and 
nested intervals 

2 4 2 3 2 

2 13  gebe mir ein  Algorithmic view on coordinates  1   1 

  TOTAL  43 53 41 44 30 

The data shows, that indeed all but one lecture feature algorithmic activities. In S2E7 fractions and 
their representation in school are introduced and discussed. In that lecture, no operations with 
fractions are used, so it is difficult to describe an algorithm that is based on several steps using 
operations. 

Most algorithms are designed prior to their formulation. Instead of coming out of the blue (or the 
textbook), algorithms are depicted as something that is created by someone. We see that it is hardly 
the case that algorithms are just used without a proper introduction, that is, a focus on their design. 
Also, most algorithms are discussed for their correctness, at least in part.  

The comparison and analysis of algorithms is the activity that happens the least. This can be related to 
the fact that in many situations standard algorithms exists.  

In S2E7–S2E10 less algorithmic activities can be seen. These three lectures focus on teaching 
fractions in school, both in Germany and Japan. They rely on typical content found in textbooks, and 
do not introduce new mathematical content, but mostly subject-specific pedagogical content. Still, 
algorithmic activities are highlighted whenever possible. 
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An activity that was found in the additional material is a homework project called “Maths around the 
world”. It takes place between the first and second semester of the lecture, and students are asked to 
find as many as possible interesting ways to do written calculation. Usually, they ask people from 
other generations (their grandparents) or friends from all over the world, or they have a migration 
background themselves and can report about their own experience in school. This activity is focused 
on analyzing and comparing algorithms, and shall compensate for the fact that most of the content in 
the lecture is being presented instead of experiencing it in a constructivist manner. 

Discussion
As can be seen from the results, algorithmic activities are indeed integrated into all lectures but one. 
This gives rise to the question whether S2E7, the lecture on fractions and their models, could be 
enhanced with algorithmic activities, too. One possible activity could be an algorithm that creates 
models from fractions (or vice versa). Further inspection shows that this would be in line with a 
digital activity that is available in the moodle course and has been used to create the lecture slides as 
well. Figure 1 shows a Cinderella (Richter-Gebert & Kortenkamp, 2012) based interactive 
construction that students can use to explore fractions. The construction of such a representation can 
be described through an algorithm, which can be discussed in the lecture.

Figure 1. A dynamic representation of various fraction representations used in S2E7. The yellow fields can be 
changed using the mouse or keyboard and the representations change accordingly.

Although there are lots of algorithmic activities that are already incorporated in the lecture, we ask 
whether it is possible do more comparison and analysis. The comparison of algorithms is a very 
important element of the “Maths around the world” activity, where a lot of different algorithms for 
the same tasks are collected by the students. The question whether all algorithms lead to the same 
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result concerns the correctness, but students identify differences like a faster execution, a better 
understandability, or a more general or more specialized approach. This also leads to the important 
insight that they should appreciate and embrace approaches that their future students in the classroom 
already know from their parents or by their own invention. Another very prominent algorithm 
comparison takes place in S2E12, where square roots of numbers are approximated through Heron’s 
algorithm and a traditional nested intervals approach. Students experience again that both algorithms 
lead to the same result (and thus are equivalent), but Heron’s method finds an approximation with a 
given accuracy much faster. This introduces students to questions about the efficiency of algorithms 
that constitute an important part of computer science and shows that not only the problem itself can 
have a certain complexity, but it also depends on the algorithm that is used to solve it. So, it would be 
great to find more opportunities for comparison. Unfortunately, this introduces another problem, as 
the teacher students would have to learn more algorithms and might complain about additional 
content for their examination.   

Conclusion and Future Work 
All in all, we can state that algorithmic activities are indeed an integral part of the arithmetic course 
we analyzed. While this could have been caused by background of the author of this paper, who also 
created the course, it still shows that algorithmic activities can be included in arithmetic organically.  

The results from this study will be used to redesign the course, again. In particular, the homework 
assignments will be redesigned to include more algorithmic activities that are carried out by the 
students themselves, complementing the algorithmic activities that they experience during the lecture 
or in the video clips. 

As a further step, we will apply the same methodology to other lectures in the B.Ed./M.Ed. program 
in mathematics education, to find out whether the results are specific to arithmetic – due to its 
computational roots – or can be generalized to other parts of mathematics as well. It is worthwhile to 
analyze other courses, in other subject areas like geometry, stochastics or algebra, from other authors 
and to see whether they already contain algorithmic activities, and to see how the inclusion could be 
achieved or strengthened based on the examples found in this course. 
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Children have to be prepared to participate in an increasingly digitalized society and education is 
regarded to be the elementary key for children to participate in digital change. In Germany, the 
Standing Conference of the Ministers of Education and Cultural Affairs (KMK) has launched a 
strategy for education in the digital world. This strategy comprises a framework of competencies to 
be acquired by students during primary and secondary education. One of these competencies relates 
particularly to problem solving by using and/or developing algorithms.  

Due to the traditional role of algorithms in mathematics, mathematics education is one area, besides 
informatics education, where thinking about and the development of algorithms may be promoted. 
Mathematics education research on written algorithms has shown that the written algorithms are on 
the one hand preferred by learners, but on the other hand are mostly carried out without 
understanding (Fischer et al., 2019; Jensen & Gasteiger, 2019). This has generally led to a critical 
consideration of the role of algorithms in primary education (Selter, 2000; Hurst & Huntley, 2018). 

The notion of algorithmic thinking is associated with the two previous mentioned problem contexts: 
It is regarded as “a key element of the new digital literacy”, and “it can contribute to a deeper 
mathematical understanding” (Stephens & Kadjevich, 2019, p. 117). Algorithmic thinking 
comprises cognitive abilities such as decomposition and abstraction and is required whenever an 
algorithm is to be understood, tested, improved or designed (Stephens & Kadjevich, 2019). 

In summary, in the context of algorithms in primary mathematics education three main strands can 
be identified and need to be followed: 

1. Political demands starting from the role of algorithms in society (Use/development of new 
algorithms).  

2. Teaching and learning algorithms with understanding in mathematics education 
3. Algorithmic thinking as a possible link between problem context 1 and 2.  

Research Question 
The question is how these strands can be connected in mathematics education. There is a need for 
learning environments related to the learning of algorithms that contribute to a deeper 
understanding of algorithms and also foster algorithmic thinking. Therefore, our research question 
is, how to design a learning environment for the learning of written algorithms in primary school 
that fosters algorithmic thinking and contributes to students understanding of the algorithms. 
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Theoretical framework 
We present a proposal of a learning environment, as part of a design-research project that connects 
the three strands related to algorithms in elementary school. The main idea of the learning 
environment is that algorithmic thinking is fostered by deriving written subtraction from the 
algorithm of written addition. 

Students learn the difference between “putting together” (addition) and “taking away” (subtraction) 
as inverse operations in first and second grade. While written arithmetic is widely taught through 
demonstration (Jensen & Gasteiger, 2019), our instructional approach is to use the commonalities of 
the written addition and subtraction algorithms. Both algorithms are similar in the way that they 
calculate each place value separately and proceed from the smallest place value to the biggest, i.e. 
from right to left. However, the operation (add/subtract) to be carried out with each place value and 
the carry-over are inverse in addition and subtraction algorithms. Addition carries ten units of a 
place value to the next larger one, while subtraction works the other way around and borrows one 
unit of juxtaposed larger place value and regroups it into ten smaller ones. 

The idea is that students decompose the iterative steps of written addition and invert them 
separately, and thus derive the written subtraction algorithm from written addition. This way, they 
carry out the two main aspects of algorithmic thinking. The students should discover that the steps 
of both algorithms are almost identical and only have to be inverted with regard to the operators 
"add/subtract" and "carry/borrow" (abstraction). 

Consequently, the students use the discovered structure of the algorithm of written addition and 
refine it to written subtraction as step-by-step instructions to solve a subtraction problem with the 
derivative of an already known and formulated algorithm (developing new algorithms). 

In a next step the learning environment will be tested with students who have just learned written 
addition in order to improve it with the goal to foster students’ understanding of written subtraction 
through algorithmic thinking. 
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Mathematics is used to address civic problems, and mathematical skills also are also a basis for a 
critical attitude of responsible citizens. As algorithms are more and more presented as solutions to 
social problems, it is necessary to highlight how mathematics education can contribute to a 
reflected handling as well as an evaluation of the topic. For this purpose, exemplary algorithms 
from civic applications such as proportional representation, fair distribution, and algorithmic 
decision-making systems are the starting point for an analysis. The question is how discussing 
relevant algorithms promotes a deeper mathematical and contextual understanding. Linking both 
enfolds a mathematics-specific empowerment in an issue of general interest. As a conclusion, this 
results in a sketch of what algorithmic literacy could look like as an educational ideal of teaching 
algorithm in mathematics. 

Keywords: Algorithmics, citizenship education, critical literacy, mathematical applications.  

Motivation from the perspective of education theory 
In a digital world where a lot of data emerges algorithms are presented as solutions to social 
problems, e.g. sentences based on algorithms as fair decisions. So, algorithms are too important to 
leave the concept obscure to most citizens who have a right to transparency and a say in the basic 
structures of society. According to Fischer (2012), citizen participation in a dialogue with experts 
requires basic knowledge and reflection skills on the part of lay citizen. How can mathematics 
education contribute to such basic knowledge and reflection skills regarding algorithms in civic 
contexts? 

Considering the mathematical-contextual dichotomy of civic issues, a promotion of mathematical 
enlightenment must analyse both mathematical and contextual characteristics as well as their social 
relevance (Winter 1990). This paper will therefore explore how addressing civic extra-mathematical 
applications can foster a deeper understanding of algorithms and stimulate reflection on their use. 
Mathematics cannot only be used for a description of reality, but also for defining public 
quantifications, e.g. poverty line or tax rate. Since a major aspect of citizen empowerment through 
mathematics involves addressing the “formatting power of mathematics” (Skovsmose 1998, p. 
197), the examples in this paper will focus on a prescriptive, hence non-descriptive, use of 
mathematics and algorithms. In a first step, classical algorithms are examined in their mathematical-
contextual dichotomy regarding algorithmic literacy and citizen empowerment. An outlook will 
suggest why algorithmic decision-making systems pose an even greater societal challenge and raise 
new questions for this perspective. Beyond the reflection on algorithms currently envisaged in the 
context of algorithmics (Lagrange 2019, p. 33), there is a need for a fundamental awareness for the 
relevance of algorithms in everyday life, that is so necessary that “algorithmic literacy” (Oldridge 
2017) refers terminologically to this ideal. 
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Comparing algorithms within mathematics and in applications 
A very accessible definition for an algorithm would be that of a problem-solving tool that given a 
certain input, produces an output using a finite set of successive instructions, but it lacks the 
complex and constructive traits of algorithms (Modeste et al. 2010, pp. 53–54). From an 
educational perspective the broader definition provides important insights, but the specifications 
have enlightening potential, too. The constructedness of algorithms directly leads to the 
responsibilities of their application as part of a socially constructed reality. While intra-
mathematical algorithms, e.g. the Euclidean algorithm as a paradigm, provide purely mathematical 
results (ibid., p. 58), extra-mathematical algorithms are based on a real issue that has been 
mathematised, and their output has a meaning outside of mathematics. An example of experiencing, 
learning, and testing such extra-mathematical algorithms is the fair distribution of an amount less 
than the sum of two individual claims. The Talmud suggests the following algorithm (Young 1994, 
p. 67): Distribute the resource equally until one receives half of one’s claim. Distribute the resource 
to the other one until the missing amount to the full claim equals the correspondent opponent’s 
missing amount. Now continue to distribute the resource equally. The algorithm terminates as soon 
as the resource is spent. If e.g. a resource is worth 300 and Mara is entitled to 300 and Nele to 200, 
we obtain the distribution (200, 100). For comparison, the proportional approach would deliver 
(180, 120). 

Comparing the Euclidean algorithm with the Talmud algorithm reveals an important difference for 
the reflection of algorithms: In the first case, the algorithm is there to extract a well-defined result 
and to do so as elegantly as possible. In the second case, the result is not so clearly defined: What 
does fair mean? In addition, the calculation of the proportionality shows that the extra-mathematical 
meaning of an algorithm’s output cannot only be vague in advance, but also ambiguous as different 
mathematical approaches (the alternative here is just a calculation) produce divergent solutions.  

Proportional representation as a starting point for mathematical investigations 
The importance of a mathematical investigation of different algorithms for a social problem can be 
illustrated by the example of proportional representation. If one allows only integer allocations, 
proportionality is not a solution. Under this constraint, there are several methods to get the output of 
a parliament composition, considering the share of votes as the input (e.g. Balinski & Young 2001). 
Three of them (Hamilton, Jefferson and Webster) are currently used in different German 
parliaments: Why is there no unitary solution and where are mathematical differences? 

In order to distribute  seats, the Hamilton method starts with the rule of three and gives each party 
 the rounded down quota  ( : votes for party , : total votes); if there are still  seats 

that haven’t been distributed yet, each of the  parties with the largest remainder gets one more 
seat. The divisor methods, on the other hand, are based on the following algorithm: Each  is 
divided by the same random starting divisor and the quotient is rounded with a certain rule (the 
Jefferson method rounds down, while the Webster method rounds to the nearest). If the sum of all 
these results is greater/less than , the past step is repeated with a greater/smaller divisor. If the 
sum equals , each party gets the rounded quotient as the number of seats (if M is missed due to 
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the same rounding limit for several parties, the decision between these parties is made, for example, 
by drawing lots). 

 

Figure 1: Visualisation of the algorithms of proportional apportionment 

The obviously significant contextual consequence of a different parliament motivates the 
mathematical comparison of the algorithms. While their outputs can be easily contrasted, it is more 
difficult to compare the procedures of the algorithms. The intercept theorem offers a geometrical, 
dynamical visualisation (Figure 1). The length from  to the point of a party in relation to the 
horizontal leg corresponds to the party’s vote share. Therefore, the length of the vertical leg through 
the point of a party indicates proportional seat share of this party. As there are normally less crosses 
for integer seats under the hypotenuse than seats to be distributed, the algorithm of the Hamilton 
method is consistent with the translation of the hypotenuse. The rotation of the hypothenuse can 
easily be derived from the visualisation as the common principle of the methods of Jefferson and 
Webster. This initiates a discussion on mathematical characteristics of the algorithms as well as 
contextual effects: The divisor methods preserve the original proportions, while in Hamilton 
method the triangle resolves in . What does that mean mathematically? When does a method (not) 
favor larger parties? In which way can such a bias be desirable? 

Since all algorithms try to approximate the mathematical concept of proportionality with integers, a 
comparison with mathematical means like the intercept theorem is possible and accessible. 
Nevertheless, this doesn’t lead to an obvious best solution. It is a human decision which method 
should be prescribed in the electoral law. The importance lies in the fact that the methods can lead 
to slightly different results, which can even be decisive for the government in the case of narrow 
majorities. The existent pluralism in Germany document that the political choice between the 
methods is not so unequivocal as well. The fact that there are also other possible calculations of the 
divisor methods, each of which leads in each case to the same result, is not to be deepened here, 
even if it does enable a discussion on the result equivalence of algorithms. 

Difficulty of the distinction and transparency: algorithms for fair distribution 
With recourse to the distribution of a scarce resource, there is another algorithm with a variant of 
the „first come, first serve“-principle: Firstly one calculates all permutations of the different claims. 
For every permutation the resource is allocated along the order, until it is spent. The actual 
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allocation is the arithmetic mean of all these allocations: If a resource is worth 300 and Mara is 
entitled to 300 and Nele to 200, we obtain the distribution (300, 0) if Mara is first; otherwise, it is 
(100, 200). The solution  

Table 1: Talmud (Shapley) solution to the claims of three wives (Young 1994, pp. 71–72) 

    

    

 50     (  75     (  75     (  

 50 100 150 

of this so-called Shapley value would be equivalent to the Talmud algorithm. Applying both 
algorithms to other examples with two claims leads to the correct hypothesis that this algorithm 
coincides with the Shapley solution for two claimants (Young 1994, pp. 67–70). However, the 
Talmud presents a second example of a fair distribution, but this time with three claims and varying 
resource values (Tab. 1). Obviously, this distribution doesn’t follow the proportional logic (

), nor is the Shapley algorithm behind it ( ). The algorithm behind this centuries old 
Talmudic allocation rule has only been discovered in 1985 (Young 1994, p. 72). Its implementation 
for two claims has been described above, although there is a simpler and older solution in this 
special case, that doesn’t work for more than two claims. The long time of not knowing the 
algorithm exemplifies how difficult and lengthy it can be to reconstruct an unknown algorithm, 
even if the known input and output are rather accessible. At the same time, it becomes obvious how 
dissatisfying it is to obtain only the result without insight into the process or even an explanation. 

Further conclusions can be drawn: Firstly, for certain inputs it is not possible to differentiate 
between some algorithms (Shapley vs. Talmud algorithm for two claims), so the constraints for this 
limited result equivalence should not be neglected. Secondly, even for a supposedly simple 
distribution there is no single solution, and one must choose between the alternatives. As there is no 
algorithm for objective fairness, the extra- and intra-mathematical reasons for a particular algorithm 
and against the other are significant. All ends up to the idea that both the mathematical and 
contextual aspects of socially relevant algorithms should be potentially transparent for interested 
citizens. But we have seen a degradation of transparency so far. In the case of proportional 
representation, the idea of propor-tionality determines the various algorithms and can easily be 
communicated. However, fairness has not such a clear mathematical landmark. Thus, the results 
appear even more subjective and debatable. Algorithms are used to create a fair process, in the 
sense that there are no arbitrary changing rules. The results are legitimated only by the incorruptible 
algorithm. But the choice of an algorithm itself is subjective and ambiguous. This contradicts the 
view that algorithms are neutral, which is ultimately a deduction from the myths about mathematics 
(Hersh 1991). For the aim of a critical citizenship, the daily experience of being confronted with 
established algorithms and its results can be facilitating by exemplarily implementing algorithms in 
a concrete context. An online game about fake news has shown that simulating the producer’s 
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perspective promotes awareness for a further reflected consum-mation of fake news (Roozenbeek & 
van der Linden 2019). In analogy, students should formulate and compare different algorithms to 
solve social issues. In this way, they become sensitised for the important mathematical and 
contextual aspects in the face of existing or newly deployed algorithms. Until now, algorithms have 
been a tool that helped humans respond to civic problems. As seen above, the use of algorithms 
does not automatically lead to one suitable solution though. To find appropriate solutions to a 
problem, one must consider the mathematical properties and contextual consequences of the 
algorithm. Therefore, this aspect of algorithmic literacy refers to ‘literacy through mathematics’ 
since mathematics helps to understand the algorithm. Moreover, citizens should critically reflect the 
use of algorithms in the world and their stance on the issue. This requires ‘literacy towards 
mathematics’. A simple example would be that if two friends must share a scarce resource, they can 
dismiss all algorithmic approaches and decide to not use algorithms or even mathematics to solve 
their problem. A more elaborate position would comprise the awareness, that the use of an 
algorithm doesn’t form itself an indisputable legitimacy and that certainty in computation is not 
equivalent with unambiguity in an extra-mathematical context. 

Automated decisions through algorithms: playful insights 
It is precisely because of their constructive character and the clear step-by-step instructions that 
algorithms are potentially transparent and assessable. The use of artificial intelligence and 
algorithmic decision-making systems (ADMS) changes this. Nowadays, ADMS take over the 
decision and share only the final results without disclosing the finding process. Examples are 
decisions from banks, insurances, employers as well as from the justice system; common hope is to 
improve the fairness of the respective processes (MacCarthy 2019). These non-transparent 
techniques can no longer be completely retraced, but in a democracy a majority should be able to 
control and accept at least their fundamental principles. It includes the critical evaluation of cultural 
practices involving algorithms in ADMS. The didactic problem is that there can be no 
enlightenment if nothing can be made transparent. One approach is to analyze the functionality in 
easy, transparent examples and then to reflect further on the consequences if not all processes were 
longer traceable. One good teaching unit to do so is the Good-Monkey-Bad-Monkey-Game under 
creative common license (Lindner & Seegerer n.d., pp. 4–7). The basis is a data set of images of 
monkeys with different characteristics (smiling, eye shape etc.) and the information whether this 
monkey bites or not (for examples of such images see Figure 2).  

By means of a training set, students must construct a decision tree as an algorithm to determine 
whether a monkey bites. The algorithmic decision trees are then checked on a test set. Even for the 
simplest version of the game, more than one decision tree is a fitting solution. Therefore, students 
are confronted with the ambiguity of a possible algorithm. In the extended version of the game, it is 
more difficult, first, to find a splitting for the training set, that, second, fits in the test set. In 
addition, there is one monkey in the test set that doesn’t fit because of different, so far unknown 
properties. This undecidable case shows the limitations of this method, especially concerning the 
quality of the training and test set, from which reality may still differ. Instead of deterministic 
predictions as “every non-smiling monkey with x-shaped eyes always bites”, such decision trees 
rather result in good probabilities. Figure 2 shows a constructed variation where x-shaped eyes still 
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implicate biting, but there is only a stochastic correlation between smiling and biting (original data 
in the last column of Figure 2). A non-smiling monkey without x-shaped eyes bites with a 
probability of : should it be 
 

 

Figure 2: Decision tree for a non-deterministic variant of the monkey-game  

isolated or incarcerated? Mathematically, the mistake is smaller, if such an animal is treated as a 
biting one. Socially, one can argue that punishing an innocent monkey is faultier than sparing the 
troubled one. If one omits the distinction of the eyes in this decision, a non-smiling monkey bites 
with a probability of . The probability of punishing an innocent has decreased, although we have 
less information and fewer steps in the algorithms to the detriment of more biting monkeys that 
could be spared. Generally, less information or fewer steps go hand in hand with a greater 
uncertainty, but less work could justify a greater deviation regarding the cost-benefit calculation. 
E.g., not distinguishing the eyes of smiling monkeys leads to a  chance of non-biting instead of a 
deterministic statement: Is this good enough in the related context? However, the characteristic of 
the x-shaped eyes is more compelling than smiling. If a monkey has x-shaped eyes, it is without any 
further distinction and without doubt clear that it bites. Hence, a decision tree starting with the x-
shaped eyes would need less steps than Figure 2. The efficacy of an algorithm could be theoretically 
verified – in practice, the permutation possibilities grow fast with additional information –, but how 
can an algorithm take the other arguments into account? 

Via such decision trees students deal with the construction and validation aspect of algorithms. By 
thinking in terms of case distinctions and conditional probabilities, they experience how a computer 
generates decisions themselves. While the algorithms so far have been independent from the 
context (e.g. the parliament size doesn’t change the principle of the algorithms), the decision tree 
relies on the data of the context. In a second zoo with other monkeys the decision tree could be 
totally different. This raises the question of how objective and unambiguous such algorithms are for 
automated decision-making. With reference to statistical literacy, the critical evaluation can be 
extended to the origin of data (Gal 2002, p. 11): Were the monkeys with the x-shaped eyes hungry 
or have they been mistreated because of existing prejudices? The algorithm can’t be neutral if the 
reference data is biased. This may not seem so central to the example of the biting monkeys, but 
what if job applications are pre-sorted using ADMS or recidivism is predicted for criminals? 
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Algorithmic literacy: towards a reflection of algorithms and ADMS  
Algorithms and ADMS are used to solve real civic problems. This can be a starting point for a 
detailed mathematical analysis. It becomes clear that algorithms are neither unambiguous nor 
objective, e.g., a proportional representation by different algorithms can lead to different 
compositions of the parlia- 

Table 2: Categorisation for a critical evaluation of socially relevant algorithms 

 instruction independent from context 

+ – 

 

 

well-defined output 

+ Euclidean algorithm Good-Monkey-Bad-Monkey 

 Algorithms for  

 proportional representation  

 

– 

Algorithms for 
fair distributions 

unknown- 

unknown 

ment. Mathematical explorations (such as geometric representations) can help to answer the 
question of whether two algorithms produce the same output and how they differ. The extra-
mathematical interpretation draws students' attention to the existence of such a pluralism. 

Following Jablonka’s (2017, p. 44) categories of explicitness for the relation between mathematics 
and the context as well as for the intra-mathematical model, we would like to classify the discussed 
examples in terms to the explicitness of selected aspects of algorithms. The vertical axis is used to 
categorise the relationship between mathematics and context: while the greatest common divisor is 
explicitly defined as a mathematical output, ‘fairness’ of a distribution is a fuzzy concept. This 
category is a continuum rather than a dichotomy, since proportionality is well-defined within 
mathematics, but its application to seat distributions with integer seats is ambiguous. For the 
monkey game, ‘well-defined’ means whether the monkey bites (or with what probability), the 
consequences of how to deal with the monkey are yet not so clear. The second axis makes a 
difference whether an instruction is independent of the context: the Euclidean algorithm works the 
same for every two natural numbers. Decision trees, as in the monkey game, are based on data; with 
new information about other monkeys, the rule for decision making will change. The societal 
challenge is the fourth category of the “unknown-unknown” (ibid.). Indeed, there are more 
dimensions to what is unknown. Furthermore, one can differentiate whether humans don’t see the 
algorithm behind a decision or are not able to understand it. Maybe an understanding of some 
ADMS and its application is even not possible in a semantic way. To raise awareness for the 
inaccessible unknown-unknown, the only possibility is to discuss the other categories and to 
imagine losing their defining feature.  

Teaching algorithms must thematize the consequences of implementations in social contexts. Zweig 
et al. (2018) propose general competencies for such a necessary algorithmic literacy. Respective 
mathematic-specific competencies with a citizen empowering potential are concretised, analogously 
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to statistical literacy, in “worry questions” (Gal 2002, p. 17), e.g.: (1) What is the specific output 
and purpose of the algorithm and who has developed it? (2) Where did the data come from and 
what happens if the input changes? (3) How is the result derived? What is the underlying 
mathematical model of the algorithm? Are there alternative or equivalent models? (4) What is 
known and what is not? Is this adequate? In the sense of the mathematical-contextual dichotomy, 
mathematics education can contribute to an algorithmic literacy by focusing on the intra- and extra-
mathematical characteristics of algorithms in civic contexts and on the interdependence between 
mathematics and the context. 
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In this paper, we consider the construct of algorithmic thinking in mathematics education. We are 
convinced that algorithmic thinking is an invaluable way of thinking for students to develop, and so 
we are motivated to promote theoretical discussions in the field about the nature and utility of 
algorithmic thinking. We present three examples of algorithmic thinking – a mathematical example, 
an example from a mathematician interview, and an example from an undergraduate student 
interview. We then briefly review some relevant literature related to algorithmic thinking, and we 
conclude with some avenues for future research. Our goal is to further conversations about and 
refinements of characterizations of this important topic.  

Keywords: Algorithmic thinking, Computing, Mathematicians, Undergraduate students.  

Introduction and Motivation. 
The phrase “algorithmic thinking” (AT) has appeared intermittently in mathematics education 
literature for the past several decades (e.g., Abramovich, 2015; Knuth, 1985; Schwank, 1993; 
Stephens, 2018), and it seems to be gaining a resurgence of interest with corresponding attention in 
computation and computational thinking in mathematics settings. In this article, we explore the 
construct of algorithmic thinking in mathematics education research. We are motivated by 
observations from our research with students and mathematicians, as well as in our own 
mathematical experiences. We have noticed a certain kind of algorithmic approach to problems, 
particularly within computational, machine-based settings, which reflect the presence of algorithmic 
thinking. These approaches, and the reasoning that underlies them, seem to be useful and valuable, 
and thus they represent a phenomenon that we want to better understand. In addition, we are 
motivated by the increasing presence of the term AT in mathematics and CS education literature, 
and we want to facilitate consistency and coherence for how it might be used in mathematics 
education.  

We have two goals in this paper. First, we aim to exemplify AT within computational settings. We 
provide examples of such approaches in three ways: in mathematical examples, in interview data 
with mathematicians, and in data with undergraduate students. These examples allow us to illustrate 
what we mean by algorithmic approaches, hopefully facilitating better communication and 
discussion about the construct of AT. Second, given the existence of such algorithmic approaches 
and their reflection of AT, we briefly situate these ideas within math education literature and 
suggest ways to explore AT in future work. Ultimately, we aim to establish a shared understanding 
of algorithmic thinking, which could contribute to broader interests within the mathematics 
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education community about the nature of thinking and problem solving in an increasingly 
computational world. 

Broadly, an algorithm can be characterized as a set of steps to accomplish a given task. This broad 
definition allows for the term algorithm to include non-mathematical tasks like making a cup of 
coffee, as well as encompassing processes like the bisection method presented below. Rasmussen, 
Zandieh, King, and Teppo (2005) offered a definition of “algorithm” that serves as a useful starting 
point and highlights one way to characterize a distinction between an algorithm and a procedure in 
mathematics. Rasmussen et al. noted, “we use the term ‘procedure’ to indicate steps used to solve a 
particular task, and the term ‘algorithm’ as a reference for a generalized procedure that is effective 
across a wide range of tasks” (2005, p. 63). Implicit in this characterization is that there is often an 
underlying, generalizable approach of way of thinking on which an algorithm is based. Gravemeijer 
and van Galen (2003) made an analogy between mathematical algorithms and facts, using the 
example of the formula for area of a triangle (p. 115). To know a formula such as A = ½ b h implies 
that one can apply that formula to calculate area across a range of examples. This is consistent with 
the notion of a generalized procedure, and this is the general perspective of algorithms that we take 
in our work. Further, we acknowledge that any process could technically be considered algorithmic 
if it involves steps of any kind, but we are interested in approaches that foreground the development 
of an algorithm as opposed to only the performance or implementation of algorithms. 

The phenomenon that we discuss in this paper is the ability to develop, explain, and iterate the steps 
of an algorithm in a mathematical context. Our examples highlight algorithmic approaches within a 
computational setting because such a setting tends to foreground the value of such approaches. 

Examples of Algorithmic Approaches. 
We offer examples of algebraic approaches in three contexts: a mathematical example, an example 
from an interview with a mathematician, and an example from an interview with an undergraduate 
student. In each of these cases we explain what makes the approach algorithmic, and we also 
discuss potential affordances of such an approach. Our aim is to demonstrate what we mean by 
algorithmic approaches, and also to make the case that such approaches arise in a variety of settings 
and situations.  

An algorithmic approach in a mathematical example – the bisection method.  

We begin with a mathematical example. We focus on an example of solving equations, which is a 
classical and central topic in mathematics. The standard approach to solving f(x) = 0 is to apply a 
sequence of algebraic operations to both sides of the equation, with the ultimate goal of isolating  
on one side. This works well for certain classes of equations like polynomials of degree at most four 
and some equations involving trigonometric, exponential, and logarithmic functions. In more 
general situations it is usually not possible to find an explicit formula for the solution. However, the 
Intermediate Value Theorem tells us that a solution does exist even in very general situations: “Let f 
be a continuous function defined on the real interval [a,b]. If f(a) and f(b) have opposite signs, then f 
must have a zero at some real number c in (a,b).”  
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The Intermediate Value Theorem says nothing about where in  the zero is, but it can help us to 
develop a strategy for computing approximations to the zero. Perhaps the most obvious approach is 
systematic guessing, and the simplest guess is the midpoint m = (a + b)/2. If we compute f(m) and 
determine its sign, we see that we can limit our attention to a smaller interval [a1, b1]: 

1. If f(m) = 0, we have stumbled upon the zero c and there is nothing more to do so we set [a1, 
b1] = [m, m]. 

2. If f(m)  0, then f has opposite signs at the two ends of either the subinterval [a, m] or the 
other subinterval [m, b]. In the former case we set [a1, b1] = [a, m], in the latter case we set 
[a1, b1] = [m, b]. 

This process can be repeated with the new interval [a1, b1], and we then obtain a new interval [a2, 
b2]. If we repeat again and again we obtain a sequence of ever smaller intervals [a3, b3], … , [an, 
bn], … . We note that c is located inside each of the subintervals, but the length of the intervals is 
halved each time. We can then conclude that if we stop this process after n steps, we know that the 
current midpoint satisfies |c – mn| (b – a)/2n. This is a very different approach toward solving an 
equation than balancing the two sides of the equals sign. Rather, this approach, which is known as 
the bisection method, is inherently algorithmic, and the big idea is that by iterating steps in this 
process, we can ensure that we can find as close an approximation to the actual zero as we would 
like. In fact, this idea can be adapted into a proof of the Intermediate Value Theorem. In addition, 
this idea can be made more specific in the form of pseudocode that describes the steps more 
precisely, as in Figure 1. 

 

Figure 1: Pseudocode for an algorithm that represents the bisection method 

This algorithm may be converted into code in a suitable language, and we then have our own 
substitute for the “solve-button” on advanced calculators. This algorithmic approach to solving 
equations naturally raises some questions, such as Is this a valid way to solve an equation? What is 
gained by converting the algorithm into code and running the resulting program on examples? 
What do students gain from understanding such an approach to solving equations? We would 
consider the approach of iteratively finding the zeros of the function via the bisection method as we 
described it as inherently algorithmic because it involves first designing and then implementing an 
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iterative series of steps, which could generalize regardless of the function. The iterative, algorithmic 
process is foregrounded in this approach.  

An algorithmic approach from a mathematician interview – summing primes.  

As another example of an algorithmic approach, and the importance and potential usefulness of 
such an approach, we draw on an excerpt from a conversation with a mathematician, pseudonym 
Michael, about the role of algorithms in teaching mathematics at the post-secondary level. The 
excerpt comes from one of a set of interviews we conducted with research mathematicians about 
how they use computation in their work. In the first of these interviews, the interviewer (the first 
author of this paper) noticed the mathematician returning to the importance of algorithms and what 
he called “algorithmic approaches,” so the interviewer asked him to expound on these ideas. 
Michael, a mathematical biologist, began with an example from a mathematics course that he 
regularly taught: 

Michael: It’s been interesting to observe that there are some people who just don’t get how 
to do algorithms…So for instance, a really simple example that I always have at 
least one student ask me in the computational course—I ask them to sum the first 
hundred prime numbers using MatLab, and MatLab has this function called 
Primes. And the way that function works is you put in a number, and it returns all 
the primes less than that number. And I always have students ask me, ‘but I only 
want the first hundred. I don’t know which prime is the hundredth one.’ So, and 
it’s funny because other people just go, obviously, ‘Oh pick a big number and just 
take the first hundred…And so that second one was a series of steps: pick a large 
number, plug it in the function, take the first hundred, and you’re done. The other 
ones are like, I don’t know if they don’t, can’t translate the question into a series 
of steps like that. 

To us, Michael articulated an algorithmic approach that some students were able to leverage. 
Notably, he seemed to be describing a difference between students who do or do not have such an 
approach at hand (or, we would interpret, do or do not think in such a way on such a problem), and 
he was also implying some practical ramifications for not being able to think in such a way. That is, 
without the algorithmic approach he described students get stuck on the problem and do not know 
how to proceed. We consider this a description of an algorithm and not a procedure because it 
suggests an underlying approach that could be generalizable regardless of which prime is being 
considered. Thus, it is important to help students gain access to these approaches and to try to make 
some progress on these ideas. This example sets up a distinction in this professor’s mind that there 
is something akin to thinking algorithmically (or to think in such a way as to leverage that 
approach), there are affordances to such an approach, and not everyone automatically uses that 
approach.  

An algorithmic approach in a student interview – articulating “the way a computer thinks.”  

As a final example, we offer an example from an interview with a pair of undergraduate 
engineering majors who were enrolled in a vector calculus class, Corey and CJ (pseudonyms). 
These data came from a paired teaching experiment that occurred for a total of 12 hours over nine 
60-90-minute sessions, during which the students wrote Python programs to list outcomes and solve 
combinatorial problems. We present an episode from the fifth session, in which the students were 
solving the Marbles problem: Suppose you have six different marbles in a bag. Write out all of the 
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possible ways you could pick two marbles out of the bag, without replacement. They were asked to 
write code that would solve the problem. CJ listed the outcomes by hand as seen in Figure 2.  

 
Figure 2: CJ’s list of outcomes for the Marbles problem 

Confident of their list, the students began to think about how to code the problem. CJ had an insight 
based on the list he had written by hand: “If we’re just trying to list – the second one it looks at has 
to be bigger than that one.” The interviewer asked him to follow up on this. CJ wrote the code in 
Figure 3, which lists pairs from the set of marbles via nested looping, where the conditional 
statement only prints outcomes in which the second term in the pair is bigger than the previous 
term. The total here acts as a counter, which is incremented each time and is printed at the end 
(yielding 15). 

   

Figure 3: CJ and Corey’s code and output for the Marbles problem 

Int. 1: CJ, you observed something in there about the second column. 
CJ: If it just goes through systematically the way a computer thinks, looking at the 

next one and then using it; then our second column always has to be bigger than 
our first column. If j is bigger than i, then it won’t ever print 2 and then 1. […] 
The i not equal to j that just makes it so it can’t be 1, 1; or 2, 2. If j was bigger 
than i, then print it. These are all the orders, it won’t ever do the same 
combination twice because it won’t choose 1 and 2; then 2 and 1.  

Corey: [Corey adds to the code in Figure 3] And j is greater than i. 
Int. 1: Cool. If you do it, can you describe how many you think you’ll get and what you 

think the outcomes will look like? Do you think – ? 
CJ: I think it’ll go through how I did it.  
Corey: I think it’ll go exactly the way he did it. 
Int. 1: Great. What about your program makes you think it’ll run through in that way? 
CJ: Looking at i first, it’s gonna go through everything that could have 1, and 

everything that’s bigger than 1. Then it’s gonna go to the next part; then it’s 
gonna go to 2; then it’s gonna look at everything that’s bigger than two and print 
everything with that. 

CJ reasoned about an algorithmic approach in this problem. This is seen when he discussed going 
systematically “the way a computer thinks,” which suggests and underlying, generalizable approach 
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rather than just one procedure. He was thinking about what algorithmic process the computer might 
adopt to list the outcomes. He connected his listing process to what the computer might do and 
correctly asserted that their code would list the outcomes as he had. We argue that the students 
adopted an algorithmic approach in writing their code, and they thought about what process the 
computer might complete to accomplish a task. In this sense, kind of algorithmic thinking we are 
describing is important students’ engagement with computational practices like programming. In 
addition to helping students think about computational practices like programming, such an 
approach can also useful in highlighting combinatorial ideas. Lockwood & De Chenne (2020) 
explored how students’ reasoning about conditional statements like “if j != i” and “if j > i” 
supported students’ reasoning about permutations and combinations, respectively. Thus, the 
algorithmic thinking used to reason about programming can then also help to enrich students’ 
mathematical understanding as well.  

To summarize this section, we highlighted three instances of algorithmic approaches that emerged 
in our data and our mathematical experiences. These examples are meant to illustrate what we mean 
by algorithmic approaches and also to motivate our focus on better understanding such approaches. 
Each example shares common features – the construction of a systematic, step-by-step process 
which could (though does not have to) be programmed into a machine. We suggest that there is 
some way of thinking that underlies these algorithmic approaches, and this is what we want to try to 
characterize and understand. AT could be the construct that underlies algorithmic approaches, and, 
ultimately, these examples compel us to explore what AT might entail and why it might be 
important. Having exemplified what we mean by an algorithmic approach, we now briefly review 
mathematics education literature for existing characterizations of AT. 

Algorithmic Thinking in Mathematics Education. 
There are some perspectives in math education literature that frame AT as characterizing a way of 
thinking rather than thinking about algorithms themselves. This is in line with the approaches we 
exemplified in this paper. The phrase “algorithmic thinking” appears occasionally in mathematics 
education literature, and the construct is used in a variety of ways. Knuth (1985) proposed a 
distinction between “algorithmic thinking” and “mathematical thinking” as an effort to distinguish 
the thought processes of computer scientists from those of mathematicians. Ultimately, Knuth 
concluded that there is no such singular concept as mathematical thinking, nor is there for 
algorithmic thinking, but rather each is comprised of a set of modes of thought. Many of these 
modes overlap (e.g., formula manipulation, abstract reasoning, information structures) with a few 
exceptions. Notably, “mathematical thinking” includes the infinite while algorithmic thinking does 
not; and algorithmic thinking accounts for problem complexity (i.e., the “cost” of running an 
algorithm), which does not typically surface in mathematics. Knuth’s characterization of 
algorithmic thinking seemed to contribute primarily to highlighting some of the overlap—and some 
of the distinctions—of the disciplines of mathematics and computer science.  

The NCTM handbook reported on differences between algorithmic thinking and recursive thinking. 
Although this is an interesting characterization, we note that their definition is quite broad and 
could apply to almost any process or mathematical situation. They define algorithmic thinking as 
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follows: 
Algorithmic thinking is a method of thinking and guiding thought processes that uses step-by-
step procedures, requires inputs and produces outputs, requires decisions about the quality and 
appropriateness of information coming in and information going out, and monitors the thought 
processes as a means of controlling and directing the thinking process. In essence, algorithmic 
thinking is simultaneously a method of thinking and a means for thinking about one’s thinking. 

Schwank (1993) investigated what she referred to as different mental models that students might 
apply to algorithmic thinking, although she does not define algorithmic thinking in this paper. The 
types of tasks that she used to characterize algorithmic thinking were more aligned with typical 
computer science or computer programming tasks. In this work, the term “algorithmic thinking” 
implicitly referred to the types of thinking necessary to construct algorithms, although Schwank’s 
primary argument was that there are multiple ways of doing so. More recently, Abramovich (2015) 
used the phrase “algorithmic thinking” somewhat analogously to how other researchers have used 
“procedural knowledge” in conversations about the relationship between procedural knowledge and 
conceptual understanding for learning mathematics. Abramovich described how problem posing—
the cyclical act of extending a concrete (often procedural) problem to a more generalized case—
could promote a link between procedural skills and conceptual understanding. There continue to be 
new contributions to the discussion of algorithmic thinking and how it can be integrated 
meaningfully in to the mathematics curriculum (e.g., Stephens, 2018; Stephens & Kadijevich 
(2020)). Stephens (2018) argues for AT as one type of reasoning and suggests that we consider 
ways to leverage powerful developments in programming to improve mathematics education.  
Another line of research emphasizes activities and practices related to the creation of algorithms, 
such as algorithmatizing, which is an approach through which students develop algorithms through 
carefully chosen contextual problems that require students to model a particular situation, reflect on 
their solution procedures, and develop increasingly sophisticated models and procedures that can 
translate to other situations (Gavemeijer & van Galen, 2003, p. 114). The process of learning to use 
and understand algorithms implies their construction—or reinvention—on the part of students, 
rather than the acquisition of algorithms as existing objects. At the post-secondary level, students in 
a differential equations class reinvented Euler’s method for approximating solutions to differential 
equations, following the careful selection of tasks that facilitated the generalization of procedures 
(Rasmussen & King, 2000; Rasmussen et al., 2005). By engaging in algorithmitizing, which 
involves reasoning about and developing algorithms, students must necessarily think critically 
about what is entailed in that algorithm. Thus, algorithmitizing can be thought of as an external 
activity that reflects thinking about an algorithm.  

To summarize, in the mathematics education research literature, the term AT has been used and 
construed in a variety of ways. There are similarities in terms of presenting a general approach 
toward solving problems, but we think there is room to specify a more consistent and coherent 
characterization of AT in math education. (Regrettably, due to space, we do not elaborate AT in the 
computer science education literature, although that is another rich resource and set of 
perspectives).  
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Future Work Toward Characterizing Algorithmic Thinking  

Having exemplified algorithmic approaches that we feel represent AT, and having briefly reviewed 
some relevant literature, we conclude with some ideas for more work that needs to be done to 
explore and elaborate the construct of AT. There is not clear consensus among research 
communities about what AT is or how it should be characterized or defined, and more work should 
be done to study explore what is entailed in AT. Once characterizations of AT are established, 
empirical studies can be designed to explore how students, instructors, and mathematicians engage 
with and employ AT. One potential future area of research is to explore how students interpret, 
evaluate, and/or debug existing algorithms. In addition, we acknowledge that AT should be framed 
within other kinds of thinking – such as computational thinking (Wing, 2006, 2008), mathematical 
thinking, or recursive thinking – and we believe that more work is needed to relate such constructs 
and terms. In this brief paper we do not have space to explore AT’s relationship to those other kinds 
of thinking, but there is potential for rich theoretical investigations. It would also be worthwhile to 
explore the computer science education literature as it relates to AT and to compare and contrast the 
development and use of algorithms in computer science versus mathematics and other fields.  
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Computational thinking is an important 21st century skill. The ability to design own algorithm, i.e. 
algorithmic thinking is its integral part. Graph algorithms seem to be a promising mathematical 
content contributing to development of algorithmic thinking. However, in order to apply the 
corresponding skills to the problem at hand, first a corresponding representations has to be found. 
This step of abstraction is crucial for the application of skills to unknown situations and can be seen 
as a prerequisite for the algorithmic thinking. Solutions of the representation problem of 58 
undergraduate students were analysed. Most students chose the diagram as a representation of the 
situation, only three students used the adjacency matrix and no students chose the incidence matrix 
or adjacency list, the other known representations. This may indicate that more activities are 
needed for enhancing students’ ability to represent the graph, either by matrices or by a diagram. 

Keywords: Algorithmic thinking, computational thinking, abstraction, graphs, graph theory. 

Introduction 
With the continuous digitalization of our daily life the development of corresponding digital 
competencies is crucial for future generations. The importance of “[...] thought processes involved 
in formulating a problem and expressing its solution(s) in such a way that a computer - human or 
machine - can effectively carry out” (Wing, 2017, pp. 8) is more and more recognized. Thus the 
corresponding competencies are increasingly integrated into the current curricula referred under the 
term of Computational Thinking (CT) (Bocconi et al., 2016) including concepts such as logical 
reasoning, abstraction, decomposition, generalisation or algorithmic thinking, understood as “[…] 
the ability to think in terms of sequences and rules as a way of solving problems or understanding 
situations.” (Csizmadia et al., 2015, p. 7).  

The abstraction is the one crucial aspects of the CT describing the process of “… reducing the 
unnecessary detail” of a situation, problem, or artefact (Bocconi et al., 2016, pp. 18). Certain 
proficiency in abstraction is a crucial aspect during the process of problem solving, for mathematics 
as well as for computer science (Ferrari, 2003). Without the ability to simplify a given problem or 
situation in the process of abstraction resulting to a corresponding mathematical or computational 
representation, the remaining problem-solving process is bound to fail, nor can other maybe suitable 
solving strategies or algorithms be applied, as the corresponding requirements cannot be checked. 
This may lead to an unfeasible choice of problem-solving process for the given problem, resulting 
inevitably in an incorrect solution. 

Graph problems offer a good starting point to address and foster abstraction (Milicic et al. 2021) as 
some applications of graph algorithms are easy to be explained and offer the suitable environment 
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for mathematical investigations with low demands on previous knowledge, e.g. constructing 
Eulerian trail (Geschke et al., 2005), minimum spanning tree (Vidermanová & Melušová, 2011) or 
estimating chromatic number of graph (Prayitno et al., 2022). In order to obtain a graph from the 
application or a problem from the real world, firstly the redundant and unnecessary information 
have to be identified and removed. Redundant information are details of the given problem not 
contributing in any way to the problem-solving process and can therefore be omitted. Unnecessary 
information are details not related to the problem which should be solved. Graph problems offer 
therefore many possibilities to address and foster abstraction as the first step and following, 
algorithmic thinking subsequently. Despite existing algorithmic thinking skills, the process of 
abstraction can still be challenging for students (Wetzel et al., 2020), emphasizing the importance of 
addressing especially this aspect of CT in the school environment.  

Like in other fields of mathematics, e.g., arithmetic or algebra, using multiple different 
representations and linking between them can enhance conceptual understanding of given topic 
(Hodnik Čadež, 2018; Griffin, 2004). Moreover, the graph representations have to be handled 
differently while implementing graph algorithms in programming languages and also lead to 
different space complexity of the produced instantiations.  

The earlier findings (e.g. Hazzan & Hadar, 2005) shown that students often overestimate the value 
of diagrammatic representation of graph. This results to decrease of the level of abstraction while 
dealing with graph theory concepts and may cause the difficulties related to the recognition of the 
details of graph algorithms (Dagdilelis & Satratzemi, 1998). However, the recent study of Prayitno 
et al. (2022) reveals that students are able to come up with both, diagrammatic and matrix 
representation of the graph while solving novel problems stemming from graph theory and both 
types of representation can lead to correct solutions of the problem in algorithmic graph theory. 

In this paper we present the initial results of an exploratory study with university students. It was 
conducted in order to identify any possible challenges students face when they are asked to abstract 
a given graph problem and condense the corresponding information in the suitable representation. 
As graphs have different representations, it is not clear which of them is preferred by students. We 
formulated the following three research questions:  

1. To what extent are the undergraduate students able to use abstraction in order to represent 
the relation given by the computer model by the means of graph theory? 

2. What representations do they prefer?  
3. What kinds of mistake can occur there? 

Methodology 
To conduct this research, we analysed the submitted solutions of the 58 undergraduate students. All 
of them were in year 1 of the bachelor study programme Applied informatics and took the paper 
and pencil test focused on algorithmic graph theory as a part of assessment of the course Discrete 
mathematics 2 focused on combinatorics and graph theory. The test itself consisted of 6 problems. 
One of them is analysed in further details in this paper. The written informed consent was requested 
and collected after the students got their whole evaluation and passed/failed the course. The all of 
these 58 students attempted to solve the problem and provided their consent.  
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We expected that the participants are equipped with a decent knowledge of programming and 
therefore possess adequate algorithmic thinking skills, as they have passed the introductory course 
in programming in the previous semester, covering work with variables including arrays, sequences, 
conditionals, loops with numbered (for loops) and conditional repetition (while loops) of 
instructions. The test was administered at the end of the second semester of their study before the 
exam in regular programming course comprising the use of procedures, recursion, dynamic 
variables (FIFO/LIFO structures) and object-oriented programming. The different representations 
of graph, diagrams, incidence matrix, adjacency matrix and adjacency list were integral part of the 
discrete mathematics course.  

The task of finding a graph that represents which area shares an edge with each other in the two 
dimensions is a frequently occurring problem when teaching and learning graph problems. Using 
the means of augmented reality (Buchner, 2018), we extended this problem by another dimension 
by not using planar areas, but some three-dimensional objects, see Figure 1a and 1b as one of the 
three different situations used in the exam. 

We derived this task using the elements from the SOMA cube puzzle (Peter-Orth, 1985). The task 
was formulated as follows: “Represent the adjacency of the all parts of the kit (consisting of the 3 or 
4 cubes) from which the ‘sofa’ is assembled. The tiny gap between the parts is only for better 
clarity.” The students were asked to scan a respective QR code and open a webpage inside a 
browser on their mobile device or with their web camera. No additional hard- or software aids were 
thus necessary in order to solve the task. By pointing the camera at the marker, the object as seen in 
Figure 1a and 1b was visible using Augmented Reality (AR). The students could turn the object 
around on their screen and shrink or enlarge it using common gestures with their fingers on the 
screen1. A solution using a diagram as representation is given in Figure 1c.  

 
(a) (b) (c) 

Figure 1: Two views of the sofa consisting of SOMA cube elements (a and b) 
and diagram of its graph representation (c) 

                                                 
1  See https://colette-project.eu/AR/somas.html for the used AR-marker as well as the presented setting (Soma Sofa 1). 
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Findings  
Out of the 58 solutions submitted by the students, 45, i.e., 77.6 % were correct. Although the 
students were not instructed which representation they should use, only the 3 students used the form 
of adjacency matrix, one of them used the adjacency matrix and the diagram, while other used the 
representation of the graph by a diagram. No students used incidence matrix or adjacency list. This 
may result from the dominant use of the diagram representation of graph during the lectures and 
problem-solving sessions throughout the whole semester.  

Different names of vertices were used among the correct solutions. Only one student labelled the 
vertices as , etc. and on top he provided a table which label means the solid of what colour. 
Some students used the full colour names (Figure 2a), some just the abbreviations (Figure 2b) and 
some also included a list of abbreviations (Figures 2c and 2d). Most solutions have the vertices 
placed in shape of regular heptagon (Figures 2a and 2b), only occasionally the vertices were placed 
in different configurations (Figure 2c). One student also used the colours and drew the bottom and 
side view (Figure 2d) on top of the graph representation.  

  
(a) (c) 

 
 

(b) (d) 

Figure 2: Students’ solutions with different labelling of vertices 

Ružová = pink; modrá = blue; červená = red; indigová = indigo; žltá = yellow; oranžová = orange; slabo-
ružová = light pink; tmavo-modrá = dark blue. BR probably states for bledoružová = light pink and BM for 
bledomodrá = ligh blue. Zospodu = bottom view; zboku = side view. 
 
The majority of incorrect solutions can be considered as flips when one or more edges were 
missing. The solution in Figure 3a is an example of solution where quite a lot of edges were 
missing. Furthermore, the student did not distinguish between the two shades of blue. On the other 
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hand, the solution in Figure 3b represents a solution with excess edges. In addition, the student 
considered the relation of being adjacent as reflexive.  
 

 
(a) 
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(b) 

Figure 3: Examples of incorrect students’ solutions 

On top on typical solutions in Figure 2, there were several solutions demonstrating unique approach 
to the representation. For instance, two students considered the small unit cubes instead of the 
tricubes and tetracubes as vertices (Figure 4). One of them (solution in Figure 4a) further concluded 
that the graph is not connected as he considered the tiny gaps between the parts of the given 
problem as separating. The second unique student’s solution (Figure 4b) is a correct one for this 
choice of representation. The corrections made by student demonstrate that it was quite challenging 
to keep tracking of so many (27) vertices. 

The matrix representation of graph was preferred by only three of 58 participating students, two of 
them were correct. The incorrect representation by adjacency matrix (Figure 3b) was the only case 
when student used two different representations. Even though the diagram fits the matrix, the 
represented graph does not fit the adjacency of part of the SOMA ‘sofa’. 

  
(a) (b) 

Figure 4: Solution of students’ representing the cubes as the vertices 

Discussion 
The rate of correct solutions was much lower than expected in case of the students who passed the 
introductory course of programming and the course focused on the graph theory specifically. The 
observed success-rate was even lower than the success-rate of a similar group of students solving 
modelling problems in algorithmic graph theory (Medová et al., 2019). One of the possible 
explanations vests in that during the course and in ample cases of textbooks the problem situation is 
already given by diagram representation of graph and the abstraction job as such is already done by 
the author of the task (Fojtík, 2021). Also, pre-prepared ‘suitable illustrative graphs … using 
colours’ are often considered an effective mean ‘to emphasize the characteristics of the concepts’ 
(Milková, 2009). However, the informed choice of suitable representation is one of the crucial 
aspects when tackling unstructured open problems (Swan & Burkhardt, 2014) particularly in 
algorithmics, and influenced by the level of abstraction of the solver. Therefore, the process of 
abstraction itself, regardless the type of representation, is essential and crucial for solving problems 
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in the situations requiring to omit the unnecessary and redundant information (Wetzel et al., 2020), 
most frequently in cases of real-life applications. The students should estimate the necessity of the 
information based on the definition of the particular problem.  

Our findings suggest that the students used mostly the diagrammatic representation of graphs. It 
complies with the observation by Hazzan and Hadar (2005) than students tend to over emphasize 
the visual aspect of graph theory. The students may use the diagrammatic representation because 
the problem was not set to any complex problem situation, because, as stated by González et al. 
(2021) even the students with low level of reasoning in graph theory should be aware of limitations 
of the different known representations for different purposes. On the other hand, as we stated in our 
previous work (Milicic et al., 2021) any different representations of graphs can lead to different 
variables for representing the graph in the computer and it may be easier to analyse or use for 
subsequent tasks and solving processes. Adjacency and incidence matrices can directly lead to use 
of arrays and adjacency list is just a small step to the FIFO list. In contrast to diagram, the 
representations of graph by matrix and list permit to get the information about the adjacency of two 
vertices in constant time but the instantiations vary in space complexity. Even though the 
diagrammatic representation cannot be used for computer processing, it seems to be suitable for 
students while learning the principles of algorithms (Melušová & Vidermanová, 2011).  

Conclusions 
The tasks to represent the relations between the parts of geometric shapes are often used in graph 
theory education. The technology of augmented reality enables us to use some three-dimensional 
geometric shapes instead of usual planar problems without any additional hard- or software aids. 
The task to omit the redundant information and come up with an abstract representation caused 
some difficulties even in case of students equipped with their decent programming capability and 
experience. It seems that more attention should be paid to different representations of graph during 
the course, particularly to creating the representation by students instead of pre-prepared graphs.  

However, the extent to which is the level of abstraction connected to the ability to solve (modelling) 
problems in algorithmic graph theory is still to be investigated and estimated.  
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Figure 1: App ‘Rechenketten’
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Introduction
In recent years, the demand for the implementation of computer science (CS) content in German 
primary schools has strongly increased, so that there are several projects investigating its 
implementation. However, since a stand-alone subject CS in German primary schools is not a 
realistic scenario, relevant topics and competences should be integrated into existing school subjects 
(Schmid et al., 2018), e.g. mathematics.

Algorithms, Arithmetic, and Algebra
The connection of algorithmic, arithmetic and algebraic thinking can be realised by primary school 
children through the use of algorithms during programming activities (Agatolio et al., 2018). 
Kilhamn and Bråting (2019) also see an intersection between algebraic and computational thinking. 
However, this should be investigated especially with regard to whether programming activities 
support or limit the development of students’ algebraic thinking. In their paper, they conclude that 
there are programming activities that have an impact on students' algebraic thinking (especially 
with regard to symbolisation). As an interesting open research area they define the question of 
whether structures embedded in algorithms can lead to “the development of algebraic thinking in 
terms of an increased focus on structure and generalization” (Kilhamn & Bråting, 2019, pp. 571–
572).

In my PhD project I will examine intersections 
between primary CS and mathematics education
with the focus on how the structures of an 
algorithm can influence generalisation in
understanding an arithmetic topic. Therefore, a 
learning environment including an app (see Figure 
1) with additional supportive tasks is developed. 
With this, primary school students can use and 
study the similarities of arithmetic and algorithmic 
structures with the goal to come to algebraic 
generalisations.

Research Question
The learning environment and the research study are structured by the following research question: 
To what extent can (1) understanding and analysing, (2) modifying, and (3) developing an 
algorithm help to obtain algebraic discoveries in terms of generalised arithmetic structures?
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Design of the Learning Environment  
To explore and generalise arithmetic structures as a transition to algebraic thinking (e.g. Kaput, 
2008), students use the arithmetic task format “Rechenketten” (arithmetic Chain, see Figure 1) to 
explore several arithmetic structures such as the property of commutativity, the distributivity or 
multiplication as repeated addition. The app is developed with the intention that these structures can 
be seen simultaneously in the arithmetic and algorithmic representation1 so that a linking of 
representations is possible. 

Therefore, three corresponding tasks are structured along the three aspects (1)–(3) of the research 
question: Task series 1 aims at understanding and analysing similarities and differences between the 
representations (1). Task series 2 aims at modifying e.g. inappropriate representations (2). Task 
series 3 encourages the development of algorithms as solutions to problem-containing arithmetic 
tasks (3).  

Design of the Research study 
In the sense of developmental research (Prediger & Link, 2012), a learning environment for the use 
of the app is to be (further) developed. In order to investigate learners’ cognitive processes in terms 
of our research question, fourth graders will be interviewed after having used the app. The 
interviews will be videographed, transcribed and analysed using qualitative methods such as 
Grounded Theory. 

For this purpose, a piloting of the app and the tasks was carried out in the autumn 2021. The 
insights gained from this will flow into further development so that the first design experiments can 
be carried out in spring 2022. These will then be evaluated to provide new insights for theory and 
practice.   
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Introduction 
(Re)appearance of algorithmics and programming in school curricula of many countries has 
impulsed research addressing the development of pupils algorithmic thinking. In existing literature, 
including the one that relates to mathematical education, this concept is usually studied through the 
lens of programming (Hickmott et al., 2018; Bråting, & Kilhamn, 2020). To date, there has been 
limited empirical research about the conditions and constraints for the emergence of algorithmic 
thinking in a non-programming context. In this paper, we take a step toward addressing this need 
for research by studying algorithmic thinking via analysis of pupils’ algorithmic activity in 
problem-solving context without use of computers. More precisely, we are interested in the pupils’ 
activity related to the conception and implementation of an algorithm in order to solve a problem as 
well as reflecting on solutions through the analysis and proof of the algorithm. As a definition of an 
algorithm, we use the following one: 

Algorithm – a problem-solving procedure that in a finite number of constructive, non-
ambiguous, effective and organized steps produces the answer to the given problem for all 
instances of this problem. (Modeste, 2012, p. 25).  

This paper reports on research work in progress that has several goals. The first one is to design a 
set of tasks and the associated sequence of lessons aimed at the emergence of pupils’ algorithmic 
activity. The second one is to examine whether the design is effective. In particular, to check 
whether and to what extent it favorize the construction, analysis and proof of the algorithms by 
pupils. The third one is to contribute to the development of a theory that would help to explain the 
mechanisms that emerged during the scenario implementation. 

Theoretical framework 
This study is a design-based research (Barab, & Squire, 2004) based on the hypothesis that 
unplugged problem-solving (i.e., problem-solving without using a computer (Bell et al., 2009)) 
constitutes a favorable context for the emergence of pupils’ algorithmic thinking.  

The task design draws upon principles from the Theory of Didactical Situations (TDS) (Brousseau, 
1997). More specifically, the tasks were designed as a-didactical situations, where the pupils’ 
interactions with the organized milieu are supposed to lead to the construction of the algorithms that 
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are the optimal solution of the given problem. This implies that pupils’ “basic knowledge” should 
be sufficient to start the work. The milieu must provide pupils with feedbacks to their trials in such 
a way that they can tell without teacher interferences whether they succeeded or failed. Pupils in a 
situation should be able to experience the limitations of their strategies developed at the earlier 
stages of problem-solving and make them evolve towards the algorithms that constitute a solution 
for the given problem.        

In our choice of mathematical problem for task design, we based ourselves on the notion of 
fundamental problem for algorithm (FPA) proposed in (Modeste, 2012) with reference to the 
concept of fundamental situation from TDS (Brousseau, 1997). FPA could be seen as a problem 
that evokes the concept of algorithm and is adapted for the tasks design aimed at engaging the 
pupils in algorithmic activity. As the criteria of FPA, Modeste (ibid.) proposes the following: it 
should be algorithmically solvable; the notion of algorithm is indispensable for its solving; it evokes 
the problems that handle the algorithm as a tool (aspects of effectiveness and problem) as well as an 
object (aspects of complexity, proof, theoretical models). The key value of FPA is that it could be 
used for design of tasks/didactical situations for a class. These situations should be aligned with the 
criteria of FPA mentioned above. In particular, they should evoke an algorithm not only as a step-
by-step procedure but also as a general problem-solving method that can be applied to all instances 
of the problem as well as to provide a favorable milieu for provoking questions about proof and 
complexity of the algorithm at stake.    

Methodology 
The research we report in this paper concerns the first cycle of the design that included the phases 
of development, a priori analysis, implementation, a posteriori analysis and refinement. The phase 
of development was carried out in parallel with the analysis of the strategies susceptible to appear 
during problem-solving. The experimentation phase used to collect data was followed by the 
analysis of pupils’ strategies that appeared in the class. On the basis of the comparison between 
anticipated strategies with actual ones, we concluded about the potentialities of designed situations 
in promoting algorithmic activity of pupils and whether the task design should be improved.  

In order to identify the mechanisms that emerge during the implementation of the developed 
sequence of lessons, we analyzed pupils’ decisions and actions with material milieu as well as their 
discourses produced at the private and social levels. In particular, we paid special attention to 
explanations and arguments expressed inside a group and during the collective discussion regarding 
the question about the reasons why the strategies work. 

In what follows, we first describe the problem of list sorting that, as we claim, is a fundamental 
problem for algorithm. Then, we present the set of designed situations, explain their link to the 
problem of list sorting as well as the analysis of anticipated solving strategies. We conclude the 
methodology section with a description of the designed sequence of lessons, experimental 
conditions and data collection. In the subsequent section, we present and discuss the results of the 
implementation of the developed lessons sequence in a class. The last section is devoted to 
conclusions and perspectives of the research.  

The problem of list sorting 
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Formulation of the problem. In a model of computation with the only allowed operations of 
comparison and exchange, sort a non-empty list  (of objects comparable two by 
two) according to an order relation .     

We use the term “model of computation” as a set of allowed operations in reference to the 
computation and complexity theory (Bilardi, & Pietracaprina, 2011). The relation of order  in a 
list is a binary relation that permits to compare the lists’ elements between them in a coherent way. 
To sort a non-empty list  according to the relation of order  means to find a 
list  with the elements that are a permutation of the elements of  such as 

. The “operation of comparison” is an operation that permits to 
receive the answer “yes” or “no” to the question “Is , i,j=1…n ?“. The “operation of 
exchange” could be defined by the transposition of the elements  and   

 in the list L that allows to obtain a list where 
. 

The formulated problem responds to all criteria described above. Indeed, it is algorithmically 
solvable and many sort algorithms exist. Problem-solving includes the phases of elaboration and 
validation of an algorithm. The existence of many sort algorithms raises the questions of their 
comparison from the point of view of their complexity and finding the optimal one. This provides a 
possibility to study an algorithm not only as a tool but also as an object. On the basis of the problem 
of list sorting, we designed a set of problem-solving situations that we describe in the following 
section.  

Set of problem-solving situations 

The designed sequence of problem situations includes three games using the playing cards as 
manipulatives. In each game, a pupil has thirteen playing cards of the same suit and a cardboard 
grid with predefined ten places situated in one line. At the beginning of every game a pupil shuffles 
the cards, chooses randomly ten cards (without looking at their values) and puts them up-side down 
on the grid (one card per place). The rules of the games vary from one game to another, but the goal 
is the same, i.e., to sort the cards in ascending order, using only the three allowed operations: “take 
two cards”, “put the two cards in ascending order”, “put the cards on the places”.  

Game 0 (individual). A pupil should sort the cards individually, turning no more than two cards at 
a time and using the three allowed operations. There is no restriction for the number of comparisons 
to make (a pupil can turn the cards two by two as many times as he wants). Once the pupil thinks 
that all cards have been sorted, he can turn them to check this.       
Game 1 (in pairs). For this game, the pupils play in pairs. Only one grid and thirteen cards of the 
same suit are needed. The first pupil (which we call in the following “operator”) shuffles the cards, 
chooses randomly ten cards from thirteen and puts them on the grid without showing their values to 
another pupil. The second pupil (“player”) must sort the cards which values he doesn’t see, giving 
the instructions to the operator that correspond to the three allowed operations. The operator should 
execute the commands precisely and formally (without giving any information to the player). When 
the player thinks that the cards are sorted, he says “stop” and the operator turns the cards. The 
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player wins if all cards are in the right order. The pupils exchange their roles once the player’s 
attempt to sort the cards is finished.  

Game 2 (in small groups). The pupils play in small groups of four persons. At every time there are 
one player and three operators that manipulate the cards on their grids. The rules of the game are the 
same as in the previous game, but, this time, the goal of the player is to sort the cards of all 
operators at the same time giving the instructions composed by the three allowed operations. The 
pupils exchange their roles once the player’s attempt to sort the cards is finished.   

Game 3 (in the whole class). This game follows the same rules as the previous one but this time, 
the goal is to sort the cards of all pupils of the class at the same time using the minimum possible 
comparisons. Each group send a delegate who has only one attempt.  

Being a didactical variable, the number of cards to sort in the games could vary. But it should not be 
too small in order to provide a milieu sufficient to foster the development of sorting algorithms by 
pupils and not equal to the total number of cards (in order to avoid the “trivial” algorithm where one 
can deduce the final position of a card from its value).  

As a possible prolongation of the proposed games, we may consider the problem-solving situations 
where the pupils investigate the possibility to sort more than 10 cards (11, 12, 20, 100 cards) and 
eventually any number of cards. The last refers to the proof of an algorithm (by recurrence, by 
invariant) and offers the possibility to study the complexity of an algorithm as a function of n. The 
notions of complexity in time and space could be also introduced considering the programming 
context. 

Link to the problem of list sorting 

The games 0 to 2 can be seen as the ten elements list sorting problem in the model of computation 
where a number of allowed operations changes from one game to another one. Thus, in game 0, the 
fact that the pupils can see the values of the cards can be considered as the case where the model of 
computation (CM0) contains the operations of comparison, exchange, identification of the index of 
an element with a given value and identification of the value of an element with a given index. In 
game 1, the fact that a player can see if the cards were changed by the operator or not, correspond to 
the model of computation (CM1) with the available operations of comparison, exchange, 
identification of the indexes of elements that have been exchanged and the operation that provide 
the response “yes” or “no” to the question: “Was there an exchange of the cards during the last 
comparison?”. The goal of game 2 to sort the cards of three persons at the same time was retained 
in order to prevent a player to use the information about the cards’ exchanges in order to put him in 
the model of computation (CM2) with only available operations of comparison and exchange that 
corresponds to the list sorting problem formulated in the previous section. 

Expected solving strategies 
The game 0 aims at familiarizing pupils with the manipulatives and the rules of the games. In 
particular, the pupils need to understand the meaning of the three allowed operations and the actions 
that are forbidden (for example, to glide the cards on the grid). It is expected that the pupils will 
memorize the values of the cards and their positions in order to sort them (strategy  in Figure 1). 
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Thus, the strategies that can appear will be rather the instance algorithms (that allow to sort only 
particular cases of the cards placement).  

In game 1, due to the change of rules, the pupils cannot see the values of the cards, but they still can 
observe if there were exchanges or not. The strategy of memorisation of the positions of cards that 
were exchanged is tedious. Therefore, it is expected that the pupils will engage themselves in the 
research of a more economic strategy. Between the possible strategies we can imagine those that 
use the information about the exchange  during the last comparison of two cards and those that 
don’t . In the first category, it is possible to distinguish the family of strategies  that use the 
information about exchanges as a condition for termination and the family  where the 
information about exchanges is used for choosing the next pair of cards to be compared but the 
termination of the strategy is determined by the end of the systematic process of comparisons. For 
example, to the first category belongs the strategy  that compares cards two per two from left to 
right and backwards until there are no more exchanges and where cards pairs are chosen 
randomly until there are no more exchanges. As examples of strategies that belong to the category 

, we can think of  that is based on the idea to create a subset of the cards with installed local 
order (constituted of one card at the beginning) that will extend at each step by insertion of one card 
from the non-sorted part. The insertion is made by comparing a card from the non-sorted part with 
all cards of the sub-set starting from the most right one until a card with which there is no exchange. 
Another example of the strategy of the family  is quick sort .  

 

Figure 1: Evolution of expected pupils’ strategies during problem-solving 

If pupils don’t use the information about the exchange, they are de facto placed in the next problem 
situation (game 2) with CM2. The strategies of the class  in this case could be based, in 
particular, on the idea to bring one card by one on their definitive positions considering the global 
order (as in the selection sort, for example).     
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For pupils who elaborated the strategies of the class  in game 1, game 2 introduces in the milieu 
the question about the worst case of cards placement. Thus, it is expected that certain of these 
strategies will evolve, the others will be abandoned and replaced by strategies of class . For 
example, the strategy  is susceptible to become the cocktail sort algorithm and the strategy  
can be evolved into the insert sort algorithm. The strategy  (that becomes too costly in the 
game 2) will be abandoned as well as quick sort algorithm (which cannot be executed in CM2). 

Game 3 aimed to introduce in the milieu the question about the possibility to use the strategies 
elaborated in game 2 for a bigger number of operators. It was also expected that the challenge to use 
the minimal number of comparisons possible would allow pupils to pass from the simple 
observations that the strategies work to analysing their properties. This may result in an 
optimization of the strategies (which we showed on Figure 1 using superscript “go”) or their 
replacement by more efficient ones from the point of view of the number of comparisons needed to 
solve the problem.  

We hypothesize that the set of developed problem-solving situations could be used at different 
school levels for promoting pupils’ algorithmic activity. In this paper, we are interested in the 
implementation of the lessons sequence at the upper primary school level drawing the following 
research question: “Does and to what extent the tasks design favorize the emergence of algorithmic 
activity of pupils of this level?”  

Lessons sequence and its implementation in the class 

On the basis of the developed set of problem-solving situations, we elaborated the lesson sequence 
in collaboration with a teacher associated with the research. It included three lessons that were 
implemented in the class of 5-th grade (that corresponds to pupils’ age of 10–11 years) in the city 
centre of Lyon, France. In the first lesson of one hour, the pupils played in the games 0 to 2 
according to the rules described above. The developed strategies were formulated only at the private 
level (pupils described them on the paper after game 1 and 2) in order to give enough time for all 
pupils to do their research and to elaborate the strategies without influencing on this process by 
ideas produced by others. The teacher didn’t not intervene in the pupils’ problem-solving.     

At the second lesson of two hours, the teacher introduced a new challenge: to sort the cards of all 
pupils of the class at the same time. The pupils were asked to think in groups about the strategies to 
apply in case of seven cards on a grid and to count the number of the comparisons needed to solve 
the problem. Thus, it suggests that the assignment given in the class differed from the initial 
formulation of game 3 presented above. The attempt of each group to sort the cards of all pupils of 
the class was followed by the general discussion led by the teacher who invited pupils to explain 
why the proposed strategy worked (or why they thought that it would work) and if it could be 
optimized from the point of view of the number of comparisons. The third lesson of two hours was 
devoted to the following analysis of elaborated strategies. In particular, pupils may explore the 
possibility to sort more than 10 cards (11, 12, 50, 100, any number of cards) using the developed 
strategies as well as to discuss the termination of the elaborated algorithms. 

Data collection 
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We collected the videos of three lessons filmed by one camera at the back of the class, videos of 
work of three groups of pupils at each lesson, pupils’ written descriptions of developed strategies. 
All videos were transcribed and analyzed as well as the pupils’ productions.      

Data analysis and findings  
Due to the space restrictions, we report only about a part of the results that concern strategies 
development at first two lessons. The a posteriori analysis of the game 0 and 1 showed the 
consistency with the a priori analysis. In game 1 we noticed the appearance of the strategies of the 
two families  and . The first family was represented, in particular, by the strategies ,  and 

 described above. The family  was represented by a selection sort algorithm developed by 
the pupils who didn’t use the information about the exchange of the cards. Comparing the 
anticipated strategies with those that appeared in the game 2, we point out new elements not 
envisaged in the a priori analysis. This concerns the case of one pupil named Arthur that we present 
in the following.  

In the result of all games, three groups proposed the selection sort algorithm (one group used 42 and 
two groups used 21 comparisons to sort seven cards). In one of these groups, we also noticed the 
appearance of the bubble sort. Moreover, one group proposed the insert sort with 21 comparisons, 
one group stopped their research on the strategy with 43 comparisons and two groups didn’t 
succeed to develop general algorithms.    

Analysis of Arthur’s case of strategy development  

Arthur in the game 1 elaborated the strategy  described above. When the rules of the game 2 
were announced by the teacher, Arthur resisted to abandon the usage of the information about the 
cards’ changes and took the decision to apply simultaneously the strategy switching from one pupil 
to another (which means that every pupil executed the same strategy three times). Thus, Arthur 
generalized the strategy in a trivial way. However, from his actions we can infer that Arthur 
anticipated that implementing the strategy only one time is not sufficient and that execution of 
several times the same strategy will not change the order of already sorted cards.   

The new challenge to sort the cards of all pupils of the class lead Arthur to understanding that his 
strategy would be too costly from the point of view of the number of needed comparisons. He took 
the decision to try to sort the cards of the pupils of his group with closed eyes. Arthur’s tentative to 
come off the information about the cards’ exchanges eventually helped him to generalize his 
strategy in CM2 in a non-trivial way and to obtain the insert sort strategy with 21 comparisons. 

For the teacher’s question if the strategy will work for the whole class, Arthur gave the positive 
answer referring to the experience with three pupils and added the following:  

Arthur:  In my head … it is logical. We make the cards number 4 and 5 … imagine that 
one person doesn’t exchange, there are other people that could exchange … 
because we don’t know what they have … therefore it is necessary to come back 
to the beginning of the grid. Because, if, for example, here [shows the place 
number 4 on the grid] there is an ace … it should be brought back to the 
beginning.    
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In this excerpt, Arthur explains the decisions ta.ken during strategy development. He refers to the 
cards number 4 and 5, but the chosen cards are used only as means to illustrate the “local” worst 
case (when an ace is placed on the right extremity of a subset of cards) identified by the pupil. The 
given example has a general character and used by the pupil to validate the elaborated strategy.  

Conclusions and perspectives  
The a posteriori analysis showed that the designed set of tasks supports to a large extent the 
development of sorting algorithms by pupils of upper primary school level. The identified 
individual cognitive path enriched a priory analysis. The generalisation in the game 2 could be 
made trivially, but the goal to sort the cards using the minimal possible number of comparisons in 
game 3 puts a pupil in a situation where he should search for a more efficient way to generalise the 
developed strategy in CM2. This case also permitted to point out the ways to improve the design for 
the next cycle of the design experiment. For example, the assignment of the game 2 could be 
modified by asking the operators to make manipulations with cards (exchanging or not exchanging) 
under the table or use the method of “closed eyes” for a player used by Arthur.  

Besides, we revealed several mechanisms that emerged during implementation of the lessons 
sequence. The process of strategies development involves conjecturing, taking decisions and 
generalization. Artur’s case showed the capacity of pupils of this level to consider the “local” worst 
case of the cards’ placement that is crucial for evolving  strategies in general sorting algorithms.  

In most cases, the pupils’ experience to sort cards of three operators in game 2 seems to be decisive 
for retaining the strategy as the one that would work for the whole class in game 3. The arguments 
about strategies validity produced by pupils in the private level has mostly a pragmatic character 
and are highly anchored in the actions made during strategies development. More research needs to 
be carried out to identify the favorable conditions for fostering the algorithms validation process. 
Future work is also likely to compare the results obtained from the experimentations at different 
school levels in order to study the impact of “external” conditions (age, pupils’ knowledge 
repertoire, etc.) on the pupils’ algorithmic activity in the developed situations.          
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Introduction – positioning and focus 
In this poster proposal we present an aim to investigate which aspects of computational thinking 
that emerge in teachers’ beliefs on computational thinking in school mathematics. Several 
researchers have commented that there is a lack of empirical research on programming and 
computational thinking in didactic practices (Forsström & Kaufmann, 2018; Grover & Pea, 2013; 
Weintrop et al., 2016). Forsström and Kaufmann call for a discussion regarding the influence of the 
role of the teacher in students’ learning processes in activities such as programming (2018). By 
analyzing reports written by 12 lower-secondary and secondary school teachers from Norway who 
planned, implemented, discussed, and reflected upon a classroom session in mathematics involving 
computational thinking, we want to reveal insight in which aspects of computational thinking that 
are prominent in teachers’ beliefs on computational thinking in school mathematics. This research 
will have a teacher perspective. 

An OECD report links the intention with computational thinking in school mathematics to 
expectations of a more general understanding of the role of technology in society (2019). The 
OECD report also refers to a report on computational thinking that provides a comprehensive 
overview and analysis of recent research findings on computational thinking in compulsory 
education. This report summarizes concepts and skills of computational thinking and presents a 
framework for computational thinking in compulsory education (Bocconi et al., 2016, 2018).  

Results from an analysis in the first author’s master’s thesis show that there is a relationship 
between aspects of computational thinking that emerge in activities, and what three teachers state 
about computational thinking. However, the research in the master’s thesis reveals that there is no 
apparent correspondence between the intention of computational thinking in school mathematics, 
and what emerges through activities in mathematics and in the three teachers’ beliefs of what is 
important in computational thinking in school mathematics. These results indicate that the three 
teachers focused more on skill development than problem solving. Based on this, two new 
dimensions of computational thinking emerge. One dimension emphasizes the development of 
skills, and the other dimension highlights problem solving. These dimensions do not exclude each 
other, but rather show what is emphasized (Rekstad, 2021).  

Methodology 
In order to illuminate which aspects of computational thinking that emerge in teachers' beliefs on 
computational thinking in school mathematics, we have collected data from 12 mathematics 
teachers who are enrolled in a teacher development program. The data consists of reports about 
their developmental work on computational thinking in their own classrooms. The teachers are to 
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plan and implement classroom activities that develop computational thinking, and afterwards place 
the activity in the framework of Bocconi et al. (2016, 2018). 

We plan to apply content analysis where we evaluate and code the teachers’ reports and beliefs. The 
analysis will afterwards be discussed according to the framework of Bocconi et al. (2016, 2018). 
This framework addresses core skills, approaches, and dimensions of computational thinking with 
or without technology, in which computational thinking are used. 

Implications 
We have gathered data, but not yet carried out the analysis. There are two elements that might be 
interesting to see. Firstly, it will be interesting to see which aspects of computational thinking are 
prominent in the teachers’ planned session, reflections, and discussion about their own experiences 
with teaching computational thinking. Secondly, it is interesting to look at whether the activities 
mentioned in the teachers’ reports fulfill the criteria of the problem-solving or skills-development 
dimension of computational thinking. Based on the results from the masters’ thesis, we expect to 
see more of the dimension that emphasizes skills development. 
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The purpose of this paper is to explore pre-service primary teachers’ conceptions of loops for 
drawing squares in their early stages of learning Scratch. Twenty-six pairs of student teachers, all 
with some experience in teaching mathematics at primary school level, explain the advantages and 
disadvantages of using loops in Scratch. Qualitative content analysis of their written explanations 
revealed three categories: (1) the higher efficiency of loops is seen as a clear advantage, (2) their 
narrower range of applicability as a clear disadvantage, and with regard to (3) the cognitive de-
mand of loops, the responses are contradictory. In addition to some misconceptions, we could iden-
tify a key fact that student teachers must know in order to competently handle loops in Scratch, that 
is different outputs may occur from the same instruction if the instruction is inside a loop. 

Keywords: Algorithmic thinking, loops, pre-service teachers, primary mathematics, Scratch. 

Introduction 
In computer science, imperative programming is a programming paradigm that uses sequences of 
instructions to control the flow of a program. The loop construct is a specific instruction type used 
to manage and control flow: it denotes a sequence of instructions—the loop body—that are speci-
fied once but may be carried out several times in succession. The purpose of this study is to find out 
how pre-service primary teachers who are novice programmers think about loops and how they use 
loops for solving a geometrical problem. Although loops are indispensable for algorithms and thus 
essential for algorithmic thinking, empirical research shows that the use of loops is challenging to 
novices. So, how do pre-service primary teachers think about the value of the concept of loops? 

In contrast to the traditional approach of examining the loop programs of novice programmers, we 
examine their responses to a question which asks about the advantages and disadvantages of the 
loop concept in Scratch. For this purpose, our student teachers had first learned how to develop an 
algorithm that draws a square using the programming environment Scratch. We chose this approach 
because our interest is a better understanding of primary teachers’ thinking in loops, with an aim of 
better understanding algorithmic thinking more generally. Second, drawing regular polygons such 
as a square is a common task in primary school textbooks. Third, due to its block-based and visual 
nature, Scratch seems to be appropriate not only for representing algorithms, but also for introduc-
ing primary school children and their teachers to programming. Furthermore, Scratch’s instruction 
“repeat (number)” for count-controlled loops does not require a loop counter variable (which is dif-
ficult to master for novice programmers, see Cetin 2015 or Lagrange 2020). In a self-paced learning 
unit designed for primary teacher training, our student teachers had to solve several geometric prob-
lems and represent their algorithms using flowcharts (on paper) before realizing them using Scratch 
(on the computer). As a result, they should learn some central concepts of algorithmic thinking such 
as thinking in loops. The learning materials contained several tasks, and also metacognitive reflec-
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tion questions on their learning. In the last task of the learning unit, they were asked to set up an 
algorithm to draw an arbitrary regular n-gon (n is to be entered as input). Consequently, to solve 
this general geometrical problem, they had to use loops not with a fixed number of repetitions (e.g. 
4) but with a variable upper loop bound. Since generalization and algebraic thinking is beyond the 
scope of this paper, the corresponding results cannot be investigated and discussed here. 

In this study, we address the following question: What are primary student teachers’ perspectives 
on the advantages and disadvantages of the loop concept, after they have been introduced to it?  

Thinking in loops as a constituent element of algorithmic thinking  
As theoretical computer science shows, a system of data-manipulation rules which follows the im-
perative programming paradigm must offer three constructs so that all theoretically computable 
problems can actually be solved by an algorithm: sequence, repetition (loops), and selection (condi-
tionals) (Böhm-Jacopini-theorem, see Curzon et al. 2019, p. 525). In addition, two types of loops 
are distinguished, count-controlled loops (modeled by “repeat (number)” in Scratch or “for” in oth-
er programming languages) and event-controlled loops (“repeat until (condition)” or “while”). 

Since algorithms are mathematical objects that solve computable problems, algorithmic thinking is 
a specific way of dealing with algorithms, namely the design and analysis of algorithms. To do this 
at a sufficiently explicit level, algorithms must be accessible in a suitable symbolic representation, 
such as in a programming language. For example, as Lagrange points out, if “[...] formal notation 
for algorithms [...] is a vehicle for abstraction rather than for execution on a computer” (2020, 
p. 45), then algorithmic thinking is involved in the development of an algorithm that draws a regu-
lar polygon, but not in its implementation in a programming language. Since loops are a constituent 
element of algorithms, thinking in loops can also be considered as a constituent element of algo-
rithmic thinking. Accordingly, to introduce students to algorithmic thinking, we can familiarize 
them with the loop concept and have them solve tasks such as drawing a regular polygon. In the 
corresponding algorithm, only the simple loop type of count-controlled loops is needed, because the 
number of iterations is already explicitly known at the time of entering the loop. 

As some authors point out, algorithmic thinking is quite important for primary school mathematics 
(e.g. Benton et al. 2018; Gleasman et al. 2020). Therefore, primary teachers should be able to intro-
duce their pupils to early algorithmic thinking by, for example, teaching topics such as multiplica-
tion as repeated addition or place value through programming. At the same time, many studies have 
shown that loops cause various difficulties for novice programmers, and not only when variable is 
involved in iteration or when loops are nested (for loop errors in text-oriented programing lan-
guages see Cetin 2015, for loop misconceptions of school students working with Scratch see Grover 
& Basu 2017, for a systematic overview see Swidan et al. 2018). 

Context and method 
A total of 52 primary student teachers participated in the study, 43 (82.7%) are female and 9 
(17.3%) are male. All participants had some experience in teaching mathematics, but no one had 
prior knowledge of programming or computer science. All of them were enrolled in two primary 
teacher education classes in Switzerland and had chosen mathematics as their individual focus to-

Proceedings of CERME12 1993



 

 

wards the end of their studies. As a part of this program, I have offered a course called “Standard 
Written Algorithms and other Algorithms”. One of its components was a self-paced learning unit 
called “Algorithmic Thinking in Mathematics: Introduction to Scratch” (approx. 6 to 8 lessons). By 
working through a series of activities in which several geometric figures (squares, further specific 
convex and non-convex regular polygons, etc.) had to be constructed using Scratch, the student 
teachers were gradually introduced—by the learning unit material, not by me in person—to differ-
ent representations of algorithms (flowcharts and code) and to the three control concepts of algo-
rithms (sequence, iteration, and selection). Thus, to learn the concept of loops, one of the first activ-
ities was to examine the effects of a piece of code (see Figure 1, left). In the following activity, the 
concept of loops was introduced by a (fictional) pupil who proposed to replace the four sequences 
of repetitive instructions with the (new) loop instruction. The task then asks the student teachers to 
explain the advantages and disadvantages of using loops (see Figure 1, right). This kind of task has 
been shown to be highly effective for learning especially for building comprehension-based, con-
ceptual knowledge, whether used retrospectively or, as in this case, integrated into learning materi-
als (Bisra et al., 2018). Since the the advantages and disadvantages of loops were not discussed in 
class while working on the unit, we can analyze these students’ explanations to get a fuller picture 
of their conceptions of the loop concept than if we were to examine their loop programs for errors. 
 

 

 

 

 

Activity “Introduction to the loop concept”: 

A pupil of your class suggests that instead of using 

the script on the left, use the script above: What ad-

vantages and disadvantages do you see in this so-

called loop? 

Figure 1: An activity to introduce the loop concept 

In order to obtain high quality responses, all 52 participants worked through the activities of the 
learning unit in pairs (Gleasman et al., 2020; Robins et al., 2003). Since they had to write their an-
swers for each activity, the data set consisted of 26 written responses, each listed several advantages 
and disadvantages of loops. In view of the research question, these responses will be analyzed here. 
Since our goal is to generate hypotheses about the algorithmic thinking of primary teachers, we did 
not to compare or weight them in our analysis such as by counting frequencies. Rather, we have 
analyzed the answers according to the qualitative content analysis (Mayring 2015). Three main cat-
egories, efficiency of loops, cognitive demand of using loops and applicability of loops were induc-
tively reconstructed by repeatedly summarizing the answers with descriptive terms. 
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Results 
We present two main findings. First, three main categories of answers emerged when the students 
reflected on the advantages and disadvantages of using loops (see Table 1). While some of the sub-
categories relate to the process of programming, others refer to the final program. Second, a key 
fact was identified that must be known for the successful mastering of loops, as well as two learning 
misconceptions. We will now provide details on each of these findings. 

Table 1: Categories of advantages and disadvantages primary student teachers list when learning loops 

Category 1: Efficiency of loops … 

…  in terms of programming Using loops allows fewer programming actions. As a 
consequence, it requires lower expenditure of time for 
writing a program.  

Seen as advantages 
…  in terms of the program Using loops allows fewer lines of code, and is thus more 

space-saving. As a further consequence, the size of the 
square is controlled via a single instruction. 

Category 2: Cognitive demand of using loops … 

…  in terms of programming The use of loops increases or decreases the cognitive 

demand on the writer of the program. Mostly seen as disad-
vantages, sometimes as 
an advantage … in terms of the program The use of loops increases or decreases the cognitive 

demand on the reader of the program. 

Category 3: Applicability of loops … 

…  to problems to be solved  Not every problem can be solved with the use of loops. Seen as a disadvantage 

Types of characterizations 

There were three main student teachers’ characterizations of the advantages and disadvantages of 
loops: (1) the efficiency of loops, which students related to the process of programming or to the 
final program, (2) the cognitive demand of loops, which students again related to programming or to 
the final program and (3) the applicability of loops, in terms of what kind of problems can be solved 
using loops. For an overview of these main categories with their subcategories, see Table 1. 

Category 1: Efficiency of loops 

All student teachers expressed unanimously that loops bring a gain in efficiency. We can identify 
two subcategories of answers, depending on whether efficiency refers to the programming process 
or to the final programming output.  

Subcategory 1.a) A first sub-group of student teachers’ answers relates efficiency to the act of pro-
gramming, that is, to the process and the effort to move it forward. The student teachers argued that 
using loops results in fewer programming actions (such as “drag the block from the block palette 
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into the code area”) or leads to a lower expenditure of time for writing a program. The following 
two statements illustrate this first sub-category: 

The moves and rotations need to be programmed only once, instead of four times. (P17) 

The loop is a useful tool to speed up the programming of repetitive sequences. (P01) 

A few students mention both effects, that fewer actions and less time are needed thanks to loops: 

One advantage is that it takes much less blocks to program the script. One is thus faster. (P12) 

Subcategory 1.b) Quite differently, some student teachers related efficiency to the final program, 
that is, to the product and its length. They suggested that the use of loops results in fewer lines of 
code. Some answers of this sub-category conclude that the runtime of the program will be shorter: 

The efficiency of the algorithm is increased, since fewer instructions need to be executed, there-
fore the square can be drawn faster. (P20) 

Other student teachers saw that the program therefore requires less space, and sometimes mentioned 
in the same breath that the shorter length also makes the program clearer: 

The proposed loop makes the script more compact. Due to its compactness, it takes up less space 
and is therefore clearer. (P26) 

Unexpectedly, a group of student teachers formulated another advantage resulting from the reduced 
number of instructions, namely that the size of the square can now be manipulated more easily: 

The length of the sides of the square can be modified at a single instruction. (P17) 

With Cetin, this answer might indicate that its authors see loops as a whole, as a new object, and 
thus have reached the level of the “object conception of loops” (2015, 159). This would mean that 
they no longer see the loop as a step-by-step arrangement of four individual sides, but as a single, 
integral object depending on one parameter (the size of the square) only. 

Subcategory 1.c) A third group of answers relate efficiency to the criteria of both sub-categories, 
i.e. to the programming process as well as to the final program. For example: 

The advantage of a loop is that it must be set only once and will still be executed four times. 
Thus one saves time when programming. Since one does not have to enter the instructions sever-
al times, the program is shorter and therefore clearer. (P07) 

Category 2: Cognitive demand of using loops 

As the statement “less space […] therefore clearer” (P26, see above) shows, some students also 
considered the intellectual challenge that the new concept poses to them, or its cognitive demand. 
While most student teacher pairs found an adequate use of loops more demanding than the use of 
sequences of instructions, there are also few who stated that loops place less cognitive demand. 
Again, we can identify two subcategories which refer either to programming or to the program. 

Subcategory 2.a) A first group of answers concerns the process of using loops and the associated 
cognitive demand, which student teachers judge partly as higher, partly as lower. To illustrate, here 
is an answer that explains how loops are a challenge: 
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An additional block [the “repeat ()”-instruction, see Figure 1, C.W.] is introduced, making pro-
gramming more complex. When a mistake happens, it happens everywhere (on all sides of the 
square) and it is more difficult to determine the origin of the mistake. (P18) 

This statement reveals a challenge that one must master in order to competently handle loops: The 
one-to-one relation between output (in the ‘stage’ window) and instruction (in the code area) must 
be broken. This fact applies because while instructions that are not part of a loop body show (at 
most) one effect on the output side, any instruction within a loop can have multiple effects (at most 
as many effects as often the loop is run). Therefore, in the case of an unexpected output, it is not 
straightforward to determine from which instruction(s) of the loop body it originates. 

A rather contrary, but positive view on the cognitive demand is expressed in the following answer: 

Fewer errors can happen because you program fewer instructions. (P03) 

Subcategory 2.b) A second group of student teachers’ statements refers to the final program, as 
they comment on the cognitive demand of reading loops. Again, it was not considered unanimously 
within the data set. A corresponding response is as follows: 

One disadvantage is that with loops it is harder to see what exactly is being repeated. In contrast, 
with the full script you can follow every step. (P02) 

The following response illustrates even better why loops can be demanding: 

It is more difficult to follow the individual operations or steps. You can't see the individual steps 
that make up the square. (P06) 

As already mentioned, one student teacher pair surprisingly found it easier to understand instruc-
tions located in the loop body and gives the following argument as an advantage of loops: 

For schoolchildren: It is more difficult to follow when the various program steps are one after the 
other, instead of within a loop. (P17) 

This is the only response that looked at the cognitive demand of using loops for their future pupils. 

Category 3: Applicability of loops 

In the responses for this category, student teachers looked at the problems that can be solved with 
the use of loops. They expressed that instructions inside a loop do not allow as much modification 
or variation as those outside. In this respect, the use of loops does not allow to solve all possible 
problems. The following response shows this perspective very clearly: 

Not all changes can be made to the shape, for example, you cannot change the thickness of each 
side. The loop repeats the same thing 4 times. This means that it is not possible to change any-
thing in every single repetition that is made. The loop causes that the same instructions are re-
peated, so modifications in between are not possible. (P13) 

Here the instructions of the loop body are considered fixed and cannot be modified. As a result, 
some shapes are judged to be non-drawable (which is sometimes true, but sometimes not): 

A disadvantage of loops is a lower flexibility: if a rectangle or an irregular triangle is to be 
drawn, a loop is of no use. (P21) 
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The following response is somewhat more nuanced, pointing out that an instruction of the loop 
body may well have different consequences, at least to a certain degree (“regular” differences 
would be possible, others not). It focuses not on a mathematical but on a design aspect of the shape: 

The thickness of the sides can be increased or decreased, but this is done regularly. If we want 
the sides to be of different thicknesses, we can’t do this with loops. (P15) 

The following response suggests how this issue could be overcome with the help of variables: 

The sequence in the loop is fixed. In this case the instructions are repeated four times stubbornly 
and cannot be varied so easily. With the help of variables, that would be possible. (P01) 

Unfortunately, this statement is not further elaborated or illustrated it with an example. 

Discussion 
The study is related to the question of what constitutes algorithmic thinking in mathematics and the 
assumption that thinking in loops is a constituent element of algorithmic thinking. It explores learn-
ing to use count-controlled loops in 26 pairs of pre-service primary teachers solving a geometrical 
problem utilizing Scratch. Unlike previous studies (Cetin, 2015; Grover & Basu, 2017; Swidan et 
al., 2018), we are not interested in student teachers’ errors in their loop programs, but rather in how 
they explain the advantages and disadvantages of the loop concept. The reconstructed categories 
relate to efficiency, cognitive demand, and applicability. Although the student teachers involved had 
just been introduced to the loop concept, they recognize its efficiency as a first advantage. Howev-
er, they only refer to surface features (fewer instructions are needed, the program is shorter), which 
is characteristic for novices. Second, as future specialists in teaching and learning, students address 
the cognitive demand of the new concept for solving problems. However, not every student pair 
assesses it the same: While most students found it more difficult of keeping track of the interaction 
of an instruction within the loop and its effect on the output, some find it easier to follow sequences 
of instructions structured by loops. The statements referring to the third category, the applicability 
of loops, mention this aspect only as a disadvantage. At this early point of their learning process, 
students still feel constrained by the construct, again in terms of surface features (design possibili-
ties, possible shapes of the figure). Since loops with variable upper bounds were only brought up at 
the end of the learning materials, it is not surprising that no student took the expert point of view yet 
(only thanks to loops, a geometric problem like drawing arbitrary regular n-gons can be solved). 

The analysis of our data set also provides two misconceptions: The claim that “[…] fewer instruc-
tions need to be executed, therefore the square can be drawn faster” is not correct, since a smaller 
number of instructions does not necessarily lead to a shorter runtime (instructions in the loop body 
can be executed several times). Also the claim “if a rectangle or an irregular triangle is to be drawn, 
a loop is of no use” is a misconception, since iterative elements are also present in polygons such as 
rectangles. In addition, a key fact was identified that students must be aware of: they need to con-
sider that instructions within loops can have not just one but multiple effects on the output, so that 
two different outputs do not necessarily refer to two different statements. In this way, thinking algo-
rithmically would mean not only seeing the advantages and disadvantages of loops that go beyond 
surface features, but also breaking the one-to-one relation between output and instruction. 
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We are aware of the limitations of our study, such as the small number of students involved, the 
type of tasks they had to do, the programming language employed, or the analysis of written re-
sponses without subsequent in-depth interviews. However, under these limited conditions, the study 
provides some qualitative results that complement and extend previous studies (Cetin, 2015; Grover 
& Basu, 2017; Swidan et al., 2018). Since the category system makes preliminary hypotheses, it 
might contribute to developing a theory of learners’ thinking in loops and therefore of their algo-
rithmic thinking. For example, future research could address the following questions: To what ex-
tent would our category system predict the advantages and disadvantages that student teachers of 
higher grade levels would see? Could our category system even serve as an empirically supported 
description of the learning trajectories in learning to use loops to solve a mathematical problem?  
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Algorithmic thinking is an important part of digital literacy, enabling learners to navigate the 
digital world with confidence. As part of a Design Research study with 22 learners in grades 5 and 
6 so far, it was investigated to what extent the children learn to think algorithmically when they 
discover an encryption algorithm without use of a programming language. It was found that some 
learners can intuitively and independently develop certain algorithmic thinking ideas (such as 
sequencing and loops) when writing instructions (=developing an algorithm). Hurdles show up in 
the degree of precision and the degree of generality of the instructions. 

Keywords: Algorithmic thinking, algorithms, encryption, design research. 

 

Introduction  
Digital literacy is important in order to be able to navigate the digital world in a responsible 
manner. Many IT systems in the world around us can only be used in a responsible manner if the 
basic ideas behind them are understood. Wing (2006) coined the term “computational thinking” in 
this context, “that represents a universally applicable attitude and skill set everyone, not just 
computer scientists, would be eager to learn and use” (Wing, 2006, p. 33). Computational thinking 
includes processes such as “solving problems“, “using abstraction and decomposition when 
attacking a large complex task”, or “thinking recursively” (ibid, p. 33). Hence, computational 
thinking is a different skill than programming, as “programming” relates to concepts regarding the 
syntax and semantics of programming languages. As one example, the “CS Unplugged” project 
(Bell, Rosamond, & Casey, 2012) presents several resources developed to promote computational 
thinking without a computer. 

Up to now, there have been very few learning opportunities on this topic for children in Germany, 
as computer science is not a compulsory subject throughout the country or even offered at all (cf. 
Pasternak, Hellmig & Röhner, 2018). This is due, among other things, to the way education is 
promoted. Computer science is often only offered as an elective subject from grade 9 onwards. 
Digital literacy is politically regarded as a task for all subjects, and thus especially for mathematics 
education. Therefore, it is also due to the general conditions that, due to the general educational 
aspects, algorithmic thinking should be promoted in mathematics classes as well. Besides, the 
opportunities should be used that exist due to the topics that are covered anyway. 

Theoretical background  
Although Wing (2006) proposes the term computational thinking, this type of thinking should not 
to be considered as restricted to dealing with computers. Instead, Wing (2006) stresses that 
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computational thinking is an activity of humans, not of computers. It is a foundational type of 
thinking that allows humans to attack problems in a way so that they can ultimately be solved using 
a computer.  

Such considerations are not unknown to mathematics. Here, the idea of algorithm proves to be 
much older than that of computer (Möller & Collignon, 2019). Many algorithms are part of the 
mathematics curriculum, although their algorithmic nature often remains implicit. That is, certain 
algorithms are made a topic of discussion (e.g., written arithmetic procedures or solving equations), 
but it is rarely made explicit that this is an algorithm. This also leads to the fact what constitutes an 
algorithm is not defined and ideas such as "explicit sequence of steps to solve a problem" or similar 
have not been an explicit learning object in mathematics education so far.  

In order to reduce the complexity of computational thinking as a learning subject, and at the same 
time to emphasize more the role of the algorithm, this study proposes to use the term algorithmic 
thinking (AT) for capturing the kind of thinking that is necessary when designing and reflecting 
algorithms (in contrast to technical programming). There are different conceptualizations for 
specifying what is required for students to possess algorithmic thinking. Following Harlow et al. 
(2016, p. 340), five algorithmic thinking ideas are distinguished in this paper:  

- “Sequencing: Creating an ordered list of instructions to complete a task” 
- “Breaking down actions: breaking an event into smaller parts” 
- “Looping: Repeating a set of instructions multiple times” 
- “Event-driven programming: identifying how one circumstance triggers another” 
- “Message passing: coordinating actions across code or characters” 

This paper examines the extent to which AT ideas can be developed. One promising way to 
promote the development of algorithmic thinking is to engage students in  writing instructions for 
self-discovered algorithms. After all, writing is not only a learning goal in its own right, but also an 
important thinking tool (learning to write and writing to learn, cf. Morgan, 1998). Austin and 
Howson (1979, p. 167 f.) also already dealt with the connection between language and concept 
formation. Heller and Morek (2015) distinguish three different functions of academic language 
(AL) both oral and written: (1) "AL as a medium of knowledge transmission (communicative 
function)"; (2) "AL as a tool for thinking (epistemic function)"; (3) "AL as a ticket and visiting card 
(socio-symbolic function)" (ibid., p. 175). This suggests that writing promotes deeper engagement 
with the content and thus fosters deeper understanding. At the same time, instructions for 
algorithms can be conceived as a separate text genre that students need to learn (similar to 
geometric construction texts, cf. Rezat & Rezat 2017). 

In this paper, the idea is to develop algorithmic thinking by inventing an encryption algorithm 
without directly focusing on programming (similar to the examples of Bell et al., 2012). 
Encryptions are suitable because, on the one hand, they are an important topic in everyday life. On 
the other hand, they are suitable because even without programming, the algorithm must be 
described very precisely and accurately so that someone else can understand or reverse it. The basic 
idea of a symmetric encryption procedure can be experienced and learned by reinventing the Caesar 
Cipher, which is described in more detail in the design section below. In reality, of course, this is 
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currently even more complex. However, since the teaching-learning arrangement should be suitable 
for grades 5/6, the Caesar Cipher was chosen as an example. 

This leads this study to the following research question: 

RQ: To what extent do children in grades 5/6 show AT ideas when writing down 
instructions (algorithms) for encryption and decryption? What hurdles are encountered? 

Methods 
The methodological framework of this study is design research (Gravemeijer & Cobb, 2006), whose 
aim is on the one hand the development of a teaching-learning arrangement in several cycles and on 
the other hand the analysis of the learning processes initiated by the teaching-learning arrangement, 
i.e., in particular typical learning pathways and hurdles. In this paper the first results of the first 
cycle are presented. 

So far, 22 learners in grades 5 and 6 have participated (a total of about 1600 minutes of video 
material). The design experiments were videotaped and passages relevant for the analysis were 
transcribed.  

To select relevant passages, those involving writing the algorithm were identified. To show the 
range of written products, four cases, some of which are very different, are contrasted below. For 
data analysis, a qualitative content analysis (Kuckartz, 2019) of these products was conducted and 
the reconstructed AT ideas were marked by ||...||. For this purpose, a deductive-inductive procedure 
drawing on the categories from above (||sequencing||, ||breaking down actions||, ||looping||, ||event-
driven programming||, ||message-passing||) was chosen to reconstruct which AT ideas learners 
address when it comes to the elements of instruction (algorithms) and which learning trajectories 
and hurdles occur.  

Design 
The learners have been working with the Caesar Cipher (cf. Allen, 2017). In this process, letters are 
shifted forward in the alphabet by a fixed key (Table 1). For example, the plaintext "hello" and key 
3 provides the ciphertext "khoor", as every character is shifted by 3 characters. 

Table 1: Clear- and walking alphabet to illustrate the Caesar Cipher (here with key k=3) 

plaintext a b c d e f g h i j k l m n o p q r s t u v w x y z 

ciphertext d e f g h i j k l m n o p q r s t u v w x y z a b c 

Table 2: Letter number table 

a b c d e f g h i j k l m 

0 1 2 3 4 5 6 7 8 9 10 11 12 

n o p q r s t u v w x y z 

13 14 15 16 17 18 19 20 21 22 23 24 25 
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When numbers are assigned to the letters of the alphabet as in Table 2, the encodings can also be 
expressed mathematically by the basic arithmetic operations or modulo calculations. The encoding 
of a plaintext letter can thus be represented by the calculation  = (  + )  26 where ,   {0, . 
. . ,25} is the number of the plaintext and ciphertext letters, respectively, and   {1, . . . ,25} is the 
key number. As an alternative to the modulo computation, a bifurcation could also be considered: if 

 +  < 26, then set  =  + , otherwise set  =  +  - 26. Formulas for decryption using this 
method are obtained analogously. The plaintext letter is obtained from the ciphertext letter using the 
calculation  = (  - )  26, which can alternatively be described by the branching "if  -  > 0, 
then set  =  - , otherwise set  =  -  + 26".  

The teaching-learning arrangement consists of three sessions of 45 minutes each. Here, the focus 
lies on the learners’ instructions they wrote down at the end of the first and the beginning of the 
second session. In the first session, the learners are first confronted with an encrypted message that 
they need to decrypt. However, they are not given explicit instructions on the Caesar Cipher, but 
rather discover the procedure by themselves. Afterwards, the learners are tasked with writing down 
instructions for their discovered procedure, for encrypting as well as for decrypting messages. The 
writing assignment demands a lot of precision, or even the ability to commit. This is different from 
oral language, where it is sometimes rather fleeting and children may contradict each other in the 
next sentence. By writing it down, a commitment is demanded, and the AT ideas in the learners’ 
instructions are made explicit. 

In addition, two design principles were implemented to initiate AT ideas. The design principle 
"Using your own instructions again" was implemented in such a way that at the beginning of the 
second sessions the children were asked to encode and decode again according to their own 
instructions from the first design experiment session and then to reflect on whether they had really 
only used their instructions. The design principle "confrontation with algorithms (instructions) of 
other children" was implemented in such a way that they were then confronted with another 
instruction from another group that addressed other aspects in order to sensitize them to this and to 
encourage the learners to sharpen their instructions again. 

Empirical insights 
Four of the instructions written down at the end of the first session are presented below (Table 3). 
They were chosen because their differences prove instructive for illustrating the range of written 
products. 

Florian and Aaron ||sequence|| their instructions by making several steps explicit ("pick a number," 
"move each letter in your text by its respective place," "as soon as the alphabet ends, start over"). 
Moreover, they perform ||breaking down actions|| in the process, as they sequence into several 
substeps. It should also be emphasized that they are one of the few who also intuitively implement 
||looping|| directly ("as soon as the alphabet ends, you start again from the beginning", "then 
continue with all the letters like this until they make a meaningful sentence"). Finally, they also 
show the idea of ||event-driven programming|| by formulating conditions ("when you have figured 
out the number of shifted digits"). 
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Karin and John also show the idea of ||breaking down actions|| by aptly describing the shifting 
pattern of encryption and decryption ("In encryption you go letters forward", In decryption you 
always go letters back"). Thus, they also address a step of ||sequencing|| at the same time, but fold 
the steps less widely than Florian and Aaron. No ||loops|| or ||conditions|| are explicitly formulated. 
The instructions of Anna and Rebekka are very similar. They too focus on the central shift pattern 
and thus address ||sequencing|| and ||breaking down actions||, respectively. Unlike Karin and John, 
however, they do not formulate the instructions in general terms, but for a specific key, namely key 
2. Marcel and Jonas, on the other hand, do not address the algorithm per se, but rather focus on the 
input-output idea by stating that "you have to give the other person the key and then you can write 
the text". This most closely addresses the AT idea of ||message-passing||, although the statement 
remains very general. 

Table 3: written products for instructions on encoding and decoding of three learner pairs (literally 
translated from German) and reconstructed AT ideas. 

 Encryption Decryption AT ideas 

Fl
or

ia
n 

&
 A

ar
on

 Encryption: Pick a number from 1-25 and 

move each letter in your text by that 

number. *As soon as the alphabet ends, 

start again from the beginning. 

Decryption: Look first how the letter is called 

if you shift it by all possible places. When 

you have found out the number of shifted 

digits (then continue with all letters) until 

they form a meaningful sentence. 

||sequencing||, 

||breaking 

down actions||, 

||looping||, 

||event-driven 

programming||

K
ar

in
 &

 
Jo

hn
  In the case of encryption, you 

move letters forward. 
When decrypting, you always go 

back letters. 

||sequencing||, 

||breaking 

down actions||

A
nn

a 
&

 
R

eb
ek

ka
 You get the encrypted letter by moving 

two letters to the right. 
You get the decoded letter by moving two 
letters to the left in the alphabet. 

||sequencing||, 

||breaking 

down actions|| 

M
ar

ce
l &

 Jo
na

s  

 
 

||message-

passing|| 

In summary, algorithmizing works quite well for two written products (||sequencing||, ||breaking 
down actions||). However, only one instruction also contains the idea of looping and ||event-driven 
programming||. The third treatment is more on the surface or usage level and, apart from the 
||message-passing|| aspect, does not really address the algorithm itself. So, there are some ideas 
available as resources among the learners. However, not all AT ideas are activated by all learners 
by themselves. In addition, with ||sequencing|| also - when it occurs - the degree of precision needed 
is partly unclear. 

Proceedings of CERME12 2004



 

 

The lack of precision also becomes clear when looking at the learners' oral statements about it. 
When asked by the teacher how John and Karin proceeded with an encoding task, John answers 
"We have always gone one further" (#2) and, when asked again by the teacher (#3), justifies this 
with "Because when you encrypt you always go forward" (#4). 

 

1 Teacher Can you briefly describe how you proceeded? 

2 John We have always gone one further. 

3 Teacher Ok, can you still explain why you always went one further? 

4 John Because when you encrypt you always go forward. 

 

With regard to ||sequencing||, John remains as general as they have formulated it in their instructions 
by only mentioning the step of going one character forward. So, he does not name any further steps 
verbally either. Afterwards, the teacher gives the order to work on the decoding task “EQTQPC” 
(plaintext is “CORONA”). John suggests in #10 to try everything from 1 to 25 and starts directly 
with the first letter of the ciphertext ("E"), which he moves to a "D".  

 

10 John Ok. Then we would actually have to try out everything from 1 to 25. Then one back from E 
the D. 

11 Teacher You can write in there again and take notes. 

12 John Ah, yes. D. Ah I didn't click on it. D. Then back from Q, that's P. Then back from T one, 
that's S. Then back from Q one, that's P again. But that doesn't give a real word (laughs) 
You can see that now. 

13 Teacher Mhm. What could you do now? 

14 John Then two back, three back and then four back and then 5 back. 

15 Teacher Karin, what would you do now? What is your idea? 

16 Karin I've already tried a few combinations and I'm just about to try A, so. (long drawn out) A. 
(long drawn out) M. N. 

[…] 

22 Teacher So describe what you're doing right now. What exactly are you really doing now? 

23 John The letter back and try that until it makes a correct word. 

 

In #12, John further unfolds this process using the example. By performing the shift in steps for 
each individual element, he basically performs a ||loop||. This is also reflected in #14 when, after 
shifting one place in the alphabet, he now suggests as a further procedure "then two back, three 
back, and then four back, and then 5 back" (#14). This is a change from the written product, as 
||loops|| were not made explicit in the instructions before. This shows that he uses the idea of 
||loops|| intuitively as a structured procedure, but that he does not yet describe this process in 
general. Possibly he lacks appropriate linguistic means for this. A possible linguistic device would 
be "do … until …". He uses this in #23 to indicate the termination condition for the algorithm as a 
whole: "until it results in a correct word". 
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The following is another brief look at what situational potential the design principle of "confronting 
instructions from other children" can have. Anna and Rebekka formulated their own instructions in 
an example-based manner. After Anna is confronted with Florian and Aaron's instruction, she notes 
that the instruction is "much more general" (#101). 

101 Anna This instruction is also much more general. So, I think we understood it last time in such a 
way that we should really formulate instructions for this example. So, with the right 
instruction you really come from each task also really to the solution. Both encryption and 
decryption. And ours is more related to a specific example. 
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In summary, it can be stated that hurdles can be reconstructed in the degree of precision of the 
instructions or in the degree of generality. Under certain circumstances, as seen in the two scenes, 
these can be resolved by a renewed reflection on one's own instructions by executing them on 
another example or by a contrasting comparison with instructions of other children. 

Discussion 
Algorithmic thinking is important for mathematics education and first ideas can be initiated in 
grades 5/6, as shown here. The initial results of this Design Research study show how diverse the 
starting points for possible learning processes for algorithmic thinking are. Learners intuitively 
activate different AT ideas. It should be emphasized that the learners develop AT ideas in a setting 
that does not draw on any ideas of programming, but rather on the general discovery and 
description of algorithms. The empirical insights illustrate possible working mechanisms of the 
design principles investigated in this study, namely “Using your own instructions again” and 
“confrontation with algorithms (instructions) of other children”, which are suitable for eliciting 
further AT ideas 

The results presented here also make a first contribution to the discussion whether algorithmic 
thinking or programming should be learned first. It is possible that learners develop AT ideas even 
without programming, which are thus starting points for further learning processes. It would 
therefore be wasted potential to simply prescribe the programming language and so without first 
giving the learners the opportunity to develop the AT ideas themselves. This could provide a 
promising starting point for the developing of algorithmic thinking, although it is likely that some 
aspects of algorithmic thinking require programming to become fully developed. The results show 
that general principles (such as looping) could possibly first be learned in a general way, and then 
be applied to different programming languages or programming environments such as Scratch. The 
idea behind this is that the children learn and understand not only the specific handling of a tool, but 
the principles behind it. 

What is challenging is to find an appropriate level of precision and generality when writing 
instructions for algorithms. Algorithms could indeed be thematized without programming. 
However, until learners understand how a computer works, they lack a kind of alphabet of what is 
allowed as ingredients for creating an algorithm. So, it is not trivial to find or name the smallest 
building blocks that are considered valid for describing an algorithm. Here, learning opportunities 
are needed. The design principle "confronting with algorithms of other children" has revealed 
situational potential in this respect. Based on this, the children developed AT ideas on their own.  

In the next step, it will be examined to what extent implementing the instructions with Scratch 
building blocks promotes the degree of precision and to what extent further AT ideas are sharpened 
or developed. In addition, it is conceivable to check for other (mathematical) topics to what extent 
AT ideas can be developed in the respective area. 
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Introduction
History of mathematics in mathematics education, and history of mathematics education continue to 
receive much attention. Although empirical research and coherent theoretical/conceptual frameworks 
within this area have emerged relatively recently, there exists an increasing interest in these lines of 
work. The purpose of this CERME TWG is to provide a forum to approach mathematics education 
in connection with history and epistemology.

TWG12 welcomes both empirical and theoretical research papers, and posters proposals related to 
one or more of the following issues – although any paper or poster of relevance to the overall focus 
of the group is taken into consideration. All educational levels can be considered, from early-age 
mathematics to tertiary education and teacher training:

1. Design of teaching/learning materials using the history of mathematics, preferably with 
conclusions based on empirical data.

2. Research on the existing uses of history or epistemology in curricula, textbooks, or 
classroom practice.

3. Research on the history of mathematics education, on local, national or international level.

4. Connections between mathematics education, history of mathematics, and history of 
mathematics education: Theoretical and methodological issues.

Even though the inception of this TWG is fairly recent – it started in CERME6 (2009) – it has deeper 
institutional roots within the mathematics education research community. The History and Pedagogy 
of Mathematics (HPM) study-group (http://www.clab.edc.uoc.gr/hpm/about%20HPM.htm) was 
created at the 1972 ICME conference; it has been organizing satellite conferences to the ICME 
meetings since 1984, and has several active regional branches (HPM-Americas, European Summer 
Universities). 

In CERME12, TWG12 accepted 13 papers and 1 poster. One paper was withdrawn due to financial 
problems, one participant could not present because of illness. The Covid pandemic was the reason 
that CERME12 was delayed until 2022, however, even in 2022 all sessions were on-line. Thanks to 
the excellent virtual platform created by the Free University of Bolzano and the effort and enthusiasm 
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of the organization and participants, TWG12 was again a success, though with participants from a 
more restricted range of countries than in previous years

Before going into any details, it should be stressed that TWG12 has four general but distinctive 
features which give these meetings their specific flavour. Firstly, its topic lies at the intersection of 
different fields of research – mathematics education research and history of mathematics – which 
requires versatility and methodological vigilance (Fried, 2001; Chorlay & Hosson, 2016). Secondly, 
the strength of the historical and the HPM community varies greatly among countries, and these 
meetings play a crucial role for researchers working in relative isolation, and with difficult access to 
resources in the field. Thirdly, the scope of TWG covers both history in mathematics education and 
history of mathematics education, which are two significantly different research topics (TSG 27 and 
55 in ICME14); connecting the two lines of investigations is a constant challenge. Fourthly, since the 
topic of TWG12 is neither specific to one level of the educational system (from primary education to 
teacher-training) nor to any single mathematical topic (be it fraction concepts, algebra, proof, etc.), 
the work in TWG12 intersects that of most other TWGs. It should be noted that, as in former editions
of CERME, there was little intersection with what was covered in TWG8 (Affects and the teaching 
and learning of mathematics), TWG10 (Diversity and mathematics education), in spite of the fact that 
it is not uncommon for outsiders of the HPM research community – among which most policy-makers 
and curriculum-designers – to ascribe such goals to the historical perspective in teaching.

These four features make these meetings not only useful but also challenging and exciting. As the 
final discussion made clear, the general feeling among the participants was that one of the main 
outcomes of this meeting is that we actually learned a lot from the one another, both from their papers 
and from the lively discussions.

Some significant features of the 2022 conference
From an organizational viewpoint, due to the relatively small number of contributions, the TWG12 
team decided to offer three work formats for the sessions. In addition to the two traditional formats –
oral presentations of a paper (talk) and discussions of topics of general interest – we also organized 
two 1h30-hour workshop sessions (with two parallel presentations each). A distinctive feature of 
TWG12 is that it potentially covers all mathematical topics, all historical periods, and many different 
research perspectives (history of education, historical roots of a given concept or practice, analysis of 
teaching resources and curricula, task design, analysis of teaching practices, training design etc.), 
usually making it difficult for the participants to make the most of short oral presentations and 8-page 
papers. The workshop format enabled some of the participants to actually share some material, and 
discuss both research questions and methodological issues. Out of the 13 contributions four were 
found particularly suitable to be presented in a workshop: two contributions on history of mathematics 
education (Hamann & Schmidt-Thieme, Goemans & De Bock) and two on history in mathematics 
education, either at the secondary level (Spies & Junker) or in teacher education (Arnal-Bailera, 
Beltrán-Pellicer & Oller-Marcén). The participants of TWG12 agreed that the new format was 
enjoyable and should be kept for upcoming CERME conferences, whenever possible. 

As to content, there was a general balance between the two main lines of investigation: 6 papers on 
the history of mathematics education, and 7 papers on history in mathematics education. Let us 
highlight a few features of the Bolzano edition of CERME, without aiming for a thorough survey.
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As far as history of mathematics education is concerned, a significant share of the papers bore on the 
New Maths movement in Europe, thereby shedding light on this complex historical phenomenon 
from a variety of perspectives: connections with advanced mathematics (in terms of content and of 
interactions among different social groups and stakeholders); controversies at the time of the reform 
and long-term effects (if any); impact on curricula, teaching resources, and actual teaching practices; 
specifics of different countries (Belgium, Nordic countries) and of different segments of the education 
system (e.g., vocational training). 

As far as history in mathematics education is concerned, the “traditional” line of work on task design 
was represented by several papers (Surroca, Spies, Oswald). In spite of differences in terms of 
mathematical contents and segments of the educational system at stake (from primary to tertiary 
education), these papers illustrate how the HPM perspectives requires that researchers combine inputs 
from two different fields of research, mathematics education and history of mathematics. They also 
showcase a practice which lies at the heart of the HPM perspective: the use of original historical 
sources in the classroom (Chorlay, 2016).

Over the last decade, teachers have become a central topic of interest for researchers working in the 
HPM community, with inputs from many theoretical frameworks. Teacher education was the main 
focus of the papers presented in CERME 12, with analyses making use of a variety of theoretical 
constructs and frameworks from mathematics education: the “four S”-model (van den Bogaart), 
Zhang’s the ADTRE model, and Godino’s “epistemic configurations” (in the paper of Oller-Marcén 
et al.). By contrast, the analysis of “ordinary” teaching practices in primary or secondary education 
is still an emerging topic, with one paper in CERME 12 (Chorlay), with theoretical inputs from the 
Documentational Approach to Didactics (Gueudet, Pepin, Trouche) and the Didactic and Ergonomic 
Double Approach (Robert, Rogalski, Vandebrouck).

Challenges for the future
The number of papers and posters presented in TWG12 was modest, and half of the participants of 
this edition of TWG12 were first-timers. This reflects the fact that, in spite of the fact that the HPM 
community has a stable international basis and ramifications in many countries, it remains somewhat 
marginal within the mathematics education community. Some of the reasons accounting for this 
situation are structural and beyond the scope of our actions, such as the modest role of history of 
mathematics in curricula, and the necessity for researchers in this field to be knowledgeable in two 
different areas (history and mathematics education). However, the importance of the inclusion of 
history of mathematics in teacher training seems to be gaining more recognition in many countries, 
thus providing opportunities to further and disseminate research. Also, the fact that research carried 
out from an HPM perspective touches on virtually all mathematics education topics should pave the 
way for exchanges and collaboration. While this is true at a theoretical level, it remains a challenge 
to strengthen and stabilize these connections. In the spirit of CERME’s three Cs (Communication –
Cooperation – Collaboration), it is one of the aims of TWG12 to reach out and generate fruitful 
interactions.
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A group of students in a Dutch teacher-training-program were given a collection of fragments from 
different textbooks, to devise a lesson-plan for the introduction of the concept logarithm. Some of 
the fragments in the collection contained information on the history of mathematics. The lesson-
plans were analyzed to determine how the history of mathematics was incorporated. Some students 
only used biographical information on the inventor of logarithms, others used exercises and a 
logarithmic table to enhance the comprehension of the concept.  
 
Keywords: History of mathematics, logarithms, lesson design, empirical study, teacher training.  
 

Introduction. 
This paper describes an empirical research activity that I carried out as part of a larger study. In this 
study the way history of mathematics can be used by teachers to improve mathematical cognitive 
demand is investigated. In this paper I will focus on an assignment on the history of logarithms. The 
research question is: in what ways do in-service teachers use the history of mathematics in a lesson 
design for the introduction of the concept of logarithms? 

The structure of the paper is as follows. First, I will shortly present formats for presenting history of 
mathematics in curriculum materials. Then I will describe the design and results of a teaching 
experiment at a teacher training program at the Amsterdam University of Applied Sciences 
(AUAS), where participants were asked to design a lesson plan for the introduction of logarithms, 
using a collection of preselected fragments. Finally, I will discuss the results of the teaching 
experiment and make some remarks on how this is embedded in the larger study.  

 

The 4S formats. 
The history of mathematics (HoM) can be used in mathematics education in many ways. Both 
Tzanakis et al. (2000) and Jankvist (2009) have written important texts on how this can be done and 
reasons for doing so.  In a recent article (Agterberg et al., 2021) we describe a categorization of 
ways how HoM can be presented in curriculum materials or classroom activities. This 
categorization is meant to be used as a tool in what we call a design-oriented approach. With the 
help of this tool, teachers should be enabled to select and adjust curriculum materials that use HoM 
or even design classroom activities themselves. We distinguish between four formats for presenting 
HoM in curriculum materials. We chose format names that all start with the letter S: speck, stamp, 
snippet and story. The term speck was chosen to indicate the smallest format. The word stamp 
refers to the notion of a small, separate box of information, alongside the main text. The term 
snippet is used for the average size piece of historical information with substantial relation to the 
text in which it is incorporated. The fourth and last format story relates to larger historical packages 
that transfer a story of mathematics. Table 1 summarizes the main characteristics of the formats. A 
complete description of the formats can be found in (Agterberg et al., 2021). 
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Table 1: Four formats for presenting HoM in terms of size, content, location and functions 
 

Format Speck Stamp Snippet Story 

Size Very small 
 

Small Medium Large 

Content Text only Text with or without 
illustrations 

Text with or without 
illustrations, related 
to instruction or task  

Text with or without 
illustrations, related 
to instruction or task 

Location Arbitrary location in 
curriculum material 

Arbitrary location in 
curriculum material 

Particular location in 
curriculum material 

Particular location in 
curriculum material 

Goal Transfers historical 
aspects of the 
discipline 

Transfers historical 
aspects of the 
discipline 

Can transfer 
historical aspects of 
the discipline 

Can transfer 
historical aspects of 
the discipline 

Tool Primarily affective, 
motivational 

Primarily affective, 
motivational 

Primarily 
support of learning 
of mathematics itself 

Primarily 
support of learning 
of mathematics itself 

 

In the next section I will show some concrete examples of these formats from Dutch mathematics 
textbooks. These examples were used in the teaching experiment that is mentioned earlier and will 
also be described in the next sections. 

 

A suitcase full of fragments. 
In February 2021 I taught a course on history of mathematics at the mathematics teacher training 
program at the AUAS, together with two colleagues. The students that participated in this course 
are all in-service teachers. They had already finished a teacher training program for lower 
secondary education and are working as mathematics teachers. The course on history of 
mathematics is part of a part-time teacher training program for higher secondary education. The 
goals of the course are to increase the participants’ knowledge on history of mathematics and to 
teach them how to use history of mathematics in the classroom. Due to Covid-19 the class was 
taught completely online. 

In the first session the students were instructed to do an assignment we called ‘suitcase assignment’. 
For this assignment we used a virtual suitcase, containing fragments from three chapters from 
different Dutch mathematics textbook series, in which the concept of logarithms was introduced. 
Figure 1 shows one of the pictures that was in the suitcase (coded P2). It is a photo of some 
handwritten long multiplications, used in the original chapter to illustrate how calculations were 
done back in the 16th century. No wonder that Napier wanted to create a shortcut, seems to be the 
message of this picture. In didactical terms one could say this picture can be used to demonstrate 
the usefulness of logarithms, so the history of mathematics serves as a tool for understanding why a 
certain concept is developed. In terms of the formats described in the previous section, this picture 
can be regarded as a stamp: a small piece of historical information that can be placed at relatively 
arbitrary position in a chapter on logarithms. 
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Figure 1: handwritten multiplications (cTWO, 2011, p. 21) 

 
Figure 2 is a translated text from another chapter, stating some information on John Napier, the 
inventor of logarithms. In the original chapter the text is accompanied by a picture of a statue of 
Napier, which was left out in the suitcase assignment. This fragment contains only biographical 
information and does not give any mathematical information on why or how the logarithms were 
invented. This fragment can also be categorized as a stamp. 

 

John Napier, also known as John Neper (Edinburgh, 
1550-1617), was a Scottish mathematician who made his 
name mainly with his invention of logarithms. John 
studied for some time at St. Andrews University but also 
spent considerable time in other European countries. He 
was a convinced Protestant and particularly passionate 
about theology. In 1593, he published a religious work 
entitled Plaine Discovery of the Whole Revelation of St. 
John, which was translated into Dutch, French and 
German, so that he also became known on the continent. 
He practised mathematics mainly as a hobby. 

Figure 2: translated text on John Napier (Wageningse Methode, 2015, §7.2) 

 
Figure 3 is a translation from an exercise from the same chapter as picture P2 (figure 2). In this 
exercise the pupil learns by some examples how to use a logarithmic table to calculate specific 
multiplications, through some examples. The pieces of the logarithmic table that are necessary for 
performing this calculation are also shown on the right-hand side. In the original chapter, there is a 
full logarithmic table available as well. This table was also put in the suitcase, as picture P4.  
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How can you use these tables to approximate 456 12,3? 

1. Search the table for the number closest to 4,56  4,574 

2. Find out which power of 10 equals 4,56  100,66 

3. Find out which power of 10 equals 456  102,66 

4. Search the table for the number closest to 1,23  1,230 

5. Find out which power of 10 equals 1,23  100,09 

6. Find out which power of 10 equals 12,3  101.09 

7. Find out which power of 10 is the answer: 102,66 101,09=103,75 

8. Find out which number this is: 5,623 1000=5623 

 

 

Figure 3: translated exercise on the use of the logarithmic table (cTWO, 2011, p. 22) 

 
Table 2 lists the complete contents of the suitcase and specifies the contents of all historical 
fragments. All pictures, texts and exercise were separated from the original structure in the chapter 
and put together randomly in a table. The texts were retyped and renumbered, with identical fonts, 
colors and layout, so the fragments that belonged together in the same chapter could not be 
recognized on external features. 

Table 2 Contents of virtual suitcase with fragments of chapters on logarithms 
Type of 
fragment 

Number of 
fragments 

Historical 
fragments 

Name of 
fragment 

Contents of fragment 

picture 4 3 P1 face of Napier 

   P2 handwritten long multiplication 

   P4 logarithmic table 

text 8 3 T2 short biography of Napier 

   T3 reason for developing logarithms 

   T5 explanation of logarithmic table 

   T8 long biography of Napier, including mathematical content 

exercise 10 3 E5 use of logarithmic table to find specific powers of 10 

   E8 use of logarithmic table to convert numbers into powers of 
10 

   E10 use of logarithmic table for multiplication and division 

 

The students were given time to read all the fragments in the suitcase, then select the fragments they 
wanted to use in their lesson plan and adjust them if they wanted. Finally, they arranged the 
fragments in an order of their choice and wrote an explanation of their choices and purposes. They 
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were instructed to select at least one fragment that contained, in their opinion, something related to 
the history of mathematics. 

 

Results. 
Twenty students handed in a complete lesson plan after the session. Their designs were scored on 
what historical fragments they used. The results are in table 3.  

Table 3 Amounts and combination of selected historical fragments in suitcase assignment  

(P=pictures, T=texts, E=exercises, #=frequency) 
#P # selection # #T # selection # #E # selection # 

0 1 - - 0 1 - - 0 8 - - 

1 10 P1 5 1 9 T2 4 1 8 E5 4 

  P2 1   T3 1   E8 4 

  P4 4   T8 4 2 4 E5 & E8 3 

2 7 P1 & P4 5 2 8 T2 & T8 2   E8 & E10 1 

  P2 & P4 2   T3 & T8 3     

3 2 P1, P2 & P4 2   T5 & T8 3     

    3 5 T2, T5 & T8 2     

      T3, T5 & T8 3     

 

Almost all students chose to incorporate at least one piece of biographical information. Three 
students did not include it at all (and four students chose both texts T2 and T8 that contained 
biographical information). The logarithmic table P4 was chosen thirteen times, but two of those 
lesson plans did not contain an explanation and/or exercises to accompany it. This way it was 
merely used as an illustration, a bit like illustration P2: an ancient long multiplication, showing how 
arithmetic was a tedious activity back in those days. The reason for developing logarithms is 
mentioned in fragments T3 and T8. Six students chose neither of them (among them two of the 
students that also did not incorporate any biographical information).  

Twelve students selected one or more historical exercise. One of these students did not include the 
logarithmic table (P4) in his lesson plan, so it is questionable if this student really understood the 
exercises himself. From the eight students that did not select any historical exercise, four only 
selected fragments that contained biographical information (only T2 and/or P1) and the other four 
also incorporated some historical mathematical information (at least one of T3, T8, P2 or P4). 

The way the students incorporated the fragments in their lesson plan was also categorized according 
to the 4S formats. The smallest format speck was not found amongst the lesson plans. The 
fragments in the suitcase were not that small and no student deliberately adjusted a chosen fragment 
in a way that reduced it to a speck. The eight lesson plans that did not incorporate exercises were all 
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categorized as stamps. The remaining twelve lesson plans were mostly categorized as using history 
of mathematics in one or more snippets. Two students arranged their chosen fragments with history 
of mathematics to a complete story. The results of all twenty lesson plans are shown in table 4. 

Table 4 Lesson plans categorized according to 4S formats 
Format Frequency 

speck 0 

stamp 8 

snippet 10 

story 2 

 

Discussion.  
In the previous section the research question “in what ways do in-service teachers use the history of 
mathematics in a lesson design for the introduction of the concept op logarithms” was answered 
with regards to type of fragment (picture, text, exercise), contents (biographical, mathematical) and 
finally format (speck, stamp, snippet, story).  

The choice of fragments and design of lessons by the students will certainly be affected by the 
constraints of the suitcase assignments: limited time for reading, selecting, arranging and reporting, 
the assignment was completed during a (virtual) classroom session instead of a homework 
assignment, unfamiliarity of students with the fragments from different series of textbooks. The 
concept of logarithms can be presented in different ways (Kuper & Carlson, 2020). The students 
could possibly have had problems with the concept of logarithms themselves.  

The historical development of logarithms is complex, but also provides promising opportunities to 
use it in class (Panagiotou, 2011). Even if the explicit historical information is left out, the 
geometric and arithmetic sequences from Stifel, Napier and others can be used for constructing 
logarithms through covariational reasoning (Ferrari-Escolá et al., 2016). The teacher can use this as 
an approach for constructing the concept during instruction, or have the pupils develop it 
themselves through a form of guided reinvention. 

The students that did the suitcase assignment had received some instruction on how to use history 
of mathematics in their classrooms prior to this course, but this depended on the classes they took in 
previous years of teacher training. The fact that most of the students had little prior knowledge of 
the history of logarithms has probably also affected their choices considerably. Finally, knowing 
that the lessons were only planned and did not have to be enacted in class, could also have impacted 
the design. If the lessons had to be performed with a group of pupils, the students might have 
altered their plans.  

The course on history of mathematics will be taught again in the beginning of 2022. The suitcase 
assignment with fragments from textbook chapters on logarithms will remain in the course, as a 
starting point for discussing the possibilities of using history of mathematics in the classroom. We 
intend to have the students enact the lessons they designed and reflect on this during the course. 
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This will surely provide us with a lot of interesting information from the classroom perspective, that 
we can learn from, to improve the course on history of mathematics itself and incite new research 
activities. 
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The use of original sources in teacher training is a rather well established research topic in the 
HPM domain. However, analyzing its explicit impact on classroom practice is still a relatively 
unexplored topic. This work addresses this topic by analyzing the tasks designed by 21 prospective 
secondary mathematics teachers just after participating in a series of activities structured around a 
fragment of Clairaut’s Éléments de Géométrie. The possible effect of their reading of Clairaut is 
assessed in two ways. First, comparing the participants’ epistemic configurations with that of 
Clairaut. Second, determining the steps of instructional design in which they considered to have 
been influenced. To do so, we use some elements of the onto-semiotic framework as well as the 
ADTRE instructional design model to analyze the tasks designed by the participants and their 
answers to an open ended question. 

Keywords: Original sources, teacher training, epistemic configuration, instructional design. 

Introduction and objectives 
Over the last decades the use of history of mathematics in the context of Mathematics Education 
has become an intensive worldwide area of research (Clark et al., 2018). From early-age 
mathematics to tertiary education and teacher training, there are many reasons and many ways to 
introduce a historical dimension in mathematics education (Jankvist, 2009). 

Regarding the use of history of mathematics in mathematics teacher training, Clark (2019, p. 49) 
proposes the following question as worth exploring: “Are the outcomes of teachers’ study of history 
of mathematics seen in their classroom practice in explicit ways, and if so how? If not, why? Are 
the implicit ways equally meaningful?” In the particular case of original sources, the previous 
question is clearly related to the use of history as a resource by the teachers.  

Consequently, the following research question naturally arises: Does the reading of original sources 
have an effect on teacher’s professional practice? This question does not seem to have received 
much attention in the literature (Arnal-Bailera & Oller-Marcén, 2020), so this work aims to partly 
address this research question by analyzing the activities designed by a group of prospective 
secondary mathematics teachers after their work around a fragment of Clairaut’s Éléments de 
Géométrie. In particular, our main objective is to determine the possible impact of their guided 
reading of Clairaut on their subsequent instructional design decisions.    
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Theoretical framework 
Instructional design is an essential component of teachers’ professional competence. There exist 
different instructional design models but all of them involve, at least, task analyzing and designing. 
In Figure 1 we show the elements of the so-called ADTRE model (Zhang et al., 2018). 

 

Figure 1: The ADTRE instructional design model. Adapted from (Zhang et al., 2018, p. 1078)  

In the analyzing phase “instructional tasks are determined as a result of textbook and related 
curriculum material analysis and learner analysis” (Zhang et al., 2018, p. 1077).  Even if these 
authors do not consider it explicitly, it seems clear that this phase may eventually involve reading 
and analyzing relevant historical texts or original sources. 

Every theoretical framework dedicated to the knowledge and competencies of mathematics teachers 
considers how complex it is to define what makes a good teacher. These frameworks tend to agree 
on the fact that knowledge alone is not enough to do so, and for that reason the notion of 
competency is introduced. For example, a teacher should be aware of what is happening in the 
classroom from a specialized mathematics point of view, and act in consequence. Godino et al. 
(2017, p. 100) call this “competence for analyzing and managing didactical configurations.” 
Didactical configurations take into account different aspects of instruction (epistemic, cognitive, 
affective, etc.). 

 
Figure 2: Components and relations of an epistemic configuration. Adapted from (Font & Godino, 2006, p. 69) 

The Onto-Semiotic Approach to Research in Mathematics Education (OSA) assumes a pragmatic 
definition for the meanings that emerge within a system of mathematical practices (Godino et al., 
2007; 2019). These meanings are established in terms of epistemic configurations (Figure 2), 
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involving a set of primary objects: situations, languages, concepts-definitions, propositions, 
procedures, and arguments. Font and Godino (2006) show that the epistemic configuration is also a 
useful theoretical construct in order to analyze mathematical texts. In fact, these authors consider 
that mathematical texts can be seen, in some sense, as a system of mathematical practices. 

The notion of epistemic configuration is central to the OSA and it has been extensively used in the 
research carried out from its perspective. This includes works focused on teacher education, in 
which this notion is used, for instance, to analyze teachers’ practice or task design (Giacomone et 
al., 2018; Hummes et al., 2019). 

Method 
The experiment was carried out with 24 participants (13 men and 11 women) of the Masters’ 
Degree in Secondary School Teaching. In particular, it took place within the course “Design, 
organization and development of activities for the learning of Mathematics” during the academic 
year 2018–2019. It consisted of three different activities: 

1. A guided reading of a fragment by Clairaut (1741, pp. 125–128) in which the participants, 
working individually, had to complete a series of five tasks. In them, the participants had to 
identify relevant mathematical contents and processes, discuss them, and provide their 
personal point of view about different aspects of the text.  

2. A classroom session in which the participants worked in pairs in two tasks, arising from 
certain claims by Clairaut and essentially related to the definition of tangent to a circle.  

3. A homework individual task in which the participants were asked to design a 50 minutes 
session for grade 8 students, using GeoGebra, and related to the mathematical contents 
covered in Clairaut’s text. 

The selected fragment by Clairaut (which will be analyzed in detail in the next section) deals with 
the definition of the tangent to a circle at a point and the proof of what we call nowadays “alternate 
segment theorem”. The interesting features from the point of view of Mathematics Education of 
Clairaut’s work, and of this fragment in particular, were discussed by Barbin (1991) and Chorlay 
(2015), respectively. A complete description of the first activity, and the obtained results within the 
MKT framework can be found in (Arnal-Bailera & Oller-Marcén, 2020). In this paper, we focus on 
the third activity. 

As we have already pointed out, the third activity was related to instructional design. In particular, 
the participants had to provide: 

 The objectives of the session. 
 The definitions of the mathematical concepts that they would introduce. 
 Methodological indications including the intended use of GeoGebra. 
 A sequence of tasks with an estimated timing. 
 A GeoGebra file to be used in the session. 

In addition, the participants were explicitly asked about the influence (or not) on the design 
resulting from their work with Clairaut’s text. 
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Only 21 out of the 24 participants completed the activity. Each of them submitted a written 
document and at least one .ggb file. In this work we focus on the written productions. Taking into 
account the objective of the paper, our work was organized into three steps. 

1. We carried out an a priori analysis of Clairaut’s fragment. 
2. We analyzed the participants’ session design.  
3. We analyzed the participants’ answer to the question about the influence of Clairaut’s text. 

For the first two steps we have used the epistemic configuration as an analytical tool in order to 
compare the participants’ configurations with Clairaut’s, looking for possible similitudes or 
differences between them. For the third step we have adopted a deductive content analysis approach 
to the answers using elements of the ADTRE model as a tool. 

Epistemic configuration of Clairaut’s fragment 
As a first step in our work, we used the notion of epistemic configuration (Font & Godino, 2006) in 
order to analyze the selected fragment of Clairaut’s Éléments de Géométrie.  

 Situation. 
The text aims to prove that, in any circle, an angle between a tangent and a chord passing 
through the point of contact is equal to half of the central angle defined by the chord. 

 Concepts-definitions. 
In the fragment, Clairaut explicitly defined for the first time the following concepts: 

 C1: Tangent to a circle at a point, which is defined as a line touching the circle at a 
single point. 

 C2: Alternate-segment angle, which is defined as an angle between a tangent to a 
circle and a chord passing through the point of contact. 

 Procedures. 
For a given inscribed angle, the chord opposite to its vertex is fixed, and then the vertex is 
“moved towards” one of the endpoints of the chord. 

 Propositions: 
The so-called inscribed angle theorem (an angle inscribed in a circle is equal to half of the 
central angle that subtends the same arc on the circle) is explicitly stated in the text. In fact, 
it is introduced and proved just before the considered fragment. 

 Arguments. 
Clairaut’s proof relies on two arguments. The first one is explicitly stated, whereas the 
second one is just implicitly assumed: 

 A1: When the vertex is “moved towards” one of the endpoints of the chord, the 
inscribed angle becomes the alternate-segment angle because the secant line turns 
into the tangent. 

 A2: The alternate-segment angle is equal to the inscribed angle because during the 
process, the “moving” angle remains constant. 

 Mathematical language. 
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 Graphic: The text is accompanied by a figure which is to be found in a sheet at the 
end of the book. This diagram suggests movement and supports a dynamic reading 
of the configuration, which is congruent with dynamic geometry. 

 Symbolic: Points are represented by capital letters (A), angles, arcs and circles are 
represented by three points (ABC), segments and straight lines are represented by 
two points (AB). 

 Verbal: There are two levels. The “main” discourse and marginal notes that are used 
to remind or to emphasize ideas. 

The Participants’ configurations 
Firstly, we analyze the participants’ epistemic configurations and compare them with the 
configuration underlying Clairaut’s fragment, which was described in the previous section. Due to 
space restrictions, we will particularly focus on the elements which, we think, are more innovative 
in Clairaut’s text: the procedure and the arguments (see the previous section). 

First of all, 4 participants followed exactly the same procedure found in Clairaut’s text, considering 
a chord, and moving one of its endpoints. In the case of 5 additional participants, the dragging of 
points in GeoGebra played an important role in the procedures included in their proposals, even if it 
was not used to construct the tangent line as Clairaut does. 

Regarding the arguments, the idea that the secant lines ultimately become the tangent line as a result 
of a dynamic process (A1) was clearly identified in the design of 8 participants. However, argument 
A2, which essentially involved considering the continuous limit of a constant magnitude, was found 
only in 4 of the designs. 

The participants’ point of view 
Now, we turn to the participants answers to the open question about how Clairaut’s work influenced 
their design. Only 4 out of the 21 participants who completed the activity answered that Clairaut’s 
text had not had an impact on their design. One of them did not provide any explanation. The 
remaining three participants provided arguments related to difficulties reading the text or to not 
finding the contents of the text useful for their purposes. In Table 1 we provide two examples of 
statements made by some of these students. 

Table 1: Arguments of students for not being influenced by Clairaut 

Participant A 
“… since it was easier to me to see it in my way […] I think it is the 
same for others. The text is cumbersome…” 

Participant B 
“… [the text] is interesting to teach history of mathematics […] as a 
pedagogical object [sic] I didn’t like it.” 

Now, the other 17 participants declared that the text had had some kind of influence over their 
decision making process. After categorizing the participants’ answer according to the elements of 
the ADTRE model, we provide in Table 2 the frequency of the identified ones. 

Table 2: Elements of ADTRE model identified in the participants’ answers  
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Content selecting Objectives making 
Strategies, resources and 

media selecting 

14 4 15 

As we can see, many participants perceived an influence over their decisions about content 
selection. As an example, one of the participants stated that: 

Clairaut’s text was useful for me in order to introduce the concepts, in the way he did so 

Also, a good number of participants informed about an influence over their strategies, resources and 
media selection. The following are two illustrative examples 

The criterion to choose this definition [Clairaut’s] was that it was easily implemented in 
GeoGebra 

We used the same idea as in Clairaut’s text […] we used an interactive software allowing to 
modify the angle […] this avoids the students to make the abstraction required when reading the 
text 

However, very few participants made explicit a possible impact over their decisions regarding 
objectives making. One such example is the following: 

It served to me to […] involve the students in aspects related to proof in mathematics 

Finally, it was particularly noteworthy that no mention to aspects related to the arrangement of 
activities was mentioned.  

Conclusions 
The direct influence of the activities carried out by de participants around Clairaut’s text was less 
important or, at least, less clear than we expected in advance. In fact, a few participants even 
explicitly claimed to not have been influenced at all. In addition, taking into account their own 
perceptions, the eventual influence was mostly related to content and strategies selection (see Table 
2). Note that these elements require, in principle, a lower level of re-elaboration by the participant 
because contents and strategies can be more easily reproduced. This tendency to reproduction over 
more elaborated ways of making use of the text was already noticed by Arnal-Bailera and Oller-
Marcén (2020). 

Some authors (Biza et al., 2008) point out that the students’ initial conceptualizations of the tangent 
line in a Euclidean Geometry context have a deep impact on their understanding in more general 
contexts, such as Analysis. We have seen that Clairaut’s text, which in some sense brings together 
both contexts (Chorlay, 2015), has promoted among some of the participants the use of definitions, 
procedures, and arguments in their design that can be more easily transferred from a static 
geometrical setting to a more dynamic analytical setting. 

It is noteworthy that about one half of the participants did not include Clairaut’s dynamic procedure 
and arguments in their proposals. In some cases, they seem to consider these arguments to be too 
complex for their students (see participant A in Table 1, for instance). Since this statement is merely 
based on the participant’s opinion, it illustrates the important role of beliefs in this type of activities, 
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and the need to address them in some sense. In other cases, the participants’ designs do not provide 
explicit information about the mathematical arguments that they would use in the classroom.  

Even if scarce, the arguments provided by the participants that did not feel influenced by Clairaut’s 
text were rather rich. Some of them contained elements related to the difficulties inherent to reading 
original sources (Jahnke et al., 2000), while others can be related to the fact that those participants 
did a shallow reading of the text in their previous work with it (Arnal-Bailera & Oller-Marcén, 
2020). There were also some comments reminiscent of ideas exhibited by Siu (2007). It is 
noteworthy that no participant considered the possibility of including the explicit use of the original 
source in their session design. 

Finally, we found some interesting comments that may foster further research. For example, one 
participant stated that: 

The classroom discussion […] was useful to focus the first part of… 

This comment suggests that the role of the teacher educator is crucial when implementing this type 
of activities and has an impact over their outcome. Using original sources in a teacher training 
content is different from doing it in a school context (Jankvist et al., 2020) so the practice of the 
teacher educator might also be an interesting object of study. 

On the other hand, statements such as 

The text made me reflect about which definitions and activities were more adequate to present 
the concepts at this level 

point out the fact that the work with original sources might promote the prospective teachers’ self-
reflection about elements related to their didactic-mathematical competence (Breda et al., 2017). 
This opens an interesting line of research that we plan to explore in the near future. 

Acknowledgment 
This work has been carried out within the research group “Investigación en Educación Matemática” 
(S60_20R) recognized and founded by Gobierno de Aragón. 

References 
Arnal-Bailera, A., & Oller-Marcén, A. M. (2020). Prospective secondary mathematics teachers read 

Clairaut: professional knowledge and original sources. Educational Studies in Mathematics, 
105(2), 237–259. https://doi.org/10.1007/s10649-020-09988-7 

Biza, I., Christou, C., & Zachariades, T. (2008). Student perspectives on the relationship between a 
curve and its tangent in the transition from Euclidean Geometry to Analysis. Research in 
Mathematics Education, 10(1), 53–70. https://doi.org/10.1080/14794800801916457 

Breda, A., Pino-Fan, L.R., & Font, V. (2017). Meta didactic-mathematical knowledge of teachers: 
criteria for the reflection and assessment on teaching practice. Eurasia Journal of Mathematics, 
Science and Technology Education, 13(6), 1893–1918. 
https://doi.org/10.12973/eurasia.2017.01207a 

Proceedings of CERME12 2029



 

 

Chorlay, R. (2015). Making (more) sense of the derivative by combining historical sources and 
ICT. In E. Barbin, U. T. Jankvist, & T. H. Kjeldsen (Eds.), History and Epistemology in 
Mathematics Education. Proceedings of the Seventh European Summer University (pp. 485–
498). Danish School of Education. 

Clairaut, A.C. (1741). Éléments de géométrie. Lambert & Durand. 

Clark, K.M., Kjeldsen, T.H., Schorcht, S., & Tzanakis, C. (2018). Introduction: Integrating history 
and epistemology of mathematics in mathematics education. In K.M. Clark, T.H. Kjeldsen, S. 
Schorcht, & C. Tzanakis (Eds.), Mathematics, education and history. Towards a harmonious 
partnership (pp. 1–23). Springer. https://doi.org/10.1007/978-3-319-73924-3_1 

Clark, K.M. (2019). History and pedagogy of mathematics in mathematics education: History of the 
field, the potential of current examples, and directions for the future. In U.T. Jankvist, M. van 
den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the 
European Society for Research in Mathematics Education (pp. 29–55). Freudenthal Group & 
Freudenthal Institute, Utrecht University and ERME. https://hal.archives-ouvertes.fr/hal-
02436281 

Font, V., & Godino, J.D. (2006). La noción de configuración epistémica como herramienta de 
análisis de textos matemáticos: su uso en la formación de profesores. Educação Matemática 
Pesquisa, 8(1), pp. 67–98. https://revistas.pucsp.br/index.php/emp/article/view/538 

Giacomone, B., Godino, J.D., & Beltrán-Pellicer, P. (2018). Developing the prospective 
mathematics teachers’ didactical suitability analysis competence. Educação e Pesquisa, 44, 
e172011. http://dx.doi.org/10.1590/S1678-4634201844172011 

Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in 
mathematics education. ZDM: The International Journal on Mathematics Education, 39(1–2), 
127–135. https://doi.org/10.1007/s11858-006-0004-1 

Godino, J. D., Batanero, C., & Font, V. (2019). The onto-semiotic approach: implications for the 
prescriptive character of didactics. For the Learning of Mathematics, 39(1), 37–42. 

Godino, J. D., Giacomone, B., Batanero, C., & Font, V. (2017). Enfoque Ontosemiótico de los 
Conocimientos y Competencias del profesor de Matemáticas. Bolema, 31(57), 90–113. 
http://dx.doi.org/10.1590/1980-4415v31n57a05 

Hummes, V., Breda, A., & Font, V. (2019). Desarrollo de la competencia en análisis e intervención 
didáctica en un ciclo formativo que combina el uso de los criterios de idoneidad didáctica y la 
metodología de estudios de clases. Acta Latinoamericana de Matemática Educativa, 32(1), 541–
548. 

Jahnke, H.N., Arcavi, A., Barbin, E., Bekken, O., Furinghetti, F., El Idrissi, A., Silva da Silva, 
C.M., & Weeks, C. (2000). The use of original sources in the mathematics classroom. In J. 
Fauvel & J. van Maanen (Eds.), History in mathematics education (pp. 291–328). Kluwer. 
https://doi.org/10.1007/0-306-47220-1_9 

Proceedings of CERME12 2030



 

 

Jankvist, U.T. (2009). A categorization of the “whys” and “hows” of using history in mathematics 
education. Educational Studies in Mathematics, 71(3), 235–261. https://doi.org/10.1007/s10649-
008-9174-9  

Siu, M.-K. (2007). No, I don’t use history of mathematics in my class. Why? In F. Furinghetti, S. 
Kaijser, & C. Tzanakis (Eds.), Proceedings HPM2004 & ESU4 (pp. 268–277). Uppsala 
Universitet. 

Zhang, R., Liu, X., Tripp, J., & Shao, B. (2017). Preservice science teachers’ instructional design 
competence: characteristics and correlations. Eurasia Journal of Mathematics, Science and 
Technology Education, 14(3), 1075–1096. https://doi.org/10.12973/ejmste/81553 

Proceedings of CERME12 2031



Investigating the potential of a historical document for task-design 
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Abstract: This paper is a progress report which presents the context, the outline, and the 
starting point of an ongoing research project. In the context of a reform of the French high-
school curriculum, teachers were unexpectedly required to use history of mathematics in the 
classroom, without being instructed how to, and with almost no standard resources – such as 
official guidelines or textbooks – to work with. This provides an opportunity to study the work 
of teachers as designers of teaching material. We set out a research protocol in which five 
teachers agreed to (independently) design teaching sessions starting from the same document, 
namely an extract from Euler’s Elements of algebra on the numerical approximation of 
square roots. This paper aims to establish the relevance of this document in this research 
context. 

Keywords: History, task-design, teacher as designer, cognitive demand. 

Rationale 
This paper is a preliminary report which aims to present the rationale and starting point of an 
ongoing research project which lies at the intersection of several important yet under-
researched (or hitherto independently researched) topics in mathematics education.  

First, research on the use of history of mathematics in the mathematics classroom have 
convincingly argued that, from both cognitive and didactical viewpoints, tasks based on 
historical sources are particularly suited for non-routine mathematical work (Fauvel & van 
Maanen, 2000; Jankvist, 2009; Chorlay, 2016). However, whether or not this potential for 
cognitively demanding classroom activities translates into practice calls for empirical studies 
on actual classroom practices. Such studies are still quite rare in the History and Pedagogy of 
Mathematics research community. 

Second, the interaction between teachers and resources for teaching are studied from a variety 
of perspectives (Adler, 2000; Remillard, 2013; Choppin, McDuffie, Drake, & Davis, 2018), 
but mostly in contexts where teachers deal with ready-made teaching material such as 
textbooks. Arguably, contexts in which teachers and researchers jointly engage in task design 
have also been studied (Jones & Pepin, 2016), but contexts in which teachers work as 
autonomous designers are largely understudied, with some exceptions usually related to the 
use of ICT (see, for instance, (Trouche et al., 2018)). 

Third, in the wake of Mary K. Stein’s work on cognitively demanding tasks and the 
distinction between low-level (or routine) tasks and high-level tasks (seen as characteristic 
features of “doing mathematics”), many papers have studied how actual teaching practices 
maintain or lower the demand-level of tasks (Henningsen & Stein, 1997; Boston & Smith, 
2009). To the best of our knowledge, these theoretical tools have not been used to study tasks 
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designed on the basis of historical documents, along with their actual classroom 
implementation. 

In what follows, we will explain how a recent reform of the French educational system 
provided an opportunity to set out a research protocol enabling us to empirically study how 
teachers interact with historical sources and engage in task design. Among the many features 
of the teachers’ work as autonomous designers (and implementers) of tasks, we will focus on 
the observables pertaining to the level of tasks actually selected by the teachers (i.e. cognitive 
demand), and to the level of uncertainty which they are willing to leave room for in the 
classroom (Zaslavsky, 2005).  

Outline of the research project 
Institutional context: A new high-school curriculum (2019) 
The French educational system has a national syllabus which the Ministry of Education 
changes approximately every eight years, for reasons which are usually not explicit, and as 
the result of a non-transparent process. In 2019, new high-school syllabi were implemented in 
all subjects, in the context of a large structural reform of high-school (grades 10 to 12). As far 
as history of mathematics is concerned, this new syllabus stood in sharp contrast with former 
syllabi. In 2010, for instance, the previous syllabus for science majors (grades 11-12) 
mentioned history of mathematics in passing, in an introductory paragraph on the varieties of 
forms of students’ engagement with mathematics. 
On the face of it, the 2019 syllabus deepened the same ideas: 

It can be judicious to enlighten the content of the mathematics course by a historical, 
epistemological or cultural contextualization. Indeed, history can be seen as a source of 
problems which clarify the meaning of some notions. The passages labelled “History of 
mathematics” point to some possibilities along this line. Teachers can implement them by 
relying on the study of historical documents (MEN, 2019. Our trans.) 

In both syllabi, history of mathematics is seen as a tool rather than a goal (Jankvist, 2009); 
historical activities should be weaved in the general fabric of the course (should they be 
considered). Although this tool is versatile, the main goal is to foster conceptual 
understanding and meaning-making, rather than – for instance – motivating students, finding 
real-life or extra-mathematical applications of mathematics, or showing that school 
mathematics reflect the cultural heritage of humanity as a whole (with inputs from many 
cultural areas) etc. (Jankvist, 2009). Also, the use of historical sources in the classroom is not 
mandatory. The difference between the 2010- and the 2019-syllabi does not lie in the general 
intentions, but in the strength of the “recommendation” that teachers select and study 
historical problems – and, possibly, historical documents – with their students, as one of the 
many ways to support students’ engagement with mathematics. In the 2010-syllabus, the 
above quoted short passage was the only mention of this topic in a 7-page document, making 
it a rather elusive suggestion. By contrast, the 2019-syllabus is lavishly peppered with 
paragraphs explicitly labelled “history of mathematics”, which makes this topic one of the 
few guiding threads of the whole syllabus (along with “proof” and “algorithmic thinking and 
programming”). Some of these paragraphs are carefully worded and give specific suggestions, 
as in: “The history of probability theory provides a framework to explain the mathematization 
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of chance. An instance is given by the correspondence between Pascal and Fermat on the 
problem of points – also known as Méré’s problem –, along with the ensuing works of Pascal, 
Fermat, and Huygens. The problem of the Duke of Tuscany, or Leibniz’s works on games of 
dice can also be mentioned.” (Grade 10). Other paragraphs are rather pithy, leave much room 
for interpretation, and do not even hint at specific means of implementation; as in: “One can 
mention the slow elaboration of the notion of function, from Antiquity up to today’s 
codification by Dirichlet, by foregrounding some important stages: Newton, Leibniz, Euler. 
The importance of the algebraic notation should be stressed.” (Grade 10)  

These features of the new syllabus came as a surprise to both teachers and teacher-educators, 
and the long list of rather cryptic yet heavy-handed historical “suggestions” understandably 
bewildered most. Moreover, the traditional resources on which teachers usually draw to meet 
the requirements of a new curriculum were wanting: firstly, up until the 2010 reform of 
teacher-training, very few teachers had any academic background in the history of 
mathematics, nor any experience of its inclusion in the classroom. Secondly, the syllabus to 
be implemented as from September 2019 was published shortly before, leaving very little 
time for commercial publishers to develop textbooks (there are no official textbooks in 
France). Since the historical suggestions were rather new, unexpected, and required that some 
textbook authors be well-versed in history (which is not usually the case), many textbooks 
failed to meet the challenge. Thirdly, when a new syllabus is published, it is customary for the 
Ministry of Education to publish guidelines for its implementations along with on-line 
teaching resources. In 2019, such resources were published to scaffold the implementation of 
the “proof” and “algorithmic thinking and programming” transversal features of the syllabus, 
but none regarding the historical suggestions.  

Research protocol 
The publication of the 2019-syllabus came as a somewhat pleasant surprise and unexpected 
endorsement for the IREM network (Institutes for Research in Mathematics Education). 
Indeed, these state-funded structures in which academics (mathematicians, mathematics 
educators, and, occasionally, historians of mathematics), teacher-trainers, and teachers 
collaborate to develop resources for teaching and teacher-training has a subcommission 
focusing on history and epistemology of mathematics. Since the 1980s, both in the French 
national context of the IREM network, and in the international context of the HPM Study 
Group, this subcommission has been working along the exact same general lines mentioned in 
both the 2010 and 2019 syllabi, arguing that many historical documents provide opportunities 
for a genuine engagement in mathematics, i.e. to “do mathematics”. Moreover, it has 
accumulated a significant collective experience of resource development (Fauvel, 1990; 
Chorlay, 2016, Barbin, 2018). This subcommision reacted to the publication of the 2019 
curriculum by launching the collective development of a book meant to provide high-school 
teachers with a range of thought-through and empirically tested (at least once!) classroom 
activities based on historical documents and compatible with the new curriculum. 

This collective project is the context of our study. A study which involves two types of 
participants – five high-school teachers and a researcher in history of mathematics and 
mathematics education. A study which weaves together two distinct projects: one is the 
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development of a classroom session, with a view to contributing a chapter to the new IREM 
book; one is a research project, carried out by the researcher and bearing on the work of the 
five teachers as they engaged in the resource-development project. It was agreed from the 
outset between each teacher and the researcher that both projects were distinct but compatible. 
The following protocol was agreed upon: 

1. The researcher would select one historical document which he thought fit for the 
resource-development project. All teachers would be given the same document. 

2. A first meeting would take place between the researcher and each teacher, 
individually. The historical document would be read together; its mathematical content 
would be discussed; possible connections to the curriculum would be discussed, in a 
“brainstorming” mode. The goal of this session was to generate a shared 
understanding of the didactical potential of the document. “Shared” meaning: shared 
between the researcher and each of the teachers; and similar for all teachers, even 
though they did not communicate with one another. In this meeting, no specific 
choices of implementation would be made or even discussed. The meeting would be 
recorded. 

3. Each teacher would work independently from both the other teachers and the 
researcher in order to design some teaching session compatible with the resource-
development project. For research purposes, teachers were asked to endeavour to keep 
a record of their work: personal notes, draft versions of the final documents, etc. 

4. Each teacher would implement the session(s) she/he designed. The sessions would be 
recorded, either in audio or in video form. 

5. Two short interviews would take place: (1) shortly before the actual session(s), the 
researcher would carry out a semi-guided interview bearing on (a) the teacher’s self-
recollection of the design process, (b) the choices which the teacher made along the 
way, (c) the goal(s) of the session(s), (d) the expected or possible difficulties, to be 
experienced either by the students, or by the teacher. (2) shortly after the session(s), an 
informal debrief would focus on topics (c) and (d).  

6. This would be the end of the research project. The resource-development project 
would enter new phases: exchange of information among the teachers; possible 
engagement in a new task-design cycle (alterations, then implementation of the altered 
sessions); writing of a chapter for the IREM book. These new phases would involve 
both the teachers and the researcher in a collaborative way. 

Let us underline a few specific features of this research protocol. First, in the research phase 
(stages 1 to 5), there was no communication among teachers, so we are not studying an 
instance of collective or collaborative task design. Second, the nature of the teacher-
researcher interaction was of the “clinical partnership” type (Wagner, 1997). Consequently, 
this should not be considered an instance of teachers and researchers working as “partners in 
task design” (Jones & Pepin, 2016). Third, we are not studying how teachers interact with 
curriculum material such as textbooks: the two documents which set the stage for the 
teacher’s task design activity are the national syllabus on the one hand, and a historical 
document on the other hand. Whether or not the teachers would look for and use other 
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documents in the task design process is one aspect of their engagement in this process that 
would be studied. 

A priori analysis of the didactical potential of the historical source 
We selected a three-page extract from the 1774 French edition of the first volume of Euler’s 
Elements of algebra. The teachers were told that this book is not a research treatise but rather 
a didactic work, covering algebraic topics ranging from the very elementary (operations with 
fractions and directed numbers) to the rather advanced (solutions of algebraic equations up to 
the fourth degree). The extracts were taken from the final chapter. The teachers were given a 
three-page document, but the researcher explained that they would focus on the first part 
consisting of paragraphs 784 and 786, the rest being provided mainly for context. The 
document below is taken from the 19th century British edition, which we altered slightly both 
to stick to the mathematical notations used in the 1774 French edition and to restore a 
numerical error which got corrected in later editions:  

Document 1: Extract from (Euler, 1828, pp.677-680) 

CHAP. XVI.    Of the Resolution of Equations by Approximation. 
 

784. When the roots of an equation are not rational, and can only be expressed by radical 
quantities, or when we have not even that resource, as is the case with equations which exceed 
the fourth degree, we must be satisfied with determining their values by approximation; that is 
to say, by methods which are continually bringing us nearer to the true value, till at last the 
error being very small, it may be neglected. Different methods of this kind have been 
proposed, the chief of which we shall explain.  
(…) 
786. We shall illustrate this method first by an easy example, requiring by approximation the 
root of the equation xx = 20.  
[Footnote by J. Bernoulli: This is the method given by Sir Is. Newton at the beginning of his 
Method of Fluxions. When investigated, it is found subject to different imperfections; for 
which reason we may with advantage substitute the method given by M. de la Grange, in the 
Memoirs of Berlin for 1767 and 1768.] 
Here we perceive, that x is greater than 4, and less than 5; making, therefore, x = 4 + p shall 
have xx = 16 + 8p + 16 = 20 ; but as pp must be very small, we shall neglect it, in order that 
we may have only the equation 16 + 8p = 20, or 8p = 4. This gives p = , and x = , which 

already approaches nearer the true root. If, therefore, we now suppose x =  + p ; we are sure 
that p expresses a fraction much smaller than before, and that we may neglect pp with greater 
propriety. We have, therefore, xx =  + 9p = 20, or 9p =  ; and consequently, p =  ; 

therefore x = . 

And if we wished to approximate still nearer to the true value, we must make x = , 

and should thus have xx =  + = 20; so that , 
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and  ; therefore  value which is so 
near the truth, that we may consider the error as of no importance. 

The goal of stage 2 of the research protocol was to reach a shared understanding regarding 
some critical features of the text. In the list of features below, we italicized those contents 
which are explicitly mentioned in the high-school curriculum. Although the notion of 
didactical potential of a document calls for a more refined delineation, for now we will 
consider that connections between the content of the document and explicit curriculum goals 
testify to this potential. Consequently, this potential is not a property of the document per se 
but is highly context-dependent. Below, we also added (and italicized) the grade(s) in which 
these goals are mentioned (except for the “algorithmic thinking and programming”, for which 
the same goals hold across all three high-school grades). 

 This text provides opportunities to carry out routine calculation (grades 8-10): 
expansion of (4+p)², calculation with fractions, solving first degree equations, solving 
equation x² = 20. Even though the procedures are routine, the numerical values 
involved quickly become difficult to operate upon by pen and paper calculation only. 

 This provides opportunities to carry out comparisons of specific numbers, either by 
comparing the successive approximations 4, 4 , 4  … to a numerical approximation 

of ; or by comparing the squares of 4, 4 , 4  … with 20. These are all grade 10 
goals. 

 The text weaves together two genres of mathematical texts: the exposition of an 
algorithm, and a heuristic argumentation providing some warrants for claims regarding 
key steps of the calculation.  

 The meaning of the main warrant (“pp must be very small, we shall neglect it”) is 
ambiguous, and the text does not provide any proof-type justifications for it. Several 
interpretations are possible. A static interpretation: |p| being less than one (a claim 
which also calls for warrants!), p² is less than |p| (grade 10), also less than |8p| etc. But 
Euler wrote that, as the algorithm unfolds, one is ever more justified in neglecting p², 
thus possibly pointing to an asymptotic interpretation such as: when p is less than 1 
and tends to 0, not only is |p| less than p², but it becomes infinitely less since the ratio 
|p|/p² tends to + . 

 The text mentions or points to several topics in number theory. First, the introductory 
paragraph mentions a classification of numbers (some are “rational” while some other 
necessarily involve “radical quantities”), and, implicitly,  belongs to the second 
category (grade 10). Second, number-theoretic considerations provide an answer to a 
key question regarding the algorithm: it will not stop, should the condition to be met 
be the production of the exact value of . Indeed, starting from a rational input 
(such as 4), the algorithm will yield only rational numbers, thus leaving  beyond 
reach. 

 The text displays the first steps of a method, but the claims as to the scope of this 
method are implicit. Is Euler claiming that the four values from (4 to ) are 

Proceedings of CERME12 2037



increasingly better approximations of  (grade 10)? That an iterative interpretation 
of the algorithm leads to a sequence of numbers with limit  (and with a strictly 
decreasing distance between the sequence and its limit) (grade 12)? That this 
“method” works for all square roots? Or even for all polynomial equations?  

 Jean Bernoulli’s footnote reminds the reader of the fact that Euler is merely 
expounding Newton’s method (actually in Raphson’s version (Bailey, 1989; Ypma, 
1995)). To the expert reader, this should bring to mind the topics of tangents and 
derivatives; topics which, on the face of it, do not play any part in the text. However, 
the linearization of the equation amounts to considering a tangent instead of the curve, 
and the relevance of these ideas (algebraic or geometric linearizations) reflects the 
relevance of the concept of derivative as provider of local linear approximations. It so 
happens that, when one deals with polynomial functions only, derivatives can be 
defined and worked out purely algebraically. Hence Euler’s text can be seen as 
presenting a very interesting special case (theory of derivatives in a polynomial 
context) of a very important general concept (the derivative as provider of local linear 
approximations) (grades 11 and 12).  

 The text illustrates the first steps of what is clearly an iterative algorithm. Identifying 
this text as presenting an iterative algorithm, extracting the algorithm by editing out 
the heuristic parts of the text (parts which may also contain algorithmic steps, e.g. 
expand (xn+p)², solve linear equations), and, possibly, implement it in a programming 
language, all these are tasks which fit exactly the “algorithmic thinking and 
programming” strand of the whole high-school syllabus. 

 In grade 10, other algorithms for the approximation of the solutions of numerical 
equations – such as bisection – are to be studied and implemented. Since Euler 
presents a different method, it could be interesting to compare these methods in terms 
of efficiency. In grade 12 it can be proven that the convergence of Newton’s method 
in the case of square roots is quadratic, hence much faster than the linearly convergent 
dichotomy. Also, implementing Newton’s method requires that a first rough 
approximation of a solution be taken as starting point (here ), which, in itself, 
calls for another (maybe more elementary) algorithm. 

 Euler’s text can be criticized, or at least questioned, as to rigour. In particular, he used 
the same letter x to denote different numbers; same for p. At least two reactions could 
be mathematically and didactically relevant: one could either realize the fact that this 
iterative method generates recursively defined sequences, and introduce notations such 
as  (grade 11); or consider that the letters represent programming 

variables and not mathematical variables (grade 10). In this second context, some of 
the “=” symbols should be read as value-change operators and not as mathematical 
equalities.  

The research protocol (stages 1-5) was implemented in the 2020-2021 school-year, with five 
teachers; the data are being processed. The goal of this initial progress report was to establish 
that the historical document selected by the researcher has the potential to generate 
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cognitively demanding classroom sessions, and leaves considerable leeway for the teachers to 
engage in task design and implementation. 
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The reception of modern mathematics in Belgian technical education: 
Adhering or resisting? 
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Belgium was one of the first European countries to be involved in the modern mathematics 
movement of the 1960s. The reform was led by a university professor (Georges Papy), supported by 
a number of enthusiastic teachers of general secondary education. The reformers showed almost no 
interest in technical education. In the mid-1960s, however, it became clear that also the 
mathematics programs of technical secondary education would be modernized. We examine the 
diverse reactions of stakeholders of technical education to the announced reform. Emile Ridiaux 
and like-minded teachers prepared and attempted to use modern mathematics for technical 
applications. Others, e.g. inspector Charles-François Becquet, resisted the upcoming reform, but 
his organization called MATEC, could not stand up to the well-oiled machine of Papy and his 
disciples. Consequently, from September 1, 1969, modern mathematics was generalized in all 
technical secondary schools in Belgium. 

Keywords: Belgium, MATEC, modern mathematics, reform movement, technical education.  

Introduction 
Belgium was a pioneering country in the modern mathematics movement of the 1960s. A first 
experiment with modern mathematics began as early as 1958, one year before the landmark 
Royaumont Seminar. The experiment was carried out with prospective kindergarten teachers and 
was led by Frédérique Lenger and Madeleine Lepropre (De Bock & Vanpaemel, 2018). For 
technical assistance with follow-up experiments, the experimenters enlisted the help of Georges 
Papy, a professor of algebra at the University of Brussels. However, Papy did not limit himself to 
consulting: From 1959 he started his own experiments and would completely dominate the 
movement. In May 1961, he founded the Belgian Centre for Mathematics Pedagogy that grouped 
the country’s most prominent modern mathematics enthusiasts. The Centre coordinated all aspects 
of the reform movement: It edited new curricula, set up experiments, developed course materials, 
retrained teachers, established local working groups, etc. The interpretation of modern mathematics 
was quite radical. Sets, relations, and algebraic structures formed the basis; logic, deductive 
reasoning, and proof were central. With appropriate political support, Papy’s modernization efforts 
would lead to a mandatory implementation of modern mathematics in the general sections of 
secondary schools from September 1968.  

Papy and his team members, who typically had an academic or general education background, 
showed little interest in technical education. No experimental programs or experiments were 
anticipated for this type of education. From official directives of the mid-1960s, however, it became 
clear that technical schools would also be involved in the modernization of the mathematics 
programs, a reform that prioritized intellectual formation over practical utility. A circular letter 
issued by the Nationaal Verbond van het Katholiek Technisch Onderwijs [National Association for 
Catholic Technical Education] on November 15, 1966, stated that every mathematics teacher in 
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technical education should urgently inform himself about modern mathematics. To this end, these 
teachers were strongly advised to attend the classes given at the initiative of the Belgian Centre for 
Mathematics Pedagogy, and school boards were asked to give their teachers the opportunity to do 
so. (Holvoet, 1968). We find a similar recommendation in the 1966 mathematics program of the 
Enseignement technique et professionnel féminin de l’État [Technical and professional education 
for women in the state], as cited in Holvoet (1968): “All teachers are strongly advised to increase 
their knowledge by all means and in particular to attend regularly the courses organized by the 
Belgian Centre for Mathematics Pedagogy1” (p. 101). 

In this paper, we search for answers to the following research question: “How have teachers and 
other stakeholders in technical education responded to an announced reform that seemed 
diametrically opposed to the goals of mathematics in technical education?” To answer this question, 
we have analyzed the available reform documents and all Belgian journals for mathematics teachers 
from that period: Mathematica & Paedagogia, Nico, and Matmo (see below). Moreover, we 
systematically searched BelgicaPress, a digital database of historical Belgian newspapers up to 
19702. This study is part of a line of research on the history of the modern mathematics movement 
in Belgium that recently led to the book Rods, sets and arrows: The rise and fall of modern 
mathematics in Belgium (De Bock & Vanpaemel, 2019). However, the reform in technical schools 
and the role of key actors in it remained underexposed. The present study aims to fill this gap in the 
existing literature on the Belgian modern mathematics movement. The scope of this type of 
research is, however, not just “purely” historical: Researching mathematics education of the past 
can provide historical insights that support the future, or as Van Bendegem (2021) stated it: 

This research is not merely historically interesting but is also relevant to understanding what 
present-day STEM (and I would add STEAM) initiatives are really about and what the potential 
pitfalls and dangers can be, and what the underlying educational aims and goals are (or should 
be) vis-à-vis society at large. (p. 604) 

Ridiaux’s actions to welcome modern mathematics 
Emile Ridiaux (1924–2006), trained as an engineer, was a mathematics teacher in the secondary 
technical section of the Université du Travail [University of Labor] in Charleroi, an important 
industrial center in the French-speaking part of Belgium. With a view to preparing mathematics 
teachers in technical schools for the arrival of modern mathematics in their classrooms, Ridiaux 
founded a new teachers’ journal, titled Matmo, a reference to “modern mathematics”, and subtitled 
Revue des ensemblistes du secondaire [Journal for enthusiasts of sets in secondary schools]. Matmo 
was published between 1964 and 1968. A total of thirty issues appeared: Ten in the first volume 
(1964–1965), ten in 1966, five in 1967, and five in 1968. Layout and style of the journal were very 

                                                 
1 All translations were made by the author. 

2 Collections of the Royal Library of Belgium (https://www.belgicapress.be/). Keywords used: “Becquet”, “Matec”, 
“Matmo”, “Papy”, “Ridiaux”. 
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basic and each issue had only 16 stapled pages. The journal did not question the upcoming reform 
as such, on the contrary. In the first Editorial (September 1964), we read:  

We do not claim to be scholars! We know the scholars, because they have come down to us, to 
our teaching! At the secondary level, even at the primary level, we want to apply their advice, 
because we have confidence, and, with them, we have hope in a much better mathematical 
future. 

Browsing through the different issues of Matmo, one notices that most of the contributions were 
written by Ridiaux himself and some of his colleagues. Mainly lesson ideas for lower (technical) 
secondary education are presented, on “modern” topics such as sets, relations, and structures 
(inspired by Papy’s proposals), but also “classical” topics from algebra, higher arithmetic, and 
geometry are considered from a modern point of view. Sometimes student reactions are included in 
the lesson  plans, showing that the lessons had already been trialed. Attention is also paid to 
applications of mathematics, especially from physics (e.g., electrical circuits), but also from 
chemistry and biology. Matmo regularly informs its readers of new developments related to 
mathematics education, both in Belgium and abroad (e.g., with echoes from France and the USA). 
Specific Belgian reform initiatives, in particular the in-service courses of Papy’s Centre, receive 
ample attention. The emergence of an opposition movement in 1966 (see the next section) is also 
reported and limitedly documented, but already in the first issue of 1967, Ridiaux writes that 
although he welcomes remarks and criticisms, “We would like to avoid a quarrel between the 
ancients and the moderns, especially among teachers...” (in capitals, no pagination). After that, 
Matmo will not include any news about the opposition movement… 

It is worth mentioning that in 1969 Ridiaux published a textbook on a remarkable method in which 
arrow graphs, one of the favorite representational tools of Papy and his collaborators, were used to 
transform algebraic formulas (Ridiaux, 1969). This technical skill was not considered important by 
modern mathematics reformers, but it was fundamental to (technical) applications of mathematics. 
In Ridiaux’s method, a path of arrows, representing operations, is drawn from a variable to be found 
to a given variable. By tracing the inverse arrows, which represent the inverse operations, the 
requested variable can be calculated (see Figure 1). Sometimes, Ridiaux also visualized the 
different steps in this process via film strips, a didactic tool known from Papy’s Mathématique 
Moderne (De Bock & Vanpaemel, 2019). In Ridiaux (1970), the author explained how this method 
can also be used to solve (systems of) linear equations. Ridiaux’s method is no longer used in 
Belgian schools today, but it is still recommended, albeit in a modified form, by some mathematics 
educators of the 21st century (see, e.g., Noël, 2003). The case illustrates how Ridiaux tried to 
didactically modernize mathematics for technical education, his way of conforming to reformers’ 
expectations. 
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Figure 1: Example of Ridiaux’s method for the transformation of formulas using arrow graphs; the 

variable B has to be calculated from the given formula (Ridiaux, 1969, p. 18) 

Becquet and the action of MATEC 
From Charles-François Becquet (1915–1987), a totally different sound was heard. Becquet was a 
master of mathematics (University of Liège, 1940), a teacher and later an inspector of technical 
secondary education organized by the state. In addition, though less relevant here, Becquet was a 
political author and militant in the Walloon Movement during and after World War II. In July 1963, 
Becquet had published an article entitled Réformons les mathématiques [Let’s reform mathematics], 
in which he argued for a reform but one different from that proposed by Papy and his Centre 
(Schwilden, 1968). More specifically, Becquet advocated an approach that “makes better use of 
intuition, repetition, and new methods, such as those used in programmed courses”. Becquet did 
acknowledge, however, that it would be desirable “to integrate the useful parts of new theories, 
taking into account the various levels and objectives of education” (Schwilden, 1968, p. 7). He also 
insisted that the reform be carried out slowly and gradually, and that the old not be swept away at 
once: 

Basically, the first phase would be focused on setting the traditional in order and the second 
phase on implementing the new theories. In this way, there would never be a deep conflict in the 
continuity of the curriculum, but a slow and secure evolution. The teachers themselves would not 
feel like pawns, like toys in the hands of curriculum developers. (Becquet in Schwilden, 1968, 
p. 7) 

As early as September 1963, Becquet and some like-minded mathematics teachers at schools for 
technical education launched their own experiment to modernize the mathematics curricula for 12- 
to 18-year-old students in these types of school (Gadeyne, 1968). Eventually, 35 schools would 
follow Becquet’s experimental method (Vermeulen, 1968). Becquet considered his experiment 
successful: A survey of participating teachers revealed that the method better established basic 
knowledge and facilitated understanding of mathematics. As a result, fewer students failed 
mathematics than before (Le Soir, April 24, 1968). In support of his actions, Becquet had founded a 
new teachers’ association, Mathématique et Technique (MATEC) [Mathematics and Technique], in 
the first half of 1966. Matmo 04/66 recorded a short press release about the initiative: 

About 30 school principals and teachers belonging to the various networks of technical education 
met, under the presidency of Mr. Inspector Becquet, at the Institut d’Enseignement Technique de 
l’État, in Namur, to constitute an association Mathematics and Technique, whose aim is the 
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defense of technical education and its illustration in the framework of mathematics. (no 
pagination) 

A Board of Directors was elected consisting of Becquet (president), J. Loomans (general secretary), 
and G. Benoit (administrative secretary), the latter two being principals of a technical school of, 
respectively, the official and Catholic network. Nine working groups were also established, each to 
address a specific problem related to the mathematics programs, and the relationships between 
technical education, on the one hand, and other forms of education and industry, on the other 
(Matmo 04/66, 05/66). At a session on October 12, 1966, MATEC’s Board of Directors adopted the 
following resolution: 

The Board of Directors of the teachers’ association Mathematics and Technique expresses its 
strongest reservations regarding the consequences for the future of students in technical 
education resulting from the introduction of systematic teaching of set theory in the lower grades 
of technical and vocational secondary education. (Matmo 10/66, no pagination) 

MATEC thus explicitly opposed the systematic introduction into the lower grades of technical 
secondary education of set theory, “a gateway to philosophy and logic but not to technical 
calculation”, as Becquet had declared in an interview in Le Soir, a leading newspaper in the French-
speaking part of Belgium (Le Soir, April 24, 1968, p. 6). But what did the technical schools fear 
would be lost, and what specifically did they propose as an alternative? The main concern, perhaps, 
was that in Papy’s curriculum proposals mathematics would not be helpful to and would even 
isolate itself from other courses in technical education. In a letter dated November 1966 from 
Becquet addressed to the principals of the technical schools we read: 

The technicians insist on the practice of calculation. A solid knowledge of the fundamental 
operations involving integers, decimal numbers, and fractions is essential. The study of the 
metric system and its elementary applications, initiated in elementary school, must be continued. 
[...] Vocational training, the practice of technical drawing, and the technology course require real 
aptitudes in the above-mentioned subjects. […] In technical schools, the first-year drawing 
program includes geometric drawing and, already, an introduction to industrial drawing through 
the representation of simple parts. Teaching recipes alone would have no educational value. […] 
The drawing activity must therefore, in principle, be based on a prior knowledge of geometric 
notions acquired by experimental or intuitive means in the course of mathematics. It should be 
noted that the first-year geometry course should, more than in general education, introduce 
students to the knowledge of the common plane forms and solids and train them to see in space, 
because these notions and this skill are indispensable for the drawing of parts in the wood and 
iron workshop. It follows that the preservation of an elementary practical teaching of geometry, 
but always with a formative character, is essential. (Matmo 10/66, no pagination) 

As an alternative, MATEC proposed that the lower grades of (technical) secondary education would 
study arithmetic, both calculation techniques and problem solving, the metric system, the basics of 
algebra (first degree algebra and the roots of a quadratic equation), plane geometry, trigonometry 
with right triangles (perhaps extended to non-right-angled triangles), and the first elements of solid 
geometry. Becquet did not oppose, at some later stage, the integration of some elements of vector 
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and matrix algebra in schools for technical education. As stated by Noël (1993) and evident from 
the above listing, MATEC considered mathematics primarily as a technical tool and not as 
gymnastics of the mind. In the textbooks for Becquet’s experiments, developed under his 
supervision by a group of teachers from technical schools involved in these experiments, the 
difficult chapters were split into two parts to separate the meaning of operations from the practice of 
calculation. Needless to say, the work of MATEC was strongly criticized and even ridiculed by 
Papy (“Mr. Becquet, the courses of Belgian Centre for Mathematics Pedagogy are open to you. 
Learn! You will be forgiven a lot”, Papy, 1968, p. 34).  

Vain hopes and math wars in the late 1960s... 
The political decision to mandatorily introduce modern mathematics in the first years of secondary 
education from September 1, 1968, was made by Henri Janne, Minister of Education in an outgoing 
government, and announced in a circular of May 14, 1965 (Janne, 1965). Janne was a former rector 
of the University of Brussels, a socialist and political friend of Papy. On April 11, 1968, Janne’s 
decision was confirmed by Frans Grootjans and Michel Toussaint, the Ministers of Education at the 
time, but their decision only concerned the general sections of secondary education (Grootjans & 
Toussaint, 1968). Thus, no formal decision was yet made about modern mathematics in technical 
secondary education. Moreover, on June 17, 1968, a new government was formed with two new 
Ministers of Education: Piet Vermeylen and Abel Dubois. The newly appointed Ministers soon 
allowed some schools of general secondary education “not yet ready to implement the new 
curricula” to postpone the introduction of modern mathematics by one year (Noël, 1993). Could the 
decision of Grootjans and Toussaint be reversed? A time of uncertainty followed for Papy’s 
partisans, a time of hope for his opponents. This uncertainty led to a fierce math war in 1968–1969, 
especially in French-speaking Belgium (De Bock & Vanpaemel, 2019). 

During that war, MATEC, which in the meantime had grown to a grouping of more than 400 school 
principals and teachers (Le Soir, April 24, 1968), further developed into a more or less structured 
opposition movement against Papy and the Belgian Centre for Mathematics Pedagogy. Already in 
1966, it united forces with the Association des Docteurs et Licenciés en Sciences Mathématiques 
sortis de l’Université de Liège [Association of Doctors and PhDs in Mathematical Sciences from 
the University of Liège] (Matmo 10/66). Toward the end of the 1960s, an umbrella organization of 
mathematics teachers opposed to Papy’s reform was established—the Association des Professeurs 
de Mathématique de l’Enseignement Secondaire [Association of Teachers of Mathematics of 
Secondary Education] (Derwidué, 1969). In reaction to this opposition, a group of teachers who 
supported Papy’s reform project for the secondary level was created—the Comité pour la 
Promotion de l’Enseignement Mathématique [Committee for the Reform of Mathematical 
Education]) (Genaert, 1969). In 1968–1969, both organizations mobilized all those involved in the 
reform, including parents, for large-scale information meetings, hearings, and colloquia held in 
major Belgian cities (Figure 2).  
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Figure 2: Invitation flyer for a gathering of parents in Liège on June 23, 1969 

The headlines of articles in the Francophone press of the period were telling: “La guerre des maths 
aura-t-elle lieu?” [Will the maths war take place?] (Spécial, March 6, 1968, p. 16), “Sur le front des 
maths” [On the maths front] (Pourquoi Pas?, August 29, 1968, p. 105), “Des cobayes pour les 
Papystes” [Laboratory animals for Papy’ists] (Spécial, April 9, 1969, p. 15), “À quand un cessez-le-
feu et une commission d’armistice? Le pénible spectacle offert par la ‘guerre des math’ ” [When 
will there be a ceasefire and an armistice commission? The painful spectacle offered by the “math 
war.”] (Le Soir, April 27–28, 1969, p. 7), “Nouvelles maths: pour ou contre?” [New maths: for or 
against?] (La Libre Belgique, June 12, 1969, p. 5). The leftist press was mostly sympathetic to the 
reform initiated by Papy and his Centre, not only because Papy was a socialist, but also because 
there was a vague belief in the emancipatory power of the project.  

The war was eventually won by Papy and his proponents. Minister Dubois, also a socialist, stuck to 
the decision of his predecessors. In an address delivered at the teaching college in Nivelles on April 
27, 1969, he stated:  

The new curriculum is the Belgian version, very pragmatic and very adaptable, of a 
mathematical conception which is now being introduced in all industrialized countries; ... it 
constitutes a clear obligation for all schools run by the state; no one, my predecessors nor myself, 
has ever envisaged reconsidering it. (Dubois, 1969, p. 3) 

When from September 1, 1969 all students of the first years of secondary education, both in the 
general and in the technical sections, without any exception, were subjected to modern 
mathematics, the late 1960s math war ended quickly. The official programs of the technical sections 
were similar to those of the general sections except for a few details. For Dubois, this was a 
deliberate decision, even a matter of principle, viz. an occasion to eliminate, maximally, divisions 
between different types of education (and thus to upgrade the status of the technical schools). 
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It would be unacceptable if not [the same programs were applicable] and that, with the 
introduction of the new program, the harmful division between general and technical education, 
each in their respective fortresses, would be continued. (Dubois, 1969, p. 3) 

Conclusion 
In the Belgian modern mathematics movement of the 1960s, technical secondary education entered 
the picture relatively late. The technical schools did not ask for the reform, but when it became clear 
that they would be involved, reactions were mixed. Ridiaux and some like-minded teachers adhered 
and tried to make the best of it, explaining in a newly founded journal Matmo how to incorporate 
modern elements into mathematics for technical education; others, such as Inspector Becquet and 
the members of MATEC, chose to resist. After a bitter math war in 1968–1969 between supporters 
and opponents of Papy, especially in French-speaking Belgium, modern mathematics was also 
implemented in technical secondary education, one year later than in general secondary education 
but with an almost identical program.  

Future research could clarify the specificity of the Belgian modern mathematics movement in an 
international context. However, despite increasing scholarly interest and some single analyses with 
a specific scope (e.g., Kilpatrick, 2012; Vanpaemel & De Bock, 2019), comparative research on the 
international “New Math” phenomenon is still in its infancy.  

References 
De Bock D., & Vanpaemel G. (2018). Early experiments with modern mathematics in Belgium. 

Advanced mathematics taught from childhood? In F. Furinghetti & A. Karp (Eds.), Researching 
the history of mathematics education: An international overview (pp. 61–77). Springer. 

De Bock, D., & Vanpaemel, G. (2019). Rods, sets and arrows: The rise and fall of modern 
mathematics in Belgium. Springer. 

Derwidué, L. (1969). Ouverture de l’assemblée de contestation (Bruxelles, le 27 Avril 1969). 
Unpublished document. 

Dubois, A. (1969). Extrait du discours prononcé par Monsieur le Ministre Abel Dubois à l’école 
normale de Nivelles le dimanche 27 avril 1969. Mathematica & Paedagogia, 37, 3. 

Gadeyne, C. (1968). Sur le front des maths. Pourquoi Pas?, 58(2596), 105–108. 
Genaert, P. (1969, May 6). La guerre des « maths ». La préfète Andries, de Bruxelles, fonde un 

comité de promotion de la mathématique moderne. Le Peuple, p. 3. 
Grootjans, F., & Toussaint, M. (1968). Leerplan wiskunde voor het eerste leerjaar van het 

rijksmiddelbaar onderwijs van de lagere graad/Programme de mathématique pour la première 
année d’études de l’enseignement moyen du degré inférieur. Ministerie van Nationale 
Opvoeding.  

Holvoet, R. (1968). De werkgroepen van het Centrum. In G. Papy (in collaboration with P. R. 
Burgraeve, R. Holvoet, F. Papy, & A. Terfve) (Eds.), Arlon 10 (pp. 90–111). CBPM. 

Janne, H. (1965). Programme optionnel de mathématique (ministerial circular). Ministère de 
l’Éducation Nationale et de la Culture.  

Kilpatrick, J. (2012). The new math as an international phenomenon. ZDM—The International 
Journal on Mathematics Education, 44, 563–571. 

Proceedings of CERME12 2048



 

 

 Noël, G. (1993). La réforme des maths moderne en Belgique. Mathématique et Pédagogie, 91, 55–
73. 

Noël, G. (2003). Pour une approche TGF dans les logiciels didactiques. In A. Kuzniak & F. 
Pluvinage (Eds.), Annales de didactique et de sciences cognitives (Vol. 8, pp. 233–254). IREM 
de Strasbourg. 

Papy, G. (1968). Matec = échec en mat. Nico, 1, 10–34. 
Ridiaux, E. (1969). Transformations de formules par la méthode des graphes. Wesmael-Charlier. 
Ridiaux, E. (1970). Résolution d’un système de deux équations à deux inconnues et du premier 

degré. Mathematica & Paedagogia, 44, 36–40. 
Schwilden, W. (1968, December 18). L’enseignement technique « oui » à la réforme, « non » à 

Papy. Le Soir, p. 7. 
Van Bendegem, J. P. (2021). [Review of the book Rods, sets and arrows: The rise and fall of 

modern mathematics in Belgium, by D. De Bock & G. Vanpaemel]. Centaurus, 63(3), 603–604. 
Vanpaemel, G., & De Bock, D. (2019). New math, an international movement? In E. Barbin, U. T. 

Jankvist, T. H. Kjeldsen, B. Smestad, & C. Tzanakis (Eds.), Proceedings of the Eighth European 
Summer University on History and Epistemology in Mathematics Education (pp. 801–812). Oslo 
Metropolitan University. 

Vermeulen, M. (1968, September 14). La mathématique, cette inconnue… Le Soir, p. 7. 

Proceedings of CERME12 2049



 

 

The “best” axiom system for teaching geometry to secondary school 
students: A source of controversy in the early 1960s 

Wendy Goemans and Dirk De Bock 
 KU Leuven, Belgium; wendy.goemans@kuleuven.be 

Jean Dieudonné’s “Euclid must go!” provoked controversy among participants at the 1959 
Royaumont Seminar. Although Dieudonné’s outcry led to misunderstandings, many contemporaries 
shared his view that geometry education needed to be modernized. On how to proceed, there was 
less agreement. At international meetings after Royaumont, no clear and supported solution could 
be proposed. For Dieudonné and other (Bourbaki-oriented) mathematicians, linear algebra was the 
royal road to geometry, but even then opinions differed widely. The controversy peaked in 1964 
with the publication of Gustave Choquet’s L’Enseignement de la Géométrie and, shortly thereafter, 
Dieudonné’s Algèbre Linéaire et Géométrie Élémentaire. We carefully analyze these two seminal 
books and the role they played in the debates on modern mathematics in the early 1960s. Key 
differences are revealed and put into perspective with the similarities identified. 

Keywords: Axiom system, geometry education, Gustave Choquet, Jean Dieudonné, modern 
mathematics. 

Introduction 
The 1959 Royaumont Seminar is widely recognized as a turning point in the history of the modern 
mathematics movement of the 1960s (Bjarnadóttir, 2008; Skovsmose, 2009). The Seminar brought 
together American and Western European reformers for the first time, and it also marked the start of 
this movement in several countries not previously involved. Although in recent years several 
researchers have argued that very diverse positions were taken at Royaumont, for example about the 
role of applications (De Bock & Zwaneveld, 2020) and of systematic psychological research 
(Schubring, 2014a, 2014b), in the collective memory of mathematics educators, Jean Dieudonné’s 
sharp attack on the traditional teaching of (Euclidean) geometry, for which his battle cry “Euclid 
must go!” was symbolic, continued to resonate. 

A lot of ink has also been spilled about the exact meaning of Dieudonné’s slogan. Whence this 
vehement attack on “Euclid” while he deeply admired the achievements of the Greeks to 
mathematics (“I consider their creation of geometry perhaps the most extraordinary intellectual 
accomplishment ever realized by mankind”, Dieudonné, 1961, p. 35)? First, Dieudonné criticized 
what he considered a fossilized (French) educational tradition in geometry education, or as Hans 
Freudenthal (1967, p. 745) formulated it: 

The inventor of the slogan “A bas Euclide” a follower of Euclid? It looks odd, but it does so 
simply because few slogans have been misunderstood as badly as this one. Partly, it was 
Dieudonné’s own fault. When he cried “A bas Euclide,” he actually meant “A bas ‘Euclide’,” 
(viz. the Euclid of French lycée textbooks), but in oral discussions it is a hard thing to pronounce 
quotation marks.  
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Almost everything to which much attention was paid in this tradition, in particular “the triangle”, 
had, according to Dieudonné (1961), “as much relevance to what mathematicians (pure and applied) 
are doing today as magic square or chess problems!” (p. 36). However, Dieudonné was clearly in 
favor of an axiomatic approach to geometry, but not the old one of Euclid with its fuzzy distinction 
between “axioms” and “postulates”, but of a “modern” one based on linear algebra. Dieudonné’s 
views caused “sharp controversy” among the Royaumont participants, yet all agreed that a 
modernization of geometry education was needed. There was, however, less unanimity on how that 
modernization should be achieved. In a number of follow-up meetings in the early 1960s, the 
international mathematics education community attempted to come to some form of agreement, 
though without success. The debate quickly rigidified into the search for the “best” axiom system 
for secondary school geometry, and further hardened with the publication of Gustave Choquet’s 
L’Enseignement de la Géométrie and Jean Dieudonné’s Algèbre Linéaire et Géométrie Élémentaire, 
both in 1964. 

In this paper, we first provide a brief overview of the development of the geometry debate in the 
first half of the 1960s. Second, we carefully analyze the aforementioned books by Choquet and 
Dieudonné in order to unravel the differences and commonalities in vision of these two scholars. To 
this end, inspired by the topic model for discourse analysis of Jacobs and Tschötschel (2019), we 
first manually compiled a list of topics (such as for instance “droite” [straight line], “symétrie” 
[reflection], …) that appear in the books, and this page per page. Then, we counted (using the freely 
available online tool of browserling on https://www.browserling.com/tools/word-frequency), how 
many times a topic is mentioned in each book. We compared how the topics that ranked highest in 
this count were dealt with in the two books. In comparing the manipulation of the different topics, 
we paid specific attention to the differences caused by the axiom system chosen. In the final section 
of this paper, we discuss how it came to a settlement, at least between Choquet and Dieudonné. 

The geometry debate in the aftermath of Royaumont 
The first half of the 1960s was particularly rich in international activities on the modernization of 
school mathematics. In addition to the annual meetings of the International Commission for the 
Study and Improvement of Mathematics Teaching (CIEAEM), important international meetings 
were held in, among other places, Aarhus, Denmark (1960), Zagreb-Dubrovnik, Yugoslavia (1960), 
Bologna, Italy (1961), Budapest, Hungary (1962), Athens, Greece (1963), and Frascati, Italy 
(1964). These meetings were initiated by one of the following international bodies, either in 
partnership or not: The International Commission on Mathematical Instruction (ICMI), the 
Organization for European Economic Cooperation (OEEC; in 1961 joined by nations outside 
Europe to form the Organization for Economic Cooperation and Development, OECD), and 
UNESCO. A detailed discussion of the objectives and conclusions of these meetings is beyond the 
scope of this paper and for that we can refer the reader to, for example, Furinghetti and Menghini 
(to appear). To indicate the international context and “climate” in which the polemic between 
Choquet and Dieudonné occurred, we discuss in a nutshell some key elements related to the debate 
on geometry education. 
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Although the 1960 Aarhus meeting was intended to have a broader scope, the debates concentrated 
on “Modern teaching of geometry in secondary schools with particular emphasis on ways of 
treatment opened up by developments lately, in particular by the algebraization of mathematics” 
(Behnke et al., 1960, p. ii). No less than five different proposals for “new” axiom systems for 
secondary school geometry were presented, including by the Royaumont lecturers Dieudonné and 
Choquet. Dieudonné reiterated his position that geometry education should be approached from the 
study of two- (or three-) dimensional vector spaces over the field of real numbers, equipped with an 
inner product. Choquet proposed his axiom system for affine and metric plane geometry that he 
would adopt in L’Enseignement de la Géométrie (1964). Although views differed, there seemed to 
be a consensus that Euclidean geometry was too difficult for 12–13-year-olds, even in the form of 
Bewegungsgeometrie [motion geometry], a German approach rooted in the work of Felix Klein and 
proposed at Royaumont by Otto Botsch. There were timid attempts, by Freudenthal, Willy Servais, 
and Tullio Viola, to include psychological aspects in the debate on school geometry, but this led to 
no less than a quarrel between Freudenthal and Dieudonné, with the latter stating, “la psychologie, 
je m’en fiche” [psychology, I don’t care] (Behnke et al., 1960, p. 104). 

In Zagreb-Dubrovnik (1960), a group of experts was commissioned to work out a detailed synopsis 
for modern secondary school mathematics “in the spirit of Royaumont”. The experts agreed on the 
introduction to set theory, algebra, analysis, probability theory and statistics, but regarding 
geometry education, the outcome was an ambiguous compromise. For the final years (15–18-year-
olds), an axiomatic and structural approach—heavily influenced by Choquet’s vision—was 
recommended, while in the early years (11–15-year-olds), the emphasis would be put on a more 
intuitive approach (OEEC, 1961). The attention to intuitive geometry was largely due to the 
intervention of the Belgian Paul Libois, a lifelong advocate of intuition-based geometry teaching, 
but a dissident voice in the 1960s debates (Vanpaemel & De Bock, 2017). 

The 1961 meeting in Bologna was intended to discuss the results of Aarhus and Zagreb-Dubrovnik, 
which had not led to any form of agreement. The discussion in Bologna led to some kind of 
compromise around a proposal by Emil Artin to define the Cartesian plane axiomatically as a vector 
space of dimension two with an inner product, but Freudenthal, Libois, and Viola partly disagreed. 
According to the first, the geometry programs proposed in Aarhus and Zagreb-Dubrovnik were 
based on an “anti-didactic inversion”, expressing that an end product of mathematical activity, the 
most recently composed structure of mathematics, is taken as a starting point for mathematics 
teaching (Freudenthal, 1963). 

At the meetings in Budapest (1962), Athens (1963), and Frascati (1964), results of early 
experiments with modern mathematics could already be presented. In particular, the audacious 
approach of the Belgian Georges Papy, combining mathematical rigor with an innovative pedagogy, 
received considerable attention and appreciation. 

Two notable books shaping the debate of the mid-1960s 
When reading Choquet’s L’Enseignement de la Géométrie and Dieudonné’s Algèbre Linéaire et 
Géométrie Élémentaire, one immediately notices the points of agreement in the objective Choquet 
and Dieudonné aim to achieve with their work; similarities in their views on the teaching of 
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geometry are already apparent in the introduction to their books. Indeed, both authors state that they 
mainly target secondary school teachers. Moreover, they agree that the teaching of geometry for 
young children (age less than 13) should be based on observation and experiments, while in the last 
two or three years of the secondary school, linear algebra should be the basis of geometry. Between 
these two age groups, children should be gradually familiarized with deductive reasoning.  

As (pure) mathematicians, Dieudonné and Choquet were “Bourbakists”. Bourbaki’s approach to 
mathematics was axiomatic-deductive, formal, and uncompromisingly rigorous, deliberately 
excluding diagrams and external motivations. Both our protagonists were convinced that the 
Bourbaki model for structuring mathematics as a science was also the “best” model for structuring 
mathematics education, in casu geometry education, with the axioms of linear algebra as a 
fundamental model. 

Before presenting their “best” axiom system for teaching geometry to secondary school students, 
Choquet and Dieudonné digress on how it should not be done, both referring to colleagues along the 
way, anonymously or not. Choquet seeks to minimize the number of axioms: 

mais je ne pense pas qu’il soit désirable, comme l’ont préconisé certains professeurs, de prendre 
au départ de très nombreux axiomes [but I do not think that it is desirable, as some professors 
have advocated, to take very many axioms at the start1] (Choquet, 1964, p. 10) 

Dieudonné denies the claim that the axioms of linear algebra are too abstract, and refers to Choquet 
on the way:  

partir d’un autre système d’axiomes, […] le plus connu est sans doute le système d’axiomes 
proposé récemment par Choquet, d’une remarquable ingéniosité qui témoigne du grand talent de 
son auteur, mais que je tiens pour parfaitement inutile et même nuisible. [starting from another 
system of axioms, […] the best known is undoubtedly the system of axioms recently proposed 
by Choquet, of a remarkable ingenuity which testifies to the great talent of its author, but which I 
consider to be perfectly useless and even harmful.] (Dieudonné, 1964, p. 17) 

However, both authors agree on the fact that the “best” axiom system should separate affine and 
metric notions, or as Dieudonné phrases it:  

Je pense surtout ici à la distinction (clairement sentie depuis Poncelet) entre propriétés 
géométriques de nature « affine » et propriétés de nature métrique ». Il est particulièrement 
choquant, du point de vue logique, de voir mélanger en une incroyable salade ces deux types de 
propriétés dès le début de la traditionnelle Géométrie euclidienne », mettant exactement sur le 
même plan des notions aussi différentes que celle de parallèle et celle de perpendiculaire [I am 
thinking here above all of the distinction (clearly felt since Poncelet) between geometric 
properties of an “affine” nature and properties of a “metric” nature. It is particularly shocking, 
from a logical point of view, to see these two types of properties mixed together in an incredible 
salad from the very beginning of the traditional “Euclidean geometry”, putting exactly on the 

                                                 
1 All translations were made by the authors. 
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same level notions as different as that of being parallel and that of being perpendicular] 
(Dieudonné, 1964, p. 13) 

Likewise, both Choquet and Dieudonné first treat the two-dimensional geometry of the plane before 
generalizing the concepts to the three-dimensional geometry of the space. 

Faithful to his opinion that geometry should start off with a limited number of strong axioms, 
Choquet immediately sets off with axioms on a straight line and on a set of straight lines. He 
defines the plane as a set, equipped with a structure, induced by a set of subsets, called straight 
lines. Then he defines parallel straight lines and he states axioms on the existence of a unique 
straight line connecting two different points in the plane, and on a unique straight line parallel to a 
given straight line and passing through a given point of the plane (the so-called parallel postulate). 
Being parallel is an equivalence relation on the plane, leading to the concept of the direction of a 
straight line as the equivalence class to which the straight line belongs. 

Dieudonné, however, first dedicates some pages to the necessary basic properties of real numbers 
and to the axioms of Euclidean geometry. He defines the plane as a set on which there exist three 
operations: addition of two elements, scalar multiplication of an element with a real number, and 
scalar product of two elements. Assuming the former two operations satisfy the necessary 
conditions, he calls this plane as soon as possible a vector space. Dieudonné then defines a straight 
line as an affine subspace with its direction fixed by the corresponding linear subspace (i.e., a 
straight line through the origin). Two straight lines are parallel if they have the same direction (that 
is, if they are both affine subspaces resulting from the same linear subspace). From these 
definitions, and using the properties of the underlying vector space, the proposition that there exists 
a unique straight line through two different points, and the parallel postulate, are proved.  

In conclusion, because of the different choices for the axiom systems in the two books, properties 
that are put forth as axioms by Choquet can be proved as corollaries by Dieudonné, and vice versa.  

In the further treatment of affine geometry in the books by Choquet and Dieudonné, their different 
starting points lead to only minor or mere formal differences. Noteworthy however, is the topic of 
the addition of two vectors. In Dieudonné’s exposition, this addition is inherent to an operation on 
the elements of a vector space. Choquet, however, defines this operation by making use of 
parallelograms: The addition of two points x and y is the point z such that the origin, x, y, and z form 
a parallelogram. It illustrates Choquet’s statement from his introduction, expressing how vectors are 
naturally at the foundation of geometry: 

L’axiomatique d’Euclide-Hilbert est basée sur les notions de longueur, d’angle, de triangle. Elle 
cache à merveille la structure vectorielle de l’espace […]. Le fait qu’un triangle soit la moitié 
d’un parallélogramme n’a pas empêché qu’on mette l’accent pendant plus de vingt siècles sur 
l’étude détaillée […] des triangles […]. On voyait le triangle, mais non le parallélogramme qui 
aurait pu conduire aux vecteurs. [The axiomatic system of Euclid-Hilbert is based on the notions 
of length, angle, triangle. It hides wonderfully the vector structure of the space […]. The fact that 
a triangle is half of a parallelogram has not prevented one to put emphasis for more than twenty 
centuries on a detailed study […] of triangles […]. One saw the triangle, but not the 
parallelogram which could have led to vectors.] (Choquet, 1964, p. 10) 

Proceedings of CERME12 2054



 

 

Continuing with the definitions of an affine transformation, a translation, a homothety, and a 
dilatation, there are some differences in the order in which these concepts are treated and in the 
importance that is given to them. Loyal to his choice of the axiom system, Choquet first defines a 
translation as an operation on a straight line, before extending this definition to the plane. 
Dieudonné first defines these transformations as mappings on the vector space, even before defining 
a straight line. The definition of a dilatation is in Dieudonné’s book left for the exercises, which 
should not be a surprise, since a dilatation is either a translation or a homothety.  

Entering the world of Euclidean geometry, the consequences of the different choices for the axiom 
system, seem, at first sight, to manifest themselves again more firmly. At this point, Choquet first 
mentions briefly that only basic and well-known properties of real numbers will be used. He then 
posits in an axiom the concept of distance as a structure on a straight line. Later, in his chapter on 
the axioms of the metric structure, he first states an axiom on when two straight lines are 
perpendicular, followed by the definition of perpendicular projection. Only then, the notion of 
distance is used to define the norm of a vector. This concept of norm, together with the 
perpendicular projection, finally leads to the definition of the scalar product of two vectors.  

Dieudonné reverses this order more or less completely. Since he starts with a vector space as 
underlying structure of the Euclidean space, he disposes immediately of the scalar product of two 
vectors. Similar to Choquet, however, he restricts this scalar product as an operation on a straight 
line. Applying the scalar product, the definition of a norm of a vector and the distance between two 
points, follow immediately. Only then, the notion of two perpendicular vectors is defined, again 
using the scalar product of these two vectors.  

In his chapter on the metric structure of Euclidean space, Choquet mentions that the axioms he 
presented allow to show that the concept of distance that he introduced is equivalent to the concept 
of distance that is associated to the scalar product (which is the way Dieudonné defines distance), 
summarized in a Theorem: 

Théorème 96.3. Pour tout point , on peut définir sur , de façon unique, une structure 
d’espace vectoriel d’origine , muni d’un produit scalaire, dont les variétés affines de dimension 
1 et 2 sont les droites et plans de , et dont la distance associée au produit scalaire soit identique 
à la distance donnée sur . [Theorem 96.3. For any point , one can define on , in a unique 
way, a structure of a vector space with origin , equipped with a scalar product, whose affine 
subspaces of dimension 1 and 2 are the lines and planes of , and whose distance associated with 
the scalar product is identical to the distance given on .] (Choquet, 1964, p. 148) 

The treatment of the Euclidean transformations or isometries (i.e. translations, rotations, and 
reflections) is very similar in the books of Choquet and Dieudonné. Of special interest is that both 
authors first define a rotation, and then use the group of rotations to present a definition of an angle. 
As Choquet formulates it, a substantial part of geometry can be constructed without the use of 
angles: 

remarquons que nous avons pu construire commodément une grande partie de la géométrie sans 
parler jamais d’angles: La structure affine de Π, le théorème de Pythagore, la théorie des 
similitudes, ont été établis sans utiliser, ni angles, ni cas d’égalité des triangles. [note that we 
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could conveniently construct a large part of geometry without ever talking about angles: The 
affine structure of Π, the Pythagorean theorem, the theory of similitudes, were established 
without using neither angles, nor similar triangles.] (Choquet, 1964, p. 97) 

Only in a later stage they write about trigonometry and trigonometric formulas and about measuring 
angles. Both Choquet and Dieudonné end their exposition on the “best” axiom system by looking 
beyond secondary school geometry by examining in the appendices some extra topics, such as 
angles from a different viewpoint, non-Euclidean geometry, and quaternions and rotations. 

A settlement between Choquet and Dieudonné 
Papy’s didactic approach, as elaborated in his Mathématique Moderne (Papy, 1964–1967), soon 
enjoyed considerable prestige in circles of mathematics educators, particularly in France (see, e.g., 
Walusinski, 1963). Also Dieudonné (1964) had praised “the remarkable and promising trials of our 
Belgian neighbors” (p. 17). Papy’s approach to the teaching of geometry basically consisted of two 
stages. In the lower grades (12–15-year-olds), a system of (synthetic) axioms for affine plane 
geometry was gradually introduced, leading to the structure of the vector plane, an approach 
showing strong parallels with Choquet’s. In the third year of secondary school (14–15-year-olds), 
this structure was equipped with an inner product, leading to the so-called Euclidean vector plane. 
At the beginning of the upper grades (15–18-year-olds) then followed what Papy called a 
“retournement psychologique” [psychological reversal]: The achieved goal of the first stage—the 
Euclidean vector space structure of the plane—was taken as a new and “unique” axiom for the 
second stage, i.e. the further development of geometry (of the plane and of higher dimensions) from 
a purely algebraic perspective.  

At a meeting of the CIEAEM in Milano Marittima, Italy in 1965, and titled “The place of geometry 
in modern mathematical teaching”, André Revuz tried to reconcile Choquet’s and Dieudonné’s 
points of view (Revuz, 1965). Revuz, who was esteemed by all parties, presented a statement about 
the role of geometry in the education of 12- to 18-year-olds, based on Papy’s two-stages approach 
which was agreed upon by the CIEAEM members present. In the same year, on the occasion of an 
ICMI colloquium in Echternach, Luxembourg, this proposal was solemnly approved by Choquet 
and Dieudonné (De Bock & Vanpaemel, 2019). 

In conclusion 
Excesses of modern mathematics of the 1960s, such as the one described in this paper, have likely 
contributed to the current divide between the mathematics community and the mathematics 
education community, a divide that is unhealthy for both (Fried & Dreyfus, 2014). As concluded by 
Kilpatrick (2012), although modern mathematics is considered a failure, it did change mathematics 
education and the way it is treated by its stakeholders. Likewise, the books discussed in this paper 
were criticized (Freudenthal, 1967) and presumably not often used in secondary education, but they 
did stir the debate on geometry education in the 1960s and afterwards, geometry education did not 
return to the state it had before Dieudonné initiated the debate. Although the outcome of this debate 
on geometry education is in large likely due to the diplomatic qualities of Revuz, further research 
on the role of Papy’s approach in this settlement could be of interest. 
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In this paper we take a look at an arithmetic textbook from 1703 called Notabilia Arithmetica that 
belongs to the holdings of the old school library of a former Jesuit gymnasium in Germany and that 
was edited there, too. We analyse the book in regard to its content and possible integrated 
methodical aspects in order to find out more about mathematics education in Jesuit schools in the 
early modern period. The book shows us that – even though mathematics played a minor role in 
Jesuit education and was basically limited to Euclid in the general teaching rule – practical 
arithmetic must have been taught to a considerable degree, so that an arithmetic textbook was a 
necessary means for teachers. 

Keywords: Arithmetic, Textbook research, Educational history, Jesuit education. 

Introduction 
Notabilia Arithmetica is the title of a small, pocket-sized book from 1703 that belongs to the stock 
of the Josephine library, that is the library of the former Jesuit gymnasium Josephinum in 
Hildesheim, Germany.  

The research presented in this paper is part of an interdisciplinary research project aiming at a broad 
account of the library stock. So in the first place the focus is a local one. In the second place, 
though, we aim at embedding our findings in the history of classroom practice. Existing literature 
on Jesuit mathematics education has been thoroughly reviewed by Diaz (2009). However, research 
on mathematics education in Jesuit schools in Germany is extremely scarce. Furthermore, Diaz 
states a lack of research on classroom practice and that the “reality of teaching practices and 
curriculum […] need[s] […] further scholarship to understand the praxis of the Jesuit system.” 
(2009, p. 65) 

Following the presumption by other authors (e. g. Schubring, 1987) that teaching practices are 
determined by textbooks, we find the Notabilia a unique source. What makes it stand out from most 
other books in store of the library is that it has been edited by Hildesheim Jesuit mathematicians 
themselves. We may therefore start from the premise that the book was really used in classroom 
context and that it therefore serves as a source on actual Jesuit mathematics education. 

In this paper we take a closer look at the Notabilia Arithmetica in regard to possible implications 
about mathematics instruction in a Jesuit gymnasium. We start by giving some general information 
on Jesuit education as well as on the history of the Josephinum and its library. Following this, we 
introduce the Notabilia itself. We describe its content and take a closer look at indications of 
purpose and methodical aspects, using the hermeneutic approach. Finally, we contextualize it by 
drawing comparisons to what other sources tell us about Jesuit education. 
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The Jesuits’ role in education 
Following reformation and – as a consequence thereof – decline of Catholicism in the 16th century, 
the Jesuits drew on education in order to regain ground. Having officially been founded in 1540, the 
Jesuits soon started settling throughout Europe and the rest of the world and establishing colleges 
with associated gymnasia. Their education was characterized by a firm und uniform order, which 
was written down in the Ratio atque Institutio Studiorum Societatis Jesu in 1599. The Jesuit 
educational system became very influential and served as model for schools run by other religious 
orders, making it a relevant subject of research concerning mathematics education in the 16th and 
17th century.  

The Ratio Studiorum contains rules for the professors of the different subjects, and it is understood 
that it is due to the major influence of the famous Jesuit Christoph Clavius that mathematics has 
been taken up as a regular subject in there at all (Diaz, 2009). It was part of a two-year philosophy 
course, which comprised the subjects of the quadrivium and which followed on the grammar course 
and preceded the theology course. There was a clear focus on religious education whereas 
mathematics and the natural sciences did not play an important role within the curriculum 
(Hammerstein & Müller, 2005). This shows in the Ratio, as well: the paragraph containing rules for 
the professor of mathematics comprises less than one page, stating that three quarters of the physics 
course should be spent on Euclid and some geography or either astronomy in addition. Every month 
or every second month a mathematical problem shall be presented and discussed with a larger 
audience, and once a month the contents dealt with in recent lessons should be reviewed. 

Generally, the primary aim of education was to have students who were capable of using their 
acquired knowledge on practical problems. Therefore, repetition, practice and rote learning were 
important and common parts of scholasticism. Typically, a new subject was first presented in a 
lectio, then further treated in different quaestiones and finally memorized and repeated in written 
exams and disputationes. The students’ achievements were regularly publicly displayed and 
rewarded with prizes. There was a catalogue of textbooks that were supposed to be used in the 
Jesuit gymnasiums and which were preferably written by Jesuits, too. Hammerstein & Müller 
(2005) name some of these standard textbooks but none for mathematics.  

The Gymnasium Josephinum in Hildesheim 
A short history of the Gymnasium Josephinum 

The history of the Gymnasium Josephinum goes back to the year 815 when Louis the Pious – son of 
Charlemagne – founded the diocese of Hildesheim. It started out as a cathedral school located in the 
dome court, responsible for elementary education and being of high importance in the Middle Ages.  

In 1587 the first Jesuit priest came to Hildesheim and by 1595 the Jesuits had established a 
residence and started a new gymnasium alongside the old cathedral school, first only teaching lower 
grammar classes. In 1601 the residence became officially a Jesuit college. Due to the Thirty Years’ 
War the Jesuits were expelled from Hildesheim in 1634 but returned already in 1643 and in the 
following years the school grew further. It is not before this time that we have knowledge of 
teachers for mathematics and the natural sciences. Around 1660 a vicar bestowed money explicitly 
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meant for the constitution of four teaching positions for philosophy and mathematics and by 1664 
there was at least one specialist teacher for mathematics (Gerlach & Seeland, 1950; Pilz, 1995). By 
the end of the 17th century the school had been given the name Gymnasium Mariano-Josephinum.  

Since the Jesuit order was disbanded in 1773 the gymnasium was assigned to the diocese of 
Hildesheim again and it is still an episcopal secondary school located next to the dome today. 

As to the students, already around 1700 there was what we would nowadays call a heterogeneous 
student body, regarding the region they came from as well as their estate. Besides students from 
noble or bourgeois origin there were also the poor ones, the pauperes, who obtained free housing 
and who especially the Hildesheim Jesuits were said to take a lot of care of (Pachtler, 1894).  

The school library 

As early as 1595, the year that schooling was taken up, the Jesuits of Hildesheim also took up 
establishing an associated library. When they were forced to leave Hildesheim they had to leave the 
books behind, as well, and when they returned in 1643 they found the library had been marauded in 
the meantime. They restored it and started collecting books again. Due to donations, gifts and 
inheritance the stock grew considerably up to about 20,000 volumes. The library got again 
endangered during the Second World War and indeed the old school building that had housed the 
library was destroyed in 1945. Luckily, most of the books had been evacuated before to a church 
outside of Hildesheim. They were only retrieved in the late 20th century, which is why their revision 
is still ongoing. Today the remains of the Josephine library comprise about 13,500 volumes, a 
considerable part of which dates back to Jesuit times. The library has been incorporated into the 
dome library and up to now only about 5000 volumes have been catalogued (Schmidt-Thieme, 
2020). 

Several mathematical textbooks are part of the stock, not least because Peter Heckenberg 
bequeathed his private collection to the library upon his death in 1695. Heckenberg who was a vicar 
and librarian of the Josephine library in the 17th century was himself the author of some of these 
mathematical textbooks (for further detail see Schmidt-Thieme, 2020). Nevertheless, we do not 
know the number of these books yet nor what role they played for practical mathematics education. 

Standing out, though, are two booklets, both of them pocket-sized and especially noticeable as they 
were edited by mathematicians of the Hildesheim Society of Jesus themselves, leading to the 
assumption that these were produced for classroom work and therefore played a role in teaching 
practice. These are an arithmetic textbook by the name of Notabilia Arithmetica from 1703 and an 
edition of Euclid (Elementa Euclidis) from 1704. The latter still needs a closer look at. For what we 
found so far, it is most striking that we are dealing with an edition of Euclid’s Elements that lacks 
all the proofs (sine demonstrationibus is part of the full title) but all the propositions are basically 
reproduced. However, this paper deals with the Notabilia Arithmetica that seems to be an original 
work promising to give us further insight into the Jesuit mathematics classroom. 

Proceedings of CERME12 2061



 

 

The Notabilia Arithmetica 
General description 

The book’s full title is Notabilia Arithmetica quae Omnem Arithmeticam, ejusque varium usum, 
cum in aliis multis, tum maxime in Geometricis operationibus succincte proponent (Notable 
arithmetic that propounds briefly the complete arithmetic, its various uses, both in many other 
[things] and in most geometric operations), there is no author mentioned, but named as editors are 
mathematicians at the gymnasium of the Hildesheim Jesuit society. It has been printed in 
Hildesheim by Johannes Leonard Schlegel in the year 1703 and comprises 144 pages and 8 further 
uncounted sheets. Two of these added sheets differ slightly in the two copies that we worked with, 
so they might be drawn instead of printed. The Notabilia Arithmetica is written in Latin. The copy 
from the Josephine library shows a hand-written note, “biblioth paup 1709”, on the title page, 
suggesting that it has been incorporated into the bibliotheca pauperum, the library for the poor 
students.   

The book begins with a foreword dedicated to lecturers (lectori) and ends with some further 
suggestions for lecturers (monitio ad lectorem), so it is quite clear that it was written for teachers 
rather than for students even though it became part of the students’ library. It is explicitly called a 
compendium in the foreword, containing only what is necessary, so it was supposedly not meant for 
the introduction of new topics. The reason given for the booklet’s special format (approx. 8 cm x 13 
cm) is that this facilitates compiling it with other mathematical textbooks, namely especially some 
of those written by Peter Heckenberg1. 

The copy found in the Josephine library is not the only copy that has persisted, there are at least 
seven more: three in the dome library in Hildesheim, one in Hannover as part of the private library 
of Gerhard Molanus2, two in Münster and one in Trier, both of the latter being former sites of Jesuit 
colleges, as well.  

Structure and content 

Before we go into some focal points, we give an overview of how the book is structured and what 
mathematical subjects it contains. The content of the Notabilia is divided into four parts, each of 
which comprises several topics, rules and algorithms.  

The first part deals with integers and their basic arithmetic operations. It starts with numeratio – that 
is introducing figures and their names – and goes on with introducing meaning and procedures of 
addition, subtraction, multiplication and division, followed by rabdology, which is calculating with 
the use of Napier’s bones.  

                                                 
1 We have not found any books written by Heckenberg that share the same format yet, the remark might be an 
explanation, though, why the Notabilia and the Elementa Euclidis were both edited in this special format. 

2 Gerhard Wolter Molanus (1633–1722) was a professor of mathematics at the University of Rinteln, later abbot of the 
monastery in Loccum and acquainted with G. W. Leibniz, with whom he exchanged books from his private library. 
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The second part deals with fractions, starting again with numeratio, being followed by the rules for 
cancelling and the basic arithmetic operations for fractions. 

The third part is about arithmetic rules and contains a vast variety of subjects. It starts with a 
relatively long chapter (Cap. 11) on the so-called golden rule, also known as regula de tri (rule of 
three), and goes on with a much longer chapter (Cap. 12) comprising 16 common and widespread 
rules (Aliae regulae Arithmeticae in vulgari usitate), such as the regula falsi (method of false 
position), but also rules on arithmetic (e. g. the so-called Gauss sum) and geometric progressions 
and some combinatorics. The latter indicates Athanasius Kircher3 as source. The common rules are 
then followed by some shorter chapters on decimal fractions, some geometric rules (including 
trigonometry, measuring, planimetry and stereometry), astronomy, chronology (first of all 
computus), algebra (including extracting roots) and bookkeeping. 

The fourth part contains various things and we could describe it as comprising miscellanea. It starts 
with the definition of a number as a manyness composed of unities and some more definitions of 
special numbers (e. g. odd, even and perfect numbers), which are followed by an overview of 
population figures (Cap. 19). Next are surveys containing currencies, measures of capacity and 
length, square measures, some geography and chronometry (calendar). For all kinds of measures the 
local Hildesheim measures are included.  

These four main parts are followed by a synopsis of the whole book, condensed in XII. 
Propositiones Arithmeticae and twelve arithmetic paradoxes. The propositions are preceded by a 
short insertion that seems to be an announcement of a disputatio in the school. The booklet ends 
with an alphabetic index and the aforementioned hints for lecturers. Appended are three arithmetic 
tables and a geometric one, the latter alongside an explanation. 

Quite some things are noticeable about the mathematical content of the Notabilia Arithmetica.  

First of all it shows a vast variety of subjects, exceeding pure arithmetic by including topics like 
geometry, metrics, astronomy and geography. The inclusion of the latter can be explained with 
regard to the Ratio Studiorum, where astronomy as well as geography are explicitly named as 
possible subjects of lesson. As to geometry, there is no reference to Euclid but instead those areas 
are included that are less theoretical but have a relevance to practical applications. It appears that 
the same can be said about all the other topics and about the arithmetic chapters, as well. Especially 
chapters 11 and 12, which are the ones that deal with the rule of three and the other common rules 
and which therefore have a major relevance for everyday calculations, take up a big part of the 
whole work (altogether the two chapters comprise 20 pages). It appears that usefulness and 
applicability have been main criteria in choosing what subjects to include in the Notabilia and 
consequently – as it is called a compendium for teachers – in the mathematics classroom.  

Having grown out of a cathedral school and with a religious order being in charge of the school, one 
could have expected the arithmetic course to stand in the tradition of medieval Christian education, 

                                                 
3 Athanasius Kircher (1602–1680) was a German born Jesuit mathematician and seems a convenient source regarding 
that textbooks used by Jesuits should preferably be written by Jesuits, as well. 
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more precisely to refer to Boethian number theory. As we can see, this is not the case. The only 
exceptions are chapter 19, which includes some short definitions that resemble those we find in the 
works of Boethius, and chapter 11 on the rule of three where certain kinds of proportions are 
defined. Both parts added together comprise no more than five pages and especially chapter 19 
stands out from the rest. Instead the content rather strongly resembles the content of the arithmetic 
books written by Renaissance reckoners.  

This prioritization of content seems again plausible with regard to the aims of Jesuit education as 
mentioned above, namely the ability to apply knowledge and solve practical problems. In 
comparison to the Ratio Studiorum, though, it is striking that arithmetic is not scheduled there at all, 
let alone to such an extent. The existence of the Notabilia Arithmetica therefore serves as a proof 
that Jesuit mathematics education – at least as far as Hildesheim is concerned – has exceeded the 
standards by including arithmetic and further practical knowledge to a considerable extent. 

Methodical references 

Due to the Notabilia being a sole compendium, we cannot draw conclusions about the introduction 
of new mathematical concepts, procedures and propositions from it. But nevertheless, there are 
features that are interesting from a methodical point of view.  

One thing that is noticeable is that several cross references can be found within the main parts of the 
book so we may assume it was one aim of the author(s) to write a book that was user-friendly. The 
existence of the alphabetic index and the comprehensive propositions at the end support the 
impression that the book was meant for practical use and possibly to serve as a reference book that 
was easy to use. 

Another thing that attracts attention is that for some topics, e. g. the rule of three and calculating 
with fractions, we find guidelines regarding how to do exams and what theory needs to be proven. 
One example that we will now take a closer look at is chapter 11, the chapter on the rule of three. 
After different variations of the rule are presented a paragraph follows that is captioned Regula 
aurea Examen & Theoria (p. 40-41). As to exams it is said that the rule should be examined in all 
its variations, but with an emphasis on the simple rule in opposite to the regula composita. 
Regarding theory, we find standards that are to be followed. First, it is explained for the basic rule, 
how the figures that are involved in the calculation are interrelated by referring to their 
proportionality. The proportionality is then used to show how and reason why the fourth figure can 
be calculated from the other three. The passage ends with Quod erat demonstrandum, before the 
same argumentation is done for the inverted rule. As for the regula composita it is stated that it 
leads to the same problem already treated, a fact that will please the students. This bit creates the 
impression that a certain students’ pleasure is granted. Finally, it is indicated that the majority of the 
common rules following in chapter 12 can be derived and proven from the rule of three and that it 
therefore suffices to learn the former. 

In this paragraph we find confirmed that there are rules that are to be followed by all (at least all 
Hildesheim professors), even for an area that is not covered by the Ratio. We also find confirmed 
that exams are an important part of the curriculum, otherwise they would hardly be mentioned in a 
booklet that comprises only what is most necessary. The emphasis on the simple rules leaves 
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several possible explanations. In the first place, one could take it as evidence for the minor 
significance attributed to mathematics within the Jesuit curriculum. It might just as well be an 
expression of time shortage, which is something we must assume considering the small amount of 
time that the Ratio allows on mathematics, even more as it is already exceeded by the variety of 
arithmetic topics. The explications also suggest another reason, namely the subject’s internal 
material logic that allows us to deduce special rules to basic rules respectively to trace them back 
vice versa. Altogether the Notabilia Arithmetica shows us that despite the emphasis on practical 
knowledge Jesuit arithmetic education went beyond the pure memorization of algorithmic 
procedures. Even though a lot of the content reminds us of the Renaissance reckoning books, in this 
regard there is a considerable difference.  

One thing that does not become clear from the remarks on demonstrations is whether they reside 
only with the teachers or are presented by students, as well. Exams were usually written but another 
part of the book gives us further insight, namely the aforementioned announcement of a disputatio 
(p. 136), which stand out in a curious way. There are no further comments about it and there is not 
even space between it and its adjacent sentences. We are only told that the disputation took place on 
the 5th of September 1702 in the school’s public auditorium. Participants are named as Domin[i] 
Antonio Fondeux and Leo[n]ardo Fischer and as opponents Joanne Robeck4, Andrea Antonio 
Neuhaus and Johan. Angelo Schwartz. We have no further information about the actual event but 
the announcement tells us that disputations on arithmetic were conducted at all. We may assume 
that these were events where students were meant to present propositions, proofs and explanations 
that they memorized from their teacher’s demonstrations. The fact that the announcement is 
exposed in the Notabilia might nevertheless be a hint that we are dealing with an outstanding event 
and that arithmetic disputations did not take place regularly. 

Conclusion 
We find that the Notabilia Arithmetica has been written for teachers of mathematics, as a 
compendium of the topics from arithmetic lessons and as a reference book for necessary arithmetic 
knowledge. The Notabilia does not serve as a methodical manual for the introduction or 
development of mathematical procedures or concepts but it does include guidelines on what 
contents should be proved and how this reasoning was supposed to be done. In addition, it includes 
instructions on what was to be reviewed in exams. Even though the book was meant for teachers, it 
became placed at the poor students’ disposal. Seemingly, some teacher or librarian regarded it as 
useful for them, too. 

As for the content, the Notabilia shows a strong emphasis on practical applicability and 
computational abilities. This corresponds with the general aims of Jesuit science education but 
exceeds the standards for the professors of mathematics as we find them in the Ratio Studiorum, 
concerning both extent and topics. We may assume that there was a general need for usable 
arithmetic knowledge which was satisfied by the Jesuit educators or either a strong reckoning 
                                                 
4 Johann R. Robeck (1672–1735) from Calmar, Sweden, was a philosopher who is best known for a treaty on suicide 
for theological reasons. 

Proceedings of CERME12 2065



 

 

tradition going back to Renaissance reckoning masters. In any way, Jesuit mathematics education 
covered much more than Euclid’s Elements and it can be assumed that the Notabilia Arithmetica 
arose from practical need for an arithmetic textbook that presented the subject matter in short and 
that served as a kind of teaching aid for lecturers, just as the Elementa Euclidis did for Euclidean 
geometry. This assumption is supported by the apparent absence of a standard textbook for 
mathematics and especially elementary arithmetic in the catalogues of such standard books. The 
fact that the book seems to have found its way into other Jesuit colleges, as well, might be another 
instance showing us that a textbook that summarized arithmetic was required for teaching practice. 

This paper is just a starting point from which much more research on the topic needs to be done. 
Such future research must include analysis of and comparison to further books from the Josephine 
library and locating our findings in the broader context of Jesuit education. The latter comprises the 
more general context as well as special ideas concerning mathematics education, in particular those 
of Christoph Clavius (for more details on the role of Clavius see Diaz, 2009). 
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One effect of working with original sources in mathematics classes that is repeatedly mentioned is 
the stimulation of reflection on mathematics and, as a result, a change in the students' mathematical 
beliefs. In the context of the teaching project presented here on working with Bernoulli's first 
textbook on calculus, this could be impressively confirmed empirically by means of a qualitative 
study. The article is dedicated to the conception of the teaching sequence, as well as first results of 
the empirical evaluation, and also poses the question of the conditions for dealing with original 
sources in a digital setting in a reflection-stimulating way.  
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Working with original sources as a unique tool 
The integration of the history of mathematics can not only contribute to the acquisition of process-
related competencies and deeper understanding of the role of mathematics in the world as required 
by the curriculum, but also promises meaningful experiences with mathematics. Potential 
opportunities as well as difficulties depend strongly on the type of historical references used and 
also on the method chosen. Therefore, with regard to the teaching project discussed here, we first 
take a special focus on the motivations and problems specific for working with historical sources. 
Working with historical sources not only makes it possible to learn something about the history of 
the subject, but, if the source is chosen appropriately, it also offers the rare opportunity to gain 
insights into real (historical) research work in mathematics lessons. Thus, authentic insights into the 
thinking and working of researching mathematicians become possible. The ICME Study (2000) in 
this context lists three motivational fields: "replacement," "reorientation," and "cultural 
understanding" (Jahnke et al. 2000, p. 292). Thus, especially the work with historical sources is said 
to have the possibility to complement the learners' beliefs of mathematics by the aspect of 
mathematics as a process and human cultural achievement and thus to contribute to a more 
comprehensive picture of mathematics among the students. This initially theoretically expected 
outcome could also already be confirmed in various empirical studies and traced back to 
experiences within the history of mathematics (cf. e.g. Jankvist, 2015, or the approaches referred to 
in Bütüner, 2015). Furinghetti et al. (2006) implicitly take up this and add two further aspects to the 
three prominent points mentioned above: In addition to the opportunities for deeper understanding 
they also address potential problem areas. On the one hand, a historical text cannot be completely 
grasped on the first reading, and the interpretation is not clearly right or wrong, unlike what we are 
used to in mathematics classes. On the contrary, a hermeneutic, discursive approach like known 
from humanities is required here, which is clearly different from the ordinary experience in 
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mathematics classroom and to which both the learners and the teachers must be prepared. This is 
also true for the different levels of language, which have to be switched between, if mathematics 
from the source is to be connected with today's school mathematics. The differences are to be made 
fruitful as an irritation that promotes understanding. The language competence necessary for this is 
certainly a high hurdle for many students, to which appropriate assistance must be provided. 
However, if these hurdles, created by the difference of mathematical representation in historical 
texts, are taken up and (at least partially) overcome, it is precisely these differences that offer the 
opportunity to reflect on the mathematics we have known so far and to enter into discussion: 

"Sources from mathematics history that defamiliarize the familiar arouse epistemic curiosity and 
trigger reflections in the classroom in a natural (intrinsic), effective, and performance-enhancing 
way." (translated from Glaubitz, 2010, p. 30)  

This thesis particularly emphasizes the role of the source as an occasion for reflection on 
mathematics at various levels (see below).1 To summarize the motives outlined here, mathematics 
history especially by working with original source-texts does not function first as a “tool” (among 
others) for learning mathematics (cf. Jankvist, 2009), but rather as a (possibly unique) tool on the 
way to a valid image of mathematics and to meaningful experiences in mathematics education.   

With regard to teaching practice, at least two research questions are following: Is there empirical 
evidence for the claim that working with historical sources leads to increased reflective 
competence? And if so, which conditions for success can be named? In order to answer these 
questions, we will first present a project in calculus classes in a digital setting and after that discuss 
the empirical evaluation of student products with regard to different levels of reflection. Finally, 
first conditions for success for a reflection-oriented (digital) use of historical sources in 
mathematics lessons will be derived from this project. 

A teaching project on Bernoulli's differential calculus 
We are convinced that the opportunities described will not happen by themselves. Rather, good 
methodological framing is necessary.2 This is especially true if the use of sources does not take 
place in face-to-face lessons, but must take place in a digital setting. How this can be done 
successfully is shown by the project presented below, in which the source work was rather closely 
guided and methodologically accompanied. As meant by the hermeneutic approach to original 
sources (cf. Jahnke, 1991) the project was organized as the ending of the “normal” calculus series in 
Q1 (Grade 11 in German Gymnasium) in an mathematics course of a manageable size with 18 
students. The course is characterized in particular by the fact that almost all students have at least 
average mathematical competencies. Only three students deviate downwards in this respect. In 
addition, the course as a whole shows a high willingness to perform and a readiness to engage with 
unusual content and methods. In contrast to the teaching project on Bernoulli's differential calculus 

                                                 

1 Reflection on mathematics and its relationship to environment, and the individual is repeatedly seen as a contribution 
to general mathematics education (cf. Bauer, 1990, Skovsmose, 1998 or Lengnink, 2006). 

2 For a discussion on possible methods for introducing and reading historical texts in general see Junker & Spies 
(2020). 
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presented by Jahnke (1995), our project started by a specific introduction to the historical context of 
the source dealt with. In addition, hermeneutic reading of the source was guided to a greater extent 
than was intended by Jahnke. Due to the corona-related school closure, the project ultimately took 
the form of a digital guided source study in which the focus was on a sort of “interrupted reading” 
(cf. Metz et al., 2007) of the source excerpts flanked by work assignments.3 These consisted of 
reproducing the newly learned historical procedures and tasks aimed at tracing Bernoulli's 
argumentation in detail and clarifying the unfamiliar historical terminology. This was accompanied 
by writing assignments. Due to the fact that there was no possibility for direct interaction while 
working, the formulations of the assignments were very small-guiding and pointing the students to 
the criucial points explicitly. Students were required to submit their assignments and each received 
individual feedback on their results. Questions regarding the content could also be directed to the 
teacher at any time via e-mail. At the end of each work block, explanations and answers were 
provided for everyone in various digital formats in response to questions asked and uncertainties 
observed. In this way, questions and uncertainties of individuals could be answered and at the same 
time productively turned around for the other students. By this at least indirectly the group was 
addressed despite the isolated way of working at home. 

The project was introduced with a podcast that was supposed to introduce the students to the 
mathematical-historical situation around 1700 related to the beginnings of differential calculus and 
the scientific debate between Johann Bernoulli and his colleague Marquis de l'Hospital. The podcast 
did not yet contain mathematically relevant details, but served mainly to give the students an insight 
into the possibilities of scientific exchange and to point out the special situation between Johann 
Bernoulli and l'Hospital (cf. Jahnke, 1999). The format of a podcast was chosen in order to 
preserve, in the spirit of “StoryTelling”, the character of oral storytelling and its advantages over a 
read story (cf. Alchin, 2011 or Heering, 2016), even in digital format. Furthermore, the constellation 
described in the podcast could be taken up again at the end of the series by asking the students 
themselves to enter into a scientific exchange with Johann Bernoulli as l'Hospital. In order to 
prepare the students for the unusual fact that Johann Bernoulli did not use the representation of 
functions in a coordinate system to introduce the differential, an excursus was made on the 
possibility of constructing parabolas without a coordinate system. In several explanatory videos, the 
students were given the opportunity to reproduce such a parabola construction using only compass 
and ruler and to repeat relevant mathematical content (Thales' theorem and the geometric mean 
theorem). This was followed by an initial view in Johann Bernoulli’s Text - an excerpt in German 
translation from the work "Die Differenzialrechnung" (Schäftlin, 1924), which dealt with the 
introduction of the postulates fundamental to his work as well as the derivation of the differential of 
the quadratic function. In a small-step, task-guided analysis of the short source excerpt, the students 
should interpret the derivation of the "rule of derivation" for parabolas geometrically. On the one 
hand, this rather small-step approach to Bernoulli's geometrical way of reasoning is due to the 
experience that even advanced mathematics students showed great problems in leaving the context 

                                                 

3 Due to limitation of space we can’t present the tasks and materials in detail here. An english translation of some of the 
used texted in and classassignments is available online via https://www.uni-siegen.de/fb6/phima/mu/schulprojekte.html 
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of 'function, coordinate system, function graph' and following the geometrical arguments when 
working with this source (cf. Spies & Witzke, 2018). On the other hand, even in high school 
students usually have little experience in approaching a mathematical text independently, which is 
especially true for historical mathematical texts. The questions posed in the tasks thus exemplify to 
the learners how such a text can be approached, how deep one has to turn to each character with 
'pen and paper' in order to really understand the mathematical argument. Through the questions 
asked, the repeated reading and the repeated comparison of what is read with one's own - in this 
case elementary geometric - (pre-)understanding, i.e. the reading in the hermeneutic circle  is 
instructed.4 This example shows, however, that the difference between "mathematical reading" and 
the reading of texts in the humanities or fiction, for example, can be experienced at least implicitly 
in the intensive examination of historical texts and thus a reading competence is trained that is 
indispensable for later (mathematics) studies. Because for Bernoulli's work, the notion of 
differential is of central importance, this initial source work was concluded with the task of writing 
a fictional entry for Diderot and d'Alembert's Encyclopedia of Knowledge on the meaning of the 
term differential. The genre of the encyclopedia article calls for the formulation of thoughts in an 
educational language, thus leaving behind both the level of (historical) technical mathematical 
language and individual linguisticization in the process of understanding. The change of language 
level not only initiates reflection on content, but is also considered an educational goal in 
mathematics education (c.f. Jahnke, 1991, p. 8). Besides, this task also points to the encyclopedia as 
a work that shaped the science of the Enlightenment and, with Diderot and d'Alembert, at least to 
two other greats of the time. In order to bring the students to a common level of learning for the 
following tasks, an explanatory video was created afterwards, in which the problems of 
understanding that had become apparent in the processing of the tasks, especially with regard to the 
concept of the differential, were taken up and attempted to be solved. Following the derivation of 
the differential, the first task from Bernoulli's textbook was to be reproduced, namely the 
construction of the tangent line to a parabola point. Here, too, we decided on a small-step, question-
guided analysis of the source aimed the independent construction of a tangent to any parabola point. 
The tasks in this block are intended to sharpen the eye for the peculiarities of a geometrically 
reasoning calculus: While in school lessons, in which the slope of a tangent at a given point x0 is 
searched for or the derivative function is to be determined, Bernoulli solves the classical ancient, 
geometrically formulated tangent problem for a conic section. Thus, a second point is to be 
constructed for an arbitrary curve point in order to be able to construct the tangent line in this point 
on the basis of Euclidean geometry.  The term "subtangent" mentioned Bernoulli‘s solution is an 
example of a mathematical term that was mathematics-common at the time and in the context of 
Bernoulli's argumentation, but which is unknown in (school) mathematics today. Here the students 
can also experience a development of mathematical terminology. By asking the students to 
construct the tangent line on their own at the end, it was at least possible to ensure that those 
students who were able to do so had a rough understanding of the theory. Just as after the first 

                                                 

4 For the students in the project it was the first time to deal with historical sources in mathematics classroom. Perhaps 
there is no such small-steped guidance necessary if there is more experience in hermeneutic reading and if the teacher 
has the possibility to interact directly with her students.  
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source work, an explanatory video was after this block, too, which was supposed to answer 
questions of the students that arose during the processing of the source work and which tried to 
solve problems of understanding that appeared in the students' results. 

To conclude the project, the students should now take on the role of l'Hospital themselves and enter 
into a fictive scientific exchange with Johann Bernoulli. In a letter, they were to address their 
questions regarding Bernoulli's procedure for the determination of differentials and the construction 
of tangents to Bernoulli, by comparing their newly acquired knowledge with their previous ideas of 
differential calculus.5 This task also served the purpose to ask last open questions for understanding. 
It is noticeable that the letter form was well received. Most of the students kept the letter form given 
at the beginning in their own texts and obviously enjoyed writing down their thoughts in this style. 
The questions and reflections touched on a very wide range of topics: They ranged from questions 
about concrete conclusions in the source excerpt read, to astonishment about the geometric method 
of constructing and discussing curves and the validity of Bernoulli's postulates, to the question of 
why this type of calculus is not part of the curriculum. At the end a response from the teachers again 
as a letter on behalf of Johann Bernoulli addressed all of these issues and collected questions from 
the students to address and clarify. Obvious misconceptions were addressed and could be cleared. 

Levels of reflection within the students letters – Qualitative content analysis 
The students’ letters to Johann Bernoulli are written testimonies that in a certain sense document 
first effects of the source project.  The “scientific exchange” in the letter format also leads to 
relatively open and personal formulations of the thoughts. The students' documents thus allow 
conclusions about the extent to which the source work actually led to reflections on mathematics. In 
order to examine the students' letters in a structured way the documents were read following the 
method of qualitative content analysis (Mayring, 2002). The units of analysis thereby resulted from 
the sections of meaning within the letters. Guided by the expectation to find testimonies of personal 
reflection on mathematics, the levels of reflection also formulated by Glaubitz (2010) following 
Bauer (1990) were first used as deductive categories: the object level, which contains both the 
reflection in the mathematical work and the reflection on the object, directed "to the essence of the 
discipline". Furthermore, there is the level of meaning, which includes the reflection on the meaning 
of working with mathematics as well as the reflection on the meaning and limits of mathematical 
thinking itself. And finally, the level of self-reflection, which contains the reflection about the 
effects of the occupation with mathematical contents on the possibilities of the own thinking and 
acting as well as the reflection about the role of mathematics for the own person and the own self-
conception. As a result of a first review of the material, the object level was again divided by us into 
three levels and thus the category catalog was inductively expanded. On the one hand, there is the 
level in which mainly a comparison of different mathematical methods and approaches is made 
(level I). Furthermore, we distinguish here a level in which thinking about a transfer of 
mathematical approaches and methods to obvious questions and problems beyond the treated 
mathematical problem takes place (level II). And as a third level we have singled out the level that 

                                                 

5 While the previous are past-related tasks, this writing task is a present-related task in the sense of Schorcht (2018). 
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involves reflection on the question of the genesis of mathematical content and problems (level III). 
These sub-areas of the subject level correspond at the same time to different requirement areas of 
mathematical tasks. With this subdivision, we thus map the very different levels of object reflection 
that are visible in the letters. The analysis of the letters based on these categories show that each 
category can be found in several examples6. So one can be justified in hoping that the treatment of 
also historical perspectives and contents in mathematics lessons can reach the most diverse levels of 
reflection. Almost all of the students' letters contain expressions such as "exciting," "surprised," 
"impressed," or "interesting,". This shows that the confrontation with historical mathematics also 
had an emotional effect and that, similar to the reflection on aesthetic experiences with mathematics 
(cf. Müller-Hill & Spies, 2015), meaningful experiences are documented here as well. Furthermore, 
these are all clear indications that most of the students were able to use the series of lessons to 
restructure their own understanding of mathematics and its meaning, to add new aspects, and to 
expand their repertoire of ways of thinking about mathematical questions.  Through the analysis of 
the letters to Bernoulli, we can thus assume that the students' engagement with the mathematical 
content was stimulated at various levels, some of which were high, and also at structurally different 
levels. This provides further empirical evidence for the theoretically assumed effectiveness of 
historical sources in mathematics education. 

Suggesting conditions of success (not only) in a digital setting 
The evaluation of the final letters shows that the students were stimulated to reflect deeply on a 
wide variety of levels through their intensive engagement with the historical source material. This 
finding is nevertheless astonishing, since often in particular the direct exchange about the readings 
of the learners among themselves and with the teacher as well as the openness of the task in the 
context of the hermeneutic method is described as a special moment, which stimulates the reflection 
in the first place. However, precisely these aspects of the source work had to be omitted in the 
digital implementation of the project. Therefore, in conclusion, some methodological conditions 
will now be discussed here, which allow historical source texts to become an occasion for reflection 
in mathematics lessons even in the digital setting. 

Working with original sources requires a framework that can both convey a sense of the historical 
context and motivate work with the historical text (which is usually outside the curriculum). In a 
digital setting, this might be done with the help of a podcast, a historical documentary, or an 
introductory text. Depending on the format chosen, a more or less differentiated picture of the 
historical context is drawn. A deeper understanding of the source continues to be a necessary basis 
for successful reflection. This in turn requires that on the one hand the professional as well as the 
historical preconditions are given in order to be able to do something with the historical 
mathematics. In the project described, a first important step was to introduce the students to the 
geometric construction of the parabola in order to be able to recognize the geometric-analytical 
arguments in the source text as such. So the alienation effect of the source does not become a 
barrier to understanding. In a digital setting, such an introduction can take place, for example, via an 

                                                 

6  Cf. Junker & Spies (2020) for exemplary quotations for each category 
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explanatory video or a text flanked by tasks. On the other hand, a more in-depth individual 
engagement with the text is necessary. As described above, we believe that this cannot be initiated 
by a simple reading assignment, at least in a digital setting, but requires questions that guide the 
reading, encourage repeated reading, and draw attention to the central parts of the argument. 
Although such guidance in face-to-face classes can, of course, happen in individual exchanges, one 
advantage of the digital course emerged here: All students could (and had to) work intensively on 
the sources on there own. Thus, the work was done at the individual pace and each individual had 
the chance to experience that he or she is able to work out a completely unknown content and to 
comprehend the unfamiliar mathematical way of reasoning, since there was simply no possibility to 
have a contact person immediately in case of difficulties in understanding or to wait until the issue 
is clarified in the plenary. Even if the experience of competence and deeper understanding is 
certainly an important basis for a successful reflection, the direct exchange is naturally missing in a 
purely digital setting, which in turn would have led to fruitful discussions and reflection about the 
subject matter. In order to move from an in-depth reading of the source excerpt to reflection on 
what has been read, the mathematical argumentation must be left behind and the meta-level must be 
taken up. This also needs to be instructed. In the digital setting, this step can be stimulated, for 
example, by writing assignments, as it was done in the project presented here by the encyclopedia 
entry on the differential and the concluding letter. It is important to choose a form that stimulates 
the change of language levels in a natural way and also encourages the students to connect the 
historical argumentation with their previous knowledge. Again, the advantage of the purely digital 
setting is that own thoughts have to be formulated individually. On the other hand, there was no 
need for communication about the individual results, which would certainly have led to fruitful 
discussions, since ideas can be taken up directly, thought through further and then formulated 
together. The experiences in the presented project show that source texts can also become an 
occasion for reflection in a purely digital format if the discussed conditions for success are met. 
Above all, the experience of (guided) individual engagement with the text and writing about 
mathematics turned out to be important factors for successful reflection. The missing exchange 
about what was read could at least in part be taken up by direct feedback and interposed explanatory 
videos, even if here of course the potential can only be exhausted in real communication about 
historical mathematics. It can therefore be assumed that a combination of digitally guided intensive 
individual source work and the exchange about it in face-to-face lessons with a subsequent writing 
task to be worked on individually would be a format that could strengthen the observed effects and 
that the "foreign and bulky" of the source texts could be used productively in class. 
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Concurrence of two mathematics worlds in the Netherlands, 1600 and 
beyond 

Jenneke Krüger  
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In the early 17th century at the University of Leiden, mathematics courses in the Liberal Arts and a 
mathematics course for surveyors and engineers in  Dutch language existed peacefully next to each 
other, with some pathways between them. The reasons for this unique situation, the relation 
between the different mathematical courses and the characteristics of the Dutch language course 
are discussed. The design of the Dutch language course has some aspects in common with modern 
curricula. Two questions arise. Did this course influence the mathematics education in the next 
centuries? Was the Dutch language course a first step towards the development of mathematics as a 
school discipline? The second part of the paper attempts to find answers to these questions. 

Keywords: History of mathematics education, mathematics for practitioners, engineering school, 
mathematics as school discipline, mathematics teachers. 

Introduction 
Towards the end of the 16th century two different worlds of mathematics and mathematics teaching 
may be distinguished in North-western Europe. One was the learned world of mathematicians at 
universities, at other institutes of learning, or working independently, whose object of study was the 
mathematics of the Greek mathematicians, their translators and commentators. It was a world of 
theory, in which an increasing number of ancient works became available for study, encouraging  
the development of mathematical theory. The language of communication was Latin, obligatory at 
all universities, the language of the men of learning. Mathematics teaching formed a part of the 
Liberal Arts, the general education as a foundation for the higher faculties. The students followed at 
least lectures on pure mathematics (number theory and Euclidean geometry), sometimes followed 
by mixed mathematics, subjects such as astronomy, mechanics, and cosmography. 

The other world was the practical world of the common people, practitioners who didn’t know Latin 
and who used some mathematics as a tool in their working life. Their grasp of mathematics might 
be extensive, but often it was  very limited, without much theoretical background. In this practical 
world of surveyors, bookkeepers, building masters, military architects, traders, navigators, etc. there 
were as yet no teaching institutes. Private instruction by reckonmasters, self-instruction and learning 
at work were the main avenues to mathematical knowledge. The mathematics taught was primarily 
practical, without much attention to mathematical theory, confined to routines that seemed to work 
in a specific situation. 

This changed in Leiden around 1600, at the university, which was established in 1575 as the first 
university of the northern Netherlands. The mathematics lectures, in Latin, in the Liberal Arts 
faculty were taught by Rudolph Snellius, while from 1600 a Dutch course for surveyors and 
military engineers flourished, under responsibility of the University and taught by university 
professors. This last course became known as Duytsche Mathematique (Dutch Mathematics). The 
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reasons for this unusual situation, some characteristics of and the relations between the two 
mathematics form the subject of the first section of this paper. Two questions arise. 

1) Are influences of the characteristics of Duytsche Mathematique recognisable in mathematics 
education in the Netherlands during the 17th and 18th century? 

2) Was the engineering course an isolated incident or a first step towards mathematics as a 
school discipline?  

Following (Chervel, 1988; Cardon-Quint & d’Enfert, 2017) a school discipline is taken as a subject 
taught in institutes, with specific teaching and learning goals, development of specific content 
partially independent of academic mathematical sciences, dedicated teaching methods, learning 
means, tests and examinations and taught by a body of professional subject teachers. 

Mathematics teaching at Leiden University in the early 17th century, an 
innovation 
The governors of the new Leiden University did their utmost to invite humanistic scholars with a 
good reputation to become professor in Leiden. As was the case in the older renowned universities, 
the theoretical framework for the faculties consisted of the works of Greek and Arabic authors, such 
as Aristotle, Euclid, Ptolemaeus, Hippocrates, Galenus, Avicenna and Averroës (Otterspeer, 2008). 
Justus Lipsius, Joseph Scaliger and Claudius Salmasius were some of the more famous scholars 
who came to Leiden, in return for a very good salary, free living and exemption of the obligation to 
give public lectures. Their names warranted quality of the university; they were expected to attract 
many students.  

The first appointments were in the three main faculties: Theology, Law and Medicine, followed by 
Literature and Languages (classical and eastern) and Philosophy. Mathematics had a low priority; 
during the first years there was no professor for the undergraduate mathematics courses. In 1581 
Rudolph Snellius (1546-1613) was appointed, a graduate in the Liberal Arts of the Calvinist 
University of Marburg. In Marburg he became an enthusiastic follower of Petrus Ramus (1515-
1572), the French humanist and educational reformer. Ramus had proposed a shorter, well-
structured curriculum, which combined theory with practical exercises. For mathematics he 
proposed to teach only those parts of Euclid and other authors which were useful to the students and 
to combine theory and practice (Wreede, 2007).  

Snellius was not the only follower of Ramus at Leiden University, moreover he favoured teaching a 
variety of authors, both the ancient and modern. Some of the authors he taught were Ramus, 
Valerius (Physica), Euclid (Elements, Optics), Maestlin (a follower of Copernicus) on cosmography 
and astronomy, and classical authors such as Aratus, Proclus and Plinius (on geography). Being a 
Ramist meant he would be inclined to value mathematics used for practices on its own merits. 
Around 1605 Rudolph gave lectures on geometry, geography and optics, his son Willebrord assisted 
him with lectures on arithmetic and astronomy. Willebrord Snellius (1580-1626) was taught by his 
father, he also was a student of Ludolf van Ceulen (see below) and of Joseph Scaliger. He went on 
to become a highly praised and very productive mathematician, who succeeded his father in 1613 
(Wreede, 2007).  
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Towards the end of the sixteenth century the commanders of the Dutch army, Maurits van Nassau 
(1567-1625) and Willem Lodewijk van Nassau (1560-1620), realized they would need many more 
mathematically trained engineers and surveyors to maintain their military advantage over the 
Spanish army. There were a few mathematically knowledgeable military engineers such as Adriaan 
Antonisz. and Samuel Crop and some practitioners such as Ludolf van Ceulen, who based their 
practices on sound theoretical mathematical knowledge, without knowledge of Latin, but they were 
few. Maurits, son of Willem van Oranje1, had been a student at Leiden University, where he met 
Snellius and a fellow-student, Simon Stevin (1548-1620). Stevin, a good mathematician and 
engineer, became the tutor, quartermaster-general and principal advisor of Maurits. Together they 
convinced the curators of the University of Leiden to establish a separate course in Dutch language 
for surveyors and military engineers, the Duytsche Mathematique. It started officially in January 
1600 with a curriculum prescribed by Stevin in the Instruction. Stevin designed an efficient 
curriculum, with the content, teaching methods and work forms prescribed. Theory preceding and 
alternating with practice; a method of study very much favoured by Stevin (Krüger, 2015). The 
course itself, the use of a written curriculum and the teaching language were an innovation.  

The first professors who taught Duytsche Mathematique were Ludolf van Ceulen (1540-1610) and 
Simon Fransz. van Merwen (1548-1610). Simon Fransz. Van Merwen was a surveyor and 
burgomaster of Leiden. Ludolf van Ceulen was a respected mathematical practitioner, who taught 
mathematics and fencing and served on some committees advising the government. He didn’t know 
any Latin but was very accomplished in geometry. He is best known for his calculation of the first 
35 decimals of . Van Ceulen passed away in December 1610, whereupon his former student, 
assistant, surveyor and army engineer, Frans van Schooten, continued the lectures and the practice 
sessions in the field. At first as a temporary lecturer, from 1615 as professor Duytsche 
Mathematique (Krüger, 2018). His extensive and well-illustrated lecture notes2 (BPL 1013) provide 
information on the content, structure, and didactic approach of the course. Van Schooten followed 
broadly the Instruction, with some adaptations and with deliberate didactics. In BPL 1013 
calculations of roots, using decimal numbers is followed by some geometry and the principles and 
practice of surveying. This is followed by advanced surveying techniques, advanced geometry, 
calculations of volumes and wine gauging. Students who had come this far could take an exam to 
become an admitted surveyor, Rudolph Snellius had been an examiner on behalf of the university. 
The second part of the lecture notes is about fortification, defined by Van Schooten as the art to 
build and defend fortifications as well as the art to attack and conquer fortified places.  

In 1646 Frans van Schooten Sr. was succeeded by his eldest son, Frans van Schooten Jr., a very 
talented mathematician, who edited a new edition of Viète’s work and translated Descartes’ 
Geometry into Latin. He used the lecture notes of his father, but also gave lectures on logarithms, 
algebra, and sundials (Dopper, 2014). Though Frans Jr. was more a scholar than a practitioner, he 

                                                 

1 Willem van Oranje was the leader of the Dutch revolt against the Habsburg rulers, until his murder in 1584. 

2 BPL 1013, University Library Leiden, special collection 
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maintained contacts with surveyors and engineers, even if he was not himself a surveyor and 
engineer as his father had been.  

Ludolf van Ceulen, Simon Stevin, Willebrord Snellius and Frans van Schooten Sr. all served as 
examiners for the admission of surveyors in the province of Holland (Krüger, 2014). In the 
academic lectures the professors taught the theory of mathematics as developed by Greek and 
Arabian scholars and their interpreters, with Latin as teaching language. The Duytsche 
Mathematique on the other hand taught which mathematics to use and how to use it in specific 
practical situations, with Dutch as teaching language, in interaction with practitioners. In Leiden, 
during the first half of the 17th century these two mathematics programmes, with different aims and 
content, existed peacefully together with links between them through the actors involved. Many 
factors, political, social, personal, were at the basis of this unusual situation. 

Mathematics education during the 17th and 18th century 
In 1681 the Duytsche Mathematique was abolished. It was reintroduced in 1701, as a theoretical 
university course, taught by a lecturer and it never regained the fame it had in the 17th century. Until 
well into the 19th century mathematics remained a rather unimportant part of the undergraduate 
program. However, the interest of university professors in technical applications increased. For 
example, civil architecture, hydraulics, steam engines, windmills, optics, navigation, and 
fortification were at one time or another subject of lectures at the universities of Leiden, Franeker 
and Utrecht (Krüger, 2014).  

In society the notion that mathematics was relevant for many crafts and professions gained 
acceptance. In primary schools there was a gradual improvement in the position and quality of 
arithmetic teaching. Virtually every village and town had at least one primary school, for which the 
local government was responsible. In the more ambitious towns mathematics formed part of the 
comparative examinations for a teaching post, a mathematics journal for teachers was published 
from 1754 (Krüger, 2019). Between primary education and university education the contours of on 
the one hand general education, on the other hand vocational education became visible. 

General education as a preparation of boys for university took place in Latin schools and Illustrious 
schools. In so-called French schools general education prepared the sons and daughters of well-to-
do citizens for their position in society. Latin schools offered no mathematics or sciences, Illustrious 
schools offered a range of subjects in Latin, but some mathematical topics were taught in Dutch. 
Examples are fortification and navigation at the Illustrious school in Amsterdam from 1743-1762; 
geometry, arithmetic, algebra, and fortification were taught at the Illustrious school in Deventer 
from 1690-1727. The mathematics taught in French schools depended on the headmaster-owner. In 
all these institutes the content was mainly determined by the teacher and was theoretical, though 
teaching applications. There was no formal curriculum for any type of school.  

The perceived relevance of mathematics for many professions and crafts was reflected in the 
relative abundance of textbooks being printed and in the existence of many small private schools 
and teachers offering private mathematics lessons (geometry, navigation, fortification, 
bookkeeping, etc.). Naval colleges were established to teach mathematical skills to navigators and 
from the late 18th century drawing schools and lessons in mathematics and drawing in orphanages 
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became more common. Both in vocational training and in general education, mathematics teaching 
was haphazard, depending on initiatives and skills of individuals, with no written curriculum nor a 
system of examination. Neither was there a group of professional mathematics teachers (Krüger, 
2019).  However, from 1756 onwards the three institutes of the Foundation of Renswoude were 
comparable to the Duytsche Mathematique. In these institutes, in The Hague, Delft and Utrecht, 
talented orphans received a combination of professional training, based on mathematical subjects, 
and general education. From the start governors and mathematics teachers formulated a curriculum 
with subjects, aims, theory preceding practice and alternating with practice, examinations, 
textbooks, and other materials for the students. The first mathematics teachers had good contacts 
with many different practitioners, there were also contacts with professors at the Universities of 
Leiden and Utrecht (Krüger, 2013).   

Unlike the situation in some other countries (Karp & Schubring, 2014) the Dutch government did 
not establish primary, secondary, or vocational institutes, until the end of the century (Krüger, 
2019a).  

Mathematics: a school discipline in general education  
During the 18th century, under the influence of French authors, mathematics gradually was 
considered as formative for the development of the mind, to learn to reason clearly and with use of 
logic.  As a result, when around 1800 education became the responsibility of the national 
government, mathematics was on the agenda. Primary education was regulated first, in 1806; 
arithmetic became a compulsory subject. Moreover, all teachers had to pass exams, including 
arithmetic, to be allowed to teach and the inspectorate became rather important in the acceptance of 
modern ideas with regards to content and methods. From about 1820 the development of 
mathematics as a school discipline becomes noticeable: textbooks specifically for use in (extended) 
primary schools, specialized journals, teachers specializing in mathematics and authors discussing 
teaching methods (Krüger, 2019). The authors might be teaching at the Royal Military Academy, at 
French schools and other private schools, at naval schools and other similar institutes or they 
belonged to the group of primary school teachers in the highest rank, who had specialized in 
mathematics. Those who became proficient in mathematics could improve their position (Smid, 
2019). The regulation of secondary education had to wait until 1863. At least until then there 
existed a patchwork of private and council schools, extended primary schools and vocational 
institutes, all teaching some or quite a lot of mathematics, with textbooks written by some of the 
teachers.  

From the start of the 19th century mathematics was seen by regulators, inspectorate and others as 
belonging to general education, with a formative value in sharpening reasoning faculties. On the 
other hand, for many people the main aim of teaching mathematics was to prepare for crafts and 
professions. In their opinion the emphasis of teaching mathematics ought to be on mathematics used 
in professions and how to use this. Tensions between these aims surfaced occasionally, as in the 
case of Jacob de Gelder, a highly praised mathematician and teacher, author of many textbooks 
(Beckers, 1999). In 1819 he left the School for Artillery and Military Engineers after serious 
disagreement with the director, a military man, about the amount and level of mathematical theory 
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which was taught (Krüger, 2019a). Another example is the appearance of an arithmetic journal 
aimed at crafts men and farmers, as the calculations at primary schools were deemed to be too exact 
and rigorous for daily practice (Krüger, 2019). Indeed, most pupils would enter the workforce after 
leaving primary school and learn a craft. The development of mathematics as a school discipline, 
visible in the first half of the 19th century, received a strong impulse through the regulation of 
secondary education in 1863. For general education two new types of school were introduced, of 
which the Hogere Burger School3 (HBS) would become the most influential (Krüger, 2014). At the 
HBS the students were taught a range of subjects, with sciences, mathematics and modern 
languages taking up many hours in the timetable. The school had as one of its aims preparation for 
the Polytechnic School, also established in 1863, the successor of the ailing Academy for civil 
engineers (Krüger, 2019a). In the early years of the HBS mathematics included subjects such as 
mechanics, use of technology, cosmography, and line drawing, next to arithmetic, algebra, 
geometries, and trigonometry. The development of a group of professional mathematics teachers 
got a strong impulse through the HBS. Gradually topics such as mechanics and cosmology 
disappeared from the mathematics curriculum. From the last quarter of the 19th century there were 
discussions about the content of the curriculum, the teaching methods, examinations and the merit 
of various textbooks. The teaching was theoretical, the use of mathematics in practice was delegated 
to the final years of Engineering Studies. At first, many mathematics teachers had a background in 
military or civil engineering, gradually most mathematics teachers had a degree in mathematics, but 
no experience with the use of mathematics in practices. 

Discussion  
Are influences of the characteristics of Duytsche Mathematique recognisable in mathematics 
education in the Netherlands during the 17th and 18th century? 

As described in the second section, during the 17th and 18th century there was a growing awareness 
of the relevance of mathematics for numerous practices. Illustrious schools, small private schools 
and private teachers offered the teaching of mathematics to use in practices, or as part of general 
education. Mostly these programs or schools lasted at most a couple of years and details of the 
content are unknown.  The only known example of a programme which showed some of the 
characteristics of the Duytsche Mathematique is the curriculum of the Foundation of Renswoude. 
The three institutes of this Foundation resemble Duytsche Mathematique in the combination of 
theory and practice, the structure of the programme, the interaction with practitioners and the 
relative success; moreover, professors at the universities of Utrecht and Delft occasionally served as 
examiner for the Foundation in Utrecht and Delft (Krüger, 2014). 

Another sign of the awareness of relevance of mathematics for practices is the publication of 
numerous books on mathematical subjects, both the fundaments and the practices. Books on 
practices offered some mathematical theory; further research is necessary to determine the 
relevance and the depth of the treatment of mathematics in these books. 

                                                 

3 Higher Burgher School, meant for the sons of middle- and upper-class citizens 
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Was the Duytsche Mathematique an isolated incident or a first step in the evolution of mathematics 
as a school discipline?  

The engineering course, the Duytsche Mathematique, at Leiden University was at the time 
innovative, due to the teaching language, and the way it was designed. A written curriculum, 
prescribing content, teaching methods, work forms, theory preceding practice and alternating with 
practice, is reminiscent of mathematics as the present-day school discipline. However, while the 
teaching method as seen in the manuscript by Frans van Schooten Sr. shows strong didactics, 
directed towards the needs of the students, the content was mostly aimed at the practices of 
surveying. Not all of it, there are geometry examples which do not seem relevant for surveying or 
engineers but are mathematically interesting. Also, there are indications that the practice somehow 
disappeared from the course, Frans van Schooten Jr., an excellent mathematician, seems to have 
concentrated on teaching and expanding the theory of the subject, with theoretical exercises about 
the practice of surveying, application of theory, as opposed to exercises in the field, using 
mathematics. One could say that Duytsche Mathematique showed some characteristics of a future 
school discipline, however it may also be seen as a forerunner of Engineering Studies. 

The first example of a possible development of mathematics as a school discipline in the 18th 
century is given by the Foundation of Renswoude. The programmes of the three institutes started 
coordinated, with some contact between the teachers in the three towns, with theory as the basis for 
practice.  Interaction with practitioners was relevant for the programme, which could be described 
as a combination of general education with vocational training.  

General education, with mathematics as a permanent factor, gained terrain from the start of the 19th 
century, in the form of primary education. This was followed in the second half of the century and 
in the 20th century by secondary education and the first years of vocational training. General 
education is theoretical, mathematics is about theory of the school subject, formulated in its own 
language and applied to theoretical examples. The use of mathematics, which mathematics to use 
and how to use it, is rarely or not at all experienced in general education and there is no interaction 
with professional users of mathematics.   

Was the Duytsche Mathematique a first step in the evolution of the school discipline? Yes and no. It 
was more an example to follow than a first step; the Dutch society was not yet ready for more or 
less autonomous school subjects. A hundred years would pass before schoolteachers started to 
specialize in mathematics and another hundred years before a recognizable body of mathematics 
teachers became visible. They formulated opinions about the mathematics teaching programme, 
produced teaching materials and contributed to the formation of the school discipline, losing the 
interaction with professional users of mathematics in the process. Meanwhile the two worlds of 
mathematics from 1600 blurred and branched in many different ways, developing into a rich and 
varied universe of mathematics. 
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Towards an antiracist education 
While the awareness towards the Shoah had always been prerogative of humanities in educational 
context, only in recent years it emerged as unspoken potential of scientific disciplines. Hence, we 
would discuss the opportunity and the impact of introducing these issues in schools starting from a 
different perspective, the one of the history of mathematics and science. The national guidelines Per 
una didattica della Shoah a scuola (2017) identify the interdisciplinary and transcultural approach 
as the root cause that makes the didactics of racism one of the most complex educational 
challenges, since it involves different skills and specializations. Conversely, the cross-cultural 
dimension invoked is typical of the multidisciplinary approach of the history of STEM disciplines. 
Believing that the education to live together in diversity is everyone’s task, research in the history 
of STEM can become an important component of the contrasting action on modern racisms (Segre, 
2018). A good teaching of the history of scientific disciplines can contribute to counter the 
cognitive-essentialist bias which underlies the racist views of new generations (Rutherford, 2020). 
Moreover, historical-scientific research becomes an educational tool aimed at ‘disarming’ false 
arguments, stereotypes and slogans which are often puerile but simple, and therefore effective. The 
plots of the internal history of STEM can make the future generations aware of the instrumental use 
that was made of such disciplines, which are usually considered – by their very nature – impervious 
to ideological conditioning.  

A response to local needs 
Unfortunately, the chronicle of many European countries, and specifically in Piedmont, has recently 
recorded many serious acts of racism and anti-Semitism, which bring back in vogue the most 
forbidden Nazi-fascist stereotypes. The perception that these intolerable facts are not isolated and 
the consequent concern about the surfacing of forms of hatred that make the past dramatically close, 
are reflected in the statistical data: from January 1, 2018, to the end of February 2019, 118 acts of 
racism were reported in Piedmont, 36% of which in Turin and its metropolitan area. In 8% of cases, 
they occurred in a school context. On the other hand, according to IRES Piemonte annual report for 
2020, only 13.67% of the population considers racism and other forms of discrimination to be of 
concern and, due to Covid19 emergency, this percentage dropped to 9.5% in 2021. This is even 
more regrettable considering that the Piedmontese scientific community was among those most 
dramatically affected by the racial laws of 1938 (Luciano, 2020). 
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Educational activities in schools 
Hence the idea to design educational activities and training courses in order to sensitize teachers 
and students of secondary schools to Memory, starting from the critical re-reading of some aspects 
and moments of research and teaching of mathematics and science during the fascist dictatorship 
(ideologization of mathematics, teaching of racism, etc.). For instance, the analysis of textbooks of 
the period is proposed in order to raise awareness of the instrumental use of theoretically ‘neutral’ 
subjects such as mathematics. At the same time, such interventions aim to promote integration and 
social and cultural inclusion of students from fragile backgrounds. During the school year 2020-21, 
three schools were involved in this project. 

 At the IC “U. Foscolo” (Turin) two classes (grade 8) delved into the personal trajectories of 
scientists who were victims of racial laws, reading and commenting on the correspondence of 
that ‘dark’ period. To make them accessible to a wide public, they created a freely navigable 
multimedia content published on the school website (https://www.icfoscolo.org/wp-
content/uploads/2021/01/MOOC_Giornata-della-Memoria.pdf) on the 2021 Holocaust 
Memorial Day.  

 At the IIS “Santorre di Santarosa” (Turin) three classes (grade 11 and 12) with biochemistry 
study address opted to focus on the eighteenth-century debate on polygenism and racism and on 
the exploitable use of mathematics (statistics, demography) and science (biology, anthropology, 
medicine) to justify colonialism, racism and anti-Semitism, in modern and contemporary times. 

 At the Liceo “G. Peano” (Cuneo) the Mission Memory path was pursued: teachers and students 
(grade 11 and 13) rediscovered the life stories of their colleagues who were persecuted for racial 
reasons, with particular attention to the local context: they focused on the reconstruction of the 
biography of Ugo Levi (1903-?), who taught mathematics and physics in Cuneo in the historical 
period considered, also interviewing some of his former students. 

In conclusion, history of STEM becomes a resource for improving students’ consciousness: 
actually, “history is something that can make us aware of who we are, and how we have come to be 
the individuals that we are” (Radford, 2014, p. 89). We claim that history of mathematics and 
sciences provides an important means of combating ignorance, with the goal of defeating racial 
discrimination and intolerance, and contributes to identify appropriate antiracist resources to 
incorporate into school curricula. We hope that the ideas, insights and experiences illustrated can 
form a basis for new educational actions in this direction, which are especially needed in our 
society, crossed by currents of racial hatred and contempt for diversity. 
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For a nuanced discussion on the legacy of New Math, detailed knowledge of the content of 
mathematics before, during and after New Math is needed. In this article, we mirror a study of 
Icelandic textbooks, studying at what ages certain New Math-connected concepts were introduced 
in 14 Norwegian textbook series for age 7-15 published in the 1950s, 60s, 70s and 80s. As was the 
case with Iceland, set-theoretical concepts appeared with New Math and were mostly gone by the 
80s, while axioms of the number field and the study of number were to a large extent present 
throughout the period studied. These were introduced at an earlier age in the 70s. We find that 
some New Math-related concepts were introduced in textbooks before New Math entered on a full 
scale, unlike Iceland. Like Iceland, many other concepts were introduced in the 70s and stayed in 
textbooks. 

Keywords: New Math, textbooks in mathematics, mathematical concept 

Introduction 
New Math was an international movement that began in the mid-twentieth century. It has been 
strongly associated with the set concept. Since the set concept lost its place in textbooks quite soon, 
it is tempting to believe that the long-term impact of New Math was small. As Schubring (2021) 
points out, many believe that New Math affected all countries similarly. For informed discussions 
on this period within the history of mathematics education, more nuanced pictures of the legacy of 
New Math in each country are important. In this article, we present such a picture for Norway, 
mirroring a similar study for Iceland by Bjarnadóttir (2017).  

In 1966, an international meeting for experts on mathematics teaching at the primary level was held 
in the UNESCO Institute for Education in Hamburg. In the report from this meeting, a list of basic 
topics was proposed that should be included in primary school. These included concepts from set 
theory (Williams, 1967, p. 47). However, set theory was just one of several topics in mathematics 
that were introduced to students either as a new topic or for younger students. According to 
Kilpatrick (2012), internationally many of the ideas of New Math are still part of school 
mathematics.  

In this paper, our research questions are: Which concepts related to New Math were introduced in 
the textbook series for compulsory school from age 7 in Norway and to what degree did they 
survive into the 80s? 

The starting point for New Math 
The Royaumont seminar in 1959 was “the starting point for the coordinated international efforts to 
reform mathematics teaching based on the conception of ‘modern mathematics’” (Schubring, 2014, 
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p. 89). Teachers, school leaders and researchers from many countries, including Norway, Sweden 
and Denmark attended this seminar (OEEC, 1961). The starting point for New Math was a desire to 
teach mathematics that corresponded to modern society with its tremendous acceleration in 
technical, economic and social development (Christiansen, 1967). According to Christiansen, the 
curriculum in mathematics was previously narrow and the primary focus was to practice formal 
skills, while mathematical concepts and the interaction between these were often less emphasized. 

The conclusions from the Royaumont seminar stressed that one must move away from memorizing 
facts and procedures to experimenting, discovering and making mathematics with physical objects. 
“This experimentation must lead to the abstraction of the quality of a set called number” 
(Schubring, 2014, p. 93). In the beginning one should focus on the ideas and later the mathematical 
concepts sets, subsets, mapping etc.  

At the Royaumont seminar, it was also outlined how one could reform mathematics teaching in 
school. Regional cooperation was recommended. The authorities in Norway, Sweden, Denmark and 
Finland were positive about Nordic co-operation and in 1960 the Nordic Committee for the 
Modernization of Mathematics Education (NKMM) had its first meeting (NKMM, 1967).  In 1967 
a report was published on the work of this committee, providing a description of the current 
situation in the four countries, followed by goals for the schools’ mathematics teaching. Several 
experimental texts for textbooks at different grade levels were developed and experimental teaching 
was carried out. The report also includes a proposal for a concrete curriculum for first to twelfth 
grade. 

For the first three school years, two experimental texts were developed by NKMM, one Swedish 
and one Danish-Finnish, written by Bundgaard and Kyttä. “The basic ideas are the same in the two 
series, but they differ in many details” (Håstad, 1967, p. 99). For grades four to six, NKMM had 
trouble finding a suitable writing team and therefore they decided to translate the experimental texts 
published in the United States in the large project School Mathematics Study Group (NKMM, 
1967, p. 108). For grades seven to nine, NKMM developed experimental texts in geometry and 
algebra. 

Iceland did not participate in the Nordic collaboration, nevertheless the result of the collaboration 
influenced Iceland through, for example, the choice of a Danish-Finnish textbook series. The 
Bundgaard-Kyttä textbooks series was translated to Icelandic (Bjarnadóttir, 2017), together with 
textbooks for age 10-12 written by Agnete Bundgaard alone. We will call the combined series the 
Bundgaard series. Bjarnadóttir (2017) has studied how students in Iceland were introduced to 
certain mathematical concepts, often related to New Math, and at what age they were introduced to 
these concepts. In her study, the content of this textbook series is compared with the content of 
other series in use in Iceland before, during and after the introduction of New Math. In Iceland, 
there was just one textbook series in mathematics from 1939 to 1966 (Bjarnadóttir, 2017). The 
results of her study are that the topics that were new in the Bundgaard series were “the use of set 
theoretical concepts and the notation for building up the number concept and understanding of 
operations through repeated reference to the axioms of the number field” (p. 58). Negative numbers 
were not mentioned in it. Bjarnadóttir concludes that this textbook series went far in meeting the 
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requirement that “mathematicians” had for mathematics in primary school. Here, she is most likely 
referring to those mathematicians who participated in the Royaumont seminar in 1959. The topics 
that survived in textbooks after the New Math period were primes and divisibility, mental 
arithmetic and approximation and estimation. The topics that did not survive were replaced by an 
introduction to statistics, probability, the use of variables and solving simple equations. These were 
new topics when the Bundgaard series was replaced by an Icelandic textbook series in the 70s. 

Bjarnadóttir’s study shows that there were more than set theory concepts that were introduced to the 
students with New Math. Some of these were also introduced for students in the textbooks in the 
period after New Math, not necessarily for the students at the same age.  

Norway participated in the cooperation and was therefore naturally affected by this participation. 
But unlike Iceland, in Norway there were many publishers of textbooks for primary schools. After a 
temporary curriculum in mathematics with New Math was introduced in 1971, several textbook 
series were published with content adapted to this new curriculum. Soon, mathematicians as well as 
parents of school children protested. In the final curriculum in mathematics, which was approved in 
1976, New Math content was greatly reduced (Gjone, 1985, p. VII:31; Solvang & Mellin-Olsen, 
1980, p. 1:18).  

“The residue of the new math era may be difficult to see in today’s school mathematics, but it is 
there” (Kilpatrick, 1997, p. 956). Kilpatrick mentions inequality as a subject that came in with New 
Math in USA and has remained in school mathematics. 

Method 
As outlined above, Bjarnadóttir (2017) studied the content of textbooks that were published in 
Iceland before, during and after the introduction of New Math. Based on Bjarnadóttir’s study, we 
have done a similar study of when students encounter the various concepts for the first time in 
Norwegian textbooks. 

Bjarnadóttir first developed tables with mathematical concepts based on literature on New Math, 
then she analysed how and when students were introduced to these concepts in Icelandic textbooks. 
Bjarnadóttir chose the following categories set theoretical concepts and notation; structure of the 
number field; and study of numbers. We have chosen to use Bjarnadóttir’s categories to be able to 
compare the Icelandic and the Norwegian situation. 

The two authors of this paper have each studied each textbook series separately and noted where the 
students are first introduced to the various concepts. When in disagreement, we have studied the 
textbooks together and come to an agreement on where the students meet the concept for the first 
time. We have noted both the first implicit treatment of a concept and the first explicit one. For 
reasons of space, in the tables in this article, we only include the first explicit introduction. If the 
concept is only introduced implicitly, we have marked this by putting parentheses around the age. 
We exemplify what we mean by an implicit introduction of a concept through the commutative law 
for addition. When several examples and tasks in a row have the same numbers (as for example 2+3 
and 3+2), without the commutative law being mentioned, we conclude that there is an implicit 
introduction to this concept. 
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After preparing tables that show the age at which students are introduced to a topic for the first 
time, we have analysed these tables to compare different periods, which also makes it possible to 
compare the result from Norway with the situation in Iceland. 

In this study, we analyse the content of textbooks that were published before, during and after the 
period of New Math, that is the period 1950 to 1980s. Early in the 1970s, several textbooks with 
New Math were published. We have chosen to include all known series from this period. In the 
period before and after New Math, we have chosen series from Aschehoug and Cappelen, as these 
published textbook series for the whole period. They have partly the same authors as the books that 
were published in the 1970s. We also conjecture that they were used by many schools in Norway, 
although there exists no statistics to determine this. We have also included Tanum, during and after 
the introduction of New Math (see Table 1), to include one more textbook series for the 80s. None 
of the Norwegian textbook series published in the 1970s were directly linked to NKMM’s 
experimental texts. 

Table 1: Textbooks included in our analysis. Textbooks from 1970s are marked for clarity 

 Publisher Year Age Title Author 

A1 Aschehoug 1953- 7-13 Nå regner vi Aam, Johannesen, Slaatto, Paulsen 

A2 Aschehoug 1964- 7-15 A. regneverk for folkeskolen Paulsen, Slaatto 

A2+ Aschehoug 1971- 7-9 A. regneverk, mengder og tall Paulsen 

A3 Aschehoug 1980- 7-12 Vår matematikk Harboe 

A4 Aschehoug 1987- 7-15 Regnereisen Venheim, Breiteig m. fl. 

C1 Cappelen 1962- 7-15 C. regneverk: matematikk Bue 

C2 Cappelen 1971- 7-15 C. matematikkverk Bue, Gjerdrum 

C3 Cappelen 1980- 7-12 Jeg regner Gjerdrum, Bue 

D1 Dreyer 1972- 7-12 Grunnskolens matematikk Eicholz, Arneberg 

E1 Eli 1972- 7-15 Ny regning Dentrup, Kjeldberg, Kjeldberg 

G1 Gyldendal 1972- 7-12 Matematikk for grunnskolen Myrmo, AAs, Grymer, Ridar 

N1 NKI 1973- 7-12 Tal og teikn Rudjord, Bjørklund, m.fl. 

T1 Tanum 1970- 7-12 Min matematikk Viken (red.) 

T2 Tanum 1980- 7-12 Min matematikk Viken 

Dreyer (D1) was based on a US textbook series, adapted to Norwegian conditions. Eli (E1) was 
based on a collaboration between Norwegian and Danish teachers. Gyldendal (G1) refers in the 
teacher manual to NKMM’s report but does not claim to build directly on it. Tanum (T1) was based 
on a Swedish textbook series and refers also to NKMM. The other textbook series (A2+, C2 and 
N1) were modernizations of previous Norwegian textbook series. A2+ was written as a supplement 
to an existing textbook series to introduce students to set theory. This supplement was only for 
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students aged 7 to 9, older students used A2 textbooks. In our analysis, we have first analysed A2 
(under the heading A2), then the combined series of A2 and A2+ (under the heading A2+). 

When comparing our results with the findings of Bjarnadóttir (2017), we need to keep in mind that 
the two textbook series before New Math in her analysis were used in the periods 1922-37 and 
1927-80. The textbooks we have studied were published much later. In addition, the Icelandic 
textbook series before New Math were for students from the age of 10 because children were 
expected to learn some mathematics at home before starting school at age 10.  

Results 
We will follow the structure of Bjarnadóttir (2017), looking first (briefly) at concepts from set 
theory, then axioms of the number field and finally what Bjarnadóttir calls “topics of number”. 

 

Figure 1: A section from A2+ from 7-year-olds. To the left with introduction to Sets (p. 10) and to the right with 
introduction to Union (p. 30) 

Our analysis shows, not unexpectedly, that set theory entered the textbooks in the 1970s for the 
students aged 7 (see Figure 1 for the introduction in a textbook series) but were not included in the 
textbooks that were published after the New Math movement had passed. This is similar to what 
Bjarnadóttir found in Iceland. 

For axioms of the number field (Table 2), the picture is different. Most of these were present in the 
60s or even in the 50s, but in the 70s series, they were presented to younger students. In the 80s, it 
is more complicated – some of the axioms are left out, some are presented later, while some are 
even presented earlier. 

The commutative law of addition is introduced implicitly for 7-year-olds in all time periods, from 
the 50s to the 80s. However, there is variation in when students are introduced to this law explicitly, 
from age 8 to age 13. It also varies when students are introduced to the commutative law of 
multiplication. If the law is first introduced implicitly, then it happens when students are 7 or 8 
years old. It is often explicitly introduced when students are 9 years old. The same applies to the 
distributive law, but it tends to be introduced explicitly in the 70s (under New Math). The 
associative laws of addition and multiplication are introduced explicitly at the secondary level (from 
13 years) in the 60s and at the primary level (under 13 years) in the 70s. The associative laws 
appear implicitly or not at all in the textbooks of the 1980s.  
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The additive identity is implicitly included for 7-year-olds throughout the period, and explicitly 
included later. Only in the 80s is it mentioned explicitly to 7-year-olds. The fact that 
addition/subtraction and multiplication/division are inverse operations is included in almost all 
textbook series, either explicitly or implicitly. But it varies when students are introduced to these 
connections. It seems that students were introduced to these connections at a younger age in the 
70s. 

In the 50s, the role of 0 in multiplication is introduced to 9-year-olds. In the 60s, this has been 
moved to when the students are 13-14 years old, and in the 70s and 80s it is again in most of the 
textbook series for 8-9-year-olds. The role of 0 in division is not mentioned in the 50s and 80s. In 
the 60s, it is mentioned in the same textbook as 0 in multiplication, and in the 70s it is mentioned at 
a higher grade level if at all.  

Table 2: The age-groups of students for which axioms of the number field are presented 

Topic\Textbook 50s 60s 70s 80s 

 A1 A2 C1 A2+ E1 C2 D1 G1 N1 T1 A3 A4 C3 T2 

Commutative law  
of addition 
of multiplication 

 
(7) 
13 

 
13 
14 

 
9 
9 

 
13 
9 

 
9 
9 

 
8 
8 

 
8 
9 

 
(7) 
(8) 

 
10 
9 

 
(7) 
(8) 

 
(7) 
11 

 
14 
9 

 
(7) 

9 

 
(7) 

9 
Distributive law (9) 14 13 9 9 (9) 9 (9) 9 (10)  14 (8) (8) 
Associative law  
of addition 
of multiplication 

 
 

 
13 
14 

 
13 
13 

 
8 
9 

 
9 
9 

 
8 
9 

 
7 
9 

 
9 

10 

 
10 
10 

 
7 

(9) 

   
(8) 

 
 

(9) 
Identity -additive 
     -multiplicative 

(7) 
(10) 

(7) 
14 

14 
14 

(7) 
9 

13 
13 

(7) 
 

10 
8 

 
8 

12 
12 

(7) 
(8) 

7 7 
9 

(7) (8) 
(8) 

Inverse -additive 
   -multiplicative 

 13 14 
13 

13 12 
15 

  (12) 
12 

(10) 
(12) 

 
12 

 13 
15 

  

0 in multiplication 
0 in division 

9 
 

14 
14 

13 
13 

9 
14 

 
(15) 

8 8 
9 

8 9 
12 

 9 9 8  

Negative numbers  12 12 12 11 11 12 12 10 11 12 12 11 10 
Inverse operations  
add./subt. 
mult./div. 

 
13 
10 

 
 

14 

 
9 

13 

 
13 
9 

 
 

(9) 

 
(9) 
10 

 
9 
9 

 
9 

(9) 

 
8 
8 

 
 

10 

  
7 

11 

 
(8) 
(9) 

 
(10) 

10 
Within study of number (Table 3), most topics were present already in the 60s. However, many of 
these were introduced far earlier in the 70s. Again, the picture is mixed as we enter the 80s. 

While the number line is not included in the series from the 50s, it is included in most later series 
from the age 7. In some textbooks, especially in the 80s, it appears a little later. The connection 
between even numbers and odd numbers was introduced earlier with the New Math: for 7-8-year- 
olds students in the 70s as compared to 12-14-year-olds in the 60s. We see that the early 
introduction lasts into the 80s.  

It varies how old students are when they are introduced explicitly to primes, factorization and 
divisibility (from 8 years to 14 years), but these concepts are often introduced simultaneously.  

Students are introduced to bases other than ten in some of the textbooks in the 60s and 70s, but not 
in any of the textbooks in the 80s. Modular systems is never a topic in the textbooks studied. 
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In the 60s and 70s, students were introduced to equations at the age 7-9, while in the 80s they were 
introduced to equations at the age 10-12. This is different from the variable concept. It appeared in 
the textbooks for 11-12-year-olds in the 1960s, for 7-9-year-olds in the 1970s and again for 11-12-
year-olds in the 1980s (except in one textbook series where students were introduced to this concept 
when they were 9 years of age). 

Statistics is not included in the textbook series from the 50s, later, students are introduced to 
statistics between the ages of 8 and 11. In only two of the textbook series do we find probability, 
one of them in the 70s and one in the 80s. 

Table 3: The age-groups of students for which topics on numbers are presented 

Topic\Textbook 50s 60s 70s 80s 

 A1 A2 C1 A2+ E1 C2 D1 G1 N1 T1 A3 A4 C3 T2 

Number line  7 9 7 7 7 7 7 7 8 11 9 7 9 
Number relations: 
Even & odd  
primes 

 
 

11 

 
14 
14 

 
12 
12 

 
7 

14 

 
8 

12 

 
8 

12 

 
8 
9 

 
7 

11 

 
7 

10 

 
(8) 
12 

 
8 

 
7 

10 

 
8 

 
8 

11 
Factorization 11 14 12 14 11 8 9 11 10 12  10  11 
Divisibility  11 14 12 14 12 12  11 10 12  11  11 
Bases other than 
ten 

 15  15   (12)  9 (7)     

Modular system               
Symbols as 7+2 
for 9 

  14 7 (8)  11 7 7 7    9 

Variables  11 12 7 8 9 9 9 9 8 12 12 9 11 
Equations  12 7 7 7 8 7 8 8 9 12 12 10 11 
Probability     14       12   
Statistics  11 11 9 11 8 10 8 8 11 10 10 10 9 
Mental arithmetic 8 8 11 8 8  9 10 9 9 10 8  9 
Approximation, 
estimation 

 13 11 13 11 9 9 10 10 9 12 9 9 9 

Use of calculators            10   

Discussion and conclusion 
Set-theoretical concepts were not included in the textbook series in primary school in the 50s and 
60s in Norway, entered with New Math in the 70s and partly disappeared again in the 80s. As such, 
we can distinguish a clear “New Math” period in Norwegian textbooks. Several other concepts (for 
instance associative laws) were introduced to students at a younger age in the 70s than before. Of 
these, some of the concepts stayed in the textbooks for the same age group in the next decade, while 
others returned to textbooks for students of a higher age. While textbooks series vary, there is a 
tendency for more of the terms be introduced explicitly earlier in the 70s. 

Our study gives a somewhat different picture of New Math’s role than Bjarnadóttir’s (2017) study. 
As there were no new textbook series in Iceland for decades before New Math, the change was 
abrupt. In Norway, on the other hand, several textbook series were published in the decades before 
New Math took hold. This contributed to a more gradual change. One major difference was that in 
Norway, many New Math ideas entered textbooks in the 60s, but New Math (including set theory) 
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came in full force in 1971, with a new temporary curriculum. In Iceland, New Math (including set 
theory) was implemented in the 1960s, but some New Math ideas (such as statistics) only entered 
primary school in the 1970s as other New Math ideas waned.  

Although New Math has been partly derided and ridiculed in later years, we do see that many 
concepts which are now taken for granted as a part of school mathematics, were introduced in the 
1960s and 1970s. This applies, for example, to statistics, approximation and estimation, as 
Bjarnadóttir also concludes in her study. 

When it comes to the textbook series that were published in the period of New Math, in Iceland and 
Norway, we see that there are some similarities in when students in the two countries are introduced 
to the different concepts. However, we also see large variations between the different textbook 
series published at about the same time. This variation is more apparent in our analysis than in 
Bjarnadóttir’s, as there were fewer competing textbooks in Iceland.  

Taken together, the detailed analyses provided by Bjarnadottir for Iceland and by us for Norway, 
provides a foundation for a more nuanced discussion on the legacy of New Math in the two 
countries. If such analyses are done for more countries, we may see even more what is special with 
how New Math has been implemented in different countries. 
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In our presentation, we introduce a teaching unit for university mathematics teaching, which is 
based on historical documents. Specifically, these are two articles by David Hilbert (1862-1943) 
and Adolf Hurwitz (1859-1919) on proofs of the transcendence of the number e and an 
accompanying letter exchange between the two authors. We illustrate that these archival finds are 
suitable to deepening students' understanding of both mathematical methods and mathematical 
culture. 

Keywords: Historical documents, Proofs of transcendence of e, David Hilbert and Adolf Hurwitz, 
Mathematical culture  

Introductory reflections on history of mathematics in university teaching 
Incorporating the historical development of mathematics can be used as a didactic element in 
teaching mathematics. In textbooks, monographs and lectures, it may help mathematicians to 
classify the mathematics dealt with and thus at the same time enables the reader a systematic 
approach to the mathematical content. 

In a case study on the use of so-called knowledge maps in a history of mathematics course in 
university teaching (Khellaf et. al, 2018), we found that students develop very individual and 
confident ideas and cross-references about the development of mathematical thinking. Figure 1 
illustrates different examples of student views on structuring mathematical development steps. 

 

 

 

 

 

 

Figure 1: Excerpts from a lecture and two knowledge maps by students, created in the seminar "Development of 
mathematical ways of thinking“ (University of Hanover). 

The importance of mathematics history in university teaching has been discussed at various points 
in the past. The mathematician Max Dehn (1878 - 1952), for example, took a particularly firm 
standpoint. In a statement on the teaching of mathematics at the University of Frankfurt in 1932, he 
named the history of mathematics as fundamental subject matter in addition to "the structure of 
analysis", "axiomatics in geometry, the foundation of arithmetic". He justified his view by writing 
that the treatment of mathematics history ensures "[...] to consider again and again the multiple 
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connections between [mathematical topics], and this is more important than to bring no matter how 
[new] original results.“ (Dehn, 1932, p. 72) In addition, Dehn underscored the high value of a 
mathematics-history seminar, which was aimed particularly at faculty members, as a "kind of 
continuing educational class". 

The mathematics didactician Gregor Nickel argues in his article “Zur Rolle von Philosophie und 
Geschichte der Mathematik für die universitäre Lehrerbildung“ (Nickel, 2015), translated "On the 
Role of Philosophy and History of Mathematics for University Teacher Education“, that 
mathematics history must be understood not as an accessory but as a "subject of teaching in its own 
right." 

"The historically reasonably adequate presentation of a topic from the history of mathematics 
certainly cannot be done incidentally, but requires time and attention, on the part of the teacher a 
certain mathematical-historical professionalism, and on the part of the students a solid prior 
mathematical experience." ((Nickel, 2015, p. 216) translated from German by the author) 

In the following we show a practically oriented teaching unit on transcendence proofs of Euler's 
number e, which on the one hand is thematically suitable for the current teaching material in early 
university semesters (after two basic lectures on analysis), and which on the other hand can be built 
on a limited corpus of mathematics-historical documents. 

Historical material for the construction of a teaching unit 
The transcendence proofs of e of Adolf Hurwitz (1859-1919) and David Hilbert (1862-1943) from 
1893, which are the subject of this work, can be juxtaposed with an exchange of letters between the 
mathematicians, which shall make both the genesis of the proofs themselves and the contemporary 
context tangible and raise questions about the "culture of mathematics". In the following, we will 
first discuss excerpts of this correspondence, then give a sketch of the proofs’ main ideas. 

Correspondence between David Hilbert and Adolf Hurwitz 

The correspondence in question essentially comprises five letters written by David Hilbert and 
Adolf Hurwitz between October 1892 and February 1893. The life and work of these two 
mathematicians was characterized by enormous and groundbreaking developments within the 
research and teaching of mathematics as well as the institutional conditions in the German-speaking 
world (see some aspects below in the introduction of the teaching unit). 

Hurwitz and Hilbert (as junior scientists and professors in Königsberg, Zurich, and Göttingen) took 
an active part in developments of mathematics and exchanged views on them in a correspondence 
comprising a total of at least 198 postcards and letters, which is now kept in the Göttingen State and 
University Library (under the directories Cod_Ms_D_Hilbert_160 and Cod_Ms_Math_Arch_76). 
They had met when Hurwitz was appointed associate professor in Königsberg in 1884, where 
Hilbert attended his lectures as a committed and ambitious mathematics student. Since then they 
had an ongoing collegial friendship, which was maintained through regular written exchanges, 
especially after Hurwitz's call to the ETH Zurich (then still Polytechnikum). In their letters the 
topics ranged from general remarks on the situation in higher education and personal matters to 
very concrete research results and, where appropriate, mutual references and suggestions for 
improvement. In the latter sense, for example, the exchange of letters on new proofs of 
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transcendence of the number e quoted below was written. This begins with a letter in which Hilbert 
presented his simplification of a known proof (by Thomas Stieltjes). In the following we will quote 
some relevant passages of the letters, which are mostly three to five pages long. The focus at this 
point will be on the nature of the communication regarding the proofs. 

A new development of the proof was communicated by Hilbert in his letter of December 31, 1892:  

"Concerning my proof of the transcendence of e, I realized very soon after I wrote to you that 
one can still considerably shorten the same by omitting the whole Stieltje pointe. [...]"  

- The proof follows, in particular the choice of the polynomial f(z), see next section. - 

"[...] You see that hereby the proof also contains a different conclusion at all, in that not from the 
integral sum II but from the integer I the dissimilarity from 0 is shown. The use of this 
conclusion also gives the proof of the transcendence of π a simplification which seems to me not 
inconsiderable." 

Hurwitz replied on January 10, 1893, again with a new proof and an idea:  

"Your scientific communication concerning the number e has, as you can imagine, interested me 
very much. [...] The matter did not let me rest and I discovered a further simplification, [so] that 
one can now bring the proof in the first hours of a lecture on differential calculus. [...] Have you 
already edited your proof? If so, please write me whether you have already sent it to Klein. I 
would then have the above further simplification printed in a short note behind your work. I 
would prefer it if we chose the Göttinger Nachrichten. [...] So please answer me quickly, even if 
only by card. That your punch line can also be applied to π is clear; but I haven't quite thought it 
through yet."  

Within three days Hilbert replied (on January 13, 1893):  

"I have already worked out my proof for e and π during the Christmas vacations, and in the 
process - especially in the part dealing with π - a number of advantageous and simplifying things 
have emerged, so that the whole thing will now take up 4 - 5 printed pages, and my presentation 
is by no means brief. In your proof, of course, the integral is avoided; but whether the 
presentation of the proof becomes shorter and clearer is not yet quite clear to me. [...]. But it is 
my conviction that the proof with the help of the integral will always remain the clearest and 
most capable of development [...]"  

Hurwitz wrote about a month later (on February 08 or 13, 1893):  

"For a long time I wanted to answer your dear letter of 13/I, but - as it goes - the answer was 
postponed from day to day. Today, as a guiding impulse, your transcendence note arrives, which 
I immediately typed into a café. You have written the note with Gaussian classicism. I hope that 
you will agree with the short note (2 printed pages presumably) in which I will make the 
modification of your proof, [...]. Felix Klein submitted it to the Göttingen Society on 4/II. As an 
advantage of my modification I see that it becomes clear in the proof that only the addition 
theorem and the differential equation [...] The idea of modifying your proof by replacing the 
integrals by limit values had also occurred to me. However, there still seem to be difficulties 
[...]"  
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The letters already clarify the core of the proof differences: The preference of integral or differential
calculus, which still lay the foundation of every analysis course today. It is interesting that Hilbert
and Hurwitz emphasize the respective greater "simplicity" of their proofs (and remain in
disagreement).

Two proofs of transcendence of the number e

In the following, we will give a sketch of the two proof lines, published in (Hilbert, 1893) and
(Hurwitz, 1893). We mainly limit ourselves here to the mentioned crucial difference in the
approach of the proofs (the „differential analogue“), which is illustrated by excerpts from a lecture
by students in a seminar (see more details in the next section).

Figure 2: left: Excerpt from an introductory seminar lecture "Basic Idea Proof Hilbert, right: Excerpt from an
introductory seminar lecture "Basic Idea Proof Hurwitz"

Figure 2 describes that Hilbert's argument is based on a variation of equation (1), where F(x) is
defined as given and f^(m) describes the mth derivative of f^(0). Hilbert then goes on to give an
indirect proof by estimating the individual integrals, respectively their arithmetic properties, and
leading equation (2) to contradiction. In contrast, Hurwitz argues with a "differential analogue," see
equation (1’). For his indirect proof Hurwitz further uses the intermediate value theorem, power and
Taylor series expansion, and arithmetic of primes. We cannot go into detail through all the
mathematical steps here, however, we want to state that the proofs are non-trivial, but quite short,
and all methods are usually discussed in the first two analysis lectures of a university course.

In favor of the two proofs as well as on the corresponding historical documents for practical
teaching purposes is the fact that the basic idea of the proofs provides an application of the
fundamental theorem of integral and differential calculus. An integral proof is contrasted with a
differential proof. Students thus learn, using a concrete example from modern history, that the
methods and foundations experienced in their first university semesters are sufficient to understand
and discuss seminal mathematics. In addition, the parallel use of original proofs and accompanying
correspondence allows a variety of cultural aspects of mathematics or the mathematical community
to be reflected, see next section.

Implementation in a teaching unit
Based on the historical documents, we constructed a teaching unit, which was so far conducted in
two different seminars: A seminar on selected topics in analysis (10 participants; University of
Würzburg) and a mathematics-history seminar on developments in mathematical ways of thinking
(13 participants, University of Hanover). In both seminars (each 90 minutes per week), the content
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was divided into three parts: Mathematics-historical context and the letter exchange, the proof of 
David Hilbert, and the proof of Adolf Hurwitz before the background of the correspondence. The 
introduction was done by the lecturer, the proofs were presented by one student each. Time (about 
half an hour) was then allowed in each lesson so that the content presented could be discussed. In 
the following we will refer to the analysis seminar. The students were all in their third or fifth 
semester (Bachelor Mathematics or Computational Mathematics). 

In the introduction, we first gave a brief historical contextualization of the seminal period of the late 
19th century for mathematics in the German-speaking world: The first International Congress of 
Mathematicians was held in Zurich in 1897, journals and publishing houses were founded or 
changed their direction, lecture notes of mathematicians were published, polytechnics gained 
importance, interdisciplinary fields (for example, geometry of numbers, algebraic number theory, 
and algebraic geometry) were discussed and evolved, teacher training was professionalized - to 
name only a few contemporary aspects, some of which still influence our teaching and research 
practices in mathematics today. We then introduced the mathematicians Hurwitz and Hilbert, and 
their correspondence, which spanned a total of several decades. Finally, the letters referring to the 
proofs of transcendence of e were presented in detail. In the discussion that followed, the students 
were particularly interested in the influence of the mathematicians Charles Hermite (1822 - 1901) 
and Felix Klein (1849 - 1925). Furthermore, we focussed the way of discussing mathematics and 
developing proofs by letters - in contrast to today's mathematical culture and speed (e.g. by zoom 
meeting). 

All students were given preparatory questions for the seminar sessions, and the presenting students 
in particular were asked to integrate these into their presentations. As an example, we show here the 
questions which especially refer to the difference integration-differentiation: 
In your presentation, address the following questions:  

(I) Historically, integral or differential calculus – what came first? Since when were these related to each 
other? Treat these questions discursively and be critical in your literature review. 

(II) Fundamental theorem of differential and integral calculus: prove that Hurwitz's approach is indeed the 
„differential analogue" of Hilbert's approach. 

(III) Partial integration: prove the Hermite equation. What is the differential analogue to partial integration? 

The presenters were encouraged to prepare together to some extent. The questions served as a 
guideline. They were deliberately kept both general and concrete. Question (I) was directly 
stimulated by the correspondence and the question whether differential calculus or integral calculus 
should be studied first and why. Especially in their search for sources, the students became active: 
The discussion led us to different protagonists of the history of mathematics (from Archimedes to 
Newton / Leibniz) and their influence on our mathematics today. Questions (II) and (III) were more 
specific to the respective lecture. By differentiating Hilbert's integral, question (II) could be 
addressed; the differential analog (question (III)) to partial integration is the product rule used for 
Hurwitz's equation (1). 
With all students we summarized: Both proofs so far rely essentially on the differential equation 
exp = exp’ for the exponential function (or, equivalently, the integral equation for exp). This kind of 
reproduction property appears in the proof of Hermite s identity (1) as well as in its differential 
counterpart (1 ). The similarity of the proof ideas is due to the main theorem of integral and 
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differential calculus. The  real differences of the two proofs lie mainly in the mathematical methods 
and tools used in the estimation of the arithmetic properties. Together with students, we have 
decomposed the proof into individual steps, see a summary of the results of the proof analysis in 
Table 1. 
 
 

Table 1. Comparison of the steps of the proofs, highlighted with frames: integration-differentiation difference 
(blue), differences concerning mathematical tools (red)  

Steps of the proof Hilbert Hurwitz Background & Application  

Basic starting point Integral equation (1) 
 
Partial integration 

Differential equation (1’) 
 
Product rule 

Duality in fundamental theorem of 
analysis 
 
Exponential function  
exp = exp’ 

Assumption  Algebraic equation = 0 (2) 
 
 

Algebraic equation = 0 (2) Concept of the proofs: 
Proof by contradiction 

Defining ingredients Definition of a polynomial f Definition of the polynomial (7) Comparing the polynomials: 
only slight differences due to prime 
numbers 

Construction Combining (2) and (1) (algebraic equation) Combining (2) and (1’)  
(algebraic equation) 
 

Similar basic construction:  
Integration of equation (1) resp. (1’) in 
algebraic equation (2) 

Mathematical Tools Investigation of Arithmetical Properties:  
 
Elementary formula (3) 
 
Arithmetical estimation (integers) 

Investigation of Arithmetical Properties: 
 
Mean value theorem to receive 
equation (6) 
 
binomial theorem / Taylor series 
expansion 
 
Arithmetical estimation 

Different proof lines: 
 
Tricky methods, 
 
Tools in principle elementary / 
understandable, 
 
Execution sophisticated 
 
 

Conclusion  Assumption not possible Assumption not possible Conclusion: e is transcendental 

 

In addition to the mathematical facts, further facets of mathematics were addressed. Especially with 
regard to students in their first semesters, a lack of understanding of the "culture of mathematics" is 
often thematized. This fuzzy term is used for very different aspects of the subject: For example, 
technical skills such as writing down a mathematical conclusion or the correct use of operators are 
addressed, or an understanding of the difference between examples and a rigorous proof is named. 
Especially the discussion of proofs is treated repeatedly and with different perspectives: The fact 
that mathematical facts can be proved in many ways (and by methods of different subdisciplines) 
and that it is ultimately a matter of perspective and context which proof lends itself or even 
"prevails" at which point is an integral (and challenging) part of understanding mathematics as an 
inquiry-based discipline. Looking at the related process of the creation of mathematics, its culture 
certainly includes the negotiation of the content itself: How is mathematics discussed and 
circumscribed, and by whom? Here again there is the possibility of taking different perspectives. In 
addition to the very concrete question of the use of terms and attributes themselves, it is also 
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possible to look much more indirectly at the way in which results are published and thereby made 
known. Even science, which seek to be as objective as possible, is determined by subjective people.  

One aim of the teaching unit was to initiate a process of understanding, that the culture of 
mathematics carries this richness of facets within itself and thus, despite the immanent formal rigor, 
can be thought much more creatively than perhaps suspected. Respective aspects were directly or 
indirectly addressed: Proofs in general, the need for variations of proofs, formal language and 
notations, mathematical methods and tools, meta-level: when is mathematics "simple"? or the 
evolution of mathematics in general. 

Some conclusions concerning the culture of mathematics 
In some concluding remarks we want to take up two of the mentioned aspects that have met with a 
particular response from students with reference to our teaching unit. 

Proofs and variations of proofs 

The fact that proofs represent a fundamental difference between school and university didactics and 
thus form a decisive hurdle for students, especially first-year students, has been noted in numerous 
works. Students in particular have difficulties "acquiring an understanding of the culture of proof 
and argumentation in scientific mathematics." (Jahnke & Ufer 2015, p. 350) Yet proofs represent 
the heart of mathematical culture (cf. (Grieser, 2015)), they should themselves be able to be seen as 
a means of developing knowledge and understanding. Georg Pólya already stated that "beginners 
[must] be convinced first of all that learning proofs is worthwhile, that they have a purpose, that 
they are interesting." (Pólya (1967, p. 195)) The question here is how appropriate motivation can 
happen. In some cases it is underlined that just an "upstream exploratory phase for understanding an 
assertion" [helps] in the "eventual formation of a need for proof and is indispensable for making out 
a proof idea." Accordingly, the need is expressed to give students "ample opportunity to develop 
problem awareness.“ (Grieser, 2015, p. 662) 

Our thesis is that by including the letter exchange of Hilbert and Hurwitz in the formation of the 
two proofs of transcendence of e (as „exploratory phase“), this process of proof development may 
be made more comprehensible and tangible. In addition, we assume that a reflection process on 
proof variations in general can be triggered. In a qualitative survey in the seminar on selected topics 
of analysis, students gave preliminary feedback on this. Here, we give some excerpts from the 
answers to the questions about the meaning of variations of proofs (connected with the 
correspondence) and about their own perception of the discussed proofs of transcendence of e 
against the historical background: Proof variations were described by students as "representing 
developments within mathematics" and as "very important, especially that they become easier and 
more understandable", "through the correspondence the [...] background" was recognized and it 
became apparent that "through discussion (competition) [of Hilbert and Hurwitz] development" 
occurs. All students found the historical or personal reference to mathematicians interesting, and 
some even motivating. Students highlighted that the "writing became more understandable" and 
"clearer why [...] some methods were used". One student, who found the letter exchange interesting 
and motivating, evaluated that the proofs, however, did not become easier to understand. In two 
additional  oral discussions with the students (each at the end of the respective seminar 
presentations), it became clear that it was precisely the comparison of the two proofs by the authors 
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in the letters that made them reflect. One student, for example, brought up the general difference 
between "elementary" and „simple" mathematics, another remarked that Hilbert's integrals seem 
rather "scary", though mathematically more "universal". Together we then noted that in fact 
Hurwitz's more "elementary" proof was more often used in textbooks, while Hilbert's proof was 
more likely to be used or developed in more advanced research. Overall, students rated the 
difficulty of the mathematics as adequate for their prior knowledge (from lectures on analysis) and 
felt Hurwitz's proof was easier. Although we are of course referring to a small number of students 
and have no quantitative study to show, consequently, we see a tendency that our teaching unit has 
triggered an interesting thought process among students regarding the role of proofs and variations 
of proofs. Naturally, not all students have a strong interest in history of mathematics, e. g. only 
some indicated in the survey the wish to have a dedicated course on history of mathematics, 
however, all indicated they would like to see more mathematics-historical aspects in their studies 
(which is not provided for in their regular curriculum). 

In summary, we would like to conclude that a teaching unit based on historical documents is able to 
broaden the students' horizons both from a mathematical as well as a cultural point of view. The 
documents presented above in excerpts are suitable for this purpose, since they allow not only a 
mathematical depth but also evolutionary access to the development of mathematics itself. 
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In his arithmetic treatise, Bézout teaches arithmetic as grounded on quantities and units. It is from 
this perspective that we consider a property of a “mixed product”, involving a multiplication on sets 
of quantities. In this note, we present the main lines of some didactical research on the use of this 
property with students of years 7 and 8 (12–14 years old). We focus mainly on the conception of 
units and related notions, as the multiplicative relation between units of the same kind.  

Keywords: Bézout, quantities, unities, multiplication, mixed product. 

 

Historical introduction. 
Étienne Bézout (1730–1783) is well known in algebraic geometry for his theorem on the number of 
intersection points of two plane algebraic curves. However, we are interested here in his « Cours de 
mathématiques à l’usage des gardes du pavillon et de la marine», first printed in Paris, in 17641. 
The French Royal Academy of Sciences praised his particular way of presenting the different no-
tions in his « Éléments d’arithmétique »: “so M. Bezout has often treated these objects in a way 
which is absolutely his own & which makes them surprisingly simple.” (Histoire de l’Académie 
Royale des Sciences, 1764, p.97). His success did not diminish until the end of the 19th century 
(Alfonsi, 2011). 

In his treatise on arithmetic, Bézout presents an application that we find of great didactic potential. 
It is a multiplication in which the unit of measurement is made to appear. The property could be 
stated as follows: multiplying a quantity (the multiplicand) by a multiplier is equivalent to multiply-
ing the number of units of the multiplicand by the multiplier, and is also equivalent to multiplying 
the unit of the multiplicand by the multiplier. This particular use of units was remarked upon by the 
Académie des Sciences as an innovation.  

These subjects, so often treated, become, by the manner in which he offers them, absolutely new 
& of the most luminous simplicity. We can put in the same rank what he says on the nature of 
the units in multiplicand, multiplier & product […] (p.98) 

Bézout gives the following example: 

                                                 
1 The references in this text point to the edition printed by J.B.G. Musier fils in 1779, identical to the first one (Alfonsi, 
2011) and the oldest that is available in a digitized text. Any quotation is our free translation from French.  
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112. Let us ask, for example, what is the value of 5/7 of a pound? Since the 5/7 of a pound is the 
same thing (96) as the seventh of 5 pounds, I reduce the 5 pounds to pennies (57) and […]. If one 
were to ask for the 5/7 of 24 pounds, it is obvious that one could first take, as we have just done, 
the 5/7 of a pound, and then multiply by 24 what this operation would have given but it is more 
convenient to multiply 5/7 by 24 pounds, which gives 120/7 pounds (107), and then to evaluate 
this last fraction which will be found to be worth 17 pounds 2 pennies 10 denarii 2/7. (Bézout, 
1779, item 112. Our free trans.) 

He also gives the following example involving fractions:  

96. For example, in 4/5, 4 can be considered as representing any four things, 4 pounds, for ex-
ample, which must be divided into five parts; for it is obvious that it is the same thing to divide 4 
pounds into five parts in order to take one of these parts, or to divide one pound into five parts in 
order to take 4 of these parts. 

Bézout doesn’t justify this property in his manuscript. Nevertheless, he gives a meaning thanks to 
the use of the different kind of units and stressing the multiplicative relations between units of the 
same system. It is also through the use of units that Bézout gives meaning to the different numbers, 
including decimal numbers and fractions, and also gives theoretical justifications to the algorithms 
of arithmetic operations and meaning to the rules of calculation and to the properties satisfied by the 
numbers under consideration.     

The heritage, in the sense of Grattan-Guinness (2004), of Bézout's work, and in particular his use of 
units as a didactic tool, and even as a theoretical tool, is part of the inspiration for the research of 
which we present some of the results in this paper.  

Mathematical perspective.  
From a contemporary mathematical point of view, the property quoted above is a mixed product, 
which involves two multiplications in different sets. First, the external law, which acts on the set of 
quantities, and secondly, the internal law of composition on the set of numbers considered (e.g. in-
tegers or rationals).2 Nowadays, and contrary to Bézout’s usage, we would write the first step of the 
calculation of the example (112) (before dealing with sub-units), using the multiplication and equal-
ity signs and parentheses, which provides 3 equalities, as follows:  

5/7 x (24£) = 24 x (5/7 £) = (24 x 5/7) £. 

In order to be demonstrated rigorously in some generality, it requires mathematical arguments that 
were out of use in Bézout's time (the modern axiomatics developed in the nineteenth century), and 
which are beyond the scope of the teaching curriculum of middle school today. 

Theoretical framework and didactical motivation.  
 In this former example, the initial quantity is 24 £, in the term (24 x 5/7) £ the number of units is 
scaled, and in the term 24 x (5/7 £) is the unit itself that is scaled. We consider both the possibility 

                                                 
2  This is different from considering only the multiplication in the set of rational/integral numbers with the 
commutativity and associativity properties of it, disregarding the set quantities (and the units). 
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of varying the number of units considered and the one of scaling the unit itself. We have three dif-
ferent expressions for the same quantity, so in each concrete case we can choose to use the first or 
the second way of proceeding, depending on what would, for example, simplify the calculations. 
This is one of the (technical) interests of this property. However, what motivates us was to better 
understand what competencies are the ones reflected when using the unit-scaling strategy. We also 
stress that the reasoning involved can be used to conceive multiplication involving fractions, as, 
e.g., in item (96)3. Indeed, Behr et al. (1997) consider the rational number as an operator acting, 
either on the number of units, or in the unit itself of the operand. In their experiment, the students 
(preservice teachers) were reluctant to scale the unit as if this strategy were “cognitively more de-
manding” (p.65). The unit-scaling perspective relies on quantities and measures, and differs from 
the more studied one about “unitizing” and “composite units”, as in Lamon 1996. Indeed, although 
she defines unitizing as the “cognitive assignment of a unit of measurement to a given quantity” (p. 
170), it seems to us that her examples refer rather to a grouping notion. Nevertheless, she states that 
“The ability to form and operate with increasingly complex unit structures appears to be an im-
portant mechanism by which more sophisticated reasoning develops” and pointed out that this per-
spective has been shown to be successful in several mathematical teaching domains. Behr et al. 
(1997, p.50) also agree with the relevance of conceptual units in learning. See the references in 
therein. 

We hypothesize that a perspective based on quantities with a broad approach to units, could support 
the development of the unit-scaling reasoning, as well as could perform the multiplicative relations 
between units of the same family, since they refer to the size of the quantity, instead of referring to 
the number of unities composing of the quantity. We focus on these concepts (quantities, units, 
multiplicative relations between units, quantity-scaling strategies) and the relations between them. 

Chambris, Coulange, Rinaldi, & Train (2021) pointed out some other deeper potentialities of the 
mixed product property, related to the multiplication of fractions, the equivalence of fractions (in 
terms of “compensation theorem”), and the knowledge about metric units. They previously identi-
fied this property (in terms of “multiplicative version of the compensation theorem”). They show 
that the understanding and the teaching, of it could rely on the knowledge of the “related units”. 
Indeed, Chambris (2021) have introduced into didactic research the notion of related units4, based 
on quantities as a foundation for numbers. We can interpret these units as obtained by enlarging or 
reducing, let’s say, a standard unit (e.g. pound, gram)5. For instance, to justify his calculation in his 
item 96 quoted above, Bézout uses a unit, and in item 112, we can see 24 pounds as a unit.  

                                                 
3 Let us remark that a cognitive gap of abstraction is involved when considering 4/5 as 4/5 of the unit 1. 

4 Previously named relative units, she actually calls them related units, whose meaning is shown in this example: both 
the sizes (the weights)  of “1 gram” and of “250 grams” can be used as units, units that are related one to the other.  
5 We prefer this point of view, to that of considering a related unit as the unit composed by many equal standard units, a 

notion that lead to a grouping approach, and makes it more difficult to consider a related unit smaller than the standard 
one, and then making obstacles for the multiplicative relations (in both directions) between units of the same family.    
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In the same article, Chambris, Coulange, Rinaldi, & Train (2021) stress that the related units are an 
implicit knowledge, mostly missing in the French curriculum. Furthermore, the lack of this 
knowledge seems to be in connection to some recurrent difficulties in the students, as for example, 
conceiving the multiplicative relations between different units of the same family, e.g. the ten is ten 
times smaller than the hundred, and the hundred is ten times bigger than the ten. Indeed, when 
working with metric units and “numeration units” (Chambris, 2021), Chambris, Coulange, & Train 
(2021) noticed difficulties in the students and the teachers in managing the possible links between 

-   related units (metric and numeration), 
- multiplicative comparison relations (e.g. 1 cm is ten times smaller than 1 dm), 
- the composition of these relationships (e.g. ten times smaller than a tenth). 

Observe that these items appear in Bézout’s work (with a different point of view), even though he 
uses the partitive approach to define fractional units and fractions, instead of the “fraction as com-
parer approach”, as named by Freudenthal (1983), which leads to a better mastery of the multiplica-
tive relations between units (Cortina et al., 2014).  

On an ongoing project, we therefore sought to go further in identifying the lack in the competencies 
that is reflected in the missing of the mixed product. We asked ourselves what treatment involving 
units are needed, or at least useful, to support the quantity-scaling strategies in a meaningful way.  
In this note, we outline some explorations thought the interview of a middle school student.  

A didactical reading of the use of units and multiplicative relations in Bézout’s 
treatise. 
Through some citations, we show here that the units are at the base of Bézout’s arithmetic treatise, 
using them as a tool, as well as means of meaning. At the beginning of his treatise, Bézout defines 
units as “a quantity that is taken (usually arbitrarily) to serve as a term of comparison for all quanti-
ties of the same kind.” (item 3). He then adds “The number expresses how many units or parts of 
units a quantity is composed of.” (item 5). Bézout makes the distinction between numbers, which he 
calls abstract numbers (e.g.“three or three times”), and numbers expressed in units, which he calls 
concrete numbers (e.g.“four pounds”)6. His multiplicand of item 112 is as well, from which we 
took as our first example. Bézout defines the sub-units of the simple unit as parts of it. About tenths 
he writes the following: 

21. In order to evaluate in decimals the parts smaller than the unit, one conceives that this unit 
[...] is composed of ten parts […]  

This is a partitioning approach. Nevertheless, he considers these sub-units as units in their own 
right, and hastens to mention one of the multiplicative relationships between them and the simple 
unit: “ they [the tenths] are ten times smaller than this one [the simple unit] (item 21)”, which will 
make possible, later on, an explanation of the proposed calculation techniques and the exposed 
properties, including that of the mixed product. Indeed, to mention the multiplicative relations bet-

                                                 
6 We observe that what he defines as a concrete number seems to be, nowadays, rather (the measure of) a quantity in a 
given unit.   
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ween units of the same system is recurrent is Bézout’s treatise, in particular when introducing the 
tens, hundreds,… and the decimal place-value system: “a number followed by two others, [...] 
marks a number a hundred times greater than if it were alone” (item 11); “ as one moves from right 
to left, the units of which each number is composed are ten times larger” (item 15); “these new 
units, ten times smaller than the tenths, will be one hundred times smaller than the main units”
(item 22). 

Furthermore, we find it interesting from a didactical point of view that before introducing decimal 
numbers, he first introduces another system of units, in which the ratio between one unit and the 
next is not division by ten. Indeed, the first example proposed is that of the pound (as a currency), 
“the pound is divided into 20 parts, which are called pennies, the penny into 12 parts, which are 
called denarii.” (item 17). He then quotes the ounces, the toise, the day and the marc, which were 
common units of volume, length, time and currency at the time, before introducing the divisions 
and subdivisions by decimals, the convenience of which he praises. A multiplicative relation is also 
quoted to explain the meaning of multiplication of fractional numbers, “multiplying the denomina-
tor 3 by 5 changes the thirds into fifteenths, i.e. into parts five times smaller” (item 106).  

To describe the process of multiplication, Bézout uses the notion of unit twice. Firstly, in the multi-
plication algorithm itself, to name the different digits of the multiplicand and the multiplier “[...] 
and retain the tens, which are hundreds, to add to the next product which will also be hundreds.”
(item 50). Secondly, he uses the units to give meaning to this technique (“[...] because the number 
by which I multiply is a number of hundreds.” (item 51). 

The notion of unit, and in particular that of unit fractions, remains fundamental in Bézout's treat-
ment of fractions. He then considers a second definition, based on division, with a “unit” point of 
view, “Another way of looking at a fraction is to consider the numerator as representing a certain 
quantity that must be divided into as many parts as there are units in the denominator.” (item 96), 
and uses the property of the mixed product to interpret it. We quoted the end of item 96 in our in-
troduction. 

Didactical exploration. The problem type. Interviews.   
We want to explore whether, in specific problems where the didactic variables encourage it, the 
unit-scaling part of the mixed product property is used. We also look for the skills that are involved 
in it. The first author began her experimental approach with an interview between directive and 
semi-directive, with an interview guide with questions in a precise order, but left the possibility of 
asking other questions, depending on the interviewee's answers. On the one hand, we tested some 
knowledge on notions of units, conversion of units and measures, which are part of the curriculum. 
On the other hand, we checked the state of mastery of a certain point of view on units, less present 
in the teaching, such as the multiplicative relations between units of the same family. We finish 
with two problems, whose written productions we have collected. The two problems proposed aim 
to observe whether students are leveraging units to use the mixed product property by scaling the 
quantity and make calculations easier. Among the knowledge potentially involved in solving the 
problems this way, we sought to test which ones are mastered by the students, which ones are not, 
and then we wanted to know if the students use this property to solve the two problems. 
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The basic problem we propose to study is the following. Given a quantity of a certain magnitude 
whose measurement is expressed by the number a relative to a quantity u taken as a unit, multiply 
this magnitude by a number k. The situations to which the learner is exposed highlight the various 
multiplications (k x a, and k x u), as well as the fact that a unit, like any quantity, can be enlarged 
(the scalar k is greater than 1) or reduced (the scalar k is smaller than 1). 

In our starting example,“Rice pudding at the Indian festival”, the initial quantity is enlarged.  

Problem (Rice pudding). For an Indian festival, it has been decided to make rice pudding. The rice 
is sold in packets of 250 grams and 1 kilogram. We calculated the quantity of rice needed, accord-
ing to the number of guests. We need 7 packages of 250 grams. Then we say that there will be 4 
times as many guests. How much rice is needed in total?  

This is a special case, because the initial quantity (7 times 250 grams) is measured in relation to 
another quantity, u, which is 250 grams, taken as a unit (here 7 stands for a). To take 4 times this 
initial quantity, we could proceed by multiplying 7 by 4, then computing 250 grams 28 times. More 
simply, we can also choose to first enlarge our unit by 4 times, which gives 1000 grams, and then 
take 7 times 1000 grams. 

We chose to interview students from the Collège International de l'Esplanade, Strasbourg, during 
the school year 2020-2021, one in year 8 (13 years old) and four in year 7 (12 years old). Here we 
briefly present part of the analysis of the interview with the 8 year student, which lasted 18 minutes. 

Analysis of Persephone's interview 

After analyzing the interview, we present here some evidences on the skills of the student. We have 
sought to highlight whether the mathematical knowledge existed for the student, whether the stu-
dent had to find it by herself, with some adaptation or not. We also point out some knowledge that 
seems to be lacking in her studies, or some competencies that are not fully developed.  

Indeed, she knows several families of units with their different units (e.g. “meters, kilograms”
(A019), “hectograms decagrams decigrams” (A021)), knows what quantities they measure (e.g.
“meters distances” (A025)), and knows how to convert between units of the same kind: to the inter-
viewer's question in A106, “one meter equals how many centimeters”, she answers “one hundred”
(A107), then adds that “one millimeter equals zero point one centimeters” (A115). She also masters 
the ratio between units of the same kind: the researcher : “how do you go from ten to a hundred?”
(A078), the student : “by doing times ten” (A079).  

The student knows the multiplicative relations between hours and minutes (“[the hour is] sixty 
times [larger than a minute]”, in A087) and “[a minute is] sixty times [smaller than the hour]”, in 
A089), although she does not state them spontaneously. We can ask ourselves whether this is due to 
a lack of practice in these manipulations because she has not been taught, for example, that a minute 
corresponds to a unit sixty times smaller than an hour, that it is one sixtieth of an hour. 

The student knows that one hour is sixty minutes (A081). In contrast, the opposite conversion ap-
pears more difficult to the student. To the question “one minute is how many hours?” (A082), she 
starts to answer with an order of magnitude that is right “one minute is / zero decimal point”
(A083), then she hesitates, then makes a mistake. The question seems to be out of reach at this point 
for the student. 
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The interview also shows that the student is more comfortable with families of units whose ratio 
between them is ten (so are every example of units given by the student). The dozen seems to be 
more remote to her (“by tens it is much easier” (A057)), and she may not consider the ten as a unit 
ten times larger than the single unit, or the hundred as a unit ten times larger than the ten. Sub-units, 
such as the tenth, are not named, and naming the multiplicative relations between units of the same 
species, when this relation is less than one, is also more difficult for her as shown in what follows. 

A118 Interviewer: the centimeter is larger / and how many times larger than a millimeter? 
A119 Student: since there is a decimeter / zero decimal point // by no means / is bigger / 

ten times uh a hundred times 
With questions about the change in the measure when the unit have been changed, the student suc-
ceeds in giving the right answers. However, when the researcher asks “had you ever thought about 
that?” (152) , she replies “yes, but it's still paradoxical” (A153), then adds “I wasn't taught that, we 
weren't told about that no / on the other hand it's still visible” (A155). 

The student doesn’t succeed to correctly solve the « Rice pudding problem ». Despite an initial im-
pulse to enlarge the unit in the first problem, she abandons this strategy, and does not use the unit-
scaling part of the mixed product property yet leading to simpler calculations. The student begins 
by answering the question about the quantity of rice needed: 

A181 Student: it will take um a kilogram of rice because we make two hundred and fifty 
times four so there are four times more and so twenty-one um not at all / 
twenty-eight packets of um rice of two hundred and fifty grams 

Note that she starts by multiplying 250 grams by 4. Then she multiplies 7 times 4, which would be 
too much. Then she keeps this second product, giving as a result twenty-eight packets [...] of two-
hundred-and-fifty rice, which is right, and does not take into account her first multiplication, that is 
250 times 4, and which should have been multiplied by the number of initial packets, that is 7, to 
obtain a right final result. The researcher unsuccessfully tries to get her back to the first multiplica-
tion. 

    A194 Interviewer:    at one point you had multiplied the four here / by four times as many guest 

     A195 Student:         yes 
A196 Interviewer: by the two hundred and fifty grams of rice / and you got a kilo / isn't that 

another way of calculating? 
A197 Student: well, if you wait (silence) well, we don't know if it's the packets or if it's the 

grams // is that it? 
Conclusion on Persephone’s interview  

The student interviewed has mastered all of the concepts related to the units taught in primary 
school and at the beginning of middle school. In contrast, the student does not manage to solve the 
problems correctly. In between, we identified some notions that are not completely out of reach, but 
that they don’t appear as a solid background, and not taught at the school. We hypothesize that the-
se are the notions that are lacking, or are at least useful, to give the mixed product a ground that can 
bring it meaning. This study shows that a broader view and knowledge about units and at least the 
following notions are lacking: families of units whose ratio between them is not ten, multiplicatives 
relations -in the two directions- between units of the same family, fractional units, as well as consi-
dering the metric units and numeration units as units in their own right. It seems to us that a point of 
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view that Bézout gives in his treatise, where the conception of units is based on quantities and that 
the relations between their sizes are highlighted, could support the conceptualization of quantities 
into units and make closer the competency to apply it in a given task by using the quantity-scaling 
strategy.  

Perspectives.  
The aim of the interview was to test the knowledge of the students in the concepts involved in the 
application of the mixed product when enlarging or reducing the unit, as well as the ability to apply 
it. After a deeper analysis of the tasks, we sought to assess some of the involved concepts more pre-
cisely, before implementing a teaching experiment with students of year 7 (the results of which will 
appear in a forthcoming article). Indeed, the teaching experiment is based on the idea of better iden-
tifying the concepts at stake in the mixed product, by testing the students before and after exposing 
them to didactic situations with the aim of supporting them in the development of the missing com-
petencies (including those highlighted in the interview), and in particular, the multiplicative rela-
tions between quantities of the same kind, as units of the same family and fractional units, through a 
“fraction as comparer approach” (Freudenthal, 1983), as well as handling tasks. 
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Why do we teach parabolas? One possible answer is because they are in the curriculum. How does 
content get into the curriculum, whose responsibility was and is the design of curricula and 
textbooks in Germany? The history of conic sections as a subject reveals a rich and varied teaching 
tradition that not only calls into question ideas about “invariability” of teaching subjects, but also 
enables greater openness and joy in the design of mathematics curricula. 
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Why should math teachers in Germany study the history of German math 
curricula? 
How did the current curriculum of secondary school mathematics come about? Over the past 
millennia, a large number of (still-valid) mathematical truths have been discovered, discussed, and 
proven. Who chooses what to teach in class and on what grounds is such a decision taken? To what 
extent does the development of modern mathematics effect curriculum development? Students 
obtaining a teaching profession should ask themselves these questions also in order to recognize 
their own prospective responsibility in mathematics curriculum development.  

However, the study of the historical development of curricula in Germany is complicated, as these 
differ in the different federal states. The pronounced federalism in the German cultural and 
educational system has a long tradition. Until 1871 Germany consisted of many independent feudal 
states and free commercial towns. These small states had their own cultural and educational 
policies. Even with the establishment of the German Reich in 1871, the competencies were not 
centralized, the states remained responsible for education and culture. The promotional principle 
continued during the Weimar Republic. Under the rule of the National Socialist regime, education 
and culture were centralized. The accompanying ideologization of science and culture through 
racial theories, as well as the indoctrination of young people in schools, can also be demonstrated in 
the maths curriculum and maths textbooks (Mehrtens, 1989). The ease with which the Nazi regime 
was able to influence schools and universities in the centralized system led to a special appreciation 
of the federal division of responsibilities after the end of the Second World War. This principle was 
also used by the allied victorious powers of the Second World War when developing administrative 
structures in the western zones of occupation. In the Soviet occupation zone, however, after the 
founding of the GDR in the 1950s, the federal structures were dissolved and centrally standardized 
curricula and textbooks were developed. As early as 1956, the guidelines for the mathematics 
curricula for the upper level in the GDR show a strong reduction in the treatment of conic sections 
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to spheres and calculations using methods of analytical geometry and analysis1, while the  
mathematics textbooks for the the upper secondary schools in the FRG still were based on the 
methodology to the Weimar Republic. The EOS (extended general education polytechnic high 
school) in the GDR began with the 9th grade, the upper level had only 2 years compared to the 3 
years of upper secondary classes  of the Gymnasium in the FRG. Accordingly, in the justification of 
the guidelines for the teaching of mathematics in the EOS, content reduction and pre-employment 
focus on calculation methods are in the foreground. After reunification, federal principles were also 
established in education policy in the new federal states. Today, according to the federal principle, 
educational policy in Germany is a matter of the federal state. Accordingly, curricula, textbooks, 
school types differ in the different states. Standardizations and coordination are planned and 
implemented by the KMK (Conference of Ministers of Education) and relate to specific structures, 
such as Exam formats. The educational standards set nationwide for Germany in 2011 provide 
guidelines on what students should be able to do and when; these requirements are based less on 
content than on skills. The shift from input-oriented content requirements for the main subjects and 
foreign languages in the form of educational plans and curricula to output-oriented standards is one 
of the measures of a general turn towards output orientation and the definition of central standards 
in Germany. Conic sections are no longer obligatory. The introduction of central exams had a 
strong influence on the content of mathematics education at the Gymnasium. After 2000, a new, 
nationwide trend towards the Zentralabitur (centralised A-level-examination) began, partly with 
reference to the PISA studies and the unexpectedly poor performance of German students. The 
ideologised and scandalized debate about central exams did not refer to existing experiences with 
central exams in the federal states of the former French occupation zone, nor to the central 
examinations of the GDR and the majority of the new federal states.  

The discussion of educational policy, educational institutions, mathematics curricula and exam 
formats in Germany, including the time of the Nazi regime, the post-war period and the special 
features of the GDR's educational system, is of particular importance with regard to right-wing 
populist developments. The growing centralization efforts in the context of the digitization of 
schools, which are presented exclusively as an answer to new global challenges, also require 
cultural and historical contextualization. For the latter, the study of mathematics education is 
particularly suitable due to its algorithmic subjects (Weiss, 2019). The preoccupation of 
mathematics teachers with the history of mathematics teaching and the development of selected 
content as a subject can also be motivated pragmatically in Germany at present. In some federal 
states there are opportunities for schools to have more autonomy, e.g. through internal school 
curricula that are developed by the school's teaching staff. The content-related discourses are often 
restricted by current pedagogical trends, such as discovery learning or project teaching. Dealing 
with historical teaching materials gives one the opportunity to be inspired by alternative 
presentations and task formats without coming into conflict with current educational theories. 

 

1 a collection of digitized GDR curricula can be found at https://bbf.dipf.de/de/sammeln-entdecken/besondere-
bestaende-sammlungen/lehrplaene#0 
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Why should math teacher students in Germany study the history of conic 
sections as a teaching subject in German mathematics curricula? 
During their university studies, the student teachers are confronted with the values of various 
communities of interest and common practices and thus various reasons for different selections of 
mathematical subjects and its concept developments. Most of the time, however, this happens 
implicitly through the enculturation in various communities of practice. The appearance and the 
disappearance of conic sections in mathematics teaching offer ample opportunities to prospective 
mathematics teachers to look into their own traditions. Dealing with different value systems from 
the historical perspective enables the prospective mathematics teachers to develop their own points 
of view and to structure and classify different value and norm systems without personal conflicts 
with actors of the different communities in their own environment.  

In the following considerations we limit ourselves to the teaching practices of three communities 
that are or were important for the university education of German Gymnasium mathematics 
teachers: the community of researching mathematicians, the community of mathematics educators 
and educational scientists and that of historians and philosophers of mathematics. We also limit 
ourselves to the teaching of conic sections. Of course, there are lecturers and teachers who belong to 
several communities. Fundamental principles such as the historically determined close connection 
between research and teaching and the freedom of research and teaching in German university 
education are represented by the norms and values of all three communities. In the present article, 
however, the main focus will be on tensions and contradictions between these communities and 
their historical contextualization. For this reason, we also put contrasting values of the different 
communities in the foreground. 

The teaching subject “conics” in the teaching practice  of researching mathematicians  

The education of Gymnasium math teachers in Germany is closely linked to the education of 
mathematicians. The mathematics diploma was only introduced in Nazi Germany.2 To contrast the 
different communities, we refer in the following to university locations in which only teachers for 
upper secondary schools like the Gymnasium are educated (e.g. the universities of Bonn, Göttingen 
and Mainz). The separation of teacher education for Gymnasium teachers from that for the primary, 
elementary and secondary schools3, corresponds also to the historical development. In the university 
education of mathematics teachers for Gymnasium, math courses are held by researching 
mathematicians and are usually shaped as common lectures with students studying only 
mathematics. The teaching activities of the community of researching mathematicians and 
mathematics lecturers are very much motivated by the care for the next generation of 
mathematicians. The value system of this community is characterized by the promotion of 
mathematical achievement. In many ways, values and norms result from the role of mathematics as 
 

2 Information about the historical development of German mathematical institutes one can find in (Schubring, 1985) 

3 Grundschule (from school year 1 to 4), Hauptschule (from school year 5 to 9)  and Realschulen (from school year 5 to 
10) 
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a competitive sport. The mathematics lectures focus on learning modern mathematical language and 
modern methods to solve open and important problems.  

Conic sections appear in the mathematical lectures of math teacher students, if mentioned at all, in 
group-theoretical or projective contexts, but not associated with the elementary mathematical object 
“conic”. Analytical geometry is taught in the form of linear algebra in which conic sections are used 
for classification implicitly. Mathematical research is highly specialized; the recognition of what 
counts as important knowledge is regulated by the appreciation of the international community. The 
predominant teaching method so far is the deductive, axiomatic. In the last few decades there have 
been efforts to introduce additional mathematical courses for student teachers that deal with 
elementary mathematical content. Such courses are usually designed by researching 
mathematicians. 

The teaching subject “conics” in the teaching practice of historians of mathematics 

The teaching and research area History of Mathematics has in Germany a long and worldwide 
recognized tradition (Purkert & Scholz, 2009, Weiss, 2020). In the GDR, courses on history, 
philosophical aspects, and the logical foundations of mathematics were compulsory in the 
curriculum for all students mathematics teachers (Schreiber, 1996). The extent to which 
mathematical-historical contexts are addressed in today's university education for student teachers 
depends on local conditions. In the community of mathematical historians, however, there is 
agreement that conic sections are a fundamental topic in the history of ideas in mathematics (see 
e.g. Struik, 2013). Both the Greek origins of the conceptual development of conic sections (e.g. 
Coolidge, 1968) and their outstanding role as a problem-solving method (e.g. Renn, Damerow & 
Rieger, 2002) were and are main topics of lectures on the cultural history of mathematics. However, 
there are also delimitations. The values and norms of teaching history of mathematics are linked to 
the use of historical scientific methods. The latter can differ from the use of the history of 
mathematics by mathematicians or math educators (Fried, 2001). Michael N. Fried and Sabetai 
Unguru demonstrate the explication of these contradictions using the theory of conics (Fried & 
Unguru, 2017). The possibility to limit oneself to conic sections when considering fundamental 
philosophical differences becomes apparent in Évelyne Barbins research on the philosophies or 
theories behind history and education (Barbin, 2015). The main examples for comparing the 
different methods and perspectives are conic sections (see also Barbin, 2012, Bartolini Bussi, 2015). 

The teaching subject conic sections in the teaching practice of mathematics educators 

In the context of subject matter didactics, the parabola, the hyperbola as examples of functions and 
the area and volume calculation of conics are topics of teaching. Here, too, it depends on local 
conditions whether connections to the content of higher mathematics or to topics of the history of 
mathematics are shown. As we shall see, the teaching history of conic sections is particularly 
suitable not only to show aspects of the historical development of the values and norms of the 
community of mathematics educators, but also their relationships to the other communities. In the 
19th century, math teachers of the Gymnasium were simultaneously researching mathematicians 
and very often also historians. They developed the teaching of conics taking all three perspectives 
into account.  
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The history of teaching conics as a path to common traditions and values 
Scientific development and the elementarization of mathematics  
This contradiction between mathematics as a science and the exemplified elementary school 
mathematics was the basis of different fruitful discourses in the 19th century, which led to a 
transformation of the pre-university teaching that was to great extent shaped by Euclid’s elements 
until then. The focus on the development of geometry teaching in the 19th century is especially 
illuminative since here the scientific development and the elementarization of mathematics 
happened parallel to each other at frequent intervals and often by the same people. The historian 
and maths teacher Max Simon for instance notes: “When you look at the elementary geometry of 
the 19th century, it is especially worth mentioning, how the great developments of science also come 
to light in elementary geometry.” (Simon, 1906, translation by the author). These developments are 
among others descriptive geometry (Monge), Analysis situs (Carnot, von Staudt), geometrical 
constructions (Steiner), projective properties (Poncelet), barycentric coordinates (Möbius), linear 
algebra and algebra (Graßmann, Plücker), analytical geometry (Gergonne).  

Flourishing teaching culture in Neuere Geometrie 
Under the banner of Neuere Geometry (Newer Geometry), the research in geometry as a science 
and the educational reforms in mathematics teaching merge. “The New Geometry, seen from its 
genesis, is not as much in contrast to the geometry of the ancient than it is in contrast to analytical 
geometry… Analytical geometry as a subject is a continuation to the elements, but as a method, it is 
in contrast to the elements”(Pasch, 1882, S.1, translation by the author). The immediate junction of 
new developments in mathematics with teaching reforms is also fostered by the professionalization 
of the teachers, restructuring of the school system, development of new curricula as well as changes 
in the university system. In 1810, for instance, the examination of teachers for higher schools was 
introduced, which did not only require decent knowledge in philosophy and history but also in 
mathematics. In 1812, the deep knowledge of Euclid’s books 1-6, 11 (spacial geometry) and 12 
became a general requirement for the final examination (Abiturprüfung) at school.  

With the so called Süvernscher Normalplan (1816) and a renewed lesson scheme for maths 
education, for instance the analytical approach to conic sections became a teaching subject in grade 
10 and 11 (Sekunda, 16-17 years old) at the Gymnasium. While the conic sections were taken up in 
the curriculum, text books with different approaches to the subject appeared. For an impression 
about these different presentations, we recommend a look at the antiquarian or digitally available 
text books of this time. The theologist Johann Andreas Matthias (1813) for instance, chose the 
approach to conic sections along the Apollonian way. The mathematician Johann August Grunert 
(1824) however, used the analytical method to deal with conic sections in his teaching script with 
exercises and their demonstrated solutions. Also, the mathematician, philosopher, reform educator 
(Reformpädagoge), politician, school teacher (Schulmann) and founder of the Berlin Pedagogical 
Seminar, Karl Heinrich Schellbach, composed in 1843 a text book about conic sections (Schellbach, 
1843). An impression of later teaching texts on the subject, which even took projective approaches 
into account, as well as a detailed analysis of the presentation of Neuere Geometrie is provided by 
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Sebastian Kitz in his dissertation on Neuere Geometrie as teaching subject for higher teaching 
institutions (höhere Lehranstalten) between 1870 and 1920 (Kitz, 2015). Examples of the 
appearance of modern mathematical developments in elementary geometry, as it was described by 
Max Simon, are also Hermann Hankel’s (Hankel, 1875) and Jakob Steiner’s (Steiner, 1876) 
synthetical treatises on conic sections. 

The royal road to geometry 
The expectations regarding the reforming power of Neuere Geometrie become apparent in Hankel’s 
way to rephrase the well-known ancient anecdote: “There is no royal road to geometry. We, 
however, can add: The Neuere Geometrie is this royal road.” (Hankel 1875, S.33, translation by the 
author). Despite these high expectations in the Neuere Geometrie and its rapid development as 
scientific discipline, the school reform initially experienced setbacks. The choice between synthetic 
and analytic geometry, between Euclidean and Neuere Geometrie was at first in the Gymnasium 
decided in favor of Euclidean geometry without the treatment of conic sections. Consequently in 
1837, by a Prussian circular directive (Preußisches Zirkularreskript, i.e. Runderlass) of Johannes 
Schulze, the successor of Süvern, disposed a reduction of scheduled mathematics lessons and the 
removal of conic sections of the curriculum at the Gymnasium (Treutlein, 1911, pp. 37- 45). 

Meraner Reform and Anschauungslehre 
Only during the gathering of philologists in 1864 in Jena, it came to the foundation of a 
mathematical-pedagogical section and to the revival of the discussion on conic sections for the 
teaching at secondary school. In these discussions, the treatment of conic sections in analytical form 
was linked with the notions of variable and function and hence with the intentions of the Meraner 
Reform for the introduction of differential- and integral calculus (Schimmack, 1911). The proposals 
of the Meraner Reform did not only take those parts of the theory of conic sections with a direct 
relation to the notion of function into account, but also recommended to deal with conic sections in 
analytical and synthetical form – even with application to the elements of astronomy, albeit without 
exemplification of its implementation. Another source of the reformation of the Euclidean tradition 
of geometry teaching is the development of the Anschauungslehre, an education to an inner 
intuition and view. The geometry book in three volumes of Henrici and Treutlein (Henrici & 
Treutlein, 1981-1983) as well as Treutlein‘s Anschauungslehre (Treutlein, 1911) – called by Felix 
Klein “exceptionally noteworthy book” (Klein, 1925, p. 261) – give a good impression of a versatile 
pedagogically rich treatment of conic sections respecting the different approaches. Accordingly, 
Treutlein connects plane geometry with spatial geometry by geometrical transformations as 
reflections, creates references to applications and uses folding and models for the education of 
internal intuition and view (Anschauung) (Weiss, 2016). Also, descriptive geometry, that was only 
taught at Realgymnasium and Oberrealschule (secondary schools with a focus on science) can be 
found in the appendix of the third volume of the geometry text book of Henrici and Treutlein. Here 
we find (without exercises) an introduction in different projection methods and hence an integration 
of this approach. An other interesting textbook on the theory of conics, which implemented the 
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perspective of geometric algebra, was the book by Hieronymus Georg Zeuthen (Zeuthen, 1882), a 
Danish historian and mathematician.  

The dawn of conic sections 
From the beginning of the twentieth century until to the New Math in the Seventies, one can find 
planimetric, stereometric, analytical, affine, perspective, projective up to group theoretical 
conceptions of conic sections, mostly close to the treatise of Walter Lietzmann’s Elementare 
Kegelschnittlehre (Lietzmann, 1949). Until the end of the sixties, one can speak of a bloom of conic 
sections. The New Math brought conic sections in relation with differential and integral calculus as 
well as considerations with set-theory and geometrical transformations. Spherical geometry served 
as contextualization of contents and methods that were acquired in the theory of conic sections 
(Athen et al., 1967). Not well-known are the international endeavors in the New Math reform (De 
Bock & Zwaneveld, 2017) to strengthen the application side of New Math. Also, in general 
secondary schools of the GDR the basics of descriptive geometry where taken up in grade 7 and 8 
when the school subject Technical Drawing was introduced. With the reform of the upper school in 
1975 and unified examination requirements the conic sections were more and more reduced to 
linear structures in analytic geometry and in the analysis to the investigation of function graphs of 
parabolas (Schupp, 1988) and are nowadays reduced to the context of functions. The introduction of 
dynamic geometry software, in particular with the possibility of 3-dimensional dynamic 
representations, has not yet led to the high expectations placed on it with regard to the revival of 
traditional geometrical content. On the other hand, the new technical possibilities for visualizations 
and animations also arouse the interest of mathematicians who are teaching higher mathematics and 
perhaps open new doors for common practice. 
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Introduction
Thematic Working Group 13 focuses on the mathematics learning of 2–8-year-olds. We
acknowledge that this learning may take place in kindergarten, preschool, primary school, and other 
less formal settings. We pay attention to how mathematics is approached implicitly and explicitly 
by children and teachers, and other responsible adults. A wide range of topics is covered in 
TWG13, spanning different areas of mathematics and different theoretical and methodological 
approaches. This wide span is a characteristic feature of TWG13, a feature that has been 
documented at other conferences as well (e.g., the POEM conferences, see Carlsen et al., 2020) and 
by Levenson et al. (2018).

Overview
Thirty-six participants from fifteen countries presented 22 papers and 3 posters in TWG13 during 
the CERME12 conference. These were organized into eight themes, namely: theoretical 
frameworks, toddlers’ education, teachers’ actions and training, curriculum and inclusion, analyses 
of children’s activities, measurement in early years mathematics, literature overview, and 
prospective teachers’ education. Each session was devoted to one of these themes and contained
paper and poster presentations, followed by a discussion on the presentations, as well as a general
discussion on questions related to the theme of the session. Next, we present the main questions 
related to each theme and the main outcomes of the discussions that took place.

Theoretical frameworks

Two papers were presented in this session, by Wernberg and Johansson, and by Kleven. The 
questions discussed were related to the possibility and the plausibility of a ‘unified’ theory, used to 
provide a holistic view of a learning situation. The discussion led us to acknowledge that theories 
cannot be static; they need to be continuously developed and adapted, e.g., by empirical studies.
Especially when analyzing kindergarten activities, it is difficult to restrict oneself to only the 
children, the adult, or the activity, since they are all interwoven. Therefore, several frameworks can 
be useful to grasp this complexity; these frameworks could be the part of a network of theories.
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Additionally, qualitative and quantitative methodologies could be used complementarily, in order to 
reach well-verified theories.

Toddlers’ education 

Three papers were presented in this session, by Cooke, by Palmer and Björklund, and by Vanegas, 
Giménez and Prat. The questions discussed related to the outcomes of studies on toddlers’ 
mathematical learning and on the limitation of such studies. We firstly observed that studies on 
toddlers’ mathematical learning are becoming more frequent in TWG13. Additionally, we agreed 
that the analysis of the mathematical activities of such young children raises questions on whether
and what kind of mathematics is actually involved in those activities. By not having access to the 
verbal utterances of these children, the risk of over-interpretation may be high. We also agreed on 
the importance of engaging or collaborating with preschool teachers, since their expertise and 
experience might be crucial in understanding the toddlers’ ways of expressing themselves.

Teachers’ actions and training

Three papers were presented in this session, by Erfjord, Carlsen and Hundeland, by Barkai, 
Levenson, Tsamir and Tirosh, and by Anantharajan. The questions discussed were based on the 
premise that teachers in early childhood education must make many choices related to mathematical 
activities, materials (books), drawings, etc. These choices may be influenced by their beliefs or their
curiosity to learn more about children’s thinking. So, we discussed the factors that affect these 
beliefs and these choices and whether professional development can affect them. We concluded that 
teachers in early childhood education often have quite stable beliefs, much dependent on their 
subject-specific knowledge, e.g., beliefs about teaching and learning arithmetic may be different 
from those about geometry. Similarly, teachers with a problem-solving view on mathematics may 
highlight different counting strategies, while teachers with an instrumentalist view encourage fixed 
algorithms. Moreover, teachers’ mathematics anxiety may occasionally lead them to resources with 
immediate use, e.g., a textbook or a worksheet.

Curriculum and inclusion 

Three papers were presented in this session, by Henriksen, by Højsted and Rasmussen, and by
Lange, Lembrér and Meaney. There was also a poster presented by Walla. The questions discussed
were focused on the challenges and the benefits of comparing mathematics curricula from different 
countries, but also on achieving inclusion. We agreed that considerable differences concerning the 
role of curriculum in early years mathematics exist among different countries. Therefore,
comparing curricula may be quite challenging. The same is the case with the use of textbooks, since 
most countries do not use textbooks in kindergarten. This, combined with a non-explicit curriculum 
on mathematics, may in turn lead to a reduction of mathematical activities in kindergarten. We also 
agreed that the issue of equity is not solely an issue for the mathematics classroom but affects all 
school subjects.

Analyses of children’s activities 

Three papers were presented in this session, by Baumanns, Pitta-Pantazi, Demosthenous, Christou, 
Lilienthal and Schindler, by Conceição and Rodrigues, and by Vogler, Henschen and Teschner.
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There was also a poster presented by Pettersen, Volden and Justnes. The questions discussed were 
based on the premise that often, a narrow focus is needed when we analyze very young students’ 
mathematical activity. So, we discussed the possibilities for triangulation and for generalization of 
our results. In our discussion, we acknowledged the context-bounded nature of most research on 
early years mathematics, which in turn leads to qualitative approaches. We also noted that the 
culture of assessment in the early years varies across different countries.

Measurement in early years mathematics 

Three papers were presented in this session, by Robotti, by Pytlak and Maj-Tatsis, and by Hoth and
Fricke. We discussed whether a more general measurement sense is useful, e.g., one that 
incorporates comparisons of objects, informal measurements, etc. We also considered whether the 
introduction of standard units or other measurement tools support children’s first approach to 
measurement or their intuitions about measure sense. It was noted that in many countries there are 
learning trajectories beginning with comparisons and by using non-standard units, while there are
also activities on measuring with meters or rulers. We agreed that the use of standard units relies on
the ability to identify numbers, while the use of non-standard units relies on an experience which 
supports the discovery of measuring and contributes to construct the measurement sense. Thus, 
children’s experiences of length comparison as a daily activity and the use of non-standard units 
give rise to the necessity of standard units.

Literature overview 

Three papers were presented in this session, by Flaten, by Maffia and Silva, and by Tzekaki. We 
discussed what can be learned by literature reviews or syntheses. We also discussed the necessity of 
reaching consensus on our terminology, e.g., on playful learning, board games, and patterning. We 
agreed that the field of early years mathematics education is blurred, as is mathematics education in 
general. This is mainly due to the concepts and methodologies adopted from different research 
areas, such as psychology or sociology. Therefore, literature reviews and other systematic reviews 
are very helpful in planning and conducting research, since they allow us to systematize our own 
approach and to look at a given issue from different points of view. We also agreed on the necessity 
of consensus on our terminology, regardless of cultural differences. At the same time, we need to be
aware that sometimes we observe the same terminology used to describe different aspects of 
mathematics education, but also different terminology used for the same aspects of mathematics 
learning. This makes it sometimes difficult to synthesize the results of empirical studies.

Prospective teachers’ education

Two papers were presented in this session, by Sabo Junger, Ferme and Lipovec, and by Sala-
Sebastià, Breda and Farsani. Given the fact that most, if not all, early years teachers do not have a 
solid mathematical background, and do not necessarily believe in the importance of problem 
solving, we discussed two issues concerning teacher training, namely how can prospective teachers’ 
problem solving skills be enhanced and how can their attitudes towards problem solving be 
changed. In our discussion, we agreed that the terms ‘problem’, ‘word problem’, ‘task’ and 
‘modeling’ should be clarified, in order to assist prospective teachers. We also agreed on the 
necessity of incorporating problem solving as part of prospective teachers’ training, including the 
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use of various heuristics. This in turn, may assist them in identifying and utilizing opportunities for 
spontaneous problem solving, which will appear during their teaching. Additionally, it can make 
them cautious before providing children with too much help during problem solving.

Future directions
From the summaries of each session above, we observe that, besides the growing interest in early 
mathematics education, there are a number of issues that need attention, also in the future. The 
various curricula, kindergarten systems, and school systems differ significantly across the European 
countries. These cultural issues cause difficulties for researchers when comparing, aligning, and 
reflecting on the research results from different countries. However, the discussions that took place
in CERME12 were promising in the sense that a growing understanding and acknowledgement of 
these cultural differences were emerging. Related to the issue of cultural differences, researchers 
might focus more on early mathematics education in the family, by asking questions such as: How 
may parents and other responsible adults provide opportunities for young children to engage in 
mathematics at an early age? Another issue that emerged was the need for developing systematic 
research in our field, as a way to cope with the multiplicity of approaches and methodologies.
Finally, few studies were concerned with affective issues related to early years mathematics. This 
might be another avenue for future research.

We look forward to further scientific discussions in future CERME conferences. Several of the 
participants of CERME12 have attended the Early Years Mathematics group several times in the 
past. We thus see the contours of a research community across country boarders.
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Using the novel construct of teacher-curiosity, this study extends the idea that teaching in early 
mathematics is effective when based on students’ mathematical thinking. The study examines how six 
early childhood mathematics teachers’ curiosity towards one of their own students’ thinking changes 
over five weeks, alongside professional learning (PL) to support teacher-curiosity. Findings suggest 
that teachers can stay curious and continue learning about students with whom they are familiar. 
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Introduction and literature review of teacher-curiosity 
Attending to children’s mathematical thinking is a vital component of teaching early mathematics 
(Carpenter et al, 2017; Franke et al., 2001). A potential way to help teachers attend to children’s 
thinking is to support teachers’ curiosity about how students think. This study uses the framework of 
teacher-curiosity to examine changes of early childhood mathematics educators’ curiosity about one 
of their own students’ mathematical thinking. Teacher-curiosity is defined as an instance where 
“teachers recognize something as unknown, unfamiliar, puzzling, uncertain, or new in the context of 
teaching and learning, and feel motivated to initiate inquiry into that instance” (Anantharajan, 2020. 
p.31). This definition is based on a framework of teacher-curiosity (Figure 1) developed from 
literature in teacher-learning and mathematics education; philosophical work on curiosity; and studies 
of curiosity in psychology. 

Figure 1: Framework of teacher-curiosity 

The framework of teacher-curiosity comprises of cognitive, motivational, and active aspects 
(Anantharajan, 2020). Psychological studies describe the cognitive aspect of curiosity as experiences 
of surprise, ambiguity, puzzlement, or novelty (Berlyne, 1966; Kashdan, 2004; Lowenstein, 1994). 
In the current study, this involved teachers identifying something as surprising, ambiguous, puzzling, 
or new in student-thinking. The motivational aspect of teacher-curiosity involves what the teacher 
wants to learn about, from among elements that are surprising, ambiguous, puzzling, or new. Finally, 
the active aspect of teacher-curiosity involves the steps that teachers take to pursue their curiosity and 
learn more. The framework also relates curiosity to its target: knowledge. The target of teacher-
curiosity in the current study is teachers’ knowledge of students’ mathematical thinking. This study 
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focused specifically on children’s understanding of counting: principles of counting like one-to-one-
correspondence, cardinality, and number-sequence, and strategies such as grouping, skip counting 
and so on (Carpenter et al., 2017).  

Approaching children’s thinking with curiosity may help teachers identify what they wish to learn 
about, and teaching moves they can implement, which is often a challenge (Jacobs et al., 2010, van 
Es et al., 2008). The broader study in which the current paper is situated aimed to support teachers’ 
curiosity about student-thinking through a PL. The current paper analyzes some potential transfer of 
teacher-learning from the PL context to the participants’ classroom practice. The research question 
addressed in this study is: How does participants’ curiosity about their individual focal student’s 
mathematical thinking (FST) change over five weeks during which the participants take part in a 
professional learning module to support teacher-curiosity? 

Research Design and Methods 
The study was grounded in the early mathematics activity of Counting Collections. Children count 
collections of objects and teachers observe them count, not telling them what to do but asking students 
to explain their work. These interactions allow teachers to make sense of students’ counting. The 
activity was a common element across the PL and participants’ practice. The six participants taught 
grades TK1 to 1 in three schools in the US, in California. Four participants taught multi-grade 
classrooms of K-1 and the participants’ teaching experience ranged from one to twenty years. 
Participants implemented Counting Collections prior to the PL and were familiar with teaching based 
on children’s thinking. They were paid a nominal honorarium to compensate them for their time in 
the study and the professional learning module. 

The PL was informed by the research on teacher-learning (Borko et al., 2014; van Es & Sherin, 2008) 
and supporting curiosity (Kashdan & Fincham, 2004), and facilitated by the author. Participants were 
individually interviewed before and after the PL, during which they also responded to a video of a 
child counting. The PL included six weekly, after-school sessions of 90-minutes. One session was 
held after a two-week gap. Sessions included video-based discussions based on the teacher-curiosity 
framework, opportunities to engage in mathematics, and reflect on curiosity in practice. Participants 
also shared video from their own classrooms, recorded with a wearable camera during interactions 
with a student. Participants presented and posed questions about aspects of the clip they were curious 
about and received feedback from other participants. Of these multiple forms of data about the 
participants’ curiosity, the current paper analyzes one specific data set described below. 

Focal student documentation 

At the start of the PL, each participant chose a focal student from their classrooms whose thinking 
they wished to understand better. Each week, the participant independently interacted with and 
documented this student’s thinking during Counting Collections. The researcher did not observe this 
interaction. Participants used the focal student documentation tool (Table 1) each week to document 
their curiosity about the focal student. The tool progresses from noticing to the cognitive, 

 
1 Transitional kindergarten (TK) is a grade level in the California public school system for 4-year-olds who turn five after September 2 of the school year. TK is followed by kindergarten. 
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motivational, and performative aspects of teacher-curiosity. Participants sometimes collected the 
student’s work or took photographs of the student’s counting, but only the weekly documentation 
tool was collected as data for this study. Participants did not share any identifiable details about the 
focal student. The effects of participants’ curiosity on FST were not studied. During the last session 
of the PL, the participants also completed a focal student reflection tool, where they reflected on the 
previous six weeks of their own curiosity about the focal student. The data for the current analysis 
consists of the weekly documentation tool. Thus, each of six participants completed five instruments. 

During the last part of the weekly PL meeting participants shared with a discussion partner what they 
learned about their focal student, what they still wished to learn, and asked for suggestions and 
feedback from their partners on next steps. Participants were paired with different partners each week, 
to enable a variety of feedback and suggestions based on their partners’ knowledge and experience.   

Table 1: Focal student documentation tool  

Question/ prompt in documentation tool Dimension of teacher-curiosity 

What did you notice while watching this student count?  Target 

What did you think this student understands or is able to do in terms of counting? 

List all the things that felt new, surprising, puzzling, unclear or unknown to you about 
the student’s thinking. 

Cognitive 

Among these things, what interested or mattered to you to find out more about? Why? Motivational 

What next steps can, or did you take, to find out more?  Active 

What can or did you do to record or keep track of the student’s thinking?  

How can you confirm your understanding of the student’s thinking? 

Analysis 

The data was analyzed using a coding framework of a priori and emergent codes, in Nvivo (Table 
2). Code 1 captured the structure of teachers’ curiosity about student-thinking. The subcodes 
represent the dimensions of the teacher-curiosity framework, namely (1a) cognitive, (1b) 
motivational and (1c) active aspects of teacher-curiosity. The motivational aspect included subcodes 
to capture whether the participant wished to learn about something related to student-thinking (1bi) 
or not (1bii). Similarly, the active aspect of curiosity included subcodes to capture whether the 
participant’s response to the student is meant to elicit student-thinking (1ci) or direct it (1cii). Code 
2 captured the mathematical ideas that participants noticed in student-thinking based on principles 
and strategies of counting identified in the early mathematics research. Each of these sub codes was 
coded as a strong understanding or a partial understanding, and the participant’s use of evaluative 
language to describe student-thinking. Inter-rater agreement was calculated for about 30% of 
interview data, as a combination of Kappa statistics at the parent code level, and discussion and 

Proceedings of CERME12 2130



 

 

consensus at the grandchild code level. The Kappa values ranged from 0.7-1.0. After reaching 
agreement on the interview data the two coders discussed the focal documentation data to confirm 
that the codebook could be applied to these data. The researcher coded the focal student data. The 
second coder independently proposed codes. Disagreements were discussed to reach consensus.  

Table 2: Samples of coded data 

Code Sample of coded data 

1a. Cognitive I was happily surprised that she knew to count by tens this 
time. (Beth, wk 3) 

1b. Motivational  

1bi. To learn about student-thinking Would he be able to add any of his groupings together or 
would he revert back to counting by 1s [?] (Lillian, wk 2) 

1bii. For other reason Because she wasn’t using counting by 2s to her advantage to 
help her double check. (Hannah, wk 4) 

1c. Active  

1ci. Elicit student-thinking “I asked her to show me how she made her rows again with 
more items from the collection. She continued to make 
uneven rows. I said I wondered why they had different 

amounts. She said they needed to get “bigger.”” (Rita, wk 1) 

1cii. Direct student-thinking I asked her what 2 100 charts would make to see if she had 
the vocab & she did. So I guided her using the 100 charts as 

reference on how to count to 100. (Stacey, wk 5) 

2. Mathematical ideas in student-thinking  

2a. Strong understanding She has pretty good one-to-one correspondence. (Bella, wk 
1) 

2b. Partial understanding “She counted by 10s and stacked the 10s into 10s (for the 
second time) But when counting she couldn’t go past 100 by 

10s.” (Stacey, wk 5) 

Participants’ responses were organized into a table with responses to each question, each week. As 
each participant documented a different student no analyses was done across participants. Each 
participant’s data from week 1 was a starting point. This initial data was compared with the combined 
data from weeks 2-5 for that participant. By comparing the week 1 data to the cumulative data over 
the subsequent four weeks, the analysis illustrates the participants’ knowledge and curiosity about 
FST at the beginning of the PL (week 1), with what they subsequently learned and wanted to learn 
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about the focal student over the next four weeks. The data from week 2-5 were combined because the 
iterative weekly changes for each participant were small and happened at different points. However, 
the cumulative change over the subsequent four weeks is clearer to perceive and acknowledges the 
overall magnitude of learning and effort by the participants. Combining the data from these weeks 
did not inflate what participants learned over that time but simply illustrates the change in what they 
learned or wanted to learn about their focal student from week 1. 

Findings 
Participants identified more mathematical understandings in FST  

All participants noticed more strong and partial understandings from weeks 2-5, compared to what 
they started with in week 1 (Table 3). All participants also noticed the change in students’ 
understanding of at least one mathematical idea over time. Participants were not prompted to follow 
the student’s understanding of one idea. However, all participants did so, alongside other ideas. None 
of the teachers used evaluative language when documenting their curiosity about their own focal 
student during the five weeks of documentation.  

Table 3: Changes in teacher-curiosity about FST 

 Bella Beth Hannah Lillian Rita Stacey 

Wk
1 

Wk 
2-5 

Wk
1 

Wk 
2-5 

Wk
1 

Wk 
2-5 

Wk
1 

Wk 
2-5 

Wk
1 

Wk 
2-5 

Wk
1 

Wk 
2-5 

Mathematical understandings 3 12 3 13 3 17 4 15 3 17 3 9 

What teacher found surprising etc. 2 7 1 4 1 4 2 4 2 10 1 7 

What teacher wanted to learn more 
about  

0 3 1 4 1 2 2 3 1 6 1 4 

Participants identified more surprising, puzzling, ambiguous or new aspects of FST 

Compared to the number of instances that participants found surprising, puzzling etc. about their 
respective focal students in week 1, all teachers record between 4 and 10 additional sources of 
surprise, puzzlement etc. about the focal student’s counting, from weeks 2 to 5. (Table 3) As an 
example, Table 4 illustrates data from Rita’s documentation.  

Participants posed more questions about FST  

At the end of five weeks, all participants identified more things about FST that they wanted to learn 
about, compared to week 1. From week 1 to 5, the number of things the teachers wanted to know 
about their students’ thinking increased by between 2 and 6 (Table 3).  

Participants implemented/ proposed multiple responses intended to elicit FST over five weeks  

All participants proposed or enacted between 3 and 12 types of responses to elicit specific details of 
FST (Table 5). All participants mention certain types of responses: specific counting tasks to elicit 
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Table 4: Change in cognitive aspect of Rita’s curiosity about her focal student  

Week 1 Weeks 2-5 

It was surprising that she 
would make rows with 

different amounts.  

I also wondered why she 
chose the large collection 
she did when she hadn’t 

before. 

I was surprised she began numbering the second row of objects at 1 again. I have seen 
her write her numbers 1-20, so I wondered why she couldn’t in this instance. 

New: she matched color of beads to bowls 

Unclear: her plan for counting all 

Puzzling: why she thought matching colors would help. 

Why is she successful at grouping and adding when she uses one-color collection? 

How does she see this collection differently? 

Why did she work better by herself? 

I wondered how she made the connection to start grouping. 

I wondered if using the days-in-school chart supported this learning.  

I wondered what attracted her to use the same collection and how that helped her. 

mathematical ideas, questioning and asking students to explain their thinking, and documenting or 
note taking about the focal student. Four participants indicated directive moves as part of their 
response. Of these, three participants indicated directive moves in the first week and not after that. 
One participant did not indicate directive moves till the fourth week. The documentation did not 
indicate a clear shift from directive to eliciting moves by the participants. Over the duration of the PL 
participants may have felt a conflicting need to learn about student thinking and have the student meet 
certain learning goals. This conflict may represent a challenge that teacher-curiosity poses in practice. 

Discussion 
Analysis of the focal student documentation provided a brief glimpse of how participants’ learning 
in the PL transferred to their own practice over time. The results indicate that over five weeks, 
participants identified more understandings in their respective FST compared to week one, more 
aspects of FST that they found surprising puzzling, ambiguous or new, and more questions about 
FST. Finally, participants implemented or proposed multiple responses intended to elicit FST over 
the course of five weeks. Thus, the findings suggest that the PL and the teacher-curiosity protocol 
may help teachers perceive changes in, and develop a deeper understanding of, their students’ 
thinking. The findings also suggest that, with consistent support, the participants’ familiarity with 
their own students did not prevent them from identifying new, surprising, or puzzling things about 
the student. Rather, the results align with Loewenstein’s (1994) notion that overcoming “manageable 
gaps” in knowledge and learning increases, rather than decreases a person’s curiosity.  

Participants likely drew on a wealth of implicit knowledge about the focal student and their class 
contexts, which informed what they noticed, found surprising, wished to know about, and how they 
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responded. For example, knowing what mathematics the class had engaged with up to that point of 
time may have led participants to notice if the focal student struggled with something when others in 

Table 5: Types of responses to focal student proposed by participants from weeks 1-5 

Types of responses  No. of participants 

Give tasks to reveal specific understanding 6 

Question student or listened to student explain 6 

Make notes or document student work 6 

Have student record their counting 5 

Observe student 5 

Provide or suggest tools and other physical supports 4 

Demonstrate to or direct student 4 

Give group work and whole class activities  1 

Give open-ended counting task  1 

Give tasks to extend student thinking 1 

Compare student work over time 1 

the class did not. When focusing on the whole class, participants could likely only manage brief 
observations and conversations with the focal student, limiting the detail of what they were able to 
document. However, they had the opportunity to repeat their observations, which may have shaped 
participants’ curiosity about their focal students. The fact that all participants followed their focal 
student’s understanding of one mathematical idea over time suggests that the documentation process 
may have allowed them to consistently focus on a single idea. All teachers happened to observe a 
change in their student’s understanding of grouping to count. This is likely a common mathematical 
idea at this grade level that the participants saw as an important part of curriculum. It is also possible 
that having more opportunities to interact with the focal student allowed participants to propose or 
try different responses with the student. The documentation tool included detailed questions regarding 
how they documented FST and how they might confirm what they learn. These questions suggested 
that responding to FST may involve multiple moves. The participants’ suggestions to each other 
during PL meetings may have also motivated them to try different responses.  

One concern may be that the comparison between week 1 and the combined responses of weeks 2-5 
may misrepresent the participants’ curiosity. However, rather than obscure details of weekly changes, 
this approach makes explicit that by actively engaging with FST over five weeks, participants were 
able to identify several aspects of their students’ thinking that they did not fully understand and 
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wanted to learn about. These additional questions may not have emerged for the participants if they 
stopped engaging with the student’s thinking after one interaction. Overall, the findings suggest that 
actively supporting teachers’ curiosity about their students can help them use their knowledge of their 
students to discover details of their students’ mathematical thinking over time, rather than view their 
students as “known” entities. Classroom-based research on teacher-curiosity over a longer period is 
necessary to better understand how teacher-curiosity can be supported in PL and motivate practice. 
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This paper describes a course attended by 30 graduate students in mathematics education, non-
preschool teachers, that aimed to promote participants’ knowledge of young children’s development 
of numerical competencies. Prior to the course, participants held high positive beliefs towards 
children’s engagement with numerical activities, but their self-efficacy was low. Findings indicated 
that mastery experience, mostly by repeatedly analyzing videos, and repeatedly designing tasks, 
afforded participants a chance to see how they were progressing and increased their self-efficacy. 

Keywords: Adults’ beliefs, adults’ self-efficacy, mastery experience, numerical competencies.  

Introduction  
In recent years, there has been a growing emphasis on early childhood mathematics education and 
the professional development of preschool teachers (e.g., Tirosh et al., 2019). While this is 
commendable, young children spend much of their time at home with parents, grandparents, and other 
responsible adults. As such, increasing adults’ awareness of their roles in promoting early numerical 
skills is important. In a previous study (Levenson et al., 2021) we investigated 91 adults’ beliefs (none 
were early childhood educators) regarding supporting children’s engagement with various numerical 
activities. Findings indicated that in general, participants had positive beliefs towards early 
mathematics. 

The current study builds on that previous study by investigating a small group of adults who 
participated in an intervention aimed at promoting their awareness to and knowledge for engaging 
children with numerical activities. In this paper, we describe the intervention and present findings 
related to adults’ beliefs before and after attending the intervention. In addition, we investigate their 
self-efficacy for engaging young children with numerical activities. Even if adults believe in the 
importance of their involvement and the importance of engaging children with numerical activities, 
they might not believe they are capable of doing so, and thus might avoid such activities.  

Background 
Studies of adults’ beliefs regarding early mathematics have mostly focused on parents. Those studies 
found that while parents tend to agree that mathematics can be and should be promoted in the years 
before first grade (e.g., Missall et al., 2015), they also believe that engaging young children with 
mathematical activities is less important than engaging children with literacy activities (Blevins‐
Knabe et al., 2000). Not surprisingly, in that same study, parents also reported reading to their children 
more often than engaging them with mathematics activities. Whether during everyday contexts, such 
as carrying out household chores, or during more structured contexts, such as direct teaching, parents 
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reported helping their children learn language skills more than mathematics (Cannon & Ginsburg, 
2008). Thus, it may not be enough to have positive attitudes and beliefs towards early mathematics. 

In addition to a person’s beliefs, studies have found that self-efficacy can also impact on a person’s 
behavior (Bandura, 1986). Bandura defined self-efficacy as “people’s judgments of their capabilities 
to organize and execute a course of action required to attain designated types of performances” (1986, 
p. 391). Self-efficacy was found to be related to the effort, persistence, and commitment one places 
in their actions (Allinder, 1994). Parents’ self-efficacy to parent successfully was found to impact on 
their involvement in their children’s academic domain (Hoover-Dempsey et al., 2001), even at the 
preschool level (Pelletier & Brent, 2002). According to Bandura (1997), there are four main sources 
for a person’s self-efficacy: mastery experience, vicarious experiences, verbal and social persuasions, 
and emotional and physiological states. The most powerful source is mastery experience; when a 
person completes a task successfully and deems the effort to complete that task worthwhile, that 
person’s confidence to complete similar tasks will rise. In studies of teacher self-efficacy, this source 
has been found to be very influential (Arslan & Bulut, 2015). After mastery experience, vicarious 
experiences also impact on one’s self-efficacy. A person gauges their success at a task by comparing 
themselves to others with similar abilities or attributes, who have engaged in the same task. The third 
source, verbal and social feedback, is considered weaker than the first two, although people do tend 
to see themselves through the eyes of others. Finally, the last source of self-efficacy is based on how 
people interpret affective states such as anxiety and mood.  

Related to this study is how interventions can impact on self-efficacy. In one study, parents’ self-
efficacy increased after participating in an intervention that helped them focus on their children’s 
strengths, as well as their own parenting strengths, while practicing new parenting skills (Waters & 
Sun, 2016). In another study, parents and their preschool children attended a school-readiness 
program where parents interacted with their children and observed teachers interact with their 
children (Pelletier & Brent, 2002). Findings indicated that parents’ self-efficacy related to their own 
ability to teach and motivate their child increased. Parents reported that having the opportunity to 
interact with their child along with teacher support, impacted on their self-efficacy. Thus, mastery 
experiences and social feedback were sources for self-efficacy. For pre-service mathematics teachers, 
a methods course that involved group work when learning how to implement challenging tasks, 
served as an intervention that raised participants’ self-efficacy through vicarious experiences (Yurekli 
et al., 2015). 

The current study and intervention were based on the Cognitive Affective Mathematics Adult 
Education (CAMAE) Framework (Levenson et al., 2021). The framework considers knowledge 
adults need for engaging children with playful mathematics, including knowledge of content and 
children (e.g., knowing that children aged three may not yet have acquired the cardinality principle 
of counting) and knowledge of activities that can promote numerical thinking. The framework also 
considers accompanying beliefs. In our previous study, we found that adults believed in the 
importance of their own intervention for promoting children’s numerical knowledge, yet significantly 
less participants believed that they needed guidance to do so (Levenson et al., 2021). Furthermore, 
no differences were found between parents, adults who have some other connection with young 
children, and those who claimed to have no connection with young children. In that study, self-
efficacy was not investigated. In the current study, we investigate the beliefs and self-efficacy of 
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adults prior to and after participating in an intervention aimed at promoting their awareness and 
knowledge for engaging children with numerical activities. Our research questions are: (1a) To what 
degree do adults hold positive beliefs towards promoting numerical skills in early childhood and (1b) 
believe that adults’ interactions with young children are important? (2a) What are adults’ self-efficacy 
beliefs regarding knowing children’s numerical skills and (2b) what are their self-efficacy beliefs 
regarding designing numerical activities for young children? (3) How might a course that aims to 
promote adults’ awareness and knowledge for promoting young children’s numerical skills impact 
on adults’ beliefs and self-efficacy? 

Method 
Participants and setting 

The setting for this study was an elective course entitled Early childhood numerical thinking: Theory 
and research, attended by students working towards their master’s degree in mathematics education.  
There were 30 participants (not the same as in our previous studies), of which twelve were parents of 
children between the ages of three and six, 13 had some other relationship with children of that age, 
and five claimed to not have any significant relationship with children of that age. None were early 
childhood educators. We chose this context for our study, wishing to include at this point in our 
research only adults who we hypothesized would have a general positive disposition towards 
mathematics. The aim of the course was to raise participants’ awareness of number competencies 
developed prior to first grade, and in accordance with the framework, to increase their knowledge of 
children’s development of those competencies, as well as the tasks that might promote early number 
knowledge and competencies. 

The course included 13, 90-minute sessions, and focused on three major numerical competencies: 
counting and enumerating, comparing sets, and number composition and decomposition. During the 
first and last session, participants watched and then individually analyzed a video of Omer, a three-
year old boy and his grandmother Esther (the second author of this paper), engaging in various 
counting activities while baking cookies. Analysis of this video, as well as other video clips viewed 
during the course, focused first on the child’s ability to carry out the activity (e.g., Could the child 
count the cookies on the tray, and what were his difficulties?), as well as the adult’s role in the activity 
(e.g., What exactly did the grandmother ask her grandson to do? How were the cookies arranged on 
the tray?). We will relate to this video and its analysis as the first activity (1) of the course. The rest 
of the course consisted of a series of activities repeated for each competency: (2) read and discuss 
related research (e.g., Gelman & Galistel, 1978;  Tsamir et al., 2015), (3) view and analyze together 
YouTube videos of preschool children practicing that competency, (4) individually design a task to 
implement with a preschool child aimed at promoting that competency, (5) discuss together proposed 
tasks and agree upon one common task that each participant would carry out, (6) implement the 
agreed upon task with a young child while videoing the activity, (7) individually analyze the child’s 
knowledge and competency when carrying out the task, (8) view and analyze together participants’ 
videos. In accordance with the aims of the course and the framework, for each element of the course, 
we discussed children’s ability to carry out a particular skill, as well as how a task may be designed 
and implemented to focus on a specific skill. For example, when discussing Tsamir et al.’s (2015) 
study of children’s strategies for decomposing numbers, we discussed which strategies were more 
advanced and appropriate and how the task challenged children or supported a specific strategy. 
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Tools 

A two-part questionnaire was handed out during the first and last sessions of the course, the first part 
focusing on beliefs and the second part focusing on adults’ self-efficacy. A six-point Likert scale (1 
being the lowest degree of agreement) was used to rate participants’ agreements with the belief and 
self-efficacy statements. There were six belief statements related to promoting early numerical skills 
(see Table 1) and twelve self-efficacy statements, of which six related to knowing children’s 
conceptions (e.g., I am capable of identifying different arrangements of 8 items which children find 
difficult to count) and six related to building appropriate numerical activities (e.g., I am capable of 
building activities that will promote children’s skill in counting eight objects). Each group of six self-
efficacy statements was combined to give an average self-efficacy score (see Table 2). Cronbach's 
alphas for each of the two categories was .924 and .965 respectively. 

About a month after the course ended, participants were contacted and asked if they would agree to 
be interviewed. Twelve participants agreed, five parents of young children, four who had some other 
relationship with children, and three who had no significant relationship with young children. A semi-
structured interview was conducted with the aim of identifying elements of the course that impacted 
on participants’ self-efficacy for engaging young children with numerical activities. Participants were 
asked: The course focused on young children’s numerical competencies. Which of the following 
elements of the course (here, participants were shown the eight course activities listed above) 
impacted the most on your self-efficacy for knowing about children and their ability to successfully 
carry out various numerical tasks? Which elements of the course impacted on your self-efficacy for 
designing tasks to promote early numerical competencies? Interviews were recorded and transcribed.  

Findings 
As seen in Table 1, and as we hypothesized, participants’ beliefs regarding young children’s 
engagement with number activities were positive from the start. At the end of the course, participants 
were even more positive. The only significant difference was noted for question 5. At the beginning 
and at the end, not all participants believed that every activity has the potential to invite children to 
engage with numbers. Yet, participants’ belief in this statement on the posttest was significantly 
greater than on the pretest, perhaps due to the focus on activities in the course. 

Table 1: Beliefs regarding engaging young children with numerical activities 

Belief questions Pre M(SD) Post M(SD) t(29) p 

1. Children enjoy activities/games that deal with number 
aspects. 

5.23(1.006) 5.47(.819 1.191 .243 

2. Children’s number knowledge can be promoted. 5.43(1.006) 5.77(.430) 1.836 .077 

3. It is worthwhile to engage children with activities/games that 
deal with number aspects 

5.70(.596) 5.87(.346) 1.306 .202 

4. Activities/games that deal with number aspects can increase 
children’s knowledge of number concepts. 

5.67(.661) 5.70(.535) .226 .823 

5. Almost every activity/game can invite children to engage 
with aspects of number. 

4.17(1.341) 4.70(1.264) 2.570 .016 

6. Interaction between a child and an adult while engaging in an 
activity/game can increase the child’s knowledge of number. 

5.43(.774) 5.67(.547) 1.756 .090 
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While participants held positive beliefs towards children’s engagement with numerical activities, 
their self-efficacy at the beginning of the course was less positive, although not definitively low (see 
Table 2). As Michelle (all names are pseudonyms) said during her interview, “Before the course I 
thought I was aware and had a way (of doing mathematics with my child) and it was important to 
me.” By the end of the course, self-efficacy beliefs were significantly higher. Interestingly, their self-
efficacy related to building numerical tasks was greater (although not significantly) than their self-
efficacy for knowing children’s competencies. 

Table 2: Self-efficacy before and after the course 

Self-efficacy Pre M(SD) Post M(SD) t(27) p 

…related to knowing children’s competencies 3.869(1.23) 4.869(1.008) 3.831 .001 

… building numerical tasks 3.887(.802) 5.125(.802) 4.862 .000 

Regarding elements of the course that impacted on participants’ self-efficacy, it was difficult for 
many participants to separate their self-efficacy for knowing children’s competencies and their self-
efficacy for building numerical tasks. As they talked with the researcher, they intertwined both. This 
is not surprising as no significant differences were found between these two self-efficacy beliefs. 
Furthermore, building appropriate numerical tasks and knowing about students’ competencies go 
hand in hand. As Shur stated, “When I choose a task, like counting to 30, I need to know the age of 
the child, if he is 3, 4 or 5, and then I need to make a task for that child, for what that child knows, at 
his age.” Thus, below, we report in general how the various elements of the course seemed to impact 
on the participants’ self-efficacy for engaging young children with numerical activities. 

Nearly all the participants found the video of Omer and Esther interesting. However, interesting does 
not impact on self-efficacy. What did impact on their self-efficacy was viewing the video twice, once 
during the first lesson and once during the last lesson. As Levy stated, “In the beginning, the story of 
Omer offered a taste, but did not help me know about what might be easy or difficult for children. 
But at the end of the course, … then I could see how much I learned, that is, I could name the different 
competencies and say where he got stuck and where he didn’t.” Dahesh stated, “watching the video 
of Omer and Esther helped me see that maybe I could do those activities with cookies, and that I 
could build all kinds of tasks with different things.” In Levy’s case, we could say that the analysis of 
the video of Omer afforded him a mastery experience, seeing how much he had progressed at 
analyzing what a child can and cannot yet do. For Dahesh, it was a vicarious experience, seeing that 
someone else was able to do something led her to believe that she could do it as well. 

There were several other activities where participants watched and analyzed videos – watching 
YouTube videos in class, watching videos they had made of themselves engaging children with 
numerical activities, and watching videos other participants had made of their activities with children. 
Regarding the YouTube videos, either participants did not mention this activity, or they specifically 
said that it made less of an impression than watching videos of themselves or of others in the course. 
Regarding the other two video activities, watching videos made of themselves was carried out 
individually as a home task, and watching others’ videos was carried out in a group situation. 
Interestingly, it was the context of the activity, doing it alone or as a group, which seemed to make a 
difference to some participants. For example, Dave remarked,  
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The main thing for me was the individual work, writing the summary of the activity carried out 
with the child…when you sit at home and watch your recordings, you concentrate much more… 
To me, the (numerical) activity seemed at first boring, and then you see that the child is having 
fun… I was always surprised that the child was having a good time.  

For Dave, it was necessary to have the time and quiet to focus on a recording. Dave’s feeling of 
surprise when he realized that the child was actually enjoying the numerical activities, hints at an 
affective impact. Salin emphasized the importance of the group setting, that it increased the 
opportunities to view different children engaging in numerical activities, “When you see each child 
that was videoed and the child’s age, then I learned more what is easy or difficult for children.” 
Michelle related to the discussion of the videos, and not just watching others’ videos, “discussing the 
videos lets you see things from others’ perspectives.” All are relating to mastery experience, that is, 
their experiences in analyzing several children’s engagement with numerical activities.  

Another aspect of analyzing one’s own videos was the fact that participants completed this task three 
times, one for each numerical content. Like Levy’s comment that he was able to see the difference 
between his first and last analysis of Omer, Dave remarked on his analysis of his own recordings, “I 
could see my progress from the first analysis I did till the last. You can see it in the length of each 
analysis, that it increased…Each time I viewed the same recording and saw it again, that was real 
learning for me.” Dahesh also referred to her progress when she analyzed each of her videos, “With 
each summary and analysis of the activity carried out with the child, there was improvement. The 
first summary was totally different than the last.”  

In addition to watching and analyzing videos, participants noted the activity of making up numerical 
tasks for children as an influential activity. This activity also had two parts, writing the task at home, 
and then discussing everyone’s tasks in class and deciding together what to implement. Both parts 
seemed to impact on the participants. For Levy, building tasks and discussing with others their tasks, 
made him notice the specific components of various numerical competencies, which enabled him to 
address those components when building a numerical task, “In the beginning, I didn’t know… that 
counting and enumerating are different competencies and they are different from composing and 
decomposing numbers, … [Now] it’s easier to focus each task I build and think in which direction I 
want to take the task.” For Neta, discussing different tasks also had an affective impact, “The 
discussion [of different tasks] … opened my mind to other ideas… and made me feel, wow, there are 
lots of important things [to consider].” Her exclamation of “wow,” signifies an emotional response. 

Less participants mentioned the importance of implementing the tasks with children. However, those 
that did stated that they were able to deal better with unexpected circumstances, such as asking a 
question in a different way when it seemed that the child did not understand directions. Neta stated, 
“such experiences increased my self-confidence to guide the child I was sitting with.” She also stated 
that this part was “fun.” The element least noted was reading research papers. Two participants asked 
to be reminded of which research papers were read during the course. It could be that as graduate 
students, participants had read so many papers and theories, that additional reading of research papers 
left less of an impression on them than other activities.  
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Discussion 
As found in previous studies (e.g., Missal et al., 2015), participants in this study believed in the 
importance of promoting early number knowledge and believed that adults have an important role in 
this effort. Yet, before the intervention, adults’ self-efficacy regarding knowing children’s 
conceptions and building appropriate numerical activities was rather low. Perhaps this is one reason 
that previous studies (Cannon & Ginsburg, 2008) found adults engaged their children with more 
literary activities than number activities. That self-efficacy was rather low, contradicts finding from 
a previous study (Levenson et al., 2021), where adults believed their involvement was important, but 
did not necessarily feel they needed guidance. It might be that because all participants in this study 
were graduate mathematics education students, they realized, more than other adults might, that they 
did not have adequate knowledge for promoting young children’s’ mathematics knowledge. Further 
study is needed to investigate the self-efficacy of adults who do not have a mathematical background. 

Regarding how elements of the course impacted on adults’ beliefs and self-efficacy, in accordance 
with Bandura’s (1997) theory, we found that mastery experience, mostly by repeatedly analyzing 
videos, and repeatedly designing tasks, afforded participants a chance to see how they were 
progressing. This finding leads us to conclude that short-term workshops may not be enough. One 
needs to accumulate positive experiences to feel that they have mastered a task and are able to carry 
out a task. We also found that it was not just one activity, but a combination of several activities, 
along with positive feelings of surprise and enjoyment, that resulted in higher self-efficacy. Previous 
studies have reported the benefits of supplying parents with mathematical activities to be done at 
home (Vandermaas-Peeler et al., 2012); this study has shown the benefits of having adults practice 
designing their own tasks to carry out with children. Furthermore, supplying activities might not be 
enough if adults do not have the self-efficacy to implement them. Watching videos of other 
participants’ implementations and discussing those activities with one’s peers, can lead to helpful 
vicarious experiences that may also boost self-efficacy. Further research is needed to investigate the 
impact of similar courses for adults who do not have a mathematical background.  
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(1) Enumeration (2) Number line (3) Sun

(4) 10-field (5) Objects

(6) Difference

(7) Biggest number (9) Towers (10) Calculations(8) Hidden legs

(11) Quantity comparision

(12) Dot patterns
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Assuming 3D decomposition as a form of spatial reasoning, in this paper, it is our aim to understand 
how 1st grade students decompose 3D shapes and how these decompositions are related to spatial 
structuring. Data were collected during a learning experiment where students were asked to 
decompose three 3D shapes, in two different ways, without disassembling the models, and draw each 
part. We categorize 21 first graders strategies and analyze more deeply the records from three 
students that are representative of the different strategies. Results show that students decompose 
shapes by establishing local relationships, when they recognize, for instance, composites, but cannot 
yet coordinate them to form the whole; or global relationships, when students coordinate different 
composites, relating them with the whole, and apparently, have a previous mental model that is 
coherent with the structure of a shape.  

Keywords: Spatial reasoning, spatial structuring, decomposing 3D, early grades. 

Introduction 
Recent studies show the importance of spatial reasoning (e.g. Mulligan, 2015; Sinclair & Bruce, 
2015), especially its relationship with mathematical achievement and with success in STEM 
disciplines, being these of great demand in the 21st century. Jones (2001) defines spatial reasoning as 
“the process of forming ideas through the spatial relationships between objects” (p.55). Also, to Davis 
et al. (2015), spatial reasoning involves two interconnected parts, (mental) understanding and 
(physical) transforming, in which composing/decomposing shapes constitute a form of spatial 
reasoning associated to understanding. In early grades, decomposing shapes contributes to a better 
understanding about shapes’ structures. This is also important in more advanced grades, where 
students have shown difficulties (Duval, 1995; Duval, 1998; Spiegel & Ginat, 2017). Spiegel and 
Ginat (2017) describe some aspects where 7th and 8th grade students struggle concerning decomposing 
and recomposing shapes, in geometry problem solving. These researchers relate these difficulties to 
lack of fluency and flexibility, within this type of spatial reasoning, since “decomposition requires 
careful fluency analysis, of possibly overlapping elements. Recomposition requires flexible 
manipulations with elements and resources” (p. 215). This points to students understanding of how 
to coordinate different parts of the shapes by spatially structuring the shape. That means that students 
need to understand how the shape is composed, which relationships can be established within the 
shape and how these work together. In what concerns early grades, Hallowell et al. (2015) describe 
1st grade students’ difficulties in relating 2D shapes with 3D solids, through composing and 
decomposing, suggesting the importance of providing adequate experiences. Previous learning 
experiences seem to influence students’ performance in tasks involving decomposition and 
recomposition (Spiegel & Ginat, 2017). As Sinclair and Bruce (2015) argue, even though 3D shapes 
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have a strong presence in early grades’ classes, there is still little research about the way students 
learn about these shapes. 

Clements and Sarama (2014) propose two learning trajectories for composition of 2D and 3D shapes, 
based on relationships between components and composites and among components, composites and 
the whole, similar to Battista and Clement’s (1996) construct of spatial structuring. Considering 
composing and decomposing shapes as a type of spatial reasoning, it seems to be relevant to 
understand and characterize the relationships 1st graders establish while decomposing 3D shapes, that 
is, how do they structure 3D shapes. 

For that purpose, we have designed a learning experiment where we seek to understand how students 
spatially structure 2D and 3D shapes, through composing and decomposing shapes. This paper aims 
to answer the following questions: How do 1st grade students decompose 3D shapes? How the 
decompositions are related to the way students spatially structure those shapes?  

Spatial reasoning and spatial structuring 
Spatial reasoning is often associated to the process (Jones, 2001) or the ability (Battista, 2007) to 
create spatial images, and manipulate those images to generate new information. In order to create 
images, students need to understand objects’ structures and by understanding their structures they 
will be able to manipulate them, physically or mentally. 

Spatial structuring is defined by Battista and Clements (1996) as the mental act of constructing a 
mental representation for an object or set of objects. It consists in identifying units of composition 
(components), establishing relationships among those components forming composites and 
establishing relationships among components, composites and the whole. In 3D shapes, built with 
cubes, components are the cubes while composites are organized sets of cubes. Through this process, 
students go from seeing a shape as a whole to identifying its parts and establishing relationships 
among them, into a deeper understanding of shapes’ structures. Decomposing and composing shapes, 
as a form of spatial reasoning, (Davis et al., 2015) seem to be straightly connected to understanding 
the shape’s structure, as it contributes to establishing different relationships among the parts and 
between these parts and the whole. As students decompose or compose shapes, they establish 
relationships that allow them to build a mental model for that shape, to find new paths to construct 
the shapes, to find more sophisticated relationships within the shape. Also, working with different 
representations for the same shape, as it happens when students draw a 3D shape or when they 
interpret a 2D depiction of a 3D shape, fosters students understanding of the structures and its codes 
of representation. As such, we assume a interconnectedness between spatial reasoning and spatial 
structuring in composing and decomposing 3D shapes. 

Spatial structuring shapes can be local or global (Battista & Clements, 1996). Local structuring is 
related to recognizing components or to establishing relationships among components into 
composites without yet establishing relationships among components, composites and the whole. 
Global structuring, in its turn, is evident when students relate components, composites and the whole 
in a way that makes a previous mental model correspond to a shapes’ structure. For global structuring, 
the operations of coordination and integration are fundamental.  
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Coordination operation involves establishing interrelationships between different parts considering 
spatial relationships between them (Battista & Clements, 1996) and eventually with the whole. The 
operation of integration is linked to a previous existence of a mental model that represents a shape in 
a way in that each part of this mental model corresponds to a part of the shape, considering its 
relationship with the whole. The coordination operation is of great importance to the integration 
operation since it allows to interrelate the different parts of that mental model and also to relate 
different forms of representing the shape. Both operations are also involved in spatial reasoning 
processes like creating mental images and models. 

Composing and decomposing shapes is important in understanding shapes’ properties, but it extends 
to other domains in mathematics, such as part-whole relationships and fractions, among others 
(Clements & Sarama, 2014). 

Method 
The research presented in this paper is part of a teaching experiment focused on first-graders’ spatial 
structuring processes. The teaching experiment was organized in three sequences of tasks where 
students are asked to explore relationships in 2D and 3D shapes and also the relationships between 
2D and 3D representations for the same shape. Each task was implemented in a 60 minutes weekly 
session. 

In the task reported here (12th task), students were asked to decompose three 3D shapes in two 
different ways (Figure 1) and to draw these forms of decomposition (2D). 3D multilink cube models 
were available for each shape. Students could manipulate the models without disassembling them. 
Some of the students’ solutions for decomposing 3D shapes were presented and discussed in a whole-
class discussion, after they solved the task.  

 
Figure 1 – Shapes presented to students 

All the three shapes require the students to coordinate different parts. Shape a) has only one layer, as 
it can be fully placed on a plane base. Shapes b) and c) have different layers and require the 
coordination in three dimensions. Additionally, shape c) has a hidden cube that students might not be 
aware of, when the shape is in the position depicted in Figure 1.  

Data were collected in a class with 21 students and their teacher, with great experience, of a public 
school in Lisbon. All students’ names are pseudonyms. We have collected and analyzed all students’ 
drawings. In this task, we have found five different strategies. For this paper, we present drawings 
from three students, Bruno, Carolina, and Duarte, which are representative of the whole range of 
strategies. 
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Data analysis 

We started by noticing and categorizing students’ strategies as presented in Table 1: 

Table 1 – Categorization of students’ strategies in both forms of decomposition (n=42) 

 

Decomposes 
into a smaller 

piece and a 
bigger piece 

Decomposes by 
separating into 

shapes’ 
composites 

Decomposes 
using 

symmetry 

Decomposes 
into equal or 
quasi-equal 
composites 

Decomposes 
into 

components 

No answer 
or 

incomplete 

Shape a) 12 % 43 % 17 % 14 % 9 % 5 % 
Shape b) 12 % 35 % 5 % 25 % 12 % 12 % 
Shape c) 9 % 24 % 0 % 29 % 14 % 24 % 

Since our focus was on spatial structuring, we built an analytical framework based on local and global 
structuring (Battista & Clements, 1996) for analyzing the strategies above, being these two 
progression levels for structuring. The strategies presented above point to different types of 
relationships established that can be associated to local or global structuring, depending on the ability 
to coordinate components and composites. Thus, a thoroughly analysis of these strategies led us to 
include progression sublevels for each level, as presented in Table 2. For each sublevel, we include a 
brief description of the strategies as aspects emerging from data analysis that we call 
Indicators/strategies. “No answer or incomplete” was especially due to a matter of time, which might 
explain, at least partly, its increasing.  The categorization we propose here is hierarchic, thus each 
level includes the previous. We considered the children’s difficulty of representing 3D shapes in a 
sheet of paper. However we assumed the duplication or omission of cubes as essential indicators of 
lack of coordination.  

Table 2 – Analytical framework for decomposing 3D shapes 
Level Sublevel Indicator/strategy 

Local structuring 

E1- Identifying components Decomposes shapes into components (cubes). 
 

E2- Establishing 
relationships among 
components  

Decomposes into two composites, being one of them almost 
the totally of the shape and the other a small part. Relates 
components when representing each of the composites.  
 

E3- Establishing 
relationships among 
composites  

Decomposes, establishing relationships among composites 
(e.g., through symmetry). 
 

Global structuring 

E4- Establishing 
relationships between 
components, composites, and 
the whole by coordination. 

Decomposes shapes into equal or quasi-equal composites. 
Coordinates position and orientation of components and 
composites with the whole, recognizing cubes that are part 
of more than one view. 
 

E5- Establishing 
relationships between 
components, composites, and 
the whole by integration. 

Decomposes shapes, recognizing hidden cubes 
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Results 
In the previous section, we have presented a distribution of student’s strategies (Table 1). We use our 
framework to analyse these strategies, assuming that the same strategy may be allocated either to 
local structuring or global structuring, depending on the relationships students establish.  

We start by analyzing Bruno’s drawings (Figure 2).  

 
Figure 2 – Bruno’s drawings 

Bruno decomposes all three shapes into two composites, separating a small composite made of one 
or two cubes from the rest (level E2). Bruno presents two different decompositions for each shape. 
These forms of decomposing seem to be anchored in visual aspects. We can also observe that Bruno 
duplicates cubes that serve more than one composite instead of coordinating both composites. This 
was the case of the first decomposition for shape a) and b). In shape c), Bruno seems to miscount 
cubes. We infer that this could be related to the fact that he may not recognize the hidden cube, placed 
on the bottom of the central composite, and to the difficulty of representing, in a 2D sheet of paper, 
cubes from the second and third levels, while observing from above. 

Carolina’s drawings, presented in Figure 3, seem to show that the student establishes equal or quasi-
equal composites which are used as complex units for decomposing the shapes.  

 
Figure 3 – Carolina’s drawings 
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For the first shape, Carolina seems to consider a larger composite and several smaller composites, in 
both decompositions. However, for the first decomposition, Carolina apparently establishes a 
relationship of symmetry within the shape and uses it to decompose the shape, duplicating cubes. For 
shape b), Carolina presents two different decompositions. In the first, she decomposes the shape into 
two quasi-equal parts, apparently recognizing two complex symmetrized composites. Nevertheless, 
Carolina duplicates one of the cubes that is part of both composites, drawing 5 cubes for each. Thus, 
this student seems not to be able to coordinate the composites properly, while drawing. In this way, 
both composites seem to be drawn, in the worksheet, as being the reflection of each other. This could 
also be the way Carolina found to represent the cubes from the levels above, in a 2D paper. For the 
second decomposition, in shape b), apparently the student chooses to decompose using equal or quasi-
equal composites, being able to coordinate them, almost like iterating the smaller one. For 
construction c), Carolina decomposes it into small parts, apparently without considering the hidden 
cube, since she draws only eight cubes, in both forms of decomposing. Therefore, Carolina’s work 
could be included in level E3, since the student seems to relate several composites, without yet 
coordinate them consistently. 

Carolina´s forms of decomposition seem to show that the student uses composites that are, apparently 
symmetrical, in some cases, and, in other cases, are quasi-equal. Hence, this form of structuring is 
more complex than those showed by Bruno.  

Duarte’s drawings, presented in Figure 4, seem to indicate that this student decomposes the shapes 
using equal or quasi-equal composites made of two or three cubes, with exception of the last where 
he uses a larger composite.   

 
Figure 4 – Duarte’s drawings 

The horizontal or vertical orientation the student uses to draw each composite seems to be close to its 
orientation in the 3D shape. Duarte’s drawings seem to show that he unitizes shapes using composites 
as complex units, repeatedly, to decompose shapes. He seems to coordinate the composites adjusting 
the number of cubes in each composite so that their size fits the shape. Duarte also shows to be able 
to coordinate different composites that he uses do decompose shapes, not duplicating cubes that are 
part of more than one view. Moreover, Duarte is the only student, from this group of three, that 
recognizes the hidden cube in shape c), by drawing it and mentioning it while presenting his strategy 
in whole-class discussion: “We made the top part with the square [sic] below”. This seems to show 
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that his mental model is coherent with the shape. Hence, we consider that Duarte’s work could be 
included in sublevel E5 from global structuring level.  

Conclusions 
This paper aimed to understand how 1st grade students decomposed 3D shapes and how these 
decompositions are related to spatial structuring. As suggested by Battista and Clements (1996), we 
observed two levels for spatial structuring in students’ work while decomposing three different 3D 
shapes: local structuring and global structuring. For the former, local structuring, students seemed to 
maintain a bigger composite and take apart one or several smaller composites. Another strategy for 
decomposing was establishing symmetrical composites within the shape’s structure and drawing 
these symmetrical composites as complex units. In most of the strategies, where structuring seems to 
be local, students showed a tendency to duplicate cubes, while drawing, meaning this that they 
struggled in coordinating composites when they had overlapping cubes in the corners (Spiegel & 
Ginat, 2017). Also, for local structuring, students seem not to recognize hidden cubes within the 
structure. Therefore, local structuring comprehends different levels of sophistication according to the 
complexity of the relationships that are established. That is, students recognize different kinds of 
complex units for structuring a shape, using different kinds of relationships, like repeating or 
symmetrizing composites. In local structuring, students show difficulties in coordinating composites.  

For the latter, global structuring, one student showed to be able to coordinate properly different 
composites, as well as to recognize hidden cubes. This student used consistently quasi-equal 
composites, as units, to decompose all three different shapes, but he also showed ability to adjust the 
number of cubes in each composite to fit the shape. Global structuring implies that students have 
previous mental models that represent accurately the shape, its components and composites and that 
these parts are properly coordinated. 

Either in local structuring or in global structuring, students were capable of suggesting two different 
forms of decomposition for each shape. However, it is only in global structuring that we can admit 
that students are able to coordinate in properly all the elements, considering overlapping elements, as 
mentioned by Spiegel and Ginat (2017), revealing a deeper understanding of shape’s structures. By 
establishing different relationships, students had the opportunity to deepen spatial relationships. 
However, we must also consider as a limitation the fact that the students did not have any previous 
lessons about how to draw a 3D shape. 

Through this work, we expect to contribute to a deeper understanding of spatial structuring in 
geometric contexts, where spatial reasoning processes such as decomposition of 3D shapes play an 
important role. Also, we seek to reinforce the importance of learning experiences focused on 
decomposition, since early grades, as a fundamental process for developing spatial structuring and 
fostering different ways of thinking as Duval (1998) purposes. 
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This paper aims to increase the insight into kindergarten teachers’ justification of their teaching. The 
study was done in a context with mathematical activities developed by the researchers in 
collaboration with the teachers. This is a context we consider as rich to reveal their choices and 
justifications made in advance of and during the teaching of a mathematical activity. Data from a 
semi-structured, post-teaching stimulated recall interview based on an activity with 5-year-old 
children was analysed employing the Knowledge Quartet proposed by Rowland et al. (2005). We 
identify seven choices made by the kindergarten teacher that reveal aspects of the kindergarten 
teacher’s knowledge-in-action and knowledge-in-interaction. She adapts the activity through 
questions, comments, particularities within the activities, and use of artefacts. Thus, she nurtures the 
children in their mathematical learning process.  

Keywords: Knowledge Quartet, Mathematics teaching in kindergarten, Teacher’s choices, Teacher’s 
justifications. 

Introduction 
The aim of the current study is to reveal insights regarding the choices kindergarten teachers (KTs) 
make during the teaching of mathematical activities in kindergarten and the justifications they provide 
with respect to these choices. Research has shown that high quality early childhood programs carry 
the potential of improving children’s early learning. Moreover, intervention programs have shown to 
positively effect children’s learning of mathematics (Clements & Sarama, 2011; Stehler et al., 2013). 
The current study draws on data collected as part of the research conducted within the Agder Project1 
(AP). The AP is a research and development project, designed as a randomized control trial with an 
experimental group and a control group, with the intention to even out differences between children 
as they enter school. The AP thus bares characteristics of an early childhood intervention program. 
In the project focus was on nurturing 5-year-old children in their development within four competence 
areas (social skills, self-regulation, literacy, and mathematics) that research has shown to significantly 
contribute to children’s school readiness.  In the AP, researchers designed mathematical activities in 
close collaboration with participating kindergarten teachers (KTs); activities that the KTs taught with 
the group of 5-year-olds from their own kindergarten. 

The mathematical activities were designed based on two main principles, playful learning (Hirsh-
Pasek et al., 2009) and inquiry (Wells, 1999; see also Breive et al., 2018 for further details with 

 
1 The Agder project is funded by the Research Council of Norway (NFR no. 237973), The Sørlandet Knowledge 
Foundation, The Development and Competence Fund of Aust Agder, Vest Agder County, Aust Agder County, University 
of Agder and University of Stavanger. 
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respect to the design). The current study thus takes as point of departure these two principles when 
researching the teaching of mathematical activities in the kindergarten context. Research has 
documented that emphasis on playfulness in engaging with mathematics in the early years is 
particularly important with respect to long-lasting effects (Marcon, 2002; Singer et al., 2009). 
Research has also documented that adopting an inquiry approach to mathematics learning is 
promising regarding children’s learning of mathematics (Breive, 2019; Wells, 1999) 

A huge amount of research has been conducted with respect to mathematics teachers’ knowledge 
regarding mathematics and mathematics teaching. These studies are drawing on well-known 
frameworks such as Mathematical Knowledge for Teaching (cf. Ball et al., 2008), the Teaching Triad 
(cf. Jaworski, 1994), and the Knowledge Quartet (cf. Rowland et al., 2003; 2005). However, the 
number of studies analysing kindergarten teachers’ practice is more scarce. Mosvold et al.  (2011), 
drawing on the framework of Ball et al. (2008), analysed mathematics teaching in Norwegian 
kindergartens. They found that they needed to adjust the theoretical framework slightly to make it fit 
with the kindergarten setting. Breive (2019) also analysed mathematics teaching in a Norwegian 
kindergarten setting, and she revealed insights into the subtleties of KTs’ practice.  However, these 
studies drew on observational data to reveal insights into the KTs’ mathematics teaching. We, on the 
other hand, draw on interview data associated with a taught mathematical activity to reveal glimpses 
into one KT’s choices and justifications for her choices in the activity. Through this approach, we 
seek a more personal view upon mathematics teaching in kindergarten. Our approach is to some 
extent in line with the study of Sæbbe (2019), as he, building on the work of Ball et al. (2008), also 
drew on interview data immediately following observations of mathematics teaching in kindergarten. 
Nevertheless, our foci on choices and justifications for choices deviate from Sæbbe’s, as he discussed 
whether KTs’ practice may be characterised as teaching, whether it is mathematical, and the 
challenges and demands for KTs’ competence. Moreover, our study deviates from Sæbbe’s as we 
adopt a complementary, theoretical framework in our study, the Knowledge Quartet (Rowland et al., 
2003; 2005). As such, our study is theoretically in line with Hundeland et al. (2017), who also drew 
on this quartet in their analysis of a KT’s practice. To our knowledge, the Knowledge Quartet has not 
been used as an analytical framework to analyse interviews before. Thus, our study represents a novel 
attempt to scrutinise a KT’s choices and justifications for her choices in the activity. 

Previous studies have shown that substantial insights into KTs’ accounts of their teaching practice 
may be revealed through interview data (Erfjord et al., 2012; Hundeland et al., 2011). The current 
study draws on this experience as interview data from one volunteering KT from the AP has been 
analysed. This KT was selected based on the following procedure: The 42 participating KTs in the 
experimental group were, during the intervention year, invited to accept an invitation from the team 
of researchers who are the authors of this paper as well as teachers in the professional in-service 
program the KTs were part of.  12 of the KTs, randomly selected from the 42, accepted the invitation 
to be observed during their implementation of designed activities as well as a post-teaching interview. 
The particular KT in this paper was selected from one of these 12, at no other basis than an initial 
judgment that the activity was conducted as planned (that nothing unfortunate happened like sickness, 
external need for change in plans etc.). The interview of this selected KT has been analysed in order 
to address the following two research questions: 
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1. What choices does a kindergarten teacher make in her teaching of a mathematical activity? 
2. What justifications does the kindergarten teacher provide regarding her choices in teaching 

the mathematical activity? 

The KT taught an activity called ‘The secret bag’. An analysis of the mathematical discourse 
emerging in this activity is communicated elsewhere (Hundeland et al., 2020). The activity 
encompasses reasoning with respect to two-dimensional and three-dimensional geometrical shapes, 
firstly displayed for all and secondly located in an in-transparent fabric bag. The KT and the children 
first discussed features of and connections between these shapes. Then, having the shapes into the 
bag, one child at a time tactilely felt and reasoned what shape the picked one was.  

The Knowledge Quartet (KQ) 
Rowland et al. (2005) describe mathematics and mathematics teaching and the mathematics teacher’s 
subject matter knowledge regarding these areas through four dimensions. These dimensions are called 
Foundation, Transformation, Connection, and Contingency, hence the label ‘The Knowledge 
Quartet’. This label not only signifies that there are four dimensions of mathematics teachers’ 
knowing, but also that these dimensions are intertwined – as a quartet. These dimensions emphasize 
the situations during mathematics teaching in which one may observe the mathematics-related 
knowing of the teacher.  

Foundation is the dimension directed towards the use of propositional knowledge. That is, in the 
current study in what ways the KT, in her interview responses, reveals relevant knowledge of 
mathematics and mathematics education as well as her view regarding the goals of mathematics 
education and ways children appropriate mathematics. The analytical contributory codes used were: 
“awareness of purpose; identifying errors; overt subject knowledge; theoretical underpinning of 
pedagogy; use of terminology; use of textbook; reliance on procedures” (Rowland et al., 2005, p. 
265).  

Within the KQ there are two dimensions addressing knowledge-in-action. Transformation refers in 
the current study to the KT’s choices of representations, demonstrations, and use of examples, e.g. 
geometrical shapes, and how these are revealed in interview responses. Basically, this dimension 
concerns in what ways the KT shows evidence of appropriately transforming the mathematics for the 
children’s learning. The analytical contributory codes used were: “choice of representation; teacher 
demonstration; choice of examples” (Rowland et al., 2005, p. 265). Connection refers in the current 
study to how the KT makes connections between the activity involved mathematical concepts and 
procedures, i.e. features of geometrical shapes and their relations, as well as ways to challenge the 
meaning of these concepts and ideas. The analytical contributory codes used were: “making 
connections between procedures; making connections between concepts; anticipation of complexity” 
(Rowland et al., 2005, p. 265). 

The fourth dimension is called Contingency - a dimension of knowledge-in-interaction. This 
dimension encompasses the nature of adult-child interactions and responses, and in the current study 
as how the KT responds appropriately, take advantage of emerging opportunities for learning, make 
the activity her own, and to what degree she deviates from her set foci and goals. The analytical 

Proceedings of CERME12 2170



 

 

contributory codes used were: “responding to children’s ideas; use of opportunities; deviation from 
agenda” (Rowland et al., 2005, p. 266). 

According to Rowland et al. (2003), “the quartet is comprehensive as a tool for thinking about the 
ways that subject knowledge comes into play in the classroom” (p. 97). Nevertheless, we will analyse 
the KT’s answers in a post-teaching stimulated recall interview and align her responses with the 
relevant dimension(s) and associated codes.  

Semi-structured interviews 
Semi-structured interviewing is a commonly used method of data collection (Bryman, 2016; Kvale, 
1996). Characterising features of semi-structured interviews are (non-exhaustive): 1) A list of 
questions is prepared; 2) The respondent may elaborate the response; 3) There is no strict order of the 
questions; 4) New, non-prepared questions may be asked; and 5) All prepared questions are asked.  

We are aware of the deficits of qualitative interviews when it comes to trustworthiness, as people 
tend to rationalise on their thinking rather than trying to tell what they are/were thinking in interview 
settings. However, one of the authors both observed the taught activity as well as conducted the 
interview immediately after the activity. Extensive collaboration between the researcher(s) and the 
KTs was also established in the AP. These aspects add to the trustworthiness of the KT’s answers 
with respect to choices made and the justifications for these choices.  

In the current study we particularly analyse a post-teaching stimulated recall interview. Designing 
our interview in this way is in line with how Rowland et al. (2005) designed their interview when 
developing the framework of the Knowledge Quartet. Furthermore, we designed our interview paying 
close attention to the codes behind the four dimensions of the Knowledge Quartet. Thus, we were 
formulating our questions aiming to address the particular codes in order to implicitly address the 
four dimensions. For example, we asked the question “What was the intention behind the activity?”, 
to address the code ‘awareness of purpose’.  

Context and participant 

The current study analyses a semi-structured interview with the KT, immediately following her 
teaching of a mathematical activity, ‘The secret bag’. The activity was designed based on the 
principles of playful learning and inquiry. The written description of the activity encompassed an 
intention of the activity with respect to participating children’s possibilities for making mathematical 
experiences, suggestions for preparations, and suggestions for how to implement that activity 
including mathematical questions and prompts to use. 

Results 
Despite the collaborative design of the mathematical activities, including explicit intentions and 
suggestions for implementation of the activity, the KT was left with a lot of freedom regarding how 
to teach the activity in detail. Each interview was analysed based on the following procedure: Initially, 
as mentioned above, the interview guide was collaboratively developed by the three researchers 
adaptive to the codes behind the four dimensions of the KQ. The conducted interviews were 
transcribed, and individually we analysed the transcripts, marked the statements and selected 
illustrative statements for the choices made. After the individual analysis, we met, shared and 
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discussed our outcomes and found that we strongly agreed on the outcomes and the respective 
statements. Finally, the statements were translated to English and added to our analysis section. From 
this analysis of the post-teaching stimulated recall interview, we identified seven novel choices that 
the KT made prior to and during her teaching. We have grouped them according to the dimensions 
of the KQ. 

Choices and justifications associated with Foundation and Connection 

With respect to these dimensions, we asked questions about the intentions behind her activity, 
whether the intentions were achieved, her emphases on making connections between involved 
mathematical concepts, decisions about sequencing. The KT communicated the following choices: 

1. She wanted to promote a particular mathematical focus and mathematical learning purpose of 
the activity. 

2. She was conscious of the design and order of elements engaged with in the activity. 
3. She was conscious of what mathematical questions to ask each of the children. 

Even though the written description of the mathematical activity encompassed an intention, the KT 
explained that she made explicit choices in line with her intention. With respect to 1): “I wanted to 
emphasize a mathematical discussion concerning the features of the geometrical shapes”; “I wanted 
to let the children come up with answers, to give them time to think, to let them philosophize”; “I 
have twisted the activity a bit, made it my own”. With respect to 2): “I wanted the children first to 
engage with the geometrical shapes that I brought, and then for them to recognize geometrical shapes 
in their environment”; I wanted the children to experience the shapes in two different learning arenas”. 
With respect to 3): “There are substantial differences amongst the children. Thus, I do not ask them 
questions with equal difficulty”; “If I am to include mathematics into the children’s play, it is 
important to ask the good questions”. These choices testify that 1) the KT consciously decides and is 
aware of the mathematical learning purposes of the activity; 2) the KT consciously decides on the 
organisation of the activity; 3) the KT consciously decides on the mathematical foci through her 
questioning; and 4) the KT anticipates the mathematical complexity involved in the activity. Thus, 
we argue that these choices exemplify an operationalisation of the dimensions of Foundation and 
Connection. The KT draws on her propositional knowledge both with respect to mathematics and 
mathematics education and establishes connections between the purpose of the activities and the 
children by adapting the inherent mathematical difficulty. 

With respect to the first choice above, the KT argued that she wanted to nurture a discussion amongst 
her children concerning the characteristics of two-dimensional and three-dimensional shapes. 
Furthermore, she wanted her children to use visual, auditive and tactile senses to make mathematical 
experiences from the activity. Concerning the second choice, the KT argued that she followed the 
written activity quite closely, but also that she had prepared extra material for the children to engage 
with. She argued that her activity was flexible in its own right, offering her possibilities to both make 
it easier and to develop the activity further. Justifications for the third choice were as follows. The 
KT argued that the mathematics questions ought to be adapted to each child’s level of competency 
and that it is important to know each child’s competency in order to ask appropriate questions. 

Proceedings of CERME12 2172



 

 

Appropriate questions are furthermore needed to make the activity successful in terms of participation 
and mathematical learning opportunities.  

Choices and justifications associated with Transformation 

With respect to this dimension, we asked questions about how she adapted the activity to suit the 
children’s mathematical experience, her reasoning with respect to how successful she was in adapting 
the mathematics, explanations, and use of manipulatives. The KT communicated the following 
choices: 

4. She was conscious of how to engage each of the children in the mathematical activity. 
5. She was conscious of how to use manipulatives and other mediating artefacts. 

Both these choices signal that the KT is consciously aware of how to best communicate with her 
children. The KT is careful in how she mathematically approaches each of the children, and she adapts 
her questions and prompts to each child based on her particular insights regarding each child. “I 
wanted all children to be able to participate in the mathematical activity”; “There are many ways to 
engage the children in the mathematics”. Furthermore, the KT reveals that she made conscious 
choices with respect to the various manipulatives she used in the activities, both particularly 
mathematical manipulatives and other mediating artefacts such as what shapes and number of shapes 
to include. The KT was also attentive to how she used mathematical language, use of pointing 
gestures, and displaying artefacts. “I used the fabric bag to introduce some mystery, something 
exiting, and I used a balloon and some pictures”. These choices demonstrate, we argue, that the KT’s 
taught activity was revealing the dimension of Transformation. 

Regarding the fourth and fifth choice, the KT argued that all children were actively engaged in the 
activity. She sought to make them curious about the shapes and used the shapes of artefacts in the 
room, a brought artefact, and the small plastic shapes to let the children “experience the shapes in two 
different learning arenas”.   

Choices and justifications associated with Contingency 

With respect to this dimension, we asked questions about how the KT responded to and took 
advantage of the children’s various contributions, whether and why she deviated from her plans for 
the activity. The KT communicated the following choices: 

6. She made choices regarding how to communicate with each of the children.  
7. She was attentive to children’s comments and made deviations from plans and acted in the 

moment. 

These two choices demonstrate that the KT is particularly aware of how she communicates with the 
children, especially to what extent and how she responds to the children’s questions and initiatives 
during the activities. “My plans are rarely executed fully. It’s about being spontaneous. The children 
steadily discover new things”. “I wanted to let the children come up with answers, to give them time 
to think, to let them philosophize”. The KT was also explicit about the various deviations she made 
due to the children’s contributions, and she explained that she had to act in the moment according to 
the emerging issues. “I planned to use a game with shapes, made copies for each child. But then I 
experienced that the mathematical conversation was running smoothly. Introducing the game would 
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then just disturb them”; “I had to make one the children sit on my lap”; “I saw that the children were 
engaged in the activity. But after 30 minutes I realized that it was time to finalize”. 

With respect to the sixth choice, the KT emphasized to let the children come up with the answers, to 
let the children philosophise. She also gave the children time to think for themselves for a while, for 
them to come up with answers. As regards the seventh choice, the KT argued that it was important to 
her to follow up on the children’s philosophical-mathematical questions. She wanted to discuss what 
the children were mathematically occupied with, to be spontaneous and flexible and react to the 
mathematically unexpected. However, she also took actions on the spot with respect to her leadership 
of the activity. 

Discussion 
This paper aims to increase the insight into KTs’ justification of their teaching. The study was done 
in a context with mathematical activities developed by the researchers in collaboration with the KTs, 
a context we consider as rich to reveal their choices and justifications. We set out to come up with 
answers to the following two research questions: What choices does a kindergarten teacher make in 
her teaching of a mathematical activity? and What justifications does the kindergarten teacher provide 
regarding her choices in teaching the mathematical activity? Findings suggest that the revealed 
justifications for the teaching choices made, give insights into this KT’s knowledge-in-action and 
knowledge-in-interaction. 

From the analyses of the post-teaching stimulated recall interviews, we argue that the KT made 
deliberate choices with respect to her teaching of the mathematical activity as well as justifications 
for these choices. She chose the particular mathematical learning goals for the taught activity, she 
chose to ask particular mathematical questions and raise mathematical issues for the children to 
wonder about. She chose various mathematical artefacts and talked attentively with each child in a 
deliberate way. All these choices were thoroughly justified.  

Based on the KT’s revealed justifications for the teaching choices made we argue that the KT made 
the activities her own, in a way featured by the four dimensions in the Knowledge Quartet (Rowland 
et al., 2003; 2005). She adapts the activity through questions, comments, particularities within the 
activities, and use of artefacts. Thus, she nurtures the children in their mathematical learning process. 

These insights reveal that the Knowledge Quartet is applicable as an analytical framework for 
analysing post-teaching stimulated recall interviews of kindergarten teachers. Furthermore, through 
our elaborations of the KQ dimensions and associated codes in our analyses, significant insights are 
implicitly revealed regarding a kindergarten teacher’s teaching of mathematics and the issues she has 
to handle in situ to make the participation in the activity a nurturing mathematical learning process 
for the involved children.  
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Word problems are an important part of learning and teaching mathematics. However, they differ, 
among other things, in the extent to which they are related to reality. From this point of view, we 
distinguish intra-mathematical word problems, “dressed up” word problems, and modelling 
problems. Our research revealed that prospective teachers of lower elementary grades (N = 81) 
consider intra-mathematical problems and “dressed up” problems more suitable for use in 
mathematics instructions than mathematical modelling problems. In addition, prospective teachers 
would like to include the mentioned two types of word problems to a greater extent in their teaching 
of mathematics than modelling problems. Additionally, we will show what advantages and 
disadvantages they identify for each of the presented word problems. 

Keywords: “Dressed up” problem, intra-mathematical problem, mathematical modelling, 
prospective elementary teacher, word problem. 

Theoretical framework  
Word problems help prospective teachers understand the role of mathematics in reality and prepare 
them to apply mathematical skills in everyday situations. We know that there is a wide range of 
mathematical tasks used to apply mathematical models and procedures to reality, ranging from simple 
word problems to complex modeling problems (Dröse, 2019). In addition, word problems can deepen 
and broaden prospective teachers' knowledge, improve their logical and critical thinking skills, and 
enhance their creativity. Moreover, they can provide prospective teachers with the opportunity to 
apply their mathematical knowledge to complex real-world problems, as they can work at their own 
pace and decide for themselves how to approach the problem (see, e.g. Van de Walle et al., 2016; 
Verschaffel et al., 2020). 

One of the best-known characteristics of word problems is how they are connected to reality (Krawitz 
& Schukajlow, 2018; Rellensmann & Schukajlow, 2017). From this perspective, there are generally 
two types of problems: problems connected to reality, real-world problems, and problems without 
such a connection, also called intra-mathematical problems.  

Real-word problems describe a reality-based problem situation involving objects from the reality, 
such as objects from nature and everyday life. Many authors distinguish two types of real-world 
problems: modelling problems and “dressed up” word problems (Rellensmann & Schukajlow, 2017; 
Krawitz & Schukajlow, 2018).  
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The basis of modelling problems is a demanding translation process between reality and mathematics 
(Blum et al., 2007; Krawitz & Schukajlow, 2018). Solving modelling problems is often described as 
a cycle of activities that begins and ends with a real-world situation (Galbraith & Stillman, 2006; 
Blum & Leiß, 2007). According to Blum and Leiß (2007), this process consists of the following seven 
steps: (1) understanding the problem and constructing an individual ”situation model”; (2) 
simplifying and structuring the situation model and thus constructing a ”real model”; (3) 
mathematising (translating the real model into a mathematical model); (4) applying mathematical 
procedures to derive a result; (5) interpreting mathematical result in terms of reality and attaining a 
real result; (6) validating the obtained result concerning the original situation (if the result is 
unsatisfactory, the process may start again with step 2); and (7) exposing the whole solution process. 
Note that prospective teachers’ processes in mathematical modelling are usually not linear but jump 
back and forth between mathematics and reality several times (see, e.g. Borromeo Ferri, 2007). 

“Dressed up” word problems are also connected to reality, but in these problems, the reality-related 
mental activities are much simpler than in modelling problems. This is because a real model, which 
is simplified, is already included in the description of the problem. Actually, “dressed up” word 
problems are just mathematical problems to which we add a figurative context related to reality. 
Consequently, prospective teachers do not have to structure and idealize the given information, and 
interpret and validate the mathematical results according to the real-life situation. In addition, 
“dressed up” word problems do not contain redundant or missing data. This means that prospective 
teachers do not have to make assumptions about missing data and separate important from 
unimportant information, which is a challenging property of modelling problems. Finally, from the 
teachers' point of view, validating the result of a “dressed-up” problem is much easier than in the case 
of modelling problems since it is mainly limited to checking the mathematical part (Krawitz et al., 
2016; Schukajlow et al., 2012; Krawitz & Schukajlow, 2018).  

Intra-mathematical problems are those which have no relation to reality. They are, therefore, pure 
mathematical word problems. Consequently, these problems do not require any reality-related mental 
activities (Krawitz & Schukajlow, 2018). 

Note that the differences between these problems arise from the cognitive processes required to solve 
these problems (Blum & Leiß, 2007; Galbraith & Stillman, 2006; Schukajlow et al., 2012). All three 
types of problems have their own advantages and disadvantages, depending on their purpose. All 
types of problems require mathematical-technical skills, whereas modeling problems and “dressed 
up” word problems (but at a very low level) also require cognitively demanding translation processes 
(Krawitz & Schukajlow, 2018). Consequently, all three problem types have their characteristics and 
of course, they are all essential for learning mathematics.  

Since word problems have many other characteristics, for example, linguistic characteristics, 
numerical characteristics, and the interaction between linguistic and numerical characteristics 
(Daroczy et al., 2015), it is not easy to determine whether or not each word problem is appropriate in 
a particular situation.  

Particularly for teachers with little experience, it is often difficult to select or create a suitable word 
problem (Luo, 2009; Simon, 1993; Lee & Kim, 2005). For example, Luo (2009) found out (N=127) 
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that a significant percentage of the prospective teachers from the United States could not construct 
appropriate word problems for the given symbolic expressions of fraction multiplication. Simon 
(1993) also found that 70% of the prospective elementary teachers in his study could not form an 
appropriate word problem for fraction division. In addition, Chapman (2012) has highlighted that 
studies of prospective elementary mathematics teachers have raised issues about their problem-
solving knowledge, suggesting potentially matters related to their problem-posing knowledge. 

Leading educators and researchers have proposed some guidelines to determine the level of 
appropriateness of a problem in a given situation (e.g. Cathcart et al., 2000; Hyde & Hyde, 1991; 
NCTM, 2000, as cited in Lee & Kim, 2005; Van de Walle, 2001) that can help teachers in selecting 
and creating word problems. Appropriate problems should be taken out of reality; should be 
recognised by the prospective teachers as meaningful and valuable; includes significant mathematics; 
integrates multiple topics and makes connections between different mathematical fields; requires 
justifications and explanations for answers and methods; is solvable in many ways; generates student 
interest in working on it; sometimes contains missing, redundant, or contradictory information; the 
problematic or exacting aspects of the problem must be related to the mathematics the prospective 
teachers are supposed to learn (e.g. Cathcart et al.,  2000; Hyde & Hyde, 1991; NCTM, 2000, as cited 
in Lee & Kim, 2005; Van de Walle, 2001). 

Purpose of a research 
This study aims to investigate prospective elementary school teachers' views on different 
mathematical word problems. We were particularly interested in their opinions about the various 
word problems depending on their connection to reality. In addition, we want to examine what are, 
in their view, the advantages and disadvantages of a given word problem.   

Methodology 
The quantitative empirical pedagogical research methods we used are descriptive and causal non-
experimental methods.  

The study has been conducted based on a survey of 81 prospective elementary school teachers, more 
precisely 4th and 5th-year prospective teachers, since the study for an elementary school teacher lasts 
five years at the University of Zagreb, Croatia, after which they receive a master degree. Printed 
surveys were distributed to prospective teachers after the lecture, and all 4th and 5th year prospective 
teachers completed the surveys. The survey was conducted in June 2020. The data obtained from the 
surveys were analyzed using IBM SPSS Statistics 23. Here we list only a part of the results from the 
described study. 

The anonymous survey included questions about the prospective teachers' year of study and attitude 
towards mathematics and some questions about word problems. The latter refers to word problems 
in general and to specific word problems proposed by us (intra-math problems, “dressed up” 
problems, and modelling problems). In the survey, we presented prospective teachers with six word 
problems, and in this paper, we will show the results for three of them. For each word problem, 
prospective teachers had to list some advantages and disadvantages and answer whether they thought 
the problem was suitable for lower grades of elementary school. In the last part of the survey, 
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prospective teachers had to rank the given word problems according to the level of difficulty and 
according to what extent they would include a particular problem in their math classes. We also asked 
them if they felt competent enough to create word problems.  

The word problems, which were given to the prospective teachers, were the following.  

Word problem 1 (intra-mathematical word problem): The addend is 14 400, and the augend is 16 
500. What is the sum?  

Word problem 2 (“dressed up” word problem): Carlo wants to buy a car that costs 18 600 euros. Can 
he buy that car if he only has 16 000 euros in his bank account?  

Word problem 3 (modelling problem): Carlo and his mother were shopping for a car. Carlo wants a 
car that will be fun to drive, does not consume a lot of gasoline and is not too expensive. On the other 
hand, Carlo's mother, who will help pay for the car, wants the car to be reliable and safe. Your job 
is to make a list for Carlo and a list for his mother that shows which cars are best for them. Then they 
will have to decide which one to buy! Car information is given in the table below. 

Table 1: Car information 

Car Year Price Colour Mileage 

Fuel 

consumption 

per 100km 

Additional equipment 

Nissan 

Juke 
2015 11 000 Red 112 000 9 

navigation, automatic air conditioning, 

radio, front fog lights, cruise control 

Ford 

Mondeo 
2017 16 000 White 83 400 10 

navigation, automatic air conditioning, 

radio, front fog lights, cruise control, 

parking sensors 

Audi A4 2018 21 000 Black 91 600 11 

navigation, automatic air conditioning, 

radio, front fog lights, cruise control, 

parking sensors, leather seats, rain 

sensors 

Ford 

Fiesta 
2016 8 500 Red 60 400 8 automatic air conditioning, radio 

Hyundai 

Tuscon 
2017 18 600 Blue 40 900 11 

automatic air conditioning, radio, front fog 

lights, cruise control, parking sensors 

BMW X2 2018 35 000 Silver 38 600 11 

navigation, automatic air conditioning, 

radio, front fog lights, cruise control, 

parking sensors, leather seats, rain 

sensors, LED lights, sports seats 
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Reanult 

Captur 
2018 11 600 Blue 111 400 9 

automatic air conditioning, radio, front fog 

lights, cruise control 

Opel 

Astra 

Karavan 

2017 10 400 Silver 112 300 10 
automatic air conditioning, radio, front fog 

lights 

VW Golf 2016 12 000 White 70 000 9 automatic air conditioning, radio 

Results and discussion 
We asked prospective teachers if they thought the given word problems were appropriate for lower 
elementary grades. This was followed by two open-ended questions in which they were asked to state 
the advantages and disadvantages of the given problems. The last question related to the word 
problems was whether they would do such a problem in their mathematics classes. The results for all 
problems can be found in Table 2 and are described below. 

Table 2: Questions about given word problems (WP) 

                    WP 1 WP 2 WP 3 

 f f % f f % f f % 

The word problem is suitable for lower grades of elementary school.    

Yes 77 95.1 75 92.6 25 30.9 

No 4 4.9 6 7.4 56 69.1 

I would do such word problems in my math classes.     

completely disagree 3 3.7 5 6.2 36 44.5 

partially disagree 7 8.6 5 6.2 15 18.5 

neither agree nor disagree 36 44.5 19 23.5 18 22.2 

partially agree 20 24.7 24 29.6 8 9.9 

completely agree 15 18.5 28 34.5 4 4.9 

∑ 81 100.0 81 100.0 81 100.0 

Table 2 shows that prospective teachers consider intra-mathematical problems and “dressed up” 
problems to be more suitable for mathematics classes than mathematical modelling problems. 
Moreover, the mentioned two types of word problems would also be included to a greater extent in 
their teaching of mathematics. These responses were to be expected since students consider it less 
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important to be able to solve modelling problems than “dressed” up word or intra-mathematical 
problems (Krawitz & Schukajlow, 2018).  

We asked prospective teachers to write in an open-ended question what they considered to be 
advantages or disadvantages of a particular word problem. For the first word problem, 33 prospective 
teachers, i.e. 41% of them, mentioned the simplicity of the problem, and 23 of them, i.e. 28%, noted 
the repetition of terms in addition and the practice of adding numbers as an advantage. As for the 
disadvantages of the first word problem, 14% of the prospective teachers stated that the numbers are 
too large for lower elementary grades, and the vast majority, 48% of the prospective teachers, stated 
monotony and lack of context as the disadvantage of the word problem. In other words, prospective 
teachers indicated that word problem 1 seemed boring and uninteresting to them.  

Among the advantages of the second presented word problem, more than half of the prospective 
teachers (57%) stated that this problem requires prospective teachers to think, and that the problem 
is good because it has a context from everyday life, and therefore could be more attractive to 
prospective teachers than the first presented problem. Other benefits prospective teachers mentioned 
were comparison and evaluation. Prospective teachers disagreed on what was a disadvantage of the 
second word problem. To some, it seemed too simple, while others thought the problem was too 
complicated. Some even noted that the problem focused too much on material things and that it would 
be better to have something closer to the prospective teachers’ experiences in the problem, i.e., their 
age and not cars.  

For the third word problem from mathematical modelling, 17% of the prospective teachers mentioned 
a table presentation as an advantage. Another advantage was that the problem was realistic, excellent 
for inquiry, and engaging. For the third word problem, 40 prospective teachers (49%) did not state 
any advantage. Therefore, we can conclude that they do not see the advantages and benefits of this 
type of word problem at all in the lower grades of elementary school mathematics. As for the 
disadvantages of the third problem, prospective teachers were almost unanimous. Those who 
mentioned a disadvantage (84%) stated that the problem was complex/complicated and would take 
too much time. Additionally, they stated that such a word problem would be more suitable for 
prospective teachers who are better at math. 

Looking at the results overall, we see that prospective teachers are much more inclined to standard 
word problems. By this, we mean intra-mathematical word problems and “dressed up” word 
problems, which they encountered much more frequently during their education than word problems 
involving mathematical modelling. More than 90% of prospective teachers responded that problem 
1 and problem 2 are suitable for lower elementary grades, while nearly 70% of prospective teachers 
answered that problem 3 has no place in lower grades of elementary school. The vast majority of 
prospective teachers thought problem 3 was too complicated, with too much data and would take up 
too much of their mathematics class time. Other studies have come to similar conclusions. For 
example, Lee and Kim (2005) conducted a survey (N=22) that revealed that most teacher candidates 
found typical routine problems to be good and showed strong resistance to some non-routine 
problems with atypical features. In addition, Krawitz and Schukajlow (2018) found that there are 
significant differences in prospective teachers’ task values depending on the type of problem (intra-
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mathematical problems, “dressed up” problems, and modelling problems). Namely, in their study, 
prospective teachers reported the lowest task values for modelling problems compared to the other 
types of problems.

In this paper, we have only presented a part of the survey and the questions from the survey 
questionnaire. The challenge for all teachers, particularly prospective elementary school teachers, is 
to constantly upgrade their knowledge and experience in their professional development, including 
knowledge of word problems and their quality creation.  
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This paper scrutinises the main scientific journals and books concerning early years mathematics 
education for the learning of playful mathematics in primary school. The search process resulted in 
2633 studies which were then screened according to title and abstract before reading 61 studies in 
more detail. The resulting 13 studies were further examined to explore how the different mathematics 
education researchers characterised playful learning in mathematics. Based on these examinations, 
the paper provides a working definition of playful learning in primary mathematics education.  
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Introduction 
This literature overview aims to define playful learning (PL) in primary mathematics education (ME). 
When reading previous research literature, I discovered that early years ME researchers often do not 
define PL but view PL situations regarding teaching opportunities by stating what children learn, such 
as dealing with counting, operations on numbers, shape, and measuring (Ginsburg, 2006), geometrical 
thinking (Clements & Sarama, 2014), classification, seriation, conservation, one-to-one 
correspondence, estimating, quantitative concepts, number words, space-time orientations (van Oers, 
1996) to name a few. Of course, what pupils may learn through play is highly important, as education 
has a learning perspective. However, I argue that PL does not depend on the specific mathematical 
content. In this literature overview, a total of 2633 studies were screened before reading 61 studies in 
more detail. When scrutinising the resulting 13 studies and identifying the ME researchers’ common 
features of PL, my argumentation contrasts with the argument of Brooker et al. (2014), who concludes 
that a consensus on the definition of PL in early childhood never will be reached. Also, I argue that 
researchers studying the effectiveness of a PL approach and what mathematical content pupils learn 
when participating in PL situations could benefit from a definition of what constitutes PL in 
mathematics in the first place. Therefore, next, I draw on previous research providing insights into 
key concepts and a further rationale for conducting this literature overview, deliberately labelled an 
overview, rather than a review, because the interest is not in the studies’ research findings. The aim 
is purely theoretical; to explore how ME researchers characterise PL to define PL in primary ME. 

Background 
As a pedagogical approach, PL is a broad construct capturing the interrelationship between play and 
learning (Hirsh-Pasek et al., 2009). It encompasses learning through free play, guided play and games 
(Fisher et al., 2012; Ginsburg, 2006). Free play is child-initiated and child-directed. Guided play is 
adult-initiated and child-directed. In both, the child is active and in the lead. The difference is the 
adult’s passive role in free play, compared to an active role in initiating the activity in guided play 
(Fisher et al., 2012; Weisberg et al., 2013). Thus, the adult can create more learning opportunities by 
enhancing the children’s engagement in the activities (for a review, see Fisher et al., 2010). The pupils 
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are unlikely to get the full benefit from PL without teachers’ engagement (Ginsburg, 2006). However, 
balancing adult and child participation can be challenging (Breive, 2019), with a risk of the activity 
becoming of the instructional type. Compared to free and guided play, direct instruction is adult-
initiated and adult-directed (Fisher et al., 2012; Weisberg et al., 2013). Thus, guided play lies between 
free play and direct instruction, involving adult guidance while allowing children to direct the activity 
(Weisberg et al., 2015). However, there exist various perspectives and differences in opinions of play 
and learning. Some might even view the two as incompatible (Fisher et al., 2010). What defines PL 
is unclear (Samuelsson & Carlsson, 2008), as is the distinction between the three approaches (free 
play, guided play, and direct instruction) it overarches. Especially according to the degree of adult 
guidance where guided play falls on a continuum where the adults’ involvement “varies according to 
the adults’ curricular goals and the child’s developmental level and needs” (Fisher et al., 2010, p. 
343). In general, it is essential to differentiate between child-initiated (play-based) and adult-initiated 
activities (instruction or more school-like tasks). However, mathematics instruction can involve 
various instructional approaches (Sarama & Clements, 2009). It does not have to be direct instruction, 
and PL can also include different instructional approaches. The integration of play in the learning 
process is precisely why play in teaching has such great importance (Wood & Attfield, 2005), a 
potentially valuable educational tool also in primary school mathematics teaching and learning.  

The relationship between mathematics and play can be seen as either “mathematics made playful” or 
“mathematising elements of play” (van Oers, 1996). Mathematics is made playful when it is the 
primary activity, e.g., games where counting or sorting activities are transformed into playful 
activities. Elements of play are mathematised when play is the primary activity, e.g., when the teacher 
tries to be responsive to the children’s actions and introduce mathematical concepts to the activity. 
As such, in both conceptions of the relationship, the teacher may provide opportunities for further 
mathematics learning. Teachers’ ability to respond to the opportunities during play is critical to 
enhance the children’s mathematical thinking (van Oers, 1996), in line with Fisher et al. (2012) and 
Ginsburg (2006) regarding the adults’ role in guided play. However, as play is challenging to define, 
it is also challenging to assess its quality (Samuelsson & Carlsson, 2008). Thus, it is difficult to draw 
clear lines between different types of play and between play and instruction. These demarcation 
difficulties may explain why existing research on play often has focused on mathematical content. 
Thus, a literature overview is needed to provide a working definition of PL in primary ME.  

Methods 

The literature overview, conducted in June 2021, was limited to searching six resources for studies 
of pupils aged 5-12, published in 2010-2021, with no limitations regarding research methods. The 
resources and the respective number of studies screened were: Educational Studies in Mathematics 
(ESM, 610), Journal for Research in Mathematics Education (JRME, 177), Journal of Mathematical 
Behaviour (JMB, 366), (The) Journal of Mathematics Teacher Education (JMTE, 248), The 
International Journal on Mathematics Education (ZDM, 784), European Early Childhood Education 
Research Journal (EECERJ, 127), Early Childhood Education Journal (ECEJ, 160), Nordic Studies 
in Mathematics Education (NOMAD, 87) and four conference proceedings from A Mathematics 
Education Perspective on Early Mathematics Learning between the Poles of Instruction and 
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Construction (POEM, 74). Reasons for choosing these journals and proceedings were: The first five 
journals are ranked A* and A in ME (Törner & Arzarello, 2012). EECERJ and ECEJ are dedicated 
to early childhood education in psychology and sociology. NOMAD captures the social pedagogical 
tradition in Scandinavia, relevant to my future research on PL in primary mathematics in Norway. PL 
has also been a reoccurring topic at the POEM conferences. The keywords were limited to play and 
playful but combined with mathematics for EECERJ and ECEJ. Both keywords proved influential as 
three papers only containing play were eventually included. The keyword play was expected to 
capture studies on games, which was investigated in four of the included papers. NOMAD was also 
searched for the Scandinavian countries’ word for play (“lek”). Table 1 provides the collective 
screening based on one reason for each study’s exclusion, with descriptions exemplifying the criteria. 
The search process resulted in 2633 studies that were screened by reading the title and abstract in 
phase one, with italicised numbers of excluded studies. In phase two, no papers were excluded based 
on criterion 3 as non-empirical studies were identified and excluded based on title and abstract. 
However, when in the slightest doubt of exclusion, the paper was read in more detail, e.g., when play 
appeared in the abstract, only to reveal in phase two that it was used without providing any features 
(criterion 2). Therefore, phase two included 61 studies, with bold numbers of excluded and included 
studies. For example, the search of JMB provided 366 studies (157 + 181 + 9 + 16 + 2 + 1), excluding 
157, 181, 16 and 2 studies in phase one according to criterion 1 – 4, and reading ten studies in phase 
two of which 9 was excluded according to criterion 2 and 1 was included. The collective screening 
provided 13 studies ( = 13) scrutinised for features of PL. However, due to the mentioned 
limitations, there might be research that this overview does not capture.  

Table 1: Results of the first (numbers in italic) and second (numbers in bold) screening phases 

Reason for exclusion. Description 
exemplifying each criterion.  

E
E

C
E

R
J 

 

E
C

E
J 

E
SM

 

JR
M

E
 

JM
B

 

JM
T

C
 

Z
D

M
 

N
O

M
A

D
 

PO
E

M
 

1) The school level. The pupils’ 
age or school level was not stated 
or was not relevant.  

22 

3 

22 113 

3 

40 

 

157 46 113 

3 

27 

2 

34 

2) The use of play or playful. E.g. 
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3) The paper is not empirical. 
E.g., editorial, a review etc. 
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4) The subject. The study was not 
specific to mathematics. 

64 81 5 3 2 0 0 0 0 

Studies included ( = 13) 2 0 2 1 1 0 2 0 5 
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Results 
The resulting 13 studies were all written in English and conducted in Norway (2), Sweden (2), 
England (1), Germany (1), Italy (1), Canada (2), the Netherlands (3), and Switzerland (1). I will now 
give an account of the 13 studies’ perspectives when italicising the features of PL that they provide. 

Gejard and Melander (2018) studied five-year-old children’s geometrical learning and multimodal 
resources during block play. No clear definition of play was found to be provided in the article. 
However, they underline the importance of balancing the adult’s and pupils’ control in the activity. 
Further, they emphasised active participation in collective and social activities within a cultural 
setting where the pupils negotiate when displaying their understanding of the encountered geometry.  

The role of teaching in a game setting was emphasised by De Simone and Sabena (2020) when 
investigating five-year-old children playing strategy games in a guided play setting where the teacher 
initiated the activity and supported the children in the reasoning processes. Thus, involving interactive 
participation where the “attention is on participating in the game (possibly on winning), and feeling 
pleasure and enjoyment are essential parts of the game” (De Simone & Sabena, 2020, p. 157). As 
such, it appears the researchers emphasised interaction, communication (of strategies) and 
participation and the children’s perceptions like feeling pleasure and enjoyment in the PL situation.  

McFeetors and Palfy (2017) investigated pupils’ reasoning and strategies playing commercial games 
in a multi-aged grades five and six class. By implementing games dependent on logical reasoning, 
the authors aimed to “value reasoning as an integral part of thinking mathematically” (McFeetors & 
Palfy, 2017, p. 536). Overall, they emphasised providing an engaging, authentic, collaborative, and 
social context. Also, the teacher posed questions verbally and in writing to encourage pupils to 
express their reasoning and explore more sophisticated reasoning, which was recognised by the pupils 
as helpful and by the authors as vital for the advancement of pupils’ reasoning in the play context.  

In the following study, McFeetors and Palfy (2018) emphasised the participants’ activity when 5th 
and 6th graders interacted while playing in pairs, prompted by adults’ questions to emphasise 
conversation about strategic moves and strategies. The pupils were encouraged to reflect and build 
on their previous strategies. Games thought to foster discussion and which the pupils would find 
appealing was chosen. By being commercial games, they were perceived as authentic. Thus, 
interaction, reflection and communication in authentic game-playing contexts found appealing by 
the participants are features emphasised by McFeetors and Palfy (2017, 2018) in their two studies. 

The participants’ experiences were also emphasised by Vogt et al. (2018), indicating higher learning 
gains for pupils experiencing a PL approach. Activities that “are fun, voluntary, flexible, involve 
active engagement, have no extrinsic goals, involve active engagement of the child, and often have 
an element of make-believe” (Weisberg et al., 2013, in Vogt et al., 2018, p. 592, own italicisation). 

Van den Heuvel-Panhuizen et al. (2013) investigated the role of a dynamic online game in 10–12-
year-olds’ early algebra problem-solving. They considered mathematical play in a game context as 
“that part of the process used to solve mathematical problems, which involves both experimentation 
and creativity to generate ideas, and using the formal rules of mathematics to follow any ideas to 
some sort of conclusion” (Holton et al., 2010, in van den Heuvel-Panhuizen et al., 2013, p. 285, own 
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italicisation). Also, PL was aligned with mathematical processes by contributing to non-threatening 
environments making it safe for pupils to present incorrect solutions and confront misconceptions. 

Helenius et al. (2016) identified features that linked mathematics to play, the interacting components 
being creative, participatory, and rule negotiation. The creative aspect involved the 6-year-olds’ 
modelling of a situation, where they incorporated some elements of reality and altered others when 
posing and solving problems they encountered. Furthermore, playful mathematics activities were 
dependent on participation and contributions from others in a collaborative, social context “both at 
the local level of the immediate situation and also at the societal level which determines the rules and 
values that affect immersion in reality” (Helenius et al., 2016, p. 146). Thus, the participants engaged 
in the free play situation and a more comprehensive societal reality, excluding individual play as 
mathematical. In these situations, the participants abided by rules which could be changed and 
negotiated, thus “forming the boundaries of the play situation” (Helenius et al., 2016, p. 147). The 
criteria were independent of the mathematics content and identified as interactional.  

Two studies by van Oers (2010, 2014) were included in the overview. Building on the study from 
2010, van Oers (2014) considered mathematising as “the activity of producing structured objects that 
allow further elaborations in mathematical terms through problem solving and (collective) 
reasoning/argumentation” (p. 112). Productive mathematising was defined as a “playful activity that 
has its roots in young children’s playful participation in cultural practices” (van Oers, 2014, p. 112). 
Thus, productive mathematising could be interpreted as PL activities when contrasting productive 
mathematising to re-productive activities or instruction. The characteristics of the play activity were 
that the activity was rule-driven with a high level of involvement and some degree of freedom given 
to the pupils. According to van Oers (2014) the activity could contain elements of instruction if it was 
meaningful, contributing to the children’s participation, and balancing “creative construction and 
sensitive instruction” (p. 121). Thus, the degree of freedom might vary “as long as the activity as a 
whole remains a playful activity, i.e. is based on personally acknowledged rules, is engaging, and 
preserves some degree of freedom” (van Oers, 2014, p. 121). The level of involvement included the 
motivation to keep the activity going, to engage, collaborate and be creative.  

Black et al. (2019) built on the characteristics by van Oers (2010) when they investigated a six-year-
old boy’s expression of his emotion-cognition experience, who described the playful activity as “fun” 
and the school mathematics experience making him “tired”.  

Also, Tubach and Nührenbörger (2016) adopted the characteristics of van Oers (2014). They 
investigated play as a promising approach to link the informal with the more formal mathematics 
learning in the transition from kindergarten to primary school. 

Hundeland et al. (2020) studied the quality of a kindergarten teacher and five-year-olds’ mathematical 
discourse, emphasising active children in the lead of the PL activity. They referred to Hirsh-Pasek et 
al. (2009), who stated that “playful learning, and not drill-and-practice, engages and motivates 
children in ways that enhance developmental outcomes and lifelong learning” (p. 4, own italicisation).  

Incorporating inquiry and playfulness studying five-year-olds engaging in PL activities in 
kindergarten, Breive et al. (2018) stated that playfulness “has to be founded in rules acknowledged 
between the players, the activity has to be engaging and the activity has to emphasise the player’s 
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possibilities to deliberately play in his/her own way” (p. 185, own italicisation). Furthermore, adult 
guidance provided children with the needed will to ask questions and construct mathematical ideas.  

Discussion 
Even though not explicitly revealed, several of the excluded papers incorporated PL as an approach 
to mathematics learning without providing features of PL or clarifying what it constitutes, which is a 
finding in agreement with other research (e.g., Helenius et al., 2016; Samuelsson & Carlsson, 2008).  

Researchers providing features of PL in mathematics do so frequently in terms of interactional, 
participatory, and social situations. These situations are characterised by involvement (van Oers, 
2014) and participation (Helenius et al., 2016), allowing pupils to engage, be creative, and 
collaborate when negotiating and discussing the encountered mathematics. To keep the activity going 
by engaging, collaborating and being creative are included in the level of involvement by van Oers 
(2010, 2014), whereas creativity was singled out as a separate criterion by Helenius et al. (2016). 
Several of the researchers provided features of PL independent of the specific mathematical content 
and more related to mathematical processes in guided play (e.g., Breive et al., 2018; van Oers, 2010, 
2014), free play (Helenius et al., 2016) and games activities (e.g., De Simone & Sabena, 2020; 
McFeetors & Palfy, 2017, 2018; van den Heuvel-Panhuizen et al., 2013).  

Further, the PL situations are characterised by researchers as involving authentic (McFeetors & Palfy, 
2017, 2018), cultural activities (van Oers, 2014) with an imaginative element of make-believe (Vogt 
et al., 2018) or incorporating and altering elements of reality (Helenius et al., 2016). Also, PL 
activities are rule-driven (van Oers, 2014), potentially involving negotiation of implicitly or explicitly 
expressed rules (Breive et al., 2018; Helenius et al., 2016; van den Heuvel-Panhuizen et al., 2013).  

Several researchers also argue for a need for a mutual understanding and coordination of participants’ 
perspectives of what is engaged in, talked about, experienced, and learned (e.g., Breive et al., 2018; 
Gejard & Melander, 2018; McFeetors & Palfy, 2017, 2018). It is especially crucial regarding the 
adults’ role in PL situations, which should provide the pupils with the opportunity to be in the lead 
(Hundeland et al., 2020) and to play in their own way (Breive et al., 2018). Thus, PL situations are 
characterised by balancing the adult’s and children’s control (Gejard & Melander, 2018) in activities 
where creative construction and sensitive instruction provide a degree of freedom to the children (van 
Oers, 2014). This feature, mentioned by several researchers, could collectively be termed as 
participants right of co-determination, an element allowing pupils a degree of freedom to be creative 
and influence the activity, which may also contribute to the pupils’ feeling of enjoyment.  

Based on this literature overview, common features of PL among ME researchers are identified. 
Following the identified features, I thus define PL in primary school mathematics as situations where 
participants with a right of co-determination actively participate in a rule-driven, imaginative, 
cultural mathematics activity while discussing the encountered mathematics. Since the 13 studies 
included all three approaches, the definition applies to PL as an overarching construct of learning 
mathematics through free and guided play and games (Fisher et al., 2012). The features of 
collaboration, interaction, creativity, emotions and authenticity are not mentioned explicitly. 
However, following the previous argumentation, the definition encapsulates these features. There are 
aspects of collaboration, interaction and creativity encompassed when pupils are given a right to co-
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determination when engaging in PL activities discussing the encountered mathematics. Also, 
creativity is encompassed by the imaginative feature, allowing participants to influence the activity, 
which may also lead to feelings of enjoyment and pleasure. Thus, the features align PL with 
mathematical processes rather than with mathematical content. The participants coordinate their 
perspectives when posing their suggestions and developing the activity while trying to solve the 
encountered mathematics tasks. However, emotions are highly subjective and can vary within the 
same activity. By intending to provide a working definition applicable for teachers and researchers 
assessing or investigating the quality of play (Samuelsson & Carlsson, 2008), emotions are not 
mentioned explicitly. Also, the authentic feature (of games) is encompassed by the cultural feature 
in the definition. Notably, there can also be a varying degree of fulfilment of the different features, 
as in the scrutinised studies. As such, the definition includes a familiar resemblance of features of PL, 
without necessarily each situation exercising all features to the same extent. Also, since the taken 
approach has its limitations, it will be interesting to test and, if needed, refine the definition when 
researching primary mathematics teaching claimed to be playful.  
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Didactic transposition of natural numbers in the first year of 
compulsory schooling: a case of comparative curricula analysis  

Birgitte Henriksen  

Aarhus University, Denmark; bhen@edu.au.dk 

The first year of school has recently become mandatory in Denmark, and for the 5 to 7 age group, a 
national curriculum for mathematics has been designed. This study aims to present an analysis of the 
didactic transposition of natural numbers in the first year of school to foster reflection on the national 
curriculum design. The focus is on the didactic transposition from scholarly knowledge into 
knowledge to be taught occurring in the national curricula of three countries: Denmark, Sweden, and 
Australia. The methodological approach is curriculum mapping using a table. The results show that 
the main elements of scholarly mathematics related to natural numbers on a sector level are identified 
in all three curricula; still, analysis on a theme level shows significant differences.  

Keywords: Didactic transposition, the first year of compulsory schooling, comparative curricula, 
natural numbers. 

Introduction 
Guidelines have existed for many years in early education, but curricula for preschool on a national 
level in OECD countries are a newer creation (Samuelsson et al., 2006). In Denmark, the first year 
of school, which forms a transition year, changed from voluntary to mandatory in 2009. In 2014, the 
Danish Ministry of Education presented a national curriculum for compulsory schooling 
(Retsinformation, 2014). One subject/competence area was mathematics. Play constitutes a critical 
element in teaching, and teaching should be based on several subjects/competence areas 
simultaneously, e.g., mathematics and commitment and community. Comparing this national 
curriculum with other international curricula may provide a broader insight into international 
perspectives on the knowledge to be taught designed for early years mathematics. This study aims to 
analyse the didactic transposition of natural numbers from scholarly knowledge into knowledge to be 
taught occurring in three national curricula covering the first year of compulsory schooling. On this 
background, the research question is: How can scholarly mathematics be used to analyse aims related 
to natural numbers for the first year of compulsory schooling in the national curricula from three 
different countries: Denmark, Sweden, and Australia?  

Theoretical framework  
The framework is built on the theory of didactic transposition and central theories of young children’s 
development of different aspects of natural numbers. 

Didactic transposition  

The theory of didactic transposition is anthropological as it considers knowledge as “a changing 
reality embodied in human practices taking place in social institutions” (Chevallard & Bosch, 2014, 
p. 173). A systematic epistemological and institutional approach is employed to study these 
knowledge activities as they undergo a process from produced, designed to be taught, actually taught 
in school, and learned by students. When bodies of knowledge developed in one social institution are 
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transposed to another social institution, they undergo a transformation, deconstruction, and 
reconstruction to adapt to their new social institution (Chevallard & Bosch, 2014). Chevallard and 
Bosch (2014) list four social institutions involved in the didactic transposition: Scholarly knowledge, 
knowledge to be taught, taught knowledge and learned knowledge. The scholarly knowledge, e.g., 
aspects of natural numbers, is the starting point of the process. Chevallard and Bosch describe 
scholarly knowledge as “…generally produced at universities and other scholarly institutions, also 
integrating elements taken from a variety of related social practices” (2014, p. 171). The transposed 
work from scholarly knowledge to knowledge to be taught is chosen and decided by actors who 
belong to the “noosphere,” meaning “the sphere of those who “think” about teaching” (Chevallard & 
Bosch, 2014, p. 170). These actors can, for example, be researchers, employees in the ministry of 
education, and teachers/educators. A national or local curriculum and school textbooks governed the 
knowledge to be taught. The teacher’s task is to transform the knowledge from national/local 
curriculum and textbooks into taught knowledge. Finally, the last part of the transposition is learned 
knowledge acquired by students. This study focuses only on the transposition of the scholarly 
knowledge into knowledge to be taught, also named the external didactic transposition (Bosch & 
Winsløw, 2020), and more specifically, the transposition of knowledge concerning natural numbers.  

Natural numbers 

Natural numbers constitute a broad research field in mathematics education; therefore, the total 
content elements on natural numbers of the three chosen curricula for this study have given a direction 
of a relevant theoretical framework. Scholarly knowledge on young children's development of natural 
numbers carried out by Fuson (1998) and Gelman and Gallistel (1978) is considered to be an essential 
part of the theoretical framework.  

Historically, the Hindu-Arabic system of numerals, widely used today, has developed over many 
years from the tally system as a unary system to the positional numerical systems built around the 
base 10 (Sun et al., 2018). Conceptual development progress of the numeral systems can be grouped: 
“the tally system, additive system, multiplicative-additive system, and decimal place value system” 
(Sun et al., 2018, p. 96). This study concentrates primarily on the first group: the tally system 
connected with young children’s learning of the system. A central origin in scholarly mathematic 
knowledge for young children, considering natural numbers, can be found in the notions of cardinality 
and ordinality.  

Early number consists of a network of inter-related skills and knowledge, broadly divided into 
cardinal and ordinal aspects, that is, those concerned with number as a representation of quantity, 
and those concerned with number as a representation of position in a sequence. (Bruce & Threlfall, 
2004, p. 3) 

Concerning ordinal aspects, Siegler (2009) states that the most basic ordinal concepts are more and 
less. The cardinal aspects of number include determining quantity by counting or by subitising. 
Subitising is the ability to instantly recognise the cardinal value of a small set of objects without 
counting them (Bruce & Threlfall, 2004; Fuson, 1988; Siegler, 2007). When children are 3-4 years 
old, they become proficient at establishing the cardinal value of a set by counting (Siegler, 2007). 
However, children saying a number sequence or string is not necessarily bound to cardinality or 
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ordinality. Fuson (1988) states that children can repeat number sequences only as a verbal activity, 
independent of cardinality and ordinality. There must be a shift from counting to numerical meaning 
for children counting to be cardinal or ordinal. Five developmental stages in young children's ways 
of counting are outlined: The number sequence: 1) as a string 2) as an unbreakable list (one, two, 
three …) 3) as a chain that can be broken 4) as a numerable chain 5) as a bidirectional chain where 
the forward- and backwards- counting is related to each other. 

Decomposition and composition or part-whole number knowledge are stressed to be fundamental to 
developing a deep understanding of arithmetic. Both cardinal and ordinal situations are related to 
numerical sequence, i.e., when a child knows that there are n-1 entities in the cardinal set, which 
precedes the nth ordinal entity (Fuson, 1988) 

Gelman and Gallistel (1978) identified a set of principles that preschool children at age 5 possess 
when counting. The first three principles, one-one, stable order, and cardinality, focus on how the 
process of counting is carried out. The last two principles, abstraction and order irrelevance, focus on 
what to count and define what can be counted.  

To communicate effectively using numerals, children need to know three numerical representations, 
i.e., number words, numerals, and nonsymbolic quantities and understand each representation and 
how a representation maps to other representations (Hurst et al., 2017).  

Method 
Curriculum mapping  

Curriculum mapping refers to the method for developing and employing a curriculum map "A 
curriculum map is a visualisation of relationships within and between a curriculum or curricula" 
(Greatorex et al., 2019, p. 3). This study follows the 6 key stages of the curriculum mapping method 
for comparability research: "1. Define study aims and use; 2. Decide which curricula will be 
considered; 3. Determine the curriculum features that will be the basis of comparison; 4. Collect 
relevant documentation and sources of data; 5. Extract data and input it into the standard instrument; 
6. Consolidate findings through visual representation" (Greatorex et al., 2019, p. 5). However, 
changes concerning key stage 3 are made as the features that will be the basis for this study are not 
solely the curricula but scholarly mathematics/theoretical framework. As stated in the theoretical 
framework section considering natural numbers, the content of the table is not designed independently 
from the three curricula to be analysed. In this study, the 6 key stages are covered in the paper 
sections: key stage 1, introduction; key stages 2 and 3, selection and context; key stages 4, 5 and 6, 
results. Based on the theoretical framework, a table has been designed. 

Selection and context  

This study analyses aims related to natural numbers learning for young children in the national 
curricula from three different countries Denmark, Sweden, and Australia. The selection of those three 
countries' curricula is based on similarities and differences in their early childhood education. The 
school system in Denmark and Sweden is similar about a transition year from kindergarten to school 
and a strong cultural emphasis on play. Australia differs from Denmark and Sweden as the country 
follows a British school tradition focusing on formal learning and less on play (OECD, 2006). The 
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data collection comprises what three curricula say on natural numbers for age 5-7 years, from 
Denmark, Sweden, and Australia. Natural numbers related to other content areas of a curriculum, 
e.g., algebra/pattern and measurement, are not included in the analysis of the study. Mathematical 
processes such as, e.g. proficiency strands of problem-solving are included if they involve natural 
numbers. The Danish national curriculum includes learning objectives and teaching instructions 
(Danish Ministry of Education, 2019). The Swedish national curriculum consists of core content and 
competencies (Skolverket, 2018). The Australian national curriculum includes content descriptions 
and proficiency strands related to natural numbers (Australian Curriculum, Assessment and Reporting 
Authority, 2016). Children must have begun compulsory schooling in all three countries by turning 
six years of age. In Denmark and Sweden, the children are five-and-a-half to six years of age when 
they start compulsory schooling. However, some children start compulsory schooling in Australia 
when they are four and a half years of age. In the three countries, the children attend the class for one 
year. The terminology used to show the first year of compulsory schooling in Australia is "foundation 
year," in Denmark "kindergarten class" and in Sweden "preschool class". In the three countries, the 
teachers or the educators below first grade are generalists with 3½-4 years of education at bachelor a 
level. 

Terminology 

Following Bosch and Winsløv (2020), terminology of levels has been applied to organise this table 
appropriately concerning the data collection (curricula). The levels are domain, sector, and theme. 
The mathematical domain is natural numbers; the sectors are cardinal aspects; ordinal aspects; 
numerals as names. The themes are subsectors, e.g. the theme one-one correspondence is a subsector 
of cardinal aspects. The table thus also forms a reference model with an explicit description of 
relevant scholarly knowledge of the domain natural numbers, which is used as a reference for 
analysing the presence or absence concerning the content of natural numbers on sector and theme 
levels. Explicit presence is marked in the table with a code, and an empty box shows absence. Based 
on the table and code extracts, the three curricula are shown. Finally, a comparison regarding 
similarities and differences is made. 

Results 
Table 1 shows the mapping of the analysis of the three curricula with a code: a letter and a number 
indicating the presence of scholarly knowledge/theory in the form of theme and the belonging sector 
in the current domain. 
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Table 1: Comparative curricula analyses – presence and absence of sectors and themes 

Domain: Natural numbers 

Sector Theme Danish  

curriculum 

Swedish  

curriculum 

Australian 
curriculum 

Cardinal 
aspects  

The one-one correspondence D1 S1 A1 

The stable order D1 S1 A1 

The cardinality  S1 A1 

Order irrelevance    

Abstraction    

Subitising   A2 

Composing and 
decomposing (whole-part) 

 S1  

Early arithmetic D2  A3 

Ordinal 
aspects  

 

The ordinal property “more 
numerous” (more and less) 

D3  A4 

The relative magnitudes of 
numbers 

D4 S2 A4 

Numerals as 
names 

 

Saying the number names D5 S1 A1 

Connect number names, 
numerals, and quantities 

D6  A5 

 

Below are content extracts from the three curricula, informing the coding decision shown and 
supplemented with an explanation, if necessary. The content extracts are listed in the native language 
and translated into English where necessary. The native content extracts are stated in italics. 

D1) Har viden om metoder til antalsbestemmelse/knows methods for counting. Methods for 
quantification are not explicit in the curriculum, but the first two principles of counting, as one-one 
correspondence and stable order, are fundamental. Regarding Fuson (1988), children may count but 
do not make a cardinal integration; therefore, the third principle (cardinality) is not coded.  
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D2) Regnehistorier, der rummer et problem, som eleven skal regne på/problem solving with early 
arithmetic in a real-world context.  

D3)Bruge forklaringer med ord som større og mindre, når der arbejdes med antalsbestemmelser/uses 
explanations, which include terms as more and less when working with number sets. 

D4) Har viden om talsymbolerne og deres ordning/knows the number symbols and their order.  

D5) Kan læse etcifrede naturlige tal/can read single-digit natural numbers. 

D6) Forstå sammenhængen mellem mængde, antal, talord og talsymbol/understands the relationship 
between quantity, number, number word and number symbol.  

S1) Naturliga tal och deras egenskaper och hur de kan användas för att ange antal and ordning/ 
Natural numbers and their characteristics and how they can be used for counting and order. 
Concerning natural numbers, the Swedish curriculum only contains 24 words. The sentence of 
cardinality is interpreted to include the three principles of how to count one-one correspondence; 
stable order; cardinality (Gelman & Gallistel, 1978).  

S2) Del av helhet och del av antal/part of a whole and part of a quantity. 

A1) Establish understanding of the language and processes of counting by naming numbers in 
sequences, initially to and from 20, moving from any starting point. A point marks a position but has 
no size. Understanding that numbers are said in a particular order, and there are patterns in the way 
we say them. 

A2) Subitise small collections of objects. Using subitising as the basis for ordering and comparing 
collections of numbers. 

A3) Represent practical situations to model addition and sharing. Estimating and calculating with 
whole numbers. 

A4) Compare, order and make correspondences between collections, initially to 20, and explain 
reasoning. Comparing and ordering items of like and unlike characteristics using the words “more,” 
“less”… and giving reasons for these answers. Understanding and using terms such as “first” and 
“second” to indicate ordinal position in a sequence. 

A5) Connect number names, numerals and quantities, including zero, initially up to 19 and then 
beyond. Estimating and calculating with whole numbers. Understand and use number in context. 

A comparison of the three curricula regarding central similarities and significant differences is 
outlined. Regarding similarities, all three sector levels (cardinal aspects, ordinal aspects, and numerals 
as names) were identified in the three curricula. This means that the main elements of natural numbers 
concerning scholarly mathematics are preserved in all three curricula or the knowledge to be taught. 
None of the curricula has explicitly included scholarly mathematics of order irrelevance and 
abstraction on the theme level. Only the Swedish curriculum has explicitly included the theme 
composing and decomposing. Only the Australian curriculum has explicitly included the theme 
subitising. The Australian curriculum has explicitly included more themes (9) than the Danish 
curriculum (7 themes) and the Swedish curriculum (6 themes). The themes indicate that the 
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Australian curriculum is more detailed and precise and goes closer to practice than the Danish and 
Swedish curricula. Concerning the levels of didactic transposition regarding the content, the Danish 
and Swedish national curricula tend to be organised at the sector level. In contrast, the Australian 
national curriculum tends to be organised at the theme level.   

Discussion and conclusion 
The present study sought to answer the research question on how scholarly mathematics can be used 
to analyse aims related to natural numbers for the age 5-7 years in the national curricula from three 
different countries. The study shows that the main elements of scholarly mathematics related to 
natural numbers on the sector level are identified in all three curricula. Analysing and identifying the 
aims of the curricula elements related to natural numbers on theme level call for some validity 
considerations because the designs of the three curricula differ. A significant difference is the detailed 
design of the Australian curriculum versus the compact design of the Swedish curriculum, while the 
design of the Danish curriculum is in between. According to Greatorex et al. (2019), the level of detail 
of curricula data varies, which can influence the usability of data. In the present study, the varying 
degree of detail makes the selection criteria in the analysis "explicit presence" challenging. The 
challenge is addressed by informing the coding decision, e.g., the Swedish curriculum where the 
sentence of cardinality is interpreted to include the three principles of how to count (S1). Furthermore, 
this study is constrained to the national curricula, while other documents of the knowledge to be 
taught, e.g., school textbooks, may elaborate on these content areas.  

When the scholarly knowledge of natural numbers is transposed into three national curricula, the 
transformation, deconstruction, and reconstruction (Chevallard & Bosch, 2014) of each curriculum 
are linked to the educational culture and tradition of the current country (Greatorex et al., 2019). 
Australia has a longer curriculum tradition within early childhood education than Denmark and 
Sweden have. The contrasting can foster reflection on the two relatively compact Scandinavian 
curricula, especially considering the next step of the didactic transposition from knowledge to be 
taught into taught knowledge. It is the teacher’s task to transform the knowledge from the national 
curriculum into taught knowledge, and it is an open question to what extent she needs scaffolding.  

The present study has made some of the cultural differences of the didactic transposition of natural 
numbers on the national curricula level transparent. Thus, the curricula analyses have provided 
reflections on different ways to select and design knowledge of natural numbers to be taught in early 
childhood. The study could be supplied with an analysis of school textbooks considering natural 
numbers. Also, the study of the national curricula could be extended to include other content areas 
and mathematical processes. In a questionnaire for educators in the Danish kindergarten class, I will 
follow up on how often different mathematics skills, including natural numbers, are taught in the 
classes. 
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In this paper we study the content and organization of preschool mathematics for grade 0 in the 
Faroe Islands from a formal and praxis point of view. We elaborate on motives for the genesis of 
grade 0 and unveil formal documents. We present data from two cases in which we interview two 
grade 0 mathematics teachers. The data is analyzed in relation to Bishop’s six fundamental activities 
for mathematical enculturation and we report on the educational resources that are used in these 
activities. Our results show that the content and organization from a formal point of view is limited, 
while data from our cases indicate that mainly two of Bishop’s activities are employed, and that the 
content is heavily influenced by the chosen mathematics textbook system. We conclude that the lack 
of formal organization is problematic from an educational point of view and deliberate future 
perspectives. 

Keywords: Preschool grade 0 mathematics, policy and curriculum, Bishop’s activities for 
mathematical enculturation, educational resources. 

Introduction 
During the last three decades, national level preschool curricula have become more commonplace in 
early year mathematics education in OECD countries (Henriksen, 2021a; Samuelsson et al., 2006). 
Members of the CERME Early Years Mathematics thematic working group have previously noted 
that there are similarities and differences between countries in terms of the curriculum and 
organization of preschool and express that there is a “need to know more about the organization of 
preschool in each country” (Bartolini Bussi et al., 2015, p. 1887). For example, in Italy, the preschool 
curriculum was developed based on Bishop´s (1988) six universal activities for mathematical 
enculturation: counting, locating, measuring, designing, playing and explaining (Bartolini Bussi et 
al., 2015), whereas Levenson and Barkai (2013) report that Israeli curriculum documents describe 
quite extensively the competencies and concepts that children should grasp in preschool by listing 
“explicity and separately which of those concepts may be promoted and which skills should be 
enhanced for children ages 3-4, 4-5 and 5-6 years old.” (Levenson & Barkai, 2013, p. 2158). 

In Nordic countries such as Denmark, Sweden, Finland, a one-year participation at grade 0 for 
children at the age of 5-7 (usually called “preschool”) is now prevalent with the purpose of supporting 
the transition from kindergarten (age 0-5) to compulsory primary school (grade 1). Since the 
introduction of the grade 0 in Denmark in 1912, attendance has been voluntary, meaning that some 
children rather remained at kindergarten one more year, before entering primary school grade 1. 
However, in 2009, attending grade 0 became mandatory, and new foci on playful learning and 
cognitive development were introduced (Henriksen, 2021b, Vejleskov, 2017). The shift was soon 
followed by the implementation of national curricula for grade 0 (Børne- og 
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Undervisningsministeriet, 2014), which came during a time when results from PISA showed that a 
higher percentage among weak readers did not attend preschool for one or more years compared to 
all students (Fredrikson, 2012).  

In the Faroe Islands1, the grade 0 tradition is less established historically. Beginning in 1963, a single 
primary school introduced grade 0 (students aged 5-7), which was physically located at the school, 
and it remained the only school with this structure until 2010 (Matras et al., 2014). Since then, several 
of the larger public primary schools of the Faroe Islands have introduced this system, and as of 
September 2020, a third of Faroese public school students attend grade 0, even though attendance is 
still voluntary. 

In this paper, we attempt to address the call of Bartolini Bussi et al. (2015) of the need to investigate 
the organization of preschool mathematics in different countries, in our case focusing on the context 
of preschool in the Faroe Islands. In particular, we center our attention on grade 0 (students aged 5-
7), in which attendance has grown extensively in recent years, and on which no previous research has 
been conducted.  

Our study includes, perhaps obviously, the elaboration of formal curricular documents, however, 
since the unfolding of curriculum in praxis is not necessarily a one-to-one correspondence, we also 
seek to collect perspectives anchored in praxis. In this paper, we therefore put forward the following 
research question:  

What is the content and organization of preschool mathematics for grade 0 in the Faroe Islands from 
a formal and praxis point of view, respectively?  

To shed light on our question, we investigate the historical motives and intentions behind the genesis 
of grade 0 in the Faroe Islands and unveil formal documents that describe the organization and content 
in preschool mathematics. To gain qualitative insights from a praxis point of view, we interview two 
mathematics teachers working in grade 0 and investigate which resources they use.  

In the next section, we present Bishop’s (1986, 1988) six fundamental activities for mathematical 
enculturation, which is the conceptual background that is used in our analysis. Afterwards, we present 
the methodological choices underlying our study, which is followed by an elaboration of pertinent 
policy documents as well as an historical account of Faroese grade 0. We then present interview data 
and ensuing analysis. Finally, we conclude on our study by referring back to our research question 
and deliberating future perspectives.  

Conceptual background 
As mentioned previously, in Italy, the preschool curriculum was developed following Bishop’s (1986, 
1988) six fundamental activities for mathematical enculturation (Bartolini Bussi et al., 2015). The 
activities are: 

 
1 The Faroe Islands is a self-governing country within the Kingdom of Denmark with a population of approximately 
53.000. 
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“Counting. The use of a systematic way to compare and order discrete phenomena. It may involve 
tallying, or using objects or string to record, or special number words or names. […]  

Locating. Exploring one’s spatial environment and conceptualising and symbolising that 
environment, with models, diagrams, drawings, words or other means. […] 

Measuring. Quantifying qualities for the purposes of comparison and ordering, using objects or 
tokens as measuring devices with associated units or ‘measure-words’. […] 

Designing. Creating a shape or design for an object or for any part of one’s spatial environment. 
It may involve making the object, as a ‘mental template’, or symbolising it in some 
conventionalized way. […] 

Playing. Devising, and engaging in, games and pastimes, with more or less formalised rules that 
all players must abide by. […] 

Explaining. Finding ways to account for the existence of phenomena, be they religious, animistic 
or scientific.” (Bishop, 1988, pp. 182-183) 

According to Bishop (1988), these fundamental activities are, on the one hand, universal, because 
“they appear to be carried out by every cultural group ever studied” (p. 182) and, on the other hand, 
they are “necessary and sufficient for the development of mathematical knowledge.” (p. 182).  

Method 
To investigate our research question from a formal point of view, we searched for and studied 
regulative frameworks, executive orders, ministerial reports (including PISA reports), and curricular 
documents published by the Ministry of Education as well as the Faroese primary and lower 
secondary school council.  

In addition to our studying of policy and curricular documents, we visited two teachers in order to 
interview them and to see their facilities. This could provide us with some qualitative insights of the 
content and organization of grade 0 from a praxis point of view, although only as reported by the 
teachers. Our method comprised a mixture of closed and open questions in a semi-structured 
interview approach, which is characterized by the interviewer preparing a guide that can serve as a 
starting point for a conversation, but where the interviewer can improvise if there is a need to ask for 
examples or elaborations (Arksey & Knight, 1999; Tanggaard & Brinkmann, 2015). The interview 
guide contained our research questions, followed by interview questions that were formulated in 
everyday language (Hansen & Andersen, 2009), which we used in the interview situation. Besides 
asking broadly about what the mathematics practice in grade 0 comprised of, we asked directly if the 
teaching practice involved each of Bishop’s (1988) six fundamental activities, and also which types 
of resources were used.  

The collected data was transcribed and analyzed in order to unveil the constituents of the grade 0 
mathematics practice in our cases, investigating from a praxis point of view to what degree Bishop’s 
(1988) six fundamental activities were part of this practice, and which resources are used.  

Our findings are presented in the next two sections, beginning with an elaboration of pertinent policy 
documents followed by interview data analysis. 
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From PISA to grade 0 – policy and curricular documents analysis 
When the Faroe Islands participated in the PISA survey for the first time in 2005/2006, the academic 
results sent shockwaves through the Faroese education system and society in general. The students' 
results in mathematics, reading and science were by far worse than every other Nordic country, in 
fact, also below Mexico, which was the worst performing country in the OECD at the time (Egelund, 
2006). In the aftermath, comparative analysis highlighted differences between the Faroese education 
system and education systems in other Nordic countries, and one detail that gained traction was that 
almost all Faroese students at the end of 9th grade had received only 9 years of education since there 
was only one school that included grade 0 in the Faroe Islands, whereas >99% of Danish 9th grade 
students had spent 10 years at school (Egelund, 2006). In the subsequent years, politicians and other 
stakeholders voiced their opinions on the matter (Nielsen & Joensen, 2013) including the Faroese 
primary and lower secondary school council, which recommended that children enter grade 0 (Matras 
et al., 2011). 

As an increasing number of schools began to offer grade 0, a regulative framework, “Executive order 
on organization and learning in prechool” (Uttanríkis- og mentamálaráðið, 2013) was developed by 
the Ministry of Education, which outlined the aim, content and organization of grade 0. The two-page 
document mentions mathematics once: “The content of the education should at least include the 
foundations of […] mathematics and nature” (Uttanríkis- og mentamálaráðið, 2013). In the already 
existing regulative framework for grades 1-10, a paragraph was added concerning grade 0, which also 
mentions mathematics once “The children should learn the foundations for reading, writing and 
mathematics…” (Uttanríkis- og mentamálaráðið, 2019). Curiously, no curriculum has yet been 
developed for grade 0 in the Faroe Islands. 

Interview data and ensuing analysis 
In table 1, below, we have collected some of the interview excerpts that pertain to each of Bishop’s 
fundamental activities.  

Bishop’s 
activities 

Classroom practice 

Counting Teacher 1: “We use many activities of counting […] count how many days they have been to 
school. We use straws […] when we get to 10, then we bundle the straws with an elastic and call 

it ‘one tens’ […] centicubes […] jars with different colors to put the straws in ones, tens and 
hundreds […] We have the abacus, which is old and actually brilliant, but actually it is not easy 

for them to understand…” 

Locating Teacher 1: “exactly that is in the book […] They see a tall building where there are different 
characters […] then I ask ‘what is to the side of the man?’ […]” 

Teacher 2: “the teacher guidance book is very good in that aspect (it says) ‘use the students to 
explain prepositions, e.g. can you, Linda, stand in front of Magnus’”  
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Measuring Teacher 1: “it’s one chapter [in the book]. how long is the table… how many pencils is the 
table… and if we have clips, then ask, how many clips long is the book. Or they throw a paper 

ball on the wall and measure how many clips the ball fell from the wall – then it becomes a 
tournament, then they cheat and the clips become shorter, but that is also fun, it is a process.  

Teacher 2: “and we measure heads, hands, noses etc. using strings with clamps” 

Teacher 1: “yes, there is a page about that” 

Designing Teacher 1: “yes that is a really good chapter. There is a lot concerning patterns. It is further ahead 
in the book. You see a picture from an Asian city, where there are towers with different beautiful 

shapes […] The shapes are typically triangles, quadrilaterals, both rectangles and squares, and 
then we have circles. Circles we call ‘0-edges’ in grade 0 […] a student said it this year, and I 

like it so much I will use it going forward” 

Playing Teacher 1: “There is a lot playing, we have something called ‘free play’ where they can play 
what ever they want […] And they play many games such as dice games” 

Teacher 2: “Cards and dice games […] board games, memory and some of them can play 
beginners chess”  

Explaining Teacher 1: “explanations is mostly… so we try to explain extremely well when we are 
explaining, but to make them explain… we do try to ask them questions to make them explain, 

some of them explain in great details […] in each chapter there is a page that is about describing” 

Teacher 2 (with the book in his hands): “now I took a random page – they have to explain how 
many apples there are […] I am not sure if this is what you are asking” 

Table 1 – Bishops’ fundamental activities in the classroom practice 

From the teachers’ utterances, we can identify that each of the fundamental activities are present to 
some extent. However, the frequency of the activities, and the reasons that they are present, differ 
across the categories. On the one hand, counting and playing are frequent activities that the teachers 
consciously and in a goal-oriented manner activate in many different contexts. On the other hand, the 
activities of locating, measuring, and designing are present, yet to a lesser degree, and seemingly 
only because there are certain pages of the chosen mathematics textbook that encourage this type of 
activity. Explaining is the lone activity that the teachers are hesitant about, which indicates that it is 
not a particular focal point, however, they explain that it is partly included in the classroom 
discussions, in which the teachers ask the students questions that stem from the textbook, hence 
requiring explanations from the students.  

When asked directly and indirectly about the type of resources that the teachers used in relation to 
each of the fundamental activities, the following resources were described: Counting (Straws, jars, 
centicubes and Abacus); Locating (Textbook, teacher guidance book, and chairs); Measuring 
(Textbook, pencils, clips, amd strings with clamps); Designing (Textbook, and the outdoors); Playing 
(Cards, dice games, board games, memory, and chess); Explaining (Textbook). 
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Figure 1 – Straws as ones and bundles of ten                           Figure 2 – Cards, dices and other games 

Most of the resources are oriented towards counting and playing, and a few that are used in relation 
to measuring, while the other fundamental activities are based on pages from the mathematics 
textbook.  

In figure 1 we see some of the straws that are used in different teaching activities related to counting, 
while figure 2 shows a few of the educational resources that are used in playing activities. 

Concluding discussion 
Referring back to our research question, we can conclude from a formal point of view, firstly, that 
the content and organization of preschool mathematics for grade 0 in the Faroe Islands is scarcely 
developed, with only vague peripheral policy documents available. Secondly, from a praxis point of 
view, our cases indicates that Bishop’s six fundamental activities are to a varying degree a part of the 
classroom practice, with counting and playing being the main activities that the teachers in our cases 
emphasize. That is supported by the fact that many of the educational resources that they employ are 
oriented towards counting and playing. Conversely, the mathematics textbook seems to be the main 
reason that locating, measuring, and designing are employed. We should stress that our insights into 
praxis are limited in this case study that consists of interviews with only two teachers. In addition, 
our data is teacher reported and not observed from the classroom. Therefore, the data may not depict 
the actual praxis for various reasons. 

As mentioned previously, there are many possible approaches to organizing preschool, e.g., the 
Danish focus on playful learning; the Italian focus on Bishop´s (1988) six universal activities for 
mathematical enculturation; or the extensive Israeli description of learning goals in terms of 
competencies and concepts that children should grasp. Deciding which approach is suitable is not a 
trivial task from an educational point of view, however, we would argue that some organization is 
needed.  

Hence, we find it problematic that there is no curriculum for grade 0 in the Faroe Islands. The 
consequence being that the content and organization is altogether in the hands of the individual 
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teacher, and possibly quite different between schools. A conceivable consequence, which is 
somewhat evident in our cases, is that the content will be heavily based on the chosen mathematics 
textbook system.  

Looking forward, we argue that the important goal of supporting Faroese students’ mathematical 
development demands a coherent goal-oriented organization, which includes at least a curriculum 
that describes goals for these critical years in children’s development.  
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Length estimation is a relevant ability in our everyday life. Especially during the Corona Pandemic, 
estimating a distance of 1.50 m is crucial for our health and social life. Standard units play a central 
role in many length estimation processes that occur in our everyday surrounding. However, standard 
units as well as approaches to length estimation are generally discussed with children in elementary 
school while children already face situations already in their preschool age. This research addresses 
the question of how preschool children deal with length estimation. In a study with 189 preschool 
children who were about to start elementary school, we assessed their length estimates and analyzed 
the role of standard units in this context. It shows that standard units are used by the majority of kids 
to estimate lengths. However, their estimates are far from precise but the relation between the 
measures they name is mostly correct. 

Keywords: Length estimation, estimation strategies, preschool education, prior knowledge.  

Introduction 
Estimating lengths as precise as possible is one main ability that becomes relevant in various 
situations of our everyday life. Especially in traffic there are many situations that require length 
estimation – the GPS system gives directions in standardized measures or there are zones with 
reduced speed for a given length. Children get in touch with length estimation in several situations as 
well. Reading books about dinosaurs holds several situations about length estimation as well as length 
comparison: the tooth of a Tyrannosaurus Rex was about 15 cm long which is about as long as a 
banana while the dinosaur itself could reach a length up to 12 m. In these books there are several 
pictures showing the relation of lengths between the dinosaurs and objects that are known from today. 
Another example situation where children are faced with length estimation is when they are baking 
cookies with their parents who have to place the cookie dough in a certain distance from one another 
or when they are travelling and they ask their parents how much longer they have to drive, they might 
get a response about the remaining kilometers. These examples are just a small selection of all the 
situations where children meet length estimation requirements. The majority of these situations also 
hold standardized units of lengths. Many of these situations already occur before the children start 
their school career meaning that they necessarily start school with prior knowledge about how to 
estimate lengths and a variation of intuitive approaches. As the examples already show, there are 
different estimation situations that require different approaches: Estimating a length in a standardized 
measure – such as: how many centimeters is this sheet of paper long? – requires knowledge about the 
standard unit centimeter, about scaling, conceptions about this specific measure as well as knowledge 
about the measuring process. In contrast, when asking children about what is as long as a 
Tyrannosaurus Rex, they might just provide a reference object (e. g. a truck) while they do not 
necessarily need prior knowledge about standard units but rely on direct comparisons instead. If 
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precise concepts about standard units are still missing, this will affect the length estimation’s 
approach as well as its success. It is an open question, to what extend preschool children use standard 
units for length estimation and how their estimation results are affected if their concepts of these units 
are still imprecise.   With this research we want to contribute information about this point of children’s 
early years’ mathematics in this field. 

Measurement estimation 
Measurement estimation is defined by Bright (1976, p.89) as “the process of arriving at a 
measurement or a measure without the aid of measuring tools. It is a mental process though there are 
often visual or manipulative aspects to it”. In the process of estimating measures such as lengths, 
there is specific knowledge and certain skills (such as strategies) that become relevant in order to 
reach a precise estimation (D’Aniello et al., 2015; Sowder, 1992; Joram et al., 1998). This is supposed 
to be knowledge about physical measurement (Joram et al., 1998), types of measures or basic 
conceptual knowledge that can be used as a reference to estimate (Sowder, 1992). Coming back to 
the dinosaur example from the beginning, children have to know the length of an adult man in order 
to estimate the height of a dinosaur that is pictured right next to him. In this case, the knowledge 
about a man’s height functions as a reference in the estimation process. Alternatively, they might 
have a precise concept about a specific standard unit (such as meter) and use this knowledge to 
estimate the length of a man by counting how many units fit the length of the person. In these 
examples, we described the two main strategies that are differentiated in the literature for length 
estimation (1) benchmark comparison and (2) unit iteration (Joram et al., 1998)1. Empirical research 
shows that students from higher grades estimate lengths and areas more precisely than students from 
lower grades (Huang, 2014; Desli & Giakoumi, 2017).  

This theoretical part about the process of length estimation shows the relevance of knowledge about 
standard units (e. g. the strategy unit iteration can only be used if standard units are known and 
concepts about their lengths available). In addition, if children encounter length estimation in their 
everyday life, the estimate will generally be given in a standard unit. Therefore, we put a focus on the 
role of prior knowledge about standard units for length estimation in this research. 

(Prior) knowledge about standard units in the process of length estimation 

Measurement generally bridges two mathematic fields: geometry / spatial relations and real numbers 
(Clements, 1999). Geometrical objects are assigned with a size indication. This consists of a number 
and a unit. Understanding the various concepts belonging to length measurement (including the 
meaning of size indication and unit) is a central part of mathematics education. Referring to the 
developmental theory of measurement by Piaget et al. (1960), it is generally taught in several steps, 
starting with direct comparisons followed by indirect comparison with a non-standardized unit and, 
finally, with a standardized unit. This approach is generally chosen in order to reveal children the 
need for standard units (Clements & Stephan, 2004). However, there is critique about this approach 

 
1 There is a third approach classified in the literature – the decomposition / recomposition approach – which is also based 
on either unit iteration or benchmark comparison (e. g. Joram et al., 1998). 
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(Clements, 1999) because children (already in preschool) prefer to use standard units comparing 
objects and they are even more successful using standard units to measure as compared to measuring 
with non-standard units (Boulton-Lewis et al., 1996, Kotsopoulos et al., 2015). Empirical studies 
show that preschool children are already able to use standard units. Boulton-Lewis et al. (ibid.) 
observed that they used it even if they do not understand it. In this regard, Barret et al. (2011, p. 638) 
summarize that “students’ unit concepts are rarely well formed. Although students may use unit labels 
to name a quantity, they often do so without being able to show the meaning of the relevant unit.” 
Therefore, we find some evidence that preschool children already have prior knowledge about 
standard units although – as Boulton-Lewis et al. (ibid.) point out – they do not understand them and 
may not develop conceptual understanding about their lengths and relations to one another yet. 
However, this understanding may become relevant in the process of length estimation. As Desli and 
Giakoumi (2017) analyze, third as well as fifth grade students estimated more successful if they used 
nonstandard units instead of standard units. Therefore, we aim to analyze how this (however 
incomplete) prior knowledge about standard units may affect their length estimation efforts. 

Bringing the ideas about length estimation and unit concepts together with regard to preschool 
children and their previous experiences, it can be hypothesized that they are missing relevant 
knowledge in certain situations. Overall, neither length estimation nor standard units were 
systematically discussed at that point of their education, meaning that they might choose intuitive 
approaches that they either observed in their surrounding or developed during that situation. For 
example, due to the fact that they generally did not yet discuss the different standard units and their 
relations to one another, providing length estimations in a standard unit may not be possible. 
Therefore, this study focuses on the question of how preschool children deal with different situations 
of length estimation and what role standard units play in these approaches. 

Research questions 
As the literature review indicates, preschool children prefer to use standard units for measurement 
purposes. However, there is some evidence that their unit concepts as well as their conceptual 
knowledge about these standard units are still incomplete but may be relevant in order to estimate 
lengths in a standard unit. Therefore, we focus the following two research questions:  

1. To what extend do preschool children use standardized units to estimate lengths? 

In order to gain information about how the preschool children’s understanding of standard units 
affects their length estimates, we additionally focus on the estimations’ accuracy. If children only 
estimate a number and add a standardized unit that they know about, their estimates will be somewhat 
imprecise. Therefore, the second research question focuses this aspect. 

2. How precise are the preschool children’s length estimates? 

Methodological approach 
In order to analyze the role of standard units in preschool children’s length estimates, we conducted 
short interviews with standardized questions in Kindergarten with those children who were about to 
start elementary school only a couple of months later (school enrollment in summer 2021). 
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Interview design and administration 

Four trained student teachers who interviewed the children individually conducted the interviews. 
Children’s responses were assessed on a documentary sheet. The student teachers worked with a 
standardized interview script that held text about what the students should say as well as specifications 
about what kind of gestures they should use and what kind of material is given. The interview 
contained a couple of objects whose lengths should be estimated by the children. The children were 
asked in each of the five cases to estimate how long the object might be. The questions were 
intentionally held as open as in order to not limit children’s responses and / or strategies. Of course, 
all the to-be-estimated-objects were standardized in their lengths as well.  

In total, the children were asked to estimate the lengths of five objects. For item construction, we 
followed the suggestions by Heinze et al. (2018) and varied the different characteristics regarding the 
To-Be-Estimated-Object (TBEO)2, e. g. its physical presence, accessibility, size and need to construct 
a representation. Table1 shows one example item of the interview. 

Table 1: Task example and excerpt from the interview guide 

 Material Material treatment 

 

Question / verbal 
instruction 

T23 Green brick (see picture) 

 

Place the green brick in 
front of the child. 

Move your finger along the 
longest side of the brick. 

What do you think: How 
long is this brick? 

Wait for the response. 

 

The other four items were constructed similarly. In T1, children were asked to estimate the length of 
a rope, T3 asked the children to estimate the height of a carton of milk, children were asked to estimate 
the height of the door in their kindergarten classroom in T4 and, finally, were asked to draw a line as 
long as a piece of toilet paper in T5. 
  

 
2 Benchmarks were intentionally not given (dimensions 5 & 6 by Heinze et al., 2018) and it was not prescribed whether 
children should estimate in a standard or non-standard unit (dimension 7) in order to leave the preschool children the 
choice what kind of approach they want to choose (they might provide an estimate in a standard unit but might as well 
just name an object that is about as long as the TBEO). However, the dimensions regarding the TBEO were varied in the 
five questions. 

3 T2 means second task. In tables 2 and 3, all entries in the line called ‘T2’ refer to this task. 
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Sample size and characteristics 

In total, 189 preschool children participated in the study. All of these children were about to start 
school only about two months after the interview. The children attended 14 different Kindergartens 
in the north of Germany – more precisely in the areas of Mecklenburg-Vorpommern and Schleswig-
Holstein.78 of the children are girls (41.3 %) and 111 boys (58.7 %). The children were averagely 
5.99 years old – there were 171 children in the age of 6 years, only nine kids were five years old and 
seven children were seven years old4.  

Data analysis 

In order to evaluate the amount of children who use standardized unit in length estimation (research 
question 1), we determined the absolute and relative frequency of children in our sample that gave an 
answer holding a standardized unit. In order to analyze the role of standard units in children’s length 
estimation processes (research question 2), and how precise children’s’ concepts about standard units 
are, respectively, we analyzed the accuracy of children’s estimates. For this second analysis, we only 
used the sub-sample of those children who estimated in a standardized unit because we cannot 
evaluate whether estimates such as ‘the brick is as long as my hamster at home’ is true without 
measuring the length of the hamster. In order to analyze the estimates’ accuracy, we used the 
deviation of the child’s estimate and the actual length of the TBEO. We clustered the children’s results 
in the intervals that are generally chosen in research to code the accuracy of length estimates: if the 
estimate deviates equal or less than 10 % from the actual length, we consider the estimate as very 
precise. A deviation of 10 % < x ≤ 25 % is still somewhat precise while a deviation between 25 % < 
x ≤ 50 % is acceptable. If the estimate deviates between 50 % < x ≤. 100% from the object’s actual 
length, it can be considered imprecise. Finally, if the estimate deviates more than 100 %, the estimate 
is very imprecise. In order to gain additional information about the children’s approaches and 
estimation accuracy, we analyzed whether the numerical values fit the right relation to one another. 
In this regard, we converted all given estimates into meters and evaluated whether the children gave 
adequate order relations between the measures. 

Results 
Regarding the four questions that required the children to estimate a length5, it shows that a majority 
of the preschool kids use standard units for their length estimates. Due to the fact that a systematic 
introduction to length units occurs generally in second grade in Germany (Franke & Ruwisch, 2010), 
these results give another indication that children start with a great variety of prior knowledge in this 
field. Table 2 shows the amount of children using standard units for their length estimates, and what 
kind of unit they chose, respectively. 

 

 
4 For two children, the age is missing. 

5 In T5, children were asked to draw a line that is about as long as a piece of toilet paper. Therefore, standard units were 
not named here. 
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Table 2: Amount of children using standardized units for their length estimates 

 
Amount of 

estimates given 
in mm 

Amount of 
estimates 

given in cm 

Amount of 
estimates 
given in m 

Amount of 
estimates 

given in km 

Total amount of 
estimates given 
in a standard 

unit 

T1 (length of TBEO: 1.3 m) 1 (0.5 %) 18 (9.5 %) 119 (63 %) 6 (3.2 %) 144 (76.2 %) 

T2 (length of TBEO: 6.2 
cm) 

4 (2.1 %) 43 (22.8 %) 90 (47.6 %) 5 (2.6 %) 142 (75.1 %) 

T3 (length of TBEO: 20 
cm) 

4 (2.1 %) 41 (21.7 %) 87 (46 %) 6 (3.2 %) 138 (73 %) 

T4 (length of TBEO: 2 m) 2 (1.1 %) 17 (9.0 %) 118 (62.4 %) 6 (3.2 %) 143 (75.7 %) 

Table 3: Accuracy of preschool children’s length estimates in T1 – T5 

 Actual 
length 
of the 
TBEO 

Range of the 
children’s 
responses 

Children with 
a difference < 

10 % 

Children 
with a 

difference 
10-25 % 

Children 
with a 

difference 
25-50 % 

Children 
with a 

difference 
50-100 % 

Children 
with 

difference > 
100 % 

T1 1.3 m 
Min=10 cm 

Max=100 km 
0 44 (30.6%) 0 32 (22.2 %) 68 (47.2%) 

T2 6.2 cm 
Min= 0.5 cm 
Max= 14 km 

3 (2.1%) 6 (4.2%) 14 (9.9%) 18 (12.7 %) 99 (69.7%) 

T3 20 cm 
Min=0.8 mm 

Max=10000 km 
6 (4.3%) 6 (4.3%) 6 (4.3%) 31 (22.5 %) 89 (64.5%) 

T4 2 m 
Min=10 cm 

Max=100 km 
15 (10.5%) 3 (2.1%) 15 (10.5%) 25 (17.5 %) 85 (59.4%) 

T5 12 cm 
Min=2.5 cm 
Max=25 cm 

7 (3.7%) 26 (13.8%) 29 (15.3%) 8 (4.2%) 70 (37%) 

However, if we focus on the accuracy of the estimates (table 3), it shows that only a small amount of 
children reached an estimate that differs less than 50 % from the actual length of the object. It shows 
that the estimate of the majority of the children (generally about half of the sample) varies more than 
100 % of the actual length while only some children estimated very precisely (discrepancy < 10%). 
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These results show that preschool children are aware of standard units and use them in length 
estimation situations to provide the lengths of different objects. However – as table 2 shows – they 
may not choose the different length units most appropriately and their length estimates are not very 
precise (table 3). This may indicate that they do not yet have precise conceptions about the standard 
units. The analysis about the order relation showed that 161 kids (79.3 %) gave all four estimates in 
the correct order (however we did not check for proportional differences). This indicates that 
preschool children are already able to assign objects with numbers that are given in the correct order 
relation. However, they may just add the name of a standard unit without really understanding their 
meaning. 

Discussion 
Since children get in touch with lengths as well as situations of length estimation in their everyday 
life, it can be assumed that children bring a lot of prior knowledge and skills in this field when they 
start elementary school. It is crucial for teachers to be aware of these preconditions in order to start 
efficient learning processes. The results of this study give hints about these starting points. It becomes 
apparent that the majority of preschool children provides an estimate using standard units, however, 
the estimates are often not very precise. This is in line with previous research about students’ 
estimation accuracy and its connection to students’ age (e. g. Huang, 2014; Desli & Giakoumi, 2017). 
However, if we focus on the relation between the estimated values, almost all children’s estimates 
are in a correct order relation to one another. This may indicate that children know about standard 
units and use them in length estimation contexts but their understanding of the units is still incomplete 
(as indicated by the imprecise estimation). Therefore, the majority of children uses standard units to 
estimate lengths even though their understanding is not yet sufficient. These results closely connect 
to the findings of Boulton-Lewis et al. (1996). Supposedly, children merely estimate a real number 
and simply add a standard unit that they have heard of before.  

Of course, there are limitations to this study. From our results we cannot reconstruct what exactly the 
children thought in their process of length estimation. We can only hypothesize their approaches from 
our results. In addition, the Kindergarten teachers may have talked with the kids about standard units 
before we arrived in their classes (even though we asked them not to do that) because the amount of 
kids using standard units is amazingly high.  

Overall, we suggest that students’ prior knowledge should be closely considered as a starting point 
of learning processes. Further research should provide evidence about how different starting points 
combined with different learning approaches lead to specific learning outcomes in the field of length 
estimation. 
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reasoning

Astrid Hågensen Kleven

Norwegian University of Science and Technology astrid.h.kleven@ntnu.no

The current paper presents a way of explaining and understanding children's drawings as tools for 
mathematical reasoning. The paper has two aims; to present a framework for analysing drawings as 
tools for problem-solving and describe how different drawings support children's mathematical 
reasoning in problem-solving. The study shows that drawings can offer different support for 
children's reasoning. Some drawings offer explicit tools to be manipulated for solving a problem. 
Some drawings are structuring tools, supporting systematic checking and re-checking of solutions, 
while others do not help solve a problem, but serve as tools for communicating with others. 

Keywords: reasoning, collaboration, drawing, representation, early years mathematics 

Introduction 
Reasoning has acquired a more prominent role in several nations' curriculum, including Norway 
(Utdanningsdirektoratet, 2019). The Norwegian curriculum states that children should learn to
'follow, assess and understand mathematical chains of thought' and 'formulate their own reasoning to 
understand and to solve problems' (Utdanningsdirektoratet, 2019). Even though teachers are expected 
to facilitate reasoning on all school levels, some find it challenging to identify reasoning in young 
pupils' actions or words and, therefore, challenging to facilitate (Bragg et al., 2016). They also claim 
that the development of mathematical reasoning requires 'appropriate encouragement and feedback 
from [their] teacher who can only do this if they recognise mathematical reasoning in children's 
actions and words' (p. 523). According to Battista (2016), mathematical reasoning is about making 
conclusions based on evidence or assumptions after having manipulated and analysed objects, 
representations, and statements (p.1), and Bragg et al. (2016) claim mathematical reasoning consists 
of 'following a line of enquiry, conjecturing relationships and generalisations, and developing an 
argument, justification or proof using mathematical language'. In this study, reasoning is understood 
as children making conclusions or assumptions regarding problems after manipulating the task using 
drawing, and using drawing to follow lines of inquiry while solving tasks. 

One way of developing reasoning skills is through paying attention to the different ways children 
create meaning and their representations. Mathematical representations capture the process behind 
mathematical concepts or relationships (Woleck, 2001) and play a critical role in children's 
conceptual and mathematical development (MacDonald, 2013). Mathematical representations can be 
symbols, physical objects, verbal language, or drawings used to understand mathematical concepts 
and relations and are a part of construction knowledge (Bobis & Way, 2018). Despite a large body of 
research on representations, little research focuses on one of the most important representations for 
the youngest mathematicians; drawings (Woleck, 2001). Drawings can serve as mediation or re-
presentation of meaning that allows children's inner pictures and reasoning to become available to
others. Thus, children's drawings play a role in meaning-making, problem-solving and early 
symbolism (Thom & McGarvey, 2015). Drawing is one of children's earliest (mathematical) 
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representations (Papandreou, 2014; Woleck, 2001). Drawings and other written signs have a degree 
of permanence, allowing them to be re-examined, revised and argued for (Papandreou, 2019), which 
is why some claim that drawing play a central role in fostering mathematical reasoning for children 
(Saundry & Nicol, 2006).  

By utilising children's representations of their understandings, like drawings or narratives, we are 
offered a window into their minds (MacDonald, 2013; Woleck, 2001). Children use drawings to bring 
their ideas or thoughts to the surface and to communicate them with others (Papandreou, 2014;
Woleck, 2001). Learning to draw and drawing naturally occurs for most children, but the difference 
between drawing for fun and drawing with a purpose is big, and the transition from drawing out-of-
school and drawing in-school contexts is a topic where several researchers claim teachers lack 
knowledge (Bakar, 2017; Woleck, 2001).  Given the lack of research on drawings as representations 
(Woleck, 2001) and their central role in fostering children's mathematical reasoning (Saundry & 
Nicol, 2006), drawings should be offered more attention when researching reasoning and young
children.  

The project applies a sociocultural perspective on learning and development and considers knowledge 
to be developed and shared between people (Vygotsky, 1978). Although Vygotsky is mainly known 
for the relation between speech and reasoning, we can also relate his work to the drawing and 
reasoning. According to Vygotskian sociocultural theory, higher mental functions and human actions, 
like communication, are mediated by tools and signs (e.g. language and drawings) (Dahl et al., 2017).
Tools are, within sociocultural theory, defined as the resources – both language-based and physical, 
available to us that we use to understand the world around us (Säljö, 2009, p. 21, my translation). 
Applying this perspective, viewing drawings as tools used to communicate and to understand the
world around us, we can see the connection between drawing and reasoning. 

This paper has two aims; the first is to present a theoretically anchored framework for analysing 
children's mathematical drawings as tools for mathematical reasoning. Which can be used for further 
research on drawing as a representation, both for researchers wanting to contribute or further develop 
the framework and teachers wanting to develop their pupils' competencies of using drawing as a 
meaningful representation and tool for reasoning. The second aim is to explain how different 
drawings support children's mathematical reasoning through some illustrative examples from two
first-grade classrooms.  

Framework for analysing drawings as tools in mathematical problem solving 
The framework that is the starting point for what is presented below was initially developed by me 
for my master thesis (Kleven, 2019). It consideres two aspects of drawings in mathematics: the use 
of the drawing, and visual and multimodal aspects of drawings, and is a synthesis of other frameworks 
for examining drawings as a mathematical representation. 

The first aspect concerns if and how drawings are used. It includes categories like used or did not use 
drawing, and different ways drawings that can be used for and of problem-solving (Saundry & Nicol, 
2006). If used for problem-solving, the drawing is used for solving the problem, and drawing is both 
a process and a product (p. 57). In drawing for problem-solving, the drawing and problem-solving 
happen simultaneously. The drawing represents thoughts or internal pictures linked to children's 
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mathematical reasoning. A drawing of problem-solving is produced after the task is solved, 
representing a solution (rather than a process). It functions as a tool for communicating with others 
(rather than solving the problem). Even though drawings of problem-solving are considered to be 
produced after solving the problem, Saundry and Nicol (2006) claim that pupils' artefacts when 
working on mathematical problems are a part of their reasoning and cannot be separated from it. 

The second included approach to analysing drawings are the visual and multimodal aspects of 
drawings. The distinction between pictographic and iconic drawings is commonly used to describe 
visual aspects of drawings which could be useful for identifying and describing mathematical 
reasoning. Both pictographic and iconic drawings can support children's reasoning and problem-
solving in mathematics, but at different times and in different ways. A pictographic (situational)
drawing can, according to Rellensmann et al. (2017), help pupils better understand a problem by 
providing a way of organising the information provided in the task. However, simultaneously, a 
pictographic drawing can also include irrelevant details, getting in the way of an effective problem-
solving process. In contrast, an iconic, mathematical drawing often only includes relevant elements, 
but given its abstraction, it often requires a higher level of mathematical skills to utilise. Further 
categories are based on Papandreou (2009), and concern whether the pupils include numbers, letters 
or words in their solution, and if the children use gestures or verbal language as a supplementary 
mode of communication. Although the table below (table 1) presents the whole framework, this short 
paper will only focus on a few categories and aspects. The colour-coding in the table is as follows: 
use of drawings in blue, and visual and multimodal aspects of drawings in purple.

Table 1 – A framework for analysing drawings as tools for mathematical problem solving

Category Description and indicators of use

Used drawing The pupil found one or several solutions using drawing.

Did not use 
drawing

The pupil only used numbers, letters or did not draw at all. Including the use of 
other concrete manipulatives (like counting on the fingers or using counters). 
Both correct and incorrect answers included.  

Manipulative Movement, like circles or lines, represent calculations or operations, similarly to 
physical manipulatives (Saundry & Nicol, 2006; Woleck, 2001). Drawings are 
used to organise and count the elements needed to solve the problem (Woleck, 
2001) and serves as a placeholder for thoughts.

System support A passive drawing without movement. Drawings are used in an elimination 
process by systematically sorting elements and creating a structure (Saundry & 
Nicol, 2006). The drawing is crucial for solving the task, and pupils often use it 
to count and re-count their solution.

Narrative Pupils create a story with elements in the task or their surrounding life (Soundy 
& Drucker, 2009), then act out the story. Creativity, previous knowledge, and the 
ability to differentiate relevant and irrelevant information become explicit.

Dramatic 
representation

The pupil draws themselves as part of the problem (Woleck, 2001). E.g., a pupil 
draws himself pointing at a number line, showing the physical drama of solving 
the problem. 
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Imagery/
Visualisation

The problem is solved internally. The process is played out in their mind, and 
then they draw to communicate a solution (Saundry & Nicol, 2006). Information 
is still processed visually, even though it is not always visible on paper.

Pictographic

Is recognised by its realism compared to the elements in the task. E.g., If the task 
asks the pupils to put flowers into vases, the pupils will draw either flowers, 
vases, or both. Also called situational drawings (Rellensmann et al., 2017).
Depict the surface of the problem have a low level of abstraction.

Iconic

Simple lines and shapes created to imitate the elements in the problem. It lacks 
the realism or affiliation to reality found in pictographic drawings. Also called 
mathematical drawings (Rellensmann et al., 2017). It depicts a mathematical 
structure and has a high level of abstraction.

Symbolic Pupils include numbers or letters/words. Defined in this framework as the 
conventional numerals 0,1,2,3,4,5,6,7,8,9, all letters/words and non-conventional 
number symbols (Papandreou, 2009).

Gestures and 
verbal language

The pupils supplement their solution with gestures or use verbal language to 
support their communication.

The framework above shows different aspects concerning drawing, that one might consider when 
researching childrens mathematical drawings. Several other aspects were also considered in putting 
together the framework, and there is a possibility to build further on the framework, including
categories and aspects relevant for the particular study one is conducting. The framework is meant to 
be a flexible framework, where one can make adaptions based on context and needs.  

The examples below are from an Educational Design Research study investigating how teachers can 
facilitate productive conversations, where young pupils are provided with opportunities to develop 
their reasoning competencies. Video recordings of twenty-seven first-grade pupils (age 5-7) and three 
teachers have been collected to understand how pupils use drawings to reason and communicate in 
mathematics. Pupils worked in groups (of 2-4) collaboratively solving problem-solving tasks in 
mathematics. Participation was based on informed consent from pupils and parents, and the names 
included below are pseudonyms. For analysing how drawings were used, collected pupil work and 
video recordings were used. Video recordings were helpful in addition to the drawings because video 
recordings could help determine whether the children drew while solving the problem or afterwards. 
All video recordings were transcribed and analysed to supplement the analysis of the drawings. After 
categorising the ways of using drawings, I aimed to identify reasoning in the drawings, using the
video recordings and transcriptions as supplementary information about the process. The examples 
below are from different sessions, where pupils work on the following problems: (1) 8 children share 
12 cookies equally. How many cookies does each child get? And (2) A farmer has some animals that 
altogether have 14 feet. How many animals, and what animals does the farmer have? 

Reasoning in drawings for problem-solving 

The examples illustrate drawings used as manipulative and system support. In Figure 1a, drawing is 
used as manipulative to give one cookie to each child physically. We can see lines representing the 
process of sharing twelve cookies equally between eight children, resulting in each child getting one 
and a half cookies each. Based on the drawing, we can see that the pupils gave each child one 
cookie
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and then split the leftover cookies to give the same amount. Based on the drawing and the video 
recording of the two pupils collaborating, the drawing appears to be closely linked to their reasoning
process of giving as many whole cookies as possible first and then splitting the rest equally as well. 

Figure 1a - Manipulative and 1b - System support 

In comparison, Figure 1b shows a drawing used as system support for the same problem. The drawing 
provides an overview and organisation of the elements, but no operations or calculations are visible. 
In this drawing, we could need to turn to the video recording alone to identify whether the pupil put 
one and a half cookies in the lunch boxes at once, or if they put one cookie in each of the lunch boxes 
first, and then put half in each when it was not possible to give a whole cookie more to each child. 
Identifying the children's reasoning processes can be more difficult in drawings as system support,
but the drawing still depicts some of the children's mental processes of sharing cookies equally. 

Reasoning in drawings of problem-solving 

For identifying imagery, one needs to be present during the process or have recordings (audio or 
video); this is because one requirement is that the problem is already solved when the drawing is
produced. As an example of imagery, I would like to highlight Leo and Sam working on problem 2, 
the farmer problem (figure 2a below). Initially, Sam suggests five sheep, five cows and four hens 
while holding up five, five and then four fingers. This adds up to a total of 14 animals. After a while, 
Sam realised that his answer was wrong because it was 14 animals and not legs. Sam starts counting 
using his fingers and stops while holding up eight fingers. He says, "Two cows", and then Leo draws. 
Sam continues using his fingers to count and ends up at one sheep and one hen. The boys count all 
the feet and end up at 14 feet and are satisfied. Sam solved the problem before they made the drawing, 
and the drawing was used to communicate with others, not to solve the problem. The boys did, 
however, use the drawing to check their solution.
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Figure 2a - Imagery and 2b – Visual aspects 

Visual aspects and multimodality 

As a short example of an analysis of visual aspects of a drawing, I would like to present a drawing 
made by a group of four pupils working on problem one, the cookie problem. Malin, Leo, Eric and 
Martin made an iconic drawing of cookies and children (figure 2b), in addition to a number line of 
the even numbers from 2-12. The video recordings show the four pupils discussing and trying to agree 
on which of the circles are children and which ones are cookies because they used the twelve circles 
to count both children and cookies. This sparks a discussion about if a circle is a cookie or a child, 
making the equal sharing of the cookies difficult. They are not able to solve the problem using 
drawing. In addition to using an iconic drawing, we can see that the group used both conventional 
number symbols and the words for children and cookies in Norwegian. The abstract nature of the 
drawing made it difficult for the children to reason both individually and in collaboration. A more 
pictographic drawing with a clear difference between children and cookies could have made this 
easier. 

Discussion 
This study aimed at presenting a theoretical framework for describing and analysing how children 
use drawings in mathematical problem-solving and show some examples of how different drawings 
can support mathematical reasoning. The framework was presented as a whole, although I only 
focused on small aspects of the framework in this study. However, the framework is a synthesis of 
different theoretical frameworks for describing different aspects of drawing in mathematics, enabling 
research on many different areas or aspects connected to mathematical drawings. 

This study further shows that different drawings can support differently in reasoning processes. In
drawings as manipulatives (Figure 1a), we can see that a manipulative-drawing allows children to use 
the drawing to solve the problem physically. A drawing as a manipulative can support the pupils 
reasoning process by giving the pupil something concrete (external) to solve the problem, thereby 
allowing the internal processes to become external. All problem-solving processes are visible on 
paper and are useful for teachers to identify how the pupils solved the problem without being present 
during the process. Looking back at Battista (2016), defining reasoning to concern manipulating a 
problem to make decisions or conclusions, a drawing used as a manipulative explicitly enables the
use of a drawing to solve the problem, making the drawing a tool for the child's reasoning. As we can 
see in figure 1a, the lines enable the children to give one and one cookie, keeping tabs on the 
division
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happening in the problem. In drawings as system support, more extensive parts of the mathematical 
reasoning happen internally and therefore "beyond reach" of the drawing or those witnessing the 
process. Drawings as system support can support children's reasoning by providing them with a tool 
for organising elements systematically, making it easier to check multiple solutions, and keeping tabs 
of all elements of the problem without being overwhelmed by the problem itself (Woleck, 2001). As 
figure 1b shows, the lunch boxes with cookies allow the pupil to count and check his solution, both 
whilst solving the problem, and afterwards. Reasoning can also be identified in the process and 
products of pupils using drawings as imagery. A requirement for imagery is that the problem is 
already solved when drawing occurs. The drawing is then used to communicate or show the process 
or product to others. The drawing serves as mediation or re-presentation of meaning, allowing pupils 
inner pictures and reasoning to become available to others. Applying a sociocultural perspective 
allows us to think about the process (and product) of drawing as a direct re-presentation of mental 
pictures, and therefore as reasoning made available to others. To identify reasoning in drawings of 
problem-solving, we need to turn to children's verbal utterances and descriptions of their drawings, 
as illustrated above in the discussion in figure 2a.

Regardless of how the children use drawings, whether as manipulatives, system support, narratives 
or dramatic representations, all drawings have a degree of permanence to them, allowing them to be
discussed, revised and argued for in collaboration with others or for oneself (Papandreou, 2019). By 
gaining knowledge on children's drawings as mathematical representations, we are offered a window 
into their minds and understanding of mathematical problems and concepts (MacDonald, 2013; 
Woleck, 2001). Though examining the children's drawings in the cookie-sharing context, one can 
gain insight into how young children treat the concept of dividing equally, which again can tell us 
something about their understanding of division more generally. Facilitating reasoning and sense-
making should be the primary goal of mathematics instruction (Battista, 2016). It is, therefore, 
interesting to investigate how teachers can achieve this, particularly in the early years, where the 
amount of empirical research is limited. 

A possible further analysis of data is needed, in order to see if there is possible to identify a connection 
between the different ways of using drawing (as a manipulative, system support and so on) and 
whether the students are able to present understandable chains of reasoning and arguments for their 
statements when communicating with others. Further studies into the use of more than one modality 
simultaneously and the quality of young children reasoning is another aspect which it will be both 
exiting and relevant to look at in the future. 

The study had its limitations. What is presented above are empirical examples from one study, and 
should for that reason, not be generalised without considering all contributing factors. In addition, the 
framework could benefit from studies in other contexts with more participants with other 
prerequisites. Given the limitations in scope, several of the framework categories were not discussed, 
and more studies utilising and further developing the framework is both welcomed and needed to 
improve the quality of the proposed framework. 
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Immigrant parents’ views about mathematics education are rarely investigated, yet these are likely 
to affect their relationship to early childhood education and care (ECEC) and potentially their 
adopted country. In this study, Polish parents, who had immigrated to Norway, were surveyed about 
their views about mathematics education for young children, including what was made available in 
ECEC institutions in Poland and in Norway. We investigated whether the responses showed that
parents’ views about what is mathematics in early childhood and how it should be taught or learnt 
could be related to parents’ considerations of the power and authority linked to their position as 
immigrants. The results have implications for multicultural ECEC and policy makers.

Keywords: Immigrant parents, counting, playing, power and authority

Introduction
Immigration in Europe is often described as a recent phenomenon and as such requires policies to
support integration. Dustmann et al. (2012) described how different European countries implemented 
integration policies, including requirements for language fluency, as part of the immigration process,
and how the contributions that immigrants bring to a society are frequently considered in relationship 
to the economic benefits for the receiving country. Education is considered important for ensuring 
that economic benefits are achieved from children of immigrants gaining the necessary skills to be
employable (Sadownik, 2018). As stated by Bratsberg et al. (2012), “the convergence of educational 
attainment across generations [of immigrants] to that of natives is commonly seen as a key indicator 
of successful integration and several analysts emphasize education as the key pathway for integration 
of immigrants and their descendants” (p. 212). In integration policies, the knowledge about education
that immigrant parents have is rarely acknowledged. Instead the focus is generally on how immigrant 
parents’ values about education could/should be brought in line with those of the adopted country 
(see for example, Sadownik, 2018). This can situate existing educational culture, such as in early 
childhood institutions, as being static and non-changing. In order to consider what immigrant parents’ 
views on mathematics education for young children could contribute to discussion about the role of 
education, we describe Polish parents’ views about mathematics education in Norwegian early 
childhood centres, known as barnehage/r (kindergarten/s). In Norway, there are more Polish 
immigrants each year than any other nationality (Østby, 2016). We particularly consider how Polish 
parents’ views about what mathematics is and how it should be learnt are related to considerations of 
power and authority to have those views heard by Norwegian barnehager. 

On the whole, very little research has investigated parents’ views about ECEC. Nevertheless, Van 
Laere and Vandenbroeck (2017) show that in the Netherlands parents had a variety of views, such as 
a tension between the importance of developing children’s social competence so that children are not 
excluded and the importance of readying children for school. However, Sadownik (2021) highlighted 
that when parents considered their own children’s needs then they could move away from their value
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positions. In Sweden, Lembrér (2018) found that Polish parents’ views about mathematics and how 
learning possibilities should be provided to children were aligned to those in the Swedish curriculum 
for early childhood, such as valuing learning mathematics through play. Similarly, Takeuchi (2018) 
found that immigrant Filipina mothers only taught their children multiplication strategies used in 
Japanese schools rather than the strategies they themselves had been taught and knew to work. 
Takeuchi (2018) described “how identity and power are strongly tied with appropriation of cultural 
tools” (p. 41). In a review of the literature about partnerships between early childhood professionals 
and immigrant parents, Norheim and Moser (2020) highlighted that asymmetrical power relationships 
often reduced the possibilities for parental engagement. The results from the studies of Lembrér 
(2018) and Takeuchi (2018) suggest that these power relationships may affect parents’ views about 
what is valued as mathematics and how it should be learnt. This could have an impact on their 
engagement with educational institutions such as ECEC and on their integration. 

To gain insights into this complexity, we investigate survey responses from 36 Polish parents on 
mathematics education in ECEC in Poland and in Norway. The research questions are: How are 
Polish immigrant parents’ views of mathematics education for young children connected to authority 
and power relationships? How are their views likely to affect possibilities for integration in Norway? 

Theoretical perspectives 
For this study, we use three frameworks: Bishop’s (1988) six mathematical activities to identify the 
mathematics that was in focus in the parents’ comments; Walkerdine’s (1988) distinction between 
pedagogic and instrumental interactions; and Wertsch’s (1998) discussion of power and authority in 
mediated action. These frameworks we combine to be able to identify different aspects of the parents’ 
responses. In doing so, we take licence from their perspective on networking strategies of Prediger et 
al. (2008), who state that “combining theoretical approaches does not necessitate the complementarity 
or even the complete coherence of the theoretical approaches in view” (p. 173), We then look at how 
these aspects, what is mathematics, how should it be learnt, and the ways that parents express their 
power and authority through their views about how barnehager work with mathematics, provide 
insights into the complexity of parents’ views. We investigated whether the responses connected to 
the different aspects were related. 

To determine the kind of mathematics that parents valued, we used Bishop’s (1988) six mathematical 
activities. These are the basis for mathematics in the Norwegian barnehage curriculum (Reikerås, 
2008) and have been used extensively in research on ECEC in Scandinavia (see for example, Fosse 
et al., 2020) . The six mathematical activities are: playing; explaining; designing; locating; measuring; 
and counting. Of these, counting is often emphasised by Norwegian parents (see Lembrér, 2020).  

To identify parents’ views on how mathematics should be learnt, we used Walkerdine’s (1998) 
distinction between tasks where the focus was on the child learning specific number understandings 
(e.g., counting buttons in a cardigan), which she labelled pedagogic, and tasks where the child was 
engaged in solving an actual problem (e.g., finding the right amount of ingredients for a recipe), 
which she labelled instrumental. In earlier research (see for example, Helenius et al., 2016), this 
distinction has been used to determine how children are expected to learn mathematics in ECEC, 
either by being directly taught (pedagogic) or in the course of solving a problem that the child is 
invested in answering (instrumental). Sadownik (2018) highlighted that whereas in Poland early 
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childhood education is focused on introduction to academic subjects, Norway’s approach emphasised 
play and democratic participation. This can be considered a distinction between valuing a pedagogical 
and an instrumental approach, respectively, for engaging in mathematical learning situations. 

To better understand how power relationships affected parents’ views on the importance of different 
mathematical activities and the ways that mathematics should be learnt, we built on Takeuchi (2018) 
research by adopting Wertsch’s (1998) ideas about the valuing of knowledge. In a discussion about 
mediated action, Wertsch (1998) described how “the acceptance of a particular utterance by an 
individual agent is not simply a matter of dispassionate, reflective choice” (Wertsch, 1998, p. 66), 
because the society provides input on what should/can be valued, and this can act as a source of 
authority within a situation. Agents can either reject, accept or be somewhere in the middle, the 
valued, societal views, depending on the power they see themselves as having within a situation, 
because “cultural tools are not always facilitators of mediated action, and agents do not invariably 
accept and use them; rather, an agent’s stance toward a mediational means is characterized by 
resistance or even outright rejection” (Wertsch, 1998, p. 144). When parents with one set of values 
about engaging young children in mathematical activity from their home country, meet a different set 
of values in their country of residence, they can either appropriate (more or less), resist or reject the 
new set of values. Therefore, it is important to understand what immigrant parents value as 
mathematics and how it should be learnt or taught, and whether they consider this as being in conflict 
with the values of their home or adopted country. 

Methodology 
The data are responses to an online survey consisting of 14 questions answered between May and 
September 2017. The survey was provided in Polish and the link was made available on the website 
of the Polish organisation “Moja Norwegia” (“My Norway”). The survey asked about the parents’ 
memories of mathematics in Polish ECEC, their children’s experiences of mathematics learning in 
Polish and in Norwegian ECEC, and what would they tell barnehager about their children learning 
mathematics. These open-ended questions asked for examples of memories or experiences, which we 
considered were likely to provide insights into the complexity of parents’ views. The second author, 
who is a native Polish speaker, translated the answers into English. 

In this paper, we focus on responses from 36 parents who made an explicit or implicit reference to 
early childhood education in Norway and/or in Poland. All these parents had experiences of their 
children attending barnehager, some had themselves – or had children who had – attended ECEC in 
Poland. The responses do not describe what the situation is in either Norway or Poland but rather 
relate what the parents valued in these situations.  

References to mathematics in the parents’ responses were categorised according to Bishop’s (1988) 
six mathematical activities. For example, when the parent described using number words to identify 
the total amount of things, the response was classified as being about counting. To classify what was 
valued as the ways that children should learn, we categorised the responses on whether the parents 
valued children learning through everyday situations and solving problems they were interested in 
(instrumental), or whether it was implied that an adult would teach the children (pedagogic) 
(Walkerdine, 1988). Finally, we looked for explicit (de-)valuing of what occurs in Norwegian or 
Polish ECEC to gain insights about whether there was an acceptance, resistance or rejection of a 
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specific set of values (Wertsch, 1998). The combination of these results gave us insights into the role 
of power relations and authority that may have influenced parents’ views. 

Results and discussion 
The results from the three analyses indicated that they were related and so in presenting them, we 
placed each parent’s responses on a continuum, with specific aspects of the responses clustered at 
each end. The continuum was one way of showing the complexity of the relationship between the 
different aspects which enabled us to answer the research questions. At End 1 of the continuum, we 
placed the five parent responses, which identified several mathematical activities, including counting, 
described children as learning through everyday problem-solving situations, and depicted barnehager 
as providing good mathematical learning possibilities. At End 2, we situated the six parent responses 
in which counting was valued exclusively, children were expected to be taught mathematics, and 
approaches to mathematics in Polish ECEC were valued. The remaining 25 parents’ responses were 
placed in between these two ends. 

Parents’ responses at End 1 

The parents who valued the approach to mathematics education in barnehager tended to value a range 
of mathematical activities as being important for children and considered that learning should happen 
through everyday situations, play and problem solving. For example, Parent3 (P3), whose child(ren) 
had only attended barnehager, described their mathematical learning as involving, “sorting objects 
into collections, large/small/medium comparisons, measuring e.g., volume of liquids, playing with 
shapes, learning how to count”. This indicated that more than just learning to count was valued. In 
responding to a question about why they thought these tasks could help children learning 
mathematics, P3 wrote: 

Mathematics is the science of abstract thinking. It's good that the beginnings were based on specific 
examples. Playing with water and in the sandbox is associated with measuring, that is, it 
familiarizes the child with the concept of volume. Puzzles and blocks are practical science of 
geometry. Counting and nursery rhymes are an introduction to algebra.  

In this response, P3 makes connections to mathematics children will learn at school but indicates that 
learning happens through play as part of everyday interactions. This was reinforced in the response 
to the question about what parents would like to tell the barnehage:  

I am very happy with the way children are taught mathematics in our (Norwegian) kindergarten. 
Children learn it casually, on specific examples. The road to abstract thinking goes gradually, 
starting with things that children know, that they can touch. Thanks to this they get used to 
mathematics as a natural part of life. I am very happy about this approach.  

Here, how barnehager support children to learn in everyday situations was considered valuable. This 
acceptance of the adopted country’s values is very similar to what Lembrér (2018) found in Polish 
parents’ views of Swedish ECEC. 

Sometimes parents at this end of the continuum made explicit comparison with Polish ECEC, “At the 
Norwegian kindergarten, he focuses on learning logical thinking and associations. In the Polish 
ECEC, you go directly to memorising activities such as addition and subtraction” (P1). For P1, the 
barnehage approach was more valued than the Polish one, which they considered was based on 
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memorisation. At this end of the continuum, the parents seemed to have appropriated cultural tools 
(Wertsch, 1998) from barnehager about mathematics and how it should be learnt so that they had 
adopted the views as their own, with no indication of resistance to these ideas.   

Parents’ responses at End 2 

At the other end of the continuum, parents emphasised the importance of counting alongside children 
needing to be taught, and that Polish ECEC provided a better approach to mathematics education or 
that Norway lacked a good approach. For example, in the question about their own experiences of 
ECEC in Poland, P6, whose children had also attended ECEC in Poland, stated, “many mathematical 
play activities, counting fruit, objects, furniture etc, addition, subtraction, division, multiplication 
through play activities. Very well-prepared staff, nice atmosphere during play activities”. When 
answering a question about why they thought situations would help develop children’s mathematics 
learning, P6 reinforced the importance of children learning counting, “Because children are beginning 
to understand the connection between numbers and objects”. Although P6 described situations in the 
Polish ECEC as play, the focus on counting things and the need for well-prepared teachers indicated 
that teachers were expected to be in control. 

In response to the question that asked parents to describe a situation where children learn mathematics 
in barnehager, P6 stated, “instead of splashing around in the mud outside, they could be doing 
something useful”. Other parents also commented on how children being outdoors so much, a valued 
activity in Norway (Sadownik, 2021), restricted the possibilities to learn mathematics in more 
appropriate ways, such as inside and being taught, “he learns outdoors when counting cones, stones, 
there are no activities” (P21). At this end of the continuum, the strong valuing of counting and the 
need for teachers to explicitly teach, often appeared in conjunction with a devaluing of barnehager: 

There is a tragic level of education in Norwegian kindergarten compared to any preschool in 
Poland. The Norwegian kindergarten is a children’s storage room until parents take them home. I 
am very disappointed; I plan to return to Poland because I see that children do not learn anything 
here and only at school from the first Grade, do they start learning anything. (P6) 

The language in these responses was often more emotive than the responses placed at End 1. Similar 
to P6, P10 responded to the question about what they would tell barnehager about their children 
learning mathematics by stating “a disaster”. P19 highlighted the impact on future schooling, “it is a 
very important but neglected field of science, especially in kindergartens, which unfortunately later 
negatively affects school”. These responses suggest that resistance and rejection of cultural values 
(Wertsch, 1998) of the adopted country may have led to these parents using stronger forms of 
language to highlight both that they have an alternative set of values and that these values would 
provide better possibilities for their children’s future. Norheim and Moser (2020) found that 
immigrant parents faced difficulties in expressing disagreements with early childhood professionals, 
because of a lack of language and knowledge of how to approach professionals, exacerbated by an 
asymmetry in power relations. The survey may have provided a safe place for the parents to express 
their dissatisfaction with what they saw as restricted opportunities for their children to gain the 
academic preparation they felt their children needed for school.  

For P6, whose dissatisfaction with mathematics education in barnehager had resulted in her 
considering taking her children back to Poland, integration as envisioned in the policy documents 
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could be seen as failing, with the possibilities for economic gains for the adopted country from the 
parents and their children reduced. This was not because the parents did not value education but 
because they consider barnehage education as limiting their children’s possibilities. As Wertsch 
(1998) stated, “a focus on resistance and rejection leads one to consider a host of issues that do not 
arise when one assumes that cultural tools are friendly helpers” (p.145). In the responses at End 2, 
these issues included a concern for their children’s future school achievement. 

Parents’ responses along the continuum 

The parents whose responses fell between the two ends of the continuum presented different views 
about how they viewed mathematics and how it should be taught/learnt. For example, P47 provided 
a range of learning situations, connected to different mathematical activities, but in reflecting on what 
should be said to barnehager, raised both positive and negative concerns. 

I am happy that mathematics is an integrated part of children’s play, and that they meet with it on 
their own terms. Certainly, it is possible to nurture a child’s interest in mathematics by supporting 
play. Another issue is whether this freedom of access to games that stimulate mathematics can 
increase the differences between children. So that children who are not interested in mathematics 
can avoid it [play activities which include mathematics] and not be noticed. 

Although the barnehage approach to mathematics education seemed to be appreciated, P47 was 
concerned that teachers needed to notice who might be excluded or exclude themselves in engaging 
with mathematical activities. Several parents raised the need to improve the quality of barnehage 
staff. For example, when describing the benefits of learning through play, P12 wrote, “I think that 
teachers, especially those without education, should be involved in courses that make them more 
aware about it”. The discussion of barnehage staff qualifications has regularly been in the news (see 
for example, Kunnskapsdepartementet, 2015). This may have provided parents with cultural tools 
(Wertsch, 1998) to support stating that staff needed to be better educated, which may have helped 
them to resist appropriation of the values connected to mathematics education in barnehager. 

Other parents were less happy with what happened at barnehager, but, implicitly or explicitly, did not 
completely agree with the approach in Polish ECEC. P38 stated that children in Polish ECEC learnt 
mathematics through everyday activities, but in a class, suggesting set tasks. In barnehager, P38 stated 
that they did not learn mathematics, “only picture counting”. However, when asked about what they 
would tell barnehager about their children learning mathematics, P38 wrote, “counting, for example, 
to 20 is OK, but not adding or subtracting as they teach in Polish preschools”. This indicates that P38 
considered that barnehager should do something, but they did should not adopt the approach of Polish 
ECEC. Similarly, P46 expressed disappointment that “unfortunately” mathematics was not 
taught/learnt in barnehager but offered the suggestion that this could be done in a way which echoed 
the valuing of play, “it is worth starting the adventure with mathematics through play”. Hence, P46 
criticised the lack of mathematics education in barnehager, while also suggesting that they should 
adopt an instrumental, rather than a pedagogical approach to mathematics. 

The views that lay between the two ends suggest that the majority of parents evaluated what they 
knew about mathematics education in Polish ECEC and in barnehager and resisted appropriating 
some aspects of both. (Wertsch, 1998) described how actors can use alternative knowledge, such as 
in our case about mathematics education in Polish ECEC, to invoke an authority structure in order to 
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be seen as knowledgeable. Given that immigrant parents struggled to have their views recognised and 
valued in barnehager (Norheim & Moser, 2020), their evaluating of cultural tools to do with 
mathematics and how it should be taught could be seen as a way to have their knowledge recognised 
as valuable and hence as having authority. 

Conclusion 
In this paper, we have analysed Polish parents’ views about their children engaging in mathematical 
learning opportunities in barnehager. Barnehager are required to make available pedagogical plans 
and to provide mathematical learning experiences (Kunnskapsdepartementet, 2017). Yet, parents, 
such as P6, did not consider that there was any mathematics education in barnehager, similarly P8 
wrote “I didn’t notice that there was mathematics in kindergarten”. As pointed out by Takeuchi 
(2018), cultural values can come into conflicts when there are no opportunities to discuss alternative 
approaches to mathematics education. The Polish parents came with expectations about how their 
children would engage in mathematical learning situations. Although some parents were able to adapt 
to the new cultural values in Norway, they did so by denouncing the approaches in Polish ECEC 
suggesting that integration is only achievable if they give up some of their Polish values. However, 
rejection of the barnehage approach to mathematics education of learning through play caused 
conflicts with Norwegian values.  

Wertsch (1998) described appropriation, resistance and rejection of cultural tools. Present 
immigration policies with their emphasis on the role of education seem to assume the acceptance and 
thus the appropriation, of the adopted country’s values about what should be learnt and how. 
However, the responses in the survey suggest that this is not necessarily the case. Many parents 
resisted or even rejected the acceptance of barnehage approaches to mathematics education, even if 
they had master knowledge of them. This is likely to have an impact of the integration of Polish 
immigrants into Norwegian society and the potential economic outcomes. 
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With the aim of nourishing the discussion that has taken place during CERMEs in TWG13, we present 
a review of results presented in previous CERMEs about the possible roles of boardgames in 
developing young children’s number sense. Several contributions in CERMEs have shown that 
difficulties related to teacher education and curriculum design emerge when analyzing the 
boardgames that are proposed and their management in classrooms. However, the discussion about 
the contribution of boardgames to preverbal number sense is still underdeveloped when compared to 
literature from research journals. Also, the potential of boardgames in providing challenging 
mathematical tasks seems still unresearched. Hence, possible future paths of research for the use of 
boardgames in early years mathematics emerge. 

Keywords: Boardgames, number sense, literature reviews. 

Introduction 
Play can be considered as the main learning experience for young children in general, and for early 
years mathematics in particular (Schuler, 2011). Among the many possible playful activities in which 
children may engage, we can roughly distinguish between free play and guided play, the latter 
consisting of adults structuring of the play environment but leaving control to the children within the 
environment (Weisberg et al., 2013). In this contribution we will focus on guided playful activities, 
to which we will refer as games. There is a large body of research about the use of games in learning 
(game-based learning), but not all kinds of games have been studied with the same attention. While 
literature about videogames is getting larger and larger (e.g. Yong et al., 2021), boardgames were 
rarely researched (Ramani & Siegler., 2008). We consider as boardgames all those games that are 
played on a printed surface by one or more people usually sitting around a table (Parlett, 2018); they 
might include the use of cards or dice. As testified by the available literature, boardgames can play 
an important role in the teaching and learning of mathematics (see next sections). Such relevance 
might be even higher at early grades, as stated in some contributions from previous CERMEs (e.g. 
Schuler & Wittmann, 2009; Schuler, 2011; Tubach, 2015).  

The aim of this paper is to nourish the discussion that has taken place during CERMEs in TWG13 by 
summarizing results presented in past proceedings. Such review of the literature is intended to suggest 
further limits and opportunities in using boardgames in early mathematics education. Our discussion 
is limited to number sense; the next session is devoted to explaining what we mean by that. 

Number sense 
The construct of ‘number sense’ is present since many years in the discourse of researchers in 
mathematics education in general, and in the ERME community in particular (Rezat & Ejersbo, 
2018). Several definitions have been proposed, mostly in the form of a list of abilities that a child 
should develop in order to show number sense. Such lists are often not equivalent. In this contribution 
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we adopt the classification provided by Andrews and Sayers (e.g. Andrews & Sayers, 2015) who 
distinguish three categories of number sense.  

Preverbal number sense includes the innate abilities necessary for quantitative understanding. 
Research literature (within and outside mathematics education) shows that very young children can 
discriminate small quantities (e.g. subitizing) and arrange them as a linear representation, called 
‘mental number line’ (e.g. Deahene, 2001). 

Applied number sense refers to competences that prepare the learners for the adult life. Applied 
number sense should enable a person to 

look at a problem holistically before confronting details, look for relationships among numbers 
and operations and […] consider the context in which a question is posed; choose or invent a 
method that takes advantage of his or her own understanding of the relationships between numbers 
or between numbers and operations and […] seek the most efficient representation for the given 
task; use benchmarks to judge number magnitude; and recognize unreasonable results for 
calculations in the normal process of reflecting on answers (Reys 1994, p. 115, as quoted in 
Andrews & Sayers, 2015). 

Finally, there is a set of intermediate abilities that are developed thanks to instruction, usually between 
the end of preschool and the beginning of primary school; then they are particularly relevant for early 
years mathematics. This set of eight abilities, called foundational number sense, is listed in Table 1. 

The distinction between preverbal, foundational, and applied number sense will serve as a framework 
for organizing our presentation of the reviewed literature. The next sections are devoted to describing 
if and how each of these three types of number sense was considered in past contributions to TWG13 
about boardgames. Furthermore, we will list limits evidenced by researchers. 

Selection of papers 
The papers selected for the presented review are taken from proceedings of the last six editions of 
CERME. A mapping review of all the abstracts of the paper presented in the working group about 
‘Early Years Mathematics’ (TWG14 in CERME6, when it was founded; TWG13 in the following 
edition) served for a first phase of selection. Among the 124 contributions, we selected those 
explicitly referring to numerical abilities and to a playful/game context. We then realized a second 
phase of selection by reading the full text; only papers specifically including boardgames were left. 
We ended up with the four papers listed in Table 2. 

The fact that a low number of contributions were selected sustains the claim that research about 
boardgames is still underdeveloped. Surely, TWG13 is not the only TWG interested in boardgames 
and number sense (e.g. Sensevy et al., 2001), however as we will discuss later, we believe that this 
topic is particularly relevant for TWG13. We can notice that papers about these topics appeared in 
this working group during several editions of CERME; we may then affirm that a discussion has 
started, and there is still room to widen it. The four selected papers have been categorized referring 
to the framework introduced above. Results are presented in the following sections. 

Proceedings of CERME12 2233



 

 

Boardgames and preverbal number sense 
Research on preverbal number sense usually focuses on children aged 0–6 and then this stream of 
research should be considered as part of research in early years mathematics education. Indeed, 
TWG13 has collected contributions about subitizing (e.g., Schöner & Benz, 2017), but none of them 
included the use of boardgames. One of the selected papers refers to subitizing (Schuler, 2011), but 
it is not the main focus of research. Surely this fact does not depend on the impossibility of using 
boardgames to assess or develop preverbal numbers sense. For instance, we may notice that many 
traditional boardgames (like Shut the Box) include the use of dice. Traditionally, cubic dice show 
quantities through dots arranged in a canonic way. Research shows how subitizing gets easier when 
children recognize patterns in the arrangement of dots; furthermore, developmental dyscalculia can 
cause a deficit in the estimation of canonically arranged dots (Ashkenazi et al., 2013). This fact 
suggests that playing boardgames can help in recognizing specific difficulties that might depend on 
inexperience with canonical arrangement of dots or on learning disabilities. 

Table 1: Components of foundational number sense (Andrews & Sayers, 2015) 

(1) Number recognition Recognition of number symbols; their vocabulary and meaning. Ability to identify a 
particular number symbol from a collection and name a number when shown. 

(2) Systematic counting Counting systematically to twenty and back or count upwards and backwards from 
arbitrary starting points; knowing each number’s position in the sequence of all numbers. 

(3) Awareness of the 
relationship between 
number and quantity 

Not only understanding the one-to-one correspondence between a number’s name and 
the quantity it represents, but also that the last number in a count represents the total 
number of objects. 

(4) Quantity 
discrimination 

Understanding magnitude and comparing of magnitudes. Use of language like bigger 
than or smaller than. 

(5) Understanding of 
different representations 

of number 

Understanding that numbers can be represented differently, including the number line, 
different partitions, various manipulatives and fingers. 

(6) Estimation Estimation, whether the size of a set or an object. Moving between representations of 
number; for example, placing a number on an empty number line. 

(7) Simple arithmetic 
competence 

Performing simple arithmetical operations, transformation of small sets through addition 
and subtraction. 

(8) Awareness of number 
patterns 

Extending simple number sequences and identification of a missing number in simple 
number sequences. 

Another clear example is given by research conducted on the development of the mental number line 
using linear boardgames (boardgames with linearly arranged, consecutively numbered, equal-size 
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spaces, e.g. Chutes and Ladders, Game of the Goose) – we are here referring to research that was not 
presented in CERME proceedings, but in research journals. According to Siegler and Booth (2004) 
and to Ramani and Siegler (2008): 

In such games, the greater the number in a square, the greater (a) the distance the child has moved 
the token, (b) the number of discrete moves the child makes, (c) the number of number names the 
child has spoken, (d) the number of number names the child has heard, and (e) the amount of time 
since the game began. The linear relations between numerical magnitudes and these visuospatial, 
kinesthetic, auditory, and temporal cues provide a broadly based, multimodal foundation for a 
linear representation of numerical magnitudes. (Ramani & Siegler, 2008, pp. 376–377) 

Research shows that playing these boardgames strengthen preschoolers’ number line estimation, 
magnitude comparison, numeral recognition, and counting skills (Siegler & Booth, 2004; Ramani & 
Siegler, 2008). Also, evidence shows that playing boardgames correlate positively with numerical 
knowledge, while this is not the case for videogames and card-games. Children from middle-income 
backgrounds reported playing more boardgames, and fewer videogames, than age peers from low-
income backgrounds. This is considered as one of the possible explanations for differences in the 
development of preverbal number sense in relation to socio-economic status (Ramani & Siegler, 
2008). Whyte and Bull (2008) have compared linear boardgames with card-games and found that 
card-games can improve some aspects of children’s number sense, but not numerical estimation 
(evaluated as positioning on a number line). Playing with linear boardgames helps children to shift 
from a logarithmic to a linear representation of numerical magnitudes (Whyte & Bull, 2008). 

Table 2: Selected papers from past CERME proceedings 

Author(s) Title Edition 

Dorier & Maréchal Didactical analysis of a dice game. 
CERME6 

(TWG14) 

Schuler & Wittmann 
How can games contribute to early mathematics education? A 
video-based study 

CERME6 

(TWG14) 

Schuler 
Playing and learning in early mathematics education–modelling 
a complex relationship. 

CERME7 

(TWG13) 

Tubach 
“If she had rolled five, she’d have two more”: Children focusing 
on differences between numbers in the context of a playing 
environment. 

CERME9 

(TWG13) 

Boardgames and foundational number sense 
All the contribution selected for our review focused on foundational number sense. The quality of the 
game and the role of the educators (parents or teachers) appear to be central for all the authors.  
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Foundational number sense needs explicit teaching (per definition) and thus the choice of a 
boardgame should be guided by the aim of a teaching intervention. Following Brousseau’s Theory of 
didactical situations, an appropriate game is selected when it allows “bringing together a ‘milieu’ and 
a ‘player’, with this game being such that a given piece of knowledge will appear as the means of 
producing winning strategies” (Brousseau, 1998, p.57). The equilibrium between the game and the 
mathematical content seems hard to achieve, as has been shown by contributions to previous 
CERMEs. On one side, the game should be mathematically productive, meaning that the game 
materials should be reinterpreted as representations of mathematical relationships (Tubach, 2015).  

On the other side, it is important that the game is an actual game to children for exploiting the game’s 
idea and affordance (Schuler & Wittmann, 2009). However, there is also the risk that a game remains 
just a game. As reported by Schuler (2011, p. 1920) while referring to a boardgame about counting 
and comparison of numbers: 

Mathematical potential develops through the educator’s comments on the game’s course, through 
questions that stimulate explanations, reflections on actions and thoughts, and reasoning. She has 
to communicate individually challenging rules through stimuli, comments, questions and requests 
what requires a sensitivity for possibilities and variations in the games course. 

Dorier and Maréchal (2009) refers about teachers selecting games based on the pleasure they are 
supposed to give to students, while the mathematical content remains secondary. They analyze a 
game called ‘Turn the Dice’ proposed for first grade in the official curricular material of the French-
speaking Switzerland. By their analysis, to play correctly, students should know how to make sums 
correctly. However, if they do not, they may play anyway, because nothing in the managing of the 
game is organized to provide any feedback. In their words “nothing is organized didactically for them 
to learn sums, they have to know, but they can make errors without being corrected, except if the 
other player knows better or the teacher is there to correct” (Dorier & Maréchal, 2009, p. 2580). They 
also observed a teacher conducting the game in one of her classes and found how she had probably 
underestimated the difficulty of the game. 

While research elsewhere as shown how boardgames may provide a good opportunity for the 
development of foundational number sense (Peters, 1999; Stebler et al., 2013), the discussion going 
on in TWG13 has pointed out possible limits for the exploitation of such potential. 

Boardgames and applied number sense 
Potentialities of boardgames for developing applied number sense are as many as the different 
representations of numbers, calculation algorithms, and so on. In the context of TWG13, the interest 
could be in understanding how boardgames may help, in the context of early years mathematics, to 
foster the development from foundational to applied number sense. In one of the selected papers, 
Dorier and Maréchal (2009) note that even simple games can hide interesting opportunities for 
introducing more complex mathematics. For instance, they show how, by slightly changing the rules 
of the game, ‘Turn the Dice’ shows strong similarities with the famous game ‘Race to 20’ which 
offers interesting opportunities to introduce the Euclidean division (Sensevy et al., 2001). 
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This example helps us in introducing an opportunity provided by boardgames that has been studied 
scarcely. In their paper from the Journal für Mathematik-Didaktik, after analyzing children playing 
the game Shut the Box, Stebler and colleagues conclude that:     

This first exploratory analysis leads us to the hypothesis that boardgames like Shut the Box can 
provide a high-quality teaching and learning arrangement, offering cognitively activating and 
challenging learning tasks, adaptive for different levels of mathematical competencies and 
allowing for diverse strategies, embedded in a collaborative setting (2013, p. 172) 

Such hypothesis needs confirmation, but the possibility of using boardgames as context for 
mathematical activity that is adaptive for different levels of competencies is proposed by other authors 
in research literature (e.g. Vogt et al., 2018). Some authors notice that the challenges that are posed 
by a boardgame are particularly effective for children with higher mathematical competences, while 
more traditional training program could lead to better results for low achievers (Vogt et al., 2018); 
other authors suggest using boardgames even in the case of disabled children since they prove to be 
successful with students of different ability levels (McConkey & McEvoy, 1986). 

Conclusion 
General education literature converges on attesting that game-based education can foster learning 
providing students with a high motivational context, and this is also confirmed in the case of 
mathematics (Yong et al., 2021). Research about motivation and games is widespread in journals and 
conferences, but we can recognize that the reviewed research focuses more on the cognitive and 
relational aspects that are specific to the development of number sense using boardgames. The focus 
on the different didactical variables, including the teacher’s role, appears peculiar to TWG13. 

Drawing on literature from research journals, we have noticed that linear boardgames and playing 
with dice can help in fostering preverbal number sense (specifically, the mental number line and the 
subitizing ability) and in assessing deficits, however research about boardgames and preverbal 
number sense is still missing in CERME. Contributions in CERMEs have shown that difficulties 
related to teacher education and curriculum design emerge when analyzing the boardgames that are 
proposed in mathematics classes. However, we believe that these difficulties do not constitute good 
enough reasons to avoid the use of boardgames in preschool or primary school, since there is evidence 
that these games can provide the context for challenging tasks. Downton and Sullivan (2017) have 
documented (in the context of word problems) how challenging tasks may prompt the use of more 
sophisticated calculation strategies and then flexibility. This could be particularly true in the case of 
strategic games. Further research is needed to prove this kind of conjectures. If any, positive results 
may serve as basis for a larger implementation of boardgames in mathematics classes.  

Research literature testifies that teachers participating in experimental interventions involving 
boardgames are particularly enthusiast (Vogt et al., 2018), and such involvement is considered one 
of the possible causes of good results of these experiments (Ramani & Siegler, 2008). Enjoyment 
may lead teachers to propose tasks that are more challenging than those they are used to and then 
prompts an explorative approach that is often prevented by teachers’ insecurities (Peters. 1999). 
However, as noted above, teachers may misjudge the mathematics involved in a boardgame (Dorier 
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& Maréchal, 2009). The design of teacher professional development programs appears as needed and 
may constitute an interesting context of research (Maffia & Silva, 2021). 

Concluding, we can claim that boardgames show several potentialities in relation to the development 
of young children’s number sense, however in TWG13’s discussion there is still room for more 
research aimed at: (1) understanding the features of boardgames for developing and assess preverbal 
and foundational number sense; (2) developing teachers’ education to help them in analyzing games 
and exploit their potential. 
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Finding the flowers – a spontaneous IBMT activity initiated by the teachers 
This pilot study is a cooperation between the project SUM, organized by UiT The Arctic University 
of Norway, and the Norwegian Centre for Mathematics Education. The main focus in the SUM 
project is to investigate challenges in the transitions in the Norwegian educational system and how 
inquiry-based mathematical teaching (IBMT) can make these transitions more coherent. The 
participants in the SUM project, from both kindergarten and school, were introduced to a 3-phased 
didactical model for structuring IBMT (Haavold and Blomhøj, 2019). The model includes these 
elements: Phase 1: Setting the scene, phase 2: investigating and phase 3: shared reflections. This view 
on how to approach and learn mathematics resonates with how the Norwegian Framework Plan 
describes the mathematics subject area (Quantities, spaces and shapes) and how to work with it 
(Norwegian Directorate for Education and Training, 2017).  

The participating kindergarten teachers (KTs) and school teachers problematized differences in, for 
instance, teachers’ and kindergarten teachers’ planning time and the distribution of spontaneous 
activities, free play and planned activities in the kindergarten context compared to the school context. 
In this pilot study we approach these differences with the following research questions: 

How might the three phases in the didactical model for structuring IBMT appear in a spontaneous 
activity in a kindergarten context, and can spontaneous activities be regarded as inquiry-based 
mathematics? 

The term “teaching” itself is not commonly used in the Norwegian kindergarten context although the 
work that kindergarten teachers do is considered as professional work. The Norwegian Framework 
plan is specific about what kindergarten teachers must do to achieve the content and tasks described 
in the plan. We therefore choose to use the term teaching to describe the professional work that both 
kindergarten and school teachers do. However, there are some differences in the work of teaching in 
Norwegian kindergarten contexts compared to the school context, which also is described and debated 
by the participants in SUM. Hence, we argue that a model suitable for teaching in a school context 
may need to be adapted to fit the kindergarten context.   

We define spontaneous mathematical activities as activities that are not planned and can be initiated 
by either children or kindergarten staff. In the IBMT didactical model, mathematics is in focus. In 
daily life, however, children just want to solve the problem. Spontaneous activities therefore present 
some challenges along, due to the influence of the staff. Lossius and Lundhaug (2020) discuss the 
dilemma that arises when choosing between joining or observing an activity. Mason and Spence 
(1999) argue that this is knowledge about how to act in the moment. 
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This study is a pilot case study and a part of the SUM project. The data collection method is 
observation, field notes and interview. The researchers participated in the everyday life in one 
Norwegian kindergarten for one day. The researchers observed and interviewed two kindergarten 
teachers in daily situations and aimed to focus their observations on the mathematics involved in 
spontaneous situations. However, as Flottorp (2020) states, it is difficult to capture these situations 
by being present. Consequently, participating kindergarten teachers are co-researchers since they 
made additional observations and fieldnotes without the researchers present. We illustrate one of the 
spontaneous activities by the following vignette: 

The kindergarten teachers had planned to go looking for meadowsweet (mjødurt in Norwegian) 
which is used to make juice. The aim of first excursion was just to find the plants, not to pick them, 
so one of the kindergarten teachers asked the children how they would be able to find the plants 
again the next time, when they were going to pick them. After some discussion, they agreed upon 
making a map about the places.  

In the vignette above, the KT made the activity more inquiry-based by posing a question. This 
question acted as a phase 1 element and set the scene for children to investigate the problem in phase 
2. Making a map was not part of the original plan, but a spontaneous idea from one of the KTs. In the 
interview the KT told the researchers that the suggestion was based on her experiences from the SUM 
project. She decided in the moment that this idea had the potential to turn the “looking for plants” 
activity into an inquiry-based mathematics activity for the children.  

Knowing how to act in the moment and to change your plan is an important part of kindergarten 
teacher’s mathematical knowledge. We argue that the vignette is an example of an inquiry-based 
mathematics activity, that was not planned. It also illustrates our initial finding, that at least phases 1 
and 2 can appear in spontaneous activities. Our next step is to further investigate how we can identify 
phase 3. 
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In this paper, we present the results of a study conducted among 5–6-year-old children, with a 
focus on their intuitions regarding aspects of measure sense and measurement. The results show 
that children at that age have different intuitions in terms of measure sense and measurement and 
they can use them while problem solving. Additionally, our results show that appropriate activities 
can assist children in developing their abilities of comparing different distances and applying 
measurement rules. 

Keywords: Early years mathematics, measure sense, measurement, intuition. 

Introduction and theoretical framework 
One may claim that the two basic pillars of preschool education are arithmetic and geometry. In the 
field of arithmetic, counting and comparison are the competences which are mainly developed: 
children at such ages are quite good at counting and at providing the cardinality of a set. In the field 
of geometry, preschool education focuses primarily on recognising and measuring basic 
geometrical shapes (Clements & Sarama, 2000). According to Buys & de Moor (2008), there are 
three forms of measurement that are essential for young children: 

 Measuring through comparing and ordering 

 Measuring through pacing off, using a measurement unit (natural or standard measure) 

 Measuring through the use of a measuring instrument. (p. 17) 

The first experiences in measurement are related to comparisons. Children compare each other on 
an everyday basis: who is taller, who has a longer foot or who built a higher tower (Buys & de 
Moor, 2008). This is why van den Heuvel-Panhuizen & Buys (2008) claim that “Both measurement 
and geometry enable children to make connections with their daily environment” (p. 10), which in 
turn stresses the need for everyday contexts as the starting point for relevant activities (MacDonald 
& Lowrie, 2011). The use of informal units of measurement with young children is advocated in 
most studies (e.g., Haylock & Cockburn, 1989), while in other studies children are asked to use 
informal and standard units of measurements to solve some tasks (e.g., Boulton-Lewis, Wilss, & 
Mutch, 1996). In the process of developing measure sense and measurement, one cannot ignore the 
importance of intuition: 

Mathematizing involves reinventing, redescribing, reorganizing, quantifying, structuring, 
abstracting, and generalizing that which is first understood on an intuitive and informal level in 
the context of everyday activity. (Clements, 2004, p. 12) 

The above considerations have led us to design a research project to investigate measure sense and 
measurement among young children, with a focus on children’s intuitions. Our research project was 
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realised in two stages, which will be described in the next section, aiming to answer the following 
research questions:  

1. What intuitions related to the concepts of measure sense and measurement do 5–6-year-old 
children have before their formal introduction to these concepts? (Stage 1) 

2. How do children measure different objects, what units do they use if any? (Stages 1, 2) 

3. Are children able to compare different objects by using their dimensions? Can they develop a 
universal unit and/or measurement rules? (Stages 1, 2) 

Context of the study and methodology 
The present study is part of a larger project related to the understanding of the concepts of measure 
sense and measurement by children at the preschool and early years levels. The research group 
consisted of twenty 5–6-year-old children; eighteen of them took part in the first stage and all of 
them in the second stage. They were attending a public kindergarten in Rzeszow, Poland.  

According to the Polish curriculum for the preschool level, numbers and arithmetic are the most 
significant topics (Podstawa Programowa/ National Curriculum, 2017). Although many activities 
are related to counting and calculating, geometrical concepts appear less often, and are usually 
related to the recognition of figures and shapes; measurement contexts appear less frequently. 
Comparison skills usually refer to comparing the number of elements in sets, rather than in the 
context of measuring length and size. 

The first stage of the study focused on children’s intuitions regarding aspects of measure sense and 
measurement. Individual meetings took place with the children, which were designed to identify 
their intuitions on measuring. Our aim was to answer the question on what “to measure” means for 
them. We were also interested in how children compare the length of two objects (e.g., two trains 
made of blocks) and on what tools they use to measure the length (how they check which object is 
longer).  

The second stage focused on analysing how children use their intuitions when solving measurement 
tasks. The children were divided into two groups of ten. Each group worked separately under the 
supervision of the researcher, performing the same tasks. During the group discussions, the 
researcher did not assess the answers of individual students. The two tasks were presented in the 
form of stories, depicted with physical props. They were as follows: 

Task 1. In the world of toys, a doll, a ball, a cube and a teddy bear decided to visit each other 
(Figure 1). Who is the furthest away from the bear? And who is the closest to the ball? How can we 
check it? 

In this task no way of solving was imposed, nor it was suggested 
that the distances between the toys should be measured. The idea 
was to provoke pupils to discuss the problem posed: how to 
compare the distances between objects? A string and paper feet 
were used as measurement means in this task.  Figure 1: The initial situation of task 1 
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Task 2. a) The animals held a competition in throwing balls. The fox and the bunny were judging, 
and the deer, the owl and the beaver were the players and stood on the starting line (see Figure 2, 
from left to right we see the fox, the deer, the owl, the beaver and the bunny). Each of the players 
made one throw. Which of the animals won the competition? Why?  

Figure 2: The initial situation of task 2          Figure 3: The measurement done by the fox (task 2b)  

b) The fox was the first to judge. He used feet for the measurement (see Figure 3). The fox 
announced his verdict: the beaver won (the blue feet in the Figure 3). Do you agree with the verdict 
of the fox judge? Justify your opinion. 

c) A bunny has joined the judging. With his feet, he marked each of the distances between the 
player and his ball. It looked like this (Figure 4): 

       
Figure 4: The measurement done by the bunny (task 2c) 

The bunny announced his verdict: there is a draw, everyone threw his ball on the same distance. Do 
you agree with the bunny judge’s verdict? Justify your opinion. 

At the beginning of this task, the children could propose their own solutions. This was to examine 
the children’s intuitions about measuring, especially if they perceive distance as the shortest line 
(segment) between objects, which is perpendicular to the end line. Then, the solution proposed by 
the children was confronted with two other, erroneous solutions. 

The research data consisted of video recordings of the individual interviews with the children as 
well as video recordings of the activities conducted with the two groups of children. Our analysis of 
the transcribed discussions mainly focused on the way the children were working, as well as their 
interactions with the researcher (the first author of the paper) and with other children. The collected 
data were analysed quantitatively (Stage 1) and qualitatively (Stages 1, 2). In this paper, we focus 
on presenting Stage 2 of the study, together with a discussion on the obtained results. Stage 1 of the 
study is presented in another paper (Pytlak & Maj-Tatsis, 2021), but we shortly describe its results 
in the next section, in order to assist the reader of the paper. The collected data of Stage 2 were 
analysed interpretatively, by categorising the children’s utterances according to: measurement 
methods and rules, comparison methods, and measurement units. 

Proceedings of CERME12 2252



 

 

Results 
Results from stage 1 

The analysis of our data showed that it is possible for children aged 5-6 to hold valid intuitions on 
measure sense and measurement. They were able to interpret the distance between objects as a 
straight segment connecting them. At the same time, their understanding of the shortest way was 
twofold. For some children, it was the ‘straight’ way (e.g., a straight line without loops and bends, 
which could be verified visually). Other children understood the shortest route as a segment 
perpendicular to the starting line, which is consistent with the mathematical understanding of the 
concept of distance. 

During measuring, the children paid attention to both the units and the way the measurements were 
made. In order to compare two objects (trains made of blocks), they arranged them next to each 
other, from the same starting line. However, this way of comparison was important mostly in a 
situation where trains were made of blocks of different lengths. When both objects were made of 
the same blocks, the children did not feel the need for physical comparison. Then, it was enough for 
them to count the elements in both trains. Thus, in this situation, measuring was identified with the 
cardinality of a set (for details see Pytlak & Maj-Tatsis, 2021). 

Results from stage 2 

Task 1. In both groups, children agreed that individual distances should be somehow measured. 
Various proposals were made to make measurements, most often it was to determine the distance 
by using the spat of the arms. The teacher’s proposal to use the string for distance measurements 
was accepted. They correctly marked the distances between individual toys with a string. They also 
proposed a way to investigate which distance is the longest. In order to do that they compared the 
strings with each other. The shortest of them was a ‘scoop’, according to which the length of the 
others was determined. One of the boys took the first of the strings and successively applied it to the 
second and the third. He commented on the results in the following way: “this one is longer”, “this 
one is shorter”. 

Researcher (R): To what toy does the bear have the furthest? 

A: To the doll. 

F: No, to the cube. 

R: A. says to the doll, and F. says to the cube. Who is right? How to check it? 

F:  You need to measure the strings. 

R:  So measure the strings. 

F:  [takes the strings and lays them along each other, “centered”] This one is longer and this one is 
shorter. 

A:  No. [corrects the strings so that they all start from a common point, from a teddy bear]  

R:  Ooo, A. put all the strings together. Is that a good thing? Do you agree? 
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F:  Here you can see that this one is longer, and these are shorter (Figure 5). 

In the above excerpt, we can notice that when comparing objects (here: strings illustrating the 
distance between toys), children do not always pay attention to the appropriate position. The visual 
aspect is more important. If something is directly visible, certain properties can be visually 
evaluated, then additional aspects do not have to be taken into account. 

Figure 5: Measuring and comparing the distances between the teddy bear and the other toys 

In addition to measuring the distance with strings, the children also proposed the use of a 
‘centimeter’, which could be a reference to experiences from everyday life. Furthermore, attempts 
were made to use hands (spreading arms over a measured distance), legs (distance measured with 
legs’ extension) or one’s own body for measurements. However, the children themselves noticed 
that in this way it is not always possible to measure something. The researcher suggested measuring 
the distance with her feet. Firstly, she asked one of the girls to measure the distance between the 
teddy bear and the ball with her feet, and then she measured the same distance herself. Two 
different results were obtained: 3 feet of a researcher and 6 feet of the girl. For the children, this 
situation did not cause any conflict, it was unanimously noted that the results differ due to different 
foot lengths. It seems that the children did not see the need to use the same measuring units in all 
measurements. All that mattered was the way it was measured. 

R:  L. measured and she got 6. I will also measure [measures with her feet the distance between the 
teddy bear and the ball, counting loudly] once, two, three. So, who is right? Is there a distance of 6 
or 3? 

F:  Well, because L. has smaller feet. 

R:  Oh, so if there are smaller feet it will be differently, and if they are larger it will be differently, 
right? [children are nodding] 

F:  Because larger feet take up more space and smaller feet take up less. 

R:  If I wanted to measure the distance between all the toys, do I have to measure with the same feet 
or can I measure a bit and L. a bit? 

Children:  I don’t know [shaking their heads] 

R:  Well, listen, L. measured the distance from the teddy bear to the ball and it was 6 feet. I measured 
the distance from the teddy bear to the cube and it also was 6 feet. You said that the teddy bear is 
further to the cube than to the ball, right? 

Children:  [nodding] 

R:  But it was the same - 6. So, can you measure with different feet to compare distances? 
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Children:  [silence]  

The children unanimously approved the researcher’s method of measuring distance with her own 
feet and began to use it by themselves. They noticed very quickly that the result of the measurement 
depends on the unit used. Therefore, obtaining different values for the same distance did not cause 
any cognitive conflict in the children. They were a bit surprised when the researcher pointed out 
two identical results obtained when measuring two different distances (from the teddy bear to the 
cube and from the teddy bear to the ball). They knew that these distances differed greatly, but they 
could not explain why the same numerical result came out in both cases. 

Task 2. The children unanimously suggested that the middle player (the owl) won the competition 
(Figure 2). They justified it by the fact that the ball had the longest distance from the starting line. 
They indicated with their hands how the segments depicting individual distances were running. 
Here it was clear that the children appealed to the intuitive understanding of the distance between 
objects as the shortest distance between them. 

When assessing the fox’s judgement (Task 2b in Figure 3), the children referred to two aspects: the 
process of measuring the distance and the result obtained by individual players. 

R:  Who according to the fox threw the ball the farthest? 

Children:  The beaver. 

R:  And do you agree with such a measure by the fox? 

Children:  Yes... No… 

R:  Did the fox measure well? 

D:  Yes, because here is 8, and here is 9 and here it is so straight [in the air he outlines segments 
depicting the distance between the fox and individual balls] (...)  

R:  At the beginning you said that you thought the owl won. Why? How did you measure it? 

W:  From the owl [points his finger from the owl to the ball] 

R:  So, arrange it as you would count it.  

W:  [arranges – initially uses all the feet, creating an arc, but after a while he removes some of the feet, 
and arranges the rest in a straight line] 

The way of measuring the distances by the fox did not arouse any protests in children. They treated 
it as a measure of three different segments that had a common beginning and different ends. This 
was consistent with the understanding of the distance between objects as the shortest segment 
connecting them. Only the researcher’s reference to the original solution presented earlier caused 
them hesitation. Then they paid attention to which segments had to be compared with each other. 
They very quickly verified the solution and made changes in the arrangement of the paper feet 
(Figure 6). By measuring subsequent distances with the paper feet, the children tried to maintain the 
parallelism of the segments and start them from the same line. Counting the paper feet (treated as 
units of measurement) in the segments rather referred to the comparison of the sizes of three sets. 
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When the children gave the numerical value of the measured segments, the cardinal aspect came to 
the fore. 

Figure 6: Rearranging the paper feet while measuring the distances between animals and balls 

In the next part of the task (2c), it turned out that the judge (the bunny) measured distances in such a 
way that each of the competitors achieved the same result. The children immediately noticed the 
mistakes. First of all, they did not agree with the result itself, clearly indicating that the distances 
obtained in the ball throw are different. They primarily referred to the visual representation of the 
task. In addition, the children paid attention to the precise way of measuring: the feet were not laid 
in a straight line, but in an arc (Figure 4). 

Discussion 
Children enthusiastically and actively participated in solving the proposed tasks. They tried to 
justify their answers, strongly supporting themselves with gestures. The results obtained during the 
first stage of research allowed us to assume that that it is possible for children aged 5-6 to hold valid 
intuitions on measure sense and measurement. They were able to interpret the distance between 
objects as a segment perpendicular to both objects. Straightness was understood by them both as a 
straight line but also as a perpendicular line. This corresponds with the formal mathematical 
understanding of the concept of distance. The second stage of our research confirmed these 
assumptions. Moreover, the children have shown their intuitions about measuring. They understood 
the distance between two objects as the shortest segment connecting them, the end of which is 
perpendicular to the final object. This is consistent with the notion of distance that students 
encounter during mathematics education in primary school. The comparison of segments was made 
through visual verification: they arranged them parallel to each other and checked which one 
protrudes beyond the others. 

The introduction of measuring with feet can be identified with the use of a measurement unit. 
Measuring with different feet (the researcher’s and a child’s) relates to the use of different units of 
measurement. Our results have shown that in making measurements of length, the unit of 
measurement was not so significant. The process of measurement by itself was more important: 
maintaining a straight line and accurately measuring units (putting foot by foot). The children were 
aware that by measuring the same segment with different feet (that is, different units) they would 
receive different results. However, they were not fully aware that in order to compare different 
segments, they had to use the same unit. We believe that this result goes in line with studies which 
suggest the use of informal units with young children (e.g., Haylock & Cockburn, 1989; Heuvel-
Panhuizen & Buys, 2008). 

The children in our study perceived measuring as an activity, a process, not as providing a 
numerical value. It was important for them how the measuring process takes place, whether the 
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right direction and straightness of the line are maintained and whether the measuring unit is applied 
evenly. The numerical result of this process was of secondary importance. This was especially 
evident when working on the second task. When assessing the judgement of the fox and the bunny, 
the main consideration was whether the designated segment is straight and connects the starting 
point with the end point. Therefore, the arcs made by the bunny were immediately treated as an 
erroneous way of measuring. However, without hesitating much, the children agreed that the 
straight lines set by the fox are the correct way to measure the distance at which the players threw 
the balls. The results of our study show that length measurement should not be treated as a simple 
skill, but rather as a combination of concepts and skills that develop over time as part of a learning 
trajectory (Clements, 2004; Heuvel-Panhuizen & Buys, 2008). Moreover, informal activities based 
on everyday and playful contexts, which include object comparison can be useful in enhancing 
children’s measurement and measure sense. 
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This paper deals with a teaching experiment concerning length measurement in kindergarten for 
children aged 4-5. Through a classroom-based intervention, designed according to the Semiotic 
Mediation theoretical framework and developed on a multimodal approach, children produce a 
definition of measure as product of the action “measuring”, working with a chosen measurement 
unit. The qualitative analysis of data collected highlights the specific role of the teacher and of 
artifacts in supporting the process of semiotic mediation through which children transform the signs 
linked to artifacts (used to develop the meaning of measure) into mathematical signs (which present 
the results of measuring in geometrical way). 

Keywords: Measurement, kindergarten, length, multimodality, semiotic mediation.  

Introduction. 
In the Italian National Guidelines for kindergarten (3-6 years) children are asked to acquire skill in 
measuring. This doesn’t occur necessarily through standard tools of measuring (such as ruler, meter, 
balance), rather through any tools aiming to develop the meaning of measure, measurement unit and 
measure as product of the action "measuring". Accordingly with this perspective, I focus on the 
concept of length measurement, placing the teaching-learning act in the context of kindergarten. 
Research has shown that the understanding of space and its representations in mathematics has an 
intuitive experiential basis before primary school (Bryant, 2008) and that development of children's 
spatial skills are crucial nodes in the conceptualization of space and geometric space (Sinclair & 
Moss, 2012; Robotti 2018). Furthermore, bodily experiences and experiences mediated by the use of 
tools act as a bridge between the physical modelling of space and the conceptualization of a geometric 
space (Casey, et al., 2008). For this, I consider the multimodal approach crucial to pursue the 
educational aim. As far as measurement is concerned, research has long underlined that, already in 
pre-school age, children experience the comparison of quantities and, explicitly or implicitly, 
measurement (Buys & Veltman, 2008). Despite this, the action of measuring and the 
conceptualization of measurement are not without difficulties for children. Peter Bryant (2008) 
identified some difficulties in the measurement procedure for preschool children. Let's consider, for 
example, the act of measuring a length. Generally, children are perfectly able to define the sequence 
of actions needed to measure, as well as understanding the importance of one-to-one correspondence, 
which is an essential part of relating measurement unit with the length to be measured. However, 
measuring hides pitfalls and difficulties related to the iteration that is, in fact, at the basis of the action 
of measuring with an instrument. If we consider, a ruler, the measurement of a linear length consists 
of repeated actions (measurements), just as the ruler is made up of a set of iterated measurement units 
such as centimeters. The iteration is necessary when the length to be measured is longer than the 
measurement unit. Another difficulty identified by Bryant concerns the "asymmetric" one-to-one 
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correspondence involved in measuring a line with a ruler: the measurement units (centimeters, inches) 
are visible and clear on the ruler but must be imagined on the length to be measured. Thus, through 
body experiences according to the multimodal approach (Arzarello & Robutti 2009; Radford, 
Edwards & Arzarello, 2009; Nemirovsky 2003; Radford 2014), the activities described in the 
following paragraphs will show how children developed the definition of measure as physical 
quantity, and also how they related measure with a chosen measurement unit. Moreover, I'll show 
how the teachers faced the difficulties highlighted by Bryant with appropriate didactic choices, 
designing activities through Semiotic Mediation framework (Bartolini Bussi & Mariotti, 2008). With 
these premises in mind, I argue it makes sense that geometry could be explored much earlier and 
more robustly than it is at the moment (at least in Italy), already during the kindergarten years 
(Robotti, 2018).  

Theoretical perspectives. 
The theory of Semiotic Mediation (TSM), developed to design and analyze educational activities, is 
one of the theoretical frameworks of reference in this research. It provides a powerful way for teachers 
and researchers to study the process by which activity with artifacts (in this research with Montessori 
sticks) can be turned into mathematical activity (geometrical activity allowing children to develop 
the definition of measure). Summing up the main elements of the TSM (for more details, see Bartolini 
Bussi & Mariotti 2008), the teacher takes in charge two main processes: the design of activities and 
the functioning of activities. In the former the teacher makes appropriate choices about the artifacts 
to be used, the tasks to be proposed and the mathematics knowledge at stake. In the latter, the teacher 
monitors and manages the students’ observable processes (semiotic traces), to decide how to interact 
with the students in order to transform signs linked to the use of artifact into mathematical signs. The 
students are in charge of the resolution of the task through the use of the artifact. Making this, they 
produce signs (objects, drawings, words, gestures, bodily movements, and so on), which are linked 
to the artifact and therefore they aren’t yet explicitly math signs. The teacher collects all these signs, 
in order to organize a path for their evolution towards mathematical signs that can be put in 
relationship with the aimed mathematical knowledge. In this research I also refer to Gallese and 
Lakoff’s (2005) theoretical approach, according to which mathematics teaching-learning processes 
are multimodal activities. Nemirovsky (2003) states that, understanding and thinking, included 
mathematical thinking, are perceptuo-motor activities, which become more or less active depending 
of the context. This means that, exploiting perceptual-motor components, the body becomes essential 
in the learning processes. In this perspective, the term multimodality is used here to underline the 
importance and mutual coexistence of a variety of cognitive, material and perceptive modalities or 
resources in teaching-learning processes and, more generally, in constructing of mathematical 
meanings (Radford, Edwards & Arzarello, 2009). According to these premises, this research aiming 
to investigate whether and how, in kindergarten, it is possible to transform signs related to the use of 
unconventional measuring instruments into geometric signs supporting the definition of measure as 
the result of the measurement action. 
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Methodology and teaching experiment. 
The teaching experiment took place with 15 children of kindergarten aged 4–5. Two teachers were 
involved during the classroom activities. Seven sessions were carried out for 4 weeks (more or less 
twice times a week, 1 hour each) either in the classroom or outdoor, with a careful alternation of 
whole-class (with adult’s guidance) and pair activity. The teachers and a researcher (the author) 
designed the educational activities. Each session was carefully observed by one of the teacher 
involved, with the collection of photos, graphical productions, videos and transcripts. Iterative 
qualitative analysis for data subsets and overall were carried out. Due to space constraints it is not 
possible to report all the activities, so I’ll focus on the sessions in which the production of signs was 
been particularly meaningful and rich.  

The teaching experiment. 

The teaching experiment is part of a more articulated path, where Digital Sticks (Montessori material, 
see Figure 1) are used. In previous activities, sticks were used to introduce different aspects of 
mathematics including memorizing arithmetic facts as sums of numbers up to ten (in this educational 
activities children named them the "friends of ten"). Children, through the use of Montessori Digital 
Sticks, memorized the “friends of ten”. The "friends of ten" act in a way that the length of the stick 
10 can be obtained summing two lengths-sticks (9+1, 8+2, 7+3,...). The experience that I'll describe 
in this article arose spontaneously from the children's need to identify a not colored stick having the 
same length as a given colored stick (stick "five", as shown in Figure 2) in order to complete "the 
wall of friends of ten" (in that case with 5+5, as shown in Figure 1). 

  

Fig. 1: The not colored stick is placed next to the stick 
"five" to complete "the wall of friends of ten" 

Fig. 2: Children superpose non-colored stick on the 
colored one in order to verify they have the same 
length 

 

Children referred to "a stick as long as the colored stick five" by comparing two objects directly in 
length. This is a necessary skill to develop the meaning of measure, but teacher knows that it is not a 
form of measuring. Moreover, since children referred also to "a stick that measures like the stick 
five", using the word “measure” in context, teacher decides to define a new didactic objective: 
introducing the concept of measurement of a length. Therefore, the teacher designs the educational 
activity in two phases having the following aims: 
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Phase 1: Building and sharing among all children a definition of measure and of measuring. This 
allows children to construct a meaning of measurement in geometrical terms. In this phase the 
educational activity is performed in classroom using Montessori sticks. 

Phase 2: Applying the definition of measure in situations different from those they generated that 
definition and defining the relationship between "measurement unit" and "measure". In this phase the 
educational activity is performed in outdoor, still with the use of sticks. 

Phase 1. 

In order to complete "the wall of friends of ten", children need another stick "five" from another series 
of sticks (5+5=10). Teacher provides children the "non-colored sticks" series, so they decide to 
superpose the non-colored stick "five" on the colored one, verifying that it is as the colored stick 
(Figure 2). The superposition of sticks (signs linked to artifact) allows children to access to 
"comparison of length" meaning (math signs) expressed in verbal sign "the stick is as long as the 
colored stick five". Teacher's aim is now to approach definition of length measurement as much as 
possible. For this, relaunching an issue introduced by Nicolò, she opens the discussion with a 
question: is this [non-colored stick] a stick "five" as Nicolò said?  

While children begin to think of a strategy to answer question, Matilde puts the non-colored stick 
next to the colored one (Figure 3) and she begins to count the colored segments of the colored stick 
through deictic gestures. 

 
Fig. 3: Matilde counts the colored segments of the stick next to the non-colored one 

This strategy implements several counting skills: the one-to-one correspondence, with the labeling 
process and the splitting process correctly implemented, is clearly detectable in pointing finger step 
by step on blue and red color; also the cardinal principle and the stable order of the numerical 
sequence are detectable, due to the verbal label “five” and the stated numerical sequence (Gelman & 
Gallistel, 1978). This strategy puts in acts the definition of measurement as the action of counting 
how many measurement units (stick “one”) are in the length to be measured. At the same time, this 
strategy puts in evidence the result of this action: the measurement of a length as physical quantity, 
that is as a number with the measurement unit. Matilde said: “yes, its length is five”. In this way, the 
signs linked to the use of artifact (deictic signs and numerals) are linked to math signs (measurement 
as physical quantity). 

Unlike Matilde, Davide answers the question through an inference, exploiting arithmetic facts (Figure 
4): 
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Davide:  Five plus five equals ten. There are ten here [pointing the stick "ten", he refers to 

the measurement units]. Because here there are five [he points the colored stick 
"five"] then here necessarily there have to be five [he points the non-colored stick] 
and five plus five should make 10! 

 

  

Fig. 4: Divide’s gestures show the known part -the stick "five", that corresponds to 5 units- (Figure on 
the left) of a known whole -the stick "ten", that is 10 units- (Figure on the right) 

Thus, if the stick "five" plus an non-colored stick are equal to 10 (stick “ten”), then the unknown 
measurement of non-colored stick has to be 5 (stick “five”): the equation 5 + x = 10 is solved. 
Interestingly, here the measurement of the length is obtained without any action of measuring but 
through an arithmetical inference. The gestures evoke signs linked to artifact through which 
arithmetic fact 5+5=10 is recovered. 

Afterwards, children are asked to measure non-colored sticks through colored sticks. This means 
teacher asks children to apply the definition of measurement shared by the class. Gabriele points the 
sticks "one" which compose two staircases, one of colored sticks and the other one of non-colored 
sticks, and says: 

Gabriele: you see, the first two steps are the same 
Alessandro: if they are the same, they start the same and they end the same [they have the same 

length] 
Teacher:  ok, but... do you also know their measurements? 

In this excerpt the comparison of lengths is present yet as dominant concept. Therefore, teacher shifts 
the focus on the measurement. Alessandro and Ilaria take into account the non-colored stick "three" 
and they measure it (Figure 5) making explicit the meaning of "measurement of a length" and of "act 
of measuring" as follows: 

Ilaria: I can put one after the other [the colored stick “one” as measurement unit] and I see 
that the non-colored one is like three of colored sticks [action of measuring]. 

Alessandro: so, we can see what the measurement [of the non-colored stick] is: it’s 3 sticks 
“one” [measure]. 
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Fig. 5: Alessandro measures the stick “three” with 3 sticks “one” as measurement unit 

Note that Ilaria defines the action of measuring in terms of "seeing how many times the chosen 
measurement unit [stick “one”] is in the given length" and this corresponds to the shared definition 
by all children involved in the activity. Instead, Alessandro defines the measurement in terms of the 
result of this action, that is a physical quantity (3 measurement units, 3 stick “one”). Thus, the use of 
Montessori sticks promotes the measurement as repeated process in "posing measurement unit", 
giving sense to the measuring action and overcoming difficulties underlined by Bryant. 

Phase 2. 

In order the definition of measure becomes an "operational knowledge" and it falls within of the 
competences (that is a knowledge in act in other situations/contexts), the teacher asks children 
"measuring what they want" in the school garden, using Montessori sticks. This is why the children 
leave the classroom and chose to measure the side of an anti-shock mat about 3m long, placed under 
the swings in the school garden (Figure 6). Interestingly, children choose different measurement units. 

   

Fig. 6: Children measure the length of the side of the anti-shock mat through different measurement 
units (stick “one”, image on the left, stick “two”, central image, stick “ten” image on the right) 

Children work in pairs: one child places one of the end of the unit-stick on the edge of the mat, the 
other child tracks, with his/her finger, the other end of the unit-stick, which will become the new 
starting point where placing the unit-stick. This repeated action allows children to cover the entire 
length of the side of the mat in n times the unit (iterated process). Note that, posing unit-stick one 
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after another one is a repeated action that allows children to objectify the definition of measurement. 
In other words, this action, which is a sign linked to the use of the artifact, became mathematical sign 
in the verbalization of the obtained measurements. As matter of fact, the children find that the stick 
"one" is 29 times into the side of the mat (we consider a certain measurement error due to the 
approximation of measuring action), the stick "two" is 14 times into the side of the mat, while the 
stick "ten" is 3 times into the side of the mat. The following excerpt of discussion is representative of 
these results: 

Teacher:  ok guys, how many did you had with the stick "one"? 
Alessia:  29  
Teacher:  ok, and with the stick "two"? 
Alessandro:  14 
Teacher:  and… with the big one, the stick "ten"? 
Gabriele:  only 3, 3 times 
Teacher:  but... why do the measures change so much? 
Alessandro:  because the unit-stick change: one was bigger and the others smaller 
[…] 
Gabriele:  […] [the measure] it's larger if the stick unit [the measurement unit] is small, [the 

measure] it's smaller if the stick  [the measurement unit] is large 

It should be noted that teacher starts a discussion to highlight the relationship between the 
measurement unit and the measurement obtained in order to link the signs linked to the artifact (how 
many sticks) to math signs (measurements of the length). In fact, she asks why the measurements of 
the mat changes. Alessandro recognized a link between the measurement unit chosen and the 
measurement obtained, and Gabriele makes this relationship explicit in terms of inverse 
proportionality. The comparison among different measurements of same length reinforces the idea 
that measurement is a physical quantity (with a measurement unit of length). 

Discussion and conclusion. 
Different signs related to the use of Montessori sticks and the transformation of them into geometrical 
signs through the teacher's mediation, allowed children to develop the meaning of measure and the 
measure definition in relation with the chosen measurement unit. In order to reach this aim, and to 
overcome difficulties underlined by Bryant, perception and bodily experiences seem to play a key 
role in this teaching experiment. In particular, the use of Montessori sticks seems promoting the 
measurement as repeated process in "posing measurement unit", giving sense to the measuring action. 
As matter of fact, the physical, repetitive movement of positioning the measurement unit associated 
to the enumeration support the construction of the meaning of measurement as a physical quantity 
(i.e. n times the chosen measurement unit). This could reasonably facilitate the reading of the 
measurement on the ruler in the future (helping students to give meaning to the reiterated process that 
allows reading the length measurement on the ruler itself). At the same time, the one-to-one 
correspondence involved in measurement of a length with the Montessori sticks, overcomes the 
difficulty linked to the asymmetry of the ruler instrument: the measurement unit (the chosen unit-
stick) must be physically superposed n times on the length to be measured. No ambiguity, therefore, 
linked to the need to imagine each measurement unit on the ruler (centimeters) on the length to be 
measured.  
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This work aims to identify the criteria contemplated by early childhood education preservice teachers 
when they reflect on the design of problem-solving tasks. The Didactic Suitability Criteria (DSC) and 
their indicators were used to analyze one of the tasks performed by future teachers. As a result, it 
was identified when they design their classes in a consensual way, they are implicitly based on the 
DSC. Still, not all their indicators emerge since their reflection is not guided by an explicit guideline 
that serves them to show their didactic analysis in detail. 

Keywords: Early childhood education, Didactic Suitability Criteria, Ontosemiotic approach, 
problem-solving, task design, teacher training, 

Introduction 
In the field of Mathematics Education, problem-solving is considered one of the optimal scenarios 
for teaching and learning skills in this discipline. Current trends in this area consider that problem 
solving encourages the development of mathematical processes, such as reasoning, the establishment 
of connections and representation, and communication, among others (NCTM, 2003). 

Starting from a competence approach from an early age is crucial since it is a stage where the 
curriculum presents content and processes in an integrated way, which favors new views that 
emphasize the content, the process, and the relationships established between them (Alsina, 2016). In 
this sense, the tasks posed by the teachers to the students are the starting point of their activity, which, 
in turn, produces their learning as a result (Pochulu, et al., 2016). Teachers’ teaching practice 
determines the students’ learning, and, in that sense, designing, implementing, and evaluating tasks 
is a crucial aspect and competence that the future teacher must develop in their training. 

This professional competence, characterized by knowing how to design, apply and assess learning 
sequences through didactic analysis techniques and suitability criteria to establish planning cycles, 
implementation, assessment, and propose improvement proposals, is called, within the framework of 
the Ontosemiotic Approach (OSA) (Godino et al., 2007) as competence in analysis and didactic 
intervention (Godino et al., 2017). It is a competence long studied by the OSA with mathematics 
teachers where the results showed the Didactic Suitability Criteria (DSC) were a valuable tool to 
organize their reflections and evaluations and improve their task designs (Breda et al., 2017). 
Although there is research with DSC in early childhood education (3-6 years old), in particular, the 
design of a proposal for evaluation teaching and learning methods (De Castro, 2007) and the analysis 
of a sequence of tasks for the development of spatial perception (Moreira et al., 2018), until now, no 
research has been carried out that focuses on the design and analysis of tasks, in particular, problem 
tasks, from the perspective of DSC in the training of future early childhood education teachers. In 
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this work, we focus on the DSCs agreed by future early childhood education teachers when asked to 
reflect together to justify the design of their tasks.  

The objectives of the paper are: to study what aspects future early childhood education teachers 
consider essential when planning and designing a sequence of arithmetic problems for the teaching 
and learning of numbering; which of these aspects can be identified as DSC and; to identify which 
elements of the DSC are not considered by the students. 

Theoretical framework 
Design of problem-solving tasks for the first ages 

Concerning problem-solving-type tasks, according to NCTM (2003), four aspects should be worked 
on in the classroom: a) build new mathematical knowledge through problem-solving; b) solve 
problems that arise from mathematics and in other contexts; c) apply and adapt a variety of 
appropriate problem-solving strategies; and d) control and reflect on the process of solving 
mathematical problems. Along the same lines, there are some key aspects regarding the use and 
meaning of problems in the classroom and that, therefore, should be taken into consideration when 
designing the tasks. There is an agreement among researchers that a problem situation must be a new 
situation for which the resolution method is not known in advance. There is also agreement on how 
one learns to solve problems by manipulating, simulating, discussing, sharing, imagining, observing, 
visualizing, etc. Moreover, in this sense, in the resolution process, each child should be allowed to 
use the strategy that best suits his or her possibilities: a drawing, a diagram, mental calculation, the 
manipulation of a particular material, etc. (Alsina, 2016). 

Focusing on the mathematical activity that students develop when solving tasks, there are different 
teaching approaches but, in the case of early childhood education, citing Baroody and Coslick (1998), 
the following can be distinguished: 1) the skills approach; 2) the conceptual approach; 3) the problem-
solving approach; and 4) the investigative approach, which is a combination of conceptual and 
problem-solving approaches, the primary purpose of which is for students, with the mediation of 
teachers, to reach their conclusions through reflection, reasoning, representation, problem solving and 
research. In this study, students were asked to work assuming the latter approach. 

Didactic Suitability Criteria in the design and management of tasks 

The use and application of the DSC, proposed in the OSA, allow a teacher to guide the teaching and 
learning processes of mathematics, design tasks and assess their implementations. The OSA considers 
the following DSC: Epistemic suitability; Cognitive suitability; Interactional suitability; Mediational 
suitability; Affective suitability; Ecological suitability. To operationalize the DSC requires defining 
a set of observable indicators, which allow assessing the degree of suitability of each of these criteria 
(Breda et al., 2017). For example, from the epistemic aspect, there is consensus that it is necessary to 
implement "good" mathematics. DSC construct considered good mathematics those that are rich in 
mathematical processes (connection, argumentation, problem-solving, etc.) and contemplate certain 
representativeness of the complexity of the mathematical object to be taught (different meanings of 
the mathematical object, different representations and languages or a variety of problem typologies), 
etc. Based on the DSC, Gusmão and Font (2020) defined a set of observable indicators (included in 
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Table 1) to be able to assess, in an operational way, the degree of suitability of each of these criteria 
in the design and analysis of mathematical tasks. 

Table 1: Task design indicators according to the Didactic Suitability Criteria (Gusmão & Font, 2020) 

Epistemic suitability 
1. Is the task's description in a clear, correct, and appropriate language for the level of education?  
2. Are different languages and forms of mathematical expression used (verbal, graphic, symbolic, etc.)?  
3. Is the selection of tasks representative and varied, and whether it includes tasks of a closed and open nature?  
4. Are the tasks of different types?  
5. Does the generation of hypotheses promote open thinking (reversible, flexible, decentralized thinking) and encourage 

the use of argumentation and justification processes? 
Cognitive suitability  

1. Is it based on the prior knowledge of the students?  
2. Is knowledge expanded, reinforced, and systematized?  
3. Is the level of cognitive development of the students respected?  
4. Is the use of different, creative, and original resolution strategies encouraged?  
5. Are different learning objectives met, and are students developing different cognitive and metacognitive skills? 

Interactional suitability  
1. Are there moments of dialogue and discussion between students or between teacher and students?  
2. Is the resolution of tasks individually, in pairs, or in groups encouraged?  
3. Does it allow the generation of cognitive conflict and the negotiation of meanings?  
4. Do they promote responsibility for the study (exploration, formulation, and validation)? 

Affective suitability  
1. Does it promote interactivity, attraction, fun, raising self-esteem, the feeling of inclusion and a taste for mathematics?  
2. Are the different types of reasoning and responses valued?  
3. Is participation encouraged and interest generated?  
4. Do they favor the perception of the usefulness of mathematics in life and at work?  
5. Is student involvement promoted in solving tasks (return of learning in Brousseau's sense)?  
6. Are there possible challenges to be achieved, triggering levels of thought, each one more complex?  
7. Do they present the application and beauty of mathematics? 

Mediational suitability  
1. Are manipulative and/or technological materials provided, or is their use recommended?  
2. Is sufficient time allowed for its completion and the maintenance of concentration and interest?  
3. Are the times appropriate for each of the different types of tasks?  
4. Are adequate spaces provided for its realization?  
5. Are moments of hands-on experimentation provided to aid understanding of concepts and their applicability? 

Ecological suitability  
1. Are official curricular documents (national and local) considered?  
2. Is the articulation between different contents of Mathematics and between different areas of knowledge sought?  
3. Are the tasks contextualized with the social and cultural environment?  
4. Are the contents of the tasks useful for social and work life? 
Among other authors, Canals (2009) and Chamorro (2005) highlight some aspects to consider in the 
design of problems for early childhood education. These aspects coincide with some of the DSC 
indicators in Table 1. For example, starting from the children’s interest and curiosity and promoting 
playful situations (indicator 1 of Affective suitability); contemplating the children's different 
languages and forms of expression, such as oral, gestural, pictorial, musical, plastic, dramatic, 
corporal, etc. and promote communicative processes that favour the exchange and exploration of 
ideas, allowing children to advance in language and modes of representation (indicators 2 and 5 of 
Epistemic suitability and indicator 1 of Interactional suitability); favour situations that offer 
challenging experiences (indicators 5 and 6 of Cognitive suitability), that encourage children to 
explore, observe, compare, pose and test hypotheses, make decisions, propose and solve problems, 
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and that consider the different fields of mathematics, articulating them whenever it is possible and 
necessary (indicators 3, 4 and 5 of Epistemic suitability). 

Methodology 
The participants were 76 students from two groups of the Mathematics Didactics subject that were 
carried out in the next-to-last (3rd) of the Early Childhood Degree of a Catalan public university 
(Spain), during the first semester of the 2020-2021 academic year.  This degree is organized in four 
years with only two mathematics subjects: “Mathematics, Science and education” (in 2nd year) and 
“Mathematics Didactics” (in 3rd year). The course began with mixed teaching and, given the 
evolution of the health situation due to Covid-19, it became virtual and the BlackBoard Collaborate 
application was used in the course schedule which has made it possible to configure rooms for work 
in small groups when it was necessary. However, when students worked independently outside of 
class sessions, they could choose the platform that best suited their preferences. The teacher of these 
groups along with the first author had to redesign the programming of the Numerical Thinking content 
block to adapt it to the new teaching modality. For this, he prepared various tasks that are part of the 
context of a broader study than the one presented in this work (some parts of which we are still 
analyzing), with the general objective of studying how future early childhood education teachers build 
their didactic mathematic knowledge about arithmetic problems solving. 

One of the tasks before the one analyzed in this work carried out by the participants (we will call it 
Task A) had the purpose that the students knew a didactic-mathematical source, as a practical 
example, on which to base the development of their next task we will call it Task B. This work only 
focuses on Task B because it is the part of the data currently being analyzed and responds to the 
specific objectives indicated in the introduction section. 

To carry out Task A, the students organized into workgroups of 3-5 people (in total, 19 workgroups), 
carried out an analysis task outside class hours from De Castro and Escorial (2007) reading, "Solving 
verbal arithmetic problems in early childhood education: an experience with an investigative 
approach." This article explains, among other aspects, how a teacher raises a series of seven problems 
for her 5-year-old pupils and the development of the sessions where they solve them. The problems 
and the resolution strategies used by the children were classified based on a table prepared by the 
authors of the reading article and based on the typology of Carpenter et al. (1993). 

First, each person in the group, individually, had to read the article and, later, share doubts and 
reflections on it with the rest of the members of their workgroup. Second, they had to choose by 
consensus at least three of the seven problems in the article and analyze them based on the following 
demands: identify the problem statement; identify and justify the type of problem involved (according 
to the table in the article) and what strategies the children use in solving, as explained in the narration 
of the article; explain if the strategies identified are the ones that would correspond according to those 
set out in the table of the article; identify the material resources used by children and how they use 
them for the resolutions presented; they also had to solve the chosen problems with material resources 
other than those in the article and reflect on whether, when changing resources, the resolution strategy 
also varies (comparing the resolution strategy itself with that used by the children in the article). 
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Description of Task B analyzed 

This task, which was presented to the students in a virtual joint session, consisted of designing a 
minimum of three problem-solving sessions for a classroom of twenty 5-year-old children. This task 
had to be developed with the same groups as those in Task A, outside the hours of the virtual joint 
sessions. For this, the teacher recommended consulting the early childhood education curriculum, the 
article by De Castro and Escorial (2007) analyzed in Task A and the rest of the documents of the 
content block. It was also part of the task to present the recording of a video conference where the 
group members discussed the aspects of the design and the implementation methodology that they 
considered essential to incorporate and reach a consensus and/or seek solutions. Before the final 
delivery of the works, a 2-hour class session was dedicated to presenting their designs and obtaining 
feedback from their classmates and the teacher. Thus, they had time to incorporate improvements in 
the design of their sessions. Finally, they presented a file in PDF format with the design of the sessions 
and a file in MP4 format with the recording of their decision-making session (video conference). We 
analyzed the recordings of the video conferences and the document of the design of the sessions of 
the 19 working groups.  

Analysis methods 

This is a study of qualitative characteristics on the aspects that the participants consider essential to 
consider in their designs of a sequence of problems for the teaching and learning of numbering for 5-
year-old pupils and analyze which of these aspects can be identified with DSC and which elements 
of the DSC are not considered. The phases of the thematic analysis proposed by Braun and Clarke 
(2012) have been adopted in this study. In the first phase, to familiarize ourselves with the data, the 
group's videoconference recordings were viewed concerning the planning of the work to be carried 
out, and aspects of the design and management of the problem-solving sessions addressed by the 
participants were identified. Then, it was compared with the written works sent as a final document 
to verify that these aspects were reflected in their final works and/or considering other aspects that 
emerged. After this, the presentations before the final submission have been reviewed to observe the 
improvements made in the final work because of the influence of the sharing session, but it is a part 
of the research that we will not deal with here due to the limitation of the space. 

In the second phase, the first author systematically applied the a priori categories based on the 
indicators in Table 1 to the evidence (identified basically in their written works) of the aspects that 
the students considered necessary for the design and management of their resolution sessions of 
problems to analyze in a descriptive and interpretive way which criteria could be identified with the 
DSC and which aspects of these were not contemplated. For example, when students said their 
problem is contextualized with “a story that calls them [the pupils] the attention”, we considered it is 
evidence of Affective suitability, specifically of indicator 3 (see Table 1). The third phase was focused 
on the categorization revision by three authors. Also, in this phase, the identification, analysis, and 
interpretation of the pieces of evidence were triangulated with an expert in using the DSC. In the last 
phase, the three authors discussed the results. 
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Results 
Although the participants were not given any training on DSC, all groups implicitly used DSC to 
justify decisions about the design of their tasks, although no group evidence is observed for all 
indicators. All designs have high Affective suitability. For example, in videoconferences, the 19 
participating groups express the intention that the activities motivate children to participate in them 
and find them fun. To do this, seeking to activate empathy, characters such as the class mascot or the 
school cook are incorporated, who supposedly live in problematic situations and ask for help, games 
are created, stories, in their own words, “a story that calls them the attention,” etc. 

Regarding Mediational suitability, all groups plan to offer material resources to children to solve their 
problems. However, all adhere to the resources seen in the training classes and add non-specific 
materials (pencils, pasta, stones, chickpeas, etc.) and others related to the context of the problem 
(reproductions of fish, drawings of trees, and apples, sports medals, etc.). Only one of the guideline 
designs offers five specific material resources and a program that rotates through the small groups of 
children formed for each session. However, it is not contemplated that each child can choose and 
experiment with the material that he or she sees fit, and it is not considered that some of the resources 
are better than others depending on the problem to be solved. In addition, in all the designs except 
one, the activities are planned to be carried out entirely in the classroom environment. Only one 
designer schedules sessions on the playground and in the psychomotor room. 

Regarding Epistemic suitability, 14 of the 19 designs are concerned that the children’s organization 
and time includes a space for the explanation and argumentation of the process through which the 
answer has been found. However, only 2 designs specifically explain how to manage it, and the only 
one provides possible dialogues with good questions to promote the generation of hypotheses, 
argumentation, and justification. Although future teachers have studied problem-solving from an 
investigative approach and have analyzed an example (in Task A), none of the designs considers it. 
All the groups work from verbal statements, with clear and straightforward questions, and freedom 
is left for different proposals for resolutions to arise that will be put together (only 5 of the 19 designs 
do not foresee a pooling to explain the possible diverse resolutions of the children). 

There is less evidence that students took the criteria of Cognitive suitability of their tasks into 
consideration, but all designs consider introducing problems with a gradual increase in their 
difficulty. In their dialogues, they start from what theoretically 5-year-old pupils should know 
according to the curriculum (for example, in their words: “they have to know how to count to 20”, 
“we have to consider the 5-year level”), but only one of the designs incorporates prior knowledge 
exploration activities. In their dialogues, future teachers do not debate about which concepts the 
teacher is going to reinforce or systematize; they only say that “she will have a guiding role,” “she 
will interact with the children”, “she will go around the groups to review the processes and results,” 
“at the end the children will stand in a circle so that the teacher can clarify doubts.” On the other 
hand, we have observed aspects related to the evaluation of pupils that, although implicit in cognitive 
(and ecological) suitability, are not explicitly contemplated with indicators in the DSC. The 19 works 
analyzed are concerned with evaluating pupils learning, with various proposals such as rubrics, lists 
of actions to observe, or lists of questions for children to answer. 
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Regarding the Interactional suitability, all the students’ designs organize the activity to solve the 
problem in small groups, arguing: “so that they help each other.” When they want to increase the 
difficulty, they propose that they be individually resolved. However, no design reflects how to get 5-
year-old children to collaborate and, therefore, no working group considered that the activity implies 
that they must negotiate meanings and promote it. None of the groups designed activities self-
validating: the process and the validation of the results always go through the teacher’s approval. 

Evidence of Ecological suitability is obtained since curricular objectives and competencies are 
incorporated for the second cycle of early childhood education, specifying them for each activity. 
However, none of the groups attempts to articulate different mathematical contents since, apart from 
the typology of problems studied, no other concepts are incorporated (such as logic, which is a block 
of knowledge dealt with in the course in the months before this work), or other knowledge areas. The 
statements of the problems contain elements that future teachers think are every day for children but 
are based on imaginary stories with children’s characters, more in the sense of activating empathy 
and obtaining a high emotional fitness. Only 3 of the 19 designs are based on real experiences: 
athletics games at school, activities in the school garden, and a trip to a lake. However, they are only 
a motivating contextual excuse to put elements in the statements of the problems, and in no case are 
the activities proposed in an interdisciplinary way. 

Discussion and Conclusions 
It can be affirmed that, in the training of early childhood education teachers, it is essential to promote 
dialogue to make consensual decisions in the design of tasks for the teaching and learning of suitable 
mathematics, since group reflection enables the generation of proposals, opinions, and decisions 
taken as a group. Regarding the aspects that future preschool teachers consider essential when 
planning and designing a sequence of arithmetic problems and which of these are identified with the 
DSC, future teachers are implicitly based on criteria identified with the DSC. However, not all its 
indicators emerge since their reflection is not guided by specific DSC and they do not have an explicit 
guideline to guide their didactic analysis. This result agrees with the conclusion reached in recent 
works such as Breda et al. (2017) and Sánchez et al. (2019). In this sense, it is observed that DSC 
appears as a regularity when teachers or future teachers want to justify the criteria on which their 
decisions are based without being taught the use of this construct. The reason could be related to the 
fact that DSCs reflect consensus on what good mathematics teaching should be, widely assumed by 
the educational community. From a didactic point of view, this study offers indications that it would 
be convenient to offer early childhood education preservice teachers a tool such as DSC so that they 
have explicit criteria to guide the designs of their mathematical tasks. In this sense, a future line of 
research opens, much needed, to adapt the DSC to the singularities of this educational stage. 
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This paper attempts to summarize the research related to patterning in early childhood (4-8 years). 
In doing so, the basic concepts, rationales, methods, and findings are systematized to provide a 
foundation for forthcoming design. The purpose of this presentation and the suggested discussion is 
not to present new data but to systematize existing as a guide for future research. 

Keywords: patterning, definitions of pattern, pattern activities, pattern abilities, pattern strategies 

Introduction  
Systematic exploration of early patterning begins in nineties as an important element of early 
mathematics education. Researchers accept that children's familiarization with patterns and 
structures influences their future mathematical development (Clements & Sarama, 2009) and 
provides a foundation for understanding complex mathematical situations and making 
generalizations (Rivera, 2013). 

To date, a large number of different studies have been conducted on early patterning in mathematics 
education. These studies approach the idea of pattern differently, use a variety of pattern forms, 
propose similar but also dissimilar pattern activities and understand the connection of pattern to 
mathematics in various ways. Therefore, we believe it is important and mature to attempt a 
synthetic presentation of this research in the following axes, covering aspects such as: (a) the 
conceptual definitions and types of patterns, (b) the rationales for linking patterns to mathematical 
development in different contexts, (c) the research related to patterning skills and strategies. These 
elements are considered important for planning future research. A synthesis of the research of this 
content would also require an outline of the main findings, but as we will see, due to the diversity of 
research, this synthesis could only be done on certain axes, therefore it is limit to presenting only  
findings on patterning skills and strategies. 

Clarifications 
Pattern definitions 

Not all researchers define the meaning of pattern in the same way, since pattern is not a distinct 
mathematical concept. A first approach describes pattern as a sequence of elements of different 
nature (numbers, shapes, sounds, symbols) organized according to a rule. This definition implies 
regularity and therefore predictability (Papic, Mulligan & Mitchelmore, 2011; Radford, 2008).  

However, according to Liljedahl (2004), the nature of the elements of a pattern is crucial. He argues 
that the concept of a pattern is a primary notion defined within the set of specific forms of 
regularities to which it belongs (e.g., sound, space, arithmetic, etc.) and has features within that set. 
Thus, he supports that, for example, a sound or a spatial pattern, even if they have the same e.g. 
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ABB structure as an arithmetic pattern, they are of  different natures and can be approached 
differently. 

Extending the above view, Papic et al. (2011) identify patterns in the context of mathematics as, a) 
a regularity in an object in which some of its elements are related in a systematic way, b) an 
ordered set of objects in which each element is connected to the next by a specific relation, and c) 
two ordered sets of objects whose elements correspond to each other. So, the above researchers 
extend the corresponding concept by including elements organized on the basis of a structure (such 
as a clock), endogenous or constructed or introduced by a mathematical system (Mulligan, 
Mitchelmore, English & Crevensten, 2013). 

Summarizing the above, it is understood that different research approaches in pattern definition are 
recorded, but the basic component of a pattern - common to all views - is the relationship between 
the elements that constitute it, which either enforce its organization into a structure or allow the 
prediction of the subsequent terms of its sequence (Radford, 2008; Rivera & Becker, 2009; Warren 
& Cooper, 2008). 

Pattern categories 

There are also a variety of categories and terms regarding patterns that appear in relevant research. 
In general, researchers have identified and widely reported three specific forms: repetitive, 
evolving, or relational patterns (Lünken, 2018; Mulligan, Mitchelmore, & Prescott, 2006; Threlfall, 
1999).  

For repetitive patterns, a further distinction is made based on the type of iteration unit (e.g. ABAB, 
ABABA, Liljedahl, 2004; Papic et al., 2011; Threlfall, 1999), but also on the changing parameters 
(e.g. shape only, or shape and size, etc., Fyfe, Evans, Eisenband Matz, Hunt, & Alibali, 2017; 
Skoumpourdi, 2013). As for the developing patterns, Rivera and Becker (2009) group them into 
additives or multiplicatives. Rivera (2013) also distinguishes patterns in terms of their elements in 
arithmetic and geometric forms, while Warren (2005) includes regularities with elements in the 
form of shapes, colors, movements, sensations and sounds (especially for young children). The 
relevant findings are related to these categories. 

To these forms Mulligan et al. (2006) add algebraic (triangular formations with numbers), metric 
(with repetition of unit elements) and diagrams, but also two or three-dimensional formations 
(Mulligan et al., 2013). Similarly, Ma (2009) refers to iconographic patterns (mainly geometric) 
that lead to the formulation of verbal rules. 

In this category, Chua and Hoyles (2013), who study schematic or figurative forms that lead to 
arithmetic relations and refer to rules (function type), distinguish their categories on the basis of the 
formations, but also of the type of the function type to which each form refers (e.g. some lead to 
types of linear functions, e.g. 5 + 3ν, while others lead to types of secondary functions, ν2 + 2ν, 
etc.). 

Composing the above, a variety of categories emerges in the relevant research, which can be 
organized in the following axes, with mainly mathematical content (i.e. without sound or kinetic 
patterns) and corresponding combinations: content or type of elements of the pattern (iconographic, 
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schematic, geometric, metric, arithmetic, algebraic, etc.), type of development (repetitive, evolving, 
retrospectively evolving, etc.), spatial dimensions of development (e.g. one-dimensional, two-
dimensional, three-dimensional), structure of the pattern (for repetitive: AB, ABB, ABBA, etc. –
developing: additive, multiplicative, etc.), material (tangible, virtual and/or symbolic). The research 
has been conducted only in some of these categories. 

Pattern activities 

In this section, it is important to add the activities suggested by the researchers from the youngest to 
the older students. 

At young ages, activities with patterns include replication with or without copying, continuation or 
extension of regularities, and recognition of structurally similar regularities. To these activities 
there is also research with pattern creation (Papic, Mulligan & Mitchelmore, 2011), search of a 
missing element (Warren, 2005), and alteration of material (Clements & Sarama, 2009). 

Finding and describing the iteration unit or smallest unit of a pattern is recognized by many 
researchers to be a particularly important activity (Mulligan, Mitchelmore, English, & Crevensten, 
2013; Clements & Sarama, 2009). Similarly, predicting later terms for generalization (near or far) 
(Ma, 2009). These two activities, distinguishing units and predicting terms, as well as linking them 
to a next position (e.g. what is the 10th term?) are considered very important as they lead to 
generalizations and symbolism (Michael, Elia, Gagatsis, Theoklitou, & Savva, 2006; Lannin, 2005). 
It is argued  that pattern generalization but also verbal explanations (Lüken, Peter-Koop, & 
Kollhoff, 2014), drawings, or other forms of symbolism (Mulligan, et al., 2013) are an important 
introduction to both later numerical or developing patterns leading to formulas at this age. 

In composing, research suggests the following activities, different in their treatment and difficulty: 
copying, reproducing, extending, transferring to another material, recognizing the repetition unit, 
identifying the same units of repetition, finding the missing element (interpolation), finding the error 
( Wijns, Torbeyns, De Smedt, & Verschaffel, 2019), generalization (finding a formula, finding a 
term in a specific position, Lannin, 2005). 

Students’ skills in pattern’s development 
The finding that young students (ages 4-8, kindergarten and elementary school) have an ability to 
develop patterns is a common thread throughout the literature. The results of research on children's 
performance on activities that involve patterns reveal the basic types of regularities and the types of 
activities that young children successfully master without a specific didactic approach. Thus, in 
general, even preschoolers are able to explore repetitive patterns, language patterns, and some linear 
patterns and perceive regularities during their leisure activities (Lüken, 2018; Fox, 2006; Waters, 
2004). 

Most research in early childhood focuses on examining performance on repetitive patterns, with the 
majority of children able to reproduce, continue, and create a repetitive pattern AB or ABC (see, 
e.g., Skoumpourdi, 2013; Papadopoulou, 2010; Warren & Cooper, 2008). More complex forms, 
including those of the ABB type, seem to cause greater difficulty, while the pattern material does 
not seem to have a significant impact.  
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However, analyzing the pattern in its structural elements and finding the iteration unit is becoming 
more demanding issue, which has led researchers to consider iteration unit location, complementing 
(finding the missing element) and identifying (which patterns are the same? is this a pattern?) at a 
higher developmental level of the respective ability (Wijns et al., 2019). 

Developing patterns that is an early introduction to functional reasoning, appears to be more 
challenging, leading to less emphasis at younger ages. Although the performance of young children 
has not been systematically studied, the relevant research mainly concerns children in the last 
grades of elementary school and the first grades of high school, it seems that in this area the 
material and the structure play a crucial role (one-dimensional or two-dimensional growth). Several 
researchers point out that children reach high percentages in repetitive patterns by the 2nd grade, 
but less in increasing geometric or arithmetic patterns (Papadopoulou, 2010; Warren, 2005; etc.). 

In relation to the building patterns of objects of different types (Mulligan et al., 2013), the 
developmental trajectory of young children has been studied in depth through a systematic program 
of activities from the prestructural to the structural level (intermediate levels: emerging and partially 
structural). This view brings the importance of curriculum and instruction to the first level, as a 
number of studies - (not examined in detail in this paper) - highlight the positive impact of 
appropriate educational interventions and programs. 

In summary, children up to first grades succeed, even without educational help, to recognize 
patterns with simple structures or materials and identify a simple rule, but have difficulty with more 
complex forms as well as numerical, developing patterns. There is a lack of meaningful research on 
systematic and verbal finding of the unit of repetition and near or far generalization (e.g., what is 
the form at the next or next but one place - near generalization, or what is the form at the 10th or 
20th place - far generalization). 

Patterning strategies 
By studying the activities of students with patterns, some researchers have also studied the 
strategies they use at an early age. A common assumption is that children make one-to-one 
correspondences to the proposed pattern activities that mainly involve copying, reproducing, 
extending, or transferring to other material, or that they take a rhythmic approach based on a 
sequence (which, however, according to Threlfall, 1999, cannot lead to generalization), such as 
finding the unit of repetition or 'breaking into pieces' (Mulligan et al, 2013). 

Papic et al. (2011) categorize children's strategies into direct matching, alternation, repetition of 
basic units, and integrated repetition of units. Accordingly, Lüken (2018) summarizes relevant 
results and records five strategies of students in solving activities with patterns: in the 1st, there is 
no reference to the design, except for the holistic reproduction of the pattern; in the 2nd, the focus is 
on some features; in the 3rd, on comparison and classification; in the 4th, on the sequence; and 
finally, in the 5th, there is a focus on the unit of repetition. 

In summary, young children successfully develop strategies to find the next element in a pattern or 
its rule, but according to some researchers (see Lüken (2018)), copying, imitating or reproducing 
without generalization and symbolism cannot be recognized as a mathematical activity, that is the 
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finding of the iteration unit, its generalization and its possible symbolism. The next section gives 
some answers about the importance of developing patterning skills and strategies. 

Relationship between pattern development and mathematics 
Researchers engaged in studies with patterns argue that patterns are important because "... 
Mathematics is the science and language of regularities" (Steen, 1990, p. 5, in Fox, 2006) and 
familiarity with them also promotes mathematical thinking, exercises the ability to find rules and 
structures, both in everyday situations and in symbolic objects or symbols, such as the elements of 
algebra (Vogel, 2005). 

In general, connections to Mathematics relate patterns to numbers (e.g. repetitive structure of the 
decimal system, cumulative and multiplicative structures), to geometry (e.g. regular shapes), to 
measurement (e.g. creating and repeating a unit of measurement), and to data processing (e.g. 
finding rules and relationships) ( Lüken, 2018; Mulligan, Mitchelmore & Prescott, 2006). 

The connection with algebraic reasoning (Fox, 2006) as well as with functions (Warren, 2005) is 
another axis that many researchers have worked on (see Ma, 2009; Papic et al., 2011). More 
generally, it is agreed that the formation of generalizations, subtractions and symbolizations 
enhanced by pattern activities as an indispensable element of Mathematics (Lüken et al., 2014). 

Several studies examining the relationship between performance in patterns and performance in 
other mathematical domains (e.g. arithmetic) or other cognitive skills (e.g. reading, memory, etc., 
Fyfe et al., 2017) show important connections. Some others, also investigating whether high 
performance in patterning is a predictor of later mathematical achievement (Rittle-Johnson, Zippert, 
& Boice, 2016), reach different conclusions. 

Combining the above, it becomes clear that different pattern forms and activities support different 
aspects of mathematical concepts. Thus, repetitive patterns (with the characteristic feature of 
circular character and repetition unit) and activities requiring continuity, completion, finding a 
missing element, finding an error, finding a unit of repetition, etc., can help students approach 
mathematical objects or processes that are systematically repeated phenomena, such as number 
systems, regularities in shapes, repetition of units of measurement, etc. (Liljedahl, 2004); 
generalization, and symbolism are important in mathematical domains such as problem solving 
(Rivera & Becker, 2009; Radford, 2008) or equations (McNeil & Alibali, 2005). Accordingly, 
arithmetic regularities and activities requiring finding not only some next elements or the 
type/function that generates them (e.g., a number sequence 1, 5, 8, ...), but also some elements of 
the pattern that are in a particular position (far generalisation), support functional thinking from an 
early age. 

Discussion for future research 
From the above review, we need to highlight the following points for future research: First, the 
number of studies that have been conducted on early patterning is large, but there is a variety of 
contents, aims, questions and approaches, thus the concepts and terms used in them are not always 
clearly or similarly defined. For this reason, systematic concern regarding terms, categories and 
activities are needed in any future research. 
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Then, the review presented show that regularities or patterns, as well as related activities, can be 
categorized in many dimensions. Therefore, it would be important to conduct synthetic comparisons 
and compare performances surveys but only in common approaches. Also it is also important to 
systematically investigate the extent to which certain pattern forms and activities are related to 
mathematical content and the mathematical skills they promote, as not all regularities lead to 
mathematical activity and thus to Mathematics.  

Finally, we know that children in general can develop important patterning skills at a younger age, 
but not all of them are related to mathematics. Therefore, in research or classroom practice, the 
researcher/teacher needs to know which developmental pathway serves which content, material, 
structure, and/or action. 
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Research topic and theoretical framework 
There is growing research which provides evidence that the use of picture books in the early years of 
schooling can contribute to the learning of mathematics (e.g., Van den Heuvel-Panhuizen et al., 2016; 
Van den Heuvel-Panhuizen & Elia, 2013). However, it is also known that different books can generate 
different amounts and different kinds of mathematical talk (Anderson et al., 2000). Therefore, it is 
essential to know what picture books can offer to elicit mathematical thinking of children. In 
particular, this knowledge is important for early childhood (EC) teachers when they use picture books 
to create opportunities for children to gain informal mathematical experiences. The study presented 
in this poster is a part of a research project which is carried out to acquire cognizance of how to 
enhance teachers’ competence in using picture books in early childhood mathematics education. 

The study builds on our previous research in which we developed and researched a framework of 
learning-supportive characteristics of picture books for learning of mathematics (Van den Heuvel-
Panhuizen & Elia, 2012). This framework consists of two parts. Part A incorporates the mathematical 
content that is offered in a picture book. Besides the usual content domains this also refers to 
mathematical processes and attitudes, and mathematics-related themes. Part B describes how the 
mathematics is presented. It includes both the way of presentation and the quality of it. 

The goal of the present study is to investigate whether the teachers are aware of the learning-
supportive characteristics of picture books, specifically whether they are aware what mathematics 
can be found in picture books and the way the mathematics is presented, and whether the framework 
is of use for recognizing opportunities of picture books to support children’s mathematical 
development. The latter is the focus of the poster. 
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Method 
To investigate whether the framework helps to improve teachers’ awareness of the opportunities 
picture books offer for early childhood mathematics education, a qualitative study was conducted in 
Cyprus and Norway with respectively 6 and 4 in-service EC teachers, who had to evaluate two picture 
books with and without the framework by filling in for each book two times an open questionnaire 
specially developed for each book. The picture books are regular trade books of high literary quality, 
not purposely written for teaching mathematics, but they tell appealing stories which form a 
meaningful context for engaging children in mathematical thinking. In both countries we used the 
same wordless picture books. In this way teachers have also more freedom to recognize learning-
supportive characteristics and can develop their own ideas of using them. In the data analysis the 
focus was on finding noteworthy changes in teachers’ answers between the two rounds. 

Results and discussion 
Overall, we found that in both rounds teachers’ answers involved to a greater extent learning-
supportive characteristics included in the supply of mathematical content (Part A) than characteristics 
referring to the presentation of mathematical content (Part B). Moreover, the answers often were short 
and without explaining their thinking. They rarely referred to mathematical processes or dispositions. 
Possibly they are not accustomed to using picture books or the framework did not appeal to them. 
Regarding the mathematics that was found, the framework helped the teachers to see different or 
more mathematics and further specify the identified mathematics from the first round. The framework 
also had a positive contribution to teachers’ evaluation of how the mathematics is presented. 
However, in some cases the framework did not have added value. In the second round a few teachers 
just used the wording of the framework, while their answers earlier were more detailed and relevant. 

Our study has shown that the framework has potential to make teachers aware of the learning-
supportive characteristics of picture books for supporting children’s learning of mathematics. Our 
next step will be to use our findings to set up a professional development for EC teachers. 
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This paper presents the design and construction of a professional task aimed at analysing experiences 
that foster reasoning in children aged 0 to 3 years old. The process served to organise and validate 
a task that mobilises future teachers’ knowledge of how to foster reasoning in early childhood 
education. The task allows the recognition of metacognitive actions that show how, in the cases 
studied, relationships of cause and effect are produced as a prelude to strengthening mathematical 
reasoning. This permits a reflection on the way in which children at this stage intuitively construct 
their knowledge. 

Keywords: Initial teacher training, professional task, reasoning, early childhood education 

Introduction 
Some research reflects on the capacity of young children to establish causal relations and their 
capacity to draw conclusions based on certain experiences and representations (Sobel & Legare, 
2014). It is explained that educators can improve thinking skills in children aged 0 to 3 (Sturman et 
al., 2005). Recent research findings attest to the importance of early mathematical learning. They 
show that the understanding of complex mathematics and abstract reasoning develops much earlier 
than was once thought (Vukatana, 2013; Clements et al., 2019, among others). Although these authors 
presented their work some time ago, the amount of literature on early childhood mathematics 
education remains rather limited as regards logical reasoning in the early years. On the other hand, 
Ivars and Fernández (2018) and Moreno et al. (2021) point out that during their initial training it is 
important to encourage prospective teachers to gain experience from different contexts where they 
can observe teaching situations in a structured way. One of the possible contexts is the analysis of in-
school experiences. Such experiences, when described as a narrative, can be a powerful instrument 
for the construction of professional tasks. Our interest in the initial training of early childhood 
education teachers has prompted us to consider, among other aspects, the different approaches and 
professional tasks faced by future teachers.  

The purpose of this paper is to describe the process of designing and structuring a professional task 
focused on the analysis of experiences that promote reasoning in children aged 0 to 3 years old. This 
kind of task seeks to involve pre-service teachers in processes of interpretation and decision-making 
(in teaching situations) so that they begin to "notice" the mathematical activity in the classroom 
(Mason, 2021). This type of study is considered to play a key role in reformulating training 
programmes and responding, on the one hand, to the challenge of involving future teachers in 
reflective processes and, on the other hand, identifying experiences that make it possible to promote 
mathematical logical reasoning in young children. In our context, early childhood preservice teachers 
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are trained to teach children aged from 4 months to 6 years old. In this study we will focus on the 
mathematical education of the youngest group, specifically children aged up to three years old. 

Theoretical background 
The logical mathematical reasoning of children aged 0 to 6 years old can be organised according to 
its complexity (from least to most) in three parts: a) identifying, defining and/or recognising qualities, 
b) relating qualities, and c) operating qualities (Canals, 2009). This organisation can not only help 
teachers to design activities but also to analyse children's level of understanding and the problems 
children face when they have to tackle a task that requires logical-mathematical reasoning. Some 
studies describe the emergence of category-based inductive reasoning during infancy, focusing on 
adherence to a fundamental induction principle, premise-conclusion similarity. It is shown that infants 
aged 13-22 months use both category information and perceptual similarity to guide their inductive 
inferences about non-obvious properties under various conditions (Graham et al., 2020). 

One of the difficulties encountered by future early childhood education teachers consists of 
recognising the knowledge that underlies children's actions, especially when it is not verbalized, as 
in the case of children under 3. It is important that pre-service teachers are familiar with activities 
that foster reasoning at this stage. And that they are able to design and manage tasks that address 
processes such as attribution, designation and characterisation, which lead to the idea of classification 
(Peres, 1984). Prospective teachers must be provided with enough tools to be able to develop the 
specific skills needed for educational practice (Llinares, 2013). One of these competences is the so-
called noticing, which involves the development of the prospective teachers' cognitive skills in order 
to identify and interpret the students' mathematical thinking and enable informed decision-making 
with regard to their teaching proposals (Jacobs et al., 2010). In recent years understanding how this 
teaching competence can be developed has become a research goal in the mathematics education 
(Dindyal et al., 2021).  

Criswell and Krall (2017) argue that the noticing competence enables teachers to go beyond the more 
easily observed issues, such as students' behaviours and actions. It enables them to address issues that 
need to be meaningfully inferred, such as students' thinking about a given mathematical notion. 
Ginsburg (2016) states that teachers cannot teach well if they do not understand children, mathematics 
and the associated pedagogy. Therefore, it is crucial that teachers and future teachers learn to 
recognise and understand children's mathematical thinking. 

Research on task design focuses on a number of aspects (Swan, 2007; Charalambous, 2010). One of 
them is the use of narratives in pre-service teacher training, which provide relevant starting points for 
the discussion of problems faced by teachers when making decisions about the various teaching and 
learning situations, such as how to apply certain curriculum requirements to school activities, 
classroom management techniques, and/or how to assess and track students' learning (Chapman, 
2018). We use narratives to reflect on the thinking and actions of prospective mathematics teachers 
in the context of mathematics content and mathematics teaching and learning itself. 

As pre-service teacher educators, we have to select, plan and design professional tasks that enable 
them to identify children's behaviour, thereby supporting the development of their thinking and 
consequently their ability to make justified professional decisions. In early childhood education, 
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prospective teachers are not usually specialists in mathematics teaching and this means that the 
selection and design of professional tasks must be more carefully carried out if a satisfactory 
understanding of mathematical notions and processes and the associated didactics is to be achieved.  

Methodology 
This research features a qualitative approach of a descriptive nature (Cohen et al., 2018). It is based 
on intervention research that focuses on action, seeking to understand and explain its effects. This 
intervention study was carried out with students pursuing a degree in early childhood education at a 
Catalan university during the 2019-2020 academic year. The participants had worked on the content 
dealing with logical-mathematical reasoning and the mathematical problem-solving process. The 
professional task was designed to enable future teachers to observe, analyse and reflect on real 
experiences that promote logical-mathematical reasoning in the 0-3-year-old period. The professional 
task had five stages: 1) a review of studies on the teaching and learning of logical-mathematical 
reasoning in 0-3-year-olds; 2) a review of studies, materials and activities used to work on logical-
mathematical reasoning in early childhood education; 3) a choice of narratives for future teachers to 
observe and analyse; 4) the implementation of the aforesaid professional task in a pilot group; and, 
5) the definition of levels to characterise teaching competency in advance. The written work produced 
by each group of students provided the data for this study. 

The design of the professional task (PT) presented in this study is based on a previous professional 
task (PPT). This task (PPT) focused on the design and implementation of activities for children (0-3-
year-olds) based on the use of non-specific materials. The PPT was developed in the 2018-19 
academic year by 80 students pursuing an early childhood education degree, organised into working 
groups of four to five and from two Catalan universities. Each working group designed and 
implemented an activity using non-specific materials, with the purpose of developing logical-
mathematical reasoning in 0-3-year-old children. The goal was to provide opportunities for the 
children to discover and establish common (or distinct) characteristics by manipulating and 
experimenting with different objects. This is the perceptual basis of processes such as attribution, 
designation and classification. The PPT also included a reflection on the materials used, on its 
potential and relevance when promoting reasoning in this children’s age group. As a final product the 
future teachers submitted a written report and a visual record of the task implementation. 

In the following course (2019-2020), some of the proposals made by the pre-service teachers who 
developed the PPT were used as the basis for the design of the PT for a new group of prospective 
teachers. This new task focused on the study of narratives, with proposals specifically derived from 
the PPT. The aim of the new task was to strengthen other aspects of teaching competency in the new 
group of prospective teachers, particularly as regards the analysis of real classroom experiences. 

The professional task (PT) was organised into three parts. Firstly, the prospective teachers were asked 
to examine the main characteristics of two activities (a sensory wall and heuristic play respectively). 
Identifying the type of objects used in each activity, indicating the attributes of each object or groups 
of objects, and describing the actions that could be done with each object. Secondly, the future 
teachers were invited to associate each of the children’s actions with the logical thinking skills of 
identifying, relating, and operating, and also to evaluate the design and management of each of the 
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activities. Finally, the prospective teachers were asked to give their reasons for whether or not they 
would again use the same or similar objects to those employed in the two activities. 

The PT was initially carried out with 37 students pursuing an early childhood education degree, who 
were studying the course’s introduction to mathematics didactics. These future teachers had studied 
content related to logical-mathematical reasoning and the problem-solving process. We proposed that 
they develop the task in small working groups (3-4 people) for purposes of a joint reflection that 
could promote the competence of didactic analysis of learning situations. As a result of their analysis, 
each group submitted a written report that provided the data for this study. In total there were 10 
groups and 10 papers. 

Results 
Having completed the task, the answers provided by the different groups of future teachers were 
organised in order to refine the task for future use and also characterise the teaching competence of 
noticing. Different levels associated with the different teaching competences – identifying, 
interpreting, and making decisions – were established (Jacobs et al., 2010).  

By way of an example, we present the levels associated with interpreting skills. In this research we 
found that prospective teachers recognised measurable attributes, spatial relationships associated with 
movements, and attributes associated with comparisons and order (e.g. large-small; thick-thin; high-
low). They also identified different relationships, for example, when children showed unequivocal 
signs of being able to identify similar elements. Given the type of action performed, they 
distinguished causal relationships. 

Regarding the interpreting competence, three levels were established previously:  

L1 – Identification of actions of comparison and some relationships of cause and effect by 
indicating them descriptively 

L2 – Metaphorical allusion to types of reasoning, indicating terms such as ‘visual’ and ‘deductive’, 
but without specifying what they mean. Describing actions associated with the different logical 
thinking skills (identifying, relating, operating), but without a theoretical justification.  

L3 – Evaluation of children individually, appropriately associating types of abilities and possible 
types of mathematical reasoning. Discrimination of key aspects of the adequacy of the activities 
according to age. 

Table 1: shows extracts from the answers provided by the different groups and the allocation to the 
different levels 

Table 1: Examples of answers and the levels associated with the interpreting competence 

G Level Answer Extract Analysis 
10 L1 “…They realise that when they take a metal tube 

and hit it, it makes a noise, and that the harder they 
hit it, the louder the noise” 

The group of prospective teachers 
described actions that allude to 
relationships of cause and effect, but 
without any justification. They only 
refer to them. 
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2 L2 “On the sensory wall, we saw that the girl can 
identify different elements through touch. It is a 
process of identification by touch.”  
“...They observe that when they move some objects 
in a specific way or when these collide with each 
other, they make a noise. They establish a 
relationship between the action (hitting) and the 
noise.’ 

This group interpreted different actions 
and associated them with different 
competences (identifying and relating). 

4 L3 “…In other words, with this experience, children 
begin to discover and get to know the different 
objects in the classroom. Then they begin to do 
actions with them, for example, making a noise, 
and finally they play the symbolic game, where 
those objects stop being what they are to become 
other things such as necklaces, snails, telescope, 
etc.” 
“Perhaps if we used a treasure basket instead for 
this activity, it would be more appropriate. Given 
that Eva cannot crawl yet, the educator had to help 
her to reach the objects’ 

This group recognised key moments in 
the development of experiences where 
children move from observation to 
discovery. They also interpreted the 
value of heuristic play for the 
introduction of the symbolic game. 
They appreciated the relevance of the 
activities according to the age and 
characteristics of the children (for 
example, their degree of independent 
mobility and how this conditioned 
exploration). 

Thus, in the case of the interpreting competence, we observe that the prospective teachers alluded to 
types of reasoning (inductive, abductive, etc.) metaphorically, erroneously referring to the visual and 
deductive without specifying how to verify it. They cited descriptive traits of actions associated with 
logical thinking capacities without offering any theoretical discussion.  

After the first implementation and an initial analysis of the reports submitted by the sample of 
prospective teachers involved in this research, we decided to make some adjustments to the final 
structure of the professional task. One of the products generated by this study was a professional task 
that aims to mobilise the professional knowledge of prospective early childhood teachers with regard 
to experiences and activities that help promote logical-mathematical reasoning at the 0-3-year-old 
stage.  

The final version of this task considered the skills that characterise professional noticing: identifying, 
interpreting and making decisions (Jacobs et al., 2010; Ivars & Fernández, 2018); the notion of 
narrative and its potential to encourage reflection on mathematics teaching and learning situations; 
two types of activities with non-specific material, which we consider suitable for encouragement of 
reasoning in children at this stage (Goldschmied & Jackson, 1994); and, lastly,  specific aspects of 
reasoning in early childhood education such as the logical thinking skills of identifying, relating and 
operating (Canals, 2009). The final version of the professional task was structured in four parts (see 
Figure 1).  
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1. The future teachers were asked to explore the 
main characteristics of the two activities 
(sensory wall and heuristic play). 

2. The future teachers were asked to identify the 
type of objects used in each activity, indicate 
the attributes corresponding to each object or 
groups of objects, and describe the actions that 
could be carried out with each object.  

3. The future teachers were asked to associate 
each of the children's actions with the logical 
thinking skills (identifying, relating and 
operating) and assess the design and 
management of each activity studied.  

4. The future teachers were asked to decide (and 
justify) whether or not they would again use 
objects similar to or the same as those 
employed in the two activities and invited to 
reflect on how they could improve the two 
activities in order to better understand the 
children's reasoning.  

 
Figure 1: Professional task of analysis of experiences that promote reasoning in 0-3 cycle 

Final considerations 
It is in the process of designing and redesigning tasks that the possibility of increasing teachers’ 
knowledge arises. In this case, the professional tasks designed involved future teachers in what 
Serrazina (2010) calls the process of planning - action - reflection, which plays a fundamental role in 
the construction of prospective teachers’ mathematical and didactic knowledge. Learning to evaluate 
the adequacy of activity planning and design though the analysis of other people’s proposals is also 
a key competence that should be developed by prospective teachers. Being able to observe and study 
the implementation of these proposals and observe how an activity with children functions in different 
contexts allows the integration of both the knowledge developed during training and the observation 
of how certain processes actually develop in early childhood education. 

Thanks to the study of the two activities (sensory wall and heuristic play), the future teachers were 
able to recognise different types of attributes (sensory and measurable characteristics) and interpret 
the link between children's actions and different types of relationships (equivalence, order, causal, 
spatial, etc.), as well as observing actions that indicate changes (shape, position and measurement, 
among others). These factors play a key role in the promotion of intuitive, informal mathematics in 
children under three years of age. 

The professional tasks described made the prospective teachers more aware of what happens during 
different activities carried out with children under three. One of the tasks focused on the process of 

Proceedings of CERME12 2289



 

 

design, planning and implementation of activities to promote reasoning in the 0-3-year-old stage, 
while the other professional task invited the prospective teachers to evaluate the said activities in 
order to make decisions for their improvement. All this implies an analysis of the mathematical 
content, reflecting on how to organise this content in order to teach it, analysing and interpreting 
children's productions, and considering how this type of activity can be managed. In short, as 
proposed by Moreno et al. (2021), the goal is to help prospective teachers learn to notice and provide 
them with a wider range of resources to make effective teaching decisions. 

We intend to continue developing this approach, designing and redesigning proposals to improve 
prospective teachers’ professional knowledge and contributing material to the discussion around the 
type of education in mathematics and didactics of mathematics needed by prospective early childhood 
teachers. 
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This poster presents an educational design research study focused on equity in the Swedish 
preschool class. In Sweden, six-year-old students attend preschool class for one year of 
schooling with the aim to create continuity in early education, by relating to surrounding 
institutions – preschool and compulsory school. In comparison with the compulsory school, 
students’ free choice and play is more focused on in the preschool class. According to Espinoza 
(2007), equity can be described as educational justice, meaning that both individual 
circumstances and differences related to individual needs and requirements are to be taken into 
consideration. In the Nordic countries, equity is emphasized as important in the creation of a 
“fair and equal society supporting democracy, participation, welfare, and life-long learning” 
(Klette, 2018, p. 59). However, since the turn of the millennium, Sweden of all the Nordic 
countries has departed the most from the Nordic model with a “control regime overshadowing 
the learning, equity and democracy agenda that is still in the curriculum” (Blossing & 
Söderström, 2013, p. 32). The differences between low- and high-performing students and 
between schools have increased, as has the significance of students’ socio-economic 
backgrounds in terms of their educational outcomes (National Agency for Education, 2010).  

According to Gutierrez (2002), equity issues can be addressed from four different dimensions: 
access, achievement, identity, and power. Foregrounded in this study are the equity dimensions 
of access and identity.  In the field of mathematics education, equity can be described as “the 
inability to predict mathematics achievement and participation based solely on student 
characteristics such as race, class, ethnicity, sex, beliefs, and proficiency in the dominant 
language” (Gutierrez, 2002, p. 153).   

The aim of this study is to explore how to design an equal education in early mathematics in 
the sense of an education that affords young students access to as well as prosperous attitudes 
towards mathematics. The basis for this study is a previous study on assessment in the Swedish 
preschool class. In that study the teachers talked about an increased awareness of the different 
needs that students have when it comes to mathematics. They described a dilemma in providing 
all students an equal possibility to learn mathematics, this as the students are at different levels. 
In addition, the teachers described the challenge with teaching students in such a way that they 
all find mathematics to be interesting. In this new study, the following research questions will 
be addressed: What does an equal mathematics education where all students have access to 
mathematics imply? What does an equal mathematics education where all students can develop 
prosperous attitudes towards mathematics imply? How can a mathematics education, that 
affords young students access to as well as prosperous attitudes towards mathematics, be 
designed? 
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Method 
This study is developed within the frame of educational design research (McKenney & Reeves, 
2012). The research approach is a case study, located within two classrooms. Educational 
design research can be described by five common characteristics: “theoretically oriented, 
interventionist, collaborative, responsively grounded and iterative” (McKenney & Reeves, 
2012, pp. 12-16). In 2019, mandatory assessment material was developed and put into use in 
Sweden as a way to improve equity within the Swedish preschool class. Through the 
assessment, students’ knowledge is assessed with the aim to identify what adaptions are needed 
for each student to meet the knowledge requirements, and for them to “reach as far as possible” 
(National Agency for Education, 2019, p. 1). In this study, this assessment of all students serves 
as a starting point of the design. 

The process of generating data is defined by a number of cycles of invention and revision. Each 
cycle will consist of the following elements: classroom observations, student interviews, and 
dialogs between the teachers and the researcher. In line with educational design research, in 
each cycle adjustments will be made based on the two research questions. This iterative process 
intends to produce practical solutions based on a theoretical understanding, where the results of 
the research are relevant for education practice (McKenney & Reeves, 2012). The research 
results will be formulated as design principles, thus not only statements like what to do and how 
to promote equity in early mathematics education, but also theoretical and empirical 
explanations to support these knowledge claims (Van den Akker, 2013). 
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This poster presents an educational design research study focused on equity in the Swedish 
preschool class. In Sweden, six-year-old students attend preschool class for one year of 
schooling with the aim to create continuity in early education, by relating to surrounding 
institutions – preschool and compulsory school. In comparison with the compulsory school, 
students’ free choice and play is more focused on in the preschool class. According to Espinoza 
(2007), equity can be described as educational justice, meaning that both individual 
circumstances and differences related to individual needs and requirements are to be taken into 
consideration. In the Nordic countries, equity is emphasized as important in the creation of a 
“fair and equal society supporting democracy, participation, welfare, and life-long learning” 
(Klette, 2018, p. 59). However, since the turn of the millennium, Sweden of all the Nordic 
countries has departed the most from the Nordic model with a “control regime overshadowing 
the learning, equity and democracy agenda that is still in the curriculum” (Blossing & 
Söderström, 2013, p. 32). The differences between low- and high-performing students and 
between schools have increased, as has the significance of students’ socio-economic 
backgrounds in terms of their educational outcomes (National Agency for Education, 2010).  

According to Gutierrez (2002), equity issues can be addressed from four different dimensions: 
access, achievement, identity, and power. Foregrounded in this study are the equity dimensions 
of access and identity.  In the field of mathematics education, equity can be described as “the 
inability to predict mathematics achievement and participation based solely on student 
characteristics such as race, class, ethnicity, sex, beliefs, and proficiency in the dominant 
language” (Gutierrez, 2002, p. 153).   

The aim of this study is to explore how to design an equal education in early mathematics in 
the sense of an education that affords young students access to as well as prosperous attitudes 
towards mathematics. The basis for this study is a previous study on assessment in the Swedish 
preschool class. In that study the teachers talked about an increased awareness of the different 
needs that students have when it comes to mathematics. They described a dilemma in providing 
all students an equal possibility to learn mathematics, this as the students are at different levels. 
In addition, the teachers described the challenge with teaching students in such a way that they 
all find mathematics to be interesting. In this new study, the following research questions will 
be addressed: What does an equal mathematics education where all students have access to 
mathematics imply? What does an equal mathematics education where all students can develop 
prosperous attitudes towards mathematics imply? How can a mathematics education, that 
affords young students access to as well as prosperous attitudes towards mathematics, be 
designed? 
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Method 
This study is developed within the frame of educational design research (McKenney & Reeves, 
2012). The research approach is a case study, located within two classrooms. Educational 
design research can be described by five common characteristics: “theoretically oriented, 
interventionist, collaborative, responsively grounded and iterative” (McKenney & Reeves, 
2012, pp. 12-16). In 2019, mandatory assessment material was developed and put into use in 
Sweden as a way to improve equity within the Swedish preschool class. Through the 
assessment, students’ knowledge is assessed with the aim to identify what adaptions are needed 
for each student to meet the knowledge requirements, and for them to “reach as far as possible” 
(National Agency for Education, 2019, p. 1). In this study, this assessment of all students serves 
as a starting point of the design. 

The process of generating data is defined by a number of cycles of invention and revision. Each 
cycle will consist of the following elements: classroom observations, student interviews, and 
dialogs between the teachers and the researcher. In line with educational design research, in 
each cycle adjustments will be made based on the two research questions. This iterative process 
intends to produce practical solutions based on a theoretical understanding, where the results of 
the research are relevant for education practice (McKenney & Reeves, 2012). The research 
results will be formulated as design principles, thus not only statements like what to do and how 
to promote equity in early mathematics education, but also theoretical and empirical 
explanations to support these knowledge claims (Van den Akker, 2013). 
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Inspired by Sfard we investigate the stories of teaching and learning situations using two different 
theories. We look at how the stories that the two theories tell are the same or different in order to 
answer the question about what can be gained and what will be lost when using two different theories 
in this case variation theory and pedagogical strategies. This is done using a video from a 
mathematics lesson in preschool class setting, 6-year-old children as a base and then comparing the 
stories that the two different theories tell about this situation. 

Keywords: Theory of variation, sociological theory, domains of action, stories 

Background 
In this paper we use the definition of research as presented by Sfard (2018), where she states that 
research “is the activity of telling stories about some aspects of reality” (p.220). Using the 
terminology of Sfard (2018) we use two different theories and thus two different routine actions 
(analysis). This approach can be either using a multi-theoretical approach (Johnson et al) or 
coordinating different theories (de Freitas, et al., 2019). The use of theory and its necessity is an 
ongoing discussion (Bikner-Ahsbahs et al., 2019). In their paper, Bikner-Ahsbahs et al. (2019) give 
different approaches to the use of theories depending on if the theory is in the foreground or 
background or even if they are seen as a tool or an object in order to use as a lens.  We will continue 
to use the vocabulary presented by Sfard (2018), when we talk about the different theories and the 
stories that they tell. If a theory consists of a small set of stories or narratives, which story do variation 
theory and pedagogic strategies (a sociological perspective) tell. The rational for choosing these 
theories lies in our interest and deep knowledge about them and a curiosity on what story each of 
them will tell when using the same set of reality. Lerman (2010) used sociological theories to claim 
that the use of several theories is a necessity. On this note, we use the same reality. We tell two, in 
some sense, different stories but they are both grounded in a common interest in teaching and learning 
mathematics. In this case we use a teaching and learning situation in mathematics in a preschool class 
setting (6-year-old children). For us it is important to spell out the primary stories, where the base for 
our different stories is. The base for the stories is the part of the theories that helps us perform routine 
actions, or in other words analyze the data. We do that by presenting the subset of stories valuable 
for our analysis across both theories. In the sense of asking a question about differences, we need to 
also address the following question: Do the two different theories add any new stories or do they just 
use different words to describe reality or are they even mutually exclusive? We tell the stories, that 
is, we craft the narratives based on the data set at hand. In this case, the data is a video of a teaching 
and learning moment in a preschool class mathematics lesson. 

Let us discuss the word different in this case, since different is the core of the paper. Can these stories 
be seen as different, or do they add aspects to one another? None the less, one has to remember that 
from our different perspectives we have to choose which aspects to focus on. Sfard (1998) argues that 

Proceedings of CERME12 2304



 

 

there are two metaphors for learning and there is a problem of relying on just one of them. Inspired 
by this idea we argue that to tell the stories of a learning situation we would benefit from using 
different theories to tell different stories about the situation at hand. Still, we know different theories 
make us ask different questions and hence tell different stories.  

Theoretical frameworks 
In order to answer our research question, what can be discerned in the narrative using two different 
analytical tools, we use Variation theory (Marton, 2015) and Pedagogic strategies (Dowling, 1998) 
(a sociological perspective) in our routines (method of analysis) of a videoclip from a preschool class.  

Variation theory 

Although variation theory was developed in school-settings about 20 years ago it has also been used 
as a theoretical tool in preschool-settings (e.g., Björklund et al, 2021; Wernberg, 2017). Marton 
(2015) describes how learning means a qualitative change and a more developed understanding of 
knowledge. The understanding is developed by distinguishing more and more aspects of phenomena 
in the outside world (e.g., mathematical and mathematical didactic concepts) and giving meaning to 
the one who distinguishes them. The distinction presupposes an experienced variation of these 
aspects. Here we have mainly adopted the notion of critical aspects and critical features, while also 
adhering to the assumptions of the overall theory. One theoretical assumption is that learning is 
always the learning of something, and the ability to learn presupposes an experience of variation. 
Critical aspects can be defined as necessary features to be discerned for learning the object of learning. 
To understand what it is that enables learning in one situation, one can illuminate what varies and 
what is invariant using contrast. This pattern of variation is created by patterns of variation of the 
same aspect (Wernberg, 2009). The difference between a critical feature and a critical aspect is that 
the latter refers to a dimension of variation and the former is a special value in this dimension of 
variation. To discern something, it is necessary to experience a variation. In Figure 1 we use one 
pattern of variation, contrast, making it possible to distinguish the difference between a triangle and 
a rectangle/quadrilateral. It opens up a dimension of variation, geometric shapes, where triangle is a 
value in this dimension of variation. 

 

 

Figure 1: Critical aspects and features 

“Values correspond to features, and dimension of variation corresponds to aspects… A critical aspect 
is thus a critical dimension of variation and critical features is critical value" (Marton, 2015, p.47). 

Pedagogic strategies (a sociological perspective) 

The following theoretical perspective is based on Dowlings (1998), analysis of high school textbook 
series and redefined by Johansson (2012) for use in a mathematics classroom and in the interaction 
between students and teacher. The redefined method of analysis by Johansson (2012) has also been 
used in preschool and preschool class settings by Helenius et al (2018). Dowling (1998) describes 
four domains of action and a set of strategies within those domains. The four domains where esoteric, 
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descriptive, expressive and public. These four domains were distinguished in two different ways 
based on content (signifieds) and expression (signifiers) and whether they were strongly classified or 
weakly classified. The domains of practice are shown in Figure 2.

Figure 2. Domains of practices (Dowling, 1998, p. 135)

A mathematical activity in a teaching and learning setting uses all these four domains. However, the 
boundaries between these domains are not sharp and hence it is not always easy to separate them 
from one another. In order to clarify the impact of practices in these domains Dowling (1998) 
elaborated on a series of pedagogic strategies. These redefined pedagogic strategies are then used as 
a methodological tool for interpreting interactions (Johansson, 2012).

In a preschool class setting where the mathematical activities contain tasks that are not strongly 
classified regarding content or expression, the different strategies that come to use contribute to the 
development of more or less generalised mathematical knowledge or more or less localised 
knowledge.

Figure 3: Distributive strategies (Dowling, 1998, p. 147)

As seen in figure 3, the four strategies are categorized in terms of range and discourse. When it comes 
to range of possible solutions, the strategies are categorized regarding whether they limit or expand 
the range and, in the same manner, regarding if they support an abstracting or particularizing 
discourse. The pedagogic strategies are used by both teacher and children and in one utterance the 
children and the teacher vary in their use of these strategies hence it is used in a microlevel analysis
where each part of the dialog is categorized. The following description is based the redefined 
pedagogical strategies by Johansson (2012) and the examples is from the age group that is present in 
the situation at hand.

The Specialising strategy separates different cases or methods or concepts. In this strategy the 
children or teacher use specific ways when discussing the task or solution; this also means using 
specialised terminology. For example, using addition or subtraction. Since this strategy separates the 
methods or concepts, it reduces the range of possible solutions. However, it can contribute to the 
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children’s understanding of a concept or method. The Generalising strategy, on the other hand draws 
on different cases in relation to a common principle and so this strategy is expanding the range of 
solutions. Hence, it provides an understanding of how a common principle can be used in different 
settings and cases. These two strategies provide the children with opportunities for discussing and 
understanding the mathematical practice and the underlying principles. Specialising does this by 
providing opportunities to discuss differences in examples or cases and generalising does this by 
providing opportunities to discuss the commonality in examples or cases. Some examples of 
specialising are solving a word problem and modelling. Examples of generalising could be finding 
an appropriate drawing to illustrate an argument or applying a solution method to a range of different 
examples. 

The localising strategy constructs one particular example but does not give the children any 
opportunities to engage in a mathematical discourse. The articulating strategy on the other hand 
highlights different examples, but these examples are not connected to any mathematical principle 
and so it is not possible to generalise from this in a mathematical discourse. These two strategies 
occur in preschool and preschool class settings and, by not making the connection to the mathematical 
discourse, the children must themselves determine what knowledge to be used in solving the tasks. If 
the children cannot determine that they should use generalising or specialising strategies, the 
mathematical discourse will not be visible. 

Perceptual mediator - Data 
The research was undertaken in a Swedish preschool class where most of the children were six-year-
olds. Preschool class is the first place children have contact with formal school knowledge and ways 
of working. In the first half of 2013, video recordings were made on four separate occasions in one 
preschool class in Sweden. The preschool class had two different teachers and the video recordings 
captured a range of different interactions, set up by one or other of the teachers. We had asked to film 
problem solving tasks and later a free play situation. In this paper a part of one problem solving lesson 
is analysed. The teacher initially reminded the children about the activity previously done; They had 
asked different people if they preferred chips or candy and put the result in a bar chart (cubes on top 
of each other).  

             
Figure 4a: The teacher coloring the cubes    Figure 4b: The teacher showing the newspaper bar chart 

The teacher colored the cubes to get the children’s attention on the importance of making the cubes 
evenly high (figure 4a). Thereafter she showed a bar chart from a newspaper where you only could 
discern the height when comparing the different bar charts (figure 4b). Then again, she reminded the 
children about an earlier episode when she had asked the children to vote on a book to read in whole 
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class. She took two books and put eight equally small blocks in front of one book and four bigger 
blocks in two different sizes in front of the other book (figure 5).  

1 Teacher: Which pile became the largest, who received the most votes? 
2 Children: That one. [Most of the children point at the pile with four cubes] 
3 Teacher: Yes, is that the book that then won?  
4 Children: No. 
5 Teacher: Well, that pile is the biggest? 
6 Theo:  Well, it's not, check it's one, two, three, four blocks. One, two, three, four, 

eight, nine, no. Yes, but it's that one, that one has at least smaller blocks. 
7 Klara: Eight 
8 Teacher: Eight in that, and that one has only four. Well then, I say that is the biggest 

[the teacher points at the pile with four blocks] then I choose that book. 
9 Children: No. 
10 Teacher: But, why not? 
11 Theo: Because it has four blocks, and four blocks are less than eight blocks. 

 

 

Figure 5: Placing the blocks in front of the books 

12 Teacher: Yes, that’s right, but if this were stacks then as it will be there later, then you 
do not see these boundaries [once again, the teacher pulls out the diagram from the 
newspaper, with no visible blocks, and compares it with the one they made for candy and 
chips, with visible blocks].  

13 Teacher: That is why it is very important that we draw all the way up to the number. 
And here, all the way up to second. Do you remember that someone wanted to do a little 
less here so we had to sort of pull it up to the line? It is very important that it is right in 
both directions. It was chips and so it was up to the number. So, if we were to draw this, 
four, it would be there, right? And here is? How many were there now? 

14 Children: Eight. 
15 Teacher:  Then it was eight here. 

Routines – methods of analysis 
In this part, we present the separate analysis for the teaching and learning situation in mathematics in 
the preschool class setting using variation theory and sociological theory. The analyses were made in 
parallel and were undertaken by one or the other of the authors (Wernberg VT, Johansson SP) and 
then discussed. The rationale for both the research question and the analysis is the authors different 
theoretical backgrounds which has been present in other common work where questions/curiosity 
have been raised due to this difference in their background. 
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Story - Variation theory perspective 

In the introduction to the assignment, the teachers open up for a dimension of variation by contrasting 
the two diagrams: The one made in the classroom with the pupils and the one from the newspaper 
(figure 1a and 1b). Thereby, the teacher opens the ability for the children to discern one critical aspect, 
the importance of the “cube” being of the same size. The same size is, thus, a value in the aspect size 
with the values big, small and equal. 

In the utterance (line 1) the teacher draws the children’s attention to the two piles of blocks in front 
of her to, again, make them aware of the importance of the blocks being the same size. One pile with 
eight small books with the same size and the other pile with four bigger blocks with two different 
sizes. In line 8 she challenges the children’s understanding by claiming that the children mostly voted 
on the book with four cubes in front of the book since that pile is the highest. Here, the teacher opens 
up for a dimension of variation by using blocks of different sizes in the highest pile and blocks of the 
same size in the lowest pile. Again, she opens up for the children to discern the critical aspect, same 
size, but in a different way. Here, she contrasts the height of the piles with the total number of the 
blocks in each pile.  

In the end of this assignment (line 12), the teacher invites the children to look at the different 
diagrams, the one they made and that from the newspaper, to make them aware of the different 
appearances. Again, she opens up for the children to discern the critical aspect, same size, but in a 
third way. Here, she contrasts the bar chart from the newspaper with the data the children collected 
and put in a bar chart. It is when the two diagrams are being discussed at the same time through 
contrast it is made available for the children to discern. 

Story - Sociological perspective 

In the beginning of this utterance (line 1) we can see that the teacher is using a specialised language 
but is ending the sentence with a localising question. She is using the task at hand, namely asking: 
“Which pile became the largest, who received the most votes?”. The children are specialising when 
most of them are replaying on the first part of the question: “which pile became the largest?”. The 
teacher is then continuing with localising the discussion by asking: “Yes, is that the book that then 
won?” (line 3). The children then reply to the question with a “no” and the discussion continues by 
generalising and arguing why a large pile with few blocks is not the pile that has the most blocks (line 
6-11). In this part the teacher is localising and specialising, and the children are specialising by 
focusing on the number of blocks at hand.  

In line 8 the teacher is first responding to the students talk about the numbers of block: “Eight in that, 
and that one has only four”. Then, she is localising by again taking the question back to the task of 
which book is most popular; she says: “Well then, I say that is the biggest then I choose that book”. 
The children reply by generalising. By using two of the strategies, shifting between the discourses 
abstracting and particularizing, the teacher gets the students to generalise. Even though she does it on 
the limiting range, she still manages to get the children to generalise and see the point that she is 
trying to make. The interaction continues in this pattern. We can see that the teacher is shifting 
between localising and specialising and finally gets to the point where she can give the children an 
esoteric point with a specialised language (line 14). She is presenting how to make a bar chart. 
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Results 
In this section we will highlight the findings from the analyses when exploiting the same data but two 
different theories. To be more precise, since research in mathematics education narrates the process 
of teaching and learning mathematics, the analyses of the same data (perceptual mediator) can be 
seen as two methods of analysis (routines) with its own keywords.  

The most obvious differences between the stories are the depth of the mathematical discourses. The 
pedagogical strategy (sociological perspective) offers an insight to how the mathematical content is 
understood in a broader story in relationship to the discourse, while the theory of variation offers a 
more detailed description of the mathematical content. In the pedagogical strategy the routine reveals 
the vocabulary pattern, localising and specialising, the teacher is using to get the children to grasp the 
mathematical content being taught (how to make a bar chart) and she is given the opportunity to give 
the children an esoteric point with a specialised language (see figure 2 and line 14). If we look at the 
other analysis done with variation theory, the story comes closer to the mathematics being taught in 
the routine (method of analysis).  

Maybe one could have predicted the findings because of the different possibilities the various routines 
offer, but as stated in the beginning of the paper we are not interested in discussing the possibilities 
of combining them but rather look at how the stories are the same or different to answer the question 
about what can be gained and what will be lost when using two different theories? In their paper 
Bikner-Ahsbahs et al., (2019) argue for the danger of becoming blind to aspects that a theory does 
not capture. We find that the pedagogical strategy revealing the discourse of language and how the 
teacher using questions make the children aware of how to construe a bar chart, while the theory of 
variation afforded opportunities to follow the mathematics being taught. So, the stories are different 
and give us different perspectives. However, by using both of them on the same situation it might be 
so that other questions can be asked and yet another story told. 

Conclusion 
We are aware that in general different theories ask different research questions to the same perceptual 
mediator (data) and thus get different stories. In this paper, we do not ask explicit research questions 
to the perceptual mediator, even if each analysis contains an implicit question. This means that we 
tell the story from two different perspectives, regardless of the research question. Hence our 
conclusion forms new research questions. More data needs to be analysed and the analysis compared 
in order to get answers and not only new questions. Johnson et al (2019) linked theory and method in 
their research design for an expansion of design possibilities. In this paper we used “an old” episode 
and analysed it, but could we like Johnson et al integrate theories, and thus their different 
epistemological roots?  
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Introduction
TWG14, University Mathematics Education (UME), was launched in CERME7 (Nardi et al., 2011) 
acknowledging the fast growth of research in UME, as well as some specificities proper to UME.
Some of these specificities are: the abstract, formal nature of a significant portion of the mathematical 
content; the absence of national curriculum guidelines, leading to great variations in organization and 
practices across institutions; the general lack of systematic preparation for teaching; and, the volume 
of content to learn in a short period of time and the degree of autonomy expected from students. The 
consolidation of this research area, both outside and inside CERME, is visible through the number of 
UME-related activities in the last years: the publication in 2014 of a special issue about theoretical 
frameworks being used in UME research; the creation in 2015 of the International Journal of 
Research in Undergraduate Mathematics Education; the creation in 2015 of the International 
Network for Didactic Research in University Mathematics (INDRUM), which since 2016 has 
launched the biannual INDRUM conferences (an ERME Topic Conference) with associated special 
issues in journals (IJRUME and IJMEST) and the book Research and Development in University 
Mathematics Education (Durand-Guerrier et al. 2021); and, the organization in 2019 of the first 
Calculus in upper secondary and beginning university mathematics conference, to cite just a few.

In 2021 and 2022 we celebrated important anniversaries for the UME field: in 2021, the 10th

anniversary of the creation of TWG14, the 30th anniversary of the publication of Advanced 
Mathematical Thinking (Tall, 1991), and the 20th anniversary of the publication of the ICMI study 
The Teaching and Learning of Mathematics at University Level (Holton, 2001); in 2022, the 15th

anniversary of the emblematic handbook chapter Mathematics Thinking and Learning at Post-
secondary Level (Artigue et al., 2007) with the follow-up chapter 10 years later, Post-Calculus 
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Research in Undergraduate Mathematics Education (Rasmussen & Wawro, 2017). For all these
reasons, CERME12 provided an opportunity to celebrate UME research and to discuss its future.

This year, we received 41 paper and 9 poster submissions, with 27 papers and 14 posters presented 
at the conference and published in the proceedings. This number of presentations led to the decision
to have parallel session in two groups (TWG14A and TWG14B) addressing six themes (see below). 
We also held some common sessions to discuss transversal issues and recent achievements and 
challenges in UME research. This introductory paper summarizes the works presented in both groups 
organized according to the six themes, as well as the common discussions.

As in previous CERMEs, a significant number of papers focused on students’ learning of 
mathematical topics and practices (9 papers), such as Calculus, reasoning, and proof. Compared to 
CERME11, we received less papers in total (27 vs. 35) with some variation in the distribution in each 
theme: the number of papers addressing teaching and teachers decreased from four to three; the 
number of papers addressing students’ identity and experience went from three to five; the number 
of papers addressing the use of mathematics by non-specialists remained the same (two); and, the 
number of papers in interventions decreased from seven to two. The CERME11 theme about 
resources and curriculum (five papers) became the new theme on teaching and learning with digital 
resources (six papers). Finally, studies on transition (a theme in CERME11) were discussed within 
the six themes above. In the next section, we briefly present the six themes with examples from paper 
contributions. While many papers could fit in more than one theme, this classification helped structure
our work at the conference and the presentation below.

Themes and contributions
Students’ learning of mathematical topics and practices

Ten papers (Baldino & Cabral; Borji et al.; Karavi & Mali; Körtling & Eichler; Noah-Sella et al.;
Rogovchenko & Rogovchenko; Spratte; Utsch; Wallach et al.) and six posters (Beran; Fuchs; Hanke;
Oldenburg et al.; Piroi; Vincenzi) were classified under this theme.

These studies investigated different mathematical areas, with Calculus being the dominant (Baldino
& Cabral; Fuchs; Körtling & Eichler; Noah-Sella et al.; Oldenburg et al.), including advanced
Calculus topics such as multivariable functions (Borji et al.), convergence of sequences (Utsch) and
differential equations (Rogovchenko & Rogovchenko). There were also studies focusing on Linear
Algebra (Beran; Piroi; Wallach et al.), Complex Analysis (Hanke; Karavi & Mali), and Abstract
Algebra (Beran). Finally, one paper was on students’ proof reading (Spratte) and one poster on
incommensurability in regular polygons (Vincenzi).

Some of the papers discussed students’ learning (Körtling & Eichler; Spratte; Utsch) focusing on
students’ definitions (Körtling & Eichler), their intentions when reading proofs (Spratte), and
students’ connections between their concept images and definitions (Utsch). There were also studies
that discussed teaching innovations (Baldino & Cabral; Beran; Borji et al.; Fuchs; Piroi) focusing on
visualization in Linear Algebra (Piroi); the connection between Calculus and modeling techniques in
Physics (Fuchs); the introduction of the Fundamental Theorem of Calculus using discrete graphs
(COVID-19 graphs) and then moving to continuous graphs (Baldino & Cabral); the use of
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mathematical structures (Beran); and, the introduction of activities designed using APOS theory
(Borji et al.). Other studies investigated experienced and less experienced learners (Noah-Sella et al.).
Finally, there were studies focusing explicitly on teaching resources and lecturers’ practices (Hanke;
Karavi & Mali; Rogovchenko & Rogovchenko; Wallach et al.). These dealt with definitions in
textbooks (Hanke), the potential of Linear Algebra tasks to assist in transitions between multiple
discourses (Wallach et al.), an investigation on differential equations tasks in terms of assessing
students’ conceptual understanding (Rogovchenko & Rogovchenko), and the proving routines used
by a lecturer in Complex Analysis (Karavi & Mali).

Teaching and learning with digital resources

Six papers (Albano; Broley et al.; Davies et al.; Donevska-Todorova & Turgut; Gueudet et al.; 
Przybilla et al.) and one poster (Thoma & Iannone) were discussed in this theme. 

Some authors considered the use of traditional technologies: Broley et al. explored the issue of 
learning programming for mathematical investigations with the Anthropological Theory of the 
Didactic (ATD – Bosch et al., 2020). They established an epistemological reference model and 
investigated a student’s praxeological equipment. Gueudet et al. studied a similar issue with the 
instrumental approach (Gueudet, 2017), focusing on the social aspects in the schemes developed by 
students and associated to the programming artefact. 

Other authors considered relatively unexplored technologies: digital assessment and its use by 
university teachers (Davies et al.) or an automated theorem prover and its impact on students’ 
reasoning (Thoma & Iannone). Digital maps also seem to be a promising new tool, with different 
intended uses, such as fostering students’ collaborative work and their conceptualization processes in 
Linear Algebra by connecting different representations (Donevska-Todorova & Turgut). Experts can 
design digital mathematical maps to evidence connections between secondary school and university 
mathematics (more precisely Geometry, in the study by Przybilla et al.).

As we mentioned above, the theme of digital resources was new in TWG14. One of the reasons for 
the emergence of this new theme was the COVID-19 pandemic, which was evoked in several papers 
and played a central role in the study by Albano around the new orchestrations required in the context 
of hybrid teaching. The generalized use of digital platforms in university courses and its consequences 
were discussed in TWG14 and identified as directions requiring further research.

Students’ identity and experience

Five papers (Gandell; Göller; Kontorovich & Greenwood; Mullen & Cronin; Rasmussen et al.) and 
one poster (Nardi) were presented and discussed in this theme.

Three of the contributions to this theme focused on students’ in-class experiences. Gandell 
investigated students’ spontaneous mathematical thinking in movement, illustrating how this 
approach offers new insights into students’ mathematical knowing. Kontorovich and Greenwood 
investigated student experiences with proof in a Topology course, where students were provided with 
opportunities to prove the same mathematical statement in different social situations. Rasmussen et 
al. analyzed the individual and collective mathematical progress of one small group of four students 
in an inquiry-oriented differential equations classroom as they reinvented Euler’s method.
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The other three contributions focused on students’ out of class experiences and identity. Göller 
investigated first-year mathematics students’ everyday coping strategies while dealing with the 
challenges they face transitioning from secondary to university mathematics. Mullen and Cronin 
described a suite of online and in-person mathematics supports designed for in-coming first-year 
university students. Finally, Nardi took up the question of how well undergraduates understand the 
actual work that mathematicians do and argued that more needs to be done to make this work more 
visible and salient for undergraduate mathematics students.

Teaching and teachers

Three papers (Nseanpa & González-Martín; Tabchi & Sabra; Viirman) were in this theme.

The first two papers paid particular attention to the use of resources in teaching, building on the 
documentational approach (Gueudet, 2017). Tabchi and Sabra investigated the connection between 
the teaching practices of a lecturer at a Lebanese university and her activity as a researcher in Graph 
Theory. The lecturer herself perceived little connection between the teaching and researching aspects 
of her work, but analysis of her teaching practice and use of resources revealed such connections, for 
instance, regarding the use of generic examples. Meanwhile, Nseanpa and González-Martín, in a 
study of the teaching of derivatives at the pre-university level in Cameroon, focused on how strong 
institutional constraints shaped teachers’ practices and use of resources. These constraints included a
prescribed textbook, official teaching guidelines and a high-stake national examination. Findings 
indicate that national examinations strongly influenced the didactical choices of teachers concerning 
the teaching of the derivative, shaping, for instance, the way derivatives are introduced. Calculus was
also the topic of the paper by Viirman, which otherwise has quite a different focus from the first two 
papers in this theme. Viirman analyzed a set of 14 national accounts, written by experts in the field, 
of the teaching of Calculus in secondary education, at university and in teacher education. Differences 
and similarities between the accounts were highlighted, and findings were used to discuss how 
Klein’s second discontinuity plays out in different countries around the world.

Interventions

Two papers (Albano et al.; Markulin et al.) and three posters (Akrouti; Dreyfus et al.; Vourenpää et 
al.) were presented under this theme.

The research work presented by Albano et al. addressed the development of the problem-solving 
competence at the university level. In particular, they presented the design, implementation, and 
analysis of an activity in Topology. Markulin et al. discussed the use of Study and Research Paths 
(SRP) in statistics courses. We return to this paper in the next section.

Regarding the posters in this theme, they discussed activities designed for the teaching of integrals 
(Akrouti), the use of flipped classroom formats (Vourenpää et al.), and the development of a 
methodological approach for characterizing the interplay of mathematical progress across 
individuals, small groups, and the whole class (Dreyfus et al.).
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The use of mathematics by non-specialists

Two papers (Florensa et al.; Hitier & González-Martín) and two posters (Feil & Strauer; Schmitz et 
al.) were presented under this theme.

The two papers of this theme and one in the previous theme (Markulin et al.) used ATD as theoretical 
framework to address issues related to mathematics for students who did not chose mathematics as 
their main subject. Markulin et al. presented an analysis of the conditions and constraints affecting 
the implementation of SRPs in statistics courses at university level. Florensa et al. drew on ATD to 
analyse the discontinuities of the mathematical education of engineers. Finally, Hitier and González-
Martín conducted a praxeological analysis of the use of the derivative by students in post-secondary 
institutions concurrently following Calculus and Mechanics courses. The use of gaps in worked-out 
examples (Feil & Strauer) and of application examples (Schmitz et al.) were also discussed.

Transversal issues addressed in plenary discussions
Resources (including digital) and interventions

The focus of this discussion was on interventions and digital resources and was organized around
four thematic areas: design and sustainability of interventions; nature and impact of interventions;
design of digital resources and use by teachers; and, digital resources and students’ learning.

In relation to the design and sustainability of interventions, collaboration of mathematics education 
researchers with teachers with mathematics or non-mathematics specialty (e.g., physicists, biologists, 
etc.) is pertinent and necessary. However, practice highlights tensions in such collaborations, which
calls for systematic studies of what makes those collaborations work effectively. Additionally, more 
evidence is needed on the sustainability of interventions. In this sense, it seems that having a 
community already working together helps the initiation and stability of changes. Our discussions 
also suggested that institutional and socio-cultural perspectives have the potential to capture the 
development of such changes. Moreover, there is an overall agreement that the pandemic has 
triggered significant changes to UM teaching and learning practice. Digital resources obviously 
played a significant role in those changes; however, doubts were expressed about whether and which
of those changes will remain. Other questions we discussed are: Have online practices changed 
practices and interaction with mathematical content? If writing mathematics by hand is important, 
how can online platforms support mathematical communication effectively?

In relation to the nature and the impact of interventions, it seems that there is a variation of models 
regarding design and expectations. Several interventions aim towards inquiry-based learning and
more student-centred approaches. However, the nature of those interventions is influenced by 
institutional characteristics. Consideration of such institutional characteristics should be critical in 
future investigations. Furthermore, clarity on the aims of proposed interventions is essential. Such 
clarity can assist the evaluation of the impact of interventions. Such impact is discussed in recent 
studies also in relation to specific student demographic profiles (gender, socio-economic status, etc.),
a discussion that opens new opportunities for research on equity and access issues at UM.

Regarding the design and use of digital resources by teachers, some papers addressed new types of 
technology, such as theorem provers or digital assessment by indicating the pertinence of research 
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into innovative technologies, in particular artificial intelligence, for future works. Other studies that 
are necessary concern teachers’ use of digital resources (and how we could support productive uses 
and orchestrations), theoretical approaches and methods that can be appropriate to analyse the design 
and use of technology at UM (and the possible differences with other educative levels), and the short-
and long-term impact of the COVID-19 pandemic on practices related to the use of technology (e.g.,
teachers’ use of flipped classroom approaches during the pandemic may continue).

Finally, regarding the use of digital resources and students’ learning, we discussed the importance of 
identifying some consequences of technology use on learning, as well as on the epistemological level 
of the mathematics taught and learned. We also discussed the importance of theoretical and 
methodological approaches to address these issues, and of assessing the short- and long-term impact 
of the use of technology during the COVID-19 pandemic.

Students’ identity, experience and learning (including non-specialists)

Regarding these issues, we saw some innovative contributions at the tertiary level: the analysis of 
data about movement and its role in mathematical activity, the analysis of the individual-collective 
dynamic, models to study different transitions for non-specialists (pre-university to university; 
university to workplace; between mathematics courses and non-mathematics courses), studies about 
advanced topics (such as Topology and Complex Analysis), and studies about students’ appreciation 
of mathematics (for instance, in support centers, or with non-specialists). We also discussed the 
methodological challenges for some of these studies and how to upscale them.

Among the main challenges for the future, we discussed those related to remote teaching (for instance, 
how to assess, how to consider communication) and its impact on students’ learning and experience 
of mathematics. Another issue of interest is that, to better understand the experience of students in 
programs for non-specialists, we need to better understand how mathematics is used (or not) in other 
disciplines. These studies can also open new perspectives about students’ appreciation of 
mathematics, their identity and experiences. Such studies have the potential to move beyond a
decontextualized investigation of students’ learning of specific topics.

We also discussed some potential challenges on research findings dissemination, such as the 
communication of research data related to innovative topics (e.g., students’ movement, or how to 
share the large amounts of data that can be collected during remote teaching). Another challenge 
concerns the replication of studies conducted in other education levels with consideration of the 
cultural and institutional characteristics of UME. Also, some of the issues discussed in our group are 
not UME specific. These observations call for more interaction with other CERME groups.

Supporting university mathematics teachers and teaching

Research on UM teachers and their teaching has been gaining attention in recent years. However, 
research related to UM teacher education and professional development is rather scarce (Winsløw et 
al., 2021). Overall, there is a variation of practices and approaches on the preparation of UM teachers 
and the support they need for their profession. With this in mind, we opened the discussion around
two questions: “What support for teaching do mathematics teachers have access to at your 
institution?” and “What would you like to see in research on UM teachers’ support in the next years?”
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Regarding the availability of support, practices shared by participants in the group confirm the 
variability mentioned above. Very often teacher education and support is non-mathematics-specific,
with attention to general skills such as use of digital resources, organising lessons, engaging with 
educational literature and developing pedagogical practices. Mathematics-specific support often 
relies on ‘local’ projects supported by individuals or small teams. The proximity between
mathematics and mathematics education departments seems to influence the interaction between 
mathematics teaching and research on mathematics teaching. Sustainable models of mathematics-
specific teaching support seem to be those that are institutionally embedded and maintain mutual 
participation of mathematicians and mathematics educators. Institutionalized acknowledgment of and 
support for teachers and teaching-developmental activities (e.g., release of time, accreditation, 
funding) is also mentioned as a factor facilitating interventions and other teaching-related projects.

Education and support for UM teachers is an emerging area of research with need for further studies. 
Suggestions for future research proposed in our group include the study of the role of institutional 
structures on the support for mathematics teaching; the preparation of new or graduate teachers; the 
investigation around support for non-mathematics specialists who teach mathematics; and, the 
identification of the characteristics of productive collaborations between mathematics education and 
mathematics communities (see a recent publication by Goméz-Chacón et al., 2021). Furthermore, 
developmental research projects in this area should be more attentive to designing, implementing and 
evaluating pedagogical interventions towards institutional change, including the development of 
appropriate resources (design principles and implementation) for UM teaching.

Reflections and ways forward
We can see that many notable contributions of this year, as well as challenges for the future, are in 
line with the overview on CERME research in UME identified by Winsløw et al. (2018): (a) what is 
it?, namely research into current practices of UME (with no direct intervention), such as: 
mathematical content; methods and resources; transition phenomena; student experiences; and,
teaching non-mathematics specialists; and (b) what could it be?, namely developmental or 
experimental research, that includes an intervention design as part of the research project (e.g., 
research on, and for innovation in UME; i.e., interventions in specific courses or programs) and 
professionalization of UME practice (preparation of mathematics teachers).

In our discussions, the different impacts of the pandemic on many aspects – such as teaching and
learning, conducting research or collecting data – appeared as an important point for the research 
agenda. This impact may lead to more studies considering technological issues in UME research in 
the coming years. Other important topics are in line with those identified in CERME11 (González-
Martín et al., 2019): 1) the establishment of different types of collaborations and the development of 
theoretical tools to study them; 2) the study of complex phenomena, and the networking of theories 
(or the use of theories from other fields); 3) the need for large-scale studies and replications to 
consolidate results; 4) the development and testing of innovative research methods and data collection 
procedures; 5) the identification of the cultural, institutional, and local characteristics in some studies, 
and how changes in these factors may influence studies and results in other contexts; and, 6) studies 
on new or understudied topics, such as equity, access, and inclusion in UME.
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We believe the first ten years of existence of TWG14 have brought many advances in our field, and 
we predict more important contributions in the years to come. We are confident that the coming 
CERME conferences will allow us to pursue research on the areas and questions discussed this year,
to address and propose implementations for practice, and to open new areas for investigation. 
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The integral is one of the most important topics in Calculus and is difficult to understand for many 
students. When solving definite integral application problems, previous research has emphasized that 
students found the antiderivative procedure more useful and easier than the approximation process or 
area (Akrouti, 2020). Kouropatov and Dreyfus (2014) argue that “students rarely acquire 
comprehension regarding the integral concept; rather, even in the best cases, students acquire no more 
than formal techniques for the solution of specific exercises and problems” (p. 533). Students have a 
great overreliance on algebraic representation. Some authors explain the difficulties by a lack of 
understanding of the multiplicative structure of integral (Orton, 1983; Sealy, 2014), a poor 
understanding of the rate of change (Thompson, 1994), and resistance toward accepting accumulation 
as a function (Kouropatov & Dreyfus, 2014).  

To improve students’ understanding of integration and deepen their knowledge, I propose an 
approach based in a physical phenomenon. My idea consists in that the formal definition should 
emerge from informal ideas that are intuitively clear. Students should use a form of intuitive 
knowledge through their interaction with the real world. In addition, these types of knowledge lead 
them to work with their personal experiences (Moreno-Armella, 2014). This approach consists of 
presenting a situation to introduce the definite integral where students are invited to implement an 
approximation process through which its underlying structure could progressively emerge (Fig. 1). 
My goal is to investigate how students understand the underlying structure of integral when working 
with an adidactical situation. The framework guiding the analysis of student understanding is based 
on Bloch and Gibel’s (2019) Calculus Knowledge framework. 

Data from this study is from a larger data set, which included audio recordings of two instructors 
teaching the Riemann integral. Students participating (18 students were present in these lessons) in this 
study were attending a first-semester course in calculus. In February 2020, I suggested the situation 
to a group of students (19/20 years old) enrolled in the first preparatory year of Mathematics-physics 
(MP) at IPEIT (Institut Préparatoire aux Ecoles d'Ingénieurs de Tunis). In preparatory classes, the 
courses are organized into lectures and tutorials that each lasts two hours. I developed a detailed analysis 
of the lectures on the Riemann integral. Observation of these lessons allowed me to see the interaction 
between the teacher and the students. 

The analysis of the data collected emphasizes two obstacles encountered by students. The main one 
was how to consider the bar as a set of points. In fact, a few students viewed the bar as a continuously 
distributed line and then considered it as a collection of point masses. Therefore, they used the total 
mass divided by the total length of the bar. Then, they considered the length of the bar as a proxy for 
the number of points in order to implement an acceptable expression for . 
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The second obstacle for students was how to evaluate an infinite sum of products. In fact, it is a 
question of confusion between the limit of a sequence that converges to zero and the sum of an infinite 
number of terms of this sequence. 

Through this research, I hope to be able to design activities for students about integration that develop 
their understanding of underlying integral structure and improve how integral can be used in physics 
phenomenon.   

The proposed situation 

Evaluate the force of gravitational attraction between a punctual mass m of 2 kg and a continuously 
distributed bar of 6 m long and mass of 18 kg in the position below: 

 
Figure 1: The bar situation  
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This paper focuses on the notion of orchestration and explores its possible meaning in digital 
environment in the new distance/blended setting caused by pandemic. I review the literature about 
the concept of orchestration. Starting from the description of a learning scenario, the emergence of 
a new possible meaning of orchestration arises and some insights for further research are given.  
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Introduction and context of the study 
This paper wants to contribute to the debate on the theoretical construct of orchestration. The 
metaphor of orchestration has been largely exploited in education, both in mathematics education 
research and in research about technology-enhanced learning environments. However, the recent new 
context of digital education created by the pandemic, involving distance or mixed forms of 
participation in lessons (all the students at home or some students in the classroom and others at 
home), seems to highlight a needed evolution of the concept of orchestration. 

The study is embedded in the such a context of distance learning caused by the pandemic. University 
courses moved to digital platforms for synchronous lectures (in our case Microsoft Teams), supported 
by Learning Management Systems (in our case Moodle) for providing students with materials and 
individual or group learning activities. According to previous studies, our experience in teaching 
mathematics courses (especially Linear Algebra) for freshmen engineering students confirms that the 
didactic contract rules of the teacher and of the students are not aligned: 

At the mathematics (subject) level, both in the UK and in France, the lecturer expected that the 
text of the lecture would be used by the students, not only to learn and understand the concepts, 
but also as a model for certain mathematical practices, in particular mathematical proof. In France, 
we observed that the novice students did not adhere to this rule, and searched for worked examples 
(as models for such practices) in different kinds of resources such as their tutorial notes, textbooks 
and websites. […] students were searching for worked examples trying to reproduce techniques 
(Gueudet & Pepin, 2018, p. 69, 71) 

This is even more true in degree courses (such as Engineering degree) where mathematics is 
considered as a service subject, which often leads students to make the equivalence between learning 
mathematics and learning (by rote) mathematical procedures. In order to fostering change in students’ 
attitude towards mathematics learning, I started to be interested in designing and exploiting digital 
activities, which students can be engaged in. Before the pandemic, the Information Engineering 
students attended all together (almost 150 students) face-to-face Linear Algebra lectures, addressing 
the topic from both theoretical and procedural point of view. Then they were offered a 2-hours session 
per week in smaller group, consisting of 50 students, in order to work on and deepen the content of 
the week lectures, supported by a tutor. Due to my interest, I designed and provided students with 
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digital activities (e.g. Albano & Pierri, 2014; Albano, 2017), already implemented before the 
pandemic, with the didactic purpose of helping them in constructing relational 
mathematics/conceptual understanding of mathematics, as opposite to instrumental 
mathematics/procedural understanding (Skemp, 1976; Hiebert, 1986). Such activities have been 
designed according to an asynchronous setting and thus engaged students in their personal study 
time/space outside the classroom, so that they could participate at their own pace working at their 
home or wherever. In the weekly tutoring sessions, the students could discuss the activities with the 
tutor, as well as the tutor, having access to the digital platform where the students worked on the 
designed activities, could focus her interventions on the points of greatest difficulty detected. The 
new distance setting forced us to rethink the structure of synchronous lectures, with particular 
reference to the interactions and the involvement of the students that no longer could be the same 
than in a traditional face-to-face lecture. So I was concerned with two interrelated issues: finding out 
which Moodle tools offered support for interactivity and designing their use in order to enable 
students to develop relational mathematics knowledge. On one hand, questioning and answering is 
recognized as one of the most effective practice for promoting interactivity. On the other hand, 
conceptual understanding is not just a cognitive issue, but it is affected by affective (beliefs, 
perceptions, attitudes) and metacognitive (learners’ awareness and control of their own learning 
processes) factors. This means that any successful teaching/learning intervention should take into 
account all these three learning dimensions (cognitive, metacognitive and affective). I was interested 
in exploiting tools allowing to implement closed-ended questions/answers sessions and to collect and 
display right away the class-wide distribution of responses. Two tools offered by Moodle are Quiz 
and Feedback. The former allows to create (self-)assessment tasks. The latter allows to construct and 
submit a survey. Feedback falls into the category of so-called classroom response system (CRS). One 
of the early works on the use of such systems (Siau et al., 2006) points out some relevant pedagogical 
and curriculum issues, that can be valid also for the Quiz, including ‘when to introduce the questions, 
what questions to ask, and how much class time to allocate’ (ibid, p. 402). In this paper we state that 
the design issue should be focused on a learning scenario where each tool serves a particular purpose 
within a more general didactical objective. The metaphor of orchestration immediately comes to mind 
and it will be the underlying concept through the rest of the paper.  

Theoretical framework 
In this section we make a review of the concept of orchestration in technology-based educational 
research and mathematics education. 

Dillenbourg (2013) refers to orchestration as a form a management (regulation process) of integrated 
pedagogical and technical scenarios, including on one hand activities, that can be face-to-face or 
online, and on the other hand tools enabling the implementation of the activities. In his view, 
orchestration is not concerned only with learning, but also with various extrinsic constraints (time, 
space, discipline, curriculum,…). This is one of the features that distinguishes orchestration from 
instructional design, in addition to the fact that it relates to a group of students rather than an 
individual and that the teacher’s control prevails over that of the system. Dillenbourg states that 
‘orchestration’ strengthens the teachers’ potential in steering classroom activities and enables 
teachers to view things otherwise invisible. In response to Dillenbourg position, Kollar & Fischer 
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(2013) argue that the metaphor of music orchestra can be effective if it refers not only to the 
arrangement aspects (that is real-time management of activities and events) but also to whole process 
underlying the creation of music, which includes composing and conducting aspects too. They 
consider orchestration as “the process of creating, adapting and enacting a technology-enhanced 
learning scenario under complex classroom conditions” (ibid, p. 508). In their view, what Dillenbourg 
refers to as orchestrating actually means conducting. Composing consists of describing a scenario, 
constituted by resources and tools, specifying how they are combined and used by the teacher. 
Arranging is what the teacher does adapting the defined scenario to her classroom’s constraints. All 
the three processes are essential for technology-enhanced learning (TEL) being effective in 
classroom. Finally, they emphasise that the main objective of TEL is to facilitate student learning, 
which should always be taken into account. A further conceptualization of orchestration concerns the 
way in which the students are involved in the activities: individual, small groups, large groups. The 
design can foresee more than one mode of involvement or the real constraints can ask for changing 
the designed ones. Weinberger & Papadopoulos (2016) introduce the idea of orchestration of different 
social modes of learning. Students can learn individually or collaboratively, in small and large groups. 
Orchestrating social modes of learning means organizing learning choosing one of them or merging 
some of them. They argue that the transition from one social mode to another one should be carefully 
planned by the teacher taking into account how each of them help the students to reach the global 
learning objectives of the course. The teacher is recognized as the centre of a complex technology-
enhanced environment, where technology both requires to be orchestrated and can facilitate 
orchestration. 

In mathematics education, Trouche (2004) proposes the term ‘instrumental orchestration’ in a 
computerized learning environment (CLE). An instrument encompasses an artifact (i.e. a given 
object) together with utilizations schemes socially constructed by the subject. The process which 
gives rise to an instrument is called instrumental genesis. Trouche highlights that the complex 
artifacts present in CLE produce a set of instruments. The process of instrumental genesis as well as 
the articulation of instruments in CLE cannot be left to the students themselves but demands the 
guidance of the teacher, which can be done by means of instrumental orchestration. In this strand, 
Drijvers and colleagues (2009) propose a three layer model: didactical configuration, meaning the 
setting of the teaching environment equipped with artifacts (technological tools and tasks); 
exploitation mode, that is the way the teacher uses the didactical configuration in order to reach her 
didactical objectives; didactical performance, referring to ad hoc and run-time decisions taken by the 
teacher while teaching. Within the Theory of Semiotic Mediation (Bartolini Bussi & Mariotti, 2008), 
two different meanings of orchestration come into play: one referred to Trouche in relation to the use 
of artifacts, and one related to mathematical discussion, intended as the coordination of various voices 
emerged by the students with the voice of the mathematicians.  

In this paper we want to investigate the potential of the concept of orchestration as lens to analyse a 
learning scenario, implemented in a distance setting and based on the exploitation of technological 
tools offered by digital learning platforms. What is being orchestrated? The tools? The purposes for 
which the various tools are used? Something different?  
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A learning scenario 
In this section we present an actual learning scenario, implemented in a Linear Algebra distance 
course for freshmen Information Engineering students, equipped with Teams and Moodle. The course 
provides the students with synchronous online lectures (7 hours per week), tutoring sessions (2 hours 
per week), didactical material (videos, books, notes from digital board, worked-out exercises, slides) 
and resources (weekly tasks, quizzes, FAQ forum, periodic workshops for reviewing macro-sections 
of course contents). Various questions arose: concerning the precise didactical purpose of promoting 
conceptual understanding, how can Quiz be used? and Feedback? And how to handle the use of both 
so that one can takes advantages of the other one?  

The scenario and its implementation in class can be analysed in terms of orchestration. I choose to 
refer to Drijvers et al. (2009) orchestration model. I designed a didactical configuration, arranging an 
environment composed of three artifacts: a Moodle Feedback activity, investigating students’ 
perception of their mastery on a given topic; a Moodle Quiz activity, investigating students’ learning 
on the same topic; a Teams talk session for discussing the outcomes of the previous activities. The 
exploitation mode concerned the way I designed each artifact, described below, and the delivery 
timeline, which envisaged first the delivery of an affective activity, then a cognitive activity and 
finally a discussion that possibly moved to the metacognitive level. The design and the outcomes of 
the activities have been analysed both content-based and using the “in class” observation of the 
teacher-student interaction. The data have been collected by using Moodle reports related to Feedback 
and Quiz activities and recording the Teams talk session. I carried out a survey, by means of the 
Moodle Feedback tool, to collect students’ opinions on their level of knowledge for the topic of linear 
systems. Thus I submitted the closed-ended question in Figure 1.

 
Figure 1: Results of the Feedback 
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I collected 96 answers, pointing that most of the students were satisfied with their comprehension of 
the topic (Figure 1). Indeed 25% of all the participants were completely convinced of their mastery, 
about 70% of the students admitted to having some doubts which they felt they could clarify by 
studying in more depth with the support of the recorded lectures, very few students reported having 
gaps from the preliminary topic or being unable to recover the gap. After showing the students and 
commenting on the graph in Figure 2, the mood in the class was very positive as it reflected the fact 
that the students felt very confident with the subject matter. 

In the next lesson, I submitted a short quiz to the students: the first question shown in Figure 2 dealt 
with the notion of solution of a linear system, while the second question shown in Figure 3 dealt with 
the discussion of systems with echelon matrices. The former can be classified as an exercise, since 
establishing whether an item is correct or not requires direct application of previous knowledge, that 
is a definition. The latter can be classified as a problem, since it requires a certain reorganisation of 
the information given in the text and pieces of knowledge about linear systems and matrices in order 
to draw conclusions about the correctness or otherwise of the items at hand. 

 

 

Figure 2: Question 1 of the Quiz 

 

Figure 3: Question 2 of the Quiz 

Figure 4 shows the graph (produced by Moodle) of the marks (between 0 and 1,5 per question) 
received by the participants in the Quiz, with the total number of students distributed by grade range.  
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Figure 4: Results of the Quiz  

After showing the results of the Quiz, everyone was astonished: they made evident a great gap 
between the students’ perception of their mastery of the topic showed by Feedback and their actual 
mastery in solving the questions on the topic posed by Quiz. Thus the teacher started a collective 
discussion aimed at making sense of the gap. In terms of orchestration, the way in which the teacher 
led the discussion, the questions she chose to ask to guide the students’ reflection, the mirroring of 
some of the students’ interventions and the recapitulation of what emerged from the discussion 
concerns didactical performance. The discussion started with a question concerning the first question 
of the Quiz (Figure 2): 

Teacher: How do you determine which of the items presented is correct? Tell me which 
strategy you used. 

Student 1: Prof, I solved by using Gauss and got different solutions. 

Various students agreed with Student 1, so the teacher asked for someone who acted differently. 
Student 2: Yes, me, Prof. When he asked me if that 4-uple was a solution of the system I 

substituted it in and saw if it was equivalent. 

Using this intervention, the teacher focused the students’ attention on the definition of solution of a 
linear system and launched a collective discussion about its potential to investigate the items: it could 
be directly applied to items 1, 2 and 5, and depending on their value of truth some inferences could 
be done concerning the correctness of the remaining items. Then the students proceeded to apply the 
strategy come out from the discussion to answer to Question 1.  

Once completed, the teacher opened a further strand of discussion concerning the difference between 
the approach used by most of the students and the one used by few, as Student 2, which turned out 
successful. The teacher highlighted that the request of the question was to establish the value of truth 
of the items, whilst many of them seemed to have acted as if the request had been ‘solve the linear 
system’. Some students recognized that, taking this approach, they missed some correct items, since 
they were not able to recognize the equivalence between what they got solving the system and further 
description of the same solution set. From the discussion the need of a relational approach in contrast 
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to a instrumental approach emerged. This let the teacher shift the focus to Feedback results and gave 
her interpretation of the results, based on the assumption of students’ procedural learning, confirmed 
by Quiz outcomes and discussion: 

Teacher: the perception of your mastery emerged from Feedback is not false because I am 
sure you know how to carry out exercises but you have to move a bit further ... a 
few days ago someone asked me if in the exam quiz there will be theory questions 
... of course, this is a theory question. 

The lecture proceeded discussing question 2 (see Figure 3). It was particularly suitable for activating 
relational knowledge, both because the question dealt with a generic linear system (therefore no 
solving procedures could be applied as in the previous case) and several items were “if... then...” 
propositions, which brought into play reasoning and argumentation competencies.  

Insight for new research 
The previous learning scenario does not remain confined to distance learning, but it is inherited by 
the face-to-face lectures. Indeed, most of the students attend lectures equipped with their personal 
mobile device (smartphones, iPads and notebooks), thus lectures can be redesigned according to 
BYOD approach. In my view, this scenario poses the issue of a further development of research. In 
mathematics education the concept of orchestration has been developed mainly with the perspective 
of guiding students’ instrumental genesis. This is not the focus of the paper due to the general-purpose 
nature of the digital artefacts used by the students. But the instrumental genesis of the teacher using 
the digital tools could be a very interesting focus to be developed. For example, as we teach remotely, 
we develop many new schemes and sets of artefacts for teaching, and it can even influence how we 
teach in-person (providing evidence of the development of a scheme).Taking up  Dillenbourg’s idea 
of technology as something that makes visible what was invisible, we can look at what has been made 
visible by the orchestration performed in the above learning scenario. The use of feedback and quiz 
together, even in a specific order, made the students experience a discrepancy between their idea of 
mastery and that of the teacher that is realised in the exam paper (affective dimension), the subsequent 
(mathematical) discussion allowed the students to become aware of and reflect on their own learning 
processes (metacognitive dimension) through a cognitive analysis of the questions and answer items 
proposed (cognitive dimension). An hypothesis following this exploratory study could be that I 
started developing a scheme emerged by the presented scenario which allowed a successful 
integration of the three dimensions of learning that took place in the orchestration of the three 
activities feedback, quiz, discussion. This seminal study suggests new research to investigate the 
emerged hypothesis addressing the development of a renewed orchestration framework, taking into 
account the pedagogical aim of the teacher in using the digital tools, and a renewed teachers’ 
instrumental genesis for reaching this pedagogical aim. Such a new framework should exploit 
elements from various theories, in mathematics education and in technology-based education, 
according to networking of theories (Prediger et al., 2008). 
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This paper addresses the didactic issue of promoting the construction of the problem-solving 
competency for undergraduate students. We report the design of a learning activity, engaging 
students in collaborative problem solving in topology, each of them playing as a cognitive function 
coming into play when a mathematician faces a problem.  To shed light on the impact of the roles 
played by the students with respect to the solving-problem process, we analyze some student’s 
protocols from which we carry out for each role some actions as well as some benefits recognized by 
the students. 

Keywords: mathematics education, university, problem solving, cognitive functions, role-playing. 

Introduction and conceptual background 
Problem solving has a fundamental role in mathematics learning and its educational importance is 
stated at each school level and in every field of mathematics, as it provides experience of those key 
processes in mathematics education that are involved in exploring, conjecturing, proving, 
constructing examples and counterexamples, representing, monitoring etc. (Polya, 1945; Schoenfeld, 
1992; Carlson & Bloom, 2005). An important problem-solving activity, particularly efficient for the 
construction of new concepts (Dahlberg & Housman, 1997) is the students’ generation of examples 
satisfying particular constraints. In fact, the students’ production of examples can be a very complex 
activity, also for university students, that promotes the activation of fundamental cognitive processes 
(Antonini, 2011). At university level, a rich and deep field of mathematics is topology, a basic 
working tool of mathematicians in a variety of fields that can offer the undergraduate mathematics 
students the experience of engagement in a real problem-solving process. In this paper we are 
interested in promoting the construction of problem solving competency for undergraduate students, 
attending a topology course within Bachelor of Mathematics. The study of introductory general 
topology topics requires activating the significant cognitive functions, that are the mental processes 
(Kiely, 2014) that come into play during the problem-solving process. Polya (1945) highlighted that 
often the teacher poses questions and suggestions useful to the problem solver and recognizes them 
as indicators of mental operations typically useful for the solution of problems. In this strand, Albano, 
Coppola and Dello Iacono (2021), looking at how mathematicians behave when solving a problem, 
individuated some mental processes they usually activate (e.g. looking for paths, questioning herself, 
organizing herself, systematizing the findings, …), identifying them as roles/cognitive functions that 
a problem-solver should activate. These roles are: 1) Boss: she manages the work from every point 
of view (organizes actions, calls to the task, requires participation); 2) Promoter: she gives insights 
to promote a path that, starting from and manipulating prior mathematical knowledge (concepts and 
propositions), leads to the construction of examples, conjectures and outlines a solving strategy. In 
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case of trouble, she asks for the teacher’s help; 3) Critical mind: she questions the truth of the 
arguments and the validity of the answers proposed by the group, with the aim of corroborating their 
findings; 4) Blogger: she collects and rearranges everything that emerges from the discussion, to draw 
up a document containing all the arguments, notes, doubts, questions, answers.  

We face the issue of promoting the development of students’ ability to solve problems by offering 
them structured opportunities which allow the students to imitate and practice (Polya, 1945) and to 
become aware of their cognitive processes, so being able to monitor and coordinate them (Schoenfeld, 
1992). The assignment of roles expands the potential of students as it gives them the opportunity to 
improve their problem solving skills at various levels: cognitive, metacognitive, affective. Exploiting 
and extending the results of a national project1, we used the metaphor of storytelling to characterize 
the problem solving process at two levels: the process itself is seen as a mathematical story and the 
cognitive functions coming into play during the process become characters of such a story. Students 
are engaged in collaborative problem solving, where each student is required to play the role of a 
character of the story, that is she personifies one of the envisaged cognitive functions (Albano, 
Coppola & Dello Iacono, 2021). During the problem solving process, the students are expected to 
develop a mathematical narrative, consisting of their co-constructed notes on a digital board and a 
final collective report on the problems’ solution. In this paper we report the design of a learning 
activity (Podolskiy, 2012), engaging undergraduate students in collaborative problem solving tasks. 
We discuss the first outcomes of the analysis concerning the metacognitive aspects, that is the 
students’ declarative knowledge and awareness of the cognitive functions they experienced by 
playing the corresponding roles during the activity.  

Experimental design 

The design of the learning activity foresees that the students face a problem-solving task, consisting 
of three problems. According to the engagement model of Albano, Coppola and Dello Iacono (2021), 
the students work in groups of four or five people, each of them playing the role of one cognitive 
function. The groups are engaged in problem solving at different levels. One group, called Solver 
group, is devoted to collectively solve the three problems, and each of the students in the group acts 
according to one of the cognitive roles described in the previous section. The remaining groups, called 
Onlooker groups, are required to observe how the Solver group is working. Each student is guided to 
reflect both on how a specific one Solver member acts with respect to her role and on how the 
mathematical process is carried out by the entire Solver group. Therefore, personifying an Onlooker 
role stimulates a critical reflection not only at the cognitive level, as it allows a student’s engagement 
in the mathematical problem, but also at a metacognitive level, as it fosters student’s monitoring skills 
related to a role to play in a subsequent activity. A further level of reflection is added with respect to 
the previously cited engagement model of Albano et al. Indeed, we assume an incremental goals’ 
structure of the problem-solving task: each of the three problems aims at a specific sub-goal, going 
from routinary employing mathematical concepts, facts, procedures and reasoning to creating new 

 
1 PRIN “Digital Interactive Storytelling in Mathematics: a competence-based social approach”, PRIN 2015, Prot. 
20155NPRA5, national project funded by the Italian Ministry of Education, University and Research. 
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mathematical knowledge. We envisage as many Onlooker groups as there are problems, so that each 
of them is focused on one specific problem. Each student is required to draw up a personal Logbook, 
containing some guidelines to reflect on the role she assumed, both as Solver and as Onlooker. 
Furthermore, at the end of each activity, every group is required to draw up a collective Logbook, 
reporting the solution of the problem and the process made to reach it (detailing the experience, how 
the construction of the answers took place, paying particular attention to the arguments they adduced 
in solving the three sub-problems). In order to foster the awareness of all the cognitive functions, 
students change roles with each new activity, also changing Solver with an Onlooker group and 
permuting the Onlooker groups (so changing the problem to be focused on).  

Methodology 
The experience involved about fifty students attending the course of Geometry III at the second year 
of a degree course in mathematics. The course Geometry III aims to introduce students to the 
fundamental concepts of general topology and to stimulate them to be able to use ‘topological eyes’, 
often far from the Euclidean ones. Besides acquiring content knowledge, the main educational goal 
is to construct students’ mathematical reasoning capability, by means of analyzing and exploring 
problems, with an efficient use of topology concepts and results.  

According to the design, each activity has an assignment on which students work in groups of 16-20, 
divided into 4 subgroups corresponding to the Solver group and the three Onlooker groups. In our 
experiment, all the participants have been split into three groups, named WG1, WG2, WG3, each of 
them consisting of four subgroups WSGi.1, WSGi.2, WSGi.3, WSGi.4 (i=1,2,3). Each student has 
been associated with a role-pair (subgroup role, individual role). Each subgroup acted as Solver or as 
Onlooker, so the corresponding value of the variable ‘subgroup role’ could be S or Oi, where Oi 
means that the subgroup acted as onlooker on the i-th sub-problem. The values assumed by 
‘individual role’ corresponds to the cognitive functions played. 

Along the course, students have been involved in three activities CWi (i=1,2,3). Both individual and 
collective roles changed as the activity CWi changed. More precisely, the assignment of roles in the 
passage from one activity to another can be described by a double permutation, one corresponding to 
the subgroup role and the other to the individual role.  As an example, a student who has been assigned 
the role-pair (O1, Promoter) could take on the role-pair (S, Critical mind) in the next activity.  This 
means that, while in the first activity the student belonged to the Onlooker group focused on the first 
problem and she was required to observe the work of the Promoter in the Solver group, with whom 
she confronted, during the second activity, she belonged to the Solver subgroup and acted a Critical 
Mind. In every activity CWi, the problem-solving task consisted of three problems: the first two 
concerned basic concepts introduced during the lectures and required the construction of examples of 
topological spaces or subspaces under given constraints; the third one was less routine (for instance, 
students may be asked to provide some characterization related to the property that is being 
investigated). Figure 1 gives a flavor of the kind of problems the students were asked to face. 
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Figure 1: The task for the students 

Each working group WGi had at their disposal a digital environment, consisting of various tools:  
a) a collaborative board Miro, enabling to collectively brainstorm in order to solve the problems, by 
adding post-it, importing images, drawing and connecting ideas, exchanges comments by chat; b) a 
collaborative document (shared Google-doc), used to report the solution product and process; c) a 
personal document (private Google-doc), used to report the reflections concerning the roles played 
during the experience.  

All the data concerning the learning activity have been digitally stored, by means of the used tools 
(Miro and Google-doc). At the end, a questionnaire was submitted for investigating the students’ 
perceptions. Here, we focus the qualitative analysis of the roles, looking at the students’ answers in: 
- the personal Logbook: Describe how you played your role (as Solver and Onlooker) and what your 
contribution was. Do you think that the interventions related to your role were useful to achieve the 
objective? Why? Would you have done something differently? Why? 
- the questionnaire: In the activities you played a role as Solver or Onlooker. For each role, tell us 
from your point of view how it contributes to solving the problem. If you think about when you are 
solving a problem on your own, do you recognize any of these roles in what you do during the solving 
process? If so, which ones more frequently? Are there any other roles you identify? Tell us. 
In particular, we are looking for excerpts describing the characteristics of the roles and the benefits 
of playing such roles, as perceived by the students. 

Preliminary findings and discussion 
We analyzed the Logbook and the questionnaires of 24 students. The answers to the above questions 
shed light on the impact of the roles played by the students with respect to the problem-solving 
process and to their usual own experience of problem solving. 

Concerning the role of the Boss, the student St1 says: 
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St1:  I immediately noticed her attention to details. Thinking of doing something useful 
for those of us who might have some deficiency on the tools required to face the 
task, she wrote in a frame [on Miro] all the useful definitions, such as boundary, 
interior, closure [of a set]. This has created a sort of “safe-spot”, a point where you 
can have everything you need ready for use. She acted as a leader. 

This excerpt seems to highlight the Boss’ characteristics of a leader, implemented as someone who 
makes the group “safe” with respect to the problem-solving process. This means that she takes charge 
of supplying the group with mathematical recall notes connected to the given problem. The student 
St6 reports a similar work of the Boss (recall definitions), highlighting that such work let all the 
students be more comfortable with the needed background mathematical knowledge. 

The role of the Boss is a disputed one. On the one hand, it is considered as a key role: 
St1:  The only real distinction was therefore that of boss / rest of the solver group, but 

without this negatively affecting the results. 
St4:  The boss of the solver group is the main role because he coordinates the entire group 

and manages to make the onlookers understand the work done. 

On the other hand, sometimes, it can be perceived/played as a rote-role, without any added value, as 
shown by the following excerpts.  

St15:  I think it is the least useful role, since its role is only to check if all the work is 
progressing correctly, but does not interact in any way with the other students.  

Actually, it seems that the experience of student St15, playing as ‘boss’ or onlooking ‘boss’, leads 
her to perceive the role differently from the designers of the activity. In fact, the cognitive function 
corresponding to ‘boss’ envisages someone who coordinates and takes care that everyone participates 
in the solving process. It is not her business to check the correctness of the work. 

The role of Critical Mind seems to have promoted the action of questioning, and it has been 
recognized how much such action fosters a broader view of the problem solving: 

St7:  This work allowed her to ask more questions about the topics useful for solving the 
problem, and to have a broader vision of how a given exercise could be solved with 
different methods and observations. The role of Critical mind and, at the same time, 
that of the onlooker of the critical mind, proved useful in stimulating new proposals 
and new points of view, questioning the choices that are made each time and rattling 
off the strategies adopted as much as possible. 

It is worthwhile to note that the role of Critical Mind has stimulated the student to pose questions to 
herself and to promote a critical attitude: 

St17:  It helps me to understand the mistakes I make, saying to myself: “stop, think: why 
did you carry out this calculation like this? Would it be simpler in another way? Is 
there any theorem or statement that can help me solve this exercise more quickly? 
And I find all of this very useful for the smooth running of a problem”.  

The student S12 highlight the importance of this role at individual and group level:  
St12:  In addition to an individual utility, I believe that the role of critical mind was very 

important for the whole group because often in the resolution of an exercise it can 
happen to make mistakes or inaccuracies without realizing it and the critical mind, 
insinuating doubts, manages to bring to attention the steps on which we need to 
work better. 
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The student St5 points out the role of the Promoter as someone who sketches a working outline, to 
engage the whole group in developing a solution and activating a thinking process: 

St5:  My idea as a promoter is precisely this, to propose your ideas despite some small 
inaccuracies in order to encourage the intervention of others and reach the final 
solution. 

St13: I think about how to develop a certain problem. 

It is interesting to note that the Promoters’ suggestions are constructed on previous knowledge: 
St14:  She manipulated known propositions and concepts to build examples and strategies 

that led to the resolution of the problems 

However, the role of Promoter does not always find the same appreciation and this is probably due 
to different values and personal beliefs about the roles: 

St22:  I also appreciated the promoter but to a lesser extent than Boss and Critical mind 
only because I personally think that finding an idea is less interesting than stressing 
it. 

Concerning the role of the Blogger, it seems to impact on the cognitive level (e.g. reasoning) as well 
as on the affective one (e.g. engagement of the group), as shown in the following: 

St11:  The student I observed, that is the one who played the role of Blogger, played his 
role well, collecting and tidying up the board, highlighting some definitions and 
observations useful for carrying out the exercises, through the use of arrows and 
schemes that made the key concepts clear. He exploited and used the comments 
made in the chats by the other members of the group as well. 

St13:  His interventions were therefore also useful for taking stock of the situation from 
time to time, reorganizing ideas and, asking to repeat some of the concepts, also 
giving the possibility to those who may have remained behind to pick up the thread 
of the discussion. 

As for the Boss, also the Blogger is a disputed role. On the one hand, it is considered pivotal: 
St12: I believe that the role of blogger was fundamental for managing space and order on 

the board. Working in an orderly environment, in my opinion, favors concentration, 
allows you to easily identify the elements necessary to conduct a certain reasoning. 

On the other hand, it can be played at surface level, just looking at aesthetic aspects: 
St15: It is a secondary role in my opinion, since in most cases he was only concerned with 

the    stylistic point of view of the board, caring little or nothing about the content. 
St22:  …the blogger did not impress me as I found it marginal with respect to solving the 

problem. 
Table 1 shows a synoptic picture of the performed analysis. The first column shows some excerpts 
from the personal Logbooks that the students filled along with the activity on the basis of the roles 
they played (steered by the questions reported in the ‘methodology’ section). The second column 
shows excerpts from the questionnaires, submitted at the end of all the activities.   
It seems that the logbooks show descriptions of the roles according to the actions that are recognized 
as belonging to a certain role, while the questionnaires show the roles in terms of the characteristics 
that define them in a problem-solving process. Furthermore, the table shows that sometimes the roles 
are experienced by the students in a way that corresponds to the designers’ model, while in other 
cases some students find them difficult or uninteresting or give them an interpretation different from 
that of the designers, as in the following examples. 
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Table 1: Students’ excerpts 

       Excerpts from the personal logbooks       Excerpts from questionnaires 

Boss − plans, arranges and coordinates the work 
− pays attention to certain details that can 

benefit all the group  
− briefly recalls the key starting concepts that 

could be useful for solving the problem 
− enforces the assigned roles  
− involves all members of his group in solving  

− is a predominant role taking care of the group 
− puts all members of the group in the same starting 

conditions trying to eliminate all possible 
differences or prejudices about individual abilities 

−  makes you break down shyness 
− keeps his group cohesive      
− is the least useful role      

 

Critical 

mind 

− raises questions, also concerning the validity 
of the arguments 

− allows questions to be asked 
− analyze the various procedures critically 
− stimulate new proposals and new points of 

view 

− allows you to gain awareness and to understand 
your own mistakes 

− allows you to develop a broader view of how a 
problem can be solved 

− fosters reasoning and searching for alternative 
simpler ways of moving in the problem space 

Promoter − sketches ideas to be completed 
− manipulates known propositions and 

concepts to build examples and strategies 
− retrieves useful material (sources from 

books, lecture notes, ...) 
− communicates with the teacher for help 

− allows you to start reasoning 
− allows you to repeat useful notions 
− allows you to think how to develop a problem 
− opens to change the way to solve the problem 
− promotes the engagement of peers 
− is less interesting than critical mind 

Blogger − rearranges the various information emerged 
from the discussion 

− clarifies the many ideas presented by peers  
− uses arrows and diagrams to make the key 

concepts clear 
− tidies up the board 

− makes the solving process clear 
− promotes concentration 
− helps to keep the logical thread  
− helps to take stock of the situation from time to 

time 
− has a secondary role 
− it is marginal to the resolution of the problem 

Sometimes roles didn’t work out because students got ‘too busy’ with solving the problem. Here the 
roles functioned as a ’group’, not fragmented: 

St16:  Personally, I didn't fully respect my role when I was in the solver group, as working 
all together, and taken up by problem solving, we didn't pay much attention to the 
roles we had to fill. …. I think this was the most difficult aspect to respect, everyone 
was aware of the roles, which were respected as a group but not by the individual. 

What emerged and synthesized in the above table seems to confirm that the students actually grasped 
the characteristics of each cognitive function, recognizing their functional goal with respect to 
successful problem solving. Assigning a role serves to activate a specific cognitive function, to 
stimulate the activation of some cognitive processes, and the roles would seem to be tight especially 
to those students who usually activate all of them. Sometimes these kinds of students tried to cross 
over and join the group of solvers even if she was not part of it. We could compare the action of 
assigning a role with giving the student a piece of chalk, associating chalks of different colors to the 
different roles by which to write on the board Miro and to contribute to the construction of the story 
and the fabula. Thus, each group is engaged as in a thinking classroom, as “a space that is inhabited 
by thinking individuals as well as individuals thinking collectively, learning together and constructing 
knowledge and understanding through activity and discussion” (Liljedahl, 2016, p. 364). We could 

Proceedings of CERME12 2337



 

 

 

speak of “thinking groups” (Thinking Solver group and Thinking Onlooker group), where each 
member performs an active function to solve a problem, by means of an action that stimulates a 
cognitive thought process that could remain dormant and blocked.  

We conclude by noting the educational importance of engaging students’ in experiencing all the roles, 
in order to recognize all of them as pivotal to be successful in problem solving, similarly to how a 
mathematician usually uses them all when facing a problem. However, it is not taken for granted that 
a student activates them all, and this can cause difficulties. There are problems in front of which some 
roles do not come out, maybe because students are not used to or are more comfortable only with 
some of them. The experiment allowed the students to share the profile of a mathematician and in 
some cases to recognize themselves as mathematicians. Generally speaking, the learning activity 
proposed aimed at promoting and developing processes involved in problem-solving competency and 
an attitude of a mathematician towards problems mathematics, not aimed at ‘re-producing’ theorems 
and proof learned in class, but to autonomously ‘produce’ something of their own, new and original. 
Further research will be needed to investigate the processes involved in playing specific roles in 
problem solving and in the personal development of such important competency. 
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This is a theoretical article hailing at classroom practice. It was originally intended to be a report 
on an ongoing study introducing the fundamental theorem of calculus in a STEM freshman course, 
but the necessary explanation of our epistemological position has taken up most of the available 
space. Based on Hegel and Lacan, we argue for the reality of language against the implicit realistic 
positions that dominate mathematics education research. We describe how Cauchy’s “one says that” 
(on dit que) created a bubble of semantic conventions. From inside this bubble, mathematicians only 
recognize the students by their shadows on the wall, like in Plato’s cave. We argue that learning 
occurs outside the bubble. Instead of dragging the students in, to teach them ready-made notations 
and methods, our study exercises the dialectics of language in interaction with the students. We stick 
faithful to our lemma: one teaches by listening and learns by talking.  

Keywords: Hegel and Lacan, dialectics of language, Cauchy, fundamental theorem of calculus, 
infinitesimals. 

Introduction 
Initially, we intended to report on our experience with constrained remote teaching during two 
semesters as teacher-researchers (Tabach, 2006). We introduced the fundamental theorem of calculus 
(FTC) by working out the graphs of Covid-19 as displayed in the media. Once the students could 
meaningfully state the FTC about the discrete bar graphs, we moved on to the continuous case by a 
sudden change of scale (Ellis et al., 2020), thereby changing the referent of discourse. Ideas of limits 
and infinitesimals emerged from the students. This didactic strategy is justified in the ensuing 
theoretical development. Some of the worksheets used are available in https://cabraldinos.mat.br/ 

In the present analysis, in order to bring the dialectics of language and the subject of speaking to the 
foreground, we engage in a critical dialogue with a certain mathematicians’ perspective about 
teaching (Tall, 2009; Tall & Katz, 2014; Thompson, 1994, 2019; Ely, 2017). We focus on three 
signifiers used by Cauchy (1821): “one says that” (on dit que), “becomes an infinitesimal” (devient 
un infiniment petit), and “the neighborhood” (le voisinage). Referring to Hegel (Hippolyte, 1977) and 
Lacan (1973), we show how these signifiers have created a bubble of semantic conventions that can 
be called mathematics of the twentieth century (M20); this bubble is the epistemological habitat of 
mathematicians. We argue that, due to the inherent semantic limitation, mathematicians are unable to 
leave the bubble to meet the students on their path to the bubble. They can only drag the students in 
and produce models of students’ ways of thinking by looking at their shadows on the wall. Important 
concepts like mathematics, number, and infinity, remain outside the semantic reach from the bubble. 
Mathematicians tend to mix up teaching, understanding and learning. 
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Language and the subject come first 
To ground our study, we sought to discern events that could be placed upstream of the epistemological 
flux that led to the FTC. Marx’s maxim advised us: the anatomy of man is the key to the anatomy of 
the ape. We asked ourselves: do we know what we are looking for? Yes, in our classes we expect the 
students to express in current language: the integral of the derivative is the variation of the function, 
and the derivative of the integral is the function itself. Guided by these current language statements, 
we were able to locate one of the origins of the FTC in Barrow’s theorem (Barrow, 1976, p. 78, Figure 
109). It is well-known that this theorem became the cornerstone of a discussion that lasted two 
hundred years. We will take this theorem as an example of a signifier, a core concept for us. 

Barrow did not write the theorem for us; he was addressing his contemporaries that shared a certain 
common epistemological spirit. We say that Barrow took that theorem as a signifier to represent 
himself as a subject to another signifier (Lacan, 1973, p. 188). More than three centuries later, it 
happens that this second signifier is available to us, so that not only can we understand the theorem 
and its proof, but we can represent ourselves as subjects by this second signifier to a third signifier, 
belonging to the reader, etc. This movement of language and subject from one signifier to the next 
we call the dialectics of language.  

Language is not only a system of signs alien to the signified, it is also the existing universe of 
sense, and this universe is the interiorization of the world as well as the exteriorization of the “I”. 
Language is a double movement that must be understood in its unity. (Hippolyte, 1977, p. 24) 

Due to this subtle but ubiquitous double movement, words acquire their meaning and we become 
their speakers. We were able to locate Barrow’s theorem because what we were looking for was 
already specified in language. Insofar as we ‘make sense of the world’ it is the world that posits its 
sense across us. A double movement constitutes both, human subjects and language. The movement 
is prior to the opposing poles that it generates. Accordingly, there is neither a universal “I”, owner of 
an inner meaning to be expressed, nor a world out there of which one can speak and make sense by 
“using” language. There is no “dialectics between”, no “dialectic relation” (Pais, 2016).  

We apologize for demanding of the reader the effort to understand ideas so strange to commonsense. 
They are necessary to elicit the realistic1 positions prevailing in mathematics education research. For 
instance, the belief in “underlying mechanisms that shape human thought, building from the 
fundamental level of human perception (…)” (Tall & Katz, 2014, p. 100) leads to the postulate that 
“the underlying brain activity is more fundamental” (p. 102). The next step in this line of reasoning 
is to state that “our brains make sense of the world by assembling neuronal information" (Tall, 2009, 
p. 482). The apex of this chain of psychological materialism is the search for the “number neuron” 
(Dehaene, 1997, p. 57). A criticism of this chain of thought may be found in Pais (2019) and Webel 
& Stigliano (2004), as well as in Baldino (2019), a parody about the number neuron.  

 
1 https://en.wikipedia.org/wiki/Scientific_realism 
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Dialectics vs understanding 
By the time of Barrow, mathematics and philosophy had formed a single body of knowledge whose 
esthetic was modeled on Euclid. Newton followed this model, while Leibniz broke apart from it, and 
the two vied for being credited with the "discovery" of calculus. Berkely criticized them both. The 
story of this imbroglio is well known.  

In the beginning of the nineteenth century, Hegel criticized the mathematicians for not been able to 
provide rational foundation for their science (1985, p. 236-309). By the end of the eighteenth century, 
Kant’s philosophy had become prevalent. Hegel called it understanding (Menschenverstand) and 
referred to his own system as speculative philosophy. Hegel’s went beyond Kant’s philosophy. 
Understanding establishes clear cut distinctions between thought and being, subject and object, form 
and matter, discourse and referent, us and the world, etc. Due to these distinctions, understanding was 
prone to being well received in the imbroglio of philosophy and mathematics. Understanding was a 
reference for the movement for rigor that ran throughout the nineteenth century and is becoming 
stronger in STEM today. For instance, Kant’s philosophy has been explicitly evoked to support the 
hegemony of mathematics over mathematics education; an “apprenticeship model” attributed to 
Dawkins and Weber (2017) is proposed by Rittberg et al. (2020) and criticized in Baldino and Cabral 
(2021). 

Understanding postulates the existence of a beyond that cannot be reached by knowledge nor, 
consequently, by language: the so-called thing in itself is not cognoscible. This philosophical position 
favors the polysemy of the signifier “mathematics” discussed in Cabral and Baldino (2021): it favors 
inconsequent research in mathematics education, while the classroom resists. We argue that language 
must be brough to the fore. This endeavor naturally points to Lacan wo goes beyond Hegel and states 
plainly: “there is no being outside language” 2. We cannot survey the meaning of the word “dialectics” 
from Plato to the present. We will retain the meaning it has in a formula that may condense the whole 
of Lacan’s work: “dialectics of the subject and the Other” (Lacan, 1973, p. 205, 239). Accordingly, 
by “dialectics” we will refer to both, the dialectics of language, as in Lacan, and to Hegel’s speculative 
philosophy which Žižek has elicited as the background of Lacan’s work.  

However, dialectics is not a substitute for understanding; this would be an assumption proper to 
understanding. Dialectics exerts itself on understanding, leading it to recognize the contradictions 
that unavoidably stem from its black-and-white divisions. Dialectics does not fight for victory; it is 
guided by the political necessity of the moment; it fights to continue fighting. If understanding dies, 
speculative philosophy dies too “and in this night of mere reflection and of the calculating intellect, 
in this night which is the noonday of life, commonsense and speculation can meet one another” 
(Hegel, 1977, p. 103).  

The disentanglement of mathematics and philosophy is taking place today, under the arrogance of 
science over humanities. In his paper on quantum mechanics, Gauthier (2010, p, 2) aims to “make 
explicit the concept of probability in order to extract the mathematical content from its mystical  

 
2 “ Il n’y a d’être que dans le langage.” https://www.youtube.com/watch?v=njA-1a4N_iw 
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(philosophical) gangue [sic]”. What is it that is being separated from its “philosophical gangue”? 
Strangely enough, this is left to philosophers to explain, since mathematicians do not say what 
mathematics is. Scott (2012) shows what happens when a physicist (Stephen Hawking) draws on his 
professional status to gather audience to speak about what he does not know. We must be aware of 
such antagonisms because understanding and dialectics face off when they meet the student in the 
common ground of the classroom, in the “noonday of life”. 

Cauchy and the bubble: on dit que 
Concerned with the polysemy of the signifier, Cabral and Baldino (2021) characterize “mathematics” 
as special form of discourse that was born in Ancient Greece. This discourse, which they call quilted 
speech, aims to stop the slide of the signified under the signifier: each signifier would have a single 
precise meaning:  

The understanding would like “a fixity and an exactitude that is not found in existing language; 
the idea of creating a pure language, a system of symbols which remain absolutely invariant over 
the course of the diverse combinations they undergo comes from this. (Hippolyte, 1977, p. 46) 

The whole imbroglio following Newton and Leibniz may be looked at as an attempt to quilt speeches; 
people refer to it as “rigor”, “formalization”, “definition of the concept” etc. In 1821, Cauchy 
introduced a precision into quilted speeches that eventually completed the separation of mathematics 
and philosophy. In his Cours d’analyse de l’École Royale Polytechnique, he wrote: “One says that a 
variable quantity becomes infinitely small when its numerical value decreases indefinitely so as to 
converge towards its limit zero” (Cauchy, 1821, p.  26, added emphasis).3  

On the one hand, he cut the gordian knot of misunderstanding with a semantic convention: “one says 
that” (on dit que). However, on the other hand he conserved the movement of dialectics of language 
by saying “becomes” (devient).4 Something ceases to be what it is and becomes something else. Hegel 
would appreciate this proposition as a perfectly dialectical one: its very utterance imposes a 
movement of language that preserves what it denies; this is expressed by the German verb “to 
transcend” (aufheben). Hegel (1985, p. 69) calls this movement of language “becoming” (das 
Werden).  

Cauchy’s semantic convention was followed by Weierstrass, Hilbert and many others. They created 
a language bubble that we call M20. This bubble became the habitat of a community of speech whose 
members are the mathematicians (Cabral & Baldino, 2021). This community decides what counts as 
a valid inference; for instance, it informally accepts the use of the axiom of choice and the continuous 
hypothesis.   

The membrane that delimits the bubble is opaque for those inside it. Like in Plato’s cave, 
mathematicians only see shadows of the external world. The infinite movement of the dialectics of 

 
3 On dit qu’une quantité variable devient infiniment petite, lors que sa valeur numérique décroit indéfiniment de manière 
à converger vers la limite zéro.    
4 In Portuguese, devenir, to become, is a reflexive verb: tornar-se: to change oneself is a perfect expression for learning, 
a movement that occurs in language through which a subject changes herself. It is up to the native speakers to compare 
the relative weight of these verbs in their respective languages.  
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language is left outside, including important concepts, like “mathematics”, “number” and “infinity”, 
that find no “definition” inside the bubble. The “repetition of a process with an underlying pattern of 
successive states” (Tall, 2009, p. 483) is what Hegel calls the bad (schlechten) infinity. The passage 
from one member to the next in a sequence is an indefinite repetition of sameness, with no risk of 
producing changes either in the subject or in the object in the dialectics of language. Only this finitized 
infinity is admitted into the bubble; the apex of finitization of M20 is Weierstrass epsilontics.   

When mathematicians face the necessity of teaching, they have an inkling that something is wrong. 
They do not realize that the student is outside the bubble, plunged into the infinite movement of 
language. They try to pull her in to teach her the concept by “defining” it. Looking at her shadow on 
the wall of the cave, they offer us this precious confirmation of our criticism: “Students’ mathematics 
is the mathematical reality they experience, which is wholly theirs and is unknowable to us in the 
same way dark matter is unknowable to us” (Thompson, 2019, p. 39). 

It is transparent that Kant’s philosophy supports this ideology: the thing in itself is not cognoscible. 
Mathematicians are aware of the failure of their teaching methods. For instance, even after four 
semesters of calculus, students are not only unable to use the FTC, but they do not recognize its use 
when it is presented to them (Tompson, 1994, p. 256, ex. 7.10). Limited by the opacity of the 
membrane, mathematicians tend to explain this failure by the tautology of lacking: the difficulties 
with the FTC “stem from impoverished concepts of rate of change and from poorly developed and 
poorly coordinated images of functional covariation and multiplicatively-constructed quantities” 
(Thompson, 1994, p. 229). That is, the difficulty lies precisely in what was taught to these students. 

Tall (2009, p. 484) refers to the “notion of a generic limit” to account for the difficulties of students 
with the limit of sequences and the concept of infinitesimal. However, as justification of this concept 
we only find the expedients: “a natural human belief that the limiting object is endowed with the 
same properties as the individual terms” and “infinitesimal concepts are natural products of human 
imagination” (p. 483, both emphases added). We finally collect the mathematicians’ recognition of 
the impossibility: “Like with dark matter, the best we can do is make models that fit observations and 
are consistent with other models” (Tompson, 2019, p. 39).  

Cauchy and infinitesimals: devient…le voisinage 
A full account of the polemics around Cauchy can be found in Katz and Katz, (2011) and Tall and 
Katz (2014); these articles include an impressive list of references only available in universities of 
the so-called First World. By requiring “mastery of the field” as an academic prerequisite for anyone 
who has something to say on the subject, one risks blocking out the new and foment cultural 
imperialism.   

We read the second part of Cauchy’s “becomes”, together with this other excerpt: “Besides, one also 
says that the function f x  is, in the neighborhood of a particular value assigned to the variable x, a 

continuous function of this variable (…)” (Cauchy, 1821, p. 35, added emphasis).5 The French 

 
5 On dit encore que la fonction f(x) est, dans le voisinage d’une valeur particulière attribué à la variable x, fonction continue 
de cette variable (…).  
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singular “le” stresses that a numerical “value”, has only one “neighborhood”. Consequently, when 
this value is zero, we may assume that this neighborhood consists of the “infinitely small variables” 
(variables infiniment petites, p. 65). These signifiers do not belong to the quilted speech of the bubble. 
We agree with Katz and Katz (2011, p. 426) that we should “jettison the automatic translation-to-
limits” in reading Cauchy. Instead, we propose a reading-to-infinitesimals as in Sad et al. (2001). 
Cauchy is saying that a variable that converges to zero becomes an element of the monad of zero, o,
a whole universe of infinitesimals that is incommensurable with ours. 

From the dialectical perspective, Robinson is not a “consequence” of Cauchy. Marx’s aphorism about 
the man and the primate must be evoked once more. Cauchy’s discourse on infinitesimals has actually 
been quilted and finitized by Robinson. Only from this perspective can we look back and ask where 
this quilting came from and what its trajectory to the present has been. To the myriad things that have 
been said about Cauchy, we dare to add: the mature Cauchy of 1853 was waiting for rigor to catch 
up to him when he restated his 1821 theorem (Sad et al., 2001). This was the trajectory of the dialectics 
of language that led from Leibniz to Robinson.  

The completion of with the monads stemming from his sequences was already an embryo in 
Cauchy’s “intuition”, with no need to invent classes of equivalence of such sequences to fill in the 
gaps of . Indeed, consider sequences ka of rational numbers that satisfy Cauchy’s condition:

We can take adequate equivalence classes of such sequences and form what we now call the field of 
finite hyperrational numbers O . If we introduce the operations of addition and multiplication as well 
as the order relation elementwise among the monads, we get a complete ordered field (isomorphic to

), namely, the quotient ring O / o (Stroyan & Luxemburg, 1976, p. 9, Katz & Katz, 2011, p. 448).  
We say that a single movement of the dialectics of language that is still taking place posits these 
signifiers under the form of an identity quilted speech inside the bubble and also posits ourselves as 
subjects who utter these speeches.

Consequences for mathematics education
The teaching experience that we initially intended to report consists in working on the COVID-19 
graphs until the students are able to formally express and meaningfully utter that 1) the variation of 
the running total is the area under the daily deaths, 2) the moving average of the daily deaths is the 
variation rate of the running total and 3) the one-day-based moving average is the number of deaths 
of the day before. These, of course, are the statements of FTC. Next, we replaced the discrete graphs 
of a few days in the pandemic with continuous graphs of an endemic disease that lasted for many 
years (Ellis et al., 2020). We insisted upon the expression and formula for the one-day-based moving 
average. The whole discussion occurred in the realm of the dialectics of language; we only tried to 
collimate the students’ discourses towards the signifiers in the bubble. For instance, only when they 
were trying to express one day in sixty years did we suggest dt, “a little bit of”, according to Tompson 
(1914). For the areas under the graph, the students suggested A(a, b); neither Leibniz notation for the 
integral nor Riemann sums were necessary.
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We did not drag the students into the bubble to teach them how to interpret the M20 readymade 
symbols (Ely, 2017). We believe that the more one tries to do so, the greater the difficulty for the 
students. Asunder from the dialectics of language and modeling shadows of students with finitary 
processes, mathematicians can do no more than teach finite processes. Learning depends on the 
infinity of variables in the dialectics of language, insofar as the students start representing themselves 
as subjects in current language by new signifiers. In this respect, the possibility of open-camera, eye-
to-eye communication and video recording was a blessing to our long-standing methodology (Cabral, 
Pais, & Baldino, 2019) based on the aphorism one teaches by listening and learns by talking. 
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In the poster, I describe one part of my project of “structural thinking and its teaching” that focuses 
on the design and implementation of a seminar for first-year students at the Faculty of Mathematics 
and Physics. The aim of the seminar is to bridge the gap between secondary and university 
mathematics. This seminar is based on exploring symmetries of regular polygons and polyhedra, 
building on students’ previous knowledge and being a starting point to more abstract disciplines. 

Mathematical structures constitute the core and simultaneously the image of modern mathematics 
(Corry, 2004). On the other hand, the attempt for the modernisation of school mathematics, 
promoted by the Bourbakist movement and culminating in the 1960s, ended rather unsuccessfully. 
This attempt focused on incorporating mathematical structures into secondary school mathematics 
via highly abstract university-style “definition-theorem-proof” led to formalism. Hence the gap (and 
so Klein’s double discontinuity) between “modern” university mathematics and “classical” school 
mathematics has remained wide open and still forms a barrier, especially for first-year university 
students of mathematics, including future teachers. 

For this reason, the seminar at the Faculty of Mathematics and Physics was created aimed at trying 
to help students to accommodate different styles and also to inspire them for further studies. I have 
a repeated opportunity to make a few sessions with students where we are exploring the structure of 
symmetries of geometrical objects. My goal is to familiarize them with tools and concepts which 
they will meet in the following obligatory courses of linear algebra (in their first year) and abstract 
algebra with the basics of group theory (in their second year). I use a more constructivist and visual 
approach and relate new concepts to their current knowledge from secondary school. 

Content 
In this seminar, together with students, we first explore one particular, well understandable 
example: symmetries of a square. From secondary school, students are well acquainted with 
geometric transformations (from a synthetic viewpoint) and they can easily enumerate that square 
rests invariant under three rotations and four reflections. However, we realize that these 
transformations do not form only a set, but, as we can compose them – follow one by another –, 
they form some algebraic structure. Therefore, students are asked: How could we describe this 
structure, group of symmetries of a square? 

Students’ first idea is usually to record it by a table of composition (Cayley table), as it is analogous 
to a well-known multiplication table. However, to deduce all combinations geometrically is 
exhausting. Moreover, students realize that some of the transformations do not commute. We would 
like to represent the symmetries in a way we can really compute with them – to represent them 
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analytically. Here, I follow students’ secondary school knowledge of analytical geometry and 
introduce linear transformations of a plane, represented by matrices. With a general form of a 
matrix of rotation and reflection, completion of the table is much easier. Another suitable 
representation is by permutation of vertices. 

Then I raise a question: Are there any effective tools that enable us to understand such structure? In 
a similar manner, together with students we explore possible substructures and organize them as 
sets by inclusion – another already known concept for students – into partially ordered set (poset), 
more precisely lattice of subgroups. By this, students also recognise various properties of different 
subgroups: some are commutative, some are even cyclic, and we discuss how we could represent 
them by additive and multiplicative groups of integers modulo n. The next topic is the presentation 
of a group by generators and their relations; we visualize this with the Cayley graph. 

The example of square symmetries is particularly suitable because we can illustrate enough 
interesting properties and also this group is small enough to make computations inspiring rather 
than tedious. In this elaborate example, I provide students with principal tools and concepts 
enabling them to grasp the structure of a given group. Subsequently, we can extend the scope and 
leave students to get familiarized with tools. Students have to describe the group of symmetries of 
an equilateral triangle and then generalize it on a dihedral group. After this, we move one 
dimension higher for symmetries of tetrahedron and cube and the most interested students can also 
explore the icosahedral group. Physical models of those regular polyhedra, a familiar topic from 
secondary school, are used to make the transformations more tangible. Later we can add more 
concepts (e.g., quotient groups) and also explore infinite groups: symmetries of friezes and 
wallpapers. Further connections to Galois theory can be added from Gray’s textbook (2018). 

Conclusion 
The content rises from current students’ secondary school knowledge: geometric transformations, 
analytical geometry, sets and their ordering by inclusion, regular polygons and polyhedra etc. It can 
be a starting point for more sophisticated concepts (matrix eigenvalues and eigenvectors, normality, 
group automorphisms) and abstract disciplines (not only linear algebra and group theory but also 
universal algebra, Lie groups etc.). This content is also used in a seminar for talented students at 
secondary school. I hope that these ideas may be inspiring for teachers both at the university and 
secondary school levels. Mathematical structures do not have to be taught as an axiomatically 
presented subject for itself but can be incorporated into secondary and university mathematics more 
implicitly, mainly as an effective tool for dealing with mathematical problems. In this way, they can 
also promote the development of students’ general structural thinking. 
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We used Action-Process-Object-Schema (APOS) theory to analyze the possibility of replication of 
results obtained in our previous research on student understanding of two-variable functions when 
using a similar teaching approach in a different institutional context. The experience was conducted 
at a university in a different country from those in previous studies. The experience consisted in 
comparing two groups of the same course, one taught through lectures and the other using 
collaborative work and activities designed with APOS theory. In this study, we show a summary of 
results obtained through a comparison of students' performance in both groups. Findings show the 
generalizability of results obtained in previous studies and the possible replication of didactic aspects 
across institutions. In particular, it was found that using APOS theory’s didactical approach favors 
a deeper understanding of functions of two variables.  

Keywords: Functions of two variables, APOS, reproducibility, understanding. 

Introduction 
Multivariable functions play an important role in many professional fields in modeling numerous 
phenomena which naturally depend on several variables. In this research, we discuss results obtained 
in a research study where the didactical approach developed by Martínez-Planell and Trigueros (2012, 
2013, 2019) and Trigueros and Martínez-Planell (2010) through three cycles of research on the 
learning of two variable functions was used by a different teacher (the first author of this article) and 
in a different country. Our interest was to compare results obtained in a new context in terms of 
similarities with those obtained previously and critically analyze the possible similarities and 
differences obtained. Results of the first research cycle (Martínez-Planell & Trigueros, 2012; 
Trigueros & Martínez-Planell, 2010) stressed the importance of helping students construct an  
Schema including different subsets such as points and their movement in space, and fundamental 
planes and their intersection curves with surfaces (for a detailed description of an  Schema see 
Martínez-Planell & Trigueros, 2019). The authors stressed the importance of conversions between 
different representations. They also underscored that generalization from the one-variable to the two-
variable context is not easily done by students; the reconstruction of many basic ideas is needed. In 
their second research cycle, Martínez-Planell and Trigueros (2013) stressed the need to explicitly 
consider situations where the notion of free variable is needed to graph two-variable functions, 
cylinders, and make sense of other subsets of three-dimensional space. In the third research cycle, 
Martínez-Planell and Trigueros (2019) found that students in a section that had used their research-
based activity sets and using the ACE cycle (activities, class discussion, and exercises) as didactical 
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strategy outperformed students in a regular section (without the use of specially designed activities), 
and were more likely than students in the regular section to construct a conceptual understanding of 
function of two variables. 

This study can be considered a replication study (Melhuish & Thanheiser, 2018) as it aims to confirm 
or refute previous results in the literature. “Replication study” has various possible meanings, none 
of which is generally accepted (Sanchez, 2020). In this article by “replication” we mean a test of a 
result of earlier research work that replicates most of the methodological features of the original study. 
Our study also satisfies conditions proposed by Star (2021), for a study to be a replication rather than 
a follow-up study, in that our study starts from results (rather than from a new idea) and it has a basic 
structure isomorphic to that of the original study, with methodological differences that do not alter 
that structure. Our replication study cannot be said to be either internal or external, in the sense that 
two of the researchers participated in the original study (internal) and one did not (external). The 
advantage of an internal replication is the knowledge of instruments, methods, and contributions of 
the original study, thus allowing a more faithful reproduction; the disadvantage is that it may be 
subject to some unconscious confirmation bias and that it might allow the incidence of “inside” 
knowledge that would make it difficult for others to conduct equivalent studies (Schoenfeld, 2018). 
Our study pairs internal and external elements and so has the experience advantage of internal 
replication, while the external member affords the needed independence to safeguard against 
confirmation bias and the incidence of “inside” knowledge. The merit of this type of study has been 
suggested by Melhuish and Thanheiser (2018), We consider that the inclusion of the external 
researcher helped in overcoming both the incidence of internal knowledge, with his independent 
teaching, and the subjective bias that the original authors may introduce in their results. 
Generalizability and confirmation bias (Schoenfeld, 2018) is further addressed by the negotiation of 
results in the independently obtained analyses. Mathematics education, as a field of study, strives to 
understand and describe findings but also to change and improve the way mathematics is taught. It is 
important to aim to go beyond basic research and propose and test research findings under the same 
conditions and also under new ones to describe the conditions, affordances, and constraints of the 
experience (Maass et al., 2019). Replication, as described above may validate research results, and 
help understand their possibilities and constrains under different conditions. Given the importance of 
multivariable calculus and the observed difficulties that students have learning this topic, it is 
important to study if pertinent research findings are applicable in different classrooms and to verify 
if this is the case in different institutional contexts. That is, it is important to question, could other 
researchers, in other types of institutions, with a different sample population, obtain comparable 
results? 

Theoretical framework 
In APOS (Arnon et al., 2014), an Action is a transformation of a mathematical Object that the 
individual perceives as external. An Action may be the rigid application of an explicitly available or 
memorized procedure. When an Action is repeated, and the individual reflects on the Action or on a 
chain of Actions, it might be interiorized into a Process. A Process is perceived as internal. The 
individual is able to justify the Process, to omit steps and anticipate results without explicitly 
performing the Process, and thus to generate dynamical imagery of the Process. When the individual 
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is able to perceive a Process as an entity in itself, and is able to do or imagine doing Actions on it, the 
Process is encapsulated into an Object and new Actions can be performed on it to determine, for 
example, its properties. An Object can be de-encapsulated into the Process it came from when 
necessary. A Schema is a coherent collection of Actions, Processes, Objects, and other previously 
constructed Schemas having to do with a particular mathematical notion or topic. In APOS, 
mathematical knowledge with respect to a specific mathematical notion or topic, is defined as the 
general tendency of the students to perform Actions, Processes, Objects or Schemas in different 
problem situations related to the notion. Research in APOS typically starts by proposing a model, in 
terms of the structures and mechanisms of APOS, of how a student may construct a specific 
mathematical notion. This model is called a genetic decomposition (GD). It is used to design research 
instruments and didactic activities. After implementation of the GD-based activities, research is 
undertaken to find out what conjectured constructions students can do, which cause them difficulty, 
and what unconjectured constructions are done by students. Research results may suggest revising 
the GD and, consequently, the designed activities. The revised GD may then be tested through another 
research cycle. One may continue doing research cycles until the GD no longer needs revisions. At 
that moment the GD will model how students, in practice, do construct the mathematical notion of 
interest. The research questions in this study are: How do students’ constructions when using 
research-based activity sets and the ACE cycle compare to those of students in a lecture-based section 
not using the activities? How do students’ constructions compare with those obtained in the previous 
study? 

Methodology 
Two groups of an Iranian university participated in this study, one which will be called the APOS 
group, and the other the regular group. The APOS group worked collaboratively with GD-based 
activities designed for the third cycle of the Martínez-Planell and Trigueros (2019) study. Students in 
the regular section were taught mainly through lectures. Both groups used the same standard textbook 
(Stewart, 2012) and followed a very similar course syllabus (chapters 12 to 16 of Stewart), including 
the same assigned homework exercises. The main difference was the use of the additional GD-based 
activities (Martínez-Planell & Trigueros, 2017) for the APOS group and the teaching methodology. 
Eleven students from each group were chosen to be interviewed so that in each group they represented 
the spectrum from above average to below average students as determined by their one-variable 
calculus course grade. The participating students were chosen so that those course grades were as 
similar as possible. Both groups (APOS and regular) had the same professor in their previous one-
variable calculus course; the professor that taught the multivariable calculus course to the regular 
group of the present study. The professor of multivariable calculus for the APOS group was one of 
the authors of this article. All of the interviews were conducted by the instructor of the APOS group. 
Each interview lasted about 1 h. Interviews were conducted in person (not online), recorded, 
transcribed, and translated. The transcripts were individually analyzed by the researchers and 
differences in opinion were negotiated. Students’ response to the interview questions were graded for 
their mathematical correctness; this was used to identify general patterns. The instrument involved 
questions related to constructions of: 1) fundamental planes (planes of the form ,  , , 
for  constant) and their intersections with surfaces, 2) free variables (i.e., variables that can take any 
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value without affecting the values of the other variables, like y in , , or in the 
intersection of the plane  with the surface ), 3) graphing two-variable functions, 
and 4) domain and range. 

Results 
We compared the performance of students in the APOS and regular sections. Our comparison showed 
that the total percentage of correct answers in the graded interview questions obtained in the APOS 
section (65%) was more than twice that of the regular section (25%). Table 1 compares the average 
scores of students in the APOS and regular sections in problems dealing with the intersection of a 
surface with a fundamental plane, the notion of free variable, domain and range, and graphing. It also 
compares the results of this study with those of students of the original article (Martínez-Planell & 
Trigueros, 2019). The table suggests that the GD proposed by Martínez-Planell and Trigueros (2019) 
and the activity sets, designed to foster students’ constructions described in the GD, seem to help 
students construct a deeper knowledge of basic and geometric notions of functions of two variables. 

Table 1: Comparison of APOS and regular sections in the original and reproducibility studies, by 
problem categories (total points obtained/total possible points) 

Problems dealing with: 
% APOS section 

reproducibility 
study 

% Regular section 

reproducibility 
study 

% APOS section 

original study 

% Regular section 

original study 

Fundamental planes 70 15 85 25 

Free variable 67 18 58 17 

Domain & Range 64 45 72 21 

Graphing 60 20 84 23 

% entire instrument 65 25 77 34 

Fundamental planes and their intersections 

Eight of the eleven students in the APOS section showed to have constructed fundamental plane as a 
Process or were in transition to doing so. Student A6 demonstrated the construction of fundamental 
plane as a Process. When drawing in 3D space the collection of points in that satisfy the equation 

 and that are also in the graph of the function : 

Student A6: I only need to know the graph of  when , umm the  is a plane. I 
consider  as . I have to substitute  into  and  can be 
everything. So  will be umm , its graph is something like a parabola which 
is placed on the plane . When  is 0 then  will be 4 so the minimum height 
of the parabola is 4 umm at the point  [Figure 1]. 

 

Figure 1: Student A6’s response 

Proceedings of CERME12 2352



 

 

Student A6’s overall behavior gave evidence of construction of the Process of fundamental plane. He 
gave evidence of relating algebraic and graphical representations of fundamental plane, including its 
placement in space. Moreover, A6 also demonstrated to have encapsulated this Process into an Object 
by performing Actions upon it, in order to obtain the resulting curve and to place it in its appropriate 
place in space. In comparison to the APOS section’s students, only three of the eleven students in the 
regular section showed the construction of fundamental plane as a Process or showed to be in 
transition to doing such a construction. To exemplify the understanding of fundamental plane 
constructed by most students in the regular section, we consider R4’s response to the same problem: 

Student R4: I know  is a line in 2D and it’s a plane in 3D. 

Interviewer: Okay, find what the question asks for. 

Student R4: I can’t draw  in 3D. 

Interviewer: Is it necessary to draw it? 

Student R4: For solving this question yes, I need, so I can’t solve this question. 

Student R4’s response showed that although he was aware that  is a plane, he believed that he 
needed to draw the surface in order to represent its intersection. He seemed not to be aware of the 
geometrical meaning of substituting a number for a variable in an equation; he showed a rigid 
understanding of its being a plane with algebraic representation as a variable equal to a constant but 
he was not able to use this information to do the needed Actions to find the intersection with the 
surface. R4’s responses throughout the interview showed that R4’s understanding of fundamental 
plane can be considered as consistent with an Action conception. 

Free variables 

We found that six students in the APOS section could construct a Process of free variable, meaning 
that they coordinated the Processes involved in relating the algebraic context of an equation (some 
with unnamed variables) and its solution set, with the verbally or symbolically given geometric 
context in which the equation and its solution set were to be interpreted. Two more students in the 
APOS section evidenced to be in transition to constructing such coordination. In contrast, two 
students in the regular section showed they had constructed or were in transition to constructing that 
coordination. We consider A5’s response to one of the questions related to free variables. In the 
question, students were asked to draw the intersection of  with the 
x axis:  

Student A5: On the x-axis, we have  and , so I have to put 0 for , I should solve the 
equation , the values of  are 1 and -3, therefore the answer will be 
two points,  and . 

A5 was able to interrelate the given equations, the unmentioned variable z, and the context of the x 
axis he was asked to presume. By contrast, only two students in the regular section (compared to eight 
in the APOS section) gave evidence of relating the given equation, unnamed variable, and presumed 
context for solving problems related to free variable, or were in transition to constructing such 
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relations. There were seven students in this section who were not able to correctly or even partially 
solve any of these problems. R3 is an example of such a student. In the same problem as above: 

Student R3:  For  we have a circle umm it’s , [sic] umm a circle with 
radius 2... Since we are in 3D, I think we have a sphere with center , 
and . So, the intersection with the  axis will be a segment of the  axis. 

 

Figure 2: Student R3’s work 

Note, not taking into account her algebraic mistakes, that R3 attempted to graph the surface S rather 
than interpret algebraically the required context of the x axis, and she set the missing variable equal 
to zero (“for ”), without making reference to the x axis, rather than treat it as a free variable.  

Graphing 

In general, the graphical representation of functions of two variables posed difficulties for students 
in all the sections. However, students in the APOS section were more likely to exhibit behavior 
consistent with a Process conception of function graphing than students in the regular sections, who 
seemed to rely more frequently on memorization or who showed not to have yet constructed a relation 
between fundamental planes and graphs.  We consider A4 as an example of a student in the APOS 
section who evidenced construction of a graphing Process. When graphing : 

Student A4: If my parabola  that I drew it in the previous part moves in the  direction 
then I can imagine the graph  in 3D, a surface umm it’s like this [See Figure 
3, left]. 

In her response, A4 showed to relate fundamental planes to graphing (“if my parabola  that I 
drew it in the previous part”) and gave evidence of dynamical imagery (“… moves in the  
direction”). Showing connections between different representations and generating dynamical 
imagery is consistent with a Process conception. Eight of the eleven students in the regular section 
could do none or only one of the five problems dealing with the graphical representation of a function. 
We considered R3 as an example of these students. When graphing , R3 interpreted it 
as  and directly generalized from the 2D to the 3D context to obtain a paraboloid (Figure 3, 
right). Moreover, she was not be able to justify, which is consistent with performing Actions. 

 
Figure 3: A4’s work (left) and R3’s work (right) in drawing   
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Domain and range 

We will focus on two of the interview problems dealing with domain, where students had to represent 
the domain of  restricted to the pairs that satisfy  and  as 
a subset of 3D space, and also had to find the domain of . 

Student A4: It explicitly tells us that the domain of  umm is all the pairs  
such that  and . Its figure I mean the domain in 3D is like 
this square in the  plane [Figure 4, left]. 

Student A4: [in the next problem] The domain of function  is  because I can put 
all the points  of the  plane into . 

The above response shows that A4 reconstructed her notion of function domain to deal with the new 
situation of functions of two variables. Domain elements are now ordered pairs of real numbers rather 
than real numbers. Further, she relates her verbal set-theoretic description to the graphical 
representation of domain in 3D. Now consider the case of student R4. 

Student R4: The domain of  is umm set of points  such that , , 
and ,  belong to . The domain is this part on the  axis and this part on the  
axis [Figure 4, right]. 

 
Figure 4. A4’s work (left) and R4’s work (right) in representing the domain 

Student R4’s drawing shows that he attempted to directly generalize his notion of one-variable 
function domain as an interval of real numbers to deal with the new two-variable function context. 
He did not show the reconstruction of domain as a set of ordered pairs. 

Discussion and conclusions 
In this study, as in the original, considerable differences in the constructions made by students in the 
APOS and regular sections were found. Observation shows that in both, the original and new studies, 
students who were taught using APOS theory’s didactical approach and using the activities designed 
with a validated genetic decomposition showed the constructions of the expected Actions and some 
of them showed the construction of Processes demonstrating a deeper learning of topics related to 
functions of two variables. Discussing replicability of studies in the context of mathematics education 
research is difficult. Mathematics education is a social phenomenon and, as such, is also complex. 
We limit our attention to study if the use of a specific didactical approach based on a cognitive 
theoretical approach to teach a specific mathematics topic, functions of two variables in this case, 
results in similar learning in two different institutions. It is very interesting to observe that the mental 
constructions observed in students in the APOS and regular sections in both institutions seem, for the 
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most part, to be independent of the country and the institution where they were studied. So, our results 
show that there may be cognitive factors that are somehow independent of social, cultural and 
institutional differences. Results show that the use of activities designed in terms of the constructions 
described in a validated GD, in this case for the teaching of two-variable functions, are useful in 
promoting a deeper learning of this topic in two different contexts when the teaching approach follows 
the ACE cycle. This may ratify the strength of the GD as a design model and also how research-based 
activities using this prediction model and collaborative work can result in students’ learning with 
some independence of the teacher, the institution and the country where they are used. 
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In mathematics education research, the use of different theoretical lenses can lead to a deeper 
understanding of phenomena such as the teaching and learning of programming for mathematical 
inquiry at university. In light of our past work leveraging the instrumental approach, this paper seeks 
to explore the potential contributions of a different lens: the Anthropological Theory of the Didactic 
(ATD). Through a comparative analysis of “practices to be learned” in a mathematical inquiry 
project and “practices actually learned” by one student, we demonstrate the usefulness of the ATD’s 
notion of praxeology. The complementarity of the analysis with our past work calls for further 
reflection on the networking of institutional and instrumental approaches. 

Keywords: Institutional approach, praxeology, mathematical inquiry, computer programming. 

Introduction 
Researchers working on the networking of theories in mathematics education claim that using 
different theoretical lenses can lead to a deeper and more complex understanding of a phenomenon 
of interest (Bikner-Ahsbahs & Prediger, 2014). In our work, we are interested in the teaching and 
learning of programming for conducting mathematical inquiry at the university level. So far, our 
research team has utilized the instrumental approach and demonstrated the usefulness of several of 
its tools: e.g., the notion of scheme for understanding individual students’ learning over time (e.g., 
Buteau et al., 2019) and the notion of instrumental orchestration for exploring how instructors create 
a learning environment to support students’ learning (e.g., Buteau et al., 2020). In this paper, our aim 
is to see what additional understandings could be gained about our phenomenon of interest when 
using a different theoretical lens: namely, the Anthropological Theory of the Didactic (ATD). More 
specifically, the research question guiding our work is: How can the theoretical tools offered by the 
ATD contribute to our understanding of students learning to use programming for mathematical 
inquiry at university?  

The selection of the ATD was inspired in part by the fact that it has been used by the first author in 
several past works (e.g., Broley et al., 2018, which reports on mathematicians’ use of programming 
in research and teaching). The ATD is also becoming increasingly used by researchers of university 
mathematics education; however, as far as we know, it has not yet been used in research about 
students learning to use programming for mathematical inquiry. Moreover, overviews of the use of 
different theoretical lenses to investigate university mathematics education have highlighted the 
potential complementarity of the ATD and the instrumental approach (e.g., Gueudet et al., 2014; 
Winsløw et al., 2014). As such, we see our work as providing both an empirical and a theoretical 
contribution. In particular, this paper is a natural first step towards a deeper reflection on the 
networking of the ATD and the instrumental approach, for the purposes of better understanding how 
university students learn to use programming for mathematical inquiry. 
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Theoretical framework 
The ATD was initiated by Yves Chevallard in the 1980s and has since grown to include a significant 
collection of theoretical tools for investigating mathematical and didactic activities. In this paper – 
the beginning of our work on the question posed above – we will consider only a subset of these tools.    

Central to the collection of tools offered by the ATD is the notion of praxeology (Chevallard, 1999), 
which provides a way of describing the practices (i.e., regularized and purposeful human actions) that 
are involved in any human activity. According to the notion, every practice is composed of four 
interrelated, essential components: a type of task (generating the need for the practice), techniques 
(ways of doing the types of task), technologies (discourses producing, justifying and explaining the 
techniques) and theories (the rational discourses underlying the technologies). Hence, practices 
necessarily comprise both a practical part (the types of tasks and techniques, called the praxis) and a 
theoretical part (the technologies and theories, called the logos).  

Another critical tool in the ATD is the notion of institution (Chevallard, 1991): a relatively stable 
structural element of a society that frames and promotes certain kinds of human actions (towards the 
achievement of certain aims). Indeed, a fundamental idea behind the ATD is that the praxeologies of 
an individual (e.g., a student) do not exist in a vacuum, but are shaped by the social institutions (e.g., 
universities) where they are developed. Artigue (2016) explains that with the ATD:  

The lens is no longer directed towards the student and her cognitive functioning or development, 
but towards the institutional practices that condition and constrain, both explicitly and implicitly, 
what she has the possibility to learn or not. (p. 17) 

Bosch and Gascón (2014) add: “an ATD analysis therefore starts by approaching institutional 
praxeologies and then referring individual behavior to them, talking in terms of the ‘praxeological 
equipment’ of a given person” (p. 69). 

A third critical tool in the ATD is the notion of didactic transposition (Chevallard, 1991), which 
highlights the institutional relativity of praxeologies with respect to three institutions that are pertinent 
to thinking about university mathematics education: professional communities (which produce and 
use “professional practices”), an education system (which, through programs, curricula, course 
outlines, textbooks, etc., determines “practices to be taught”) and a classroom (where interactions 
between teachers and students determine “practices to be learned” – e.g., through the assessments 
given in the course, and “practices actually taught and learned”).  

In this paper, we propose to use the notion of praxeology to describe and analyze practices that are 
involved in the activity of “using programming for conducing mathematical inquiry”. Since we are 
interested in “students learning” to engage in this activity, we start by working at the level of a 
classroom institution, embedded in a particular education system (described in the next section). 
Following an institutional approach, we start by examining institutional praxeologies (in particular, 
practices to be learned, inferred from assignment guidelines and anticipated solution approaches), 
which may shape the practices that students have the possibility to learn. We then use this as a base 
to investigate the potential praxeological equipment of (or practices actually learned by) students. 
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Context and methods 
The study we present is part of a larger 5-year (2017-21) iterative design, non-interventional research 
that uses as a context three programming-based math courses at Brock University: Mathematics 
Integrated with Computers and Applications (MICA) I, II and III. In these courses, students design, 
program and use computer environments to investigate mathematical concepts, conjectures and real-
world applications (Buteau & Muller, 2010) – i.e., to engage in mathematical inquiry.  

We focus on MICA II, the second course in the sequence. Certain features of the education system 
(Brock’s MICA concentration) ensure that the structure and operation of MICA II is relatively stable. 
With MICA I as a prerequisite, MICA II students are expected to have developed some practices for 
using a programming language to solve some foundational types of tasks (e.g., produce the graph of 
a given function); in MICA II, the aim is for students to use and build on these practices to engage in 
mathematics inquiry projects. Course outlines specify the evaluations: 4 mini-projects (worth 12% 
each), 1 final project (worth 22%) and 2 midterms (worth 15% each). Each week during a semester, 
students participate in 2-hour lectures (where the professor mainly introduces math content related to 
the projects) and 2-hour labs (where the students can work on their projects among their peers and 
with access to teaching assistants and/or the professor). In a certain semester, the professor giving the 
MICA II course determines the topics of the projects and hence the particular practices to be learned.   

The current study used data collected from one MICA II classroom, when the course was given in 
2019. The data is of two types: (1) guidelines for the 4 mini-projects and the final project (i.e., 5 
assignments), which can be found in Ralph (2020); and (2) semi-structured interviews that were 
conducted with volunteer MICA II students shortly after they completed each of their assignments, 
which aimed to guide the students in reliving and describing their actions. In alignment with these 
two data types, our study proceeded in two stages. First, we constructed a reference epistemological 
model (Bosch & Gascón, 2014) of practices to be learned in the first MICA II assignment: i.e., 
practices that students may (be expected to) learn when engaging in the assignment. We modelled 
types of tasks and techniques by looking at the formulation of the assignment questions, considering 
the kinds of objects involved, and thinking about anticipated solution approaches of students, based 
on our understanding of the MICA courses (as researchers, instructors, and/or past students) and the 
mathematics involved in the assignment. We modelled technologies and theories by thinking about 
mathematical justifications for the modelled techniques. Note that our model does not necessarily 
reflect the exact material presented in lectures (we did not have access to that data for the current 
study) or the intentions of the professor (they were not interviewed for our study). Moreover, we do 
not claim that our model is absolute or comprehensive: It contains elements that helped us as 
researchers begin to explore what students may learn when engaging in the assignment. Second, we 
explored the praxeological equipment exhibited by one MICA II student, Mark, during the interview 
that followed assignment 1. To accomplish this, Mark’s interview was coded to find evidence of his 
perceptions in relation to the different components of our reference model. These perceptions were 
recorded in “praxeology tables”, with evidence sorted in rows according to whether it corresponded 
to types of tasks, techniques or technologies (as is typical of analyses of students’ praxeologies, we 
did not find evidence specific to the level of theory). It is important to note that the interviews were 
not designed for the purpose of probing into Mark’s perceptions in relation to the praxeologies in our 
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reference model; and yet, Mark spontaneously provided evidence of his perceptions. This is part of 
the reason he was selected for the current study, to allow us to explore potential new directions for 
our work in terms of theoretical lenses and data analysis. It is also important to note that Mark may 
not be representative of all MICA students. He is a computer science and mathematics co-major who, 
unlike many of his peers, had significant programming experience prior to the MICA I course. 

Results 
A reference epistemological model of the practices to be learned in assignment 1 

In this section, we present our reference model of the practices to be learned in assignment 1, using 
the notion of praxeology. Assignment 1 contains 5 questions (Q1, Q2, Q3, Q4, Q5), which invite 
students to work on and explore the scope of a statistical computational technique (“Monte Carlo”) 
for “estimating numerical values” (we note that this is a genre of task, which is more general than a 
type of task; Chevallard, 1999). All students are required to do Q1-3 and then can choose either Q4 
or Q5. For the complete assignment, including complete question statements, see Ralph (2020). In 
this paper, we focus on Q1, Q3 and Q5, due to space constraints, and since these were the ones for 
which Mark presented explicit evidence of his related praxeological equipment in his interview. 

In lectures prior to assignment 1, students are introduced to the Buffon needle problem, including an 
analytical solution (a derivation of a formula) and a computational solution (the writing of a code) 
for the task: find/estimate the probability that a needle touches a line if it has length l = 1 and it is 
dropped onto a plane of parallel lines that are d = 1 unit apart. Crucial to these solutions is an initial 
modelling of the situation, which transforms the original task into a new one: find/estimate the area 
in [0,π] x [0,0.5] such that y ≤ (1/2)sin(x). In Q1, students modify the code (and model) given in class 
to create a program (Figure 1) to “find” the probability if the length of the needle is changed to 0.5. 
Generally speaking, the task solved in Q1 (like the task solved in class) belongs to the type of task 
T1: Estimate the probability of an event in a random experiment. However, the modelling of the 
random experiment leads to a task of another type: T2, Estimate the volume of a bounded k-
dimensional subset A. In Q3, students create a program to solve another task of this type: i.e., estimate 
the hypervolume of the unit hypersphere in R4

 (k = 4, A = {(x,y,z,w)| x2+y2+z2+w2 ≤ 1}). 

 

We could model the Monte Carlo technique that 
can be used to solve T2 as: τ2, put A in a set B whose 
volume is known (e.g., B is the hypercube in Q3), 
choose n points at random in B (with n sufficiently 
large), keep track of the number of points m that are 
in A and calculate m/n*Area(B) (the estimate). One 
main technology underlying τ2 is: θ2, as the number 
of points increases, the estimation becomes more 
accurate. This is a particular instance of the “law of 
large numbers”, which is supported by the theory: 
ϴ, Probability and Statistics. 

Figure 1: A student’s program for solving Q1 

For MICA II students, a computational version of τ2 is implemented in the vb.net programming 
language typically through modifying the original code given in class: studying the code and making 
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relevant modifications may support students in abstracting the technique. In the tasks faced by 
students, B is provided (e.g., Q3 specifies to carry out the estimation by “choosing n points at random 
inside [-1,1]4”). Moreover, the program students create enables them to vary n until it is judged to be 
sufficiently large to produce an accurate estimate; and in Q1 and Q3, this judgement can be made by 
comparing the output (an estimation) with a known actual value. Such a comparison may support 
students in developing θ2 (though it would not be possible when trying to estimate an unknown value).   

An additional part of Q3 introduces another way to judge the accuracy of an estimate. Students are 
invited to estimate the hypervolume accurate to one decimal place, which leads to a modification of 
[T2, τ2, θ2]. To estimate the volume to a certain accuracy (T3), students build on τ2 to implement a 
new technique, τ3: they create a program that carries out the estimation process described by τ2 a 
specified number of times (w) and calculates the mean and standard deviation of the estimates (the 
mean is the new potential estimate), and then they vary n and w (increasing them) until a sufficiently 
small standard deviation is obtained (e.g., taking into consideration that 99.7% of all means would 
lie within three steps of the standard deviation from the mean). In this case, one main technology 
underlying the technique is: θ3, a specified version of the “central limit theorem”, which ensures an 
approximate normal distribution for a large number of independent, identically distributed variables.  

Finally, Q5 introduces students to another praxeology based on a widened theory, including Calculus 
and Analysis. In particular, Q5 asks students to: suppose that two numbers a and b are chosen at 
random from {1, 2, …, n }; let Pn be the probability that a and b are relatively prime; and answer: As 
n goes to infinity, does the limit of Pn exist? Can you guess the exact limit? The type of task explored 
here could be modelled as: T4, find the limit of a sequence (Pn)n, where the sequence values are the 
probability of an event of a random experiment. The technique τ4 has two parts: students go back to 
engaging in a task of type T1 to estimate a sequence value Pn for a given n using Monte Carlo 
techniques; then they vary the value of n, for larger and larger values, to see if Pn appears to approach 
a certain value. Underlying this technique are technologies, θ4, related to the estimation of limits: e.g., 
if the values seem to get closer to a specific value as n increases, this may be the limit of the sequence.   

Mark’s praxeological equipment related to assignment 1 

In this section, we use perceptions shared by Mark when describing his actions in completing 
assignment 1 to think about his praxeological equipment with respect to the reference model outlined 
above. Tables 1, 2 and 3 provide some selected quotes from Mark’s interviews, which serve to 
exemplify his perceptions in relation to the three main praxeologies in our model.  

Although there are some imprecisions in Mark’s descriptions, they suggest a praxeological equipment 
that reflects well the techniques and technologies in our reference model. Consider, for example, the 
way Mark describes the technique for estimating the volume of the hypersphere (Table 1): he explains 
the existence of two embedded spaces, the dropping of random points and the required check for 
points that hit (or miss) the smaller space. He also justifies the technique by referring to the “large 
amount of points” he dropped, suggesting an awareness that the accuracy improves as the number of 
points increases. In a similar vein, Mark’s perceptions of the practice for estimating the volume to a 
certain accuracy (Table 2) includes some key elements of the technique (the replication of the process 
of dropping points and the aim of “a really small” standard deviation) and the technology (the idea 
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that the desired accuracy should be maintained several standard deviations from the mean since “over 
99%” of means lie in that range). Finally, Mark’s perceptions of finding the limit in Q5 (Table 3) 
reflect a technique using “trial and error of inputs” with bigger and bigger numbers, supported by a 
technology of the sort: if the outputs get “closer” to a value, the limit exists (and that’s the limit).  

Table 1: Mark’s perceptions in relation to [T2, τ2, θ2] 

T2 “the code was similar to question one in the fact that you have um, a space, uh contained within a, a larger 
space, and you're dropping uh, random points and you're … simply checking uh if you're hitting or missing 

this smaller space, uh to estimate the volume of it”  τ2 

θ2 “because I was able to … run a simulation where a large amount of points … are dropped, uh that gets a 
fairly high accuracy obviously because there's so many data points” 

“because it's on computers you're able to do it so many times” 

Table 2: Mark’s perceptions in relation to [T3, τ3, θ3] 

T3 “once the program was done I had to switch over into math mode to … prove that the 4.9 was accurate” 

τ3 “I was able to run a simulation where a large amount of points … are dropped … and then that's also 
replicated … I was able to do I believe almost 100,000 or so points, um, nearly 200 times. Uh so because 
of this you're able to get a, um, fairly accurate mean value of uh 4.9 um, … the main thing was that you're 

able to get a really small standard deviation of 0.002 or whatever, um, so even three or four standard 
deviation points off you're still accurate to that 4.9 decimal place which um, obviously means that over 

99% of your trials show up that it's going to be that 4.9 accuracy”  

θ3 

Table 3: Mark’s perceptions in relation to [T4, τ4, θ4] 

T4 “you're looking for basically a probability as Pn approaches infinity”  

τ4 “what I ended up … doing was … there's just a small table that kind of shows … the outcomes that um I 
did so that way I could show um as the numbers got bigger it did get closer to that probability.” 

“it was more so … trial and error of inputs to uh, try and prove that uh, that the limit did exist, so um, it 
was uh trying to find a match between incredibly large numbers that you know, can quote ‘prove infinity’, 

uh versus finding numbers that would make you sit there through the entire lab waiting for an output”  

θ4 

Interestingly, Mark does not refer to specific mathematical theoretical elements such as the “law of 
large numbers” or “central limit theorem”; in fact, he indicates that some technologies are “obvious” 
(Tables 1 and 2), which could be indicative of a “non-mathematical” theory (i.e., an explanation of a 
technology that is not based on relevant mathematical properties). Also, Mark’s perceptions highlight 
other kinds of technologies – specific to computational techniques – that were not included in our 
reference model and that relate to both the affordances of computers (e.g., they allow you to repeat 
mathematical processes many times; Table 1) and the constraints (e.g., even computers have a limit 
as to how many times they can repeat certain mathematical processes; Table 3).  
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Towards the end of his interview, Mark gives his view of the key idea behind assignment 1:  
Mark: I would say this one the key kind of concept was finding exact, um, exact values 

through estimation … it was definitely a cool thing so, when you're building your 
program, and you're like "Alright I'm just going to throw in some really big numbers 
and we're going to get really close to this number that's mathematically correct". 

Mark seems to perceive a genre of task that differs slightly from the one in our reference model, 
emphasizing the estimation of known exact numerical values (or numbers that are “mathematically 
correct”). In each of Q1, Q3 and Q5, Mark found an exact answer (e.g., using Google) to compare 
with the estimate produced by his computer program. It would be interesting to see how his 
praxeological equipment might differ when the numerical value being estimated is unknown.   

Conclusions 
In this paper, we sought to explore how the theoretical tools offered by the ATD can contribute to our 
understanding of university students learning to use programming for mathematical inquiry. We 
claim that our analysis demonstrates the potential usefulness of the notion of praxeology: e.g., it 
allows us to describe and reflect on specific mathematical practices students may have the possibility 
to learn while (and for) engaging in programming-based mathematical inquiry projects, and to 
investigate the degree to which certain students learn those practices or not.  

We note that the praxeologies presented in this paper are not specific to a particular programming 
environment. Although we see the development of such general praxeologies as a pertinent aim of 
teaching students to use programming for mathematical inquiry, the question remains as to how the 
specificities of an environment could shape students’ praxeological equipment. One limitation of our 
study is that it used existing data from interviews that were not framed by the ATD. Further 
investigation into students’ praxeological equipment would require a revision of existing research 
tools and a reflection on the usefulness of other data sources (e.g., students’ responses to midterms).    

In relation to our past work using the instrumental approach, we see the analysis presented in this 
paper as complementary. For instance, using the notion of instrumented action schemes, we have so 
far focused on modeling operational knowledge that is developed and used across MICA inquiry 
projects, primarily when students program a computer environment for the purposes of their inquiry 
(e.g., Buteau et al., 2019). In comparison, using the notion of institutionalized praxeologies, we were 
brought to focus on modeling mathematical knowledge that is developed and used in particular MICA 
projects, primarily at stages outside of the programming: e.g., when students use their programmed 
computer environment to conduct the inquiry. The current study seems to open a window into other 
key parts of students’ learning. Such complementarity warrants further reflection not only on the 
potential contributions of the ATD, but also on its networking with the instrumental approach.   
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In this paper, we report on four university lecturers’ first-time experiences with computer-aided 
assessments. They were required to automate a significant proportion of the pre-existing weekly 
coursework for modules in first- or second-year undergraduate mathematics using STACK. We 
consider lecturers’ perspectives on the role of computer-aided assessments in course design for 
undergraduate mathematics; the knowledge of technical aspects required to implement STACK-
based assessments; and the perceived merits of automated assessment for different aspects of 
mathematical study. We conclude with a series of reflections upon our departmental practice and the 
process of enculturating mathematicians into the realm of automated assessment. 

Keywords: Automated assessment, instructional design, mathematics coursework, thematic analysis. 

Introduction. 
In this paper, we focus on the introduction of STACK (a System for Teaching and Assessment using 
a Computer algebra Kernal) to a Russell Group University in London. In particular, we set out to 
study a department-wide initiative where lecturers are expected to implement the majority of 
coursework using STACK. Students’ weekly submission of handwritten solutions to problem sheets 
transitioned to the use of the STACK online environment which automatically assesses their answers 
and provides feedback. 

The COVID-19 pandemic has dramatically increased the urgency and extent to which tertiary 
education has transitioned online. However, we understand this to be an acceleration of changes 
already underway in many parts of the tertiary sector. While we position our research as having 
general applications independent of the global health circumstances, we must acknowledge the 
environment in which this data was collected. Computer-Aided Assessment (CAA) has been on the 
agenda for the department from which we report for several years. However, the immediacy of the 
transition away from traditional handwritten assessments is, in large part, the result of the urgent need 
for remote, contactless instruction.  

Given the urgency with which lecturers were required to automate their assessments, the default 
workflow for the majority of modules focused on the ‘translation’ or ‘STACKification’ of existing 
materials into CAAs. Some scholars may argue that this workflow is inherently flawed, and that 
effective CAAs should be generated in isolation, free from the restrictions of human graders 
(Sangwin, 2013). In the interests of space, we prefer to acknowledge the pragmatism of 
STACKification, and conjecture that many others using STACK for the first time are likely to follow 
a similar workflow. The process of STACKification warrants structured investigation, independent 
of scholarly arguments regarding the optimal origins of CAAs.  
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We report on semi-structured interviews with four lecturers and two postgraduate students, employed 
to support the design and implementation of STACK-based assessment across the department. All 
participants have been involved with the project for less than one year, and none had any prior 
experience with STACK (or any other CAA) prior to the project. The first author of this paper is also 
in the department and is responsible for co-leading the development of STACK-based resources.  

Assessment in tertiary mathematics, and the increasing role of CAA. 
Despite decades of innovation in assessment methods and tools, closed-book written examinations 
continue to dominate assessments for tertiary mathematics (Iannone & Simpson, 2011). Recent 
decades have seen an increase in the variety of assessment methods available to practitioners, but 
many of these innovations have struggled to gain popularity beyond the researcher communities in 
which they are developed. Researchers have highlighted the value of low-stakes formative 
assessments (Black & Wiliam, 2010), and called for greater assessment variety across undergraduate 
degrees. In this paper, we focus on Computer-Aided Assessment (CAA) and its role in a balanced 
‘assessment diet’ (Iannnone and Simpson, 2011) alongside other modes including written and oral 
modes.  

The last decade has seen significant growth in the availability of CAA technologies, from which 
STACK has emerged as a major player in the assessment of tertiary mathematics (Fahlgren et al., 
2021). STACK uses a computer algebra system to evaluate students’ responses against a wide array 
of mathematical properties. Unlike many of its predecessors that invoke little more than string 
matching or numerical equivalence, STACK uses a computer algebra system, based on open-source 
Maxima, to establish numeric and algebraic properties of students’ answers. While STACK can be 
used for summative assessment, ‘the actual potential lies in the possibilities for formative assessment; 
eliciting evidence of student understanding and providing feedback that moves learners forward’ 
(Fahlgren, et al., p. 74). A detailed exposition of the affordance of STACK can be found in Sangwin 
(2013), and on stack-assessment.org. This software is currently ‘used by universities, commercial 
[entities] and developers in over 15 countries’ (www.stack-assessment.org, Sept 13, 2021) and can 
be integrated with a wide suite of Virtual Learning Environments including Moodle and ILIAS.  

Recent developments with STACK have included a fully integrated online module in introductory 
university mathematics (Kinnear, 2019), and an exploration of task design for proof-based 
mathematics (Bickerton & Sangwin, 2021). Kinnear (2019) outlines an exemplary approach to 
embedding CAA in an introductory course for tertiary mathematics students. The author notes the 
time- and resource-intensive process required to fully integrate the technology, but from preliminary 
results, concludes that these investments were worthwhile for both instructor and student. Bickerton 
and Sangwin (2021), on the other hand, focused on higher level concepts associated with proof and 
argumentation. These authors provided a suite of design suggestions for proof comprehension tasks 
using STACK, including faded worked examples, reading comprehension activities and example 
generation tasks. Again, while time intensive to generate, such tasks appear to have the potential to 
contribute greatly to the varied assessment diet suggested by Iannone and Simpson (2011).  

In this paper, we discuss the development of CAA in STACK by first-time users in one particular 
department of mathematics. While we did not set out to replicate Kinnear (2019), or to explicitly 
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implement the design suggestions of Bickerton and Sangwin (2021), these works provide an 
important grounding against which to compare our own progress.  

Aims, Research Questions and Methodology. 
Consistent with the traditions of Design-based Research (Cobb et al., 2003), the aims of this research 
are two-fold; namely to develop our theoretical understanding of the assessments we design as a 
department, and to improve upon both our understanding of the design-process, and the assessment 
materials we offer our students in future iterations of the relevant modules.  

Our research questions for the study reported in this paper are: 

RQ1: What challenges are faced by first-time STACK users when implementing CAA assessments in 
tertiary mathematics? 

RQ2: What are mathematicians’ views and approaches to implementing CAA in tertiary 
mathematics? 

Methods. 
Participants. 

Four lecturers (referred to as L1 – L4) and two postgraduate students (S1 and S2) participated in 
semi-structured interviews with two members of the research team (also the authors of this paper). 
S1 and S2 were members of a larger design team including two full-time faculty and six postgraduate 
students employed at different times throughout the year. Each lecturer was the leader of at least one 
undergraduate module and was responsible for overseeing the design of their own assessments. The 
extent to which lecturers engaged with the design team varied substantially.   

Procedures and materials. 

All interviews were conducted via Zoom, running between 35 and 45 minutes, and comprised two 
parts. First, participants were asked a series of questions about their experiences designing and 
implementing STACK-based assessments. The interviewers also asked about relationships between 
various members of the design team; the process of ‘translating’ existing items into CAAs in STACK; 
their level of satisfaction with their existing bank of STACK-based tasks; and what they would like 
to improve upon in future iterations of their STACK assessment. The second part of the interview 
was a stimulated reflection task. One week before their interview, participants were asked to select 
their favourite, and least favourite tasks to which they had contributed. Interviewers then asked a 
series of questions about each task, probing for information about the perceived strengths and 
weaknesses of CAA in general. 

Data analysis. 

In this first instance, a member of the research team watched each interview multiple times, tidying 
the imperfect automated transcripts in real-time. A series of latent themes were then identified, with 
supporting excerpts extracted iteratively through several passes through the data. A preliminary report 
was then produced, highlighting four themes with supporting excerpts and commentary for review 
by other members of the research team. This report forms the basis of the results section to follow.  
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Results. 
Our thematic analysis (Braun & Clarke, 2006) identified three themes related to the design of 
STACK-based assessments by first-time users: 1) the process of STACKification, 2) technical 
challenges with coding in STACK, and 3) the role of CAA in undergraduate math.  

Theme 1: The process for STACKification. 

The course lecturer had for each of their modules a set of problem sheets that they used to provide 
homework and assessment tasks for their students. Despite variations in other aspects of their 
approach to CAA, all four lecturers adopted a surprisingly similar four-step workflow for translating 
their existing materials into automated assessments using STACK.  

Phase one:  Lecturers would parse their list of existing questions to identify which they believed 
would make suitable CAA items. This often involved identifying answers that required limited or 
simple input, and items that could be coded with relatively little technical expertise. L4 noted that 
“you cannot simply take an exercise sheet and immediately turn into STACK. It requires some effort 
[to identify appropriate items]”. Only L3 focused on including items that were “most critical to 
capture the coverage of the material” when selecting items for CAA. All four lecturers worked largely 
independently on this phase, although two lecturers did consult the project leadership team for advice 
on which items were most suitable to automate.  

In many cases, the mathematical content of existing questions would be preserved, but the response 
required from the student would be altered to suit the STACK environment. For example, with items 
from the Introductory Analysis course, the lecturer would choose a short series of proofs that were 
important for students to know and understand. Since STACK cannot currently facilitate the 
evaluation of student-produced proofs, the design team proposed a series of reading comprehension 
activities akin to those proposed by Bickerton and Sangwin (2021) that would still assess students’ 
understanding of the proof in the absence of a ‘prove that’-style task. In some cases, a series of 
multiple-choice items similar to those discussed in Mejía-Ramos et al. (2017) were also appropriate.   

Phase two: In consultation with the design team, ‘preSTACKed’ documents were produced for most 
items. These were most frequently written in LaTeX, and resembled pseudocode outlining the design 
feature a future coder should implement. These included the types of inputs required from students, 
the scope and placement of random variables, and the specific question text to be shown to students. 
In some cases, this preSTACKing phase was a lot less structured, and simply comprised an itemized 
list of questions to be coded.  

Phase three: These preSTACKed documents were then translated into functioning code. For three of 
the four lecturers, these preSTACKed documents were posted on a shared workflow tracker, to be 
picked up by the design team. By contrast, L1 did the majority of their own coding, consulting others 
only when “there was some finessing that I wasn't aware or didn't know how to do”.  

The design team collaborated frequently, checking each other’s work, and coding additional question 
when the member responsible did not have time. This coding process worked well when the 
postgraduate student was familiar with the mathematical concepts and methods being developed in 
the module. However, S2 noted that “some of the hardest second year modules that I didn’t take…I 
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found hard, especially when the preSTACK document was vague [and] there was a lot of having to 
speak to the lecturer, [asking] how do you actually do this?”. We return to this back-and-forth 
dialogue between designers and lecturers later.  

Phase four:  After initial coding was completed, lecturers were invited to review each item and 
encouraged to check the code for the intend functionality. Given the inexperience of the design team, 
several items had early bugs. In some cases, variations on correct answers were marked incorrect (e.g. 
an answer such as 4/2 would be marked incorrect when the desired solution was the integer 2), and 
vice versa. As a tool, STACK gives tremendous control to the user regarding how to assess such 
variations and can facilitate the vast majority of desired responses in each case. However, given the 
inexperience of the coding team and the speed at which items needed to be produced, bugs of this 
nature were frequent in the early stages of the project and caused significant problems to lecturers 
and students.  

Open communication between the lecturer and the coding team on checking how the STACK quizzes 
would be seen by the students was really important. L3 noted that “There were occasional things 
where the solutions that have been typed in weren't in the notation that I would teach and so I changed 
those. Little formatting things and a bit of debugging, so I would have a go at the questions and 
sometimes I came across errors and got them fixed before the students hit them, but other times, of 
course I didn't find them until the students found them and then we had to debug them live”.  

We expect that these teething issues will reduce in future iterations of these modules. However, we 
note their significance here because of their impact on attitudes to the value of the technology, in 
particular with respect to (automated)-assessment, discussed later in this manuscript.  

Theme 2: Challenges in early implementations of new STACK materials. 

Lecturers tended to focus on assessing procedural tasks (in the sense of Sfard, 1991) in which a 
numeric or simple algebraic expression could be entered by the student. We, the research team, note 
that in theory, STACK has the capacity to implement a wide variety of question formats accessing a 
range of different understandings and approaches. However, anything beyond numeric or algebraic 
equivalence tests proved to be a significant challenge in many cases. 

L1 noted that when the answer to the problem involved surds, STACK had no difficulty when the 
square root was in the numerator, but when it was in the denominator and the student rationalised the 
denominator, STACK “could not see that this was a correct answer”. Interestingly, this excerpt 
doesn’t draw a distinction between the capacity of the tool, and the capacity of a given 
implementation. While our data does not facilitate a more in-depth discussion on this point, we 
conjecture that this attitude may have been a barrier to higher quality design in some cases.  

And L3 noted that when students were required to type in formulae  “then one function of STACK 
that I hadn't really realized is, if you make one mistake, one small mistake [typing in a formula] which 
could be just a typo, it blanks all your answers”. S1 noted the importance of students needing to be 
shown how to input formulae correctly in STACK, for example how to input Greek letters such as 
lambda and theta, and how to input terms with subscripts such as x0. 
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In contrast, L3 highlight one particularly successful episode, in which the coders initially “struggled 
because there's more than one right answer. So, in the end they worked out a really cunning way to 
work out whether the student’s [solution] was correct”. S1 also recognised the need for creativity 
with STACK, and appeared to understand that a solution should exist, even if it couldn’t be 
implemented in this case. STACK recognises algebraic equivalence, but students can write the 
solution of a differential equation in many different ways and “you kind of have to think a bit more 
about all the all the possible answers that the students could give you”. 

L2 also highlighted problems associated with the inputting formulae: “One of the big challenges of 
STACK is making sure you get it right, because the system is only good as it is accurate, so if you 
have a mistake in your answer in STACK, then the whole, the whole thing is pointless”.  

Further professional development for lecturers and coders, and in some cases of students (as pointed 
out by L3) will seek to minimize the problems raised in this section. However, we note that even 
experienced coders have difficulties in this regard. To readers considering using STACK in the future, 
we recommend having a robust system of peer-review in place before AND after implementation 
with a student cohort.  

Theme 3:  The role of CAA in different content domains. 

All four lecturers started with problem sheets that had been used as homework and assessment 
activities in their previous teaching. They felt that STACK could handle examples that required a 
numerical or simple algebraic answers but were reticent to explore opportunities to assess more 
conceptual aspects of their module curriculum using STACK. For example, S1 noted the ease of 
assessing calculus: “[it] was fairly straightforward because it involved fairly straightforward kind of 
mathematical methods so we had weekly quizzes for that”. However, they asserted that the answers 
needed to be “well defined”. L4 felt similarly, claiming that problems requiring students to input 
formulae can lead to difficulties “because formula can be written in slightly different ways and 
sometimes it doesn't recognize these things as the same”.  

While questions that required a numerical or algebraic answer could be easily STACKified in most 
cases, it was more difficult to test theoretical knowledge and proofs. L1 asserted that “when it comes 
to proofs one would use a normal Moodle (VLE) quiz and do some kind you know very smart 
multiple-choice type of question”. Similarly, L2 claimed that “Not all [examples] were suitable 
because some of the questions involve some theorem or some proving which possibly could be 
STACKed or, if you like, but I couldn't see a way to do that, so I concentrated on questions with 
numerical answers”. 

Further, L4 questioned how a simple numerical or algebraic answer in STACK could show the 
students had understood the theory and methods they had been taught. “[In my course] it’s not a 
matter of manipulating formula like in school, right. It's a matter of showing that you understand 
what's going on and it's somehow difficult to transform it into computer-based assessment”. This 
lecturer went on to query the suitability of STACK “at a serious university...  In a very good math 
department, you have to show that you understand, then you have to write, and explain”. L4 did 
concede that “STACK is more suitable for an ancillary course [for non-math majors], but still, it's 
somehow lame even for chemists”. In contrast, however, L2 felt that if you defined the question 
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carefully then the student would have to understand the methods and the theory in order to get the 
right answer. This sentiment was also echoed by L3.  

These excerpts suggest that the scope and merit of STACK vary greatly for different parts of the 
undergraduate maths curriculum. In this manuscript, we intentionally abstain from passing judgement 
on the commentary of L4 and others. Here, we prefer simply to report on the perspectives offered by 
our participants and reflect on ways in which we can improve our offering to students in future 
iterations of these courses. Bickerton and Sangwin (2021) propose a series of alternatives for 
STACK-based assessment of proof that seek to address many of the limitations raised by L4. We 
acknowledge that these alternatives are time consuming to implement and not applicable in all cases. 
However, we suspect that none of our four lecturers are aware of this recent work and intend to 
provide some professional development workshops in the future. In doing so, we seek to broaden the 
range of tasks offered to our students and the range of conceptual understanding accessed by our 
STACK-based assessments.    

Discussion. 
From our interviews with lecturers and postgraduate students, we identified three themes with 
consequences for the future development for the CAAs at our university and for the wider community 
planning to implement CAA for the first time.  

First, we enumerate the process of ‘STACKification’, in which traditionally handwritten coursework 
tasks can be translated into CAAs using STACK. While the process has several possible refinements, 
it is interesting to note the relative uniformity with which this process was used by all four lecturers. 
Future iterations of these courses will involve cyclic redevelopments of many items, adding new 
features, resolving bugs, or adding more detailed feedback.  

Second, we have identified a primary challenge for first-time users of STACK associated with 
evaluating algebraic equivalence in various forms. In several cases, lecturers and members of the 
design team were aware than an alternative coding solution should exist but could not execute a 
solution within the time constraints afforded. Again, these concerns will diminish with time, and as 
a department, we now have the opportunity to revisit those items that did not function as expected.  

Finally, and perhaps most importantly, we considered lecturers’ perspectives on the role of CAA in 
tertiary mathematics more generally. All four lecturers acknowledged that STACK had the potential 
to assess at least some proportion of the undergraduate curriculum. However, these were heavily 
weighted toward applied mathematics, and to more procedural (rather than conceptual) tasks. Of 
particular note was L4’s belief in the inability to assess mathematical proof using STACK or other 
forms of CAA. It is unclear from the data available whether these perspectives would change with 
further professional development, focused on the potential for STACK to assess a wider array of 
question formats.  

One final challenge not yet discussed lay in the design and implementation of feedback. The 
automation of personalised feedback proved to be a time intensive process, with most lecturers 
providing at most a correctness evaluation and a general solution for each question. We report on this 
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feature of our data in more detail in future publications, focusing on routes for realising the potential 
for productive formative assessment discussed by Fahlgren et al. (2021).  

Final remarks and future development. 
At the time of writing, the STACK project at our university has been running for approximately 12 
months. While we have now had a large bank of STACK-based items, the process of successfully 
integrating CAA into our curriculum is an on-going challenge. In the future, we will develop a greater 
variety of question forms, with a clearer focus on the learning outcomes for students and lecturers, 
and a more rigorous consideration of the formative and summative roles that these assessments play 
in our courses. This will feature a structured research programme intended to understand students’ 
and lecturers’ experiences with CAAs, and further iterations of the design-based research cycle we 
began with the data reported here.  

Acknowledgment 
The authors would like to thank the Department of Mathematics at UCL for their financial support of 
this research, and our colleagues who contributed their time and insight during the interview process. 

References 
Bickerton, R. T., & Sangwin, C. J. (2021). Practical Online Assessment of Mathematical Proof. 

International Journal of Mathematical Education in Science and Technology. 
https://doi.org/10.1080/0020739X.2021.1896813. 

Black, P., & Wiliam, D. (2010). Inside the black box: Raising standards through classroom 
assessment. Phi Delta Kappan, 92(1), 81–90. https://doi.org/10.1177/003172171009200119. 

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in 
Psychology., 3(2), 77–101. 

Cobb, P., DiSessa, D., Lehrer, R., & Schuable, L. (2003). Design experiments in educational research. 
Educational Research, 32(1), 9–13. https://doi.org/10.3102/0013189X032001009. 

Fahlgren, M., Brunström, M., Filling, F., Bjramheiður, K., Pinkernell, G., & Weigand, H. (2021). 
Technology-rich assessment in mathematics. In A. Clark-Wilson, A. Donevska-Todorova, E. 
Faggiano, J. Trgalova, & H. Weigand (Eds.), Mathematics Education in the Digital Age (1st ed., 
pp. 69–83). Routledge. 

Iannone, P., & Simpson, A. (2011). The summative assessment diet: How we assess in mathematics 
degrees. Teaching Mathematics and Its Applications, 30(4), 186–196. 
https://doi.org/10.1093/teamat/hrr017. 

Kinnear, G. (2019). Delivering an online course using STACK. Contributions to the 1st International 
STACK Conference 2018. https://doi.org/10.5281/zenodo.2565969. 

Mejía-Ramos, J. P., Lew, K., de la Torre, J., & Weber, K. (2017). Developing and validating proof 
comprehension tests in undergraduate mathematics. Research in Mathematics Education, 19(2), 
130–146. https://doi.org/10.1080/14794802.2017.1325776. 

Sangwin, C. J. (2013). Computer-aided assessment of mathematics. Oxford University Press. 

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and 
objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36. 
https://doi.org/10.1007/BF00302715. 

Proceedings of CERME12 2372



Proceedings of CERME12 2373



Proceedings of CERME12 2374



Proceedings of CERME12 2375



Proceedings of CERME12 2376



Proceedings of CERME12 2377



Proceedings of CERME12 2378



Proceedings of CERME12 2379



Proceedings of CERME12 2380



 

 

Collective and individual mathematical progress: Layering 
explanations 

Tommy Dreyfus1, Naneh Apkarian2, Michal Tabach3 and Chris Rasmussen4  
1Tel Aviv University, Israel; tommyd@tauex.tau.ac.il   

2Arizona State University, USA; napkaria@asu.edu   
3Tel Aviv University, Israel; tabachm@tauex.tau.ac.il   

4San Diego State University, USA; crasmussen@sdsu.edu 

Keywords: Individual, collective, mathematical progress, methodology, Sierpiński triangle. 

Introduction and background 
We report on the latest development of our efforts to coordinate analyses of individual and collective 
mathematical progress. We build on and extend a series of theoretical-methodological analyses aimed 
at networking Abstraction in Context (AiC, Dreyfus et al. 2015), and Documenting Collective 
Activity (DCA, Rasmussen & Stephan 2008). AiC is commonly used for the analysis of knowledge 
construction by individuals or small groups of students, and DCA, which accompanies the emergent 
perspective, is commonly used for analyzing the mathematical progress of the whole class or a small 
group of students (Hershkowitz et al. 2014; Rasmussen et al. 2015; Tabach et al. 2014; Tabach et al. 
2020). Our research goal is to further develop a methodological approach for characterizing the 
interplay of mathematical progress across individuals, small groups, and the whole class. We refer to 
this approach as “collective and individual mathematical progress: Layering explanations” (CIMPLE, 
pronounced as “simple”). “Layering explanations” pertains to the use of both theories on the entire 
data set, and to transparently layering analysis upon analysis, unlike our previous efforts that 
leveraged AiC on small group work (SGW), and DCA on whole class discussions (WCD). The 
significance of this ongoing work lies in the identification of nuanced ways in which students’ 
knowledge progresses in inquiry-oriented classrooms. 

The context for this study was a semester-long intact graduate level mathematics course on chaos and 
fractals at a State University in the USA. Ten of the eleven students were pursuing a master’s in 
mathematics education. The students worked in four stable groups: A (Carmen, Jen and Joy); B 
(Kevin, Elise and Mia); C (Soo, Kay and Shani); and D (Curtis and Sam). All names are pseudonyms. 
Groups A and B were video-recorded during SGW; the class was video-recorded during WCDs. 

Analysis and results  
In Lesson 9, students carried out the first few iterations of a recursive 
geometric process (given a triangle, connect its midpoints and remove – or 
color white – the middle triangle); if continued infinitely, this process 
produces the Sierpiński triangle (ST). Students were asked to imagine the ST 
and discuss what they could say about the area and the perimeter of the ST.  
After 3 WCDs and 3 SGWs, the instructor (who had listened in on Group A) convened the class and 
asked Carmen and Joy to report on their opposite views of the perimeter. According to Carmen, as 
one keeps zooming in, the entire triangle is “going to be white, so there’s no area, so there’s nothing 
to … put a fence around; so there’d be no perimeter”. According to Joy, “if you zoom in…, there is 

Figure 1: The ST 
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more and more to fence; Until…” Joy was unsure whether the perimeter increases to a finite value or 
to infinity. Although in the preceding SGW and WCD episodes the students had made little progress 
constructing knowledge about the features or the length of the perimeter, Elise immediately reacted 
to Carmen and Joy by Connecting Area to Perimeter (CAP): “what you are coloring in is perimeter, 
to some extent”. She was followed by Kevin, and later Curtis: “The perimeter of the white is also the 
perimeter of the black” (PW=PB); and in between Carmen: “The fence is guarding both properties”. 
Our analysis shows that in these 2 minutes, several students constructed the CAP knowledge element 
(according to AiC) and PW=PB started functioning-as-if-shared (FAIS) in the class (according to 
DCA). In other words, the students constructed new (to them) knowledge within a WCD, and this 
new knowledge immediately began to FAIS in the class. This constitutes substantial mathematical 
progress, achieved in a pattern that is very different from the standard trajectory. 

Earlier in the same lesson, the students made mathematical progress in two further patterns. In one, 
“Area goes to 0” passed from FAIS in Group A to FAIS in the whole class without any reaction or 
even question. In the other one, the everyday metaphor of “zooming in” which had earlier appeared 
in a movie about the fractal nature of the coast of Britain was appropriated by the students as a tool 
to deal with the infinite nature of the ST (as used by Joy and Carmen above). 

There are certainly additional patterns of mathematical progress. We conclude that the standard 
trajectory is only one of many possible ones for mathematical progress in inquiry-oriented 
classrooms. The coordination of AiC and DCA is an efficient methodology to identify such patterns.  
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Learning how to apply mathematics is crucial for university level science students. Modelling tasks 
are especially challenging for undergraduates, since solving such tasks involves performing various 
actions. These actions can be described as transitions between successive states in modelling cycles 
(e.g., Blum & Leiß, 2006). Students often focus on calculations and neglect the actions of modelling 
and interpreting, even though these are important for their future studies and work. In order to support 
students in modelling tasks, we use worked-out examples (WOEs) with gaps and self-explanations to 
encourage active work with the problem at hand (Hilbert et al., 2008). Our poster shows design 
elements of our WOEs, in particular the different types of gaps, and the design of a pilot study with 
the idea of analysing how students work with these gaps (link to the poster).  

Worked-out examples with self-explanations related to a modelling cycle 
It is well known that beginners benefit from WOEs, especially when they include self-explanations 
(Atkinson et al., 2000). Some research reports the use of WOEs with gaps. For instance, Stark (1999) 
showed that gaps improved the students’ performance in case of probability calculation, while Hilbert 
et al. (2008) found that gaps impaired the learning gain in the context of proving in geometry. In our 
opinion, the greatest advantage of WOEs is the possibility to provide a structure for a solution of a 
modelling task as well as to enable students to think deeply about the solution by filling in the gaps.  

We have taken the modelling cycle from Schupp (1988) as a basis to structure the WOEs. Our WOEs 
usually start with a scientific problem in a real-world situation (see Figure 1) and contain various 
tasks of modelling, deducing, interpreting, and validating that correspond to transitions in the cycle. 
In addition, we extend the action of modelling by the translation between scientific, mathematical 
and daily languages as a bridge in order to better comprehend the scientific problem and the 
mathematical model as well. Moreover, we feel it is important to emphasize the underlying 
mathematics, which is, for instance, a crucial point in a mathematically deduced solution.  

 
Figure 1: Modelling cycle (our representation, following Schupp, 1988) 

Design principles for gaps in worked-out examples and research questions 
Strauer et al. (2019) suggest four types of gaps; each of these types is used to foster the actions in the 
modelling cycle. Gaps for translation: These gaps activate the translation between scientific, 
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mathematical and daily language to refer to the transition from real-world to mathematics and vice 
versa, i.e. for modelling and interpreting. Gaps for calculation: Students are asked to calculate some 
steps on their own. This type is always inserted for deducing on the mathematical side. Gaps for 
mathematical terms and notions: The students should practice the use of mathematical language, 
including mathematical symbols. These gaps are applied on the mathematical side of the cycle for 
both deducing and modelling. Gaps at key points: At these points, students should become aware of 
crucial points or general subgoals in modelling, deducing, and interpreting. 

According to our experience and the students’ comments during lectures and tutorials, students do 
not always estimate the difficulty of gaps in the same way as the designers of the WOEs. 

1. What types of gaps in the WOEs do students find easy/moderate/difficult, and why? 

2. To what extent do the estimates of the difficulty of gaps differ between the designers and students? 

Design of a pilot study 
We proposed the following interview study on the topic of discrete growth with first-year pharmacy 
and biomedical students. The designers of the WOEs set gaps of different types and estimate the 
difficulty of the gaps in advance. Between a lecture and the tutorial, student volunteers first complete 
a given WOE while thinking aloud. Second, they are asked to estimate the difficulty of the gaps and 
give reasons for their estimate if possible. Afterwards the designers’ and the students’ difficulty 
estimates are compared and analysed, particularly with respect to the types of the gaps. 
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This paper takes as object of study the discontinuities in mathematics education in engineering. In 
particular, the internal discontinuity between mathematics education and the role of mathematical 
activity in engineering courses, is characterised through diverse interviews with mathematics and 
engineering teachers of an engineering school in Barcelona (Spain). The results show that the 
internal discontinuity can be characterised by diverse elements that make it an institutional 
phenomenon further from the specific discontinuities found in previous punctual studies.  
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Introduction: transition between institutions and discontinuities. 
The beginning of the analysis of discontinuities in mathematics education started with the work of 
Felix Klein (1908) who announced the famous double discontinuity concerning the mathematical 
education of teachers. However, research in didactics of mathematics at university level is a relatively 
young field: the first works date back to 1970. From the beginning, this domain of research considered 
the didactic phenomena associated with discontinuities as a relevant study area.  

The first discontinuity announced by Klein concerns the transition problems that students experience 
when they enter the university. This has been extensively studied in recent research in mathematics 
education (Gueudet, 2008). The second discontinuity concerns the disconnection that mathematics 
students experience when they join the school as teachers. At this point, they are faced with a process 
of transposing academic knowledge acquired at university into knowledge needed for teaching, which 
is far from being an easy process (Winsløw & Grønbæk, 2014). 

Another field of study in didactics at university level is that of mathematics education for non-
mathematicians in the field of engineering. Quéré (2019), in his doctoral dissertation, shows that the 
number of research works at the CERMEs in this field has been growing in the last editions. 

This paper is framed within the Anthropological Theory of the Didactic (ATD, Chevallard 2000), and 
takes as its starting point the study of phenomena associated with discontinuities and mathematical 
education in engineering. The ATD approach on discontinuities considers that they are associated to 
a transition between institutions: discontinuities appear when the students move from one institution 
to another one. Analysing the existing work to date, we hypothesise that the path followed by people 
learning engineering experiences what we could call a triple discontinuity (see Figure 1), making an 
analogy with Klein's famous double discontinuity. In fact, the first and third discontinuities are 
homologous to those announced by Klein in mathematics teacher education. The second is the one 
that would be more specific to engineering education: it is an internal discontinuity in engineering 
education institutions due to the transition between the mathematical courses for engineers and 
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courses in engineering courses, in line with what has been observed by Romo Vázquez (2009) and 
Quéré (2019).

Figure 1 - Diagram of the triple discontinuity in engineering and institutions considered

Theoretical framework
Some studies referring to the ATD address the second discontinuity by analysing the different 
mathematical activity in the engineering courses (institution 3) and contrasting it with the activity 
promoted in mathematics subjects or in the workplace (institutions 2 and 4). We present in the 
following some of the most relevant works analysing the second discontinuity in engineering degrees 
as well as the theoretical tools mobilised in them.

One of the pioneer woks is Romo Vázquez’s doctoral dissertation (2009) that studies the origins of 
mathematical education for engineers and highlights the differences in mathematical activity in 
mathematics courses, engineering courses and professional practices. Romo Vázquez (2009) and 
Castela and Romo Vázquez (2011) adopt as the main theoretical tool the praxeological model 
proposed by Chevallard (2000). Praxeologies allow researchers to model knowledge: they are entities 
formed by the inseparable combination of a praxis or know-how made of types of tasks and 
techniques, and of a logos or knowledge made of a discourse aiming at describing, explaining, and 
justifying the praxis. Romo Vázquez (2009) and Castela and Romo Vázquez (2011) identified the 
differences that appear in the logos block (especially in the technological environment) depending on 
whether the training institution or that of the practitioners is considered (mathematical courses or 
engineering courses). 

In the ATD studies analysing the mathematical training of engineers, a key notion is that of institution 
and institutional position. According to Chevallard et al. (2015) an institution in the sense of ATD is 
just a more general conception than the general meaning: for example, a class with the students and 
teacher is an institution. In every institution, each person may occupy different institutional positions, 
for example, in the case of a class, that of student or that of teacher.

Another relevant work analysing the mathematical training in engineering is that of Barquero et al. 
(2014). They hypothesize that the applicationism is an essential component of the epistemological 
conception of mathematics in applied sciences degrees at university. Specifically, they characterise 
the applicationism by five indicators: (1) Mathematics are presented independently of other 
disciplines, (2) Mathematical tools are considered the same for all scientists, (3) Organisation of 
mathematical courses is based on logical concepts, (4) Applications are always presented after the 
basic mathematical courses and (5) Extra-mathematical systems can be constructed without any 
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reference to mathematics. In their work, they observe, through interviews with university 
mathematics teachers in applied sciences, a clear applicationist conception of mathematics. In 
addition, the authors consider this conception as an element hindering the implementation of 
mathematics (and science) teaching based on modelling processes. 

More recent works within the ATD framework are those of González-Martín and Hernandes-Gomes 
(2019) and Hochmuth and Peters (2020), both mobilising the praxeological model. Specifically, the 
first addresses the differences in the use of the integral in mathematics and in strength of materials 
textbooks while the second addresses the use of mathematics in signal theory courses. 

Research questions 
Considering the previous works in the ATD framework in the field of mathematics for engineers and 
the discontinuities as well as our hypothesis, our research question is: 

What are the epistemological conceptions of these two institutional positions: first-year mathematics 
teachers and engineering courses’ teachers? Do these conceptions reveal a discontinuity in the 
institution further from punctual issues already characterized? 

Institutional context and interviews  
The institution where the interview campaign was carried out is the Escola Universitària Salesiana de 
Sarrià (EUSS), a centre associated to the Autonomous University of Barcelona (Spain), where five 
engineering degrees are taught (electronics, mechanics, automotive, industrial organisation and 
renewable energies and energy efficiency). This is an institution with a tradition of implementing 
teaching innovation processes and where specific training courses in didactics for university teachers 
are offered to teachers, see for example Florensa et al. (2017). 

Mathematics teaching in all EUSS degrees is concentrated in three courses. Mathematics course is 
offered in the first semester with 7 ECTS, Calculus in the second semester with 8 ECTS and Statistics 
in the fourth semester with 6 ECTS. The syllabuses of each degree can be consulted in detail on the 
centre's website: www.euss.cat. In order to characterise the possible discontinuity, two interview 
protocols were designed: one for teachers of mathematics courses and the other for teachers of 
engineering courses. Both interview protocols can be consulted in full at the following link 
(https://sites.google.com/euss.cat/cerme12). 

Both interview protocols have the same structure with two common blocks and a third differentiated 
one. The first one characterises the academic and professional career of the person interviewed, as 
well as the degrees and courses in which they teach. The second block is dedicated to identify the 
conception of each person with respect to the applicationism described by Barquero et al. (2014). The 
third block aims to identify the opinions of the teaching staff on the most important elements in 
mathematics education in engineering in terms of techniques and type of tasks (accordingly to the 
praxeological model). In particular, teachers in the mathematics field are asked to identify the most 
important elements of the courses they teach, the most common difficulties detected in students, as 
well as the criteria used to design the contents of each course. In contrast, engineering teachers are 
asked to identify the types of mathematical tasks and techniques required in their subjects, and 
whether these are of a routine or algorithmic nature or whether they are related to modelling. These 
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protocols were used to interview teachers of mathematics courses (Mathematics and Calculus) in the 
first year (MT, 5 in total), as well as teachers of engineering subjects (ET, 8 in total). In Table 1 the 
academic and professional backgrounds of the interviewees are summarized. 

Table 1: Academic and professional backgrounds and teaching experience of interviewed teachers 

   Academic background Professional 
background 

Teaching 
experience 

Courses 

MT1  PhD Mathematics  Academia  30 years Mathematics, calculus, statistics 

MT2 PhD Chemistry Academia  9 years Mathematics, engineering courses. 

MT3 MSc Mathematics Teaching (not researcher) 30 years Mathematics, calculus, statistics 

MT4 BSc Mathematics Secondary education,  10 years Mathematics, calculus, statistics 

MT5 
PhD Biochemical 

Engineering 
Academia with some 
experience in industry 

7 years Mathematics, calculus, engineering 
courses 

ET1 PhD Materials Eng. Academia 20 years 
Strength of materials, elasticity, and 

structures 

ET2 PhD Telecommunication  
Academia (1 year in 
telecommunication 

industry) 
20 years 

Industrial computing and 
communications 

ET3 PhD Electronic Eng. Academia 10 years Automation and power electronics 

ET4 PhD Material Science 
Vocational training, 

laboratory technician and 
academia 

10 years 
Materials, manufacturing processes 

and strength of materials 

ET5 
PhD in Business 
Administration 

Academia 4 years 
Strategic management and 

Quantitative Methods  

ET6 PhD Local Development 
Consultant, in academia 

since 2009 
12 years Quality and Industrial plant location 

ET7 MSc Electronic Eng.  Academia 12 years 
Electronic systems, Project 

Management and Digital signal  

ET8 PhD in civil engineering Academia  7 years 
Physics, Strength of Materials, 

Machines and Fluids 
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Results 
Interviews of teachers of mathematics courses  

The results regarding the applicationist conception of mathematics education in engineering show a 
strong consensus except in the first question that refers to the uniformity of mathematics education 
in any university degree. In this question, teachers do not have a clear position (see Figure 2). 

 
Figure 2- Answers of mathematics teachers to the statement "The mathematics taught in the first 

university courses of Engineering are the same as those taught in the other university degrees" with 1 
being " I disagree" and 5 being "I strongly agree" 

Concerning the answers to the criteria used to define the syllabus of the courses, these reveal the 
existence of a shared conception for the meaning of mathematics by mathematics teachers in the first 
years. For example, MT2 states that "the subject was already set up, but it is similar to what is offered 
in other centres" In the same direction, MT3 speaks of "a common profile for Engineering 
Mathematics" A second phenomenon that comes to light at the same time is the influence of previous 
curricula on the definition of the contents included in the courses. In this sense, MT4 states that "the 
contents of the old engineering program (3-year program before the adaptation to the European 
Higher Education Area standards) were adapted to the new engineering degrees" or MT1 states that 
"the syllabus was established with the technical industrial engineering, I suppose based on what was 
done in other universities" MT3 also states that "there has been continuity since the initial creation of 
the courses and the contents have been adapted...”. 

Related with the mathematical content, there are two types of answers. Firstly, MT1 and MT4 attach 
great importance to the ability of mathematical content to develop "abstract thinking, reasoning skills 
and the ability to adopt strategies" (in the words of MT1). MT4 formulates it as follows: "finding 
primitives is important, not because of the technique, but because of the associated mental process" 
Secondly, most of the interviewees propose a set of contents justifying its importance. These include 
finding primitives and derivatives (MT2, MT3, MT4), working with matrices (MT3, MT4, MT5) and 
solving differential equations (MT4 and MT5). It is important to note that the importance assigned to 
each content is heterogeneous and there is not much uniformity: some teachers emphasise the 
structuring role of algorithmic work, while others prioritise, in the words of MT4, "knowing and 
understanding how to solve, since calculation is mechanical and/or programmable" 

Although the two groups of teachers do not prioritise the same contents on the list, there is a great 
consensus that the manipulation of algebraic expressions in the study of functions is the greatest 
difficulty that students face when learning mathematics. Other difficulties that appear are the 
calculation of integrals and derivatives and the confusion between vector and scalar magnitudes.  

0

1

2

3

1 2 3 4 5
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Table 2- Results of the question "Highlight from the following list of linear algebra contents the five 
most relevant to your course" 

Contents of “Linear Algebra” Number of votes MT Number of votes ET 

Matrix transposition 0 1 

Matrix multiplication 1 4 

Scaling matrices row / column, pivot, rank 5 0 

Elementary matrices 0 2 

Inverse matrix 5 2 

Determinants, Sarrus, determinant properties 3 3 

Systems of linear equations, Rouche, Gauss-Jordan 5 7 

Inverse matrix - adjugated matrix 0 0 

Eigenvectors and eigenvalues,  5 1 

Interviews of teaching staff in engineering courses 

As in the case of mathematics teachers, there is consensus in all the questions related to 
applicationism, except on the question whether the mathematics taught in the first years of 
engineering is the same as that taught in other degree courses where there is not a clear agreement on 
the answers. 

Teachers of engineering courses attach particular importance to the interpretation of the results 
obtained, and decision-making based on these results, beyond the technique applied. ET1 expresses 
it as follows: "I am not so much interested in them finding integrals or derivatives, but they need to 
acquire the concept behind them and use it to solve engineering problems". ET2 also expresses in 
very close terms: "Mathematical elements are useful for modelling, the difficult thing is to set out and 
validate the model, the resolution itself is algorithmic...". ET3, speaking of the use of integrals and 
derivatives in a strength of materials course, states that "the bending moment that we obtain allows 
us to select a beam for a structure: this is what matters, beyond the algorithmic calculation" ET5 also 
emphasises this duality: "the convolution of functions can be very routine, but what is interesting is 
that it allows us to analyse, study and explain typical phenomena of electronic systems" 

Characterising the phenomenon: applicationism and internal discontinuity  
The results obtained on the applicationist conception in mathematics education in engineering, 
confirm those obtained by Barquero et al. (2014) in the field of applied sciences. Moreover, there are 
no significant differences between the opinions of mathematics and engineering teachers, which 
seems to indicate that the applicationist conception is proper to the institution. 
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With respect to the internal discontinuity, two points stand out. Firstly, the MTs' and ETs' interviews 
show some items with a very high level of consensus in the fields of linear algebra and analysis (see 
Table 2). The maximum consensus is obtained in solving systems of equations, finding the derivative 
and the integral. However, there is a significant disparity in matrix scaling and operations with 
matrices, as well as the determination of the graph of a given function. Another point of consensus 
detected in the open comments on the questions, is that training in mathematics should provide 
abstraction, reasoning and generalisation skills beyond working with specific content, what 
Chevallard et al. (2015) characterises as transcendent utility. 

However, the main difference between the MTs' and ETs’ answers, lies in the role played by the 
solving technique as opposed to its justification. The ETs emphasise that mathematical education 
should have as its main goal the development of a well-defined logos around certain mathematical 
praxeologies rather than the work on technique. ET2 expressed it in the following way: "I am 
interested in the concepts of integral and derivative in contrast to them knowing integration by parts 
which I do not consider necessary at all". ET3 also states along the same lines: "They have to know 
and identify functional relationships, the variation of data, identify trends, beyond finding integrals 
or concrete derivatives by hand". ET4 states it as follows: "They don't have to know how to solve 
almost anything by hand, on the internet there are symbolic calculators: they have to know what it is 
to integrate and derive" ET5 puts it like this: "In practice, solving by hand is not used, there is 
technology available that solves it [...] On the other hand, it is more important that they know how to 
identify trends, analyse data" This type of discourse in which technical work is not a priority does not 
appear explicitly in the interviews with the MTs. 

In conclusion, the interviews allowed us to identify an applicationist conception of mathematics in 
the institution under study. Moreover, the internal discontinuity that we hypothesised appears to be 
characterised by the contrast between a technicist teaching model (in the sense of Gascón, 2001), in 
which the raison d'être of mathematics education is mainly the resolution of exercises using concrete 
techniques and another model closer to the conception of mathematics as a modelling tool. These 
results confirm the local characterisation of the discontinuity described by Castela and Romo 
Vázquez (2011), González-Martín and Hernandes-Gomez (2019) and Hochmuth and Peters (2020). 
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Different studies in the field of didactics have shown difficulties that arise in the teaching of 
mathematics in relationship with physics at university level. In her opening lecture for INDRUM 
2016, Artigue (2016) recalls the work done in the 1980’s by a group of didacticians, mathematicians 
and physicists, where no agreement could be made on the notion of differential and the way to teach 
it. In this study (Groupe Maths- Physique Enst. Sup., 1989, page 15), the researchers show that 
mathematics students and teachers are very uncomfortable when they are asked about the validity of 
differential procedures. Recent research shows that the object ‘integral’ has different aspects and 
interpretations (sometimes common to physics and mathematics), between which the students have 
to juggle when they use integrals in applied contexts (Jones, 2013). This suggests that students who 
encounter the integral in many different applied contexts develop a deeper understanding of the whole 
object. Mathematical modeling in a physics context might allow to develop mathematical knowledge. 
The process of modeling is often described as an iterated process, where the modeling hypothesis is 
subject to modifications depending on the results obtained at the end of the mathematical work. This 
implies that the mathematical treatment has to be valid and thus legitimated by a mathematical theory. 

Our global research question is: How mathematical modeling  techniques in physics can be related 
to classical calculus courses content? We search how the physics modeling contexts can enrich 
calculus knowledge. 

Modeling physics tasks involving integrals in polar coordinates to determine a magnitude sometimes 
makes use of a technique in which we consider surface elements delimited by two semi-lines going 
through the origin at an angle of  and two concentric circles distant of  (where the smaller circle 
has radius ). This surface element is said to have approximately the area of a rectangle of side lengths 

 and . The searched magnitude is then obtained if we “sum-up” these areas or a magnitude 
depending on these areas by the integral: ∬ ( , ) . We tried to analyze this technique in 
terms of praxeology (Chevallard, 1985). The theorem that is often cited as a justifying technology to 
this technique is the change of variables theorem. However this theorem already needs the function 
to be integrated to be known, and thus it cannot be applied in such a physics modeling situation whose 
goal is precisely to find this function. Instead we searched if the error we get by this approximation 
of the area has or not an impact on the limit of the Riemann Sum. Indeed the real surface of such a 
surface element can be calculated using simple proportionality and the area formula for a disk: =+ ( ) 2⁄ . Comparing this to the formula obtained by the approximation by a rectangle, 
we can determine the error term of the approximation ( ) 2⁄ , for which we can show that its 
sum can be made arbitrarily small if the partition is fine enough. This technology is embedded in the 
theory of Riemann integrals. 
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To further investigate if and how this link could be implemented at the student level, we tried to teach 
this missing brick to two second year mathematics students who were volunteers and interested in 
electrostatics. In four sessions of two hours each, we gave them an overview of the physics subject 
of electrostatics, divided the proof of the missing brick into subtasks in a purely mathematical context 
(integrate a function over a disk) so that they could do the proof and at the end we proposed them the 
following modeling task (standard in electrostatics courses):  “Determine the force exerted by a 
uniformly charged disk onto a charged particle situated above its center”.  For the last session, only 
one of the students was present. He first wanted to repeat the end of the proof from the session before, 
to be sure to understand. After that, he followed the proof from the last time for this physics task. 
This modeling task contained new elements, making the task more complex. For instance, the 
magnitude to be calculated was a vector instead of a scalar. Here the student correctly explained that 
we could do the sum component by component, and thus passing to the limit do the integral 
component by component. He first calculated the vertical component, and then he was asked to 
formulate a conjecture about the horizontal components of the force. He was able to give a heuristic 
argument for his conjecture that they would vanish:  

E2:  We turn around the point […] the components er… in a horizontal direction, well 
it, it cancels out then. 

In physics courses such simplifying techniques that use the symmetry of the objects are explicitly 
taught. Our student never had such courses, but he was still able to give a correct answer and an 
argument for this. This gives us new praxeologies to investigate. 
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Over the last twenty years, mathematics education research has become increasingly interested in 
how the body interacts with students’ thinking and knowing. However, researchers in this field often 
theorize the body in diverse ways. From Ingold’s post-humanist perspective, humans live in animate 
bodies which are inseparable from their thinking and knowing. Movement, for Ingold, is not a support 
for, or an expression of, thinking, rather human bodies think in movement. This paper studies a small 
group of students, as they engage with a mathematical task, to investigate students’ spontaneous 
mathematical thinking in movement. As this study illustrates, students’ spontaneous thinking in 
movement can offer new and valuable insights into students’ mathematical knowing. These findings 
suggest mathematics educators may need to reevaluate what might be considered students’ 
mathematical thinking in research and in the classroom. 

Keywords: Thinking in movement, mathematics education, embodiment, post-humanism. 

Within mathematics education, the links between the body and mathematical thinking are an 
increasing focus of research. Mathematical education researchers employ a variety of theoretical 
perspectives to investigate movement and thinking. Although these theories generally reject the 
historical western separation of mind and body in cognition, they often theorize the body from a 
variety of different perspectives.  Recruiting Tim Ingold’s (2013) post humanist theory of making, 
this paper investigates students’ spontaneous movement and thinking. For Ingold, new things emerge 
from the correspondence of animate human and non-human material flows.   Following Maxine 
Sheets-Johnstone (2011), Ingold argues thinking and movement are inseparable: animate human 
bodies “think in movement” (Sheets-Johnstone, p. 451). 

This paper is part of research for a doctoral thesis which explores students’ activities as they engage 
with a mathematical problem task. As part of the wider thesis, this paper investigates a different 
fragment from, but the same group and session as, Gandell & Maheux (2019). The focus for this 
paper is an exploration of students’ spontaneous full body movement rather than investigating 
movement as a learning tool. In order to include all aspects of movement, space, body and dynamic 
qualities, Laban’s (Moore & Yamamoto, 2012) movement elements are employed as a movement 
framework for this study. The aim of this paper is to investigate students’ mathematical thinking in 
movement during a mathematical task. The paper begins with a brief background into the research 
and theories underpinning the research, describes the research design and movement framework, 
analyses a small fragment of student activity, and ends by discussing the significance of the findings. 

Background 
Over the last twenty years, embodiment research, investigating the role of students’ and lecturers’ 
bodies in and as their knowing, has gained traction in mathematics education (Abrahamson et al., 
2020; Roth, 2016). Although challenging the long-held paradigm, separating mind and body in 
cognition, embodiment research encompasses a variety of, sometimes conflicting, theories 
(Abrahamson et al., 2020; De Freitas & Sinclair, 2014; Maheux & Proulx, 2015; Roth, 2016). In 
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addition, many of these theories, which include sensuous cognition, cognitive psychological 
frameworks (for example, grounded blends, conceptual metaphors, and gesture research), enactivism, 
and inclusive materialism, hold a variety of diverse perspectives on the body.  

As Ingold (2013) and Sheets-Johnstone (2011) explain, embodiment research often appears to 
continue the divide between mind and body. For example, in some embodiment research, students’ 
movement may be dictated by specified tools (often digital tools), or students may be required to use 
preplanned movements, to produce a predetermined output (Abrahamson et al., 2020). In this way 
movement may be conceived as a demonstration of concepts held in the mind with the body 
positioned as an instrument of that intellectual knowing mind (Roth, 2011). For Ingold and Sheets-
Johnstone, however, humans are tactile-kinaesthetic beings, not reified minds enclosed in a body 
package. As primarily tactile-kinaesthetic beings, humans use their bodies, from before birth and 
before language, to explore and come to know the world (Sheets-Johnstone). From Ingold’s post-
humanist perspective, humans come to know as human and non-human material flows correspond in 
an ongoing, ever changing, “dance of animacy” (p.101). In this way knowledge emerges from the 
flows of animate materials answering to each other, rather than by building representations of the 
world in ordered steps. So that, as Sheets-Johnstone explains, humans experience “thinking in 
movement” (p. 451), not by having thoughts in the mind expressed as movement, nor by having 
movements creating thinking in the mind, but the movement itself is the thinking.  

Research design 
To investigate students’ spontaneous mathematical thinking in movement, this paper follows the 
flows of materials forward, as Ingold (2013) suggests. Working together, students offer their actions, 
including their movements and verbalisations, to each other as indications of their knowing (Roth, 
2016). Any actions, made available to others, can then be used by researchers as a representation of 
the students’ knowing, without resorting to presupposing students’ intentions or thoughts (Roth). By 
micro-analyzing students’ verbalizations and movements, this analysis is concerned only with the 
actions the students provide for each other, as they engage with a mathematical task. Thus, students 
performed actions are taken as their knowing, rather than guessing at students’ intentions.   

Movement framework 

Humans, with similar bodies, share an understanding and recognition of how bodies move and how 
they feel as they move (Sheets-Johnstone, 2011). This shared social understanding of movement is 
essential for survival and reproduction in any animate social species. Typically, mathematics 
education research usually considers how the body moves through space. Inherent in any movement, 
however, are dynamic qualities which evoke sensations for both the performer and for the observer 
(Laban & Ullman, 2011/1966, Sheets-Johnstone). Consider how stomping heavily feels different to 
running lightly and how these movements might feel different for an observer. During the 1930’s 
Laban developed detailed framework of movement elements describing both quantitative (body and 
space) and dynamic qualitative (effort actions) of movement. Laban’s elements are now used in a 
variety of fields including the arts, industry, psychology research and computer interface technology. 
Over time Laban’s framework has been adapted, however, three elements are generally described: 
body (parts and actions); space (reach and direction); and dynamic qualities (force and timing) 
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(Moore & Yamamoto, 2012). Although Sheets-Johnstone’s movement descriptions are similar to 
Laban’s elements, Laban’s framework provides more detail and is more widely used in movement 
analysis.  Thus, this paper analyzes students’ movements using Laban’s movement elements. 

One difficulty for movement research is how to record dynamic movement in a static paper. A variety 
of methods have been used including Laban Notation (Laban & Ullman, 2011/ 1966), developed prior 
to easily available video recording, a series of still images of progressing movement and annotated 
still images. This paper uses still images with annotated arrows to provide some animation to the still 
images as Ingold (2013) describes in drawing lines. 

The mathematical task 

Figure 1: The task 

As a modular arithmetic task, the modulus, n, is the people number and the place jump number is 
repeated addition (multiples of), m. For example, in the five-person three-place-jump game: the 
multiples of 3 mod 5 are (3, 1, 4, 2, 0/5). As this is the set of numbers in modulus 5, everyone gets to 
throw the ball (or move/swap places in the dance). A possible shortcut could be written as: if the 
people number and place jump number don’t share a common factor everyone gets to throw the ball 
(move/swap places). 

Nic watches a game where a ball is being thrown around a group of people in a clockwise 
direction. The number of people in the group is called the people number. Each time the ball is 
thrown in a game it is thrown in equal size place jumps. Each person throws the ball to the person 
on their left the same number of place jumps away. When the ball gets back to the first person the 
game ends. 

 
In some games (like the 5-people 1-place jump game and the 5-people 2-place jump game) Nic 
notices that all the people throw the ball. In other games (like the 4- people 2-place jump game) 
only some people throw the ball. Nic wonders whether everyone gets to throw the ball in a 4-
people 3-place jump game and a 6-people 3- place jump game. 

Nic wants to make a dance using this game with people moving between each of the positions 
instead of the ball being thrown. Nic wants to know if everyone gets to move for different size 
people number and place jumps. Create and explain a shortcut that Nic could use for any size of 
people number and place jump size. Present this shortcut in the last 5 minutes of the session. 
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The setting

This paper is part of a larger thesis studying students’ movement, as they explore a mathematical task
and follows on from the analysis of students’ mathematical problematizing reported in Gandell and 
Maheux (2019). For Maheux & Proulx (2015) is the posing and solving of smaller self-generated 
problems in response to a mathematical task. The environment and task were intentionally designed 
to elicit students spontaneous full body movement. 

The participants, four non-maths major students aged 18 and 22 years, were recruited from a six-
month tertiary bridging programme which provides entry into degree and diploma programmes.
During an hour-long session, the students engaged with a mathematical task in an open room with no 
tables and chairs. The task (Figure 1), printed on A3 paper, was attached to one of several vertical 
whiteboards positioned at the edges of the room with whiteboard markers and magnetic counters. All
student activity was captured by three video cameras positioned at the edges of the room. The 
fragment transcribed below, occurs thirteen and a half minutes from the beginning of the session, 
and six and a half minutes after the first fragment transcribed in Gandell & Maheux (2019). The 
session began with a movement warm up, led by the researcher, who then invited the students to 
move freely around the room. The students then alternately used the vertical whiteboard and task 
sheet and acted out two games from the task (a four-person three-place-jump game and a six-
person three-place-jump game) in the open area of the room. In the first enactment the students 
used a counter as a ball, in the second enactment the students changed the game into a dance, as 
requested by the task (Figure 1).

Mathematical thinking in movement
At the beginning of this fragment the students have just completed acting out a six-person, three-
place-jump game, which they call a six-three. As 3 modulus 6 has only two multiples (3, 0/6) only 
two people move, during the enactment of the game, which the students verbalize as swapping places. 
Returning from the open area of the room to the white board and task sheet they utter “that one doesn’t 
work”. The group, Chas, Kit, Ala and Paige, stand quietly for a few minutes. Kit first problematizes
finding a formula, and then how to change a six-three game so that everyone can move.

1 Kit: A six-two for everyone to move I think (suddenly dabs three discrete 
positions with this right index finger, inscribing a circular path in front and 
to his right side with this right arm, and gazing first between Chas and Ala 
then towards Ala and Paige, Figures 2 a, b and c).

Figure 2: a) Kit dabs position one b) position two c) and position three 
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For Sheets-Johnstone (2011) “thinking in movement is not that the flow of thought is kinetic, but that 
the thought itself is” (p. 421). Thinking in movement does not require students to learn which 
movements will produce specified answers, or to pre-plan movements to express ideas: thinking in 
movement is the spontaneous activity of a dynamic thinking body. In the fragment above Kit 
demonstrates spontaneous, self-generated, mathematical thinking in movement providing a 
mathematical solution for his problematization of how many people move in a six-person two-place 
jump game (line 1). 

In Line 2 Kit verbalizes that everyone will move, for a six-person two-place-jump game and performs 
a movement indicating three positions in a rough circle with his right index finger (Figure 2). Kit 
performs this movement very quickly, with the three positions distinguishable by the variations in 
dynamic qualities. The curved paths between each of the positions have a light, gliding quality, like 
a bounce. Kit pauses, at the end of each bounce, with a heavier and more bound quality, like a dab. 
Although these bounces and dabs serve to indicate different three positions to his right front and side 
(Figure 2), the sudden and indirect qualities of this movement give Kit’s performance the feeling of 
a sketch. With his movement in line 2 Kit appears to be trying out, rather than defining, the solution 
of three positions for the game.  

Kit clearly provides a solution for the six-person two-place-jump game with his movement: a solution 
not available from his verbalisation that everyone moves.  No previous movements in this session 
have sketched a solution using Kit’s bounce and dab movement, so Kit is not reproducing a 
movement. Thus, a new mathematical movement has emerged spontaneously from a moving dynamic 
body. As Kit’s movement (Figure 2) does not replicate his verbalized solution the movement cannot 
be a pre-planned or pre-thought embodiment of that verbalization. In line 2, then, Kit performs a 
mathematical solution in movement: Kit is thinking in movement as Sheets-Johnstone (2011) 
describes. 

Evolving thinking in movement 
2 Chas: The trouble is instead of swapping (elbows bent index fingers touching, 

right finger traces horizontal curve forwards, left hand traces straight line 
backwards and up, Figure 3a) you go around (spiral trace with right arm 
across left, up and forwards, Figure 3b). 

   

Figure 3: a) “instead of swapping” b) “you go around” 

3 Paige: (lifts hands to hips) yeah that’s what I was thinking 
4 Chas: (touches left and right index fingers in midline) it goes around to the next 

person (spiral right arm trace left, forward and up across his body) instead 
of swapping (index fingers touching, traces two lines right hand forward, 
left hand backwards and up then rolls right hand backwards under left hand 
going forwards, then rolls right hand forwards under left hand going back, 
Figure 4a). So that’s the swap (Rotates right and left hands around each 
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other tracing horizontal circles Figure 4b. Holds final position index fingers 
pointed upwards for 2 seconds, Figure 4c). 

       

Figure 4: a) over and under rolls b) spiral around vertically c) final held position 

5 Chas: From there (points right arm to left side, rotating torso and head to left, 
Figure 5a) goes around to (traces horizontal circle around body with right 
arm, rotating torso, to point to right side. Holds arm extended to right and 
looks back to Kit, Figure 5b) … the next person  

   

Figure 5: a) “from there” b) “to the next person” 

Thinking in movement arises from a body that resonates with the world (Ingold, 2013; Sheets-
Johnstone, 2011). Rather than reified minds creating symbols and representations of the world, new 
things, including mathematical things, emerge as tactile-kinaesthetic bodies correspond with animate 
material flows. Thus, thinking in movement is emergent, evolving and adapting to an ever-changing 
environment, and may take many different forms (Sheets-Johnstone). Chas, in lines 2, 4, and 5, 
demonstrates an evolving thinking in movement which contrasts with his almost unchanging 
verbalizations.  

In line 2, Chas verbalizes and performs two problematizations which he differentiates both verbally 
and by using different space, body and dynamic movement qualities. For the first problematization 
Chas traces a line with each hand (Figure 3a) as he utters “instead of swapping back”. In the second 
problematization Chas performs a spiral trace with his right arm (Figure 3b) uttering “you go around”. 
The small, direct, straight line “swap” movements are performed with two hands, tracing a mainly 
horizontal pathway. In contrast, for the larger spiral “around” movement, Chas’s right arm traces a 
path to the left, across his midline, then up and forward, through horizontal, vertical and transverse 
planes, with a sustained, indirect, light, floating, quality. Although Chas uses different words for his 
verbalizations, how “swap” might be different to “around” is not clear without his movements. Chas’ 
verbalizations, then, appear to be labels supporting his movement problematizations. 

In line 4, Chas begins by repeating the swap and around problematizations, with little change to his 
movement or verbalizations, but in reverse order. Immediately after he repeats the ‘swap’ movement 
from line 2, Chas begins a new movement (Figure 4a) rolling his hands over and under each other in 
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vertical semi-circles. Chas then verbalizes “so that’s the swap”, as he spirals his hands around each 
other in a horizontal plane (Figure 4b), finally stopping and holding the position in Figure 4c. Thus, 
in line 4 Chas performs three distinct “swap” movements. 

These “swap” movements, which are performed in quick succession, are differentiated by 
transforming dynamic qualities from sharp, bound and direct to more continuous, freer and indirect. 
In this way the “swap” movement appears to enfold the dynamic qualities of both the “swap” and 
“around” movements, initially performed in line 2. In addition, the movement pathways change from 
almost straight lines to semi-circles and finally to spirals. Although performed with two hands the 
spiral pathway of this final swap movement (Figure 3b) reflects the spiral of the initial “around’ 
movement from line 2. However, while Chas performs ever-evolving “swap” movements in line 4, 
he continues to verbalize these movements as a swap. 

Finally, in line 5, Chas places himself in the centre of the movement and performs a large continuous, 
sustained horizontal curved pathway with his right arm. By combining a curved path, a sustained 
floating dynamic quality, and the use of one arm this final movement performs some elements of the 
“around” movement from line 2. However, in this movement Chas also includes elements of the line 
2 swap movement, performing a more horizontal, single direction, pathway and a more direct 
dynamic quality. Thus, Chas’s movements (lines 2, 4 and 5) evolve and, by merging elements of both 
the “swap’ and “around” movements, seem to resolve the problematization of how counting around 
becomes swapping places in the game as a dance. Although Chas’s movements transform, in lines 2, 
4 and 5, his verbalizations remain very similar, with his final verbalization indicating positions rather 
than referencing any resolution to his problematizations. By adapting and evolving his movements to 
merge his two problematizations, Chas shows how thinking in movement may evolve and change as 
a dynamic body resonates with an ever-changing environment. 

Discussion and conclusion 
For Sheets-Johnstone (2011) humans move and know the world through their tactile kinaesthetic 
bodies. Humans cannot remove themselves from their bodies and think in some disembodied mind.  
As this paper demonstrates, students’ movement is not only integral to their thinking and knowing, 
students think mathematically in movement. Kit’s movement illustrates how students animate bodies 
perform mathematical thinking: thinking that may not necessarily be articulated, expressed or made 
available in any other way except in movement. Similarly, Chas demonstrates how thinking in 
movement can emerge and evolve, even while accompanying verbalizations remain static. Thinking 
in movement is not about making decisions about how to move or where to move, rather spontaneous 
movements emerge and evolve in correspondence with an animate world (Ingold, 2013; Sheets-
Johnstone).  

For a long time, western mathematics education has de-privileged movement and the body in 
mathematical thinking. By ignoring students’ spontaneous thinking in movement, mathematics 
educators and researchers may be missing valuable instances of students’ mathematical thinking and 
knowing. As Sheets-Johnstone (2011) explains 

 “thinking in movement is a way of being in the world, of wondering or exploring the world 
directly, taking it up moment by moment and living it in movement, kinetically. Thinking in 
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movement is clearly not the work of a symbol making body, a body that mediates its way about 
the world by language, for example, it is the work of an existentially resonant body” (p. 425). 

Although many educators approach movement in the classroom in many different ways, movement 
is not simply a learning tool. Students’ spontaneous movements provide access to mathematical 
thinking and knowing that may not otherwise be available. To fully understand students’ 
mathematical thinking, mathematics educators need to develop approaches that recognize and support 
students’ thinking in movement, rather than considering movement as an adjunct to verbalization or 
an expression of concepts held in a mind. In research, and in the classroom, mathematics educators 
need to consider movement not just as another resource for learning, providing space and support for 
students to move, mathematics educators also need to pay closer attention to students’ mathematical 
thinking in their spontaneously performed movements.  
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The instrumental approach, and in particular the concept of scheme, can contribute to our 
understanding of how students learn programming for mathematical inquiry at university. While most 
studies consider only individual schemes, in this paper we propose to investigate schemes’ social 
aspects, focusing on the scheme of “Validating the programmed mathematics”. Through a 
questionnaire conducted with students over 2 years, and interview data, we identify shared rules-of-
action developing over time. Deepening the analysis for the case of two contrasted students, we 
observe that common rules-of-action can be associated with different theorems-in-action.  

Keywords: Social aspects of schemes, Programming, Instrumental approach, Mathematical inquiry. 

1. Introduction  
The study presented here is part of a larger 5-year project, whose aim is to better understand how 
students learn programming for mathematical inquiry at the university level. In our previous work 
(Buteau, Gueudet, et al., 2020; Gueudet et al., 2020) we have shown that the instrumental approach 
(Rabardel & Béguin, 2005; Trouche, 2003) and the concept of scheme (Vergnaud, 2009) can 
contribute to this aim. This concept allowed us in particular to investigate how students develop 
operational knowledge (knowledge that provides means to do and succeed, Vergnaud, 2009), through 
instrumental geneses. We focused only on the individual level: the schemes developed by a given 
student. Nevertheless, at university, students learn in a social context, and most probably their 
schemes also comprise common elements. Some aspects of the operational form of knowledge are 
shared; identifying these aspects is essential in particular to inform teachers’ orchestrations (Trouche 
2003) in this context. The question we investigate here is: Can we identify patterns in the culture of 
a community of students learning to use programming for mathematical inquiry? 

In terms of research, we claim that studying this issue is an important theoretical and methodological 
contribution, because the instrumental approach has been used mostly for studying individual 
learning processes. In terms of teaching, we have observed in a previous study (Buteau, Muller, et 
al., 2020) that insights into students’ schemes can be very helpful for teachers orchestrating their 
learning of programming for mathematical inquiry. 

Our study takes place in the context of a sequence of three university mathematics courses called 
Mathematics Integrated with Computers and Applications (MICA I-II-III) taught at Brock University 
since 2001 (Buteau & Muller, 2010). In these project-based courses, mathematics majors and future 
mathematics teachers learn to use programming for mathematical inquiry (e.g., using programming 
to simulate a battle between two armies; see section 5). 
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2. Theory and research questions  
We draw from Vergnaud’s (2009) theory of conceptualization, distinguishing between an operational 
form of knowledge (knowledge that provides means to do and succeed) and a predicative form of 
knowledge (knowledge that consists of means to express ideas in words or symbols). We argue that 
Vergnaud’s theory is relevant for our study because operational knowledge is very important when 
learning to use programming for mathematical inquiry.  

Operational knowledge’s development and evolution are captured by Vergnaud (2009) through the 
concept of scheme, which is central in our study. A scheme is an invariant organization of activity 
for a certain goal and consists of four components: the goal and sub-goals; rules-of-action (RoAs), to 
generate action, information seeking, and control; operational invariants (concepts-in-action, which 
are concepts considered as relevant, and theorems-in-action (TiAs), which are propositions 
considered as true); and possibilities of inferences. 

We also use the instrumental approach, particularly its theory of instrumental genesis, which 
conceptualizes the process of how users (learners) transform an artefact (a human product, designed 
for a goal-directed activity) into an instrument for a specific goal and situation (Rabardel & Béguin, 
2005). For Rabardel and Béguin (2005), an instrument is a hybrid entity: partly an artefact and partly 
scheme(s). 

According to Rabardel and Béguin (2005), schemes have both a private and a social dimension. The 
private dimension is specific to each individual, while the social dimension reflects the fact that 
schemes may be shared by members of social groups. The social dimension also may be a 
consequence of schemes developing during a process involving individuals who are not isolated; for 
example, classmates working on assignments in a shared space such as a computer lab. Schemes may 
be shared informally or prompted/promoted formally by training, such as in teaching and learning 
situations (e.g., through assignment guidelines, lectures, etc.). 

This points to the possibility of the development of social dimensions of schemes in teaching 
situations. In fact, Trouche (2003) claims that through instrumental orchestration, one aim of the 
teacher is to reduce the variability of the individual schemes students develop, in order to strengthen 
the social dimensions of schemes; for instance, reflecting those shared by an intended community of 
practice, such as that of mathematicians (Lave & Wenger, 1991).   

The above theoretical elements lead us to refine our initial question as follows: Can we identify 
common elements in the schemes developed by students learning programming for mathematical 
inquiry? For a common goal, do students share common RoAs, and if so, are these rules associated 
with the same operational invariants? How do these common elements develop over time, in a course, 
and over several years of courses?  

3. Methods  
In our past work, we developed a general model of students engaging in learning to use programming 
for mathematical inquiry (Buteau & Muller, 2010), which enabled us to identify common goals in the 
schemes developed by students. For this study, we focus on one such goal, namely “Validating the 
programmed mathematics”, considered as particularly important because it associates mathematics 
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and programming. For this goal, we further focus on RoAs because most operational invariants and 
inferences cannot be made explicit; RoAs are more explicitly identifiable.  

We mainly draw from two types of data: a questionnaire and individual interviews. The questionnaire 
was given to students at the end of each MICA course over 3 years (2019–2021), and included 
questions on demographics, confidence levels in programming (mathematics), et cetera. Since 2020, 
it also included two questions seeking insights about two specific schemes. Each of these questions 
presented a list of RoAs in a matrix format and a 5-point Likert scale for students to answer if they 
used the RoA always, often, sometimes, rarely, or never. Most of these RoAs were identified in our 
previous work analyzing a student’s activity (Buteau, Gueudet et al., 2020), and some more were 
added based on our experience as mathematicians researching with programming or teaching 
programming for mathematics investigations. The questionnaire was answered by 30 anonymous 
volunteer students, in addition to another 13 volunteer students whom we have been following closely 
throughout their MICA courses (e.g., using also individual interviews). 

We used relative frequency bar graphs for responses to each of the questions and for responses 
regrouped into three categories (always/often, sometimes, rarely/never) in order to identify RoAs that 
could be considered as social. To do so, we used an arbitrary threshold of 70% of the regrouped 
always/often responses. We note that the sample of 43 participants is not necessarily representative 
of the entire MICA community but can nevertheless give insights into potential social dimensions of 
schemes. For triangulation purposes, we also called upon interview data. For this paper, we selected 
data collected in Year 2 (2019) of our research since we had the opportunity to collect data both from 
an instructor (Bill) and some of his students. In one of the interviews with this MICA II instructor, 
we showed him the list of RoAs and invited him to comment on whether, according to him, students 
enact the RoAs, and to elaborate about his related guidance.  

Finally, we went to individual student cases. Two among eight student participants enrolled in Bill’s 
MICA II class were selected due to their more reflective answers in interviews and for their differing 
profiles: Kassie is a female student enrolled in the mathematics and education program who had no 
programming background prior to starting her university studies and Mark is a male computer science 
and mathematics co-major student who had a significant programming background prior to MICA I. 
After each of the programming-based mathematics inquiry projects (five assignments), individual 
semi-structured interviews were conducted. We used guiding questions incorporating “explicitation” 
techniques (Vermersch, 2006) to help students relive their actions during the development of their 
investigation projects. Kassie and Mark’s interview data were coded to identify potential elements of 
schemes (in particular, the “Validating” scheme) according to their RoAs and TiAs (Gueudet et al., 
2020), which were then confronted with their assignment reports. The outcomes of this analysis were 
organized in terms of RoAs and summarized for each project in a common Excel table, to which we 
added Kassie and Mark’s own questionnaire responses as well as the relative frequencies of the 
overall questionnaire responses. Using these tables, we identified individual elements of the 
“Validating” scheme for Kassie and Mark, respectively.  
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4. Identifying social aspects of a scheme 
In this section, we present the results of our analysis identifying the social RoAs for the “Validating” 
scheme (Buteau, Gueudet, et al., 2020), as part of the process of creating a program for conducting a 
mathematical inquiry. We consider an aspect of a scheme to be “social” when it is shared by a social 
community. In our analysis, we realized that RoAs may be identified as social (or not) depending on 
whether the community in which they are shared comprises the students in MICA I or the students in 
upper MICA courses (i.e., MICA II and III). These two communities are not independent: We might 
even see the MICA I student community as in the process of “becoming” or “developing” into an 
upper year MICA community. This relates to the instrumental lens, whereby the study of students’ 
instrumental geneses is considered as progressing over time. Hence, we will not consider as our 
reference community all MICA students. Note that we grouped 2nd- and 3rd-year students (into upper 
MICA) to have more appropriate sample sizes for comparison purposes (N=18 for upper MICA, 
N=25 for MICA I). This also reflects the implementation model in these courses: MICA II and III 
invite students to use programming skills to engage in mathematics inquiry, while MICA I is also 
focused on developing students’ programming skills (due to their lack of background in 
programming). 

RoA Upper MICA  MICA I 

1. I check a few times as I program by compiling with a few inputs. 94, 6, 0  72, 28, 0 

2. Once I have programmed it all, I run the program with a few different 
inputs and compare the output with my hand calculations. 

89, 0, 11 92, 8, 0 

3. I compare the output of my program with that of a peer or with examples 
from the internet.  

83, 6, 11 40, 24, 36 

4. I compare my program with that of a peer. 72, 17, 11 32, 24, 44 

5. I ask someone (a peer, a TA, the instructor, etc.) 61, 22, 17 52, 20, 28 

6. I trust that I translate in vb.net/python what I do on paper. († This is the 
original wording in the questionnaire. However, we acknowledge that this 
formulation rather points to an operational invariant and a ‘no RoA’.) 

56, 22, 22 28, 32, 40 

7. I use other technology (Maple, Desmos, etc.) to generate an example and 
compare it with the output of my program. 

28, 50, 22 64, 24, 12 

*  I don’t really know if it works. (* We label this statement differently because 
it is not a rule-of-action. It is more an indication that students do not have a fully 
developed scheme for validating the programmed mathematics.) 

11, 22, 67 8, 24, 68 

Figure 1: Percentages of participants who say they do the RoA always/often, sometimes, rarely/never, 
in response to the question “When I program a mathematics concept, I know that it works because…” 

Figure 1 depicts findings from the online questionnaire, listing the RoAs in the order of highest to 
lowest percentage of upper MICA participants stating that they use it always or often when validating 
a programmed mathematics process.  

While these RoAs can seem to concern programming in general, we note that the question invites the 
students to answer only about programming a mathematics concept. Some of the rules are directly 
linked with mathematics: calculating by hand (RoA 2), or with Maple (RoA 7). Moreover, when the 
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scheme is mobilized in a specific mathematical situation, these rules are specified in relation to the 
mathematical contents, as we illustrate in the following section.  

The top four RoAs are used by more than 70% of the upper MICA participants, suggesting that those 
RoAs may be social components of the validating scheme for the upper MICA community.  

RoAs 1 and 2 appear to be social also in MICA I. For RoA 2, the proportions are similar: 89% and 
92%, respectively. One reason for this may be that the lab and assignment guidelines explicitly 
encourage students to check their output with hand calculations, starting in MICA I. In contrast, for 
RoA 1 the proportions have a greater difference: from 72% in MICA I to 94% in upper MICA. One 
way to explain this is that RoA 1 goes together with the practice of coding incrementally. The MICA 
II instructor from our study, Bill, explains:  

Bill:  They will often test. … They develop programs incrementally, so they’ll write … 
just a couple of … a loop or something and they just [say]… see: does that make 
sense? 

Such a skill may require time to develop. Also, the mathematics problems explored in upper MICA 
lead to more elaborated programs, which can encourage students to code incrementally. This is in 
contrast with RoA 2, where students check after the program is completed.  

RoAs 3 and 4 appear to become social only in the upper MICA community. For RoA 3, the proportion 
increases from 40% in MICA I to 83% in upper MICA. This could be related to upper MICA students 
having become more confident in their own skills and more comfortable with their peers; hence they 
may be more willing to interact and share with their peers. We note that interaction and sharing among 
MICA students, as well as comparing output with examples from the internet, is also encouraged by 
instructors. Bill confirms that students do RoA 3 and says:  

Bill:     There are places where the answers are on the internet and I encourage them to 
check that their program gives that output. 

Similarly for RoA 4, the proportion increases from 32% in MICA I to 72% in upper MICA. Bill again 
confirms that students do this constantly and are encouraged to do so:  

Bill:     It’s a public forum. Chat, talk, discuss. … We are collaborating and I want to foster 
that atmosphere. 

The last four RoAs do not appear to be social in the upper MICA community. Bill confirmed this in 
some cases: E.g. for RoA 6, Bill noted that it is not common for students to trust their translation of 
what they do on paper into the programming language. Finally, we note the low proportions (in *I 
don’t really know if it works) that may be interpreted as indicating that all students already have 
started to develop their “Validating” scheme to a certain degree by the end of MICA I.  

5. Social and individual aspects of schemes 
In this section, we further analyze the “Validating” scheme for two students, Mark and Kassie. 
Considering this individual level allows us to observe similarities and differences when a common 
RoA is mobilized by different students, and to deepen our analysis of the intertwined mathematics 
and programming knowledge involved in this process. For the sake of brevity, we focus on 
assignment 4 (question 1) from the MICA II course taken by Mark and Kassie, and we select only 
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one of the social RoAs. We also evoke other MICA II assignments that confirm the stability of the 
organization of students’ activity and illustrate variability depending on the mathematics. 

Presentation of assignment 4 

In this assignment, students investigated simulations of a battle between two opposing armies using 
discrete equations. The assignment contained three questions that became progressively more 
complex. In the first question, students were told to create a program to output the day-by-day 
evolution of the battle represented by the Lanchester equations: Xn+1 = Xn - a*Yn and Yn+1 = Yn - b*Xn, 
where a and b are fixed parameters and Xn and Yn represent the number of soldiers in the two armies 
on day n (the battle ends when Xn or Yn is less than 1). 

RoA 2: A common mobilization, different TiAs 

For question 1 of assignment 4, both Kassie and Mark mobilized RoA 2: “Once I have programmed 
it all, I run the program with a few different inputs and compare the output with my hand 
calculations”, which we found to be social among both MICA I and upper MICA communities. In 
their individual interviews, they declare for example: 

Kassie:     I did like the equations myself, just after like the first day of battle and kind of like, 
compared them with what I got with my program. 

Mark:     You’re able to, again, at least begin on paper to kind of understand and write it out 
yourself of what the expected results are going to be. So, because of that, I kind of 
just tried to do the first few questions by hand. 

We found evidence of the mobilization of RoA 2 by Kassie and Mark for other assignments as well, 
confirming that it is part of a stable organization of their activity. We infer that both Kassie and Mark 
developed a corresponding TiA, such as: “When the result I compute by hand and the output of my 
program coincide, my program is correct”. Both this general TiA and RoA 2 take different forms 
depending on the specific mathematical content. In assignment 4, once the parameters a and b and 
the initial values X0 and Y0 are chosen, simple computations using the recurrence relations can provide 
the successive values Xn and Yn. Students look for an exact match between the output and their hand 
calculations; however, they are only able to do this for a finite number of days in the simulated battle 
and eventually trust that the further iterations will be calculated properly too. In comparison, in 
assignment 1, where students adapted a program (presented in class) simulating the Buffon needle 
random experiment, they could compute by hand the exact probability (applying a formula given in 
class). They knew (law of large numbers) that the frequency computed by their program should 
converge towards this exact probability and used this mathematical result to check their program (in 
particular, Mark described his actions in this way). 

In the questionnaire, while Kassie said that she “Always” uses RoA 2, Mark answered “Rarely” 
(nevertheless we found evidence that he used this rule on several occasions when completing his 
MICA II assignments). One possible explanation for this difference is that Mark is aware that a hand 
calculation is not always possible, depending on the mathematics involved. For example, about 
assignment 2, where students had to use the daily return percentages of the Dow Jones from 1950 to 
2020 to compute the probability of a 2% drop, Mark said: 

Mark:     If you’re given, uh, a mean … or a standard deviation or anything like that, um, you 
can’t just verify your answer because you’d have, what over 50 years of data there. 
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It seems Mark developed another TiA associated with RoA 2: “The validation through hand 
calculation is only possible in some particular cases”. Thus we observe in this case that in the 
“Validating” scheme, even if RoA 2 can be considered as social among the upper MICA community 
because it seems to be shared by a majority of students, the associated TiAs are not necessarily shared: 
Mark has developed a TiA about the possibility, or not, to apply this rule, but we did not observe the 
development of this TiA by Kassie. 

6. Conclusion 
In our study we attempted to identify patterns in the culture of a community of students learning 
programming for mathematics inquiry, and more precisely to identify common RoAs in the schemes 
students develop. We also have investigated the development over time of these shared RoAs, and 
the TiAs associated with them. In this paper we focused on the scheme developed for the goal of 
“Validating the programmed mathematics”, which associates mathematical and programming 
knowledge, and RoAs for this goal that were identified in an earlier study. 

Students’ answers to a questionnaire confirm that some of these rules are shared by more than 70% 
of the students—we consider these rules as social aspects of the “Validating” scheme. A further study 
of schemes developed individually by two students evidences that the same rule can be associated to 
different operational invariants, perhaps depending on the profile and experience of the student. We 
also observed evolutions between MICA I and upper MICA students. We claim that the social aspect 
of the teaching (the orchestration by the teacher, collective students’ work, etc.) contributed to create 
a community, with its shared patterns. MICA I students progressively entered the upper MICA 
community and aligned with its practice (Lave & Wenger, 1991) in terms of using programming for 
mathematical inquiry. In this university context, the horizon is given by the practice of 
mathematicians using programming for their own research.  

The patterns of this practice were not explicitly stated in the MICA curriculum; they can be 
considered as operational knowledge, which is often not explicit. The teachers might be aware of 
some of these patterns and try to support students in addressing a goal in “proper” ways—using 
certain RoAs, based on certain TiAs. Nevertheless, they might also ignore some of these patterns; the 
identification of patterns by a research study can be helpful for them. 

Most research using the concept of schemes has focused on individual schemes. However, as 
emphasized by Vergnaud (2009), the scheme–situation pair is a powerful tool in mathematics 
education research. Studying the aspects of schemes shared or not by students in a situation can also 
help refine our understanding of the situation. Focusing on social aspects of schemes is important to 
better understand what the situation is, for a group of students. We claim that using schemes not only 
as a theoretical tool for research but also as a lever producing interesting results for teachers requires 
a consideration of the social aspects of schemes, and their social-individual dialectics. In our future 
research we will further investigate social schemes by networking the theoretical frames of the 
instrumental approach (Trouche, 2003) and communities of practice (Lave & Wenger, 1991).  
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Introduction 
Complex path integrals appear in various undergraduate mathematics curricula (e.g., for pure 
mathematics students, pre-service teachers, or engineers) and have many applications in pure and 
applied mathematics (e.g., computing Riemann integrals). Yet, there is only very little research on 
educational issues of complex analysis education so far (e.g., Oehrtman et al., 2019). Regarding the 
heterogeneity of students attending courses in complex analysis and deep curricular connections of 
complex to real analysis, it is relevant to analyze various ways to define complex path integrals, and 
how real analytic notions, which are usually foreseen earlier in mathematics curricula, can be used 
for that purpose. Moreover, Oehrtman et al. (2019) indicate that even experts in complex analysis 
struggle interpreting complex path integrals, so the epistemological endeavor undertaken here is 
likely to contribute to the teaching and learning of complex analysis. Hence, I address the following 
question: “How can complex path integrals be defined and how are these definitions substantiated?”  

Theoretical frame and methodology 
Greefrath et al. (2016) introduce the notion of mathematical “aspects”: “An Aspect of a mathematical 
concept is a subdomain of the concept that can be used to characterize it on the basis of mathematical 
content” (Greefrath et al., 2016, p. 101; emph. and capital. orig.). For example, the product sum aspect 
characterizes Riemann integrals as limits of “product sums” and the anti-derivative aspect as the 
difference of the values of a primitive function at the upper and lower bound of integration. The last 
aspect actually requires an additional constraint (continuous instead of integrable integrands), and so 
do several characterizations of complex path integrals. Therefore, I follow Roos (2020) in 
distinguishing aspects from “partial aspects”, which are only valid under additional constraints. 

Definitions from approximately 50 textbooks from Cauchy’s time to present and articles on 
interpretations of complex path integrals (see Hanke (2020) for some references) were analyzed with 
regard to the constraints imposed on the integrands (e.g., continuity or holomorphicity) and the paths 
of integration. In addition, I analyzed connections to real analysis as well as authors’ substantiations 
for the definitions in order to abstract them into aspects and partial aspects of complex path integrals. 

Exemplary results 
Whereas the poster presents all (partial) aspects, I can only indicate four aspects (Table 1) and one 
partial aspect here. Assume that = +  is a complex function defined on the trace of a simple 
continuously differentiable path : [ , ] → ℂ. The product sum aspect resembles that for Riemann 
integrals. Making use of the substitution aspect, the complex path integral is defined by symbolically 
substituting = ( ) into ∫ ( ) d . The mean value aspect characterizes ( )∫ ( ) d  as the 
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average of the values obtained by rotating and dilating ( ) by the unit tangential vector at  on the 
path of integration, not the values of  itself. The vector analysis aspect expresses ∫ ( ) d  in terms 
of two real path integrals, which can be interpreted as the flow and flux of the so-called Pólya vector 
field = ( ,− )  associated to  along and across the path of integration. Therefore, there is a risk 
of confusion in the last two aspects in terms of what is averaged or which vector field occurs. One of 
the partial aspects is the residue partial aspect, which characterizes the complex path integral for 
closed paths and holomorphic integrands as a finite sum of residues. 

Table 1: Four aspects of complex path integrals 

Product sum aspect: ∫ ( ) d  is the limit of 

complex Riemann sums ∑ , (Δ ) , 
where = < ⋯ < =  ranges over the 
partitions of [ , ], ( ) ≔ ( )− ( ), 
and , ∈ [ , ] are tags. 

Mean value aspect: ( )∫ ( ) d  is mean 

value of ( ∘ ) ⋅ ( ∘ ) on the trace of , 
where  is the unit tangent vector at the path of 
integration 

Substitution aspect: ∫ ( ) d  is the complex 
number ∫ ( ) ′( ) d . 

Vector analysis aspect: ∫ ( ) d  is equal to ∫ d + ∫ d , where = ( ,− ) . 
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Calculus and mechanics are closely connected disciplines. However, students are not always able to 
establish links between them or use knowledge from one to solve problems in the other. In this paper, 
we study students’ solutions of two tasks: a familiar mechanics task and a similar yet unfamiliar 
calculus task. Our results indicate that while students had acquired praxeologies from mechanics 
suitable to the mechanics task, they had difficulties transferring these praxeologies to the task 
presented in a calculus context. 

Keywords: Calculus, mechanics, anthropological theory of the didactics (ATD), derivative task, 
college mathematics. 

Introduction and research problem 
Calculus and physics have been closely linked since the birth of the former: the emergence of the 
notion of derivative is tied to the formalisation of velocity and acceleration as concepts. Taşar (2010) 
points out that “in the educational literature [velocity and acceleration] emerge as nodes of 
difficulties”, but also that “students experience great difficulty when they need to transfer knowledge 
between these two domains” (p. 142). 

International literature has identified a number of difficulties that students face in grasping the notion 
of derivative (e.g., Montoya Delgadillo et al., 2018; Orton, 1983). Taking into account different 
representations of the derivative (graphical, verbal, symbolic, paradigmatic physical, and others), 
Zandieh (2000) observes in particular that if a student understands the derivative in one context, this 
does not mean that they can solve tasks in another. 

The notion of “transfer” has been studied in the literature, initially from a cognitive perspective 
examining the transfer of knowledge from one situation to another, and more recently from the 
perspective of the Actor-Oriented Transfer (AOT) (e.g., Lobato, 2012; Roorda et al., 2015). With 
AOT, transfer is defined as “the influence of a learner’s prior activities on his activity in novel 
situations” (Lobato, 2012, p. 233). From a cognitive perspective, the fact that students fail to 
intuitively transfer knowledge from mathematics to physics has been highlighted in the physics 
education literature (e.g., Christensen & Thompson, 2012; Planinic et al., 2019). As for mathematics 
education, our literature review of the main international journals identified only two studies that 
focus explicitly on the links students make between each domain. In the first study, Marrongelle 
(2004) provides evidence that students can use physics to solve calculus problems. In the second one, 
Roorda et al. (2015) use AOT to study the transfer of procedures between mathematics and physics 
in both directions (from the traditional cognitive perspective, transfer is “usually expected to occur 
from mathematics to physics” [Planinic et al., 2019, p. 235]). In Roorda et al. (2015), the participants 
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did not tend to explicitly mention links between the formulae learned in physics and the results 
obtained through symbolic differentiation in mathematics. However, they were able to establish 
further relationships between the procedures learned in both courses over the long term. 

Hitt and González-Martín (2016) and Rasmussen et al. (2014) state that research on the teaching and 
learning of the derivative in relation to physics is still scarce, calling for more studies in that area. In 
particular, they highlight a lack of research in mathematics education examining teachers’ and 
students’ practices at the intersection of both disciplines. To address this issue, in her PhD, the first 
author of this paper examines practices related to the use of derivatives in calculus and mechanics 
courses at the college level. In this paper, we present some preliminary results of this ongoing work. 
Our research is divided into three main stages: (1) a praxeological analysis of calculus and mechanics 
textbooks (Hitier & González-Martín, 2021); (2) an analysis of teaching practices, through interviews 
with mathematics and mechanics teachers and in-class observations of differential calculus and 
mechanics courses; (3) an analysis of student practices using a questionnaire and task-based 
interviews. In order to shed light on the complex relationship between the two disciplines, our 
research aim is to study the similarities and differences between the way the notion of derivative is 
used in mathematics and mechanics courses, and the resulting impact on students’ learning. 

In the first stage, we observed that while the different representations of the derivative considered by 
Zandieh (2000) appear in the mechanics and calculus textbooks analysed, the practices studied do not 
seem to consider the difficulties inherent in shifting among these representations. We also observed 
that the practices employed in the context of one-dimensional motion were different in calculus and 
mechanics, relying on the limit definition and differentiation formulae in calculus, while applying 
given formulae in mechanics (Hitier & González-Martín, 2021). In this paper, we provide preliminary 
results from the third stage of our research, focusing on two tasks included in the students’ 
questionnaire (see Methodology). We aim to answer the following research question: How do the 
praxeologies that students use when solving an unfamiliar calculus task relate to the praxeologies 
they use when solving a similar but familiar task in a mechanics context? 

We note that in the international literature, certain studies remove the physics context from mechanics 
tasks, using a graphical representation to create calculus tasks (e.g., Christensen & Thompson, 2012). 
Their results “suggest that students have difficulties conceptualizing mathematics tasks that are 
common to the ways in which [they] ask questions in physics courses” (p. 5). However, we have 
found no example where essentially the same task is presented both with its physics context and 
without it. The tasks discussed in this paper do exactly this, and it is in that sense that we consider 
them to be “similar”. 

Theoretical framework 
As stated above, we are interested in analysing practices related to the use of derivatives in two 
different courses (calculus and mechanics), in particular when solving a similar task in each 
discipline. We draw on the Anthropological Theory of the Didactic (ATD—Bosch et al., 2020), 
which considers human activities as institutionally situated. In ATD, knowledge is seen as embedded 
in practices which are conceptualised through the key notion of praxeology. Praxeologies are formed 
by a quadruplet [T/τ/θ/Θ], where T refers to a type of task to perform, τ to a technique that allows the 
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completion of the task, θ to a rationale (called “technology”) that explains and justifies the technique, 
and Θ to a theory that includes the rationale. These four components form two blocks: [T/τ] is the 
practical block that describes tasks and ways to solve them (know-how), and [θ/Θ] is the knowledge 
or logos block that describes, explains, and justifies what is done. 

Additionally, ATD distinguishes between the knowledge to be taught (i.e., predetermined 
praxeologies that appear, for instance, in textbooks), the knowledge actually taught, and the 
knowledge actually learned (Bosch et al., 2020). In our analyses, we refer to our study of calculus 
and physics textbooks (identified as knowledge to be taught) and connect it with the students’ 
responses (as evidence of knowledge actually learned). Finally, we consider a task to be familiar 
when it is part of the knowledge actually taught (it is also generally part of the knowledge to be 
taught). 

Methodology 
Our research is taking place at a large Canadian college (College A hereinafter). In Québec, students 
attend colleges after finishing high school and before entering university. Pre-university science 
programs are four-term, two-year programs. At College A, science students usually take their 
differential calculus and mechanics courses in their first term. On top of the Regular Science program 
(R), College A offers an Enriched Science program (E) featuring extracurricular activities, such as 
weekly seminars. Enrolment in the Enriched Science program is primarily based on motivation and 
interest. College A also offers two other programs (O): an Explorations Science program (consisting 
mostly of remedial courses) and continuing education classes at night or on the weekend. 

During the fall of 2020, all courses were taught online due to the Covid‑19 pandemic. That term, the 
college established two cohorts of students: one Enriched (EP, 37 students) and the other Regular 
(RP, 35 students). Each cohort attended calculus and mechanics courses together. A number of other 
students were not assigned to specific cohorts. The cohorted students followed the same curriculum 
as the non-cohorted students, with the calculus and mechanics teachers working in collaboration and 
sometimes attending each other’s classes. At the end of the term, between the final classes and the 
beginning of the examination period, we sent an online questionnaire to all science students at College 
A (approximately 1,200 students). We chose to use an online questionnaire despite its limitations, 
due to the pandemic and the fact that students were not physically present at the College throughout 
the 2020–2021 academic year. 

The questionnaire was divided into three main sections. The first included questions concerning the 
student’s profile (the name of their program, whether they were attending a calculus and/or a 
mechanics course, etc.). The second section consisted of three contrasting questions addressing the 
students’ views on calculus and mechanics, inspired by Halloun (2004)’s Inventory of Basic 
Disposition. The third section included seven questions containing tasked to be solved, focusing on 
either calculus or mechanics. Among them were two pairs of similar questions, with each pair 
containing one calculus and one mechanics question. In this paper, we focus on one of these pairs 
(Question 4 and Question 7, see Figure 1).  

Question 4 is considered a familiar question in mechanics. As our textbook analysis (Stage 1 of our 
research project) revealed, such tasks are part of the praxeologies developed in mechanics courses. 
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Question 7 is similar to Question 4: the velocity is replaced by a function , so that the acceleration 
becomes the derivative ’. However, this “translation” comes with a few adjustments. We 

considered the absolute value of f in Question 7 for two reasons. First, speeding up and slowing down
refer to the variation of speed, which, in one-dimensional mechanics (the content considered in our 
study), is the absolute value of the velocity. Second, without the absolute value, Question 7 could 
become a familiar task in differential calculus, likely prompting students to use learned calculus 
praxeologies. Another important difference: to avoid an explicit connection between both questions, 
we used different terms: “not moving” for Question 4 and “constant” for Question 7. We are also 
aware that “not moving” in mechanics means v = 0, whereas f constant allows for more possibilities 
for f. We did not deem this difference to be crucial in the resolution of the task.

Figure 1: Question 4 and Question 7 of the online questionnaire

Of the students who received the invitation to take the online questionnaire, 179 accessed it and 62 
answered at least one of the questions in Section 3. Question 4 was answered by 27 students; of these 
27 students, 23 also answered Question 7, while four students skipped Question 7 but completed the 
rest of the questionnaire. To preserve anonymity, we identified the participants with numbers, 
preceded by letters corresponding to their academic profile (“N” for students who had already passed 
differential calculus and mechanics, “O” for Explorations Science or continuing education, “R” for 
students in the Regular program, “E” for students in the Enriched stream, adding “P for students in a 
paired group). We conducted a thematic analysis of the students’ answers to each question, 
identifying the main elements of their praxeologies (mainly, their techniques and the rationales 
provided). We then cross-referenced the categories that emerged from our analysis of each question. 

Data analysis
Question 4

Only a few participants had difficulties answering this question correctly (see Figure 2 or Figure S1
for a more detailed distribution of the answers). Consistent with our analysis of textbooks, the data 
indicates that this content is part of the knowledge to be taught: the students’ praxeologies match the 
textbook praxeology, and we observe that the students use rationales present in their textbooks. For 
instance, one of the textbooks used in mechanics at College A (Serway & Jewett Jr, 2014), invites the 
reader to “think about the signs of velocity and acceleration by imagining a force applied to an object 
and causing it to accelerate” (pp. 32–33). Some examples of rationales are:

when a and v are the same sign, the object is speeding up. If they are opposite signs, the 
acceleration is against the movement, which means that the object is slowing down. (EP6)

when acceleration and velocity have the same sign then the object is speeding up and when they 
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are opposite signs (or their vectors are in the opposite direction) the object is slowing down. (N1) 

We note that these rationales were also present in the mechanics teaching practices we observed in 
class. In this case, the knowledge to be taught also seems to be the knowledge actually learned by 
most of the participants. 

Question 7 

In contrast with the results of Question 4, the results of Question 7 (see Figure 2 or Figure S2 for a 
more detailed distribution of the answers) confirm that this is an unfamiliar question in calculus, with 
participants displaying greater difficulty in answering correctly. With the exception of one student 
who mentioned the first derivative test (RP13), the rationales used to support correct answers are 
common to rationales for Question 4 (referring to the sign or using the idea of (co)variation). Many 
participants develop techniques related to the use of rules based on the signs of the derivative, but 
only a quarter of them do so successfully. This could be because they have memorised the rules 
without truly understanding their meaning (which could in fact be understood using knowledge from 
mechanics). The majority of the students who use rules based on the signs of the derivative refer to 
the relationship between the sign of the derivative and the variation of the function (part of the 
knowledge to be learned in calculus), without clearly considering the absolute value of the function 
f. For example, RP5 states: 

If ′( ) is bigger than 0, then it is increasing. If ′ is smaller than 0, it is decreasing. The sign of 
 does not matter. 

R3 goes further in her explanation, linking the sign of the derivative with the slope of the graphical 
representation: 

[…] This is because a function will have a positive slope when it is increasing, and therefore a 
positive derivative. The opposite applies for decreasing. 

Here also, the sign of the function, and therefore its absolute value, is not taken into account in the 
student’s reasoning. 

Cross-referenced results of Questions 4 and 7 

Figure 2 provides an overview of the answers to Questions 4 and 7. To simplify the coding, each 
response was coded in only one category. We can see that of the 24 students who answered Question 4 
correctly, only seven answered Question 7 correctly. Additionally, none of the students who failed to 
answer Question 4 correctly was able to answer Question 7 correctly. 

In both questions, when students refer only to the sign(s) or to vector direction (e.g., EP5, O2), the 
rationale is relatively poor, as it comes down to the technique itself. For instance, EP3 wrote: “In 
mechanics, we saw that whenever the acceleration is of opposite sign to the velocity, the object was 
slowing down”. We observe that this type of rationale, typical of mechanics courses, allows students 
to be successful in the familiar task (Q4), but it mainly leads to failure in the unfamiliar task (Q7). 
These findings are consistent with those of our textbook analysis (Hitier & González-Martín, 2021), 
as well as with other studies on the use of calculus in other disciplines, such as engineering. Many 
results that depend on calculus are proved once and then taken for granted, indicating that students 
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may learn the explanations by heart without fully understanding them (e.g., Faulkner et al., 2020; 
González-Martín, 2021; Hitier & González-Martín, 2021). 

 
Figure 2: Summary of responses for Question 4 and Question 7 

We also note that although the students were not asked to make explicit connections between 
Questions 4 and 7, two students (R2 and, to a lesser extent, RP7) did so. For Question 4, R2 and O3 
provided the most detailed rationales. Remarkably, R2 does not use the vocabulary speeding up or 
slowing down but provides explanations in terms of the variation of the absolute value of the velocity 
(the only participant to do so). Below is an excerpt of her rationale: 

for i and iii: since both  and  are in the same direction, there is no change in direction, so there 
is no decrease of the absolute value of velocity. […] 

iv: the absolute value of the velocity will decrease until zero, then the velocity will increase in the 
positive direction. (R2) 

Her ability to rephrase Question 4 in terms of the variation of the absolute value of the velocity might 
have allowed her to identify the link between the two questions. Regarding Question 7, her rationales 
are: 

i and iii: since  and ′ have the same sign, the abs value of  will continue to grow; ′ will not 
subtract from the absolute value of . 

ii and iv: since  and ′ have different signs, the abs value of  will decrease until it reaches zero. 
After that point,  will increase in the direction of ′. (R2) 

In her explanation, we see the expression “ ′ will not subtract from the absolute value of ” as hinting 
at the “idea of acting on movement” that we found in the other students’ rationales for Question 4. 
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We believe that this provides evidence, as observed by Roorda et al. (2015), that students are able to 
establish certain links between the knowledge learned in the calculus and the physics courses.  

Final remarks 
In this paper, we analyse students’ solutions to two tasks: a familiar mechanics task and a similar yet 
unfamiliar calculus task. As in the work of Marrongelle (2004), we observe certain students using 
praxeologies from mechanics to solve the calculus task. However, those students make up only a 
small fraction of the study’s participants. Even if we consider that the students who provided correct 
answers to Question 7 (referring only to the sign of  and ’) might also have seen the link between 
the two questions without mentioning it explicitly, they still represent less than a quarter of our 
participants. In fact, our analyses tend to indicate that, for the calculus task, most students develop 
techniques based on results from calculus without giving any real sense to them. These techniques 
allow students to solve familiar calculus tasks but seem to lead them to failure when faced with 
unfamiliar tasks. Connecting these results with our textbooks analyses (Hitier & González-Martín, 
2021), we see important implications for the teaching of calculus and mechanics. Praxeologies in 
calculus seem to foster the development of practices whereby results and formulae are learned without 
necessarily connecting them with a physical meaning or an interpretation. On the other hand, although 
derivatives are used in mechanics, the praxeologies rely heavily on given formulae and the link with 
calculus is obfuscated. Figure 2 shows that the small number of successful rationales in mechanics 
does not translate to successful rationales when solving a similar calculus task. This sheds some light 
on students’ difficulties in transferring knowledge between mathematics and physics, as discussed in 
the introduction. These difficulties may be related to praxeologies in both disciplines, which do not 
establish explicit connections between the two. This is consistent with Planinic et al.’s (2019) view 
that “students’ almost exclusive reliance on formulas in physics presents […] an important obstacle 
for the development of students’ deeper reasoning in physics and sometimes even an obstacle for the 
application of their already existing knowledge and reasoning developed in other domains” (p. 243). 
In this vein, Taşar (2010) also noted that the transfer of knowledge between the two domains seems 
problematic. We believe our results help to reveal institutional reasons for these difficulties in 
transferring knowledge between the two disciplines, as a consequence of institutional choices to 
organise separate praxeologies in each one. 

In the previous paragraph, we mentioned the possibility that students may have seen the link between 
Questions 4 and 7 without mentioning it. The fact that the questionnaire was completed online could 
have affected the students’ ability to develop their rationales. We acknowledge this limitation and we 
hope to gain further insights through the analysis of the students’ interviews. This analysis, as well 
as other parts of our study, will be the focus of future publications. 
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Investigation of the connections within proof in complex analysis 
lecturing 
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Studying teaching in lectures at the university level is a topic of particular interest in mathematics 
education as lectures are still the predominant mode of teaching at the advanced level. In this study, 
the aim is to examine the teaching of mathematical proofs in a complex analysis course offered to 
second-year bachelor students of mathematics and science, using the commognitive framework. We 
focus on the mathematical discourse for proof teaching and specifically on the proving routines for 
the connections among the arguments within the proofs. In particular, three sub-routines were 
identified: setting the proof, applying, and computing. The lecturer performed these routines for the 
students intending for meaningful connections within the proof. We conclude by providing 
implications for education and future research. 

Keywords: Proof teaching, lecturing, complex analysis, commognition, routines 

 
The commognitive framework (Sfard, 2008) highlights, among other issues, the fine aspects of 
teaching in lectures that concern the communication of proof in lecturers’ mathematical discourse for 
teaching. Routines have an important role in both teaching and learning mathematics; they are the 
patterns that appear repeatedly within a discourse as results of rules, which indicate the when and how 
one should perform the pattern (Lavie et al., 2019). While starting engaging with mathematical 
discourse, the routines of a learner (namely rituals) are process-oriented and relate to performance. 
Lavie et al. (2019) asserted that one of the teaching goals might be to help learners move toward 
outcome-oriented routines (namely explorations). A shift of the focus of the learners from the process 
to the outcome could be identified by addressing the changes in their performance (Lavie et al., 2019). 
When it comes to teaching for the facilitation of the changes in the performance of the learners, the 
researchers could seek for the characteristics of routines in the lecturer’s mathematical discourse for 
teaching that aid the learner’s move toward explorations.  

In this study, we focus on the teaching that aims at the facilitation of changes related to proof 
production. In doing so, we seek for characteristics in the proving routines of the lecturer while 
teaching in lectures. The proving routines are the patterns that appear in the discourse of the lecturer 
while proving. In our case, the changes are intended for the students but are performed by the lecturer 
and identified as characteristics of the routines. The focal point of this study is on one of the changes, 
the change of bondedness (Lavie et al., 2019). The change of bondedness, in this study, is the move 
from a list of unrelated arguments within a proof to a sequence of arguments related to each other. 
Thus, bondedness, as a characteristic of the proving routines of the lecturer’s discourse, is concerned 
with the connections between the different arguments of a proof. As the lecturer of this study stated 
at the beginning of a lecture: 
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I urge you to take some notes and carefully look at how the various statements I'm going to make 
relate to one another, which one implies which one, what are the essential assumptions in each 
theorem. 

The connections among the different arguments within the proof are an important aspect of proof 
production because the formal proof consists of sequences of arguments where the last is the theorem, 
which is aimed to be proven (Tall et al., 2012). Within the sequence, axioms and other results 
(theorems, lemmas, definitions) are used. Tall and his colleagues presented a macro level description 
of the connections, whereas with commognition we are seeking for the identification of the 
connections at the micro level by focusing on the routines governed by bondedness within a proof. 
Also at a macro level, Lew et al. (2016) identified the key points in the presentation of a proof by an 
exemplary lecturer and it appeared that the students did not recognize them. One explanation was that 
the students mainly focused on what was written on the blackboard and not on the verbal explanation 
of the key points by the lecturer. 

The use of the commognitive framework seems promising to highlight a communicational aspect of 
university teaching even if there is a lack of dialogue in this context. For example, Kontorovich (2021) 
highlighted the communicational aspects of the lecturer’s feedback and the importance of didactical 
discourse on proof (DDP) for the reflection on the given feedback not only for mathematicians but 
also for all the communities related to proof and proving. Thus, studying the teaching of proof by 
using commognition adds to the discussion and understanding of the attempts of the lecturers to 
communicate mathematical proof with the student in university lectures. Not directly focused on a 
proof-oriented course, Viirman (2014) studied the teaching practices of lecturers during the teaching 
of functions in introductory university courses. The researcher identified the different routines in the 
mathematical discourse of the lecturers and provided a categorization of construction routines (which 
aim at the creation of new endorsed narratives) and substantiation routines (which focus on the 
decision to endorse an earlier presented narrative). He distinguished the emerging routines into types; 
for example, the different types of substantiation routines included definition verification, proof, and 
claim contradiction. In the follow-up study (Viirman, 2021), the courses analyzed were introductory, 
so proof and proving were not central. However, the study of proving routines is fruitful in analyzing 
mathematical activity at university, because proof is core of many introductory courses at the 
university level. In this study, we focus on the proving routines of a lecturer to get insights into 
making connections within a proof. 

Methodology 
This study is part of a wider ongoing doctoral project that aims to characterize proof teaching in 
proof-oriented university courses. For this study, we investigated proof teaching in online lectures of 
a second-year complex analysis course. Formal proof raises difficulties for the students. It is 
important to highlight how the lecturer attends to the connection among the different arguments for 
the facilitation of students to endorse a proof. The connections in our case indicate the intended 
change to bondedness. Thus, our research question is “How does bondedness within proof emerge in 
the proving routines of the mathematical discourse of proof teaching of the lecturer?” 
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The lecturer in this case study was a theoretical mathematician with less than five years of teaching 
experience. The course concerned a group of bachelor students enrolled in mathematics or science 
(physics, astronomy) degree programs. In total, 242 students were registered, while between 30 and 
80 students attended the live (online) lectures, which were recorded and students had the possibility 
to watch anytime. In this course, complex valued functions were defined in the complex plane and 
their properties were explored. The lectures were based on the textbook while the lecturer referred to 
the chapters and the topics that were covered in each lecture. The data were generated from the 
transcripts of five (out of 16) live lectures. The data analysis had two stages and we used the 
commognitive framework (Sfard, 2008) for the identification of the proving routines in the 
mathematical discourse for teaching of the lecturer.  

In the first stage of the analysis, firstly, we identified the mathematical narratives, sequences of 
utterances that describe objects, processes, or relations among them, which the lecturer presented in 
the lectures. These narratives concerned definitions, the statement of the theorem, lemmas, proofs, 
examples, exercises – problems, remarks (comments of the lecturer on the statement of the theorem 
which were used in the proof), or notes (comments of the lecturer after the proof). The identification 
of the narratives assisted in the selection of the episodes. For this study we analysed ten episodes. 
Each episode had a duration of five to 45 minutes and included the narratives relevant to the teaching 
of proof. For example, the most common episodes included the narratives: theorem, proof, remarks. 
Then, we highlighted keywords and phrases of lecturer’s discourse, relevant to proving. They were 
related to the mathematical aspects of proving (e.g., “the first thing we're going to do is replace this 
simple closed contour”), and the pedagogical aspects of proving (e.g., “let's see how you go about 
proving this”), and lecturer’s comments about proving (e.g., “to make things formal and nice”). Also, 
the visual mediators, visual objects that are employed for communicational purposes (graphs, 
notations, interaction with the online environment), were identified. The visual mediators were of 
two kinds, either pre-existed in the slides or were created on the spot by the lecturer. The first stage 
ended with overarching proving routines. Some of the routines were “making connections within the 
arguments of the proof”, “presenting a proving technique” (i.e., proving by contradiction), and 
“generalising to the complex plane”. 

In the second stage of analysis, we focused directly on the overarching routines. Doing thematic 
analysis, we used open coding for analyzing the episodes in Atlas.ti software because previous 
literature is limited on this topic. The coding was necessary for the rectification of the routines and 
the characterization of each routine. Within the routines of stage one, we identified, through constant 
comparisons, sub-routines. In this study, we focus on the proving routine “making connections within 
the arguments of the proof” which is closely related to the change of bondedness. Within this 
overarching routine, we identified three sub-routines namely: setting the proof, applying, and 
computing. 

Results 
The first sub-routine, setting the proof, was used to connect the statement of the theorem with the 
intended outcome of the proving process and the proving strategy (i.e., an outline of the arguments 
that will lead to the desired conclusion). In this paper, we focus on the former. The lecturer, when 
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performing this sub-routine, either drew analogies with the real case which was familiar to the 
students or discussed a proving strategy. For example, an analogy with the real case appears in the 
following excerpt where the lecturer introduced the fundamental theorem of calculus for the complex 
plane to the students:  

So, if you recall from calculus [writes the formula on the right corner of the slide], you know, the 
fundamental theorem says that integral of  of a continuous function on an interval a b [meaning: 

], equals  where  is any anti derivative of  on this interval. So, we have 
basically the same statement here… The proof is essentially a simple application of the 
fundamental theorem of calculus in the real case. 

The lecturer, in this excerpt, reminded the students of the theorem in the real plane after presenting 
the statement of the fundamental theorem in the complex plane. The proof that followed after the 
excerpt, was described as an application of the theorem that the students were familiar with. The 
lecturer in that case did not explain a new proving strategy but connected the proof with a familiar 
theorem to students and placed this theorem within a familiar proving strategy to them.  

The next example comes from the Laurent series theorem, which statement appears in Figure 1.  

 
Figure 1: Slide presented for the Laurent series theorem 

The excerpt of the lecturer’s discourse highlights the case when a new proving strategy is needed: 

So, we start with a little theorem whereby we consider functions that are, well, we already know 
a name for them, analytic functions, that are expressible as a power series in some domain, right? 
And we said that if we have an open disk, then an analytic function on it, and its Taylor series are 
in sort of one-one correspondence… that's what we talked about in the previous lecture. So now, 
we will be interested in considering something slightly different that would be any annuli… So, 
we will be interested in these and functions which are expressible on them as power series, because 
it will let us slightly expand the family of functions that interests us, because you know, functions 
can have singularities. 

In the excerpt, the lecturer discussed the statement of the theorem by bringing results from the 
previous lectures; the students were familiar with the case of the open disc. Now the problem changes 
to the case of any annuli and to general functions with singularities. Then, to describe the annuli, he 
made the visualization on the top right corner of the slide [Figure 2].  

Also, the lecturer added examples about the different types of functions that related with the case that 
was described in the statement: 
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So, easy example would be something like  at the origin, and so forth. 

Next, the lecturer discussed a proving strategy to tackle the case of the annuli: 

So, we will be interested in functions with that kind of property that there is some bad point. And 
then, in a sense, the natural thing to look at is, well, you remove a small disk, okay, and then the 
function will be analytic, that's the idea right. 

Within this sub-routine, the lecturer discussed the statement of the theorem and used visualizations 
for its exemplification, formulated the problem that the proof will answer, and sometimes gave some 
examples. We showcased the lecturer’s intention of focusing on connections within a proof in the 
introduction of this paper. In particular, the lecturer’s excerpt showcased that one of his intentions 
was to “carefully look” at the relations among the statements he made. Given this intention, it seems 
reasonable that the sub-routine setting the proof happened mainly at the beginning of the proving 
process, and the lecturer set the scene for the proof that followed. Thus, the lecturer connected the 
statement of the theorem with the strategy they would follow to prove the theorem, building on 
familiar or new arguments. Within this sub-routine, the discussion and the visualizations around the 
statement of the theorem were connected with the other intention of the lecturer to “carefully look” 
at “the essential assumptions in each theorem”. Indeed the sub-routine setting the proof placed the 
theorem within known theorems and results from that or previous courses and made connections 
between the results that appeared within the proof and the intended outcome of the theorem. 

Next, is the sub-routine applying, which had three aspects. The first aspect concerned the introduction 
of a result (definition, theorem, lemma, preposition, axiom, remark, note, example). The second was 
the connection of this result to an argument, not shaped yet, with the form of this result that was 
suitable for the specific case in order to proceed with the argument. The third aspect was related with 
the development of the result. In this sub-routine, the lecturer elaborated on a visualization, described 
and applied results. The following excerpt is an application in the Laurent series theorem. The lecturer 
introduced the result, Cauchy’s integral formula in that case, which he intended to apply (first aspect 
of this sub-routine). Next, he elaborated on that with the visualization [Figure 3] (second aspect of 
this sub-routine). By the end of the excerpt, the lecturer described the outcome of the application that 

can be expressed in terms of values on the boundary as was already written in the slide [Figure 
3] (third aspect of the sub-routine).  

So, for any , which is inside the annulus, Cauchy’s integral formula applies. Now, mind you, you 
can think of these if we say that , so this can be a little bit confusing, perhaps, when we say a 
positively oriented circle, in just in in a vacuum that's just counterclockwise oriented circle. But 
there is also orientation of a boundary where we said the positive orientation means that if you 
reverse it, you're going if you reverse the boundary, the set is on your left side. Well, of course, 
for the outer circle, its counterclockwise orientation on the annulus indeed corresponds to that 
orientation consistent orientation that the set is on the left side right, but if you reverse the inner 
circle, counterclockwise, the set the annulus is on the right side. So, it is also possible to think of 
this minus sign as coming from the sort of wrong orientation on the smaller circle not consistent 
with the annulus. Well, at any rate, reserved which is properly inside, you can use Cauchy’s 
integral formula to express  in terms of values on the boundary. 
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In this excerpt, the lecturer used a result, Cauchy’s integral formula, to proceed to an argument related 
to an intended outcome within the proof, , as an expression of terms of values on the boundary. 
The statement of the theorem had an important role in this sub-routine as it facilitated the emergence 
of the results. Indeed the lecturer used and explained the orientation of  described in the statement 
of the theorem. Taking into account the statement of the theorem and the ideas formulated at the 
beginning of the proof, he then brought and applied the aforementioned result to have a specific 
outcome. In this excerpt, the visualization was the same with the one in Figure 2 but was of different 
nature. At this sub-routine the visualization assisted the lecturer to describe how the use of Cauchy’s 
integral formula can be applied. However, in the sub-routine setting the problem the visualization 
was used to describe the statement and set the picture of the statement and the problem that was 
needed to be solved with the proof. 

  

Figure 2: Visualization for the exemplification of 
the theorem’s statement 

Figure 3: Slide used for the presentation of the 
theorem’s proof 

The applications within the sub-routine applying happened mostly after the verbal representation of 
the proving process and the explanation of the reasons why the result can be applied. Looking at the 
lecturer’s excerpt in the introduction of this paper, his intention to “carefully look” on how the 
statements related and implied one another explains his focus on the verbal representation of the 
reasons why a result can be applied and related with the arguments that needed to be shaped for the 
proof. Moreover, the students could see the application from the beginning of his verbal 
representation because it was also written in the pre-written slides. We interpret that this choice of 
the lecturer is connected to his intention to relate the statements, as the attention is moving from an 
application to the reasons why an application (here Cauchy’s integrals formula) is valid. In a nutshell, 
the sub-routine applying indicated how one uses a result for a specific proof.  

The last sub-routine we present is computing. Computing relates to either algebraic or logical 
manipulations and the connections appeared within and among the arguments. The algebraic 
manipulations had to do with substitution or division of quantities. The logical manipulations 
indicated the equivalences among the arguments. These connections happened when all results within 
the proof were set, so in the final version. An example of the lecturer doing the algebraic or logical 
manipulations (i.e., rearrangement of terms, subtraction of terms) is the following from the 
fundamental theorem of calculus for the complex plane:  

So, if said zero is the initial point of  or the initial point of the whole contour, this integral equals 
), that's the first integral.  is the second integral, this is just the 

antiderivative at the endpoints, the endpoints  and  of this contour    and so on. 
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Figure 4: Fundamental theorem of calculus computations in lecture slide 

In the excerpt, the lecturer proceeded to the computations that led to the intended outcome of the 
theorem. To support his verbal explanation, he crossed the terms in the pre-written slides and circled 
the remaining terms [Figure 4]. An example of the lecturer doing the logical manipulations is the 
following from the Laurent series theorem. The explanation was verbal and in the slides, only the 
inequality appeared:  

And, of course, the opposite inequality holds in that case, namely  is less than  in 
absolute value, which is just to say that if you take  on the boundary,  which is closer to the 
center, that's going to be, well,  is going to be closer than an arbitrary to the center than an 
arbitrary point, which is inside the annulus. So the inverse hold. 

The lecturer in this excerpt explained why an inequality was true. The logical manipulation appeared 
in the colloquial of arguments that are connected with logical laws; equivalence in this case. 

The connections in the sub-routine computing are within arguments and between arguments and the 
statement of the theorem. The lecturer’s intention to relate arguments, found in the excerpt in the 
introduction of this paper, is at a different level in this sub-routine compared to the previous sub-
routines, because the arguments are connected with each other or connected within. The computations 
led to the argument that was expected to be proved and as such they are connected with another 
intention of the lecturer to bring the “essential assumptions in each theorem” that can give the 
intended result. 

Discussion  

In this study, we discussed the proving routines of a lecturer’s mathematical discourse for proof 
teaching. The proving routines indicated connections within a proof and related to an intended 
change, for the students, from a list of unrelated arguments to bondedness within a proof. We 
identified three sub-routines, setting the proof, applying, and computing. The first connects the 
statement of the theorem with the intended outcome of the proving process and the proving strategy 
(i.e., an outline of the arguments that lead to the desired conclusion). It appeared mainly at the 
beginning of the proving process. The second connects the argument that is about to be developed 
with the results (definition, theorem, lemma, preposition, axiom, remark, note, example) that are 
needed to be applied in order to proceed with the argument. The third one is the connection between 
the different arguments of the proving process and the statement of the theorem. With the use of 
commognition we shed light on the relations between the different arguments of the proving process 
and the lecturer’s associated routines. In our search for bondedness as a characteristic of proving 
routines, we identified sub-routines, which gave a micro-level analysis of the connections within a 
proof in the discourse of the lecturer. These sub-routines may facilitate students’ understanding of 
the connection between the statement of the theorem, the arguments and the intended outcome of the 
proof.  
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In previous studies, Lew et al. (2016) interviewed students and found that they did not attend to the 
key ideas of a proof when those were delivered verbally by the lecturer. Viirman (2021) criticised 
such an approach of a one-time interview and suggested an investigation for a longer period, because 
students need time to accumulate the key ideas of a proof and change their performance. In the current 
study, which is part of an ongoing project, taking into consideration that a prolonged period of data 
collection is needed, we focused on one lecturer for a period of five lectures. We were able to identify 
in a micro level some connections within proof that were present in the discourse of teaching of the 
lecturer. In contrast, Tall et al. (2012) discussed proving in a macro level as a linear process. In our 
micro-level analysis, we found that formal proofs, as appeared in lectures, were more than a sequence 
of arguments. Within the arguments, we found the three sub-routines that intended to connect the 
arguments with the statement of the theorem (sub-routine: setting the proof), with previously 
presented results, which were also shaped for the development of arguments (sub-routine: applying) 
and with each other via algebraic or logical manipulations (sub-routine: computing). Thus, we 
conclude that commognition offered a rich description of the teaching of proof and contributed to 
understanding communication of proving in lectures. A follow-up study is about the characteristics 
in the proving routines of the students during a semester. Such studies could only but help lecturers 
take a closer look at their teaching and raise their awareness about their proving routines, which 
sometimes they perform tacitly.   
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We report on an ongoing project in a cross-level topology course, where students have been provided 
with opportunities to prove the same mathematical statement in different social situations. This paper 
focuses on a pair of students who proved a statement collaboratively before one of them volunteered 
to re-prove it at the board for the whole class to observe. We offer a commognitive analysis of 
students’ discursive activity in each situation and trace the transformations of their proof throughout 
the process. This process is discussed with a focus on students’ mathematics learning.  

Keywords: Commognition, graduate students, proof and proving, topology, university mathematics. 

Introduction 
In their comprehensive overview of the mathematics education literature, Stylianides et al. (2017) 
identify three broad perspectives in the area of proof: the cognitive – proving as problem solving, the 
constructivist – proving as convincing, and the social – proving as an activity that is embedded in 
communities. Within the latter, typical proof-related tasks (e.g., constructing or presenting a proof) 
are not viewed in isolation but as constituents of a broader mathematical activity. Stylianides et al. 
(2017) further explain that “If a student or teacher produces a proof, research in this perspective would 
frequently place emphasis on the meaning of this artifact and how that individual and members of his 
or her community could subsequently use it” (p. 247). 

Stylianides et al. (2017) describe the social perspective as less developed, not yet coherent, and 
lacking “common, widely used concepts” (p. 248). These descriptors seem especially appropriate in 
the university mathematics education literature where the cognitive and the constructivist 
perspectives dominate the area of proof. This situation opens the space for socially-oriented studies 
on how proof is practiced in university classrooms. Stylianides et al. (2017) propose considering these 
practices in relation to the mathematics community.  

Much has been written about proof in the mathematics community. For instance, Rav (1999) stresses 
that “the intricate role of proofs [is] in generating mathematical knowledge and understanding, [that 
goes] way beyond their purely logical-deductive function” (p. 6). He associates this role with 
“inventing methods, tools, strategies and concepts” (Rav, 1999, p. 6) for solving problems.  

We suggest that proof often actualizes its intricate role when mathematicians prove collaboratively, 
participate in research seminars where proofs are communicated, engage with published proofs, et 
cetera. These are structured situations with particular rules of the game that shape the course of a 
mathematical activity and yield proof transformation. In the case of a new proof, the transformations 
often occur through interactions between the proof constructors and outsiders to the construction 
process. For instance, as a response to the feedback from reviewers and editors, the constructors can 
revise the proof. Alternatively, a familiar proof can be restructured in a way that makes it more readily 
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available “to build on it”. Morgan (1998) highlights the importance of the media through which 
mathematics is conveyed, which draws attention to instances where a proof transfuses from one 
communicational channel to another (e.g., from oral to written). Accordingly, we propose that proof 
transformation is a multifaceted process that can unfold in various social situations. 

This paper comes from our ongoing project that unfolds in a proof-based course in topology 
(Kontorovich, 2021). This relatively advanced mathematical context has received limited attention in 
TWG14 (for an exception, see Stewart et al., 2017). Our project features a sequence of classroom 
situations where students develop proofs individually or in small groups, share them with the whole 
class at the board, and receive feedback from their peers and the course teacher. The project’s 
overarching aim is to explore opportunities for mathematics learning that emerge when students 
engage in progressive transformations of a proof. In this paper, we analyze an interaction between 
two students as they collaboratively constructed a proof, and the subsequent public re-proving of the 
same statement by one of them at the classroom board. 

Theoretical framework 
Our project is grounded in the commognitive framework (Sfard, 2008). This framework has been 
acknowledged for its capability to account for the complexity of university mathematics education 
and for offering tools to analyze learning and teaching in fine grain (e.g., Nardi et al., 2014). 
Commognition posits that mathematics as a whole and its particular disciplines (e.g., topology) can 
be construed as a discourse. Discourses are distinguishable through keywords (e.g., “Hausdorff 
space”) and their use, visual mediators (e.g., diagrams) and their use, endorsed narratives (e.g., a 
proof), and routines (e.g., proving). A person’s participation in a discourse is viewed as a patterned 
activity, when features of one’s public communication that remain relatively stable across interactions 
with different interlocutors constitutes a personal discourse. 

Lavie et al. (2019) introduce the notion of a task situation to refer to “any setting in which a person 
considers herself bound to act—to do something” (p. 159). Then, they define “a routine performed in 
a given task situation by a given person is the task, as seen by the performer, together with the 
procedure she executed to perform the task” (p. 161, our italics). A procedure can be constructed 
through abstracting the commonalities of steps that a performer undertakes in similar task situations. 
Having no access to the performer’s interpretation of a task situation, one approach to deducing their 
task is attending to what the implemented procedure achieved.   

The task situations at the heart of our project invite students to prove mathematical statements. We 
propose that in university mathematics classrooms, the keyword “proof” is often used to refer to a 
narrative that is targeted at endorsing a statement. This substantiating narrative is expected to unfold 
as a sequence of utterances (or sub-narratives), each either an “accepted fact”, or derived according 
to a well-defined set of rules (e.g., deduction, induction). Sfard (2008) comments that “routines of 
substantiation are probably the least uniform aspect of mathematical discourses. The very term 
endorsement may be interpreted differently by different people” (p. 231–232, italics in the original). 
These intrapersonal differences may emerge in students’ interpretation of which elements of their 
substantiating narratives constitutes a “classroom fact” and when a substantiation is required. We 
associate these interpretations with students’ tasks (cf. Lavie et al., 2019). We also note that the same 
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dilemmas feature in the mathematics community, when different resolutions were offered in different 
historical periods. Even today the approaches to proof vary greatly across mathematical communities.  

Whether the narrative “truly” endorses the statement or not, is a matter of social sanctioning. Manin 
(1977) writes that “a proof becomes a proof after the social act of ‘accepting it as a proof’” (p. 48). 
In a similar vein, we use “proof” as a discursive label that is allocated by a particular community to 
a substantiating narrative (Kontorovich, 2021). This community can be as small as the person who 
constructed the narrative in the first place. 

Lastly, Sfard (2008) defines learning as a lasting change in one’s discourse. This change can be 
triggered by learning opportunities – “circumstances that call for, and support, a change in the 
learner’s participation in a discourse, a transformation that would bring him or her closer to the 
discourse required by school curricula” (Chan & Sfard, 2020, p. 3, italics in the original). Chan and 
Sfard distinguish between opportunities for a change in the learner’s command of the discourse and 
for a change in the discourse itself. Within the former, the learner becomes more fluent in the target 
discourse by realizing the opportunity to mathematize according to its rules. In the latter, the learner 
enriches their discursive repertoire of endorsed narratives and routines. Students’ discourses are 
expected to get closer to the university version of a topological discourse in our project. 

The case of Grace and Jonah 
The project data comes from a semester-long course in a large New Zealand university. The course 
cohort consisted of six students: four were studying towards post-graduate degrees in mathematics, 
and two undergraduates were in their final year of a mathematics major. This was the only course in 
topology offered by the university’s mathematics department, and it covered standard topics in point-
set and algebraic topologies (e.g., continuity, convergence, homology). For illustrative purposes, we 
selected a case where transformations in students’ proof were evident.  

The data is extracted from the lesson on Hausdorff spaces, which took place towards the end of the 
first third of the semester. At the beginning of the lesson, the teacher defined Hausdorff spaces as 
those where every two elements can be separated by open sets (i.e., for each  in  there are 
open sets  such that  and ). After discussing this definition and 
specific examples, the students self-divided in pairs, and the teacher invited them “to have a go at 
proving” that if  is a continuous one-to-one function and  is Hausdorff, then  is also 
Hausdorff. The protagonists of our case are a doctoral student, Grace, and an undergraduate, Jonah. 
They collaborated for nearly 4 minutes before the teacher asked “who is ready to present?”; then, 
Jonah volunteered to prove the statement at the classroom board.  

The data corpus consisted of video-recordings of students’ activity and written work. We embarked 
on the analysis with two questions: “what routines did the students implement in each task situation?” 
and “how did their proof transform in the progression from one task situation to another?” After 
transcribing the data, we examined students’ activity to identify routines implemented in each task 
situation. We scrutinized the utterances to delineate substantiating narratives and routines before 
characterizing discursive similarities and differences between them. To present the findings, we begin 
with analyzing students’ collaboration, and then turn to Jonah’s mathematizing at the board. 
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Figure 1: Jonah's diagram 

Collaborative work 
1 Jonah: Okay, so… [sketches two ovals for the sets  and  in his notebook] 
2 Grace: So we want to show that in , yeah  
  [Jonah completes the diagram reproduced in Figure 1] 
3 Jonah: That’s basically it.        
4 Grace: [a] Yeah, that is kind of it, right? [b] Well, if they weren’t disjoint… 
5 Jonah: [a] Oh, that’s true. [b] Sounds really simple. 
6 Grace: It’s almost too simple. [pause of 5 seconds] 
7 Jonah: I feel like, I feel like something’s missing. 
8 Grace: Yeah, I feel like something is missing as well. [pause of 15 seconds] 
9 Grace: So the function is from  to . You have two points here [in ],  

let’s call them little , little . [notates the points on the sketch] 
10 Jonah: Oh, doesn’t it imply that these two actually are in the same… You have an 

intersection. 
11 Grace: Yeah, that’s seems wrong because then it [the statement] is true for all 

functions. Oh, but the fact that it is a continues function… 
12 Grace: But why do we need one-to-one? I feel that we got to use that. 
13 Grace: So, so… Let’s actually do this super logically. We start with two points. 
14 Jonah: Yeah. 
15 Grace: We want to put an open set around each. 
16 Jonah: Yeah, yeah. 
17 Gemma: We go to  and . 
18 Jonah: Yeah, yeah. 
19 Grace: We put an open set here and here,  
  which we can do because it is Hausdorff. 
20 Jonah: Yeah. 
21 Gemma: We can pull these back  
  and get two open sets here [pre-images in ]. 
22 Jonah: Yeah. 
23 Grace: If there was a point in this intersection but it can’t get mapped to two points. 
24 Jonah: Yeah. 
25 Grace: One-to-one means that these two… Oh!!! These two can’t get mapped to the 

same point. Because if they got mapped to the same point, this argument 
wouldn’t work. It has to be two different open sets. That’s why [1:1]. 

26 Jonah: Oh, wait, what? I still don’t see where the one-to-one. 
27 Grace: So our argument would fail. If  wasn’t … because of if  wasn’t one-to-

one, then you could have  equals . 
28 Jonah: Oh, oh, oh [as if realizing this]… Yeah. 
29 Grace: [a] And then you definitely couldn’t do this picture. [b] So I think that’s 

where it happened. 
30 Jonah: Okay. Right, right. That’s kind of subtle.  

The presented transcript features three rounds, differing in task situations and students’ routines. In 
the first round in [1-5], Jonah sketches a diagram that both students treat as a visual mediator of a 
proof of the assigned statement. Note that in [2] Grace appears to commence the construction of the 
substantiating narrative, but once Jonah completes the diagram the construction is relinquished. 
Accordingly, we suggest that generating a verbal version of the proof was not within the students’ 
task (in this round). This suggestion explains why the mathematically experienced students endorsed 
a diagram as “basically it” and “kind of it” in a proof-requiring task situation. 

In [3-8], the pair implements what we term as a proof-monitoring routine: a procedure of “looking 
back” at the previous discursive activity with the task of assessing whether or not it can be sanctioned 
as a proof of the assigned statement. Herein, the students monitor the diagram visually and only the 
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routine outcomes are articulated: Grace and Jonah both do not identify issues with their never 
verbalized proof. Notwithstanding, both agree that “it” (the diagram, the proof, or their construction) 
was “too simple”. In tune with our approach to proof, we interpret the appearing tension between not 
identifying an issue with their work and being not satisfied with it as students monitoring not only 
their previous activity but also how it appears to them in the broader context. For instance, they could 
recall that the task situation was set up by a research mathematician in a cross-level course. Within 
this view, it may seem unlikely that the dyad could generate a proof just in seconds.  

In [7-8], the wholistic “it” turns into a focused “something’s missing”, and the identification of a 
potentially problematic element turns into a task for the second round. Pursuing this task seems 
impossible without narrating the proof, and this is what happens in [9-11]. We refer to these students’ 
utterances and actions as the implementation of a proof-growing routine: a procedure through which 
a substantiating narrative is not constructed “from scratch” but becomes more extensive, elaborate 
and detailed based on previously conducted work. In this case, Grace uses Jonah’s diagram to name 
the sets and points, and in [10] Jonah appears to rephrase Grace’s utterance from [4b].  

This round’s task is completed in [11-12] with Grace identifying that their (still partially narrated) 
proof does not capitalize on  being one-to-one. This identification is not unlike the one in the 
previous round where the problematic spot was also not detected in proof-monitoring. The progress 
is in students delineating an element that they expect to feature in the substantiating narrative, and 
that it is currently not there. This recognition illustrates that a proof-growing routine can impact the 
substantiating narrative, not only by broadening its previously recognized constituents with new 
details, but also through its expansion to elements that were not addressed beforehand.  

But why do Grace and Jonah expect the function’s injectivity to play a role in their emerging proof? 
Both appear to agree that their work substantiates the assigned statement “for all functions”, and 
injective functions are a subset of “all” – so why wouldn’t the pair see their proving mission as 
accomplished? As before, we propose that the students’ proof-monitoring went beyond their 
discursive activity to account for how this activity may appear in a broader context. For instance, 
drawing on their previous experiences, they could be driven by such considerations as “a teacher 
would not provide a redundant condition” or “we would be asked to prove a stronger version of the 
statement if it was possible”.  

In tune with the above, delineating the role of the function’s injectivity becomes the task for the third 
round. The [13-30]-section features proof-growing and proof-monitoring, but the students’ 
interaction changes: Grace leads the implementation of both, narrating one proof element at a time, 
while Jonah endorses her statements. In [25], this interaction bears fruit: Grace realizes that their 
diagram had highlighted the function’s injectivity at the start, by depicting  and  as distinct 
points. Thus, in this round, their substantiating narrative grew by generating a verbal utterance about 
a visual element of the diagram. To appreciate what comes next, note that other parts of the diagram, 
especially those substantiating the Hausdorff-ness of , did not feature in students’ discussion. 

Jonah’s mathematizing at the board 

Due to space limitations, we present an abbreviation of Jonah’s work at the board (for the full 
transcript see Kontorovich et al., in press). Jonah approached the board leaving the notebook with his 
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much-discussed diagram on the desk. He stood facing the board and with his back to the class 
throughout the process, often blocking the board with his body. Figure 2 shows a snapshot of Jonah’s 
board when he finished.

Jonah began by articulating every word in the sentences that he wrote on the board. The first three 
lines in Figure 2 were generated in this way. The fourth line emerged in silence. Then, Jonah appeared 
hesitant: he stopped writing and his gaze oscillated between the target statement and what he had 
written to that point. He took a step aside 
and sketched a diagram with two ovals, 
points and , and dotted circles and 

. After a few seconds, he giggled and
smiled as if embarrassed, went back to 
his desk and returned with his notebook
featuring the original diagram presented 
in Figure 1. After a quick glance at it,
Jonah exclaimed “oh yeah!” and 
generated lines (5-6). Then he returned
to the diagram on the board and 
completed it (see Figure 2). He wrote the 
lines (7-8) in silence, and instantly went 
back to his seat while cracking a smile 
to the video-camera.

In terms of routines, there is a visible change in how Jonah proceeded with his proof in this task 
situation: from utterance-duplicating in the first three lines, where he articulated what he put on the 
board as he wrote, to silent writing towards the end. We propose that while proving publicly for peers 
and the teacher to observe, Jonah mathematized for himself. This explains him investing almost no 
effort in elaboration on his text and eventually “turning off” the oral component – when one is 
communicating with themselves, the talk is loud even when all others hear is silence. Furthermore, 
his task appears to generate a written and self-contained proof, only parts of which were earlier 
discussed with Grace. Given that Grace did most of the “heavy lifting” in the earlier generation of 
the substantiating narrative, Jonah’s proving appears as a self-imposed challenge of constructing the 
board narrative on his own. This is in tune with him volunteering to prove at the board, initially 
leaving his notebook behind, and using it half-heartedly when getting stuck.

The transition from collaborative work to the board entailed a transformation of the proof in terms of 
restructuring, formalization, and growth. Indeed, recall the insight on the function’s injectivity in 
[25-29]. The dyad clarified it in the third interactive round and referred to it as a matter of
contradiction (see [25,29a]). On the board, Jonah transformed this element into the symbolic “

”, eloquently substantiating it with being “1-1” (see line (2)). The formalization aspect can be 
captured through what Sfard (2008) terms as reification: a discursive process in which humanized 
formulations about processes turn into a talk about mathematical objects (e.g., [19] vs line (2), [21] 
vs line (5)). Perhaps the most visible instance of proof growth is evident in the transition from “if

Figure 1: Snapshot of Jonah's board (numbering added)
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there was a point in this interaction […] but it can’t” in [23] to the deductive sequence in lines (6-7), 
where Jonah declares his intention to obtain a contradiction and explicates the steps that do so.       

Summary and Concluding Remarks 
Focusing on a single mathematical statement, we analyzed the progression of students’ proof between 
two task situations. Collaborative work on a statement “from scratch” and its consequent proving at 
the board are distinct social circumstances, and thus, it is barely surprising that different substantiating 
narratives emerged in each of them. What seems less obvious is what transformations a narrative can 
go through when “rolling over” such task situations. In the presented case, the proof was restructured, 
it grew previously not articulated elements and became more formal and elaborate. We acknowledge 
that these developments relate to the shift from the oral to written communicational medium, at least 
partially. Indeed, academic mathematical texts are renowned for being dense with terminology and 
symbols, modest in their use of “grammatical words”, and having impersonal and authoritative 
formulations (e.g., Morgan, 1998). Then, it may be expected that such an experienced mathematics 
student as Jonah would write in this way in the presence of a mathematically mature audience. 

Can these transformations count as evidence of Jonah’s mathematics learning? The answer depends 
on whether Jonah’s discourse underwent a lasting change, which is out of the research scope in this 
paper. Our analysis captures the short-term developments in Jonah’s communication: from his limited 
contribution to the generation of a substantiating narrative in the first task situation to a fully-fledged 
narrative in the second. Some may argue with our claim about Jonah’s discursive development, noting 
that he was the one to generate the original diagram and declare “that’s basically it”. He delivered on 
this declaration at the board after a short glance at that diagram, something that may be explained by 
him as “holding the proof in his mind” all along. We remind the skeptics that commognition operates 
with communication that rests in a publicly accessible space and it recognizes the effort that is often 
needed to switch from inner dialogue with oneself (i.e., thinking) to conversing with others (e.g., 
recall how Jonah got stuck at his board proof). In the minimal case, by volunteering to mathematize 
at the board, Jonah realized a learning opportunity to change his command of an academic topological 
discourse. Indeed, he not only mathematized through using conventional keywords, symbols, 
narratives, and routines, but he did that at the board, which is characteristic to research mathematics. 

A somewhat similar argument can be made regarding Grace’s discursive development. Throughout 
the interaction, Grace led the proof growth to broaden its components and expand it to new elements. 
Specifically, Grace’s discourse was enriched by a narrative about the role of the function’s injectivity 
in the assigned statement, a condition that initially appeared redundant. 

Two interrelated aspects of the students’ interaction are noteworthy. First, the case illustrates how a 
substantiating narrative can develop through the alternation of proof-monitoring and proof-growing. 
Students’ monitoring is interesting since its first two implementations did not remove a blind spot in 
the proof, even though the dyad was convinced that this spot existed. We accounted for this conviction 
by proposing that the pair monitored not only their activity but also how it may appear in a broader 
context. The inaptness of their activity within this broader context explains why the students kept 
growing their proof further. This account illuminates how social considerations can permeate what 
could be expected to be a “purely logical-deductive function” (cf. Rav, 1999) of proof-monitoring.  
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Second, the students knew that in their topology course and beyond, a request for a proof is 
tantamount to generation of a written self-contained narrative. Yet, the dyad referred to a wordless 
diagram as “basically it” and “kind of it”. This illustrates that students’ familiarity with “a certain 
kind of action” (Lavie et al., 2019, p. 159) that the task setters expect does not always prevent students 
from pursuing a different task. Lavie et al. refer to “task” as “a person’s interpretation of a given task 
situation” (p. 161), but this case shows that it can be a deliberate choice. Janah’s proof at the board 
offers a colorful example that the choice of an alternative action in one task situation is not necessarily 
evidence of one’s incapability to undertake an expected action in different circumstances. 
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Research showed that university students struggle with the mathematical language, particularly when 
beginning mathematics studies. Therefore, we investigate a group of 15 mathematics students from a 
German university that were interviewed at seven different times during their first year of study to 
describe the process of their language development. Focusing on the aspect of definitions as a specific 
part of mathematical language, our results imply three types of students with respect to their 
development of mathematical language. Students of the first type seem to have an adequate 
understanding of mathematical language from the beginning. By contrast, students of the third type 
have severe problems and show no real development, whereas students of the second type start also 
with severe problems, but show improvement during their first year of study. The main aim of this 
paper is to describe and analyze the development of a student belonging to the second type.  

Keywords: Language, definitions, transition, university students. 

Introduction 
The transition from school to university is strongly influenced by a transition from school-
mathematical language to university-mathematical language. According to Gueudet (2008, p. 244), 
the mathematical language at universities can be seen as a gatekeeper that ensures or impedes access 
to the mathematical community: “It is the language of advanced mathematics, required to enter the 
mathematical community, and to communicate inside this community”. Furthermore, Seaman and 
Szydlik (2007) describe the development of the mathematical language as part of mathematical 
sophistication, by which they mean the “enculturation into the community of practicing mathematics” 
(p. 170). Mathematical language at universities is the basis of stating and using mathematical 
definitions, understanding mathematical concepts and developing mathematical argumentations and 
proofs (Moore, 1994). Schleppegrell (2007, p. 140) stated: “the language [of a discipline] and learning 
[a discipline] cannot be separated”. This deep dependency of language and mathematical learning is 
widely accepted in mathematics education research (e.g., Morgan, 2005; Pimm, 1987; Tabach & 
Nachlieli, 2015). However, research showed that university students struggle with the mathematical 
language, especially when beginning mathematics studies (e.g., Gueudet, 2008). The students’ 
difficulties with mathematical language could be understood as a potential reason for the high drop-
out rate in mathematics studies (e.g., Heublein, 2014).  

Whereas the topic of language and mathematics has been studied from various perspectives, 
especially in recent years, research concerning the development of mathematical language as a main 
part of students’ mathematical sophistication, is sparse. Therefore, we contribute to this line of 
research with a project conducted within the Competence Center for Higher Education in 
Mathematics (khdm, www.khdm.de) that has the aim to investigate the process of mathematics 
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students’ development of mathematical language within their first year of studies. In this paper, we 
focus on definitions as a specific part of mathematical language that seem to provide a specific 
obstacle for mathematics students (Alcock & Simpson, 2002; Moore, 1994). For example, Edwards 
and Ward (2008) have shown, that many freshmen in mathematics are unable to understand and apply 
mathematical definitions correctly, which can lead to further problems, e.g. with proofs (cf. Moore, 
1994). Other studies showed similar results for prospective mathematics teachers, who were not able 
to formulate precise definitions (Özyildirim & Sahiner, 2017; Zazkis & Leikin, 2008). To conclude, 
our main question for this paper is the following: 

What development of the mathematical language do students show within their first year of 
study? 

Construct and content of mathematical language 
Characterizing the mathematical language and its key features, one usually finds a subdivision into 
word, sentence and text level (e.g., Prediger et al., 2019). Mathematical symbols can be understood 
as specific linguistic entities and therefore they can be assigned on the word level (Meyer & 
Tiedemann, 2017). Symbols in mathematics are used as abbreviations for mathematical objects or 
technical terms and without them, many abstract objects, constructs and thus meanings could not be 
described and grasped (Schleppegrell, 2008). Besides symbols, the mathematical vocabulary 
(technical terms) is to be classified on the word level. Compared with everyday language, 
mathematical vocabulary can be divided into three categories (cf. Maier & Schweiger 1999; 
Monaghan, 1999): The first category includes words that are not used in everyday language (e.g. 
“bijection”), the second words that are used in everyday language with largely similar meanings, for 
example “completeness”. Words that occur in both registers but have different meanings are assigned 
to the third category (e.g. “field” or “series”). 

On the sentence level, there are certain norms and rules about how mathematical symbols may be 
linked with each other and may be linked to words. For this, it is possible to establish references 
between different concepts and objects and to express mathematical relationships (Maier & 
Schweiger, 1999). Furthermore, special patterns of grammar and syntactical structures like using long 
and dense noun phrases, passive voice and the verbs “be” and “have” are typical for mathematical 
language (e.g. Schleppegrell, 2008; Maier & Schweiger, 1999). Definitions as an important element 
of mathematical language are to be located at the sentence level. Mathematical definitions – in 
contrary to definitions in general - do “have the property that everything satisfying it belongs to the 
corresponding category and that everything belonging to the category satisfies the definition.” 
(Alcock & Simpson 2002, p. 28). Definitions in mathematics do not include more properties than 
necessary to describe the relationship or the object that should be defined. Further, usually only 
previously defined terms are used. Grammatically, in the (conditional) subordinate clause the 
condition or premise is presented and in the main clause the consequence resulting from the premise, 
the conclusion, is described (Meyer & Tiedemann, 2017). Regarding the transition from school 
mathematics to university mathematics there are changes concerning mathematical definitions (cf. 
Chesler, 2021): In school mathematics, objects and terms mostly have an experimental or descriptive 
basis, using less formalism and a more informal language instead of the exact terminology (Reiss & 

Proceedings of CERME12 2446



 

 

Nagel, 2017), whereas “they are specified by formal definitions and their properties reconstructed 
through logical deductions” (Tall 1992, p. 495) in university mathematics. 

Mathematical theorems are another important element of mathematical language, which often consist 
of more than one sentence and are therefore located at the text level (Meyer & Tiedemann, 2017). 
Besides theorems, proofs are of course assigned to the text level. Generally, properties of technical 
jargon such as completeness or precision are also characteristically for mathematical language.  

Method 
The students were analyzed concerning their language development in a longitudinal setting at seven 
different times in their first year of study and were interviewed at these seven times. The group of 
students we interviewed comprises 15 students (of which ten were female and five male), all 
beginning with their mathematics studies (prospective mathematics teachers (upper secondary 
school) and mathematics students). We obtained them through convenient sampling and they were 
paid for making the interviews in the same way student workers are paid. The interviews lasted about 
30 to 60 minutes and were transcribed completely. In the interviews, among other aspects, the 
students were asked to read specific mathematical sentences providing theorems or definitions, to 
formulate specific theorems, to describe the meaning of mathematical objects or to give definitions. 
One of the tasks was to give a definition of the term function (other terms that should be defined were 
for example linear combination and divisibility). The interviewer asked the participants to write down 
the definition and to read it out loud afterwards. If necessary, the participants were asked, how a 
particular phrase or term in their definition should be understood. If the interviewer noticed that the 
participants had difficulties in defining the term, he asked them to try to explain these difficulties.  

To evaluate the collected data, we developed a coding scheme on the basis of preliminary interviews 
for analyzing the definitions provided by the students (cf. Kuckartz, 2016). These codes were used to 
describe differences among the students and to identify developments in the students’ mathematical 
language use. We coded the students’ use of symbols and technical terms with the following codes: 

- the number of symbols, quantifiers, variables and arithmetic operators       
- the number of sets and symbols for set operations 
- the number of technical terms 
In addition, we coded failures that are apparent in the students’ written answers. As failures we coded 

- the number of undefined variables, 
- missing parts of a definition, 
- erroneous terms 
After coding the students written answers, we analyzed and compared, what the missing parts and 
erroneous terms in the students’ definitions exactly were. An example for our coding process referring 
to a student’s solution concerning the definition of the term function is given in Figure 1: The student 
used eleven symbols overall in her definition. In detail, she used two (different) variables that are 
defined (  and ), six symbols for sets or set operations ( ) and one calculus symbol 
( ). She further used four technical terms and there are no erroneous terms in her definition. Finally, 
the aspect of the uniqueness of the assignment is not mentioned explicitly (the student wrote “ein” 
which translates to “a” or “one” but not “genau ein” which translates to “exactly one”), so based on 
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the written answer we coded that as a missing part of the definition. For each excerpt of students’ 
expression, we show the original expression and a translation. 

 

2) Image assigns every 
 of the definiton set a  of the 

value set 

Figure 1: Example of the definition of the term function from a student (first type, fourth interview) 
Besides being asked to give and write down definitions of specific terms, the students were asked by 
the interviewer to explain what characterizes mathematical definitions in general and what differences 
they see between definitions and theorems. The interview transcripts were analyzed and coded 
following Mayring’s procedure of inductive category development (cf. Mayring, 2014). 

Results 
From the perspective of qualitative analysis on the basis of the codes described above, we identified 
three types of students with respect to the development of mathematical language regarding the 
questions and tasks in the interviews about definitions. Students who can be summarized to a first 
type (three out of the 15 participants) use mathematical language from the beginning with little or no 
errors. They use technical terms correctly, the variables that they used are defined and they rarely use 
irrelevant terms in their definitions. Still, a development of mathematical language can be observed 
among these students. In the course of their first year of study, their definitions become more precise 
by avoiding ambiguous terms and an adjustment of word orders. On the other hand, students who 
were unable to formulate the required definitions in the first interview, or at most incomplete and 
incorrect definitions, can be summarized to a third type (seven out of the 15 participants). These 
students start at a low level and hardly any development is seen in their use of mathematical language 
when trying to define the requested terms over the course of the interviews. Instead of generally valid 
definitions, students of this type can usually only give examples, so most of their definitions are no 
sentences in a linguistical sense. Besides that, they often do not define the variables they use and use 
fewer technical terms than students of the other two types. The second type is represented by students, 
who have difficulties at the beginning with the use of mathematical language and, therefore, 
especially with defining mathematical objects. Still, a positive development can be observed during 
their first year of study. Out of the 15 participants, five belong to this type.  

As mentioned before, we focus on a student representing the second type who showed heavy 
difficulties referring to her mathematical language at the beginning of mathematics studies and 
analyze her development. Table 1 shows the definitions of the term function from the first, fourth and 
last interview of a student of the mentioned type. In the first interview, she only managed to write 
down three symbols (two symbols for sets and one calculus symbol) and besides the fact that not all 
functions are from  to , it remains unclear how this even exemplifies a function. The student seems 
not to be able to connect her expression of an assignment with more information that it could become 
a meaningful mathematical sentence. Being asked what characterizes definitions in mathematics and 
what differences between theorems and definitions are, the student answered the following in the first 
interview: “A definition [...] that is, that one, […] has an assumption and that one somehow tries to 
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explain by a solution in a mathematical way. [...] I would say a theorem, um, a theorem is basically a 
formula perhaps. [...] The theorem was rather that one writes down this formula and with defining, it 
was rather that one deduces something.”. A definition for her at that point was an “(explained) 
assumption” and “something deduced” – an ambiguous and vague description that she could not 
explain further. 

Table 1: Examples of a student’s definition of a function (first, fourth and last interview) 

Interview 1: 

 

Interview 4: A function projects elements of 
one set to another set. The 
mappings can be surjective, 
injective or bijective. 

Interview 7: 

 

2) be A and B non-empty sets, then 
a mapping can be found that 
assigns  to a . 
Thereby, a mapping is called 
function if . 

Her definition from the fourth interview is at least a complete sentence, but she used no symbols this 
time. We coded six different technical terms instead, but three of them are irrelevant for the definition 
of the term function (e.g. surjective). There are no erroneous terms in the definition, but she used the 
ambiguous formulation “to project” and furthermore, the aspect of uniqueness is missing. In her 
fourth interview, she describes definitions first as “basis for proofs” and then as “basis for theorems”, 
so it seems that at least the deductive character of mathematics has become clearer to her and she can 
better distinguish definitions and theorems from each other: “A definition is there to give a 
mathematical proof. [...] Well, a theorem is, so to speak, when I (...) want to prove something and for 
this proof I then apply various corollaries, I think they are called, and lemma and perhaps also 
definitions. [...] And the definition is so to speak what I use for the theorem.”. 

She managed to produce a more elaborated definition in her last interview (Table 1). In that definition, 
she used fifteen symbols (the variable she used is defined) and three different technical terms, but we 
coded again the aspect of the uniqueness of the assignment is missing explicitly. She explains the 
following about definitions and theorems in general in her last interview: “[...] when you have a term 
or an expression, that the definition is simply a more detailed explanation of that term or expression. 
And a mathematical theorem [...] basically just, um, a statement or rule. [...] If you have previously 
defined something, a term, the theorem simply serves to explain how you calculate with this 
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definition”. She describes more concretely what she thinks a definition is (“definitions explain 
terms”) and expresses more clearly, that for her theorems are based on definitions. 

The question of what characterizes a mathematical definition could not be answered correctly or only 
vaguely by almost all participants at the beginning. However, differences between the three types can 
be observed here as well, and these differences continue to manifest themselves over the course of 
the first year of study. While students of the first type at least usually answer in their first interview 
that definitions, unlike theorems, do not need to be proved and must be unambiguous, students of the 
second and third type are usually not aware of the difference between theorems and definitions, 
cannot answer the question at all or give a nonsense response. Nevertheless, a positive development 
can be observed among those students who can be assigned to the second type as described below, 
whereas for students of the third type it seems not to be clear, even in later interviews, what 
characterizes definitions in mathematics. 

Discussion 
We investigated students’ development of a mathematical language as a crucial part of students’ 
mathematical sophistication in our study and focused in this paper on the students’ ability to formulate 
mathematical definitions, for what a precise and elaborated mathematical language is necessary (cf. 
Moore, 1994; Zazkis & Leikin, 2008; Chesler, 2021). As mentioned above, our results indicate a 
division into three types of students. On the one hand, the students we assigned to the first type already 
seem to have a good knowledge of the mathematical language at the beginning of their studies. They 
are able to define familiar terms linguistically correctly and almost without errors and the 
mathematical language does not seem to be a barrier when they access new content. They quickly 
adapt to the conventional mathematics language and the deductive structures of university 
mathematics experienced in their courses and lectures. Therefore, it is reasonable to assume that they 
do not need specific language support to master their mathematics studies successfully. By contrast, 
students of the third type are unable to formulate adequate definitions in most cases and have serious 
problems with using mathematical language. They make errors in linking symbols to each other and 
use more colloquial paraphrases. It should be noted that during their first year of study the majority 
of students we assigned to the third type dropped out of their mathematics studies (five of seven). For 
those in this group who participated in all interviews and did not drop out of their studies, we assume 
that they will have low chances of success in their studies, particularly because of their difficulties 
with mathematical language.  

The students of the second type are to be classified between these two groups. Here, a positive 
development can be observed in the course of the interviews as we presented before in more detail, 
but even at the end of their first year of study, they are still far from being able to use mathematical 
language adequately and reach the goal of mathematical sophistication. Especially at the beginning 
of their studies, mathematical language seems to be a barrier for them. Together with the higher pace 
in university lectures compared to school classes and the new content, a cumulation of different 
transition problems can occur (cf. Gueudet, 2008). Another noticeable aspect is that students in this 
group sometimes try to use new mathematical symbols quite quickly and they succeed in doing so to 
some extent. However, whereas students of the first type seem to have grasped the meaning of the 
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symbols they use, it is at least debatable whether students of the second type actually already use all 
symbols meaningfully. Following Berger’s (2004) hypotheses, this form of functional use and 
imitation could help students to learn using mathematical language correctly - but it is not clear 
whether these students will succeed by the end of their studies and achieve the linguistic 
sophistication that is necessary without specific opportunities for support or whether they remain on 
the level of imitating phrases based on school mathematical knowledge. Therefore, we assume that 
these students seem to need substantial support for developing their mathematical language. One 
possible option could be to discuss failures in using the mathematical language appropriately so that 
their failures could be used in a productive sense (Loibl & Rummel, 2014). To reveal the relevance 
of a sophisticated mathematical language, it could also be helpful to confront these students with 
examples where an ambiguous school-related language is not appropriate. Whereas students of the 
first type at least have the right idea of what characterizes definitions in mathematics, it turned out 
that this is not clearly the case for students of the second type. Thus, another supportive measure 
could be a learning unit that points out the importance of definitions in mathematics and in which the 
students practice defining. 

Due to our small sample and the qualitative approach, we cannot generalize our results or quantify 
how many students belong to one of the types. However, the results of our study imply that a larger 
group of students has problems with developing a sophisticated mathematical language. 
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Theoretical background and aims 
One of the problems in the early years in an engineering curriculum is that mathematics is taught as 
a separate subject and, in many cases, the students do not recognize the mathematics they use (Kent 
& Noss, 2003). Modelling activities are usually recommended to bridge the gap between 
mathematical content and engineering practices (González-Martín et al., 2021). Problem posing 
offers opportunities to connect mathematics to students’ interests. Moreover, within a classroom 
community, students could be encouraged to pose problems that others in the class might find 
interesting or novel. Students’ beliefs about the relevance of mathematics are considered as one of 
the factors that can play an important role in their attitude and motivation (Hannula et al., 2016).  

To help student to recognize the relevance of mathematics and make it more interesting, as volunteer 
supplementary problem posing work, assigning as incentive of 3 over 30 extra bonus points to add to 
their final grade, to Civil and Environmental Engineering (University of Udine) students were asked 
to find possible applications of the topics of the course (i.e. differential and integral multivariable 
calculus and differential equations and systems), to engineering and to present them to the class as 
completion and support of the standard lessons (see also Lepellere, 2021). At the end of the academic 
year, we also asked to students who participated to the project to write a report about their impressions 
of the work done. Thematic analysis technique (Braun & Clarke, 2021) was carried out to identify 
benefits do students report participating in the project. An anonymous survey on the Moodle platform 
was also administered. The research questions were: what kinds of application will the students 
choose? Does participating in the project affect students’ belief that knowledge in analysis is relevant 
to engineering? What benefits do students report participating in the project gave them? 

Results 
Twenty-five students, out of seventy-five, prepared and presented their project: 46% chose a 
modelling of real problem; 38% a topic connected to other courses (rational mechanics, construction 
sciences and hydraulics); 21% presented a simplified extract of a research article. Twelve students 
wrote a report. From its analysis, three important themes emerged: enjoyment; to challenge 
understanding; to improve connections of mathematical concepts in other contests. Eleven students 
expressed positive enjoyment, as: It is a good idea to motivate students to go beyond the classic lesson 
study… Just one student said: However, I cannot claim to be satisfied. Eleven students said that it 
challenges students’ understanding: This forced us to understand the proposed arguments more 
fully… from a previous study of the subject I did not understand its essence and its applicability in 
real contexts… Just one student said:  it did not help me in the study of the subject. It helps to make 
connections of mathematical concepts in other contests: It allowed us to broaden our knowledge and 
get closer to aspects of engineering that perhaps in other cases would not have been of personal 
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interest… It has allowed an easier understanding of the same topics seen in other courses allowing 
a considerable simplification of the learning phase… Seven students spontaneously highlighted their 
beliefs about mathematics: abstract topics…, a very theoretical subject in itself…, many concepts are 
delicate to understand… There was no lack of critical issues: It took me a long time to find 
something… it is not always easy to find precise, certain, and secure information… it is easier for 
students who have already attended more "technical" courses…  I had a hard time developing the 
idea and find a conclusion… About the survey, to the multiple-choice question: What do you think 
of the supplementary work on applications proposed during the course? Only 5% (2 out of 40) wrote 
the project is not useful, 85% find it useful, but just 7.5% would make it mandatory, 10% would 
extend the project even at the end of the course given the excessive workload during the semester. 

Conclusions 
Despite the efforts that teachers do to make calculus more attractive for future engineers, by offering 
application examples, often related to physics, the students continue to show little interest in the 
discipline, deeming it “too abstract”. Furthermore, the students are not always able to connect the 
topics covered in class with those of other courses, sometimes the simple use of a different “language” 
confuses them. However, it is difficult to propose alternative activities, as evidenced by the fact that 
while they consider the proposed project useful, they prefer it to remain optional. But if the students 
are stimulated, they are able to pose and solve problems using mathematical modelling too. From the 
analysis of the data, we can conclude that the activity had a positive impact on students’ beliefs that 
mathematics is essential for the continuation of their studies and career as engineer. 
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We present a study about statistics university education focusing on study and research paths. An 
SRP is a didactic proposal based on the inquiry of questions, introduced as a research and teaching 
tool within the Anthropological Theory of the Didactic. Our research addresses the problem of the 
SRPs’ ecology in the first courses of statistics considering the conditions and constraints enabling or 
hindering the proposal to be implemented in a sustainable way. We perform a qualitative analysis of 
consecutive experimentations of the same type of SRP using the methodology of didactic engineering. 
In this paper we highlight the last stage of didactic engineering, the a posteriori analysis, and develop 
the analysis of the SRPs ecology at four levels: epistemological, didactic, pedagogical and school. In 
the results we emphasise the impact of the SRP in the course organisation and point out its strength 
of being both a research and teaching tool. 

Keywords: Study and research path, anthropological theory of the didactic, project-based learning, 
statistics, ecology. 

Introduction 
Statistics has rapidly evolved during the past two decades, primarily thanks to technological 
developments that brought out the possibility and the need for collecting and effectively analysing 
massive amount of data. Such a change in the profession requires adaptations of the teaching of 
Statistics that keeps up with its application. A similar cause in architecture resulted in the beginning 
of a reform of its teaching back in Italy in the 16th century (Knoll, 2014). Knoll locates the origins 
of the Project Method as an instructional approach for “the academisation of a profession” and not 
the result of “abstract philosophical deliberations” (Ibid.). Throughout centuries, the method evolved, 
penetrating various branches at all educational levels and is continuing to adapt, grow and being 
disseminated. Nowadays, the most common expression for the method’s successor is “project-based 
learning” (PBL) (Batanero et al., 2013; Harmer, 2014).  

The research works assuming the PBL pedagogical model in statistics teaching has grown steadily 
these past decades. These research works address two main aspects: first, its founding principles and 
second, the description of diverse teaching experiences (Markulin et al., 2021a). In addition, Batanero 
et al. (2013) propose implementing projects and investigations, bridging the relationship between the 
mathematical concepts and alive statistics environment, as a method to develop a “statistical sense” 
of the students. They show that the project fosters not only technical knowledge but a strategical one 
too (to know when to use a specific content or analysis tool).  

As a contribution to the field of statistics education, our research follows the line of research within 
the Anthropological Theory of the Didactic (ATD) on the study of the ecological conditions in the 
design, implementation, analysis and development of a new type of instructional format – study and 
research paths (SRPs) – based on the continued inquiry of problematic questions (Chevallard, 2015). 
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In a way, SRPs include aspects of project-based learning (PBL). However, they also provide new 
perspectives and methodologies currently not elaborated in the PBL literature (Markulin et al., 
2021a). The question addressed in an SRP has a main goal to generate an answer, regardless of the 
knowledge mobilised during the inquiry, while in PBL the central aim is meeting a specific piece of 
knowledge. This communication forms part of the first author’s doctoral work on the advancement 
in the dissemination and impact of the SRPs in university education of statistics for non-mathematics 
students. We particularly analyse the didactic ecology of SRPs, that is, the conditions that allow their 
implementation in the classroom, and the constraints of all kinds (epistemological, pedagogical, 
school and social) that hinder their generalised development.  

Research framework 
During the past 15 years, a line of research has been developed within the ATD to study the conditions 
needed for a change of the prevailing pedagogical paradigm. We are now in the paradigm of visiting 
works, where syllabi are usually a list of themes, topics or disciplines to learn, without necessarily 
knowing why it is important to learn them. The new paradigm considers knowledge as a tool to 
question the world and elaborate answers to the questions raised. 

To analyse the conditions for transitioning to the new paradigm, the ATD proposes to design, 
implement, analyse and develop a new type of didactic device: SRPs. This proposal is based on 
organising teaching and learning processes taking the study of open questions as the central activity. 
These generating questions are posed to students in order to develop answers under the direction of 
a teacher or team of teachers. The process of elaborating the answers will give raise to research 
activities (such as: searching for information, collecting data, comparing the information collected, 
producing partial answers, etc.) and study activities to understand the information collected, acquire 
and be able to mobilise new tools of analysis. In that sense, the paradigm of visiting works is being 
replaced by a new paradigm: questioning the world. An important aspect to highlight is that in SRPs, 
the study of new knowledge or know-how is integrated into the research process (Bosch, 2018; 
Chevallard, 2015) and that they do not oppose transmission and inquiry.  

The research follows the line of implementations of SRPs in chemistry, business administration (BA), 
medical sciences and mechanical engineering and continues in the case of statistics in BA degrees. 
These investigations show different modalities of SRP’s integration in the courses and their 
management using different tools originated in didactic research, such as question and answer maps, 
research and study dialectics and the methodology of didactic engineering (Barquero et al., 2020). 

Research questions 
The emphasis of this communication, and the doctoral work it forms part of, is to address the problems 
associated with teaching statistics at the university level in a moment where knowledge in this field 
is evolving rapidly. We investigate actions that can and do appear in the process of the change from 
the traditional teaching of statistics towards the acknowledgment of the evolution of the profession 
and its application in the teaching of it. Our research questions are: 

- What conditions can be established in a current degree of business administration (in Spain) 
to organise a first course of Statistics in the transition between paradigms (where the students’ 
work is led by the need to answer some questions instead of the need to visit some works)? 

- What constraints appear at the epistemological, didactic, pedagogical and school level? 
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To answer these questions, we rely on the literature about similar teaching proposals, their design and 
implementation, as well as on our own research experiences. 

Methodology 
As said before, this work is framed in a wider research project intending to study the ecology of SRPs 
at higher education institutions. More specifically, our research group has been implementing SRPs 
in experimental sciences (Barquero et al., 2011), engineering (Florensa et al., 2018; Bartolomé et al., 
2018), and business administration (Markulin et al., 2021b) among others. The first approach to study 
the conditions and constraints governing the implementation of SRPs at higher level takes a macro-
didactic point of view and assumes as an object of study the collaborative work needed between 
researchers and lecturers to design and implement SRPs at higher education. Previous research 
showed that the ecological fragility of the implementation of SRPs is due to the fact that in most 
experiences the researcher and the teacher are the same person (Florensa et al., 2019). Our work 
intends to explore how this collaborative work, materialised in teams of researchers and teachers, can 
address this issue and to what extent this collaborative setting may enhance the long-term viability of 
SRPs at higher education. Our proposal is not far from the practitioner-researcher collaboration as 
described by action research method that faces similar challenges concerning this situation where the 
researcher and the teacher are close collaborators or even the same person (Townsend, 2014). 

The second approach is the study of the ecology of SRPs by designing, implementing and analysing 
SRPs at higher education level, in particular in the fields of mathematics and engineering (STEM). 
We follow Florensa’s (2018) proposal on the use of Didactic Engineering (DE) to do so. In fact, one 
of the main particularities of SRPs compared to other PBL proposals (Markulin et al., 2021a) is the 
existence of this four-phase methodology (Barquero & Bosch, 2015). The first phase is the 
preliminary analysis where the institutional conception of knowledge is explicitly characterised in 
order to identify the foundations of the didactic phenomena addressed. The second phase is the a 
priori analysis of the SRP that will include not only the selection of the generating question but also 
a new proposal of the knowledge at stake considering it as a consequence of the inquiry process. The 
third phase is the in vivo analysis concerning the implementation and observation of the SRP as well 
as the data collection. Finally, the fourth phase is the a posteriori analysis. The main work is to 
analyse collected data, to compare the a priori analysis with the actual activity experienced, to 
describe the different roles played by teachers and students and to highlight the constraints and 
conditions identified during the implementation.  

In this work we adopt this second approach, and we analyse the implementation of three SRPs in a 
second-year course on statistics in Business Administration degree at IQS School of Management 
(Barcelona, Spain). We present here the last phase of the DE methodology, this is the analysis of 
empirical material generated during the implementations (further details on the design and the 
implementation of the SRPs can be found in Markulin et al., 2021b; Bosch et al., in press). The first 
implementation was done during the year 2019-20, the second during the year 2020-21 and the third 
implementation is ongoing (fall semester of year 2021-22). We have collected and analysed different 
students’ productions (weekly reports, final reports), we have also conducted naturalistic teachers’ 
observations, and students have filled in surveys. The survey had been previously piloted in other 
SRPs implementation (Florensa et al., 2018) and can be found here 
(https://sites.google.com/view/cerme12-statistics-srp-ecology). To complete this information, we 
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have conducted semi-structured interviews with students focusing on students’ experience regarding: 
the aim of the study, data gathering, teamwork, assessment, etc. 

Results and discussion 
In this section we present and discuss the results obtained during the last phase of DE methodology. 
We propose an overview of the a posteriori analysis structured in four levels of didactic co-
determinacy: epistemological, didactic, pedagogical and school (Chevallard, 2015). For each level 
we present the conditions and constraints detected during the implementations of the SRPs. An 
overview of the results is also shown in Table 1. 

Epistemological level 

The different implementations of the SRPs have caused important modifications at the 
epistemological level. Changes at this level are very challenging as they tend to modify the 
curriculum, or at least to heavily modify the previous conception of knowledge. This modification 
contrasts with the prevailing epistemology at the institution: that is the conception on what statistics 
is and the attributed raison-d’être. Even if the adoption of the European Higher Education Area 
standards led to competence-based curricula, the institutional conception, often implicit and ill-
defined, remains in terms of conceptual organisations and pieces of labelled knowledge. 

For the case of statistics, we consider it as an area where its epistemological modification towards a 
knowledge conception in line with the paradigm of questioning the world is favourable. First, because 
scholarly knowledge is evolving rapidly, especially in the past 20 years with significant technological 
developments and a shift in the way of collecting and dealing with data. Secondly, because statistics 
is placing the focus of the course more on the interpretation of the results than on the mathematical 
procedures that are at the foundation of the calculations, and this fact enables a better fit with the 
degree of BA and nurtures the motivation for the field. Nowadays, there is no shortage of questions 
and problems to pose when proposing any activity or project in the teaching of statistics.  

However, this favourable situation is not without a challenge: a transposition work needs to be done 
to reorganise the praxeological components of the statistics organisations. This didactic transposition 
process should consider the selection and adjustment of the scholarly knowledge to become the 
knowledge to be taught. In the process, new technologies in the ATD sense will get elaborated to 
adapt into better correspondence with the statistics software as well. Epistemologically, the area is 
compliant with the creation of new exercises and teaching proposals. Nevertheless, teachers can have 
a lack of legitimacy to “invent” new teaching materials and knowledge organisations. In our case, 
such a constraint is not an issue thanks to the freedom that the teacher-researcher has for transforming 
the knowledge to be taught according to some didactic and epistemological principles. 

Interviews with the students revealed their views on the project and the area of statistics in general: 
“I think I learned more in the project than in the rest of the course”, “I learned that you could know 
something about subjective things about people and that, if you could do it with vegetable diets, you 
could also do it with other subjects, such as politics.” 

Didactic level 

On the didactic level, we consider a crucial point that the community of study takes the SRP’s 
generating question seriously. The need to produce an answer is, in fact, the generating force of the 
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whole inquiry process and points to the direction for the final answer to be presented. However, the 
variables governing this process are difficult to identify and of diverse natures.  

The first variable identified is the origin of the dataset, this is if the dataset and the survey are given 
(external) or produced by the community of study (internal). In the first two SRP implementations, 
the survey was composed by the marketing experts and the students were in charge of collecting the 
data. We considered that this external origin would engage students because of its closeness to a real 
setting. However, in the interviews we found out that the external origin of the survey led to students’ 
detachment mainly because of the difficulties to understand its structure and questions: “At the 
beginning the questions seemed strange. But when we started analysing with graphs and summaries, 
we started understanding it.” Consequently, for the third implementation, we plan to build the project 
survey together with the students, making it more a product of internal descent to encourage the 
involvement, making the structure more understandable than in the previous implementations.  

On the other hand, the receiver and validator of the question and its answer can be inside the course, 
the institution or from outside the education setting. We administer a combination of internal and 
external receiver/validator, depending on the step of the project. Derived questions and the feedback 
provided based on the intermediate students’ reports are validated by the course teachers, while the 
final answers are presented for the external jury (members of the institution and the external client). 
The validation of the results is announced beforehand using an evaluation rubric which forms part of 
the established didactic contract. Furthermore, the case studies during the course, before the project, 
help introduce (or train) didactic strategies and devices that are later vastly used in the project activity. 
An example of such a strategy is a practice of always starting with a Q0 that is open and needs to be 
studied in several sessions, meaning it is presented as an activity that requires deep attention and 
investigation by the students and cannot be solved within 20 minutes or even in one session. The 
teacher is then a guide in the process and not an instruction giver.  

Pedagogical level 

As the business requirements for our students require collaborative work, most of the students’ 
activities during the statistics course we present are carried out as teamwork. On top of that, the idea 
of an SRP by the ATD proposes raising above the individual work. It encourages connecting, 
interfering, brainstorming and advancing in a problem setting by interaction within and between 
groups. Case studies that form the course before the project, apart from being managed in teams, 
cherish investigative environment and set pace to the statistical activity. They have a fixed duration 
of two weeks and always end with a submission of a team report that is afterwards corrected by the 
teachers. The culmination of the project, on the other hand, occurs in a session of posters or 
presentations, depending on the conditions the course is going under (pre-pandemic project finished 
with poster sessions in the classroom, during the pandemic project finished in online presentations). 
Although the project is being organised and driven by the problems that are considered relevant for 
the students’ degree, statistics remains a topic from a group of courses based on quantitative methods. 
On average, this brings a pre-established aversion of the students towards the course and a lack of 
dedication in its components. However, the inclusion of a project is perceived as a valuable 
stimulation for some of the low-motivated students, as noted in the interviews: “It makes a huge 
difference; what we will encounter tomorrow, the fact that our work is going to have an impact on 
the work of different people”. 
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Table 1: An overview of the SRPs conditions and constraint and their evolution 

 CONDITIONS CONSTRAINTS EVOLUTION 

Epistemology 

° Flourishing area of 
research 
° Area of knowledge in 
fast evolution 
° Importance in BA 
° Facility to modify the 
knowledge to be taught 

° Prevailing epistemology: 
difficulty to accept new 
organisation of knowledge 
° Didactic transposition 
work needed to adapt new 
areas of knowledge 

From SRP1 to SRP2: 
° Re-scheduled detaching from 
traditional organisation (kept during 
SRP1) 

 Planning SRP3: 
continue the praxis from SRP2 

Didactics 

° External Q0 proposed by 
real companies - partners 
° Report writing 
° Final assessment 
 

° Data are given 
° Difficulty to incorporate 
new tools by students 
° Didactic contract based on 
external validation of 
answers 

From SRP1 to SRP2: 
° Incorporation of intermediate reports 
allowing to give feedback to students 
° The project was initiated earlier in 
the course 

 Planning SRP3: 
continue the praxis from SRP2 

Pedagogy 

° Teamwork  
° Calendar of the course: 
case studies 
° Oral presentation 

° Low degree of students’ 
engagement 
° Lack of creativity 

From SRP1 to SRP2: 
° COVID pandemic heavily affected 
the development of SRP2 
° Explicit management of the process 
of study in the second edition. 

School 

° Assessment 
° Computer availability  
° Use of free software R 
° Moodle, MS Teams  
° Teacher’s accessibility 
° Small groups 

° Private university: 
complaints on changing the 
terms of didactic contract 

The school stays the same  
 

 

School level 

At school level, we present our institutional setting, a private university, shows no or few changes 
from one SRP implementation to another. A direct consequence of the COVID19 pandemics was the 
implementation of the MS Teams for all the teachers and students. There were also vast investments 
in the technological equipment to ensure the quality and synchronous teaching and interaction, but 
no other changes. Teachers have the autonomy to arrange assessment of the course (two to three 
teachers depending on the implementation, well connected and easy to agree between themselves) 
and to adapt it from one year to another. They also have freedom with the calendar organisation of 
the course (no need to be in accordance with teachers of other courses or with the instructional 
organisation). The students’ attendance is compulsory, and they are organised in relatively small 
groups (big teacher-student ratio compared to usual university groups). Each student owns a personal 
computer and is required to always carry it. In Statistics we introduce R software, more precisely its 
user interface R Commander, and use it in every session. For the provision of the materials, we use a 
learning platform Moodle. Implementing the SRP in a private university modified its initial schedule 
due to the students’ requirements for extending the pre-SRP sessions devoted to statistical inference. 
Conditions are certainly different in this respect in Spanish public universities. 
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Conclusion 
The consecutive implementations of SRPs in statistics for BA students allow us to transform the 
Statistics course in several aspects. The didactic phenomenon at stake becomes questioned before and 
after every implementation, providing new perspectives both from the epistemological (the 
profession) and the didactic (reorganisation and enrichment of didactic devices) point of view. In a 
way, already by seizing to detect the phenomena in the foundation of the professional area, occurs 
the questioning of the educational setting and puts the basis for the design of the SRP. Furthermore, 
according to the teachers’ observations, every implementation that was experienced suffered from 
different or repeated obstacles. Such constraints bring to consciousness the impact of different 
didactic strategies or influences originating in other levels, whether epistemological, pedagogical or 
the school. For example, in the statistics course presented, the case studies facilitated certain skills 
that appear in the SRP as well. However, this situation can be a limitation, for instance, when a certain 
activity appears in the project but is not previously encountered during the case studies. The analyses 
of each implementation support the common findings and stimulate the design of the following 
implementations of the SRP and the course in its entirety. The long-term viability of the SRP 
implementations to this Statistics course is still under study. In addition, a major ecological change 
will take place in 2022-23 when the researchers will not be involved in the course anymore. 

In the line of the SRPs developments, we cannot avoid stating that an SRP is a transformative and 
questioning instrument, not only for the students but also for the teachers who design the course. We 
observe that the implementations of SRPs progressively influence the organisation of the program. If 
it was first included as a complement to a course typically structured according to the logic of the 
contents, it gradually gained more prominence and made the content subordinated to the anticipated 
needs of the research. This goes in favour of extending the unit of analysis of the SRPs’ methodology 
to the entire course of Statistics. 
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This paper describes preliminary findings from the ongoing project known as MathsFit, a suite of 
online and in-person mathematics supports designed for in-coming first-year university students of 
service courses. We describe the rationale of the project, some engagement metrics, and present 
results from the first year of the programme. Early results indicate that MathsFit does improve 
student engagement with the mathematics support services available. Plans for the next iteration of 
MathsFit, based on these results, will also be discussed. 
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Introduction 
Diagnostic testing of incoming university students has been occurring for at least 30 years (Lawson 
et al., 2002; Hyland & O’Shea, 2021) and often leads to the identification of students at-risk of 
underachieving in mathematics courses with the objective of supporting these students as early as 
possible in their transition to university mathematics (Gillard et al., 2010; Ní Fhloinn et al., 2013). 
However there have been no attempts, that the authors know of, at developing best practice in terms 
of how and why such testing should be conducted and what follow-on supports are most effective 
given varying institutional, socio-cultural and didactical contexts. In this on-going project MathsFit, 
a blend of in-person and digital supports, we employ an action research methodology of cyclical 
critical reflection using learning analytics, student interviews, and student survey response data. 

Literature Review 
The growing ‘Mathematics problem’ (Hawkes & Savage, 2000), i.e., the difficulty students, 
especially service students, experience in the transition from secondary to university mathematics has 
led to a number of initiatives in universities worldwide to support such students. Common measures 
include the expansion of mathematics supports such as drop-in centres and extra organised support 
tutorials (Lawson et al., 2019), the creation of bridging or preliminary courses, some of which have 
been discussed in previous CERME conferences (Kürten & Greefrath, 2015; Biehler et al., 2011), 
and diagnostic testing which has been researched extensively in the UK and Ireland (Gillard et al. 
2010; Hyland & O’Shea, 2021). Diagnostic testing can allow for the identification of students who 
would most benefit from additional mathematics support during their initial time at university and 
beyond, commonly known as ‘at-risk’ students. Lee et al. (2008) used diagnostic test results among 
other variables to predict the performance of students in later mathematical exams. Other uses for 
diagnostic testing found in a survey of UK institutions by Gillard et al. (2010) include tracking 
changes in student profiles (e.g. Faulkner et al., 2011), informing students and staff about the 
students’ mathematical competencies and guiding the development of additional support services.  

Proceedings of CERME12 2463



 

 

There are two parts of diagnostic testing that necessitate sound learning design principles – the test 
itself and the follow up support (Savage et al, 2000; Lawson et al. 2002). In choosing the 
mathematical topics to include in a diagnostic test, the mathematical expectations for students at 
university are communicated (Hyland & O’Shea, 2021) and a connection to their previous 
mathematical learning is made. Other design decisions, including whether the test is paper-based or 
electronic, and if questions are multiple-choice or not, affect the efficiency of the marking process 
and thus the speed of follow-on support. Follow up support can vary, with most including 
recommendations to engage with the mathematics support available (Hyland & O’Shea, 2021; Gillard 
et al. 2011). Personalised and/or monitored support has a significant positive effect on students’ 
engagement with offered support (Gallimore & Stewart, 2014; Burke et al. 2012). Large online 
systems with automatically marked multiple choice diagnostic tests followed by a personalised, 
gamified online remediation course that allows immediate feedback and increased student choice 
have also been successful (Sharma et al., 2019). Ensuring diagnostic test results provoke action by 
students and university staff is the key theme across the literature on how diagnostic testing can aid 
students’ transition to university mathematics. 

Rationale  
The rationale for implementing this project at this time were numerous. Firstly, quantitative research 
conducted on visits to the University College Dublin’s Maths Support Centre from 2015-2020 
showed that the majority of students attending the centre achieve high grades in the courses they 
sought support for (Mullen et al., 2021a). Conversely those students who failed mathematics courses, 
particularly in the first semester of first year typically did not attend the MSC or if they did it was 
often on only one occasion and late in the semester. Thus, it was conceived that new strategies to 
engage and support these under-performing students were needed beyond existing measures of 
advertising and promotion of the service. Secondly, given the significant disruption caused by the 
COVID-19 pandemic on second-level students’ mathematics education from March 2020 there was 
a concern among MSC management that the mathematical preparedness of incoming university 
students may not be as strong compared to pre-pandemic times. Thirdly, given the disruption to state 
examinations and the delay to the collation and awarding of teacher awarded grades, university 
students started later than usual. This meant a reduction in instruction from 12 to 10 weeks. Combined 
with the fact that first-year final university examinations could not proceed in the traditional fashion, 
these students needed to be assessed within this same 10-week period. These factors persisted for the 
2021/22 student cohorts also. 

Methodology 
In year one, MathsFit targeted two of the largest service modules taught by the UCD School of 
Mathematics and Statistics, Mathematics for Business (515 students) and Mathematics for 
Agriculture (371 students). These student cohorts come into university with very similar 
mathematical prior learning standards and university entry requirements, with Business requiring 
slightly higher matriculation points.  A 30-question diagnostic test, referred to as ‘Proficiency quiz’ 
in communications with students, assessing fundamental concepts was devised by the authors. 
Existing diagnostic tests from Ireland, the UK, and Australia were consulted. The motivation was for 
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students to reach a mastery level in the basics of mathematics fundamentals; Arithmetic and 
Trigonometry, Algebra, and Functions and Calculus. Questions were chosen on the basis that (i) they 
were taught in the Ordinary Level Leaving Certificate course (the state terminal second-level school 
examination sat by all school leavers in Ireland), (ii) they would be required in the forthcoming 
university courses, and (iii) they were a mixture of both procedural and conceptual questions. Figure 
1 shows the first question of the Algebra and seventh question of the Functions and Calculus sections. 
All but two of the questions were multiple choice with five options: the correct answer, three 
distractors (based on common misconceptions), and ‘I don’t know’. Non-multiple-choice questions 
(such as Q1 shown below) were included to avoid ‘process of elimination’ type responses via the 
multiple choices offered. We included ‘I don’t know’ as an option throughout to discourage random 
guessing and to differentiate between students who made errors in their solution and those who could 
not approach the question.   

 

Figure 1: Question 1 of the Algebra and question 7 of the Functions and Calculus sections of the MathsFit Quiz 

The quiz was delivered online through the Quiz feature of the university’s VLE Brightspace and 
students had 45 minutes (15 minutes for each section) to complete the quiz. In advance of the quiz 
students were shown an introductory video welcoming them to the university and explaining the 
rationale of MathsFit. The quiz counted for 3% of the continuous assessment grade for the Business 
module and did not count for credit in the Agriculture module. Demographic information including 
students’ entry route to university and feedback on the students’ experience of the quiz were collected 
through pre and post quiz surveys.  

Utilising Intelligent Agents and Release Conditions features of the VLE, each student was sent a 
personalised email within 24 hours of their first attempt which included their results for each of the 
three sections, their overall result and a set of feedback instructions detailing how they may like to 
remediate. The email wording of these remediation factors was pre-programmed and dependent on 
their quiz score, which had five bands of classification. For example, those students who did most 
poorly were invited to book a one-on-one maths support session with a tutor to discuss their quiz and 
work through the areas they scored poorly on. Those students who scored the highest grade possible 
were invited to lead a study group of their peers under the facilitation of a senior MSC tutor. All 
students who did not score in the highest band were invited to retake the MathsFit quiz the week after 
their first attempt so that they may gain the extra academic credit, in the Business case, or refresh 
their mathematics, in the Agriculture case. This allowed us and the students to measure their 
improvement and further identify students who still score poorly after being offered initial support. 

Proceedings of CERME12 2465



Results
446 Business and 254 Agriculture students gave their consent to participate in the study. There were 
164 Business (37%) and 185 Agriculture (73%) students scoring in the lowest band. Only 11 Business 
(2.5%) students and no Agriculture students scored in the highest band. In terms of the specific 
mathematical areas tested students scored best on Arithmetic and Trigonometry and worst on 
Functions and Calculus. Figure 2 below displays the results by topic area for both attempts for the 
Business student cohort and for the first attempt of the Agriculture students. The second attempt 
results of the Agriculture students were not included due to low participation (n=13).

Figure 2: MathsFit Business and Agriculture Results by Section

The pre-quiz survey included a question on how well students felt they had covered their second-
level mathematics curriculum and what topics they may not have covered sufficiently or at all. 38% 
of Business students and 34% of Agriculture students were unsure if they had covered the curriculum 
while 30% and 38% of Business and Agriculture students respectively were certain they had not. The 
post-MathsFit quiz survey results for Business students indicated that 11% did not have enough time 
for the Arithmetic and Trigonometry section, 46% did not have enough time for Algebra, and 27% 
did not have enough time for Functions and Calculus. The corresponding percentages for Agricultural 
students were 18%, 36%, and 31% respectively. Answers to these questions may explain in part, why 
the majority of students fell into the ‘Low’ category in the Algebra and, Functions and Calculus 
sections, calculus especially being a topic only covered in the Leaving Certificate curriculum, while 
other topics would have been covered prior to that. The module lecturers were informed about these 
results including students’ particular struggles with exponents and features of functions (e.g. range)
to aid their conceptions of students’ prior knowledge and thus their teaching. 

To assess the predictive nature of MathsFit, linear regression analysis was performed on the Business 
students’ MathsFit data and other continuous assessment data from their Mathematics course. Both 
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attempts at MathsFit were positively correlated with all the assessment components (six quizzes and 
two exams, all taken online). Students’ first attempt at the MathsFit quiz had a correlation coefficient
of 0.48 with their final percentage grade (see Figure 3). Their second attempt had a correlation 
coefficient of 0.53 with their final percentage grade (see Figure 4). Stepwise linear regression found 
the best model to predict students’ final percentage using MathsFit data from both the quiz and the 
survey contained ten highly significant terms including their MathsFit second attempt result (denoted 
MF2 in the regression equation below), their gender, their degree, their Leaving Certificate result (H1 
is the highest possible grade achievable), whether they thought they had covered the curriculum, and 
whether they had enough time in the Algebra section. 

Final Percentage = 22.6533 + (0.61 × MF2) + (9.02 × H1) + (4.2 × H2) + (3.93 × Female) − (3.36 × 
NotSure, Covered Curriculum) + (0.3 × Yes, Covered Curriculum) + (6.5 × Other Degree) + (3.65 × 
H5) + (2.28 × A Enough Time).  

The model had an adjusted R-squared value of 0.3816, which means 38.16% of the change in Final 
Percentages can be explained using this model, similar to Lee et al.’s (2008) model. In particular, for 
every 1% increase a student scored on MathsFit, the model predicted a 0.6063 increase on the Final 
Percentage. Of 446 students, the model correctly predicted 433 of the students passing. It incorrectly 
predicted 11 students would pass, however they failed (false positive rate of 2.5%). It also incorrectly 
predicted 2 students would fail, but they passed (false negative rate of 0.45%). This model shows 
that MathsFit data can be used to identify at-risk students; however, linear regression may not be the 
best model to capture the trend. The quartile-quartile plot (Q-Q plot) for this model reveals a straight 
line for the middle values, but deviation at either end, particularly the lower end which means the 
residuals are not normally distributed. It implies that the model is working well for students in the 
middle range, but not well for students with lower marks, unsurprising as the model assumes normal 
distribution and the data is left skewed. Despite not being the best possible fit, this linear regression 
model shows that the data gathered through MathsFit, like other data from diagnostic tests (Lee et al., 
2008, Gilliard et al., 2010) can be used to identify students at risk of failing and hence those in need 
of support.

Figure 3: Correlation between Business students’ MathsFit Attempt 1 results and final percentage  
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Figure 4: Correlation between Business students’ MathsFit Attempt 2 results and final percentage  

Analysis of visits to the university’s Mathematics Support Centre (MSC) by Mathematics for 
Business and Mathematics for Agriculture students was completed to investigate the potential effect 
of MathsFit. Some 17 of the 51 Maths for Business students identified as needing support most
(scoring ‘Low’ in all three quiz sections) visited the MSC, a positive beginning but engaging this 
cohort still requires attention. Comparing the percentage change in number of visits from the 
academic year 2019/20 to 2020/21 for those two courses to the 200 other courses using the MSC 
reveals a positive impact of MathsFit. The average percentage change in number of visits per course
from 2019/20 to 2020/21 was -60% due to the sharp drop in visitors caused by Covid-19 and the 
move to online support provision (Mullen et al., 2021b). The 14% drop in visits for Mathematics for 
Agriculture and the 166% increase in visits for Mathematics for Business are thus above average. In 
particular, Mathematics for Business was one of only 20 courses whose number of visits increased in 
2020/21 in comparison to 2019/20. Some of this increase in visits can probably be attributed to the 
impact of MathsFit, but other factors also may have played a role, such as, the course lecturer’s 
increased advertising of the Mathematics Support Centre when lecturing online in 2020/21 in 
comparison to lecturing in person in 2019/20. MSC visits have been proven to positively impact 
students’ grades both in UCD (Mullen et al. 2021a) and in other international contexts (e.g. Lee et al. 
2008) so this increase in MSC visits by Business students due to MathsFit is a positive outcome.

Next steps
In September 2021, MathsFit was extended to incoming first-year students of five service courses 
including Calculus for Science, Introduction to Calculus for Engineers and the Business and 
Agriculture modules targeted in 2020. This involved approximately 1,600 students. Based on the 
authors’ analysis of the first iteration of MathsFit, four of the five course coordinators agreed to award 
3% of their continuous assessment for MathsFit. For comparison purposes a core set of 15 questions 
was common across all five MathsFit student cohorts, though the Engineering and Science quizzes 
were assessed at a higher cognitive level than the Business and Agriculture quizzes due to the 
mathematical requirements of these courses.  
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Analysis of the survey (39 respondents - 29 Business / 10 Agriculture) conducted in June 2021 found 
that students felt being asked to take a quiz in the first week of university without preparing for it was 
not student-centred. Hence, this year participating students had the option to engage in a refresher 
course before (and after if necessary) attempting the quiz in their first tutorial. Both the refresher 
course and quizzes were delivered using the open-source e-assessment tool Numbas 
(https://www.numbas.org.uk/). This allows for corrective feedback and multiple attempts (in the 
refresher course context) and a randomization of questions variables. Hence students get multiple 
opportunities for practice and do not see the same quiz if a second attempt is necessary as was the 
case with the static quiz in Brightspace. Due to public health restrictions in Ireland, lecture and tutorial 
slots must be capped at 45 minutes and so it was necessary to shorten the quizzes to 24 questions. 
Discriminant analysis and correlation analysis was conducted on the 2020 answers so that the 
questions with the lowest discriminant indices and/or highly correlated with another question were 
removed from the 2021 version of MathsFit. 

Conclusion 
MathsFit has reached one objective in that it had a positive impact on the number of student visits for 
the Business course involved in the study. It has also alerted lecturers to the gaps that some of their 
students have in terms of mathematical preparedness for university mathematics, in particular 
exponents and the range of a function. Finally, it has targeted the students who are most in need of 
timely mathematics support and introduced them early to the services on offer. Clearly the carrot of 
offering even a small percentage of credit for mastery within MathsFit had a significant impact on 
engagement with the second attempt and subsequent mathematics support engagement among the 
Business students. 
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Introduction
The two technology groups at CERME (TWG15 and TWG16) adopt a broad view of 
technology resources in mathematics education to include tangible devices (hardware), and the 
associated applications (software), within the context of learning and teaching. TWG15 
addresses the related issues that mostly concern teachers and teacher education. Previous 
discourse at ERME conferences embraced a wide variety of research topics, theoretical and 
methodological approaches. Most recently, this has focused on: teachers’ uses of students’ 
(digital) productions; sorting and organising digital content such as: simulations, applets and 
Open Educational Resources (OERs); the teaching of computational thinking in, and through, 
mathematics; teachers' choices and beliefs concerning technology use; and the ever-
challenging process to develop useful theories and new pedagogies. The group is keen to learn 
more about actual uses of technology in classrooms (and beyond) to understand both the 
prevailing classroom practices and the implications of this on policy, practice and theory. The 
Covid-19 pandemic offered such a context and two papers (Barlovits, Kolokytha, Ludwig & 
Fessakis and Ramirez) and one CERME12 award-winning poster (Bini) reported such research 
from Chile, Germany and Italy respectively.

The group concluded the following perspectives and suggestions for future research. Continued 
effort is needed to enable wider understanding of the theories and methods applicable to this 
domain. More specifically, a greater awareness of the epistemologies that underpin these 
theories and methods, particularly when adopting more than one frame and/or attempting to 
network them in some way. The prevalence of quantitative studies led the group to conclude 
that increased attention is needed to the sampling of research participants and their associated 
characteristics, which can greatly impact the research claims that can be made when reporting 
findings. In addition, the roles and activities of participants within research studies is also an 
area of growing interest for the field. Finally, the nature of innovation within the field of 
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technology in mathematics education results in many future research opportunities that have 
both pedagogical and mathematical implications, and make this a vibrant area for study.

Organisation of TWG15 and its sub-themes
TWG15 accepted 22 papers and 6 posters for presentation at the conference, which reported 
research from 20 countries (Argentina, Austria, Canada, Chile, China, Denmark, England, 
France, Germany, Ghana, Greece, Ireland, Israel, Italy, Norway, Portugal, Spain, Sweden, 
Turkey & United States). Each paper was allocated to one of six sub-themes and all authors of 
papers recorded 5-minute presentations of their papers, which were made available for 
asynchronous viewing by all CERME participants. In each TWG session, the allocated video
presentations were broadcast prior to the TWG discussions. Each Sub-theme chair structured 
the whole group and breakout group discussions around key ideas that emerged from the related 
papers. In the text that follows, we summarize these ideas and suggest implications for our field 
of research. We conclude with ‘hot topics’ for the TWG15 community, which emerged from 
our final collaborative discussions.

Sub-theme 1: Theoretical frames for investigating the teaching of 
mathematics with technologies (Chair: Melih Turgut)
Tools and technologies for teaching and learning mathematics continually change. 
Accordingly, it naturally takes time for teachers to adapt the use of technologies in classroom 
practice, a process that is known to be challenging. Alongside, pedagogies also evolve and 
emerging theoretical/conceptual perspectives are needed to provide insights on how to integrate 
both new technologies alongside new functionalities of well-adopted tools. Many theoretical
and conceptual frameworks have been developed to help understand the inevitable gaps
between teachers’ existing content and technological knowledge, and the processes through 
which new technologies transform classroom practice. The TWG15 papers provided a broad 
spectrum of emerging theoretical perspectives for designing and understanding teaching 
practice. We underline two main applications of theories: (i) as more deductive research 
frames, such as Ruthven’s Structuring Features of Classroom Practices (SFCP) (Ruthven, 
2009) (Simsek, Bretscher, Clark-Wilson & Hoyles), Gueudet and Trouche’s (2009) 
Documentational Approach to Didactics (Basturk-Sahin & Tapan-Broutin), and Koehler and 
Mishra’s TPACK (2009) and TPACK developments (i.e. Bray & Oldham; Lyublinskaya & Du; 
Meier & Oliveira); and (ii) as multiple frameworks that are merged to offer new 
theoretical/conceptual lenses, such as: Verillon and Rabardel’s (1995) Instrumental Genesis
and Robert and Rogalski’s (2002) Double Instrumental Approach (Haspekian & Fluckiger), 
and TPACK and Valsiner’s (1997) Zone Theory (Lindenbauer, Lavicza & Weinhandl).

Barlovits et al. propose a set of “design requirements” for the development of mobile 
environments for teaching distance mathematics, where they combine a community of inquiry 
lens, with e-pedagogy and mobile learning models. Gonscherowski and Rott conduct an 
interview study to explore pre-service and in-service teachers’ argumentation and justification 
regarding digital tool use in mathematics education. Gonscherowski and Rott consider a 
combined analysis tool; teaching phases and classification of the use of digital tools (Clark-
Wilson, Robutti & Thomas, 2019) and they further elaborate different levels of decision-
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making competencies about appropriation of the digital technologies. Haspekian and Fluckiger 
combine the five components of the Double Approach (Robert & Rogalski, 2002) with notions 
of instrumental distance and didactic landmarks to analyse teachers’ instrumental geneses when 
integrating programming in their practices. Their combined analysis addresses teachers' 
difficulties, which mainly concern ‘... the changes that ICT introduce[s] at cognitive and 
meditative levels’.

Sub-theme 2: Methodologies and methods for investigating the teaching of 
mathematics with technologies (Chair: Alison Clark-Wilson)
The TWG15 papers and posters predominantly report empirical research that spans a diversity 
of methodologies. Each study is underpinned by the respective researchers’ epistemologies,
which frame their thinking on what it is possible to know and conclude from their research 
findings. Consequently, this TWG session encouraged participants to think critically about if, 
and how, the application of research methods in different studies did (or did not) shed light on 
the chosen phenomena, and in accordance with the selected theoretical frame.

The majority of studies adopted qualitative research designs that sought to reveal aspects of the 
different phenomena at hand: (i.e., Engelhardt & Roth; Meier & Oliveira; Vilchez & Lemmo; 
Speer & Eichler; Tortoriello & Veronesi). Common qualitative methods included 
questionnaires, surveys, observations, interviews (individual, focus group), and document 
scrutiny/analysis. In some cases, data is analysed to present findings quantitatively. For 
example, in the study by Lyublinskaya and Du, a novel data visualization method reveals 
interesting characteristics of pre-service teachers’ development of TPACK over time. 

The second most common method used in the studies (i.e. Gavor, Clark-Wilson & Hoyles; 
Kristinsdóttir, Hreinsdóttir & Lavicza; and Lindenbauer, Lavicza & Weinhandl) is the 
increasingly used design (or design-based) research approach (Bakker, 2018). At the heart of 
such an approach is the aim to research innovations (i.e. design new materials or approaches) 
for which existing theories and methods might not be appropriate. Instead, more ‘humble’ 
theories inform iterative cycles or research that involve different methods to enable the 
theoretical, methodological and practical knowledge to emerge.

Two mixed method studies were presented. Fan and colleagues propose a mixed method 
approach to answer the question: How do mathematics secondary school teachers in China use 
digital resources in their teaching? They design a questionnaire for teachers about their uses of 
digital resources, before, during and after lessons, according to the three dimensions (content, 
function and infrastructure). The results are analysed quantitatively, alongside a sample of 
follow-up interviews, which are analysed qualitatively. The quantitative results show that more 
than one half of the teachers use digital resources often or always, and especially during 
lessons. However, they less frequently use resources after lessons, and the variety of resources 
used before, during and after is still limited. Interviews are used to ask the reasons for the use 
of specific resources. Segal and Biton’s study, conducted in Israel, research teachers’ 
perceptions of their work in the Whatsapp environment, also using questionnaires and 
interviews, and additionally Whatsapp messages and observations of four teaching groups.
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Results of this study are at two levels: for students, in feeling free to make mistakes without 
fear, and for teachers, who gained in their professional technological knowledge.

The three studies by Thurm, Geraniou and Jankvist, Müller and Wachte, and Sharkia and
Kohen all adopted quantitative designs.

Finally, TWG15 discussed how well we paid attention to, and made explicit in our research,
our methods for sampling the participants of our studies. The prevalence for ‘opportunity 
sampling’ of pre- and in-service teachers, was acknowledged as a concern when set alongside 
claims for wider application or generalisation of research findings.

Sub-theme 3: Teachers’ different roles in diverse educational settings 
(Chair: Ornella Robutti)
There is a recent increase in research concerning the role of teachers within in educational 
settings and processes. From being recognized as a “dimension” in studies on mathematics 
teachers (Robutti et al., 2016), to becoming one of the four fundamental themes of ICMI Study 
25 Tools and resources used/designed for teacher collaboration and resulting from teacher 
collaboration (Robutti et al., in press). TWG15 interpreted teachers’ roles within the different
institutions as: prospective teachers (e.g., undergraduates in mathematics courses with a clear 
aim in preparing future teachers); pre-service teachers (e.g., participants of university-led 
teacher education program); in-service teachers (e.g., within their professional work context,
or in formal projects); teacher educators (e.g., participating in formal or informal teacher 
education settings). The papers presented below relate to teachers in the aforementioned roles,
focusing on the different types of involvement for teachers as participants in the research.

One role is teachers as designers of tasks using technology (Guerrero-Ortiz & Camacho-
Machín; Speer & Eichler; Fahlgren, Szabo, & Vinerean): teachers are protagonists and have an 
active role in the design of tasks. Another role for teachers is that which is presented by 
Lyublinskaya and Du. In their study mathematics pre-service teachers are learners of 
technologies to be used in teaching mathematics. Their learning trajectories are analysed using 
the TPACK frame within the institutional context of a non-discipline-specific online 
educational technology summer course. The findings show that the pre-service teachers grew 
in their discipline-specific TPACK, under the influence of personal and contextual factors. The 
study demonstrates an innovative use of TPACK, combined with digital timelining analysis, to 
describe teachers’ growth in professionalism as dynamic processes.  

Jacinto and Carreira show another kind of teachers’ involvement in the research: as problem 
solvers, with the use of technology. Contextualising the teacher’s approach to technology in 
the general lens of humans-with-media, the study questions the role of technology within the 
mathematics teachers’ problem-solving processes. The study reports the gain in the teacher’s 
competences according to the MPST model, facilitated through the different micro-cycles in 
the overall process. 

A community of inquiry comprising teachers as participants constitutes another kind of 
involvement: active participation is a distinctive feature of the community, intended not only 
in presence but also at distance. The ASYMPTOTE project (Barlovits et al.) is presented as an 
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evolution and adaptation of the MathCityMap system in the COVID-19 pandemic era. The 
particular setting of the technology, which uses the idea of decision trees, enables teachers to 
design differentiated tasks for students in a flexible way, directing students to different learning 
paths, according to their performances.

Sub-theme 4: Innovations in technology for teaching mathematics (Chair: 
Daniel Thurm)
Technologies in mathematics education are constantly evolving. “New” innovative 
technologies emerge and become over time more established technologies. For example, 
dynamic geometry systems, computer-algebra systems, or function plotters - technologies 
which were considered “new” in the 1990 – have by now a strong research base. However, 
even for those technologies there is still much to be understood with respect to teaching and 
learning which, is evidenced for example by the papers of Fahlgren, Vinerean, and Szabopaper 
(task design for dynamic geometry environments) or Jacinto and Carreira (problem solving 
using spreadsheets). At the same time some TWG15 papers focused on more emerging 
technologies, e.g., videogames (Vilchez & Lemmo), WhatsApp-messenger (Segal & Biton), 
videos in a flipped classroom setting (Sharkia & Kohen) and multitouch environments (Bakos). 

Vilchez and Lemmo presented research on a game-based approach, concluding that the selected 
videogame has potential to support the teacher to scaffold students’ relational thinking during 
whole-class discussions. In particular, the authors hypothesize that observing students play the 
videogame might implicitly help teachers to orchestrate classroom discussions.

Another emerging technology not so widely investigated from the perspective of the teacher is 
WhatsApp. Segal and Biton’s research focuses on opportunities for learning and teaching that 
can be created using WhatsApp as a social network. While teachers report positively on many 
aspects of using WhatsApp some teachers felt limited to generate collaboration between 
students, as they would in a regular class. From the researcher’s point of view, decentralized 
learning made it difficult for the teachers to capture the learning processes of the students. 

Sharkia and Kohen investigate how online videos in a flipped classroom setting can effectively 
utilize an Inquiry-Based Learning (IBL) approach. For this they analyze seven filmed lectures 
from an advanced mathematics course. The discussions during the TWG15 session suggested 
extending the investigation to include the students’ views and experiences, since IBL is 
fundamentally a student-centered practice.

Bakos focuses on teaching and learning with the app TouchTimes, which is a multi-touch iPad 
application. By using the notion of double instrumental genesis, Bakos examines how teachers 
experience TouchTimes as learners, alongside their subsequent transitions to adopting it as a 
didactical instrument. The paper highlights that the notion of instrumental distance can be a 
promising way to examine the impact of integrating emerging digital technology on 
mathematics teachers’ practices.

The TWG15 papers evidence how the constant emergence of technological innovations brings 
some recurring challenges for the educational research community. For example, new 
technologies might require new pedagogies, for which existing theories may neither be 

Proceedings of CERME12 2476



sufficient, nor sensitive enough, to detect new phenomena. Conversely, there is the challenge 
to relate research on emerging technologies to research on established technologies and the
“old” theories (Jankvist & Misfeldt, 2021). The TWG discussed how the research community 
can respond to the accelerated emergence of “new” technologies and in what way “new” 
technologies demand and/or inspire “new” pedagogies. It was suggested that looking back at 
the characteristics of technologies which remain constant might help to us to better connect our 
research to existing knowledge and practices. For example, focusing on dynamic mathematical 
representations could be a common theme across different technologies. Finally, it was 
highlighted that use of (and research on) digital technologies is often inherently linked to a
particular mathematical concept or topic. Hence, for researchers and teachers alike, the 
challenge to grapple with both the mathematics and the tool is very real, as clearly described 
in the paper authored by Bakos. 

Sub-theme 5: Pedagogical approaches and mathematical content (Chair: 
Gülay Bozkurt)
As indicated in the previous theme, technology use demands different pedagogical approaches, 
which are also likely to be affected by the aspects of mathematics that is being taught. Hence, 
in this theme, we focused on elaborating the foci of pedagogical approaches and mathematical 
content in our studies. The studies discussed in the TWG15 indicated a great variety in both 
their pedagogical framing and the particular aspect(s) of the mathematics curriculum such as: 
developing problem solving skills in algebra (Jacinto & Carreira); integrating computer science 
in mathematics education (Haspekian & Fluckiger); encouraging modelling activity in 
proportions and areas (Guerrero & Camacho); and improving distance education (Barlovits, 
Kolokytha, Ludwig &  Fesakis). Within the TWG15 discussions on this theme, we particularly 
focused on perspectives pointed out in the three papers by: Abu Raya and Olsher; Bretscher; 
and Simsek, Bretscher, Clark-Wilson and Hoyles.

The paper of Abu Raya and Olsher explores the potential of a technological environment 
(STEP) on formative assessment as a process of teachers’ pedagogical approach. They 
particularly examine the effect of accessible learning analytics on teachers' formative 
assessment practices, by providing them with means to respond to student submissions. The 
FaSMEd framework is adopted as an analytical lens through which to focus on teachers’ 
interactions with the STEP environment’s learning analytics. The researchers explore the 
impact of this on both class discussion, and the content for teaching functions. Findings indicate 
that teachers use all the technology’s functionalities, enabling them to advance learners’ 
understanding through a class discussion that deployed the five key strategies of formative 
assessment interactions.

Bretscher examines one teacher’s knowledge about a particular aspect of geometry, circle 
theorems, focusing on his transition between dynamic and static technologies through which 
he would support students’ related conceptual understanding. The researcher uses the TPACK 
framework to explore such knowledge with a particular focus on comparisons between angle 
definition and measurement within GeoGebra, and a paper-and-pencil environment. The 
author’s analysis of a clinical interview with the teacher, reveals an example of this teacher’s
dilemma on defining angles in GeoGebra indicating his technological content knowledge 
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(TCK). Bretscher concludes “mathematical knowledge for teaching using technology is always 
situated, since the technological context in which it is being applied is central to its meaning”. 

Simsek, Bretscher, Clark-Wilson and Hoyles apply Ruthven’s (2009) SFCP framework into 
teachers’ domain specific practices. They select the construct of curriculum script in their aim 
to characterize teachers' knowledge regarding key aspects of their practice. Focusing on three 
different teachers’ classroom practices and interview accounts in the context of English 
secondary schools, this study highlights differences in both the quantity of teachers’ anticipated 
or identified misconceptions about geometric similarity in their curriculum scripts, and the 
ways they use the dynamic mathematical technology in addressing such misconceptions.

Emerging “hot topics” relevant to the TWG15 community
During the final session, the TWG15 divided into self-identified breakout groups of early, mid 
and late career researchers/practitioners for the purpose of reflecting on the implications of the 
TWG15 session inputs (and associated discussions) for our field. Each group generated and 
discussed a long list of personal ‘hot topics’, prior to agreeing those that are summarized below.

Early career researchers want to get to know and deepen knowledge on theories that were
introduced within the different papers’ frameworks and the group discussions, e.g., on TPACK 
and (Double) Instrumental Genesis as major theories; or specific theories like FASMEd as 
possible components of theoretical frameworks. Also, this group is keen to learn more about
how these frameworks are operationalized within the respective research methodologies. The 
group also want to explore more the social, political and economic aspects of the use of 
technology within mathematics teaching, from both teachers’ and students’ perspectives (i.e. 
the availability of technology, the learning opportunities offered, etc.).

Mid-career researchers identified a methodological hot topic, which concerns the design of 
research instruments that capture mathematical and digital competences for teaching and/or the 
associated knowledge and beliefs/orientations. This seems important both for conceptualizing
what the competences are, and for supporting teachers’ professional learning. Associated with 
this, how to develop methods to help them understand whether such knowledge is associated 
with improved pupil outcomes? On a theoretical level, the selection of theoretical 
framework(s), how frameworks are put to use (operationalized) within studies and, in the case 
when multiple frameworks are used, how they are synthesized (e.g., examining the resulting 
data from different perspectives) is also an ongoing hot topic. Finally, the group acknowledged 
the need for research designs that include strong connection, communication and collaboration 
with pre-service and in-service teachers to enable both a deeper understanding of teacher 
characteristics and practices, and to be able to develop more impactful teacher education and 
development programmes/initiatives.

Late career researchers identified the hot topic of how best to identify and connect theories,
frameworks and methodologies. The group poses three questions, “What are the considerations 
that guide us as researchers in choosing a theoretical framework?”; “Are the existing theoretical 
frameworks suitable for the purpose of analyzing the research data?”; and “How to merge 
different theoretical frameworks for the analysis and characterization of findings, including 
mergers between theories on the integration of technologies in teaching and research and 
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theories from other fields?”. For example, Segal and Biton’s study, which explores teachers' 
perceptions of the contribution of teaching and learning in the WhatsApp environment, implies 
that theoretical frameworks from the field of social sciences might be profitable. A second hot 
topic concerns the need for methodologies that take account of the evolution of teachers’ 
practices over time, a perspective that demands a mixed (quantitative/qualitative) study design. 
Finally, the group was most concerned about the need for studies that conclude findings that 
can be applied directly to teachers practices and/or support the design of teacher 
education/preparation programmes. 
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Conducting a student-centered discussion in a mathematics classroom is not a trivial task. Teachers 
must follow their students’ work, then use the relevant information to conduct a meaningful 
discussion. This challenge is greater when digital environments are involved, or when students work 
remotely and submit their work only online. A possible solution to this challenge may come in the 
form of accessible learning analytics (LA) that can assist teachers to gain insight about their students’
work. In the presented case study, which is part of an extended research project we focus on the 
interaction of teachers with LA and the formative assessment practices of teachers when dealing with 
students' answers to example-eliciting tasks in a digital environment.

Keywords: Teacher dashboard, topic-specific learning analytics, online formative assessment 

Rationale and Background 
Conducting mathematics lessons based on students’ ideas and on analysis of their answers is a good 
example of meaningful student-centered teaching. Using this analysis, teachers are required to 
conduct class discussions that promote formative assessment (FA) interactions. We focus on
formative assessment, conceptualized as “all those activities that are undertaken by teachers, and/or 
by their students, which provide information to be used as feedback to modify the teaching and 
learning activities in which they are engaged” (Black &Wiliam, 1998, p.7-8).  In technology-enhanced 
learning settings, teachers are required to assess their students’ work in multi-participant classes and 
direct their teaching accordingly, often in real time. Studies show that teachers who integrate digital 
systems in their classes choose to do so based on their usual habits and views on teaching mathematics 
in general (Drijvers et al., 2010). At the same time, the technological learning environments can
provide an immediate picture of students' work for teachers. Each environment offers different 
learning analytics (LA) in the form of a single display that aggregates various indicators about 
learners, learning processes, and learning contexts into one or multiple visualizations (Schwendimann 
et al., 2016). In the meantime, it remains a challenge to provide a meaningful LA to teachers in real 
time. Numerous technological learning environments have been developed to provide teachers with 
an immediate snapshot of students' work for example, DESMOS and TI-Nspire (Clark -Wilson, 
2010). Another example is STEP, a formative assessment platform that uses example-eliciting tasks 
(EETs), with more than one correct answer, to support conceptual learning. Students are asked to
construct an example that meets or contradicts certain conditions, after which the environment 
analyzes the answers according to mathematical characteristics (Olsher, Yerushalmy, & Chazan, 
2016). STEP provides teachers with accessible statistical data and helps them shift from focusing 
mostly on errors to making decisions based on the analyzed data (Olsher & Abu Raya, 2019). 

In this study, we explore the effect of accessible LA on teachers' formative assessment practices, by 
providing them with means to respond to student submissions based on the LA. We explored 
the
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potential of a technological environment on teachers' formative assessment using the FaSMEd 
framework evolved to describe the use of technology in formative assessment. The three-dimensional 
FaSMEd framework extends Black and Wiliam’s (2009) model, which includes five FA processes: 
(a) clarifying and sharing learning intentions and criteria for success; (b) engineering effective
classroom discussions and other learning tasks that elicit evidence of student understanding; (c)
providing feedback that moves learners forward; (d) activating students as instructional resources for
one another; and (e) activating students as the owners of their own learning. The FaSMEd model
takes into account three main dimensions: the five key FA strategies, three main agents (teacher,
student, peers/group), and functionalities by which technology can support the three agents in
developing the FA strategies. The three categories of the functionalities of technology are: sending
and displaying (SD) when technology is used to support communication among the agents of FA
processes, processing and analyzing (PA) includes all the functionalities that support the processing
and the analysis of the data collected during the lessons, and providing an interactive environment
(PIE) are functionalities of technology that enable to create a shared interactive learning environment
where mathematical/scientific contents could be explored (Aldon, Cusi, Morselli, Panero, & Sabena,
2017).  Aldon and Panero (2021) use the FaSMEd framework to demonstrate that different FA
practices of the different participants (teacher, students) are not necessarily similar during different
parts of a learning activity, and for different ages levels. In this study we hypothesize that teachers'
practice is affected by the type and design of data that LA offers teachers, which means that the
functionalities of each report affects teachers` formative assessment practices.

Methodology 
This study examines teachers’ interactions with LA as well as its effect on class discussion and on
changes in the contents of teaching the topic of functions using STEP. The lessons were conducted 
in Israeli middle schools (grades 8 and 9) during the 2020-21 school year. The research question is: 
What formative assessment processes do teachers use when they interact with LA when evaluating 
student answers to EETs in a digital environment?

Sample 

Three 8th and 9th grade teachers, experienced in teaching using the technological platform,
participated in the study. The teachers had attended a professional development program and used 
the platform in their classes, which made them appropriate candidates for the study.

Research tools 

The research tools included STEP reports and video records of the teachers using the reports.
Teachers used STEP in their classrooms as part of their routine teaching sequence and conducted a 
discussion after the students completed the activity based on the STEP reports. The lessons were 
video-recorded, and the teachers were interviewed to clarify various decisions and actions that were 
noted during the lesson. The STEP teacher dashboard produces six types of reports : tables, grids,
histograms, Venn diagrams, perceptual landscapes, and bubble reports (Abu Raya & Olsher, 2021).
Each interactive report was designed to address specific pedagogical needs. Mathematics teachers 
were introduced to the design principles of STEP and its usage ideas in professional development 
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programs. In this report we focus on four of the reports: table, grid, histogram, and Venn diagram,
and present separately the goals and mechanisms of each report.
The grid report presents a snapshot of student submissions in a collage (Figure 1) that resembles those 
of other platforms (e.g., TI-Nspire). This report makes available to the teacher the work of the students 
in the classroom, allowing the teacher to filter student work based on predefined characteristics. The 
filtering mechanism is similar to that of e-commerce websites. For example, users looking for a small 
black purse can check each one of the characteristics for the relevant meta-data category (size, color). 
The grid report allows teachers to choose one or several characteristics as either present or absent and 
to create “and” and “or” relations between them (Figure 1), making possible in-depth analysis of 
submissions based on their characterization. The interactive report also enables teachers to choose a 
picture by clicking on it and to display the interactive diagram that the student submitted. Filtering 
helps the teachers detect various phenomena in the students’ work, as opposed to merely scanning 
the snapshots to identify characteristics relevant for the ensuing classroom discussion.

1. presents a snapshot of
student submissions in a 
collage 

2. allows teachers to filter
student work based on 
predefined characteristics.

3. allows teachers to
choose one or several 
characteristics as either 
present or absent. 

4. enables teachers to
choose a picture by 
clicking on it and to display 
the interactive diagram that 
the student submitted.

Figure 1: Grid report with filtering activated, name display button (I), and/or buttons, (II). 

The table report displays a row for each student, and a column for each characteristic, indicating 
which characteristics are present in each student submission. Presentation is similar to that of 
conventional spreadsheets. The goal of the report is to provide information about submissions of 
student in class, especially about characteristics that are prominent in each submission. 
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The histogram report presents a distribution of the characteristics across submissions. Each 
characteristic is represented as a bar whose height corresponds to the number of submissions having 
that characteristic (Figure 2a). The report provides a visual representation of the frequency of each 
characteristic of a task in students’ submissions. Clicking a column brings up a filtered grid report 
below the histogram, allowing the teacher to further analyze student work directly.

The Venn diagram shows the relations between characteristics in the students’ submissions (Figure 
2b). It displays up to three characteristics simultaneously, each color representing a different
characteristic. The Venn diagrams show the distribution of more complex phenomena in student 
submissions, which could not be captured by a single characteristic but only in the relations between 
several. The diagram provides an indication whether certain characteristics coexist. It also displays 
numeric values that enable determining the phenomena that are more prominent in students’ work. 
Similarly to the histogram report, clicking on a part of the diagram displays a filtered grid report 
according to the selected region, for example, the intersection of three characteristics.

Figure 2: Histogram report (a) and Venn diagram (b)

Data sources and analysis 

Data sources include student submissions for the tasks, interviews with each of the teachers,
conducted after the class discussion that followed the students' submissions, and classroom 
observations. Each teacher assigned five tasks in five separate lessons. We used the FaSMEd 
analytical framework to describe the findings. 

Findings 
The findings show how teachers conducted formative assessment in their teaching using the data they 
obtained from the different reports. Below we describe the teachers’ use of each report, focusing on 
the different report functionalities, indicating the role of these affordances in describing the FA 
properties that teachers focused on in the ensuing discussions.
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Grid report

The use case for this report concerns a task asking students to find a linear function equation from 
two given points, which was assigned in the course of an 8th grade mathematics lesson. The students
were asked to “Construct a linear function whose graph passes through the two given points. If you 
believe this cannot be done, explain why.” The interactive diagram that was provided included 
multiple linked representations of the function, and the students could choose the different points by 
pressing a “New points” button that generated semi-randomized pairs of points (Bagdadi, 2019).

Figure 3: Filtered grid report presented during classroom discussion 

The teacher chose to address the characteristic “Two points with same Y value," based on the analysis 
(PA) provided by the platform. The teacher clarified and shared learning intentions and criteria for 
success. She indicated that "this characteristic describes a constant function and helps students solve 
this type of a task efficiently, saving them time" (Asala, questionnaire). Analysis of the classwork 
reveals that the teacher presented examples of student submissions with this characteristic (Figure 3). 
In the process, the teacher used an interactive component of the report (PIE) to choose a filter based 
on the automatic analysis and displayed students’ work (SD). Next, the teacher decided to give
students tasks for discussion to elicit evidence of their understanding, organizing an effective 
classroom discussion based on the data she collected from the report. Lesson observations reveal that 
she asked students questions like “What did these students do?” “What type of function do you get 
in this situation?” “Do you think it [constant function] is easier [than a function with a slope]?”

“How would you find the equation?” The teacher also addressed student submissions in which the 
two points coincide, which enabled students to submit non-constant functions. Generally, it was 
apparent that the teacher activated students as instructional resources for one another and as the
owners of their own learning.  The teacher indicated that this choice of points helped students 
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understand that an equation can be written without calculating the slope and plugging in the X and Y 
values of the points. The teacher used the different functionalities of the report to provide feedback 
that takes learners forward. In general, the grid report offered the three functionalities of technology 
that enabled teachers to relate to all the five FA strategies (Figure 4a).

Table report 

The use case for this report concerns a task asking students to find several linear functions that 
intersect a given point and also intersect the positive part of the Y axis. The task was part of an 8th
grade mathematics lesson. The students were asked to “choose a point and construct several 
expressions of linear functions whose graph passes through the given point and intersects the positive 
part of the y-axis.” Based on the report (PA), the teacher found that none of the students paid any 
attention to the table of values provided in this task (“numeric representation” characteristic in the 
table). She later said: “I chose to pay attention to this characteristic because none of the students used 
the table. In addition, it was important for me to emphasize that the table helps illustrate 
characteristics of the function” (Asala, questionnaire). Observation of the lesson revealed that the
teacher used the report to clarify and share student learning intentions and to orchestrate the 
discussion. The teacher continued to provide feedback that takes learners forward by showing the
students how the table of values could assist them in verifying their solutions by displaying an 
additional report, the grid report (SD). This report is limited to two functions of the technology, 
sending and displaying and processing and analyzing (Figure 4b). Although teachers can use the 
analysis provided by this report to activate the students, our current findings do not indicate that they 
did so.  

Histogram report and Venn diagram 

The use case for these reports concerns a task involving quadratic functions, specifically, identifying 
the extremum and calculating the distance between two extrema of two different quadratic functions. 
The task was formulated as follows: “Functions f(x), g(x) are from the family y=a(x-p)^2+k. Claim: 
there is only one situation for the functions f(x) and g(x) in which the distance between the extremum 
points of each function is 5 units. If you think this claim is true, provide the algebraic expression of 
each function. If not, use the interactive diagram to create five examples of different functions.” The 
teacher used the histogram to clarify learning intentions and criteria for success: “I presented the 
grid for each characteristic separately and we discussed the effect of the parameters for each 
characteristic” (Ranya, interview). She noticed that most of the students gave correct answers, and 
that most of the students provided a distance that was not a vertical one, something she did not expect 
(PA). Following this insight, she presented (SD) the filtered grid report for the characteristic “vertical 
distance” and conducted a discussion around it. Next, she used the filtered grid report of a distance 
that has a slope (i.e., not vertical/horizontal) to share the students’ work (PIE) (Figure 2a). 

The Venn diagram was used for the same task. Indeed, it was the histogram report that encouraged 
the teacher to use another representation of the data from her classroom. In the histogram report, the 
teacher noticed that most of the student submissions were correct, and that most of the submissions 
had distance with a slope (PA): “The histogram showed that most of the students gave examples 
with 
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a slope, which was strange for me since they didn’t study the distance formula yet. So I turned to the 
Venn diagram to see the intersection between the characteristics” (Ranya, interview). On the Venn 
diagram (PA), the teacher checked the interrelations between the two characteristics (PIE) (Figure
2b) and noticed that only 4 out of 11 submissions were both correct and with a slope. She said: “I
chose to look into this characteristic. Even though there were many submissions with a slope, they
were not correct, since they calculated the distance only according to the X values” (Ranya, 
interview). One student used the Pythagorean theorem and calculated the distance based on the length 
of the hypotenuse. Following this insight, the teacher asked this student to reveal her solution (SD)
and used it to explain to the other students why it was not correct to calculate the distance the way 
they did, activating students as instructional resources for one another and as the owners of their 
own learning. Based on the analysis and on the interactive reports, the teacher gathered valuable
information about the students’ learning that assisted her to manage an interesting discussion about 
a rare correct solution of one of the students. In the course of this discussion, she provided feedback 
to the whole class about the common mistake. In general, these two reports offer the three 
functionalities: sending and displaying (SD), processing and analyzing (PA), and providing an 
interactive environment (PIE), of the technology to teachers. By using these functionalities, the 
teachers can apply the five strategies of the FA (Figure 4c). By clicking on any characteristics in these
reports, the platform provides additional information about the student's works, which helps the
teacher give effective feedback and serves as a powerful resource for activating the students.

Summary and discussion

Figure 4: Grid report and Venn diagram interactions (a) and table report interactions (b) 

In this report, we used the FasMed framework to describe the FA practices of teachers interacting 
with LA based on students' answers to EETs in a digital environment. LA were accessible by means 
of different interactive reports. The use cases presented show that in using the reports, teachers 
resorted to different strategies, ranging from locating work with specific characteristics to discovering 
meaningful complicated logical conjunctions of characteristics. In the grid report, students’ work is 
accessible in a single report, and teachers could filter student work according to pre-designed 
characteristics. Teachers used all the functionalities of the technology, which enabled them to
advance learners in the course of a class discussion that deployed the five key strategies of FA 
interactions (Figure 4a). By contrast, the table report provided only the functionalities of sending and  
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displaying, and of processing and analyzing. Teachers used these functions to clarify, guide the 
discussion, and provide feedback. (Figure 4b). The histogram and Venn reports offer correlations 
between the different characteristics, and grids of students answers for the correlation they chose. In
these reports, findings show that teachers used all three technological functionalities for effective FA 
that also included all five strategies (Figure 4a). The examples show how the design principles of 
each report served teachers in different ways and demonstrate the role of interactive environment in 
the teacher’s FA. At the same time, other facets of the interaction and of FA characteristics remain to
be further investigated. By enabling the teacher to display the students work (SD), then to click on 
one of the columns in the histogram report (PIE) then get the filtered grid  (PA), STEP demonstrates 
a wide range of opportunities to use technology in teacher’s formative assessment practices.
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Primary teachers implementing TouchTimes 
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After integrating TouchTimes (hereafter, TT) into their teaching practice, four primary school 
teachers (K–5) in British Columbia, Canada share their experiences, both as learners of this 
relatively new technology, and as teachers utilising TT as a tool to guide and support student 
learning. Using the notion of double instrumental genesis, I examine how these teachers experienced 
this digital technology from 2018–2021, both as learners themselves, as well as their subsequent 
transitions to thinking about and adopting it as a didactical instrument for teaching mathematics. 
The aim of this research was to identify and highlight specific ways in which these teachers adopted 
technology-enhanced mathematical learning, managed obstacles they experienced during personal 
instrumental genesis and how instrumental distance affected their professional instrumental genesis. 

Keywords: Touchscreen technology, TouchTimes, instrumental distance, double instrumental 
genesis. 

There are a wide variety of resource options available for the teaching and  learning of primary school 
mathematics. Physical (hands-on) objects have been used to support the development of mathematical 
understanding for many years and, with the emergence of touchscreen devices which are better suited 
to the as-yet developing fine motor skills of younger students, digital technology is becoming a more 
viable resource to primary school classrooms (e.g. Sinclair & Baccaglini-Frank, 2015). Integrating 
technology into their teaching repertoire and becoming adept at leveraging the opportunities that 
technology can offer for teaching and learning remains challenging for many teachers (Trigueros et 
al., 2014), and this is also the case when implementing TT in primary school classrooms (Sinclair et 
al., 2020). The notions of instrumental distance and double instrumental genesis (Haspekian, 2014) 
are useful for examining the impact of integrating digital technology on mathematics teachers’ 
practice.  

TouchTimes (Jackiw & Sinclair, 2019), a multi-touch iPad application, enables primary school 
children to experience relational and functional aspects of multiplication through engagement with 
two different microworlds, Grasplify and Zaplify. While using their fingertips to create and transform 
pictorial representations of multiplicative situations on an iPad screen, the children receive immediate 
visual, tactile and symbolic feedback from TT in response to their actions.1 

The design of TT focuses on the two quantifying dimensions that comprise the multiplicative 
relationship; the first being the unit of measurement (the multiplicand), and the second involving the 
quantity of that unit (the multiplier). Multiplication from this perspective involves “a count of a 
[larger] unit for which a relationship to another, smaller unit, is already established” (Davydov, 1992, 
p. 12). The design of Grasplify is influenced by Davidov’s (1992) double change-in-unit approach to
multiplication that is grounded in measurement. The first unitising occurs when the multiplicand is
established (in Grasplify, this is the creation of the pips) and the second occurs when determining the
number of units to be used (the number of pods). Rather than repeated addition, both Grasplify and

1 For further information on TouchTimes, view this short video demonstration. https://youtu.be/JkznPdu8RkA 
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Zaplify focus on doubling, tripling, etc., a design choice influenced by the relational and functional 
aspects of Vergnaud’s (1983) work on the conceptual field of multiplication.  

Theoretical framing  
The instrumental approach extends Vérillon and Rabardel’s (1995) theory of instrumentation of 
human tool-use into the domain of mathematics education, utilising its focus on instrumental genesis 
for analysis of technology-mediated teaching/learning (Artigue, 2002). There is a two-way process 
during instrumental genesis, in which a physical object or tool, defined as an artefact, influences the 
user (instrumentation) whilst the user adjusts to the tool (instrumentalisation). It is during this process 
that the artefact develops into a functional instrument for the user. This progression is even more 
complex in the case of teachers, who must engage in what Haspekian (2014) terms double 
instrumental genesis when adopting unfamiliar technology for teaching. Initially, a personal 
instrumental genesis occurs when teachers first engage with an artefact as learners themselves. As 
the artefact becomes an instrument for mathematics, teachers then engage in a professional 
instrumental genesis as they appropriate and construct the technology into a didactical instrument for 
use with students. Haspekian declares, “The teacher’s professional genesis with the tool is much more 
complicated as it includes the pupils’ instrumental genesis” (p. 254).  

In examining the sustained integration of technology into mathematics teaching, Haspekian also 
refers to the notion of instrumental distance between the digital technology and the mathematics. 
This relates to the gap between ‘current school habits’ and the didactical experiences offered by the 
technology, and can include the computer transposition (how the computer mediates the mathematical 
concepts in question, as per Balacheff, 1996), institutional, didactical or epistemological changes that 
occur when a tool is introduced into mathematics teaching. The gap must be large enough to make 
the benefits of adopting the technology apparent, but not so large as to discourage teachers from its 
integration.  

Given that TT was developed specifically for mathematics teaching, and that none of the teachers had 
any prior experience using it, double instrumental genesis provides a way to examine how these 
teachers experienced this digital technology as learners themselves, as well as their subsequent 
transition to thinking about it as a didactical tool for teaching mathematics and the effects of 
instrumental distance during the process of integrating TT. The research questions specifically relate 
to these ideas. (1) During their personal instrumental genesis of TT, were there specific problems or 
obstacles related to either the technology or the mathematics it represents, encountered by the primary 
school teachers interviewed? (2) How did the instrumental distance between prior ways of teaching 
multiplication and using TT affect the evolution of these teachers’ professional instrumental genesis 
of TT? In order to respond to these questions, I draw on data gathered during interviews with these 
four teachers about their experiences implementing TT as a teaching tool in primary classrooms.  

Method  
Three of the teachers are primary school generalists, and one is a former secondary mathematics 
teacher, who is now a mentor teacher that works with K–12 teachers in her school district to improve 
mathematics teaching. Their teaching experience ranged from 9–24 years, each had a master’s degree, 
and all were working in grade 3 or 3–4 classrooms in British Columbia, Canada when utilising TT. 
Each teacher had volunteered to provide feedback for a larger, multi-phase project, in which the 
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author is part of, involving the implementation of TT in primary school classrooms, and to contribute 
to the development of tasks and assessments to be used with it. 

The teachers were initially introduced to TT during the first meeting of this larger project, which was 
videorecorded. With the exception of Leah’s first reaction to TT (which is used as a comparison to 
her later thoughts about TT that emerged during the interviews), the data in this paper has been taken 
from 60–80–minute semi-structured interviews with each of the teachers individually (one for each 
teacher), which were conducted via Zoom in June through August of 2021. Having observed that 
teacher responses in the larger research group meetings would often build from the ideas shared with 
each other, it was hoped that this may also occur by interviewing pairs of teachers together. Therefore, 
two additional interviews were conducted where the four teachers were interviewed in pairs (one 
interview for each pair). In each interview, the teachers were asked about their initial experiences 
with TT as learners, their thoughts about how TT presents multiplication, how they used it as an 
instructional tool and their observations related either to TT or to its mathematical representations, as 
well as what they noticed about student learning during the implementation of this digital technology. 
Each interview was transcribed in its entirety and the resulting transcripts were then analysed for 
common themes that emerged based on the experiences shared by the four teachers. 

Data analysis and results  
With my research questions in mind, the data was analysed with two specific aims. The first was to 
identify instances of obstacles or challenges related to the personal instrumental genesis of TT shared 
by each teacher, while the second was to look for specific examples of instrumental distance that 
influenced the evolution of each teacher’s professional instrumental genesis. I first categorised the 
experiences of instrumental genesis of TT as either personal or professional, while noting any 
obstacles or challenges shared prior to examining the examples of the latter more closely to determine 
if instrumental distance was apparent and, if so, whether the resulting gap was related to computer 
transposition, institutional, didactical or epistemological changes. I wanted to understand better the 
challenges these teachers experienced with TT as learners themselves, as well as what factors 
influenced the integration and use of TT into each teacher’s mathematical teaching practice. I will 
now discuss five specific challenges in the teachers’ double instrumental genesis. 

(a) Leah: “Grasplify is backwards”. A member of the research group, Leah’s initial encounter with 
TT occurred during our first teacher–researcher team meeting. While using the app, she noticed the 
multiplicand × multiplier = product ordering displayed by TT and stated to the group that this was 
“backwards”. Leah shared how she would refer to the textbook to guide her teaching. The textbooks 
that she referred to all showed 4 × 3 as four groups-of three, and were always in the multiplier × 
multiplicand = product ordering. Grasplify however, displays the equation in the opposite order, 
where 4 × 3 is four, three times (see Figure 1). 

     
 Figure 1: (a) Pips and pods; (b) Grasplify display of 4 × 3 = 12 
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Leah’s reaction to this ordering occurred during her first exposure to Grasplify, and was immediate. 
Though she was still learning how TT functions, and in the very first stage of personal instrumental 
genesis, this obstacle intertwined with her professional instrumental genesis and how she could use 
Grasplify with her students. The instrumental distance between the computer transposition and the 
epistemological aspect of Leah’s personal representation of multiplication and how she taught it was 
significant from her first use of the Grasplify world and continued to be problematic for her.  

When I interviewed her three years later, Leah mentioned again how she “couldn’t get past the 
groups-of thing and it was so huge for me”, but explained that, “if I really believe in […] how this 
[app] works and what multiplicative thinking means, it doesn’t matter what happens next. It’s what 
happens in their [her third grade students’] thinking.” She went on to say, “I was so stuck on this 
groups-of thing and then I started thinking about, well, what does multiplication mean? So, it really 
changed my thinking about what it [multiplication] means.” It was through discussion in the TT 
teacher–researcher group, and during Leah’s use of Grasplify in her classroom, that the instrumental 
distance began to narrow. She explained that the commutative property makes the order of the factors 
irrelevant, so the product will be the same. Observing her own students using TT was what was most 
convincing for Leah, who noted that students, “didn’t know any different, and so they were 
understanding it [the ordering] the way it was, and it didn’t matter”. The most significant growth in 
Leah’s personal instrumental genesis occurred as a result of her professional instrumental genesis, 
rather than preceding it, as often occurs when implementing new digital technology in the classroom.  

Another challenge that Leah described involved the impermanence of the pips and pods on the iPad 
screen. When first using Grasplify with her students, she was projecting it onto the wall for all to see. 
At that point, she only had access to one iPad with TT on it, and was engaging in teacher-led 
prediction tasks. For example, she would create pips and pods on the screen and asked the students 
to predict how she would double the product by only changing the pips (see Figure 2). Leah shared 
her frustration when, each time she removed her pip-making fingers, it would reset the screen. This 
left her ‘stuck’ at the front of the classroom and unable to view the predictions students were making 
on their mini-whiteboards. However, once multiple iPads were available for student use, she noted 
how the impermanent nature of the pips and pods forced her students to think more carefully about 
what they were doing, adding an element of concentration and a bit of planning that resulted in a 
more “metacognitive aspect to it. It’s not just playing […], it’s thoughtful play”. This aspect of the 
technology and how it affected Leah’s ability to use it and monitor student progress, created an 
obstacle for her professional instrumental genesis. It was not until she observed how this lack of 
permanence affected student engagement with the tasks, that the instrumental distance grew smaller.  

     
 Figure 2: Doubling task progression 

(b) Rachel: It was not intuitive. When first using TT, Rachel did not find the app to be intuitive. She 
described it as hard to use and admitted to having difficulty thinking of ways to use it with her 
students. As was observed with Leah, Rachel’s personal and professional instrumental geneses were 
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closely intertwined and the instrumental distance was initially large, making TT difficult for her to 
adopt and implement without assistance. It was through the shared experiences of other teachers 
within the teacher–researcher group, the teacher discussion about what they had difficulties with or 
found valuable when using TT with their students, as well as the provision of task ideas to be used 
with students, that helped Rachel overcome these initial obstacles and begin using Grasplify in her 
classroom. She explained that she needed teacher tasks that were already developed to support her 
initial implementation of TT and also suggested the creation of short videos to help other teachers 
better understand the app and the tasks that can be used with it. Rachel described the benefits of being 
part of a cohort of teachers who were talking more deeply about multiplicative thinking, their 
experiences teaching with TT and its accompanying tasks and how this influenced her thinking about 
the properties of multiplication and being more purposeful about this in her own teaching. The 
instrumental distance narrowed over time, and although TT was not initially intuitive to use as a 
teaching tool, its use began to change the way she thought about and taught multiplication.  

(c) Amy & Rachel: Using Grasplify in the “opposite way”. As these two teachers continued to use 
Grasplify with their students over the course of two school years, the ways they described using it 
were becoming more personalised, reflecting on-going professional instrumental genesis. When 
discussing Grasplify as a teaching tool, the differences between traditional methods of teaching 
multiplication and those afforded by TT were described as beneficial by both teachers. When 
interviewed together, the pair would often elaborate on and extend each other’s ideas. They explicitly 
stated that TT is not the only model that they use with students when teaching multiplication, that it 
is simply one model. Going further, both described teaching multiplication using other models in 
comparison with how they used TT. Amy commonly begins by writing a multiplication equation on 
the board for all to see. After writing 3 × 2, for example, she would then proceed to use manipulatives 
or drawings to create three groups-of two, or the applicable array or area model or a number line 
drawing for skip counting. She was starting from the symbolic mathematics and then working to 
create either physical or visual representations that explained what the symbolic mathematics meant. 
Whereas when using Grasplify, Rachel described using it in the “opposite way”. When asking her 
students to skip count to twenty, she was, “not necessarily looking to show a model for that equation, 
[…] the equation is there, but you’re trying to get at concepts that might be harder to get by just 
drawing something”2.  

Amy pointed out that Grasplify provided a visual representation of multiplication for students that is 
difficult to demonstrate using physical manipulatives or drawings and that, because Grasplify is 
constantly changing and moving, it encourages more open-ended thinking and discussion. For her, 
“the emphasis is on the exploration because the answer is already provided by TT and therefore that 
isn’t where the focus is”. She used other models when she wanted the focus to be on the answer. 
Rachel agreed and reiterated that she wanted her students to notice what happens when they add or 
remove fingers, how that relates to what is happening within the pods and then how this influences 
the numbers within the equation and the product itself. She was trying to enhance her students 
understanding of multiplication in a different way, through the growth of pips spreading across the 
pods. Rachel used these types of tactile experiences with immediate visual feedback, to “enhance 

 
2 For a more detailed description of Leah and Rachel’s classroom implementation of Grasplify, see Bakos (in press). 
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students’ comprehension of multiplication in ways that are different, you know harder to get at 
through pencil and paper or even manipulatives”. 

Teaching with TT begins with students exploring the app, noticing the effects of their fingers on the 
pips and pods, then later, using intentional questioning, she directs student attention towards the 
mathematical symbols that are also visible on the screen. Student experience with the multiplicative 
models takes place first and then she builds her teaching on connecting such experience with symbolic 
mathematics. The more operational approach of starting with an equation and explaining it through a 
multiplicative model and using Grasplify to provide dynamic and relational experiences with 
multiplication was a complete inversion of their approach to teaching multiplication and yet this was 
what Amy and Leah both welcomed about the digital technology. It was not seen to be detrimental: 
rather it was considered advantageous for student learning.

(d) Kate: Transitioning across multiplicative models. Of the four teachers I interviewed, Kate was the 
only one who had utilised both of the TT microworlds with her students. The use of the two different 
multiplicative models represented by Grasplify and Zaplify allows for examining what I term intra-
instrumental distance, in that there are two related tools and a possible distance between them. 

Kate was very purposeful in taking advantage of this intra-instrumental distance, wanting students 
to learn what multiplication is and for them to understand the different representations and how to go 
between them, while also recognising “that multiplication is the common theme” in the different 
multiplicative models embodied through Grasplify and Zaplify. She engaged students in activities 
that explicitly directed attention towards comparing and contrasting both worlds. For example, after 
sharing screenshots of the same multiplication sentence represented by Grasplify and Zaplify (see 
Figure 3), students were asked to describe how these were the same and how they were different. 
Kate would sometimes provide screenshots of a multiplication equation in one microworld and ask 
students to draw what that equation would look like in the other. Kate’s goals were for students, “to 
make connections between the two different worlds, make connections between the symbols, the 
equations, the representations, because at the end of the day, I wanted them to know how to multiply 
and what multiplication was, so it kept coming back to that one idea”. Kate’s professional 
instrumental genesis involved her prioritisation of the symbolic mathematics and the instrumental 
distance between TT and her epistemological beliefs of what was important for students to learn 
mathematically, she very intentionally kept narrow. The learning activities that she designed for 
students prioritised the symbolic and representational models of multiplication and how TT could be 
used as a vehicle to drive students towards those goals. 

  
Figure 3: (a) Grasplify multiplicative model; (b) Zaplify multiplicative model

After engaging the children with various TT tasks for a few weeks, Kate described how she projected 
some examples of different representations of multiplication onto the board and found it “really 
powerful” when the students could easily identify Zaplify or Grasplify in the models, even though 
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the models projected were taken from another teacher resource. “Switching back and forth between 
the models connected to the different representations. So, when they see an array model, they’re 
connecting it to Zaplify or when they’re seeing the groups-of, they’re seeing it as pips and pods.” For 
Kate, this would be useful when transitioning into what she referred to as “the more formal symbolic 
type of math” that most teachers teach. She explained that this is beneficial to students because when 
they move on to another teacher, they can carry their TT experiences into other contexts and that 
multiplication would still make sense.  

(e) Amy, Leah & Rachel: How Grasplify shaped their teaching. Both Amy and Rachel would 
sometimes have students create drawings to depict what they had learned after completing a task 
using Grasplify. Amy used these drawings as a formative assessment tool to “see what they noticed. 
Like did they notice the colours? What were they able to pick up on? What did they attend to?” Of 
importance to Rachel was determining what her students were seeing and what they understood from 
TT, so that she could use this information to plan what experiences she needed to provide during the 
next class. Her goal was not on students transferring this knowledge to an equation: rather, her goal 
was to know more about what her students, both individually and collectively, understood from that 
day’s task and to try to glimpse what it was that they were seeing.  

As her students used Grasplify to “play with” and learn about multiplication, Leah would watch what 
they were doing. She explained how, even if students were not always going in the direction she had 
hoped for, that she was better able to understand where they were coming from and that she could 
redirect with a different question to get them thinking about the relevant mathematical concept that 
was emerging from their explorations. Leah found that, “TT allowed me to actually see how kids 
were thinking about multiplication”, in comparison with her traditional teaching where she would 
show students what to do and expected them to mimic this.  

Discussion and conclusion  
Throughout the process of double instrumental genesis, all four teachers became increasingly 
responsive to the teaching opportunities that emerged from student experiences with TT. For Leah in 
particular, the reaction of her students to Grasplify significantly influenced how the instrumental gap 
continued to narrow. The mathematics learning that her students were engaged in influenced her 
comfort with using digital technology with which she was initially very uncomfortable. She explicitly 
shared that, “one thing that affected me is the conversations I had with the kids as a teacher”. 

For Rachel, she was not focused on memorising facts or writing equations, and therefore TT meets 
her where she is concerned, which is about providing new meanings for multiplication. The use of 
Grasplify allowed her to provide learning experiences with visual representations of multiplication 
that were dynamic and with which students could interact in a relational way. The limits of static 
drawings and the difficulty for children to build multiplicative situations out of physical 
manipulatives without error was very visible for Rachel.  

The process of double instrumental genesis was not straightforward for these teachers during their 
integration of TT. Although there was an initial experience of learning to use the digital technology 
personally, for these teachers, it was difficult to differentiate between their personal and professional 
instrumental geneses. Their reactions to TT and the manner in which it presents multiplication were 
clearly related to how they would use it as teachers to promote student learning. The instrumental gap 
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narrowed significantly as these teachers used TT with their students. When Leah’s students were not 
having difficulty with the multiplicand × multiplier ordering, she began to re-evaluate her own 
thinking. When Kate’s students were able to identify the multiplicative models experienced in TT to 
static drawings of multiplicative models, the intra-instrumental distance narrowed for her.  

Although obstacles were encountered by these teachers during their personal instrumental genesis of 
TT, the instrumental distance between previously used ways of teaching multiplication and the 
relational experiences with multiplication offered by TT were either embraced as positive differences 
or narrowed as the teachers’ professional instrumental genesis of TT advanced. 
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Distance teaching and learning due to the Covid-19 pandemic was perceived as a major challenge 
by both, teachers and students. With new ways of instruction emerging in a matter of days, the 
resulting instruction formats – summarized in the term Emergency Remote Teaching (ERT) - could 
not fully meet the needs of online teaching and learning in Spring 2020. With a particular focus on 
the reported problems of mathematics distance education during the Covid-19 pandemic, this paper 
firstly aims at providing a theoretical framework for the development of mobile environments for 
distance math class. In doing so, we refer to the Community of Inquiry (CoI) model and e-pedagogy 
to deduce design requirements for online learning environments. Secondly, the ASYMPTOTE system 
is introduced. Based on the theoretical considerations and the discussed Covid-19 experiences, 
necessary further developments and requirements for the project are identified.  

Keywords: Covid-19, design requirements, distance education, mobile learning, online systems.  

In the following, a theoretical framework for mobile learning environments aiming at mathematics 
distance education is provided. Hereby, we refer to the Community of Inquiry, online learning and 
practices of online instruction as well as mobile learning. The theoretical framework is used to 
evaluate the present status of the ASYMPTOTE system and to identify needed further developments. 

Theoretical Framework 
Community of Inquiry 

A well-known approach for the design of digital educational environments is the Community of 
Inquiry model (CoI), which is based on Dewey’s (1897) assumptions made on the value of social 
interaction and collaboration to the learning process. The constructivist model describes learning in 
online communities – composed of teacher and students – by the interplay of three core elements: 
cognitive presence, social presence and teaching presence (Garrison et al., 2000). 

Cognitive presence in online environments is considered as a holistic multi-phased process initiated 
by a triggering event. According to the practical inquiry model, it is followed by an individual 
exploration which result in a reflection process – and thus in the creation of new concepts. Afterwards, 
the skills and knowledge acquired are practiced in real situations (ibid.). Thus, cognitive presence is 
defined “as the exploration, construction, resolution and confirmation of understanding through 
collaboration and reflection in a community of inquiry” (Garrison, 2007, p. 65). 

Social presence describes the ability to position oneself in the online environment as real person 
(Garrison et al., 2000) and to collaborate in the digital world by establishing personal and purposeful 
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relationships (Garrison, 2007). The main aspects of social presence are the expression of emotions, 
the open communication and group cohesion in the online format (Garrison et al., 2000). 

Teaching presence – mainly referred to the instructor’s role – includes firstly the design of educational 
experiences, i.e. organization of the course as well as design of learning activities and assessment 
formats. Secondly, teacher presence involves a facilitation function during the lesson (ibid.). Thirdly, 
direct instruction is considered to be a part of the teaching presence (Garrison, 2007). All three 
functions of teacher presence focus on the goal “to support and enhance social and cognitive presence 
for the purpose of realizing educational outcomes” (Garrison et al., 2000, p. 90). 

Viewing educational experiences as the result of successful interplay between all three elements, CoI 
assumes that knowledge construction in online settings depends on the ability of instructors and 
learners to create forms of perceived presence despite spatial separation (Shea & Bidjerano, 2009). 

Online Learning 

According to Allen and Seaman (2013), online learning can be defined as a course that is mostly or 
entirely delivered online, so that typically no face-to-face meetings are conducted. From an e-
pedagogical perspective, three different instructor roles can be taken in online environments: 
Teachers can firstly act as excessively active leaders of students’ learning progress or secondly be in 
a reactive position as facilitators which only respond to students’ questions. Thirdly, and preferably, 
they take the position of a reasonably active mediator, i.e., instructors engage and interact without 
directly guiding students' learning progress (Serdyukov, 2015).  

Even though online learning is from its origin an independent and self-determined process, the need 
of critical support for the online learner is highlighted in e-pedagogy. To address the demand of social 
interaction, four forms of organization can be identified: interaction can be enabled by both, text-
based and video-based communication, either in synchronous or in an asynchronous setting (ibid.). 

Principles for Online Instruction 

The value of social interaction for online teaching is also highlighted by Sorensen and Baylen (2009) 
who adapted the principles for good practice of Chickering and Gamson (1987) to online instruction 
settings. The seven principles for teaching in online environments can be summarized as follows: 

1 Enabling student-teacher interaction 
2 Facilitating cooperation among students 
3 Empowering active learning 
4 Providing prompt feedback 
5 Managing time on task 
6 Communicating high expectations 
7 Respecting diverse ways of learning 

As shown by Fiock`s (2020) literature review on empirical studies about instructional strategies in 
online communities, the three core elements of CoI can be related to each of the seven principles. 
Consequently, the seven principles can be seen as a starting point for implementing instructional 
activities which consider the CoI model in school praxis (ibid.). In this paper, we understand the 
seven principles of online instruction as design principles for the creation of educational online 
environments in line with CoI. 
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Mobile Learning  

Mobile learning can be defined as learning progress facilitated by the use of mobile devices, such as 
smartphones. Characteristics are the portability of devices as well as their possibilities for 
communication and interactive representations (Kearney et al., 2020). In a meta-study, Sung et al. 
(2015) report a positive mean effect of using mobile device on students’ learning. The authors 
emphasize learning environments that offer broad functionalities including authoring tools for 
teachers to flexibly adapt the system to their own instruction (ibid.). 

Mobile apps can promote students' learning progress in numerous mathematical areas, e.g., arithmetic 
and geometry. Further, the use of apps in math class can foster problem solving strategies or 
mathematical programming skills. Additionally, the embedding of mobile learning in math education 
tends to have a positive influence on students’ motivation and enjoyment (Drigas & Pappas, 2015). 

State of the Art: Mathematics Education in Covid-19 Pandemic 
Due to the Covid-19 pandemic, abrupt changes of instruction were needed to deal with the crises 
circumstances. Within only a few days, new teaching practices were rapidly established (Hodges et 
al., 2020) mostly by the help of digital media and internet-based communication (Crompton et al., 
2021). This temporary shift without appropriate time for designing online teaching courses is 
described as Emergency Remote Teaching (ERT) (Hodges et al., 2020). Hereby, several challenges 
concerning mathematics education are reported from a teacher’s point of view: 

Empirical cross-national research highlights the issue of assessment. Concerning the formative 
assessment, teachers reported problems in diagnosis as well as individual feedback and support 
(Aldon et al., 2021; Barlovits et al., 2021; Drijvers et al., in press). During distance education in 
Spring 2020, instructors mainly focused on procedural skills rather than conceptual understanding 
(Drijvers et al., in press). In addition, teachers reported difficulties in finding adequate forms of 
summative assessment (Aldon et al., 2021).  

Furthermore, it arouses the question of how to implement inclusive distance education in which 
students can participate at their individual achievement level (Aldon et al., 2021), especially 
underachieving students (Barlovits et al., 2021). In addition, teachers reported a lowering of the 
course level through an increased rate of standard and reproduction math tasks (ibid., Aldon et al., 
2021) and an infrequent use of modeling or reasoning tasks (Drijvers et al., in press). 

Also, social factors are emphasized in research on mathematical distance education during the ERT 
phase. Here, the interaction between teacher and student (Aldon et al., 2021; Barlovits et al., 2021) 
as well as among students, e.g., in form of peer instruction (Drijvers et al., in press), is perceived as 
challenging. The general ability of fruitful content-related social interaction in math class seems to 
be dependent on the ratio of synchronous distance education (ibid.)  

Moreover, with regard to the finding that teachers paid more attention to the use of general tools, such 
as video conferencing systems, than on the use of tools designed for math education (Barlovits et al., 
2021; Drijvers et al., in press), the availability of technical equipment and the handling of accessible 
tools must be taken into consideration in the context of distance education (Barlovits et al., 2021). 
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From the outlined empirical studies, we derive four requirements for digital tools in math distance 
education during Covid-19 pandemic. An appropriate digital tool in math education has to (i) enable 
appropriate formative assessment, (ii) promote inclusive forms of teaching and foster different 
performance levels, (iii) address the issue of social relatedness and (iv) follow a low-barrier approach 
concerning technical requirements. Being aware that only a few challenges that arose due to crisis 
situations are presented here, these four design requirements are considered in the following analysis.  

Theory-based Design of a Mathematics Online Environment 
Mathematical learning in fully online learning environments differs substantially from traditional 
classroom instruction since it involves a greater amount of asynchronous and self-directed instruction 
and a lower degree of collaborative work (Choi & Walters, 2018). However, following CoI and the 
seven principles for online instruction, the opportunity for a teacher-learner interaction and the 
student collaboration is clearly emphasized. Following the assumption that ability of successful social 
interaction in math class depends on the number of synchronous lessons (Drijvers et al., in press), 
online environments should enable synchronous distance learning, direct interaction and 
collaboration in mathematics distance learning. 

Both, the seven design principles as well as the challenges of Covid-19 math distance education, 
underline the importance of immediate feedback and adaptive design of learning environments to 
support and challenge learners at their individual level. Concerning the lack of technical equipment 
or challenges in its handling (Barlovits et al., 2021), a mobile learning approach seems promising due 
to the high rate of smartphone ownership in Europe and worldwide. Regarding the instructor role, 
online environments should enable the teacher to act as a mediator (Serdyukov, 2015). 

The ASYMPTOTE Concept 

Based on these considerations, the ASYMPTOTE1 project is presented as one example for the 
development of a synchronous mobile environment in the context of the Covid-19 pandemic. 

The project aims at the development of a cost-free, open-accessible and low-barrier tool for mobile 
distance learning in mathematics education. Due to availability and handling of the environment, it 
is designed for smartphones and tablets. In order to set up this tool for distance mathematics education 
in a reasonable time, the already existing MathCityMap system (Ludwig & Jablonski, 2019) will be 
adapted to the needs of online education. The stand-alone system ASYMPTOTE will be available at 
the beginning of 2023. In the following, the features of MathCityMap are evaluated in light of the 
theoretical considerations for online instruction. Subsequently, based on the theoretical framework, 
steps for the further development of ASYMPTOTE are identified. 

The MathCityMap System 

The MathCityMap system – developed for mathematics outdoor education using the math trail 
method – consists of two components, namely a web portal for teachers and smartphone app as 

 
1 Adaptive Synchronous Mathematics Learning Paths for Online Teaching in Europe. Erasmus+ Strategic Partnership; 
co-funded by the European Union from 03/2021 to 02/2023 (grant no. 2020-1-DE01-KA226-HE-005738). 
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working space for students (Gurjanow et al., 2019). In the MathCityMap app, students can easily 
download samples of tasks via code. The app displays the tasks (Figure 1, left; here: task for distance 
education), shows up to three hints during and a sample solution after the task solving process on 
demand. Further, an immediate answer validation in form of a systemic feedback is implemented.  

Besides these asynchronous features, the web portal offers teachers within the Digital Classroom the 
possibility for a real-time monitoring of the students’ working progress on both, class and individual 
level. In addition, a chat function is implemented for a one-to-one synchronous communication 
between instructor and student (Figure 1, center right and right).  

By using MathCityMap in the context of distance education, students work on digital learning paths, 
i.e., internet-based task sequences to be completed independently at their own performance level with 
the help of hints and result checks (Roth, 2015). Different answer formats such as values or vectors, 
cloze texts, or multiple-choice selection are available for task creation. For a detailed description of 
how the MathCityMap system has been adapted for distance education, see Larmann et al. (2021). 

 
Figure 1: MathCityMap used for distance education from the student’s perspective (app; left) and the 

teacher’s view (Digital Classroom in the web portal; right) 

From MathCityMap to ASYMPTOTE 

Following the considerations for math education online environments, we evaluate the present status 
of MathCityMap and derive steps of further developments for ASYMPTOTE. 

Features of MathCityMap based in line with the identified design requirements: As for student-
teacher interaction, the chat function of the Digital Classroom provides a possibility for a dialogue 
between the instruction and the student. Therefore, shown by Larmann et al. (2021), students often 
start the communication with the teacher to receive feedback on their solution process. Further, 
teachers can send messages to the whole learning group.  

The system provides prompt feedback: the student's numerical or text input is immediately validated 
by the system (Figure 1, center left). In addition, the possibility to send images and audio messages 
via chat allows teachers to provide individualized support to the student in the sense of formative 
assessment. Since the systemic feedback distinguishes between correct and incorrect solutions, 
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instructors gain more time to analyze solutions. Thus, the interplay of systemic and individual 
feedback follows the idea of semi-automated feedback (Fest, 2011).  

For student’s time on tasks, Sorensen and Baylen (2009) highlight well-structured and -planned 
lessons as well as the value of teacher’s time management. Within MathCityMap, a structured setting 
by using digital learning paths is provided on which students work in a predefined time slot 
synchronously. Within the Digital Classroom, instructors can monitor student’s individual working 
progress, track student’s engagement and directly contact students via chat if needed. With the 
monitoring function of the Digital Classroom and the semi-automated feedback, the MathCityMap 
system seems to address the need of mathematical distance education for formative assessment. 

To further encourage the student’s time on task and to respect mutual ways of learning, the system 
offers the ability for teachers to select available digital learning paths or to create own digital learning 
paths related to the individual needs of their class. Thus, according to Sung et al. (2015), it provides 
teachers the ability to make adaptations needed for their own classes. Additionally, MathCityMap 
enables the structuring of complex tasks in manageable subtasks. While upper-performing students 
can work on the task at a whole, under-archiving students can be guided through the solution process 
by the subtasks. Also, the online learning setting itself (Serdyukov, 2015) as well as the concept of 
digital learning paths (Roth, 2015) respect different paces of learning and levels of performance. 

Further developments for ASYMPTOTE based on identified design requirements: Within the 
ASYMPTOTE project, the possibility to create adaptive learning paths will be developed. Following 
the idea of decision trees, teachers will be able to define so-called status indicator tasks. Depending 
on the quality of learner’s solution, the app will allocate the next task according to the student’s 
performance. Through the definition of several indicator tasks, the content level of the digital learning 
path can be more and more adapted to the individual level of the student. Moreover, to facilitate 
learning for students with disability, a read-out-loud mode and a zoom function will be implemented. 
Tasks, which are formulated in easy language, will be specially marked. Also, tasks will be 
translatable in various language which might help to bridge language barriers.  

The high expectations in online education can be addressed through the use of challenging 
mathematical tasks. These addresses in particular the focus on standard and reproduction math tasks 
(Aldon et al., 2021; Barlovits et al., 2021) and the infrequent use of modeling or reasoning tasks 
(Drijvers et al., in press). Within the ASYMPTOTE project, a broad database of open-accessible tasks 
and learning paths from lower secondary to university level will be created with a special focus on 
modeling, problem solving and reasoning tasks.  

For enabling communication and collaboration between students in line with CoI and addressing the 
issue of students’ social relatedness in math class, a teamwork mode will be developed. This involves 
setting up a group chat for synchronous and text-based interaction (Serdyukov, 2015) to support 
collaborative task processing, discussion and reflection. Whether this type of interaction is sufficient, 
of course, will depend on the embedding of the lesson conducted with the ASYMPTOTE system. 
The authors suggest a joint preparation phase and a post-discussion via video call.   

Active learning will be fostered by the ASYMPTOTE system by the provision of complex tasks on a 
variety of topics from lower secondary to university level as well as the teamwork mode. Since 
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ASYMPTOTE can be considered as an adaptive tutoring system, however, active learning is not 
additionally promoted by manipulative and interactive tasks: the system does not provide an 
integrated dynamic geometry software or computer algebra functionalities.  

Conclusion 
This paper presents a theoretical framework for mobile learning environments aiming at distance 
mathematics education. It is referred to the Community of Inquiry model, e-learning and online 
teaching practices as well as mobile learning. Based on the theoretical considerations, design 
requirements for distance learning systems for mathematics education are developed – also in line 
with reported challenges of distance mathematics education during Covid-19 pandemic. 

Furthermore, the ASYMPTOTE system is introduced, with technical development scheduled to be 
completed by the beginning of 2022. The system is characterized by an adaptive, synchronous and 
mobile learning setting. Based on the theoretical framework, we evaluate the present status of 
ASYMPTOTE and identify needed demands of further developments. Due to the theory-based 
development of ASYMPTOTE, the mathematics online environment can be considered as a 
promising tool for mathematics distance education. Thus, we expect that the system will make a 
substantial contribution to the improvement of online instruction in math class. To which extend the 
system addresses the issue of social presence in online environments (CoI) and how it affects 
teachers’ and students’ perception of the distance situation, has to be investigated by future research.  
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This study aims to investigate the resource usage of teachers from the beginning of their careers. For 
this reason, first, we examined the digital and non-digital resources of the teacher candidates. After 
two years, we studied with the same group to examine their resources while they were teachers. In 
this phase, we utilized Documentational Approach to Didactics (Gueudet & Trouche, 2009) as the 
framework and we designed the study as a case study with two mathematics teachers that were 
mathematics teacher candidates. We used the reflective investigation method. As a result, teacher 
candidates used digital resources in a more personalized way. When they became teachers, it was 
observed that they tended to use interactive e-books. Also, teacher candidates tended to use university 
textbooks and the resources that their advisors suggested. When they became teachers, they tended 
to use the resources that the ones accurate for the national exam system.  

Keywords: Documentational approach to didactics, resource usage, teacher candidates, teachers.  

Introduction 
Teachers utilize both digital and non-digital resources in their teaching. Also, their usage of those 
resources can switch according to certain variables, such as classroom conditions, student attention, 
etc. While using those resources and selecting and organizing them, teachers are actually designing 
both their lessons and their resources at the same time (Brown, 2009). However, not only teacher 
affects the lesson and the resources, but also, the lesson and the resources can affect the teacher. This 
is an interrelationship between the teacher and the tools (Trouche et al., 2020).  

Some of the resources diffuse the teacher’s teaching day by day, but others can fade away. This 
happens with or without the consciousness of the teacher, but there are certain factors affecting 
teachers’ choices. In this study, we aim to investigate the teachers’ non-digital resources as well as 
digital resources and we try to examine the factors affecting usage of them in transition from being 
teacher candidate to teacher. The problems that guide this research are in the transition from being 
teacher candidate to teacher:  

• What are the resources the use of which has ended and continues? 
• What are the resources whose usage schemes remain the same and change?  

Theoretical Framework 
Considering that the resources used by teachers can be both digital and non-digital, it is important to 
use a theoretical framework that allows examining all kinds of resources in such a study that examines 
the resources used by teachers in the transition from being teacher candidate to teacher. For this 
reason, Documentational Approach of Didactics (DAD) (Gueudet & Trouche, 2009) framework was 
used to guide this study.  
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For a better understanding of the framework, one would need to clear all the concepts special to the 
framework. The first of those concepts is a resource. A resource can be thought such as a tool (Adler, 
2000), but it is more than a tool according to DAD. For example, teachers’ drawings on the 
blackboard can be a resource (a tool) and also students’ responses can be a resource, too. Teachers 
use several resources in their daily work for teaching. This work can include selecting, modifying 
and creating new resources. According to DAD, this work is called documentation work and the 
outcome of it are teacher documentation. In their documentation work, teachers utilize both the text 
resources (e.g. textbooks, teacher guiding books, workbooks) and digital curriculum resources (e.g. 
digital interactive books, technological tools).  

One of the concepts of DAD is a document and it consists of resources and their usage schemes 
(Vergnaud, 1998). A scheme is a teacher’s stable organization of their activities, for a given class of 
situations. A scheme has four components: (i) the aim of the activity, (ii) operational invariants, (iii) 
rules of action, (iv) possibilities of inferences. In DAD, schemes are considered as usage schemes of 
resources. All the resources of a teacher, form their resource system (Ruthven, 2007). When the 
resource system is associated with the usage schemes, they form the document system together.  

In this study, DAD was chosen as the framework because it allows us to evaluate a larger collection, 
considering not only digital resources but all kinds of resources available to teachers. This holistic 
approach is thought to lead to a broader view of the relationship between the teacher and resources 
(see Figure 1).  

 
Figure 1: Documentational genesis process in DAD (Trouche et al., 2020, p.3) 

As seen in Figure 1, DAD focuses on the relationship between teachers and their resource system. As 
well as special concepts, there are special names of the processes for teacher’s relationship with 
resources. When the requirements of the resources influence teachers’ practice, the process is called 
instrumentation. When the teachers’ aims and knowledge lead to their choices and changes on their 
resources, the process is called instrumentalization. And the DAD suggests that these processes work 
both ways. In time with the ongoing instrumentation and instrumentalization processes and the usage 
schemes of the resources, teachers create documents which is called documentational genesis.  
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Research Design 
In this study, we utilized qualitative research methods to be able to investigate the usage of the 
resources in detail. The study was designed as a case study. And reflective investigation approach 
was adopted as a data collection method.  

Participants of the case study 

In this study, we studied with two teacher candidates and followed them when they started teaching. 
The teacher candidates, Mary and Keira (pseudonyms) were not the best technology users or with the 
most resources. Mary and Keira were willing to share their work with resources and were able to 
introduce their usages in detail. Also, they were volunteering for the lesson preparation sessions as 
an extra activity. That’s why we chose them for this study to investigate their resources. So the 
sampling method is criterion sampling method and the criterion are: (i) Being in the last year of 
undergraduate education in the 2016-2017 academic year, (ii) those who have taken the courses "Field 
Papers in Mathematics Education" and "Teaching Practice", (iii) to be appointed as a teacher to public 
schools affiliated to the Ministry of National Education (MoNE) in 2018, (iv) being volunteer for the 
study.  

Mary 

Mary is a teacher who has drawn the attention of researchers with her studies even before the research. 
She came to the fore during her student years in terms of both the scores she got from the exams of 
the courses related to mathematics teaching and the emphasis she made on the notes she took during 
the lessons. Another remarkable point about Mary is that she attends classes like a teacher. She has 
become a student who feels like she will tell her students what she has learned after leaving the class. 
Mary has been a student who has attracted the attention of the instructors, especially while teaching 
lessons that require exemplary lectures. During the example lecture, she had no problems while 
controlling the class and giving appropriate answers to the questions asked. She was also able to use 
applications such as the Cabri Geometry on the smartboard in the teaching practice as needed and 
gained the appreciation of her mentor teachers. It is noteworthy that there is great diversity in her 
teaching practice file in terms of resource use. Mary generally accepted teachers as resources, even 
contacted teachers who own resources shared on websites, tried to learn how they used these 
resources, and sought alternative teaching methods for different courses. 

Keira 

Keira is a teacher who has come to the fore with her desire to use different materials in teaching 
lessons during her student years. Keira, like Mary, has shown outstanding success in teaching lessons, 
especially drawing attention to designing and using teaching materials that can be used in lessons. 
The teaching materials designed by Keira drew attention as they were suitable and durable for student 
use as they would be used in the classroom, and she stated that he wanted to use these materials when 
she became a teacher. She showed outstanding success both in teaching courses and in pure 
mathematics courses. She was able to successfully use smartboard applications in her teaching 
practice course. In addition, Keira's resource system is quite extensive, often containing resources for 
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different teaching materials. In addition, Karen also used the resources recommended by her mentor 
teacher in her teaching practice and added them to the resource system. 

Method of data collection 

We utilized the reflective investigation method which is suggested by Gueudet and Trouche (2009) 
for those to use DAD. There are some principles of the method (Trouche et al., 2020, p. 6): 

• Broad collection of the resources,  
• Long-term follow-up,  
• In- and- out-of-class follow up,  
• Reflective follow up,  
• Confronting teachers’ views on the documentation work and the materiality of it. 

According to these principles we utilized semi-structured interviews, schematic representations of 
resource systems (SRRS), teaching practice files, interviews on the lesson preparation, lesson 
observations, and recall sessions. Semi-structured interviews and SRRS diagrams were handled 
together, because we used the semi-structured interview to understand the resource system better. All 
the interviews were audio-recorded. The SRRS diagram is a data collection tool that is “not structured 
for the researcher but it is structured for the participant” (Trouche et al. 2020). In other words, we did 
not structure the diagrams, they did draw their own SRRS diagrams to explain their resource system.  

Table 1: Data Collection Methods according to the Reflective Investigation Method 

Reflective Investigation Steps Data Collection Methods 

Broad collection of the resources SRRS diagrams 

Long-term follow-up  Teacher candidate and teacher observations 

In- and- out-of-class follow up Teaching practice files 

Reflective follow-up Interviews and Observations of the lessons and 
lesson preparations 

Confronting teachers’ views on the documentation 
work and the materiality of it 

Recall Session 

Teaching practice files were used as a written interview about what they realized in their teaching 
practice classes. This data collection tool did not use when the time they were appointed as teachers. 
Semi-structured interviews were used instead.  

Both before their teaching practices and teaching sessions, we interviewed them about how they 
planned their lessons, then we observed them in the lessons. In the observation, one of the researchers 
took field notes and the lesson was video-recorded, too. After the lesson observations, we planned a 
recall session to get the interpretations of their own lessons.  

Data collection procedure 

Data collection of this study started in the 2016-2017 education term. In 2016-2017, teacher 
candidates were in their teaching practice year and the first data was collected. Afterward, a two-year 
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break was given for the appointment of teacher candidates and for obtaining official permissions from 
their schools. And in the 2019-2020 term, data collection has completed while they were teaching in 
their own classes (see in Figure 2).  

 

 

 

 

 

Figure 2: Data collection procedure 

Teaching practice files of pre-service teachers who took the course were collected and analyzed. At 
this stage, the files of all teacher candidates who took the course were examined. However, after the 
participants were determined, the files of the selected participants were included in the study. Each 
participant's lesson was observed for 4 hours before the teaching period and 25 hours after being 
actual teachers, during the lesson observation, the researcher sat in the back rows like a student and 
took notes and did not interfere with the process. In addition, the lessons were recorded in order to 
prevent data loss and to be able to re-examine during the analysis. After all the lesson preparations, 
observations, and interviews, a recall session was organized in order to realize reflective remarks.  

Data analysis 

The audio-recordings and video-recordings of the interviews and lessons were transcribed. Initial 
coding was based on the resources and their usages of the participants. We focused on DAD’s key 
processes- instrumentation and instrumentalization. When we realize that there could be such a 
process, we coded it accordingly and checked it in the recall session. Because there were a lot of data 
collection tools, we followed the instrumentation and instrumentalization processes during the 
coding. This is in line with Yin’s (2009) approach about using a framework to be able to do systematic 
coding.  

The use of various data collection tools was in order to enhance the trustworthiness of the findings. 
Triangulation was employed to cross-check the conclusions. The triangulation was between the 
interviews, observations, and recall sessions.  

Findings  
Teacher candidate phase 

When Mary and Keira were teacher candidates, they were using smartboards in their teaching practice 
lessons. However, they both did not mention it in their SRRS diagrams (see Figure 3 and Figure 4).  

2016-2017  

Teaching Practice 
Phase 

2017-2018 

Teacher candidates’ 
apointment procedure. 

2018-2019 

Obtaining necessary 
official permissions 

2019-2020 

Teaching Phase 
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Figure 3: Mary’s SRRS diagram                                 Figure 4: Keira’s SRRS diagram 

In Mary’s lesson in her teaching practice, she used a balance system to emphasize the inequality 
concept. Even if she utilized a special program in the smartboard, she used only the pictures to 
demonstrate the systems she would like to exemplify. 

In Keira’s lesson in her teaching practice, she used a picture and brought concrete material in the 
class. She utilized a special program in the smartboard, but she generally used the smartboard just for 
demonstration. Additionally, she used a concrete material of the picture she shared on the smartboard. 

In the interviews, they both mentioned that they used a specific smartboard program to be able to 
teach an effective lesson. And they emphasized that both of them designed their sessions all by 
themselves. They mentioned only the resources they used while designing.  

Teaching phase 

Mary and Keira utilized the smartboard in their teaching, too. But this time, they both mentioned 
smartboard in their SRRS diagrams. In the teaching phase, according to lesson observations, they 
used interactive e-books in their lessons. But, while Mary’s students have also textbook of the same 
e-book, Keira used the e-book only on the smartboard. Mary stated her situation as follows:  

Researcher:  Mary, you use an e-book on the smartboard. But, as I see, the students follow the 
lesson from their own books. Did you arrange it?  

Mary:  Yes, I asked them to buy this book. I also get the same book’s teacher book version 
and e-book. Thankfully my students were able to get the book. Time is so important 
for us. And thanks to this e-book, I can complete all the aims in the curriculum. I 
also use another textbook with this e-book. When I want to give different examples 
about the national exams, I use that book. At that time, I close the smartboard and 
write the questions on the blackboard.  
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As it can be understood from the transcript, Mary combines the e-book with another book. But she 
used them for different aims. When she wants to solve harder questions for national exams, she closes 
the smartboard and the e-book for a while. In this situation, we can see the instrumentation process 
of DAD.  

Also, Keira mentioned that her students could not get the students’ book. That’s why she explained 
that she could not use the students’ book in the class. But she used the e-book for demonstration.  

Researcher:  Keira, you use an e-book on the smartboard. But the students have another book, 
not the same as the e-book?  

Keira:  Yes, I asked them to buy the students’ book. But some of my students get and others 
were not able to buy the book. So, I cannot use the students’ book in the class, but 
I use the e-book. At least I don’t have to write the questions to solve on the board. 
I am already late in the curriculum.  

It can be understood from the transcripts that they use the smartboard to gain time for the goals of the 
curriculum. When examining the transcripts, we can see that Keira limited her own usage of the e-
book, because the students’ book is not available for her students. This points out to instrumentation 
process of DAD. There were some notes on the teachers’ book of Keira, which shows some 
definitions of mathematical concepts. In this case, we were able to see an example of the 
instrumentalization process, that Keira used her own definitions for the mathematical concepts in the 
teacher’s book of her e-book.  

Discussion and Conclusion 
In this study, we aimed to investigate the digital and non-digital resources in the transition from being 
teacher candidate to teacher. As a result, one of the resources, the smartboard, remained the same for 
both of the participants. However, the usage of it differentiated when started teaching. They used 
interactive e-books in their teaching, even if they did not use any e-books before. Also, the way both 
participants use these e-books is different from each other. Mary, for example, used the smartboard 
for speeding up the problem-solving. However, Keira used it both for the e-book and as a music and 
video player. They basically explained that their initial aim is to be able to catch the curriculum 
(Şahin, 2010). In their opinion, the curriculum is congested and they have to catch the curriculum as 
well as they have to catch their colleagues. 

In this study, instrumentation and instrumentalization processes were also detected. According to 
their own aims and knowledge, they were able to revise their resources (instrumentalization process). 
For example, Keira was noted her own definitions for some mathematical concepts on the e-book she 
used. Also, she noted some rhymes about divisibility rules to remember them quickly. And Mary 
noted her own draft exam questions on her teachers’ book. And she presented them using the 
smartboard.  

Also, they were able to revise their own lesson practice to use that specific resource they aimed to 
use (instrumentation process). For example, Mary used another textbook for the national exams, and 
she needed to close the smartboard for this usage. Since she was not able to use the other book on the 
smartboard, she closed it and continued with the blackboard. Even if she stuck to the e-book most of 
the time, she changed her own practice.  
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Therefore, it can be said that they used the smartboard just for demonstration while they were in the 
teaching phase. They did not use its qualifications as a smartboard.  So, we can say that they used the 
smartboard as a resource when they were teacher candidates, but they just used it as an educational 
technology when they were teachers (Adler, 2000). 

Another result is that teacher candidates tended to use university textbooks and the resources that 
their advisors suggested. When they became teachers, they tended to use the resources that their 
colleagues used and the ones accurate for the national exam system (Gueudet et al., 2013). 
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Introduction: a tale of two cultures 
The global switch to distance education imposed by the Covid-19 pandemic in 2020 and 2021 
dramatically exposed teachers’ difficulties to engage students in a distance-learning setting, as 
acknowledged by recent studies (Bakker & Wagner, 2020; Fondazione Agnelli, 2021). Indeed, these 
difficulties are more related to the existing technological and cultural discontinuities between 21st-
century learners and teacher-centred educators (Bronkhorst & Akkerman, 2016) than to the distance-
learning setting enforced by the pandemic. Feedback collected from Italian teachers posting in social 
media groups on Facebook and from personal acquaintances evidenced that the majority of teachers 
simply moved their usual teacher-centred lessons from in-person to distance mode, resulting in one-
way lessons with teachers lecturing passive students (often with no camera on), which dramatically 
failed in engaging learners. In other words, the pandemic just amplified malfunctions that were 
already there, making them clearly observable. It acted as the PCR, the Polymerase Chain Reaction 
used in molecular biology to amplify DNA samples: now these malfunctions are evident and we can 
observe them and act on them. One possible way to act on them, bridging the discontinuities and 
engaging students both in-person and in distance-mode learning settings, is by challenging the 
dichotomy between the two cultures represented by in-school formal learning and out-of-school 
informal learning. This can be done, among others, by importing a product of the out-of-school digital 
culture, such as mathematical Internet memes, into the in-school formal learning environment. 

What are mathematical Internet memes? 
Internet memes are digital objects pervasive on the Web (221 million occurrences of the hashtag 
#memes on Instagram in February 2022) created by Internet users adding original humorous captions 
to existing popular images. Mathematical Internet memes are mathematical mutations of Internet 
memes: they combine mathematical and memetic elements to produce hybrid representations of 
mathematical statements, endowed with an epistemic power to initiate argumentation processes 
among users inside dedicated online communities (Bini et al., 2020). Despite these evident 
potentialities, mathematical memes are still widely understudied in mathematics education. 

The activity: theoretical framework, research question, methodology and results 
In 2020, Bini and Robutti conducted an exploratory study on mathematical memes as boundary 
objects (Star & Griesemer, 1989) between the communities of students and teachers during in-person 
school activities. The purpose of this work is to move forward along this line of research, investigating 
if mathematical memes can “fulfil a bridging function” (Akkerman & Bakker, 2011, pp. 133) between 
students and teachers also in distance-mode settings. The study is guided by the research question: 
Can mathematical memes act as boundary objects between students’ informal out-of-school culture 
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and teachers’ formal in-school mathematical culture in distance-mode activities? Mathematical 
memes’ boundary-crossing nature has been taken into account in two different ways in designing the 
activity: (1) the task design requested students to create a composite object, i.e. a mathematical meme 
and a presentation providing a brief insight into the mathematical content, and (2) during the activity 
the author acted as a boundary broker, facilitating the “processes of translation, coordination and 
alignment between perspectives” (Wenger,1998, p. 109). The result is MathMemeThon, a distance 
learning activity with mathematical memes, structured as a team competition inspired by a computer 
hackathon. The activity took place in the second quarter of the 2020/21 school year, involving 7 class 
groups of 9th grade students (15yo) and 2 class groups of 10th grade students (16yo), for a total of 
about 180 students and 6 teachers from 3 different institutes located in Piedmont, in the north of Italy. 
It developed in three online meetings of 2 hours each, where students teamed and competed creating 
mathematical memes and presentations, and sharing them online on Padlet walls. Students’ 
productions were then presented remotely via WebEx to a jury of experts made up of teachers, Master 
and PhD students of mathematics, who judged the productions evaluating the mathematical and 
memetic content and the quality of the presentation. Memes were then shared on the project’s 
Instagram page (https://www.instagram.com/lifeonmath/). 

Observations of the interactions and feedback from teachers and students showed that, even in the 
distance learning setting, the hybrid language of mathematical memes succeeded in connecting the 
two communities: teachers appreciated the idea of communicating mathematics through an object 
“very close to the world of students”, and students valued the fact “it was necessary to give 
importance to the mathematical content but at the same time to find the right idea to create the meme". 
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This paper explores teachers’ knowledge for supporting students to transition between technologies, 
for example, moving between using dynamic digital technologies and using static environments for 
mathematics. The TPACK framework is used to explore such knowledge through an examination of 
one teacher’s frustration with the ‘rigidity’ of angle definition and measurement in GeoGebra, 
expressed in a task-based interview on circle theorems, compared with the relative ‘flexibility’ of a 
static environment. The nature of the central TPCK construct is discussed and implications for 
teacher education are identified. 
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Introduction 
This study investigates the nature and content of teachers’ mathematical knowledge for teaching 
circle theorems using dynamic digital technologies, such as GeoGebra. The specific knowledge 
required for teaching mathematics with technology has been a long-term interest in TWG15 (Clark-
Wilson et al., 2019). Less commonly, research has focussed on teachers’ knowledge for supporting 
students to bridge or transition (Geraniou & Mavrikis, 2015) between technologies, for example, 
moving between using dynamic digital technologies and using static environments for mathematics. 
Hence this study focuses on investigating what knowledge enables teachers to support transitions 
between dynamic and static environments in their teaching of circle theorems. The main research 
question is: what is the nature and content of teachers’ mathematical knowledge for teaching circle 
theorems using dynamic digital technologies? The sub-question is: what knowledge enables teachers 
to support transitions between dynamic and static environments? 

Theoretical background 
Mathematical knowledge for teaching, as defined in this study, is when tacit knowledge-in-action 
(Ruthven, 2014) is underpinned by and coincides with a teacher’s articulated knowledge that provides 
for “a rational, reasoned approach to decision-making” (Rowland et al., 2005, p. 260). The 
Technological Pedagogical and Content Knowledge (TPACK) framework is suitable for this study 
because the framework enables a focus on teachers’ mathematical knowledge for teaching situated 
in a technological context (Mishra & Koehler, 2006). In this study, the central TPCK construct is 
viewed as a new domain of synthesised knowledge, that is, a transformation (Rowland et al., 2005) 
of mathematical knowledge for the purpose of teaching using technology. This paper focuses on the 
dyadic construct TCK (technological content knowledge) as a means of exploring, by comparison, 
the nature and content of the central TPCK construct. Mishra & Koehler (2006) define TCK as 
knowledge about how technology and content influence and constrain one another; that is, how the 
mathematical content can be changed by the application of particular technologies. For example, 
dynamic digital technologies, such as GeoGebra, embed mathematical rules in their design, 
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constraining the user to obey these rules e.g. by imposing an explicit order in constructing geometric 
figures (Jones, 2000). This mathematical rigidity may be fruitful in supporting the user to appreciate 
and explore the rules embedded. By contrast, a static environment, such as paper-and-pencil, is 
relatively flexible, allowing the user to draw mathematical ‘sketches’ without the necessity of obeying 
a specific set of mathematical rules. An appreciation of how different environments provide 
contrasting representations of mathematics exemplifies the TCK construct. An appreciation of how 
to capitalise on such contrasting representations for the purposes of teaching, e.g. to support pupils’ 
transitions between environments, would exemplify the TPCK construct. Adler’s (1999) dilemma of 
transparency provides a means of explaining why teachers’ knowledge might enable them or not to 
support transitions between dynamic and static environments. 

Methodology 
As part of a larger doctoral study (Bretscher, 2015), four case study teachers were selected, as self-
described technology enthusiasts confident in the use of technology, to take part in semi-structured 
interviews based around a GeoGebra file on circle theorems. As enthusiasts, the case study teachers 
were likely to display mathematical knowledge for teaching using technology. The semi-structured 
interviews provided a common situation across which the case study teachers’ mathematical 
knowledge for teaching using technology could be contrasted. Examples of TCK were identified 
where a teacher’s articulated knowledge and knowledge-in-action coincided to place emphasis on 
technology and mathematical content when addressing a situation involving a synthesis of 
mathematical, pedagogical and technology knowledge. The case study teachers were prompted to 
show (knowledge-in-action) and discuss (articulated knowledge) how they would use diagram D1 
presented in the GeoGebra file (see Figure 1) to demonstrate that the angle at the centre of the circle, 
subtended by an arc, is double the angle at the circumference subtended by the same arc.   

 
Figure 1: Diagram D1 in the GeoGebra interview file on circle theorems  

Diagram D1 was designed to be similar to resources found on a web-search. Circle theorems were 
chosen since it is a topic, in the English mathematics curriculum, which is commonly identified with 
the use of dynamic geometry software (Ruthven et al., 2008). It was therefore reasonable to assume 
that the case study teachers would be familiar with technological resources similar to D1 and might 
even have previously used such resources in their own teaching. Thus, they would be likely to have 
some mathematical knowledge for teaching circle theorems using the GeoGebra file, even if they 
were unfamiliar with the particular software. In addition, the topic of circle theorems is at the apex of 
geometry in the compulsory English mathematics curriculum, hence it provided a potentially 
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challenging context even for experienced teachers who were both mathematically and technologically 
confident.The semi-structuring of the interview allowed some flexibility to respond to events during 
the interview, whilst maintaining an overall structure that would allow for and facilitate comparison. 
Both the visual and audio aspects of the GeoGebra interviews were recorded and analysed. This paper 
focuses on one of these case study teachers, Edward, whose expression of frustration at the way angles 
are measured in GeoGebra provided a particularly illuminating example of TCK. 

Defining angles in GeoGebra: Edward’s dilemma  
The analysis presented in this section focuses on an indicative example of TCK, from Edward’s 
interview, as a means of exploring the nature of the central TPCK construct.  

Edward was prompted to question how angles are defined for the purposes of measurement in 
GeoGebra by unexpected configurations of D1 appearing during dragging, displaying the ‘incorrect’ 
angle at the centre (see Figure 2). After experimenting by dragging points C and D, Edward concluded 
the angle measured at the centre was dependent on the relative position of points C and D. More 
specifically, in GeoGebra the angle measured at the centre in D1 is defined by specifying the ordered 
triad of points CAD and measured anticlockwise from the line segment AC to the line segment AD. 
Thus, when the relative positions of C and D are reversed, as in Figure 2, the angle appears to ‘flip’ 
between being less than 180 degrees and being reflex.  

D1 had been designed so that, whilst the angle at the centre could become reflex, the angle measured 
at the circumference was constrained to be less than 180 degrees whatever the relative position of 
points C and D. Hence the ‘correct’ angle at the circumference in relation to the circle theorem was 
always displayed, however some configurations of D1 displayed the ‘incorrect’ angle at the centre. 
Edward’s questioning of how the software defines and measures angles and his realisation of the 
angle at the centre’s dependence on the relative positions of C and D is an example of TCK because 
it shows a developing understanding of how the GeoGebra software models geometric concepts and 
relations.  

 
Figure 2: Angle measurement and reversing the relative positions of C and D  

For Edward, the software’s definition and measurement of angles was a source of frustration, 
appearing idiosyncratic in the way D1 ‘flipped’ between displaying the correct and the incorrect angle 
at the centre. He argued:  

E: ... this is sort of a function of how the software works isn’t it, rather than a ... is that 
bringing out anything useful mathematically that ... that’s just a bit annoying the 
way it does that, isn’t it?  
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His frustration with angle definition in the software led him to suggest that, for proof, he would prefer 
a static environment: “I’d project this on the whiteboard […] and then mark on the angles that I want”. 
Implicitly, Edward compared the difficulties he faced understanding how angles are defined in 
GeoGebra to the flexibility of being able to mark the angles that he wants in a static environment. 
Diagrams presented in software such as GeoGebra are constrained to follow the rules for defining 
angles that have been programmed into that piece of software. One of the affordances of drawing 
diagrams without digital technologies is that the relevant angles of the circle theorem may simply be 
marked on a diagram with a brief stroke of a pen or pencil, without needing to consider how they are 
defined precisely. It is not that a precise definition of the angles does not exist or is not necessary in 
a paper-and-pencil environment, of course, but that often it does not appear necessary to give it 
explicit consideration.  

A case where it might be necessary to give explicit consideration to a precise definition of the angles, 
even in a static environment, would be when giving a full statement of the circle theorem, rather than 
a commonly-used, abbreviated form such as ‘the angle at the centre is double the angle at the 
circumference’. For example, a full statement of the circle theorem is ‘the angle subtended at the 
centre by an arc is double the angle subtended at the circumference by the same arc’. The difference 
between the abbreviated form and the full statement is in the specification that the two angles must 
be subtended from the same arc. More specifically, using the full statement of the theorem clarifies 
which is the ‘correct’ and ‘incorrect’ angle at the centre.  

In his initial discussion of D1, Edward assumes the angles are defined as being subtended by the 
chord CD:  

E: ... so what it shows is the angle subtended at the circumference by chord CD is 
always twice the angle at the centre, irrespective of where B is.  

Defining the two angles as subtended from the chord is unproblematic as long as the two angles 
remain in the same segment; however, when they are in opposing segments the theorem appears to 
break down (see Figure 3 a and b).  

 
Figure 3: Angles in the opposite segments with (a) the ‘incorrect’ angle at the centre displayed and (b) 

the ‘correct’ angle at the centre displayed.  

The situation where the two angles appear in opposing segments occurred twice during Edward’s 
GeoGebra interview. Firstly, as depicted in Figure 3 (a), it occurred where the ‘incorrect’ angle at the 
centre is shown, assuming the angles in the circle theorem are defined as being subtended from the 
same arc. He had anticipated this case to some extent. Thus, for Edward, this case was not unduly 
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problematic and did not disrupt his statement of the circle theorem defining the angles as subtended 
from the chord CD, as the quote below suggests:  

E: And then if you drag B this side [onto the minor arc CD], then suddenly it goes 
from 54 to 126. So ... uh ... what’s happening there? So ... uh ... what’s happening 
there is the angle on the other side of the 108 is now double the angle at the centre, 
the angle at the circumference ... but it’s not showing on the diagram, the 
computer’s not showing that other angle ... but you can calculate it as 360 – 108, so 
252. And 252 is double 126. Yeah.  

Instead, he called this case a “complication”, suggests “ignoring” it at least initially with pupils, and 
refers to the ‘correct’ angle at the centre, measuring 252 degrees, as “the reflex angle”. His treatment 
of the case in Figure 3 (a) as a sort of deviant example or extension of his statement of the circle 
theorem, where the angle at the centre is reflex, avoided a mathematical critique of his definition of 
the angles being subtended from the chord. However, the situation arose for a second time, similar to 
Figure 3 (b), where the ‘correct’ angle at the centre is shown, assuming the angles in the circle 
theorem are defined as being subtended from the same arc. This time, the situation was unexpected 
and troubling for Edward. In particular, it led him to question his previous definition of the central 
angle as being subtended by the chord CD. The following quote indicates his struggles as he attempted 
to find a correct mathematical interpretation of this configuration of D1, see Figure 4 for the numerical 
example he discusses at the start:  

E: Um ... so ... let’s take an example ... so 94 doubled is 188, so it’s still true that ... so 
that angle is twice that angle. But uh ... how do you know it was that angle ... so the 
computer is kind of showing you the right angle for what it’s working for isn’t it? 
But in words, how do you explain what that angle is, it’s not really the angle that 
chord CD is subtending at the centre is it? Because it’s that ... chord CD is 
subtending that angle at the centre, so suddenly you have to say it’s the other angle, 
the reflex angle at the centre that’s subtending. So... so CD is subtending 99 at the 
circumference and, ... er ... the reflex angle is 198 yeah. Uh ... which is not a very 
good explanation. [E laughs]  

At the end of this quote, Edward tries to re-state the theorem using a particular numerical example, 
taking into account his realisation that the ‘correct’ angle at the centre was not, as he previously 
assumed, the angle subtended by the chord CD. He struggles, eventually settling for “the reflex 
angle”, whilst acknowledging this seemed inadequate.  

 
Figure 4: Edward’s angle definition dilemma  

Proceedings of CERME12 2520



 

 

Returning to Edward’s frustration at the apparently idiosyncratic way GeoGebra defined and 
measured the angles in D1, the discussion above shows that instead of being “just a bit annoying”, 
the way GeoGebra defines and measures angles does bring out something mathematically useful. The 
variation in whether the ‘correct’ or ‘incorrect’ angle is displayed in D1 provides a means of 
discussing how angles are defined in other contexts and, in particular, how the angles referred to in 
the (abbreviated) ‘angle at the centre is double the angle at the circumference’ circle theorem are 
defined precisely in a full statement of the theorem. Articulating a strategy to use the way GeoGebra 
defines angles to raise these issues for the purposes of teaching circle theorems would be an example 
of TPCK. Such a strategy would not appear to depend on integrating pedagogic knowledge with TCK. 
Instead, it requires mathematical knowledge regarding the precise definition of the angles in a full 
statement of the angle at the centre circle theorem. Hence, TPCK appears to be mathematical 
knowledge, abstract in the sense that it generalises across particular technological contexts and 
mathematical topics. For example, a precise definition of the angles in a full statement of the angle at 
the centre circle theorem should hold both in the context of using GeoGebra or a paper-and-pencil 
environment.  

However, TPCK also appears simultaneously to be mathematical knowledge situated in the context 
of teaching using technology. The issue of how angles are defined appears more salient and even 
surprising – for Edward at least – in the context of GeoGebra. In addition, at the time, the high-stakes 
GCSE (General Certificate of Secondary Education) examinations in England only required pupils to 
state an abbreviated form of the circle theorems. As a result, it is possible that the case study teachers 
were unaware of a precise definition of the angles in a full statement of the angle at the centre circle 
theorem. Hence, an individual teacher’s TPCK may also be seen as situated in the examination system 
and national curriculum of the country in that teacher is working. This argument suggests that TPCK 
is a synthesis of mathematical, pedagogical and technological knowledge, highlighting its situated 
nature as a transformation of mathematical knowledge for the purposes of teaching using technology.  

In summary, the central TPCK construct is exemplified as having teaching strategies for exploiting 
the opportunities that arise from contrasting and complementing the affordances and constraints of 
different technologies, in this case, the mathematical rigidity of angle measurement in GeoGebra 
relative to the flexibility of paper-and-pencil environment. Using such teaching strategies and making 
affordances and constraints of technologies explicit to pupils should support them in transitioning 
between different technologies. 

Discussion 
In this section, I apply Adler’s (1999) dilemma of transparency to explain Edward’s frustration further 
and so identify implications for teacher education. Adler (1999) uses Lave and Wenger’s (1991) 
notion of transparency to describe teachers’ dilemmas in negotiating the dual visibility and invisibility 
of talk as a resource in the practice of school mathematics. In this paper, the notion of transparency 
is applied to the use of technology as a resource in the practice of school mathematics. Adler (1999) 
describes Lave and Wenger’s use of the metaphor of a window to explain their notion of transparency: 

Lave and Wenger (1991) used the metaphor of a window to clarify their concept of transparency. 
A window's invisibility is what makes it a window. It is an object through which the outside world 
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becomes visible. However, set in a wall, the window is simultaneously highly visible. In other 
words, that one can see through it is precisely what also makes it highly visible. 

Thus, technology as a teaching resource for mathematics needs to be simultaneously both visible, so 
that it can be noticed and used in the practice of school mathematics, and invisible so that attention 
is focused on the subject matter of mathematics and not solely on the technicalities of the 
environment. The particularities of using a specific technology to teach mathematics influences the 
mathematics that can be taught. For example, sketch diagrams in paper-and-pencil environments are 
relatively flexible in that they do not have to obey fixed rules in relation to defining and measuring 
angles. The flexibility of the paper-and-pencil environment affords the user the freedom to imagine 
they are working in an ideal mathematical world, where geometric relationships embedded in figures 
can be imagined without being weighed down by rigid rules of construction and where perfect circles, 
exact angle measurement, circle theorems and proof ‘exist’. Diagrams in GeoGebra appear more 
mathematically rigid in this respect, hence Edward’s irritation with the software. However, this 
rigidity can be useful in forcing attention to mathematical details, such as defining angles, which the 
sketch diagram in a paper-and-pencil environment allows the user to elide. Similarly, the window 
frame, its shape and positioning on the wall, influences which part of the outside world can be seen. 
Thus, teachers need to understand the significance of the particular technology for the mathematics 
they are teaching: the technology requires teachers’ explicit attention, it needs to be visible. In this 
sense, mathematical knowledge for teaching using technology is always situated, since the 
technological context in which it is being applied is central to its meaning. Simultaneously, 
technology should enable the teaching of mathematics, in this case the GeoGebra software should 
enable the teaching of circle theorems and should thus be invisible. It is the window through which 
mathematical knowledge can be seen: the GeoGebra software is a means of controlling numerical 
and geometric variation so that pupils are exposed systematically to examples of the circle theorem. 
Here, mathematical knowledge for teaching using technology appears more abstract, allowing 
teachers to make mathematical connections across technological contexts. 

Adler’s description of a dilemma of transparency where the teacher manages talk as a classroom 
resource, so that it is neither too visible for pupils, obscuring the mathematical subject matter, nor too 
invisible so that they are unable to access it, has some explanatory value for this study. However, 
here, the dilemma is managing technology so that it does not become too visible for teachers, 
obscuring mathematical knowledge for teaching using technology, nor too invisible, so that teachers 
assume that technology can be used unproblematically for teaching mathematics. For example, on 
the one hand, Edward’s irritation with the definition and measurement of angles in GeoGebra 
indicated that the software was too visible for him. In this case the GeoGebra software obscured his 
access to mathematical knowledge for teaching using technology, leading him towards rejection or 
restriction of technology use. On the other hand, the case study teachers’ lack of awareness of how 
dragging imposes a particular order on how different configurations of the circle theorem arise 
(reported elsewhere, e.g. in Bretscher, 2015) provide an instance where technology seems too 
invisible. Here, the unintentional pedagogic structuring of mathematics suggests that the technology 
has become too invisible, with an assumption that technology provides unproblematic access to 
mathematical knowledge for teaching. The implication for teacher education is that they need to help 
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teachers manage the dilemma of transparency. That is, just as teachers need to making affordances 
and constraints of technologies explicit to pupils, teacher educators need to make affordances and 
constraints of technologies explicit or ‘visible’ to teachers. In addition, teacher educators need to 
support teachers in identifying teaching strategies that exploit the contrasts and complementarities of 
different technologies, such as dynamic digital technologies and static paper-and-pencil 
environments, so that the technology becomes ‘invisible’ and just another resource for teaching 
mathematics. 
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The appropriate choice of media is a key task in lesson planning. In the past years, there have been 
several studies which indicated potential in the use of digital media in the classroom. Nevertheless, 
these technologies are rarely used in everyday teaching. While one initially thought that this was due 
to the lack of infrastructure, it seems to be more due to a lack of skills. For this reason, the present 
study investigates what skills teachers need in order to teach functional relationships with dynamic 
worksheets, what skills pre-service teachers already possess and how these can be fostered. 

Keywords: Dynamic worksheet, (technological) pedagogical content knowledge, pre-service teacher 
training, functional relationships, qualitative research 

Theoretical background 
Lesson planning is a daily and important part of teachers’ work. Here, the choice of appropriate media 
is a key task, especially when the aim is on achieving mathematical learning goals. From a theoretical 
point of view, dynamic worksheets have high potential for developing functional thinking as seen 
with Lichti & Roth (2018). A dynamic worksheet consists of an applet (dynamic figure constructed 
with GeoGebra which is often embedded in a web page) and accompanying tasks and/or explanations 
(Hohenwarter & Preiner, 2008, p. 318). 

The ability of evaluating dynamic worksheets for learning functional relationships 

With the TPACK model, Mishra and Koehler (2006) have created a framework for what teachers 
need to know in order to use technology in a meaningful way. In order to adapt this framework to the 
ability of evaluating dynamic worksheets for learning functional relationships, the special features of 
developing functional thinking were brought into connection with the features of dynamic 
mathematics software like GeoGebra. In addition, e-learning principles according to Mayer (2009) 
were considered, as the extraneous cognitive load in dynamic worksheets “should be small in order 
to foster more effective learning of mathematical concepts” (Hohenwarter & Preiner, 2008, p. 314). 
As a result, five main aspects are identified: Learning goals, representations, interactivity, tasks and 
multimedia principles. These five main aspects and their sub-aspects have been validated by experts 
(N=14) for adequacy and completeness.  

Research questions 
The study aims to describe how pre-service teachers engage in evaluating dynamic worksheets and 
enhance pre-service teachers’ ability of evaluating dynamic worksheets. Resulting research questions 
are:  

1. How do pre-service teachers engage in the evaluation of dynamic worksheets?  
2. How does training influence the way pre-service teachers engage in the evaluation? 
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3. To what extend can the ability of evaluating dynamic worksheet be promoted? 

Method 
Data collection runs in two parts. During the entire duration, the students' screen is recorded. In the 
first part, the students are encouraged to think aloud, as this method enables the reconstruction of 
thought processes (Wallach & Wolf, 2001) and thus resembles a simulated lesson preparation. 

Specifically, the students are asked to evaluate a dynamic worksheet in relation to a given learning 
goal for its use in the classroom. In the second part, a pre-structured guide is used to give students a 
reflection scheme as a scaffold. In this way, differences within a data collection can be investigated 
and the data collection itself can serve as a learning opportunity. Data will be collected at three 
different times during a teaching-and-learning-lab course in which students are trained to evaluate 
and develop dynamic worksheets. 

Data will be analyzed with qualitative content analysis (Kuckartz, 2018), with the aim of a potential 
type-building of how students proceed when evaluating dynamic worksheets. In addition to the 
interview and think aloud data, students’ topic-specific PCK and CK, previously GeoGebra 
experience and teaching experience are collected as secondary features. 

Expected Results 
A pilot study indicated that students tend to address only superficial features of applets, especially in 
earlier stages of the course. Deepener argumentations and suggestions for improvement were more 
frequently found in later stages of the course. Furthermore, it seems that in later stages of the course 
students find relations between different aspects. 
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The paper examines the quality of digitized tasks designed by 10 (small) groups of prospective upper 
secondary school teachers as part of a geometry course assignment. The results indicate that a small 
instructional intervention, addressing the planning and implementation of tasks in digitized task 
environments as well as how to stimulate students to make mathematical generalizations, led to a 
relatively high proportion (8 out of 10) of high-quality tasks designed by the prospective teachers.  

Keywords: Task design, dynamic geometry environment, prospective mathematics teacher.  

Background 
Dynamic Geometry Environments (DGEs) have been used as educational tools for several decades 
(Sinclair et al., 2016). Mainly, it is the dragging function that is regarded as the defining feature of a 
DGE. By dragging points linked to geometrical objects, students can interact with these objects to 
search for regularities and invariances and to generate conjectures (e.g. Leung, 2011). 

However, to utilize the potentials provided by DGEs, there is a need for carefully designed tasks. 
Indeed, designing DGE tasks or even evaluating existing tasks is not easy for teachers (Trocki & 
Hollebrands, 2018). To address this issue, researchers suggest models or principles for designing 
tasks that take advantage of DGEs as tools for exploration that might lead to conjectures, explanations 
and proofs (e.g. Fahlgren & Brunström, 2014; Leung, 2011). For example, Leung (2011) suggests a 
task design model composed of three epistemic modes that resemble different phases of the proving 
process: exploration, re-construction and explanation. These three modes are sequentially nested in 
the sense that one mode is a precursor for the next mode, which in turn, is a cognitive extension of 
the previous one. In this way, “…this task design model can be seen as a vehicle to carry the 
acquisition of mathematics knowledge.” (Leung, 2011, p. 328).  

In recent years, there has been an increasing interest in how to support teachers in their process of 
designing DGE tasks (e.g. Komatsu & Jones, 2019; Trocki & Hollebrands, 2018). While the study 
by Komatsu and Jones concerns specific task design principles to engage students in heuristic 
refutation, Trocki and Hollebrands provide a more generic framework with the intention to serve as 
guidance for teachers “…both for identifying and for writing high-quality tasks for DGSs [i.e. 
DGEs].” (p. 111). This framework, entitled the Dynamic Geometry Task Analysis Framework, is 
inspired by Smith and Stein’s classification of tasks based on the level of cognitive demand that they 
require (Smith & Stein, 1998) as well as theories linked to various technological action linked to 
DGEs. Although Trocki and Hollebrands demonstrate the effect of the framework on teacher 
knowledge for recognizing and designing DGE tasks, they argue that this is only the beginning 
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because there is a need for more research on investigating the usefulness of the framework (Trocki & 
Hollebrands, 2018).  

Bozkurt and Koyunkaya (2020) address this request by investigating how prospective mathematics 
teachers (PMTs) developed their task design skills in DGE during a period of 14 weeks. Their study 
involved three cycles: (a) seminars on task design, followed by design of DGE tasks, (b) 
implementation of peer micro-teaching, followed by task revision, and (c) implementation in 
classrooms. Besides using Trocki and Hollebrands’ (2018) framework as instructional material to 
develop the PMTs’ skills in designing DGE tasks, the framework was used as a research tool to 
analyse task prompts as well as the questions posed and responses made by the PMTs during their 
teaching practices (Bozkurt & Koyunkaya, 2020). The micro-teaching cycles revealed that the PMTs 
were unable to reach neither the mathematical depth nor the technological actions that they planned 
for. However, Bozkurt and Koyunkaya found an improved development in PMTs’ classroom 
practices after the micro-teaching. Having participated in each other’s micro-teaching lessons, 
including follow-up discussions, the PMTs revised and developed their DGE tasks. Accordingly, 
Bozkurt and Koyunkaya suggest micro-teaching as an important component in teacher education 
courses aiming to develop PMTs’ technology integration skills (2020). Moreover, they confirm the 
usefulness of the framework by Trocki and Hollebrands, both as instructional material and as a 
research tool.  

In a similar study, Gulkilik (2020) examined DGE tasks designed by PMTs. The focus of this study 
was to examine in detail how PMTs’ DGE tasks supported students’ “…acquisition of mathematics 
knowledge”…(p. 2). To enable this, Gulkilik used Leung’s (2011) model for task design. The PMTs 
were introduced to Leung’s model and asked to analyse sample DGE tasks to examine their potential 
of engaging students in activities such as exploration, re-construction, and explanation, which relate 
to the three epistemic modes in Leung’s model. In line with Bozkurt and Koyunkaya (2020), the 
PMTs implemented their designed tasks in micro-teaching with peers acting as students. To analyse 
the PMTs’ tasks, Gulkilik developed a coding manual with descriptors related to each of the three 
epistemic modes as well as the transition between them, which enabled “…a continuous description 
of how PMTs guided students to mathematical understanding in DGE tasks.” (2020, p. 13). One 
prominent finding was that the focus of the PMT tasks was on the construction of geometrical objects, 
i.e. without using pre-constructed sketches. Instead, the tasks included step by step instructions to 
build robust constructions, i.e. constructions were the properties are perceived under dragging. In this 
way, Gulkilik argues, the focus of the PMTs’ tasks were limited to observe and explain invariants in 
the first constructed object, and “…did not utilize the potential of DGE to engage students in terms 
of exploration, re-construction, predicting, conjecturing, or proving…” (2020, p.13), i.e. activities for 
knowledge acquisition in DGE according to Leung’s model (2011). Overall, the literature highlights 
the need for more research on task design within DGE to utilize the potential of the technology to 
reach a deeper mathematical understanding (Sinclair et al., 2016).  

Dynamic Geometry Task Analysis Framework 
Trocki and Hollebrands’ (2018) framework consists of two components: mathematical depth and 
technological affordances (see Table 1). Central in the framework are the prompts, i.e. questions or 
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directions that require written (or oral) responses and/or technological actions. Besides the prompts, 
a DGE task most often includes a pre-constructed or partially constructed sketch of a geometrical 
object (Trocki & Hollebrands, 2018).  

Table 1: Dynamic Geometry Task Analysis Framework (Trocki & Hollebrands, 2018, p. 123) 

Allowance for Mathematical Depth Types of Technological Action 

Levels Descriptions Afford
-ances 

Descriptions 

N/A Prompt requires a technology task with no 
focus on mathematics. 

N/A Prompt requires no drawing, construction, 
measurement, or manipulation of 
current sketch. 

0 Prompt refers to a sketch that does not have 
mathematical fidelity.  

A Prompt requires drawing within current 
sketch. 

1 Prompt requires student to recall a math fact, 
rule, formula, or definition. 

B Prompt requires measurement within 
current sketch. 

2 Prompt requires student to report information 
from the sketch. The student is not expected 
to provide an explanation. 

C Prompt requires construction within 
current sketch. 

3 Prompt requires student to consider the 
mathematical concepts, processes, or 
relationships in the current sketch. 

D Prompt requires dragging or use of other 
dynamic aspects of the sketch. 

4 Prompt requires student to explain the 
mathematical concepts, processes, or 
relationships in the current sketch. 

E Prompt requires a manipulation of the 
sketch that allows for recognition of 
emergent invariant relationship(s) or 
pattern(s) among or within geometrical 
object(s). 

5 Prompt requires student to go beyond the 
current construction and generalize 
mathematical concepts, processes, or 
relationships. 

F Prompt requires manipulation of the 
sketch that may surprise one exploring the 
relationships represented or cause one to 
refine thinking based on themes 
within the surprise (adapted from Sinclair 
(2003, p. 312). 

While the levels (0 to 5) of mathematical depth that a prompt allows reflect the progression of 
cognitive demand, the descriptors for technological actions (A to F) reflect the potential of using a 
DGE. It is the degree of coordination of mathematical depth and technological actions that indicate 
the quality (low, medium, high) of a DGE task (Trocki & Hollebrands, 2018). 

Trocki (2015) reports findings from case studies involving three in-service teachers and three 
prospective teachers. Mainly, the research setup involved three parts: (a) design of a DGE task (with 
a given learning goal), (b) a tutorial session introducing the framework, and (c) redesign of the DGE 
task. By using the framework, Trocki found that all tasks redesigned by the participants increased 
their ranking to the highest level. Among the initial versions of the task, all (except for one) ranked 
medium in quality. Based on these findings, Trocki and Hollebrands suggest that the framework can 
serve as a useful tool in teacher education programs (Trocki & Hollebrands, 2018).  

We had occasion to investigate this issue as part of a geometry course for prospective secondary and 
upper-secondary mathematics teachers. In contrast to the studies by Bozkurt and Koyunkaya (2020) 
and Gulkilik (2020), we only had a very limited amount of time at our disposal; one and a half week 
(over 6 weeks). Accordingly, we designed a small intervention, where the PMTs were asked to design 
DGE tasks as part of the course assignment. This paper aims to gain insight into what impact a small 
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intervention might have on PMTs’ abilities to design DGE tasks by exploring the following research 
question: What quality of DGE tasks designed by PMTs can we expect of the instructional 
intervention? As Bozkurt and Koyunkay’s (2020) study, this paper is also guided by Trocki and 
Hollebrands’ (2018) framework. 

Method 
The study was conducted in spring 2020 in the context of a geometry course for PMTs in secondary 
and upper secondary school (ages 14–18) in Sweden. In total, 24 PMTs were enrolled in the course. 
Although the main aim of the course was to develop PMTs’ content knowledge, in this case, both 
Classical Euclidean and Non-Euclidean geometries, there were some seminars on geometry teaching 
embedded in the course. Particularly, these seminars intended to develop PMTs’ skills in planning 
and implementation of tasks in digitized task environments (such as DGE), as well as their abilities 
to stimulate each students’ learning in the ordinary classroom, including those students who easily 
reach the knowledge requirements. The instructional intervention addressed both these issues by 
offering a seminar that introduced geometrical tasks whose numerical solutions could be developed 
into general results on giftedness and one homework with a follow-up seminar on task design in DGE. 
After the intervention, as part of the course assignment, the PMTs were asked to design (in pairs or 
small groups) DGE tasks for (upper) secondary school for all students at different levels of 
knowledge. Preliminary versions of the tasks were trialled by peers, who provided both oral (at a 
small seminar) and written responses. The PMTs were then expected to revise and provide a final 
version of the DGE tasks. Although the participating PMTs were familiar with dynamic mathematics 
environments as learners of mathematics, the role as task designers were new to them.  

The intervention 

The mentioned seminar, based on a systematic review (Szabo, 2017) was performed by the second 
author of this paper, and highlighted the importance of designing tasks that offer opportunities for 
students to reach general solutions, thereby addressing students performing at higher qualitative 
levels. To achieve this, we suggested using DGE tasks, in which the participants were encouraged to 
explore mathematical relationships, to make and verify conjectures, to generalize (if possible) and 
eventually to construct a proof (Fahlgren & Brunström, 2014). To introduce the ideas behind Trocki 
and Hollebrands’ (2018) framework, the PMTs were encouraged to perform a homework as a 
preparation for a follow-up seminar. As a basis for the homework, we used three versions of a sample 
task, provided by Trocki and Hollebrands, to demonstrate various levels of DGE task qualities. These 
tasks address “…the same two learning goals: 1) justify that opposite angles of parallelograms are 
congruent; 2) justify that the diagonals of parallelograms bisect each other.” (p.127). Each of the tasks 
consists of a combination of a sketch of a parallelogram and some associated prompts for students to 
achieve the learning goals. The homework included a brief introduction to the task, of which three 
versions, A, B and C were provided, and the two learning goals (as described above), followed by 
some prompts (see Figure 1). At the follow-up seminar, the PMTs discussed the homework in small 
groups before a whole-class discussion. The focus of these discussions was on to what extent the 
three versions of the task took advantage of the DGE. For example, which of the versions (A, B, and 
C), if any, encourage students to explore and discover mathematical relationships. 
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(a) Start by constructing a parallelogram in GeoGebra. Make sure that your construction is robust, i.e. that the 
properties of the parallelogram are perceived even when one of its vertices is dragged. 

(b) Perform the three versions (A, B and C) of the task. Reflect on possible constraints and opportunities that each 
version entails for a student to achieve the learning objectives. 

(c) Reflect on the quality of the different versions of the tasks by considering the following questions:  
• How is the potential of the DGE utilized? 
• What is it that makes one task of higher quality than another? 

(d) How can the task be adapted for students who easily reaches the knowledge requirements? Give 
suggestions. 

Figure 1: The homework prompts 

Data collection and analysis 

The unit of analysis was the DGE tasks (both the preliminary and the final version) designed by 10 
groups (A to J) of PMTs, and the written responses from peers. Each task included a number of 
prompts for potential students. Some tasks also included pre-constructed (manipulable) sketches. For 
each task, all prompts were coded with Trocki and Hollebrands’ (2018) framework. The coding 
process was done independently by two of the authors of this paper and then comparisons were made 
followed by discussions (between all authors) until full agreement was reached. Although the 
framework was straightforward to use, some subtleties emerged, which are also recognized by Trocki 
and Hollebrands (2018). First, the distinction between the mathematical depth codes 4 and 5. 
According to Trocki and Hollebrands, the 

 [c]hoice of the word explain, as opposed to justify or prove, was deliberate, in that it serves expose 
the student to the need for explanation as opposed to a particular type of explanation (e.g. deductive 
proof). The code is also based on research that emphasizes a need for students to explain what they 
notice when using a DGS. (p. 124) 

Another subtlety concerns the technological action codes E and F. To sort this out, we needed 
reexamine Trocki´s original work (2015). A prompt is considered a code E when it “…requires 
manipulation and directs the student on what to notice.” (p.173), while a code F was used if the 
manipulation is based on a student conjecture, i.e. ”…not on a preconceived conclusion on behalf of 
the task writer.”(p.174) .  

When all prompts related to a task have been coded, they are assessed holistically to define the quality 
of the task ackording to the three levels described by Trocki and Hollebrands: 

Low: The task does not contain a collection of prompts that co-ordinate mathematical depth and 
technological actions in such a way as to require the student to make generalized conclusions 
based on emergent invariant relationships that go beyond a static sketch. 
Medium: The task contains a collection of prompts that co-ordinate mathematical depth and 
technological actions in such a way that may encourage but does not necessitate that the student 
make generalized conclusions based on emergent invariant relationships that go beyond a static 
sketch. (2018, p.126) 
High: The task contains a collection of prompts that co-ordinate mathematical depth and 
technological actions in such a way that requires the student to make generalized conclusions 
based on emergent invariant relationships that go beyond a static sketch. (2018, p.125) 
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For each of the 10 DGE tasks, all associated prompts were coded by indicating the level(s) of 
mathematical depth and the type(s) of technological action (see Table 1). This coding generated 10 
individual summary tables, which formed the basis for ranking the task quality. To illustrate the 
coding process, we use one of the tasks, designed by Group D (see Figure 2).  

Prompt Code (within brackets) and Explanation 

1. Create an arbitrary quadrilateral (convex) with the tool 
"Polygon". Remove the labels on the sides of the 
quadrilateral. Then mark the midpoints on each side of the 
arbitrary quadrilateral. Use the "Polygon" tool to construct the 
inscribed quadrilateral. 

(1,A,C) 
To “create an arbitrary quadrilateral” (coded A) and to 
“mark the midpoints” (coded C) in Prompt 1, the 
students need to recall the definition of a (convex) 
quadrilateral (coded 1). 

2. Formulate a hypothesis for the type of geometric figure that 
is created when the midpoints are connected. Write down 
your hypothesis on paper. Also, try to drag the corners of the 
original quadrilateral, before formulating your hypothesis. 

(2,3,D) 
Students are asked to drag (coded D) the figure created 
to formulate a hypothesis (coded 3) about the type of 
geometric figure it represents (coded 2). 

3.After formulating your hypothesis, read the length of the 
sides and measure the angles of the inscribed quadrilateral. 
Also, try to drag the corners of the original quadrilateral to 
see any relationships. Does this result agree with your 
hypothesis? What type of geometric figure did you get and 
what characterizes one? If your result is incorrect, justify why 
and state what assumptions you made that were incorrect and 
what should have been your correct conclusion. Write down 
all conclusions on paper. 

(3,4,5,B,D,E,F) 
The codes of technological action emerged due to the 
requirement of measuring the angles of the inscribed 
quadrilateral (coded B), and then to drag (coded D) the 
corners to obtain multiple examples (coded E) from 
which one can generalize to “…see any relationships” 
(coded F). Concerning the mathematical depth, the 
students are encouraged to consider relationships in 
the current sketch (coded 3), and to justify (coded 4) 
the hypothesis from Prompt 2. Since the prompt 
requires the student to go beyond the current 
construction and generalize the mathematical 
relationships, it receives a code 5. 

4. Formulate a hypothesis about the relationship between the 
area of the inscribed quadrilateral and the area of the original 
quadrilateral. Write down your hypothesis on paper. Also, try 
to drag the corners of the original quadrilateral to try to see 
connections before formulating the hypothesis. 

(2,3,D) 
Coded in the same way as Prompt 2. 

5. Measure the area of the inscribed quadrilateral and the 
original quadrilateral. Drag the corners of the original 
quadrilateral to discover interesting relationships. Does the 
result agree with the hypothesis that you formulated in point 
5? Write down your conclusions on paper. 

(3,5,B,D,E,F) 
Coded in the same way as Prompt 3, except for code 
4. In contrast to Prompt 3, Prompt 5 does not require 
the student to justify the conclusion (code 4). 

Figure 2: Analysis of one of the DGE tasks (Group D) designed by the PMTs 

Since the task includes prompts that co-ordinate mathematical and technological actions in ways that 
requires students to draw generalized conclusions (code 5) based on emergent invariant relationships 
that go beyond a static sketch, we ranked the quality of the task as ‘high’. During the quality ranking 
process, we compared and contrasted our interpretations with those made by Trocki (2015). 

Results and discussion 
Table 2 shows our task ranking of the DGE tasks designed by the 10 groups (A-J). Notably, there 
was no difference in terms of task ranking between the preliminary and final versions of the DGE 
tasks. The reason for this might be that the written feedback provided by peers foremost concerned 
clarification of the DGE tool instructions and/or formulations of questions. We also (in Table 2) 
indicate whether the tasks provide students with manipulable pre-constructed sketches or step-by-
step guidance for constructing geometrical figures. 
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Table 2: Overview of the results 

Group A B C D E F G H I J 

Task rankning 
High High High High High High Medium High High Medium 

Pre-constructed 
sketch? No Yes No No Yes Yes No No No No 

 
As seen in Table 2, 8 (out of 10) tasks ranked high, which indicates that the instructional intervention 
worked well. However, these results should be interpreted with caution. Besides the subtleties 
concerning the coding of prompts indicated by Trocki and Hollebrands (2018), the subjective nature 
of the task ranking method must be taken into consideration. In contrast to Trocki’s (2015) study, the 
tasks designed in this study aimed to address different learning goals, which made the holistic 
analyses of the prompts associated with a specific task challenging due to fewer comparison 
opportunities between the tasks. So, for example, to distinguish between ‘may encourage but does 
not necessitate’ (medium’) and ‘requires’ (high), was not straightforward. Consequently, we argue 
that this perspective may affect the validity of our study. Therefore, the relatively high proportion of 
high-quality tasks designed by the PMTs can be questioned. Still, the tasks ranked as high quality 
according to the definition (Trocki & Hollebrands, 2018), indeed include prompts that coordinate 
mathematical depth and technological actions. For example, in this study, the tasks ranked ‘high’ all 
offered opportunities for students to reach a generalization beyond the DGE sketch (Code 5) by 
directions for technological actions such as dragging to recognize invariants in the sketch (Code D 
and E). A possible explanation for the relatively high proportion of tasks including generalization-
making prompts might be the first seminar in the intervention. This seminar highlighted, among other 
things, the importance of encouraging mathematical generalizations as a way to challenge high-
achieving students. Nevertheless, reconsidering the comparatively small size of the instructional 
intervention, we argue that it was successful in that most of the PMTs designed DGE tasks were 
ranked at high quality, at least according to Trocki and Hollebrands’ (2018) framework.   

Moreover, Table 2 shows that several groups did not provide pre-constructed sketches in their tasks. 
This is in accordance with Gulkilik’s (2020) finding that PMTs’ tasks provided students instructions 
to make (robust) constructions on their own. There are several possible explanations for this result. 
In previous courses, the participating PMTs experienced, as learners, tasks designed for dynamic 
environments (although not DGE) that offer construction guidance rather than providing pre-
constructed sketches. Further, the homework (see Figure 1) prompted the PMTs to make a robust 
construction before examining the sample tasks, which might have influenced their task design. 
Moreover, in contrast to previous studies utilizing Trocki and Hollebrands’ framework (e.g. Bozkurt 
& Koyunkaya, 2020; Trocki, 2015), the PMTs in this study were not introduced to the framework 
itself. Instead, they were asked to examine the quality of three sample tasks, as the PMTs in Gulkilik’s 
(2020) study. Since Trocki and Hollebrands’ framework is strongly influenced by the work of Sinclair 
(2003), who provides guidance for designing tasks utilizing pre-constructed DGE sketches, the 
introduction of the framework to the PMTs might affect their choice of providing pre-constructed 
sketches, which was the case in Bozkurt and Koyunkaya’s (2020) study.  
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To sum up, despite its limitations (e.g. no data was collected during the intervention), this study adds 
some different perspectives to the emergent research field of DGE task design (Sinclair et al., 2016), 
particularly in teacher education programs (Trocki & Hollebrands, 2018). This study confirms the 
usefulness of Trocki and Hollebrands’ (2018) framework as instructional material, although not 
necessarily by presenting the framework itself but by asking teachers to evaluate the quality of sample 
tasks. As a suggestion for further research, we propose deepening this study by analysing all steps of 
the intervention, not only its outcome (in this case the designed DGE task and associated written 
responses from PMTs). We also suggest comparing the usefulness of this framework with the 
suggested operationalization of Leung’s model by Gulkilik (2020) to analyse the educational potential 
provided by DGE tasks.  
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Lianghuo Fan1, 2, Sicheng Xie1, Jietong Luo1, Na Li1 and Shuhui Li1*

1East China Normal University, China; 2University of Southampton, UK

Abstract: This paper aims to investigate mathematics teachers’ use of digital resources (DRs) before, 
during and after mathematics lessons. The data were collected from a questionnaire administered to 
146 secondary mathematics teachers from 11 schools in China and follow-up interviews with 19 of 
them. The results revealed that the majority of teachers often or always use DRs in their teaching, 
especially during lessons. In particular, teachers frequently searched online for rich exercise 
problems before lessons, displayed PowerPoint slides during lessons, and used online test makers
after lessons. There still existed a digital divide between secondary schools in rural and urban areas 
of China in teachers’ use of DRs. Teaching experience had a significant impact on teachers’ use of 
DRs before lessons. 

Keywords: Chinese mathematics education, digital resources, mathematics teachers, ICT.

Introduction
With the fast development of information and communication technology (ICT), growing attention 
has been paid to promoting educational modernization in mathematics education. Given the growing 
availability and variety of ICT, in particular, digital resources for mathematics teaching and learning, 
along with relatively little research available on teachers’ use of digital resources, there is a clear need 
for a greater understanding of how digital resources impact mathematics teaching and learning, 
especially from teachers’ perspectives and practice (Pepin et al., 2017; Remillard et al., 2021). 
Drawing mainly on Remillard et al.’s (2021) work, we use the term digital resources (DRs) to refer 
to a broad array of digital applications, tools, media, systems and platforms that provide teachers with 
digital textbooks, exercises, Dynamic Geometry Software (DGS) files, videos and other resources to 
empower mathematics teaching before, during and after lessons.

In this study, we aim to examine Chinese mathematics teachers’ use of various DRs and the factors 
that influence their use. The research questions are: (1) How do mathematics teachers from secondary 
schools in China use digital resources in their mathematics teaching? (2) Are there differences in the 
use of various digital resources by different groups of mathematics teachers?

Literature Review and Conceptual Framework
Prior research showed that teachers’ use of DRs varied in different educational contexts. For example, 
Ibieta et al. (2017) surveyed 6932 secondary teachers in Chile and found that 91% of them always 
used DRs for “search and preparation of resources.” A study with 514 Chinese teachers conducted 
by Shi and Li (2015) reported that only 0.8% of the participating teachers never used computers in 
class. In addition, researchers have examined mathematics teachers’ usage of particular DRs, some 

* Corresponding author. Email: shli@math.ecnu.edu.cn.
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of which were content-based (Vermeulen et al., 2017), function-based (Engelbrecht et al., 2020) and 
DR infrastructure, e.g., devices and Internet (Trouche & Drijvers, 2010).

In terms of the process of teachers’ teaching, earlier studies have revealed that mathematics teachers 
use DRs before, during and after lessons with different instructional purposes. Before lessons, DRs 
play a crucial role in teachers’ lesson preparation. Teachers nowadays have access to various 
resources for lesson planning, such as videos (Oechsler & Borba, 2020) and DGS files (Bozkurt & 
Uygan, 2020). Forgasz (2003) found that 40 of 96 Australian secondary mathematics teachers used 
DRs (mathematics software) for lesson planning. In China, Wang et al. (2019) reported that teachers 
in rural schools commonly used DRs for lesson planning. During lessons, teachers utilize different 
functions of DRs to present instructional materials. Devices used by teachers are not limited to 
computers, Interactive Whiteboards (IWB), projectors and tablets (Trouche & Drijvers, 2010). 
Bretscher (2013) reported that 85% of 188 English secondary mathematics teachers used IWB and 
63% of them used digital projectors in almost every lesson. In contrast, a similar study with Spanish 
mathematics teachers revealed less frequent use of IWB (Gómez-García et al., 2020). After lessons, 
teachers mainly use DRs for assessment, e.g., automatic assessment (Joubert, 2013). However, the 
use of DRs outside the classroom, while more frequent, has been less studied (Ibieta et al., 2017).

In Chinese educational contexts, researchers have reported that there has been little empirical work 
about the types of DRs available for use in education and which DRs are used by teachers in China, 
especially those in rural areas (Wang et al., 2019). In a large-scale survey of teachers in 2168 schools 
in China, Lu et al. (2015) pointed out that there were significant differences in uses of multimedia 
courseware between teachers from urban and rural areas. These studies revealed that some digital 
divides existed between urban and rural schools in China. However, researchers’ knowledge about 
mathematics teachers’ use of DRs remains vague, particularly about the difference between rural and 
urban schools. In this regard, we hope that the current study, with a more holistic view of mathematics 
teachers’ use of DRs in their mathematics teaching, can contribute to filling the gap and deepen our 
understanding of what and how DRs are actually used and what are the associated influencing factors.

Table 1: A conceptual framework on teachers’ DR usage before, during and after lessons

Dimension Before lesson During lesson After lesson

Content PowerPoint slide, micro-lesson 
video, digital teacher manual, etc.

N/A Problems

Function Individual lesson planning, 
collective lesson planning, etc.

Displaying, screenshotting, drawing, 
virtual teaching aid, etc.

Assigning homework, 
teaching reflection, etc.

Infrastructure Devices: computer, tablet, 
smartphone.

Devices: computer, tablet, IWB, etc.;
Internet: online, offline, mixed

Devices: computer, 
tablet, smartphone.

In order to obtain a relatively comprehensive picture of teachers’ use of DRs, we conducted a survey 
of the literature concerning DRs, e.g., digital textbook, DGS file, flash file, short video, online test 
maker (OTM), automatic grading, and devices like computer, tablet, IWB, smartphone, in education 
and more particularly, mathematics education. We also identified other related DRs, e.g., micro-
lesson video, digital teacher manual, screenshot, digital handwriting note and online assessment, 
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through our experience and observations. Partly based on a multi-layer model for analyzing 
“eSchoolbag,” a personal learning tablet containing DRs for teaching and learning school subjects 
(Zhu & Yu, 2011), we categorized DRs in three dimensions: content-based, function-based and DR 
infrastructure, and investigated specific DR usage in the process of teachers’ mathematics teaching, 
that is, before, during and after lessons. Table 1 lists examples of DRs in the conceptual framework 
that we established for this study.

Methods
This study adopted a mixed-methods approach. Following the conceptual framework, we designed a 
questionnaire to collect the data about teachers’ uses of DRs. The first part captured the profile of the 
participants, and the following three parts questioned the use of DRs before, during and after lessons, 
respectively, with items corresponding to the DRs mentioned in Table 1. Each item was measured by 
a 4-point Likert scale, with 4 for “always; more than 4 lessons per week”, 3 for “usually; 3 to 4 lessons 
per week”, 2 for “sometimes; 1 to 2 lessons per week” and 1 for “never”. Open-ended questions were 
used to collect more information about the most frequently used DRs, the difficulties encountered 
when using DRs and the specific functions of DRs that they were most satisfied or unsatisfied with.

Additionally, interviews captured the reasons or examples for teachers’ use of specific DRs. 
Questions were asked such as: “For DRs use before lessons, you rated 4 for item 1, while 3 or 2 for 
the rest. Are there any reasons why you use this more frequently? How do you usually use it?” We 
also conducted a pilot test (n= 8 teachers) to refine the instruments and ensure reliability and validity.

Table 2: Profile of participating teachers (n=146)

Charac
teristic

School 
Location

Gender Educational 
Background

Title1 Teaching Experience 
(Year)2

Partici
pants

Urban: 105 
(71.9%); Rural: 

41 (28.1%)

M: 56 (38.4%); 
F: 90 (61.6%)

Bachelor: 116 
(79.5%); Master & 
Doctor: 30 (20.6%)

Junior: 59 (42.1%); 
Intermediate: 57 (40.7%); 

Senior: 24 (17.1%)

(0,5]3: 43 (29.7%); 
(5, 20]4: 58 

(40.0%); >20: 44 
(30.3%)

Note: All percentages are based on valid responses. 1n=140. 2n=145.35 years or less. 4More than 5 years and less than 20 years. M=Male; F=Female.

Overall, teachers from 11 secondary schools, 7 urban and 4 rural, in 6 cities of China: Shanghai, 
Hangzhou, Nanjing, Jinan, Yiyang and Changde, participated in this study. We received 146 
questionnaires back (response rate: 94.1%; see Table 2 for the profile of participants) in June, 2021 
and conducted interviews with 19 teachers (referred to T1 to T19) from June to August, 2021.

Findings
Use of DRs before lessons, during lessons, and after lessons

Table 3 shows how often teachers used various DRs for lesson planning. 65.7% of 102 participants 
always or often used DRs before lessons (M=2.82). Digital exercises (including problems from 
national/regional exams) received the highest rating (M=3.25), and 80.4% of them always or often 
used exercises. This result was not surprising since rich problems could be downloaded online by 
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teachers. For example, T17 mentioned that when she prepares lessons, she first downloads exercises 
online and then designs teaching activities accordingly. In comparison, flash files received the lowest 
rating (M=2.08). Only 4 teachers always used flash files, and 24 teachers never used flash files. 
During the interview, T11 reported that it was difficult to obtain suitable flash files. Regarding 
functions, teachers used individual lesson planning (M=2.89) most frequently, followed by collective 
lesson planning (M=2.75) and analysis of students’ prior learning (M=2.51). T10 and T12 explained 
that individual lesson planning helped them build their own lesson plan database, which was 
beneficial to their long-term professional growth. Computers (M=3.37) were the most frequently used 
devices before lessons, followed by smartphones (M=2.36) and tablets (M=2.14).

Table 3: Frequency of using DRs before lessons and functions used during lessons

Rank Content before lessons Mean SD Function during lessons Mean SD

1 Digital exercise (n=112) 3.25 0.77 Displaying* (n=105) 3.39 0.74

2 Digital textbook (n=107) 3.08 1.07 Touching, writing and erasing (n=103) 3.20 0.87

3 Digital teacher manual (n=109) 3.06 1.00 Drawing (n=103) 2.87 0.87

4 PowerPoint slide (n=111) 2.87 0.82 Supporting interactions (n=99) 2.67 0.97

5 DGS file (n=110) 2.35 0.81 Saving handwriting notes (n=101) 2.50 0.98

6 Micro-lesson & short video (n=110) 2.32 0.77 Screenshotting (n=97) 2.43 0.90

7 Picture and GIF (n=110) 2.17 0.76 Virtual teaching aids (n=99) 2.34 0.93

8 Flash file (n=104) 2.08 0.78

Note: *The “displaying” function combines five items, including displaying PowerPoint slides, DGS files, or using an IWB, projector or students’ 

tablets/computers to display teaching content.

During lessons, 78.2% of 96 participants always or often used DRs during lessons (M=3.14). 53.3% 
and 44.7% of the teachers always used displaying contents (M=3.39) and touching, writing and 
erasing (M=3.20), respectively. In contrast, only 12.1% of them always used virtual teaching aids 
(M=2.34). During the interview, 12 teachers indicated that displaying DGS files was a good way to 
teach geometry and functions. Some teachers said that they were not quite proficient to use many 
functions of DGS. In terms of devices, teachers used computers (M=3.16) and IWBs (M=2.93) more 
often than smartphones (M=2.04). Challenges like (1) pop-ups and advertisements, (2) switching 
displays, (3) equipment and network error and (4) deviation issues of devices received similar ratings, 
between 2.15 to 2.41. For the internet connection, teachers used offline (M=2.43), mixed (M=2.38), 
online (M=2.34), in a similar frequency. 19 teachers mentioned in the open-ended questions that the 
instability of the Internet caused great inconvenience.

The results revealed that 55.1% of 78 participants always or often used DRs after lessons (M=2.56). 
It is highly related to recent policies as teachers were not allowed to assign digital homework after 
class (Ministry of Education, 2021), as mentioned by five teachers during the interview.
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Regarding various functions, teachers used online test maker (OTM, e.g., ProProfs Quiz Maker) most 
frequently (M=2.48). T5 said she would download exam papers and adapt them for exercises; T10 
said that OTM allowed him to organize and produce high-quality exam papers. In contrast, the 
automatic grading (M=1.82) was rarely used, probably due to the low accuracy (stated by three 
interviewees) and limited types of problems (mainly multiple-choice), as T2 said: “It was not 
meaningful to me as students can check the answers of multiple-choice questions on their own.” 
Furthermore, OTM is rather well-developed, while other functions were not user-friendly and helpful 
to teachers. For content, online problems from previous High School Entrance Examinations (HSEEs) 
(M=2.64) were used most frequently, while original and self-design problems were used least 
frequently (M=2.29). As T10 commented, problems from HSEEs were regarded as “well-designed” 
and “of high quality,” while the quality of original or self-designed problems was doubted. Problems 
from digital textbooks, teacher manuals, exercise books and resource books were used almost equally 
frequently (M=2.46~2.53). For problem sorting criteria, knowledge (M=2.90) and chapter and section 
(M=2.88) were used most frequently. Overall, teachers used tablets (M=1.82) less frequently than 
computers (M=2.79) and smartphones (M=2.13) after lessons.

Differences in the use of DRs by different teachers

Table 4 lists items with statistically significant differences from the chi-square tests. Before lessons, 
digital textbooks and exercises were used significantly less frequently by teachers with experienced 
teachers (more than 20 years) than less experienced teachers. In the interview, T2 pointed out that he 
didn’t search exercises online as he had accumulated enough exercises over the past 30 years, which 
was “what makes us (experienced teachers) different from novice teachers.” T13 said that 
experienced teachers relied on printed textbooks more heavily than novice teachers. It can be inferred 
that experienced teachers are more familiar with printed resources and reluctant to use digital ones. 
Besides, female teachers used digital exercises significantly more frequently than male teachers; 
teachers with graduate degrees used digital exercises significantly more frequently than those with 
bachelor degrees. Teachers from rural schools used tablets significantly less frequently than their 
counterparts from urban schools, which may be related to the availability of tablets. T16 from a rural 
school said in the interview that there was no tablet available in his school. During lessons, female 
teachers adopted the online mode significantly more frequently than male teachers. Teachers from 
urban schools used DRs offline in the whole class at a significantly higher frequency than those from 
rural schools. After lessons, there were statistically significant differences between teachers from 
urban and rural schools in many aspects, especially in OTM. T14 and T16 from rural schools both 
mentioned the lack of devices in their students’ homes, implying a relatively low frequency of DR 
usage. Gender differences were found in manual grading and sorting problems by the level of 
difficulty, in which female teachers used them more frequently. Teachers with graduate degrees 
selected problems by the year of exams more frequently than those with bachelor degrees.

Table 4: Items showing statistically significant differences in frequencies of DRs use between teachers

Dimension Before lessons During lessons After lessons

Content - Digital textbook: 8.335*(SL); Digital teacher manual: 18.109***(SL)
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Digital textbook: 
13.564*(TE); 

Digital exercise:
6.381*(G), 

8.479*(EB), 
9.655*(TE)

Sorting mathematics problems by: 1. Mathematics knowledge: 
15.646**(SL); 2. Level of difficulty: 12.980**(SL), 8.551*(G); 3. 
Chapter and section: 15.122**(SL); 4. Upload time: 17.274***(SL); 5. 
Year of exams: 18.831***(SL), 11.054*(EB)

Function - -
Online test maker: 33.864***(SL); Manual grading: 10.409*(SL), 

9.237*(G); Teaching reflection: 11.683**(SL)

Infrastructu
re

Tablet: 
9.220*(SL)

ON: 11.233*(G); 
OFF: 11.005*(SL)

Computer: 18.405***(SL)

Note: SL=school location; G=gender; EB=educational background; TE=teaching experiences; ON=online; OFF=offline. *p<.05, **p<.01, ***p<.001.

Conclusions
Overall, more than one-half of mathematics teachers in our study often or always used DRs, especially 
during lessons. However, teachers’ use of DRs is still limited in variety. Mathematics teachers used 
DRs at a relatively low frequency after lessons, compared to their use of DRs before and during 
lessons. This result was consistent with the finding reported by Ibieta et al. (2017) that teachers in 
Chile used DRs more frequently outside the classroom for class preparation before lessons.

Before lessons, digital exercises, individual lesson planning and computers were the most frequently 
used DRs by mathematics teachers. From the content-based perspective, digital exercises were the 
most frequently used DRs, which was partly due to the influence of high-stake examinations (see also 
Leung, 1995). Moreover, the finding that teachers used DRs with complex procedures (e.g., DGS, 
GIF and videos) at a relatively low frequency was in line with an ecological metaphor in which 
simpler technologies requiring little adjustment to existing practices are more frequently used (Zhao 
& Frank, 2003). Thus, teachers’ limited proficiency in designing DGS files and other dynamic 
resources leads to the low frequency of using these types of DRs. Also, it was consistent with the 
finding that teachers mainly used DRs for presentations during lessons, as well as the findings of 
Bretscher’s (2013) study where presentation-oriented software dominated English mathematics 
teachers’ IWB use. The frequency of teachers’ use of a particular function varies, which is affected 
by their proficiency in that function. Thus, more professional development programs regarding how 
to use DRs efficiently are needed to support teachers in this aspect. And future research on how DRs 
are used in mathematics classrooms in various contexts may produce new possibilities of integrating 
DRs effectively. After lessons, the relatively low frequency of teachers’ use of DRs was largely 
related to policies, as well as limited and helpful functions of DRs. The well-developed and user-
friendly exam/test production was used most frequently, possibly due to the high-stake examinations.

Overall, experienced teachers tended to use digital exercises and textbooks less frequently than less 
experienced teachers before lessons. There were statistically significant differences between urban 
and rural school teachers in tablet use before lessons, adopting the offline mode during the whole 
lessons, and in most of the aspects of using DRs after lessons, which indicated some digital divides 
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between urban and rural schools in China. More support in terms of providing devices professional 
training programs for effective use of DRs are needed, especially for rural schools in China.
Meanwhile, the flexibility of professional training programs should be maintained among different 
regions, as teachers may evolve in different ways in the same training (Prodromou et al., 2018).

Acknowledgment
This study was jointly supported by two research grants by East China Normal University, one from 
its “Happy Flowers” Strategic Research Fund (Award No: 2019ECNU-XF2H004) and the other from 
the Asian Centre for Mathematics Education (Award No: 92900-120215-10514).

References
Bozkurt, G., & Uygan, C. (2020). Lesson hiccups during the development of teaching schemes: A 

novice technology-using mathematics teacher’s professional instrumental genesis of dynamic 
geometry. ZDM – Mathematics Education, 52(5), 1349–1363. https://doi.org/10.1007/s11858-
020-01184-4

Bretscher, N. (2013). Exploring the quantitative and qualitative gap between expectation and 
implementation: A survey of English mathematics teachers’ uses of ICT. In A. Clark-Wilson, O. 
Robutti, & N. Sinclair (Eds.), The Mathematics Teacher in the Digital Era (pp.43-70). Springer.

Engelbrecht, J., Llinares, S., & Borba, M. C. (2020). Transformation of the mathematics classroom 
with the internet. ZDM – Mathematics Education, 52(5), 825-841. https://doi.org/10.1007/s11858-
020-01176-4

Forgasz, H. J. (2002). Teachers and computers for secondary mathematics. Education and 
Information Technologies, 7(2), 111–125.

Gómez-García, M., Hossein-Mohand, H., Trujillo-Torres, J. M., & Hossein-Mohand, H. (2020). The 
training and use of ICT in teaching perceptions of Melilla’s (Spain) mathematics teachers. 
Mathematics (Basel), 8, 1641. https://doi.org/10.3390/math8101641

Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers. 
Educational Studies in Mathematics, 71(3), 199-218.

Ibieta, A., Hinostroza, J. E., Labbé, C., & Claro, M. (2017). The role of the internet in teachers' 
professional practice: Activities and factors associated with teacher use of ICT inside and outside 
the classroom. Technology, Pedagogy and Education, 26(4), 425-438. 
https://doi.org/10.1080/1475939X.2017.1296489

Joubert, M. (2013). Using digital technologies in mathematics teaching: Developing an understanding 
of the landscape using three "grand challenge" themes. Educational Studies in Mathematics, 82(3), 
341-359. https://doi.org/10.1007/s10649-012-9430-x

Leung, F. K. S. (1995). The mathematics classroom in Beijing, Hong Kong and London. Educational 
Studies in Mathematics, 29(4), 297-325.

Proceedings of CERME12 2540



Lu, C., Tsai, C.-C., & Wu, D. (2015). The role of ICT infrastructure in its application to classrooms: 
A large-scale survey for middle and primary schools in China. Educational Technology & Society,
18(2), 249-261.

Ministry of Education. (2021). Announcement by the General Office of the Ministry of Education on 
Strengthening the Management of Primary and Secondary Students' Use of Mobile Phones.
http://www.moe.gov.cn/srcsite/A06/s7053/202101/t20210126_511120.html.

Oechsler, V., & Borba, M. C. (2020). Mathematical videos, social semiotics and the changing 
classroom. ZDM – Mathematics Education. https ://doi.org/10.1007/s1185 8-020-01131-3

Pepin, B., Choppin, J., Ruthven, K., & Sinclair N. (2017). Digital curriculum resources in 
mathematics education: Foundations for change. ZDM – Mathematics Education, 49(5), 645–661. 
https://doi.org/10.1007/s11858-017-0879-z

Prodromou, T., Robutti, O., & Panero, M. (2018). Making sense out of the emerging complexity 
inherent in professional development. Mathematics Education Research Journal, 30(4), 445–473.
https://doi.org/10.1007/s13394-017-0229-z

Remillard, J. T., Van Steenbrugge, H., Machalow, R., Koljonen, T., & Krzywacki, H. (2021). 
Elementary teachers’ reflections on their use of digital instructional resources in four educational 
contexts: Belgium, Finland, Sweden, and U.S. ZDM – Mathematics Education.
https://doi.org/10.1007/s11858-021-01295-6

Shi, H., & Li, Y. (2015). Conception of teachers’ beliefs about teaching with ICT and the status in 
Nanjing [Paper presentation]. The 2015 International Conference of Educational Innovation 
through Technology, Wuhan, China.

Trouche, L., & Drijvers, P. (2010). Handheld technology for mathematics education: Flashback into 
the future. ZDM–The International Journal on Mathematics Education, 42(7), 667-681.
https://doi.org/10.1007/s11858-010-0269-2

Vermeulen, M., Kreijns, K., Van Buuren, H., & Van Acker, F. (2017). The role of transformative 
leadership, ICT-infrastructure and learning climate in teachers’ use of digital learning materials 
during their classes. British Journal of Educational Technology, 48(6), 1427–1440.
https://doi.org/10.1111/bjet.12478

Wang, J., Tigelaar, D. E. H., & Admiraal, W. (2019). Connecting rural schools to quality education: 
Rural teachers' use of digital educational resources. Computers in Human Behavior, 101, 68-76.
https://doi.org/10.1016/j.chb.2019.07.009

Zhao, Y., & Frank, K. A. (2003). Factors affecting technology uses in schools: An ecological 
perspective. American Educational Research Journal, 40(4), 807-840. 
https://doi.org/10.3102/00028312040004807

Zhu, Z., & Yu, X. (2011). The eSchoolbag system and the modelling of its functions. e-Education 
Research, (4), 24–27,34. https://doi.org/doi:10.13811/j.cnki.eer.2011.04.008

Proceedings of CERME12 2541



Integrating dynamic mathematics technology in pre-service teacher 
education: the case of Ghana. 

Miracule Daniel Gavor1, Alison Clark-Wilson1 and Celia Hoyles1 

1University College London, Institute of Education, United Kingdom; 
miracule.gavor.20@ucl.ac.uk, a.clark-wilson@ucl.ac.uk, c.hoyles@ucl.ac.uk  

Keywords: Ghana, Dynamic mathematics technology, Teacher education curriculum, Mathematics 
teacher education, Professional development. 

Background 
In 2018, the Ghana Tertiary Education Commission revised the teacher education curriculum to a 4-
year Bachelor of Education, which specifically identified the use of dynamic mathematics technology 
(DMT) as a pedagogical tool in the preservice teacher mathematics curriculum to ensure college 
graduates are well-equipped to leverage digital technology for the teaching of mathematics and 
science (UEW, 2018). DMT for the purpose of this research refers to technology offering different 
linked mathematical representations (geometric shapes, graphs, tables, algebraic expressions) that 
teachers and pupils can manipulate and by doing so, engage with the underlying mathematical 
concepts and relationships.  

Problem Statement 
Research studies have reported the many ways that dynamic mathematics technologies can support 
deep and lasting learning by offering learners connected multiple representations -graphs, tables of 
values and equations (Clark-Wilson & Hoyles, 2017) and by providing tangible mathematical objects 
to explore shape enlargement or angle changes (Dick & Burrill, 2016). However, due to the absence 
in Ghana of courses on teaching mathematics with technology, coupled with mathematics teacher 
educators’ lack of training, knowledge and confidence, preservice secondary mathematics teachers 
leave college without the adequate training and exposure to dynamic mathematics technology. Hence, 
they are mostly unable to use dynamic mathematics technology for teaching mathematics both to 
improve the reasoning and creative problem-solving skills of secondary school students and to expose 
secondary students to mathematical opportunities in the digital age. 

Research Aim 
My research aim is to investigate how to foster the integration of dynamic mathematics technology 
within secondary mathematics teacher education in Ghana by improving the mathematical 
pedagogical technological knowledge (MPTK) (Thomas & Hong, 2013) of mathematics teacher 
educators in the colleges of education. 

Research Questions 
My research will investigate mathematics teacher educators MPTK within the context of known 
underuse of Dynamic Mathematics Technology in mathematics classrooms across the forty-six (46) 
colleges of education. The questions below will guide the study. 

 RQ1 How do the current Ghanaian mathematics teacher education curriculum conceive the 
integration of dynamic mathematics technology? 
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 RQ2 What are the obstacles to the integration of DMT for Ghanaian mathematics teacher 
educators? 

 RQ3 What are the design features of professional development course for mathematics teacher 
educators that support them to use DMT in ways that become embedded in their practice and 
lead to effective teaching? 

 RQ4 What is the impact of the professional development course on the mathematics teacher 
educators’ MPTK? 

Theoretical Framework 
This design-based research study will adapt the Conversational Framework pedagogic theory  
(Laurillard, 2002) to create an online asynchronous professional learning course for mathematics 
teacher educators to improve their mathematical pedagogical technological knowledge (MPTK). 
Laurillard’s framework argues that teaching is a dialogue and shows what it takes to learn using the 
ideas of instructionism, social learning, constructionism, and collaborative learning. 

Methodology 
The study will be an exploratory mixed methods design that would adopt a design-based research 
approach. Semi-structured interviews will be administered first to the curriculum designers and policy 
makers followed by a survey questionnaire for mathematics teacher educators. The analysed data 
from the interviews and questionnaires will inform the design of the intervention - an online 
asynchronous professional learning course on a particular DMT- the GeoGebra application 
(GeoGebra, 2021) for the teaching of geometry. In the final phase, the impacts of the course on 
mathematics teacher educators’ MPTK will be evidenced. 
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This research explores the relationships that future mathematics teachers establish between 
modelling, mathematical content and technology when designing tasks for teaching mathematics. By 
means of a qualitative analysis, aspects were revealed in the design of tasks that provide evidence for 
the transversality of mathematical and extra-mathematical content. In the design process 
characteristics related to the modelling process were identified. Also observed was how the use of 
Dynamic Geometry Software (DGS), associated with the construction of static and dynamic 
simulations, can expand and transform the mathematical work initially planned in a task. The findings 
of this work show the potential of the design of modelling tasks to the development of knowledge for 
training future teachers.  

Keywords: Modelling, Dynamic Geometry Software, tasks, pre-service teacher 

Introduction and conceptual framework 
The role of the teacher in selecting, designing or modifying tasks has been discussed in different 
environments, where two elements that frequently stand out are the intended task and the enacted 
task. This research explores the work that future mathematics teachers carry out during the process 
of designing the intended task. In particular, in keeping with the work of Sullivan and collaborators, 
we study the “interactions among aspects of task design: design elements of tasks, the nature of the 
mathematics that is the focus of the tasks, and the task design processes” (Sullivan, Knott & Yang, 
2015, pp. 84). Tasks for learning mathematics can be classified in different ways, depending on the 
activities they promote. In this work, a modelling task is defined as one that encourages the modelling 
activity, where modelling is understood as a transition between reality and mathematics in order to 
address a problem that occurs in real life. 

Various elements of teacher knowledge are brought to bear in the process of designing a task (Hill, 
Ball & Schilling, 2008). Moreover, when the design considers the use of technology and modeling, 
the range of knowledge required of the teacher is expanded. We have found results that indicate how 
participating in the design of modelling tasks in digital environments impacts the Technological 
Pedagogical Content Knowledge (TPACK) of future mathematics teachers (Guerrero-Ortiz, 2021). 
Different models have also been explored to describe the skills that a teacher should master to teach 
modelling, and ways have been suggested to operationalize development of these skills (Borromeo, 
2018). The review of the literature reveals that designing tasks for learning is in itself a challenge for 
teachers and, by involving technology and modelling, the situation becomes even more complex as 
more knowledge is needed. 

Based on the fact that the specific introduction of a type of tool promotes concrete changes in the 
activities that individuals perform (Jacinto & Carreira, 2017), the types of activities that emerge when 
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modelling in digital environments reflect, to a certain extent, the potentials of the tool that individuals 
recognize, in our case, future mathematics teachers. By this way, we argue that in the modelling 
process, the actions of individuals reflect part of the mathematical thinking that is brought to bear 
when they explore ways of approaching the design of a modelling task. While technology itself does 
not have an objective, in this work we seek to answer the question: What are the characteristics of the 
modelling tasks designed by future mathematics teachers with the use of technology?  

Methodology 
By means of a qualitative analysis, we studied the design process and the modelling tasks for teaching 
mathematics developed by two groups of future mathematics teachers (G1 and G2). Each group 
consisted of three participants who had to design, implement and analyze a mathematics teaching 
task whose content and grade level were chosen by them. Before they designed the tasks, the 
participants had been introduced to problem solving and modelling in a Dynamic Geometric System 
(DGS) environment. The design of the task thus reflects in part their knowledge of modelling and 
their knowledge of teaching mathematics in digital environments. The work of these participants was 
chosen because it highlights the difficulties encountered by those who design modelling tasks, and it 
accounts of two modes of exploiting the DGS (Swidan & Faggiano, 2021) in teaching tasks. The 
information gathering instruments consisted of a document on which the participants reported the 
modelling process employed during the design of the task, and an electronic file containing the 
construction in GeoGebra. The written document was analyzed using the content analysis method, 
while the electronic file was analyzed using the “construction protocol” tool, which allows looking 
back and redoing every step of the geometrical configuration. 

For data analysis, the task design process is first described, consisting of two major stages: the 
research and the pre-service teachers’ modelling process. Each of these stages in turn considers some 
of the actions shown in table 1. These stages highlight crucial aspects of the modelling process 
undertaken by the participants that have an impact on the task designed. Subsequently, based on how 
the participants exploited the technology, ways to expand or improve the task are explored. 

Research Modelling 
- Choose the context 
- Explore mathematical and extra-
mathematical knowledge 
-Focus on mathematical content 

-Simplifying and idealizing 
- Construct models 
- Working with models 
- Obtaining mathematical results 
- Interpreting and validating 

Table 1: Stages of the design process, compiled by authors 

Data analysis 
This section presents the analysis of the tasks designed by each of the groups. A general description 
is first shown according to the points listed in Figure 1, and the role of technology in each task is then 
analyzed, along with the ways in which the potential of DGS can be more fully exploited. 
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Analysis of design made by Group 1

Based on the school level of the course they were teaching during their professional training (12-13-
year-olds), the participants in group G1 decided to address the teaching of proportions and 
applications of areas. Based on this choice of content, they studied the case of a crop farm. They 
began by exploring in Google Maps (Fig 1) the areas of some tomato, chard and potato farms, which 
are widely consumed in Chile, from where they obtained relevant data, such as the production yield 
per hectare, types of soils, climates, and recommended seasons for sowing (extra-mathematical 
knowledge).

Product Average yield 
per hectare

Distance 
between plants

Chard 16 294 0.4 to 0.5 m

Tomato 25 196 0.5 to 0.7 m

Potato 24 000 0.5 to 0.7 m

Figure 1. Initial exploration of the situation

After exploring the situation, an idealization process took place to determine the relevant information 
to be used in the teaching task, assuming a production yield per square meter. They also considered 
a square plot measuring 25 m x 25 m, with the condition that each field should have the same area 
(Fig 2). They also set the values by specifying the production yield per square meter: chard 15 kg/m2, 
tomato 8kg/m2 and potato 13kg/m2. At this time, the study of the situation lost any semblance with 
reality, since when calculating the final production, they obtained quantities that differ considerably 
from the average values. This is explained by the oversimplification of the situation, which assumes 
that each plot of land produces the same amount of product and ignores the density of plants in a 
given area. This aspect is also related to the omission of the validation phase associated with 
modelling, so the initial approach to this task stands out for the participants' lack of control over their 
procedures and reflections. This is associated with a metacognitive ability for the development of the 
modelling process (Czocher, 2018). 

In this case, the design of the task depends on the mathematical content for teaching (areas and 
proportions), an aspect that determined the study context selected and the restrictions in the 
exploration of a situation that should comprise a modelling task. Moreover, the questions that are 
finally posed to the students (Fig 2) denote that the activity could well be carried out by omitting the 
context. In other words, the context is not relevant to achieving the desired objective learning, nor is 
it a source of reflection. Regarding the DGS exploitation mode, since it was initially designed to have 
the students carry out the construction, it considers the use of tools, such as a polygon, a vector to 
define the diagonal that divides one of the plots of land, intersections and calculation of distances.
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1. Calculate the area of each zone. 
2. Calculate the length of the sides of each zone, since you will want to fence them in soon. 
3. What is the approximate yield he can expect knowing that [...] 
4. If he expands the plot with chard, knowing that the tomato and potato zones have to be the same, how will 
the proportion change […] 
Figure 2. Task designed by a group of future teachers. This figure shows part of task 1 designed 

by G1 (the introduction has been omitted, which is of the type “Help Mr. Ramón to…”).  

The mathematical content present in the task, in coordination with the use of technology, can give 
rise to the exploration of mathematical concepts of another order, for example to introduce the image 
of simultaneous covariance of two quantities, an element that is essential to understanding the concept 
of function (Carlson, et al 2002). Based on the idea initially presented in the task, and in view of the 
fact that the context was irrelevant to the mathematical reflection, we next explore ways, from a 
purely mathematical context, in which the task could be exploited to encourage engagement by the 
students.  

Figure 2 (right side) shows the construction made by the participants, where slider a controls the 
length of side AE, which is congruent to side FC, such that when it is moved, it changes the area of 
each figure in the geometric configuration. The triangles EFG and EFB are congruent. Graphing the 
area of one of the triangles and the area of figure AEGFCD yields the right graph in Figure 3a. This 
can be used to introduce the study of variation, with segment length AE as the independent variable 
and the area as the dependent variable. The point where the curves intersect represents the case in 
which all three areas are equal. 

Another interesting case that allows us to explore the DGS is the construction where the independent 
variable is given by the values of segment QR, resulting in the graphical representation shown in 
Figure 3b. Of note in this case are the different growth rates. 
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(a) Graph of side AE vs area of triangle FEB and 

AEGFCD 
(b) Graph of side QR vs area of triangle and 

C1D1A1TRS 
Figure 3. Exploring different ways to approach the task 

These ways of approaching the task, shown in Figures 3 a and b, supported by the dynamism offered 
by the software, can be used to explore the covariance between the input value and the output value 
(area) in the same situation. The construction of the dynamic configuration and the use of the slider 
to control the independent variable are essential to determine the dependency between the variables. 
This paves the way to introducing the concept of rate of change, domain and range as a preliminary 
step to studying functions, aspects that had not been initially considered in the design of the task. And 
improving the context of the task can lead to the study of a crop yield optimization problem. Note 
that in the previous cases, the sides of the triangle vary similarly, at the same time, giving rise to 
quadratic behavior. If we vary only one leg of the triangle while keeping the other constant, this 
results in linear behavior, which introduces a modification to the task. The table 2 below summarizes 
the main characteristics of this task. 

DGS exploitation 
modes 

Predicted mathematical 
knowledge 

Mathematical 
knowledge emerging 
from the construction 

Technical knowledge 

-Construction of a 
geometric 
configuration, 
considering equal areas 
and different shapes. 
- Exploration of 
changes in areas and 
perimeters, and 
changes in yield  
- Static simulation 

- Direct and inverse 
proportions. 
- Graphic and tabular 
representation  
- Lines, perpendicular, 
parallel, bisector 
- Triangles, their dimensions 
- Midpoint of a segment 
- Congruence  
- Calculating areas  

- Vector  
- polygon  
- variable 
- straight line (vector 
definition) 
- point and segment 
- intersection 
- symmetry 
- distance 
- ratio 

- slider to control the 
characteristics of the 
configuration. 
- Point in 
- Straight line passing through 
- Vector  
- Segment  
- Intersection 
- Axial symmetry 
- Distance between points 

Table 2. Summary of the characteristics 

Analysis of design made by Group 2 

The design of task 2 is based on a study of the dimensions of vehicles that go through a tunnel. In this 
case, the participants looked for information online about the dimensions and shapes of tunnels, and 
about accidents where the vehicle impacts the structure due to exceeding the allowed dimensions. 
These aspects defined the choice of context. Based on the above, the situation was simplified and 
idealized assuming, primarily, that the vehicle moves in a straight line, and the shape of the tunnel 
was approximated by a parabolic arch with height and base width fixed (Figure 4a). From here, the 
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participants determined the mathematical learning objective of the lesson (modelling situations using 
the quadratic equation, recognizing representations of the parabola and solving problems involving 
intersections) for high school students (16-17 years old). In this case, as in task 1, there was a certain 
disconnect with reality due to considering unrealistic data for the dimensions of the vehicles. 

The simplification of the situation in this case leads to a study of different representations of the 
parabola in the context of DGS. On the one hand, by representing the shape of the tunnel with a 
parabola, the first element that emerges is its construction, which can be carried out in at least three 
different ways: a conic given five points, by means of its algebraic expression, and using the parabola 
tool given the focus and directrix. The participants chose the second option. The cars are then 
represented by means of rectangular prisms. 

Task 2 asks, given the width, to determine the maximum height that vehicles can have that cross a 
tunnel shaped like a parabolic arch. This task requires broad mastery of DGS to construct the 
simulation that represents the situation in the 3D graphic view where the objects are moving (Fig 4a). 
The analysis is subsequently done in a 2D graphic view. The mathematical activity is then steered to 
determine the point where the height of the quadrilateral intersects the parabola (Figure 4b). This 
implies a mathematization process where the shape of the tunnel is represented with a parabola, with 
its axis on the y-axis, the maximum height of the tunnel (h meters) and its width at the bottom (a 
meters). These parameters are associated with the vertex of the parabola (0, k) and points (-a/2, 0) 
and (a/2, 0) respectively. This information is used to determine its equation  and graph 

the parabola and quadrilaterals (Figure 4b). 

  
(a) Representation of the 3D situation (b) Representation of the 2D situation 

Figure 4. Students’ representation of the situation 

To explore the solution, if distance LM is fixed in figure 5b, the problem is reduced to determining 
the equation of the straight line that passes through points J and L, and solving the system of equations 
formed by the equation of this line and the equation of the parabola. But if this distance is not fixed, 
another DGS mode of exploitation emerges where the quadrilateral has horizontal movement, 
allowing for exploration to obtain different heights (Figure 5a). 
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(a) constant base, different heights (b) allowed dimensions of two quadrilaterals  

Figure 5. Exploring the dimensions of the quadrilateral 

Now, since there are two quadrilaterals, exploring the movement allows us to observe how the 
dimensions of one quadrilateral affect the dimensions of the other such that both can be inscribed in 
the area between the parabola and the line y = 0. Thus, another form to exploit DGS emerges when 
modifying the task to allow for exploration of the maximum dimensions that one or both 
quadrilaterals inscribed in the figure can have (Figure 5b). The characteristics of this task are 
summarized in Table 3. 

DGS exploitation 
modes 

Predicted 
mathematical 
knowledge 

Mathematical knowledge 
emerging from the 
construction 

Technical knowledge 

-Exploration the 
intersections using 
DGS, considering the 
width and height of 
the quadrilaterals 
- Static simulation 

- Midpoint 
- Elements of the 
parabola: concavity, 
vertex, endpoints, 
algebraic expression. 
- Intersections 
- Areas  

- Line through two points 
- Segment, distances 
- Intersection 
- Multivariate function with 
domain restrictions 
- Operations with functions  
- Parabola and its elements 

- Slider to control the 
characteristics of the 
configuration. 
- Point in  
- Segment  
- Intersection 
- Distance between points 
- 3D graphic 

Table 3. Summary of the characteristics of the task designed by group 2. 

Discussion and Conclusions 
In the above cases, we can differentiate between two elements associated with the design of the tasks. 
The first is the modelling process undertaken by the future teachers, which involves the following 
phases: selection of a real-life problem, simplification/idealization, recognition of the mathematical 
learning objective, and mathematization. When designing a modelling task, it was hoped that the 
participants would also model it; however, the analysis shows that their process does not span a 
complete modelling cycle, as defined in some of the commonly recognized modelling cycles (Doerr, 
Ärlebäck and Misfeldt, 2017). This is explained by the fact that the simplification was done with the 
goal of designing a task with a specific mathematical learning objective in mind, and not with the 
goal of teaching modelling.  

The second element involves the potential of the software, as exploited by the participants. In both 
cases, they exhibit a general domain of DGS, their use of which is limited to fulfilling the objective 
of the tasks. Moreover, representing the situation or part of it in the DGS environment results in a 
mathematical exercise that, without adequate teacher intervention, could detract from the modelling 
objective. In the tasks analyzed, the software's role in mediating and enhancing the mathematical 
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activity is evident in the mathematical work phase, a fact that should be taken into account in the 
pedagogical training of future teachers.  

We also observed some tension between the choice of the mathematical learning objective and the 
choice of an interesting context for the students, in the sense that the choice of the mathematical 
objective precedes the exploration of a situation to model (task 1), or how the participants sought to 
determine the mathematical objects in a situation (task 2). This seems to give rise to a context 
dilemma, in which the solution to the task could either be found without involving a particular 
context, or the context may be irrelevant or be a source of difficulties in achieving the desired learning 
(Sullivan, Knott & Yang, 2015). 
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This paper aims to characterize the processes in which mathematics teachers engage while solving 
non-routine mathematical problems and express their reasoning with technology. The descriptive 
model Mathematical Problem Solving with Technology was used to analyse an experienced teacher’s 
utterances and actions while solving a mathematical problem with a spreadsheet. Our findings reveal 
the complexity of expert problem solving with technology, through regulation processes and several 
micro-cycles involving the processes integrate and explore. The teachers’ techno-mathematical 
fluency seems crucial to solving the problem and expressing the reasoning with technology. 

Keywords: Mathematical problem-solving, techno-mathematical fluency, experienced mathematics 
teachers, expert problem solving. 

Introduction 
Digital technologies provide significant opportunities for enhancing mathematical thinking process-
es. Yet, the literature shows that most of the technology uses in mathematics learning consist of forms 
of replicating traditional classroom approaches with some improvements (Bray & Tangney, 2017).  

Mathematical problem solving (PS) has been over decades a fertile field of research (Santos-Trigo, 
2020). However, the role and impact of digital tools in the processes of solving mathematical pro-
blems remains an underexplored topic. Some studies address the strategies and ways of reasoning 
developed by means of digital tools (Santos-Trigo & Reyes-Martínez, 2019; Silva et al., 2021). Rott 
et al. (2021) propose a model of PS processes that can be used to characterize students’ processes 
with dynamic geometry. Still, it is strongly influenced by Schoenfeld’s (1985) model, which was 
based on paper-and-pencil work and did not account for the affordances of digital tools nor does it 
provide ways of explaining their role in the PS processes. In this paper we report on an exploratory 
case study developed to answer the following research question: what is the role of technology on 
mathematics teachers’ processes of PS and how does it support their mathematical thinking? 

Theoretical framework 
Cognition in digital settings has been conceptualized as stemming from the interactions between 
individuals, technology, and the media; hence, humans-with-media entails the transformational and 
reorganizational power of the digital tools with which one thinks and acts (Borba & Villarreal, 2005). 
Technology plays a significant role in the development of mathematical thinking; it allows innovative 
ways of accessing information and affords new styles of thinking and knowing, producing a 
reorganization of cognitive activity, namely, in the PS processes. 

Our research has been focusing on non-routine mathematical problems, i.e., challenging situations to 
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which the solver does not have a straightforward mathematical process that leads to the solution. 
Solving these problems by means of digital tools requires the engagement in a mathematisation 
activity that leads to a productive way of dealing with the challenging situation (Lesh & Zawojewski, 
2007), entailing both mathematical and technological knowledge. The development of a conceptual 
model is consistent with a progressive mathematisation activity, where a model of a particular 
situation evolves into a model for explaining or justifying the solution (Gravemeijer, 2005). As the 
conceptual model portrays the mathematical reasoning developed, it becomes difficult to establish a 
clear boundary between the solving activity and the explanation of the reasoning. Often, they are so 
entangled that solving-and-expressing summarizes the synchronous processes of mathematisation 
and expression of mathematical thinking (Jacinto & Carreira, 2017). 

Regarding teachers’ use of technology in PS, Silva et al. (2021) discuss the ways of thinking-with-
technology developed by collectives of teachers-with-media, concluding that the tools brought to the 
fore, GeoGebra and a Spreadsheet, influenced the exploration of the problem, not only visually, but 
also numerically and experimentally. Hernández et al. (2020) analysed pre-service teachers’ mathe-
matical understanding when dealing with problem solving in GeoGebra. They found that GeoGebra 
played a fundamental role in articulating different approaches and in the effective use of control 
strategies (such as, evaluating the solution or finding support for their conjectures). This leads to 
consider teachers’ proficiency in using digital tools in their problem-solving-and-expressing activity. 

The ability to articulate mathematical and technological skills, such as ‘techno-mathematical 
literacies’ (Hoyles et al., 2010), is seen as relevant to efficiently solve a problem from a mathematical 
perspective and to communicate its solution. The term ‘fluency’, adopted from Papert and Resnick 
(1995), seems appropriate to describe the ability of articulating a complex idea by means of a tool, 
being able to do or construct relevant things with it. Thus techno-mathematical fluency (TmF) refers 
to the ability to combine mathematical and technological knowledge for solving-and-expressing non-
routine problems (Jacinto & Carreira, 2017). It entails bringing together digital tools and mathematics 
to create new understandings of the situations, develop techno-mathematical thinking and express it 
effectively. As with digital fluency, TmF involves to be able to select a useful technological tool from 
a pool of possibilities, the recognition of particular affordances in the tool, and knowing how it can 
be used to reach a mathematical outcome. 

Research Method 
This study investigated the processes of an experienced mathematics teacher, Sofia (pseudonym). A 
qualitative approach was used in collecting and analysing data. Data collection took place online, 
through Zoom. At first, in a semi-structured scoping interview the teacher was invited to talk about 
the role of PS and technology in mathematics teaching and learning. Then, she was asked to select 
one non-routine problem among four possibilities provided, and to solve it using the digital tools of 
her preference. She was asked to verbalize every thought and to make explicit every action, and to 
share her computer screen which enabled the video recording of actions and utterances while solving 
the problem. Data includes the video recording and the files produced by the teacher.  

The teacher’s processes were analysed, using NVivo, based on the transcript (utterances) and the 
video recording (actions), aiming to identify critical events (Powel et al., 2003) that would allow to 
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segment the activity. Deductive coding was performed on the segmented data, based on the ten 
processes of the descriptive model of Mathematical Problem Solving with Technology (MPST) 
developed earlier (Carreira & Jacinto, 2019; Jacinto & Carreira, 2017).  

A keystone of the MPST model is the inseparability between the subject and the digital tool in solving 
the problems and expressing the solver’s techno-mathematical thinking. The MPST model results 
from the combination of two theoretical lenses: Martin and Grudziecki’s (2006) model for solving a 
technological problem, and Schoenfeld’s (1985) mathematical problem-solving model. The MPST 
model includes ten processes: i) Grasp refers to the first encounter with the problem, either by reading 
or stating it, to an appropriation of the situation and early ideas involved; ii) Notice entails an initial 
attempt to understand what is at stake, the mathematics and the digital tools that may be useful; iii) 
Interpret is about placing affordances in the digital resources to ponder mathematical ways of 
approaching the solution; iv) Integrate refers to the combination of technological and mathematical 
resources within an exploratory approach; v) Explore entails the use of technological and mathema-
tical resources to explore and analyse conceptual models that may enable the solution; vi) Plan 
involves the outlining of an approach to achieve the solution based on the analysis of the conjectures 
previously explored; vii) Create refers to carry out the outlined approach, recombining resources in 
new ways to enable the solution and synthesise new knowledge objects that will contribute to solve-
and-express the problem; viii) Verify involves engaging in activities to explain and justify the solution 
based on the mathematical and technological resources available; ix) Disseminate refers to presenting 
the solution or outputs to relevant others and pondering on the success of the PS process; and x) 
Communicate comprises the interactions with relevant others while dealing with the problem. 

The processes were used to code the segments and their analysis supported the writing of the case of 
the teacher Sofia solving-and-expressing a problem with the spreadsheet. In the next section, we 
describe the segments of her problem solving activity by summarizing, in the form of tables, the 
processes that she carried out at each stage.  

Results and discussion 
Sofia is a secondary mathematics teacher, with over 20 years of experience. She is highly enthusiastic 
about the use of technology, as she uses and promotes her students’ use of digital tools (e.g. the 
calculator, GeoGebra, Kahoot). She thinks some tools are suited to particular kinds of problems and 
that the teachers’ familiarity with such tools is fundamental to their successful integration. A detailed 
and clear explanation of the reasoning process is essential, and Sofia urges her students to do it.  

Selecting the problem and grasping the conditions 

Sofia started by reading the given problems but spent more time in some parts of the one she would 
choose (Figure 1), by reading out loud fragments of the statement.  
Leonor borrowed the video camera from her mother to film the general rehearsal of the play she is preparing with 
her colleagues at the Theatre Club. She knows that the camera’s battery lasts 2 hours if it is in recording mode 
and lasts 3 hours in playback mode. Leonor wants to record the rehearsal and immediately watch that video with 
her colleagues, but cannot re-charge the battery. What is the maximum amount of time of the rehearsal that she 
can record, in minutes, to be able to view everything she recorded, right after?  

Don't forget to explain your problem-solving process! 
 

Figure 1: The problem chosen by Sofia: “How long does the battery last?” 
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It became clear that it was a new problem for her: “I’m not seeing a way to solve it. At first sight, I 
would say least common multiple… no, the greatest common divider… I don’t know… but it’s 
interesting. I might try this one out!” (grasp) (Table 1). Sofia notices that the spreadsheet is an 
appropriate tool to deal with the problem. Realizing that, if the recording lasts 2h, it will not be 
possible to play it (interpret) she begins to consider recording only 1h, and creates a table with Excel 
inserting titles and colouring cells A1 and B1, resizing the columns, and formatting boundaries 
(integrate). Then she tests the previous hypothesis, filling 1 in the recording column and 1 in the 
playing column, although she thinks this experiment will not lead to the solution (interpret). 

Table 1: Utterances and actions of Sofia during the initial approach 

What Sofia did or said MPST 
processes 

- reads the problems to appropriate the notions that may be involved, identifies a situation as familiar, 
chooses the problem to solve: “I like this one… it looks more challenging” Grasp 

- “I’m opening an Excel”, says, while overlapping that window with the page that contains the problems 
- reads the problem again: the battery lasts 2h when in recording and 3h when in playing mode Notice 

- hypothesis 1: “let’s see, a possibility… if she records 2h, she’s not able to see it. If she only records 1h…” Interpret 
- starts by organizing the information on a table: types “recording” in cell A1, and “playing” in cell B1 
- formats the table: adjusts the cells dimensions, colours them in orange, formats table’s boundaries 
- inputs 1 in A2 and 1 in B2 

Integrate 

- “this is so basic… but I think this way won’t take me there” Interpret 

Testing with an erroneous approach 

Sofia’s subsequent activity is characterized by a micro-cycle between the processes integrate-
interpret (occasionally, explore) which entails introducing formulas in the spreadsheet using its 
syntax, testing concrete cases and analysing the results obtained in light of what she was expecting. 

She assumes that 5h is the total battery duration and writes 2/5 and 3/5 in her spreadsheet model, 
meaning the ratio of the recording time and of the playing time, respectively. After some attempts, 
she decides to test a familiar case: if the recording takes 2h, she knows that the battery will be empty. 
But the result obtained with her model in Excel (0.8h of playing time) is not what she expected (0h). 
The tests, based on the initial erroneous assumption, disregard that the battery fully charged lasts 2h 
in recording mode and the same full charge lasts 3h in playing mode. These experiences support a 
perspective that will become crucial in the development of the solution: the time left after a certain 
recording. However, another difficulty seems to persist which is related to the perception of the 
existence of two variables of the same nature – the “amount of time spent using the camera” and the 
“amount of time that the battery lasts”, entailing an inverse proportion. 

Testing and developing the conceptual model: “the percentage of the battery left” 

The exploratory phase of Sofia’s activity (excerpts in Table 2) entails the test of a familiar case (1h 
in recording mode) and a new way of looking at the problem: the percentage of the battery left. When 
recording 1 hour, half the battery is spent and the remaining half allows watching a 1h30 video 
(explore). Realizing the potential of this approach, she adds a column - “LeftB” - where she considers 
the percentages of battery left after a certain recording time. That column is a new techno-
mathematical object that reveals how she is conceiving the path towards the solution (planning). 
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Table 2: Utterances and actions of Sofia during the development of the conceptual model

What Sofia did or said MPST 
processes

- “hum... 2h… I record 2h, its over, I can’t, I can’t watch it. (…) but if I have something previously recorded 
during some other time, I can play it for 3h. I can watch 3h of recording” Interpret

- “If I record for instance 1h, let’s see, I recorded 1h then I spent half of the battery. I recorded 1h, so 50% of the 
battery is left… 100% of the battery would allow to record 3h, 50% will allow for an hour and a half. There!”

- “I’m in another line of thought now”
Explore

- Inputs 1.5 in cell B3 (testing) and explains “there will be 1h left of recording… the battery is left… if in here I 
record 1h, there will be 1h left” Interpret

- Inserts ‘LeftB’ (what is left of the battery) in C1 and in C3 inputs ‘1’ justifying “just to see if this allows me to 
generalize something faster” Plan

- “there is 1h left, no, I have half of the battery left” Interpret
- In the cell C3 she records 50% and in D3 she computes the percentage of the 

battery that is left to play the video, that is 3 = 3 ∗ 2 Integrate

- “I have 50% left of the battery… so I recorded 1h, half is left, I kept half of the 
battery and that half battery will give, will be 50% of the 3h (…) I will have an 
hour and a half. An hour and a half to play the video”

Interpret

- Inputs 1.5 on A4, which corresponds to 1.5h in recording mode Integrate
- “If I record 1h30 it is left… [sighs] I get a quarter of the battery left”
- “I’m computing without generalizing and this should be generalized 

completely… so… I’m left with 25%...”
Interpret

… …
- “is it enough to play? I don’t know, I’ll see… I don’t want to make one by one”
- Replaces the percentages of battery left after the recording with a formula, that 

is, C3=50% is replaced by C3 = 1 − A3/2
- “I have 50% left. This is what is left and here [C4], it will have to be 25%”
- Drags the fill handle from C3 to C4 and confirms that the result is 25%.  

Explore

- “I have 25% left, now what do I have to do? I have to calculate 25% of the 3h” [using the spreadsheet] Interpret
- “let’s see if it’s enough, 1.7... 1.7”, says, inputting 1.7 in cell A5
- inspects the formula, asking “What percentage is left?” and by dragging 

the fill handle from C4 to C5 concludes “15%”
Integrate

- “at the first sight there is still a little left over. Oh, but it’s not enough to see, because then I need to play... I 
have to see what I recorded [laughs]. I was forgetting that detail of the problem, wasn't I? Then it’s not working 
there [1.5 in recording mode]… right?”

- Look, I think I've moved ahead but now I'm finding myself stuck somehow...

Interpret

- engages in reviewing the steps taken so far and her reasoning, explaining the meaning of lines 1 and 2 in the 
spreadsheet and going through the several experiments made with particular cases Verify

Sofia’s conceptual model (a model of) is being developed as she tests other values even if, at this 
point, they are worked out mentally and manually inserted on Excel. The processes integrate, interpret
and explore follow each other in a cyclical way (Table 2), while Sofia keeps aiming to find a more 
robust approach that takes advantage of the spreadsheet affordances: “now how do I put it this here 
in a formula? (…) this should be completely generalized”. The process interpret includes observations 
regarding the testing of particular cases, whilst the process explore is related to the use of those 
experiences in the refinement of the conceptual model.

The exploratory activity continues until she obtains a formula for the case corresponding to the
recording of 1.5h, in which the battery is left with 25% of its capacity, and uses it to test 1.7h. She 
concludes that the solution must be somewhere between 1h and 1.5h but, as she fills stuck, she decides 
to review her reasoning and processes (verify).

PlayRecord 
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Finding and expressing the solution 

After concluding that the overall reasoning is correct and confirming that the formula used throughout 
column C (to compute what is left of the battery after a certain recording time, “LeftB”) is correct, 
Sofia realizes that she is looking for two equal values in different columns (A and D). She then colours 
these two columns in orange for her own “guidance” which is a critical action that sets the creation 
of the solution (Table 3), that is, she will continue her approach by carrying out the plan using the 
spreadsheet model to test between 1h and 1.5h. She finds the solution in the second attempt: the 
camera may record a video of 1.2h and its battery will allow to play the whole film. 

Table 3: Utterances and actions of Sofia finding and expressing the solution 

What Sofia did or said MPST 
processes 

- about to finish the review, she inserts “play” in D1 to become clearer what the values in the column refer to 
- “now, hold on… let me do just one thing for guidance”, says, formatting the colour of cells A2 to A8 to orange 
- “to organize my ideas… here and here…” and formats cells D3 to D7 with the same colour 
- tests 1.1 in A5 and obtains 1.35 in the column B (view) and claims “they must both be equal” referring to the 

orange shaded cells 
- tests 1.2 in A6 and drags the fill handle from C5 to C6 and from D5 to D6 while saying: “hold on… technology 

could still be of more assistance to me… I could take further advantage if I worked will with Excel” 
- “Look, 1.2… 1.2… I think that the maximum is 1.2… She could record 1h, 1h, and the 0.2 times 60… hum…” 
- She starts to insert a formula in G4, but computes mentally first: “12 minutes!” Oh, this is it! So… I think it is 

1h and 12 minutes” 

Create  

-  “Now I have to recapitulate everything to see if this makes sense again” Verify 
… … 

- “You have all the reasoning recorded, so it’s not necessary to explain it all” 
- going back to statement, describes that she started by testing a concrete case because she already knew the solution, 

and then moves to explain how she obtained the formulas 
- Corrects the heading in the cell C1 changing it from “LeftB” to “%battery” to better adhere to the content 
- “I think it’s fine now! I’m convinced!”  [laughs] 
- opens a text editor file and writes “Problem” as the title 
- uses the Snipping Tool to take a snapshot of the spreadsheet table and pastes it on the text file 
- starts typing and reading out loud a description of the processes followed, disregarding the initial erroneous path 
- presents the solution as 1.2 hours 

Verify 

- “now a confirmation is needed, oh, not a confirmation, the calculations confirm... a process, a mathematical 
formula to reach this value” [the solution] 

- sends the spreadsheet and the text editor files to the researcher via e-mail 
Disseminate 

As requested, Sofia engaged in explaining her problem solving processes by recapitulating, again, 
her thoughts and actions with Excel (verify). While doing so she revises the table, changing C1 
heading from “LeftB” to “%battery” as she finds it to be more explicit. Even though she is continually 
seeking for a “mathematical formula”, she includes in the written explanation that she was “compu-
ting the percentage of the battery left after the recording (1- recording time/2)”, which worked as a 
model for explaining how the solution was achieved. Her reflections on the success of the activity 
and the files sent to the researcher containing the solution, characterize the process disseminate. 

Conclusion  
The Mathematical Problem Solving with Technology model allowed to analyse the role of the spread-
sheet in the teacher’s processes. It also accounts for the complexity of expert successful problem-
solving activity by revealing that metacognitive skills, namely control and regulation strategies are 
of paramount importance to progress (Schoenfeld, 1985; Hanin & Van Nieuwenhoven, 2020).  
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PS with technology takes place trough micro-cycles of several processes, as others suggest (Carlson 
& Bloom, 2005; Jacinto & Carreira, 2021). Initially, within an erroneous approach, the processes 
integrate-interpret support experimentations that will disclose the basis of the conceptual model: the 
battery time that is left. Then, other cycles comprise the processes integrate-explore-interpret, as she 
perceives a different approach in using the spreadsheet to organize the testing of particular cases. The 
conceptual model evolves through cycles of integrate-explore, from testing with cases (model of) to 
a confirmation that the approach works and the spreadsheet supports a general solution (model for).  

The teacher used the spreadsheet output to create the final answer, as a solving and an expressing 
tool. Even though the exploratory activity has induced a plan based on the percentage of battery left, 
the solution emerges from a retrospective analysis of her reasoning, that lead her to look for equal 
values of the recording time (column A) and the playing time (column D). This reinforces the idea 
that the ‘solving’ and the ‘expressing’ are simultaneous activities of mathematisation. 

Sofia’s techno-mathematical fluency is revealed by her familiarity with a diversity of digital tools 
useful in mathematics teaching and learning. In this case, the spreadsheet was chosen because she is 
familiar with its syntax, recognizes several of its affordances (tabular representations, formulas, 
automatic fill) in organizing and developing a numerical approach. Later on, a more robust conceptual 
model emerges as she is constantly seeking a generalization, a formula. The spreadsheet’s numerical 
feedback encouraged conjecture generation and exploration, by easily testing the effects of changing 
values or relations. By incorporating the formatted table on the text file, she created a techno-
mathematical answer to the problem that represents her conceptual model of the solution. Her techno-
mathematical fluency includes the recognition of affordances in the digital tools used with several 
purposes: to interpret the situation from a techno-mathematical point of view, to explore a conceptual 
model, and to produce the techno-mathematical solution.  

Technology plays a paramount role throughout the mathematical problem solving and expressing 
activity, which suggests that techno-mathematically fluency is an essential skill for mathematics 
teachers to engage in successful problem solving with technology.  
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Introduction 
This poster reports on results from a design-based research project (e.g. Bakker, 2018) focusing on 
the definition, design, implementation, and development of silent video tasks–tasks were students 
watch and add their voice-over (in the form of explanations, descriptions, narrative) to short, silent 
animated mathematics films. Experiences made with teachers in the first phase of the research project 
formed the basis of the first drafts of a definition of silent video tasks and a description of their 
instructional sequence that were presented in the form of comics on a poster at CERME11 in Utrecht 
(Kristinsdóttir, 2019). Based on reactions from participants in TWG15 at CERME and at ICTMT-14 
in Essen, a second phase of the design-based research project was prepared and conducted in fall 
2019 with the aim to develop further the process of assigning silent video tasks. The second phase of 
the research project–which could be viewed as a case study–was conducted in collaboration with 
three Icelandic upper secondary school mathematics teachers, who had some previous experiences 
with the use of formative assessment. This poster presents the refined instructional sequence of silent 
video tasks, in the form of comics, based on results from the case study. 

Methodology 
Prior to the case study, some potentials of silent video tasks to be used as a tool for formative 
assessment had been identified, using a list of technology-based formative assessment strategies by 
Wright, Clark, and Tiplady (2018). Hence, teachers with experience of formative assessment 
practices were purposefully selected to take part in the case study. It so happened that all three 
teachers, that accepted participation, taught a course for low-achieving students entering grade 11 
(age 16-17) in upper secondary school. Based on teachers’ suggestions and in accordance with the 
course curricula, I (the first author) created three one-minute-long silent videos on the topics of 
coordinate geometry and linear equations. Teachers planned to implement all three videos within the 
course of one semester. They were encouraged to suggest refinements to the tasks’ instructional 
sequence already in the first interview prior to the silent video task implementation. 

Data collection was mainly in the form of teacher interviews that were conducted before and after 
each implementation of a silent video task and classroom observation notes written during each 
implementation of a silent video task. Furthermore, during three of the interviews, the teacher who 
tried out all three silent video tasks was asked to do some think-aloud exercises to prepare and reflect 
on his task implementation. These think-aloud exercises proved to be helpful to understand the 
reasons behind his actions and decisions regarding the task implementation. 

All interviews were transcribed verbatim in Icelandic. Analysis started immediately after the first 
interview, focusing on the instructional sequence design and development. After transcribing the last 
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interview, an iterative process of open coding and detailed notes-writing was used to gain an overview 
of how teacher’s ideas, experiences, and expectations developed over time. Thus, creating a base for 
forming the design principles of silent video tasks, using a format suggested by van den Akker et al. 
(2013, p. 67) that included characteristics, procedures, and underlying theoretical and empirical 
arguments for the design.  

Results 
In the end, only one of the participating teachers implemented all three videos, and the other two 
teachers both implemented one of the videos in their teaching. Based on teacher interviews, think-
aloud reflections, and classroom observations, the instructional sequence of silent video tasks was 
further developed. Prior to the case study, the silent video tasks’ instructional sequence involved the 
selection of a silent video; whole class viewing of the video; students working in pairs to prepare and 
record their voice-over for the video in a first lesson, teacher preparation (listening to all students’ 
responses) before the follow-up lesson, and a group discussion based on a part of students’ task 
responses in the follow-up lesson. Teachers in the case study, however, wanted feedback to be 
immediate and instead of only listening to selected task responses, they wanted a whole group 
listening and discussion as a reaction to all students’ responses to the task. This proved to be 
challenging for teachers. Nevertheless, the teacher who implemented all three silent video tasks 
developed his ways of conducting the group discussion and during the third implementation, he was 
observed to make connections between students’ discourse (as presented in students’ responses to the 
task) and the mathematical discourse (as had been presented in classes before the silent video task 
implementation). This might be connected to the process of reification (Sfard, 2008, p. 44), which 
involves a transition from describing processes towards talking about objects. 
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This case study examined mathematics preservice teachers’ (PSTs’) learning trajectories of 
discipline-specific Technological Pedagogical Content Knowledge (TPACK) in a non-discipline-
specific online educational technology summer course. The study showed that all three PSTs followed 
a similar pattern of continuous TPACK growth with some variations. Annotated digital timelining of 
TPACK trajectories suggested that growth of PSTs’ discipline-specific TPACK could be attributed to 
the course design, while variations could be explained by a variety of personal and contextual factors 
moderating the effect of the course on their TPACK development.  

Keywords: Learning trajectories, Mathematics preservice education, Online learning, Technological 
Pedagogical Content Knowledge, Timelining. 

Introduction 
The need to prepare preservice teachers (PSTs) for teaching with technology, specifically in virtual 
environments, is widely recognized by the teacher education community. However, according to 
OECD (2020) on average, fewer than half of all teachers feel well prepared to use technology in their 
classrooms. The discussions about teacher preparation for technology integration started about two 
decades ago and led to the development of the Technological Pedagogical Content Knowledge 
(TPACK) framework, first proposed for mathematics education (Niess, 2005) and then extended to 
different subjects and contexts (Mishra & Koehler, 2006). The central component in this framework, 
an integrated TPACK, is the knowledge that relies on the interaction of content, pedagogy, and 
technology and is specific to the teaching context. Further, Niess et al. (2010) proposed the 
developmental model of integrated TPACK through five progressive levels: Level 1 (Recognizing) 
where teachers recognize alignment of the capabilities of technology with subject content; Level 2 
(Accepting) where teachers form a favorable or unfavorable attitude toward teaching and learning a 
subject with technology; Level 3 (Adapting) where teachers adopt or reject teaching and learning a 
subject with technology; Level 4 (Exploring) where teachers actively integrate teaching and learning 
of a subject with appropriate technology; and Level 5 (Advancing) where teachers evaluate the results 
of integrating appropriate technology into teaching and learning a subject. This model is based on 
Roger’s (1983) diffusion of innovation theory, which also served as a theoretical basis for the Stages 
of Adoption of Technology (SOA) model that was developed to understand the trends of technology 
adoption by preservice and in-service teachers (Christensen & Knezek, 1999). SOA model includes 
six stages in which teachers rate themselves: Stage 1 where teachers mostly avoid technology, Stage 
2 where teachers are frustrated and lack confidence when using technology, Stage 3 whet teachers 
begin to understand the process of using technology, Stage 4 when teachers become self-confident 
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with technology, Stage 5 when teachers start using technology as an instructional tool, and Stage 6 
when teachers become creative in using technology as an instructional tool. This model provides an 
affective lens into teachers’ trajectories towards technology integration that could provide additional 
insights into understanding of individual TPACK trajectories. 

Growing body of research indicates that development of TPACK with new technologies is a complex 
and multifaceted process (Niess & Gillow-Wiles, 2021), but little is known about the ways PSTs’ 
TPACK learning trajectories are shaped by external factors, such as practices and experiences in their 
teacher preparation courses or by internal factors, such as attitudes toward and confidence with 
technology integration. Therefore, this study combined the learning trajectories approach with 
developmental model of TPACK (Niess et al., 2005) and Stages of Adoption of Technology model 
(Christensen & Knezek, 1999) to analyze TPACK learning trajectories of mathematics PSTs 
participating in an online educational technology summer course. Specifically, the purpose of this 
study was to analyze how various contextual and personal factors influence TPACK development of 
mathematics PSTs.  

Literature review 
Studies indicate that TPACK framework-based courses support mathematics PSTs’ TPACK 
development (  & Aslaner, 2019); however, there is no consensus on what is the most effective 
approach to TPACK development. While many TPACK studies focus on factors that affect overall 
TPACK development, little is known about PSTs’ daily experiences in programs that aim to develop 
their TPACK, specifically in and for online environment. Research shows that individual teacher 
learning trajectories are non-linear, complex processes developed over time through the active 
engagement with a set of ideas (Shavelson, 2012). The studies that focus on TPACK learning 
trajectories acknowledge the diversity of patterns in mathematics PSTs’ TPACK development. For 
example, Niess & Gillow-Wiles (2021) showed that mathematics PSTs’ learning trajectories of 
TPACK for teaching online are multifaceted in building knowledge for teaching and learning with 
technology. -Koca et al. (2010) demonstrated that engaging secondary mathematics PSTs in 
iterative design and implementation of technology-rich inquiry-based materials led to their shifts in 
identity from learners to teachers and their TPACK development. However, PSTs’ TPACK learning 
trajectories were also influenced by their beliefs about the role of digital technologies in mathematics.  

More studies are needed to understand mathematics PSTs’ development of TPACK in and for online 
environments. Therefore, this study was guided by the following research questions: 1) In what ways 
online course practices influenced mathematics PSTs’ individual learning trajectories of TPACK? 2) 
What factors contributed to variations in mathematics PST’s learning trajectories of TPACK? 

Methods 
Study context 

The educational technology course in the study was non-discipline-specific pedagogy course and 
therefore the whole-class instruction focused on the purpose and the role of instructional technology 
in non-discipline-specific teaching and learning, while tasks for small groups were subject-specific. 
The course content was delivered in a synchronous mode via Zoom video-conferencing and Nearpod 
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platform (nearpod.com). The course met for seven weeks with two 1.5-hr sessions per week, one led 
by the STEM education faculty and another one – by a doctoral student-mentor with degree in politics, 
literacy and instructional technology. During faculty-led sessions PSTs experienced pedagogical 
practices with technology through both, student and teacher perspectives. Each immersion experience 
engaged PSTs in high cognitive demand tasks and guided or open inquiry to illustrate both the role 
of specific type of technology and the specific teaching strategy. Then this experience was analyzed 
from a teacher’s perspective based on theoretical considerations. During mentor sessions PSTs 
learned how to use technology and engaged in developing their own technology-based activities while 
the mentor provided necessary scaffolding. 

Each assignment aimed to assess PSTs’ ability to use technology tools to facilitate specific high-
impact instructional strategy for teaching a topic of their choice in online settings. During the 2nd 
week, PSTs developed a blog task for student research and communication. During the 3rd week, they 
developed a multimedia concept map task. In the 4th week, PSTs developed a small group exploration 
using Google Apps to support student discourse and collaboration. For the final project PSTs 
developed a full online lesson on a topic of their choice using Nearpod. Each assignment required 
PSTs to include subject-specific technology tools in their tasks.  

An earlier study (Lyublinskaya & Du, 2021) demonstrated that the increase in PSTs mean TPACK 
scores in this course was statistically significant and with large effect size. The study suggested that 
the PSTs’ overall TPACK growth could be attributed to the program design, specifically, inclusion 
of immersion - theory - analysis - digital content development cycles and focus on high-impact 
teaching strategies. The study also suggested that PSTs’ individual learning trajectories fall into a 
limited set of distinct patterns. However, question remained how this non-discipline-specific 
educational technology course supports the PSTs’ discipline-specific TPACK development. Thus, 
this study attempts to gain a more in-depth understanding of the factors affecting mathematics PSTs’ 
learning trajectories of TPACK in such course. 

Out of 25 PSTs’ enrolled in the course, three PSTs were preparing to teach mathematics, and therefore 
were selected for this case study. PSTs A and B had no prior instructional technology or teaching 
experience, PST C had some K-12 teaching experience including experience with technology. 

Data collection and analysis 

The TPACK levels rubric (Lyublinskaya & Tournaki, 2012) was used to score PST-generated digital 
artifacts that included weeks 2-4 assignments and a final online lesson. The rubric measures the level 
of TPACK in four specific components: overarching conception, knowledge of curriculum, 
knowledge of instructional strategies, and knowledge of student understanding (Niess et al., 2010) 
and the range of possible scores for each component is from 0 to 5. PSTs’ individual scores across 
four components of TPACK were averaged and plotted against time to visualize TPACK learning 
trajectories. Nearpod reports were collected and analyzed for completion of activities and 
understanding of the material. 

The TPACK Likert-scale survey (Chai & Koh, 2017) was modified to collect PSTs’ beliefs about 
their TPACK and design beliefs, that include four constructs: new culture of learning (NCL), attitudes 
towards technology (ATT), design dispositions (DD), and views about themselves as teacher-
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designers (TAD). The survey was administered in weeks 1 and 7. The Stages of Adoption (SOA) 
survey was administered during weeks 2-7 to collect self-assessment of stages. Three open-ended 
questions about challenges in using specific technology tools were added to the survey. Open-ended 
responses were coded in relation to SOA. 

The study used annotated digital timelining to explore contextual and personal factors that affected 
mathematics PSTs’ TPACK learning trajectories (Figure 2).

Figure 1. Timelining analysis of PSTs’ trajectories of TPACK and SOA

Timelining is a visual research method that focuses on a time-based representation of one or more 
constructs of interest. The power of a timeline as an analytic resource is in the way that it allows to 
use multiple type of data from multiple sources on the same display that extends and deepens 
understanding of the observed changes in the constructs of interest over time (Chamberlain & 
McGuigan, 2019). In this study, the TPACK and SOA trajectories annotated with the summaries of 
the analysis of collected data. In order to do that, TPACK and SOA scores were first plotted for each 
PST to create simple timelines with aligned horizontal axes. Digital artifacts were analyzed for 
features reflecting the TPACK score. One artifact per assignment was selected to illustrate these 

Proceedings of CERME12 2581



 

 

features on the TPACK timeline. Nearpod reports provided records of participation and collected 
PSTs’ questions for the mentor. The SOA timeline was annotated with summaries of individual 
responses to the survey open-ended questions. In addition, two bar graphs were added to the timelines: 
the first week’s TPACK and design beliefs scores calculated from the survey and changes in these 
scores from the week 1 to the week 7.  

Results/Discussion 
All three mathematics PSTs demonstrated TPACK growth by one (PST B) or two (PSTs A and C) 
TPACK levels, which indicates that this non-discipline-specific educational technology course 
supported development of subject-specific TPACK. Comparison of their TPACK learning 
trajectories show that all three PSTs followed a similar pattern of continuous TPACK growth with 
some variations in actual scores and rates of change. In a previous study (Lyublinskaya & Du, 2021), 
this pattern was found for only 25% of the PSTs enrolled in this course. This continuous growth by 
mathematics PSTs could be attributed to their full participation in all course sessions as evident from 
the analysis of Nearpod reports. The analysis of mentor session reports indicated that PSTs 
recognized their challenges and reached out for support as they were developing their artifacts. That 
also could have contributed to the positive shifts in TPACK demonstrated by PSTs. 

Analysis of PST-generated blog tasks (week 2) showed that all of them were at the Accepting level 
of TPACK. This level is characterized by confirmation inquiry with low level of cognitive demand 
tasks that focused mostly on retrieval of information and basic facts (Stein & Smith, 1998). 
Illustration of this level is a blog developed by PST A with the intent to address the topic of modeling 
with functions by using online price charts of different digital currency. However, the actual student 
tasks did not include modeling, trend lines were already included on the price charts that students 
accessed on the Internet, and questions did not ask for analysis of trend lines or identification of 
functions used as trendlines, mostly focusing on reporting information found on the websites. This 
level of TPACK was observed for a large majority of PSTs in the course, therefore course sessions 
put more emphasis on discussions about levels of inquiry and cognitive demand of tasks.  

The following week all three PSTs reached the Adapting level of TPACK as evident from the analysis 
of concept map tasks. This level is characterized by structured inquiry with higher cognitive demand 
tasks that include procedures with connections. As an example, consider PST B’s task for students to 
develop a map illustrating the real number system. She provided students with incomplete map that 
had 5 nodes – natural numbers, whole numbers, integers, rational numbers, and irrational numbers – 
each linked to an internet source. Students were expected to use provided Internet resources to explore 
the properties of different number sets in order to establish their hierarchy and complete the concept 
map. However, her instructions were very prescriptive and did not provide students with opportunities 
to explore their own questions about the numbers. These results were representative of the large 
majority of PSTs in the course, thus course sessions put more emphasis on developing guided and 
open inquiry tasks with technology. 

By week 4 all three mathematics PSTs shifted towards using technology for more active explorations, 
focusing on student thinking and development of conceptual knowledge. However, student tasks with 
technology were still at the structured inquiry level and often just replaced non-technology-based 
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tasks. As an example, consider a student activity to explore the relationship between the circle’s 
diameter and circumference developed by PST C. She created a Google Document handout linked to 
an online GeoGebra App. Students were to draw five circles, measure their diameters and 
circumferences, calculate ratios of circumference to diameter, and arrive at conclusion about the 
relationship between the two measurements. Asking students to draw five circles similar to a pencil 
and paper activity indicated that PST C did not understand the dynamic nature of GeoGebra. Students 
could have varied the radius of a single circle to observe changes in the diameter and circumference. 
Moreover, instructions to calculate the ratio of the circumference and diameter took away student 
opportunity for discovery.   

In the following weeks, while PSTs were working on their online lessons, the course sessions focused 
on the various models for technology-infused lessons, with continued emphasis on inquiry and 
cognitive demand tasks. Analysis of mathematics lessons indicated that all three PSTs incorporated 
guided inquiry by engaging students in experimentation with technology through high cognitive 
demand tasks. By week 7, PSTs A and C achieved the Exploring level of TPACK with PST B falling 
short of that level by a small margin. As an illustration, consider the lesson “Discovery of Pi” 
developed by PST C. The lesson started with interactive review of the concepts of radius, diameter, 
and circumference of a circle using GeoGebra applets followed by a matching activity and multiple-
choice quiz to check student understanding of definitions. The next part of the lesson was a revised 
GeoGebra activity from the previous assignment. At the beginning of the activity students were asked 
to make a prediction about the relationship between the diameter and the circumference of a circle. 
They were then instructed on how to construct a circle, measure its circumference and diameter, and 
change its size. Students were to develop their own procedure to determine the relationship between 
these two measurements and record their work in the group’s Google Document. The lesson 
concluded with student presentations of their discoveries and teacher’s summary.  

While the overall pattern of the TPACK learning trajectories was similar for the mathematics PSTs, 
there were some variations in TPACK scores over the course of the study. Therefore, the study 
analyzed PSTs' responses to surveys. As can be seen from the bar graph on Figure 2, PSTs had 
different initial beliefs about technology in teaching and learning mathematics and the role of the 
teacher as designer. PST B had the most positive attitudes, while PST C, the only one who had prior 
teaching experience, was the least positive. Starting week 2, PSTs self-assessed their SOA of 
technology and reflected on their experiences in the course. The summaries of qualitative analysis of 
these responses shown on SOA timeline (Figure 2) clearly indicate that PSTs had different challenges 
throughout the course.  

PST A had the highest SOA self-assessment, mostly indicating his confidence in using technology 
for teaching. He consistently explained his lower performance by the lack of time rather than 
understanding: “Sometimes I don't have enough time to prepare for the lecture or finish my 
assignment perfectly.” (PST A, week 3). However, his reflections about his struggles with 
instructional tasks suggest that he might have been overconfident during the first half of the course. 
During the second half of the course, he had the largest TPACK growth and by the end of the course, 
his attitudes slightly improved across all five categories, including self-assessed TPACK. Even 
though PST B had the most positive attitudes at the beginning of the course, she was the least 
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confident in the group about her ability to use technology in teaching, even though her TPACK scores 
were highest during the first half of the course. This lack of confidence is evident from her comments: 
“It's hard for me to brainstorm a topic [for student tasks with technology].” (week 3), “Coming up 
with high cognitive [demand] activity ideas is challenging.” (week 4), “the workload is a bit heavy” 
(week 7). By the end of the course she had the lowest self-assessed SOA and her attitudes towards 
technology worsened (see the changes in beliefs bar graph on Figure 2). The lack of confidence and 
feelings of being overwhelmed might have affected her overall performance. As a result, her final 
TPACK only slightly improved, remaining at the Adapting level. 

PST C started with relatively high SOA self-assessment, and throughout the course she consistently 
expressed confidence with using technology. At the same time, she was regularly challenged with 
pedagogical aspects of the tasks, as can be seen from her survey comments: “I'm confident in setting 
up and publishing a blog, but I’m not sure about the content of my blog” (week 2); “I think the main 
challenge at the moment is the [lesson] design” (week 6). Thus, her self-assessed SOA decreased 
early in the course and did not come back until the very end of the course, when she finally gained 
confidence in her abilities to design technology-infused lessons. Her increased confidence is reflected 
in highest growth in self-paced TPACK among the three PSTs as well as her reaching the Exploring 
level of TPACK by the end of the course. 

These results suggest that level of confidence, attitudes towards technology, and design dispositions 
could have affected the variations in PSTs’ learning trajectories of TPACK. 

Conclusions 
The study results suggest that a non-disciplinary-specific educational technology course could 
support the development of PSTs’ subject-specific TPACK by organizing PSTs’ learning as the 
cycles of immersion – theory – analysis – digital content development, with the first and the last 
stages being subject-specific, while the theory and analysis aspects were discussed across different 
subjects. The study findings also indicated that mathematics PSTs’ learning trajectories were 
influenced by the focus on high-impact teaching strategies. Variations in the individual PSTs’ 
learning trajectories could be attributed to their attitudes towards technology, beliefs about the role 
of the teacher as a designer, self-regulating skills, and the level of confidence with technology and 
pedagogy.  

This study contributes to the field in two ways. First, the study extends an innovative visual research 
method, timelining analysis, commonly used in forensics to an education mixed-method study. The 
use of timelining extends and deepens understanding of the observed changes in the PSTs’ TPACK 
over time by visualizing the links between multiple data. Second, the study contributes to the field by 
examining individual learning trajectories of PSTs’ TPACK for online teaching of mathematics and 
conceptualizing the variations in the paths taken by PSTs. More studies are needed to understand the 
complexity of developing TPACK for teaching mathematics online.  
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  Use of interactive whiteboards in school   

  never   sometimes   almost always   always  

 primary 1  1  8  7  

 secondary 0  1  6  7  

  Applications in school   

 Representation medium  
(11) 

 Communication medium 
(6) 

 Working tools  
(6) 

 

 - geometry (4)  - board replacement (3)  - apps (Geogebra) (1)  

 - functions (3)  - teamworking (1)  - online elements (1)  

 - 3D-models (2)  - interexchange (1)  - presenting results (1)  

 - complex learning (1)      

 - drawing (1)      

 - pictures, movies (1)      
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This paper presents the preliminary findings of an ongoing project regarding what pre-service 
teachers and facilitators learned while teaching in an online environment during the COVID-19 
pandemic in 2020. Using narrative inquiry as a methodology, this initial analysis suggests a need to 
examine their general descriptions in detail to recognise which actions pre-services teachers 
specifically identified in their own practice and what they noticed about their mathematics teaching.  

Keywords: Observations, pre-service teacher, noticing, facilitator, online lesson. 

Introduction 
For pre-service mathematics teachers, one of the main components of their education is teaching 
practice, which enables them to gain experience, practice their professional skills and develop 
knowledge of how to conduct mathematics lessons at the school level. Teaching practice thus plays 
a crucial role in the learning of pre-service teachers (Guyton & McIntyre, 1990; Le Cornu, 2012) by 
enhancing their professional development. Pre-service mathematics teachers are supported during 
their teaching practice by experienced mathematics teachers and other academics, who function as 
‘mentors’, ‘supervisors’ or ‘facilitators’. However, little attention has been paid to facilitation (Even, 
2008; Kelchtermans et al., 2017). By contrast, rich and varied research has considered pre-service 
teachers’ professional identities; their influences during lessons (Zhao & Zhang, 2017), and  their 
teaching values (Mergler, 2012). Moreover, it has been recognised that experienced teachers must 
improve and update their knowledge (Genç, 2016) to support pre-service teachers effectively. 

Research has shown that concerning teaching practice, “pre-service teachers adopt survival strategies 
during this stage, avoiding risks or taking the initiative so as not to reveal their weak points; 
consequently, they do not develop the real professional competence that is expected to develop at this 
stage” (Correa Molina, 2011, p. 78, translated from Spanish). In particular, in the Chilean context, 
where this study is ongoing, one of the weaknesses noted about pre-service teachers is their failure to 
link practice and theory (Comisión Nacional de Acreditación (CNA), 2018). This points to a lack of 
knowledge about what is learned by pre-service teachers during teaching practice and specially in 
online environments. Even more, recent research shows that “pre-service candidates did not have the 
opportunity to demonstrate mastery of specific teacher performance expectations within the distance 
learning format” (Hill, 2021, p.1); therefore, knowing that there is an “evolution and transformation 
of the classroom with the growing integration of the internet and interactive digital devices into 
mathematics teaching and teacher mathematics teacher education” (Engelbrecht et al., 2020, p. 825) 
there is an urgent need to understand in greater detail what is learned through teaching practice, to 
include virtual mathematics teaching practice. One way of doing so is for the facilitator to note the 
details of pre-service teachers’ actions when teaching and supporting pupils. The aim of this paper is 
to present the preliminary analysis of a study on what pre-service teachers and facilitators learned 
while teaching in an online environment during the COVID-19 pandemic in 2020. Our research 
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question is: When pre-service teachers conduct their mathematical practice virtually in a school, what 
characterises their learning? Using narrative enquiry as a methodology, we examine what pre-service 
teachers noticed about their own practices, including whether and how these observations were linked 
to the discipline of mathematics. The three participants were pre-service teachers who were doing 
their final teaching practice in a school virtually, and the author of this paper was the facilitator of 
these participants.  

Theoretical Framework 
To consider the teaching practice of pre-service teachers as a situated professional experience that 
leads to a lack of articulation of the link between practice and theory, I examined what the pre-service 
teachers. and the facilitator. learned about what they learned about their own skills in their teaching 
practice and what this revealed about their learning during interactions with others (experienced 
teachers, students, and facilitators). As a theoretical framework, I referred to the discipline of noticing 
(Mason, 2002, 2011), which has been considered a means to promote professional development (i.e. 
Barnes & Solomon, 2013) and an essential part of pre-service mathematics teaching practice 
(Llinares, 2013). 

Studies of noticing are usually carried out from a first-person perspective, as this way of approaching 
learning involves looking at one’s own professional practices, thus allowing for the observation and 
investigation of professional pedagogical practice. This enables pre-service teachers in their 
professional practice to identify more feasible ways of working, consider incidents they experienced 
during their pedagogical practice, and discuss what they have noted professionally, as well as which 
characteristics others have recognised (Mason, 1989). Such an approach validates the observed 
actions that differ between pre-service teachers’ own practices and those of others and allows teachers 
to become mindful of their own actions so they can act differently in the future and make effective 
changes (Mason, 2011). For example, if a student asks what ‘definite integral’ means, an ‘automatic’ 
answer is often ‘the area under the curve’, but noticing and applying the professional gaze involves 
“arranging to alert oneself in the future so as to act freshly rather than automatically out of habit” 
(Mason, 2011, p. 37); thus, providing a different type of answer becomes possible.  Learning to notice 
professionally allows pre-service teachers, through the observation of their teaching practice, to 
distinguish the professional components of actions and avoid using generalities, such as ‘it was an 
adequate class’. This is done by paying attention to the details of mathematics-related actions, which 
in turn helps them to give professional answers to mathematics questions from students. 

Finally, although it is expected that future mathematics teachers will professionally consider their 
mathematical knowledge and while there are analytical models allowing this knowledge to be studied 
(e.g. the mathematics teacher specialised knowledge [MTSK]; Carrillo et al., 2013), the aim of this 
ongoing research was not to examine pre-service teachers’ knowledge; rather, by working with the 
discipline of professional noticing, the study considered the actions that promoted learning during 
mathematical teaching practice, enabling pre-service teachers to act consciously. 

Methodology 
I used narrative inquiry (Clandinin & Huber, in press) as a methodology, which means the researcher 
sought to understand the experiences of the participants during their mathematics teaching practice 
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in an online environment, as expressed by their stories. In this paper, I present their experiences 
through stories told by Sue, Jonah and Harry, considering the meaning of their experiences through 
the stories they told and the actions they observed.  

To conduct the analysis, I used a modified version of Mishler’s typology, which is a method of 
narrative analysis, which means “focusing on making meaning of events and experiences through the 
researcher’s tellings” (Kim, 2016, p. 198), “imposing a told on the telling: identifying a story pattern” 
(Kim, 2016, p. 205) looking for emerging patterns in stories, chosen  it without predetermined themes 
for the story to tell in advance.  

Methods 
The participants of this ongoing research were pre-service teachers doing their final teaching practice 
in two different Chilean schools during 2020. The criteria for their selection were that the teacher 
conducted their practice in an online teaching–learning environment using tools that involve access 
to live chat, audio and video conferencing, shared whiteboard, virtual “hand raising” and a break 
room; and the teaching took place  in “real time” via the internet. For pre-service teachers in Chile, 
this teaching practice usually occurs in the last years of their study towards becoming a mathematics 
teacher.  

The lessons taught by the participants took 45 minutes each. Two of the three participants were in a 
school that received only students with special needs, so the number of pupils that they have per 
lesson varied between three and four. The third participant was in a school where the number of pupils 
per lesson was 30 on average. In addition, the participants oversaw designing and teaching their 
mathematics lesson to their students over a period of three months and they attended to presentation 
on the discipline of noticing in mathematics classes.  

I observed three lessons per pre-service teacher within the online teaching–learning environment and 
although it is recognised that one of the practices to support pre-services teacher on their lesson is 
through the use of observing a video of their own practice (i.e., Segal et al., 2018), I gave to them the 
observations of each lesson in a written manuscript to be read by them. The written transcripts 
consisted of a detailed dialogue of what the teacher and students were saying to each other). The 
reason for given those transcripts to the participants is because “transcripts can help reveal details 
that are easily missed when watching a video” (Reid et al., 2014, p. 373) 

Having given the observation manuscript of the lesson to the participants, bearing in mind the 
discipline of noticing, I asked to them read it previous to collect research data through three separate 
conversational interviews about what the participants had observed during each online classroom, the 
length of each interview was on average one hour, and each was video-recorded within the video 
conferencing platform. After that, each participants wrote reports of what they had noticed in their 
own mathematical teaching practice and they submitted this document to an online platform.  
Following Mishler’s typology the method of finding common patterns in the transcript from the 
interview as well on the written report was highlighting and coding the common characteristics that 
constituted a pattern of noticing on the data collected.  
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Results 
The following analysis constitutes the preliminary findings regarding the common patterns of 
noticing among the three students—Sue, Jonah and Harry—based on the interviews and the written 
reports about what they observed about their own practices as pre-service teachers in charge of online 
classrooms.  

The tension of teaching as a pre-service teacher 

Sue was sitting at her desk waiting to start her class. She had to wait until the teacher stopped speaking 
before she could start her lesson; afterwards, she told me in the interview, ‘I realised that when I 
read, according to my observations, Mary (referring to the teacher responsible for the class in which 
she was doing her practice) interrupted me sometimes. I waited to speak because she was saying 
something, and I thought I would make my point later, but by then she had already made it’. I noted 
Sue’s concern about the tension involved in being a pre-service teacher with another teacher close to 
her. 

This tension of being a pre-service mathematics teacher was also experienced by Harry, but in a 
different way. His concern was, ‘I always feel that students don’t look at me as a friend…I know 
when, someday, I’m in a school, they will want to speak about their problems with me’. He had the 
idea that a teacher should be a friendly person who can speak about things other than mathematics, 
but he noted that he was not yet a teacher; he identified himself as only a pre-service teacher who will 
become a teacher in the future, but for me, he is a teacher now, because he is teaching.  

The importance of reflecting on details  

By asking ‘What do you think about the observation? I don’t know what type of observations you 
have experienced before but…’, I was trying to provide the context for beginning to speak about the 
mathematics observations, bearing in mind the discipline of noticing and how to give sensible and 
professional mathematics answers. Sue said, ‘I like that you generated a dialogue because, in general, 
when other teachers observed me previously, they only noted key things; that’s all’. She added, ‘You 
gave us every detail’. Harry commented, ‘I was expecting a critique of my work, more judgments’. 
His experiences of other instances of practice feedback were structured observations that seemed to 
him to be criticisms.  

Going back to the details given in the transcript, Sue explained something about ‘c’. Not knowing to 
what she was referring, I asked her to go to the relevant page of the transcript and explain a little more 
about ‘c’. She found the point and exclaimed, ‘Here!’ and relayed the following dialogue about 
Pythagoras’ theorem in her class: 

Sue: We use a little formula to calculate c. Who is c? 
Students: The results. 
Sue: Hypotenuse or cathetus? 

She added, ‘I realised that I was asking about c as a person. I should have asked “What is c?”’ Sue 
was concerned about her mathematics expression and what she could do about it. How could she 
examine her own speech while being aware of the mathematics happening in that moment? Were 
there enough questions? I asked: ‘What draws your attention in your observation?’ Her first 
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observation was that although it was a story relating to mathematics, she was identifying the long 
side of the triangle, apparently working from her memory as a student and seeing that the ‘c’ in the 
‘little formula’ (as she referred to Pythagoras’ theorem) was the result of an operation. Despite the 
richness of the details given by Sue to observe her action, I recognised that she was perhaps only 
noting the specific mathematics around the ‘c’ but not providing more information about a possible 
action that could be undertaken concerning the ‘c’ idea.  

Jonah stated, ‘I would like to extract some part of the observations of my facilitator’:  
Jonah: D (referring to the problem level); It looks a bit complex. 
Student: Teacher, let me think about it, because I’m sure I have seen it before. 
Jonah: It is interesting. I wanted to give you this [question] because… 
Student: I’m sure we have seen it before. 
Jonah: You bet. Let’s… 

He noted Regarding this dialogue, we can see that the student was interested in solving a complex 
problem1… At that moment, I took the decision to give him more time, but half of the class time could 
be lost, so I decided leave the problem to the end, but that didn’t happen … Looking back, I see this 
as an important chance that I lost. Jonah wrote about his actions, reflecting on his own mathematical 
knowledge, his interruption of the student, and his concern when looking back on the class. He also 
observed, “it looks like an error in the transcription (shown below), but it’s not. I´m speaking about 
the whole problem, answering my own questions, and this type of action will never be favourable for 
promoting the autonomy (of my students). It has started to become something automatic’ (referring 
to probability lessons).  

Jonah: That’s the thing about probabilities; three can come out many times on one day, but not 
on another. 

Jonah: What are the favourable cases? 
Jonah: Let’s look here. For every number that I get here, I have six chances of getting it. That’s 

36 
Jonah: So the probability that I get Tom … 
Jonah: You understand? It wasn’t an easy problem to solve, but if you want to solve it, you must 

pick numbers close to seven. 

He observes the transcript and from there, he took account that in his lesson, he was speaking all the 
time (which he acknowledges). Reflecting on his actions, as prompted by the transcript, he was able 
to understand more deeply his own learning without me saying, ‘You have been speaking all the time 
in your lesson’. I wanted them to learn from their own observations, avoiding compulsory descriptors, 
such as, ‘Does the teacher give the goal of the class? Are the students participating in the lesson’? In 
a similar way, Harry said, I realised there is a lot of Harry speaking (in my transcript). I literally take 
the microphone…and I don’t allow the others to speak. I said to her (referring to a student), “We are 
seeing ratio. It’s a ratio,” and I didn´t give to her the opportunity to speak. After going back and 

 
1 In the Chilean context, it is very common to encourage students to writing in the third person. Although, in this study, 
the participants were allowed to write in the first person, some of them wrote in the third person or used a hybrid of the 
first and third person. 
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reading his transcript, he noted what he had done on their teaching, seeing its importance in the way 
as he teaches his mathematics lesson.  

Decisions and mathematical consequences  

The students spent time speaking about their actions but without directly mentioning mathematics, 
so I started trying to direct the questions towards actions relating to mathematics in the transcript. Sue 
told me: I knew the difference between eight to the power of two and eight times two, and I think they 
understood that, but I think they forgot it because, when I asked them, they still said that eight to the 
power of two was eight times two.  She observed she did not have the mathematics resources to correct 
the errors. How should she start giving professional answers about mathematics? Why did she give 
the same answer to the students if they were still making the same error? I was concerned with this 
situation, so I asked her, ‘How can we give a different mathematical answer while considering the 
idea of doubling or the power of two?’ Sue replied, ‘Developing the power’, detailing her own 
knowledge of the power and what she brings to her lesson. 

Harry, in a similar way, seemed to decide to stop talking about mathematics because ‘I didn’t want 
to add more concepts to what they already had…I know what I said about the addition rule, but it is 
not as I said’. This showed the paradox of deciding ‘the best’ mathematics for students, but what 
were the consequences of this decision? Is there a ‘best’ mathematics to be learned? Who decides 
this? Jonah said, ‘I was thinking a change of measurement was trivial and the students must know 
this, because it is usual for me to know this as a Chilean citizen, but I failed on this activity’; thus, he 
took responsibility for his mathematics actions. I asked, ‘Thinking about the change of measurement 
and ratio that were part of your lesson, how would you take account of them?’ Jonah replied, ‘In my 
next lesson, I will start with the change of measurement and ratio, presenting some double entry 
tables so that they can see they are ratios’. 

Discussion 
In an on online mathematics teaching context, what the pre-service teachers noticed in these initial 
findings reflects the importance of discussing the details of their practice, recognising the tension 
between becoming, but not yet being THE teacher, and I ask ‘who defines being a mathematics 
teacher?’ ‘are we considering what type of pedagogical identity is happening on the pre-services 
teachers?’ Is it enough to teach mathematics to be considered a mathematics teacher? As van Gogh 
(2017, p. 45) asserted, ‘One becomes a painter by painting’; likewise, one becomes a teacher by 
teaching”.  

This initial analysis suggests a need to move from general descriptions towards giving specific details 
of pre-service teachers’ actions to encourage them to reflect on their own actions and what they notice 
during mathematical teaching practice, such as seeing the mathematical consequences of their 
decisions during teaching practice, as the stories in this narrative analysis have shown. 

When presenting observations of the practices of pre-service teachers, moving to uncontrolled (but 
no less effective) noticing by each participant regarding what the pre-service teachers observed about 
their own practices in their reading of the transcript, allows them to link their own mathematics with 
their pedagogical practice and perhaps foster effective learning in their students.  
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Finally, the use of technological tools that involve video conferencing and recording in a research 
context facilitated the collection of the data. However, providing the transcript to the pre-service 
teachers allowed them to detail their own mathematical practices and their own learning. The pre-
service teachers’ awareness of the use of this type of technology in their lesson seems low, perhaps 
because they are building a windmill instead of a wall concerning technology in their own teaching 
practice. That is, as Brunetto et al. (2021) argue, a teacher can build a wall or a windmill when the 
wind changes the usual class environment into a virtual one, such as with the current pandemic.  
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Videogames are becoming a topic of interest in mathematics education. However, research in the 
field does not seem to clearly highlight the role that a videogame environment has in supporting 
teachers in promoting teaching-learning processes. The aim of this paper is to analyse how a 
videogame for learning can support a teacher in scaffolding relational thinking during whole-class 
discussions. We observed that the videogame does not explicitly seem a benchmark for offering 
scaffolding interventions, but the teacher states that observing students playing is relevant for 
orchestrating discussions, especially in anticipating and monitoring students’ processes during the 
classroom activities. 

Keywords: Game based learning, relational thinking, scaffolding. 

Introduction 
In recent years, the widespread use of digital games for learning has opened new frontiers for research 
in education, whereas Connolly, Boyle, Hainey, McArthur and Boyle (2012) show that this interest 
is frequently speculative and a lack of empirical evidence about the effectiveness of games. 
Concerning mathematics education, several research studies address the potential, promises, and 
pitfalls of digital games for mathematics learning by measuring, monitoring, and analysing the 
development of students’ sense-making as they engage in games technologies, both in and out of 
school (Lowrie & Jorgensen, 2005). 

In literature there are different and independent definitions of videogames for learning. For our 
purposes, we choose to consider the one provided by Perrotta and colleagues (2013), who describe 
game-based learning (GBL) as “[…] the use of video games to support teaching and learning.” GBL 
could become a tool that supports teachers specific teaching and learning targets. However, it is 
important to select a specific area to investigate from both a mathematical and educational 
perspective.  

In this study, we are interested in exploring the role of a GBL in supporting teachers’ scaffolding 
during classroom discussions on relational thinking. 

Theoretical framework 
To achieve our goal, it is necessary to clarify what relational thinking is and what types of scaffolding 
teachers could carry out during classroom discussions.  

Carpenter, Franke and Levi (2003) describe relational thinking as examining two or more 
mathematical ideas or objects, looking for connections between them and analysing or using those 
relationships to solve a problem, to decide, or to learn more about the situation or concepts involved. 
Carpenter, Levi, Franke and Zeringue (2005, p. 54) define relational thinking as “looking at 
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expressions and equations in their entirety rather than as a process to be carried out step by step”. In 
other words, relational thinking regards the use of fundamental properties of numbers and operations 
to manipulate numerical expressions rather than following sequences of procedures for reaching a 
result.  

Carpenter and colleagues (2003; 2005) mentioned many times the importance of teachers’ effort in 
designing suitable teaching and learning environments. The authors suggest engaging students in the 
solution and subsequent discussion of specific tasks; in particular, solving true/false and open number 
sentences could provide a flexible context for representing relations among numbers and among 
operations. However, involving students in well-designed tasks is not enough (see for example 
Lampert, 2001); one of the goals of research on relational thinking is how teachers might foster its 
development and its use to learn arithmetic. Therefore, the role of the teacher is crucial, and it could 
be defined as scaffolding, that is the “[...] support given by a teacher to a student when performing a 
task that the student might otherwise not be able to accomplish” (Van de Pol, Volman & Beishuizen, 
2010, p. 274) 

Carpenter et al. (2003; 2005) highlight the relevance of scaffolding, but it seems that the role of 
teachers and how they could scaffold students are not clearly defined. However, in most of their 
papers the authors present examples of interviews with students and transcriptions from discussions 
with their teachers. Such examples allow us to identify four kinds of strategies that teachers could use 
to provide scaffolding: (1) choosing suitable task to administer and then discuss with students; (2) 
inviting selected students to intervene during the discussion; (3) inventing or introducing new tasks 
to clarify or share the emerging mathematical ideas; (4) encouraging students to invent new tasks to 
clarify or share the emerging mathematical ideas. 

In this scenario, a GBL could offer several scaffolding opportunities; for example, it could present a 
large number of suitable tasks in line with the ones proposed by Carpenter and colleagues (2003) (1). 
This large body of tasks could also allow teachers (3) and students (4) to invent new examples of 
similar tasks based on reasoning by analogy. Finally, the log files collected by the digital environment 
could permit teachers to select students for discussion considering their achievement in the game (2). 

Methodology 
To understand if and how a game-based learning could help teachers scaffold activities on relational 
thinking, we structured a field trial as follows. 

1. We planned a teacher training focused on how to use the videogame, on relational thinking 
and the role of the teacher during whole-class discussions. Furthermore, we provided the 
teacher with some theoretical and methodological guidelines. 

2. We designed the videogame tasks to be equivalent to those proposed by Carpenter and 
colleagues (2005). 

3. We provided the teacher with worksheets to highlight the solution processes, which are not 
visible from the videogame log files. Moreover, she could use a web interface, where scores, 
access and play time and other useful information are reported. 

4. We asked the teacher to present the videogame and the worksheets to her students and then to 
orchestrate a classroom discussion. Finally, we interviewed the teacher. 

Proceedings of CERME12 2603



 

 

SuperFlat Math 

“Matematica Superpiatta” (SuperFlat Math) is a game-based learning (GBL) about Mathematics 
developed by Prof. Leonardo Guidoni, from the Department of Physical and Chemical Sciences of 
the University of L’Aquila. It consists of a sandbox videogame that enables primary and lower 
secondary school students to explore a blocky, procedurally generated 3D world. This videogame is 
divided in mathematical activities, which are composed of different “minigames”, that are short 
puzzles at increasing levels of difficulty.  

In our trial we asked students to play two activities: “Parkour” and “Swimming Pools”. The first one 
(Fig. 1) consists of a perilous uphill path, which in some points presents a number sentence or an 
expression with two possible solutions. Players should choose the correct one in order to advance in 
the path. The first half of Parkour minigames presents number sentences in which students should 
find the correct solution, whereas the second half contains an equivalence between two expressions.  

 

Figure 1: A Parkour minigame 

The minigames in Swimming Pool (Fig. 2) consist of a pool full of block numbers from 0 to 100 and 
an open number sentence. The goal is to find the correct block number within the pool and place it in 
the sentence. The first half of Swimming Pool minigames contains an open number sentence with 
two operations and one missing number, whereas the second half presents expressions with 
parenthesis and two or more different operations.  

 

Figure 2: A Swimming Pool minigame 

An additional feature of SuperFlat Math is the message given to players on the correctness of their 
answers. If the answer is correct, players gain points that could be converted in rewards.  

A web interface has been developed, called “CLARAS” (CLAssroom Report And Supervision), 
which enables teachers to monitor students’ achievements and to collect useful information about 
access and play time, scores, number of correct answers, number and type of wrong answers, number 
of attempts, and so on. This interface helps teachers and researchers identify students’ misconceptions 
and solutions to the given tasks.   
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Worksheets 

According to Carpenter, Franke, and Levi (2003), the easiest way to start a classroom discussion on 
relational thinking is to assign students true/false and open number sentences. For this trial we 
structured two worksheets, which were focused on specific number properties and ways of thinking 
about number operations: the first one was composed of 17 true/false number sentences, while the 
second one was composed of 13 open number sentences. We asked students to justify their answers 
for each task so as the teacher could understand the process carried out to solve it.  

The true/false tasks concern three main topics: conception of equal sign, properties of addition of 
natural numbers, and properties of multiplication of natural numbers (Table 1). 

Table 1: True/False tasks in worksheet1 

Conception of the equal sign Properties of addition Properties of multiplication 

1. 3 + 5 = 8  
2. 8 = 3 + 5  
3. 3 + 5 = 3 + 5  
4. 8 = 8  
5. 4 × 2 = 0 + 8  
6. 9 + 5 = 14 + 5  
7. 8 × 2 + 5 = 8 × 2 =16 + 5 = 21 

 

 

8. 3 + 5 = 5 + 3  
9. 10 + 2 + 8 = 10 + 10  
10. 3 + 5 = 2 + 1 + 5  
11. 20 + 7 + 33 = 37 + 40  

12. 8 × 6 = 8 × 5 + 1  
13. 10 × 2 = 8 × 2 × 2  
14. 15 × 2 = 3 × 10  
15. 6 × 5 + 6 × 3 = 6 × (5 + 2) 
16. 3 × 11 + 7 × 3 = 18 × 3  
17. 7 + 14 = 7 × 4  

The open number sentences regard three main topics: properties of addition/subtraction of natural 
numbers, properties of multiplication of natural numbers, and more complex expressions with the 
four operations (Table 2). 

Table 2: Open number sentences in worksheet2 

properties of addition/subtraction properties of multiplication more complex expressions 

1. 25 + 16 = 25 + ⋯ 
2. 25 + 32 = 27 + ⋯ 
3. … + 60 = 57 + 83  
4. 30 − 25 = 20 −⋯ 

5. 7 × 3 = ⋯+ 7  
6. 8 × 3 + 8 = 8 × …   
7. 2 × 3 × … = 6 × 5  
8. 2 × … × 7 = 14 × 5  
9. 25 + 20 = 5 × …   

10. 32 + (20 − 7) = 32 + ⋯ 
11. 25 + 75 = 25 + (30 +⋯ ) 
12. (… + ⋯ ) − 17 = 28 −15 
13. 25 + ⋯ = 25 + 36: 3  

Some of the tasks proposed in the worksheets were also added in Swimming Pool and Parkour 
minigames. 
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Teacher training 

We structured the teacher training in three meetings. In the first one we asked the teacher to play 
SuperFlat Math as to familiarise with the game environment, the instructions, and the kind of 
proposed tasks. In the second meeting we presented to the teacher some examples about relational 
thinking taken from the textbook by Carpenter and colleagues (2003). Finally, in the third meeting 
we showed her CLARAS and its main features. We also provided the teacher with guidelines, where 
the fundamental topics of each meeting were summarised. 

Sample and data collection 

The sample is a fifth-grade classroom of a primary school located in a region of central Italy. The 
classroom is composed of 22 students, 14 males and 8 females. The whole-class discussion was 
orchestrated by their mathematics and science teacher.  

The teacher lets students play for about 2 hours, then she assigns them the worksheets to be solved in 
small groups (composed of three students) and finally she orchestrates a whole-class discussion. 

We asked the teacher to observe students play, collect, and read all the worksheets and record the 
whole-class discussion. 

Results 
The teacher conducted several classroom discussions involving all the topics proposed in the 
worksheets. In this result section we focus on the description and analysis of the classroom discussion 
about the conception of the equal sign. The discussion lasted 1 hour and 23 minutes and almost all 
present students got involved.  

In the following we report and describe some discussion transcripts. We selected those that highlight 
the key role of teacher’s scaffolding. We present a first example in which the teacher picks out some 
of the 7 tasks related to the conception of the equal sign, a second one in which she calls some students 
out to intervene in the discussion and a last one in which she introduces new tasks in order to clarify 
the emerging mathematical ideas. In the first example, we show an excerpt in which the teacher 
effectively selects only few tasks from the worksheet1 in the following order: 3 + 5 = 8;  8 = 3 +5;  8 = 8  respectively the task 1, 2 and 4 in the worksheet1. She starts by pointing out the difference 
between the first two sentences. 

Teacher: Student A, how do you read that [referred to 8 = 3 + 5 ]?  
Student A: Eight equals three plus five. 
Teacher: Ok, Student A. And how do you read the first one [referred to 3 + 5 = 8 ]? 
Student A: Three plus five equals eight. 
Student B: They [referred to the numbers] have been changed. 
Teacher: What have been changed? 
Student B: The results... Because in the first one it was in the first place, in the second one it 

was in the last one. 
Teacher: Do you agree? We all agree, do you all think that between the two [referred to 8 =3 + 5  and 3 + 5 = 8 ] the results have been changed? 
Student C: To me, it is easier to decompose the second one [referred to 3 + 5 = 8 ], 8  in 3 +5  and 3 + 5  is equal to three plus 5  because we know that one can put the equal 

sign when either the first or the second part give the same result, so it is like 3 + 5  
is equal to 8 ... 
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The discussion goes on, and all at once the teacher asks some students if they have already met 
sentences of the form 8 = 3 + 5  and if they consider it as equivalent to 5 + 3 = 8 . Thus, she 
encourages the class to invent new equalities equivalent to 5 + 3 = 8  and 8 = 3 + 5 . In this case, 
almost all students answer autonomously with different examples like 2 + 2 + 2 + 2 = 1 + 1 + ⋯+1 = 0,9 + 7,1 = 13 − 5 = ⋯ During this part of the discussion, we noted that the teacher exhorts 
students to continue suggesting equivalent sentences. Then, we report a second transcript example in 
which the teacher selects certain students based on their answers in the worksheets. In the following, 
the classroom is discussing about the sentence 9 + 5 = 14 + 5 . The teacher calls Student E out 
because her strategy is the same as that of another one. 

Teacher: Since we are dealing with small numbers, we know which is the result of both sides 
of the equal sign. But before, when I asked if the sentence [referred to 9 + 5 =14 + 5 ] was true or false, Student D explained why it was false without telling the 
result. Has someone reasoned in the same way? Student E? 

Student E: I did not compute 9 + 5  either. I saw that five was in both the additions, only 9  
and 14  changed. Since 14  is greater than 9 , the results could not be the same. 

Teacher: Ok. Student F. 
Student F: I saw that five was in other positions, it was the number that was always present in 

both operations, so I look at the first two addend of both operations and I realize 
that, since 14  is greater than 9 , the result [in the right side] should be greater... 

After discussing with Student E, the teacher explicitly calls Student F out, because she remembers 
she used a relational strategy to solve the task in the worksheet1: she compared the addends 14 and 9 without any computation.  

Finally, in the subsequent example the teacher does not look for a task in the worksheet or among 
those proposed in the videogame, but she invents a new one, in order to consolidate the reasoning 
explained in the previous transcript by Student F. 

Teacher: According to you, this reasoning... Now we have small numbers... But let’s try to 
think with bigger ones. According to you, could this reasoning help us in solving: 3527 + 1528 = 3682 + 1528 ? Are they the same? 

Student F: No! 
Teacher: 3682 + 1528 . Are they [referred to the sentences] the same? 
Chorus: No! 
Student G: No, no, no. It is the same... It is the same... 
Student H: It is the same. 
Student G: Because... 3527  is smaller than 3682 , but the other addend is the same. 

At first, students do not easily understand teacher’s example, but afterwards one of them realises that 
there exists a similarity between the invented task and the one from the worksheet1. Then, the teacher 
carries on the discussion emphasizing the potentiality of the student’s observation: + = +  if 
and only if = . Finally, a student concludes with the following remark: if > , then  + > +
. 

Discussions 
In this section, we analyse the results described previously by exploring the role of a GBL in 
supporting teacher’s scaffolding during classroom discussions on relational thinking. 

In the three examples, we highlight when and how the teacher uses the four scaffolding strategies 
described in the theoretical framework. Therefore, in all the three examples, the teacher chooses the 
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tasks to discuss with students without following the order of the tasks in the worksheets (1) and she 
invites selected students to intervene during the discussion considering their responses in the 
worksheets (2). In the first excerpt, the teacher encourages students to invent new tasks to clarify or 
share the emerging mathematical ideas (4), while in the last example she invents a new task to clarify 
the emerging mathematical ideas (3).  

We assumed that a GBL could have offered several scaffolding opportunities. Thus, it could be 
interesting to observe the role of the videogame in this trial. During the interview the teacher reports 
she did not rely on the web interface, because it only displays correct and wrong answers. Indeed, she 
calls students out during the discussion considering their answers in the worksheets and not referring 
to game scores. We also supposed that the large body of tasks could have allowed teachers and 
students to invent new examples of similar tasks based on reasoning by analogy. In fact, the examples 
provided by students are not like the ones presented in SuperFlat Math (2 + 2 + 2 + 2 = 1 + 1 +⋯+ 1 = 0,9 + 7,1 = 13 − 5 = ⋯) but probably they seem to have been invented considering other 
contexts. However, the teacher invents a task very similar to the ones proposed in the videogame. In 
line with this data, it seems that GBL offered to the teacher only one of the four scaffolding strategies, 
but we asked her if the videogame was useful in this trial. She answers affirmatively: in particular, 
she states it was remarkably interesting to observe students while they were playing in order to 
discover their strengths and weaknesses on equalities. Furthermore, the teacher maintains the 
videogame was an essential feature in the trial because of its motivational aspects, such as its power 
to captivate students’ attention or the goals and rewards within the game. Finally, the teacher declares 
that the discussion would not have been the same without the videogame. 

Teacher: To us, as primary school teachers, the videogame is very important. We should 
intervene more during play time so that the following activity with worksheets 
enables students to consolidate all concepts emerging from the game. In this way, 
with the worksheets we can verify if all our work was profitable. For me, the 
videogame is essential, and it should become a pleasant practice. 

Conclusions 
The aim of this paper is to analyse whether and how SuperFlat Math could support teachers in 
scaffolding activities that involve relational thinking. To do so, we organized a field trial which 
involved three phases: playing the videogame, written activities with worksheets and a whole class 
discussion. Before the trial, we structured a three meetings teacher training in which we proposed 
some theoretical references on relational thinking, and we presented the videogame and the web 
interface. From the discussion analysis we can determine that in several scenarios the teacher 
performed all kinds of expected scaffolding. The excerpts reported in the above section are 
unambiguous evidence of what we have already described. However, the presented results seem to 
show that the videogame was used by the teacher as a tool for scaffolding only in the case of inventing 
new tasks (3). For the other strategies, she preferred to use the worksheets to select specific tasks, 
students, and students’ answers to be discussed. In addition, students did not refer to videogame tasks 
when they invented new ones. For our analysis we refer only to the four strategies presented by 
Carpenter, Franke, and Levi (2003; 2005); probably, a more general framework on teachers’ 
scaffolding (e.g., Van de Pol, Volman & Beishuizen, 2010) could be more useful. The teacher states 
that the motivational aspect of the videogame plays a particularly significant role in promoting 
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classroom discussions; it could be considered as two of the six scaffolding intentions (Van de Pol, 
Volman & Beishuizen, 2010): Recruitment and Contingency. In addition, SuperFlat Math seems a 
remarkably interesting tool in monitoring students’ activities for designing the discussion. Indeed, 
the teacher reported that observing students play allowed her to conduct informal observation of 
students’ arithmetic knowledge and skills. According to the theoretical framework by Stein and 
colleagues (2015), the act of observing students’ behaviour could be included in both “anticipating” 
and “monitoring” practices, which are the first two phases of the model for orchestrating productive 
discussions. For this reason, we propose that observing students play might implicitly help teachers 
orchestrate the discussion, but we should investigate this hypothesis further, for example by 
conducting a new trial using the thinking aloud method (Fonteyn, Kuipers & Grobe, 1993). Finally, 
there are some aspects that could be interesting for future research. For instance, we could develop 
sequences of adaptive tasks within the videogame to emulate teacher’s scaffolding. Moreover, the 
videogame could propose more structured feedbacks that partially help teachers and researchers 
discover students’ processes. For this purpose, we could ask students to keep a “diary” during play 
time, where they could write down the strategies used to solve the proposed tasks. 
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In this study, we investigated what opportunities for learning and teaching could be created using 
WhatsApp as a social network to help students prepare for the final secondary-school Bagrut 
(matriculation) exam in mathematics. Launched by the Center for Educational Technology three 
months before the Bagrut examination, we initiated WhatsApp groups meant to provide an online 
review project during which teachers integrated blended learning, and students presented problems 
with which they were having difficulties. During this initiative, we applied a quantitative and 
qualitative research model to analyze the teacher's perceptions about what learning and teaching 
opportunities were created. In this particular report, we focus only on the quantitative. 

Keywords: Social network, communication, mathematics teachers' knowledge  

Introduction 
Communication is a necessary and essential component of learning and teaching processes. Plentiful, 
diverse communication allows students to organize their mathematical thinking; analyze, evaluate, 
and enhance their ability to express their mathematical thinking consistently and clearly alongside 
those of others; and make proper use of mathematical language to accurately express mathematical 
ideas NCTM (2000). During lessons, it is important that mathematics teachers initiate a discourse to 
promote communication between students and use diverse tools for explaining, making connections, 
solving problems, and raising persuasive arguments (NCTM, 2019).  

"Orchestrating such discourse presents a unique challenge in online settings where discourse usually 
takes the form of discussions about shared readings or experiences rather than collaborative problem-
solving of a mathematical task" (Morge et al. 2020, p. 216).  

Teaching and learning mathematics with social networks  

Learning via social media can take place in many settings. It invites learners to collaborate in meeting 
their learning goals by communicating with colleagues over the Web, learning in any environment 
that social network learning allows, expedite learning as a result of exposure to many, varied learning 
interactions between the group’s partners, anonymous learning, and active or passive learning, among 
other things (Naidoo & Kopung, 2020; Moodley, 2019). Social networks can also be integrated into 
student learning processes, and the interactions that occur between teacher and student and between 
the students themselves allow immediate feedback, improvement of thinking and reasoning skills, 
more focus on addressing learners' difficulties in learning and understanding processes, and exposure 
to the mathematical ideas of their peers (Biton & Segal, 2021; Freeman et al., 2016; Greenhow & 
Askari, 2017). Thus, it is important for mathematics teachers to acquire appropriate technological 
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knowledge about teaching over the social networks, options offered for teaching in this environment, 
and methods for integrating appropriate pedagogy for optimal mathematics instruction.  

Technological pedagogical and mathematical content knowledge  

Based on Shulman’s work (1986), Ball and Bass (2003) defined the term “Mathematical Knowledge 
for Teaching” (MKT) as the knowledge that encompasses areas and levels of school mathematics, 
supports mathematics teachers’ connected ideas, and emphasizes their ability to plan, evaluate, 
integrate, and manage appropriate mathematical content for teaching. Subsequently, Ball et al. (2008) 
proposed six different components of MKT, one of which – Knowledge of Content and Students 
(KCS) – combines knowledge about students and about mathematics. It entails knowing how students 
think, what mathematical tasks may be easy/ difficult for them, and so on. This type of knowledge 
requires interaction between specific mathematical understanding and familiarity with students’ 
mathematical thinking. Koehler and Mishra (2009) coined the term “Technological, Pedagogical, and 
Content Knowledge” (TPACK), which is an amalgamation of the three types of knowledge. The 
concept of TPACK implies that these bodies of knowledge intersect at various levels of complexity, 
and it encompasses the knowledge teachers require to effectively integrate technology into their 
teaching (Schmidt et al., 2009). One component of TPACK that is relevant to this particular study is 
TPK−Technological Pedagogical Knowledge. This is familiarity with the range of technologies that 
can be integrated into teaching and understanding how their use can affect teaching methods.  

Clearly, making use of any web-based social platform requires the teacher to have TPACK: the 
technological capacity to operate within the platform, the pedagogical skills to use it effectively, and 
(as goes without saying) the content knowledge they aim to impart to their students.  

The "Bagroup" project  

The Bagroup project was initiated by the Learning Center for Education Technology for the Ministry 
of Education to offer the use of the WhatsApp application to high school students preparing for their 
math matriculation exams (“Bagrut”) at all levels. WhatsApp groups of approximately 100 students 
from across the country (who were not necessarily acquainted with each other) were set up and 
overseen by a professional, experienced teacher. The project ran approximately two to three months 
before the date of the exam, during which hundreds of thousands of messages were sent that included 
scholastic content, questions and solutions, and explanations. The WhatApp-based project offered the 
advantages of immediacy (students could get an immediate, professional response from a teacher or 
peer), equality (the entire student body had access), mobile learning (the smartphone supplemented 
classroom instruction anywhere and anytime), encouragement (strengthened understanding, feelings 
of capability, and self-confidence) and variety (exposure to a myriad of learning and problem-solving 
methods).  

The study’s aim was to determine teachers' and students' perceptions of the project. For this purpose, 
five research questions were posed, but in the present framework, we focus only on the question: 
What are teachers’ perceptions of the WhatsApp “Bagroup” project learning environment? 
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Method  
Setting  

Learning in each of the WhatsApp “Bagroup” groups was based on the “blended learning” format, 
which includes synchronous and non-synchronous sessions (Schwartz et al., 2017; Tella, 2014). The 
group was overseen by a professional teacher to ensure consistency, but most of the learning was 
peer-to-peer. A learning program was designed specifically for the project, and every day, questions 
in one of the pre-defined topics were raised and solved within the group. For each subject, two or 
three 45-minute-long WhatsApp lessons were held in which the teacher presented the topic and 
emphasized significant points of knowledge. Learning was continuous (24/7) and facilitated in a 
variety of ways: text messages, voice messages, photos, video, questions, presentations, and more.  

Sampling method 

A nonprobability sampling method was used based on the availability and willingness of participants 
to reply to the questionnaire.  

Research tools  

Four data collection tools were used: (1) Teacher questionnaire distributed at the end of the three-
month learning period that included 11 six-point Likert-type statements and open-ended questions. 
The questionnaires were constructed together with and validated by a team of mathematics education 
experts to monitor and evaluate the actions of the participants, particularly because they were 
strangers to each other at the outset. Out of the 40 participating teachers, 24 responded; (2) informal 
semi-structured interviews at the end of the learning period (friendly conversations via video chat 
with three teachers and two project managers); (3) the content of the WhatsApp messages; and (4) 
observations of four groups of students (chosen at random).  

Data analysis  

Four-stage data analysis was both quantitative and qualitative and included (Corbin & Strauss, 2014; 
Creswell, 2014): (1) quantitative analysis of closed statements in questionnaires; (2) qualitative 
analysis of open questions in questionnaires and interviews; (3) cross-matching information obtained 
from quantitative and qualitative analyses; and (4) searching for evidence/episodes from the students' 
and teachers' messages to corroborate the findings obtained in the previous stages.  

Findings  
Our quantitative findings of the responses to the teachers’ questionnaire are presented in Table 1 (list 
of statements, and average score and standard deviation of each; (internal reliability, α =0.785).  

Table 1: Averages and standard deviations of the components and statements that relate to teachers' 
experience in teaching mathematics via the WhatsApp “Bagroup” project 

Statement Av. SD 

Category 1. Contribution of the WhatsApp environment to learner's emotional needs 3.56 0.89 
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I managed to track the students’ progress via the WhatsApp discourse. 3.83 1.17 

I managed to explain the material just as much as in a regular class. 3.33 1.05 

WhatsApp allowed students to participate without fear of committing mistakes. 4.14 1.39 

Written discourse in WhatsApp is preferable over verbal discourse in regular classes. 2.50 1.41 

Teaching through WhatsApp allowed me to meet the specific needs of each student. 4.04 1.20 

Category 2: Factors that promote learning in the WhatsApp environment 4.20 0.86 

The lesson setup with WhatsApp differs from that in a regular lesson. 4.92 1.10 

The WhatsApp method made me more familiar with available math-teaching math technologies. 3.96 1.27 

Students seem to invest more time and effort in learning compared to in a regular classroom. 3.38 1.47 

I believe that WhatsApp will become an integral tool for teaching math in the future. 4.61 1.34 

Category 3: Factors that inhibit learning in the WhatsApp environment 3.10 0.97 

Some mathematical content cannot be explained via WhatsApp. 3.29 1.43 

I could not manage to generate students' collaboration like I do in a regular class. 2.92 1.35 

 

Figure 1 illustrates the distribution of answers. For ease of presentation, the Likert scores were divided 
into three levels (agree, somewhat agree, disagree) and the respective percentages are indicated. 

In the first category, “Contribution to learner’s emotional needs,” all the teachers agreed or somewhat 
agreed that it reduced students’ fear of making mistakes, the majority agreed or somewhat agreed that 
it allowed them to meet the specific needs of each student, and they all agreed or somewhat agreed 
that they were able to successfully track their students’ progress. However, the matter of written vs. 
verbal explanation did trouble the teachers as only about a quarter believed that written discourse is 
preferable over verbal discourse (a little over a third somewhat agreed).  

In the second category, "Factors that promote learning in the WhatsApp environment," all the teachers 
agreed or somewhat agreed that the lesson setup with WhatsApp was quite different than a regular 
lesson, that WhatsApp would become an integral tool for future mathematics instruction, and that 
teaching through WhatsApp improved their familiarity with the technologies available for teaching 
math. However, there was some difference of opinion regarding whether students invested more time 
and effort in learning compared to students in a regular classroom": although over four-fifths agreed 
or somewhat agreed, almost a fifth disagreed.  
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Figure 1: Levels of teachers’ agreement with statements concerning their experience teaching 
mathematics via WhatsApp 

In the third category, "Factors that inhibit learning in the WhatsApp environment,” about a third of 
the teachers agreed and over half somewhat agreed that some mathematical content cannot be 
explained via WhatsApp." With respect to the last statement, "I could not manage to generate 
collaboration between students like I do in a regular class," note that this is a “negative statement,” 
meaning that agreement illustrates a disadvantage. Almost 80% agreed or somewhat agreed with the 
statement meaning that only about a fifth did not find encouraging collaboration to be a problem. 

Discussion
Because learning opportunities are created through the interactions of (at least) tasks, teaching, and 
students, measures of learning opportunities will need to develop through analyzing interactions 
among these factors and describing how some interactions help students achieve a specified learning 
goal more than others (Cai et al., 2020. p. 19). 

The aim of this study was to investigate teachers' perceptions of the WhatsApp Bagroup program 
environment as a lever for learning and teaching opportunities. Analysis of the teacher questionnaires 
gives the overall impression that the teachers feel the program does indeed address students’ 
emotional and scholastic needs perceived by them.

Emotional needs 

The program involved interaction between students and teachers and between students and their peers 
through respectful communication. Each student's ideas were taken seriously and everyone had the 
opportunity to ask questions, make statements, and express their ideas. These have been shown to be 
necessary for a successful learning atmosphere (Chapin et al., 2013).

The first category of statements was to determine whether the teachers believed this platform met the 
learner’s emotional needs. Overall, the response was favorable. Teachers believed that it allowed 
them to meet the specific needs of each student (4.04): most (70.8%) agreed; 25% somewhat agreed 
with the relevant statements. Only 4.2% disagreed. Similarly, fully 94.8% felt that the platform 
allowed them to successfully explain concepts or understand their students’ difficulties (37.5%: 

Contribution to emotional needs Factors that promote learning
Factors that inhibit 

learning
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agree; 58.3%: somewhat agree) and only 4.2% did not. Results also showed that 100% of the teachers 
managed – either fully (70.8%) or somewhat (29.2%) – to properly track their student’s progress 
through the WhatsApp discourse (3.83), a factor that would help meet students’ emotional needs.  

All the teachers either fully (54.5%) or somewhat (45.5%) agreed that the platform freed students 
from the fear of making errors (average 4.14), clearly a factor in meeting students’ emotional needs. 
However, there seemed to be some hesitancy regarding whether the written discourse was efficient 
enough to meet student needs, as over a third (37.5%) disagreed with the statement “The written 
discourse in WhatsApp is preferable over the verbal discourse in a regular class" (average 2.5). Only 
25% of the teachers fully agreed that it was preferable and 37.5% somewhat agreed.  

Overall, it seems that the teachers’ personal approach to the students, meeting needs, and providing 
a feeling that any question is valid encouraged learning and provided emotional support.  

Scholastic needs 

Most of the teachers expressed satisfaction with their ability to track students’ responses and explain 
mathematical concepts over the platform, thus meeting their students’ scholastic needs. However, 
many did not agree that written discourse was preferable (see above).  

Regarding how much students invested in learning in this platform, most of the teachers agreed 
(45.8%) or somewhat agreed (37.5%) that the students in this project invested more time and effort 
in learning compared to students in a regular classroom" (3.38); about a fifth (16.7%) disagreed.  

Challenges to teachers  

It is not surprising that 87.5% of teachers fully agreed with "The lesson setup with WhatsApp differs 
from that of a regular lesson" (average 4.92), as an internet chat platform is clearly different from 
frontal teaching (even over the internet, such as with ZOOM), since all answers must be composed 
in writing. Regarding their success (or not) in explaining the content over the platform, it seems that 
the majority of teachers had difficulty, as a third of teachers agreed (37.5%) and over half of them 
somewhat agreed (58.3%) with "Some mathematical content cannot be explained via WhatsApp" 
(average 3.29). Only 4.2% seemed to have no problem explaining content over the platform.  

Finally comes the issue of successful student collaboration (average 2.92). Only 20.8% of the teachers 
responded that they had no problem getting their students to collaborate, 41.7% seemed to have some 
problems with this, and over a third (37.5%) reported that they could not manage to generate 
collaboration between students like they do in a regular class.  

Nevertheless, despite these challenges, all teachers believed (82.6%) or somewhat agreed (17.4) that 
WhatsApp (or similar) will become an integral tool for teaching math in the future (average 4.61). 
Furthermore, all the teachers responded that teaching through WhatsApp improved their mastery with 
technologies available for teaching math (66.7% agreed, 33% somewhat agreed, average 3.96).  

Conclusion  
Naidoo and Kopung (2020) emphasized the contribution that collaborative learning via WhatsApp 
made to pre-service mathematics teachers: it encourages ubiquitous, prompt, and anonymous 
mathematical learning. In the present study, in-service mathematics teachers are teaching students 
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whom they have not met before, and the teachers identified a similar contribution to the students 
alongside its contribution to them as mathematics teachers. The majority of teachers reported 
satisfaction with the program: it allowed them to track student progress, assisted them inefficiently 
in solving problems, and helped them identify where students were having difficulty. They also felt 
that it helped meet students' emotional needs because students were not afraid to make mistakes, and 
they received an appropriate and immediate response to any difficulties according to their specific 
needs.  

The teachers seemed to feel that the program increased their TPK (Schmidt et al., 2009) because they 
were forced to become familiar with a variety of innovative teaching-learning processes in 
technological environments and gain experience in how to teach, explain, and present mathematical 
processes and concepts. Nevertheless, the environment posed some challenges: for example, not all 
mathematical content is appropriate for this environment and written discourse is not always an 
alternative for verbal discourse to fully explain some concepts.  

These and similar programs may help predict learning or teaching responses that have not yet been 
identified. Similar studies may assist in shaping future research into technological integration into 
formal education, leading to the introduction of solutions to ongoing educational problems or altering 
prevailing educational norms and methods towards more beneficial applications.  
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In light of COVID-19 outbreak and the subsequent closures of educational institutions, the need for 
online environments has significantly increased. This study sheds light on the online component of a 
mathematics flipped classroom (FC) and aims to investigate if, and to what extent, it can effectively 
utilize inquiry-based learning (IBL). Based on the 5E inquiry model, the study focuses on an advanced 
mathematics course for high-school students taught in an FC environment. Analysis of seven filmed 
lectures on the subject of complex numbers was conducted using a validated 5E inquiry model scoring 
instrument. Results indicate promising findings for a wisely planned virtual platform that answers 
the 5E model requirements and may successfully demonstrate an IBL-supported environment. 

Keywords: Inquiry-based learning, flipped classroom, 5E Model, mathematics education 

Introduction 
The difficult period resulting from the COVID-19 outbreak, which includes, among other things, the 
closure of educational institutions, has highlighted an urgent need for a worthy alternative to the 
traditional teaching method  (Dhawan, 2020). Most recently, and due to COVID-19 pandemic, a huge 
variety of online learning environments have emerged. A potential alternative approach is the Flipped 
Classroom (FC), with the goal to provide students with a supportive environment alongside a deep 
and meaningful learning experience (Sharkia & Kohen, 2021). The research environment that served 
this study is a MOOC called Campus IL, an Israeli national digital learning venture, which offers the 
users the opportunity to experience an advanced and individualized learning process, by providing a 
huge variety of online content. Particularly, the FC method can be an ideal venue for transforming 
traditional learning into an engaging, inquiry-based learning (IBL) environment (Love et al., 2015). 
The FC approach includes two phases, of which the first phase occurs out of class, where students 
are expected to undergo an independent learning process, while the second phase takes place inside 
the classroom and involves extensive practice exercises of the materials learned outside of class 
(Bergmann & Sams, 2012).  Previous studies in the field have explored the application of IBL in the 
physical classes, as the FC approach frees up class time for IBL-type activities (Sharkia & Kohen, 
2021). Yet, limited research had been done on the application of IBL in the online component of the 
FC environment (Love et al., 2015). Thus, the current study aims to investigate the application of IBL 
in the online platform of an FC learning environment. We aim to explore whether, how, and to what 
extent an online platform for a mathematics FC utilizes IBL in the most effective way. 

Theoretical Background 
The FC Approach 

Two components comprise the FC approach; the first is the independent learning process that takes 
place outside of the classroom, and the second is the active and collaborative lessons inside the 
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classroom (Bergmann & Sams, 2012). The FC approach utilizes various technological means to 
provide students with instructional materials and related exercises. These technological resources 
allow students to learn the content outside of class (Dori, Kohen, & Rizowy, 2020), hence offer 
teachers considerable time in class to provide deeper explanations and practice alongside the students 
(Bergmann & Sams, 2012). The online component of the FC is where teachers provide filmed 
lectures, presentations, online assignments, and more, and expect students to independently learn the 
provided content before arriving to the class. With that, and according to Lo and Hew (2017), this 
approach promotes student-centered learning experience. Additionally, it allows a wiser management 
and exploitation of class time, by enabling teachers to roam around the classroom, identifying various 
individual difficulties, detecting different challenges and misconceptions among the students, and 
finally react accordingly by giving these students the support and encouragement they need (Lo & 
Hew, 2017). A main advantage of the class component of the FC approach is that it provides students 
with adequate amount of class time to extensively and collaboratively work on exercises alongside 
their teacher, which is considered an essential condition to master mathematical skills and achieve 
comprehensive understanding of the material (Kaiser & Vollstedt, 2007). A main advantage for the 
online component of the FC approach is that the instructional content is available for students out of 
class any time and place, hence they can access it countless times until they accomplish full 
comprehension (Lo & Hew, 2017). As a result of the COVID-19 pandemic, the “traditional” flipped 
classroom, in which students meet with the teacher in person, was almost impossible to adopt. Instead 
many institutions have integrated online teaching with FC. Research has shown that this combination 
resulted in positive effects on students, including increased learning, comprehension and attention, as 
well as positive evaluations of a variety of taught courses (Tang et al., 2020). 

The 5E Inquiry Model 

According to the 5E model (Bybee et al., 2006; Bybee, 2009), learning through inquiry follows five 
phases, which are identified as follows: (i) engagement, (ii) exploration, (iii) explanation, (iv) 
elaboration, and (v) evaluation. These phases can be implemented to various levels when planning 
and constructing different curriculum materials, lesson plans, and instructional strategies (Bybee et 
al., 2006). Classroom inquiry is composed of five essential characteristics (National Research 
Council, 2000), which can be addressed by applying the 5E model during the learning process 
(Schallert et al., 2020). The first characteristic is engaging the learner in scientific questions (National 
Research Council, 2000, p. 29). This feature can be found in the first phase of the 5E model, namely, 
engagement, which enables students to engage in the learning activities. In this phase, teachers need 
to motivate and engage students by presenting a certain problem that requires students’ attention. The 
next phase is exploration. As soon as students are engaged and motivated in a certain activity, they 
should be able to explore their thoughts and abilities. In this phase, classroom inquiry is characterized 
by prioritising the evidence in response to questions, and formulating explanations based on evidence 
(National Research Council, 2000, p. 29). The next phase of the 5E model is explanation, in which 
concepts, ideas, procedures, and skills become clear and understandable. This phase relates to another 
inquiry characteristic that comprises explanations connected to scientific knowledge and 
communication and justification of explanations (National Research Council, 2000, p. 29). The 
explanation phase describes these features, offering students the opportunity to create connections 
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between their explanations to scientific knowledge and further justify them.  The next phase is the 
elaboration of the problem and its solution(s). In this phase teachers provide students with further 
experiences, tasks and challenges aiming to expose them to new but similar situations. The final phase 
of the 5E model is the evaluation, in which teachers are expected to provide their students with the 
appropriate feedback on the quality of their performance. Figure 1 presents visually the 5E inquiry 
model. 
 

 

Figure 1: The 5E inquiry model (Schallert et al. 2020, based on Bybee and colleagues’ model, 2006) 

The research question of this study is: How, and to what extent, the online platform of the FC can 
effectively utilize the IBL approach. 

Method 
Research Environment - Campus IL 

The current study focuses on one course that is held in Campus IL. Campus IL is a joint venture from 
Digital Israel and the Council for Higher Education that aims to provide all Israeli citizens the 
opportunity to pursue education and engage in intellectual development. This environment includes 
a huge variety of courses and resources from highly respected colleges, universities and other 
academic organizations. Having gained access to Campus IL, the user can benefit from a personalized 
and unique learning experience. The current study utilizes an advanced mathematics course in 
Campus IL. This course is designed for high school students who study advanced mathematics, and 
aims not only to prepare them for the final matriculation exam in mathematics that takes place at the 
end of 11th and 12th grades, but also to expand their horizons and nurture their mathematical thinking 
and prepare them for first year college mathematics. 
All the content of this course is conveyed through short, filmed lectures that were filmed and produced 
in a specially designed studio at the Technion institution, under the supervision and direction of a 
professional photography and editing team. The average length of each video is roughly 5 minutes, 
and it is mostly followed by short assessment tests and quizzes that aim to assess students' 
comprehension of the mathematical content they have recently watched. Dr. Aviv Censor, one of the 
outstanding lecturers in the Technion institution (according to national and institutional instructional 
surveys) is the teacher who delivers the content in all the filmed lectures. In addition, an academic 
team under his supervision has developed, created, and written all the evaluation tests in a manner 
that suits the level taught in the videos. Figure 2 presents a screenshot taken of a filmed lecture about 
the subject of complex numbers. 
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Figure 2: The teacher in a filmed lecture about complex numbers   

Research Tools and Analysis 
Research tools include a scoring instrument that was developed and validated in a research study 
conducted by Goldston and colleagues (2013). This scoring rubric was designed to evaluate IBL 
lesson plans according to the 5E model by Bybee et al. (2006) and is considered a reliable tool for its 
total reliability score that reached 0.98. It consists of several items for each one of the 5E model 
phases. Each item is given a score that ranges from 0 to 4, based on a 5-point Likert scale, where 0 
stands for unacceptable, 1 is poor, 2 refers to average, 3 means good, and 4 represents excellent. This 
rubric was also found to help teachers and educators to revise their strategies of how to design a 5E-
based lesson. The current study mainly used several sections of this rubric to assist in evaluating 
filmed lectures, in an attempt to investigate if and to what extent these lectures employ the IBL 
method. The elements of all phases were considered except for the explanation phase, which is 
basically based on assessing student perspective, therefore could not be taken into account in the 
scoring process which evaluates the teacher perspective in the filmed lectures. In the present study, 
we chose to present the analysis for the first seven  filmed lectures which provides introduction to the 
subject of complex numbers. This subject is part of the advanced mathematics curriculum, that is 
required in the second matriculation test conducted at the end of 12th grade. These lectures started 
with three introductory videos,  the next two videos explained the emergence of the groups of numbers 
and provided a definition of a complex number, and the last two videos illustrated the algebraic and 
geometric representations of a complex number. The videos were transcribed and evaluated 
quantitively according to the scoring rubric described above. We also present qualitative analysis of 
the videos, for examining the narratives of IBL that were captured in the videos. 

Findings 
In order to reveal the exemplification of IBL in the online platform of the mathematics FC Campus 
IL, a thorough and comprehensive analysis of several filmed lectures was completed. A score was 
given to each one of the different elements that are characterizing the various phases of the 5E model. 
Figure 3 below illustrates the means and standard deviations of the scores obtained to the seven filmed 
lectures. Scores were calculated separately for each one of the four considered phases.  
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Figure 3: Average scores of the elements composing each phase of the 5E model 

Figure 3 shows that all the examined elements were evident in the lectures and reached a score that 
is higher than 3, meaning that these lectures highly fulfill the requirements for implementing IBL 
during a mathematics lesson. Besides means and standard deviations, frequency distribution of scores 
that were given for each component was calculated. See Table 1 reflects the frequency distribution 
of scores that were given for each component, for all the seven explored filmed lectures. 

Table 1: Frequency distribution of scores that were given for each component 

Phase Score (2) Score (3) Score (4) 
Engagement 22.22% 44.44% 33.33% 
Explanation 16.67% 33.33% 50.00% 
Elaboration 11.11% 66.67% 22.22% 
Evaluation 0.00% 0.00% 100.00% 

 
It can be seen that score (4) has the highest frequency in both explanation and evaluation components 
while they have different means. Similarly, score (3) has the highest frequency in both engagement 
and elaboration components. These differences in the distribution can explain the differences in 
standard deviation in each component.  Specifically, when comparing all four phases, it can be seen 
that the explanation and evaluation components were the most prominent in the examined lectures. 
This indicates that the explanation phase that is adopted in the videos largely promotes and contributes 
to inquiry in the classroom. Particularly, aiming to encourage and promote profound understanding, 
throughout this phase it was evident that the teacher was determined to introduce concepts that 
students were unfamiliar with or not aware of. Presenting a great variety of examples and strategies 
in the filmed lectures, the teacher was able explain these concepts and theories. Another interesting 
finding that is revealed is that classroom inquiry can be more efficient when the teacher performs 
evaluation and assessment activities at the end of the lecture. 
From a qualitative perspective, we now describe some utterances that were observed in the filmed 
lectures, which illustrate the appearance of the inquiry components in part of the videos that were 
analyzed. In the introduction lecture (#1), the teacher opens the lecture with an interesting starting 
point in an attempt to gain students’ engagement. He asked the students the following: “Did you know 
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that bears can count to 4?!”, then continues: “When walking in bear-inhabited areas, the instructions 
recommend staying in groups of at least 5 people, as bears tend to avoid groups of more than four”. 
Following the intriguing introduction about counting natural numbers, the teacher refers to negative 
numbers, and asks: “what is -3?” and immediately tries to bring real life examples to illustrate the 
meaning of negative numbers. He then asks students an interesting question that stimulates students’ 
knowledge from their early years of study: “Back in 6th grade, you were taught that multiplying two 
negative numbers results in a positive number. Why is this true? I would like you to pause the video 
for a moment and try answering this question yourself”. The teacher tries to raise simple yet 
challenging questions to motivate the students and attain their attention and engagement, this is 
crucial to assure students will be intrigued to continue watching the next lectures seeking for logical 
answers. Following, in the second introduction lecture (#2), the teacher enters the explanation phase, 
in which he intends to answer the previously raised question, and thoroughly explain it to the students. 
At this stage, the teacher chooses a creative explanation of the answer, and uses a filmed example 
attempting to convey the concept of “the product of two negative numbers is a positive number”. He 
gradually poses a variety of questions to help students develop their understanding and skills, such 
as: “In this video, you can see Maya walking at a speed of 3 km/h. What if we run it twice the original 
speed? What happens if we run the video backwards? what if we run it backwards twice the original 
speed? etc.”. After the explanation phase the teacher moves to the next phase of elaboration revealed 
in lecture (#3) of the introductory films, in which he presents new problems, yet related to the previous 
parts of the introduction. This lecture aimed to elaborate the concept of square root of a negative 
number. He uses simple explanations, examples, and graphs to illustrate that no square root exists for 
a negative number. And from this point, he mentions the main subject of complex numbers by saying: 
“There were some who believed differently and raised the idea of imaginary numbers”. He concludes 
this video by adding that: “Let us consider complex numbers, without which there would be no 
Einstein relativity, no quantum theory, no autonomous cars, and no noise-cancelling headphones”. 
Doing so, he emphasizes the importance of mathematics in general and the significance of the 
complex numbers subject to students’ real life. All the above examples of this teacher’s lectures 
demonstrate the actual use of IBL in the online platform of the FC, through a variety of wise 
questions, certain metaphors, and unique delivery methods of the mathematical content. These 
examples supplement the quantitative findings which indicate a high degree of IBL applied by this 
teacher in the various online filmed lectures. 

Discussion 
According to the Principles and Standards for School Mathematics (National Council of Teachers of 
Mathematics, NCTM, 2000), an IBL approach should be integral to and at the core of good 
instructional practices. Yet, to promote rigorous and meaningful IBL, teachers should constantly 
strive to improve the quality of inquiry instructional practice (Marshall et al., 2006). In the present 
study, we provide insights into implementing IBL in mathematics flipped classrooms. It investigates 
if, how, and to what extent the online platform of the flipped classroom can effectively utilize the 
IBL approach. Using a validated scoring rubric (Goldston et al., 2013), analysis and scoring of several 
filmed lectures were accomplished. The findings indicate that the instructional process in these 
examined lectures exemplify the characteristics of an IBL method. Specifically, findings reveal that 
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the explanation phase was prominently observed. This finding aligns with several characteristics for 
IBL defined by the National Research Council (2000). It was evident in the lectures that the teacher 
tried to raise questions that require the students' exploration, and subsequently offered them 
explanations that are science based. Thereby, teaching them to link their own explanation to scientific 
knowledge which leads to further comprehensible justifications. Another significant finding is that 
once evaluation process was observed, it indicated an excellence implementation of IBL. According 
to Bybee (2006), this is a critical phase, which enables not only teachers but also students to evaluate 
and assess their comprehension. Through applying short quizzes and a variety of tests, teachers may 
be able to evaluate the improvement of students’ understanding and abilities (Schallert et al., 2020).  
From a theoretical perspective, the study contributes to the limited literature about the 
interrelationship between IBL and FC, particularly referring to the online component of FC. From a 
practical perspective, we present promising findings indicating that when designed wisely according 
to the 5E inquiry model, the virtual component of the flipped classroom can represent an IBL 
environment which students will benefit from, especially in difficult periods such as the current 
COVID-19 period.  
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This paper examines what misconceptions about geometric similarity (GS) teachers can attend in 
their curriculum scripts and how they use dynamic mathematical technology (DMT) in the classroom 
to promote students to encounter, reflect upon and address their misconceptions. The Structuring 
Features of Classroom Practice (SFCP) construct of ‘curriculum script’ guided the collection and 
analysis of the data presented in the paper. The research worked with three teachers with different 
levels of experience and expertise in using DMT. Data collection involved video-recorded 
observations, audio-recorded, semi-structured post-lesson teacher interviews and lesson resources. 
The findings suggested there were differences in the quantity of misconceptions the teachers 
anticipated and/or identified and in the ways in which they used the DMT to help students confront, 
reflect upon and address their misconceptions. 

Keywords: Geometric similarity, misconception, dynamic mathematical technology, teacher. 

Introduction 
Researchers have underlined that there is still little understanding of the phenomenon of the 
integration of dynamic mathematical technology (DMT) into classroom practice and we need more 
case studies guided by the available different theoretical lenses to explore teachers’ DMT-enriched 
practices within ‘real’ classroom settings (e.g. Ruthven, 2014). In our research, we aimed to 
contribute to addressing this gap by investigating secondary teachers’ actual classroom practices as 
they teach the key mathematical domain of geometric similarity (GS) with a carefully designed DMT. 
We focused on GS since it is a key but also difficult concept for students (Clark-Wilson & Hoyles, 
2017). For instance, research has documented that the improper use of additive reasoning is one of 
the most common student misconceptions about GS (Noss & Hoyles, 1996). However, despite its 
importance in school mathematics and the difficulties that it poses to students, GS has been neglected 
in research on the integration of DMT into practice. This is surprising as the research evidence 
suggests that students’ engagement with DMT could help them overcome their (possible) 
misconception(s) with GS (Clark-Wilson & Hoyles, 2017).  

The current paper presents part of a broader PhD study (Simsek, 2021), conducted by the first author 
and supervised by the co-authors. The paper concerns particularly teachers’ use of DMT in their 
practices to support students to confront, reflect upon and address their (possible) misconception(s) 
about GS. We formed our research question for this paper as follows: What student misconceptions 
about the topic of geometric similarity can teachers attend in their curriculum scripts and how do 
they use dynamic mathematical technology in their classroom practices to support students to 
encounter, reflect upon and address them?  
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The ‘Curriculum Script’ Construct of the SFCP Framework 
We selected and used the Structuring Features of Classroom Practice (SFCP) framework to guide the 
entire research process of the broader study including both data collection and analysis. The lenses 
of this framework specifically concentrate on the five key structuring features of classroom practice 
that shape how teachers incorporate (new) technologies into their practices, namely curriculum script, 
resource system, activity format, working environment and time economy. The framework underlines 
how these features pertain to teachers’ integration of technologies into the classroom and identifies 
the examples of the associated teacher craft knowledge in relation to integration of technologies (the 
full description of the framework can be found in Ruthven (2014)). Ruthven (2014) discusses 
teachers’ craft knowledge is mainly tacit, illustrating why many teachers find it difficult to articulate 
or might not even be aware of. Teachers develop this type of knowledge, which is dynamic and 
evolving, primarily through “their own practical experience of learning and teaching the topic” or 
from “available curriculum materials” (Ruthven, 2009, p. 138). The SFCP framework therefore 
serves to identify and analyse teachers’ craft knowledge that underpins successful classroom practice 
with (new) technologies. 

Due to the focus of the present paper, we briefly describe only the construct of curriculum script as 
it also involves student misconceptions about a topic teachers anticipate and/or identify and how 
teachers address them using different pedagogical tools including DMT(s). The concept of 
curriculum script can be defined, in the psychological sense, as an event-structured organisation of 
knowledge incorporating well-defined sets of learning objectives, expectations and actions in a 
loosely logical sequence for a mathematical domain, likely misconceptions related to the domain, 
together with resources, activities, associated language and questions, and pedagogic strategies 
(Ruthven, 2009). When teachers implement (new) technologies in their practices, they need to draw 
on their knowledge to develop and adapt their curriculum script for teaching a topic. This script guides 
the ways teachers create the overall structure for a lesson (i.e. the dynamic plan or set of goals and 
actions for a particular lesson) and enact it in a flexible and responsive way (Ruthven, 2014). It is 
important to highlight a curriculum script goes beyond a lesson plan created by teachers in the written 
form in advance a lesson. In this sense, while a lesson plan seems to be fixed and contain details that 
teachers are able to articulate, a script can be considered as dynamic and evolving in light of what 
happens in the classroom and encompass content of teachers’ craft knowledge that many of them are 
not be able to articulate or might not be aware of. 

Design and Methods of the Study 
This research adopted a multiple case study approach. We were able to identify and work with three 
teachers who had been previously involved in the original Cornerstone Maths (CM) project in 
England (see the details of the project in Clark-Wilson and Hoyles (2017)) and expressed an interest 
in being part of the research. We recruited them from the community of the project as they had 
engaged with a particular DMT tool, the CM software, and they were committed to use the DMT in 
their own classroom practice to teach CM curriculum unit on GS (including the CM software, the 
student booklet and the associated teacher guide) to students aged 13-14 years. The participant 
teachers were from the two different London-based co-educational secondary schools. While Jack 
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(pseudonym) taught in a school in the east London, Alex and Lara (pseudonyms) were colleagues 
and taught in the north-west London. We expected Jack to exemplify characteristics of an expert 
teacher in the use of DMT for teaching and learning of mathematics as he had high-level of 
involvement in the original CM project and considerable experience and expertise in the use of 
DMTs. Whereas, we expected Alex and Lara to exemplify characteristics of an advanced beginner 
teacher as they had mid-level of involvement in the original CM project and some experience and 
expertise in using DMTs (Berliner, 2004). We assumed such selection would be helpful to elucidate 
differences in the characteristics of teachers’ practices with DMT in relation to GS. 

The CM software is a web-based DMT designed to support students’ understanding of the set of three 
CM curriculum units for lower secondary mathematics in England. The units include GS, algebraic 
patterns and expressions, and linear functions. The software was designed by exploiting the dynamic, 
visual and multi-representational potential of digital technology. It contains several carefully 
designed dynamic tasks related to each of CM units and promotes the use of the ‘predict-check-
explain’ pedagogical approach. These tasks were created on the basis of realistic contexts in a learning 
environment in which there are dynamically linked multiple mathematical representations such as 
geometric shapes, ratio checker and measurement tables. The CM software is therefore intended to 
offer the potential for students to make conjectures and test them by manipulating such 
representations and to explore the underlying mathematical concepts and relationships in a realistic 
context. In terms of GS, the tasks allow students to engage with, for example, shapes, ratio checker 
and measurement table by using several key features (e.g. scale factor slider, angle slider, dragging) 
in the dynamic learning environment. Therefore, they could potentially recognise and explore the 
embedded variant and invariant properties of mathematically similar shapes and how the properties 
are used to determine similarity. The CM software is also intended to help students encounter, reflect 
upon and overcome their (possible) misconceptions about GS. 

Data collection involved video-recorded lesson observations, audio-recorded, semi-structured post-
lesson teacher interviews and lesson resources. The first author observed eight each of both Lara’s 
and Jack’s lessons and seven of Alex’s lessons. In the case of Jack, he conducted his lessons in his 
normal classroom with laptops. In the cases of Lara and Alex, they both taught their lessons either in 
a pre-booked computer room with desktop computers or in an ordinary traditional classroom with 
iPad computers. Moreover, the first author interviewed Alex and Jack six times and Lara eight times, 
which lasted between 35-45 minutes. Lastly, we collected teachers’ interactive whiteboard or 
PowerPoint slides, examples of their task sheets, photographs of students’ DMT screens and their 
associated written work in the workbook in response to the DMT-enriched tasks. For data analysis, a 
within-case analysis was carried out first to create an individual detailed description of each case in 
written form that helped examine each case in depth. The within-case analysis led to the identification 
of what student misconceptions about GS each case study teacher attended in her/his curriculum script 
and how (s)he used the DMT to help students address them. Then, using spreadsheets, a cross-case 
analysis was conducted by comparing and contrasting the cases based on the results of the within 
case analysis. The cross-case analysis resulted in the identification of the key differences between the 
teachers in terms of their anticipation and identification of student misconceptions about GS and their 
exploitation of the DMT to tackle them in the classroom. 
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Findings 
In this paper, we present findings emanated from our data analysis that concern the case study 
teachers’ anticipation and identification of student misconceptions regarding GS and of the ways 
through which to enable students to confront, reflect upon and address their (possible) misconceptions 
using the DMT. The within-case-analysis revealed the following student misconceptions about the 
topic of GS evident in the teachers’ curriculum scripts. 

1. If two shapes look similar in appearance (e.g. rectangles), they are mathematically similar; 
2. An enlargement results in the creation of a mathematically similar shape which is always 

larger than the original; 
3. A scale factor makes a shape only doubled and/or halved; 
4. The use of additive strategies within GS is appropriate when determining whether shapes are 

mathematically similar; 
5. If the lengths of a shape are multiplied by a scale factor of k, then the area of this shape is 

multiplied by a scale factor of k, too; 
6. The proportionality of all corresponding pairs of sides is by itself sufficient to prove the 

similarity for shapes; and 
7. The angles of a shape are multiplied by a scale factor along with its side lengths. 

The cross-case analysis indicated that compared to Alex and Lara, Jack, as an expert teacher, showed 
more awareness of the likely misconceptions about GS and of the potential teaching strategies 
incorporating the use of the DMT in a dynamic mode to tackle them. While Jack anticipated and 
identified a total of six of the above stated seven key misconceptions and made dynamic use of the 
DMT to provide opportunities for students to address them, Alex and Lara predicted only three and 
two different misconceptions of them, respectively, and did not necessarily use the DMT in the same 
way as Jack did. In the following, we present results for each case to provide an insight into what 
misconceptions out of the above given ones each teacher attended in their curriculum script and how 
each used the DMT in their classroom practice to support students to encounter, reflect upon and 
address them. 

Case Study 1: Lara 

In her curriculum script, Lara identified the first and second misconceptions underlined above that 
her students faced when engaging with the DMT-enriched tasks. However, she did not make dynamic 
use of the DMT herself in the observed lessons to assist students in addressing them. Below, we 
present analysis of the second misconception to provide an insight into how she addressed a 
misconception with (and without) the DMT. 

Promoting students’ understanding that an enlargement does not only result in the creation of a 
similar shape larger than the original 

In her post-lesson interview, Lara expressed students struggled to understand an enlargement may 
also result in a shape being smaller than the original as they were inclined to think an enlargement is 
a mathematically similar shape that should be always larger than the original. She outlined she 
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recognised this misconception when interacting with a pair of students as they asked her to confirm 
what she had said in the previous lesson regarding the possible impact of an enlargement on the sides 
of shapes. She also stated students’ engagement with one of the DMT-enriched tasks, where students 
predicted, tested and explored if the rectangles were mathematically similar to the original on the 
basis of visual and numerical cues, helped them realise an enlargement may create also a smaller 
similar shape than the original. 

They [students] cannot connect that an enlargement also makes a shape smaller because, in their 
mind, an enlargement is something getting bigger. They told me [that] "You said yesterday an 
enlargement can make the shapes smaller as well". So, for them, by themselves, they are not 
connecting it until we have done this [the DMT-enriched task]. So, from the original to copy 2 [the 
names of the shapes being enlarged in the task], they can see the bigger shape [the original shape] 
is getting smaller. Before that, they could not, that is how I assumed or observed. 

However, Lara herself did not use the DMT dynamically to help students realise and explore that an 
enlargement is a similar shape which may be also smaller than the original. Instead, she only allowed 
students to use the DMT during their independent work with the DMT to confront and reflect upon 
this misconception by themselves. 

Case Study 2: Alex 

In his curriculum script, Alex anticipated the second, fourth and sixth misconceptions given above 
and addressed them with (and without) the DMT in the classroom. We present how he addressed the 
third misconception with the DMT to offer an insight into this aspect of his curriculum script. 

Promoting students’ understanding that the proportionality of all corresponding pairs of sides is 
not by itself sufficient to prove the similarity of shapes 

Alex was aware students need to understand the need to consider both the corresponding angles and 
sides when determining if shapes are mathematically similar. 

If they [students] do not bring corresponding angles and corresponding sides together, they can go 
into an error. When they just focus on the [corresponding] sides, they might miss the fact that the 
corresponding angles [in mathematically similar shapes] need to be the same. They [students] need 
to be aware of both. 

In the lesson that featured Task 5.2 (see Figure 1), during the subsequent whole-class discussion, 
Alex himself used the DMT dynamically to promote students’ emergent understandings that 
inequivalent corresponding angles do not result in a similar shape to the original. From his computer 
desktop, he used the DMT to demonstrate and share students’ responses with the class and to stimulate 
a discussion. For example, in the dynamic learning environment, Alex first measured the 
corresponding angles of the original and the parallelograms named Copy 1 and Copy 2 and then 
dragged the angle slider to change the angles of the original and Copy 1, followed by two questions 
he posed to the class: “What did you notice about all the angles?” and “What is going on with the 
angles at the moment?”. 
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Figure 1: Task 5.2 in the DMT where students drag the angle and scale factor sliders and compare the 

three parallelograms as they change 

Alex also used the types of geometric transformations (e.g. translation, rotation, enlargement) to 
superimpose Copy 1 on the top of Copy 2 and then dragged the angle slider. His aim was to show 
and confirm that since the corresponding angles were the same initially, Copy 1 and Copy 2 were 
mathematically similar, as the angle slider was dragged, the corresponding angles did not remain the 
same, which made Copy 1 and Copy 2 not mathematically similar. In his post-lesson interview, Alex 
outlined the DMT enabled students to identify and examine both the corresponding angles and sides, 
especially through the use of the types of transformations, which would not be possible with an exam-
style question in a paper-and-pencil environment. 

If you get a shape where the shape is oriented, and you can use the software [the DMT], for 
example, you can use this software to orientate the shapes differently to see where corresponding 
sides and angles are. I think those types of things are useful in the software because you can use 
the software to rotate the shape to find, as I said, where these angles go. If you use an exam question 
[in a paper and pencil environment], it is hard for students to understand what they are focusing 
on the angles and the sides. 

Case Study 3: Jack 

In his curriculum script, Jack anticipated and identified all of the seven misconceptions provided 
above (except for the first one) and aimed to address them through the use of the DMT in a dynamic 
mode during the observed lessons. We particularly focus on the fourth misconception in detail below 
to give an insight into this aspect of his curriculum script. This misconception was spontaneously 
spotted and identified by him during a lesson and resulted in him making ad hoc decisions to address 
it using the DMT dynamically. 

Promoting students’ understanding that if the lengths of a shape are multiplied by a scale factor 
of k, then the area of the shape is multiplied by a scale factor of k2 

Jack identified this misconception in a lesson when interacting with students during their independent 
work with the DMT to check their written explanations in the workbook. He instructed students to 
engage with Task 2.1 (see Figure 2) in which they were instructed to play an animation, watch and 
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decide which quadrilaterals (if any) were always mathematically similar to the original and then 
produce their written justifications in CM workbook. He noticed one pair of students used the 
concepts of perimeter and area in their written explanation to justify why the orange and red 
rectangles were always mathematically similar. The students had concluded the orange and red 
rectangles remained mathematically similar to the original as the area and perimeter of the rectangles 
increased by a scale factor of 3 when the animation slider came to the end. 

 
Figure 2: Task 2.1 in the DMT where students play the animation and identify the similar shapes 

Jack, however, recognized a misconception as the students had concluded the area scale factor of the 
orange and original rectangles was the same as the length scale factor (a value of 3). To enable the 
students to address their misconception, he posed them the question “You see that the perimeter 
increases by 3 times, does the area increase by 3 times, too?” and then invited them to drag the 
animation slider such that the lengths of the orange rectangle were twice as large as those of the 
original. Having drawn the students’ attention to that the side lengths of the orange rectangle were 
now double the side lengths of the original as it had been enlarged by a scale factor of 2, Jack asked 
them to examine what happened to the area of the orange rectangle in the dynamic learning 
environment. By looking at the original and orange rectangles on the screen, the students assumed 
the area of the orange rectangle had doubled. Jack then encouraged them to figure out “How many of 
them [the original rectangle] could sit into the orange one [rectangle]?” using the grid as a 
measurement tool available in the DMT, leading them to realise the area of the orange rectangle was 
4 times that of the original. 

In his post-lesson interview, Jack stressed when the students came up with the mathematical ideas 
concerning the area and perimeter of similar shapes, which actually went beyond his lesson agenda, 
he wanted to exploit this learning opportunity to promote students’ understanding of the mathematics 
a stake using the DMT. 

What they [a pair of students] said the perimeter and the area has doubled, so it was a nice teachable 
moment to say, you know, that was not really part of my learning intention at all, but I felt like it 
was just a nice opportunity to talk about the behaviour of the area and the behaviour of the side 
lengths, and the software [the DMT] let them see really nicely what had happened to the area […], 
so it was just a nice teachable moment where the software gives some nice visual and dynamic 
pictures that let them notice what was happening.  
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Conclusion 
The focus of this paper is what student misconceptions about the topic of GS teachers predict and/or 
identify as part of their curriculum scripts and how they exploit the affordances of DMT in the 
classroom to promote students to confront, reflect upon and address them. The findings suggested all 
three teachers’ curriculum scripts contained some anticipated (and/or identified) misconceptions 
about GS to be addressed with (and without) the DMT in the classroom. During their post-lesson 
interviews, all three teachers acknowledged the key role the DMT played in addressing students’ 
misconceptions about GS. However, there were differences in the quantity of misconceptions the 
teachers anticipated and/or identified and in the ways in which they used the DMT dynamically to 
help students address their misconceptions. The analysis suggested Jack, the expert teacher, could 
anticipate several misconceptions with GS and develop alternative approaches to address them using 
the DMT. He was also, perhaps more importantly, open to employ ad hoc strategies to spot and 
identify misconceptions about GS students encountered in the lessons and use the DMT dynamically 
to address them. This implies the expert teacher had both confidence and proficient skill in the use of 
the DMT (even in unplanned use) to respond to perceived students’ emerging misconceptions and to 
develop the underlying mathematics at stake (Ruthven, 2014). However, Lara and Alex, the advanced 
beginner teachers, showed a limited but growing awareness of their need to anticipate student 
misconceptions about GS and to consider alternative ways to address them. Lastly, this research was 
conducted in the context of English secondary schools that limits the generalisability of the findings. 
Further research is necessary to determine the extent to which the findings of this study might 
generalise beyond the English context. 
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Due to the increasing importance of digitalization in our society, there are new demands on school, 
teaching and thus on teachers. Nowadays digital competences belong to the key competences of 
teachers. The acquisition of digital competences should already be developed in university education 
of teachers. In this regard, we refer to a university seminar aiming to support professional 
competences of prospective teachers in digital mathematical teaching and learning contexts. The 
seminar is based on learning mathematics with the digital assessment system STACK, reflecting the 
use of STACK, designing learning environments with STACK and, finally, reflecting school students’ 
use of STACK. We collected data of prospective teachers’ development of digital competences 
through interviews. First results show that prospective teachers’ competences including knowledge, 
beliefs and motivation can be developed and differentiated.  

Keywords: Electronic learning, computer uses in education, feedback, teacher education. 

Introduction 
“In a digital world, knowing how to use ICT and having access to such technologies are proving 
increasingly important for participating effectively in society” (Fraillon et al., 2020, p. 5). For this 
reason, gaining digital competences is a main issue for school students. However, research showed 
that in Germany digital competences of school students are partly poorly developed (Fraillon et al., 
2020). One reason for the poor development of school student’s digital competences seems to be 
caused by teachers (Hegedus et al., 2017; Misfeldt et al., 2016). In an international comparison, 
teachers in Germany use digital tools (computer, calculators, mobile devices etc.) less frequently in 
the classroom and also assess the potential of these less than teachers in other countries (Fraillon et 
al., 2020). For this reason, a main goal of university education and professional development of 
prospective teachers is to improve their digital competences as part of mathematics teachers’ 
professional competences including knowledge, beliefs and motivation (Baumert & Kunter, 2013). 

A contribution to this line of research will be made by this PhD-project called “Learning, Reflecting 
and Designing: Digital tasks with feedback as core of a mathematical learning concept”, in which we 
investigate in a qualitative study how prospective teachers’ knowledge, beliefs and motivation could 
be increased in a specific seminar in the teacher education program. In this seminar, the prospective 
teachers experience the importance of learning mathematics with the digital assessment system 
STACK by learning with digital tasks themselves. Afterwards they reflect on the potential of STACK 
such as the opportunity of the STACK system to give individualized feedback to learners and after 
that, the prospective teachers design their own mathematical tasks with STACK and use them with 
school students. Finally, there is a renewed reflection on the STACK system, the task, the feedback 
and the practical application. Our main research question (RQ) is as follows: 
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RQ: How does learning with and designing and reflecting on one’s own digital (STACK) tasks in 
a university mathematics education seminar affect the knowledge, beliefs and motivation of 
prospective teachers? 

In this paper, we primarily focus on prospective teachers’ beliefs referring to the potential of digital 
tasks with feedback including partly also aspects of knowledge and motivation. 

Knowledge, beliefs and motivation 
According to Baumert and Kunter (2013), professional competences comprise knowledge, beliefs 
and motivation. With regard to digital competences Koehler et al. (2013) provide the TPACK-model 
which differentiates knowledge into three main components (Figure 1): content knowledge (CK), 

pedagogical knowledge (PK) and technological 
knowledge (TK). Content knowledge comprises factual 
knowledge and subject-specific ways of thinking and 
working (Koehler et al., 2013). The pedagogical 
knowledge contains the knowledge about different 
concepts for designing learning environments, such as 
teaching methods, classroom management but also 
motivational aspects (Koehler et al., 2013). Knowledge of 
how to use (digital) technologies, such as hardware and 
software, is called technological knowledge (Koehler et 
al., 2013). The three main components of teachers’ 
knowledge are set in relation to each other. Research 
showed that the positive influence on student performance 
is greater if the teacher has previously done further 
training on the use of digital tools and has thus acquired 
digital competences (Hillmayr et al., 2020). Although an 

influence of the teacher on the design of lessons with digital tools has already been proven, offers for 
the acquisition of digital competences in university teacher education in Germany are only available 
to a small extent (Vogelsang et al., 2019). 

Another essential competence facet of teachers are beliefs (Baumert & Kunter, 2013). We understand 
the term beliefs “as an individual’s personal conviction concerning a specific subject, which shapes 
an individual’s ways of both receiving information about a subject and acting in a specific situation” 
(Erens & Eichler, 2015, p. 136). Different dimensions of teachers’ beliefs can be identified: beliefs 
concerning teaching, learning and a specific subject. (Fives & Buehl, 2012). Research showed that 
beliefs are difficult to change and that a belief change needs a substantial situational impact (Liljedahl 
et al., 2012). Thus, also to change prospective teachers’ beliefs in a university seminar potentially 
needs to include a strong impact on their beliefs. Beliefs also shape the way, teachers understand 
teaching with digital tools (Erens & Eichler, 2015; Misfeldt et al., 2016). Specifically for the use of 
digital tools, Thurm et al. (2017) developed categories for teachers’ beliefs about advantages, 
disadvantages and general issues of digital tools. In the category advantages are those teachers’ 
beliefs that are positively disposed towards the use of digital tools in the classroom, for example, that 
digital tools can be used to support a change of representation (visual, symbolic). One of the 

Figure 1: TPACK-model (Koehler et al., 
2013) 

Proceedings of CERME12 2635



 

 

disadvantages of digital tools mentioned by Thurm et al. (2017) is the high amount of time required 
for the introduction of digital tools in classroom. The general category includes beliefs about the 
timing and thus the question at what point in the lesson a teacher should use digital tools. 

Besides knowledge and beliefs, motivation is another essential competence facet of teachers 
(Baumert & Kunter, 2013). According to Eccles and Wigfield’s (2002) expectancy-value model, 
motivational orientation is influenced by expectation and value variables. The expectation variable 
can be defined as individuals’ view “about how well they will do on upcoming tasks, either in the 
immediate or longer-term future” (Eccles & Wigfield, 2002, p. 119). The value variable can be 
divided into four facets: “attainment value, intrinsic value, utility value and cost” (Eccles & Wigfield, 
2002, p. 119). The value variables comprise intrinsic components (intrinsic value), rather extrinsic 
components (utility value) and any perceived negative aspects (costs) of an action (Eccles & 
Wigfield, 2002). The motivation to use digital tools in one’s own lessons is positively influenced by 
knowledge about the use of digital tools as well as by corresponding beliefs (Ertmer & Ottenbreit-
Leftwich, 2010).  

Design and materials 
The seminar for improving prospective teachers’ digital competences 

We developed a seminar concept for prospective high school and vocational school teachers focused 
on digital tasks with feedback within this PhD-project (Figure 2). The seminar, which is one of the 
elective modules in the teacher education program, is 
divided into four parts. In the first part, prospective 
teachers learn with digital tasks (STACK) themselves. 
For this purpose, digital tasks are provided for them to 
deal and to learn with. After learning with the digital 
tasks, the prospective teachers change their role from 
learner to teacher and test, evaluate and assess the given 
digital tasks and feedback included in the digital tasks. 
They also reflect the potential of the digital assessment 
system STACK. In the second step, the participants 
independently design their own digital tasks with 
feedback in the system STACK. In the third part, school students selected by the prospective teachers 
work with these tasks and comment on them, the digital format of the task and the feedback given 
within working on the task. In the fourth part based on students’ feedback, the task, the feedback, the 
system STACK and the practical application are reflected by the prospective teachers. The seminar 
has already been conducted, evaluated and optimized in three cycles. 

Figure 2: Seminar concept developed within 
this PhD-project 
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The digital assessment system STACK 

STACK (System for Teaching and Assessment using Computer Algebra Kernel, Sangwin, 2013) is 
a digital assessment system in which digital mathematical tasks can be designed procedurally and 
conceptually (Rittle-Johnson & Schneider, 2014) and at different levels of representation (symbolic, 
graphic, interactive). The STACK system uses the computer algebra system Maxima (Sangwin, 
2013), which makes it possible not only matching user input with stored sample solution, but also 
checking it for mathematical properties. Task developers are able to create a potential response tree 
(PRT, Sangwin, 2013) in STACK. The potential response trees, in which the input made can be 
examined for a specific mathematical property at each node, make individualized feedback for each 
user input possible (Figure 3).  

 

Particularly, the possibility of STACK to provide individualized feedback is crucial since feedback 
is considered information that focuses on aspects of performance and understanding (Hattie & 
Timperley, 2007). Feedback is an effective intervention to support and optimize learning processes 
(Goldin et al., 2017). Feedback can increase cognitive performance, motivation and the feedback-
recipients’ willingness to make an effort. Furthermore, feedback can support learner individually and 
according to their potential. Within digital learning environments there are numerous possibilities to 
give feedback on learning processes (Goldin et al., 2017). The individualized, differentiated feedback 
for each user input seems to be crucial but often there is given rather simple and evaluative feedback 
(categorization into right or wrong) (Fraillon et al., 2020). 

Design of the study 

The sample for the data collection consists of three prospective teachers from each of the three 
seminar cycles. A main method for collecting data of the prospective teachers were semi-structured 
interviews which took place two times in each seminar. The semi-structured interview guide contains 
three domains (Figure 4). The first domain refers to beliefs and motivation from the learner’s 
perspective. Therefore, this domain is about the prospective teachers’ university education. This 
contains the use of digital tools in university studies and the attitude towards digital tools. The second 

Figure 3: An exemplary STACK task with individualized feedback 
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and the third domain ask for beliefs and motivation from the teachers’ perspective. In the second 
domain, we ask for the motivation to use digital tools and digital tasks in the classroom in the four 
facets that Eccles and Wigfield (2002) describe (attainment, intrinsic and utility value as well as cost). 
The third domain concerns school and teaching in particular. There we ask for beliefs towards digital 
tools and digital tasks with feedback while teaching and self-efficacy to design lessons with digital 
tasks. In this context we also collect beliefs about feedback in school context.  

Furthermore, we work with written comments from the prospective teachers on different digital tasks. 
Within the written comments, the prospective teachers should vary the given tasks, design new 

feedback to different inputs and name advantages 
and disadvantages of the digital format and the 
digital feedback. With this method, we want to 
collect professional knowledge which contains 
variation of tasks and designing feedback, but also 
beliefs towards digital tasks and digital feedback. 

Moreover, we analyze productions from the 
prospective teachers, which are created in the 
seminar. This includes their own digital tasks, the 
written reflection on their own digital task, the 

designed feedback and their final term paper. With this, we want to survey the professional knowledge 
as well as the beliefs about the use of digital tasks in lessons (Figure 4).  

We analyzed the data using content analysis. For this purpose, the competence facets knowledge, 
beliefs and motivation are subdivided into different categories, such as learning with digital feedback, 
advantages of the digital format for teachers and negative aspects concerning the STACK system. 

Findings 
In this paper we exemplarily show interview excerpts. In the first example, Adrian names the 
possibility to get feedback directly while working on digital tasks: 

Adrian:  [The system gives] feedback directly. This means that the student works on a task 
and during the work he already gets feedback on what is correct, what is wrong and 
why he does something wrong. This gives a great potential to directly address and 
counteract the problems a student has while working on the mathematical task.  

The expressed belief relates to learning with digital tasks with feedback and applies more to an 
advantage of feedback than of the digital task itself. Adrian only mentions superficially the structure 
of feedback and the containing components. He rather focuses on one function of direct feedback 
which is the early prevention of misconceptions. This is not only a belief, but also concerns the 
knowledge facet TPACK (technological pedagogical and content knowledge, Koehler et al., 2013). 
TPACK describes the knowledge about mathematical digital learning environments. In this context, 
it is necessary for a teacher to know about the functions of the STACK system as well as to recognize 
misconceptions and problems of students while working on a task and to be able to design 
individualized feedback. 

Figure 4: Methods and which competence facets we 
ask for within these methods 
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In the next example, Jacob’s statement relates to teaching with digital tasks with feedback from the 
teacher’s perspective and applies to an advantage of the digital format of the task: 

Jacob:  For me as a teacher it is important that I can see what the students’ learning level 
is. The students’ inputs are listed in a table. There I can also see how many attempts 
[to solve the task] were needed, what misconceptions existed among the students 
and what feedback the students received. 

He explains that the digital format gives the teacher an accurate overview of students’ missed attempts 
and misconceptions. This can form the basis for a better assessment of the students’ performance on 
the one hand and for planning the following lessons on the other hand. This statement also refers to 
the utility value of motivation (Eccles & Wigfield, 2002). Digital tasks and the associated better 
overview on the students’ learning level are useful for a teacher to plan further lessons. This is a rather 
extrinsic reason for using digital tasks in one’s own lesson. The facet of knowledge addressed here is 
technological knowledge (TK, Koehler et al., 2013). The teacher needs to know about the function 
associated with digital tasks and how to handle the STACK system.  

Patrick’s statement concerns teaching and learning with digital tasks and applies to an advantage of 
the digital format and the digital task:  

Patrick: The digital format of the task gets students motivated to start working. I believe that 
the students have more fun working digitally than calculating a task from the 
textbook. Especially students who are not mathematically inclined are more likely 
to want to work on digital tasks and try them out. 

The first part of Patrick’s statement is about teaching with digital tasks. He mentions the positive 
attitude of the students towards digital tools. Therefore, it will be possible to get students into action. 
The second part of the statement concerns learning with digital tasks. It explicitly refers to students 
who are not mathematically inclined. The inhibition to deal with mathematical content and to do 
something wrong can decrease through the digital format of the task. This also concerns the utility 
value of motivation (Eccles & Wigfield, 2002). The digital format of the tasks is useful to get students 
motivated to work and therefore the use of digital tasks in one’s own lessons is influenced rather 
extrinsically. This statement also concerns TPACK (Koehler et al., 2013). Patrick focuses on 
cognitive activation within mathematics teaching which can be supported by digital tasks. 

Not all beliefs towards digital tasks with feedback are positive. In addition to the advantage explained 
above, Jacob also mentions a critical point towards working on digital tasks. He discusses whether 
the process of working on the task is really digital: 

 Jacob:  In case of a complex digital task that cannot be solved in head but, for example, 
requires five to ten intermediate steps before solution can be found, these steps must 
be written on a sheet of paper in analogue form. This means that the process finding 
a solution is partly not digital, but only the input and evaluation of the solution are 
digital.  

Jacob explains that students need an analogue medium like a sheet of paper to solve a complex digital 
task. Therefore, the task as well as the evaluation of the input can be described as digital but not the 
process of solving. This belief concerns learning with digital tasks with feedback and the process of 
working on a digital task respectively and applies to a disadvantage of digital tasks because not the 
entire process of working can be considered digital. Jacobs’ statement also relates to the facet cost of 
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motivation (Eccles & Wigfield, 2002). Within this facet, all negative aspects of the use of digital tasks 
with feedback in the classroom are summarized. 

Discussion and conclusion 
The presented study investigates how prospective teachers’ knowledge, beliefs and motivation 
towards digital tasks with feedback can be changed through a specific seminar in the teacher 
education program. First results show that prospective teachers’ beliefs are varied. Some of the beliefs 
relate to feedback as a part of a digital task. Other beliefs concern teaching with digital tasks and 
associated with a better overview of student performance. Beliefs about learning with digital tasks 
were also expressed such as that students are more motivated to engage with a mathematical topic 
because of the digital task format. We can thus see that the prospective teachers’ beliefs relate either 
to teaching and learning with digital tasks as well as to the specific subject of feedback, what has 
already been described by Fives and Buehl (2012). The fact that the prospective teachers adopt 
multiple perspectives could be due to the seminar concept presented. The prospective teachers first 
learn with digital tasks themselves, taking the learner’s perspective. In the seminar, they then change 
to the designer’s perspective when designing their own digital tasks and finally to the teacher’s 
perspective when using them with school students. Furthermore, the beliefs can be classified into the 
categories advantages, disadvantages and general issues found by Thurm et al. (2017). It also 
becomes visible that the competence facets knowledge, beliefs and motivation are not disjoint. Many 
of the prospective teachers’ statements can be assigned to categories of beliefs as well as categories 
of knowledge and/or motivation. 
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Recently the construct of mathematical digital competency (MDC) was put forward in which 
mathematical competency and digital competency are seen as a connected whole. This entails that 
student understanding of mathematical concepts may be almost inseparable from digital tools. We 
report on a quantitative study with n=238 preservice teachers (PSTs) from Germany that investigates 
PSTs’ beliefs about such a “connected position” of MDC. Results show that a large group of PSTs 
believe in the potential of digital technology but at the same time opposes the notion of MDC and 
rather believe that mathematical and digital competency should be separated. Furthermore, PSTs’ 
beliefs about MDC are largely independent from epistemological beliefs. We hypothesize, that beliefs 
about MDC may be an overlooked variable which may influence how teacher think about and use 
digital technology in the mathematics classroom. 

Keywords: Beliefs, digital technology, teacher education, graphing calculators, self-efficacy 

Introduction 
Teacher beliefs are an important factor for implementing digital technology (DT) in the mathematics 
classroom (Thurm & Barzel, 2021). The question arises which facets of teacher beliefs are relevant 
for teaching mathematics with (DT). In this respect, previous research has shown that teachers’ beliefs 
about the potentials of DT use, teacher epistemological beliefs (i.e., beliefs about the nature of 
mathematics and teaching and learning mathematics) and self-efficacy are important dimensions of 
teacher beliefs (Thurm & Barzel, 2020). In this paper we investigate a somewhat novel dimension of 
teacher beliefs in the context of teaching mathematics with DT. Starting point for this research study 
was the work of Geraniou and Jankvist (2019) who argue that mathematical competencies and digital 
competencies are rarely seen as a connected whole even though students will have to simultaneously 
activate and use these competencies. Therefore, they conceptualize the construct of “mathematical 
digital competency” (MDC), which describes an amalgam of mathematical and digital competencies. 
In particular, they use the theories of conceptual fields (Vergnaud, 2009) and instrumental genesis 
(Guin & Trouche, 1999) to show that such an amalgam entails that a student’s understanding of a 
mathematical concept may almost inseparably be connected to digital tools and the student’s 
instrumented techniques. In this paper we investigate how PSTs think about such an amalgam and 
how their beliefs are related to other belief facets like epistemological beliefs and beliefs about 
affordances and risk of DT use. We start by elaborating in more detail on the two main theoretical 
frameworks for our study, namely MDC and teacher beliefs. Throughout the paper the term “digital 
technology” (DT) refers to mathematic-specific digital technologies like function plotters, dynamic 
geometry systems, computer algebra systems and multi-representational tools. 
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Theoretical background 
The notion of competency has gradually gained momentum and is nowadays a key construct in the 
educational paradigm (Geraniou & Jankvist, 2019). Mathematical competency can be defined as 
“someone’s insightful readiness to act appropriately in response to a specific sort of mathematical 
challenge in given situations” (Niss & Højgaard, 2019, p.14) while digital competency has been 
conceptualized as “the set of knowledge, skills and attitudes […] that are required when using ICT 
and digital media to perform tasks; solve problems; communicate; manage information; collaborate; 
create and share content; and build knowledge” (Ferrari, 2012, p.43). Geraniou and Jankvist (2019) 
linked mathematical and digital competencies by using the theory of instrumental genesis (TIG) and 
the theory of conceptual fields (TCF). TIG (Guin & Trouche, 1999) describes the process of 
transforming a digital tool (an artefact) into a mathematical instrument which is a psychological 
construct that combines (parts of) the artefact and cognitive schemes in which technical knowledge 
about the artefact and the domain-specific mathematical knowledge are intertwined. TCF (Vergnaud, 
2009) takes, similar to TIG, a developmental point of view. TCF highlights that a concept is not only 
referring to explicit objects of thought, but comprises a set of schemes, a set of situations and a set of 
linguistic and symbolic tools of representation. In particular, Vergnaud (2009) stresses that different 
concepts and situations are interconnected forming conceptual fields, which he defines as “a set of 
situations and a set of concepts tied together” (Vergnaud, 2009, p.86). The set of situations gives 
meaning to the concept and acts as a point of reference.  

Geraniou and Jankvist (2019) show that both TIG and TCF can serve as a lens to investigate the 
simultaneous activation and development of mathematical and digital competency which they call 
“mathematical digital competency” (MDC). In particular they highlight, that the situations that make 
up students’ conceptual fields “may be embedded so deeply in a techno-mathematical discourse that, 
potentially, also their understanding of the mathematical concepts involved is almost inseparable 
from the digital tools and the students’ instrumented techniques” (p. 42). This could for example 
mean that the set of situations that students use as points of reference to give meaning to a concept 
will largely comprise situations involving DT. Moreover, a student may only be able to do (some) 
mathematically activities within a digital environment. Hence students might only be able to think 
about, explain and do mathematics with reference to a digital tool. Starting from this notion of a close 
amalgam of student’s mathematical competencies and digital competencies, the question arises what 
teachers believe about such a potentially close interwovenness.   

According to the broadly accepted definition proposed by Philipp (2007), teacher beliefs can be 
defined as “psychologically held understandings, premises, or propositions about the world that are 
thought to be true” (p.259). Beliefs are part of teachers’ conception - a general notion or mental 
structure encompassing beliefs, meanings, concepts, propositions, rules, mental images, and 
preferences (Philipp, 2007). Teacher beliefs are an important factor for teaching mathematics with 
DT since they act as a bridge between knowledge and action (Thurm & Barzel 2020; 2021). However, 
teacher beliefs are not an unidimensional construct but can be differentiated into various dimensions 
(clusters) and sub-dimensions which form a differentiated belief system in which (clusters of) beliefs 
can be logically connected and some (clusters of) beliefs are more important than others (Philipp, 
2007; Leder et al. 2002; Thurm & Barzel, 2020; 2021). With respect to teaching with DT, three 
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dimensions of teacher beliefs have so far been identified as particularly important: (i) beliefs about 
teaching and learning with DT, (ii) self-efficacy beliefs and (iii) epistemological beliefs (Thurm & 
Barzel, 2020). These dimensions of teacher beliefs can be further differentiated into various sub-
dimensions (Thurm & Barzel, 2020; see figure 1).  

However, teacher beliefs about MDC have not yet been investigated, which is not surprising given 
that the notion of MDC has just recently emerged with the work of Geraniou and Jankvist in 2019. 
Clearly, a teacher can have different belief positions with respect to the relation of mathematical and 
digital competencies. On one extreme one can fully embrace the “connected position” of MDC (e.g., 
that students understanding of the mathematical concepts involved may be almost inseparable from 
DT). On the other extreme, someone could strongly favor a “independent position” believing that 
mathematical and digital competencies should not be closely interwoven but rather clearly separated 
(i.e., a student should be able to think about, explain and do mathematics without a DT). Clearly if 
teachers oppose a close interwovenness (“connected position”) as conceptualized by MDC this will 
be problematic if the goal is to develop students MDC or if students learn mathematical concepts with 
the support of DT. In the following, we will refer to beliefs about the interwovenness of mathematical 
competencies and digital competencies simply as “beliefs about MDC”. 

Research questions and methodology  
In our exploratory research study, we investigate two distinct but interconnected research questions: 

RQ1: What are preservice teachers’ beliefs about MDC? (Belief position) 

RQ2: How are preservice teachers’ beliefs about MDC related to epistemological beliefs, beliefs 
about teaching and learning with DT and self-efficacy beliefs? (Belief system) 

To answer the research questions, we used quantitative instruments to measure PSTs beliefs about 
MDC, about the nature of mathematics and mathematical learning, about teaching and learning with 
DT and PSTs self-efficacy beliefs. The reason why we use questionnaires to catch teacher beliefs is 
that questionnaires allow to simultaneously measure different belief dimensions and relate them to 
each other by statistical analysis. Furthermore, questionnaires also provide opportunity to investigate 
the discriminant validity of the dimensions (Fives & Gill, 2015). In the following we briefly elaborate 
how the different dimensions were assessed through multi-item-scales (figure 1 gives an overview of 
all scales).  

Since there were no items/scales available to measure PSTs beliefs about MDC, we started to 
construct a scale following the recommendations for scale and item construction of Simms (2008). 
The item design was guided by the goal to write items that capture PSTs believe whether or not it is 
acceptable if a student’s understanding of a mathematical concept is almost inseparable from digital 
tools. If it is inseparable, this would mean for example that a student is only able to think about, 
explain and do mathematics with reference to a digital tool. We set up an initial pool of eight items 
(sample items are given in table 1) which were further refined with PSTs and experts. Response 
format for all items was a 6-point Likert scale ranging from “1=strongly disagree” to “6=strongly 
agree” (hence higher values indicate a more “independent position”). After administering the scale to 
the PSTs, we conducted an exploratory factor analysis (EFA). Based on the results four of the eight 
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items were dropped and the final MDC-scale was constructed using the mean of the items MDC1-
MDC4 displayed in table 1. Hence high values on the MDC-scale reflect that PSTs oppose the notion 
of a close link between mathematical competencies and digital competencies (which we call 
“independent position”) while low values of the MDC-score reflect a more “connected position” in 
line with the MDC concept. Reliability (Cronbach’s alpha) of the scale was 0.75 indicating an 
acceptable reliability score.  

Table 1: Sample items for the scale to measure PSTs beliefs about MDC 

MDC1 
A student should be able to explain a mathematical concept or relationship without referring to 
a digital mathematical tool. 

MDC2 A student should be able to solve a mathematical problem without a digital mathematical tool. 

MDC3 
A student’s understanding of a mathematical concept should be independent from digital 
mathematical tools. 

MDC4 
A student should be able to give examples of a mathematical concept or relationship without 
referring to a digital mathematical tool. 

 To measure PSTs’ epistemological beliefs about the nature of mathematics we used three 
shortened multi-item-scales from the international TEDS-M-Study (Blömeke & Kaiser, 2014). 
One scale captured to what extend PSTs believe that mathematics is a static collection of rules 
and procedures (Scale: “Rules and Procedures”, E1). The second scale captured to what extend 
teachers view mathematics as a dynamic science which consists of problem-solving processes 
and the discovery of mathematical structures and regularities (Scale: “Inquiry”, E2). The third 
scale captured to what extend PSTs believe that mathematics is discovered rather than invented 
(Scale: “platonic conception”, E3).  
Epistemological beliefs about the learning of mathematics were captured with two scales. A 
shortened scale from the COACTIV-Study (Kunter & Baumert, 2013) measured to what extent 
students believe that learning mathematics is best achieved by receptive learning (Scale: 
“Instructivist”, E4). We also asked PSTs to rank the four conceptions of learning mathematics put 
forward by Kuhs and Ball (1986) by preference (classroom-focused; content-focused with an 
emphasis on performance; content-focused with an emphasis on conceptual understanding and 
learner-focused). By taking the mean of the ranks of the two instructivist conceptions (classroom-
focus, content-focused with an emphasis on performance) we derived a scale (E5) where higher 
values indicate a more constructivist approach to teaching.  

 To measure PSTs’ beliefs about teaching and learning with DT we used five established multi-
item-scales (all items can be found in Thurm (2020)). Beliefs about the potentials of teaching with 
DT were captured by the scales “Supports discovery learning”" (T1) and “Support of multiple 
representation” (T2), whereas negative beliefs were captured by the scales “loss of computational 
/ by-hand-skills” (T3) and “Mindless working” (T4). The scale “Prior mastery of mathematics by 
hand” (T5) captured whether students believe that DT should only be used when the mathematics 
is thoroughly understood without DT. Response format for all items of the scales was a 6-point 
Likert scale ranging from “1=strongly disagree” to “6=strongly agree”.  

 Self-efficacy was measured using two established multi-item-scales (all items can be found in 
Thurm (2020) capturing PSTs’ self-efficacy for task design and selection (S1) and lesson design 
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and implementation (S2). Following Bandura (2006) response was given on a scale ranging from 
0 to 100, where higher values indicate higher self-efficacy. 

The online-questionnaire which comprised all previous described scales was administered in 2021 to 
n=238 PSTs from two German universities in the state of North Rhine-Westphalia. Participation was 
voluntarily and anonymous. To ensure a certain level of basic expertise in mathematics education and 
a basic exposure to digital mathematical tools during university studies, the questionnaire was only 
administered to PSTs who had completed at least four semesters of teacher education. 35% of the 
participants were male while 65% were female. The PSTs indicated that they had used digital 
mathematical tools for their own learning approximately once a week during their university studies.  

   
Figure 1: Overview of the different dimensions of teacher beliefs that were investigated  

Results  
RQ1: What are preservice teachers’ beliefs about MDC? (Belief position) 

Figure 2 shows the distribution of the MDC-scale (average of the items MDC1-MDC4). The mean 
of the MDC-scale is 4.51 indicating that PSTs on average clearly agreed more with an “independent 
position”. In particular, 55.5% of the PSTs show an MDC-score 4.5 and thus strongly identified 
with the “independent position”. A group of 40.3% of the PSTs was somewhat undecided/moderate 
(MDC-score between 2.5 and 4.5), while only 4.2% identified strongly with a “connected position” 
(MDC-score 2.5).  

 
Figure 2: Frequency histogram of the scale measuring PSTs beliefs about MDC (mean of the items 

MDC1-MDC4) 
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RQ2: How are preservice teachers’ beliefs about MDC related to epistemological beliefs, beliefs 
about teaching and learning with DT and self-efficacy beliefs? (Belief system) 

Table 2 shows the means, standard deviation and reliability of all scales used in this study. Table 3 
gives the correlation among the different constructs. First, none of the correlations are extremely high 
which indicates that the MDC-scale is indeed measuring a distinct construct different from the other 
constructs. The correlations in table 3 also show that a stronger “independent position” (higher values 
on the MDC-scale) is significantly associated with more negative beliefs about teaching and learning 
with DT (T1-discovery learning: =-0.31**, T3-loss of skills: =0.34**, T4-mindless working: 

=0.39***). However, a closer look at the subgroup of PSTs that holds a particularly strong 
“independent position” (MDC-score 4.5, see table 2) reveals that this subgroup has still very 
positive beliefs about the potentials of DT for teaching and learning (DT supports discovery 
learning=4.65 on a 6-point scale, DT supports multiple representations=5.36 on a 6-point-scale). 
Remarkably, there were almost no significant correlations between MDC and epistemological beliefs 
(E1-E4) or self-efficacy beliefs (S1, S2). Only scales E2 (“Inquiry”) and E5 (“Constructivist”) were 
slightly negatively correlated with a more “independent position”.  

Table 2: Mean (M), standard deviation (SD) and reliability (Cronbach’s alpha) for the total sample 
(Mean total) and the subgroup with strong “independent position” (Mean MDC 4.5)  

Scale  Mean 
total 
(SD) 

Mean 
MDC
4.5 

Scale  Mean  
total 
(SD) 

Mean 
MDC 

4.5 

MDC .75 4.51 (1.00) 5.23 (S1) Task design & 
selection 

.84 64.63 (20.12) 64.64 

(T1) Supports discovery 
learning 

.86 4.76 (0.86) 4.65 (S2) Lesson design 
& implementation 

.87 62.47 (21.11) 62.64 

(T2) Support of multiple 
representations 

.70 5.44 (0.58) 5.36 (E1) Rules & 
procedures 

.65 3.33 (0.94) 3.34 

(T3) Loss of comp. / by-
hand-skills 

.87 4.03 (1.12) 4.28 (E2) Inquiry .70 5.21 (0.66) 5.15 

(T4) Mindless working  .90 4.23 (1.12) 4.44 (E3) Platonic 
conception 

.77 4.25 (1.08) 4.38 

(T5) Prior mastery of 
mathematics by hand 

.94 4.29 (1.36) 4.69 (E4) Instructivist .80 3.54 (0.91) 3.55 

    (E5) Constructivist   3.03 (0.63) 3.05 

Table 3: Correlation between the MDC-scale and scales measuring teacher beliefs about teaching and 
learning with DT (T1-T5), epistemological beliefs (E1-E5) and self-efficacy beliefs (S1-S2).   

(* < .05, **< .01, ***< .001) 

 T1 T2 T3 T4 T5 E1 E2 E3 E4 E5 S1 S2 

MDC -0.31 
** 

-0.12 0.34 
*** 

0.39 
*** 

0.58 
*** 

0.12 -0.2 
* 

-0.04 0.07 -0.14 
* 

0.04 0.01 
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Discussion and conclusion 
In this study, we took a first step to investigate PSTs’ beliefs about the relation between mathematical 
and digital competency. We found that many PSTs in the sample agreed with an “independent 
position” meaning that they believe that a student should be able to think about, explain and do 
mathematics independently from digital tools. This clearly opposes a more “connected position” as 
conceptualized in the concept of MDC by Geraniou and Jankvist (2019).  

Remarkably, beliefs about MDC were only barely associated with epistemological beliefs by the 
PSTs. Moreover, we found, that even the PSTs who were very strongly favoring an “independent 
position” at the same time strongly believed in the potentials of teaching and learning with DT (e.g., 
for discovery and investigation). These are interesting findings since they may point to some 
contradiction in the PSTs’ belief system. If a PST highly values the potential of DT (e.g., to support 
discovery learning) but at the same time believes that mathematical understanding should be 
independent from DT, it will not be easy to balance these two views. In fact, if DT is used in a 
constructivist way for discovery learning of a new concept, the conceptual fields and the set of 
situations that students use as points of reference to give meaning to a concept will not be independent 
of the DT. Rather students’ conceptual fields will be constructed around and therefore interwoven 
with DT. Hence, if PSTs hold an “independent position” this may limit the use of DT to understand 
and learn mathematics, or even reduces the use of? DT to “do mathematics”. We hypothesize that 
PSTs may not be aware of this contradiction in their beliefs system. The observation that most PSTs 
agreed strongly that DT should only be used if the mathematics is thoroughly understood, may be a 
consequence of managing the tension of using DT (acting in line with their positive beliefs about DT) 
and at the same time maintaining an independence between mathematical understanding and DT 
(acting in line with their “independent position”).  

In total, the results of this study indicate that beliefs about MDC might be an overlooked variable—
especially if the goal is to support students to develop MDC. In particular, the results of the study 
point to a discrepancy: If students learn with DT, they may develop some form of MDC (Geraniou & 
Jankvist, 2019). Yet, teachers expect students’ understanding to be independent of DT and to be able 
to think about, explain and to do mathematics without DT. This discrepancy will be problematic and 
likely impact how teachers use DT. Consequently, it might be fruitful to engage PSTs in reflection 
about their beliefs on MDC and how these influence / conflict other beliefs in their beliefs system 
(e.g., beliefs about the potentials of DT for learning). Finally, we would like to mention one main 
limitation of the study – namely, that the belief position measured by the MDC-scale was not 
triangulated with qualitative data. Currently we are conducting qualitative interviews with PSTs after 
they have answered the MDC-scale to validate whether the MDC-scale is indeed measuring teachers’ 
beliefs about MDC, and to uncover the PSTs’ belief argumentation for their position.  
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Abstract: This short contribution summarizes the results of TWG16 according to the five themes 
described in the Call for papers. As an overall conclusion, we notice that the somewhat general theme 
of good practices in technology-rich mathematics education attracts much attention, whereas the 
other themes apparently are addressed to a lesser extent in our research community, with the impact 
of digital technology on research methods as the most striking underrepresented example.

Keywords: Digital technology, embodiment, good practice, mathematics education.

Overview of themes and contributions
The scope of thematic working group TWG16 was to address opportunities and constraints of digital 
technology and other resources for students’ learning of mathematics; a topic that is all the more 
relevant in times of an immense increase of distant learning and teaching practices. As a targeted 
outcome, we wanted to establish an overview of the current state of the art. We also aimed to suggest 
important trends for technology-rich mathematics education in the future, including a research 
agenda. TWG15 addresses a similar global topic but focuses on teaching rather than on learning.

Table 1: TWG16 themes and contributions

Theme # accepted papers # accepted posters

1. Theoretical advances on using digital technology in 
mathematics education

5 1

2. Embodiment and the use of digital technology in 
mathematics education

4 0

3. New roles for new tools (e.g., augmented and virtual reality, 
3D printers)

5 1

4. Good practices in technology-rich design, learning and 
assessment in mathematics education

15 5
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5. The impact of digital technology on research methods 1 0

The TWG16 call for papers identified five main themes to be addressed. Table 1 provides an overview 
of these themes and of the number of contributions per theme. Altogether, we had 30 accepted papers, 
7 accepted posters. Some 60 participants from many countries within and outside Europe took part in 
the sessions, and contributed to having a positive and productive atmosphere.

Main results per theme
Theoretical advances on using digital technology in mathematics education 

The crucial role of theory was an important issue within various discussions, not only limited to the 
contributions specifically addressing this theme. To a great extent this is due to the interconnectivity 
of the different themes. For example, innovative contributions focusing on embodiment or 
implementing new tools suggest a need for suitable theoretical frameworks to design and reconstruct 
mathematical learning activities. The contributions specifically addressing theoretical advances took 
particular aspects into account. On the one hand, some of the contributions addressed the value of 
theoretical frameworks when working with digital tools. In terms of extending a theoretical 
framework with regards to the use of digital tools, the potential of Cultural Historical Activity Theory 
(Engeström, 2000) was discussed in the context of programming activities. In terms of 
methodological considerations, the use of an instrumental approach in a quantitative study on 
functional thinking was explored. The role of an epistemological approach to inclusive settings using 
digital tools provided another theoretical lens. On the other hand, some contributions showed the need 
to develop new theoretical frameworks in the context of using digital technology. For example, a 
framework for creating heuristic videos to enhance students’ modeling competencies was presented,
as well as a model for learning about black boxes. Both the contributions and the discussions show 
that the key role of theory as well as theoretical advances keeps being a central theme for TWG16. 

Embodiment and the use of digital technology in mathematics education 

This theme included a range of papers, with some focusing specifically on embodiment—in terms of 
theorizing it—and others only evoking the role of the body in mathematical meaning-making. In the 
latter case, one study considered the dynamic animations created by students using geometric 
transformations. Although the conceptual focus here was on creativity, the analysis of the expressive 
and aesthetic dimensions of the students’ work could certainly relate to theories of embodiment that 
account for the role of the senses in mathematical thinking. In the former category was a contribution 
that focused explicitly on embodied design. It explores a possible alignment between Abrahamson’s 
embodied design (Abrahamson et al., 2020) and Sfard’s (2008) commognitive approach, proposing 
the perception-actions that could correspond to saming, encapsulating, and reifying. A second 
example taking an explicit theoretical stance was on enactivism. The researchers compared the finger 
gnosis deployed in two digital technology settings, TouchCounts and Rakin, studying the fingers 
movements of a child as they relate to number sense. Finally, a systematic literature review was 
presented on the embodied approaches to functional thinking involving the use of digital technology. 
This paper leverages a particular approach to embodiment arising again from the work of 
Abrahamson (e.g., see Abrahamson et al., 2020).
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Overall, it was remarked that the theories of embodiment used tended to be focused on the individual 
learner and their intact bodies, conceptualized as ontologically distinct from the environments 
(including the digital tools). This contrasts with approaches to embodiment that are more distributed, 
socially situated and politically inflected. 

New roles for new tools

The thematic working group discussed the use of innovative digital tools in mathematics classrooms. 
The participants discussed specifically the use of augmented reality, robots, and 3D printers. The 
contributions evidence how such digital tools affected students' learning and teachers' instruction. In 
particular, the researchers presented studies that showed how such tools shape the students’ language, 
formulation of mathematical concepts, and shed light on robust teaching. In addition, participants 
discussed how these new tools may invite negotiation of the mathematical meanings embedded in the 
tools and the learning environment. A comparison of physical objects, common-use digital 
technologies, and new digital tools was also presented. Most of the contributions to this theme were 
qualitative studies conducted with few participants. This fact required the participants to consider the 
feasibility of implementing these new digital tools in regular classrooms. Without any doubt, scaling 
up the use of such digital tools to regular classrooms will bring new opportunities and challenges for 
the learning and teaching of mathematics, and little is known about them yet. This may open a window 
toward a new research trend that will include questions on how to implement new tools in teaching 
practice. How should students engage and interact with such new tools? How will teachers’ practices 
change through using such digital tools? This theme, of course, is far from having final answers, and 
seems suitable to revisiting during next CERME conferences.

Good practices in technology-rich design, learning and assessment in mathematics education 

Developing good teaching practices that foster mathematics learning through technology-rich student 
activity is a prominent issue, all the more in times of emergency remote teaching due to the pandemic. 
Contributions describing good practices focused on topics such as the flipped classroom and distance 
learning environments, more established tools such as GeoGebra, tools for computer programming.
Also, more innovative tools were used, such as a digital spirograph and the online application 
GeoGebra classroom. From the discussions we conclude that new pedagogies and practices have 
emerged in practices of using various digital tools, such as practices of digital-collaborative learning.
It has become clear that the teachers’ instrumental genesis of teachers is a prerequisite for good 
practice. Also, the availability of advanced digital technology used in the learning process questions
the regular curricular goals. A main idea that emerged from the discussions is that good practices 
should use digital technologies to deepen mathematics learning through in-depth meaningful learning 
trajectories (teaching sequences), rather than through superficial tool use. To do so, new theoretical 
approaches might be needed. Another important conclusion was that social-media norms may change 
to enable new pedagogies to be put into practice. Finally, as our experiences with and knowledge of 
emergency remote learning with digital tools has drastically increased during the pandemic, we 
wonder how to capitalize on this in the future.

Many contributions in this theme presented examples of well-designed good practices. However, 
describing and investigating good practices also resulted in raising the issue of design principles. It 
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was pointed out that design is group work, with different types of expertise involved, and that it is 
usually done in cycles. There is a need to identify overarching design principles, and theories that can 
underpin them, both for the design of tools and environments and for the design of learning activities.
Moreover, the sustainability of such design principles was recognized as a key point, as they need to 
be still applicable—maybe in adapted form—when new, more advanced digital tools will emerge.

The impact of digital technology on research methods

Many types of digital technology impact on our work as educational researchers. We have eye 
tracking, video labs, data logging, learning analytics, machine learning, software for qualitative data 
analysis, and artificial intelligence, to mention just some. Even if the TWG team felt the need to 
address the question of how these tools affect our research methodologies, we hardly received any 
contributions to this theme. Apparently, this is not (yet?) a ‘living’ topic in our community. We 
wonder whether this will change in two years, if the new TWG team takes up this theme once more. 

Conclusion
A first goal of this TWG was to provide an overview of the current state of the art in the domain of 
technology-rich mathematics learning. Based on the contributions and discussions, we conclude that 
the field is moving quickly, and that much attention is paid to the design, implementation and 
evaluation of good practices for mathematics learning and teaching using digital technology. The 
need for further foundations, in terms of theoretical frameworks—being new or adaptations of 
existing ones—and design heuristics is widely recognized. However, the suggested themes that aim 
at such foundations received not many contributions. This may be partly caused by the impressions 
that the TWG attracted many relatively early-career researchers, with seniors being somewhat 
underrepresented. As a practical feed-forward for CERME-13, particular attention might be paid to 
ensuring a balanced group of participants in terms of seniority.

A second goal was to identify a research agenda. Even if this was touched upon only implicitly, the 
above theme reports provide an interesting picture: whereas the need for theoretical foundations is 
widely acknowledged, the themes on theoretical approaches, new tools, embodiment, and new 
research methods were not popular in terms of numbers of contributions. One of the challenges for 
the next edition, therefore, is to reiterate these themes and ensure a more explicit place for them in 
the call for papers. The number of participants in the CERME-12 group shows that the field is alive 
and the topic is attracting much attention by researchers. The distribution of contributions over themes 
shows that there is a clear research agenda: let’s work on these theoretical and innovative foundations 
to ensure progress in these directions for the next edition.
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For those working on embodied design it is a challenge to create tasks that enable students to 
develop abstract mathematical concepts. We approach this issue from the perspective of Sfard’s 
notions of saming, encapsulation, and reification. We discuss a duality of properties and actions, 
and use this duality to review saming, encapsulation and reification from an action- and perception-
based perspective. To illustrate the power of this theoretical contribution we discuss one new 
embodied task design and two from literature: MIT-P for proportion and a design for the gradient of 
a plane using the Augmented Reality Sandbox.  

Keywords: Embodied design, Operational-structural duality, Action-property duality. 

Introduction 
In her 1991 paper on operational and structural conceptions in the formation of mathematical 
concepts Sfard writes that “we have good reasons to expect that in the process of concept formation, 
operational conceptions would precede the structural” (1991, p.10). Research into action-based 
embodied design seems to support and exploit this view that operations – in the form of goal-
oriented actions that develop in the context of motor problems – form a ground for developing 
mathematical concepts (Abrahamson et al., 2020). Operational-structural theory and Abrahamson’s 
embodied design theories share a central role for the transitions from process to object, and the aim 
of this paper is to study in more depth how a further application of ideas of operational-structural 
theory can inform embodied design. In particular, we are interested to see how the terminology of 
object formation—saming, encapsulation, and reification—as it evolved in Sfard’s later work 
(2008), apply to the context of embodied design. To this purpose we write about action-property 
duality, a duality we believe to be at the heart of students’ discovery and development of new 
mathematics in embodied designs. Whereas in Sfard’s later work emphasis lies on how the 
development of saming, encapsulation, and reification take place in communication—in the 
introduction of new discourse, through signifiers, like nouns—we would like to draw attention to 
how these developments take place and are observable in students’ non-communicative actions in 
embodied learning environments, in particular their interaction with artifacts (Shvarts et al., 2021).  

In the next section we present a theoretical perspective on operational-structural theory and 
embodied design, immediately adding our view on action-property duality. In this section these 
theoretical ideas are illustrated a new embodied design for studying quadrilaterals. The next section 
illustrates how the theory applies to embodied designs in two studies, a well-known example from 
design for the concept of proportion, the MIT-P (Abrahamson & Bakker, 2016), and a more recent 
embodied design, using augmented reality, for the equation of a plane in a three-dimensional 
coordinate system and its relation to the gradient vector (Bos et al., 2022). 
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Theoretical contribution and background 
Action-property duality 

Let us postulate what we mean by a property in relation to actions: 
 

 A property is an invariant under constrained actions 
 

The invariance means a property is perceived to be the same before and after (and possibly during) 
the constrained action. Trivial but crucial to us, a property is only invariant under actions that 
maintain the invariance. For example, an angle is only invariant under angle-preserving actions. 
There is an interesting duality in this formulation: properties and invariant-preserving actions 
cannot exist without each other. A naïve perception of sameness underlies the ability to discern a 
property. Our main claim is that such a naïve sense of sameness co-develops with an ability to 
maintain the property. To be able to compare the sameness across instances of the property in 
different objects, transformations of one object to the other need to be performed or imagined.  In 
short, action-property duality refers to the phenomenon that the sameness with respect to a property 
across objects can only be perceived by transforming those objects into each other while 
maintaining the property either physically or in the mind’s eye.   

To make sense of this, let us look at the example of the angles of polygons. Suppose a student is 
invited to manipulate a polygon by dragging the corners. A naïve perception of angle depends on a 
naïve perception of the sameness of angles, since different instances of, e.g., straight angles need to 
be recognized as the same. As a consequence, a naïve perception of the sameness of angles must co-
develop with a naïve ability to maintain an angle while transforming one polygon into another. 
 
Operational-structural development 

A theory of operational-structural development within mathematics education developed in the 90s 
within the framework of traditional cognitive psychology. Sfard argues that  operational 
understanding precedes structural understanding of mathematical concepts (1991). She describes 
three stages in object/concept development: interiorization, condensation, and reification. Later, 
Sfard elaborated her perspective on operational-structural issues within the commognitive 
framework (2008). In the first two columns of Table 1 we present this later view on object 
formation (cf. Sfard, 2008, p.170). We do not intend to embrace or study the whole theory of 
commognition here, but find its description of saming, encapsulation and reification most suited to 
apply in the embodied design context. 

Table 1: Operational-structural development from a commognitive and an embodied/action-based 
perspective 

 Commognitive  (Sfard, 2008) Embodied: Perception-Action 

Saming 
 

Creating a subsuming discourse on hitherto 
unrelated objects with the help of a single 
signifier. Example: “This is a square and 

Hitherto unrelated objects are perceived as 
similar and acted upon in similar ways. 

Example: two different squares are manipulated 
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that is a square too”. with similar dragging schemes. 

Encapsulation Assigning a signifier to a set of objects and 
using this signifier in the singular when 
talking about a property of all objects 

together. Example: “A square has right 
angles.” 

A set of objects is perceived and/or acted upon 
as instances of a more abstract object. Objects in 
the set can be transformed into each other, if one 

perceives the defining properties to stay 
invariant. Example: dragging one square  top of 
a congruent one, while maintaining equal sides 

and right angles.     

Reification Introducing a noun or pronoun with the help 
of which narratives about processes on 

objects can now be told as ‘timeless’ stories 
about relations between objects. Example: 

“These squares are similar through rotation 
and translation.” 

A series of actions on objects is perceived and 
performed as part of a single process. Example: 
rotating a square 90 degrees clockwise and then 

rotating it back to the original position. 

 

A role of the operational-structural perspective in embodied design  

Over the last 20 years, ideas from the psychological theory of embodied cognition have gained 
currency in mathematics education research, see (Abrahamson & Lindgren, 2014) and references 
therein. Embodied designs allow students to develop mathematical concepts from naïve perceptions  
(perception-based designs) or actions (action-based designs) in embodied learning environments 
(Abrahamson et al., 2020). In perception-based design students are challenged to use their innate 
perceptive qualities to observe certain events with potential mathematical meaning. Similarly, in 
action-based designs students are challenged to solve a problem of motor control with potential 
mathematical meaning. These naïve perceptions and actions are then developed into more robust 
mathematical concepts with the guidance of a tutor, thus grounding the meaning of the concepts in 
embodied (perceptive and motoric) experiences (Flood et al., 2020). 

Returning to operational-structural development, as presented in the second column of Table 1, we 
argue, firstly, that saming, encapsulation, and reification are not exclusively revealed through 
communicative acts, but additionally through non-communicative actions: the way artifacts are 
handled in an embodied learning environment. This point of view is elaborated in the third column 
in Table 1. Below we present support for the idea that students’ actions evidence stages of saming, 
encapsulation, and reification, before those stages are communicated through speech or gesture.  

Secondly, from an action-property duality perspective, we argue that saming, encapsulation, and 
reification can be interwoven in embodied design. Motoric fluency in action-based design indicates 
that the series of necessary actions to solve the motor problem is perceived as part of a single 
process. These transformations contribute to the discovery of a property (of a new object) and hence 
contribute to a process of saming and encapsulation. As a consequence, development towards 
saming/encapsulation and reification are made simultaneously; this rephrases the idea of action-
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property duality within operational-structural perspective. This way action-based design offers an 
opportunity for the simultaneous development of a new object and the associated constrained 
actions (transformations).

To illustrate this let us look again at quadrilaterals. We developed a task series in which a student is 
invited to move similar quadrilaterals on a multi-touch screen on top of each other by dragging the 
corners with their fingers (see Figure 2). The corners must be moved independently but 
simultaneously by four fingers. Moreover, the similarity of the quadrilaterals must be maintained 
while moving – this is supported by color feedback as in MIT-P. Recognizing similarity of types of 
quadrilaterals relies on recognizing the similarity of angles and proportions of side lengths. This, in 
turn, co-develops with the ability to mentally or physically transform one quadrilateral onto/into the 
other while maintaining those properties. Movements that maintain similarity are turning, dragging, 
and mirroring. While students try to “same” similar quadrilaterals, they inevitably stumble upon 
those transformations as naïve actions. Naturally adaptive motor control might lead students to 
develop distinguishable fluent transformations that could be developed into more rigorously
mathematical concepts of rotation, translation, and reflection. This illustrates the main point of how 
new objects and the associated transformations potentially codevelop in a saming-task.

Examples of embodied designs: the role of transformations
In this section we present two examples of the role of the action-property duality and the 
operational-structural development in embodied design. We emphasize how fluent motor-action 
could be reified into mathematical transformations (seen as objects).

Example 1: embodied design for proportion

A well-studied example of embodied design is the action-based task for proportion based on 
dragging two vertical bars (Abrahamson & Bakker, 2016). The student is encouraged to find 
positions where the heights of the bars are in a fixed proportion (e.g. 2: 3) by receiving green 
feedback when such a position is achieved, changing to red if the heights are not according to this 
proportion. Once a position has been achieved the student is invited to move the bars in a way that 

Figure 2. Action-based task: saming flexible quadrilateral by dragging four corners
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maintains the green feedback. In our interpretation from a procedural-structural perspective the 
student is hence invited to perform constrained transformations on the system of two vertical bars. 
The outcome is not only a naïve conception of proportion, but also a naïve conception of those 
transformations that leave a proportion invariant. Flood et al. (2020) report on a student, Ben, who
arrived at a solution where the bars move with constant, but different speeds. We infer that Ben not
only explored the invariant proportion, but also the actions that maintain the invariant. The latter 
could be reified into the notion of geometric vertical multiplication, i.e. the transformation that 
leaves the proportion of height invariant (see Figure 3). In particular, Ben established how (what we 
call) vertical multiplication has properties different from vertical translation, a transformation that 
does not leave the proportion of heights invariant. This transformation alludes to the property of 
proportional variables that, increasing one variable with a factor, the other must increase with the 
same factor. In general, this again illustrates how the process of saming situations of two bars’ 
heights, the defining property of proportion codevelops with an ability to perform fluent vertical 
transformation, which could be reified into a mathematical notion of vertical multiplication.

A transformation can also be associated with the eye movements from one bar to the other. For the 
task to make any sense the bars need to be considered ‘the same’ by the student: There must be 
reason to compare the heights. Some students tend to focus on an imaginary diagonal line between 
the tips of their two hand dragging the tops of the bars, a so-called attentional anchor (Abrahamson 
& Bakker, 2016). We argue that this diagonal line is a naïve conception that could (or even should) 
be reified into a more formal mathematical notion: the transformation of one bar into the other 
through enlargement with respect to a point (see Figure 4). The diagonal line is the essential 
ingredient for this transformation. This transformation alludes to the property of proportional 
variables ~ that one is a multiple of the other: = . So, yet another process of saming 
leads to a potential transformation to be reified.

Figure 3. Vertical multiplication as a transformation that leaves the proportion of
heights invariant
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Example 2: embodied design for the gradient of a plane 

In a recent study the author and collaborators investigated embodied design tasks for plane 
equations ( = + + ) and the relation to the gradient vector ( , ) (Bos et al., 2022). The 
embodied learning environment consisted of an Augmented Reality Sandbox (ARSB) – cf. 
https://web.cs.ucdavis.edu/~okreylos/ResDev/SARndbox/ – together  with some plastic planes and 
bamboo sticks (see Figure 5). The ARSB consists of a box of sand of area roughly 0,6m2, a stereo 
camera and a projector. The stereo camera captures images of the height of the sand and objects in 
the box, and the projector projects height lines and color feedback onto the sand and objects
accordingly. 

The first few tasks of the teaching sequence aim for students to discover the relations between the 
parameters ,  and in the equation = + + and the transformations rotation parallel to 
the -axis, rotation parallel to the -axis, and translations. In this paper we would like to highlight 
the next task in the sequence. This task aims to support development of the meaning of the gradient 
vector in a qualitative way. A vector is defined by its two properties: direction and length. In the 
case of the gradient vector these properties correspond to direction of the steepest ascent, and to the 
steepness, respectively. Applying the action-property perspective, each property has associated 
transformations that leave the property invariant. In the case of direction these are translations and 
rotations around an axis perpendicular to the direction; in case of steepness these are translations 
and rotations around a vertical axis. The task is divided into two sub-tasks accordingly: (1) move a 
circular plane in a way that the direction of the height lines stays the same, but the distance varies; 
meanwhile, roll a marble down the plane in several positions and try to explain the rolling direction; 
(2) do the same, but keep the distance between the height lines the same, and explain the speed of 
the marble. Observing the marble adds a perception-based element to these action-based tasks. 
Below is an excerpt from a dialogue between tutor Rogier and student Tiago, the case student in the 
study presented in (Bos et al., in press). The fragment begins while Tiago is working on sub-task 2. 

1 Tiago Like this you get [it] too, and then you can make all those movements 
again” [Tiago refers to horizontal and vertical translations] but then, in any 

Figure 4. The diagonal line (attentional anchor) can be extended to form an essential ingredient for
multiplication with respect to point : a transformation from bar to the other (ignoring the width). 
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case, it will remain just as steep. [Then Tiago begins to rotate the plane 
round the place where it touches the sand (see Figure 3)]

2 Tiago Whether you hold it like this or this.
3 Rogier Ah.. What movement are you making?
4 Tiago I rotate it. I rotate it round an axis. That is actually what I’m doing.

[Tiago keeps rotating the plane. He chooses a correct position, then waits 
for the feedback to update, thus clearly using the affordance of the ARSB 
for establishing a new action.]

5 Rogier Do you pay attention to anything in particular while rotating?
6 Tiago No, nothing special. Yes, that I keep it equally steep. Otherwise, it doesn’t 

matter whether you rotate around the point at the bottom [where it touches 
the sand] or at the top [where Tiago holds it]

Tiago fluently performs a series of actions he calls rotation (line 4), “saming” the plane positions 
with equal steepness. In line 1 Tiago mentions that during his actions the plane “remain just as 
steep”. This is the first time he associates this adjective “steep” to the plane as a property: one of the 
two which define the gradient vector. Moreover, Tiago’s explanation in line 6 and remarks earlier in 
course of the experiment suggest he perceives an imagined triangle as depicted in Figure 4 as an 
attentional anchor, where the angle between the diagonal on plane and the horizontal line on the 
sand is a measure of steepness. In the light of Table 1 it is important to stress how the introduction 
of the noun “steep” (commognition perspective, column 2) is preceded and accompanied by the 
development of fluent action to solve the motor problem and a perception (attentional anchor) that 
facilitates this action (action-based perspective, column 3).

Table 2 summarizes the action-property duality for the two properties that constitute the gradient 
vector. The table highlights how each property is closely connected to an action that can be reified 
into a transformation as an object. We observed how the actions described in the first column are 
performed as single process with a clear goal, e.g. in line 6 during rotation “I keep it equally steep”. 
The reification of the object “gradient vector” goes hand in hand with the reification of rotation 
round a vertical axis as a “keeping equally steep”-action and rotating round a horizontal axis as a 
“keeping same direction”-action.

Figure 5. Tiago manipulating a plane while keeping the distance between height lines invariant
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Table 2. Action-property duality for two properties that constitute the gradient vector qualitatively 

Action Invariant (property) Property gradient Changing  

Rotation round 

vertical axis 

Steepness, angle of 

imagined triangle 

Length Direction of steepest ascent, 

direction of rolling marble 

Rotation round 

horizontal axis 

Direction of steepest ascent, 

direction of rolling marble 

Direction Steepness, angle of imagined 

triangle, speed of marble 
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This paper illustrates the current status of the design and research of a digital, case-based learning 
platform (FALEDIA), which is being iteratively (re-)designed and researched to increase the 
diagnostic skills of pre-service teachers. In an interdisciplinary design team consisting of researchers 
from mathematics education and computer science, digital learning modules on central topics of 
arithmetic in primary school are designed and implemented in university courses. The learning 
modules are characterized in particular by the consideration of potentials of digital media from the 
mathematics education’s point of view, such as multiple external linked representations and 
informative subject-related feedback systems. In this article, the design approach of FALEDIA 
learning platform is presented by outlining selected learning modules and insights into first results 
are given. 

Keywords: Digital learning platform, case-based, diagnostic skills, place value understanding, 
understanding of operations.  

Introduction 
International assessment studies such as TIMSS (Mullis et al., 2020) indicate that pupils are not 
sufficiently supported in many countries. This particularly holds true for pupils with difficulties in 
learning arithmetic. Following these recurring empirical findings, it can be assumed that teaching 
should be consciously oriented towards the learners' individual learning levels and that diagnosis-
based support for children should be practiced (Phelps-Gregory & Spitzer, 2018). Therefore, teachers 
necessarily need diagnostic skills. In order to support pre-service teachers in increasing their 
diagnostic skills, digital learning platforms can offer new learning opportunities by including multiple 
representations and intelligent feedback systems.  

First, the theoretical background relevant to the design and research of the learning platform is 
outlined by addressing diagnostic skills, working with cases, and learning with digital learning 
platforms. The following two sections address the design of the FALEDIA learning platform and the 
design of the research study. Finally, the research questions and first results are presented. 
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Theoretical background  
Diagnostic skills 

‘Diagnostic skills’ are considered a key skill which all teachers should have in order to be able to 
provide individual support in (mathematics) lessons (Schulz, 2014). Although there is consensus that 
diagnostic skills are central to any teaching-learning process, the construct is often conceptualized in 
different ways. On the one hand, diagnostic skills are understood as adequately assessing pupil 
characteristics and learning as well as task requirements (accuracy of assessment, Karing et al., 2011). 
On the other hand, they are also understood as validly recording the learning status, difficulties and 
possible backgrounds on the basis of learners' statements (diagnostic depth of focus, Prediger et al., 
2013). The latter conceptualization of diagnostic skills is followed in the FALEDIA study, since 
accuracy of judgement has a focus on performance assessments, whereas diagnostic depth of focus 
also takes potential causal factors of observable performance into account.  

FALEDIA aims at contributing to raising diagnostic skills in central arithmetic topics such as 
understanding basic arithmetic operations (UO) and place value understanding (PVU). 

Case-based learning 

In order to prepare pre-service teachers to diagnose the learning levels of children and, based on this, 
to take appropriate support measures, case-based learning is of decisive importance (Syring et al., 
2016). Cases can be in the form of vignettes – as a video, transcript or teaching/learning related 
document – and can be an occasion for linking theory and practice by establishing relationships 
between the general and the specific (Markowitz & Smith, 2008). When analyzing the cases, the pre-
service teachers – unlike in classroom practice – are not exposed to any immediate pressure to act. 
Accordingly, it is possible to repeatedly work through a case and, thus, adopt different perspectives 
(Krammer et al., 2012). Furthermore, the analysis of cases can help to better cope with the diversity 
of individual cases without getting lost in the multitude of individual approaches. 

Based on the promising experiences with the use of cases outlined above, the FALEDIA learning 
platform is characterized by a consistent integration of school practice cases. 

Learning with digital platforms 

Web-based, subject-specific learning with digital learning platforms has become increasingly 
important. With regard to the degree of student activity within learning systems, two approaches can 
be distinguished: 

 Worked-examples (Renkl, 2017): Well-structured examples are presented, largely without 
learners' self-activity. 

 Problem-based learning (Koedinger et al., 1997): The learners' own activity is encouraged 
and accompanied, for example, by intelligent tutorial systems. 

Design of the FALEDIA learning platform    
To emphasize this distinction, the first FALEDIA learning platform version includes two separate 
variants of the same content. One variant presents the content with informative elements (worked-
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examples) only, while the other one includes elements to stimulate exploration (problem-based 
learning). Each one of these will be briefly presented in the following.  

FALEDIA conceptional design  

Currently, the FALEDIA platform offers learning opportunities for two different topics – UO and 
PVU. The website content for each topic consists of three parts. It is considered fundamental for the 
pre-service teachers to gain (1) the necessary background knowledge. This forms the sound basis for 
(2) diagnosis on the one hand and (3) accordingly fostering pupils’ learning on the other.  

FALEDIA provides the necessary content concerning the three most prominent aspects of each topic 
at first. For UO the three aspects of basic mental model, linking representations and using numerical 
relations have been identified as the most prominent to know. Examples of competency expectations 
pre-service teachers should be able to acquire are given in Table 1. 

Table 1: Competency expectations towards pre-service teachers 

Basic mental models Linking representations Using numerical relations 

Background knowledge – Pre-service teachers … 

can explain which basic image is 
addressed by given everyday 

situations or subjects. 

can change and describe 
representation forms – even in 

more complex contexts. 

can describe which task patterns 
do (not) suggest usage of a 
specific mathematical law. 

Diagnosis – Pre-service teachers … 

can state in how far a basic image 
is shown in pupils’ documents and 

name difficulties. 

can state in how far a child is able 
to link representation forms and 

name difficulties. 

can state in how far a child uses 
task relations und mathematical 

laws and name difficulties. 

Based on these competencies FALEDIA focusses on background knowledge for pre-service teachers 
and exemplarily diagnosis of primary school pupils’ documents. The two different variants are 
described in the next section.  

Current FALEDIA variants 

The current FALEDIA learning platform includes two variants – one with informative elements only 
and another one mainly with explorative elements. In order to make a comparison between the two 
variants, either worked-examples or elements of problem-based learning are offered at the same 
location of the learning content. The way the learning content is offered should contain the same 
information and be equally attractive to users. The accompanying text, in both variants, is the same. 

In the following figures, an example of the implementation of the same content from the two different 
design perspectives is given. Figure 1a shows a problem-based learning element, where users actively 
group elements by ordering visual representations according to whether or not they fit the 
multiplication task 3 x 4. The German conventions dictate that multiplicator x multiplicand = product; 
the multiplicator expresses how many groups there are while the multiplicand defines the quantity of 
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these groups. A figurative representation shows the quantity of the groups in rows. Users can drag 
and drop the representations into "fits" and "does not fit" containers. They can click "verify" at any 
time and receive solution-based feedback.  

Figure 1b shows an excerpt from the implementation of the work-example. In this case, the user is 
informed by a video – not as in the example above actively interacting with the platform – about 
whether or not a representation resembles the task 3 x 4. In each case, a short explanation is given 
why the respective element was grouped accordingly. This comparison of the examples of the two 
variants demonstrates that both variants present the same content, but the access to the information 
differs. 

  

(a) Problem-based learning element (b) Worked-example 

Figure 1: FALEDIA learning modules 

The FALEDIA variant with elements of problem-based learning contains various so-called "learning 
modules"; one of which is the module for "grouping" shown in Figure 1a. To give only a few 
examples, there is the "slider" in which sequential processes are worked on. At certain important 
decision points, the pre-service teachers are supposed to choose between three different possible 
sequels, only one of which is correct. Another activity is "sorting", which is about linear ordering of 
elements.  

The variant with solely worked-examples contains textual and tabular elements; informative videos 
and audios are integrated. All modules and informative elements are used for various content-related 
activities and information, both in the background and in the diagnosis.  

The following Table 2 illustrates how some contents are realized differently, depending on which 
variant of the platform they are presented on. Each realization offers learning opportunities – 
depending on the specific content and its complexity, different accesses might be considered more 
supportive. 

Table 2: Included learning and work-examples only models in comparison 

Including interactive modules Worked examples only 
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Design of the FALEDIA research study 
The project is designed in a mixed methods design. In the current state, users are offered access to 
only one of the two pages for each of two topics (PVU and OU). Hence, the pre-service teachers once 
get access to the variant with worked-examples and once to the one with the problem-based learning, 
so both variants of access, based on a different topic, are offered. For example, if you see the variant 
with worked-examples for understanding place value, you see the problem-based variant for 
operation understanding. 

In a next step, the alternative form of access is released for all users in each case, so that access to the 
information can be chosen freely as required. These multiple representations of the FALEDIA 
platform are used to gain insights into the perception of the participating pre-service teachers as well 
as their change in diagnostic tasks.  

Research questions 

The two following research questions will be addressed in what follows below:  

1. Which diagnostic skills do pre-service teachers show before and after using the FALEDIA 
platform?  

2. Which conceptional features and design elements prove to be conductive to learning and in 
how far are they applicable to other concepts and/or platforms?  

Design of the study 

To gain insights into the diagnostic skills of pre-service teachers all participating students of a course 
(N = 188) in their third or fifth semester of studying to become a primary school teacher are obligated 
to participate in two written surveys and use one of the FALEDIA platform versions for self-study 
purposes to complete another written task. The students were divided into two groups. One group had 
the variant with the problem-based learning elements and the other group had the worked-examples 
to PVU. For the OU, access to the other variant was later enabled for the respective group. The two 
surveys are designed in a pre-post design. The first test was performed. Then the background 
knowledge of PVU as well as exemplary diagnosis and fostering was elaborated with the help of the 
FALEDIA platform. Finally, the posttest was conducted. Among other tasks, the pre-service teachers 
are given a child’s solution which reveals weaknesses in understanding basic arithmetic operations, 
and are supposed to describe the errors and specify possible causes. Additionally, guideline-based 

Sorting into groups whether the representation matches a 
certain task 

Explanatory video concerning the connection of 
different representations 

Sorting different contexts to the multiplicative basic mental 
model which were unknown before  

Tabular presentation of the multiplicative basic 
mental model giving exemplary contexts  

Linkage of single-choice tasks concerning an audio file of a 
pupil explaining her train of thoughts while using 

mathematical laws 

Explanatory audio file including an audio file of a 
pupil explaining her train of thoughts while using 

mathematical laws 

Proceedings of CERME12 2689



 

 

interviews with randomly chosen pre-service teachers (N = 21) were conducted while they used the 
FALEDIA platform to provide more detailed information which elements of the two different variants 
pre-service teachers prefer over the other.  

Data evaluation 

A system of categories – based on a quantitative study by Brandt (in press) – has been developed to 
quantify the results of the written survey and get an overview of possible differences in results 
depending on which variant of FALEDIA was used by the participants. In the evaluation, the 
diagnostic subskills of describing mistakes, analyzing the causes of mistakes, and assessing 
diagnostic tasks are looked at. In each case, the three central content aspects of the respective topic 
are included in the evaluation. The correlations and significances were calculated using Anovas (RQ 
1).  

As important as that, these results are used to merge the current two variants of the FALEDIA 
platform into one variant that is tailored to the needs of pre-service teachers. For this purpose, the 
qualitative content analysis according to Mayring (2019) is applied (RQ 2).  

Empirical findings 
The first results of the surveys are available for both the diagnostic skills and the design elements. In 
this paper, a subset of the results on understanding basic arithmetic operations, looking at analysis 
causes of mistakes is focused on. Amongst others, a before-and-after comparison is used to examine 
whether the pre-service teachers were able to improve their score after working with FALEDIA and 
whether there are differences depending on which variant of the learning platform they worked with 
– the one with the worked-examples or the one with the problem-based learning elements. 

Diagnostic skills (RQ 1) 

For the average value of the scores achieved in the pre- and post-tests, it can be observed that the pre-
service teachers improved both in the worked-examples variant and in the problem-based learning 
variant (Table 3).  

Table 3: achieved scores (UO) averages out of max. 6 points 

 score before FALEDIA score after FALEDIA score difference 

worked-examples (N = 94) 1.33 1.60 + 0,27 

problem-based learning (N = 94) 1.32 1.64 + 0,32 

The increase of points for the analysis of causes of mistakes in the UO is statistically significant. 
Which variant of the learning platform the pre-service teachers had, however, is not significant. This 
means that the FALEDIA learning platform could help pre-service teachers to increase their 
diagnostic skills in the field of analyzing the causes of mistakes. However, there is no evidence that 
one variant of the platform can increase the learning success significantly better than the other variant 
in this area. As noted previously, prior research has found that a learning platform that includes both 
– work-examples or problem-based learning elements – proved particularly conducive to learning 
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(Saatz & Kienle, 2013). Qualitative interviews were conducted to determine which criteria should be 
used to decide whether a learning situation is better served with a worked-example or a problem-
based learning element. 

Design elements (RQ 2) 

The qualitative interviews offer a more detailed insight into the subjectively perceived learning 
opportunities. In the interviews, various statements could be clustered into categories. Two 
particularly conclusive categories for the use of worked-examples and problem-based learning, which 
can be proven on the basis of the students' statements, are listed below. 

Worked examples are preferred if… 

… the mathematical content is considered rather difficult or new. (“For the videos the increase in 
value is when it explains an aspect that I've never noticed before.” (Student 1)) 

… knowledge should be refreshed or presented in an overview. (“If there’s something, where you 
have some kind of ‘supercategories' and then you have examples in a comparison, where it's not about 
diagnosing something, but that you get a feeling for what it's based on, I think the table is more 
appealing.” (Student 1)) 

Problem-based learning elements are preferred if… 

… already acquired knowledge should be verified or deepened. (“This is a good exercise to get more 
confidence, because you also have to do something yourself […] because you simply have to think 
more yourself.” (Student 2)) 

… practical diagnostic skills are to be fostered. (“It was good to work practically, like you’ll do later 
as a teacher at school. You do it on your own, you can see how to implement [a diagnostic instrument] 
– not only theoretically.” (Student 3)) 

These identified categorical differences will be used in the next step to elaborate on the merged site 
with elements of worked-examples and problem-based learning. 

Conclusions 
Looking at the insight into the initial survey results provided here, the following can be summarized: 
for RQ1, there is evidence that pre-service teachers increased their ability to analyze causes of 
mistakes through the FALEDIA platform. A correlation to the delivery method, i.e. which variant of 
the platform was used, could not be found significantly. Previous research has demonstrated learning 
effects for both approaches. However, learning platforms which combine elements of worked-
examples and problem-based learning have proven to be particularly beneficial for learning (Saatz & 
Kienle, 2013). Students' comments from the interviews indicate that both variants are perceived as 
helpful in certain requirements (e. g. depending on the subject matter and phase in the learning 
process). Because of this, the final version of the FALEDIA learning platform should not and will 
not be strictly dedicated to one of the two approaches, but will contain elements of both. For this, 
with reference to RQ2, categories were worked out in interviews that serve as a basis for decision-
making in order to determine which learning opportunity is offered in which variant on the merged 
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platform. Research on the now emerging merged platform based on the initial results of the surveys 
will be established across sites in the same study design in the coming semester. 
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Why introductory experiments on functional relationships should be 
qualitative to foster covariation 

Susanne Digel1 and Juergen Roth2 
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The covariation aspect of functional thinking (FT) is difficult for students but at the same time central 
for the development of a concept of function. Looking at high school mathematics, covariation is not 
in focus. Prevalent approaches put the well accessible correspondence aspect in foreground and 
support this imbalance with numeric processing. Although student experiments have proven to be a 
beneficial introduction to functional relationships, the measurements collection could contribute to 
this problem. In our pre-post-test intervention study, we contrast a numerical and a qualitative 
introductory learning environment to functional relationships with a combination of hands-on and 
digital experiments. Results (N = 332) show significant increases in functional thinking in both 
settings, but significantly higher gains in the qualitative setting. Effects of the constraints cooperation 
level and school form indicate possibly relevant influential factors on this lead in line with theory. 

Keywords: covariation, digital technology, student experiments, concept of function. 

Developing a concept of function 
The concept of functions is a major concept and at the same time a major hurdle in mathematics at 
school. Hence a considerable amount of research has been dedicated to the teaching and learning of 
functions. This study tries to bring together several branches of evidence to a coherent approach to 
the concept of functions. Breidenbach et al. (1992) used the Action-Process-Object-Scheme (APOS) 
theory for a developmental perspective on students’ conceptualization of functions. The action 
concept on the lowest level is limited to the assignment of single output values to an input. With the 
more generalized process concept students consider a functional relationship over a continuum, 
enabling the reflection on output variation corresponding to input variation. Finally, functions 
conceptualized as objects can be transformed and operated on. Students with an elaborate concept of 
functions are supposed to be able to use the action, process or object conception depending on the 
mathematical situation (Dubinsky & Wilson, 2013). 

Aspects of functional thinking 

The developmental stages of APOS are in line with key elements of a function concept, that are 
described as aspects of functional thinking (FT) by Vollrath (1989) as follows: the correspondence 
of an element of the definition set to exactly one element of the set of values; the covariation of the 
dependent variable when the independent variable is varied and the final aspect, in which the function 
is considered as an object. Although with the APOS perspective one might deduce a teaching 
sequence with an initial focus on correspondence, then covariation and finally object, current research 
advocates for a major role of covariation. Thompson and Carlson (2017) argue that the 
correspondence aspect alone does not evoke an intellectual need for the new concept function and 
difficulties with functional relationships are mainly rooted in lacking ability and opportunity to reason 
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covariationally.  Johnson (2015) points out that correspondence induces a static view on a functional 
relationship, while a dynamic perspective is a prerequisite for covariation and a process concept. 
These arguments lead to the call for a qualitative approach to functional relationships in school. 

Experimenting fosters functional thinking 

Learning environments with experimentation activities have proven to be beneficial for functional 
thinking (Lichti & Roth, 2018). One possible explanation could be the proximity of functional 
thinking to scientific experiments as illustrated by Doorman et al. (2012): with a given variable as 
starting point, a dependent variable is generated in an experiment. Relating the output to the input 
clearly addresses the correspondence aspect and the action concept. Following manipulations of the 
input and concurrent observation of the output make the covariation of both variables tangible and 
enables a process view. Another benefit of student experiment is the inherit constructivist learning 
approach that leads to higher learning gains in combination with digital technologies (Drijvers, 2019).  

Lichti and Roth (2018) implement the scientific experimentation process – preparation (generate 
hypotheses), experimentation (test the hypotheses) and post-process (reflect results) – in a 
comparative intervention study to foster functional thinking of sixth graders with either hands-on 
material or simulations and report learning gains for both approaches (ibid.), but a closer look reveals 
disparities that can be explained with the instrumental genesis.  

Hands-on experiments and simulations in the light of instrumental genesis 

The instrumental approach (Rabardel, 2002) and its distinction between artefact and instrument can 
be useful when interpreting these results: while the artefact is the object used as a tool, the instrument 
consists of the artefact and a corresponding utilization scheme that must be developed. This 
developmental process - the so-called instrumental genesis - depends on the subject, the artefact and 
the task in which the instrument is used. Hence, different artefacts lead to different schemes.  Artefacts 
that are more suitable for the intended mathematical practice of a task appear to be more productive 
for the instrumental genesis and facilitate the learning process (Drijvers, 2019). When using 
simulations, schemes that develop are dynamic and concerned with variation as well as transition and 
hence support the covariation aspect (Lichti, 2019). Measurement procedures of the hands-on 
material induce static schemes for values and conditions, fostering the correspondence aspect (ibid.). 
While hands-on material stimulates basic modelling schemes, relating the situation to mathematical 
description, a simulation already contains a model of the situation. When used as multi-
representational systems, the simulation illustrates connections between model and mathematical 
representations (e.g. graph and table) that evoke schemes for these representations and their transfer. 
The study presented here attempts to make use of both beneficial influences on the instrumental 
genesis through an appropriate combination of hands-on material and simulations in experimental 
activities to foster functional thinking. 

Fostering the conceptual development 

The measurement procedure is laborious, giving it a dominant role, which sets a focus on 
correspondence and induces static view on the relationship. As stated above, it would be desirable to 
shift to a dynamic view, a process concept and covariation. Thus, we explicitly developed a non-
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numerical approach for experimenting with immediate examination of covariation and compared this 
qualitative setting to a numerical one, following the implementation from Lichti and Roth (2018).

The learning environments

Both settings use a story of two friends preparing to build a treehouse and contain identical 
overarching tasks. The contexts are implemented with the same hands-on material and simulations 
(see Figure 1 and 2), but different components of the simulations are visible in the settings. The 
student activities are structured in six contexts (see below for details), each one laid out like a 
scientific experimentation process with preparation, experimentation and post-processing phase. The 
students work in pairs (A and B), each working on three contexts (see Figure 1). The contexts are 
chosen to represent a linear and a quadratic relationship and one with varying change rate.

Figure 1: Hands-on material of the contexts for partner A and B

For partner A these are: the perimeter of a circular disc determined by its diameter, the number of 
cubes needed for a “staircase” determined by the number of steps and the fill height of a vessel 
determined by the volume of water filled into. Partner B examines the weight of a package of nails 
determined by the number of nails, the number of beams needed for a woodwork determined by the 
number of floors and the fill height of cylindric vessels with different diameters determined by the 
volume of water filled into. A bonus context for quick learning teams depicts the diameter of an 
unrolling tape determined by the length of tape that has been unrolled.

The numerical setting follows the scientific experimentation process: after initial hypotheses in the 
preparation phase, inspect hands-on material and estimate value pairs, students take a series of 
measurements and record their data in a table within a simulation (GeoGebra), which creates a graph 
from the data. The simulation also contains a model of the hands-on material, enabling systematic 
variation and parallel observation of the altering quantities in model and graph. In the post-processing 
phase the students verify their measurements, analyze the graph (interpreting and interpolating) and
get back to the real material to check their estimations from preparation phase. The learners go 
through these phases for three contexts subsequently (see above), share their insight after each context 
with a partner and solve overarching tasks for each context as team.

In the qualitative setting the students also start off with hands-on material to activate modelling 
schemes and enable embodied experience. They are asked to make assumptions about a pattern and 
on that basis estimate subsequent values. With the aid of a simulation, where they can manipulate a 
model of the hands-on material, the students get a dynamic view of the relationship and are asked to 
identify the related quantities, which concludes the preparation phase. In the following 
experimentation phase students observe the variation and covariation of the quantities in the 
simulations and verbally describe the relationships discovered. Subsequently graphs are generated 
within the simulations to enable observing the covariation in multiple representations and in the post-

    A    B             A        B A B
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processing phase students are asked to analyze the form of the graphs and connect their insights with 
the relationship described in the previous phase. The students then team up with their partner, 
compare both contexts and identify similarities in the relations. In an additional experimentation 
phase, they take measurements in the context of their partner, represent the covariation in the 
measurement table and compare this to the results reported by their partner. As a final task the partners 
are asked to group the contexts by the kind of covariation, i.e. build pairs of similar contexts based 
on their findings. Both settings can be accessed in digital classrooms1. 

Study Design 
A comparative intervention study (pre-post design) is implemented both as in-classroom and as home 
schooling with seventh and eighth graders at grammar and comprehensive schools. It contrasts the 
qualitative and numerical settings and includes an additional control group with the simulation only 
implementation of Lichti and Roth (see above). In a subsample the settings are laid out as individual 
learning paths, i.e. without team phases. The intervention is designed for six lessons (split into three 
sessions). It is preceded and followed by a short test on functional thinking (FT-short2), to compare 
the learning outcomes in both settings. Students work in teams of two pairs (except the individual 
work subsample). A pilot study (ibid.) verified the comparability of the two settings in terms of 
processing time and difficulty. With this layout we aim to answer the following research questions: 

RQ 1: Which setting is more beneficial for FT? 

RQ 2: Is the combination of hands-on material and simulations more effective regarding FT than 
the setting with simulations only? 

RQ 3: Do the systematic constraints cooperation level (individual/team) and school form 
(grammar/comprehensive) have an impact on the learning gains in the compared settings?  

Method 
Data analysis was conducted according to Item Response Theory. The dichotomous one-dimensional 
Rasch model and the virtual persons approach were used to estimate an item difficulty for every item 
of FT-short. The person ability was then estimated with fixed item difficulties. We applied mixed 
ANOVAs (between factors: setting, school form, teaching mode, cooperation level; within factor: 
time) after controlling data for normal distribution and homogeneity of variance. Pairwise t-tests were 
used to investigate differences of the settings. Due to the corona restrictions the distribution of the 
sample on the different constraints is somewhat imbalanced. For the mixed ANOVA of cooperation 
level, a subsample was selected out of the team sample and parallelized by pre-test (see values in 
brackets in Table 1 for team sample sizes).  

A statistical power analysis (3 groups, 2 measurements, power .9,  =.05) for a medium effect 
( p

2 = .06) in a mixed ANOVA gave a desired sample size of 204. 

                                                 
1 www.geogebra.org/classroom numerical Setting: HQX7 UZRQ and covariational Setting: D3XM DDSB 

2 Rasch-scalable, 27 items, see Digel & Roth, 2020, online version of FT-short: www.geogebra.org/m/undht8rb 
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Results
Here we present quantitative results of the main study (N = 332, 121 female, 187 male, age M = 13.0, 
SD = 4.8). The distribution of the sample over the settings and constraints is shown in table 1. 

Table 1: Data sample sizes of subgroups

Numerical Setting Qualitative Setting Control Group

Total 125 114 93

Comprehensive / Grammar 52 / 73 39 / 75  27 / 66  

Individual work / Team 20 / 20 (105) 18 / 18 (96) 16 / 16 (77)

The estimation of the Rasch-model, used to determine the person abilities for the total sample, showed 
good reliabilities in the pre- and post-test: EAP-Relpre = .86 and EAP-Relpost = .80 as well as WLE-
Relpre = .85 and WLE-Relpost =.80. 

Comparison of the settings in total

The mixed ANOVA (see Figure 2) resulted in two significant and one minor significant effects: first, 
there was a significant main effect for time F(1, 329) = 188.17, p <.001, p

2 = .36. The results in FT-
short for the total sample (numerical, qualitative and control setting together) increased significantly 
with a large effect from M SD = 1.37) up to M = .26 logits (SD = 1.01). Second, there 
was a minor significant main effect for setting F(1, 329) = 256.34, p <.01, p

2 = .04. The subsamples 
of both treatment groups (numeric/qualitative) did not differ before the intervention (t
p =.571), but they did afterwards (t(198) = .26, p <.001, d = .32) and both together did not differ from 
the control group before the intervention (t p =.219).

Figure 2: Increase in FT pre to post by setting 

Results in all three settings increased significantly from pre- to post-test (see Table 2). 
The mixed ANOVA also showed a significant interaction between time and setting 
(F(2, 329) = 5.33, p =.005, p

2 =.03) with a small effect. Due to limited space, the results of the 

Total
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following ANOVAs are only reported briefly. If not stated otherwise, the remaining main and 
interaction effects were not significant.    

Table 2: Learning Gains pre to post in subgroups per setting

Reported are effect sizes (Cohens’ d) with significance level *** (p < .001) if not stated otherwise 

Numerical Setting Qualitative Setting Control Group

Total .25 .51 .27

Grammar / Comprehensive .27 / .32 .48 / .63 .28 / .34

Individual work / Team .37** / .25* .37** / .76 .26* / .23*

Comparisons of the settings under constraints

Regarding the school form (see Figure 3 left) the mixed ANOVA showed a significant main effect 
for time (F(1, 326) = 197.34, p <.001, p

2 =.38) and a significant effect of school form 
(F(1, 326) = 87.82, p <.001, p

2 =.21).  Above, there are two significant interaction effects: between 
time and setting (F(2, 326) = 5.92, p <.005, p

2 =.018) and between time and school form 
(F(2, 326) = 9.57, p <.005, p

2 =.029). The grammar school students outperformed the 
comprehensive school students in the pretest significantly (t(174) = 8.09, p <.001, d = .61), but for 
both school forms students’ ability increased significantly with a small to medium effect (grammar: 
t(425) = 7.08, p <.001, d = .34; comprehensive: t(216) = 5.84, p <.001, d = .40). In both school forms 
students in the qualitative settings showed the highest learning gains (see Table 2). 

Figure 3: Increase in FT pre/post by setting & school form (left) / by setting & cooperation level (right)

The mixed ANOVA for cooperation level (see Figure 3 right) resulted in a significant main effect 
for time (F(1, 102) = 79.38, p <.001, p

2 =.44) only and no significant interaction effects. This 
subsample is part of the grammar school sample (high abilities in the pretest with M = .36 logits and 
SD = .87). The effect sizes of the learning gains are reported in Table 2.
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Discussion 
One of the major restrictions are the unbalanced subgroups, caused by requested flexibility towards 
the participating schools due to the pandemic restrictions. Above the results are not generalizable 
without reservation, since they depend on the concrete settings developed in the study. Nonetheless, 
the results show a significant increase of FT in the numerical (small effect d = .25) and the qualitative 
settings (medium effect d = .51), as well as the control group (small effect d = .27), from pre- to post-
test. Hence all three approaches are suitable to foster functional thinking of seventh and eighth 
graders. The learning effect for FT in the qualitative setting is significantly higher (small interaction 
effect of time and setting p

2 =.03). Thus, we can conclude that the qualitative approach with a focus 
on covariation seems to be more beneficial for functional thinking than the other two (RQ1).  

Since all three approaches in this study use identical (in case of the control group similar) simulations 
and contexts, it seems that the specific sequence and focusing of the tasks are decisive. Referring to 
our theoretical background, we consider two characteristics of the qualitative setting as influential 
aspects: first, the early focus on the dynamics of the observed variables in the qualitative approach 
provide opportunities to reason variationally and to develop a dynamic view on functions. Second, 
the shift of the measurement procedure to a very late step might also contribute to this view. We can 
assume that replacing early measurement with investigation and observation of the relationship 
initiates practice in covariational reasoning.  

The learning effects in the numerical setting and the control group do not differ significantly as 
opposed to the qualitative setting. Regarding RQ2 we assert that the combination of hands-on material 
and simulations, as laid out in the qualitative and numerical setting, only lead to higher learning gains 
for FT (compared to the control group with simulations only), when the combination is embedded in 
a qualitative approach. From the perspective of instrumental genesis, we might conclude that the 
utilization schemes developed with hands-on material could have conflicting influences on FT. For 
instance, modelling schemes could be beneficial by facilitating the identification of independent and 
dependent variables, while schemes developed when investigating values and conditions of the 
hands-on material could hinder a dynamic view.  

Regarding RQ3 the significantly different FT results of grammar and comprehensive school students 
in the pretest (d = 0.61) are in line with PISA results reported by Reinhold et al. (2019). But the 
medium learning effect in the qualitative setting for comprehensive school students indicate that the 
covariational focus is also accessible to lower levels of FT and not restricted to high achievers. Since 
the sample size does not match the power analysis, especially the results regarding the cooperation 
level must be handled with caution and need to be verified. The contrast of comparable learning gains 
for all three settings in the subgroup “Individual” and higher learning gains in the subgroup “Team” 
for the qualitative setting might allude to the importance of the team discussion phases, only present 
in the “Team” subgroup. They might represent the opportunities for co-/variational reasoning, 
Thompson and Carlson (2017) call for.  

To sum up, a qualitative approach to the concept of function with experiments (1) attains higher 
learning gains across competence levels, (2) makes the covariational aspect accessible for high and 
low achievers and (3) benefits from the combination of hands-on material and simulations, when (4) 
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opportunities to reason covariationally are included. In classroom practice, an approach to functions 
accommodating these aspects has the potential to enhance learning gains.  
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This paper focuses on the terminology of computer programming as a tool for learning mathematics 
and the intersection between teaching programming and teaching mathematics. It shows different 
perspectives and challenges that might arise when combining these two disciplines. The foundation 
is the newly introduced Norwegian curriculum, where programming has been integrated into four 
school subjects in primary and secondary education, including mathematics. The aim is to take a 
closer look at the concept of ‘computer programming’ and ‘computational thinking’ and discuss in 
what ways programming as a tool in mathematics teaching and learning may be theorized.   

Keywords: Programming, computational thinking, mathematics education. 

Introduction  
The development of digital tools in education used both inside and outside the classroom has 
increased in recent years. Digital tools have introduced new methods of communication, increased 
access to information, and streamlined daily tasks. The Ministry of Education and Research in 
Norway (Kunnskapsdepartementet, 2012) points out that in a digital society, it is important that pupils 
are given good opportunities to develop digital skills, skills that “involve being able to use digital 
tools, media, and resources efficiently and responsibly, to solve practical tasks, find and process 
information, design digital products and communicate content” (p.12).  

To prepare pupils for this digital reality, many countries have changed the compulsory curriculum to 
facilitate the development of digital skills and programming to create a potential learning environment 
for future skills. The way programming was integrated to the curriculum differs from country to 
country. The United Kingdom had introduced a separate information technology subject called 
‘Computing’, while the Nordic countries introduced programming and computational thinking as a 
separate subject or a part within the mathematics subject in primary and secondary education. In 
Sweden, programming is a part of ‘algebra’ in mathematics, while in Norway, programming has been 
introduced in subject’s mathematics, science, music, and art and crafts (Bocconi et al., 2018). 

In Norway, the new curriculum in mathematics states that: “Digital skills in mathematics refers to the 
ability to use graphing tools, spreadsheets, CAS, dynamic geometry software, and programming to 
explore and solve mathematical problems” (Utdanningsdirektoratet, 2019, p.5). This definition 
indicates that (1) children learning mathematics should also learn to use different digital tools in 
mathematics to develop their digital skills, and (2) the tools should provide opportunities to make 
deeper connections and understand mathematical processes when using the tool. By enlisting 
programming with tools like spreadsheets, graphic tools, or computer algebra systems (CAS), the 
curriculum indicates that programming can be a tool for teaching and learning mathematics. This 
definition states that programming should be used to solve mathematical problems and explore these 
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problems as well. However, may programming be a tool to teach and learn mathematics? Is 
programming not a field in itself? May programming be used in a proper way to support mathematical 
thinking? This study aims to look at the concept of ‘programming’ and ‘computational thinking’ and 
discuss in what ways programming as a tool in mathematics teaching and learning may be theorized. 

Digital skills and tools in mathematics 
Fuglestad (2007) analyzed the use of digital tools by lower secondary pupils in Norway and argued 
that many tools can support pupils’ mathematical thinking if they are used through inquiry, 
exploration, experimentation and if the visual and dynamic properties of software are taken advantage 
of, allowing the pupils to be active and to investigate mathematical patterns. The research of Smeets 
(2005) also showed that digital tools give new possibilities and perspectives that can emphasize parts 
of mathematics that can be difficult to visualize. He concluded that the potential in digital tools lies 
with the pedagogical approach, and to maximize the pupils’ learning outcomes, the learning activity 
should highlight things that would otherwise be challenging. Thus, using digital tools as if they were 
not digital would eliminate any potential that the technology might bring, like visualization, dynamic 
interaction, or active participation that would differ from using pen and paper (Kim et al., 2013).  

Trouche (2004) pointed the definition between the use of a digital tool. He commented that a tool can 
be used for many different purposes, while an artifact is a “tool before considering its users and its 
uses” (p.282), and an instrument can be considered when there is a meaningful relation between an 
artifact component and psychological component. This means that the instrument “involves the 
techniques and mental schemes that the user develops and applies while using the artifact” (Drijvers, 
2010, p.108). This approach, the instrumental approach, emphasizes that the critical part is how “the 
user's conception of the instrument is formed through use” (Trouche, 2004, p.295). This suggests that 
not every use of a digital tool can benefit learning because it depends on how the instrument is used 
and how the users' thinking is changed through using the instrument.  

Drijvers (2015) argued that there are factors that can influence the integration between mathematics 
and digital tools. He mentioned (1) the design of the lesson, the activity, and the digital tool, where 
the activity or the task could determine if the tool would become an instrument or not; (2) the role of 
the teacher and teacher's competencies, where the teacher's professional development of both digital 
and didactical understanding is crucial; and (3) the educational context, where he argued that 
mathematical practices need to be related to pedagogical opportunities. This can be interpreted as 
creating an environment for learning and using the potential of digital tools (Smeets, 2005).  

Programming and computational thinking 
Programming has been defined in different ways. When creating a stepwise description of an 
algorithm for solving mathematical problems in 1843, Ada Lovelace was called “the first 
programmer” (Computer History Museum, s.a.), but a precise description of what it does to ‘program’ 
was not given. A technical definition of the term ‘programming’ separated two working methods 
while writing a program. The first was the process of drawing up a plan of the sequences of 
decomposed problems and algorithms that the program would consist of (‘the programming’), and 
the second was to write the code in a programming language and implement the program (‘the 
coding’) (Hartree, 1950). Since then, there have been many new developments in programming, 
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changing the programming process. Blackwell (2002) presented the development through a concept 
that started with “describing calculations”, then went on to “defining functions”, and finally 
developed further into “defining and treating objects” (p.205). The methods of programming have 
changed when new digital developments have been integrated into the structure of programming. 
Duncan et al. (2014) argued that programming has “changed and developed over time as software, 
hardware and usage of computers has changed” (p.62) and therefore, they suggest to “use the term 
‘programming’ for the broader activity of analysing a problem and implementing a program that 
solves it” (p.62, emphasis in original). 

This development has made programming and coding more available, creating new easy-to-use 
programming languages and environments that can both write and execute the code. In recent years 
there has been a development of programming/coding environments for children which are based on 
the idea of visual programming where a program “is a set of linear sequences of ‘jigsaw pizzle’ pieces 
representing commands” (Klassner & Anderson, 2003, p.15, quotes in original).  As Duncan et al. 
(2014) stated, “Drag-and-drop environments on the other hand do not require users to manually enter 
programming expressions; instead they provide the user with a selection of ‘blocs’ that represent 
programming expressions (…) This prevents novices from encountering confusing error messages, 
which can be very discouraging to learners” (p.65). 

The access to free software prepared to start to code without previous knowledge has made the terms 
‘programming’ and ‘coding’ blurred, and there are people that present these terms as synonyms 
(Balanskat & Engelhardt, 2015; Resnick and Siegel, 2015). Duncan et al. (2014) explained that 
“[c]ode is a popular buzz word in today's technology driven world, and it also provides an element of 
mystery (there are hints of a secret code), and achievement (cracking the code)” (p.62, emphasis in 
original). This is clearly the opposite of Hartree's (1950) division of these two terms. Duncan et al. 
(2014) stated that “[i]n the context of programming, traditionally coding would only refer to the last 
stage of the process of programming, translating a designed program into programming expressions 
and typing/entering these into a computer” (p.62). Computer scientists still lean up to the technical 
definition and consider programming to be more than coding, but people from outside computer 
science often do not divide between the process of scheduling the sequences and writing the code in 
a certain programming language.  

Papert (1980) argued that programming should be associated with the process of thinking when he 
wrote that by “teaching the computer how to think, children embark on an exploration about how 
they themselves think” (p.19), and then the children can use programming to construct their 
knowledge. He saw the possibilities of using programming as a way of thinking when solving 
problems. Wing (2006) built on this idea by reintroducing the concept of computational thinking, CT 
(first used by Papert in a different context in 1980). She defines it as: “an approach to solving 
problems, designing systems and understanding human behaviour that draws on concepts 
fundamental to computing” (Wing, 2008, p.3717). In her explanation, there is a clear link between 
the thought processes associated with processes of abstraction and decomposition and computing.  

According to Wing's definition, computational thinking is a fundamental skill, which “means more 
than being able to program a computer” (2006, p.33). Computational thinking is dependent neither 
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on technology nor programming languages (Bocconi et al., 2016). Denning and Tedre (2019) defined 
it as “(…) computational thinking, or CT– is not a set of concepts for programming. Instead, CT 
comprises ways of thinking and practicing that are sharpened and honed through practice” (p.6). The 
idea is to teach pupils how to think in structures so that they can gain knowledge about specifying 
and breaking a problem into several subproblems to find a systematic solution to the subproblems 
and evaluate whether the solution was useful and effective to solve the problem.  

Lie et al. (2020) stated that Wing presented terminology and concepts as a computer scientist, and 
they argue that someone “outside that community might be prone to narrowly construe the idea of 
CT to direct connections with number computation or computer” (p.2, emphasis in original). Denning 
and Tedre (2019), also computer scientists, defined computational thinking as “the mental skills and 
practices for (i) designing computations that get computers to do jobs for us, and (ii) explaining and 
interpreting the world as a complex of information processes” (p.4, emphasis in original). Curzon et 
al. (2014) got into more detailed concepts of computational thinking (logic, algorithms, 
decomposition, patterns, abstraction, evaluation) and approaches (tinkering, creating, debugging, 
persevering, collaboration). Weintrop et al. (2016) presented a model of computational thinking that 
has four main categories: (i) Data practices, (ii) Modeling & simulation practices, (iii) Computational 
problem-solving practices, and (iv) Systems thinking practices (p.135). The interesting part of this 
model is relevant for this argumentation is that one of the sub-categories in the group (iii) is named 
‘Programming’, which could mean that programming is considered a narrower approach than 
computational thinking. This is contradictory to the technical definition of Hartree (1950) and maybe 
has more in common with the perception of Resnick & Siegel (2015) and Balanskat & Engelhardt 
(2015).  

The modern concept of computational thinking has in some way replaced the dual term of 
programming as presented by Hartree (1950), making the definition of the term ‘programming’ 
different than before. In addition, the programming environment that Hartree (1950), Papert (1980), 
and Blackwell (2002) considered were not the ones that are used in schools today. These scholars 
described a version of text-based programming languages. The languages of BASIC or LOGO were 
simplified and adapted for children, but they were still based on detailed syntax. Today's 
programming environments for children (for example, Scratch, Micro:bit, LEGO, Minecraft, etc.)  
are designed for the purpose of being easy to use, and many children meet programming through 
block-based programming languages, where the children are free to construct, modify and change 
codes with a simple push. Today, someone learning programming does not need to have a scheduled 
algorithm figured out before (s)he starts to code. One can code by trials and errors and continuously 
modify the program without stopping the software or creating bugs, but it is unclear if this can be 
considering ‘programming’? 

Challenges in introducing programming in mathematics teaching 
Kilhamn and Bråting (2019) reminded that programming is a field with its own structures, rules, 
goals, processes, methods, and notations. The same symbol can be used both in mathematics and 
programming, but it does not necessarily have the same meaning. For example, ‘=’ means equality in 
mathematics, but in most programming languages, it assigns a variable. This can be confusing when 
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writing a variable like x=x+1. A common code for adding one to a variable in programming is 
mathematically wrong because there does not exist a value of x that could make this equation valid. 

A few more challenges arise from teaching programming in mathematics. Firstly, the syntax in 
programming differs from one programming language to another, and mathematical symbols can 
have different meanings. How does it affect pupils learn to use the equal sign differently in 
programming and mathematics, and then change the programming language and use ‘:’ as equality. 
This would be confusing for the pupils that would need to be specified and clear in the syntax they 
use, as well as the terms and structures that each programming language represents. In Norway, there 
are not any national criteria for choosing a programming language, and each school, teacher or subject 
could use different software.  

Secondly, programming, as mentioned before, is a field with its own rules and structures. The 
definition of programming differs between computer science and other disciplines, and many 
concepts are used to describe different approaches and actions. The terminology from computer 
science is not easy to translate to other situations and contexts, and much of the argumentation 
consists of explaining approaches from computer science used in other contexts. There are differences 
in syntax and in structure, different approaches in solving a mathematical problem with 'pen and 
paper' or solving it through the creation of new software. However, programming was implemented 
in four school subjects in Norway without explanation on how these disciplines could be combined. 
Currently, it is up to each teacher to choose how they want to implement programming in their 
subjects. It could be a part of computer science, or as simplified coding and gaming to motivate pupils 
in cases in different subjects, or as a tool for learning the subjects more in-depth. There is a lack of 
research on what would be most beneficial for the pupils, at their grade and in certain subjects, and 
how programming could be helping them to learn and develop skills.  

Finally, the challenges lie within the teachers' competencies. The teachers need not only to learn how 
to program themselves but how to explain the program and support pupils in creating their programs 
as well. This could be solved by inviting computer scientists to teach programming parts at certain 
subjects. However, that may not give the educational and didactical results desired in the school 
curriculum. There could be some advantages if the pupils were taught to program by experts in their 
profession. Then the misunderstanding of structures, methods, terms, and syntax would not be 
problematic. The disadvantage of such an approach would be that the programming would be 
connected to computer science and used for the same purpose to create effective, friendly, and 
structural programs, but then there might be a lack of pedagogical or didactical approaches that 
children in primary and secondary school might need in their development.   

Teachers' role in introducing programming in mathematics 
Kaup (2019) has done a research review describing how in-service teachers and pre-service teachers 
understand the term computational thinking and what attitude they have towards that concept. Her 
results showed that many participants were not familiar with computational thinking, and even if they 
had noticed that concept before, their understanding of what it is was superficial and simplified. Also, 
the study of Misfeldt et al. (2019) showed that some teachers do not feel prepared to teach 
programming. Only 4,5% of the teachers participating in the survey answered that they feel ready “to 
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a great extent”, even though almost 70% said that these disciplines are connected and can be 
combined within the same subject.  

Bocconi et al. recognize the teacher's role when they admit that: “Evidence shows that the transfer of 
programming skills is more likely to happen when (i) transfer is addressed in the upskilling of all 
teachers involved and (ii) forms an integral part of the pedagogical approach adopted in the 
classroom” (2018, p.6). This claim emphasizes that upgrading mathematics teachers’ skills with 
programming may not give the wanted results if the knowledge is not adapted in a pedagogical 
approach. As Drijvers (2015) previously stated, teachers' development is crucial for integrating digital 
tools as instruments in mathematics teaching and learning. Yet, in many cases, the teachers today are 
confused about correct terms and methods (Kaup, 2019).  

Conclusion 
Can programming be a tool in mathematics? There are different definitions of 'programming', 'coding' 
and 'computational thinking', and these concepts are used in a variety of ways. The concepts 
themselves have changed in time, both because of further digital development (Blackwell, 2002; 
Duncan et al., 2014) and the need for more interdisciplinary connections (Wing, 2006; Weintrop et 
al., 2016). The integration of programming into mathematics education in Norway creates new 
possibilities for the pupils (Utdanningsdirektoratet, 2020), and the implementation of digital tools can 
support mathematical thinking (Fuglestad, 2007, Drijvers, 2015). Especially when the tool is used in 
a way that forms and influences the users' conception and becomes an instrument (Trouche, 2004). 
The remaining question is if programming can be such a tool?  

The role of the teacher is significant in introducing programming with understanding and relevance 
(Drijvers, 2015, Bocconi et al., 2018), but the competence of today's in-service and pre-service 
teachers do not give them much confidence to teach programming in mathematics (Kaup, 2019, 
Misfeldt et al., 2019). Programming has some similar elements with mathematics (Papert, 1980, 
Kilham & Bråting, 2019), and studies of teachers' attitudes towards programming in mathematics 
show some connections between these two disciplinaries (Misfeldt et al., 2019, Kaup, 2019). Yet, 
there are many challenges that could arise when programming is introduced to pupils in teaching and 
learning mathematics, and the practical approaches of implementing and using programming as an 
instrument in mathematics have not been researched. There is a need for more knowledge in how 
programming can be used to solve and explore mathematical problems.   
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Digital technology in the mathematics classroom is often seen only as a tool. The purpose of this 
paper is to expand the discussion about the kind of roles digital technology can play by using 
programming activities as examples. We apply components from Engeström’s Cultural Historical 
Activity Theory to discuss programming as the object of the activity; the tool in use; part of the 
division of labor; and as a part of a classroom community. Digital technology as a part of division 
labor and classroom community has the potential to provide rich classroom communications and 
learning processes in which the students, the teacher, and digital technology interact with each other. 

Keywords: Digital technology, programming, roles, CHAT, mathematics education 

Introduction 
Digital technology has become an increasingly more important part of education in the last decades. 
In mathematics education, we see a development of concepts like ICT literacy (e.g. Dede, 2010) and 
digital competence, and research titles like Clark-Wilson et al.’s (2014) The mathematics teacher in 
the digital era. During the last decade, programming has been introduced as an important 21st-century 
skill. It is included in mathematics curriculums (and other subjects) in many countries (Balanskat & 
Engelhardt, 2015) and national policy documents (Bocconi et al., 2018). 

Hoyles (2018) stated that the dominating view on mathematics is that “mathematics is simply a set 
of disparate rules for calculation and students attempt to master this ’mathematical machinery’ 
without seeing its purpose” (p. 209). Teaching based on this view is dominated by students being 
given premade tasks to be solved with predefined mathematical tools and students have difficulties 
seeing the purpose of doing the tasks. Hoyles argued that the digital technology in such classrooms 
is used to speed up procedures, and calculations are largely only replicating doing mathematics with 
paper and pencil.  

According to reviews by Batiibwe (2019) and Bray and Tangney (2017), digital technologies are 
often integrated into non-transformative ways in mathematics classrooms, and they are often regarded 
as tools only. Batiibwe (2019) reviewed articles on the mediating role of digital technology in 
mathematics education from a Cultural Historical Activity Theory (CHAT) perspective. All of the 
reviewed articles discussed the role of digital technology in classroom activities only as a mediating 
tool. Other roles, such as digital technology as an object, as the driving force in the activity, were not 
discussed. Bray and Tangney (2017) found that digital technology is primarily used traditionally in 
mathematics classrooms. Task assignments are not adapted to the integration of digital technology, 
and digital technology is used as a substitute for the teacher or to save time in calculations (e.g. Åberg-
Bengtsson, 2006). Digital technology is often used because it simplifies things and releases students 
from tiresome calculations. Such use of technology generates to a little extent changes for the teaching 
and learning of mathematics. 
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However, digital technology can be used to explore mathematics in diverse ways. The integration of 
digital technology has the potential to transform activities in mathematics classrooms by engaging 
students and providing them possibilities to take ownership of their learning (Hoyles, 2018). 
According to Bray and Tangney (2017), programming activities were more transformative than the 
activities with other digital technologies used in mathematics classrooms. In most of the studies that 
discussed programming integration, the task assignments in programming activities were often 
collective, freer, and more student-centric. The teacher was often acting as a guide instead of just 
being a lecturer, and the students were able to use their ideas in the task design by negotiating with 
each other and the teacher and by interacting with digital technology.

To investigate the transformative possibilities of including programming in mathematics education, 
the focus in this paper is on programming’s potential to play roles that go beyond the role of being a 
tool. We use examples from two earlier studies on mathematics and programming presented in
Forsström and Afdal (2020) and Herheim and Johnsen-Høines (2020). In both studies, the students 
worked collectively with their programming activities. By taking a CHAT perspective, we exemplify 
and discuss programming’s potential to be an object, to become part of the division of labor and 
community, as well as being a tool in the students’ collective activities. The analysis is based on a 
micro-level approach of the activity system analysis in Engeström's (1987) version of CHAT, where 
social, multi-voiced interactions are part of the knowledge creation processes. Focusing on collective 
classroom activities instead of individual actions gives the possibility to get information about 
relational processes in the classroom. An activity 
system analysis enables a discussion of the
potential roles of programming as a part of 
mathematics classroom activities in addition to 
being a tool. The different roles can be discussed 
in relation to other components in the activity 
system during the activity development. Taking a
CHAT perspective makes it possible to see 
teaching and learning as dialectically intertwined 
processes (Engeström & Sannino, 2012).

Cultural-Historical Activity Theory
The analytical approach is based on an activity system analysis, where the seven components: subject, 
object, tool, rules, community, division of labor, and outcome (see Figure 1 and Table 1) include the 
potential roles we argue that programming can play. According to Engeström (2005), the components
are interrelated. For instance, in the uppermost sub-triangle, the tool mediates the subject’s activity 
towards the object. With the help of tools, subjects interact with the object of the activity, which is 
the driving force in the activity. The activity is framed by collective components of rules, community, 
and division of labor, and the relationships between the components influence the activity 
development. Due to the interactions between subjects and dynamic relationships between the 
components, the collective activities are constantly transforming and developing. Knowledge is 
distributed between the different participants and components in the activity system, and learning is 
seen as a change in the components of collective activities; as an expansion of a collective object.

Figure 1: The activity system model from
CHAT (Engeström, 1987, p. 78)
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Table 1: Components in the activity systems analysis 

Component Definition/meaning Examples from these studies 

Subject 

 

The individual/group of people who 
engage in the activity (Yamagata-
Lynch, 2010) 

The students and the teacher 

Object The driving force of the activity 
(motive and goal) (Engeström, 1987) 

Fulfil a task by using programming 

Tool 

 

Instrument that mediates the activity 
(Engeström, 1987) 

A robot, app, computer, and 
mathematical tools 

Rules 

 

The regulations that are relevant to the 
activity (Yamagata-Lynch, 2010) 

Task assignment, the rules of the 
mathematics classroom 

Community 

 

The group the subject belongs to during 
the activity (Yamagata-Lynch, 2010) 

The whole class of students and the 
teacher (or teachers) 

Division of 
labor 

How the tasks are shared during the 
activity (Yamagata-Lynch, 2010) 

Collaboration between students, the role 
of the teacher and the programming 

Outcome 

 

The result of the activity (Yamagata-
Lynch, 2010) 

A robot drives a track, a shape is drawn 
etc. as they are programmed  

When applying this theoretical perspective, we understand mathematics and digital technology such 
as programming, as components in an activity system. They can play different kinds of roles 
depending on the activity, the other components and the relationships between them, and how the 
activity develops. To understand the role of programming in relation to the role of mathematics, the 
activities described in Forsström and Afdal (2020) and Herheim and Johnsen-Høines (2020) were 
analyzed from a CHAT perspective, with a particular emphasis on the components object and tool, 
and on community and division of labor. To identify the object of the activities, we focused on the 
collective aim of the subjects (the students). We identified, for instance, what the students and the 
teacher were aiming to do, what the driving force in the activities was, such as to make a robot drive 
a track. The tools in the activity were determined by identifying what kind of tools the subjects used 
to achieve their object. The tools were distinguished from the objects by identifying the focus of the 
subjects. According to Engeström (2005), the focus can only temporarily be on tools. The activity 
components are dynamical and multilayered and the activities constantly transforming. The role of 
programming and mathematics developed in relation to other components in the activity system. 

Expanding the discussion about the roles programming can play  
In the following, we discuss how programming can play the role of an object and tool, be part of the 
division of labor and community, and how programming, when being more than a tool, can act as a 
resource in students' collective learning processes in mathematics. 
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Programming as an object and tool

In the programming activities discussed in this paper, the students are challenged to program a robot 
to drive a certain path (Forsström & Afdal, 2020) and to draw a particular geometrical shape with 
programming in Scratch (Herheim & Johnsen-Høines, 2020). 

In Forsström and Afdal (2020), students aged 12–13 years old programmed Lego Mindstorm robots.
The students were challenged to make the robot drive a circle, and the programming elements became 
their main object at the beginning. The students then used a trial-and-error strategy to achieve their 
object, but the mathematical tools were not used systematically (see Figure 2). The teacher negotiated 
with the students and suggested that they could program the robot to drive a circle with a radius of 
one meter. In that way, the teacher helped the students to mathematize their programming object and 
it developed a need for mathematical tools in the activity. The students focused on mathematics when 
they did the calculations. They used, for instance, the circle perimeter formula to find out the length 
of the route the robot had to drive, as well as proportions to uncover how much the robot had to turn. 
After the students obtained the needed results from their calculations, they used them in their 
programming to reach their object (see a more detailed discussion about the activity development in 
Forsström and Afdal (2020)). From a mathematics education perspective, such transformation of an 
object, from a programming object to a mathematical object, is often the intended purpose of 
including digital technologies in the teaching and learning of mathematics.

Programming tools were in use together with mathematical tools. The students revised their codes 
according to their mathematical calculations to improve the programming of the robot. The 
programming tools provided an opportunity and a need to test mathematical tools. When the students 
did not remember the circle perimeter formula and used radius instead of diameter, they got 
immediate feedback because the robot only drove one half of a circle. Because of the visual feedback 
of an error, the students were able to return to their code and do corrections. Based on the feedback, 
the students successfully concluded that to get the robot to drive a whole circle, they needed to double 
their answer. The teacher encouraged, with his questions, the students to find out why they needed to 
double their answer. The students accepted the challenge and mathematics became the object of the 
activity.

Herheim and Johnsen-Høines (2020) investigated screen-based programming with Scratch where two
12–13 years old students collaborated to program a pentagon. This programming required both 
mathematical and programming considerations from the students. The students were unfamiliar with 

Figure 2: The activity development in Forsström and Afdal (2020)
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the geometrical properties of a pentagon, about the number of sides and the size of the interior angles. 
They also faced programming challenges such as how the turn block does not give the anticipated 
interior angle but the turning angle. The students struggled with both mathematical and programming 
aspects, but they used a systematic trial-and-error strategy to get closer and closer to programming a 
pentagon. The properties of the programming software allowed them to find out more about 
pentagons. They could test different angle sizes in their code and after each attempt, they received 
immediate feedback through the shapes drawn by the program: a hexagon shape that lacked one side; 
a pentagon where the first and last side intersected; and a pentagon with a tiny gap between the first 
and last side. This Scratch programming activity can be regarded as an example of how programming 
and mathematics can become an intertwined object of the activity – not only as of the overall object 
but for sub-objects during the process as well. 

Being able to successfully program something can be the main driving force for students, and that 
makes programming an overarching object. However, during such work processes, students need not 
only to figure out what mathematics is needed and how to use it. They also need to figure out how a 
path or a shape can be programmed, what code blocks to include in the code and how to include them, 
and then they often need to try out different versions of a code. In several phases of their work, there 
are programming aspects that play the role of intermediate aims in the students’ activities. This gives 
ground for saying that students can have several programming sub-objects as well.  

Based on our discussion of the examples from Forsström and Afdal (2020) and Herheim and Johnsen-
Høines (2020), we argue that programming can be an object as well as a tool. This can take place 
through a transformation between being a tool and an object, or as an intertwined object together with 
mathematics. Programming as an object in activities can enable the use of mathematics as a tool in 
students' activities. The programming tools enabled the testing of mathematical tools and by that, the 
programming tools brought a new dimension to the use of mathematical tools. As the activities 
unfolded, the programming provided feedback to the students about the mathematical tools they were 
using. When the students tested the codes, the robot and the visualizations on the computer screen 
gave them immediate feedback on the mathematical tools in use. The robot and the Scratch program 
acted as a part of the division of labor in students' activities. That will be discussed in more detail in 
the following.  

Programming and robots as a part of the division of labor and as a part of the community 

In some studies on digital technologies in mathematics education (e.g. Monaghan, 2005; Lavy & 
Leron, 2004), the technology is considered by students as a participant or quasi-human agent. The 
classroom activities can be seen as networks, which constitutes both human and non-human actors, 
such as the students, the teacher, and the robot. Students use screen images to express themselves and 
the other students use the same images to interpret the utterances – the technology provides language. 
Digital technologies can prompt, respond, and frame communication, but they have, unlike teachers 
and peers, infinite patience and do not have expectations and are not judgmental (Monaghan, 2005). 
Technologies can appear to act like subjects when they respond to inputs so that students get the 
feeling they must justify their responses, without feelings or expectations. Wegerif (2004) pointed 
out that this dual role of digital technologies can make them able to play a part in students’ activities. 
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In the studies presented by Forsström and Afdal (2020) and Herheim and Johnsen-Høines (2020), 
knowledge was embedded in processes between robots and students and between computer screens
and students. Students got information about their mathematical tools by getting feedback from 
nonhuman actors – the robots and the computer screens. With this feedback, the students got the 
opportunity to interact and negotiate with their mathematical object. The nonhuman actors worked as 
resources for students' understanding of their mathematical object and mathematical tools in use. The 
students interacted with their mathematical object through the mediation of tools but also through the 
mediation of division of labor. The programming, together with the students and the teacher, took 
part in the division of labor and mediated by that the relationship between the community and the
object of the activity. In that way, programming did not act as a substitute for the teacher, but it acted 
to some extent as a participant together with the students and the teacher. 

In Forsström and Afdal (2020), the development of the activity was constituted by the negotiations
between the students and the teacher. The teacher encouraged the students to use mathematical tools 
with his questions. However, the teacher’s questions would have been of little value without the 
participatory role of the robot. He referred to the robot’s movements when discussing with the 
students, for instance when the robot drove 
only a half of a circle and he challenged them
to find out why they needed to double their 
answer.

In Herheim and Johnsen-Høines (2020), the
students discussed the geometrical properties 
of a pentagon. They based their discussions
and revisions for the next attempt on the 
feedback from the Scratch program, on how 
the mathematics was represented by the code 
and in particular the drawings of the shapes. 
Through the collaboration with each other 
and with the programming, the students 
found out more about pentagons and 
programming. During this process, the
programming played a role in the 
division of labor (see Figure 3).

When programming becomes a part of
the division of labor and interacts with 
the students and the teacher by giving
feedback, it also becomes part of the
collective activities. The programming
can be seen as a part of the social 
classroom group, as a part of the 
community in students’ activity systems. 
Such communities can be regarded as 

Figure 3: The activity system in Herheim 
and Johnsen-Høines (2020)
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Figure 4: Robot as a part of the division of labor and 
community in Forsström and Afdal (2020)
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digitalized classroom communities. In digitalized classroom communities, students and teachers 
interact with digital technology, and digital technology can be seen as a kind of a digital participant 
in the collective classroom activities (see Figure 4). 

Concluding comments 
As discussed in the introduction, digital technology is often regarded as a tool. Based on Bray and 
Tangney (2017), digital technology is mostly integrated into mathematics classrooms in non-
transformative ways, used as a tool to save time in calculations, and as a substitute for the teacher or 
paper and pencil. We have discussed how digital technology can play more than the role of being a 
tool, how it can take different kinds of roles in classroom activities by introducing programming 
activities from earlier studies. The different roles discussed are programming as a tool, an object of 
the activity, a part of a division of labor in students' classroom activities, and as part of the community. 

From a mathematics education perspective, the students’ use of mathematics in programming 
activities is a priority, and the different roles of programming are discussed in connection to the role 
of mathematics in students’ collective activities. We have argued that programming acted as part of 
the division of labor and as a part of the digital classroom communities in both the robot and the 
Scratch example and contributed to fruitful learning processes in mathematics. We called the 
classroom communities, where digital technology acts as a part of the community as digitalized 
classroom communities. 

In the digitalized classroom community, digital technology can take different kinds of roles in 
students’ collective learning processes in mathematics. The students, the teacher, and the digital 
technology can interact with each other, and programming and mathematics can have an active and 
transformative role. Digital technology can act as a resource for students’ understanding of their 
mathematical object by giving students feedback and in that way play a participative role. In the 
examples described in this paper, it might appear as if the programming acted just like a paper and 
pencil by drawing a circle or a pentagon, but the programming acted more diverse than paper and 
pencil. The programming brought an extra dimension to the students’ activities by acting together 
with them, the teacher, and mathematics. It gave confirmations of the use of mathematical tools by 
correcting students’ mistakes and providing visualizations of key properties in mathematics and 
showed by that a potential to trigger and facilitate students’ mathematical activity. 

Furthermore, the teacher can use digital technology as a teaching partner. As in the examples 
discussed in this paper, the programming gave information to the teacher about students' 
understanding as well as their struggles and mistakes. The teacher and the students can base their 
comments, suggestions, and revisions on the movements of a robot or drawing of shapes on a screen. 
Digital technology as a part of the classroom community can play a valuable role in the collective 
activity with students and the teacher. In the digitalized classroom community, the students can work 
towards their object, together with the teacher, the digital technology, and the mathematics. 
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Learning about black-boxes: A mathematical-technological model 
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Technology fastly becomes more relevant, both in real life and within mathematical and technologi-
cal education. In everyday life, this technology frequently comes in form of a black-box, a system 
whose inner-workings are (partly) unknown to the user. In this paper, we argue that we should em-
phasize teachings about black-boxes in technological and mathematical education. This is because a 
black-box conception of technology is neglected by current teachings, but crucial for everyday life. 
To bridge this gap, we present a model that can be used as a basis for such teachings. We argue why 
the containing conception and analysis techniques are useful for mathematical and technological 
education. More precisely, we argue that such a model can be used as meta-informational knowledge 
to reflect upon technology, especially in cases with incomplete information.  

Keywords: black-box conception, black-box analysis methods, mathematical-technological educa-
tion, curriculum development, teaching models  

Introduction 
With the progression of the 21st century, technology becomes more relevant, both in real life and 
within mathematical and technological education. This is primarily because “[d]igital technology has 
the potential to open up new routes for students to construct […] new approaches to problem-solving” 
(Bray & Tangney, 2017). As such, technology is included more and more frequently in education.  

This inclusion of technology can manifest itself in different ways. Firstly, one can differentiate be-
tween tools (used to automatically solve generic inner-mathematical problems) and applications 
(used to solve a specific real-world problem). Secondly, one can teach with and about technology. 
Teaching with technology focuses on teaching regular subject areas, but in a better way (whereas 
“better” can be understood in a huge variety of ways). Contrary to that, teaching about technology 
corresponds to an epistemic mediation of technology and focuses on goals internal to the user, e.g., 
his familiarity with or conception about technology (Rabardel & Bourmaud, 2003; Trouche, 2005). 

Thus, teaching about technology can foster a reflective approach to the usage of technology (critical 
reflection). Notably, this critical reflection requires (some) insights into that technology. However, 
the mathematics of complex applications (like search engines, product recommendation, or self-driv-
ing cars) frequently exceeds the scope of typical school education. Additionally, many of these tech-
nologies hide their inner-workings from the user. Hence, at least parts of these applications must be 
treated as a black-box. Because of this, it is worth asking: “What conceptions and techniques should 
be taught to students to foster their critical reflection of complex black-box applications?” 

In this paper, we contribute to this question with a normative approach. We first propose a theoretical 
model consisting of a black-box conception of technology and five analyzation techniques. After-
wards, we describe why we should teach this model to students. More precisely, we show how this 
model can be used as meta-informational knowledge to reflect about complex applications. 
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State of the Art of Teaching about Technology  
Teachings about technology can be done both explicitly and implicitly: Students might get explicit 
instructions of how they should view and use technology, or they build their own model by their 
experience about their interaction with technology and its inclusion in their education.  

Current Curricula Often Implicitly Build a White-Box Conception 

As of right now, explicit teaching about technology is not part of most curricula. For example, in 
Germany, the central document guiding the creation of the state-local mathematics curricula states: 

“The inclusion of digital tools should foster the development of mathematical skills. The po-
tential of such tools should support the exploration and understanding of mathematical rela-
tionships, the use of individual approaches to problem-solving, and reduce the focus of sche-
matic activities in problem-solving.” (KMK, 2015, p. 13, translated from German) 

Thus, mathematical education focuses on mathematical tools and on teaching with technology; no 
explicit conception for technology is introduced. Hence, it is likely that students learn their conception 
implicitly, based on their learning and everyday experiences. Currently, the most prevalent theoretical 
model used to describe the inclusion of technology during learning is the technology enhanced mod-
elling cycle (Greefrath et al., 2011). In this cycle, a mathematical model is translated into a techno-
logical model and the technological results are interpreted as mathematical results. 

Thus, this model focuses on a white-box conception of technology: Students have full understanding 
of what the system does, how it is defined, why it is doing it, and know about all inputs and outputs. 

Additionally, German computer science education complements this approach by teaching about how 
a system is doing something. This also includes lessons on how to implement such systems, e.g., 
using object-oriented programming. Notably, these courses also use a white-box conception where 
technology directly corresponds to a known model. Teaching about these models (e.g., a computer, 
the internet, databases, or an UML diagram) is an important part of the teaching (c.f. Röhner, 2016). 

Strengths of the White-Box Conception of Technology 

With this (implicit) white-box conception, students are able to understand a fundamental property of 
technology: In order to build or use it, explicit and correct translation between these representations 
is necessary. Using technology in this way can increase the scope of solvable problems with autom-
aton. This might be because a single approach is executed faster, or multiple approaches can be exe-
cuted simultaneously. However, it is not possible that technology solves problems a human (with 
infinite time) cannot solve, since technology is seen as a mere extension of a mathematical model. As 
such, technology can only be as valid as the models used to create it. More precisely: any output is 
an inherent property of the used model or algorithm, and not of the method of execution. 

This coherence to a mathematical model can motivate the discussions of various concepts like deter-
minism (the output of the model is defined only by its behavior and input values) and edge-cases 
(situations that defy the assumptions of the model). It can also be used to introduce the important 
difference between verification (the technology accurately represents the mathematical model) and 
validity (the model accurately represents the real-world). 
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Limitations of the White-Box Conception of Technology 

While this current, implicit white-box conception accounts for many important properties of technol-
ogy, it fails to account for black-boxes, in which (at least important parts of) the inner-workings of 
the technology are unknown to the user. Notably, this limitation is not the fault of the current teaching 
methods like the technology-enhanced modelling cycle: They were never meant to build a full con-
ception of technology. Regardless of fault, the lack of an explicit black-box conception is undesirable. 

Firstly, while technological white-boxes are prevalent in education, black-boxes are far more preva-
lent in everyday life. This is primarily because every technology not created by the user is, at least 
initially, a black-box. While it might be common that (in education) all applications or models within 
a tool are created by students, this is not true for the majority of applications used in everyday life.  

Secondly, the impact of these black-box applications on our everyday life is significant. They might 
affect the information we see (Google), the peer group we interact with (Facebook), dates we arrange 
(Tinder), the safety of our commute (self-driving cars or trains), our fitness (smart watch and fitness 
apps), and even our health (medical technology like automatic insulin pumps).  

And lastly, black-boxes are often used in the workplace to hide mathematics (Williams & Wake, 
2007). As such, designing or working with these black-boxes is a necessity in many jobs. Hence, 
there is an additional incentive to teach about black-boxes as vocational preparation. 

Overall, black-box applications are very prevalent both in everyday life, and in the workplace. As 
they might have a significant impact on both, a reflective approach to their usage is desirable. How-
ever, as the conception of a black-box is currently not taught, there is little students can actually do 
to pursue such a reflective approach.  

Proposition: A Model for Teaching about Black-Boxes and their Analysis 
As such, we propose to bridge this gap by explicitly teaching about black-box technology in mathe-
matical and technological education. We describe a conception of black-boxes and five techniques 
that can be used as basis for such teachings. These techniques differentiate in the amount of resources 
necessary (from low to high) and the amount of insight gained by utilizing them (from high to low). 

Proposed Conception: Black-Boxes 

Firstly, we denote the proposed conception students should have about black-boxes: 

Frequently, (parts of) the inner-workings of a given application are unknown to the user. This 
occurs naturally if the creator and user are not the same person. In this case, a user typically 
has no influence on the quality of the software if applied in a given situation. Similarly, the 
creator typically has no influence on the situations a software is applied. 

The most important aspect a user must know about a technological black-box is, that it still has all of 
the properties of a white-box. Most importantly, its behavior and results are deterministic. Notably, 
this includes the output of pseudo random number generators, as they solely rely on their input value 
(the seed). This is also true if the user (or, in the case of neuronal networks, even the creator) cannot 
explain the exact functionality. This also highlights the most important limitation of any technology: 
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It cannot (magically) adjust to the requirements of a situation and evaluating the quality of the result 
requires (some) knowledge about the (mathematical) models used to acquire that result.  

Nevertheless, it importantly is often still possible to use the technology, even with this lack of under-
standing from the user or the lacking intention of the creator for this use-case. Because of this, it is 
crucial that the quality of the software and its applicability to a given situation were thoroughly eval-
uated. Otherwise, wrong or misleading results might follow, whose consequences can be dire. 

Proposed Technique 1: Accepting the Black-Box 

The first approach is accepting the black-box. In this case, the technology is used without examination 
and evaluation. We will call such a technology a true black-box.  

When using a true black-box, one has knowledge about the most important input and output of that 
black-box: The most important output corresponds to why we use the black-box (e.g., for a self-
driving car: “moving towards a destination”) and the most important input corresponds to how we 
use the black-box (“by inserting a destination into the user panel”). However, even this knowledge 
about the inputs and outputs might be incomplete or wrong. 

At this point, it is important to note that true black-boxes both exist and have educational legitimacy.  

On the one hand, accepting a black-box and using it as a true black-box is the default (and natural) 
behavior of many people. However, it is hard to discuss how desirable this is or to evaluate the con-
sequences of that approach without explicit acknowledgement of the conception of a true black-box. 

On the other hand, accepting a black-box can sometimes be the most reasonable choice: It might just 
be unfeasible or impossible to analyze a black-box at all. For example, many users will (likely) never 
have the ability (or feel the need) to analyze the algorithms used in self-driving cars themselves. 

Proposed Technique 2: Testing the Black-Box 

The first evaluation approach including interaction with the black-box is testing it, leading to a tested 
black-box. In this case, the technology is executed in a safe environment using specific inputs. If the 
observed output matches some expected output (to some precision), the technology is then applied to 
the real problem. Thus, if something fails, the resulting problems are limited to the safe environment. 

For this technique, learners need to understand that it only works if the same inputs are used during 
testing and usage and if all relevant outputs are observed. It is important to fight the misconception 
“if all observed outputs are correct using one input, then all outputs are correct using any input”. 
Notably, this can be difficult, as the user does not necessarily know about all inputs and outputs. 

However, a tested black-box already offers some amount of information to the user: If the test was 
successful and seems to represent the future use cases, we can infer that the most important inputs 
and outputs are likely recognized at this point and that the future outputs will suit the future use-cases.  

Proposed Technique 3: Integrating the Black Box 

A more comprehensive approach is integrating the black-box: First, the black-box is modeled as an 
unknown function from some inputs to some outputs. Notably, “some inputs and outputs” does not 
necessarily mean “all relevant inputs and outputs”. Then, outputs to selected inputs can be collected. 
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This systematic collection of inputs and outputs (rather than unsystematically collected tests), leads 
to more information as some generalizations can be made. For example, a user might notice that all 
outputs fall into some magnitude, regardless of input variation. Additionally, if we assume that the 
inputs are representative for any future use-case, we can infer that the product is likely safe to use.  

Proposed Technique 4: Inferring the Black-Box 

An even more comprehensive approach is inferring the behavior of the black-box. In this case, a re-
modelling approach is taken: A mental model of the system is build, which is then verified by com-
paring coherence between this mental model and the actual behavior. As such, this techniques does 
not rely solely on some inputs and outputs of the black-box, but also takes the behavior into account.  

The model-building process itself might use the observed dependency between inputs and outputs as 
basis for such a model and follow the steps of a modelling cycle. Regardless of approach, the resulting 
model can be represented in a variety of ways. This includes mathematical formulas (“speed of car = 
maximum allowed speed - 10”), verbal statements on different levels of abstraction (“The motor only 
starts if the battery is not empty”, “The car follows the traffic laws”), algorithms (“if the cars sees a 
red light, then it breaks until standstill”), and meta-information (“This process takes 5s.”).  

The depth of both the mental model and the verification can vary significantly: The model can be a 
simple approximation (e.g., using a linear function) or be identical to the actual model. The verifica-
tion can reach from a single execution in a common scenario to complex statistical tests using several 
carefully-constructed edge-cases (e.g., “how often does the motor starts if the battery is at 1%?”). 

Depending on the depths of the models and verification used, it is now possible to gain accurate 
knowledge about the exact lists of inputs and outputs, and the inner-workings of the technology. But 
this is no necessity: The model is only inferred and relies solely on a finite cutout of the observable 
behavior of the technology – contrary to any secured or proven knowledge of its inputs, inner-work-
ings, or outputs. As Rice’s theorem states that it is impossible to determine the exact functionality of 
a system without knowledge of its inner-working, this imples that this approach cannot lead to secured 
knowledge – even if the mental model used is actually the same as the real model (c.f. Rice, 1953).  

Proposed Technique 5: Opening the Black Box 

The fifth approach relies in opening the black-box. In this case, students not only examine its observ-
able behavior, but also its inner-workings (reverse engineering). This approach can transform the 
black-box into a white-box. However, for comprehensive technology, accessing and understanding 
the implementation of a system is frequently outside the scope of education. For very comprehensive 
technologies, it might also be out of scope for any single person.  

While it is frequently unpractical or impossible to open a black-box, understanding the limitation of 
the prior approaches only becomes possible if they are explicitly contrasted with this technique.  

Additionally, some seemingly arbitrary aspects (like calling things that are treated as secured 
knowledge a “theory” in science, or arguing why mathematics can be seen as part of the humanities) 
only becomes comprehensible after understanding the epistemological difference between inferring 
and opening black-boxes. 
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Reasons for Teaching our Model 
In this section, we show how the proposed model can be helpful and why to include them in curricula.  

Reason 1: Intermediate Stages of Black-Boxes as Meaningful Conceptions  

First and foremost, our model introduces “intermediate stages” of black-boxes (e.g., tested or inte-
grated black-boxes) as meaningful conceptions. Without such an explicit conception, one might think 
about black-boxes as “incomplete white-boxes”, i.e., a white-box that is left to be opened or inferred. 
Indeed, this conception was dominant in initial black-box research (e.g., Glanville, 1982) and remains 
relevant in many recent research projects. See (Krell & Hergert, 2019) for an overview of approaches. 

However, this conception is not useful in practice: It is not always desirable to open or infer a black-
box. Instead, depending on the time, skill, and jurisdiction of the student, the complexity of the tech-
nology under consideration and its available implementation, documentation, explanation, and li-
censes, it might be impossible, unfeasible, illegal, or uneconomic to apply some of these techniques. 

This is quite apparent for self-driving cars or search engines: Access to their source code is limited 
because of intellectual property rights. Additionally, the complexity of their source code likely ex-
ceeds the capability for analysis for most (even trained) single individuals. Similarly, building and 
verifying an accurate mental model for such a technology also is both very hard and time-consuming. 

As such, it is naïve to argue “one should always open or at least infer a black-box”. In reality, opening 
or inferring certain black-boxes is not something most individuals will opt to do. But notably, this 
does not imply that one should not analyze a system at all. Instead, the intermediate stages show 
alternative and frequently valid courses of action or analysis one can take. 

Reason 2: Stages of Black Boxes as Meta-Informational Knowledge 

Secondly, our model highlights aspects of the trade-off between invested resources and gained in-
sights. Thus, the techniques and their potential insights and requirements act as meta-informational 
knowledge: It can help to build an informed opinion on “whether one knowns enough about a black-
box for a specific use-case, given the resources one is able or willing to invest”. 

As such, these stages can help to assess ones knowledge and identify limitations. Notably, this in-
cludes assessing ones knowledge about aspects where one has incomplete or uncertain information. 
Notably, the assessment of such information is an important step while “deciding what do believe or 
do”, a phrase often used as definition of critical thinking (Ennis, 1987).  

This is especially important for political participation: If one assesses that it not possible or feasible 
to analyze a black-box oneself, one has to ask about the implications. Most importantly, it might be 
desirable that somebody else analyses the black box. How to design such systems of evaluation can 
be an important part of a political debate, because different legitimate interests of stakeholders might 
collide: For example, a user has the desire to use a safe product even if he cannot verify its safety for 
himself. However, a company in a free market wants to keep certain implementation details as a 
company secret to keep their advantage over competitors and a government might try to reduce public 
expenses for institutional verification. Thus, a compromise between these legitimate interests has to 
be designed and evaluated. This requires insights into the technical aspects of potential solutions.  
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Illustration of the Benefits: Application of our Model in a Thought Process 
To illustrate the prior benefits, we want to come back to the example of self-driving cars. More pre-
cisely, we want to exemplarily show how our model can guide the thought process of coming to a 
meaningful conclusion for the question “How likely is an emergency to occur while using this car?” 

With our explicit model, we can first structure our knowledge: We can list available techniques for 
analysis and consider how they could be applied to the current application (the self-driving car): 

True Black Box: Initially, one does not know anything about a self-driving car, expect for its basic 
functionality. It takes a destination and afterwards drives to this destination. Treating a self-driving 
car as a true black-box is easy, but reveals nothing about its safety.  

Tested Black Box: A self-driving car can be tested in a specifically designed training course. If the 
course requires some representative situations (like interacting with different car or reading traffic 
signs), we can conclude that the car is safe to drive at least in some common situations.  

Integrated Black-Box: To integrate the self-driving car, we can observe whether the car produces 
correct output (i.e., drives correctly and according to the traffic laws) for most anticipated inputs. If 
we chose a comprehensive set of inputs (e.g., a representative selection of all roads of the correspond-
ing country and in a variety of different weather and traffic situations) and observe no (or few) invalid 
outputs, we can infer that the car is probably safe to use for most everyday cases we want to use it for  

Inferred Black-Box: To infer more information about the self-driving car, we could build a set of 
models based on its behavior. For example, one can build the sub-model “If the car sees a red light, 
it breaks until standstill” and verify its correctness by building a representative amount of situations 
(including different distractors like weather and traffic). Afterwards, one can combine several sub-
models (and verify this combination) to acquire an accurate mental model of the self-driving car. 
With this method, we can infer the safety of the car if the mental model indicates safe behavior. 

As a second step, we can use this knowledge about the techniques to decide what to do: Using the 
system as a true black-box does not provide sufficient information about its safety. Since vehicle 
malfunction can be fatal, testing in a single environment also seems inadequate. However, both inte-
gration and inferring can give valuable information about its safety. Nevertheless, they require de-
tailed knowledge and many resources (like verifying the behavior of the car in multiple real-world 
situations). As such, one might opt to not do this oneself, but rather vote for an obligation (by the 
producing company or by government regulators) to verify its safety using integration or inferring.  

Overall, we used this model to progress from a simple “we don´t have any idea about its safety” to a 
more sophisticated “There should be an external entity that verifies its safety. An important aspect of 
this verification is the amount of hours driven in representative situations (rather than test scenarios)”.  

Notably, this assessment benefits from knowledge about the techniques in the model. On the one 
hand, this is because they highlight the difference between behavior in a test vs. a representative 
environments (test vs. integration). On the other hand, the metric “amount of hours driven in repre-
sentative situations” is a consequence following from the application of integration or inferring. 
Hence, it might be overlooked if only thinking in conceptions of “true” and “opened” black-boxes. 
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Summary and Conclusion 
In this paper, we proposed a model of black-boxes in STEM education and argued why it accounts 
more for the special requirement of mathematical and technological education. This is primarily be-
cause technological system relevant for everyday life (especially those based on complex mathemat-
ical models like neuronal networks) are frequently too complex to open with typical school education.  

Then, we argued why we should include teachings about black-boxes in mathematical and techno-
logical education. This is because, firstly, the conception of intermediate stages of black-boxes (rather 
than “incomplete white-boxes”) are useful constructs if opening a black-box is impossible or unfea-
sible. As discussed before, this is often the case with complex mathematical technology. Secondly, 
our model can act as meta-informational knowledge to assess ones reflection about a system that is 
too complex for a full analysis. This also enables the generation of new knowledge. Thirdly, our 
models highlights that one does not necessarily know about all inputs and outputs of a black-box. 

However, the proposition of this model can only be seen as a first step: How to design curricula and 
lessons based on this model is an important question for future research. Furthermore, it would be 
desirable to unite our technology-focused model with existing models in science education to achieve 
a more general “STEM approach to black-boxes” usable in interdisciplinary teaching.  
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Trigonometry, an important pre-requisite for many advanced topics of school mathematics, links 
geometric, algebraic and graphical reasoning, but remains a difficult topic to teach and learn. The 
dynamic nature of many trigonometric functions is amenable to dynamic geometry software, which, 
in the form of GeoGebra, is the focus of this paper. However, both generally and in respect of 
trigonometry, research on GeoGebra’s efficacy seems ambivalent. In this paper, we offer a case study 
of two groups of Swedish upper secondary students’ solutions to the same tasks. One group was 
instructed to use GeoGebra and the other a protractor to investigate the sine and cosine functions in 
in the interval 0° ≤ v ≤ 180°. Analyses yielded qualitatively different outcomes; students using the 
protractor typically identified a geometrical relationship based on symmetry around the protractor’s 
90° line, while those using GeoGebra tended to identify only numerical relationships.  

Keywords: Trigonometry, GeoGebra, Protractor, Sweden, Upper secondary school. 

Introduction 
For at least half a century, technophiles have asserted the transformative impact of various forms of 
computer software on the teaching and learning of mathematics. An early example can be seen in 
Papert’s (1972) enthusiastic promotion of Turtle Geometry as a way of engaging young children with 
mathematics in ways that generate rather than replicate mathematics. Later, spreadsheets were 
presented as a means of introducing various aspects of both school mathematics (Healy & Sutherland, 
1990) and university mathematics (Steward, 1994). More recently, attention has been focused on, 
inter alia, dynamic geometry software (DGS), particularly GeoGebra, the focus of this paper. 
Unfortunately, despite the undoubted quality and availability of the software, much GeoGebra-related 
research seems to have been underpinned by the technophiles’ desire to ‘prove’ its educational 
efficacy and is often little more than instructions or tips for teachers to develop their own applets for 
teaching purposes (e.g., Little, 2011; Phan-Yamada & Yamada, 2012). Even when attempts have 
been made to establish a baseline understanding of its impact on learning, research has typically been 
equivocal in its outcomes, methodologically problematic or both. In the following, before introducing 
our study, we summarise these methodological problems. 

GeoGebra and the teaching and learning mathematics 

Our reading of the literature indicates an important distinction between the use of preprepared applets, 
designed to facilitate the exploration of the mathematics under scrutiny, and expectations that students 
construct their own applets. In respect of the former, which is more frequently reported than the latter, 
studies have reported on, for example, undergraduates’ investigations of the definite integral (Tatar 
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& Zengin, 2016), circle theorems (Sigler et al., 2017) and Fermat and Steiner points (Flores & Park, 
2018). Such studies, while supportive of the software’s potential efficacy, seem not only to lack 
details of the ways in which such applets support learning but assume that such learning could not be 
achieved via other means. When control groups have been employed, as with studies of high school 
students’ learning of functions (Zulnaidi et al., 2020) and exponential functions (Birgin & Yazici, 
2020), researchers typically report higher achievement and deeper learning in the groups exposed to 
GeoGebra applets than the control groups. However, these studies seem not to be without problems, 
particularly with respect to details pertaining to the students’ experiences. For example, Zulnaidi et 
al. (2020p. 54) wrote only that “students in the control group were taught using the traditional method 
whilst their counterparts in the treatment group utilised GeoGebra”, while Birgin and Yazici (2020, 
p.5) wrote only that “the control group was taught by using textbook-based direct instruction”. In 
other words, such studies seem problematic in their unarticulated assumptions about traditional 
teaching and the experiences of control group students. 

GeoGebra and trigonometry 

Understanding trigonometric functions is a pre-requisite for understanding many other topics in 
science and engineering, and as “one of the earliest mathematics topics that links algebraic, geometric, 
and graphical reasoning, it can serve as an important precursor towards understanding pre-calculus 
and calculus” (Weber, 2005, p.91). However, it is a difficult topic to teach, with approaches based on 
the right-angled triangle stressing procedural skills at the expense of any conceptual understanding 
of either sine or cosine as functions (Kendal & Stacey, 1997). In attempts to address such matters, a 
number of studies have exploited GeoGebra in the teaching of different aspects of trigonometry.  

Unfortunately, much of this research is prone to the problems as discussed above. For example, 
Kepceoğlu and Yavuz (2016) investigated the teaching of periodicity of trigonometric functions with 
grade ten students. In one classroom, the teacher demonstrated by means of an applet, while in the 
other, the same teacher adopted a traditional exposition. The post-test found the experimental group 
performing better than the control, although no tests of statistical significance were used, and little 
detail was offered with respect to what students were invited to do in either classroom. In similar 
vein, Zengin et al. (2012) developed a five-week trigonometry course for high school students. A 
post-test found greater improvements in the experimental group than the control. However, beyond 
the implied use of applets, nothing was said with respect to the interventions, other than to assert that 
“GeoGebra prepared activities aimed to make the subject more dynamic, concrete and visual” (p. 
185). By way of contrast, Mosese, and Ogbonnaya (2021) undertook a controlled experiment in which 
one group experienced GeoGebra-based applet led instruction, while the control group experienced, 
inter alia, a model of a rotating arm to underpin a series of lessons focused on basic trigonometric 
functions. In both instances, some detail was offered with respect to what students experienced, with 
the experimental group performing better on a post-test than the control. Finally, Nordlander’s (2021) 
study drew on observations of upper secondary students working on the limit of sinθ/θ. Her hope was 
that students would “explore, compare, and connect items leading to discovering relationships and 
learning through their own reflections and self-explaining” (p. 3). She found students’ conceptual and 
procedural knowledge to be enhanced by the visualisations afforded by the software. 
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In conclusion, much GeoGebra-related research seems problematic, mainly because the tasks students 
receive are rarely adequately described. Even the authors of review papers seem unaware of such 
problems. For example, Chan and Leung’s (2014) meta-analysis, despite identifying 428 articles, 
evaluated just nine that satisfied their selection criteria and, while acknowledging factors like length 
of intervention, student age and teacher role, concluded that DGS-based instruction had a significant 
impact on achievement in relation to traditional instruction. However, no attention was paid to the 
tasks students received or, importantly, what is meant by traditional instruction. 

This study and its methods 
Acknowledging what seems to be a significant gap in the literature, this paper presents an 
investigation of the impact of different ‘technologies’ on students’ learning of trigonometry. It is 
conceptualised as an exploratory instrumental case study in which two student groups, one working 
with GeoGebra and the other with protractors, solve the same tasks.  Exploratory case studies aim to 
identify hypotheses for further inquiry (Woodside & Wilson, 2010), while instrumental case studies 
aim to advance knowledge of the issue under scrutiny (Garner & Kaplan, 2019). The study is framed 
by the question  

What differences emerge in upper secondary students’ solutions to the same trigonometrical 
tasks when some students work with GeoGebra and others work with protractors? 

The study involved 22 students in the second year of the Swedish upper secondary school’s (17-18 
years) natural science programme. Participants, who had previously encountered trigonometry only 
in relation to right-angled triangles, were randomly assigned to two groups, each split into pairs. 
Twelve students (6 pairs) worked with GeoGebra (G) and 10 (5 pairs) with the protractor (P). Each 
group completed the same tasks in, effectively, identical lessons of 60 minutes duration.  

During the first part of each lesson, (ca 25-40 minutes), students undertook an investigative activity 
aimed at extending earlier trigonometric relationships beyond acute angles to arbitrary angles. During 
this time, both groups were allowed pocket calculators, paper and pencil, while group G uniquely 
used GeoGebra and group P uniquely used protractors and a unit circle drawn on paper. Next, 
participants in both groups worked through identical textbook-based tasks (ca 10-25 minutes), using 
whatever tools they preferred. Finally (ca 10 minutes), students solved a trigonometric equation, 
during which time they were allowed only a unit circle drawn on a paper, paper and pencil. At the 
beginning of the lesson, written instructions were distributed and afterwards the teacher clarified any 
misunderstandings for individual pairs. Throughout, students were asked to discuss their thinking, 
with each conversation being audio-recorded and every GeoGebra activity being digitally recorded. 

In this paper, due to limitations of space, we focus on the results of students’ work from the first and 
final phases of the lesson, which were structured by two tasks, presented in ways that would be 
amenable to either protractor or GeoGebra approaches.  
Task 1, the introductory investigations, comprised several parts 

 Draw a circle with radius 1 and its centre in the origin.  
 Working from the centre of the circle O and the positive x-axis, draw an angle 125˚ and its 

corresponding radius OP. 
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 Note the coordinates for the point where the radius intersects the circle: the x-coordinate is 
the cosine value, the y-coordinate is the sine value. 

 Find an angle for which sin v = 0.8 in the interval 
a) 0° ≤ v ≤ 90°  b) 90° ≤ v ≤ 180° 

 Find all angles in the interval 0° ≤ v ≤ 180° for which sin v = 0.5. 
 Examine the results of the previous tasks and make a note of the relationship between them. 

The solutions to the first part are a) v ≈ 53° and b) v ≈ 127°, while those of the second are 30° and 
150°. Finally, it was hoped that students would have noticed that the angles are symmetrically placed 
either side of 90° and that the sum of the angles is 180°. 

Task 2 comprised one part, namely, determine, without using a calculator or digital tool, which angles 
in the interval 0° ≤ v ≤ 180° are solutions to sin v = sin 56˚. Its solutions are v = 56˚ and v = 124°. 
During this time, it was hoped that students would exploit the relationship discovered during Task 1. 

Data analysis 
Analyses of qualitative data are typically either theory- or data-driven (Boyatzis, 1998). Our view is 
that the exploratory nature of this study is best served by the latter, as it privileges emergent insights 
that may be masked by the former (Andrews & Sayers, 2013). Consequently, participants´ utterances 
and actions, including the GeoGebra digital recordings, were interpreted, and coded in ways that 
would expose similarities and differences in how students approached their tasks. For example, 
during their work on the investigative task, Epsilon pair (P), offered the following: 

Epsilon (P):  But it is 90 degrees. Or is it 180 minus that angle, is the same … Look, it should be 
the same distance … 90 degrees plus ... or … Ok, check, ok, now, now I came up 
with it, check, if you have the angle here, you should add 90 degrees minus the 
angle you have here, because then you come here on the other side. So, if you have 
90 degrees … So, it's 0 plus the angle ... is the same sine value as 180 eh ... minus 
... yes ... 0 minus the angle v. 

In this excerpt, the various utterances indicate that the two students had identified a symmetrical 
relationship around the protractor’s 90° line and were attempting to articulate a geometrical 
relationship. By way of contrast, during their work on the same task, one of the GeoGebra pairs, 
Gamma, suggested: 

Gamma (G):  So, 53 divided by 127 might be the same thing as… 30 divided by 180. 

Such an utterance, focused on division, indicates little, if any, awareness of symmetry and, we infer, 
reflects a loosely formed interpretation of a proportional relationship. Later, continuing to work with 
numerical values, the same pair identified a relationship, although there remained no explicit evidence 
that they had noticed the symmetry embedded in the situation: 

Gamma (G):  Now I have found another connection, 53 degrees plus 127 degrees is 180 degrees 
and 150 plus 30 is 180. It is also a small connection. 

Interestingly, their description of the relationship as ‘small’ indicates a view that they thought an 
additive relationship of such a form was, possibly, too trivial to be correct. 
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Results 
In the following, we summarise the results for each of the two tasks respectively, highlighting 
important similarities and differences. 

Task 1 

Overall, ten of the 11 pairs identified a connection between the angles in Task 1. Five of these, four 
protractor pairs and one GeoGebra pair, discovered the expected symmetrical relationship. The 
protractor groups typically drew on expressions like ‘equally far’ or ‘mirror image’ to highlight the 
physical location of the angles in relation to the vertical associated with the 90° line of the protractor. 
With respect to the former, in addition to the comments made by Epsilon (P) above, another of the 
protractor pairs, Lambda, was heard to say: 

Lambda (P):  They are on each side of... both are equally as far away from 90 degrees... the line. 
If you take 90 minus those in the ... 90 ... 0 to 90 range. Yes. Then it will be as much 
as if you take... 90 plus …Yes exactly. Between 180 and the 90 range. Yes... that is 
the connection. It is the same distance on both sides as well. Yes? The degrees are 
equally far from 90 degrees. 

With respect to the latter, another protractor pair, Iota, seemed more explicit in their articulation of a 
symmetrical relationship. They said:  

Iota (P):  It looks like as if ... like a mirror image… Yes exactly. It's not plus 90 but ... but it 
is mirror-inverted, mirror-inverted ...Yes. Yes. So that it (the 90° line) is the line of 
symmetry. 

In short, four of the five protractor pairs, drawing the physical characteristics of their given tool, were 
able to identify the expected symmetrical relationship.   

By way of contrast, and in addition to the comments made by the Gamma pair discussed above, one 
of the Sigma (G), identified a numerical rather than geometrical relationship, was heard to say: 

Sigma (G):  Just that, if we add them, yes? Yes. Mm then it will be ... These, added to each other 
should always be 180. Yes. Is that the connection they want? I think that's the 
connection, it sounds like a nice connection. 

Indeed, the utterance, “added to each other should always be 180”, seems to confirm that this pair 
was thinking numerically rather than geometrically. Moreover, the closing comment that “it sounds 
like a nice connection” indicates that they were not only content with their conclusion but that they 
were not expecting to think in anything but numerical terms. 

Finally, in this section, one of the GeoGebra pairs, Omega, initially struggled to make sense of their 
results, as seen in their initially confused and confusing comment that: 
 

Omega (G):  Is it the same, em, number of degrees between here it is 120 degrees between this 
… and this … and what were the angles? Ok, no it is not, because then it is … about 
54 something, I think. And here it is ... no it is nothing, there is no connection, it 
seems… 

The utterances “no it is not because then it is … about 54 something” and “no it is nothing, there is 
no connection, it seems” indicate that the students of this pair were struggling to identify any form of 
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connection between the angles under scrutiny. However, after further thought, they shifted attention 
from the purely numerical to notice that: 

Omega (G):  I don’t know if it’s a connection but that they are just as far … from here to there 
and from there, em, from the x-axis, yes. Yes exactly, it's true. And from the y-axis.  

In such an utterance, despite their obvious hesitancy, this pair had come close to identifying and 
articulating the expected symmetrical result. 

Task 2 

Overall, nine of the 11 pairs, four protractor and five GeoGebra, were able to solve Task 2 and find 
the values v = 56˚ and v = 124° respectively. In most cases, the successful pairs exploited the result 
they had identified earlier. For example, drawing on the symmetrical relationship they had found 
previously, Iota were heard to say: 

Iota (P):  Do we have v at all?... Can't we just do our ninety tactics?... If we have… like one 
answer, we take the other. Yes? …90 minus 56 is equal to 34. Yes? So, 34 plus 90, 
124. Boom. 

The somewhat rhetorical question, “Can't we just do our ninety tactics?” confirmed the pair’s 
connection to their solution to Task 1. Afterwards, by performing “90 minus 56, is equal to 34... So, 
34 plus 90, 124. Boom.”, their task is solved efficiently and, it seems, with understanding. 

However, not all protractor pairs made such an explicit connection between the two tasks. For 
example, uniquely among their colleagues, the protractor pair Epsilon solved Task 2 by drawing on 
a numerical interpretation of the symmetrical relationship they had discovered during Task 1. They 
began by repeating the task: 

Epsilon (P):  Determine without calculator which angles in the range are solutions to … Ok. This 
one we know already; it is 180 minus 56. Yeah! 

The utterance, “This one we know already, it is 180 minus 56”, came shortly after they had read the 
task and shows how they connected the two tasks swiftly. Interestingly, their conversation, due to its 
brevity, indicates that they transformed the relationship they found in Task 1 to the process used here.  

GeoGebra pairs using numerical approaches that had not found the symmetrical relationship at Task 
1, solved Task 2 by working once again with purely numerical values, and, as expected, did not used 
symmetry when solving it. For example, the Gamma pair noted that: 

Gamma (G):  … when it was sine, and it was 180 degrees, it was positive all the time…. So, sine 
56 degrees … must be the same as … 180 minus 56 degrees what is … Yes, 130, 
124 … it will be, because then the value is the same? Because it is always positive. 

Finally, the Alfa pair connected the expectations of the task to their understanding that sine values 
were read-off the y-axis, before performing their calculation and commenting, with a degree of irony, 
that any connection had been obscured by the number of decimal places returned by the software. 

Alfa (G):  It’s equal to 56 degrees? Yeah? Sine was the y-axis, right? Sine what x-axis ... y-
axis. So, it should be 56 degrees.... Now, I do not understand anything. Wait, it’s... 
So, first of all 180 minus 56. I was so confused, I just … how are we going to do 
this? … The connection is that there are unsatisfyingly many decimals. 
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Discussion 
In this paper, acknowledging that trigonometry is a difficult topic to teach, we have examined the 
impact of two qualitatively different approaches, involving the same tasks, to the teaching of 
trigonometry to Swedish upper secondary students. The outcomes were unexpectedly different with, 
on the one hand, students using the protractor tending towards an awareness of a symmetrical 
relationship that allowed them to understand and exploit the sine of angles in the range 90-180 
degrees, while, on the other hand, students using GeoGebra tending towards an awareness of a 
numerical relationship between such angles. Significantly, in contrast to Nordlander’s (2021) study, 
there was little evidence of the G group’s conceptual and procedural knowledge being enhanced by 
the visualisations afforded by the software. While further research would be necessary to establish 
the reasons for these differences, it is not improbable that the protractor scaffolds students’ awareness 
of symmetry in ways that GeoGebra does not. Also, as noted by the Alfa pair of students, the decimal 
places offered by GeoGebra may interfere with students’ interpretation and subsequent generalisation 
of their results, highlighting a need for teachers to ensure that the appropriate number of places is set.  

In sum, the results indicate a need not only for further comparative studies but also for teachers to 
understand how different technologies may enable or hinder learning. If there are any generalisation 
to be inferred from a limited study such as this, they are, firstly, that teachers have a role in facilitating 
students’ awareness of any teacher-expected outcomes and, secondly, if students are to make sense 
of their experiences with DGS, then the role of paper and pencil seems crucial (Komatsu & Jones, 
2020); working without such tools may create unnecessary barriers. 
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In this paper we investigate student’s creative mathematical activity, while engaging in coding 
digital animations. A logo-programming authoring system which integrates Turtle Geometry, 3D 
space and dynamic manipulation of figural models was used. Three students of 8th and 10th grade 
engaged in creating figural dancing animations and synchronizing them to the rhythm of a song, by 
constructing an artefact and manipulating its geometric transformations in space. We adjusted the 
Creative Mathematical Action Framework, that is based on a fallibilistic view on creativity, into a 
constructionist technological context. The results indicate that artistic values such as synchronicity, 
symmetry and periodicity were conceived and applied within the digital resource and acted as 
motivators for persistently tinkering with the artefact. This context provided fruitful ground for 
creative mathematical activity of forming, expressing, exploring and expanding mathematical ideas. 

Keywords: Creative mathematical actions, fallibilism, programming, mathematics, art. 

Introduction 
During the last decades, creativity has been constantly revisited with research attempts for 
understanding, analyzing and cultivating it in mathematics education. Thus, a diversity of 
theoretical perspectives on mathematical creativity has been developed, mainly addressing it by 
means of inborn trait and giftedness (Mann, 2006; Sriraman, 2005) or problem solving-posing 
processes (Silver, 1997). However, Riling (2020, 2021) has recently made a critical review on the 
existing approaches, pointing out their limitations over how creativity takes place in mathematics 
classroom and who can be seen as mathematically creative. Riling proposed an alternative view 
where mathematical creativity is discussed in terms of students’ actions and is open to cultural and 
social influences – in a parallel manner as in artistic domains such as painting or choreography. She 
developed a framework in which mathematical creative actions are defined in a concrete way, that 
enables their investigation in students’ activity. In this context, creativity emerges as free, 
independent expression of mathematical ideas, that can be nurtured in all students. This kind of 
creativity dissociates mathematical meaning-making from taken-as-established mathematics and 
fixed curriculum structures (Kynigos & Diamantidis, 2021). In this study, we adopted this 
challenging view towards mathematical creativity within the context of middle school students 
using a digital resource called MaLT2, which provides means for developing, expressing and 
investigating mathematical ideas while modeling 3D figural objects (Kynigos, 2015). Our aim was 
to investigate how this kind of creativity can be cultivated in the context of open artistic creation. 
We employed Riling’s framework as lens to identify and look into instances of student’s creative 
actions while engaging in creating a digital animation in MaLT2.  
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Theoretical Framing 
Fallibilism in Mathematics Education 

The view of creativity we are examining has its epistemological roots into the fallibilist approach on 
mathematics nature, as opposed to the formalist one (Davis & Hersh, 1980; Ernest, 2003; Kynigos, 
2015). Formalism is an epistemological paradigm that conceives mathematics as ‘an objective, 
absolute, certain and incorrigible body of knowledge, which rests on the firm foundations of 
deductive logic’ (Ernest, 2003, p. 2). Thus, mathematical systems are discharged from any human 
influence and are served as pure isolated knowledge that humans can only approach through 
discovery. On the contrary, fallibilism relies on the assumption that mathematics is originally 
created by human thought. Fallibilist mathematics is open to be modified or disproven according to 
a person’s use of it. A main difference between these two paradigms is their educational purposes. 
Formalism aims at understanding the abstract products of the served mathematical knowledge 
through practice. On the other hand, fallibilism focuses on the activity of doing mathematics, rather 
than mathematics itself, aiming at enriching students’ meaning-making process (Kynigos, 2015; 
Kynigos & Diamantidis, 2021). Traditional schooling consist of formalist practices, which are 
based on the assumption that every task has a unique right answer and any mistake is accompanied 
with disapproval and criticism. This approach leaves limited space for students to experience 
creative engagement in mathematics. Fallibilism, in contrast, is connected with constructionist 
practices in education (Kynigos, 2015). According to Constructionism, students’ learning of 
mathematics occurs naturally while creating and sharing tangible artefacts (Papert & Harel, 1991). 
The design of constructionist activities within expressive digital media aims at providing fertile 
ground for powerful mathematical ideas to be constructed. Constructionist learning environments 
play a two-way role; that is an interplay of reinforcement between mathematics and artefacts. On 
one side, mathematics is used as tool for constructing or tinkering an artefact, taking a fallibilistic 
form. Conversely, creating an artefact provides dense opportunity for students to formulate and 
explore mathematical possibilities. Students are encouraged to engage in both directions and 
externalize their ideas by adopting the role of a designer, an engineer or an artist. The tangible 
outcome then becomes a public entity, accessible for reflection by its creator or others. In this 
fallibilist context, creativity becomes an integral part of mathematics learning in a direct way: 
mathematics is used for actual creation of personally meaningful content. 

Creative Mathematical Action Framework  

For our study, we adopted the Creative Mathematical Action Framework (CMAF) proposed by 
Riling (2020, 2021), which views creativity from a fallibilist perspective and places it into its 
community of action. We adjust this framework into a constructionist technological context. The 
CMAF offers a model for identifying creativity in mathematical contexts, such as a mathematics 
classroom providing a specific technological resource (Kynigos & Diamantidis, 2021). It puts 
emphasis on the process of how creativity takes place, instead of what final product is created. 
Creativity is conceived as a type of action connected to the emergence of new mathematical 
possibilities as experienced by oneself. Thus, CMAF links creativity to personal meaning-making 
process. We further connect new mathematical possibilities to the way they are communicated and 
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represented through changes in a digital artefact. According to Riling, a creative mathematical 
action is defined “as one that transitions a given mathematical context into a new version of 
mathematics by creating ways of doing or thinking about mathematics that were previously not 
possible for a particular community of mathematicians” (2020, p. 17). We expand this consideration 
by adding the component of the way a technological resource can influence this transition in a 
constructionist learning context. Thus, we conceive a creative action within a technological 
resource as one that transitions a given mathematical context into a new or expanded form of 
mathematical meaning by using technological tools to generate, express or explore novel 
mathematical ideas for creating and tinkering digital artefacts. Two main criteria for an action to 
have creative potential are: a) to origin from students’ own account instead of others’ (i.e. their 
teacher) guidance and b) to refrain from the standard ways of doing mathematics in school, where 
actions are traditionally manipulated by superior established curriculum practices (Riling, 2020). 
She also emphasizes the importance of aesthetic experiences, such as fruitfulness, visual appeal, 
mystery and surprise, in activating creative actions. Riling (2021) listed six types of creative actions 
derived from her data analysis. These types were adjusted to our constructionist view as follows: 1. 
setting out: generating initial ideas and goals intuitively by using the digital tools spontaneously as 
means to explore unknown aspects of an artefact; 2. imagining: using the digital tools more 
systematically in order to imagine a plan of implementation of an idea and set more clear goals; 3. 
manifesting: taking concrete intended actions to make changes to the artefact by altering the 
existing mathematical context; 4. familiarizing: taking time to survey the current status of the 
artefact in a comprehensive or reflective way; 5. recognizing: reconsidering an aspect of the artefact 
or interpreting it in a new way; 6. naming: distinguishing an action pattern in the medium for a 
specific object or idea as a distinct entity. In this study, we consider creativity inside the CMAF and 
investigate students’ creative actions within the digital medium MaLT2 for the creation of a 
“dancing animation”. 

Design of the research 
The task in MaLT2 

The digital medium used for this study was an online dynamic mathematical programming tool to 
tinker with 3D figural models called MaLT2 (http://etl.ppp.uoa.gr/malt2/), which is recognized by 
the Greek Ministry of Education. MaLT2 integrates a UCB-inspired Logo procedural language with 
affordances for dynamic manipulation of procedure variable values (Kynigos & Grizioti, 2018). 
Thus, MaLT2 provides three interconnected representations: programming, figural representations 
and dynamic manipulation of generalized values through their sliders. This last feature enables the 
dynamic behavior of a figural model that is constructed by a parametric procedure. Therefore, it 
provides a mathematical way to create an animation through geometrical transformations of figures. 
Dynamic change of figural models by manipulating variable values also enriches the opportunity 
for exploring mathematical properties, posing questions, formulating assumptions and getting 
instant feedback. In this way students can engage in a loop of interaction with the artefact. The task 
designed for this study was titled as “Dancing Animations”. We designed an artefact in MaLT2 that 
would be given to students to begin with, in order to make their own animation (Figure 1). The task 
was described in a worksheet as open as possible. The aim was to make an animation by 
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manipulating only one variable (instead of six variables in the case of the given artefact) in the same 
rhythm as a song selected from a specific list. The final product would be a video of the animation 
(the middle representation in Figure 1) added by the song audio. 

 
Figure 1. The initial artefact, in the three interconnected representations of MaLT2 

Research Method 

This study was implemented in a pilot level to three students; one girl of the 8th (Maria) and one 
boy and one girl of the 10th grade (Dimitris and Anna) of secondary school. They voluntarily 
participated all together in this two-hour-activity in an atypical after-school setting. They all had 
already participated in an introductory to MaLT2 activity. Each student had a laptop, a set of 
headphones and a notebook. A teacher-researcher was facilitating the activity by encouraging 
students to express their thoughts and ideas out loud. Data was gathered from screen-video, audio 
and voice recordings as well as students’ notes. We analyzed data from students’ discourse, notes 
and activity in MaLT2, following a grounded approach. We identified and analyzed instances of 
students’ actions that demonstrated mathematical creativity in terms of the CMAF. We categorized 
them into actions of setting out, imagining, manifesting, familiarizing, recognizing and naming.  

Results 
We identified instances of creative actions for each student that led to the creation of three distinct 
“dancing animations” synchronized to the rhythm of a song. In Table 1 we briefly describe the 
sequence of eleven creative actions made by Dimitris and Anna, who collaborated during the 
process. The merged shells of the Table indicate a common, shared creative action. 

Table 1: Description of Dimitris’ and Anna’s creative actions 

Type of action Description of Dimitri’s action Description of Anna’s action 

1. Setting out They expressed the goal to create a dancing movement while dragging the sliders 
spontaneously and observing the changes on the artefact. 

2. Imagining 
While focusing on dragging one slider, they set the goal of finding a way to create a 
complete rotation that simulates the spinning around oneself, in order to “create the 
sense of dancing”. 

3. Manifesting They selected the variable x that stands for the turn-command ‘right’ and tried 
different values for its upper limit.  

4. Familiari-
zing 

They ended up setting the limits from 0 to 360 and realized that 360 is the value for 
the whole rotating dancing move. 

5. Naming They connected this value to the notions of “full angle”, “full turn” and “full 
circle”. Dimitris also referred to it as “the period of the animation”. 
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6. Recogni-
zing 

By dragging the slider of the variable x using the right arrow from the keyboard and 
simultaneously listening to the song each one selected, the expressed that their 
animation was “out of rhythm” and “too slow”. 

7. Imagining They set the aim to fix the period of dancing move to the period of the song and 
“find a way to make it move faster and fit”. 

8. Manifesting 

He considered the period of the song 
(Iggy Pop - The Passenger) to be 2 
seconds and calculated that it 
corresponds to 60 units of the variable 
slider range. He used a multiplier to the 
command “right :x”, which could 
control the speed of the animation. 
After trying different values, he ended 
up changing the command to “right 
6*:x”. He mentioned that “after I tried 
different values I realized 6 was the 
right one since 6 times 60 equals 360”. 

She considered the period of the song 
(Milky Chace – Stolen Dance) to be 9 
seconds and calculated that it 
corresponds to 270 units of the variable 
slider range. She used a multiplier to the 
command “right :x”, which could control 
the speed of the animation. After trying 
different values, she ended up changing 
the command to “up 1.3*:x”. She 
mentioned that she found it “almost 
empirically”. 

9. Familiari-
zing 

They observed their animation and realized it was doing “a complete dancing 
rotation perfectly fitting to the period of the song”. 

10. Recogni-
zing 

They realized their dancing move only lasts for a part of the song rather than its 
whole duration. They set the goal to make it last as long as the song extract. 

11. Manifesting 

The song extract lasted 50 seconds. He 
calculated the right value of the upper 
limit of the variable slider for the 
animation to last 50 seconds, too. He 
counted the repetitive patterns (=25) 
and multiplied 25 by 60 (=1500), that 
is the number of degrees of each period 
of the animation. 

The song extract lasted 34 seconds. She 
tried empirically values of the upper 
limit of the slider of the variable. She 
approached the exact value (=1020) by 
saying “I realized that each 3 beats it’s 
almost 100 degrees so I was adding 100 
each time to reach it.”. 

 

Dimitris and Anna followed a common sequence of creative actions, as a result of their 
collaboration and sharing of ideas. For example, they began with a shared instance of setting out 
and imagining, by manipulating the dynamic variation tools (sliders) of the procedure “dancer” 
(Figure 1). A dialog between them demonstrates their first instances of creative actions: 

Dimitris: How can we make the shape dancing? 

Anna: I imagine something like that... (She got up and made a complete rotation around herself.) 

Dimitris: We need to find a way to make the shape spin. This (dragging the slider of the variable x) creates 
the sense of dancing. (...) As the variable x values change, the shapes turn continuously. 

Anna: Yes, but we have to increase the limit value. Right? Because we want a whole rotation. 

This investigation was the starting point of these two students’ activity as a quest for answer to their 
own questions on how to create the sense of dancing. They posed the problem of “what value is 
suitable for the figure to complete a whole rotation” in order to simulate the dancing move of 
“spinning”, formulating an example of creative mathematical action of imagining. During this 
action, they used the concept of variable and made sense on it. Afterwards, two shared instances of 
creative actions of manifesting and  familiarizing took place, as the following dialog indicates: 
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Anna: I tried changing the right limit of the variable x. I think 360 is the value for the whole rotation. 

Researcher: Why did you choose variable x instead of a or b? 

Dimitris: I thought that these variables (showing x, y and z) are for the turns. A turn means something that 
changes its angle. 360 is a whole angle. This is why it works for 360. It’s 360 degrees, so it’s a 
circle. I realized it right before it reached 360. A circle means a complete angle, so a full rotation. 

Anna: If you put more than 360, it starts repeating the same move again. We could use that to make it 
keep rotating for the whole song. 

Dimitris: Yes, you are right. (...) It makes another whole rotation when it reaches 720. And then 1080. So 
360 is the period of the animation. 

Dimitris connected the turn of 360 degrees to the concepts of a complete angle and a circle, noting 
that this realization was not possible before. In addition, Anna pointed out that values higher than 
360 degrees make the animation repeat in the same way. After testing it, Dimitris realized that in 
every multiple of 360 the movement was making a whole rotation. They both imagined a 
choreography of repeated rotations fitting at the period of the song. The rest of their creative 
activity is captured at Table 1. They worked cooperatively, with actions of imagining and 
recognizing shared and discussed, but their actions of manifesting and familiarizing were 
independent, leading to two uniquely different animations.  

Table 2: Description of Maria’s creative actions 

Type of action Description of Maria’s action 
1. Setting 

out 
While dragging the sliders freely, she set the goal to create a dancing movement by 
using them. 

2. Imagining 
While dragging back and forth the slider of some variables, she expressed the idea of 
finding a way to create the sense of moving “up and down around the horizontal state 
continuously”. 

3. Manife-
sting 

She selected the slider of the variable z that stands for the turn-command ‘up’ to 
move forth and back. She tried different values for both lower and upper limits. She 
ended up putting values that range equably from 360 which was the horizontal state: 
from 340 to 380; from 300 to 420; etc. 

4. Familiari-
zing and 
Naming 

She observed it and expressed that “360 is the center of the move and I need to keep 
the same distance right and left”. She called the value of 360ο as “the center of the 
animation” combining it to the notion of the center of symmetry. 

5. Recogni-
zing 

She realized that her dancing movement “takes too long” and that she wants “to make 
it move faster” but “into the rhythm”. 

6. Imagining She set the goal to find a way for the animation to “repeat the complete up and down 
move several times during the period of the song”. 

7. Manife-
sting 

She considered the period of the song (Milky Chace – Stolen Dance) to be 14 
seconds. She selected the time period of 2 seconds for her dancing motion, in order to 
be repeated 7 times during the song period. She noted that “2 sec = 22 forth and 22 
back”. She ended up setting the value range from (360-11=) 349 to (360+11=) 371. 

8. Recogni-
zing 

While observing the animation by dragging the slider of the variable z, she expressed 
that the motion was very slow and didn’t fit in the 2-second-song period.  

9. Manife-
sting 

She used a multiplier to the command “up :z”, which could control the speed of the 
animation. She ended up changing the command to “up 1.5*:z”. 

10. Recogni-
zing 

She expressed that the speed of the animation seemed ok, but the shape does a 
different, less interesting movement. She said she needed to change the limits of the 
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slider in order to make the previous symmetrical move in the selected speed. 

11. Mani-
festing 

While trying different values she said: “when :z becomes 360, the shape is not 
horizontal like before. The new middle state is at 360/1,5=240. So the proper values 
are from (240-11=) 229 to (240+11=)251.  

12. Familia-
rizing 

She observed the dancing animation and said that “Now it is even nicer, since the 
movement is faster and as a result its movement is longer, more extensive and even 
nicer!” (Figure 2). 

 

Maria on the other hand followed a different path of actions. She did not participate to the 
discussion with the others and chose to work on her own. Her creative actions are shown at Table 2. 
Firstly, her idea of dancing animation included a periodic rising and falling motion and the problem 
of synchronization with the song emerged naturally: 

Maria: Maybe I can create this dancing move. (She started moving her hands up and down periodically.) 

Researcher: Great idea! Can you think of a way?  

Maria: I would try moving the shape up and down by dragging it back and forth. I will write down the 
limits I like the most (referring to the right and left limit values for the slider of variable z). But, 
first I need to find the value for which the shape is horizontal and put it in the middle. (...) Well, it 
is 360. 360 is the center of the move and I need to keep the same distance right and left (...) But 
when I listen to the song, the movement is too slow. I need to make it move faster up and down. 

 
Figure 2. Maria’s final “dancing animation” 

After Maria posed the question “how to create the dancing motion of moving up and down”, she 
generated answers through imagining, manifesting and familiarizing actions. As revealed by her 
words, she considered the value of 360 degrees to be the “center” of the dancing move, connecting 
it to the concept of the center of symmetry. Afterwards, she set the goal to synchronize the motion 
to the music rhythm. In order to achieve it, she listened to the song carefully and noted down its 
rhythmic period (14 seconds). She went back to her animation and tried various values for the 
variable z limits, all of them symmetrical to the value of 360. She timed the duration of her 
artefact’s period and noted that it takes 2 seconds for the slider to be dragged forth and then back 
when the value range is 22. Then she simulated the “up and down” motion by fixing the variable 
limits from 349(=360-11) to 371(=360+11). As it is shown in Table 2 (from 5th to 12th action) she 
went through three more circles of forming an idea, expressing it in the medium and reflecting on it, 
that led her to the creation of her final dancing animation (Figure 2). 
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Discussion 
All three students participated in this study generated ideas while seeking ways for creating a 
dancing move and synchronizing it to the rhythm of a song. The CMAF provided an insightful 
scope for identifying and exploring their actions within MaLT2. We detected a sequence of creative 
mathematical actions, which formed circles of imagining, manifesting, familiarizing and 
recognizing actions, composing three unique paths of mathematical meaning-making processes. 
They approached mathematics in a fallibilist way, as it became the basic tool for applying their 
artistic ideas which were freely open for investigation and reformation. Conversely, their artistic 
ideas constituted of motivators for their creative way of thinking and doing mathematics. In the 
instances described above, they used and made meanings on the mathematical concepts of angle, 
variable, parameter, linear function, periodicity and central symmetry. MaLT2 was used as means 
for posing both mathematical and artistic questions and investigating their answers through testing 
and instant feedback. We conclude that both MaLT2 and the artistic context fostered naturally 
generated creative mathematical actions of all six types described in CMAF.  
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This project of German Center for Teacher Education in Mathematics (DZLM) sets out to investigate 
the effects of SMART, an online formative assessment tool, on the professionalisation of teachers 
and on the development of students’ understanding. Formative assessment can be conceptualised as 
“all those activities undertaken by teachers, and or by their students, which provide information to be 
used as feedback to modify the teaching and learning activities in which they are engaged” (Black & 
Wiliam, 1998, pp. 7–8). Core elements of formative assessment include eliciting evidence for student 
learning and understanding, for example, through appropriate tasks, as well as adapting classroom 
teaching based on the diagnostic information (Black & Wiliam, 1998). In this respect, it is important 
that diagnoses of students' learning do not remain on a superficial level such as the correctness of a 
task. Rather, diagnoses should focus on concept images and possible misconceptions of learners. 
Such deep diagnosis is the basis for teachers adapting their teaching in meaningful ways in order to 
foster their students’ concept development. However, accurate and deep diagnoses usually require a 
considerable amount of time and effort on the side of teachers which might be the reason why 
formative assessment with a focus on understanding is often rarely implemented into classrooms. An 
expedient solution to this problem can be certain online tools such as the Australian SMART-tests 
(“specific mathematics assessments that reveal thinking”), which were specifically designed for this 
purpose by a group of researchers at the University of Melbourne (Stacey et al., 2018). SMART-tests 
provide not only understanding-oriented diagnoses within a few minutes, but also further teaching 
recommendations and information on common misconceptions. Hence, on the one hand, SMART 
delivers quick, directly usable results that can be used by teachers to enhance their students’ 
understanding. However, its developers demand further research to scientifically investigate whether 
the system does improve student learning outcomes in general (Stacey et al., 2018). On the other 
hand, SMART can implicitly foster teachers’ pedagogical content knowledge and thus their 
diagnostic skills. Nevertheless, “it also seems important to have professional development showing 
its advantages and distinctive features, and to provide teachers with advice on implementation.” 
(Stacey et al., 2018, p. 20). Without such support, teachers may use the diagnosis from formative 
assessment environments more in the sense of a summative assessment instead of developing their 
teaching in an understanding-oriented way (Stacey et al., 2018).  

Therefore, in addition to SMART-tests being adapted and translated for use in German-speaking 
countries, this project includes the design of an accompanying professional development (PD) 
programme to scale up the effects on teachers’ diagnostic competencies and thereby students’ 
understanding. The study will investigate to what extent teacher competencies, practices and students' 
understanding in the field of algebra develop through the use of the SMART system depending on 
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whether teachers take part in an accompanying PD programme:  

 
Figure 1: Research questions 

These research questions are investigated by comparing three groups of teachers and their students 
(see Figure 2). While both first and second group will receive SMART diagnoses and teaching 
suggestions, only teachers from group 1 will be supported by an accompanying PD programme. 
Teachers in group 3 (control group) will only receive the corrected results of their students but neither 
a diagnosis in the form of stages of understanding and misconceptions nor any teaching suggestions. 

 
Figure 2: Research design 

To answer the research questions, different types of data will be gathered: On the teacher level we 
assess teachers’ diagnostic competencies and beliefs with questionnaires. Additionally, teachers’ 
formative assessment practices in the classroom will be captured by pre-structured self-report-
protocol. Furthermore, we conduct qualitative interviews with a subset of teachers from each group. 
On the student level, we gather data on student understanding by using the SMART-tests.  

A first small pilot has shown, firstly, that German students indeed exhibit the misconceptions that 
were intended to be tested by the Australian developers. Secondly, although teachers acknowledge 
that knowledge gaps were filled by SMART information, their understanding and conclusions from 
the information differ considerably. This supports our presumption that additional PD might be 
helpful to further enhance teachers’ formative assessment competencies. 
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Cognitive activation in mathematics learning videos 
Cognitive activation and individual learning support are key factors that explain students’ learning in 
traditional classrooms (Baumert et al., 2010). Learning videos seem to hardly support both factors. 
However, activation does not mean a physical activity; instead, active participation includes active 
thinking. In mathematics, cognitive activation needs to be focused on mental activities that fit to the 
learning goals (see Leuders & Holzäpfel, 2011). Cognitive activation further means that learners 
engage with the subject matter at a cognitive level that is as high as possible and appropriate to their 
learning requirements. Cognitive activation can thus especially occur when videos are combined with 
tasks or interrupted for the learner's own activities. Even basic interactive elements like playback 
control, segmentation and table of contents improve both learning and learner satisfaction. As 
technology develops, there is an increasing number of possibilities to design videos in a cognitively 
activating way and to support individual ways of using them.  

We aim to make mathematics learning videos more cognitively activating. In our poster, we present 
didactic scenarios taking account of the type of content during activation and individual use.  

Technical background: the H5P software 
The free and open-source software H5P is based on HTML5 and allows to create interactive learning 
content (https://h5p.org/). In particular, videos can be embedded in a container that offers predefined 
question formats, among others multiple-choice, drag-and-drop, and free text questions. In addition, 
a table of contents with navigation can be added to the video. 

Didactic scenarios  
Like in classroom settings, questions can serve different purposes in video: they can assess prior 
knowledge, support comprehension of the presented ideas, underline cognitive conflicts or stimulate 
further engagement with the subject (Lim & Wilson, 2018). The question formats mentioned above 
can be used to activate both prior knowledge and newly acquired knowledge while watching the 
video. The force to respond to the pop-up questions or to fill in the blanks may underline students’ 
cognitive conflict.  

Self-explanations have been found to improve both conceptual and procedural knowledge in the 
context of learning from worked-out examples (e.g., Berthold & Renkl, 2009). They can be supported 
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with cloze texts. Renkl (1997) identified two types of successful self-explanations, anticipative and 
principle-based explanations. Implementing questions and cloze texts according to these types, we 
can encourage students to think ahead and establish links (anticipative explanations) as well as to 
reflect on the central principles underlying the presented content (principle-based explanations). 

Practical Examples 
In the project studiVEMINTvideos (Biehler et al., 2020), we develop videos embedded in digital 
learning material. The materials shall help students to autonomously review their mathematics 
knowledge when they transition to university.  

To implement interactions in videos, we identify appropriate positions and question formats based on 
central problems and cognitive conflicts in the video. In the beginning of a video, we often opt for 
anticipative questions. In the end, we consider principle-based questions summarizing the main ideas. 
We adapt the number of interactions to the length of the video and try to vary the question formats 
within one video. In a video on the fundamental theorem of calculus, for example, we embedded three 
interactive questions. At the beginning, prior knowledge is activated by asking for the definition of 
the antiderivative with the help of a drag-and-drop question. After having explained the theorem, we 
explained how to generate an antiderivative. To consolidate this newly acquired knowledge and to 
transfer it to other functions, we embedded two single-choice questions to identify antiderivatives of 
given functions. Our poster will illustrate such examples. Further research will focus on students’ 
learning with these enhanced videos. 
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The aim of this paper is to analyze the affordances and constraints of the way dynamic 
representations are used in the digital learning lab ‘The set line’ from the Dragonbox School teaching 
material. The learning lab is designed for second graders. The starting point of our analysis is the 
task 18 + 6. Our analysis shows that ‘The set line’ offers affordances for the users' learning of 
addition and other aspects of the number concept because the regrouping involved in the addition of 
18 and 6 is explicitly displayed by the dynamic representations in the learning lab. ‘The set line’ may 
also cause constraints for students' opportunities to learn the inherent mathematical concepts and 
relations because several operations are carried out automatically by the learning lab. 

Keywords: Addition, affordances, constraints, digital tool, dynamic representation. 

Introduction 
Digital tools may provide dynamic representations (Ainsworth & VanLabeke, 2004; Günster, 2019) 
which offer visualizations of mathematical concepts and relations. The digital tool under scrutiny 
here, is the Dragonbox School teaching material. When users, i.e., second grade students, interact 
with this tool, the dynamic representations are changed according to the input of the users. Such 
changes may make essential features of the mathematical structures more apparent, and this may 
facilitate understanding of the mathematical concepts and relations involved. If the students had been 
working with static representations, like concrete materials, these structures would in many cases not 
have been made apparent in the same way. For example, students may separate a digital rod 
representing the number 7 into a two rod and a five rod. This process demonstrates a decomposition 
of the number 7 not facilitated by physical rods in the same manner. 

The reason for choosing the Dragonbox School teaching material, from now on called ‘Dragonbox 
School’, is that it contains digital learning labs which facilitate open-ended explorations and 
visualizations of mathematical concepts and relations using dynamic representations. These learning 
labs are designed in a way that enables the students to use them with little or no support from the 
teacher. The students are invited to explore on their own how the learning labs work and use these 
labs to explore mathematical concepts and relations. This approach to designing mathematical 
teaching material is rather novel. Because Dragonbox School was launched in 2018, very little 
research is carried out concerning this teaching material. Therefore, it is interesting to know more 
about the affordances offered by the learning labs, and the constraints they may cause in the learning 
process. 

Proceedings of CERME12 2793



 

 

Dragonbox School is made by the company Kahoot Dragonbox AS and is used in Norway, Finland, 
and France. It consists of digital resources, textbooks, and concrete manipulatives for 1st to 4th grade. 
The digital resources consist of learning labs and quizzes developed for use on tablets or laptops with 
touchscreens. The quizzes are learning labs combined with mathematical tasks. The textbooks mainly 
consist of different types of tasks the students may work with. The concrete manipulatives, called 
nooms, are a development of the Cuisenaire rods (March, 1977). These concrete manipulatives also 
appear digitally in the learning labs and quizzes. Each of these manipulatives corresponds to a natural 
number between 1 and 10, see Figure 1. 

 
Figure 1: The nooms in Dragonbox School 

Dragonbox School is supposed to be used according to ‘The Dragonbox method’. In the teacher 
manual (Dragonbox Kahoot, 2021), every lesson is structured according to this method. Each lesson 
consists of four phases: 1) exploration; 2) discussion; 3) practice; and 4) recapitulation. In the 
exploration phase, the students explore a digital learning lab individually, with a fellow student, or 
with the teacher in a whole class discussion. In the discussion phase, the students are given time to 
think, discuss with a learning partner, and share their reasoning with the teacher and the rest of the 
class. In the practice phase, it is recommended that the students start to work with the quizzes and 
then solve tasks in the textbook. In the recapitulation phase, the teacher facilitates a whole class 
discussion about the learning goal of the lesson and how the activities of the students are linked to 
this goal. 

Theoretical framework 
The work of Brissiaud (2016) has been central in the development of Dragonbox School (Uggerud, 
2021). Brissiaud argues that solid understanding of a number means having access to its 
decompositions. This claim is supported by other researchers (Anghileri, 2000; Ma, 2010). With a 
developed conceptualization of the cardinality of number, e.g., the number eight, a student can easily 
think of different decompositions of this number: 8 = 7 + 1, 8 = 5 + 3, 8 = 4 + 4, etc. The idea of 
decomposition and composition led to the construction of the nooms, which play important roles in 
Dragonbox School. Using a tablet, one can split (decompose) one noom into two smaller nooms by 
‘slicing’ it with the finger, and one can join two nooms (compose) by moving one on the top of the 
other. Then the bottom noom will ‘eat’ the upper noom and grow accordingly.  
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Duval’s (2006) theory of representations is central in our analysis of Dragonbox School. He defined 
the concept of representation as “something that stands for something else” (p. 103). He stressed that 
“the ability to change from one representation to another is very often the critical threshold for 
progress in learning and for problem solving” (Duval, 2006, p. 107). Dragonbox School offers several 
activities where students have to change from one representation to another. The concepts of 
treatments and conversions are core elements in Duval’s theory of representations. Treatments are 
“transformations of representations that happen within the same register” (Duval, 2006, p. 111), e.g., 
decomposing a 6-noom into a 2-noom and a 4-noom and composing a 5-noom by concatenating a 3-
noom and a 2-noom. Conversions are “transformations of representations that consist of changing a 
register without changing the objects being denoted” (Duval, 2006, p. 112), e.g., transforming the 
number 6 into the 6-noom. When the students manipulate the dynamic representations in the learning 
labs and quizzes of Dragonbox School, both conversions and treatments are carried out. Skemp’s 
(1976) terminology of ‘relational understanding’ and ‘instrumental understanding’ of mathematics 
will also play an important role in our analysis of Dragonbox School. ‘Relational understanding’ 
refers to “knowing both what to do and why” (Skemp, 1976, p. 20), and ‘instrumental understanding’ 
refers to “rules without reason” (Skemp, 1976, p. 20). Relational understanding should, according to 
Skemp, be the goal of mathematical learning.  

Affordances and constraints are two terms often used in mathematics education research in evaluation 
of teaching materials and learning activities (e.g., Carlsen et al., 2016; David & Watson, 2008). 
Gibson (1979) launched these terms. He defines affordances as relationships between the 
environment and the animal, in our case the digital environment of Dragonbox School and students. 
Gibson argues that these affordances exist independently of the user, but the user has to perceive 
these in order for them to be realized. Additionally, Norman (1988) emphasizes that affordances are 
linked to cultural conventions. We thus argue that in a digital environment, affordances denote action 
possibilities offered by a digital tool with respect to the capabilities of the user of that tool. The goals 
of actions and interactions with a digital tool, the user’s mathematical experience, and the 
mathematics classroom culture fundamentally informs the user’s perception of affordances. 
Constraints is a term that denotes factors delimiting the user’s actions and interactions with the 
environment. Such delimitations may support the user to focus at intended mathematical content.  

In our study, inspired by Gibson (1979) and Norman (1988), we draw on these constructs and situate 
them to fit our purpose of analyzing Dragonbox School. Therefore, we use affordances to denote 
possibilities offered for the user’s actions and interactions with a digital tool that, if perceived, may 
nurture the development of relational understanding. We use constraints, despite the term’s 
denotations as to also support users’ attention, to denote the inherently emerging restrictions for the 
user’s actions and interactions with a digital tool that may delimit opportunities for developing 
relational understanding.  

Based on these ideas and considerations, we will analyze a specific learning lab called ‘The set line’, 
which will be described below. We have thus formulated the following research question:  

Which affordances and constraints can be identified in ‘The set line’ with respect to how it 
facilitates treatments and conversions in addition of single- and two-digit numbers? 
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Presentation and analysis of the learning lab ‘The set line’ 
We immersed ourselves with the Dragonbox School teaching material and familiarized ourselves 
with its various resources. Particularly, we became interested in the learning labs due to their 
visualizations of natural numbers. In this study we analyze a learning lab called ‘The set line’ because 
it explicitly displays both treatments and conversions (cf. Duval, 2006). We inspected actions made 
possible by this learning lab, and further analyzed these actions’ affordances and constraints with 
respect to the task “Compute 18 + 6”. We have chosen this task because it involves the decomposition 
of 6 into 2 and 4. Such decompositions are a central theme both in the Norwegian curriculum 
(Utdanningsdirektoratet, 2020) and in Dragonbox School. Moreover, decompositions are 
fundamental to understanding addition and numbers in general (Brissiaud, 2016).  

The insertion of 18 into the two first containers1 

To carry out the calculation 18 + 6, the student must start by producing the number 18. To do this, 
the student has to press the grey area on the tube in the upper left corner of the tablet surface, causing 
three empty fields to appear (see Figure 2). Then, in the last two of these, the student must write 18 
using a finger on the tablet surface. Then a 10-noom (black) and an 8-noom (pink) emerge from the 
tube displayed on top of each other (to the left in Figure 2). Using the terminology of Duval (2006), 
the digital tool conducts a hidden treatment of the number 18 into the numbers 10 and 8. Then, a 
conversion of the numbers 10 and 8 into the 10-noom and 8-noom is carried out and visualized. 
Therefore, this treatment-conversion may nurture the development of relational understanding of the 
number 18. This treatment-conversion may thus constitute an affordance in the student’s learning 
process. 

To proceed with the calculation, the student has to press the 10-noom and the 8-noom using a finger. 
When this is done, a funnel appears at the left side of the first container, see Figure 2: 

 
Figure 2: The funnel appears when the 10-noom and 8-noom are pressed. Text boxes and arrows are 

added by the authors 

 
1 By “container” we mean one tube with space for ten 1-nooms, as displayed at the bottom of the tool screen in Figure 2. 
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The funnel is automatically positioned at the correct place, namely at the first vacant cell in the first 
container. This informs the student about what to do next, that is, to insert the 10-noom and the 8-
noom into the first container through the funnel. When the 10-noom and the 8-noom are inserted into 
the funnel, ten 1-nooms are fed one by one into the container, and a ‘thumping’ sound is heard as 
each 1-noom is fed into the container, see Figure 3. Then the feeding-process stops, and the remaining 
8-noom is automatically moved to the second container. Using the terminology of Duval (2006), a 
treatment from one 10-noom to ten 1-nooms is carried out and explicitly displayed by the learning 
lab. This may nurture the development of relational understanding of this treatment and may thus 
constitute an affordance in the student’s learning process.  

When the remaining 8-noom is moved to the second container, a funnel automatically appears at the 
first empty cell in the second container, see Figure 3. In this way the student is informed about what 
to do next, namely, to insert the 8-noom into the first vacant cell in the second container. When 
pressing the appeared funnel, the 8-noom is fed into this container in a similar way as the 10-noom 
was fed into the first container. Nevertheless, the two automatic actions may constitute a constraint 
in the student’s learning process. The only thing the student needs to do, is to insert the 10-noom and 
the 8-noom into the funnels. This may be mastered without relational understanding of the 
composition of the number 18. These two automatic actions may thus delimit the development of 
relational understanding. 

 
Figure 3: The remaining 8-noom is moved to the second container and a funnel appears 

The insertion of 6 into the second and the third containers 

To proceed with the calculation 18 + 6, the student needs to press the grey area on the tube once more, 
as when producing the number 18, and write 6 in the empty fields that appear to produce a 6-noom 
(orange). To complete the calculation, the 6-noom has to be decomposed into a 2-noom and a 4-
noom. This decomposition can be carried out either automatically or manually. We begin with 
explaining how this can be done automatically. First, the student has to press the 6-noom. When this 
is done, a funnel with an addition sign automatically appears at the first vacant cell in the second 
container, see Figure 4.  
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Figure 4: A funnel appears in the first vacant cell in the second container 

The positioning of this funnel informs the student to insert the 6-noom into the funnel at the correct 
place, namely, the first vacant cell in the second container. This is indicating that the second container 
should be filled first. When the student moves the 6-noom to the funnel and presses the funnel, the 6-
noom is starting to be fed into the container, but the process stops after the two first 1-nooms are fed 
into the container. Then the second container is full, and the remaining 4-noom (green) and the funnel 
are automatically moved to the first vacant cell in the third container, see Figure 5. Then the student 
has to press this funnel to insert the 4-noom into the third container. 

 
Figure 5: A funnel appears in the first vacant cell in the third container 

In this way the student may notice the decomposition of the 6-noom into one 2-noom and one 4-
noom. According to a Duvalian (2006) stance, this corresponds to a treatment from one 6-noom to 
one 2-noom and one 4-noom. This treatment is explicitly displayed, and this may nurture the 
development of relational understanding of the decomposition of 6 into 2 and 4. This treatment may 
thus constitute an affordance in the student’s learning process. However, the automatic appearances 
of the two funnels at the correct places, may constitute constraints in the student’s learning process. 
The only thing the student needs to do to proceed with the calculation is to feed the nooms into the 
funnels. This may be mastered without relational understanding of the decomposition of 6 into 2 and 
4. The automatic appearances of the two funnels at the correct places may thus delimit the 
development of relational understanding.  

When the student presses the funnel to insert the 4-noom into the third container, the number 24 
automatically appears below the last 1-noom in the third container, see Figure 6. The appearance of 
this number corresponds to a hidden conversion from twenty-four 1-nooms into twenty-four 1s, which 
through a treatment become the number 24. This visualizes that the number 24 consists of two 
containers filled with ten 1-nooms each, and a container filled with four 1-nooms. This visualization 
may nurture the development of relational understanding of the number 24. Thus, the automatic 
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conversion-treatment from twenty-four 1-nooms to the number 24, may constitute an affordance in 
the student’s learning process.  

 
Figure 6: The conversion from twenty-four 1-nooms to the number 24 

The decomposition of the 6-noom into the 2-noom and the 4-noom can also be carried out manually 
by 'slicing’ the 6-noom with the finger. If this ‘slicing’ is done correctly, that is a bit above or below 
the middle of the 6-noom, the 6-noom will be decomposed into a 2-noom and a 4-noom. Then the 2-
noom can be inserted in the second container, and the 4-noom in the third container. This manual 
decomposition may constitute an affordance in the students’ learning process because it may nurture 
the development of relational understanding of the decomposition of 6 into 2 and 4. 

Discussion and conclusion 
Our analyses show that ‘The set line’ may constitute both affordances and constraints with respect to 
students’ learning process. Firstly, we will address the affordances. These relate to how the learning 
lab may nurture the development of relational understanding by utilizing the dynamic potential of 
visualizing the addition process. With respect to conversions (Duval, 2006), the learning lab for 
instance transforms the numbers 10 and 8 into a 10-noom and an 8-noom. With respect to treatments 
(Duval, 2006), the learning lab visualizes transformations within the noom-setting: how the 10-noom 
is made up of ten 1-nooms, and how the 6-noom strategically can be decomposed into a 2-noom and 
a 4-noom in order to utilize the grouping of tens in our number system. Moreover, the learning lab 
visualizes how addition is executed by adding the second addend from where the first addend ends at 
the set line and then reading off the final endpoint. Thus, we claim that ‘The set line’ offers substantial 
affordances when it comes to visualizing basic number concepts and relations.  

In our analyses, we have described operations that are automatically carried out by ‘The set line’. 
These operations may facilitate the learning process because the students are guided regarding what 
to do next. Therefore, it is likely that the students may be able to operate this learning lab with little 
or no support from the teacher. This is an important point because one purpose of the learning labs is 
to enable users to explore mathematical concepts and relations on their own. However, the operations 
that are carried out automatically, may constrain students that would benefit from conducting these 
operations themselves. Moreover, these automatic operations may enable students to solve the tasks 
at hand without having relationally understood these operations. The students may write the numbers 
provided by the tasks without reflecting on the meaning of the numbers, and they may move the 
available noom(s) to the nearby funnel without reflecting on why this should be done and without 
paying attention to the ongoing visualizations. Furthermore, if the decomposition of the 6-noom into 
the 2-noom and 4-noom is carried out automatically, the students may be constrained from deciding 
on how the decomposition of the second addend is to be carried out. The operations that are 
automatically carried out may thus deprive the students of opportunities for learning.  

We want to point out that if ‘The set line’ is used according to the Dragonbox method, the impact of 
the constraints we have described, may be significantly reduced. This method strongly recommends 
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teachers to nurture student reasoning concerning the inherent mathematical content of the learning 
labs and quizzes. The Dragonbox method is explained in the teacher manual, and it is also taught in 
courses for the teachers who use Dragonbox School. Nevertheless, to inform and teach about the 
Dragonbox method do not necessarily prevent students from using the learning labs and quizzes 
without achieving relational understanding.  

Our conclusion is that ‘The set line’ may offer both affordances and constraints in the users’ learning 
process. The students’ outcome is to a great extent dependent on teachers facilitating student 
reasoning about the dynamic representations and the inherent compositions and decompositions (cf. 
Brissiaud, 2016) of the learning lab. Further, empirical research is needed that investigate whether 
the identified affordances and constraints are experienced as such by students who engage with the 
learning labs.  
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In this article, we present an instrumental orchestration for online math education. The case study is 
of a university teacher in a linear algebra course with engineering students in a remote learning 
setting. We used the instrumental orchestration approach as a theoretical framework for planning 
and organizing the artifacts involved in the environment (didactic configuration) and the modalities 
of their implementation (mode of exploitation). The activities were designed using virtual 
manipulators, guided exploration sheets, and video recordings of individual or paired work by the 
students. The results of the observation of five sessions are presented and the orchestrations of a 
pedagogical sequence to introduce the concepts of value and eigenvector are briefly discussed. This 
work suggests new instrumental orchestrations for the teaching of mathematics online. 

Keywords: Instrumental orchestration, linear algebra teaching and learning, university mathematics, 
online course. 

Introduction. 
In March 2020, the World Health Organization declared a global pandemic due to COVID-19 and 
recommended lockdowns and mobility restrictions, forcing educational institutions to migrate from 
their face-to-face teaching model to online education (Engelbrecht et al., 2020). Most institutions had 
to improvise online courses using various digital devices and internet platforms. Although remote 
education has been developing for years in various forms –distance learning, e-learning, and hybrid 
learning– to reach more students (Silverman & Hoyos, 2018), it had not fully permeated most 
educational institutions. Oktaç (2004) reports the implementation of a remote introductory linear 
algebra course in an asynchronous learning environment. Teaching linear algebra online is a 
challenge, as it is one of the first abstract math courses students encounter during their early years in 
college. At ICME13, there was a discussion group on teaching and learning linear algebra, which 
considered the ways a linear algebra course could be adapted to meet the needs of students from other 
disciplines, such as engineering, physics, and computer science. It also reflected on how technology 
should be used in teaching linear algebra (Stewart et al., 2018, p. ix). Gol-Tabaghi and Sinclair (2013) 
studied the geometry of eigenvalues and real eigenvectors of a  matrix using dynamic geometry 
software (DGS), in which by dragging the vector  onto the screen, the vector  moves accordingly. 
They concluded that dynamic geometric representations in the sketch enabled students to understand 
the concepts of eigenvector and eigenvalue by identifying their invariant geometric properties and 
helped them develop dynamic-synthetic-geometric thinking. 

On the other hand, and perhaps in anticipation of the current circumstances, Trouche (2004) 
introduced the notion of instrumental orchestration for planning a lesson, defined as the didactic 
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management of the different artifacts available in the classroom, the organization of space and time, 
and the way the artifacts are connected. 

Theoretical background 
An instrumental orchestration is “the intentional and systematic organization of the various artifacts 
available in a computerized learning environment by the teacher for a given mathematical situation, 
in order to guide students’ instrumental genesis” (Drijvers & Trouche, 2008, p. 377). An instrumental 
orchestration is defined by a didactical configuration and the way in which this configuration is 
exploited. The Sherpa-student orchestration, which involves a student whose computer or calculator 
is displayed to the rest of the class on a projector, was for several years an emblematic didactic 
configuration. For a given configuration, there are several possible operating modes. As an 
instrumental orchestration is partly prepared in advance and partly created "on the spot" during 
teaching, Drijvers and colleagues (2010) add a third level called didactical performance to account 
for the multiple adjustments that the teacher and students may make. Drijvers and colleagues (2010) 
suggest considering the triplets model, a sort of jazz ensemble composed of beginners, advanced 
musicians, and the teacher as a conductor who prepares joint participation, but who is open to the 
pupil’s improvisation and  interpretation, on order to recognize the contributions of each of these 
levels. This metaphor became a reality in our experience because there was no precedent for online 
teaching of linear algebra, so we had to "improvise" ways and methods to teach both the mathematical 
task and the technological tool, for example, the forms of student-student and student-teacher through 
communication through the platform. Drijvers and his colleagues have extended the repertoire of 
instrumental orchestrations to include technical-demo, explain-the-screen, link-screen-board, 
discuss-the-screen, spot-and-show, Sherpa-at-work (Drijvers et al., 2010), board-instruction and 
guide-and-explain (Drijvers et al., 2013). In the first three orchestrations is it mainly the teacher 
leading the communication, while in next three students have more opportunities for participation. In 
the technical-demo orchestration, the teacher explains the basic techniques of a tool in order to 
familiarize students with it. 

In the explain-the-screen orchestration the teacher explains what is happening on the computer screen, 
but unlike the previous one, this orchestration involves mathematical content. Technical-support 
orchestration refers to the process of helping the learner with technical issues with the tool, such as 
software and/or hardware issues. Discuss-the-screen orchestration involves a group discussion about 
what is happening on the computer screen. In the link-screen-board orchestration, the teacher refers 
to the relationship between what the tool displays and the mathematical concept. In spot-and-show 
orchestration, the teacher chooses a student's work before class, either for the student to explain in 
class or for discussion with the whole class. For the Sherpa-at-work orchestration, the teacher asks a 
student (referred to as the Sherpa) to demonstrate or perform a certain process in the technological 
environment (for details, see Drijvers et al., 2013). Thus, our research question is: What instrumental 
orchestrations are applied by a university professor using technology to teach the concept of 
eigenvalue and eigenvector in a distance education setting? 
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Method 
The study was developed under a design-based research methodology, which consists of three 
research phases: preparation and design, teaching experiment and, retrospective analysis (Bakker, 
2018). A first research cycle (Orozco-Santiago, 2020) was carried out in face-to-face teaching. For 
the design of our task sequence, we used a hypothetical learning trajectory (Simon, 1995) but, due to 
the global public health emergency caused by COVID-19, circumstances compelled them to use the 
Zoom platform for the first time for online teaching. However, the teacher has extensive experience 
in the use of digital resources. The trajectory consists of seven activities. During the second cycle of 
research, the teaching experiment was carried out with a small group of ten students (6 women and 4 
men) in their second year of engineering studies at a Mexican public university, over a period of two 
weeks. When designing the didactic path of our work, we were able to detect a priori the use of the 
following orchestrations for the teacher (Figure 1), and each activity for the pupils was accompanied 
by a didactic interactive virtual environment (DIVE) and a guided exploration sheet. 

 
Figure 1: Orchestration suggestions for teachers 

The design of a configuration depends on the technological environment (Figure 2), and in this case 
the students had laptops or mobile devices (smartphones, tablets). However, the hardware and 
conditions available to them for remote study were less than ideal. Internet connections were quite 
weak, there was noise at home and outside, and due to pandemic conditions, students were prone to 
stress. Most students could not use their cameras or microphones during courses because these require 
more bandwidth, which many did not have. In the course, the following topics had already been 
taught: matrices, systems of linear equations, vector spaces, linear combination, linear independence, 
and linear transformations. The participants had not previously studied the concept of eigenvalue and 
eigenvector. 

Throughout the course, activity data was collected by the following: a) e-mail; b) WhatsApp; c) 
Google Drive; d) the Zoom platform; e) free software for video recording OBS Studio; d) digital 
capture of students' notebooks; e) video recordings of the researcher's classroom activities on Zoom; 
and f) video recording of student work and teamwork, in the DIVE and guided exploration sheets. 
Five of the lectures on the concepts of eigenvalues and eigenvectors were recorded on video. To 
answer the research question, after the end of the teaching experiment, the five video recordings of 
the class were observed and the data analysis presented in this article focused on the identification of 

Proceedings of CERME12 2803



 

 

the orchestrations proposed by Drijvers and colleagues (2013), in the first three video recordings. In 
the video recording of session 1 (S1), 12 different episodes were identified. In S2 19 and in S3, 21. 

 
Figure 2: A remote configuration 

Results 
The instrumental orchestrations reported by Trouche (2004) and Drijvers et al. (2010, 2013), were 
developed within the framework of face-to-face teaching where the teacher and the students are in a 
classroom. But because of lockdown requirements during the pandemic, this teaching experience was 
developed synchronously online, which allowed for the use of some orchestrations and required the 
improvisation of others. For example, the technical-demo orchestration was used for the students to 
familiarize themselves with the Zoom software, offering instructions on how to use meeting control. 

Since in the virtual model, the Work-and-walk-by orchestration was not possible, and we wanted to 
observe the individual instrumental genesis developed by the students and at the same time discuss 
as a group the correctness or not of the answers and the work of each student, the modality that we 
called Student-shared-screen appeared, which allowed the teacher to accomplish the task, it should 
be noted that the name, the peculiarity, and the characteristic of this orchestration are made in the 
analysis after the experiment with the data obtained described in Figures 1 and 2. As this orchestration 
was improvised, when we analyzed the data and using the taxonomy defined by Drijvers and 
colleagues, they mention that the didactic configuration for the Spot-and-show orchestration 
"includes access to the students’ work in the technological environment during lesson preparation" 
and for Sherpa-at-work orchestration, "includes access to the technology and projecting facilities, 
preferably access to student work" (2013, p. 999), but to implement access to the pupil's screen, it is 
necessary to ask the student's permission. Not having found an orchestration for this type of activity 
which we believe is important in online education, we call it the new Student-shared-screen 
orchestration, which consists of a didactic configuration in which the student allows the whole class 
to access his work on his computer screen. As an exploitation mode, the teacher asks the student to 
share his screen and discuss his work with the whole group. As can be seen, this is an orchestration 
prior to Sherpa-at-work and spot-and-show. 
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To simulate chalk, the teacher chose to use the Zoom Annotation tool and use a blank PowerPoint 
slide or a DIVE as a whiteboard, on which the teacher and students could write in order to present, 
explain and solve the exercises. We will call this the Share-board orchestration, and it is a recurring 
didactical configuration very similar to traditional classroom teaching (see Figure 3). 

 
Figure 3: a) PowerPoint and b) DGE, both used as a whiteboard 

In the third task, students had to drag two vectors onto  in the DGS and observe their relationship 
to the columns of a  matrix. The teacher identified an inappropriate response from the video 
recordings: some students did not drag the vectors, but directly changed the values of the matrix in 
the algebraic view. Through to the student-share-screen and spot-and-show orchestration, the teacher 
decides to ask the student to explain to the whole class how he modified the matrix, 

Teacher: The coordinates of the vector a: what relation does it have with the matrix ? 
Student1: None. 
Teacher: When you drag vector a1, what happens to matrix ? 
Student1: Nothing happens to it. 
Student2: Changes the values a11 and a22 of the matrix [this answer is provided by the chat]. 
Student3: The values in the first column change. 

Students who did not drag the vectors and directly modified the values of the matrix failed to identify 
the relationship between the vectors and the columns of matrix . This didactical performance was 
observed thanks to the design of the DGS. 

For the fourth task, the teacher used the explain-the-screen and share-board orchestration, using the 
work of one of the students as a mode of exploitation. The selected student's work was the criteria for 
the first work to be uploaded to Google Drive (see Figure 4). 

 
Figure 4: Search for collinearity of the u-vectors and the Au-vector 
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Thomas and Stewart (2011) point out that textbooks show , then , but do not 
explain that it is  is a matrix and not a scalar. Using the board-instruction-tech orchestration, 
the teacher explains how the equation  is transformed into  with student 
participation (see Figure 3a). In another activity, the teacher began with explain-the-screen 
orchestration, providing students with a DIVE that was not considered in the learning trajectory. After 
having carried out the calculation of the eigenvalues and the eigenvectors on the screen, the teacher 
explained to the students that in the CAS view of the DGS, they could observe step by step the 
calculation of the characteristic polynomial, of the roots of the characteristic polynomial 
(eigenvalues), and the solution of the equation  for each of the eigenvalues (if they 
exist). After each line of the CAS was explained, a didactical performance was presented. Here the 
students commented that on their computers, the IME given did not work like the one the teacher 
presented, and the CAS did not recognize the same commands as those of the teacher (see Figure 5a). 
Using student-shared-screen orchestration, a student split his screen to perform and follow the 
teacher's instructions, and the student's computer screen froze. The teacher had to ask another student 
to share his screen. To solve the command problem, the teacher was able to use his technological 
knowledge to search the GeoGebra Wiki and find another command which made the DIVE work 
correctly on the students' computers (see Figure 5b). 

 
Figure 5: Calculation of eigenvalues and eigenvectors in the CAS view of the DGE 

Discussion 
For the student-share-screen orchestration, a didactical configuration for this orchestration is the 
sharing of the videoconference screen by a student, which allows the students to follow the discussion, 
using Sherpa-at-work or spot-and-show. As an exploitation mode, the teacher can ask the Sherpa-
student to explain her work, or he can ask questions and ask the student-Sherpa to perform specific 
actions. In our case, when a student wanted to share their paper-and-pencil work, there were several 
exploitation modes. 1) A student with a weak internet connection could take a photo of their notebook 
using their smartphone, upload it to the WhatsApp group, their cloud folder, or conference chat, so 
that the teacher or another classmate could download and project their work while they explained it. 
This way we can define this orchestration as Shared-resource. But because of the weak internet 
connection, the gestures of the teacher and the students were overlooked. 
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The videoconferencing platform used allows for the creation of small work teams (Breakout Rooms) 
assigned either randomly using the app, or by the teacher. It also allows the teacher to move among 
the teams to observe their work and, on the same platform, the students in each teams can ask for help 
from the teacher (Ask for Help). A downside to this option is that if multiple teams ask for help with 
the same issue, only members of the team visited by the teacher will be able to hear and see the 
discussion. 

Conclusion 
Supporting mathematics teachers in their efforts to integrate technology into their teaching practice 
remains a challenge for the mathematics education community (Trouche, 2018). We believe that 
teachers need basic skills and knowledge in the use of technologies so that they can support their 
students' learning in these online environments. 

Returning to our research question: What instrumental orchestrations are applied by a university 
professor using technology to teach the concept of eigenvalue and eigenvector in a distance education 
setting? As technology evolves, existing types of instrumental orchestrations (Drijvers et al., 2010, 
2013; Trouche, 2004) need to be re-examined to determine how they might be modified and 
expanded. We examine the teaching practice of a university engineering professor during the onset 
of the COVID-19 pandemic through online education, using the theoretical framework of 
instrumental orchestration. Students contributed through video recordings of their work and ideas, 
which allowed the teacher to access this work and decide between Sherpa-student or spot-and-show 
orchestrations from this work. Some orchestrations from traditional education were also observed. In 
this observation, we identified four new types of instrumental orchestration: student-share-screen, 
share-board, board-instruction-tech and shared-resource. 

In this course, being able to observe the personal development on paper-and-pencil by the whole class 
made the students more willing to share their incomplete attempts at problem-solving. 
Videoconferencing technologies offer means of communication that raise new questions regarding 
the organization of lessons. The pandemic has raised new questions about synchronous teaching: the 
use of computer screens and webcams instead of blackboards, the ability to carry out multiple 
activities such as Chat watching, student participation by raising their hand, muting and unmuting the 
microphone, solving technical problems on the fly. The activities developed in this study can be 
implemented in face-to-face classes, encouraging autonomous and collaborative work, and installed 
on a freely accessible server where students can learn at their own pace. 

The role of the smartphone as a computer has changed the way we can experience mathematics 
(Borba, 2021). We believe that the impact of the pandemic has changed the traditional way of 
teaching and learning, which, together with the ever-increasing demand for study and the limitations 
of institutions, makes hybrid distance learning a necessity. It is, therefore, necessary to carry out 
studies on the design and implementation of educational software on digital devices and, of course, 
new orchestrations. 
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This paper focuses on the use of auditory learning material as specialized language support in 
elementary classroom practice. Radio features, with their relevance in everyday life, can serve as a 
natural auditory learning material for children. Thus, we investigated various applications of radio 
resources in teaching practice. The aim of this research is not only to investigate what a profitable 
use of auditory material would look like, but also to investigate the effects of such practice on the 
learning procedure in general and specifically on the development of the school register. First results 
show that auditory media can indeed be effectively implemented in teaching practice as a provided 
linguistic model and reveal just how these effects look like. 
Educational media, aural learning, radio, language acquisition, visualization. 

Cooperation with a Radio Station 
In 2015, the Department of Mathematics Education at the University of Giessen started a project in 
cooperation with a regional radio station hr2 – Hessen Radio for Culture. Within this project, a series 
of radio broadcasts on mathematical topics for the primary school level was developed – calles 
Kinderfunkkolleg Mathematik1, as well as accompanying material for use in elementary classrooms. 
More information about this can be found in the proceedings of CERME11 (Peters, 2019). Based on 
this project, research on innovative classroom practices was started that integrate auditory learning 
material as a central element to find out what a profitable use of such material could look like. 
Furthermore, the effects of auditory media as a specialized language support in mathematics 
education were investigated. In particular, the question was asked how auditory material can stimulate 
the development of the school register as a linguistic model. 

The Potentials of Auditory Media in Mathematics Education 
According to Mayer’s memory model (2009; see also Baddley, 2007), visual and auditory 
information are processed in two different sensory channels. Using auditory media as learning 
material reduces the sensory impressions on the visual channel and focuses the sensory impressions 
on the auditory channel. Hence, the auditory channel becomes more tasked and can be trained more. 
Purposive use of auditory media can supply the listener with repeated and specific auditory input and 
thus foster the processing of information in the auditory channel. Based on this, the Purposive use of 
such media can furthermore foster the development of language (Niehbuhr-Siebert & Ritterfeld, 
2012). Building up on the memory model, the Cognitive Load Theory by Sweller (1994) says that 
the capacities of the working memory are limited and should not be exhausted by extrinsic factors 
like too many animations or reading. Reading difficulties can exhaust the working memory and lead 

                                                
1 www.kinderfunkkolleg-mathematik.de 
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to not understanding mathematical content as well as not being able to solve mathematical tasks. 
Keeping mathematical concerns in the center of learning processes while reducing extrinsic factors 
is one important principle of auditory learning. For this reason, Rink and Walter (2019) are using 
text-to-speech technology (TTS) to support learners with difficulties in the written language while 
solving written tasks. Thus, it can be stated that auditory support can aid children with reading 
difficulties to understand mathematical contents and tasks without the need of having to read 
coherently and extract the meaning. The absence of a visual representation of the subject can be a 
learning potential as well. Children are cognitively challenged to develop their own visual 
representation of what they heard. When working with auditory media of mathematical content, 
students have to develop visual representations of e.g. mathematical concepts, geometrical shapes or 
figures (Peters, 2021). 

In pandemic times, we also made first experiences of using auditory media in distance learning and 
developed accompanying material for homeschooling parents as well as for teachers that needed 
educational material suitable for distance teaching and learning.2 There are a lot of good radio 
resources that can be found online and be used as educational material. So, good auditory learning 
material is very easy-to-access and all it takes for a teacher to get it to his students in distant learning 
is to send them a link. A very easy and useful tool - if implemented intently and well-thought-out i.e. 
if criteria for choosing and using auditory media are considered. Those criteria will be explained 
below. 

Potentials of Auditory Media Concerning Language 
One of the most obvious potentials of auditory media is the development of active listening skills. 
Such competence is a primary requirement for education, but it is seldom supported or even trained 
(Pimm, 1987). Another potential can be described by looking at the Model of Orality and Writtenness 
(Koch & Oesterreicher ,1985). In this model, auditory learning materials can foremost be categorized 
as being medial-oral. If they are designed for children, they are also more likely conceptual-oral 
because they utilize everyday language and explain in a child-orientated and situational manner. Still, 
they use mathematical terms and phrases of educational language. Thus, they are also characterized 
through conceptual-textual elements and – in the right learning environment – can be able to lead 
children from orality into writtenness. At best, this can possibly guide listeners to use mathematical 
terminology in orality as well as in writtenness.  This makes them act in a more conceptual-textual 
way.  

Prediger and Krägeloh (2016) are referring to a model of three registers relevant for mathematical 
learning (everyday register, school register and technical register). School register is an important 
factor for successful learning in mathematics, as it is a shared language basis and helps with 
explaining, describing and justifying (Götze, 2015). However, children do not bring this type of 
language to school with them. It must be learned. Thus, linguistic models are needed to develop 
educational language and to fill terms with representations. These linguistic models are scaffoldings 

                                                
2 https://www.kinderfunkkolleg-mathematik.de/unterrichtsmaterial 
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onto which children can lean (Gibbons, 2002). Here, auditory educational material could be a 
profitable addition.  

Criteria for Choosing and Using Auditory Media  
Exploiting the potentials of any media starts with choosing “good” media. Considering auditory 
media, conditions of success are necessary in order to support an active processing of what has been 
heard and then to achieve an output that is correct in terms of content and language. Thus, criteria for 
student-friendly audio offers must be established as well as methodological notes for good 
embedment in classroom practice. For example, listening to auditory resources should be combined 
with (listening) tasks to support selective and comprehensive listening. Also, opportunities to 
document results should be given. In accordance with the segmenting principle (Mayer, 2009), 
important sequences should be cut and listened to in segments. Those segments can then be repeated 
and talked about to make sure the brief acoustic representations are understood by every student. By 
these means, not only an effective use of auditory media in general but also specialized language 
support can be ensured. 

As there is no visual representation of the subject given by auditory media, verbal explanations in 
such media need to be very accurate. While working with the production team of the radio station, 
the importance of a deep reflection and good structuring of the mathematical content became very 
clear. Verbal explanations in auditory media must also counter the fugacity of spoken language 
through e.g. linear representation, reputation or sound effects. With those criteria kept in mind, 
teachers will firstly be able to choose good auditory media for use in mathematics education. And 
secondly, they will be able to develop teaching concepts in which auditory media serves as transfer 
of mathematical knowledge, as stimulus in the sense of educational reduction and as language support 
for developing the academic register.  

Methodological Approach 
Following these concepts, my research can be focused on the evaluation of the use of auditory media 
for mathematics education in various settings – particularly regarding possible learning effects. Thus, 
my research issues can be stated as follows: 

RQ 1: How can auditory material support mathematical understanding as well as the 
development of school and technical register? 

RQ 2: What could a profitable use of such teaching concepts look like? 
Building on the knowledge base described above, two teaching units consisting of four lessons on the 
topics The House of Quadrilaterals and Probability and Random Experiments were examined. In 
both units, auditory media was used as the central knowledge-imparting medium - the radio features 
Wann ist ein Spiel fair? (When is a game fair?)3 and the radio feature Wer wohnt im Haus der 
Vierecke? (Who lives in the House of Quadrilaterals?)4. The teaching units were carried out in two 

                                                
3 https://www.kinderfunkkolleg-mathematik.de/themen/wann-ist-ein-spiel-fair 

4 https://www.kinderfunkkolleg-mathematik.de/themen/wer-wohnt-im-haus-der-vierecke 
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fourth-grade classrooms. The lessons were videographed, transcribed and categorized using the 
qualitative content analysis according to Mayring (2015). To develop the aspects of interpretation, 
the categories, as near as possible to the material, the procedure of inductive category development 
(Mayring 2015) was used to analyze the data with the software MAXQDA. After formulating a 
criterion of definition based on the theoretical background and the research questions, categories 
could be developed which determined the excerpts of the textual material considered for more 
detailed analysis. In this study those categories are the aspects of mathematical learning as well as 
the aspects of register development (RQ 1). All of the collected data was worked through and 
categories were deduced as well as revised in various steps. The detected categories were reduced to 
main categories and categories relevant to the research issues described above were determined. 
Subsequently, a selection of scenes for the detailed analysis was made from those relevant categories. 
Those scenes were interpreted in detail in the sense of interaction analysis (Krummheuer/ Naujok, 
1999) to examine the specific research subject and to interpret not only the research itself, but also 
the specific situation of investigation – between the interaction partners and within their interaction.  
All of the radio features from the Kinderfunkkolleg Mathematik are of 10-12 minutes length. The 
features are often built around a story line which includes a mathematical problem or situation and 
involve speakers as well as protagonists that use school register and mathematical terms to confront 
children with new terms in a playful way. The overall aim of the units is the development of concepts 
like fairness or the house of the quadrilaterals, while the linguistic aim is the understanding and the 
use of important terms that are presented by the radio feature. Those aims work together: language 
development can help to develop the concept. Working with the auditory media, the classes begin to 
listen to the first parts of the radio features. In class conversation, students repeat the content of what 
was heard and discuss the respective mathematical problem. Then, they imitate experiments or work 
on tasks and problems they heard about in the radio feature. In between those steps, the teachers 
present more parts of the radio feature and a lexical storage  (posters with sentence phrases and 
guidelines for formulations as well as the necessary vocabulary) (Erath et al., 2021) is collectively 
developed based on the content of the radio feature. The units also involve tasks in which the students 
have to transfer their acquired knowledge whilst using the structures of language and reasoning they 
had been offered and trained while working with the radio feature.  

Mathematics Register Acquisition (MRA) 
To evaluate the teaching quality and the effectiveness of the use of radio resources in those teaching 
units, the Model of Mathematics Register Acquisition will be of help (Meaney et al., 2012, p.199). 
The MRA-model is divided into four stages: The first stage is Noticing. In this stage, teachers 
introduce new terms or expressions, use them frequently and then encourage students to using them 
as well. The second stage, Intake, describes the process of understanding. Students start to explore 
and work with the new terms. In the next stage titled Integration, testing, feedback and modification 
takes place. Students have a good understanding of the new term and are responsible for using it, but 
might be supported or reminded of their knowledge by the teacher. In the last stage, Output, there is 
a fluent use of the new terms. Teachers do not need to support, but should provide activities where 
the use of these terms would arise naturally. Auditory media can be of use in the first two stages. It 
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can be used to introduce new terms and to repeat them frequently in the stage Notice and can serve 
as a linguistic model in the stage Intake. 

First Findings 
Initial observations of those interactions showed that students were highly concentrated while 
listening to the radio features. It can also be stated that nearly every student was able to correctly 
repeat the things that have been heard. If anything was unclear, it was easy for the teacher to repeat a 
certain part of the radio feature. This way, auditory material can counteract transitory learning and be 
a relief to the teacher as instructions and knowledge are proportioned between him and the auditory 
learning material. 

The qualitative content analysis led to the identification of twelve categories which could be 
subsumed into three main categories:   

- Mathematical-conceptual aspects  
- Aspects of language acquisition  
- Aspects of media didactics 

Exanimating the relative frequency of occurrence of these categories showed that the aspects of 
language acquisition make up a significant proportion of the collected data. Thus, further in-depth 
examination of this area should be of main interest. On the basis of the quantified data and with a 
view to the research issues, a well-founded selection of transcript excerpts – mostly from this main 
category – was made for a subsequent detailed analysis in order to examine the influence of audio 
media more closely. The interaction analysis (Krummheuer & Naujok, 1999) then enabled a deeper 
insight into individual processes of technical language acquisition. Detailed analysis of interactions 
showed e.g. that the combination of listening, repetition of specific sequences as well as conversations 
and discussions of what was heard were of great support for teachers – especially whilst introducing 
new terms and developing the lexical storage. In terms of scaffolding, auditory materials served as 
linguistic models on which students were able to lean on. Furthermore, it has become evident that 
students demanded the visual level of what is heard (for detailed analysis see Peters, 2020). Although 
sometimes the teacher asked for something written, students developed a visual representation (e.g. 
by drawing) to support the visual work they were already doing in their head. Even if they didn’t 
draw something (for example a geometric shape) they developed a mental representation without the 
help of a given image. This can be illustrated by the following example from the data: 

01 Teacher:  So who remembers what they said in the audio about those special 
quadrilaterals? 

02 Max:  Well, there was the convex quadrilateral where all the corners show to the 
outside… and then concave quadrilaterals… 

03 Teacher:  Can someone help? What about the concave quadrilaterals? 
04 Lea:  There the corners show to the inside… they are like inside the quadrilateral. 
05 Teacher:  Okay… and how can you picture this? 
06 Lea:  They said something like it’s punched inside… 
07 Teacher:  Yes.. Silas? 
08 Silas:  Like an navigation arrow or boomerang. 
09 Teacher:  Great that’s correct. Can someone sketch how a concave quadrilateral could 

look like? Joella? 
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10 Joella: Well… Maybe like the roof of a house but a roof that is a little bit thicker
than normal.

11 Teacher. Can you make a sketch on the blackboard?

After this Joella goes to the blackboard and draws the following sketch:

Figure 1: Joella’s sketch of a concave quadrilateral

So even without ever having been confronted with the concept of convex and concave quadrilaterals 
and even with just the auditory (i.e. verbal) information and no image of such quadrilaterals, Joella 
was able to develop a visual representation of what she heard in the auditory resource. She was 
confronted with only the auditory information and therefore challenged to listen carefully, understand 
the explanation of the geometric shape – in form of technical register – and furthermore to make up
here own visual representation. This cognitive challenge was clearly initiated by the need of 
visualization which emerged from the absence of visualization in the learning material. Thus, it can 
be stated that listening to auditory media without the direct provision of visual support led to a 
development of representations that was initiated by the learner himself.

Considering the language aspect, detailed analysis of interactions show that in the beginning of the 
teaching units most explanations of the students could be considered as a form of everyday register. 
However, during and after working with auditory media there was a visible change towards more 
school and technical register. At the end of both units (e.g. during the final presentations of their 
experiments, work or tasks), students did in fact use new mathematical terms and phrases that were 
introduced by the auditory material. Thus, referring to the MRA model (Meaney et al., 2012), it can 
be stated that there is a development from the first introductory stage Noticing to the second stage 
Intake (the process of understanding) in many of the analyzed sequences. Even the third stage 
Integration (testing and modification through feedback) is reached by many students.

Discussion 
Despite those positive aspects of mathematical language development there are some limitations that 
need to be stated. To reach the stage of fluent Output students would still need more support and a 
longer period of use and training. Here a long-term study would be useful. However, the development 
from stage one to three – from Noticing to Integration – indicates an apparent improvement in the 
students’ mathematical expression and understanding over the course of the units. The offer of 
professional language in (educational) auditory media combined with the absence of visuals, gestures 
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and deictics (unlike YouTube videos etc.) might be a challenge – but a positive challenge – and 
represents an interesting opportunity for the development of mathematical language and thinking. In 
the next step of this study, the use and effects of auditory learning material is to be examined in grades 
two and six to get a broader view on the various aspects of mathematical learning and language 
development in different age groups. 
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Fair games – A case study on a negotiation of meaning on the concept 
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This paper describes a student's negotiation of meaning about the concept of fairness in a 10th grade 
mathematics class. Using the case study approach and the approach of empirical theories, key scenes 
in a learning unit about gambling are examined and knowledge structures are analyzed. A 3D printed 
dice tower plays a special role and is used to reflect on fairness in probability calculation. 

Keywords: Empirical theories, knowledge development process, case study, empirical-oriented 
mathematics classes 

Introduction and motivation. 
Fairness is a much-discussed concept in various contexts. It often seems as if everyone has clear 
beliefs of fairness and "whether something is fair". Fairness for us people have quite different facets 
(Möbius, 2018). So we can say we want everyone to be rewarded equally. Or we can say that the 
person who has done more gets more. But we can also say we want those who have higher needs to 
get more (Möbius, 2018). A frequently made statement is "That is unfair!" and not "That is fair!” But 
how can we decide whether something is fair? Questions of fairness and justice (used synonymously 
in most contexts, e.g. Duden online, 2021) are dealt with by different disciplines. The concept of 
fairness thus has many facets, even beyond a simple mathematical distribution model (Möbius, 2018). 
In mathematics, the concept of fairness plays a crucial role. Looking at the work "An Introduction to 
Probability Theory and Its Applications" by Feller (1968), we can see that a "theory of 'fair' games" 
(Feller, 1968, p. 248) is treated here. Textbooks also address fairness for mathematics education. 
Often we can read: A game is said to be fair if the expected value for winning is 0. The expected 
value seems to be important in connection with fairness. A fair game is often discussed in connection 
with probability calculation. The Common Core for High School: Statistics & Probability. Using 
Probability to Make Decisions also states: "Use probabilities to make fair decisions (e.g., drawing by 
lots, using a random number generator)" (Common Core State Standards Initiative, 2021). This paper 
describes what beliefs of fairness can be analyzed in a student (10th grade of a high school) of our 
case study and what discussion impulses on "fair" and "unfair" can be gained from it. For this goal, 
the teaching unit "A fair game of chance?!" was developed (section: Material and data collection).1 

Theoretical background – empirical-oriented mathematics classes. 
If students acquire mathematical concepts by dealing with empirical objects (visual materials and 
physical objects, e.g., folded and drawn figures) in the constructivist sense, we assume according to 
the approach of empirical theories (Burscheid & Struve, 2020a; 2020b) that they develop a so-called 
empirical belief system (Schoenfeld, 1985). We describe the knowledge of students in empirical 

 
1 We note that parts of the results of this paper have also been published in the German-language volume "Neue 
Perspektiven auf mathematische Lehr-Lernprozesse mit digitalen Medien" by Springer. 
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theories which are constituted by dealing with these empirical. According to studies of Burscheid and 
Struve (2020a) and Witzke (2019), this "'non-abstract' point of view [...] is a reasonable one for the 
developing of mathematical knowledge" (Witzke, 2019, p. 199). Students construct their 
mathematical knowledge by themselves in interaction with their environment. With Hefendehl-
Hebeker (2016) we can state that the concepts and contents of school mathematics have their 
phenomenological sources predominantly in our surrounding reality. For our analysis of the cognitive 
aspects in students' knowledge development processes, the concept of empirical-oriented 
mathematics class is crucial. An empirical-oriented mathematics class builds on, on the approach of 
empirical theories. Empirical-oriented mathematics classes are classes in which the teacher 
intendedly makes decisions to work with empirical objects as the mathematical objects of math 
classes. In mathematics classes, the empirical objects (e.g. dice or drawn figures) do not intend to 
illustrate mathematical concepts that are abstract in nature, but they are rather the subject of the 
lesson, where students acquire their knowledge on (Pielsticker, 2020). Empirical objects that play a 
role in this paper are 3D printed dice towers (Figure 1 and 6) and commercially available dice. Studies 
have shown that the use of 3D printing seems particularly useful for probability. For example, 
Pielsticker and Witzke (2022) argue that with a creation and use of 3D printed manipulated dice, 
profitable negotiation processes on the theoretical concept of probability can be initiated among 
learners. An empirical object such as the 3D printed dice tower described in this article (Figure 1 and 
6) then serves in the classroom as an object of instruction (Pielsticker, 2020). 3D printing as a digital 
tool in a teaching conception of an empirical-oriented mathematics class creates student-oriented 
occasions to exchange ideas about mathematics. Students negotiate mathematics, which means that 
the digital tool 3D printing can be seen as a motor for the further development of student knowledge 
in the classroom. A self-construction of the dice tower in the CAD program in mathematics lessons 
is quite desirable and a crucial part also of the teaching unit "A fair game of chance?!" considered 
here. In this process, the learners negotiate the construction and thus also the functioning of the 3D 
printed dice tower. In the following, a teaching-learning process from a mathematics class that takes 
this conception into account is described.  

Design and methodological decisions. 
Research questions. 

In this paper, we describe the beliefs of fairness that can be analyzed in a student in a 10th grade class 
at a high school. The research of Burscheid and Struve (2020a; 2020b) on questions of fairness of 
games of chance (Burscheid & Struve, 2020b) in historical reference is also guiding for this. There 
are many different games of chance. Often there was agreement on what the ratio of stake to winnings 
had to be in order for the game to be fair. In the "force majoure" problem, however, mathematicians 
pursued different solutions with respect to the question: How is the stake to be distributed fairly? 
Pascal and Fermat propose a solution to this in 1654, which corresponds to the modern probabilistic 
view (Burscheid & Struve, 2020b). Leibniz, knowing the solution of Fermat and Pascal, makes a 
different proposal for division in 1678. For normative problems there are just no right or wrong 
solutions, but only more or less appropriate proposed solutions (Burscheid & Struve, 2020a). In this 
context, probability theory nowadays plays an authoritative role for an assessment of the fairness of 
games of chance. This was not the case before, because probability theory has a root in the theory of 
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the fairness of games of chance (Burscheid & Struve, 2020b). Thus, it is interesting to note that the 
concept of probability, which is fundamental to probability theory, has historically been developed 
within an application-related context: precisely the question of the fairness of games of chance 
(Burscheid & Struve, 2020a). For us, it is interesting to see how the student in our case study deals 
with the concept of fairness in the instructional context of probability. We pursue two research 
questions in this paper: 1. Which beliefs does the student of our case study develop about the concept 
of fairness? 2. To what extent can (students') theories about the concept of fairness be (further) 
developed when dealing with the 3D printed dice tower? 

Material and data collection. 

Data collection for the analysis of knowledge structures was based on student documents created 
before, during and after the implementation of the lesson “A fair game of chance?!”. These include 
worksheets and a questionnaire. Both tasks of the worksheets and the questionnaire are part of the 
data collection and will be analyzed in this paper. The topic was introduced by the students' report 
about their experiences with gambling. Afterwards, there was a worksheet where cheating and fraud 
were discussed. This was intended to create a deeper awareness of the problem. In ancient times, for 
example, the use of a dice tower was considered a guarantee of fairness in dice games. The task of 
constructing a dice tower using 3D printing technology was intended to create an action-oriented 
approach in relation to a game situation. 3D printing is a quite new tool for mathematics education. 
It is an additive manufacturing method which allows digital models constructed with CAD-software 
to be transformed layer by layer into a real model (e.g. out of liquid plastic) (Gibson et al., 2014). 
This technology makes the development as well as the production of empirical objects in a variety of 
mathematical contexts quite easy and thus may facilitate embodied (Tall, 2013) approaches to 
mathematical content. In ancient times, a dice tower was seen as a way to prevent cheating. In the 
learning unit the students designed their dice towers on their own using the CAD software 
Tinkercad™ and 3D printed them out of plastic (Figure 4). To ensure that the tower had the conditions 
required for fair play, common criteria had to be defined within the student groups. In partner work, 
the students discussed the criteria. Subsequently, the students conducted test series with their dice 
towers and calculated the absolute and relative frequencies of their throws. In the worksheet with the 
sentence beginning "For me, fairness is ...", the students of the class summarized their view of the 
concept of fairness once again. 

Methods. 

In our instrumental case study (Stake, 1995), we describe the student Ardelin (a 10th grade student, 
16 years old, name changed) in relation to our two research questions (see section: Research 
questions). „Case studies are undertaken to make the case understandable” (Stake, 1995, p. 85). With 
our case study we need to understand the case in order to understand our two research questions 
(Stake, 1995). We use the case study approach to identify our key scenes in terms of the research 
questions and to process the data material. We use the approach of empirical theories according to 
Burscheid and Struve (2020a) for informal description of the student's knowledge structures. We use 
the following terms (Table 1) as the basis for our analysis in terms of our research questions. 

 

Proceedings of CERME12 2819



Terms Explanation

intended applications The phenomena of reality described and explained by an empirical theory.

empirical objects In this study, empirical objects are understood as items and objects of reality that are 
immediately accessible to students, especially in a tactile or visual way.

theoretical concepts Terms whose meaning can only be clarified by setting up or within a theory and which do 
not have an empirical reference object.

Table 1: Terms of empirical theories for analysis (Pielsticker, 2020; Burscheid & Struve, 2020a)

We use the terms from Table 1 as an analysis tool. In terms of our research concern, this is an informal 
description using the terminology of the empirical theories approach according to Burscheid and 
Struve (2020a).

Analysis and Results.
In order to achieve a deeper understanding of the case, key scenes have been selected, which we 
describe below. In the learning unit, the game of chance – dice game – was considered and knowledge 
about fairness was acquired. The question of when a game is fair should be addressed. In the learning 
unit, a link between ancient and digital tools – the dice tower – was used for this purpose. With 
reference to the construction of an (ancient) 3D printed dice tower (section: Material and data 
collection), the aim was to reflect on fairness. For the case of fair play, we will first discuss the results 
of the student Ardelin. To do this, we will start by looking at the student's answers in the questionnaire 
and then describe her answers on the worksheets. In the questionnaire, Ardelin is asked: "What does 
'fairness' mean to you?". The student states, "That everyone is treated or valued equally, so that 
everyone is equal and no one is favored" (Figure 1).

Figure 1: Answer to 2) from Ardelin in the questionnaire

The student bases her concept of fairness on dealing with people ("everyone" and "no one"). She thus 
refers to (her) fellow players. Ardelin is now asked to relate her concept of fairness to a game. She is 
asked, "When is a game fair for you?". The student states, "when everyone is treated equally and 
everyone gets the same chances and everyone gets the same rules" (Figure 2).

Figure 2: Answer to 3) from Ardelin in the questionnaire

What does “fairness” mean to you?
Fairness to me means that everyone is treated or valued 
equally so that everyone is equal and no one is favored.

When is a game fair for you?
When everyone is treated equally and everyone gets the same 

opportunities and everyone gets the same rules.
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Ardelin sticks to the reference ("everyone"), emphasizing that "everyone gets the same chances" and 
"everyone gets the same rules" (Figure 3). The student thus makes a fair game once to a game context 
in which "the same rules" apply, also she connects a fair game with "equal chances" and finally she 
names the players, "everyone", who should be "treated equally". When Ardelin is asked for her 
opinion in the 4th question of the questionnaire, "Is chance fair? Give reasons for your opinion.", the 
student first makes this point, about the chance of winning a game. "If the chance of winning and 
losing is the same, then it is fair" (Figure 3). At the same time, Ardelin also refers back to the players 
by noting, "It also depends on whether the person knows it's chance."

Figure 3: Answer to 4) from Ardelin in the questionnaire

In her answers, the student thus distinguishes between the game, the people involved (players), and 
the chance of winning the game. At this point, we would like to discuss the results of the student's 
worksheets. Ardelin created a 3D printed dice tower and tried it out in the further course of the 
learning unit (Figure 4). Figure 4 shows the 3D printed cube tower. Ardelin has constructed some 
inclined levels (the student herself writes "steps") inside the cube tower and further a cube tower wall 
to be attached to the rest of the cube tower with tape afterwards. The student explained in the 
classroom situation that she only wanted to tape the cube tower wall because she wanted to control 
how the cube rolled along the inclined planes.

  
Figure 4: Adrelin’s 3D printed dice tower

On her worksheet, the student describes regarding the criteria that should apply to her dice tower, "It 
must be fair" and "It must always be dropped with the “1” from the top and give more of these steps."
The empirical object to which Ardelin refers at this point is the 3D printed dice tower.  For the game 
with the dice tower, special rules should continue to be recorded, such as, "It [the dice] must always 
be dropped with the 1 from the top [into the dice tower]," there must be "more of these steps," which 
should be placed "at even intervals," and ultimately, "nothing should fall out of the sides." Using the 
example of the 3D printed dice tower, as an empirical object, Ardelin argues how it must be designed 
for fair play. To do this, she first states that the game must be fair, and then simultaneously formulates 
what rules must apply. Ardelin also describes her view once again on her worksheet (Figure 5). Here, 
Ardelin describes a "fair chance [...], that is, [...] equal chance" - she probably uses the two 

It depends on how high the chance of winning is. If the chance 
to win and to lose is equal then it is fair. It also depends on 

whether the person knows that it is chance.

What is your opinion? Is coincidence fair? Give reasons for your opinion.
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expressions synonymously - with "equal rules and conditions." She argues this with the help of the 
intentional applications "dice game" and "game of chance: even - odd" - as intentional applications 
of the student theory about games of chance. The dice can be regarded as the empirical object for the 
intended application dice game. Ardelin emphasizes here that "every player should have the same 
die" (Figure 5).

Figure 5: Adrelin’s 3D printed dice tower

In relation to the theory of the fairness of games of chance, the "game of chance: even - odd" is an 
intended application with even and odd numbers as failures of a random experiment. At this point, 
the student gives a counterexample, which she relates either to the intended application of the dice 
game or to another game of chance: "But if you say that one wins with the number 6 and the other 
with the other numbers, the chance is no longer equal and also not fair, because the chance is higher 
not to get a 6". If we assume the intended application of the dice game (where "one wins on the 
number 6 and the other on the other numbers"), the dice can be seen as an empirical object on which 
Ardelin explains her counterexample to "equal chance". It is also clear that she is oriented to the game 
context in her negotiation of meaning regarding the concept of fairness. The intended applications in 
relation to the student's theory of fairness of games of chance are games of chance such as "dice 
game" (with or without 3D printed dice tower) or "even - odd". In this context, Ardelin gives meaning 
to the concept of fairness in the context of gambling. Whether a game is fair is decided for the student 
by this game context, with the associated rules and "prerequisite" (Figure 5), such as, for example, 
that "every player has the same dice" (Figure 5). It should also be mentioned that Ardelin's examples 
probably tacitly assume that each player pays the same stake.

Discussion
1. Which beliefs does the student of our case study develop about the concept of fairness?

We can describe for Ardelin that she behaves as if she developed an empirical beliefs system, an 
empirical theory about the fairness of gambling. In doing so, the student repeatedly uses words like 
"chance" and "equal chance" (Figure 2 & Figure 5), with which a connection to probability theory 
can be assumed. This would not be surprising, because until today (not from the beginning!), 
however, probability theory has remained the authoritative theory for assessing the fairness of games 
of chance (Burscheid & Struve, 2020a). In relation to a fair game, the student – in relation to her 
theory on the fairness of games of chance – can describe the intended applications "dice game" and 
"game of chance: even - odd". Ardelin makes the "same rules and preconditions" (Figure 5), which 
apply to a fair game in the student's sense of the word, on empirical objects such as the 3D printed 

Fairness for me is when there is a fair chance to win. That is, when every player has the same 
chance, and everyone has the same rules and conditions. An example is a dice game. Fair is when 
every player has the same dice and the same chance to win. For example, if the players agree that 
one wins on even numbers and the other wins on odd numbers. Then everyone has the same chance 
to win. But if you say that one wins on the number 6 and the other wins on all other numbers, the 
chance is no longer equal. This is not fair, because the chance is higher not to get a 6.
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dice tower or dice. For a fair game, Ardelin emphasizes that "every player should have the same dice" 
(Figure 5). In her negotiation of the meaning of the concept of fairness, the student orients herself to 
the game context, and she gives her concept of fairness a meaning in this application-related game 
context. Whether a game is fair is determined for the student by this game context, with the associated 
rules and "prerequisite" (Figure 5), such as that "every player has the same dice" (Figure 5). The 
notion of fairness is seen in connection with the expectation value, as for example in Christian 
Huygens, who defines the notion of expectation in terms of fairness as equal expectation prevails in 
a fair game (Gigerenzer & Krüger, 1999). Burscheid and Struve (2020a) also make it clear with 
historical reference that the concept of expected value, which is fundamental for probability theory, 
did not develop within a formal theory, but within an application-related context (Burscheid & Struve, 
2020a). In this context, expected value can be identified and described as a theoretical concept. 
Ardelin decides whether a game is fair along the chance of winning (and the expectation of winning) 
of the players in the game situation. In doing so, the concept of fairness takes on meaning for her in 
this context. 

2. To what extent can (students') theories about the concept of fairness be (further) developed 
when dealing with the 3D printed dice tower? 

Ardelin seems to add the dice tower as a (further) possibility of throwing the dice in her student theory 
about the fairness of gambling. The 3D printed dice tower is not crucial for the student to decide 
whether fair game prevails in a gambling situation (such as the "dice game"). The 3D printed dice 
tower is integrated by the student into her empirical theory as a further dice-rolling possibility and 
thus expands her knowledge of dice-rolling possibilities. The notion of fairness can be identified as 
an epistemological obstacle (Sierpinska, 1992) in probability theory and in connection with expected 
value (in relation to our case study). Here, parallels to the historical development of probability theory 
can also be identified on an epistemological level, in line with the remarks of Burscheid and Struve 
(2020b). With a development of meaning of the concept of fairness, as a theoretical concept in relation 
to a (school) theory of probability, special challenges are therefore associated in mathematics 
education. In the practical application (of probability theory in schools), time should not only be given 
for the development of the meaning of the concept of fairness, but it should also be addressed in game 
situations, e.g. in the sense of fair play and fair game. This impulse should also be followed up in 
further research and it should be considered whether and how both theories of fair game and fair 
behavior of persons in gambling are related. 
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In this study, we investigate how students undertaking an elective programming course experience 
the connection between programming and mathematics. Based on stimulated recall interviews with 
six Grade 8 students who have solved test items from PISA 2003, we identify various experiences 
among the students regarding how they draw on programming skills in mathematics and vice versa. 
We propose that three findings, in particular, are worthy of further discussion and investigation: the 
way some experience programming as a context for mathematics and mathematics as a context for 
programming; the challenges that follow from how some students assert that programming and 
mathematics complement each other while others struggle to see a connection; and, perhaps the most 
important, the way in which the students report that experiences from programming have equipped 
them with skills such as being systematic and exact, which they find they need in mathematics. 

Keywords: mathematics education, problem solving, computational thinking, programming 

Introduction 

After recognising computational thinking (CT) as a vital 21st century skill (Bocconi et al., 2018), 
several countries have recently introduced CT to their curricula, either as a separate programming 
subject or as part of existing subjects. In Norway, CT is introduced in mathematics across grades 
(Directorate of Education, 2020), adding to being an elective programming subject in lower 
secondary school (Grades 8–10, ages 12–16). In the new Norwegian curricula, after Grade 4 in 
primary school, CT is exclusively addressed and talked about as programming. In programming, CT 
entails the ability to develop programmes to perform different algorithms and is considered a 
systematic description of how to solve a problem using a specific approach (Kaufmann & Stenseth, 
2021, p. 1030). 

As several studies have asserted that programming can induce improved understanding in 
mathematics (Moreno León et al., 2016), and even more precise – improved problem-solving skills 
in mathematics (Husain et al., 2017; Sinclair & Patterson, 2018) – it is easy to understand why many 
European countries introduce programming in mathematics (Balanskat & Engelhardt, 2015). 
However, Kaufmann and Stenseth (2021) warned against assuming that the programming's effect on 
problem solving is automatic. Exploring these findings while considering Kaufmann and Stenseth's 
(2021) warning, we seek to better understand whether those students undertaking an elective 
programming course in lower secondary school can communicate how mathematics and 
programming are interrelated. Hence, we give students a voice in the matter. It is imperative that the 
students themselves experience this connection. Hence, we ask the following research question: How 
and to what extent do students undertaking an elective programming course experience a connection 
between programming and mathematics?  
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Theoretical Framework  
To investigate the interplay between programming and mathematics, we turned to Kilhamn et al. 
(2021) and Elicer and Tamborg (2021). Kilhamn et al. (2021) investigated the relationship between 
mathematics and programming in 32 mathematics lessons and found four 'categories' of relationships: 
only programming (lessons only focusing on programming); mathematics as context for 
programming (lessons where no new mathematical concepts are used, but programming can be used 
to repeat or confirm mathematical knowledge); programming as a computational tool in mathematics 
(lessons that clearly have mathematical content, and programming is used to carry out calculations 
efficiently); and programming as a tool for exploring mathematical concepts (lessons where 
programming is used to explore mathematical concepts and relations, where programming adds new 
insights and develops one's mathematical competence). Similarly, Elicer and Tamborg (2021) 
analysed activities from the Danish 'Texforsøget' and described the role of mathematics and what 
they refer to as programming and computational thinking (PCT) in different activities. They found 
six categories, where the first two are no mathematics involved and no PCT involved, implying either 
no mathematics or no PCT involved in the tasks, and that the focus of the task is either purely 
mathematical or purely programming. The two following categories, mathematics as a context and 
PCT as a context, are categories where mathematical concepts are explored using PCT operations or 
where PCT concepts are explored using mathematical operations. The next category is conceptual 
integration, which are tasks that are "not solved with mathematical or PCT actions but involve 
concepts in both math and PCT" (Elicer & Tamborg, 2021, p. 5). The last category is operational 
integration, where "mathematical and PCT competencies are interdependent" (Elicer & Tamborg, 
2021, p. 6).  

While exploring what these two studies revealed on the relationship between programming and 
mathematics, both at the level of a lesson and at the level of the tasks given, we sought to see how a 
discussion around some problem-solving tasks can work as a starting point for investigating how 
students see the relationship between programming and mathematics. Problem-solving tasks were a 
natural point of departure, as research seems to unanimously assert that problem solving is the most 
obvious overlap between mathematics and programming. For instance, in pursuing the definition of 
CT for mathematics and science classrooms, Weintrop et al. (2016) proposed a taxonomy comprising 
four practices, one of which focuses on computational problem-solving practices. In this practice, 
Weintrop et al. (2016) identified problem solving as a central practice for developing CT in 
mathematics (and science), which sometimes takes the form of conventional programming (p. 138). 
This made us take a set of mathematics problem-solving tasks as our point of departure when 
interviewing students on how and if they see a connection between programming and mathematics.  

Methods 
In Norway, students choose one elective subject in each of their three years in lower secondary school. 
This study used data collected from a larger project, where all participants (N = 247) completed a test 
comprising five different problem-solving tasks from the PISA 2003 test (these were the tasks on the 
library system, course design, transit system, irrigation and energy needs; see Faculty of Educational 
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Sciences UiO [2003] for details). Due to how the library system task was mentioned and discussed 
in most interviews, we give a brief account of it here to inform the reader:  

The task starts by giving a flowchart that shows a library lending system: If you are a teacher (yes), 
you are allowed to lend books for 28 days; if you are not (no), you are allowed to lend books for 
7 days. Based on this system, the students are asked to build more complicated flowcharts.  

Participants selected for this subproject are six Grade 8 students (ages 13–14) who chose 
programming as their elective subject (hereafter referred to as the elective programming course). The 
participants (five girls, one boy) came from four different schools (a mix of city-centre and rural 
schools) in four different counties in the western and southern parts of Norway and were chosen for 
interviews based on a) their choice of elective, b) their answers on the initial test, and c) how their 
methods on the initial test stand out from the rest of the students. Also, they were selected to ensure 
distribution across schools. The names presented later in the Results section are fictional.  

Each of the six participants was interviewed by the first author of this paper on the same day as they 
had completed the initial PISA-2003-based test. The semi-structured interviews lasted for about 15 
minutes (between 11–28 minutes) and were recorded. The overall intention of the semi-structured 
interviews was to explore the students' accounts of their solutions and to see if there were any cross-
references between their experiences in mathematics and the elective programming course. The first 
author used stimulated recall when asking questions about what knowledge they drew on when 
solving the five selected problems. Additionally, the participants were asked if they had examples of 
when they had drawn on knowledge learned in their elective programming course in their 
mathematics class and vice versa.  

The interviews were transcribed in full in their original language (Norwegian) and analysed in two 
steps. Step one involved a process of consistent coding (Mason, 2017) that entailed reading and re-
reading the transcript to identify if and how the interviewees related programming and mathematics 
and their accounts of how they drew on their programming knowledge in mathematics and vice versa. 
Step two was to identify the central experiences and understanding of the students, which led to two 
main categories in the results: programming in mathematics and mathematics in programming. These 
two categories also build on the categories where mathematics is the context for programming and 
programming is the context for mathematics from Kilhamn et al. (2021) and Elicer and Tamborg 
(2021).  

Results 
This results section comprises two parts. In the first part, we will consider how the 8th grade students 
saw the possibility of using methods, knowledge and skills from their elective programming course 
when solving problems in mathematics, while in the second part, we will focus on how students used 
methods, knowledge and skills from mathematics in their elective programming course.  

Drawing on Elective Programming Skills in Mathematics 

When talking about the library system task, three of the students explained how they recognised the 
need to use a flowchart, which they had been introduced to in their programming elective course. 
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Peter immediately recognised the flowchart and explained how he had used it as part of his 
programming process:  

I recognised this one immediately [points at the flowchart] because we have had many flowcharts 
in the elective programming course when making programmes in different programming 
languages. The first thing we have to do is make pseudocodes and flowcharts. 

We see how Peter drew on knowledge from his programming elective course when solving the 
Library system task. This also applies to two other students, Andy and Nick, who recognised the 
flowcharts as a method from the elective programming course.  

While the section above provides examples of how students draw on methods from their 
programming elective course when solving problems in mathematics, we also found that the 
programming elective course provided the students with a new vocabulary that came in handy in their 
mathematical problem solving. During interviews, the students revealed how they tended to use 
programming concepts to solve and explain how they solved the library system task. Nick and 
Michael used TRUE/FALSE statements or IF-ELSE statements to explain how they solved the library 
system task and related this problem to earlier experiences:  

(…) is it a magazine? If yes, seven days. If no, go to the next step. If you do not return books or 
magazines, then you are not eligible to borrow (…) (Nick)  

Peter, however, described how he solved other problems during regular mathematics classes using 
the programming concept variable and loops:  

One time, I developed a programme in Trinket or Python. Then I used a counting variable. I got a 
task where I could use the counting variable to solve it. This is a formula I can use in the 
programme because I have learnt to calculate this way using variables and 'x in range' [a command 
for loops in Python]. 

The third finding is connected to how the students identified whether or how the elective 
programming course changed their mathematics problem-solving approach. Due to how they had 
learnt to work in the elective programming course, Robbie revealed that he made more use of diverse 
strategies and focused more on finding multiple solutions to mathematical problems, and both Nick 
and Peter said they saw themselves as working more systematically when solving mathematical 
problems. Adding to this, Nick talked about how he felt more accurate in solving mathematical 
problems since this is vital in the elective programming course: 

My mathematical view has become slightly more systematic. (…) In programming, one must be 
more exact to make a programme work.  

Overall, these findings indicate that students acquire general skills through the elective programming 
course that they see as positive for their mathematical problem solving. Andy even highlighted that 
he sees a clear connection between programming and mathematics – he sees that both subjects are 
about solving problems: 
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Programming is much about solving different problems in a code, and some of the tasks in 
mathematics are about the same: solving a problem. 

However, some students did not see a connection between the elective programming course and 
mathematics. Nora, like Michael, claimed that there is no connection between programming and 
mathematics, adding that there is much she has not understood in the elective programming course. 
As she finds the elective programming course challenging, kind of softenings her statement on the 
disconnect. When asked if the elective programming course had affected him in mathematics, 
Michael put it like this:  

That is a good question; I do not think so since programming does not involve, or it involves 
numbers, of course, but I am not sure if it is under [has to do with] mathematics. (…) It is not 
addition or subtraction (…)  

Adding to this and despite his vague idea that the elective programming course might have changed 
his mathematical competency, Robbie revealed that he had never experienced any programming in 
mathematics and therefore saw no apparent connection. However, he said that one must know 
mathematics to programme, which we will return to in the second part of the results, which we turn 
to now.  

Drawing on Mathematics Skills in the Elective Programming Course 

Our data revealed three ways in which the students reported how they drew on mathematics skills in 
their elective programming course. The first entails how they report on the use of mathematical 
concepts in programming tasks, such as figure numbers and geometry. Five of the students had 
experience with mathematics in programming, one of which is Nora. She explained that she had 
experienced using rotation and angles when programming how to make different figures move. 
Likewise, Peter connected experiences from algebra to the concept of variables in the elective 
programming course:  

There is much mathematics in programming because there is much algebra in programming. One 
uses many variables to make calculations, and that is almost the same as in algebra.  

The second entails that students report on how they find their experiences of using different digital 
tools in mathematics to better understand what is going on in the elective programming course. Andy 
described an experience with GeoGebra, where he talked about making and using different functions 
to solve problems in mathematics. Similarly, Nick drew on an experience of using Excel and claimed 
this to be programming when he was asked if he used programming to solve mathematical problems: 
"Excel is technically programming". Both Andy's and Nick's experiences come from well-known 
computational tools in mathematics, and they reported that their experiences with those tools can help 
them in the elective programming course.  

Third, our analysis shows that all the students, in one way or another, agreed that one needs to 
understand mathematics to programme. For example, Robbie, who mentioned the four arithmetic 
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operations earlier, used arithmetic to argue that one needs to know them to develop a programme. 
Nick adds to this, saying "… one has to know much mathematics to programme properly". From this, 
we can see that Nick sees how mathematics plays a role in the elective programming course.  

Discussion 
In answering the research question – How and to what extent do students undertaking an elective 
programming course experience a connection between programming and mathematics? – we decided 
to investigate how students tend to draw on programming in mathematics, and vice versa. Due to 
how, for instance, Weintrop et al. (2016) identified problem solving as a central practice for 
developing CT (and conventional programming) in mathematics, we decided to use the students' 
solutions on a set of five PISA 2003 problem-solving tasks for knowing their thoughts on the 
connection between programming and mathematics.  

Our analysis resulted in three main findings, where the first two confirm, and considerably elaborate 
on, the findings of Kilhamn et al. (2021) and Elicer and Tamborg (2021). First, we saw that our 
students reported programming as a context for mathematics and mathematics as a context for 
programming. This became apparent in how some students argued that one needs to know 
mathematics to programme, and conversely, in how they revealed that they had experienced 
programming in mathematics. Andy, for instance, saw problem solving as a potential connection 
between programming and mathematics. We believe that this result argues for a potentially fruitful 
integration between mathematics and programming. 

Second, we found differences in how the students talked about and experienced the relationship 
between mathematics and programming. If we lend the vocabulary of Kilhamn et al. (2021), we can 
say that some students tended to talk about how programming can work as a computational tool in 
mathematics. Peter, for instance, explained how he uses concepts from programming to solve 
problems in mathematics. Moreover, he asserted that programming tools made him approach and 
view mathematics differently. Robie added to this picture when revealing how he saw programming 
helping him find multiple solutions to a given problem. This adds insight into Kilhamn et al.'s (2021) 
category of "programming as a tool for exploring mathematical concepts", where they propose that 
programming can be used to explore mathematical concepts and add new insights. However, there 
are students, Nora and Michael in particular, who experienced the elective programming course and 
mathematics as two different subjects. We see how this adds insight into the categories of Elicer and 
Tamborg (2021) in the way Nora and Michael's experiences seem to reflect an understanding of "no 
PCT in mathematics" and "no mathematics in PCT". Hence, we see how some students enhance their 
understanding of mathematics when engaging in programming activities, while others struggle to see 
how they can leverage programming in mathematics and vice versa.  

Our third finding adds to the "categories of interplay" between programming and mathematics set 
forward by Kilhamn et al. (2021) and Elicer and Tamborg (2021). Both Nick and Peter stated that the 
elective programming course provided them with new skills. They emphasised that their experiences 
with programming had made them see the added value of being systematic and accurate in 
mathematics. We propose that this is a new category, and more research is needed to elaborate on it.  
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Concluding Remarks 
This paper contributes to the ongoing discussion on how (and if?) programming and mathematics 
should be integrated in an educational context. We report on the experiences and views of the 
students, which, in sum, speak for an integration of the two. In addition, we assert, that by comparing 
our results with those of Kilhamn et al. (2021) and Elicer and Tamborg (2021), we strengthen their 
findings regarding how we see that the students' utterances confirm most of their categories of 
interplay.  
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Augmented reality (AR) combines reality with computer-generated representations in real time 
(Milgram & Kishino, 1994). Both are simultaneously present or continuously merged (Azuma, et al., 
2001). Instead of replacing a real situation, e.g. by modelling with dynamic geometry software, AR 
supplements the real situation with objects or information (Avanitis et al., 2007; Martin-Gutierrez et 
al., 2010). Therefore, merging reality with additional objects is a unique way to make things tangible 
without switching to an artificial environment. 

From a technical point of view, AR enables the mathematical situation to be represented in the 
familiar 3-dimensional environment around us and allows the user to navigate within this familiar 
situation in order to explore it. On a cognitive level, the theory of embodied cognition plays a role, 
which describes the mutual influence of physical interaction and human thinking (Tran et al., 2017). 
Through AR, learners can physically explore a mathematical situation given by a task instead of 
having to imagine it. Thus, it can be assumed that physical exploration reduces the "cognitive load", 
a measure of cognitive capacity, so that greater cognitive capacities are available to solve the task.  

The AR smartphone app “MalAR” 
The aim of the project MalAR (transl.: AR-supported mathematics learning) is to research the 
potential of AR-supported instruction on learning analytic geometry. In a first phase of the project, 
an AR smartphone app was developed, which is based on the needs of the learners and on the content 
of analytical geometry. 

Due to the complex three-dimensional representations in analytic geometry, physical representations 
play a subordinate role. This favours a technical and not very descriptive view of these contents 
(Borneleitet al., 2001). In order to overcome this bias, Filler (2007) suggests a more experiential 
approach that involves visual perception. The developed AR smartphone app allows learners to place 
mathematical notions of analytic geometry such as planes (in parameter, coordinate and normal 
form), straight lines and points into a coordinate system that is embedded in their surrounding reality. 
The latter is a real novelty compared to other visualisation possibilities with e.g. dynamic geometry 
software. The input of mathematical objects can be done following the notation learners know from 
school, so that the barrier of input language, which is a problem with many current AR applications, 
is overcome. With the AR smartphone app MalAR, learners are able to physically explore the given 
mathematical situation as well as to evaluate their result in the context of the given situation. 

Figure 1 (left) shows the AR implementation of the following task in the app. A plane 
 is given. A plane  is sought, which contains point  and is orthogonal to . 
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The learners have the possibility to 
explore the given situation with the help 
of the AR app by entering the 
coordinate shape of the plane and the 
point A in the app and placing them 
together with a coordinate system in 
their environment (Figure 1, left). In 
addition, learners can enter their 
calculated solution for plane  (correct 
solution , purple plane 
in Figure 1, right). The required 
orthogonality as well as the position to 
point A can then be visually verified 
through changing the perspective by 
walking around the situation, i.e. by 
moving one's own body in the room.  

This representation of hitherto only 2-
dimensionally represented 3-dimensional mathematical objects as part of the surrounding reality 
offers the potential to have a decisive influence on spatial perception and the fundamental 
understanding of those mathematical concepts. 
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Figure 1: Implementation of the task in the AR app (left) 
together with the solution (right) 

Proceedings of CERME12 2836



 

 

Near and far transfer in the flipped mathematics classroom: student’s 
evaluation of learning activities 

Jennifer Rothe1 and Silvia Schöneburg-Lehnert2 
1University of Leipzig, Germany; rothe@math.uni-leipzig.de  

2University of Leipzig, Germany; schoeneburg@math.uni-leipzig.de 

In contrast to traditional forms of instruction, flipped learning enables students and teachers to focus 
on consolidating knowledge and fostering a deeper understanding of new mathematical content 
during class time. Both near-transfer problems and far-transfer problems can be the focus of such 
consolidation during a face-to-face lesson. In this study, we examine how students evaluate different 
learning activities in a flipped classroom setting when class time is dedicated to near transfer and 
far transfer, respectively.  Results indicate, for example, a general preference for collaborative work, 
especially during face-to-face lessons that focus on far-transfer. To contextualize the results, we took 
the teacher's perspective into account. It adds a valuable point of view but is not always compatible 
with the students’ perspective.  

Keywords: Flipped classroom, Learning activities, Transfer of Learning.  

Introduction 
Flipping the classroom divides students’ learning into two phases: the homework phase taking place 
before class and the face-to-face in-class phase. During the homework phase, students study new 
content at home, usually with the help of a video (Bishop & Verleger, 2013). Often, such videos focus 
on different forms of direct instruction (Bergmann & Sams, 2012), such as introductory videos, that 
explain new mathematical concepts, or illustrative videos, that present worked examples (Voigt et 
al., 2020). During the in-class phase, face-to-face time can then be used to focus on applying the 
content studied during the homework phase (Love et al., 2013). This can include various tasks and 
activities differing in their cognitive demand and the underlying educational objectives. One criterion 
to characterize different ways of content application in mathematics is the transfer of learning (Tüker, 
2013). More specifically, near transfer and far transfer can be distinguished. Near transfer occurs 
between very similar contexts, whereas far transfer occurs between contexts that seem more remote 
to each other (Perkins & Salomon, 1994).  

Near and far transfer in the flipped classroom  

In a flipped learning environment, near transfer during the in-class phase can refer to tasks and 
activities in this phase being similar to the content of the video, especially worked examples 
previously presented in the video. For instance, in the context of teaching the Pythagorean theorem, 
near transfer occurs when students are given the task to calculate the length of the hypotenuse in a 
right-angled triangle in class after watching a video at home demonstrating such a calculation based 
on a different numerical example. Students can apply the algorithm displayed in the video directly in 
the context of the new task. In contrast, activities and tasks of far transfer in class go beyond the 
context presented in the video. For instance, far transfer occurs when students watch a video 
demonstrating how to apply the Pythagorean theorem to calculate lengths for one type of polyhedron, 
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such as a pyramid, by looking for auxiliary right-angled triangles. In class, they are then asked to 
transfer this more general strategy to new types of polyhedrons, like cuboids, for example. While near 
transfer and far transfer are discussed in theory for designing activities for the in-class phase of a 
flipped classroom (Enfield, 2016), previous research on these forms of transfer in the flipped 
classroom is scarce or focusses on students’ performance, e.g., Harrison et al. (2017). Hence, it has 
been suggested by Lo and Hwang (2018) that future research on course activities for flipped learning 
should also take into account near and far transfer as well as student perceptions of such activities. 
Therefore, we examine student perceptions of flipped learning activities in the context of near transfer 
and far transfer in this study.  

Research Questions 
The study aims to compare students’ evaluations of learning activities in a flipped classroom for 
lessons that focus on near transfer and far transfer of the video content during the in-class time 
(hereafter referred to as near-transfer lessons and far-transfer lessons), respectively. To guide this 
comparison, we pose the following research questions:  

1. How do students evaluate learning activities in the flipped classroom for near-transfer lessons?  
2. How do students evaluate learning activities in the flipped classroom for far-transfer lessons?  
3. How do students’ evaluations of activities in the flipped classroom differ between near-transfer 

lessons and far-transfer lessons? 

Methods 
Participants  

This study was conducted with students of four classes of the 9th grade of two German academic-
track secondary schools (Gymnasium) in June 2021 (N = 79). These are schools granting the highest 
possible secondary school qualification in Germany. Convenience sampling was used to select the 
participants. The classes were taught by two different teachers. Their experiences in teaching 
mathematics in general as well as teaching the classes participating in the study were similar. Neither 
teacher had used the flipped classroom method regularly before this study. However, the teachers 
implemented flipped learning for several individual lessons before the start of the main study under 
the authors’ guidance to accustom the students to the changed requirements in the flipped classroom 
(Lo et al., 2017). According to the teachers, students in all classes were familiar with cooperative 
forms of work, such as working with a partner or in small groups, before the study.  

Design and Procedure 

The students were taught two back-to-back flipped lessons on the Pythagorean theorem. The flipped 
lessons were conducted within a longer lesson sequence on the Pythagorean theorem, i.e., the students 
had prior knowledge of some aspects of the subject matter. However, each flipped lesson introduced 
new learning contents that had not been taught in previous lessons. The instructional material was 
designed and provided by the first author of this paper. During the homework phase of each lesson, 
students worked with an instructional video of nine to twelve minutes. These videos can be classified 
as illustrative videos (Voigt et al., 2020) since they contained worked examples or solutions for 
different problems related to the Pythagorean theorem, e.g., calculating the missing length of a side 
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in a right-angled triangle or calculating the edge lengths of pyramids. Each video was accompanied 
by a short task relating to its content as an incentive for students to prepare for class (Kim et al., 
2014). Completing these tasks, including watching the video, takes an estimated time of 30 minutes. 
The following in-class phase consisted of a face-to-face lesson of 90 minutes. It started with 
comparing students’ solutions to the task related to the video and clarifying problems or questions. 
The remaining time of the lesson was devoted to exercising and consolidation. Here the two flipped 
lessons differed. Students’ tasks for consolidation focused on near-transfer problems in one lesson 
and far-transfer problems in the other lesson. However, both lessons provided differentiated tasks 
according to students’ level of prior knowledge and the opportunity for students to determine the pace 
of working through those tasks themselves. Furthermore, students could decide to work 
collaboratively with a partner or in small groups. For most tasks, students could also opt for working 
on their own if they preferred. During this phase, the teacher acted as a “guide on the side” (King, 
1993), answering questions and providing scaffolding if necessary. At the end of each flipped lesson, 
students completed a survey evaluating the learning activities of the lesson. One teacher taught the 
near-transfer lesson before the far-transfer lesson. In classes of the other teacher, it was vice versa.  

Instruments and Data Analysis 

For the post-class survey, an adapted version of the Student Assessment of their Learning Gains 
(SALG) instrument (Seymour et al., 2000) was used after the near-transfer lesson and again after the 
far-transfer lesson.  Students’ evaluations of how much the learning activities in the flipped classroom 
helped their learning were gathered on a 5-point Likert scale ranging from 1 (no help) to 5 (great 
help). Since this does not constitute an interval scale, non-parametric tests were used for data analysis 
(Rasch et al., 2010). For students who did not engage in certain activities during a lesson, e.g., 
individual work, the option ‘not applicable’ was given in the questionnaire. In total, 75 students 
completed the survey after both flipped lessons. Four students, who only completed one of the two 
surveys, were excluded from the study. To determine whether students’ evaluations for the individual 
activities during the near-transfer lesson and far-transfer lesson themselves differed, we applied the 
Friedman test for comparing multiple dependent samples (Janssen & Laatz, 2017). Since a 
comparison of all evaluated activities would not allow a meaningful interpretation, multiple Friedman 
tests were conducted for groups of related activities, e.g., comparing types of collaborative work. For 
the Friedman test, a post hoc analysis is necessary (Janssen & Laatz, 2017). Therefore, pairwise 
comparisons were conducted within each group using the Bonferroni correction. For further separate 
analysis of activities during the near-transfer lesson and the far-transfer lesson, the correlation 
between students’ evaluation of the individual activities and their level of prior knowledge was 
examined through Spearman’s rank correlation coefficient rs for ordinal data (Janssen & Laatz, 2017). 
For this purpose, students were ranked into three groups according to their level of prior knowledge 
(low, average, and high) based on grade point average. Since students could choose not to do certain 
activities, missing data had to be taken into account. Therefore, a χ2-test for the independence of 
nominal data (Rasch et al., 2010) was conducted to determine whether the decision against a specific 
type of activity depends on the students’ level of prior knowledge for each form of transfer. Another 
χ2-test was conducted to examine whether the decision against a specific type of activity during the 
near-transfer lesson coincides with such a decision in the far-transfer lesson. Finally, differences in 
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students’ evaluations of activities during the near-transfer and the far-transfer lesson were analyzed 
using the Wilcoxon signed-rank test for comparing two dependent samples (Rasch et al., 2010). All 
tests were applied at a significance level of 0.05 using SPSS. To contextualize the results of the 
SALG, we added an open-ended question to the surveys asking students to elaborate and explain their 
assessment. Furthermore, an interview with the teachers was conducted to gather an assessment on 
student learning from an observer perspective. The students’ answers to the open-ended survey 
question and the teachers’ statements were analyzed by the authors applying a thematic coding 
strategy (Kuckartz, 2010). When differences in the analysis occurred, the corresponding segments 
were discussed further until consensus was reached. 

Results 
Evaluation of learning activities for near-transfer lessons  

Table 1 displays the evaluation results of the near-transfer lesson for all activities. The Friedman test 
for the different types of collaborative work, i.e., individual work, partner work, and group work, 
indicates significant differences (χ2 (2, n = 47) = 38.38, p < .001). Post hoc analysis demonstrates that 
individual work was rated as significantly less helpful compared to partner work (z = -4.95, p < .001) 
and group work (z = -3.89, p < .001), respectively. However, the difference between partner work 
and group work evaluations was not statistically significant (z = 1.08, p = .836). Students' statements 
in the open-ended survey question yielded the same results with students describing both partner and 
group work mainly as a possibility to exchange ideas and thus to reach the goal faster. 

Table 1: Evaluation results of individual learning activities for the near- and far-transfer lesson 

 near-transfer lesson far-transfer lesson 
Learning activity n M (SD) Mdn n M (SD) Mdn 

Video-related activities 

Watching the instructional video at home 70 4.00 (0.87) 4.00 71 4.01 (0.80) 4.00 
Completing tasks related to video at home 73 3.41 (1.05) 3.00 66 3.42 (0.96) 3.00 

Comparing results of video-related tasks in class 62 4.02 (0.98) 4.00 71 4.13 (0.97) 4.00 
Types of explanation 

Hearing explanations by the teacher in class 73 4.23 (0.84) 4.00 73 4.22 (0.97) 4.00 

Participating in discussions in class 48 3.40 (1.22) 3.50 60 3.77 (1.06) 3.50 
Hearing other students explain their work in class 51 3.49 (1.07) 4.00 65 3.23 (1.09) 4.00 

Interacting with the teacher in class 65 4.34 (0.76) 4.00 65 4.63 (0.65) 4.00 
Explaining my work to other students in class 47 3.19 (1.23) 3.00 64 3.13 (1.15) 3.00 

Collaborative work 

Participating in group work in class 50 4.04 (0.95) 4.00 72 4.26 (0.89) 4.00 
Participating in partner work in class 67 4.18 (0.82) 4.00 69 4.12 (1.02) 4.00 

Studying on my own 69 3.32 (1.08) 3.00 65 3.08 (1.16) 3.00 
Other 

Working at my own pace 75 4.32 (0.83) 5.00 75 4.39 (0.80) 5.00 
The overall approach to teaching and learning 75 4.15 (0.73) 4.00 74 4.12 (0.78) 4.00 
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For the five different types of explanation (see table 1), the Friedman test also indicates significant 
differences (χ2 (4, n = 37) = 45.59, p < .001). In this case, post-hoc pairwise comparisons revealed 
that interaction with the teacher was evaluated as significantly more helpful than participating in 
discussions (z = -3.01, p = .026), hearing other students explain their work (z = -3.57, p = .004) or 
explaining one’s own work (z = -4.96, p < .001), respectively. Furthermore, hearing explanations 
from the teacher was rated significantly higher than hearing other students explain their work (z = 
2.98, p = .029) or explaining one’s own work (z = 4.38, p < .001). Between other pairings no 
significant differences were found. Using χ2-tests for further examination of missing data, i.e., 
occurrences of the evaluation ‘not applicable’, did not reveal any significant relationships between 
the choice not to partake in a specific learning activity and the students’ level of prior knowledge. 
Furthermore, the application of Spearman’s rank correlation coefficient did not indicate a significant 
correlation of the students’ level of prior knowledge and their evaluation of any learning activities 
during the near-transfer lesson. 

Evaluation of learning activities for far-transfer lessons 

The evaluation results of the far-transfer lesson for all activities are also displayed in table 1. Similar 
to the results for the near-transfer lesson, the Friedman test for the different types of collaborative 
work suggests significant differences (χ2 (2, n = 60) = 49.69, p < .001). Again, post hoc pairwise 
comparisons indicate that individual work was rated significantly lower compared to partner work (z 
= -5.02, p < .001) and group work (z = -5.39, p < .001), whereas the difference between partner work 
and group work was not statistically significant (z = -0.37, p = 1.000). The explanations for this rating 
given in the open-ended survey question do not differ from those for the near-transfer lesson. The 
Friedman test for the five different types of explanation indicates significant differences (χ2 (4, n = 
50) = 84.79, p < .001) during the far-transfer lesson, too. Post hoc analysis is comparable to the near-
transfer lesson revealing that interaction with the teacher was again evaluated significantly higher 
than participating in discussions (z = -3.92, p = .001), hearing other students explain their work (z = 
-6.19, p < .001) or explaining one’s own work (z = -7.18, p < .001), respectively. Once again, hearing 
explanations from the teacher was rated as significantly more helpful than hearing other students 
explain their work (z = 4.05, p = .001) or explaining one’s own work (z = 5.03, p < .001). However, 
unlike during the near-transfer lesson, the activity of participating in discussions was rated as 
significantly more helpful than explaining one’s own work to others (z = 3.26, p = .011). No other 
significant differences were found. As was also the case for the near-transfer lesson, no significant 
relationships were found between students’ level of prior knowledge and their evaluation of any of 
the learning activities of the far-transfer lesson or their choice not to partake in any specific activities 
during this lesson. This result is not consistent with the results gathered during the teacher interview. 
One teacher voiced the opinion that flipped learning as an overall approach is not as suitable for 
students with a low level of prior knowledge. The other teacher expressed the opposite view that 
activities of the homework phase are especially suitable for such students if they exhibit a certain 
level of diligence. 
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Comparison of the near-transfer lesson and the far-transfer lesson 

The Wilcoxon signed-rank tests indicate significant differences in students’ evaluations between both 
lessons only for some of the learning activities. Students’ evaluations rated individual work 
(‘Studying on my own’) during the near-transfer lesson statistically significantly higher than during 
the far-transfer lesson (z = -2.21, p = .027, n = 61). In contrast, group work was rated significantly 
less helpful during the near-transfer lesson than during the far-transfer lesson (z = -3.00, p = .003, n 
= 49). A similar result was found for (individual) interaction with the teacher, which was also rated 
significantly less helpful during near-transfer lessons than during far-transfer lessons (z = -3.05, p = 
.002, n = 62). For certain types of explanations, one-sided hypotheses were formulated. In the case 
of the activity of ‘hearing other students explain their work’, it was assumed that during far-transfer 
lessons, students would be able to produce fewer mathematically correct explanations than during 
near-transfer lessons. Thus, it was expected that the helpfulness of this learning activity would be 
ranked higher during the near-transfer lesson than during the far-transfer lesson. This was confirmed 
by the Wilcoxon signed-rank test (z = -1.83, p = .067, n = 48). Since rank differences occurred in the 
predicted direction, this result can be interpreted as statistically significant in accordance with the 
one-sided hypothesis. For the other learning activities evaluated with the SALG, no significant 
differences between the near-transfer and far-transfer lessons were found. Comparing the occurrence 
of the evaluation ‘not applicable’ for the learning activities during both lessons, the χ2-test revealed a 
significant relationship for the activities of explaining one’s own work to others (χ2 (1, n = 71) = 
10.81, p = 0.001), hearing other students explain their work (χ2 (1, n = 70) = 8.89, p = 0.003) as well 
as interaction with the teacher (χ2 (1, n = 74) = 36.21, p < 0.001) during class. Students who did not 
partake in one of those activities during the near-transfer lesson were also unlikely to partake in the 
same activity during the far-transfer lesson.  

Discussion  
In the previous section, we have examined how students evaluate different learning activities in a 
flipped classroom setting when class time is dedicated to near transfer and far transfer, respectively.  
Most of the results were to be expected, and student comments and teacher interviews largely confirm 
the statistical results. However, the comments and interviews cast an interesting eye on the following 
aspects. As generally expected, partner and group work were both rated significantly more helpful 
than individual work. Also, the significantly higher evaluation of individual work in near-transfer 
lessons in contrast to far-transfer lessons is in line with our expectations, since here tasks and activities 
are similar to the content of the video. In contrast, this is hardly evident from the student comments, 
which focus almost exclusively on the partner and group work. However, this omission can be 
explained by observations of one of the teachers: the students frequently opted for partner or group 
work during the near-transfer lesson, but observing them, one got the impression that everyone 
completed the tasks on their own without any exchange in between them. During the far-transfer 
lesson, the teacher observed a much more vivid exchange during the group work. This comparison 
suggests creating opportunities for individual work phases in near-transfer lessons and offering more 
possibilities for group work in far-transfer lessons, a concept that needs further investigation. 
Nevertheless, the role of the teacher should not be underestimated during individual and collaborative 
work. In both the near-transfer lesson and the far-transfer lesson, students find explanations by their 
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peers to be less helpful than explanations by the teacher. Especially interacting with the teacher, which 
can provide the opportunity to clarify individual problems, seems to be more important during far-
transfer lessons than during near-transfer lessons. This was reflected in students‘ comments in the 
open-ended survey question which consistently emphasized the importance of interacting with others 
during group work, including the teacher.  Another aspect worthy of discussion concerns the level of 
prior knowledge. The teachers assessed the suitability of flipped learning activities differently 
depending on students’ level of prior knowledge. In contrast, the survey results suggest that students’ 
preferences for any of the given types of activities do not correlate with their level of prior knowledge 
neither for near-transfer lessons nor for far-transfer lessons. This can also be seen from analyzing the 
occurrences of the answer ‘not applicable’ in the survey. A students’ choice to not engage in certain 
types of activities at all (like interacting with a teacher) during a lesson cannot be explained by their 
level of prior knowledge in our study. Instead, a comparison of the near- and far-transfer lesson 
suggests that the more likely explanation for not choosing certain activities is that there are students 
who generally communicate less on an individual level with a teacher or other students during lessons. 
This effect seems to be independent of the teaching design. 

Conclusion 
In summary, our results show that students appreciate the possibility to work in groups during the in-
class phase of a flipped classroom, both in near- and far-transfer lessons. The qualitative part of the 
study suggests focusing on individual work during near-transfer and group work during far-transfer 
lessons. A correlation between students’ preference for certain types of activities and their level of 
prior knowledge could not be detected. This could be superimposed by other variables, especially 
aspects of behavioral engagement (Cevikbas & Kaiser, 2021). Traditionally, research on engagement 
in the flipped classroom focuses on the influence of flipped learning on student engagement (Bond, 
2020). We suggest that further research also investigates the reversed case, i.e., the influence of 
student engagement on learning activities in a flipped classroom, particularly video-related activities. 
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Research topic 
What is a wooden cube? In the Kindergarten pedagogy of Friedrich Froebel (1782-1852), children 
and caregivers or teachers are encouraged to playfully transform a cube through storying and actions: 

for example, the cube can be now a table on which something is placed for the child. Again, 
it can be a stool on which the mother places her feet; again, a chair on which she sits with the 
child; again, the hearth on which something is to be cooked. (Froebel, 1895, p.99) 

Similarly in mathematics classrooms children may be encouraged to transform wooden and plastic 
manipulatives, such as interlocking cubes and Cuisenaire rods, into ‘real world’ objects through 
storying and actions. For example, in enacting a word problem, cubes may become oranges or 
cupcakes etc, which are physically gathered by the child. In ‘bar modelling’ these cubes (aka 
‘oranges’ etc) may be lined up in a row to facilitate acoustic counting, and eventually this row may 
be storied as having a ‘length’, then drawn as a rectangular ‘bar’ and labelled with a symbolic number.  

 

Figure 1: Typical bar modelling stages eg 5 oranges as cubes grouped, lined up and drawn as a length 

In my doctoral study I am interested in studying these mathematical transformations, or ‘re-
worldings’, of wooden blocks, through children’s storying and actions, often modelled and endorsed 
by teachers or caregivers, books, videos or apps. To support this research I was keen to explore 
technological tools, such as AI object detection to recognise and record children’s positioning of 
blocks. In collaboration with a software developer, PySource, with seedcorn funding from the Bristol 
Digital Futures Institute, we developed an app in Python which uses artificial neural network (ANN) 
algorithms to recognise the placements of Cuisenaire rods on a tabletop, from a webcam, in near real 
time, and records the data in a spreadsheet for analysis. The rod recognition is triggered when the 
webcam detects no movement, ie when children take their hands away from the tabletop. In addition, 
the app can be programmed to respond to the placing of rods with sound files, such as speaking the 
colour, or length of the rod. It can also tell when two rods are placed end to end, or in parallel, and 
generate simple audible mathematical sentences accordingly, such as “two plus three equals five”.   

The app is still at a prototype stage, the ANN has only been trained on a small sample set of images 
so far, and requires further training and user-testing before it can be used as a reliable experimental 
research tool in the field. We hope as a tool it may eventually support a variety of experiments and 
methodologies. However, for the purposes of testing the app technically with users in a ‘realistic’ 
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experimental scenario, we developed a theoretically ‘light’ methodology to inform task design, based 
on analysis of observed discourse as a highly reductive artificial Wittgensteinian ‘language game’, 
consisting of actions and interwoven language, where the actions are restricted to a child’s placements 
of Cuisenaire rods on a table, and the language is restricted to the app’s utterances, and questions, or 
‘challenges’, posed spontaneously by the researcher, in the form of ‘Can you make it say…?’ 

Method 

 
Figure 2: The app processes a webcam feed of rods placed on a tabletop and ‘speaks’ the lengths 

In a local primary school in southwest England, Year 1 children (aged 5-6), who were not familiar 
with Cuisenaire rods, were invited individually to play a ‘game’ with rods, the app and a researcher, 
where the researcher challenged the children to ‘make it say’ certain numbers or sequences, such as 
the number five, or the two times table, or a sum, by placing rods on the tabletop. The children have 
to infer by experiment the ‘rules’ of which utterance is triggered by the placement of which rod. The 
tabletop block play was video recorded and the dialogue, and images grabbed by the app, analysed. 

Results 

 

Figure 3: At first rods are placed as if ‘fingers’ eg 3 rods for ‘3’, then after experimenting , as lengths  

As an early technical test we do not claim the tool was yet reliable enough for a rigorous experiment, 
with occasionally intermittent detection of some rods. However, on analysis of one 7-minute clip we 
observed an interesting shift in actions – of rod placements – consistent with a shift in inferred ‘rules’ 
from rods as ‘counters’ or ‘fingers’, eg placing 3 rods to (unsuccessfully) ‘make it say 3’, to rods as 
proportional ‘lengths’ eg placing 2, 4, 6, 8, 10 rods to (successfully) ‘make it say the 2 times table’. 
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The aim of the presented study was to measure whether 3D computer and 3D printed models could 
improve students’ performance in testing their spatial ability and what brings the greater benefits. 
This study employed a quasi-experimental approach with a total of 25 secondary school students. 
A pre-test was employed to determine each student’s level of spatial ability, namely the Mental 
Rotations Test. All students were taught the topic of three-dimensional geometry using 3D physical 
printed models, 3D virtual computer models or 2D drawings of 3D objects. A newly designed 3D 
geometry post-test was used in two groups of students - the first group was allowed to manipulate 3D 
printed models, the second group was allowed to use 3D computer models during the test. The group 
with 3D computer models outperformed peers with 3D printed models but a statistically significant 
difference was not found. Afterwards, the same students were tested again using the identical 3D 
geometry test without any visual aids. It was concluded that the 3D computer models provided 
statistically significant higher scores in comparison to the absence of any visual aid. 

Keywords: Spatial ability, 3D printed models, 3D virtual models, geometry. 

Introduction 
Secondary school geometry is traditionally focused on studying geometric relationships in the two-
dimensional space, i.e. planar geometry, and on studying solid geometry, i.e. spatial geometry. To 
study geometry is a big challenge and even if we live in the three-dimensional world it is difficult to 
work with three-dimensional objects especially when they are depicted on two-dimensional display. 
To be successful in the solving geometry problems spatial ability plays the main role. According to 
Lean and Clements (1981), spatial ability is the ability to formulate mental images and to manipulate 
these images in the mind. Very similar definition is provided by Linn & Petersen (1985) that is spatial 
ability generally refers to skill in representing, transforming, generating, and recalling symbolic, 
nonlinguistic information. Sorby (1999) distinguished spatial ability and spatial skills. Spatial ability 
is considered as the innate ability to visualize, whereas spatial skills are learned and acquired through 
training. Anyway, the both terms are very closely related and it is very difficult to distinguish them. 
In compliance with the literature, I will uniformly use the term spatial ability and will not examine 
the way in which the ability was acquired.  

Spatial ability is a very essential part of intelligence and it is proved that continuous training has a 
great effect on its enhancement (Maresch & Posamentier, 2019, p. xv). Many studies undoubtedly 
proved  that  spatial  ability  of  persons  of  different  age  can  be  trained (Maier, 1998). According 
to Sorby & Baartmans (2000) spatial ability can be improved through the targeted engineering 
graphics courses where diverse spatial activities are used ranging from manipulation of concrete 
models to computer visualization activities. Alias et al. (2002) state that spatial ability can be fostered 
trough activities predominantly consisting of free-hand sketching and object manipulation. Spatial 
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ability is important for engineering, design, or other technology disciplines. It has been found to be 
very useful to a students’ success in engineering related subjects as mathematics, engineering 
drawing, or computer-aided design (Alias et al., 2002). Moreover, spatial ability involves our 
mathematical, verbal, and logical capabilities and it is even crucial for our everyday life. We need the 
spatial ability to be able to orient ourselves in the environment, to understand the spatial relations 
among objects, to solve everyday tasks such as packing, moving, and many more. 

The extensive research on spatial ability mainly based on factor analysis studies has resulted in the 
detailed categorization of spatial ability and its factors (Lohman, 1979). However, there was not a 
clear consistent model of different subcomponents of spatial ability. To illustrate this fact, let us 
mention that based on mental processes which are used for solving certain tasks McGee (1979) 
described two major components (factors) of spatial ability – spatial visualization and spatial 
orientation. On the other hand, the classification proposed by Lohman (1979) consists of three basic 
spatial ability factors – spatial relation, spatial orientation, and visualization. Five major factors of 
spatial ability – visualization, spatial relations, closure speed, flexibility of closure, perceptual speed 
were detected by Caroll (1993). Yilmaz (2009) provides a picture of a comprehensive model also 
with some another components of spatial ability. It seems that the number of underlying factors of 
spatial ability varies from study to study. However, visualization, spatial relation, mental rotation, 
and spatial orientation are subcomponents of spatial ability which are nowadays often designated as 
the relevant (Maresch & Posamentier, 2019). I will consider these subcomponents also in my 
research. 

If we need to move or to alter in our mind some parts or the whole mentally presented objects, then 
it is considered as a spatial visualization task. Spatial visualization is the ability to imagine 
manipulating, moving, rotating, twisting, or inverting objects without reference to one’s self. It means 
that the imagined object or its parts are moved or changed in our minds. Spatial relation works with 
the mental comparing of objects and with the identification of object parts which fits together. This 
subcomponent is not completely independent from the visualization subcomponent. The 
subcomponent mental rotation is the ability to imagine rotating a two and three-dimensional object 
or figure. Finally, the factor spatial orientation requires one’s ability to imagine the appearance of an 
object from different perspectives. In other words, the imagined object does not mentally move, it 
remains the same and we mentally move ourselves to different viewpoints. Nowadays, the 
identification and description of the strategies for solving spatial problems emerge as a very 
interesting topic and it is brought into focus of the researchers. The classic research methods on 
factors of spatial ability assume that the spatial ability tasks of some category are solved using the 
same intended strategy. From the literature (Maresch & Posamentier, 2019) and also according to my 
own experiences with students, we know that geometric tasks are solved differently by different 
individuals.  

In my research, I focus on the measurement and improvement of spatial ability of secondary school 
students. On the ground of the study, I include the optimal training and teaching methods into 
mathematics instructions to improve students’ spatial ability. The objective of my research is to 
measure whether the 3D computer models and 3D printed models could improve students’ 
performance in testing their spatial ability. 
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Spatial ability and the use of dynamic geometry and 3D printed models in 
mathematics education 
In the presented research, let us focus on secondary school mathematics, namely on the topic of solid 
geometry. This traditional geometric topic covers the study of two-dimensional and three-
dimensional Euclidean space. It includes the study of properties of and relationships between 
geometrical objects in the plane and in the three-dimensional space. It includes the measurements of 
volumes of various solid figures such as pyramids, prisms, polyhedrons, cylinders, cones, truncated 
cones, or spheres, cross-section of solids, transformations of two- and three-dimensional shapes in 
the plane and the three-dimensional space. Students determine the relative positions between two 
geometrical figures – lines and planes. Very typical tasks of solid geometry are to determine the size 
of an angle formed by two rays, to find the size of a dihedral angle, i.e. the angle between two 
intersecting plane, or to compute the size of an angle between a plane and intersecting straight line. 
Usually students solve such tasks depicted in two dimensional situations; so the proper visualization 
and its correct interpretation are crucial here. In the Czech mathematics textbook, usually the oblique 
projections are used. An oblique projection is a simple type of parallel projection which produces 
two-dimensional images with the specific properties (Carlbom & Paciorek, 1978). It holds that 
parallel lines are projected into parallel lines. If a polyhedron is projected, usually some its face or 
faces are parallel to the image plane (then these faces are projected in true shapes and sizes and are 
not distorted). I insist on working with an arbitrary position of projected solids, i.e. solids can be 
viewed from above from the right, from above from the left, from below from the left, and from 
below from the right. This is usually neglected in mathematics textbooks and only one position of the 
viewpoint is used. 

I use dynamic software GeoGebra in my mathematics instructions. Indisputably, GeoGebra belongs 
among DGS (dynamic geometry systems) which are the most widespread all over the world among 
teachers and students. It is open-source software which is easy to use and understandable even for the 
absolute beginners. According to my experiences, GeoGebra software can be used with a potentially 
positive impact in teaching and learning process especially in such cases where its dynamic features 
can be used. It offers basic functions to model solid figures or more complex three-dimensional 
situations. Moreover, the modeled situation can be arbitrary rotated so it is viewed from different 
viewpoints; so it can substitute the real physical model to a certain extent. 

Although, the computer-aided education is very modern and popular and brings indisputably 
advantages to the process of education, physical object manipulation plays the important role in the 
learning geometry and enhancing spatial ability. Especially action  oriented  training  methods  that  
work  with  real  models  have  always  shown good results in the improvement of spatial ability 
(Maier, 1998). This can be based on the approach of embodied cognition which emphasizes that 
cognition involves a motor behavior (Schneegans & Schöner, 2008).  

In my mathematics instructions related to geometry, I use 3D computer models together with physical 
3D printed models of solid figures and of three-dimensional situations as a visual aid. The properties 
of geometrical objects are demonstrated in my instructions using 3D virtual models and physical 3D 
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printed models or students can use these models as a visual aid when they are solving the geometric 
tasks. 

Methodology 
As has been already pointed out, my aim is to measure students’ success rate in geometric tasks; 
specifically whether and how much the 3D computer models and 3D printed models could improve 
their performance in testing their spatial ability. In order to explicate the effectiveness of visual aids, 
a quasi-experimental approach was chosen. 25 students (one class) in the third grade (17-18 years 
old) of a secondary school (grammar school) in the Czech Republic were involved in the experiment. 
The topic of solid geometry was taught for two months at the end of the school year 2020/2021. 
Partially it was a distance learning (3 weeks) which was caused by the worldwide pandemic situation; 
the rest was standard face-to-face education. All students were taught the topic of three-dimensional 
geometry (solid geometry) using 3D virtual computer models, 3D physical printed models (this visual 
aid was used only at school), or 2D drawings of 3D objects. The teaching method was the same for 
all students in the experiment realized by one teacher. 

Firstly, the students took the Mental Rotations Test as a pre-test to determine their level of spatial 
ability. The students received the test approximately in the middle of the period when the teaching of 
solid geometry was realizing. The Mental Rotations Test is one of the most common instruments for 
measuring spatial ability. The original test was developed by Vandenberg & Kuse (1978) and it 
contains 20 items in five sets of four items. Each item consists of a criterion figure, two correct 
alternatives and two incorrect ones. The alternatives are always shown in a rotated position. Each 
item in the test is counted as correctly answered if both choices are correctly chosen. This eliminates 
the need to correct for guessing. The reliability of the test has been found satisfactory. In a sample of 
3,268 adults and adolescents of age 14 year or older, was .88; in a similar sample of 336 subjects, the 
test-retest correlation was .83 after an interval of one year or more, and in an age corrected sample of 
456 the test-retest reliability after a year or more was .70 (Vandenberg & Kuse, 1978). For the 
purposes of the research, I used a redrawn modified version of the Mental Rotations Test called MRT-
A (Peters et al., 1995) with the official permission from the author Michael Peters. This modified 
version of the test consists of 24 items and the nature of the test is completely the same. The maximum 
score of the test was then 24 points. 

Secondly, the students divided into two coherent groups took a newly designed post-test on solid 
geometry at the end of that two month period. According to the results from the Mental Rotations 
Test, it was shown that the both groups of students were close to equal. The first group of students 
(Group 1, n1=13) was allowed to manipulate 3D printed models during the test as the visual aids; the 
second group of students (Group 2, n2=12) was allowed to use 3D computer models during the test 
as the visual aids. Students of Group 1 are denoted by G1, students of Group 2 are denoted by G2. 
The 3D geometry post-test consists of five types of geometric problems in the three-dimensional 
space – the relative positions between two lines (12 individual tasks), the relative positions between 
a line and a plane (6 individual tasks), the size of an angle between two lines (3 individual tasks), the 
size of an angle between a line and a plane (3 individual tasks), and the size of an angle between two 
planes (3 individual tasks). All the geometric problems were depicted in two dimensional situations, 
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i.e. projected to the plane; the oblique projection was used in all cases and different positions of the 
viewpoint were considered. In Figure 1 you can see three concrete tasks of the relative positions of 
two lines. Students were asked whether the depicted lines (drawn in the auxiliary cube) are parallel, 
intersecting, or skew. In Figure 2 you can see three concrete tasks of the size of an angle between a 
line and a plane (again drawn in the auxiliary cube). Students were asked to determine the size of an 
angle without any algebraic calculation. Every single task was for one point, so the maximum score 
of the test was then 27 points.

Figure 1: The relative positions of two lines – parallel, skew, intersecting, respectively

Figure 2: The size of an angle between a line and a plane – 90°, 45°, 0°, respectively

3D virtual computer models were created in GeoGebra software and 3D printed models were made 
on the 3D printer (Felix 3.0); the both by the author. The 3D virtual computer model is shown in 
Figure 3, on the left. Students were allowed to draw arbitrary lines into the prepared cube and they 
could rotate with the three-dimensional situation in GeoGebra software. 3D printed models are shown 
in Figure 3, on the right. Students were allowed to use them together with the sticks to model lines.

Thirdly, the same students were tested again using the identical 3D geometry test without any visual 
aids at the beginning of a new school year 2021/2022. For this final testing and for the interpretation 
of the results, the G1 is newly designated G1’ and the G2 is newly designated G2’.

The relationship between the use of 3D computer models and 3D printed models and students’ spatial 
ability was investigated in this research by focusing on the following research questions:  What visual 
aid brings greater benefit to students when they solve geometric problems? Can 3D computer models 
and 3D printed models improve the students’ performance in testing their spatial ability?
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Figure 3: 3D virtual computer model in GeoGebra with allowed functions for drawing an object 

(a point, a line, a segment line, a midpoint) and functions for control (move graphics view, zoom in, 
zoom out, delete) on the left, 3D printed models with auxiliary sticks on the right 

Students’ scores in the Mental Rotations Test and in 3D geometry test were interpreted using the 
Mann Whitney U or the dependent t-test for paired samples. The significance level was chosen 0.05 
in each test. 

Results 
There were no significant differences between the two groups (G1, n1=13 and G2, n2=12) of students 
as measured by the Mental Rotations Test. The G1 had a mean score of 16.92 and the G2 had a mean 
score of 16.25. The second method of data collection involved students’ scores in 3D geometry test. 
The G1 that was allowed to manipulate 3D printed models during the test had a mean score of 21 and 
the G2 that was allowed to use 3D computer models during the test had a mean score of 22.92. The 
Mann-Whitney U test was used to compare differences in students’ scores between the groups. The 
critical value of U at p < 0.05 is 41 which is lower than the test criterion of 52.5. Therefore, the result 
is not significant at p < 0.05. Students’ performance can be observed in Table 1. Students are sorted 
according to their score (S) in the test and are assigned ranks (R). It can be visually observed that the 
group (G2) with 3D computer models outperformed peers (G1) with 3D printed models but a 
statistically significant difference between these two groups was not found. 

Table 1: Students performance scores in 3D geometry test – Group 1 and Group 2 

 G2 G1 G1 G1 G1 G1 G2 G2 G1 G2 G1 G1 G1 G2 G1 G1 G2 G2 G1 G2 G2 G1 G2 G2 G2 

S 13 16 16 17 19 20 20 20 21 21 22 22 22 22 23 23 23 23 25 26 26 27 27 27 27 

R 1 2,5 2,5 4 5 7 7 7 9,5 9,5 12,5 12,5 12,5 12,5 16,5 16,5 16,5 16,5 19 20,5 20,5 23,5 23,5 23,5 23,5 

The third method of data collection involved students’ scores in 3D geometry test again. This time 
any visual aid was not allowed. The first group (G1’, n1=13) had a mean score of 19.08, the second 
group (G2’, n2=12) had a mean score of 20.25. The dependent t-test for paired samples was used to 
compare the means between groups G1 and G1’, and G2 and G2’. In the first comparison of groups 
G1 and G1’, the p-value is 0.00043. The result of the test is significant at p < 0.05. In the second 
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comparison of groups G2 and G2’, the p-value is 0.00185. The result of the test is significant at p < 
0.05. So the both tests showed that there are statistically significant differences between G1 and G1’, 
and between G2 and G2’ too. 

Discussion 
I analyzed the effects of using 3D computer models and 3D printed models on students’ success rate 
in testing their spatial ability. Surprisingly, the group with 3D computer models performed better than 
the group with 3D printed models but a statistically significant difference between these two groups 
was not found. According to Katsioloudis et al. (2014), 3D printed models have greater positive effect 
on spatial ability than 3D computer models. This inconsistency could be probably caused by a small 
sample but still the difference was not significant. Using of 3D physical models is also supported 
from other researchers (Maier, 1998; Alias et al., 2002). The positive effects of using 3D virtual 
computer models on spatial ability over not using of any visual aid are consistent with earlier studies 
(Katsioloudis et al., 2014). Not to mention students’ reactions on visual aids; based on my 
observations students were much more motivated to solve geometric tasks if they were allowed to 
use some visual aid. Moreover, final testing showed that students’ results in the same 3D geometry 
test without any visual aids were worse even though they were solving the same geometric tasks. 

Conclusion and future plans 
This small quasi-experimental research showed that the use of 3D visual aids has a great potential in 
the process of mathematics education, namely in the topic of solid geometry. The study resulted in 
favor of 3D virtual computer models. It was demonstrated that 3D computer models can help students 
to better understand three-dimensional geometry. On the ground of this study, I include the optimal 
training and teaching methods into my mathematics instructions to improve students’ spatial ability. 
I plan to continue using the both types of visual aids. I also plan to repeat these experiments with 
bigger samples and with modified versions of the 3D geometry tests. The reliability and the validity 
of newly designed tests is also planned to be measured.  
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There are many different ways in which technology can enhance learning and teaching of 
mathematics. Therefore, a specific research focus is needed. One of the foci is to look at the 
role technology plays in learning mathematics through the lens of communication – especially 
the way in which it influences the construction of mathematical knowledge in interaction. To 
do this, student teachers were filmed while using Padlet to collaboratively summarise and 
discuss characteristics of different mathematical functions. First results hint at Padlet being a 
useful tool to induce and support meaningful mathematical discourse and mathematical 
thinking. 

Keywords: Communication, technology, digital media, collaboration, knowledge building.  

Introduction 
Although the use of digital media for educational purposes has become an omnipresent topic – 
whether it is in research, politics or every-day-conversation – teaching with technology is often 
based on best-practice approaches or personal preference (Rink & Walter, 2020). Research also 
shows that while students use technology on a daily basis, they do not use it for academic 
purposes as often (Zawacki-Richter, 2021; Dolch & Zawacki-Richter, 2018). Although the 
academic use of technology in schools and universities has significantly increased over the last 
year, it often remains on a ‘consuming’ level (e.g. reading documents or watching videos) and 
rarely leads to subject-rich learning processes (Zawacki-Richter 2021; Biermann & Kommer, 
2012). Considering that communication is fundamental for learning in general (e.g. Miller, 
2002) and developing mathematical knowledge in particular (Steinbring, 2015), this problem 
is addressed by making communication the key focus when looking at digital media used in 
education (Ball & Barzel, 2018).  

In this paper, we focus on the question of how technology influences communication and, thus, 
the construction of mathematical knowledge in collaborative settings. In what follows below, a 
brief theoretical background is given on Construction of Mathematical Knowledge in 
Communication and Technology in Mathematics Education. Afterwards the Methodology as 
well as some initial Results are presented.   

Theoretical Background 
Studies by Sung, Yang and Lee (2017) show evidence that digital-collaborative learning may 
lead to an increased learning performance and a more positive attitude towards learning in 
general. However, one should not assume that using technology will always be beneficial as 
“all [digital tools][…] come with affordances and limitations, with opportunities and 
constraints” (Drijvers, 2019, p. 9). With a view to university levels, research indicates that 
technology is in fact used a lot to share documents or to collect data (e.g. in online courses), but 
is only infrequently used to encourage collaborative learning (Zawacki-Richter 2021; Dolch & 
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Zawacki-Richter, 2018; Biermann & Kommer, 2012). This is problematic since working on 
tasks collaboratively in small groups is one of the best ways to induct productive mathematical 
thinking (Nührenbörger & Steinbring, 2009). Students working and learning together are forced 
to communicate and interact with each other. “Statements and suggestions are offered for joint 
consideration. These may be challenged and counterchallenged, but challenges are justified and 
alternative hypotheses are offered” (Howe & Mercer, 2007, p. 6). These situations are of 
uttermost importance, because – following enactivism – learning itself is manifested in 
communication (e.g. Miller, 2002). 

Learning mathematics is somewhat unique since it is not accessible by senses (Ball & Barzel, 
2018). In fact, mathematical knowledge is not a given set of definitions and theorems, but is 
only accessible “using signs, words or symbols, expressions or drawings” (Duval, 2000, p. 61). 
The meaning of those signs, symbols or expressions has to be constructed by the learners 
themselves during the act of communication (Steinbring, 2006). Therefore, communication is 
at the center of constructing any mathematical knowledge. Based on this underlying 
interpretation of learning, the construction of mathematical knowledge can be modeled using 
Steinbring’s epistemological triangle: 

Figure 1: Epistemological Triangle 

“Mathematics requires certain sign or symbol systems in order to keep a record of and code the 
knowledge. […] [The meaning of those signs] has to be produced by the learner by means of 
establishing a mediation to suitable reference contexts” (Steinbring, 2006, p. 135). A sequence 
of such triangles can be used to cover the whole learning process (Ball & Barzel, 2018) and to 
examine the impact of technology on those processes. “To use technology for effective 
collaboration and communication in mathematics classrooms it is necessary to consider the role 
of technology in the epistemological process” (Ball & Barzel, 2018, p. 229). 

There is a great variety of digital tools that can be used in education. To gain some orientation 
it seems appropriate to characterise these tools with regards to how they are used in 
communication. Ball and Barzel (2018) distinguish between communication through 
technology, communication with technology and communication of technology displays. The 
first one involves use of technology to directly support online synchronous communication 
between people (e.g. Skype, Zoom). Communication with technology “considers the entry of 
syntax, selection of menu items, programming or any command that drives the technology to 
produce a display” (ibid.) (e.g. Apps like “digital-twenty-frame”). The third one describes a 
situation in which the technology display is a stimulus for discussion. “This discussion could 
occur in a range of contexts, for example, through two students’ consideration of one shared 
screen or through public display of student work via technology such as an interactive 
whiteboard or data projector” (ibid.) (e.g. Padlet). While those categories are useful to 
distinguish and analyse the use of technology in communication, they may overlap and do not 
occur in isolation (ibid.). For example, students may discuss a technology display while at the 
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same time interacting with the display itself. Thus, they may be even interacting with each other 
through the input itself. This shows how complex the connection between communication and 
technology is. Naujok (2012) and Knopf & Abraham (2016) mention that those discussions and 
interactions evolving while working with technology may be especially important and fruitful 
for deep learning processes. 

Combining those three ideas – constructing mathematical knowledge in communication, 
technology and collaboration – it becomes evident that there are specific affordances and 
opportunities in teaching and learning mathematics in digital-collaborative settings. One such 
setting and initial results are presented on the following pages. 

Methods 
The research presented in this paper is part of a research project called K4D (‘Collaboration for 
Digitisation’), funded by the German Federal Ministry of Education and Research. The project 
started in early 2020 at TU Dortmund University and aims at a better understanding of teaching 
and learning with technology in higher education. 

During their first year at TU Dortmund University, students of mathematics education are 
obliged to attend the lectures ‘Arithmetic and its Didactics I’ and ‘Arithmetic, Functions and 
its Didactics II’. Those lectures are accompanied by a mandatory seminar once a week in which 
students tackle mathematical tasks in small groups. Due to the Covid-situation, students worked 
remotely from home using Zoom. During some of those exercises, students were given tasks 
they had to collaboratively work on, while using Padlet, which is a tool considered a ‘digital 
pinboard’ enabling users to share, connect and sort documents (e.g. videos, recordings, pictures, 
text). Users can comment and react on those documents in real-time. Padlet can be categorized 
as a general educational technology and – in contrast to subject-specific technology – could be 
used for many different activities. The usage of Padlet to foster collaboration was planned 
before the pandemic, but within the usual seminar settings. Data was collected by screen-
capturing and voice-recording those situations. The sessions were 30 to 60 minutes long and 
about 20 groups have been recorded. Additionally, questionnaires were given to the students to 
better understand how they themselves experienced the collaborative work with Padlet. 
Research is intended to continue in 2021 and 2022 to gain more data. At this stage of the 
research process, only exemplary insight into the data and findings can be given.   

Tasks for working with Padlet 

The topic of the recorded session is basic functions (linear, proportional, reciprocal) and the 
tasks (listed below) are supposed to engage the students in discussions about their specific 
content knowledge.  

(1) Find a context/situation to those functions (linear function, proportional function, 
reciprocal function) and upload it to Padlet. Don’t name the function in your 
context/situation. 

[Additional information: (1) done by each student on their own the day before the group 
exercises took place. In each group, about 25 students uploaded their contexts in one Padlet.] 

(2) Cluster the different contexts/situations and discuss which situation belongs to which type 
of function. 
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[Additional information: (2) done in small groups (3-5 students) during the exercises. The 
original Padlets were copied so that all groups could create and discuss their own cluster.] 

(3) Name characteristics for each type of function and upload them to Padlet. 

[Additional information: (3) done in small groups (3-5 students) during the exercises. One 
Padlet was created for each type of function. The students kept working in small groups (3-5 
students), but those Padlets were not copied for each group, but filled by different groups of 
students simultaneously.] 

Questionnaires 

In order to gain additional insights into the processes, questionnaires were conducted to better 
understand how the students themselves experienced the collaborative work using Padlet. Items 
were given to the students (n = 220) which they could agree or disagree with on a 1 to 5 scaling. 
Some exemplary examples of those items are as follows: “Working with Padlet was very 
intuitive.”; “Other students’ postings confronted me with new ideas/approaches/ 
representations.”; “Other students’ postings led to more intense discussions within our group.” 

Selected Results 
The following transcript shows four students working on task (2) and (3). At the beginning, 
they discuss which type of function is represented in a given context-situation.  
(Transcripts are translated) 
1 Student 3: […] I don’t really get (…) get the difference. Between a reciprocal 

   function (..) and the others. 
2 Student 2: […] There is that mnemonic (for reciprocal functions): “the more, the 

less”, so# 
3 Student 3: #so it’s decreasing? 
4 Student 2: Exactly. Exactly. 
5 Student 3: […] Okay, that makes sense. 

The students proceed to cluster the given context-situations and decide – using the mnemonic: 
“the more, the less” – that the following is a reciprocal function: 

“Peter spends a fixed amount of money each month. […] He got 3000€. 
He withdraws 100€ each month.” 

Later during the group-exercise, the students start working on task number (3). While doing so, 
they are confronted with other groups’ posts in Padlet. Two of those posts and the unfolding 
discussions can be summarised as below: 

 

 

 

 

Confronted with those posts, a discussion emerges: 
6 Student 3: […] But they wrote “it (a reciprocal function) has no zero point and no  

intercept” (..) but it could (..) it could start with an intercept, couldn’t it? 
(…) Or what do they mean?” 

7 Student 1: Yes. 

Post I: 

“a reciprocal function has no zero point 
and no intercept.” 

Post II: 

“x * y is always the same for each 
coordinate.” 
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8 Student 2: Yes. 
… 

9 Student 1: […] It’s like with that money. If it starts at 3500€ (3000€), then that is on  
the y-axis.” 

10 Student 3: Sure. 
   …  
11 Student 3: […] It’s the same with those workers (Referring to another context- 

situation: “For the construction of a new [building] a single worker 
needs 120 days. Two workers need 60 days. […]”) 

12 Student 1: Sure. 
13 Student 3: Yes, and then you would still start with one, two, three, four workers on  

the y-axis. 
14 Student 1: But you have no zero point, like, like the intercept means that there is  

something like (..) zero, three thousand ( (0|3000)). So x is always zero. 
And I think in that worker-context, that is not (..) it is not possible, 
because (..) one (..) zero workers, you can’t say that, that they need twice 
as long as one worker. Because that makes no sense. Because if no 
worker is working, nothing ever happens. 

15 Student 3: Mhm. 
16 Student 1: So maybe the other context is wrong. 
17 Student 3: Maybe (laughing). But I don’t get what they mean with “x * y is always  

the same for each coordinate”. 
… 

18 Student 3: Especially “for each coordinate” (..) “for each coordinate”. What does  
that even mean? (…) Maybe something like it’s linear (..) so that (..) like 
it’s (the function) increasing all the time (..) But# 

19 Student 1: #Ah, I think I know what they mean. They mean (..) like what you said  
before. That if one worker needs 120 days and two workers need 60 days, 
then it’s still 120 days in total. 

20 Student 3: Ah okay, that’s possible. 
21 Student 1: So for example one worker is your x and 120 is your y. 
22 Student 3: Yes, yes. 
23 Student 1: And 60 times two equals 120. 
24 Student 3: Mhm, okay. Nice. 

The group decides that the first context (the one with the “money”) does not represent a 
reciprocal function, but the latter (the one with the “workers”) does. 

Interpretation and discussion 
The scene summarised above is analysed using an epistemological perspective. Since that 
analysis is open for discussion, we will try to re-construct the underlying knowledge and ideas, 
using Steinbrings epistemological triangle and focusing on how the process is shaped by the 
use of technology. 

Clustering the different context-situations in Padlet proves to be a solid way to force students 
to interact. They engage in meaningful discussions about whether or not a given situation can 
be linked to a specific type of function. By doing so, they create a common ground for different 
concepts – for example, what they understand of a reciprocal function (1-5). The students link 
the situation (‘Peter and his money’) to a reciprocal function. This link acts as the sign/symbol 
the students try to interpret, using their reference context. In this specific case, the reference 
context is the mnemonic (“the more, the less” – meaning: for an increasing x value, the y value 
is decreasing) which S2 mentions to legitimate the situation describing a reciprocal relation (2) 
(Fig. 2). 
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Figure 2: Mechanic significance with a mnemonic 

Since no group member protests against the above interpretation, it appears to be a shared one 
within the group. Now, the use of Padlet comes into play: the posts by other groups inflict a 
conflict to the formerly shared interpretation – a “productive irritation” (Nührenbörger & 
Schwarzkopf, 2019).  

 
Figure 3: Productive irritation through the confrontation with a content post 

The new sign is the statement (“a [reciprocal function] has no intercept and no zero point”) in 
Padlet. The group tries to understand that statement by mediating it to a reference context. In 
this case, the reference context is the former sign. However, the group is irritated in a twofold 
mode. On the one hand, the mediation cannot be done successfully (6). On the other hand, they 
have to interpret the meaning of the second statement (“x * y is always the same for each 
coordinate”) (17) (Fig. 3). When the group fails to interpret the new signs in relation to their 
reference context, they question their original assumption (16). Therefore, the group looks at 
another one of the given context-situations: The one with the “workers”. During their 
discussion, they realise that both of the statements made in Padlet can be explained using this 
context (14 & 19). The connection between the “new” context situation and those “new” 
statements acts as the new signs (Fig. 4). Finally, the students successfully mediate them to 
fitting reference contexts (Fig 4). The epistemological analysis of these sequences clearly shows 
a shift from a vague understanding and interpretation of functions to a more sophisticated one 
– for example by (unknowingly) referring to the anti-proportionality factor (Heiderich & 
Hußmann, 2013). Padlet seems to induce these mathematical learning processes by confronting 
students with different ideas and interpretations.  

An evaluation of the questionnaires (n = 220) supports those findings: 88% of students said that 
when using Padlet “they were confronted with new ideas, approaches and representations” and 
75% said it led to “more intense discussions”.  
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Figure 4: Structural significance on reciprocal functions 

Conclusion 
This paper highlights specific potentials of the use of technology (by using Padlet) in 
mathematics education. The first results hint at Padlet being a useful tool to induce and to 
support mathematical discourse and mathematical thinking. With Padlet, students can be 
confronted with multiple different ideas and approaches, while at the same time communicating 
and discussing in a small group. This combines aspects of collaborative learning in smaller 
groups and class-wide discussions at the same time, resulting in manifold occasions for 
productive irritations and mathematical discourse. As with every other media or technology, it 
has to be carefully considered when and how to use them in order to do so most efficiently. 
Therefore, more research will be done to identify specific design elements and to deepen the 
understanding of how the use of interactive pinboards, like Padlet, affects mathematical 
knowledge building.  
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Evaluating digital student work through model backtracking  
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Designing a digital assessment system for mathematics brings along a number of challenges, such 
as creating an intuitive interface or providing the right feedback. We investigate how these 
challenges are met in different methods for evaluating digital student work. After done so, we 
formulate an idea for a new approach: model backtracking. That is, retracing students’ 
calculations through their final or intermediate answers. We explain the mathematical principle 
behind model backtracking and conclude that the method is promising, despite its limitations. 
Finally, we hypothesize about possible ways of meeting design challenges using model backtracking 
and provide recommendations for further research. 
 
Keywords: Digital assessment, Intelligent Tutoring System, Model tracing  
 

Introduction 
Digitally assessing mathematics has become increasingly important in the field, since there are many 
different applications that can lead to increased potential for student learning and summative 
assessment as well as didactical insight in students’ problem-solving behavior. When designing a 
digital assessment system, a number of challenges needs to be overcome. In this paper we formulate 
a new approach for evaluating digital mathematical student work, that may help to overcome such 
challenges: model backtracking (MBT). With this technique, the model the student employs is 
derived from the final or intermediate answers. The aim of this paper is to explain the idea behind 
MBT and hypothesize about possible applications, this paper is therefore purely theoretical.  

Although MBT could be used in summative settings, in this paper we mainly focus on the applications 
of MBT in formative settings. We single out intelligent tutoring systems (ITSs) to discuss in detail 
and outline the general structure of ITSs. We then proceed to investigate feedback and relate specific 
feedback to the granularity of the student input. We elaborate on various challenges that arise when 
designing ITSs. The principles behind MBT are explained and we proceed to hypothesize on how 
MBT may help to overcome design challenges. After done so we discuss the limitations of MBT and 
give suggestions for further research. Since MBT is still very much in a developmental stage, the 
results in this paper are of a hypothetical nature, indicating which design difficulties could be 
overcome using MBT. 

Intelligent tutoring systems 
ITS can guide the learning process by providing students with feedback. There are essentially two 
types of feedback: inner loop feedback which focusses on in-task guidance, and outer loop feedback 
which guides the learning process over several tasks (Santos & Jorge, 2013; VanLehn, 2006). Inner 
loop feedback can provide appropriate hints if a student fails to make a correct step or is unable to 
successfully complete the task (Heeren & Jeuring, 2014). Outer loop feedback can include an 
indication of the degree of mastery of different learning goals, based on a student model covering the 
domain. From such a model a suggestion on the next task to be completed by the student can be 
provided adaptively (Heeren et al., 2018).  
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Generally, ITSs consist of four modules (Nwana, 1990), as Figure 1 illustrates. 

 

 

 

 

 

 

 
Figure 1: structure of ITSs from Heeren & Jeuring, 2014, p.112, with permission 

 

The user interface module is used for communication between the system and the student. It is an 
important part of the ITS since the way in which information is displayed can affect, for instance, the 
willingness of the student to work with the ITS. The user interface module communicates directly 
with the tutoring module; this module is also known as the pedagogical module, it can make 
educational decisions such as suggesting the next tasks best suited for the student or how much and 
what type of feedback to provide. The tutoring module draws on the student model module which 
contains information about the knowledge of the student. This knowledge is often represented as a 
subset of the expert knowledge in the expert knowledge module (Brusilovsky & Millán, 2007). The 
expert knowledge module contains rules governing the way objects in a domain may be manipulated. 
It also contains so-called buggy rules. These rules model well known student errors within the 
domain. Currently, there are two approaches to evaluating student input: model tracing (Anderson et 
al., 1995) and constraint-based modelling (Mitrovic et al., 2007). In a model tracing approach, a step 
in the user input is compared to an expert solution for the problem. If a step deviates from the expert 
model, a buggy rule can be applied to check which specific error occurred. In constraint-based 
modelling the input is evaluated using two conditions: a relevance condition and a satisfaction 
condition. If a relevance condition of the error applies, then the satisfaction condition also needs to 
be satisfied to flag the error. 

Feedback  
Both Shute (2008) and Narciss (2008) studied literature on feedback, in this section we compare both 
studies with regard to specific errors. In both papers we find evidence that specific student errors need 
to be known in order to provide meaningful feedback. Both authors give a definition of feedback: 

Formative feedback is information communicated to the learner that is intended to modify his or her 
thinking or behavior for the purpose of improving learning. (Shute) 

Feedback in instructional contexts is all the post response information that is provided to a learner 
to inform the learner on his or her actual state of learning. (Narciss) 

In both definitions feedback is information provided with the intent of informing the learner on the 
state of learning. Where Shute takes it one step further by demanding that the purpose of feedback is 
to modify behavior to improve learning. How may learning be improved by communicating 
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information on the actual state of learning? Shute argues that a factor inhibiting learning is 
uncertainty. Since uncertainty is an unpleasant state that needs to be reduced it induces a cognitive 
load that could distract attention from actual task completion. Feedback could reduce this uncertainty; 
however, feedback can also serve the function of informing the learner on possible solving strategies 
or mistakes. To accomplish this, the feedback needs to be specific (Shute, 2008) or equivalently: 
elaborate (Narciss, 2008), although, the feedback should not contain the actual solution. Both Shute 
and Narciss support the claim that specific feedback leads to better learning outcome than feedback 
only on the correctness of answers. Narciss formulates five cognitive functions for feedback four of 
which require the specific error to be known. According to Narciss, a key issue is: how well a learning 
medium (i.e. teacher or ITS) is able to transform a discrepancy between the current state of learning 
and the required state into feedback that contains relevant information to mastering the requirements. 
The performance of a learning medium in this respect increases if it is more able to identify specific 
errors.  

Granularity (VanLehn, 2006) of the student input plays an important role in digitally assessing 
students reasoning. The granularity can range from students inputting every aspect of their reasoning 
to inputting only the final answer. When there is less information available the difficulty of correctly 
assessing student reasoning increases. Typically, ITSs require that students input every step of their 
calculation in order to detect specific errors and provide specific feedback in the sense of Shute (2008) 
and Narciss (2008). Drijvers (2019) stipulates that a task shouldn’t be essentially altered to 
accommodate a digital environment. However, inputting every step, in comparison to just calculating 
steps using pencil and paper, forms an additional requirement for completing a task. Furthermore, 
inputting every step could be cumbersome and might discourage students from working with ITSs.  

Challenges 
When designing ITSs there are certain factors that need to be considered. 

Interface 

One needs to avoid that proficiency in editing mathematical text digitally is required (Drijvers, 2019). 
Heeren et al. (2018) deal with this problem by allowing all kinds of input, even textual or 
mathematically nonsensical. The drawback however is that it is very difficult to evaluate such input 
to a high degree of accuracy. 

Stepwise evaluation 

When dealing with tasks concerning equivalent expressions, such as solving equations and 
simplifying algebraic expressions, often assessment systems require stepwise input. For example, 
Heeren and Jeuring (2014) describe such a system. Through such a system the required feedback can 
be provided with a high level of expediency if all the steps are inputted. Although inputting each step 
separately in the environment can be quite time consuming. Additionally, step by step input isn’t 
feasible on devices with small screens such as smartphones, making this technology less accessible. 
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Granularity  

The granularity of the expected student input concerns the step size of the input by the student. If the 
student skips a few steps the assessment system was expecting, the efficiency of diagnosing possible 
errors drops. In the ASSISTment system (Feng et al., 2009) this problem is solved by asking 
additional questions to the student. However, in a summative setting there is a risk that these questions 
give away part of the solution. 

Non-stepwise evaluation 

Some tasks consist of the calculation of several different non-equivalent components such as for 
instance, linear extrapolation where first the average change is computed before computing a future 
value. Since stepwise evaluation generally evaluates equivalency of steps it is not applicable here. 
One way to deal with this problem is to ask the student to input each of the different components of 
the calculation. The drawback however, is that this gives away part of the structure of the calculation. 
Tacoma et al. (2019) solve this problem by letting the student select the next step from a dropdown 
menu before performing the actual calculation. However, this only partly solves the problem since 
the menu only contains steps necessary to perform the required computation.  

The general idea of model backtracking 
We propose to retrace the students’ computation from the final answer. There will be obvious 
limitations to this method, however many of the problems mentioned above could be solved for 
certain classes of digital assessment environments.  

Consider the task of computing the derivative of , if the student arrives at the 
answer  it is unclear if the student forgot to multiply with the exponent 3, or if 
the student forgot to apply the chain rule. In this example these two errors are indistinguishable. 
However, when computing the derivative of  these errors are in fact distinguishable 
since they lead to different answers. So, when implementing a task for computing derivatives of 
functions of the type:  one should choose the parameters such that . 

The idea behind model backtracking is to design tasks in ITSs with parameters that make it possible 
to distinguish different errors. Along with a structure in the expert model module as a tree containing 
all possible paths of errors through the steps of the task given the predetermined buggy rules. When 
certain conditions are satisfied one can retrace a student error by means of just the final answer. Of 
course, model backtracking can also be used for evaluating intermediate steps in a computation. 

One immediately notices that not all tasks can be designed using MBT (since there are restrictions on 
the initial values of the task), for instance not all real-world tasks can be modelled using MBT. 
However, MBT works well on tasks that draw on random parameters, these parameters can simply 
be restricted to a domain that makes backtracking possible. 

The mathematics of MBT: an example 
In this section we will describe how model backtracking works, doing so we will formulate certain 
definitions that can be extended to more general settings. We start out by defining what we mean by 
a computational task. We proceed to show how, in this setting, buggy rules can be represented by 
functions and that various errors are comprised of compositions of these functions. We then find 
sufficient conditions for determining the path, that is, which composition of functions, the student 
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used to arrive at a certain answer. When the path is known, appropriate feedback can be given to the 
student. 

A computational task is the pair  where  is called the parameter space and  
is called the computation. An element  represents the given parameters in the task.  

 

Given the table  

 …  …  … 

 …  …  … 

Assume  depends on  exponentially. 

Compute the growth factor per unit of .  

Figure 2: computational task on computing a growth factor from a table 
 

 

This task is a computational task with  and 

 

On didactical bases we can distinguish between two steps in this calculation: 

Step 1: Computing the growth factor for :   

Step 2: Computing the growth factor per unit of time:   

We see that: 

 

 

In each of the two steps we can now introduce buggy rules for errors in the steps, the compositions 
of these rules represent different calculations by the student: 

 

 denotes the set of rules for the first step where:  and  and  are buggy 
rules defined by: 

Wrong time direction:   

Calculating the difference:  
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denotes the set of rules for the second step where:  and  and  are buggy 
rules defined by: 

Dividing by elapsed time:   

Forgetting to recalculate for time:  

Now for fixed  we look at the  matrix  with entries: . We can 
compare the input from the user to the entries in this matrix. For instance, if the input matches the 
entry , we know the growth factor was calculated as a slope. 

Two examples of : 

 

 

 

Above we see all the entries of  are different, which means the steps through the various errors are 
uniquely determined by the outcome; whereas below we see that various entries of  have the same 
value. So, for backtracking the student error isn’t possible. We wish to avoid this. 
Having the entries in  differ can be characterized by the following equivalent statement: 

For fixed  we define the function: 

 

 

Then  needs to be injective. 

For the computational task, we only select parameters from: . This 
ensures that we will be able to backtrack the students’ computation. These definitions can be 
generalized to tasks with more than two steps. And depending on the structure of the ITS1 one can 
find relaxations on the injectivity condition allowing for a wider selection of possible parameters. 

The definition of a computational task as the pair  where  and  seems to 
exclude tasks involving computations done on functions. However, when the class of functions is 
known, these functions may often be expressed in terms of their parameters. Therefore, MBT can 
also be used to develop ITSs involving functions and algebraic expressions. Arguably MBT can even 
be used for evaluating formulae derived from geometrical representations.  

 
1 For examples of ITS with MBT see:  

Linear interpolation: https://www.geogebra.org/m/e5ewfude  
Linear equations: https://www.geogebra.org/m/rqa4w5wb 
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Possible applications of MBT 
In this section we conjecture how MBT could contribute to overcome design challenges. However, 
currently these conjectures remain to be proven. 

Interface 

When working in an ITS for the first time, students often start by inputting only their final answer. 
Therefore, just demanding the final answer is very intuitive. With the use of MBT, feedback can be 
provided on the basis of just this input. A student can make a calculation using pen and paper and 
input only the final answer, thereby staying very close to the way mathematics is normally practiced 
(Drijvers, 2019). As very little input is needed ITSs can be created for small screen devices, which 
make ITS technology more accessible. Of course, major drawbacks are that sloppy notation isn’t 
detected nor corrected. 

Stepwise evaluation and Granularity 

By adding the identity function to the set of rules at each step, MBT could also be used to inspect 
intermediate steps in a calculation. Where, if steps are skipped or haven’t been inputted, MBT could 
still provide feedback. This could constitute an addition to existing systems improving error detection. 
MBT could be used in combination with constraint-based modelling and model tracing. This way 
expert knowledge modules that already exist can be employed. When a student for instance inputs 
step  and then inputs step  without inputting the intermediate steps, the parameters at step 
 can be seen as starting parameters p for a computational task. The corresponding function  

generally won’t be injective however a list of possible paths can still be produced. 

Non-stepwise evaluation  

If the task consists of the calculation of several different non-equivalent components it is possible to 
let students work in a digital environment without adding any structure: an empty page. After which 
the computations are scanned for intermediate answers (Heeren et al., 2018). By construction the 
intermediate (wrong) answers differ. Therefore, it may be possible to recognize intermediate steps by 
just the values they produce and provide specific feedback. 

Limitations and suggestions for further research 
A clear drawback is that MBT can only be implemented for certain tasks since the possible parameters 
will be subject to constraints. Furthermore, the class of computational tasks does not contain many 
higher order tasks, aside from deriving expressions from geometrical representations. Further 
research might extend the possibilities of ITS beyond computational tasks. One of the drawbacks of 
the design principle of MBT is that it is very specific for the computational task. Usually ITSs make 
use of expert knowledge modules which contain rules for an entire mathematical domain. This way 
different tasks can be designed using the same set of rules (Heeren & Jeuring, 2014). Perhaps MBT 
could also be used over entire domains, possibly in combination with existing expert knowledge 
modules. Currently it is unclear what the performance of error detection trough MBT is, nor is it clear 
if specific feedback on the final answer enhances learning. Empirical experiments will be necessary 
to indicate if MBT can contribute to a positive learning outcome. 
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Our paper aims to provide a proof of concept about the theoretical framework of enactive 
and ecological approaches to the field of perceptual learning of mathematics with digital 
technology. We reporst on the finger gnosis or finger knowledge that school children 
deploy when engaging with digital technologies such as Touchcounts and Rakin. From our 
theoretical lens we contrast both applications and conclude that they offer rich possibilities 
for number learning, however, Touchcounts adheres better with enactive and ecological 
foundations by prompting finger gnosis in different ways, while the Rakin technology 
application restricts actions and gestures, leaning toward representationalist cognitivism.  

Introduction 
In this article we emphasize how digital technology promotes new ways of learning by 
doing within the framework of new contemporary approaches to enactive and ecological 
cognition. The evidence on technology and mathematics education from an embodied, 
intersubjective and instrumental approach is auspicious, see Sinclair and Freitas (2014) and 
Drijvers (2019). In the framework of these studies, we place special attention to the 
understanding of cognition and digital learning from a dynamic sensorimotor theory based 
on the progressive structural coupling between the agent and the sociotechnological 
environment (Videla et al., 2021). We highlight and share the contribution of Shvarts  
(2021) on the importance of instrumented action constituted by a body-artefact dynamic 
functional system that regulates the actions of the agent and the sociomaterial environment. 
As a complement and from our enactive and ecological theoretical lens, we argue that 
digital technologies should be presented as ecological niches of skilled sensorimotor 
expansion, that is to say, they enhance the ecological control of actions for the achievement 
of learning goals. We highlight the movement of hands and fingers in the framework of 
perceptual and gestural exploration with tactile technology for the understanding of 
number. Particularly, we emphasize "finger gnosis", which consists in the knowledge of 
numbers through finger movements on touch screens. The aim of our study is to contrast 
the use of Jackiw and Sinclair's TouchCounts (2014) and CEDETI's Rakin (2021) 
applications for number comprehension, in light of our theoretical approach that highlights 
the specialization and expansion of actions and gestures that make it possible to bring a 
world of numbers and motion.  
Theoretical framework  
Enactivism: cognitive agency 
In this section we provide brief clarifications of the role of perception in enactivism in 
order to illustrate the sub-personal dimension of agency. In face of the persistence of the 
traditional cognitivist approach based on representationalism, computationalism and 
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internalism, enactivism emphasizes the role of action for perception by pointing out that: 
"(1) perception consists of perceptually guided action and (2) cognitive structures emerge 
from recurrent sensorimotor patterns that allow action to be perceptually guided" (Varela et 
al., 1991). This implies that cognition does not require mental representations to cause 
skilled bodily activity, since enactivism is framed within the circular dynamics of the 
perception-action loop in which cognition is action. When the enactive approach is alluded 
to, it refutes the idea of cognitive processing and emphasizes the notion of a decentralized 
cognitive system based on autonomy, sense-making, embodiment, emergence and 
experience (Di Paolo, 2020). Embodiment refers to movements, gestures and multimodal 
perception intertwined and constitutive of cognition through experience. Also, enactivism 
embraces the principles of the biology of knowledge, in which living beings are considered 
adaptive, autonomous agents and creators of their own worlds as a result of their history of 
coupling with the environment (Maturana and Varela, 1980). A cognitive system means 
that interchange with the world are inherently meaningful for the knower, given that 
movements are at the center of mental activity.   
Ecological psychology: skillful expansion  
Next, the role of perception from ecological psychology is presented in order to understand 
the interpersonal relationship between agent and sociomaterial environment. Gibson's 
(1979) ecological psychology proposes that cognition is enacted, shaped and structured by 
reciprocal interactions between the organism and the environment. Gibson (1979) argues 
that the environment is hierarchical in ecological information available to support everyday 
activities, think of; roads, rocks, slopes, forests, buildings, technology, and actions among 
others (Heft, 2020). Ecological psychology proposes a relevant epistemological debate by 
promoting an understanding of the world that overcomes dichotomies: perception/action; 
organism/environment; subjective/objective and mind/body. These dichotomies are at the 
basis of the theoretical assumptions of behaviorist and cognitivist psychology, which 
adscribe to the poverty of the stimulus, the passiveness of perception and the processing of 
information. Hence the importance of ecological information for Gibson, since it depends 
on the specification of the relationship established by the legal covariation between energy-
optical, mechanical and chemical patterns, when actively participating in the environment 
(Chemero, 2009). This mode of participation, highlights affordances that are conceived as a 
relationship between an aspect of the sociomaterial environment and an ability available in 
a life form (Kiverstein and Rietveld 2015).  
Brief Overview Tactile Technology and Numerical Cognition 
In this article, we ascribe to the radically enactive approaches of numerical cognition 
developed by Zahidi and Myin (2016) on the importance of the body in the understanding 
of numbers and counting: correspondence, ordinality, and cardinality.  
Rakin 
Rakin is an inclusive Chilean application that seeks to promote the learning of mathematics 
in preschool children through a virtual desktop interface where skills such as seriation, 
classification, conservation of quantities, numbers, counting, cardinality and ordinality can 
be stimulated. In addition to being aligned with many of Chile's preschool mathematics 
learning objectives (CEDETI, 2021).  
Touchcounts 
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TouchCounts (Jackiw & Sinclair, 2014) is an app that allows young learners to 
simultaneously coordinate various forms of numbers: number names such as 'three', number 
touches on the screen, number of records on the screen, and number symbols such as 3. It 
represents a multimodal correspondence between touching with fingers, seeing numbers, 
and hearing number words (a one-to-one correspondence of touch, sight, and sound). The 
application has two worlds: enumeration and performance. 
Our enactive-ecological proposal: learning number with Touchcounts or Rakin?  
Our proposal consists of a dynamic approach to sensorimotor agency for understanding the 
enactive-ecological approach to numerical cognition, see Videla et al (2021). The 
unification of these approaches seen as a continuum relieves the human cognitive-
technological tool assemblage beyond the subpersonal dimension of enactivism and the 
interpersonal dimension of ecological psychology (Heras-Escribano, 2018). In the case of 
number learning with digital technology, we propose that a form of human-tool assembly is 
only possible from the ecological niche. This meta-relationship is flexible, dynamic and 
expansive, therefore, the technological niche grows in relation to the cognitive agent's 
experience. For example, in the case we address here is corresponding to finger gnosis, we 
assume that changes in the position and movements of the fingers make it possible to bring 
a world of numbers and not to have or objectively grasp a world of numbers as is 
characteristic of representationalist cognitivism. Below we present a brief description of the 
key concepts that nourish our proposal and that we have borrowed from other articles:  
(i) Attentional anchors: during the flow of sensorimotor contingencies of cognitive activity, 
dynamic equilibrium is instantiated from the attentional anchors that interpolate between 
the internal dynamics of the agent and the environment in which it participates facilitating 
emergent understanding (Hutto et al., 2015).  
(ii) Sensorimotor contingencies: distinguish four types of (SMC) that contribute to 
specialization of action: (a) sensorimotor environment: intuitive movements of perceptual 
exploration, without considering sensory feedback (b) sensorimotor habitat: sensory 
feedback movements between sensory and motor activity as a function of the agent's 
internal dynamics (c) sensorimotor coordination: specific action patterns that tend to 
dynamic control according to task goals (d) sensorimotor strategies: optimal balance of the 
cognitive agent within a normative framework that solves specialized actions (Buhrmann et 
al., 2013). 
(iii) Finger gnosis: Butterworth (1999) proposed that fingers are important for representing 
numerosity. Sinclair and Pimm (2015) have evidenced in their studies that number sense in 
general is dependent on finger knowledge. Finger knowledge involves a performative 
gestural act such as (tapping, swiping, pinching and flicking) to produce numbered objects 
on a multi-touch screen. 
In what follows we present Figure 1 as a representation of our proposal. Here we show how 
the evolution of the performative gesture of finger gnosis (tapping, swiping, pinching and 
flicking) is linked to the sensorimotor contingencies (sensorimotor environment, 
sensorimotor habitat, sensorimotor coordination and sensorimotor strategies), as can be 
seen in the red and blue figures. The segmented lines indicate the dynamic coupling 
between the cognitive agent and the environment reaffirming the co-dependence or 
mutualism of reciprocal constitution. The bidirectional arrows related to finger gnosis 
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indicate that the specialization of the finger action is co-dependent on the attentional 
anchors and the sensorimotor contingencies. As the anchors interpolate between the 
cognitive agent and the touch screen, the sensory variety decreases as a result of the digital 
affordances that engage the cognitive agent with increasingly specialized actions that 
transduce number and its operations. 

Figure 1. The enactive-ecological continuum model of finger gnosis in numerical cognition 
with multitouch technology 

 

Empirical findings  

To assert our theoretical proposition, we present the excerpt in which author Videla 
participated in a clinical interview with a 4-year-old kindergarten student named Andy, 
who interacts for the first time with TouchCounts and Rakin. We chose this excerpt from a 
larger investigation, as it illustrates a variety of gestures co-dependent on their coupling 
with the material affordances of the touchscreen. We illustrate that hand and finger 
movements are becoming specialized in Touchcounts, whereas in Rakin the movements to 
enact numerical comprehension are restricted. The resulting finger movements have not 
been explicitly taught, but have emerged in the sensorimotor flow of contingencies in the 
tactile ecological niche. 

Table 1. Specialization of the action of the finger’s gnosis in the understanding of the 
number 

Technological 
ecological niche 

(Digital 
affordances) 

Finger Gnosis 

Specialization of tactile action (enacting-ecological numerical comprehension) 

Multiple Tactile 

 

Tapping 
(sensoriomotor 
environment) 

Swipping 

(sensoriomotor habitat) 

Pinching 

(sensoriomotor 
coordination) 

Flicking 

(sensoriomotor 
strategies) 
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Touchcounts 

   
Dialogue Andy: I touch and 1 

comes out. 

Research: Yes, try 
again. 

Andy: I play again and 
it comes out 1, you can 
also hear 1.  

Research: What else 
can you do? What 
appears on the screen? 

Andy: tap and move, 
numbers come up.  

Andy: oooh! tap twice and 
it comes up 2. If I tap three 
times it comes up 3? 

Research: Yes, and if you 
tap 4 times how much 
comes out? 

Andy: 4. Also, you can put 
the balls together. 

Researcher: Yes, show 
me.  

Andy: Look, I put two 
little balls together that say 
1 and I get 2. 

 Andy: Now I can form 
different circles of 
balls. 

Researcher: How do 
you do it? 

Andy: I do the little 
fingers like this (shows 
the pinching motion by 
putting thumb and 
forefinger together on 
the screen).  

Researcher: When you 
do those movements, 
what do you get?  

Andy: The sum.   

 Andy: You can also 
separate the balls 
from the big circle.  

Researcher:Yes, 
how? Show me.  

Andy: Look, with my 
two hands I can do it. 
With one I squeeze 
and with the other I 
pull.  

Researcher: What 
happens to the 
number in the big 
circle? Does it 
increase or decrease? 

Andy: It decreases.  

Research: Why? 

Andy: Because we 
remove balls. 

Rakin 

 

  

Dialogue Andy: up come the 
numbers, I touch 1 and 
it sounds 1, I touch 2 
and it sounds 2. 

Research: Do you 
know the numbers 1 to 
10? 

Andy: Yes. 

Research: What else 
can you do? What 
appears on the screen? 

Andy: On the side 
there are different 
things that I touch and 
they sound.   

 

Andy: I can touch things 
and move them here 
(indicating the central 
screen divided in two 
parts).  

Research: Do you see that 
it changes in the first 
quadrant? 

Andy: Yes, it changes the 
amount.  

Researcher: How do you 
know? What appears on 
the screen? 

Andy: I move an object 
and it appears and it 
sounds 1. I move another 
one and it sounds 2.  

Researcher: What else 
can you do with your 
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fingers?  

Andy: Just move objects to 
the center. 

 

Table 1 illustrates the specialization of the action of the knowledge of the fingers for the 
understanding of the number with the Touchcounts and Rakin applications. This 
specialization of the action can be seen in the changes presented by the movements of the 
fingers on the touch screen, of which we have selected (tapping, swiping, pinching and 
flicking) reported by Sinclair and Pimm (2015) as finger gnosis. In relation to the contrast 
presented in table 1, we can identify that Andy when participating with Touchcounts begins 
tapping the multi-touch screen and makes a disc with the number one visually appear and 
an audio that says one. Later, after several tapping where other discs 1, 2 and 3 appear, he 
reconfigures this movement for swiping, and where the possibility emerges of making 
collections of discs that represent new numbers. These two movements correspond to 
changes in the structural couplings with the touch screen, of which the first are more 
exploratory and ingenuous where a touch is enough, to move to another sliding movement 
that makes it possible to join different discs and configure new numbers from the numbers 
of objects in the popup collection. The reorganization of these actions is due to the 
emergence of attentional anchors that interpolate in Andy's internal dynamics and the 
emerging content of the touch screen. From a numerical understanding, these movements 
promulgate the notions of ordinality, correspondence, and cardinality. In turn, within the 
framework of sensorimotor contingencies, it can be established that the tapping and 
swiping movements in Andy are gestated from the sensorimotor reconfiguration of the 
environment to the sensorimotor habitat. 

This occurs within the framework of changes in the movement of the fingers, the first 
ingenious and without contact with Andy's internal dynamics (environment) to one with 
sensory feedback that triggers the sense of agency (habitat). At a phenomenological level of 
qualitative changes in what we call “finger gnosis”, it is possible to observe the alternation 
of the ring finger with the thumb. Subsequently and in relation to pinching, it can be seen 
that the movement of the index finger in tapping and the thumb or index finger in swiping, 
ceases to be one or the other, but transforms into a specialized gesture that encompasses 
both fingers simultaneously of one hand to respond to emerging objectives. This is 
relevant, since the effective movement requested by the touch screen is precisely the click 
to form collections of discs. Andy finds himself moving in some way to bring out new 
collections in a specialized way. This is what is known from the flow of contingencies in 
the performative gesture as sensorimotor coordination. Once this movement is coupled to 
his experience with the pop-up content on the touch screen, he realizes that the collections 
of discs formed by the pinching movement can also be separated or removed from the 
collection through a more specialized movement that requires not only sensorimotor 
coordination of one hand, but it is strategically discovered that you must use both hands to 
respond effectively to the emerging target. This is known from contingencies as 
sensorimotor strategies and it is where attentional anchors contribute to sensorimotor 
ecological control in the understanding of the number: ordinality, correspondence and 
cardinality.  
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Regarding the Rakin application, Andy exhibits only the tapping and swiping movements, 
as evidenced in Table 1. This is not to say that Andy fails to engage in a sustained manner 
by integrating broader sensorimotor contingencies that contribute to dynamic equilibrium 
such as sensorimotor coordination and sensorimotor strategies. Rakin offers an 
environment rich in digital affordances in relation to ordinality, correspondence and 
cardinality as evidenced by tapping and swiping in which Andy can tap the ordinal 
sequence of numbers on top and can select from a set of available objects (animals, plants 
and toys) to establish correspondence and cardinality. Nevertheless, the movements that 
Rakin requests as digital affordances, do not allow the tactile specialization of the action 
that does justice to the finger gnosis that leads to enacting numerical comprehension. In this 
area, we consider that Andy is deployed in a restricted environment of actions that the 
fingers only lead to tapping and swiping to understand and learn the number. Finally, we 
consider that Rakin is an important application for the development of the fundamental 
notions of numerical cognition such as ordinality, correspondence and cardinality, however, 
it is more framed in a representationalist perspective in which cognition is more linked with 
representing pre-existing contents that make the contents emerge in the specialization of the 
action. 

Conclusion 

In this paper we have considered a proof of concept for enactive and ecological unification 
in the framework of finger gnosis of number learning with multi-touch technologies such as 
Touchcounts and Rakin. If our proposal is correct, we contribute to the field of research in 
embodied perspectives of mathematical cognition that allow to favor instances of learning 
with technology that resonate with basic forms of actions and gestures. 
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How the students chased perpendicular lines in GeoGebra Classroom 
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This paper focuses on the issue of what solution strategies do secondary school students provide 
while performing non-standard geometric constructions. For this purpose, we developed an 
interactive electronic environment in GeoGebra Classroom and, in that environment, we let students 
construct perpendicular lines in multiple ways. We formulated the task for students so that it 
corresponded with their school geometry curriculum but in a non-standard open-ended way. Then 
we analyzed students’ constructions qualitatively. Findings showed that the students were usually 
able to solve the task but just a few of them were able to generate multiple strategies. However, 
creative constructional approach appeared in data indicating the significance of the assignment or 
instruction where a variety of mathematical approaches are possible. 

Keywords: Dynamic geometry environments; multiple solution strategies; plane geometry; 
secondary school students. 

Introduction 
Recently, school geometry has got a rather dual role: it seeks to reflect ongoing technological progress 
but at the same time still arises from fundamental concepts described in ancient Euclid’s Elements. 
One of the significant aspects of the Elements consists in stressing on acknowledging the definitions 
and proving the theorems, while one of the goals of school geometry is developing students’ 
justification skills or, in general, students’ conceptual knowledge in the domain. In the past decades, 
educational researchers have been naturally concerned with the impact of the use of modern 
electronics technologies on learners’ mathematical reasoning. They have explored how dynamic 
geometry environments (DGE) such as Cabri Geometry or GeoGebra could assist students to improve 
their understanding of proof in geometry (e.g. Marrades & Gutiérrez, 2000). In this context, an 
important characteristic of DGE lies in the ability to modify geometrical objects and to observe their 
features during the modifications. It has become clear that this feature of DGE provides students with 
opportunities for deep explorations and heuristics on their way to argue the properties of geometrical 
objects (Lawson & Chinnappan, 2000; Sträßer, 2001). Through the dynamic process of observing 
modifications of geometrical objects, DGE does not only facilitate students’ justification skills but 
can also provide visual information that a particular property does not apply in general (Prusak et al., 
2012). Altogether, the research has revealed the importance of DGE for stimulation of formulating 
conjectures and creating proofs (Komatsu & Jones, 2017). 

Along with the use of DGE, other activities in school geometry could contribute to formulating 
geometrical conjectures, namely geometric constructions (Herbst et al., 2017: see p. 106). However, 
there is a lack of investigations that would deeply focus on the relation between constructional 
problems and reasoning in geometry, or, in general, on explaining how performing geometric 
constructions can contribute to improving students’ conceptual and procedural knowledge and 
flexibility in the domain. In this contribution, we present an introductory exploratory study on the 
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topic. We proceed from a construction of perpendicular lines, formulate a task that is not standard 
compared to common activities in school geometry in our country, and analyze students’ solutions of 
such a task. The task is not standard for three reasons:  

(i) we let students construct two perpendicular lines on tablets in an online application 
GeoGebra Classroom whereas it is standard for them to perform geometric constructions 
on paper;  

(ii) we ask students to solve the problem in multiple different ways;  
(iii) we allow students to use only two tools: one that creates a line through two points, and 

another one that creates a circle from a center and point or a center and radius – despite 
the fact that the standard approach to school geometry also allows them to use a tool that 
creates a perpendicular line to a given line. 

Our explorations correspond with the theoretical framework of flexibility which is defined as the 
knowledge of multiple solution methods and the ability to generate and perform them appropriately 
and effectively (Rittle-Johnson et al., 2012). With respect to notes on learning and teaching geometry 
mentioned above, it becomes clear that developing students’ capability to solve mathematical 
problems in different ways has a significant potential for increasing their conceptual and procedural 
knowledge (e.g. Star et al., 2015). Since including the facet of multiple solution procedures required 
from students, we follow up the studies on so-called multiple solution tasks (MSTs) that might be 
used as a means of developing students’ creativity and flexibility in geometry (Levav-Waynberg & 
Leikin, 2012; Gridos et al., 2019). From the general perspective of research on incorporating an 
artefact of ICT into the teaching/learning system, we focus on an online application, learners, and 
knowledge, i.e., on all three edges of the face “ALK” of the corresponding didactic tetrahedron 
(Donevska-Todorova & Trgalova, 2017).  

Within this context, we introduce an exploratory qualitative empirical study with the following 
research question: “What solution strategies do secondary school students provide when asked for 
multiple constructions of perpendicular lines while using only circles and lines within the GeoGebra 
Classroom environment?” 

Theoretical background 
Geometric constructions 

Geometric constructions are understood as a specific category of mathematical problems that ask 
solvers to draw a geometrical object in a precise and exact way. According to the given circumstances, 
it requires choosing an appropriate construction method that would correspond to geometrical 
characteristics of the desired object (Kuřina, 1996). Therefore, geometric constructions are 
considered a form of mathematical activity combining the process of manipulating objects with the 
processes of visualization and reasoning (Duval, 2006). What remains to be discussed, is the way 
how performing geometric constructions could stimulate doing proofs in geometry and, in particular, 
how it could provide students with significant ideas that would be helpful during the proving process 
(Herbst & Brach, 2006). 
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In the Czech Republic, where our research study took place, geometric constructions as a part of 
school geometry are commonly performed on paper while using a pencil, straightedge, compass, and 
a special ruler called a triangle with a guideline. This special ruler has a form of a transparent piece 
of plastic in a shape of an isosceles right-angled triangle with a guideline (an impressed line segment) 
connecting the center of the hypotenuse with the opposite vertex. The tool is frequently used in school 
geometry from early elementary school grades, where it provides students with an easy way of 
drawing a line that is perpendicular to a given line – the solver just has to match the guideline with 
the given line, and then outline the longest side of the ruler with a pencil. From the perspective of the 
GeoGebra environment, a triangle with a guideline corresponds to the tool Perpendicular line. 

As mentioned above, we do not allow the use of the tool Perpendicular line in our study. It means an 
obstacle for the students but, on the other hand, it challenges them to come up with an original solution 
and opens a rich space for multiple correct ways of constructing the object. This arrangement provides 
us with an opportunity to explore various students’ ideas on a problem that is unfamiliar for them but 
still fully corresponds with the content of school geometry that is appropriate to their age. This way, 
our approach shifts the issue of geometric constructions into the frame of open-ended problems in 
mathematics education (Pehkonen, 1997), and thus mediates a suitable environment for investigating 
students’ knowledge. 

GeoGebra Classroom 

The use of DGE in our research follows the above-mentioned studies that focus on the benefits of the 
modern technologies for teaching and learning geometry. We work in an online application GeoGebra 
Classroom provided by GeoGebra software. This software was originally created by Markus 
Hohenwarter (2002) and has been under continuous development and addition of new elements in the 
past two decades. These days, GeoGebra has the form of a rich open-source application covering the 
topics of geometry, algebra, calculus and statistics, in the range from primary school to university 
levels (GeoGebra, 2021). 

GeoGebra Classroom is one of the latest features of GeoGebra software which was introduced to 
public in May 2020. It allows teachers (or researchers) to assign various tasks to students, then ask 
them to join the environment via entering a code and solve the tasks individually. Teachers or 
researchers can observe updated students’ advances in the solving process live, and record the step-
by-step course of all the constructions contributed by individual students. Such interactive features 
provide us with complex data on students’ work. In this contribution, we show how these features 
might be used in research focusing on student knowledge. 

Design of the study 
Participants 

Participants of our research study were 19 students from the same ninth-grade class (age 15 to 16 
years) at a suburban school. At the time of the study, they had already discussed whole mathematical 
curriculum belonging to the lower-secondary school level (grades 6 to 9), including prescribed parts 
of Euclidean planar geometry and geometric constructions such as copying a line segment, an angle, 
or a triangle, constructing circles, triangles and quadrilaterals on the basis of certain requirements, or 
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constructing an image of an object in particular symmetry. During some of their previous mathematics 
lessons, they had also gotten to experience exercises in the GeoGebra environment. Nevertheless, 
they had not been asked to perform geometric constructions in GeoGebra Classroom before. 

Data collection 

As indicated above, we prepared GeoGebra Classroom based on three activities with GeoGebra applet 
where we let the students construct perpendicular lines. The first activity was named “Right angle for 
the first time” and its assignment was formulated as “Make a right angle! I.e., construct two lines, 
about which you can safely say that they are perpendicular to each other.” The second activity was 
named “Right angle differently” and it requested to “Make a right angle again, but now construct two 
perpendicular lines in a different way than in the previous task.” The third activity was named “Right 
angle still differently?” and it asked “Can you do it again? Construct a right angle by a different 
method than in the two previous tasks.”  

For the purpose of our research, the GeoGebra toolbar was customized in all three activities. Solvers 
were able to use only the tools Move, Point, Intersection, Line segment, Ray, Line, Circle with center 
through point, Compass and Delete. They could also go through the steps of their construction using 
Navigation bar, return to the previous step pressing Undo, redone an undone action by pressing Redo, 
or start again with the button Reset construction. 

Data collection was conducted during a mathematics lesson, while working face-to-face with the 
participants in the classroom. At the beginning of the lesson, each participant has got its own school 
tablet, i.e., a device with touchscreen and internet connection. They were used to working with this 
equipment. We gave them the code of the arranged GeoGebra Classroom to type in the box and join 
the environment. The participants had 20 minutes to complete all three assignments. They worked 
individually and independently; we provided them only with technical support. 

Task analysis 

As a preparation for data analysis, we investigated the assigned problem from the geometrical point 
of view. We looked for different construction strategies that would lead to creating perpendicular 
lines using only the given tools. We identified eight basic strategies; others might be derived from 
them by minor changes (e.g. in the order of steps) or by combining various basic strategies together. 
In their background, they all have a construction of a geometrical object that contains a right angle as 
a general property of its basic attributes (e.g. between a line segment and its axis, between diagonals 
in a rhombus, between a side and its median in an equilateral triangle, between a base and its median 
in an isosceles triangle) or as a consequence of a general principle used to construct the object (the 
Thales’s or Pythagorean theorem – Proposition 31 in Book 3 or Proposition 47 in Book 1 of Euclid's 
Elements). We ordered the strategies according to the interrelations between them. In the next 
paragraph, we illustrate the issue by introducing three of the identified strategies and their 
interrelations. 

The strategy that can be considered as the simplest one is based on the construction of the 
perpendicular bisector of a line segment consisting of creating two circles with the centers at the end 
points of the line segment, the circles having the same radii greater than half of the line segment 
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length. This construction had been well-known to the participants as a method of finding the axis 
(perpendicular bisector) of a line segment. Such an approach leads to obtaining two points (the 
intersections of the circles) that are at the same distance from the end points of the line segment. The 
set of all such points is exactly the same as the line that divides the given line segment into two halves 
forming right angles at the intersection point. This, in its substance, is a geometrical theorem that can 
be proven on the basis of the congruence of triangles or the properties of the diagonals of a rhombus. 
When the radii of the circles are equal to the length of the line segment, the circles go through the end 
points; we labeled this strategy as PL1. The general case when the radii are arbitrary but same and 
not equal to the length of the line segment, we labeled as PL2. The modification of the general 
strategy, where the radii are not the same, we labeled as PL3. The PL3 case leads to properties of 
diagonals of a kite (a quadrilateral with two pairs of adjacent sides of the same length has its diagonals 
perpendicular).  

Data analysis 

We analyzed collected data qualitatively, using open coding and constant comparison (Miles, 
Huberman & Saldaña, 2014). We carefully observed all students’ solutions from the perspective of 
correctness and relevance of (i) individual construction steps, (ii) the figure presented as final in the 
construction, (iii) the sequence of the GeoGebra tools used during the construction. The latter 
information was available through the GeoGebra functionality Construction protocol. We were also 
comparing the ongoing findings with our list of basic strategies. 

Findings 
Strategies provided by participants – an overview 

During data analysis, we identified three different basic strategies used by the respondents: PL1 
mentioned above, a strategy based on the Thales’s theorem (an angle inscribed across a circle's 
diameter is a right angle) that had also been stated in our list of strategies, and a new strategy that had 
not been stated in the list. The new strategy consists of the construction of three circles with collinear 
centers and the same radii, and two rays passing the intersections of the circles and forming the 
equilateral triangle. Generally speaking, the method is based on the properties of triangular lattice. 
We added this new strategy to our list, and reordered the list of basic strategies to still follow the 
sequence of relations between them. After the reordering, PL1 stayed PL1, the new strategy became 
the fifth one, i.e. PL5, and the strategy based on the Thales’s theorem became PL9. 

For details on the three strategies see Fig. 1: for each of the strategies, we present the number of 
respondents that provided the strategy (in square brackets), the list of GeoGebra icons that were 
available for the respondents during the task, the final figure, the sequence of the construction steps 
expressed through the GeoGebra tools icons, an explanatory drawing proving the perpendicularity, 
and a note on the geometrical background of the method.  

In all of the assigned activities together (i.e., among the 3 ∙ 19 = 57 attempts to create perpendicular 
lines), 16 students completed the strategy PL1 (one of them twice, with two different orders of 
construction steps), one student completed PL5, and four students completed PL9. All other attempts 
were unsuccessful: the participants either did not present any perpendicular lines, or presented just a 
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freehand sketch (they drew two lines that looked like they were perpendicular but, in reality, they 
were not).  

 
Figure 1: Three constructional strategies that appeared in data with, in square brackets, the number 

of respondents that provided the strategy 

Individual participants 

From the perspective of individual participants across the three activities, nobody was able to provide 
three different strategies. One student provided three different constructions that were based on two 
different strategies (one of the strategies was presented twice, with two different orders of steps), 
three students provided two different strategies, 12 students provided one strategy (all of them PL1), 
and three students did not manage to provide any strategy. The diagram of individual strategies within 
individual assigned activities that also captures individual participants’ shifts in strategies across the 
three activities is shown in Fig. 2. 

 

 

 

 

 

 

Figure 2: The number of students using individual strategies (PL1, PL5, PL9, none) within individual 
activities (I., II., III.), the arrows indicate participants’ shifts in strategies  
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Discussion and conclusion 
In this study, we focused on the variety of solution strategies that secondary school students provided 
while performing non-standard geometric constructions. For this purpose, we developed an 
interactive electronic environment in GeoGebra Classroom, and asked the students to construct 
perpendicular lines in multiple ways. To accomplish the non-standard nature of the task, we allowed 
just lines and circles to be used as tools during the construction. Using the GeoGebra Classroom 
environment, we obtained detailed complex data on students’ work which confirmed the potential of 
DGE in rendering students the opportunities for deep explorations and heuristics (Lawson & 
Chinnappan, 2000). On the other hand, most of the students provided just one construction strategy, 
although we asked them to come up with three different ways of constructing perpendicular lines. 
The variability of the strategies was also low, we detected only three different students’ approaches 
whereas we found at least eight solving methods available and appropriate for the given students. 
Therefore, as a plan for the future, we see the need to investigate further the relationship between 
students’ performance in non-standard geometric constructions and multiple solution tasks, their 
conceptual understanding and their justification skills.  

Among the construction strategies provided by students, two were based on a fundamental feature of 
a basic geometric figure or a basic construction – a perpendicular bisector of a line segment (PL1), 
Thales’s theorem (PL9). These methods could be considered mere applications of a known 
geometrical shape property or construction procedure. However, the approach PL5 that emerged from 
data represents a shift from the use of the known individual object or construction procedure to a 
creative synthesis of various geometrical objects and constructions. We could perceive this method 
as a construct that arises from an enhanced connectedness of student’s knowledge in the domain 
(Levav-Waynberg & Leikin, 2012) or from student’s ability to use concepts and procedures in a 
flexible way (Rittle-Johnson et al., 2012). 

The strategy PL5 also highlights the significance of open-ended approach in mathematics teaching 
and learning (Pehkonen, 1997) that goes hand in hand with the need for stimulation of using various 
construction strategies as in our assignment. It can be concluded that, without this request, the strategy 
PL5 would not have been explored, contemplated and developed by the student. For the future, it 
would be helpful to investigate which other impulses can lead students to such innovative and original 
solutions of geometric problems. 
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Embodied approaches to functional thinking using digital technology: 
A bibliometrics-guided review  
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Digital technology offers many opportunities for embodied approaches to mathematics education. To 
investigate what is known from literature about such approaches for the case of Functional Thinking, 
we carried out a systematic literature review, followed by a bibliometric and an expert content 
analysis. We included 36 peer-reviewed articles from 1986 to 2020 in the study. As a result, we 
identified five research themes in the field, which are further merged into three categories labelled 
Embodiment not central, Pseudo embodiment and Embodiment.  

Keywords: Bibliometric analysis, digital technology, embodied cognition, functional thinking. 

Introduction 
In cognitive science, it is emphasised that cognition originates or is grounded in bodily motions and 
perceptual experience (Barsalou, 1999; Barsalou, 2008; Lakoff & Johnson, 1999; Lakoff & Núñez, 
2001). In this context, recently developed digital technology, including motion detectors and 
augmented reality, seems to offer opportunities for an embodied approach to mathematics education 
(Bos et al., 2021; Drijvers, 2019; Nemirovsky et al., 2013).  A bibliometric approach, which is an 
objective method that provides an overview of the knowledge structure of the domain (Li et al., 2019), 
was applied to explore these opportunities for the case of Functional Thinking (FT), a fundamental 
learning goal in mathematics education (Thompson, 1994; Vollrath,1989). The research question 
addressed is as follows: What is known about the use of digital technology for an embodied approach 
to the teaching and learning of FT? 

Theoretical underpinnings 
We draw on theoretical notions from embodied cognition and design research, digital technology 
research, and research on functional thinking.  

Embodied cognition and embodied design 

Several theories concern the role of the body in cognition and learning. Based on Conceptual 
Metaphor Theory in cognitive linguistics (Lakoff & Johnson, 1980), Lakoff and Núñez (2001) 
analysed the cognitive structure of mathematics and argued that the kinds of everyday conceptual 
mechanisms, image schemas, aspectual schemas, conceptual metaphor, and conceptual blends are 
central to mathematics. Some studies carry a similar idea about mathematics cognition concerning 
embodied design in function learning (e.g., Font et al., 2010; Oehrtman et al., 2019; Paz & Leron, 
2009). From a perceptual perspective, Barsalou frames embodiment through grounding experiences, 
which is also advocated by Schwartz (1999) and Abrahamson et al. (2016) and employed in their own 
research. In addition, Shvarts et al. (2021) emphasise that knowledge emerges as part of a complex 
dynamic behavioural system that is constituted through multiple perception-action loops.  
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For educational materials, Abrahamson (2009) defined embodied design, which was first proposed 
by Rompay and Hekkert (2001), as a systematic and procedural design method, helpful in guiding 
the student's construction of meaning. At first, embodied design was classified into two categories: 
perception-based design and action-based design (Abrahamson, 2009, 2014; Abrahamson & 
Lindgren, 2014).  Action-based designs aim to ground mathematical concepts in students' natural 
capacity to adaptively solve sensorimotor problems. Perception-based designs aim to ground 
mathematical concepts in students' natural perceptual ability in their naive views relating to a situation. 
Similar to the action-based genre, it is followed by a phase of reflection in which these views are 
developed. Concerning the role of artefact in learning design, Bos et al. (2021) propose a new type 
of embodied design, incorporation-based design, which is in a sense the opposite of outsourcing a 
task to an artefact instead of a person. 

Digital technology in mathematics education 

A major consideration in designing and using technology in mathematics classrooms is how to 
identify and use the different didactical functionalities. According to task-based interviews, Günster 
and Weigand (2020) set up a category system. We followed some of the categories for our study: (1) 
Feedback through the learning arrangement, (2) Use of sliders, (3) Creating objects, and (4) Adjusting 
existing objects to analyse the digital technology dimension. These four usages are related to doing 
mathematics and developing conceptual understanding with possible embodied elements. What's 
more, an embodied instrumentation approach, which can offer a design heuristic for ICT activities, 
was proposed by Drijvers (2019). This integrated approach, in which digital technology, 
mathematical cognition and sensorimotor schemes co-emerge, helps us better understand the 
relationship between embodied approaches, digital technology, and FT.  

Functional thinking 

Since the beginning of the twentieth century, functional thinking has been a central aspect of 
mathematical education throughout primary, secondary, and tertiary education (Vollrath, 1986). 
Although there is no widely adopted definition of FT, we propose that FT encompasses the process 
of building, describing, and reasoning with and about functions (Pittalis et al., 2020; Stephens et al., 
2017). In a broader interpretation, FT connects to the four main aspects of function distinguished in 
literature (Confrey & Smith,1995; Doorman et al., 2012; Thompson, 1994; Vinner and Dreyfus, 1989; 
Vollrath, 1989): a) Function as an input-output assignment; b) Function as a dynamic process of 
covariation; c) Function as a correspondence relation; d) Function as a mathematical object. 

Methods 
To address the research question, we carried out a systematic literature search, followed by a 
bibliometric clustering (BC) and expert content analysis (Drijvers, Grauwin, & Trouche, 2020). The 
first step was part of the FunThink Erasmus+ project, a European research project. 

Systematic literature search 

The literature search was conducted in four databases: ERIC, PsycINFO, Scopus, and Web of Science. 
We searched for relevant studies published in peer-reviewed journals and written in English without 
restricting the publication date. Qualitative studies, quantitative studies and mixed-method studies 
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were included. The query focused on Functional Thinking × (Embodiment OR Digital Technology). 
Our initial search yielded 278 journal articles. After deduplication, 257 unique publications remained. 
Next, we carried out two rounds of screening. The first round concerned a scan of title, abstract and 
keywords, to judge each article's relevance to each of the three aspects: Functional Thinking (FT), 
Embodiment (EM), and Digital Technology (DT). This led to 93 papers – empirical as well as 
theoretical papers - being selected with the help of ten coders from FunThink project. In the second 
round, eleven coders participated in the literature appraisal round, during which each coder read full 
texts and filled in a spreadsheet with the core ideas of each article. We removed the articles coded 0 
to 2 as they are perceived as less helpful to our project. As a result, thirty-six articles were included 
in the final corpus. 

Bibliometric clustering and expert content analysis 

The studies in the final selection were classified with the help of BC techniques (Drijvers, Grauwin, 
& Trouche, 2020), which provides a sense-making sketch of the 'landscape' of our topic. We did not 
regard the bibliometric results as strict, exclusive categories; rather, we saw them as analytic tools 
that help us make sense of the rich diversity in this research field and to locate the main areas of 
embodied elements. Triangulating the bibliometric findings with expert content analysis helped us to 
find out a new taxonomy of the studies in relation to the different embodied approaches / embodied 
elements, which formed a basis for the study's results. 

Results  
Results from BC techniques include clusters that gather thematically close (based on the references) 
publications of the studied corpus; overall descriptions of the clusters, including an analysis of 
publication year, numbers involved, reference, and global meaning (see Table 1); and categories of 
embodied approaches to the use of digital technology for FT (see Table 2). 

The bibliometric clustering leads to five clusters, containing 31 thematically close publications. The 
quality measure Q=0.429 suggests a meaningful partition. In each cluster, the most frequent 
references, the most frequent subjects, and the most cited authors are analysed. Table 1 presents some 
of these features.  

Table 1 Description of the five clusters 

 Cluster 1 (n=3) Cluster 2 (n=5) Cluster 3 (n=6) Cluster 4 (n=6) Cluster 5 (n=11) 

Ti
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st
rib
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n  

 
between 2009 and 
2015 

 
mainly written after 
2020 

mainly after 2013 
 

since 2007 
 

since 1990 

To
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e 
ci
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d 

O' Callaghan (1998) 
Kennewell(2001) 
Keong (2005) 

Drijvers(2015) 
Dubinsky (2013) 
Ellis (2011) 

Artigue (2002) 
Zbiek (2007) 
Lagrange (2008) 

Falcade (2007) 
Tall (1996) 
Vollrath (1989) 

Nemirovsky (1998) 
Lakoff (2000) 
Mariotti (2002) 
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involving mouse 
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(dragging, sliders, 
etc.)  

based on embodied 
design 

In light of the research question, our main goal is to explore how an embodied approach in learning 
design can affect developing functional thinking. We merged Cluster 1, Cluster 2 and Cluster 3 into 
one category labelled as Embodiment not central. This category focuses on digital technology-
enhanced function learning and teaching without elaborate embodied designs, but has different types 
of technology. Next, we labelled Cluster 4 Pseudo embodiment category, which describes 
technology-enhanced designs with sort of embodied elements (like dragging). Finally, we labelled 
Cluster 5 Embodiment category, including eleven articles focus on embodied designs for function 
learning. Figure 1 depicts the results of the BC method, where the node size is proportional to the 
number of publications contained therein and the line thickness is proportional to the average 
similarity between the publications of the two linked clusters (in terms of shared references).  

 
Figure 1 The network of clusters 

Following the labelled categories, Table 2 illustrates how the possible embodied elements (the use of 
slider, create object, feedback through the learning arrangement and adjust object) are involved in the 
three types of embodiments. First, the use of sliders only appears in the Pseudo embodiment, that is, 
most designs only allow students to control sliders in the digital environment by mouse. Second, 
students are given many opportunities to create and adjust functional objects, mainly digital geometric 
objects, in the designs from Embodiment not central and Pseudo embodiment. But in the Embodiment 
category, about half of the designs offer the existing, elaborate objects that students only need to 
adjust. Finally, feedback from the digital environment appears more frequently in the Pseudo 
embodiment category.  

Table 2 Categories of Articles Based on the Use of Digital Technology and Embodiment 

Embodiment not central (n=13) Pseudo embodiment (n=12) Embodiment (n=11) 
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As a final result, given the theoretical underpinnings and bibliometric results described above, our 
content analysis led to the identification of three categories of embodied approaches: Embodiment 
not central, Pseudo embodiment and Embodiment.  

 Embodiment not central 

In the Embodiment not central category, the most common configuration of the designs is creating 
and adjusting objects with/without feedback. And in these designs, students are allowed to adjust 
objects by inputting different values or pressing buttons on the calculators. Considering the 
mathematical object aspect of FT, especially the aspect graphing, GeoGebra, Graphmatica and TI-
Nspire software/calculator are used to help students detect the effects of changing parameters in 
function on its graphical representation through supporting the modelling of different scenarios that 
allow students to study the effect of changes in the value of one variable on the other (Duijzer et al., 
2019; Jon, 2013; Ogbonnaya, 2010). Along with the adjusting functionality, feedback from digital 
technology was also emphasised in the studies. For example, Asli Özgün-Koca (2016) pointed out 
that the feedback from the representations on the screen might help students recognise their 
misconceptions and overcome them through additional interactions with the digital tool. In addition, 
digital technology has the potential to motivate students and instil a curiosity that enables them to 
learn more when receiving real-time feedback from the tool (Ogbonnaya, 2010).  

Pseudo embodied approach 

Compared to the first category, embodied elements in this second category are more visible in the 
learning design, such as slider using and mouse dragging tasks. Mouse movements play an important 
role in using DGS (e.g., Cabri and GeoGebra) or in other digital environments (e.g., the Digital 
Mathematics Environment DME). There are two different settings of sliders: a) continuously slider 
(free movement on a bar without restriction), b) discrete slider (static selection of particular values). 
In Liang and Moore's case (2020), students could drag the endpoint (without restriction) to vary the 
length of the bar, which leads to the dynamic point on the circle moving correspondingly. Students 
can recognise amounts of change (covariation aspect of FT) when the perceptual material was given, 
but can not anticipate, represent or regenerate the changes when the perceptual material is absent.  

Apart from using sliders, this category includes diverse mouse movements that provide more 
opportunities for students to create or explore relationships between entities and variables. The Arrow 
Chain module in DME, for example, is designed to foster conceptual understanding of the notion of 
function, where the main aspects of function in this design are input-output assignment, dynamic 
process of covariation, and mathematical object with different representations (Doorman et al., 2012). 
Students are able to drag and connect machines into function chains. In doing so, the idea of 
embodying the functional level to compose as well as the input-output assignment is clear. This 
design could offer educators and researchers some informed directions or ideas for using the 
technologies to achieve specific learning goals.  

In addition to the different mouse movements of embodied elements, the type of feedback from digital 
technology can also differ among designs. The abovementioned design shows that the movement of 
connecting embodies the input-output process essential for the function notion, but there is no 
feedback on the movement itself. Falcade et al. (2007) designed two tasks with real-time feedback on 
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the screen that allows the user to feel functional dependency in the domain of space and time. Students 
can find the effect of moving one of these points at a time and observe the traces they make through 
the Trace tool. The traces of points on the screen provide real-time feedback and serve as a cognitive 
anchor for learning about and understanding abstract concepts (Cox, 1999; Reiner, 2009).  

Embodied approach through digital technology 

This category of embodied studies in our corpus includes physical motions with the help of digital 
technology, especially registering movement digitally, processing, and providing feedback. A main 
similarity between the papers is the presence of (adaptive) motor tasks. In accordance with the three 
types of embodied task designs, action-based, perception-based, and incorporation-based (Bos et al., 
2021), the following analyses provide insight into the possible embodied instrumentation approach 
(Drijvers, 2019) used in the studies of the third category.  

Most studies used function-related tasks from an action-based perspective (8 out of 11). The 
embodiment of actions can supplement the input received from other modalities (e.g., vision), 
enabling students to construct richer multimodal representations to support more complex 
understanding (Drijvers, 2019). Distinctive regarding the understanding of functions, Nemirovsky et 
al. (2013) designed a mathematical instrument called Drawing in Motion, which is a prototype exhibit 
that requires physical engagement and collaboration between two people who jointly produce a graph 
on a displayed Cartesian coordinate plane through a large LCD screen. It did provide a new 
perspective of understanding function using the embodied instrumentation approach, compared to the 
conventional ways of thinking about functions (e.g., dynamic/process and static/structural 
conceptions). The authors claim that, given suitable mathematical instruments and practices, even 
young learners can engage in the learning of functions with the emphasis on the parameterisation of 
time.  

Studies in the genres of perception-based and incorporation-based designs concerning FT so far are 
rare. Ferrara & Ferrari (2020) used WiiGraph software to engage pairs of students with functions 
through graphing motion, and one of their tasks, named Line option for a+b, showed the perception 
features. They even drew a conclusion that aspects of coordination and imagination push the 
mathematical activity further no matter whether the tool is in use or not. Again, the significance of 
perceptual experiences in the learning of function has been proved. The graphing motion technology, 
which allows working with couples of positions over time graphs, provides students with the 
opportunity to observe in real-time the graph of the sum of two functions on the screen, and then gain 
perceptual experiences supporting a concrete understanding of function.  

Conclusion 
With the aim of exploring how an embodied approach in learning design can affect students' FT with 
the support of digital technology, this study performed an expert content analysis using the BC 
approach. The literature analysis based on the selected corpus revealed three categories: (1) 
Embodiment not central; (2) Pseudo embodiment; and (3) Embodiment. All three categories have 
distinctive features in characterising the embodied elements of technology-enhanced learning designs. 
In the Embodiment not central category, embodiment remains implicit with keyboard strokes tasks 
and mouse-clicking tasks occupying the most learning designs. In the Pseudo embodiment category, 
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mouse movements, as a distal movement, play an important role that can be made more proximal 
through touch screen technology and gestures that more closely correspond to the actual movements 
intended in using sliders or adjusting geometric objects. In the Embodiment category, digital 
technology allows for an embodied approach to register movement, process, provide feedback. From 
a methodological point of view, the bibliometric clustering technique did not offer new insights but 
did confirm our impression on how embodied approaches are involved in the domain of function.  
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Segmentation

Self-explanation 
prompts

Larger concept

Heuristic 
strategies

Layout decisions

Conversational 
language

segmenting principle (Mayer, 2020)

meaningful steps (Kay, 2014)

usage of modular examples (Gerjets et al., 2006)

following a solution plan (Reiss & Renkl, 2002)

generative activity principle (Fiorella et al., 2020; Mayer 
et al., 2020)

follow-up learning tasks (Kulgemeyer, 2018)

larger homework assignment (Brame, 2016)

clear problem label (Kay, 2014)

explain key elements (Kay, 2014)

weeding (Ibrahim et al., 2012) / seductive details principle (Mayer et al., 2020) / length shorter than 6 minutes (Guo 
et al., 2014)

dynamic drawing principle (Mayer et al., 2020) / video style: preferably showing instructor’s hand (Mayer et al., 
2020)

signaling (Brame, 2016) / highlighting, write down key information (Kay, 2014) / signaling principle (Mayer, 
2020)

match modality (Brame, 2016) / modality principle (Mayer, 2020)  / use visuals (Kay, 2014) 

conversational language (Brame, 2016) / direct addressing (Kulgemeyer, 2018) / personalization principle (Mayer, 
2020)

engaging voice (Kay, 2014) / voice principle (Mayer, 2020)

pace: 185-254 word per minute  (Guo et al., 2014)

example-set principle (Renkl, 2014)

fade worked steps (Renkl, 2017)

make used heuristics explicit (Reiss & Renkl, 2002)

self-explanation and comparison principle 
(Renkl, 2014, 2017)

elaboration of underlying procedures (Tropper, 
2019)

Indication from video and 
multimedia research

Indication from (heuristic) worked 
example researchCategory
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Starting from previous lines of thought 
Theories are essential parts of each scientific discipline; they can be used to solve problems, to answer 
research questions, to capture phenomena, to predict what can be expected or prescribe what can be 
done in practice (Prediger, 2019). However, in the field of mathematics education, there is no 
consensus of the notion of ‘theory’ (Assude et al., 2008). What is agreed upon in most communities 
in our field is that theories are “… individual or social constructions which serve to understand and 
describe a part of reality in a consistent manner” (see. Maier & Beck, 2001, p. 45, own translation). 
They provide a language and a lens “…. to understand what are taken to be the things that can be 
questioned and what counts as an answer to that questioning.’’ (Mason & Waywood, 1996, p. 1056). 
Theories afford the coherence of a research framework and provide the space for consistent 
argumentation. As Bishop (1992) summarizes, a theory “is the way in which we represent the 
knowledge and understanding that comes from any particular research study. Theory is the essential 
product of the research activities, and theorizing, therefore, its essential goal.”  (p. 711) 

Radford (2008, 2012) has conceptualized theory as a way of understanding based on a collection of 
principles (P), methods connected to those principles (M), and paradigmatic research questions (Q). 
When researchers draw on a theory for research to produce results (R), those results can contribute 
to further theory development. Hence theories are dynamic, rather than static, and they continue to 
evolve via researchers’ engagement with them.  

Previous TWG17s have addressed the question of how researchers and designers work with theories 
in the field of mathematics education (Kidron et al., 2018), taking tasks and tools into consideration. 
Two key, interrelated issues have been (1) how to grasp the complexity of teaching and learning of 
mathematics and (2) how to deal with the diversity of theories in the field. Working with theories is 
embedded in the culture of educational systems, and we witness a broad diversity of educational 
systems worldwide. Accordingly, our working group acknowledges diversity of theories as a kind of 
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richness in mathematics education, through which learning from and with each other provides the 
potential of advancing the field of mathematics education as a whole.  

Coherence of a research framework and consistency of argumentation are guiding principles in the 
use of theories. This allows researchers to advance knowledge, which may be relevant even beyond 
mathematics education contexts. In its final discussion at CERME11, the TWG17 has agreed upon 
the dynamic, evolving nature of theories in research, as Bikner-Ahsbahs et al. (2019) summarize: 

… scholars should neither demand that theories be used with absolute rigor nor allow arbitrarily 
applications of theory. To form coherent research frameworks, scholars engage in reconsidering, 
reinterpreting and reusing theories to investigate new phenomena, solve new problems and serve 
new purposes. Thus, theories develop and evolve through research. Working on coherence and 
consistency is an ongoing research task, particularly necessary for the Networking of Theories, in 
which reconsidering the compatibility of the theories or theoretical approaches is an additional 
epistemological necessity. Achieving generativity, generalizability, and generality affords the 
potential of the research results to be useful for answering new questions. (p. 3026) 

The networking of theories approach (Bikner-Ahsbahs & Prediger, 2014) has been intensively 
discussed in previous TWG17s (Kidron et al., 2018). It has supported researchers’ navigation of a 
variety of epistemological stances that may underlie the different theories involved in research and 
their exploration of how various theories can be used to investigate complex situations of teaching 
and learning. Yet, further elaboration of the networking of theories is needed to expand its research 
potential. A landscape of networking strategies has proven fruitful for guiding such efforts (Prediger 
et al., 2008). Specifically, the networking strategies of coordinating and locally integrating theoretical 
approaches have led to advancing our knowledge (Bikner-Ahsbahs & Prediger, 2014). 

The TWG17 of CERME 11 identified the important role of certain sensitivities in theoretical work 
(e.g., the theory’s ecology, its grain size, the nature of the mathematical content it considers, the 
research objects, etc.), and distinguished between generalizability, generality, and generativity in 
research methodologies: generalizability in empirical, generality in theoretical and generativity in 
design research. Chan and Clarke (2019) elaborated how our choices in research are based on mutual 
affordances between these theoretical sensitivities and the methodologies and methods to be used. 
Thus, researchers should be aware that theoretical, methodological, and methodical work are 
intermingled and related to the cultural context in which research is conducted. 

Issues addressed in the call: connection to previous TWG17s 
Design research has been prevalent in discussions of previous TWG17s. This pointed to various ways 
that researchers’ decision-making could influence their theoretical approaches, specifically with 
respect to transforming versus depicting in mathematics education research processes. In this 
TWG17, we addressed this distinction by asking for contributions on theories related to design 
research, technology use and conditions for a productive dialogue between theorists. 

What has been implicit in previous TWG17s were basic commitments underlying theoretical work. 
For this TWG17 we called for more explicit discussion of ethical commitments in theorizing and 
theory networking. We also called for attention to ontological, epistemological and axiological 
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presumptions of theories. Adapted from Patterson and Williams (1998), Daene (2018, n.p.) 
distinguished and described four such commitments. These were “the nature of reality and what really 
exists (ontology); the relationship between the knower and what is known (epistemology), what we 
value and how we determine that value (axiology), the strategy and justifications in constructing a 
specific type of knowledge (methodology), as linked to individual techniques (method/s).” In theories 
on teaching and learning we–sometimes implicitly–could make ontological assumptions about the 
piece of reality addressed (e.g., whether teaching-learning is an irreducible entity or consists of two 
different processes). In epistemology we could build on this assumption to ask how we can know 
something about the ontological entity and how this knowledge must be so designed. In methodology 
we could address the question of how knowledge can be produced (and by what means). Ethics, being 
part of axiology, could enable us “to rethink and re-evaluate some of the taken-for-granted 
commonplaces of our practices” (Ernest, 2012, as cited in Stinson, 2017, p. 2), “which opens up new 
possibilities for theorizing and researching mathematics teaching and learning.” (Stinson, 2017, p. 2) 

Main contributions achieved 
Fifteen papers and four posters were presented in this working group. In sum, 52 authors from 17 
countries worldwide were involved. This indicated that doing research happens in communities rather 
than individually. Fifteen out of 19 contributions followed a networking of theories approach, 
indicating that networking of theories is being normalized in research although it still needs to be 
further developed. Design research became more prominent, with many papers involving this 
approach. In line with previous TWG17s many theory elements were addressed. There were 22 
theories and 27 theoretical concepts or ideas addressed across the contributions. The awareness of 
our own achievements in our home field of mathematics education seemed to be growing. This was 
not so obvious in the papers but more so in our ways of talking about theories. Scholars became more 
often named as originators of the theories together with the theories, for example when talking about 
Duval’s cognitive theory of representation or Schoenfeld’s Resources-Orientations-Goals theory.  

A key outcome of our discussion is a new characterization of theorizing, in terms of two dimensions: 
horizontal and vertical theorizing, which we illustrate in Figure 1. Horizontal theorizing happens 
when researchers draw on a theory (or theories) to make sense of problems or phenomena. With 
horizontal theorizing, researchers focus on the how of theory use, for the purpose of illuminating new 
aspects of complex phenomena. For example, researchers may network different theories to further 
the investigation of empirical phenomena, such as students’ reasoning in engineering education. In 
contrast, vertical theorizing happens in the semiosphere, the cultural semiotic space of theory cultures 
(Radford, 2008; Lotman, 1990). With vertical theorizing, researchers focus on meta-issues of theory 
use for the purpose of understanding theories as entities in and of themselves. For example, 
researchers may weigh the epistemological ramifications of networking different theories, and argue 
for the viability of doing so. Researchers’ theorizing may address horizontal or vertical theorizing, or 
both. As suggested by our examples, the networking of theories entails both. The rule of keeping our 
feet on the empirical ground (Figure 1) takes seriously the purpose of a theory to act as a tool for 
understanding the empirical world. It means that vertical theorizing can only increase our 
understanding of theories when it is grounded in horizontal theorizing. 
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Figure 1: two dimensions of theorizing 

Contributions of horizontal theorizing 

Some papers addressed complex and multifaceted phenomena as a unity, a balance or tension between 
theoretical parts. Fosse et al. used Cultural Historical Activity Theory (CHAT) to investigate 
expansive learning when students crossed institutional cultures in their career. They explored masters 
students’ transitions from university to school to identify if contradictions spark their learning and 
how and what teacher educators can learn from it for their own teaching. Herbst et al. proposed to 
use networking of theories to investigate teacher decision making and the role of structure and agency 
in these processes. Kuzniak and Nechache presented the Mathematical Working Space as a 
framework to be linked with other theories (e.g., Abstraction in Context) to describe how cognitive 
actions start from the epistemological level and how it develops with respect to semiotic, discursive 
and instrumental genesis. They posited that actions may link mathematical work with other theories. 

Several contributions theorized the use of artifacts or tools and considered their role for progressing. 
Shvarts et al. analysed Freudenthal’s and Davydov’s work disclosing their common understanding of 
mathematical perception in learning to advance the embodied design framework. Starting with 
concrete actions, ascending from the abstract to the concrete entailed viewing the concrete in a 
completely new way through the lens of acquired artifacts. Thus, one’s perception of the concrete 
would change as learning proceeds. Salinas-Hernandez et al. linked a cultural-historical approach 
with a semiotic view. They explored the “Imaging Teaching Scheme” of a physics teacher who used 
various artifact representations for the production of signs to guide learning. Santi et al. networked 
the theory of objectification with a differentiation approach for design research. Open Activity Theory 
Lesson Plan is an artifact they developed to guide designing stations to foster inclusive instruction by 
processes of objectification and subjectification of all learners. Kanwal networked a CHAT frame 
with the concept of creative and imitative reasoning to investigate teaching mathematics in 
engineering education at university. Computer software provided the artifact that shaped the 
conditions for the students’ operating that constrained their reasoning actions.  
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In some contributions, horizontal theorizing pursued specific purposes. This way, researchers could 
clarify why networking was needed and helpful. Bach et al. networked Duval’s (2017) cognitive 
theory of representation and the Instrumental Approach in a design research approach for learning 
functions to foster the representation competency defined in the Danish KOM framework. In their 
paper, they showed how the networking strategy of coordinating helped them to structure developing 
design principles. Petersen networked concept image and concept definition also with the cognitive 
theory of representation to enlighten mathematical thinking related to the KOM framework with a 
focus on differentiability. Kanwal’s theoretical approach allowed for the consideration of students 
within the activity system as a wider entity. Researchers also could use theories to make new aspects 
visible. Tuktamyshov offered a “picture of the world.” Mali et al. drew on the concept of 
“perezhivanie” to expose learners’ life-changing experiences, and Zagorianakos linked perezhivanie 
with phenomenology to explore what this might add to previous insights.  

Another purpose of horizontal theorizing was to take up and explore new challenges. Bikner-Ahsbahs 
et al. met the challenge of the pandemic and shifted the summer school YESS10 to an online 
conference format. This new situation allowed them to conceptualize the rhythmic orchestration of 
the research pentagon (Bikner-Ahsbahs, 2019). Gardesten coordinated the Knowledge Quartet and 
the Pedagogical Relational Teachership to build a methodological tool to explore teachers' 
pedagogical content knowledge and relational abilities when teaching mathematics in inclusive 
settings. Barquero et al. identified points of contact between the Antropological Theory of the 
Didactic and the Theory of Didactic Situations to explore constraints of a new paradigm of 
instruction, the Study and Research Path. 

Contributions to vertical theorizing 

Vertical theorizing can happen in many ways. Lensing has provided an example of vertical theorizing 
as he looked at the three essential systems in mathematics education, the social, the individual and 
the body, and the problem of the impossibility to theorize them jointly. His solution of this complexity 
problem was to look at regularities the systems share and, thus, build theories on a more formal level. 
Other ways of vertical theorizing ask for how we understand and practice theorizing, and what kind 
of ethical, ontological, epistemological, and methodological commitments are present in theorizing. 
Critical for the ethical dimension are the aspects to which a theory attends while leaving others left 
aside, which means that some aspects are valued over others. For example, the theory of 
objectification (TO) addresses the dialectic between objectification and subjectification in teaching 
and learning mediated by tools (Radford, 2021), but it does not tell Santi et al. how to differentiate 
tasks for an inclusive setting. Thus, differentiation is invisible in the TO. Santi et al.’s networking 
theories approach is a way to display differentiation and simultaneously adhering to the TO.  

To date it is not so clear what, specifically, theorizing entails when the aim is not to apply a theory to 
an empirical situation but rather to create new theoretical steps. Valdés-Zorrilla et al. have proposed 
to consider theorizing as a kind of metaphorizing, starting from the source domain of a metaphor to 
theorize the target domain with the help of the metaphor. In such a process, the role of the researcher 
as a user, borrower, adaptor, developer, or creator of theories comes into play. This necessitates being 
explicit about how, why, and for what theoretical steps are made. In this context, two purposes of 

Proceedings of CERME12 2918



 

 

theory use become relevant: using a theory to depict versus using a theory to transform a teaching-
learning situation. The former requires quite different kinds of reasoning than the latter. This has 
consequences for methodological choices as Chan and Clarke (2019) have pointed out. They have 
explored the reciprocity of theory and methodology showing the mutual affordance between 
theoretical and methodical choices. It requires vertical theorizing to describe particularities of how 
mutual affordance is involved in research. Following this path of vertical theorizing, Johnson et al. 
have elaborated what mutual affordance might mean for the networking of theories. They have 
proposed to use the metaphor of a multifocal lens to guide mutual affordances between theory 
networking and methodical choices. 

Vertical theorizing is also present in the researchers’ sensitivity to decide how, why, and for what 
purpose a theoretical step is needed and where to start with theoretical choices. Researchers are not 
free in their choices, as these are constrained by theory traditions. Theory development is only 
possible within certain limitations of a theory culture. When a transformative step goes beyond the 
realm of the theory culture, it can create epistemological obstacles. However, some theories such as 
CHAT may inform quite different research directions. Fosse et al. offer contradiction as a starting 
point to explore expansive learning. Kanwal also draws on CHAT to relate students’ reasoning to the 
software the students used and to embed both into a wider activity system. When a new challenge 
such as the pandemic situation emerges, it may constrain research. However, it also may provide 
opportunities to see calls for new theorizing steps, such as Bikner-Ahsbahs et al.’s description of 
rhythm to extend the concept of instrumental orchestration.  

Vertical theorizing also may address the relation between theory and practice and contribute to shape 
a disciplinary identity. In the practice of research, a theory needs an appropriate methodology to be 
put to work and lead to relevant insights. However, theory and methodology do not transform teaching 
and learning by itself. The practice of teaching and learning can be transformed by design research, 
which may in turn also transform research and gain new insights for theories. Design research may 
even be considered a research genre that is specific for mathematics education, thus contributing to 
form a mathematics education research identity. This can allow researchers to line up and navigate 
the power-filled landscape of disciplines and institutions. Theoretical work, including further 
developing the networking of theories approach and design-based research, may help the field of 
mathematics education to become aware of its strengths and of what it has to offer to other disciplines. 
In turn, this can strengthen mathematics education’s status as a research discipline. 

Lessons learned and future directions 
Did we proceed with respect to consider the dimensions of ontology, epistemology, and axiology in 
processes of theorizing more explicitly? Three contributions point to progress in this area. Gardesten 
and Santi et al. are aiming at establishing inclusive mathematics education research. The dimension 
of ethics, and hence, axiology, is very explicit in their contributions. Santi et al. appeal to Radford’s 
(2021) theory of objectification (TO) to position students and teachers as “reflective and ethical 
subjects” who engage in “joint labour” to develop new knowledge. In the analysis of Shvarts et al., 
we may consider the relationship between the works from Freudenthal and Davydov as being based 
on the common epistemological assumption that abstraction leads to a new vision of reality. 
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Ontologically, this means that reality is structured in a new way when it is perceived through using a 
mathematical artifact. In future TWG17s, there needs to be continued and more explicit attention to 
ontological, epistemological and axiological dimensions grounding our research. 

The distinction between horizontal and vertical theorizing is an insightful step this TWG17 has made 
because it accredits us as researchers with the sensitivity of what theorizing means and in what kind 
of theorizing we are involved. Horizontal theorizing on concrete phenomena or problems is a 
necessary step in research, and we also need to strengthen our practice of vertical theorizing in order 
to be able to clarify basic assumptions in our research. Through vertical theorizing we can decide 
whether and how networking of theories is a consistent approach to reveal a coherent body of results. 
Whereas the objects of horizontal theorizing are phenomena in mathematics education, the objects of 
vertical theorizing are the theories or theory elements themselves (i.e., abstract entities in the 
semiosphere). Vertical theorizing is therefore more difficult to communicate, much more difficult 
than communicating how theories frame our research. Reflecting on concrete work may strengthen 
our theoretical understanding of a piece of reality allowing us to advance vertical theorizing. 
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In a design research (DR) study concerning how students exercise their representation competency 
when using digital tools, we aim to investigate the potential of networking practices to support the 
purpose of developing theoretically grounded design principles in DR. We provide and discuss an 
empirical example of how design principles for students’ activation of representation competency, 
when using GeoGebra, are adjusted through retrospective analysis in DR. We further show how such 
analyses may be structured through the coordinating strategy of networking of theories. 

Keywords: Design research, networking of theories, predictive theory elements, design principles. 

Introduction 
DR aims to develop both theory and practice in an intertwined manner. An important part of DR is 
to develop principles for designing tasks through careful analyses using theoretical perspectives 
(Prediger, 2019). However, the development of theory only appears to a limited extent in some DR 
studies (diSessa & Cobb, 2004). Networking of theories offers strategies for understanding and 
relating theoretical constructs, while at the same time aiming to connect the many unrelated 
theoretical perspectives in mathematics education (Prediger et al., 2008). In this paper, we aim to 
investigate how practices from networking of theories may strengthen theory development in DR. To 
achieve this, we use an illustrative case involving task design aiming to exercise students’ 
mathematical representation competency when using digital tools, such as dynamic geometry 
environments (DGE)). The Danish competency framework (KOM) defines eight competencies, 
among them is the representation competency, which involves the capability to make use of, 
reflectively choose, interpret, translate between mathematical representations and understanding the 
scope, limitations, and strengths of representations being used (Niss & Højgaard, 2019). For instance, 
students exercise representation competency when choosing the most appropriate representation for 
given phenomena or understanding relations between representations (e.g., graphs and equations). 
KOM does not address the use of digital tools at large, why coordination of two fine-grained 
theoretical perspectives is relevant. For the use of digital tools, we apply the instrumental approach 
(e.g., Trouche, 2005), and for further insight on the mathematical representations, we utilise Duval’s 
(2017) perspectives on semiotic registers.  Our research question is Applying practices from 
networking of theories, how may design principles about students’ exercise of representation 
competency when using digital tools be refined? We present our DR process focusing on humble 
design elements. Then, we present perspectives on networking of theories and our theoretical 
perspectives, followed by our illustrative case of which we carry out parallel analyses conducted to 
define our design principles for exercising representation competency while using digital tools based 
on the humble design elements. Finally, we refine the design principles using a networked analysis 
in a discussion and networking practices in DR.  
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Design research and importance of design principles for task design 
DR includes different phases: 1) preparation of design, involving the development of design 
principles; 2) testing design by gathering data in classrooms; and 3) retrospective analyses, which 
serve to analyse the design and refine the design principles (diSessa & Cobb, 2004). Theorising exits 
in all steps of DR. Different theory elements in DR may be characterised as categorical, normative, 
explanatory, descriptive and predictive theory elements. In particular, predictive theory elements are 
key for this paper, as it involves the development of design principles (Prediger, 2019). Design 
principles may have the following structure: 

If you want to design intervention X [for the purpose/function Y in context Z], then you are best 
advised to give that intervention the characteristics A, B, and C […], and to do that via procedures 
K, L, and M […], because of arguments P, Q, and R (van den Akker, 1999, p. 9)   

Based on a previous literature review (Pedersen et al., 2021), involving the representation competency 
of KOM (Niss & Højgaard, 2019) and the perspective of semiotic registers (Duval, 2017), we present 
the humble predictive heuristics, meaning the design principles that have not yet been tested. The 
review revealed that students could engage in processes of dealing with different representations and 
their reciprocal relations in a multi-representational digital tool. Yet, there is a risk that the digital 
tools outsource essential aspects of mathematical activities by automatically generating translations 
between representations. As part of the literature review, we proposed five recommendations for task 
design aiming to have students exercise their representation competency in interplay with digital tools 
(Pedersen et al., 2021). Three out of the five recommendations are relevant for this study. According 
to van den Akker’s (1999) definition, we regard them as humble design characteristics (HDC):   

 HDC 1. Including the linguistic register by formulating the task in natural language and asking 
for answers in natural language. 

 HDC 2. Breaking objects and windows of the tool into smaller units by introducing them 
gradually. 

 HDC 3. Using sliders, dragging and tracing for explorations of different representation and 
representation forms’ reciprocal relations. 

Networking of theories and presentation of selected theoretical perspectives  
Networking of theories provides strategies for connecting theories at different levels: From 
‘understanding others’/‘making understandable’ to ‘integrating locally’/‘synthesising’. We focus on 
the strategies ‘combining’ and ‘coordinating’, both focus on understanding an empirical 
phenomenon. Often, more than one theory is necessary to understand an empirical problem. When 
‘coordinating’, the involved theories must be compatible, meaning that their background theories 
outside mathematics education (Bach et al., 2021) are not in conflict (Prediger et al., 2008). 

We aim to network theoretical perspectives to understand the interplay of students’ representation 
competency and their use of digital tools, which are compatible with KOM. KOM plays the role of 
what Bach et al. (2021) term as a ‘framing theory’, meaning a background theory inside mathematics 
education research. Although, it may rather be a framing framework. KOM is of a cognitive nature 
focussing on an individual’s expression of cognition in particular mathematical situations (Niss & 
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Højgaard, 2019). Semiotic registers and the Instrumental Approach are in line with KOM as both 
address cognition. As the theoretical perspectives look at different objects and phenomena 
(mathematical representations and use of digital tools, respectively), they may complement each 
other. Hence, their backgrounds appear not to conflict indicating that ‘coordination’ may be possible. 

Transformations between semiotic representations are essential in mathematical activity. In their 
nature, mathematical objects and processes are abstract and only accessible and transformable 
through their representations. Consequently, the process of mathematical activity involves 
transforming representations within or between registers. Four registers are distinguished depending 
on if a register is multi- or monofunctional and discursive or non-discursive (Duval, 2017). Discursive 
registers (the symbolic and the linguistic registers, named as such in Pedersen et al., 2021) involve 
written and spoken languages expressing meaning units of thoughts. Non-discursive registers (the 
graphic and the figurative register named as such in Pedersen et al., 2021), only display one (or more) 
static, visual object(s). Mono-functional registers (the symbolic and the graphic registers) involve 
algorithmic processes. Multifunctional registers (the linguistic and the figurative registers) then 
involve non-algorithmic processes, such as communication and imagination. Each register may 
contain more representation systems with their own rules. A transformation between representations 
within the same register is called treatment. A transformation between representations from one 
register to another is called conversion (Duval, 2017). 

The instrumental approach to mathematics education concerns the cognitive process of turning an 
artefact (e.g., a ruler, calculator, or dragging in GeoGebra) into an instrument for the activity of 
solving any kind of task. When distinguishing between artefact and instrument, it is inherent that the 
artefact in itself is just a material object, and only becomes an instrument when an individual can 
appropriate parts of the artefact for a certain task. This process is called instrumental genesis and is 
developed over time and shaped through the two-way processes of instrumentation and 
instrumentalisation. Instrumentation is directed from the artefact towards a user, as its constraints and 
possibilities shape how an individual uses the artefact. Instrumentation can go from a phase of 
exploiting different possibilities of using the artefact to solve the task relying on prior knowledge to 
a more stable phase, where the same usage is applied for similar tasks (Trouche, 2005). 
Instrumentalisation is directed from the user towards the artefact, as the user uses and manipulates 
the artefact (based on the user’s knowledge), which can be different from the original intent of the 
designer of the artefact and can both lead to enrichment of an artefact, or its impoverishment. Within 
this two-way process of instrumental genesis, an instrument involves an artefact (a material thing) 
and schemes concerning the mathematical content and its relation to the use of the artefact (Trouche, 
2005). 

Presentation of the case: Ivy and Aya  
The data excerpt and task presented in this paper were chosen because the task represents humble 
design characteristics. The task (inspired by Johnson & McClintock, 2018) was originally developed 
to activate the communication competency, which often also involves one or more mathematical 
representations (Niss & Højgaard, 2019). The task relates different representations and different 
mathematical contents (geometry and functions) in a GeoGebra template. Further, in this paper, we 
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relate the task to the representation competency. In the graphic view (i.e., the graphic environment in 
GeoGebra), a rectangle is constructed to the left of a coordinate system (first quadrant) with a point 
P. Point A of the rectangle can only be dragged vertically, such that the height changes and point B 
and C are fixed. Point P’s x-coordinate corresponds to the rectangle’s height and the y-coordinate to 
the area of the rectangle. When dragging point A, point P moves on the line y=3x. Unintentionally in 
the task design, it is also possible to drag point D on the rectangle horizontally. When dragging point 
D, point P moves on the vertical line, x=|AB|. The algebra view is also accessible in the template. The 
task and the transcript are translated from Danish. The task has four phases: 1) Investigate the 
rectangle and features related to it without dragging; 2) investigate the relationship between the 
rectangle and point P by dragging point A; 3) fill a table for related values; and 4) represent the 
functional relationship (to be y=3x), by its formula and a graph. The following excerpt presents two 
students’ dialogue about the relationship between point P and the rectangle in phase 2, see Figure 1.   

Investigate the construction on your 
computers by dragging point A in the figure. 
Describe the relationship between point P and 
the shown figure. For point P, describe what 
characterises the x-coordinate and the y-
coordinate. Explain why the relationship 
exists. 

 

Figure 1: Task and illustration of the template with traces (Johnson & McClintock, 2018) 

Before discussing the task, the students investigated the template individually. Prior to this excerpt, 
the students explored the dragging possibilities, e.g., dragging points A and D. Dragging point D was 
neither intended nor part of the task description. The students began to discuss, dragging point A: 

1  Ivy The area moves P. Okay, the area moves P up. 
2   Aya   No, it is not the area. You mean the width. 
3   Ivy                Yes, but the width changes the area 
4   Aya                 So does the height… 
5   Ivy                   Yes, yes. 
6   Aya                 But both factors move the area   
7   Ivy                   No, but, no… Try to see… try to see. If you move this one here, it changes 

both the area and the height, then it [point P.] moves askew. [Ivy drags 
point D back and forth, slowly. The figure is no longer a rectangle.]. 

8   Aya                 Yes, yes, but Ivy… I know that both elements depend on the area. The area 
is the height times the width.           

  [...] 
9    Aya                 What have you written? 
10   Ivy                   I have written that if you change the rectangle’s height to 0, the intersection 

P ends at (0,0). I think that the intersection is determined by the rectangle’s 
height and area. The area moves P up, up by the y-axis, and the height 
moves it by the x-axis. When you change the height, you also change the 
area and P therefore moves askew away from (0,0). 

Line 10 shows that Ivy concludes on the relationship when dragging point A (not D), as point P moves 
“askew” and not vertically. 
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Analyses of the case 
To ‘coordinate’, we analyse data in parallel, meaning that we analyse using (1) semiotic registers 
(Duval, 2017), and (2) the instrumental approach (Trouche, 2005). Then, we ‘coordinate’ the analyses 
(Prediger et al., 2008). We have regarded the students’ meanings and productions as collective, hence, 
considering them as a pair rather than individuals. 

Analysis through semiotic representations: Ivy and Aya orally discuss the relationship between 
point P and the rectangle. First, they characterise what defines the area, that is the width (line 3) and 
the height (line 4). Secondly, Ivy drags point D, performing treatments on the quadrilateral, while the 
students do conversions between height and area of the rectangle to point P (line 7). Thirdly, they 
connect the height with P’s x-coordinate and the area with P’s y-coordinate, which is specified at the 
end (line 10). Finally, the students use the word “intersection” in their natural languages in line 10 in 
connection with point P. It is unclear how the students interpret/understand “intersection”, but it 
appears to stem from the description of point P in the algebra view. Possibly, they use it as a 
description of point P as they say “the intersection P”, meaning where the height of AB and the area 
intersect. 

Analysis through instrumental genesis: Prior to the excerpt and at the beginning of the transcript 
(lines 1–6), both Ivy and Aya explore the GeoGebra template using their previous knowledge of 
rectangles. As they drag point D, point P does not follow the intended line (line 7). The possibility of 
dragging point D is a constraint of the task related to the process of instrumental genesis, particularly 
for the instrumentation process, when the students explore the tool. This is reflected in their actions 
(see line 7). As part of their instrumentalisation, they use GeoGebra for what they believe was the 
intention of the task and realise (see line 10) that they should drag point A, which is the intent of the 
task. The term “intersection” appears in the algebra view, and may consequently be regarded as a 
constraint of the tool: it leads the students to use a term that stems from the tool but is inappropriate 
in the given situation. This may even lead to an incorrect understanding of point P. To use dragging 
as an instrument for this particular situation, Ivy and Aya should be able to find the relation between 
the rectangle and point P while dragging. Hence, the instrument of dragging for Ivy and Aya is 
developed for answering the task and the instrument relates both dragging (i.e., the artefact) and 
schemes relate the content of linear functions and geometrical knowledge on rectangles with the 
specific actions of dragging.  

Summary of analyses: ‘Coordinated’ analysis of Ivy and Aya working with the task 

When Ivy and Aya explored the template using prior knowledge on rectangles (lines 1-6), it involved 
understanding and making conversions between and treatments within the involved registers (i.e., the 
linguistic, the graphical and the figurative) by relating and expressing what defines the area. Dragging 
point D created constant treatments of ‘rectangle’ DABC to be a quadrilateral. For the 
instrumentation, dragging point D (line 7) provided the impression of changing the relationship since 
point P then moved on a vertical line, and for the instrumentalisation process, dragging point D was 
not in line with the intentions of the task. It was necessary for the evolution of the instrumentation 
and instrumentalisation processes that the students understood the constraint of dragging point D 
indicating another relationship than the intended one. Ivy and Aya did not continue with the attempt 
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to investigate the conversions between point P and the area of the rectangle by dragging point D. 
Thus, for dragging to be an instrument, the students develop schemes that relate treatments within the 
individual representations and conversions between the point P and the area of rectangle DABC as 
results of their dragging. For example, they expressed this relationship between point P and the 
rectangle by making conversions to the symbolic or linguistic registers (line 10). 

The term “intersection” is a word adopted from its appearance together with point P in the algebra 
view. This is a constraint of using GeoGebra as a recourse for natural language along with the 
symbolic register. Ivy’s and Aya’s use of intersection is a result of their instrumentation process, 
which led to inappropriate language in the situation and, potentially, to an incorrect understanding of 
point P. 

Refining the design principles based on the ‘coordinated’ analysis  
Based on our analyses, we refine the design principles and discuss how the networked theoretical 
perspectives have influenced the development of refined design principles using networking 
practices.  

For HDC 1, the students use natural language throughout the task. At the beginning of the students’ 
instrumentation, they express their interpretations of the representations and the properties of the 
rectangle. Through their communication, their interpretations develop. As they are expected to give 
a written answer, they express the discovered relationship using the natural language that appears in 
the algebra view. In this case, this is unfortunate. However, if the tool’s expression is in line with the 
task, it can support the students’ use of natural language.  

For HDC 2, the students only investigate the rectangle at the beginning of the task sequence. In the 
transcript, Ivy and Aya also investigate the rectangle on their individual computers, when dragging 
and discussing that both the width and height of the rectangle influence the area (lines 2-6). Hence, 
the treatments in the rectangle are related to point P (lines 1, 7, 10). About the word “intersection”, it 
is also important to be aware of the vast information provided in the algebra view. Hiding the algebra 
view could cause less confusion for the students to only focus on the graphical view.  

For HDC 3, Ivy and Aya explore the template by dragging both points A and D at the beginning of 
their instrumentation process. When they drag, they can test their conjectures, e.g., regarding what 
happens to the rectangle when dragging either point A or point D. Through dragging, the students 
explore and investigate the relationships between the representations. 

Applying the analyses to van den Akker’s (1999) structure, the design principle may be defined as: 
If you want to design teaching with a digital tool for exercising and developing the representation 
competency in schools, then you are best advised to gradually relate all four registers (linguistic, 
symbolic, figurative and graphic) in a task sequence when using digital tools. Collaboration between 
students is essential for all three characteristics and procedures. This may be realised by:  

1. including the linguistic register (both written and oral) throughout the task (i.e., when 
formulating the task, exploring the environment and representations, and writing answers), 
and being aware of how natural language appearing in the environment relates to the 
intentions of the task, as the linguistic register is often neglected in a digital tool, although it 
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is an important register expressing the relations between representations, formulating 
interpretations of different representations and for developing an artefact into an instrument. 

2. breaking objects and tool windows into smaller units by introducing different representational 
registers and components of the artefact gradually (e.g., hiding the algebra view), because 
gradually introducing representations makes it possible to identify the specific characteristics 
of a representation and to help the students’ processes of instrumental genesis by limiting their 
explorations to specific parts of the tool.  

3. using sliders, dragging and tracing for explorations about different representations and the 
treatments and conversions caused by the dynamic features since these features make it 
possible to quickly move and translate between representations, and for developing 
conjectures about the representations’ reciprocal relations.  

Discussion of the potentials for networking of theories in DR 
Reflecting on our work as networking of theories, the empirical case guided our work. Concerning 
the eight networking strategies (Prediger et al., 2008), and the compatibility of the theoretical 
perspectives, the two theoretical perspectives’ backgrounds will be discussed. The background for 
the semiotics register approach may be defined as “Understanding mathematics is a cognitive process, 
which involves ‘coordination of at least two registers’” (Duval, 2017, p. 110). The background for 
the instrumental approach we define as ‘Using digital tools in mathematics is a cognitive process of 
developing suitable schemes for using the artefact’. Both theoretical perspectives are cognitive in a 
similar way as KOM. Hence, the perspectives are not too far apart and the networking process is 
identified as ‘coordinating’. The theoretical perspectives have different objects, i.e., semiotic 
representations (Duval, 2017) and using digital tools for instrumental genesis (Trouche, 2005). Yet, 
the perspectives are possible to network as the process of instrumental genesis takes place through 
the representations present in the involved digital tool, and the students’ understanding of conversion 
and treatments of the involved representations. The instrumental approach is informed by the semiotic 
register approach concerning how students understand and relate mathematical representations, 
related to mathematical understanding and activity (Duval, 2017). The semiotic register approach is 
enlightened by the use of digital tools and students’ instrumental genesis (Trouche, 2005). The 
understanding of the students’ use of the tool, while working with several mathematical 
representations, thus becomes deeper by coordinating the theoretical perspectives. The design 
principles reflect both theoretical perspectives. Yet, the design is only illustrated for one case. 

In this paper, we have aimed to investigate how practices from networking of theories could 
strengthen the development of theory in DR. The implementation of networking practices in DR helps 
when having a situation involving two perspectives, which for our study is the use of digital tools and 
mathematical representations. The strategies of ‘coordinating’ and ‘combining’ fit the aims of DR 
with regard to understanding an empirical case and developing theories (Prediger et al., 2008; 
Prediger, 2019). Both in DR and networking of theories, the processes of analysis are determined by 
the objects of research. It is of course possible to conduct DR without the implementation of 
networking practices. Still, for a case such as ours, the relationships between the involved theories 
are not necessarily taken deeply into account related to each other. However, if aiming at using 
networking practices, such as ‘coordinating’ or ‘combining’, parallel analyses and investigation of 
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the compatibility of the theoretical perspectives involved are important. Implementing networking 
practices into DR, thus appear to strengthen the development of theories and theoretical perspectives. 
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The Anthropological Theory of the Didactic (ATD) aims to capture the complexity of real inquiries 
by using a type of instructional proposal called study and research path (SRP). Experimental 
research shows that certain notions of the Theory of Didactic Situations (TDS) appear specially 
adapted to analyse implementations of SRPs and point at some didactic phenomena related to the 
conditions needed for their implementation and management. We report this experience by first 
identifying some contact points between the ATD and the TDS and then describing the borrowings 
done. The analysis of the commonalities and specificities of both approaches helps to question the 
framework of the ATD and to point at some needed theoretical and methodological developments.  

Keywords: Anthropological Theory of the Didactic, Theory of Didactic Situations, study and research 
paths, didactic contract, didactic situation, adidacticity, networking. 

Introduction: ATD, TDS and networking 
In this paper, we are considering two of the main theoretical frameworks of what is known as the 
French tradition in didactics of mathematics (Artigue et al., 2019), namely the Theory of Didactic 
Situations (TDS, Brousseau, 1997) and the Anthropological Theory of the Didactic (ATD, 
Chevallard, 2015). We present a networking activity that emerged when using notions from the TDS 
within ATD analyses and continues by considering their differences and commonalities about the 
kind of tools they propose to problematise, model and develop teaching and learning processes.  

In 2007, in an invited lecture at the First International Conference of the Anthropological Theory of 
the Didactic, Guy Brousseau established some connections between key notions of the TDS and what 
could be considered the analogous ones in the ATD. He analysed the differences in how both theories 
model human activities in their collective and dynamic dimensions, including doing mathematics and 
teaching and learning mathematics. His comparison involved the notions of situation, milieu, situated 
knowledges (connaissances) and didactic processes, in contrast with some elements of the 
praxeologies (types of tasks and techniques) and the moments of the study. Brousseau considered 
these notions “more as points of contact, points of articulation that allow moving from one [theory] 
to the other, rather than as borders” (Brousseau, 2007, p. 3, our translation). He concluded:  

The ATD and the TDS complement each other. But in my opinion, it would be absurd to juxtapose 
them simply. In many issues, they are intertwined; they must be considered together. What 
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problems do they pose for each other? What answers do they offer each other? What advances do 
they promise together? (Brousseau, 2007, p. 22, our translation) 

The relationships between the TDS and the ATD have been the object of previous research in the 
project of networking of theories initiated by Angelika Bikner-Ahsbahs in 2005 at CERME4 (Bikner-
Ahsbahs & Prediger, 2014). For instance, Artigue et al. (2010) show how a teaching episode can be 
described from both approaches and relates the TDS analysis about the limitations of an adidactic 
milieu with the ATD one in terms of the functioning of the media-milieu dialectic. Ghemansi and 
Lecorre (2019) propose combining some TDS and ATD methods in design-based research related to 
the university teaching of calculus. These works and our experience as researchers are in tune with 
Brousseau’s proposal of considering notions as contact points to question one theory from the other’s 
perspective. This paper presents a bottom-up networking strategy that arose during the analysis of 
some empirical work carried out within the ATD, where the resource to some TDS notions appeared 
in a rather spontaneous way. This research practice nourished a reflection about the contact points 
between both theories, together with some specificities and differences.  

Contact points between the TDS and the ATD  
Since 2005, our ATD-research team has been implementing and analysing a new type of instructional 
proposal named study and research paths (SRP) based on the continued inquiry of problematic 
questions. In a way, SRPs include aspects of project-based and inquiry-based learning (IBL). 
However, they also provide new perspectives and methodologies currently not elaborated in the IBL 
literature (Markulin et al., 2021). Barquero et al. (2020) summarised that the implementation of SRPs 
faces several challenges related to the coexistence of two pedagogical paradigms in the school 
institutions in a very explicit way. Historically, the one that prevails is the paradigm of visiting works 
(Chevallard, 2015) and is based on the proposal of a set of bodies of knowledge – the works – for 
students to study under the teacher’s guidance. The new paradigm that is struggling to emerge is the 
paradigm of questioning the world, in which the bodies of knowledge are replaced by open questions 
to address (or inquire). Between both extremes, some compromise situations can exist. In any case, 
our research shows how the conditions needed to implement a study process framed in the paradigm 
of questioning the world are diverse and fragile. We then identify many constraints coming from the 
prevailing paradigm of visiting works. In our analysis of such conditions and constraints, four points 
of contact between the TDS and the ATD appeared, as we said, very naturally. We first present these 
four points before examining each one in more detail in the following two sections. 

First point of contact: new epistemological demands. One of the conditions for the normalised 
running of SPRs is the availability of tools to describe and manage the different types of knowledge 
mobilised during an inquiry. The existence of new study processes based on the paradigm of 
questioning the world highlights the need to deal with knowledge-related aspects, such as uncertainty, 
temporariness, and validation, that often remain implicit in visiting-works instructional proposals, 
where knowledge is conceived as static and crystallised. Brousseau was one of the first to point out 
the necessity for researchers in didactics to question and rebuild school mathematics organisations to 
avoid assuming the prevailing school epistemology as the only and appropriate one. The TDS 
proposal is to model mathematical knowledge in terms of fundamental situations, defined as games 
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against a milieu, that is, an environment without any didactic intention towards the student and 
providing feedback to the actions received (Brousseau, 1997). The ATD, which is part of the TDS 
project of building didactics of mathematics as a science, joins its epistemological background about 
the need to question mathematical practices. It, however, differs in the models chosen and introduces 
a clearer institutional perspective by pointing at the existence of different conceptions and knowledge 
constructions connected through didactic transposition processes (Chevallard & Bosch, 2020). 

Second point of contact: dealing with the curriculum constraint. Even if competency-based 
curriculums are on the agenda, to a large extent, curricular content is still described in terms of 
labelled pieces of preestablished knowledge. In this conception, inquiry-based proposals are often 
seen as means or methodologies to acquire the specific labelled content. In contrast to this conception, 
SRPs do not oppose inquiry and transmission but subordinate the learning of contents to the advance 
of the inquiry, and the elaboration of a final answer to the question initially addressed. This change 
in the knowledge conception is particularly challenging in a setting where the two paradigms coexist 
and meets what we call the curriculum constraint (Barquero et al., 2020). The TDS’ proposal of 
modelling knowledge as the answers to problematic situations appears as a first move towards the 
paradigm of questioning the world while remaining in the frontier of the paradigm of visiting works 
because situations are always supposed to model a given piece of knowledge.  

Third point of contact: the evolution of the didactic contract. A third and more evident contact relies 
on the changes produced by SRPs in the traditional sharing of responsibilities among the teachers and 
the students, which we interpret as an evolution of the didactic contract (Brousseau, 1997) that 
prevails in the paradigm of visiting works. Implementing an SRP requires students to assume different 
roles in the inquiry process, such as seeking available answers, validating or rejecting them, raising 
new questions, deciding which ones to follow or discard, planning the work to do, etc. Teachers also 
experience essential changes in their tasks: they are no longer the “knowledge holders” nor the sole 
person bringing new knowledge into the classroom. The coexistence of paradigms in the same school 
institution – and even in the same course – makes this contract negotiation complicated.  

Fourth point of contact: didactic and adidactic situations. The students’ assumption of new 
responsibilities in the inquiry process depends on how they engage in the SRP’s generating question 
and the importance they attribute to developing an answer. In the paradigm of questioning the world, 
the study of works is essential as far as it helps to progress in elaborating a response to the initial 
question. The SRP generating question needs to remain at stake during the entire process for this to 
happen. In the analysis of the implemented SRPs, to identify the episodes where students seemed to 
be engaged in the inquiry for the sake of the considered generating question, we find it helpful to use 
the TDS distinction between didactic and adidactic situations.  

The four contact points correspond to assumptions and modelling strategies that are common to both 
approaches. They need to be complemented with some comments about their differences and 
specificities. We will now approach them in two blocks by first addressing the question of the 
modelling of mathematical knowledge (points 1 and 2) and then the role played by the notions of 
didactic contract and adidactic situations in the ATD analysis (points 3 and 4).  
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The ATD inherits the epistemological programme initiated by the TDS 
The first and second contact points correspond to a solid and fundamental connection between the 
TDS and the ATD. As explained by Artigue and Trouche (2021), Brousseau’s project aimed “to find 
a genuine experimental epistemology of mathematics based on the construction of situations able to 
make mathematical knowledge emerge from autonomous students’ interactions with their 
environment in the social context of classrooms” (p.3). Moreover, the TDS experimental 
epistemology relies on the observation and analysis of classroom implementations. Therefore, the 
central object here is not the cognitive subject, i.e., the pupil or student, but the situations organising 
the relationship of such subjects with mathematical knowledge and its raisons d’être. The ATD 
participates in this epistemological research programme in mathematics education (Gascón, 2003), 
which locates the description, modelling and reconstruction of the knowledge to be taught at the core 
of didactics research. An important difference between the TDS and the ATD is in the type of 
reference epistemological models (Bosch & Gascón, 2006) they elaborate to model mathematics, as 
knowledge and as a human activity. The TDS models are formulated as fundamental situations, 
defined as games against a milieu, with different dialectics or phases (Brousseau, 1997). Brousseau 
clarifies the scope he gives to this concept: 

One of the approaches of didactics of mathematics consists in modelling not only the knowledge 
to teach or learn, but also the conditions in which it manifests itself. Situations are minimal models 
that “explain” how such knowledge intervenes in the particular relationships a subject establishes 
with a milieu to exert a determined influence on it. (Brousseau, 2000, p. 4) 

When we look at the types of epistemological models proposed by TDS, we can distinguish between 
a general model in terms of fundamental situations (or games against a milieu) and specific models 
in terms of sequences of situations. Without going into detail here, it is worth noting that in most of 
the work developed in TDS, the division of the modelled knowledge does not follow the classic school 
cartography of knowledge. It corresponds to rather vast domains of the mathematics to be taught, as 
shown by the work on numeration, measurement, and decimal numbers, which go far beyond what 
their name indicates. These models also make it possible to identify elements that do not exist in the 
dominant school epistemological models, a well-known example being that of “enumeration” 
(Briand, 1993; Rivière, 2017). The international diffusion of the TDS has been often limited by the 
confusion between epistemological and didactic models. Fundamental situations indeed play a double 
role in this respect because they define knowledge not by what it is but by the processes that allow it 
to be constructed. This fusion between didactic and epistemological proposals – or between didactic 
and mathematical situations – is at the heart of the TDS (Brousseau, 2007). 

As said before, the ATD emerged within the scientific project of the TDS. According to Artigue and 
Trouche (2021, p.4): “ATD then broadened the perspective by placing at the centre of the analysis 
the diverse institutions, institutional positions, and institutional relationships with the knowledge at 
stake, and how they condition and constrain what is taught and, therefore, what students ultimately 
have the possibility to learn or not. To this end, new concepts were introduced, notably the concept 
of praxeology and the scale of didactic codeterminacy.” The notion of praxeology is introduced as 
the basic unit to analyse human action in general and mathematical knowledge in particular. The 
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dissemination of praxeologies takes place through what we call didactic systems. A didactic system 
is a triplet S(X; Y; P ) formed by a person or a group of persons Y (the teachers) who do something to 
help another group of persons X (the students) to learn a given body of knowledge or praxeology P.  

In the paradigm of questioning the world, didactic systems are not formed around a given praxeology 
to be studied, but rather around a question Q, to which X, with the help of Y, has to provide an answer 
A♥. One tool used to analyse inquiry processes is the Herbartian schema: [S(X; Y; Q)  M]  A . 
The schema considers that the study of Q generates an inquiry process involving a didactic milieu M 
including questions Qi derived from the initial one, “ready-made” answers Aj

 one can find in the 
literature or by consulting works and experts (the media), together with empirical data Dk and other 
material and knowledge works Wl: [S(X; Y; Q)  {Qi; Aj ; Dk; Wl}]  A . Obviously, an alteration 
in the available media or aspects related to the milieu can lead to completely different constructions 
of A . The schema is helpful to design and carry out a priori analyses about potential paths to follow 
when approaching Q, and also in vivo and a posteriori analyses about the path actually taken and the 
means used to do so. The Herbartian schema identifies some critical elements of the inquiry, namely 
{Qi; Aj ; Dk; Wl}, which can be detailed in terms of praxeologies. As we will see below, the inquiry 
dynamics are described in terms of dialectics, like those of questions and answers (Bosch & Winslow, 
2014) and media and milieus (Kidron et al., 2014).  

A first important difference between the TDS and the ATD proposals to model mathematical 
knowledge and activities is terminological (and, consequently, also conceptual). The use of situations 
enables one to model knowledge in an implicit way, not by pointing at its elements (for what a specific 
language is required) but by describing the situations it allows to solve. In the ATD, the notions of 
praxeology and Herbartian schema do propose descriptions of the knowledge elements and therefore 
require a specific language, which cannot be neutral. It is sometimes provided by the scholarly 
knowledge complemented with ad hoc elaborations. A second difference is the role given to the media 
in both approaches, which is often reduced to the teacher in the TDS and accessed through didactic 
situations – that is, situations where the teacher intervenes in the students’ knowledge construction. 

Developing TDS notions in the ATD analysis 
The generating question(s) of an SRP and the notion of situation 

In the implemented SRPs (Barquero et al., 2020), the generating question Q always plays a critical 
role. It should lead the inquiry and be always prominent, appearing as an end in itself – instead of an 
excuse to visit some preestablished works. And it should also conduct to a final answer A  that is of 
a particular value for somebody, not only for X and Y. The experiences carried out in university 
engineering degrees showed a visible change in the students’ involvement in an SRP depending on 
the conditions under which Q is formulated and A  has to be received: an imaginary client, a fictitious 
client or a team of students taking part of a car race from the same university. We find here one of 
the main raison d’être of the TDS notion of situation. It includes the question raised but also the 
conditions under which it arises – the initial milieu – and the requirements for its reception and 
validation – the rules of the game and the winning strategy. In a way, when we talk about a question 
Q in the ATD, we are also implicitly including the institution and corresponding contract that ensures 
the reception of Q as such a question, together with the type of acceptable answers Ai and A . Also, 
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the importance of Q depends on the destiny of the potential final answer A . Therefore, in the design 
of an SRP, it is essential to require not only some general interest for Q, but also a kind of external 
contract with an instance Z about Q, the type of expected answer A  and how it will be valued or 
validated. 

The notion of milieu  

The concept of milieu proposed by the TDS corresponds to the environment with which students 
interact and provides them with objective feedback. It can comprise material objects, informative 
texts, digital tools, and other collaborating or competing students (Artigue & Trouche, 2021). In an 
SRP, the milieu is built along the inquiry process and can be analysed through the elements previously 
described in the Herbartian schema: {Qi; Aj ; Dk; Wl}. Its dynamics is then explained through the 
development of some dialectics. In particular, a central one is the media-milieus dialectic. This 
dialectic includes access to already available answers (or pieces of works found in the media) and 
their integration into the inquirers’ milieu. During this integration, answers need to be validated to 
become useful for the inquiry progress and appear as potential works to be used by others.  

Didactic contract and “adidacticity” 

The management of an inquiry process in a “question-driven way” requires a new sharing of 
responsibilities between teachers and students and can be interpreted as the evolution of the didactic 
contract (Brousseau, 1997). For instance, students must assume new responsibilities, like planning 
the work to do, proposing the questions to address and those to discard, deciding what media to 
consult, validating the answers they find or propose, etc. In a way, in the didactic contract of the 
paradigm of visiting works, teachers are expected to boost the media-milieu dialectics students will 
then follow, as if the “question-driven” inquiry was only driven by the teacher, not by the students.  

Analysing the changes in the didactic contract led us to use the distinction between didactic and 
adidactic situations, two key notions of the TDS. However, in our use of these notions, we do not 
include its functioning as fundamental situations, that is, as reconstructions and epistemological 
models of the mathematical knowledge to be taught. We only include in this notion the assumption 
that any question or problem is never raised in the vacuum but always appears to X (and Y) under 
specific circumstances or conditions and with some available resources (and other unavailable ones), 
a certain milieu. In this context, we use the term adidacticity to refer to the very moments when 
students make decisions primarily considering the generating question Q and the targeted final answer 
A , without prioritising the instructional process that supposedly envelops the inquiry, that is, the 
didactic situation in which the SRP takes place. Looking for these adidactic moments can help 
measure to what extent an SRP is overcoming the constraints of the paradigm of visiting works. 

Open questions in the dialogue between TDS and ATD 
This paper presents several contact points between the TDS and the ATD, showing many ways, in 
which the latter is an heir of the former. But there are also aspects in which they seem to differ 
sufficiently to make it unavoidable to try to refine the formulation of the ingredients that mark the 
differences. A work that is still in progress. 
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The paradigm of questioning the world is the paradigm par excellence in research. Accordingly, the 
choice of theories when addressing research questions should always be subordinated to the 
question’s sake. In other words, theories are good, helpful, valid, or interesting as far as they help 
researchers elaborate good, helpful, valid, or interesting answers to the questions addressed. In this 
context, the bottom-up strategy of networking theories is not a big deal. What specific relevance can 
we find in the networking experience here presented? First, it illustrates the do-it-yourself character 
of didactics research, and the freedom researchers should adopt in problematising, experiencing and 
analysing teaching and learning processes. Second, it provides a new perspective of each considered 
approach when viewed from the other side, establishing a dialogue between theories as proposed by 
Bosch et al. (2017). In this sense, our paper responds to Brousseau’s analysis of ATD notions from 
the TDS perspective, by proposing some analysis of TDS notions from an ATD perspective. Finally, 
pointing at their complementary aspects is a way to question the scope of the ATD methodology by 
pointing at some needs in the proposed analyses, and contributes to its evolution.  

We believe that such a bottom-up networking strategy is possible because of the robust commonalities 
shared by the TDS and the ATD. The most important one is the questioning of the mathematical 
activities to be taught and the need to elaborate scientific models to reproduce these activities without 
assuming the prevailing visions of school and scholarly institutions. And we should also add the 
inclusion of new instructional practices that intent to approach the teaching of mathematics to a 
questioning the world perspective.  These are the critical points of contact that enable researchers to 
easily switch from one approach to the other without distorting any of them.  
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Due to the pandemic situation in 2020 the ERME summer school (YESS10) was designed for an 
online format using a conference system. Our design choices were based on previous experiences 
with YESS and the use of the research pentagon as a tool to think about research. This paper 
elaborates theoretically and empirically the specification of the concept of instrumental orchestration 
of the pentagon use through its rhythmic implementation into the summer school. Research results 
indicate that this specification had two main effects: The students described their instrumentation of 
the pentagon as a structuring tool in various ways. The most relevant pentagon use for the students’ 
experience of growing expertise was listening to and observing how the others used the pentagon. 

Keywords: Design-based research, instrumental genesis, rhythm, online learning, summer school  

Introduction and background 
Due to the pandemic in spring 2020 the Young ERME Summer School (YESS) of the European 
Society for Research in Mathematics Education (ERME) switched to using a synchronic online 
conference system. Two out of seven thematic working groups (TWG7, TWG5) run in a virtual 
environment. As neither clear conceptions nor research were available for the design of the school 
with respect to distance learning of PhD-students via a conference system, the two experts and two 
brokers (previous PhD-students of YESS) decided to conduct a design-based research study involving 
the conference system Adobe Connect. Planning jointly these TWGs led the brokers to decide to act 
as assistances and to provide several Adobe tools to be shared in the TWGs. The leading experts 
made common design choices based on their experiences in the previous YESS-TWGs. As each 
student had to submit a short description of their research project, all the students were asked to read 
all the papers before the school and prepare a presentation of their project to be discussed during the 
school. Prior to the school, pairs of critical friends were built within both TWGs to make them engage 
deeper into the friend’s paper and present their critical feedback in an explicit presentation. The main 
design choice concerned the research pentagon (Bikner-Ahsbahs, 2019) as a tool to think and reflect 
about research in terms of research aims, questions, objects, methods, and situations involving the 
situation of the project in the field and creating a specific situation for the research in the project 
(Figure 1, left). The design of how to use the pentagon took into account previous experiences with 
the pentagon as well as the fact that the students coming from different time zones, and 
simultaneously being involved in their families during the school, required a clear timetable so that 
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they would be able to manage their pandemic situation and attend YESS10. This resulted in a 
sequence of five situations of using the pentagon (Figure 1, middle). This sequence was repeated in 
all the ten sessions in the same order in both TWGs, however with some variations (Figure 1, middle 
& right).  

 
Figure 1: The research pentagon (left), sequence of pentagon use in a session (middle) and the 

sequence of sessions S1-S10 (right) 

Based on these design choices, we ask: How did the students experience the rhythmic orchestration 
of the pentagon use and the pentagon use itself as contributing to their learning about research?  

Theoretical framework 
Instrumental approach and instrumental orchestration 

Considering the pentagon as a tool that participants need to appropriate in order to use it efficiently, 
instrumental approach (Vérillon & Rabardel, 1995; Rabardel, 2002) is one of two theoretical 
approaches in our research framework. The key idea is the distinction between an artefact – material 
or symbolic object available to a subject, and an instrument – a merging construct that consists of the 
artefact and the related mental schemes coming from the use of the artefact by the subject in a given 
context. The process of transformation of an artefact into an instrument, called instrumental genesis, 
consists of two interrelated processes: instrumentation leading to the constitution and the evolution 
of schemes of using the artefact in the subject, and instrumentalisation during which the subject 
adapts and personalizes the artefact according to her knowledge and beliefs. The development of 
schemes of use manifests itself in the subject’s invariant organization of behavior in a given class of 
situations (Vergnaud, 1990). Trouche (2020) suggests seeing instrumentation both as “an action (by 
which someone acquires an instrument)” and as “the influence of this action on a subject’s activity 
and knowledge” (p. 307). Thus, using an artefact yields both pragmatic and epistemic outcomes. 

In the context of students’ learning, students’ instrumental geneses need to be accompanied by a 
teacher. Trouche (2004) introduced the notion of instrumental orchestration to describe how a teacher 
can plan and organize students’ interactions with available artefacts in order to enhance individual 
and collective instrumental geneses. Referring to Trouche (2004), Drijvers et al. (2010, p. 214) define 
an instrumental orchestration as “the teacher’s intentional and systematic organization and use of the 
various artefacts available in a […] learning environment in a given […] task situation, in order to 
guide students’ instrumental geneses”. It consists of three elements:  

1. A didactical configuration, which is “a configuration of the teaching setting and the artefacts 
involved in it” (Drijvers et al., 2010, p. 215);  
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2. An exploitation mode, which is “the way the teacher decides to exploit a didactical configuration 
for the benefit of his or her didactical intentions” and includes in particular the teacher’s decisions 
“on the possible roles of the artefacts to be played” (p. 215);  

3. A didactical performance, which involves “the ad hoc decisions taken while teaching on how to 
actually perform in the chosen didactic configuration and exploitation mode” (p. 215). 

Design approach to orchestrate the pentagon use 

The pentagon was implemented in the design of the sessions as a tool to structure and reflect on 
research (Bikner-Ahsbahs, 2019) individually and in interaction with others. Pairs of critical friends 
provided mutually more in-depth feedback in their presentation in addition to the spontaneous 
feedback coming from all the other peers. Whereas TWG7 introduced an article about the research 
pentagon before the school to be used for the preparation of the presentations, the expert of TWG5 
introduced this tool in the first session. Besides this distinction, both experts used the tool 
permanently during the school as a reference object in their feedback and the discussion. We 
organized each of the 10 sessions in the TWGs by five situations of pentagon use (Figure 1, left) so 
that, in the course of these sessions, the students’ roles as presenter, critical friend, observer and 
listener, feedback provider and receiver of peer and expert feedback varied regularly in time and 
space of the virtual environment. This organization aimed at enhancing participants’ instrumental 
geneses to improve their research expertise. 

The change from a face-to-face summer school to an online format required to theorize the meeting 
space. According to Lefebvre (1991), any space is established with respect to three dimensions: (1) 
A space is represented materially (also technologically), (2) it is representational in that it represents 
some idea (here: switching YESS to an online school), and (3) it is (re-)produced as a social space by 
the people involved. All the three dimension apply to YESS10. The digital conference system Adobe 
Connect used as a technological space linked to the individual material home computer spaces, 
constituted a representation of the virtual space. It provided tools for sharing and distributing 
information among the students, hence, for creating the social space of acting and interacting of the 
participants supported by these tools, e.g. the breakout rooms, chat, and note taking possibilities were 
included into the didactic configuration. This notion of space developed structured in time with a 
frequency of three sessions per day and breaks of different lengths (session–short break–session–
lecture break–session–night break) repeated day after day. 

In the summer school, the collective nature of teaching and learning is essential and this depends on 
the possibility of creating joint attention on the research presented. In face-to-face situations, this is 
established by building a reference space through deictic expressions, shown e.g., by linguistic means, 
through a projector, by gestures, gaze, body posture, moving (Balantani & Lázaro, 2021; 
Stukenbrock, 2015). However, most of these deictic expressions could not be shared in our virtual 
space. So, we designed the pentagon use in a way that it could facilitate creating a reference space 
because all the students could refer to this diagram sharing its structure, such as the vertices and their 
relations, with their peers, and simultaneously talking about their own research.  

An implicit key idea in this design was rhythm as a way to structure time. Rhythm emerged as a 
critical design element when analyzing the data.  
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Rhythm as a design element 

Lefebvre (2004) stressed that space, time, and energy are interrelated by rhythm, the latter being 
bodily grounded and thus always active. Rhythm as a structure of time is created in the course of 
sessions by an “ordered variation of changes” (Dewey, 1934, p. 160). Figure 1 (right) shows the linear 
rhythm as a repetition of sessions (three per day) with pentagon use and breaks. Within each session, 
the order of five situations of pentagon use is cyclically repeated involving regular and spontaneous 
variations by providing all students the opportunity to act in their way in all the roles and addressing 
various research topics and foci. This rhythmic characteristic of the didactical configuration was 
enriched by a rhythmic exploitation mode in which the experts regularly referred to the pentagon 
explaining while pointing to vertices and connections in varying research projects, and hence, inviting 
the students to use the pentagon as a reference space, too. Thus, the group could create joint attention 
on the research presented and discussed. As the experts have used the pentagon in previous summer 
schools, they related their feedback (didactical performance) to students’ actual needs, highlighting 
blind spots, missing aspects, or a change of view, in using the pentagon as an organizing tool for 
research. So there is constructive interaction of various rhythms, so-called “eurhythmia” (Lefebvre, 
2004, p. 16). Lefebvre emphasizes that rhythm allows measuring changes: “No rhythm without 
repetition in time and in space, without reprises, without returns, in short without measure [measure]” 
(p. 6). As the same situations of pentagon use are repeated the students had the opportunity to 
experience and compare these uses within eurhythmia, thus measure changes of own and others’ 
pentagon uses related to research and hence, measure their own development of expertise on research.  

Methodology 
We use rhythmanalysis (Lefebvre, 2004) to answer the research question focusing on how the 
students experienced the rhythmic instrumental orchestration, which instrumentation processes they 
reflect and how the instrumental geneses of the pentagon may have contributed to their learning about 
research. As we could not observe these processes in time, we shaped this research similar to action 
research. We drew on our experience of conducting the TWGs, our design choices and note taking. 
An external expert interviewed 11 volunteers of the 20 participants about the efforts they invested 
into the school, their experience of the pentagon use and of our design to develop their learning about 
research. These interviews were video recorded and transcribed verbatim (names were replaced with 
pseudonyms). Thus, we did not observe the rhythmic processes directly, but rather approached them 
through the students’ individual experience of the (eu)rhythmic orchestration in their interviews. This 
experience begins with a first contact with the pentagon and ends with reflections on own research. 
Related to this frame, we conduct our analyses in three steps considering the five different roles 
(Figure 1, middle) in which each student acted and interacted. First, we identified quotes in the 
interviews that refer to these roles, and described how each student experienced his/her individual 
instrumental genesis of the pentagon distinguishing between instances of instrumentation and 
instrumentalisation within the orchestration (Figure 2, vertical analyses expressed as vertical arrows).  

For each role, we secondly compared these descriptions across all the interviews to situate the 
individual experience into the collective (Figure 2, horizontal analyses expressed by horizontal 
arrows). In the third step, we identified the students’ individual reflections addressing their individual 
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experience on learning about research in the interviews, interpreted them related to their instrumental 
genesis and through the lens of rhythmanalysis, and compared these across all the students.  

 

Figure 2: Rhythmanalysis (Stn: Student No. n) 

Results 
Based on our framework, we extracted quotes from the interview data, which express the students’ 
experience in their reflections immediately after the summer school. Therefore, these results indicate 
what the students declare to have taken from the summer school rather than the learning processes 
themselves. The experiences of expertise are regarded as relevant outcomes for the PhD students who 
after the summer school may then continue their research with a refreshed expertise.  

Step 1: The pentagon becoming an individual instrument 

From the case of Emma we learned that some students’ instrumental geneses started before YESS as 
Emma had read the paper and used the pentagon before the school already. The rhythmic organization 
of the situations in which she used the pentagon enhanced it. In the interview, she expresses a variety 
of instrumentation processes developed in different situations. She developed an instrument for 
analyzing own research and checking its coherence (“Also, just to see that you are making progress 
or making your project more coherent because I think it’s very useful to talk about; if there’s some 
parts of your research project that is not coherent.”) and for analyzing other’s research projects (“I 
used the pentagon when I read the papers, for instance when I read through my critical friend’s paper 
and whether I found some indications of the research aim and the research object, research questions, 
the method and…”). She also developed instruments related to feedback, for example for structuring 
feedback for a critical friend (“when I did the presentation for my critical friend … I could give 
feedback on that so what I thought was making a lot of sense”) and for structuring the feedback 
presentation (“it can also be quite hard to understand where they [the peers] are exactly in the process 
and what they would need the feedback on to make them come further because. I think the research 
pentagon helped in that matter because I could use it to structure my presentation of my feedback”). 
We identified similar instrumentation processes in other interviews, too. 
The case of Nordy made us aware that students in TWG5 came to know the pentagon use in the first 
session when the expert introduced it for the first time. As Nordy was the first presenter, he did not 
have time (“I need some more time to read the whole text and to incorporate it, to think about this 
research pentagon”) for appropriating the pentagon although he perceived its potential (“I really think 
that it could be a great thing to organize your work [with the pentagon]”). Compared with the case of 
Emma, this shows the lack of and need for instrumentation. However, his instrumental genesis was 
about to start. Other students from TWG5 showed similar experiences. 
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Nordy’s beginning instrumentation process was based on the expert’s didactical performance, when 
listening to the expert’s systematically and repeatedly referring to the pentagon. Nordy says: “as long 
as our research topic group was going on, then her [the expert’s] feedback was more and more referred 
to it”. He relates his individual to the collective instrumental genesis, when stressing “we should do 
our feedback depending on the research pentagon to our critical friend, I try to do that, I think we 
handled it quite good”. 

Through the case of Kira we learned that the first parts the students grasp are vertices of the pentagon 
as an instrumentalisation in the sense that students select the artefact features they are going to use. 
The links between the vertices are more complex to make sense of and need perhaps a specific 
orchestration (e.g. a ‘technical demo’ by the expert). For example, Kira used the pentagon as a 
feedback-structuring instrument identifying missing vertices in a peer’s paper (“I could more clearly 
identify what was missing for me and what was also good”). Then she points to the need to fill the 
links between two vertices, the research question, and the methods (“filling the link to the research 
question would mean to ask myself, or for him to ask himself the question ‘How can I measure this?’ 
What method can I use? …”). Kira also expresses another instance of instrumentalisation in the idea 
to take the pentagon home for her peers: “I will take the research pentagon into a small group 
discussion at the university.” Thus, within one week, the instrumental genesis entailed 
instrumentation as well as instances of instrumentalisation for Kira as well as other students. 

Our vertical analyses show that the individual processes of instrumental genesis led to various 
instruments where the vertices are the primary foci while the links between them are more difficult 
to understand. Instances of instrumentalisation appeared already as the students decided which 
vertices they take up. Thus, the pentagon provides instrumentation and instrumentalisation 
possibilities from the beginning. 

Step 2: Rhythm and listening as essential parts for contributing to learning 

Kira connected the individual and the common use of the pentagon when she pointed to it as a diagram 
expressing a common reference space and resource in the didactical configuration of the virtual space 
(“what appeared were the edges and also a definition of what can be found, what can be identified as 
a research aim … the research pentagon in the middle on the whiteboard and then it was easy to just 
point somewhere”). The configuration of the virtual space where the pentagon was used as a diagram 
in screen sharing allowed sharing different research projects in the group (“This [the vertices] is very 
very different concerning what kind of research your project is about.”). The repeated use of the 
pentagon emerged as a rhythmic exploitation mode. It helped the students to develop their expertise 
by listening to and observing others as well as practicing themselves to use the pentagon repeatedly. 
For example, Peter points to listening to and observing its repeated use by others (“I had the ability 
to see the pentagon in action for ten times.”). Dan highlights practicing its repeated use themselves 
(“doing it like a few times to other colleagues, each one in a different subject area, and hearing the 
other teammates, how they raise questions, was really really valuable. I mean, I learnt from it a lot.”). 
Therefore, the rhythmic configuration and exploitation mode seem to have the potential to support 
developing expertise on research. Mirka is a bit more precise as she expressed how the repeated use 
of the pentagon supports growing in expertise. It can happen during one session in the rhythm of 
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different situations (“I think there were some students who couldn’t find… who couldn’t use it in a 
specific way, but during the discussions of their feedback, they realized that they have to be more 
specific. […]”), as well as through the repetition of the same situational use in the course of the school 
during the cyclic rhythm (“once you see how other students used it, I think it’s a very nice way to use 
it [the pentagon] your own way, personally, everyone used it; they didn’t use it the same way.”) 

Step 3: Summarizing students’ reflections on learning about research 

The students highlighted the relevant role of rhythm, linear as well as cyclic, for the different uses of 
the pentagon and their learning about research. The most important use, as shown in our horizontal 
analysis, is observing and listening to how others use the pentagon, hence, they benefit from the 
rhythm in the didactical performance of the experts as well as from observing and listening to the 
processes of instrumental genesis of peers to learn how to improve their own research. Lefebvre 
elaborates on rhythm related to measure change with respect to a reference and hence, enables to 
explain the phenomenon of experience of change in learning. For example, a student may identify 
that the research object is still a blind spot in the own research project. Through repeatedly listening 
to others talking about their research objects, he or she can compare and thus measure the change of 
view on the own object and the experience of learning on own research. For example, Surgeryfish 
reflects: “what I see from others and fit into my work. … A kind of learning, becoming aware.” 

Discussion on the theoretical specification of instrumental orchestration 
The YESS10-study is deeply rooted in the common experience of an ontological change in the 
pandemic situation. This change raised the necessity to enable the participants of YESS10 to align 
their home situations with the summer school in space and time via a conference system. As this 
study shows, we have achieved this by a rhythmic synchronizing (cf. Akkerman et al., 2021) of the 
students’ instrumental geneses of the research pentagon in our virtual space and time with the goal to 
advance the students’ projects and by that improve their expertise on research. As a result, a rhythmic 
instrumental orchestration emerged as a specification of instrumental orchestration, theorized with 
the help of rhythmanalysis of the implemented rhythmic structure. This rhythmic instrumental 
orchestration involves a didactical configuration that provides a rhythmic organization of the various 
situations and kinds of tool use. Within this configuration, a rhythmic exploitation mode emerged, 
which involves the expert as well as the students allowing them to use the tool in various ways as 
well as listening to and observing how their peers use the tool. Within this mode, the expert 
synchronizes her didactical performance on the tool with the students’ needs. In sum, the design 
choices in the rhythmic orchestration led to eurhythmia, which allowed the students to develop their 
expertise in a communal way by learning from their peers, particularly through listening. 
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Issues with using Activity Theory to understand how master’s 
students view their research skills as contributing to their future 

teaching 
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Using Engeström’s third generation of activity theory, we explore three master’s students’ views of 
their completed research projects on children’s argumentation in number stories as potentially 
contributing to their forthcoming teaching of Grade 1 students. Activity theory was chosen because 
it provided opportunities to consider how two different activity systems, research as part of teacher 
education and mathematics teaching in Grade 1, might overlap around the shared artefact of 
mathematical argumentation through number stories. The three interviews are analysed using 
Engeström’s description of four levels of contradictions identified in a matrix of principles and 
questions. The analysis raised some issues with the use of Activity Theory to understand the master’s 
students’ learning from the contradictions between the two activity systems they were in-between. 

Keywords: Master’s students, research skills, number stories, third generation of activity theory. 

Tensions from looking back, looking forward 
From 2017, all preservice teachers for the compulsory years of school (Grades 1-10) in Norway are 
required to complete a five-year master’s degree, but this has raised some concerns about the value 
to teachers of learning to do research (Smith, 2021; Aam et al., 2017). As Rørnes (2017) stated, “a 
research-based education must … be built on R&D work related to real-world issues connected to 
being a teacher” (p. 8). Yet, there has been little research on how teacher educators could improve 
their practices by understanding master’s students’ (MSs) learning of research skills. Learning about 
research could contribute to expansive learning activity. For Engeström (2001), “expansive learning 
activity produces culturally new patterns of activity. Expansive learning at work produces new forms 
of work activity” (p. 139), but this sort of learning may not be able to be predicted beforehand. Non-
explicit learning is common, in that “people and organizations are all the time learning something 
that is not stable, not even defined or understood ahead of time” (Engeström, 2001, p. 137). In this 
paper, we explore Engeström’s (2001) third generation activity theory (3GAT) to determine its 
suitability for identifying the kinds of learning activity, that could occur from MSs undertaking 
research. We chose 3GAT because we anticipated that contradictions would appear in the interviews 
when the MSs discussed the two activity systems of teacher education and school mathematics 
teaching in relationship to their research projects.  

In research, which focused on contradictions in mathematics education, Engeström’s (2001) 3GAT 
has been used to provide insights into when and how learning can occur, when different activity 
systems are juxtaposed. For example, Engeström’s (2014) contradictions has been used to identify 
the difficulties that students had transitioning from school to university mathematics (Anastasakis et 
al., 2020). Solomon et al. (2014) identified the contradictions raised by university students and 
mathematics lecturers in how they viewed the teaching of university mathematics as a way of 
identifying expansive learning. Whereas in the Solomon et al. (2014) paper, contradictions were 
between participants in two overlapping activity systems, Anastasakis et al. (2020) focused on survey 

Proceedings of CERME12 2946



responses where students looked backwards at both their school education and their university 
education. Psycharis and Potari (2017) investigated the contradictions that teachers identified as they 
worked to develop modelling tasks that used workplace contexts. Although the teachers involved 
were participating in master’s courses, their reflections on the role of research in their teaching 
practices were not in focus.  

As part of a wider research project, we wanted to investigate the contradictions identified by three 
MSs when reflecting on what they had learnt from doing research both before they began as Grade 1 
teachers and after a year of doing their teaching. It was important to understand not just the benefits 
the MSs saw from doing research on students’ mathematical argumentation, but also the difficulties 
that might hinder them when they were the teacher. Part of our aim for the project was to see what 
we could learn as teacher educators to improve our practices. In this paper, we explore 3GAT 
(Engeström, 2001) as a theoretical framework for analysing interviews with the MSs before they 
began teaching and after they submitted their master’s theses. We recognised that we were using 
activity theory differently to earlier mathematics education research, as we were investigating the 
contradictions raised, when the MSs looked forward and looked backward regarding doing research 
about teaching. In particular, we wanted to see whether analysing what the MSs told us would help 
us to identify and articulate contradictions with the teacher education activity system in which we 
operated. In his discussion of the Finnish health system around frequently ill children, Engeström 
(2001) described how difficult it can be for professions to articulate contradictions. Therefore, it was 
important to determine if 3GAT would provide us with relevant insights about expansive learning.  

Theoretical Framework 
In elaborating on his theory of expansive learning, Engeström (2001) outlined four questions and five 
principles. The four questions were described as being essential for any learning theory: 1. Who were 
the subjects of learning? 2. Why do they learn? 3. What do they learn? 4. How do they learn? The 
five principles were: the activity system as the unit of analysis; multi-voicedness; historicity; 
contradictions; and transformations. An activity system involves individual and group actions that 
operate together. The object of the actions is a cultural entity, formed through mediating artefacts. In 
the teacher education activity system, the object for the MSs was to complete a master’s thesis 
appropriately, using number stories and research skills as mediating artefacts. In the school 
mathematics teaching activity system, the object was to teach mathematics appropriately, in our case 
mathematical argumentation using number stories and potentially research skills.  

As “the object of activity is a moving target, not reducible to conscious short-term goals” (Engeström, 
2001, p. 136), it is always being reformed both within an activity system and when activity systems 
meet. As a result, “object-oriented actions are always, explicitly or implicitly, characterized by 
ambiguity, surprise, interpretation, sense making, and potential for change” (Engeström, 2001, p. 
134). This contributes to a multitude of views about the actions within each system, which contribute 
to its multivoicedness. Multivoicedness can illustrate the similarities and differences between activity 
systems, because there may be a cross-over in participants. Historicity, or the historical development 
and the circumstances of that development, of the activity systems determines the actions available. 
Contradictions are part of each activity system and occur when activity systems come in close contact 
with each other. Acting upon the contradictions could lead to transforming the activity systems or 
creating a new one.  
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Engeström (2014) described four levels of contradictions. At the primary level, contradictions occur 
within one constituent component of an activity system, such as when a new value system is 
connected to that component, but other components are not affected. The secondary level is where 
one constituent component is altered, requiring adjustment in other components in the same activity 
system. This was the focus for research, such as Psycharis and Potari (2017), where a new teaching 
method, integrating real-world modelling tasks into school classrooms, was introduced. The tertiary 
level of contradictions occurs when the object of a culturally more advanced activity system is 
introduced into another activity system, causing resistance within the other activity system. 
Anastasakis et al.’s (2020) research about the differences between school and university mathematics 
could be viewed as being about contradictions at this level. The quaternary level of contradictions is 
when it is not just the object, but also other elements of the juxtaposed activity systems that are 
disturbed. Engeström (2014) described this level of contradiction as “conflicts and resistances 
appearing in the course of the ‘implementation’ of the outcomes of the central activity in the system 
of the object activity” (p. 72). Solomon et al.’s (2014) research on the views of students and lecturers 
about university mathematics can be considered as illustrating contradictions across more 
components of different activity systems, not just the objects. 

In examining the interviews with the MSs, we focused on the contradictions that could appear from 
the juxtapositioning of the two activity systems of teacher education and mathematics school teaching 
and so were interested in tertiary and quaternary levels. We were interested in determining where and 
how expansive learning could occur when research skills and understandings, from the teacher 
education activity system, were introduced as an object into the school mathematics teaching activity 
system. We wanted to determine if the interview data could be analysed with 3GAT to provide 
insights that could be used in reflections on our own practices. 

Methodology 
The MSs were interviewed a few weeks after they had submitted their theses, but before they had 
received their grades (grading was done by others, not supervisors). As supervisors of two of the 
MSs, the choice of interviewees was one of convenience. In their master’s projects, the MSs had 
collaboratively designed and implemented a teaching task for Grade 2 students where the students 
were expected to develop individual number stories, or regnefortelling in Norwegian. A 
regnefortelling usually includes a written problem, a drawing and a solution, sometimes provided 
through a symbolic algorithm. The MSs collected the regnefortelling and interviewed students to 
better understand their written and oral mathematical argumentation. Each MS had analysed different 
aspects of the collected data to produce individual theses. At the time of the interviews, all three MSs 
had accepted jobs as Grade 1 teachers for the coming academic year.  

The interviews were semi-structured, undertaken by the first and third authors, in a mix of Norwegian 
and English. All responses were translated into English. The focus of the interviews was on how the 
MSs saw the usefulness of their newly acquired research understandings to their future work as 
teachers. The analysis was done by first finding the utterances in each individual interview around 
one topic, that was often connected to a particular thread of questioning. Sometimes this was one 
utterance, at other times it was two or more consecutive utterances spread across several minutes. For 
each of these topic discussions, we completed Engeström’s (2001) matrix formed from the four 
questions and five principles. We then identified where contradictions occurred and their level.  
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We focussed on the contradictions that the MSs described when reflecting on the juxtaposed activity 
systems because the MSs were in between activity systems. At the time of the interview, they had not 
started their roles as teachers in the school mathematics teaching activity system but had left the 
teacher education activity system. Thus, the MSs did not have possibilities to transform either activity 
system. If expansive learning were to come from reflections on the activity systems, it was for us, as 
teacher educators, to use knowledge of the contradictions to reconfigure, at least aspects of, the 
teacher education activity system, while accepting that changing activity system takes time 
(Engeström, 2001). Although the interviews were individual, sometimes the same contradictions 
appeared. As discussed in the results section, it was not always straightforward to identify whether 
the contradictions were at the tertiary and quaternary levels because of the complexity that surrounded 
the contradictions.  

Results and Discussions 
In this section, we first describe the discussion topics that produce contradictions at the tertiary level, 
then at the quaternary level, before discussing the contradictions that were not clearly one or another. 
In each section, the identification of the contradictions is not straight forward, requiring consideration 
of what Engeström’s (2014) contradictions can contribute to understanding learning. 

Tertiary level contradictions 

Tertiary level contradictions occur, according to Engeström (2014), when an object and motive from 
a more culturally advanced activity system is introduced into the central activity of a related activity 
system. In our data, we took this to mean that tertiary level contradictions would appear when the 
object of the teacher education system, research skills and understanding, was introduced into the 
related activity system, that of school mathematics teaching.  

One example of a tertiary level contradiction was when two of the MSs reflected on the use of 
different representations or modes in children’s argumentation in their regnefortelling in their 
individual interviews. From their research, they were able to see how the students were helped in 
explaining their thinking by using different representations. For example, MS3 described how they 
decided to not just look at the students’ writing and drawings but to interview them, as another way 
to understand their thinking. This was connected to having the freedom to design their research 
projects, “I think that is the most interesting part of the project, and also that we could do whatever 
we wanted to do” (Utterance 12). The valuing of different representations, thus, originated in the 
teacher education activity system. MS1 highlighted how having students talk about their 
regnefortelling could be useful in her teaching of Grade 1 students, who may not yet know how to 
write. Having students talk about their regnefortelling was at this point imagined in relationship to 
the activity system of school mathematics teaching. MS2 had similar reflections about how drawings, 
as another mode of representation, could support her as a teacher to understand children’s 
mathematical thinking but also act as a mediating artefact that could help the students to think 
mathematically, “I as a teacher can see how they have thought, but also that they themselves may be 
able to see clearly how they think, that they can use drawing for themselves as a thinking tool” 
(Utterance 11). 

The valuing of the use of different representations as tools for students’ thinking arose from the MSs’ 
research but gave the MSs insights into different practices that they could use in their future classroom 
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teaching, both for their own benefit but also for their students’. This could be considered an example 
of a reworking of what Engeström (2014) described as the established structures to do with the usual 
text production in schools: 

This object is molded by pupils in a curious manner: the outcome of their activity is above all the 
same text reproduced and modified orally or in written form (summarized, classified, organized, 
recombined, and applied in a strictly predetermined manner to solve well-structured, “closed” 
problems). (p. 80)  

By valuing students’ thinking and supporting them to use a range of modes to engage in mathematical 
argumentation, the MSs would be providing their imagined, future students with culturally more 
advanced forms of mathematical argumentation, in which the students had more control of the kind 
of thinking they were doing. However, it is not clear if the MSs considered this to be a contradiction 
that arose as result of the object being imposed on the school mathematics activity systems. For the 
MSs, the contradiction may be at the secondary level in that having students make choices about how 
to represent their thinking, or even to think, would result in changes within the school mathematics 
teaching activity system as it redefined who did what in mathematics classrooms. As a result, the 
possibilities for using research skills to develop their teaching may be de-valued. 

For teacher educators, the contradiction between the activity systems from adding research skills and 
understandings was more obvious in that it made us reflect on aspects of the teacher education activity 
system, beyond the research skills. MS2 told that in their teacher education, no one had made them 
aware of the value of drawings to support students to think mathematically and to show their thinking. 
The contradiction between the two activity systems is complex in that it was not clear if the MSs saw 
the valuing of other ways for students to show their mathematical thinking as being in contradiction 
with the existing methods or just something extra to be added on top. Yet, the implied contradiction 
with what was provided in teacher education can only have an impact on the teacher education activity 
system if teacher educators take note of what the MSs state they were missing. 

Quaternary level of contradictions 

Quaternary contradictions occur when there are tensions between two or more neighbouring activity 
systems to do with a range of constituent components. An example of this could be when the MSs 
discussed how they could work collaboratively when they became Grade 1 teachers. They were asked 
about this because all three MSs described how valuable they had found working together on their 
research projects, “I thought it was very positive, because it was very nice to have several master 
students together as well” (MS1, Utterance 62). MS3 indicated that the MSs had already thought 
about how they could do this: 

We are talking about having these Google docs sites of all the (master’s) students that are working 
together now, to just share ideas. And I think it will also be possible to – like take some parts of 
this project and try it out, absolutely. And we are in so different parts of Bergen as well, so it will 
be nice to see. (Utterance 40) 

In the interviews, there were no reference to multivoicedness or historicity to do with either activity 
system, except to the other MSs’ voices about their experiences of their collaboration. The traditions 
about teachers working together in schools, which perhaps could have had some connection to what 
they were suggesting, was not referred to. Without knowledge of how collaborations are expected to 
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occur in the school mathematics teaching activity system, the MSs did not articulate any potential 
contradiction in trying to collaborate across schools. On the other hand, as teacher educators, we were 
aware that a contradiction could arise if this form of collaboration that had occurred during research 
were implemented when the MSs worked as teachers. It did provide us with information that we could 
take into consideration in designing our future teacher education.  

Contradictions that have aspects of both tertiary and quaternary levels 

Some discussion topics, raised by the MSs, seemed to be between the tertiary level and the quaternary 
level of contradictions. One such discussion topic, which appeared in all three interviews, was when 
the MSs reflected on how asking students about their mathematical thinking provided them with other 
kinds of information than when teachers usually asked children questions in mathematics classrooms. 
For example, MS1 described that by showing curiosity about the students’ thinking, the students 
talked to the MSs in a different way, “(we) said that we just want to know what you think, and in a 
way started talking a little bit about the number story they had, then they started talking a little more 
freely” (Utterance 11). MS3 discussed how this led her to understand the importance of asking the 
students about their thinking: 

Just to talk with the students, like … Yeah, just ask the student “oh, what were you thinking here?” 
That I also think is an important starter to do, and then maybe it will be easier to talk about 
regnefortelling together afterwards. It will start with saying it’s okay to explain how you’re 
thinking, and it’s okay to not have the right answer, but it’s better to know how to explain it than 
to have the right answer and not explaining it. (Utterance 79) 

This indicated that interviewing skills from her data collection changed her ideas about what was 
important when talking with students. MS3 seemed to consider that the mediating artefact of doing 
research interviews could support her to achieve the goal of improving her teaching mathematics in 
school by moving beyond just being interested in the correct answer. The multivoicedness about this 
discussion topic can be seen when MS3 used “you” to refer to the students. There were also traces of 
historicity in that there is a sense that traditionally mathematics teaching has focused on the correct 
answer and not on the students’ thinking.  

Although this discussion topic is about the object of research interviews being integrated into 
teaching, it is difficult to know if the contradiction with traditional classroom discussion practices is 
likely to stay within the object component and thus be at the tertiary level or affect other components 
of the school mathematics activity system and be at the quaternary level. The object, research 
interviews, from teacher education activity system, did disrupt the object of classroom discussions in 
the school mathematics activity system: 

I have seen that it is very interesting to talk a little more with students about how they think, than 
to just stand at the front and question them one by one like that, that you get more out if you ask a 
few questions where you can dig into a little with each individual student. (MS2, Utterance 47) 

However, the complexity of implementing these alternative types of classroom discussion may mean 
that other components of the activity system would not be affected: 

It takes a lot of time, and you have to be so focused on one student, so then you cannot have twenty 
students sitting there, you have to have control over them as well. So maybe you have to 
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collaborate with more teachers, divide into stations, do it a little differently so that you can get a 
little… Yes, a little help from others. Maybe also sign up for some such research projects, and … 
Mhm, so you can get help there. (MS2, Utterance 54) 

MS1 also suggested ways of getting the same benefits from interviewing students, while managing 
the rest of the class, “maybe they could have had a conversation with each other and in a way argued 
with each other, then. But then we must have worked with a lot of argumentation” (Utterance 33). 
This indicates that even when imagining alternative ways of gaining useful information about the 
students’ thinking, there were issues in that the students would need to be taught argumentation before 
they could engage in talking to each other about their regnefortelling. 

These quotes indicate that the contradiction raised by valuing the information provided by the 
interviews was in conflict with the MSs’ understanding of the realities of classrooms, which would 
not allow for individual interviews and where argumentation needed to be taught before students 
could use it. At this point in their careers, the historicity to do with mathematics classroom teaching 
had provided the MSs with a view that their main job was to ensure all students in the class were 
occupied appropriately, making it difficult to do individual interviews. However, identifying the 
contradiction between wanting to hear about students’ thinking and keeping all students occupied 
made the MSs imagine potential solutions. The MSs seemed to say that the contradiction could affect 
several components of the school mathematics teaching activity system, but their suggestions for 
implementing alternative approaches seemed uncertain. This could be because the MSs were not yet 
working as teachers so imagining system level changes was difficult and, as Engeström (2001) stated, 
transforming activity systems is a collective endeavour, taken over time. Nonetheless, the multiple 
voices about the school mathematics teaching activity system for these MSs now included the 
researcher voice, which allowed them to query a focus on the students having the right answer. 

The MSs’ suggestions of alternative ways of hearing about students’ thinking suggested that the 
contradiction was at the quaternary level because more components than just the goal of the activity 
system were discussed. However, it is not clear if this could lead to school mathematics activity 
system changing. For the teacher education activity system to change, we as teacher educators need 
to also reflect upon what the MSs described as difficulties in the implementation of new practices 
around listening to students’ mathematical thinking.  

Conclusion 
Although activity theory has been used in different mathematics education projects (Anastasakis et 
al., 2020; Psycharis & Potari, 2017; Solomon et al., 2014), our analysis had a different purpose. We 
wanted to determine if it could provide useful insights from MSs’ interviews that could help us to 
reflect on our work as teacher educators. 3GAT did provide insights on how the MSs considered 
research understandings and mathematical argumentation using regnefortelling from the teacher 
education activity system, could be integrated into the other activity system, school mathematics 
teaching. In Engeström’s (2001) description of a project with Finnish health care system, there was a 
need for participants to be able to articulate the contradictions across activity systems in order for 
possible alternative practices to be designed. MSs did not always seem to identify a contradiction 
between the activity systems. As teacher educators, we could identify the contradictions but the 
connection to how to change our practices and connect them to the school mathematics activity 
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system was not clear. Some of these issues may be with the data rather than with 3GAT. As the MSs 
were not yet in the school mathematics teaching activity system, they may not have been able to 
imagine difficulties often associated with implementing new practices in schools (see for example, 
Psycharis & Potari, 2017). The value of 3GAT was that the aspirations, challenges and obstacles, that 
the MSs identify, are reconfigured from being problems of individuals into what they should be 
perceived as, i.e., tensions and contradictions in and between activity systems. This provided other 
insights, which had the potential to contribute to more substantial changes in the activity systems. 

Acknowledgment 
The data for this project came from the Learning about Argumentation for Critical Mathematics 
Education in multilingual classrooms (LATACME) funded by the Research Council of Norway. 

References 
Aam, P., Bakken, P., Boilard, M. C., Kvistad, E., & Rørnes, K. (2017). Primary and lower secondary 

teacher education in Norway: Further information. NOKUT.  

Anastasakis, M., Zakynthinaki, M., Trujillo-González, R., García-Alonso, I., & Petridis, K. (2020). 
An Activity Theory approach in explaining engineering students’ difficulties with university 
mathematics. In International Journal of Mathematical Education in Science and Technology (pp. 
1-17). https://doi.org/10.1080/0020739X.2020.1834156  

Engeström, Y. (2001). Expansive learning at work: Toward an activity theoretical 
reconceptualization. Journal of Education and Work, 14(1), 133–156. 
https://doi.org/10.1080/13639080020028747  

Engeström, Y. (2014). The emergence of learning activity as a historical form of human learning. In 
Learning by expanding: An activity-theoretical approach to developmental research (pp. 25–108). 
Cambridge University Press. https://doi.org/10.1017/CBO9781139814744.004  

Psycharis, G., & Potari, D. (2017). Mathematics teachers’ learning at the boundaries of teaching and 
workplace. In G. A. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical Modelling and 
Applications: Crossing and Researching Boundaries in Mathematics Education (pp. 301–312). 
Springer International Publishing. https://doi.org/10.1007/978-3-319-62968-1_26  

Rørnes, K. (2017). Is five-year teacher education a failed experiment? In P. Aam, P. Bakken, M. C. 
Boilard, E. Kvistad, & K. Rørnes (Eds.), Primary and lower secondary teacher education in 
Norway: Further information (pp. 7–9). NOKUT.  

Smith, K. (2021). Educating teachers for the future school- the challenge of bridging between 
perceptions of quality teaching and policy decisions: reflections from Norway. European Journal 
of Teacher Education, 44(3), 383–398. https://doi.org/10.1080/02619768.2021.1901077  

Solomon, Y., Croft, T., Duah, F., & Lawson, D. (2014). Reshaping understandings of teaching–
learning relationships in undergraduate mathematics: An activity theory analysis of the role and 
impact of student internships. Learning, Culture and Social Interaction, 3(4), 323–333. 
https://doi.org/10.1016/j.lcsi.2014.08.001  

 

Proceedings of CERME12 2953



 

 

Coordinating conceptual frameworks for an in-depth understanding 
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This paper is methodological and theoretical, focusing on how teachers' knowledge in action and 
interaction when teaching mathematics can be explored. The two conceptual frameworks adopted, 
The Knowledge Quartet and the Pedagogical Relational Teachership, are coordinated, as they grasp 
disparate aspects of knowledge in action and interaction when teaching mathematics. An empirical 
example is given to illustrate how these two conceptual frameworks can be adopted in coordination 
with each other. The results show that the coordination of these two conceptual frameworks used as 
a methodological framework can contribute to a deeper understanding of the characteristics of 
teachers' pedagogical content knowledge and relational abilities when teaching mathematics. 

Keywords: Mathematics teaching, networking frameworks, relational abilities, teachers' knowledge. 

Introduction  
This paper is methodological and theoretical, focusing on how teachers' knowledge in action and 
interaction when teaching mathematics can be explored. This exploration is based on a classroom 
study conducted in a Swedish Grade 5 class. It is part of a research project intended to contribute to 
a more profound understanding of inclusive mathematics education regarding the connections 
between teachers' knowledge and relational abilities when teaching mathematics. Thus, this paper 
focuses on the use of a methodological framework based on two conceptual frameworks rather than 
interpreting the implications for mathematics education in the classroom.  

Previous studies have shown that relational leadership promotes inclusive mathematics education 
(Schmidt, 2015). Furthermore, Roos (2019) concluded that inclusive mathematics education requires 
the teacher to have mathematical, didactic, and pedagogical skills as well as relational competencies 
in seeing each student as a person and understanding their needs. Roos' conclusion concurs with that 
of Ernest (2019). The latter stated that teaching mathematics involves the responsibility to treat 
students with care and respect and teach mathematics in a manner that benefits students effectively. 
Additionally, Valero (2005) pointed to the need to view the student as a whole human being, not just 
as a cognitive subject of mathematical thinking, to fully understand the student's intentions when 
acting in social mathematics teaching and learning situations. 

Several analytical models deal with mathematics teaching, for example, Mathematical Knowledge 
for Teaching (Ball et al., 2008), The Teaching Triad (Jaworski, 1992; Potari & Jaworski, 2002), and 
The Knowledge Quartet (KQ) (Rowland, 2013).  Ball et al. (2008) aimed to elaborate theoretically 
on the concepts of subject matter knowledge and pedagogical content knowledge (Rowland, 2013). 
Potari and Jaworski (2002) acknowledged sensitivity to students as one of the three keystones, 
making their framework useful as an analytic tool. However, they gave no further descriptions of how 
teachers act in interactions.  
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Based on the above, this paper is concerned with coordinating conceptual frameworks that can surface 
the complexity of teachers' knowledge when teaching mathematics in inclusive classrooms, 
considering knowledge in action and interaction with students. This complexity is addressed in this 
paper by illustrating two conceptual frameworks complementing each other using networking 
strategies (Bikner-Ahsbahs & Prediger, 2010) as guiding heuristics. The two conceptual frameworks 
are the KQ (Rowland, 2013), which frames how mathematical subject knowledge plays out in 
teaching, and the Pedagogical Relational Teachership (PeRT) (Ljungblad, 2019), which frames 
teachers' relational abilities, are coordinated. Thus, this paper aims to illustrate how these two 
different conceptual frameworks may contribute to exploring teachers' knowledge in action and 
interaction with students when teaching mathematics in inclusive classrooms. 

The two conceptual frameworks 
First, the two conceptual frameworks are introduced. Then the common core elements between the 
conceptual frameworks are presented.  

The Knowledge Quartet 

The KQ is a conceptual framework of four categories: foundation, transformation, connection, and 
contingency. Each of the four categories consists of several methodological codes to be used when 
analyzing empirical material (Table 1), from which the four dimensions of the KQ are extracted. 

Foundation is related to the teacher's theoretical background in and knowledge of mathematics, 
making it possible for the teacher to use mathematical terminology deliberately, be aware of its 
purpose and identify errors (Rowland, 2013). Epistemologically, foundation can be seen as 
propositional knowledge, involving knowledge about mathematics and the purpose of mathematics 
teaching (Hundeland et al., 2017). Transformation refers to how a teacher's foundational knowledge 
is transformed into action when teaching, such as demonstrating mathematical content through 
examples, instructional materials, and mathematical representations (Rowland et al., 2005). 
Epistemologically, transformation can be seen as knowledge in action, as this knowledge is situated 
in and visible in teaching moments (Hundeland et al., 2017). Connection refers to the connections 
made by the teacher concerning the coherence of the teaching across a shorter or longer period, for 
example, connections between procedures, concepts, and sequenced examples (Rowland et al., 2005). 
Epistemologically, connection can be seen as knowledge in action, as this knowledge is situated in 
and visible in teaching moments (Hundeland et al., 2017). Contingency refers to the teacher 
responding to ideas from students for which it is impossible to plan and represents deviations from 
the intended actions in a planned lesson, but which make the teaching meaningful for students 
(Rowland et al., 2005). Epistemologically, contingency can be seen as knowledge in interaction, as 
this knowledge is situated in and visible in teaching moments when interacting with students 
(Hundeland et al., 2017).  

The Pedagogical Relational Teachership 

The PeRT is a theoretical relational perspective involving a taxonomy categorized under two themes, 
tact and an inclusive stance (Ljungblad, 2019), which is then further organized into smaller units of 
codes to be used when analyzing empirical material (see Table 2) (Ljungblad, 2021). 
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Tact is situated and improvised and can be observed in the teacher's different ways of relating to the 
students and their situated needs. Tact can be expressed verbally and non-verbally. The verbal 
expressions of tact are connected to how teachers use the tone of voice, degree of loudness, and rate 
of speech. Tact is expressed non-verbally through the teacher's eye contact, movements, gestures, and 
facial expressions. Epistemologically, tact can be seen as knowledge in action as well as in 
interaction, as tact is situated in the teaching and visible in the teaching as the teacher relates to the 
students (Ljungblad, 2016). An inclusive stance is connected to the teachers' sensible choices and can 
be observed in how the teacher takes responsibility for teaching and developing sustainable 
relationships within the classroom. Epistemologically, an inclusive stance can be seen as knowledge 
in action as well as in interaction and is both situated in and visible in teaching (Ljungblad, 2016).  

Common core elements 

Strategies of networking theoretical approaches are research practices that may provide a more 
comprehensive view of the complexity of teaching and learning mathematics. Various strategies to 
use more than one theoretical approach have been systematized described as a continuum, from 
understanding others and making their theories understandable to synthesizing and integrating 
locally. Somewhere in the middle of the spectrum of the degree of integration is to coordinate 
theoretical approaches. Coordinating multiple theoretical approaches can contribute to a conceptual 
framework for understanding empirical data (Bikner-Ahsbahs & Prediger, 2010).  

In this paper, coordinating two conceptual frameworks implies three consecutive analyses on the 
same data source, complementing each other in a methodological framework. The two conceptual 
frameworks are chosen to elaborate on the interactions between a teacher and a student and the 
teacher's action reflecting the student's responses. The teacher's foundational mathematical 
knowledge plays out in the teaching, referring to the dimensions of transformation, connection and 
contingency. Unlike, the teacher's responses to the individual student's actions refer to tact and an 
inclusive stance dimensions, as well as contingency. Epistemologically, the dimension of contingency 
intersects with the dimensions of tact and inclusive stance. They are both seen as knowledge in 
interaction, addressing how the teacher's mathematical knowledge and relational ability unfold in the 
teaching in unpredictable ways. The common core elements are based on knowledge in interaction 
between the teacher and the student since they are connected to a context. When teaching 
mathematics, the teacher's actions are influenced by the context. However, when interacting with the 
student, the teacher responds to the student's ideas and emotions, which means the teacher influences 
the context.   

Coordinating the two conceptual frameworks 
The two conceptual frameworks were used to analyze video-recorded observations of mathematics 
lessons carried out in an intervention that was ongoing during a school year. The video-recorded 
classroom observations from this study were transcribed and coded in NVivo. In the analysis, first, 
the codes from the KQ (Table 1) were used to mark up the data material.  
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Table 1: Methodological codes from the KQ (Rowland, 2013) 

Foundation awareness of purpose (AP); identifying errors (IE); overt subject knowledge (OSK); the 
theoretical underpinning of pedagogy (TUP); use of terminology (UT); use of textbook 
(ATB); and reliance on procedures (COP) 

Transformation teacher demonstration (DT); use of instructional materials (UIM); choice of representation 
(CUR); and choice of examples (CUE) 

Connection making connections between procedures (MCP); making connections between concepts 
(MCC); anticipation of complexity (AC); decisions about sequencing (DS); and 
recognition of conceptual appropriateness (RCA) 

Contingency responding to students' ideas (RSI); deviation from agenda (DA); teacher insight (TI); and 
(un)availability of resources (RAT) 

Then, as a second layer on the same data material, the codes from the PeRT (Table 2) were used. The 
sequence was first coded by me and then again by three senior researchers and two doctoral students 
to increase interrater reliability. Discussions were carried out among the experts involved until a 
consensus was reached regarding the codes used.  

Table 2: Methodological codes from the PeRT (Ljungblad, 2021) 

Tact improvising shifts of tact (A11); seeking contact by showing interest in students' different 
ways of working and reasoning (A21); seeking contact with students by showing interest 
in the person (A22); meeting the students with respect (A31); and meeting the students in 
different ways in the same teaching situation (A32) 

An Inclusive 
stance 

taking responsibility for the teaching (B11); taking responsibility for the relationships 
(B12); listening to students when creating space for them to speak in their own way (B21); 
creating space for students to listen to each other (B22); showing students different 
possible ways to explore the content (B31); and encouraging students by showing trust in 
the students' ability and willingness to explore the content mutually (B32) 

The third step implied an inductive analysis of students' participation in mathematics education on 
instances categorized into three groups: i) coded to both KQ and PeRT, ii) coded to only KQ, and iii) 
coded to only PeRT, exploring differences and similarities of students possibilities to participate in 
mathematics education.  In this paper however, only the first and second deductive steps are focused 
on and thus not the third inductive step. 

An empirical example using the KQ and the PeRT as lenses 
In this section, one empirical example is first introduced and coded to illustrate how the coordination 
of the conceptual frameworks was carried out. The empirical example is from a Swedish Grade 5 
classroom with two teachers, a mathematics teacher and a special education teacher in mathematics. 
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This empirical example was chosen for this paper because the codes from the two conceptual 
frameworks sometimes overlapped. The codes are written in brackets to the right. Codes from the 
KQ are in italics, and codes from the PeRT are underlined.  

First, the mathematics teacher, Felicia, introduces a task about a jogging tour to the whole class. The 
special education teacher in mathematics (Selma) is present during the lesson. The task describes a 
jogging tour that took the form of a circle. There is a picture of the circle on the task paper, where the 
circle's circumference (3,140 m) and radius (500 m) are written. The jogging tour has a shortcut 
straight across the circle, along its diameter. Subtask b is: Fatima is jogging half the distance and then 
taking the shortcut home. How long is Fatima's jogging round?  Tanja, a student, raises her hand 
when the transcript below starts. The teachers consider Tanja a student in special educational needs 
in mathematics (SEM), as she often struggles to participate in mathematics. Selma, who is nearby, 
stops beside Tanja's right side, bends down, leans her forearms on the desk, and quietly asks Tanja 
about her thoughts on subtask b while looking at her task paper. Tanja asks about how to figure out 
the distance. 

62 Selma: How are we about to figure out the half then? (A11, A21, B32, RAT) 
63  (Quiet, 7 sec.)     (B21) 
64 Selma: How can we do it?     (B32)  
Next, after a passage where Tanja is being silent, Selma asks:  
67 Selma: How long is the whole [circle]?   (RSI)    
After a wrongly read number, Tanja quickly answers correctly.  
71 Selma: Yes. Suppose we pretend that this is three  
  thousand. How           (A11, B32, MCP)                               
  long would the half be then? 
72 Tanja: Two and a half. No.     (B21) 
74 Selma: Not two and a half. Instead? What if you and I  
  would split these three?    (A11, B32, RAT)  
75 Tanja: Mm.       (B21) 
76 Selma: How much do each of us get?   (A11, RAT) 
77 Tanja: Three and a half.     (B21) 
78 Selma: Do we get three and a half if we split three?! (A11, IE, RAT) 
79  Tanja: No. (Giggles.)     (B21) 
80 Selma: No. (Laughs.)     (A11) 
81 Tanja:  One and a half.     (B21) 
82 Selma: One and a half. And, what does it mean in meters   
  in this task?       (A11, MCP) 
83  (Quiet, 2 sec.)     (B21) 
84 Selma:  Instead of three thousand?    (A11, MCP) 
85  (Quiet, 2 sec.)     (B21) 
86 Selma: If we split, instead of meters, if there were   
  [Swedish] crowns instead. Suppose we split three  
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  thousand [Swedish crowns] you and me.   (A11, UIM, RAT) 
87 Tanja:  Mm.        (B21) 
88 Selma: How many [Swedish crowns] do we get each? (B32, UIM, RAT) 
89  (Quiet, 4 sec.)     (B21, RSI) 
90 Tanja:  One and a half.     (B21) 

Above is an example where most lines are only coded with codes from the PeRT. In these lines, the 
special education teacher actively listens to the student or make room for her to speak (code B21, 
lines 63, 72, 75, 77, 79, 81, 83, 85, 87, 90). In another line, the special education teacher acknowledges 
that they work together using "we" in her talk, signalling that they will complete the task together 
(code B32, line 64). She changes her voice tone to a joyful tone (code A11, line 80) and seeks contact, 
interested in the student's reasoning (code A21, line 91). These lines coded only to the PeRT could 
be seen as the teacher responding to the student's needs as a person. 

One line is coded only to the KQ. Here, the teacher responds to the student's silence by asking an 
easy question to which the information for the answer is written on the task paper (code RSI, line 67). 
The line could be seen as the teacher wants the student to give an answer related to the mathematical 
content, as she chooses a question to which the student already knows the answer.  

There are also lines with codes from both the KQ and the PeRT. Lines coded to both the KQ and the 
PeRT display the special education teacher shifts tact while she contingently uses her fingers as 
manipulatives (codes A11 and RAT, lines 62, 74, 76, 78, 86). In some of these lines, the teacher also 
shows interest in the student's way of reasoning (code A21, line 62) and acknowledges that they 
together, using "we" in her talk, will be able to complete the task (code B32 line 62, 74). Yet another 
line shows the teacher suggesting they together, "we", can pretend the number is 3000 instead of 3140 
while making a connection between the procedures of dividing 3140 by 2 and dividing 3000 by 2 
(codes B32 and MCP,  line 71). Further, one line displays the teacher pointing to her three fingers 
when identifying a wrong answer and changing her voice to a joking, surprising tone when asking a 
question (codes RAT, IE and A11, line 78). More, there are lines where the teacher connects one and 
a half to 1500 while changing the direction of her gaze to look at the student and changing her speech 
rate to slow and gentle (codes MCP and A11, lines 82, 84). Another line implies that the teacher again 
gazes at the student talking about money as imagined manipulatives (three thousand Swedish crowns) 
while pointing at her three fingers (codes A11, RAT and UIM, line 86). Again, the teacher uses "we", 
asking the student about how they can split the money (B32, RAT and UIM, line 88). The teacher is 
silent long enough, so the student finally answers (B21, RSI, line 89). The lines coded to both the KQ 
and the PeRT could be seen as the teacher responding to the student's needs as a person as well as 
adapting her foundational mathematical knowledge to this particular social setting.   

Conclusions 
This paper aimed to illustrate how the two conceptual frameworks used as a methodological 
framework can contribute to exploring a teacher's knowledge in action and interaction with a student 
when teaching mathematics in an inclusive classroom. The empirical example illustrates how the two 
frameworks make aspects beyond teachers' knowledge respective relational abilities surfaced. That 
is, from the dimensions of the KQ (Rowland, 2013), the special education teacher in mathematics 
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shows foundational mathematical knowledge connected to procedures (lines 71, 82, 84), choosing 
(unavailable) materials and representations (lines 62, 74, 76,78, 86, 88), and responding to a student's 
silence (lines 67, 88, 89). From the dimensions of the PeRT (Ljungblad, 2021), the special education 
teacher uses verbal and non-verbal expressions to seek contact with the student and shows interest in 
her ways of reasoning. That is, the special education teacher creates space for the student to speak 
with her voice (lines 63, 72, 75, 77, 79, 81, 83, 85, 87, 89, 90), acknowledging her answers, although 
her answers are sometimes incorrect (lines 71, 82). The teacher tactfully makes jokes (line 78), 
supports the student, and shows trust that they two will solve the task (lines 62, 64, 71, 74, 78, 86, 
88). Thus, based on the interaction with the student, the special education teacher adapts her actions 
to the specific student within the particular situation in time and space, using relational abilities. When 
using relational abilities, the special education teacher's foundational mathematical knowledge is 
transformed through adaption to the specific student in the interaction (lines 62, 71, 74, 76, 78, 82, 
84, 86, 88, 89). Thus, when coordinating the KQ and the PeRT, the features of a teachers' relational 
abilities concerning a specific student's diverse interests and prerequisites contribute to our 
understanding of the complex situations of mathematics teaching and how they evolve.  

Earlier studies on mathematics teaching have either focused on teachers' knowledge (for example, 
Ball et al., 2008; Jaworski, 1992; Potari & Jaworski, 2002; Rowland, 2013) or teachers' relational 
abilities (Roos, 2019; Schmidt, 2015; Valero, 205) and the approaches of the KQ and the PeRT 
function as frameworks of their own. They both can be used to analyze mathematics teaching but 
grasp disparate aspects of teachers' actions or interactions with students. However, coordinating the 
KQ and the PeRT may contribute to an understanding of mathematics teaching in inclusive 
classrooms from an extended perspective. The above-illustrated two-step deductive analysis makes 
it possible to carry out a forthcoming third inductive analysis of the instances where the codes from 
the KQ and the PeRT overlap and don't overlap. This analysis will make visible if and then how 
teachers relational and/or mathematical knowledge influence student participation in mathematics.    
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This paper illustrates how teacher decision making, as an arena of teaching practice, can be a locus 
for networking structural and individualist theories of teaching. We use the decision of what problem 
to give to students as a context for illustrating how those diverse perspectives can be coordinated 
conceptually in the context of a middle-range theory of teaching practice and the decision of how to 
respond to students to illustrate how such coordination can combine perspectives in the context of 
empirical studies of mathematics teaching.  

Keywords: Teaching practice, theories of teaching, teacher knowledge, decision making 

Introduction: Middle-range theorizing 
Variability in theoretical accounts of the work of teaching has existed in education research for 
decades. This is also the case in mathematics education, where accounts of teachers’ actions, beliefs, 
knowledge, noticing, or of teaching contracts, patterns, or norms, have run somewhat in parallel for 
decades. In this paper, we discuss teachers’ decision-making as a context for networking different 
theoretical perspectives on the work of mathematics teaching and propose how research using 
scenario-based assessments could facilitate such networking. Our perspective on the networking of 
theories builds on Merton’s (1967) notion of middle-range theory as an alternative between grand 
theories and local empirical hypotheses: A middle-range theory starts by scoping a terrain of human 
practice (e.g., mathematics teaching) and builds itself through adapting language to coherently 
accommodate potentially competing empirical assertions and developing conjectures that could be 
studied empirically to increase what is known. Middle-range theorizing is thus conceptual and 
empirical, and it includes activities that Prediger et al. (2008) called comparing and contrasting (e.g., 
by identifying the different observables and predictions each theory would attend to when looking at 
a complex phenomenon). It also includes what Prediger et al. (2008) call coordinating and combining 
(e.g., by identifying research designs, designing instruments, and specifying statistical models that 
can help discern the contribution of each theory to the understanding of the phenomenon).  

Setting the stage: Different takes on the work of teaching 
Scholars who study educational systems have often seen teaching as a production function shaped by 
institutional structures and policies such as evaluations, incentives, and requirements as well as the 
characteristics of classrooms (Doyle, 1986; Firestone & Pennell, 1993). In mathematics education, 
this structural conditioning of the work of teaching, has been apparent in research that describes 
teaching as the implementation of a curriculum through the enactment of role-relationships among 
teacher, students, and content established by a hypothetical didactical contract (Brousseau, 1997). 
Building on the latter, in our own work (e.g., Herbst, 2002, 2006) we have described observations of 
teaching in terms of effecting symbolic exchanges between student work and knowledge at stake 

Proceedings of CERME12 2962



 

 

required by the didactical contract—we refer to this as the theory of instructional exchanges. From 
this structural perspective, the work of teaching includes adapting to these structural demands. 

A completely different approach is seen in work by scholars who seek to capture the experience of 
individual teachers, often drawing on psychological concepts. In these accounts, the sense that 
teachers bring to the work of teaching their individual characteristics (e.g., identity) or assets (e.g., 
knowledge) have often been used to explain unique episodes of teaching actions as expressions of 
self.  Schoenfeld’s (2010) ROG (Resources-Orientations-Goals) theory, for example, attempts to 
account for individual teacher actions as a moment-by-moment cognitive calculation of what to do, 
fed by the individual’s Resources, Orientations, and Goals, with resources including teacher 
knowledge and orientations including teacher beliefs. Likewise, research on teacher noticing (e.g., 
Sherin et al., 2011) has produced models of the cognitive processes that lead teachers to act on the 
basis of what they notice. Other approaches, such as those that explain teaching as a projection of a 
teacher’s individual beliefs may vary in the extent to which they hypothesize consciousness but also 
seek explanations of action inside the individual (Mason, 2002). The number of different perspectives 
taken to account for teaching as an individual activity evinces how dominant this perspective has 
been in mathematics education research.  

Progress in research on teaching has benefitted from both structural and individual perspectives, yet 
each has its drawbacks. The first approach risks deprofessionalizing the work of mathematics 
teaching while the second approach risks burdening individual teachers with an ever-increasing set 
of resources and orientations to be acquired and used. These observations suggest the need for 
coordinating and combining what we learn from these perspectives. The development of a middle-
range theory of the practice of mathematics teaching can support such coordination. A variety of 
practice theories have emerged in social research (Nicolini, 2012); among these perspectives, 
Bourdieu’s (1990) logic of practice supports theoretical development that allows researchers to 
coordinate structural and individual perspectives. Such development can incorporate Stigler and 
Hiebert’s (1998) perspective of teaching as a cultural practice and the notion that improving 
instruction requires improving teaching rather than teachers (Hiebert & Morris, 2012). We use 
research on teacher decision-making to sketch how such networking could proceed.   

Coordinating theories for conceptualizing teacher decision-making 
Decision-making is an important locus for the coordination of theories of mathematics teaching partly 
because of the marked contrast that can be gleaned between objective (structural) and subjective 
(individual) perspectives. An objective perspective that sees teaching as a response to structural 
conditions and constraints might see a teacher’s decisions as discrete events: within a lesson, choosing 
which work to assign to students and how much scaffolding to provide would likely be one of such 
decisions, and see it as capable of being optimized on the basis of structural characteristics such as 
learning objectives and class level. A subjective perspective might, in contrast, account for the work 
of teaching as the continual enactment of individual agency in response to information from the 
specific context of action, where the actions of one person depend on their noticing of the context and 
the activation of personal commitments to address perceived needs of the context.  
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The conceptual work involved in coordinating these perspectives can be seen in the example Lampert 
(1985) offered to motivate her conceptualization of teaching as managing dilemmas. Lampert had 
noted the boisterous nature of boys in her class and decided to seat them closer to the front of the 
class so that she could manage their behavior. After doing that, she realized that her decision left girls 
farther from the blackboard having fewer opportunities to hear and see the mathematical content of 
instruction. She found herself second-guessing whether a decision could solve a problem in teaching. 
Instead, she came to embrace the notion that while decisions need to be made, no choice can be made 
once and forever. Two important generalizations can be abducted from this example. First, the field 
of education provides structured structures such as the need to attend to associations between gender 
differences and achievement and between achievement and opportunity to learn that require a teacher 
to be a steward of the learning environment. Second, the lived experience of an experienced teacher 
provides structuring structures such as the disposition to see boisterousness as not beneficial to a 
productive learning environment and physical proximity to a teacher as conducive for individual 
students to engage in productive behaviors. These two types of elements played a role in Lampert’s 
analysis, requiring her to accept some structural basis for her decision making and act first to move 
boys to seats where she could monitor them. This decision changed some structural characteristics of 
the class so that she might feel less called to attend to discipline. In analyzing this new position, her 
personal, gendered experience, enabled her to notice a new gender imbalance issued from her decision 
(e.g., boys receiving more attention) that might need a different decision (viz., to spend more of her 
time in the back of the room).  

Like Lampert, we want to embrace, but complicate, the theme of decision-making when it is applied 
to teaching mathematics. Yet given how prominent the expectation is among the mathematics 
education research community that teachers will exercise agency and enact personal commitments as 
they work in their context, we state our thesis in an alternative way: The study of teachers’ decision-
making needs to coordinate the usual attention to teachers’ personal characteristics and assets with 
the recognition that there are structures in the field of mathematics teaching that require teachers to 
make decisions and that activate expectations for what those decisions ought to be. Even when 
teachers’ personal commitments may compel them to deviate from such expectations as well as vary 
in the decisions they make as they handle specific contextual information, these decisions are best 
understood in terms of their fit with structures of the environment in which those decisions are made. 
In the two following sections we take two examples of decisions in mathematics teaching to illustrate 
two aspects of the coordinating approach we propose, which involves (1) the conceptual articulation 
that leads to (2) the empirical work that fleshes out of a middle-range theory. The cases are (1) What 
problem to give to students, and (2) What to say in response to students’ contributions. 

The decision of what problem to give to students  
We examine the decision of what problem to give to students to demonstrate how a middle-range 
theory of practice can develop conceptual resources to coordinate structural and individual 
perspectives. The literature on the cognitive demands of tasks (e.g., Stein et al., 1996) has noted that 
cognitive demands usually lower in the transit from how the tasks are stated in curriculum materials, 
through how they are presented to students, to when students enact them. From a structural 
perspective, one could explain this in reference to how such tasks fit in the didactical contract. There 
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are structures in the field of mathematics teaching that situate the practitioner and her students in a 
place from which they are more or less likely to do things. The course of studies with its 
institutionalized learning goals and expectations of students’ attainment are such structures. Thus, the 
notion that a mathematics teacher must assign to students work related to the learning goals of the 
course of studies and the officially acknowledged capabilities of students is a structural characteristic 
of the field of mathematics teaching. It suggests that tasks that do not fit with courses of studies and 
learning objectives would likely receive little attention; both teachers and students would adapt to the 
point of neglecting tasks that fit little with the institutional expectations on them. Similar structural 
analysis also led Doyle (1988) to explain why novel tasks tend to be transformed into familiar ones. 

An individual-centered perspective (e.g., Schoenfeld, 2010), would prompt researchers to see the 
maintenance of tasks’ cognitive demand as a call to understand teachers’ use of their personal 
resources (e.g., relational skills with students, personal goals), shaped by individual commitments or 
orientations to a variety of other issues emerging from personal readings of the context and mediated 
by the teacher’s own noticing capacities. The subjectivist perspective would affirm teachers’ 
individual agency and identify beliefs that some topics in the curriculum are more important than 
others, the need for this or that knowledge, and commitment to particular meanings of what learning 
those topics means as sources for explaining what happens with a task in the classroom.  

We argue that the job of mathematics teacher in an educational institution positions the teacher to 
exercise their individual agency in ways that, while not determined by, can be described as habitual 
responses to structures such as the didactical contract. Furthermore, as Bourdieu would have it, these 
habitual responses also function as structuring structures, that is they further constitute ways of 
shaping future action even if the experience of individual agency continues. The notion of teaching 
as a cultural activity (Stigler & Hiebert, 1998) accounts for the variability in what can fit as 
appropriate kinds of things to ask students to do--the cultural forms that students’ academic work can 
take: whether students may be expected to interact with the real world, be occupied in the same task 
for a long time, or speak to the whole class are examples of structuring structures that will shape the 
likelihood for a teacher to ask one or another question and for the students to interpret the request the 
teacher makes.  

But there are also such structuring structures within a didactical contract. In our work studying algebra 
1 and geometry classrooms in American high schools, we had conceptualized instructional situations 
as local didactical contracts which are specific to courses of studies and organize what tasks teachers 
assign to students and how they manage the framing of novel problems. Examples of instructional 
situations include solving equations and doing proofs—these situations include normative task 
statements (e.g., the use of the word “prove” vs. the word “solve”) as well as expectations on the 
teacher’s action (e.g., to provide a diagram that labels all the points to be used in the proof vs. 
providing all the information needed and no more in a word problem) and expectations on the 
students’ work (e.g., to justify each statement before moving on to the next statement in a proof vs. 
doing one algebraic step at the time and writing it below the prior statement of equality). These 
situations initially appear as tasks canonically adapted to curricular structures (and may even be 
exemplified explicitly for students in study material), and one might use them to recognize the 
structural difference between novel and familiar tasks (Doyle, 1988). But instructional situations can 
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also be recognized as capable of structuring how teachers see their field of possibilities when deciding 
how to engage students in more novel work. While teachers may design or adapt a variety of tasks 
for their students, the instructional situations available to them in a course of studies will structure 
how they exercise their agency, particularly how they engage in repair strategies with students to 
support students’ identification of what is possible for them to do when they have chosen a task for 
students to work on. The instructional situations in a course of studies exemplify elements of the 
habitus of a mathematics teacher not necessarily by dictating what the teacher ought to do when 
assigning students’ work, but by providing a set of expectations that the teacher needs to consider as 
they negotiate what will get students to engage with a mathematical task. Thus, in the case of engaging 
students with novel problems such as the question “what can you say about the angle bisectors of a 
parallelogram?” and the goal of using this question to practice proving, a teacher may feel compelled 
to suggest that students draw a figure and later label the vertices of the parallelogram and of the 
quadrilateral formed by the intersection of its angle bisectors. While this compulsion may be 
experienced as a personal decision to respond to noticed students’ difficulties getting started thinking 
about the problem or getting started with a proof, the norms of the instructional situation of doing 
proofs (which stipulate that  problems are posed in a diagrammatic register) will have likely structured 
the teacher’s attention to expect students’ difficulties writing the statements for the proof and to 
anticipate what they might be expected to do to preempt those difficulties.  

The foregoing considerations suggest that research on teacher decision-making can be a productive 
site for empirical research to support the networking of theories of mathematics teaching. Research 
can and should investigate this terrain in a variety of ways, including (1) finding patterns in how 
textbooks and tests present work for students and how that influences what problems teachers choose 
to assign to their classes and (2) describing from the teachers’ perspective how they plan and devolve 
responsibility for students’ work on novel tasks. If this conceptual development seems worthwhile as 
one that can help us understand the specific ways in which teachers might feel compelled to adapt 
novel tasks for their students, empirical work can help uncover the structural resources available to 
teachers in different courses of study: What are the instructional situations available for teachers of a 
course of studies to frame students’ work on novel problems and how do they help account for the 
ways in which practitioners notice the difficulties students have engaging in those problems and the 
particular moves they feel compelled to make? Particularly in the context of deciding to use tasks that 
are cognitively demanding (Stein et al., 1996), identification of the instructional situations that can 
help a teacher frame those tasks can help refine the instruments for empirical research that builds 
middle-range theory by combining structural and individual perspectives. 

Studying how teachers respond to students’ contributions  
To show how the development of a middle-range theory of practice benefits from conceptual 
developments, such as the proposition of instructional situation to describe a type of resource for the 
teacher’s framing of novel task, we sketch out empirical work that could help discern how variability 
of decisions responds to individual and structural factors. Scenario-based assessments (Herbst & 
Chazan, 2015) allow the study at scale of questions of teaching practice while also enabling rich 
representations of the contexts of teachers’ work by using cartoon characters to render nonverbal 
aspects of practice and hence summon their feel for the game in real practice. Scenario-based items 
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can be used to immerse teachers in classroom episodes framed or not framed by an instructional 
situation. They can be used, in the context of experimental design and regression analysis with 
covariates to study the complementarity of theoretical concepts suggested by structural and individual 
perspectives on decision-making. We illustrate it in the case of responding to students’ contributions.  

The interest in teacher responding to students’ contributions (e.g., Jacobs & Empson, 2016) has 
emerged in mathematics education against what is often described as the pervasiveness of teacher 
evaluation of student responses, connected to the I-R-F (Initiation-Reply-Feedback) pattern. The 
research on teacher noticing has contributed to describing an individual-centered perspective on 
decision making that seeks to understand cognitive mechanisms for a decision: Attending to students’ 
thinking enables the teacher to interpret what the student said, which in turn leads to deciding how to 
act. While individual centered perspectives might emphasize teachers’ pedagogical knowledge and 
commitments to students’ thinking as important to account for how teachers’ respond to students, 
structural perspectives might put the emphasis on class level (e.g., advanced vs remedial) and the 
status of the student’s response (correct, incorrect) as predictors of responses.  

Our approach to the practical rationality of mathematics teaching models the context in which 
teachers are called to make such decisions. Accordingly, instructional situations, originally defined 
as structures behind similar recurrent tasks observed in courses of studies, do more than distinguish 
familiar from novel tasks: As frames that teachers can use to structure students’ mathematical work, 
they can be used to understand the variability of teachers’ responding to students’ contributions. To 
understand a teacher’s decision on how to respond to students’ contributions we consider that 
noticing, interpreting, and responding are resources not only available to the individual teacher but 
also primed by the framing that prior instructional situations can provide to those interactions. The 
following sketches an experiment that we think could be used to investigate the sources of variability 
in teacher responding, including individual resources and structural characteristics. 

Consider teachers who vary in terms of personal resources (knowledge, beliefs, discursive 
competence, and experience teaching beginning Algebra), matched in cohorts of 4 individuals who 
are equivalent on those personal characteristics to make 4 equivalent groups that receive A-control, 
R-control, A-treatment, and R-treatment items. Each group receives items that depict scenarios 
described explicitly as happening in an introductory algebra class (A-items presenting cases in an 
avowedly advanced algebra class and R-items in an avowedly remedial algebra class). In all cases 
students have already learned how to represent linear functions using tables, graphs, and formulas 
and participants are told that the goal of the lesson is to develop the idea of inverse of a linear function. 
In all conditions participants see the teacher present the same mis-en-scene: 

Someone comes to the front desk of Parks and Recreations to pay a team’s fees for the upcoming softball season. Two 
other teams came in earlier and paid but you are not sure how fees were calculated. You know there is a league fee per 
team and a separate fee per player. You see a few handwritten receipts still on the counter. One says 12 players and $554. 
Another says 17 players and $639. The supervisor has stepped away and cannot be reached. The customer insists on 
paying now and he was told over the phone how much to pay. The customer gives you a check for $605 and leaves.  

After that mis-en-scene, the two control groups see the teacher ask the class “You now need to record 
the team fee and determine the number of players on the team,” while the two treatment groups see 
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the teacher ask “How could you express the relationship between team players and team fees to solve 
the problem of how many players a team has?”. This last question purportedly frames the problem as 
one of posing and solving an equation, while the control statement of the problem does not do that.  

All groups would then be offered opportunities to respond to students’ ideas ranging from numerical 
guesses, accounts of incomplete procedures, disorganized calculations, tables, and equations, 
including equal number of correct and incorrect, partial and complete responses. Teachers are asked 
to compose how they would respond to each student. A structural conjecture would suggest that 
teachers would evaluate students’ responses varying in their response depending on the correctness 
of the answer and the level of the class. An individualist perspective would suggest that individual 
characteristics of teachers (e.g., beliefs, knowledge of students thinking) would predict their 
responses to students. A practice-based perspective would suggest that the group which saw the 
teacher frame the problem as one about equations, would tend to respond to students in ways that 
privilege equation-based solutions, though recognizing variations depending on correctness and also 
showing individual variability. The analysis of the various regression models that can be proposed to 
investigate variables that significantly account for teachers’ responses is then the instrument for 
coordination between theoretical perspectives in a middle range theory of teachers’ decision making.  

Conclusion 
The experiment sketched above illustrates one way to combine theories of mathematics teaching: In 
the context of researching decision making in mathematics teaching, regression analysis of teacher 
responses to scenario-based assessments can summon the concrete experiences of practitioners in 
contexts framed by different practical and structural considerations, which can be operationalized 
using experimental design. While sketchy especially on how to examine teacher’s decisions, the 
design makes visible the possibility that resources from various perspectives could be integrated to 
allocating sources of variability to all the factors involved.  
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We address the problem of interplay between methods of qualitative data analysis and the 
networking of theories. When we call a multifocal lens on data analysis an “affordance,” we mean 
a benefit or resource that people may perceive possible when networking theoretical approaches. 
To situate our argument, we draw parallels between challenges in the fields of mixed methods and 
mathematics education. Examining the analysis methods in an empirical study of students’ 
conceptions of what graphs represent, we argue that a multifocal lens can help to explain 
complexities when investigating students’ reasoning. Our work contributes to efforts to advance the 
scope and depth of data analysis techniques employed when researchers network theories. 

Keywords: Theories, data analysis, qualitative research, graphs. 

Mathematics education researchers have appealed to a plethora of theoretical approaches, and this 
diversity brings richness to the field (Bikner-Ahsbahs, 2009). By networking, or connecting, 
different theories, researchers can embrace this diversity (Bikner et al., 2019; Prediger et al., 2008). 
The networking of theories is more than an intellectual endeavor; it has pragmatic roots, to contend 
with problems (Bikner et al., 2019). Those problems can encompass the enactment of research in 
mathematics education. The problem we address is methodological: the interplay between methods 
of qualitative data analysis and the networking of theories. Our aim is to contribute to efforts to 
advance the scope and depth of data analysis techniques employed in the field.  

We argue that a multifocal lens on qualitative data analysis is an affordance of the networking of 
theories. By affordance, we mean a benefit or resource that people may perceive to be possible with 
a particular approach. One reason we use the term “affordance” is because of the reflexivity it 
implies. Our use is consistent with that of Chan and Clarke (2019), who offered the term “mutual 
affordance” to describe a back-and-forth relationship between theory and method, one that it is 
flexible and responsive rather than prescriptive. While Clarke and Chan (2019) address a broader 
scope of methods, we focus on data analysis. We do this in part because of the crucial role that 
competent analysis plays in qualitative research (Miles & Huberman, 1994). 

The work of theorizing can bring forth many images for researchers. Simon (2009) put forward two 
images, tools and lenses, as metaphors for ways in which researchers can employ theories. A tool 
can function for a particular purpose; some tools serve multiple purposes, while others are more 
specialized. A lens can influence how people perceive a situation; different lenses can result in 
different explanations of a situation.  

We have chosen the term “multifocal lens” to communicate how an analytic lens can make room 
for multiple perspectives of a single situation. One way to think of each perspective is in regard to a 
“focal construct” (Chan & Clarke, 2021), on which researchers may focus when analyzing a source 
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of data. For example, researchers may focus on students’ thinking and their affect. With a 
multifocal lens on data analysis, researchers can investigate and coordinate different focal 
constructs. Multifocal approaches can strengthen qualitative data analysis, by allowing researchers 
to triangulate within and across different analysis methods (Leech & Onwuegbuzie, 2007). 

We contend that researchers’ responses to challenges facing the field of mixed methods 
(Onwuegbuzie & Leech, 2005) can offer insights into the interplay between the networking of 
theories and methods of qualitative data analysis. We highlight two such challenges, and make 
connections to the field of mathematics education. The first addresses a relationship between the 
research methodology (quantitative, qualitative, or mixed) and data analysis methods. This 
challenge is analogous to Chan and Clarke’s (2019) argument that a relationship between theory 
and method be one of affordance, rather than prescription. The second addresses whether and how 
researchers may mix quantitative and qualitative methodologies. This challenge is analogous to the 
networking of theories, as researchers grapple with whether and how theories may be connected 
(e.g., Bikner-Ahsbahs, 2009; Prediger et al., 2008). 

To organize this paper, first we draw parallels between obstacles to mixed methods research and the 
networking of theories. Second, we explain why we examine interplay between the networking of 
theories and methods of data analysis. Third, we look at analysis methods reported on Johnson et al. 
(2020), in which the researchers networked different theories. Our purpose is to show how a 
multifocal lens on qualitative data analysis can explain complexities in students’ reasoning.  

Parallels between networking theories and mixed methods 
One aim for researchers who network, or connect, theories is to solve problems that demand 
multiple lenses (Bikner-Ahsbahs et al., 2019). There is a continuum of ways in which researchers 
may network theories (Bikner-Ahsbahs & Prediger, 2010). On one end of the continuum, 
researchers can develop understanding of the assumptions underlying different theories. Moving 
along the continuum, researchers may compare or contrast, combine, synthesize, or locally integrate 
different theories. 

An obstacle to the networking of theories is theoretical competition in response to a quest for 
coherence in mathematics education. If researchers view different theoretical perspectives to be in 
competition with each other, the field may appear disjointed (e.g., Prediger et al., 2008). Rather 
than theoretical competition, researchers who advocate for the networking of theories take a 
pluralistic approach (Bikner-Ahsbahs, 2009; Bikner-Ahsbahs et al., 2019; Prediger et al., 2008). 
Meaning, a goal is to interconnect theories, rather than to advocate for the adoption of singular, 
unifying theories (Bikner-Ahsbahs et al., 2019). This approach can benefit empirical research, by 
allowing researchers “to gain an increasing explanatory, descriptive, or prescriptive power” 
(Prediger et al., 2008, p. 169). 

An aim for researchers in the field of mixed methods is to solve problems via qualitative and 
quantitative methods (Onwuegbuzie & Leech, 2005). As with networking theories, there is a 
continuum of ways in which researchers may mix methods (Leech & Onwuegbuzie, 2009). After 
employing both qualitative and quantitative methods, researchers may mix these methods within 
and/or across different phases of the research. 
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An obstacle to mixed methods research is a perception of dichotomies between qualitative and 
qualitative methodologies (Onwuegbuzie & Leech, 2005). When researchers identify with only a 
qualitative or quantitative paradigm, it can create polarization. Onwuegbuzie and Leech (2005) 
argue for methodological pluralism. Rather than binding methods to a qualitative or quantitative 
paradigm, they offer a reconceptualization, such that the same type of method may cut across 
paradigms. For example, researchers may employ exploratory methods from qualitative and 
quantitative paradigms. Such an approach can serve to dismantle boundaries between qualitative 
and quantitative research traditions (Onwuegbuzie & Leech, 2005).  

The term “pragmatic researcher” describes researchers who embrace methodological pluralism: 

Becoming a pragmatic researcher offers a myriad of advantages for individuals. First and 
foremost, it enables researchers to be flexible in their investigative techniques, as they attempt to 
address a range of research questions that arise. (Onwuegbuzie & Leech, 2005, p. 383) 

The field of mixed methods is a pragmatic response to the obstacle of a perceived dichotomy 
between qualitative and quantitative methods. In a similar way, the networking of theories is 
pragmatic response to the obstacle of theoretical competition in a quest for coherence in 
mathematics education. One way to conceive of the networking of theories is as “pragmatic 
theorizing.” A pragmatic approach to theorizing can allow researchers to leverage different 
theoretical perspectives to contend with researchable problems. Such an approach demands 
attention to methods, which we discuss next. 

Interplay between the networking of theories and methods of data analysis 
The networking of theories happens in conjunction with other aspects of research; it is entangled 
with researchers’ methodological decisions (Bikner-Ahsbahs et al., 2019). Radford (2008) has 
posited a conceptualization of theories as triplets that include systems of guiding principles (P), 
collections of methods and methodologies (M), and sets of overarching research questions (Q). 
From this perspective, theorizing extends beyond assumptions and principles to practical aspects of 
research (methods and questions). We view the elements of Radford’s triplets, to afford, rather than 
prescribe each other. While certain methodologies and research questions may be more typical for 
researchers operating with a certain system of guiding principles, those connections are not lock 
step. In our view, Radford’s triplet can extend beyond individual theories. In the networking of 
theories, researchers weigh principles central to different theories (P), examine how methods and 
methodologies may intertwine with different assumptions (M), and reflect on how theoretical 
assumptions can impact responses to research questions (Q). 

The networking of theories is something more than triangulation via different data analysis methods 
(Bikner-Ahsbahs & Prediger, 2014). It is a way of employing a multifocal lens on a research 
setting. Researchers who network theories can employ different theoretical lenses on a single source 
of data. In turn, different theoretical lenses transform what gets counted as data. Hence, there is an 
interplay between theory and method. Drijvers et al. (2013) illuminate this interplay in their 
comparison of methods between two different theoretical lenses that they employed to investigate a 
student’s work on a computer algebra task. 
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In qualitative studies, the use of more than one analytic tool strengthens data analysis, because 
researchers examine a source of data from different viewpoints (Leech & Onwuegbuzie, 2007). We 
contend that a multifocal lens on qualitative data analysis is one affordance of the networking of 
theories. This multifocal lens is something more than a collection of different analytic tools, 
because the foci of data analysis are intertwined with theoretical perspectives. When researchers 
employ a multifocal lens on analysis, they can relate contributions from multiple analytic methods 
to illuminate new dimensions of a phenomenon.  

A multifocal lens to explain complexities in students’ reasoning 
In a survey of recent research on students’ mathematical thinking, Goos and Kaya (2020) note the 
increase in theoretical perspectives as the field has grown. They point to the networking of theories 
as a promising approach to address coherence amidst diversity in theoretical perspectives. To 
illustrate how a multifocal lens on data analysis can explain complexities in students’ reasoning, we 
look at an empirical study from Johnson et al. (2020). First, we describe the setting of the study and 
discuss the theories networked. Second, we describe their data analysis methods, and insights 
gleaned from their approach. Third, we draw connections between theory and method. 

Networking theories to investigate students’ conceptions of what graphs represent 

Johnson et al. (2020) conducted a qualitative study investigating high school students’ conceptions 
of what graphs represent. There were 13 students in the study; each participated in a series of three 
individual task-based interviews. Students interacted with digital task sequences, and Johnson 
served as the interviewer. The digital tasks consisted of an animation of a situation, followed by a 
series of screens in which students could vary one attribute, then another, then both together. 
Students then could sketch a graph to relate the attributes. For example, one task involved a 
situation where a toy car moves along a curved track. Near the track was a small shrub. Students 
were to focus on two attributes: the toy car’s distance traveled along the track and the toy car’s 
distance from the shrub. Students could vary each distance, then both together, then sketch a graph 
relating those distances. Students’ work on these tasks served as a primary source of data.  

In their study design, Johnson et al. (2020) networked two theories: Thompson’s theory of 
quantitative reasoning (Thompson 1994, 2011; Thompson & Carlson, 2017) and Marton’s variation 
theory (Kullberg et al., 2017; Marton 2015). To argue for the viability of networking the theories, 
Johnson et al. (2020) identified a key assumption underlying both: researchers and participants 
bring different perspectives to the research setting, and hence can have different, yet viable goals.  

Thompson’s theory focuses on students’ conceptualizations of attributes as being possible to 
measure (Thompson, 1994, 2011). Thompson calls this kind of conception a quantity. Per 
Thompson’s theory, a quantity is something more than a unit attached to a number (e.g., 5 “feet”); it 
is how a student conceives of the attribute itself. For example, a student may encounter a graph that 
relates two different distances. Employing Thompson’s theory as a lens, researchers may 
investigate what distance means for students, how students might think about measuring distance 
attributes, or how students might conceive of relationships between different distance attributes.  
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Marton’s theory focuses on students’ discernment, or separation, of some feature from an instance 
of which it is a feature (Kullberg et al., 2017; Marton, 2015). Marton (2015) proposes conditions 
under which teachers or researchers may engineer opportunities for learners’ discernment. First, 
juxtapose two features, such that each differs with respect to a certain aspect. Second, let one aspect 
vary, while the other remains invariant. Employing Marton’s theory as a lens, researchers may 
investigate how students discern aspects of graphs, such as a variable represented on an axis. 

Employing a multifocal lens to analyze students’ conceptions of graphs: Johnson et al. (2020) 

Johnson et al. (2020) employed multiple phases of data analysis, following Wolcott’s (1994) 
process of description, analysis, and interpretation. In the first phase, they described what students 
sketched (or tried to sketch), how students explained their sketches, and students’ physical motions 
related to their sketches. In the second phase, they coded for students’ conceptions of what graphs 
represented. Codes distinguished conceptions of attributes as being possible to measure (e.g., a 
distance traveled by the toy car) from the physical objects themselves (e.g., the motion of the toy 
car). In the third pass, they interpreted students’ shifts in their goals for graphing, appealing to the 
different theoretical lenses. 

By analyzing for both students’ conceptualization (Thompson’s theory) and discernment (Marton’s 
theory), Johnson et al. (2020) embraced pluralism in their analysis methods as well as their 
theorizing. With Thompson’s theory (1994, 2011), they identified three goals for students’ 
graphing, which they linked to different conceptions of what graphs represent. With Marton’s 
theory (2015), they distinguished between what researchers intended for students to discern 
(intended object of learning), what was made possible for students to discern in the task setting 
(enacted object of learning), and what students discerned as a result (lived object of learning). 
Looking across both interpretations, a fourth goal for graphing emerged, what graphs should 
represent. This fourth goal helped explain why some students had persistent conceptions of graphs 
as representing aspects of physical motion in a situation (e.g., a graph will turn like the toy car).  

Drawing connections between theory and method 

In Wolcott’s (1994) interpretation phase of analysis, researchers strive to make meaning from the 
data. One way to make meaning is to turn to theory. In Table 1 we show the theoretical lenses, 
guiding questions, and student goals for graphing (bold) from Johnson et al. (2020). The text in 
italics addresses how interpretations from different theoretical lenses informed each other in the 
data analysis. For instance, employing Marton’s theoretical lens has illuminated why some goals for 
graphing are more stable than others. 

In the empirical study from Johnson et al. (2020), there is a relationship of “mutual affordance” 
between theory and method, as put forward by Chan and Clarke (2019). Neither Thompson’s theory 
(1994, 2011) nor Marton’s theory (2015) prescribed analytic techniques to follow Wolcott’s (1994) 
process of description, analysis, and interpretation. Yet, the analytic approach allowed for 
interpretation from multiple theoretical lenses. While Johnson et al. (2020) employed a multifocal 
lens in the interpretation phase of Wolcott’s process (see Table 1), it is not the only possibility. For 
instance, Johnson et al. (2020) could have conducted parallel passes of description, analysis, and 
interpretation for each theoretical lens, then made connections across those passes. 
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Table 1: A multifocal theoretical lens on Wolcott’s (1994) interpretation phase of data analysis 

Theoretical 
Lenses 

Quantitative Reasoning Theory: Conceptualization 

(Thompson 1994; 2011) 

Variation Theory: Discernment  

(Kullberg et al., 2017; Marton, 2015)  

Guiding 
Questions  

What are students’ conceptions of attributes? How do 
students conceive of what graphs represent? 

What is made possible for students to 
discern? What do students discern? 

Three 
Student 

Goals for 
graphing 

(1) Graphs represent observable features of a situation. 

(2) Graphs represent change in a single attribute. 

(3) Graphs represent relationships between attributes. 

Researchers intended goal 3 for 
students. All three goals were enacted 
objects of learning. Only goals 1 and 3 

became lived objects of learning.  

A fourth 
goal 

(4) There are things that graphs “should” do. 

Students’ notions of what a graph “should” represent can impact their graphing. 

Discussion 
Our aim was to address interplay between methods of qualitative data analysis and the networking 
of theories. We illustrated this interplay within Wolcott’s interpretation phase of data analysis, 
putting forward a multifocal lens on data analysis to be an affordance of theory networking. 
Looking at the empirical study from Johnson et al. (2020), we illustrated how a multifocal lens on 
qualitative data analysis can explain complexities in students’ reasoning.  

We drew parallels between obstacles to mixing methods from qualitative and quantitative 
paradigms and networking theories in mathematics education. Researchers in both fields (Bikner-
Ahsbahs, 2009; Bikner-Ahsbahs et al., 2019; Onwuegbuzie & Leech, 2005; Prediger et al., 2008) 
advocated for pluralism as a response to obstacles which framed challenges in terms of dichotomies 
(mixed methods) or competitions (mathematics education). With our discussion of Johnson et al. 
(2020), we intended to illuminate how pluralism can extend to both theory and method.  

A look at researchers’ methods, in conjunction with theories and paradigms, can be a way to 
respond to challenges related to a quest for coherence in mathematics education. To attempt to 
account for some of the theoretical diversity among researchers investigating students’ 
mathematical reasoning, Goos and Kaya (2020) looked at methods employed across studies. 
Interestingly, they found the methods implemented to be less diverse than the theoretical 
perspectives employed. Furthermore, looking at methods helped them to draw connections between 
these studies, and earlier studies, conducted during an era in which there was less diversity in 
theoretical perspectives employed by mathematics education researchers. This approach dovetailed 
with Onwuegbuzie and Leech (2005), who recommended a focus on methods, rather than 
paradigms, to help to overcome perceived dichotomies between quantitative and qualitative 
methodologies. Although we limited the scope of this paper to qualitative data analysis, we believe 
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it could apply to quantitative and mixed methods as well. Future steps could include principles 
and/or typologies for methodological approaches in studies in which researchers network theories. 

We put forward a multifocal lens on qualitative data analysis as an affordance of networking 
theoretical approaches. With such a lens, researchers could analyze data sources from different 
theoretical perspectives, addressing multiple “focal constructs” (Chan & Clarke, 2021) in a single 
study. With this approach, we aim to advance the scope and depth of data analysis techniques when 
researchers employ multiple theoretical perspectives in a study.  
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In this paper, I present an analytical model for mathematical reasoning that considers the effect of 
the learning environment in the formation of mathematical reasoning. The model is developed by 
incorporating elements from the conceptual framework of mathematical reasoning (Lithner, 2008) 
into cultural historical activity theory’s (Engeström, 2014; Leont'ev, 1974) concept of activity. The 
principles of both theoretical stances and the networking approach are explained. The resulting 
model of reasoning processes is presented along with a brief discussion of its affordances and 
limitations. An example of data analysis is presented for the purpose of illustration. 

Keywords: Mathematical reasoning framework, technological environment, cultural historical 
activity theory. 

Introduction 
Theory takes an intermediate position between research, problems, and practices (Silver & Herbst, 
2007). It facilitates transforming commonsensical problems into research problems, understanding 
real life practices through research, and enables identifying problems from certain state of affairs. 
Mathematics education has no grand theory of its own that could guide on all sorts of matters of 
mathematics teaching and learning and could distinguish mathematical learning from learning in 
general (Silver & Herbst, 2007). Multiple theoretical perspectives, with mutually exclusive 
principles, guide research practices in mathematics education. The diversity of theories is considered 
as a resource as well as a challenge for the development of the field (Artigue et al., 2006; Bikner-
Ahsbahs & Prediger, 2014; Ernest, 1998). Networking of theories is a research practice that promotes 
dialogue between different theories and seeks to find solutions to problems on the intersection of 
different theories. Lester (2005) suggests that mathematics education researchers should act as 
bricoleurs by adapting ideas from various theoretical sources to deepen understanding of teaching 
and learning of mathematics as well as to gain practical wisdom about the problems practitioners care 
about. Silver and Herbst (2007) call for developing mid-range theories that could inform a discrete 
variety of practices and study the subfields in mathematics education such as individual mathematical 
thinking, teaching and learning in classrooms, or mathematics teacher education. Lesh and Sriraman 
(2005) argue for approaching mathematics education research as a design science and call for 
developing conceptual systems that address the complex learning problems from multiple theoretical 
perspectives.  

In this paper, I provide an example of networking of theories from my PhD research project in which 
I combine the conceptual framework of mathematical reasoning (Lithner, 2008) with cultural 
historical activity theory (CHAT) (Engeström, 2014; Leont'ev, 1974) to develop an analytical model 
of mathematical reasoning. In what follows, I argue for the need of the new model concerning the 
research aims. After that, I describe the two theoretical resources used and elaborate on the 
networking of them. I then present an illustrative empirical example for the developed model. At the 
end, I attend to limitations and affordances of the developed model.  
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Mathematical reasoning with regard to the learning environment 
Mathematical reasoning is regarded as a vital constituent of mathematical learning. Mathematics 
curricula at different levels advocate for developing mathematical reasoning competence (Alpers et 
al., 2013; Niss & Højgaard, 2011). Some theoretical positions regard mathematical reasoning as an 
individual competence (Niss & Højgaard, 2011) while others regard the effect of the learning 
environment in forming the individual reasoning competencies (Lithner, 2008). However, previous 
studies consider the role of individual components of the learning environment, such as textbook, 
teacher, individual tools, and examination (tasks), in forming mathematical reasoning (cf. Granberg 
& Olsson, 2015; Lithner, 2000; Lithner, 2004; Olsson, 2019). A holistic perspective on learning 
environment accounting for both tools and social elements in the analysis of mathematical reasoning 
has rarely been taken up. In this paper, I seek to form an analytical model by benefitting from existing 
theoretical stances, which could guide the analysis of the role of the learning environment in the 
formation of mathematical reasoning.  

Conceptual framework for mathematical reasoning 
In the conceptual framework of mathematical reasoning (Lithner, 2008), reasoning is manifested in 
a task solving activity, which comprises the following four steps: i) getting a task or a problematic 
situation, ii) selecting a strategy, iii) implementing the strategy, and iv) reaching to solution. The step 
of selecting the strategy entails predictive argumentation, which concerns learners’ reasons about 
why the strategy will work. The step of implementing the strategy entails verificative argumentation, 
which concerns reasoning for why the strategy did work.  

The framework characterizes individual learner’s mathematical reasoning as imitative or creative 
based on the anchoring of mathematical arguments. In creative mathematical reasoning, the learner 
creates a novel reasoning sequence in which the arguments are rooted in properties of mathematical 
objects. Imitative reasoning is founded in application methods, which are, for instance, given in 
textbooks or told by the teacher. The predictive and verificative argumentation is based on the 
authority of sources of information instead of the mathematical properties involved. 

The research framework considers the learner’s reasoning sequence guided or limited by individual 
competencies formed in the learning environment. Lithner’s framework has also been used to study 
the effects of individual components of the learning environment such as textbook, teachers, and 
examinations (cf. Granberg & Olsson, 2015; Lithner, 2000; Lithner, 2004; Olsson, 2019).  

Regarding methodology, the main data source are observations of students’ solving of mathematical 
tasks along with written solutions, think-aloud protocols, pre- and post- interviews, and the textbook 
materials (Lithner, 2008). Multiple sources of data aid in triangulation and ultimately support 
trustworthiness of the interpretations. The research questions that the framework seeks to answer 
focus on distinguishing between creative and imitative mathematical reasoning of individual students, 
required in tasks administered in textbooks and examination tasks (Lithner, 2003; Palm et al., 2011), 
and facilitated by digital tools (Granberg & Olsson, 2015).  
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Cultural historical activity theory 
In cultural historical activity theory (CHAT), object-oriented activities are arenas for human learning 
(Engeström, 2014; Leont'ev, 1974). Learning takes place when individuals participate in human 
activities. An activity is conceptualized as subject-object interaction at three subject-levels: collective 
subject, individual subject, and non-conscious subject (Engeström, 2014). Each level entails different 
forms of learning. The collective subject refers to a group of individuals as a whole and learning at 
this level concerns mastering the whole activity systems bringing changes into the activity systems. 

The individual subject carries out actions through which the activity is realized. The individual 
actions are directed towards goals linked to the object of an activity. To perform goal-directed actions, 
the individual devises a plan, a tacit representation of the method to reach the goals, termed as a 
model. The model is regarded as the tool for carrying out the actions. Based on the way the model is 
selected, the learning is categorized as: a) productive, or b) reproductive. The productive learning 
happens when the subject finds a new model through careful experimentation. Reproductive learning 
refers to the subject selecting the model from previously known methods through blind search or 
through trial-and-error approach (Engeström, 2014). 

The non-conscious human functioning refers to performing automatized operations during the 
activity. The learning at this level refers to formation of automatic operations and relates to tools in 
use. The tools at this level are the production tools such as writing instruments (Cole, 1996). The 
object is perceived as a fixed end and the subject attempts to reach to the object by making simple 
adaptations with regard to the conditions of the tools. 

The action-goal and operation-condition layers are interlinked. That is, the actions upon enough 
practice may become operations and the operations upon alteration of the conditions of execution 
may rise back to the level of actions. In this sense, the learning at individual and non-conscious levels 
are intertwined and have implications for each other. That is, the model chosen at the action-goal 
layer influences the operations and the operations have implications for the action-goal level. 

Regarding methodology, Nardi (1996) infers from CHAT the following four methodological aspects. 
First, the research frame should include time as human activities evolve over long periods of time. 
Second, the attention should be paid to large patterns and narrow episodic frames should only be used 
in view of large patterns. Third, multiple data sources should be considered to conceive the activity 
system from all possible angles. Fourth, the researcher should be committed to understand the 
subject’s object. The analysis of shorter episodes enables micro-analyses of processes within an 
activity and is to be linked to macro aspects of the activity at hand. 

The common type of research questions concern exploring relationships between elements of an 
activity system that affect the realization of the activity’s object into the outcome. The individual 
subject’s functioning can be analysed in view of the conditions of the activity system.  

Combining the two theories: A model of reasoning processes through a cultural 
historical perspective 
The analysis of individual cognition lies at the core of the conceptual framework of mathematical 
reasoning (Lithner, 2008). In activity theory, the individual learner’s acts only make sense in view of 
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other elements of the activity system. In the reasoning framework, the search and implementation of 
the strategy are the two main steps of the reasoning sequence. These two steps parallel to searching 
and implementing of the model in CHAT (see Table 1 for other parallel terms).  

The reasoning framework regards mathematical reasoning as a product of the learning that already 
has taken place in a learning environment. Through activity theory, mathematical reasoning can be 
associated to the ongoing learning in the activity as the model selection links to productive or 
reproductive learning. Mathematical reasoning can be viewed as woven in the action-operation 
dynamics of mathematical learning activities.  

Table 1: Parallel terminologies in reasoning research framework and activity theory 

Mathematical reasoning framework Activity theory 

Mathematical task Problem 

Strategy Model 

Choosing a strategy Selecting a model in action-goal layer 

Implementing the strategy Implementing the model in operation-condition layer 

Creative mathematical reasoning Productive learning 

Imitative reasoning Reproductive learning 

 

Thus, I argue that the conceptual framework of reasoning and activity theory can be combined to 
deepen the understanding of the effect of the learning environment on reasoning processes. The 
mathematical reasoning process model is achieved by putting reasoning steps from the conceptual 
framework of reasoning into CHAT’s concept of activity. The process of achieving the model is 
depicted in Figure 1.  

        
Figure 1: Conceptualizing reasoning processes through CHAT 

In Figure 1, the triangle represents the hierarchical layers of the activity (Leont'ev, 1974) while the 
dotted border shows that the reasoning is entailed in the bottom two layers. That is, the steps of 
selecting and implementing strategies, the main constituent steps of reasoning when solving a task, 

activity-
object

action-goal

operation-
condition

The non-conscious subject carries out operations. 

The individual selects a model to carry out goal-directed action. 
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are weaved in the action-operation dynamics of the activity (Figure 1). The step of selecting a strategy 
takes place in the action-goal layer in the form of model selection. The implementation of the strategy 
takes place in the operation-condition layer (as shown in Figure 1). The fact that the actions and 
operations in CHAT affect each other implies that the steps of selecting a strategy and implementing 
the strategy also affect each other (shown with arrows in Figure 1).  

The conceptual framework of reasoning provides an outer structure to mathematical reasoning 
through the two main steps of reasoning. CHAT provides an additional layer to how- and why-aspects 
of mathematical reasoning and adds an internal dynamic to the reasoning process. That is, CHAT not 
only allows looking into how reasoning takes place but facilitates understanding why certain actions 
(e.g., choice of strategies) take place in relation to the condition of the environment (e.g., tools, 
division of labour). In this way, it allows not only distinguishing between creative and imitative 
aspects of reasoning to its parallel forms of learning in CHAT, productive and reproductive learning, 
but also enables analysing the underlying contributing factors from the learning environment. In 
particular, the action-operation dynamics allow analysing effects of one step onto the other (as shown 
in Figure 1). Moreover, the role of tools can be analysed clearly and systematically. For instance, the 
model (Figure 1) enables analysing whether and how the tool operations effect the goals and the 
selections of models.  

In terms of networking strategies (Bikner-Ahsbahs & Prediger, 2014), the practice is regarded as 
combining because the elements from the two theories in concern are fitted together to gain 
understanding of the empirical phenomenon of mathematical reasoning. In combining theories, the 
theories do not need to be compatible with regards to their principles as is the case with the theories 
in consideration — the conceptual framework and CHAT. The resulting conceptual framework is not 
a theoretical framework but a bricolage for understanding of the phenomenon of reasoning. 

An illustrative example of the use of the model 
Below, I present an episode from undergraduate engineering students’ activity in a digital 
environment. The data belongs to a larger study, which focuses on student’s activities in paper and 
pencil and digital environment (cf. Kanwal, 2019). This example concerns two students’ work on the 
following task: Solve a definite integral ∫ , where  is the complex number with =  −1. 
The definite integral can be solved as follows. 

By using Euler’s formula, =  +j  for any real , in (1), one gets: (  ) =  [(  ) (   )] = ( ) =  (2) 

In the participants’ activity, Per and Jan searched on the Internet to make the Maxima code, “j: sqrt 
(-1); A: e^(-j*w*t); integrate (A, t, -1, 1)”. The maxima code served as the model being constructed 
through the use of Internet with the focus on syntax in Maxima. Involving this model, the task was 
translated into a Maxima code without the need of taking any integration into consideration.  

∫  = ∫ (− ) = | 1−1=  ( −  ) =   ( −  ) =  (  ) 
 

(1) 

Proceedings of CERME12 2982



 

 

Later in the implementation phase, Per ran this command, which generated the output, %% ( )  - % %( ) . The solution is apparently different than the solution given in the textbook ( (  ) or 

). The difference is due to the appearance of the two additional terms, %i and ( ), in the 
Maxima output. In Maxima, ( ) refers to natural logarithm of . The reason why Maxima did not 
evaluate ( ) into 1 and produced this term in the output is that Per did not specify ‘e’ as Euler’s 
number in his input command. The Euler number  is specified by %e in Maxima whereas Per just 
used ‘e’. Also, the term %i represents the imaginary unit, sqrt (-1) in Maxima. Per denoted the 
imaginary unit with the symbol ‘j’ in his input command and Maxima replaced it with %i in the 
output. Replacing ( ) = 1 and % =  in the output, one gets the textbook solution form.  %% ( ) − % %( ) =  −  = ( ) 
Per opened the textbook on the page where the task and its solution were given. Per then remarked 
on the solution as follows. 

131 Per: That’s probably correct, right? It is just that it is written in a way that is 
crazy hard to… 

132 Jan: Yeah. Probably… Look at the command line for it. What did you write 
there? [Jan looks at Per’s screen whilst preparing to write on his own 
laptop] 

133 Per: First you have to write… define . 
134 Jan: Is it so important to write semicolon at the end and that you hold down shift 

enter? 
135 Per: Yeah. Then you avoid those things… Then it becomes %i and %i is just a 

symbol that it is… 
136 Jan: It is something. 
137 Per: Yeah, that it is complex… 
138 Jan: Yeah. 

Per’s suggestive question (131) “that’s probably correct, right?” indicates that Per was speculating 
that the solution was correct. The second part of Per’s statement, “it is just that it is written in a way 
that is crazy hard to…”, elucidates that he was aware that the form of the solution was different, and 
that the participant found the different form difficult to comprehend. Jan also did not seem to be sure, 
as he replied, “yeah, probably” and started examining the Maxima code by saying “look at the 
command line for it. What did you write there?”. Per responded by reading the command line and 
pointed out (135) that “%i is just a symbol that it is…”, and Jan adds instantly, “it is something”. Per 
completed his sentence by saying that “yes, it is complex” which shows that Per was aware that “%i” 
represented the imaginary unit in the output. There were no comments regarding the term ( ) and 
it was probably the main term that was inconceivable. Later, the students ended the discussion by 
saying that they would ask the lecturer about the correctness of the solution.  

This example elucidates only one aspect of the developed reasoning process model, i.e., the manner 
of model selection affects the model implementation (indicated with the downward arrow in Figure 
1). The example shows that the students selected the model in the form of the Maxima code that led 
them bypass the mathematical operations. The nature of required operations shifted from mathematics 
to syntax in Maxima. The final solution was correct; however, they were not able to comprehend it 
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due to unfamiliarity with language and symbolism used in Maxima. Based on the implementation 
phase, the students revisited the initial model to see if it was correct. As the model was a conversion 
of the integral into Maxima code, the only thing to check was the syntax in Maxima. There were no 
mistakes in the model (code) and, therefore, the model was not changed. In this particular task, the 
availability of Maxima shifted the focus away from the integration in itself and the students became 
more engaged with syntax related issues. The availability of Maxima thus affected the reasoning 
process in an undesired fashion in this particular example, as the students did not engage with the 
involved mathematics. Using the developed model (Figure 1) in this example enabled to analyse the 
reasoning process in the form of individual actions and tool operations rooted in the conditions of the 
environment. The material conditions of Maxima affected the individual actions and the execution of 
operations, and hence the reasoning processes, as seen above. 

Limitations of the model 
The proposed model can only be used in the analysis of reasoning within activities and cannot be 
used for the analysis of short episodes without understanding the overall activity system. The model 
also does not guide the analysis of peer interactions while it may enable to consider social actors as 
division of labour, rules, and the community. Moreover, the reasoning will be interpreted from actions 
and operations, which may or may not be accompanied by utterances. This requires additional data 
in terms of stimulated recall interviews in order to make trustworthy interpretations from the data 
although it will only give access to the activity in an indirect way. 
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The theory of Mathematical Working Space (ThMWS) provides theoretical and methodological 
tools to describe and characterize mathematical work. A particular methodology has been 
developed to analyse actions produced by subjects when they perform mathematical tasks. In this 
paper, this methodology is introduced by an example of a geometrical task. Then, we show how two 
theories on knowledge construction based on actions were combined with ThMWS. Finally, we 
present the contributions drawn from these networking cases which provide insight into 
mathematical work as well as the thinking of subjects by articulating their knowledge and actions. 

Keywords: Mathematical Working Space, mathematical work and mathematical thinking, action 
and knowledge, methodology. 

Introduction 
Within the theory of Mathematical Working Space (ThMWS), the understanding of mathematical 
work is mainly supported by the analysis of the actions, which students and teachers perform in the 
school context. In this paper, we wonder how to better understand the cognitive dimension of 
mathematical work and we explore this issue through common analysis of actions with some 
cognitive approaches. 

We first justify why actions can be used as a common key-point for discussion between ThMWS 
and cognitive theories. After giving some of the key-constructs of the ThMWS used in the paper, 
we provide an example to introduce the methodology we have implemented to account for the 
mathematical work of individuals performing mathematical tasks. We then consider how research 
using both ThMWS and Abstraction in Context (AiC), or APOS theory, has opened up other 
avenues to describe and characterize the articulations between actions of individuals and their 
knowledge. It is thus possible to better understand subjects’ mathematical work and mathematical 
thinking. 

Articulating mathematical work and mathematical thinking through subjects’ 
actions analysis  
The approach of teaching and learning issues using the notion of mathematical work is relatively 
new in the field of research on mathematics education. Indeed, the great majority of research on 
teaching and learning refers to the idea of mathematical thinking as CERME conferences indicate 
through the topics of the working groups on mathematical contents. These topics have long been 
expressed in the form of specific modes of thinking such as algebraic thinking, geometric thinking, 
and probabilistic thinking. The focus on "mathematical thinking" urges to attend “thinking” with the 
real risk of dissolving the mathematical specificity in all the fields, which are concerned with 
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thinking. Indeed, the study of thinking supposes a multiplicity of approaches, which are often far 
apart from mathematical concerns.  

Recently, cognitive sciences have also approached thinking through cognition with the objective of 
being "the science of thinking". The cognitivist current is itself a composite combination of 
disciplines such as neuroscience, artificial intelligence, the phenomenology of perception, etc. This 
current is probably at the origin of the collapse of the primacy of mental representations for the 
benefit of action in the field of mathematics education. In this view, action is prior to mental 
representation as the neurobiologist Berthoz (2008) endorses it, and thinking and consciousness 
relate directly to action and perception. This viewpoint is not new in the field and was already 
pointed out in his genetic epistemology by Piaget who considered that mathematical thinking is not 
“pre-formed but a creation constantly pursued by actual and new actions which open a new set of 
possibilities hitherto inconceivable” (Piaget, 1957, p. 34). The support of cognitive sciences gives 
this approach a new visibility.  

This change of perspective on mathematical thinking is valued from the point of view of ThMWS 
and more generally of studies that favour an entry through mathematical work. In this case, the 
focus on work naturally places action as a key theoretical and methodological tool in the study of 
mathematics teaching and learning in school contexts. However, considering mathematical thinking 
and mathematical work as complementary seems to be necessary to account for the complexity of 
school mathematics. In particular, some cognitive theories, such as AiC and APOS, focus on the 
construction of abstract mathematical knowledge and can both complement and benefit from 
approaches to mathematical work that focus more on the outcomes and processes of work. 

Describing and characterizing mathematical work: the ThMWS approach 
The theory of MWS: motivations and issues 

In the theory of MWS (Kuzniak et al., 2016), mathematical work is considered as intellectual work 
that involves significant cognitive activity of which the orientation and purpose are defined and 
supported by mathematics. In this framework, mathematics is envisaged as a specific human work 
and therefore, mathematical work is seen in both its cognitive and epistemological dimensions. 

The Mathematical Working Space (MWS) The vertical planes of the MWS 

Figure 1: The MWS diagrams 
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To grasp the specific activity of students solving problems in mathematics, the two epistemological 
and cognitive facets of mathematics are present and articulated in two planes: one of an 
epistemological nature in close relation to the mathematical content; the other of a cognitive nature, 
related to the visible action of the individual solving problems (Figure 1, left). Three components in 
interaction are introduced for the purpose of describing the work in its epistemological dimension: a 
set of concrete and tangible signs (R), a set of artefacts (A), and a theoretical system of reference 
(T). The second level is centred in the subject; three cognitive components are introduced as 
follows: visualisation (V) related to deciphering and interpreting signs; construction (C) depending 
on the used artefacts and the associated techniques; proving (P) conveyed through discourses 
producing validations, and based on the theoretical system of reference.  

Analysing mathematical work through ThMWS aims at tracking down the process of bridging the 
epistemological plane and the cognitive plane in accordance with three different geneses: An 
instrumental genesis (Ins) related to the use of artefacts, a discursive genesis (Dis) related to 
theoretical part of work, and finally a semiotic genesis (Sem) that expresses the importance of signs 
for mathematical work. The elaboration of mathematical work is perceived as the harmonious 
networking and intertwining of these geneses within the vertical planes of the diagram (Figure 1, 
right).  

To achieve the description and characterization of mathematical work, studies performed within 
ThMWS theory are based on the analysis of the subject's various actions. Thus, the methodology of 
studying subjects’ actions is central in the approach and is developed in the next section. 

A cognitive analysis of subject's actions: The example of Alphonse’s Parcel 

Our starting point is that cognitive activities of a subject at work are not directly observable but they 
can be deduced from the visible actions of the subjects when they are performing mathematical 
tasks. The methodology we use must both consider mathematical content and give access to 
subjects’ cognitive processes. We have chosen to introduce our methodology by an example, which 
is used along the text to show the combination of the different theories involved in the networking 
study: Alphonse’s parcel (Kuzniak & Nechache, 2021). The task statement is given in the form of a 
text to be read. 

Alphonse has just returned from a trip in Périgord where he saw a parcel of land in the shape of a 
quadrilateral that had interested his family. He would like to estimate its area. To do this, during 
his trip, he successively measured the four sides of the plot and found, approximately, 300 m, 
900 m, 610 m, 440 m. He's having a hard time finding the area. Can you help him by showing 
him the method to be followed?  

Data given in the task does not enable to find a unique solution to the problem because 
quadrilaterals with the same side lengths can have different forms and areas. However, the majority 
of students used the following very common Theorem in Act (TiA): figures with the same perimeter 
or the same side lengths have the same area. The main objective of the whole didactic situation 
explicitly destabilized the students and helped them to banish this false Theorem in Act. 

To give a general overview of our methodology, we provide an analysis of Francis’s solution of the 
problem. It is based on a corpus of data collected during the resolution of the mathematical task. 
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This corpus consists of his written and oral productions. We start dividing his activity into episodes. 
Each of the episodes is related to a sub-task self-prescribed by the student to achieve the global 
task: it includes a sequence of mathematical actions that lead to the realization of the sub-task. All 
the actions are analysed in detail by using ThMWS. The MWS diagrams are also used to visualize 
the circulation of work during the resolution of the task (Kuzniak & Nechache, 2021). 

Table 1. Francis’ work division in three episodes each with two actions. 

Episode 1: Construction of the figure Episode 2: Justification of the nature of the 
figure 

I took the large base 900 m then from the two 
ends of the 900m with the compass, I made 440 
on one side and 610 on each side and then with 
the ruler I tried to find the 300 with the two arcs 
of circle. 

I drew a perpendicular to the large base and this 
line perpendicular to the large base was also 
perpendicular to the small base of 300m and as 
two lines are perpendicular to the same line, they 
are parallel so it makes a trapezoid. 

Action 1: Choice of scale 
Action 2. Construction of the figure 

Action 3. Francis’ explanation of his 
construction 
Action 4. Francis’ description of the fact that it 
is a trapezium. 

Episode 3: Determining the area of the figure. 
Action 5: Measurement of the height h of the trapezoid 
Action 6: Calculation of the area from the formula (B+b). h/2 

Then a bottom-up analysis gives a summary overview of the different episodes, and helps to deduce 
the logical organization of Francis’ mathematical actions. The analysis seeks to identify how the 
work-generating processes interact within the components of MWS. From the data, we surmise that 
mathematical work produced by Francis is triggered by the referential and initiated in the [Sem-Ins] 
plane to construct a convex quadrilateral with the shape of a trapezoid using technological tools. 
These tools are used by the student as semiotic tools to collect data and make measurements. 
Construction of the quadrilateral is then justified with the use of theoretical tools characterizing the 
trapezoid. The formula for calculating the area of a trapezoid (technological tool) is applied to 
produce the result (in this case, the area of the land). To conclude the analysis, observations made 
during the two previous steps are used to characterize the mathematical work. In Francis' case, we 
may consider that his work circulates through the different geneses and planes of the MWS 
diagram. He uses drawing and measure tools to support his reasoning and argues about a particular 
figure, so his work is compliant with a geometrical paradigm based on measurement and drawing 
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(Geometry I, see Kuzniak & Nechache, 2021). Finally, his mathematical work is not 
mathematically correct, as the result is false and based on a construction of an inappropriate figure 
and TiA theorem.  

The description above provides the most accurate account possible of the student's choices and 
actions. However, it is sometimes difficult to be sure, of what really triggered and motivated these 
actions. Some of Francis' actions are material and easy to interpret, such as constructing the 
trapezium, but others are more challenging. Why did he choose to use a scale for the construction 
and then measure in the drawing? When did he focus on the trapezoid? Why didn't he finally see his 
mistake? To progress with the interpretation of subjects' actions, we explore other methods of action 
analysis based on theories, which are rather focused on mathematical thinking. 

Combining ThMWS with cognitive theories 
Several studies have combined ThMWS and cognitive theories. In this paper, we only refer on the 
studies with AiC and APOS. For each research, we first present its general purpose and introduce 
the method, which the authors used. Then, we apply this method to Alphonse’s task and show the 
new contribution that can be drawn from the approaches to advance the analysis of Francis' actions 
and progress in its understanding.  

A joint study between the AiC and MWS theories 

In their study of the development of functional thinking of students working in four different MWS, 
Psycharis et al. (2021) combined Abstraction in Context (AiC theory, Dreyfus et al., 2015) and 
ThMWS. Using a task on the optimal shape of a gutter, they analysed students' progress in their 
understanding of covariation by having them work successively on four gutter models in different 
environments (sheet of paper, DGS, etc.). Each of these models is associated with a different MWS. 
The connections between these MWS are described and explained thanks to the MWS geneses 
involved. This first analysis through the MWS theory is completed with the AiC theory to account 
for the processes of constructing abstract mathematical knowledge. In this theory, abstraction is 
defined as an activity of vertical reorganization of previous mathematical constructs into a new 
abstract construct. According to the authors, the process of abstraction passes through three stages 
of knowledge construction shaped by three epistemic actions: recognizing (R), building-with (B) 
and constructing (C). These actions are nested. They allow tracing the process of knowledge 
construction and are used as a methodological tool for analysis.  

Using AiC for Alphonse's solution of the task, we first focus on recognizing. If we look again at 
episode 1 (figure construction), we surmise that the student recognized a construction problem as a 
previous meta-construct (R0) for which he knew mathematical knowledge involved in the figure 
construction. While constructing, using the given side lengths but ignoring the word “successive”, 
he recognized (R1) a partially correct construct, a trapezoid, and with it its area formula, another 
previous construct (R2). Thus, he realized its shape by an approximation and calculated its area via 
measuring, the latter being a building-with (B) action built on the recognized constructs. The 
mathematical object "trapezoid" determines the follow-up of Francis' work and as it is only partially 
correct, he cannot construct the expected knowledge about the various areas of quadrilaterals having 
the same side lengths –construction of a new construct (C). In the example of the work carried out 
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by Francis, the mathematical object named “trapezoid” is considered under different aspects during 
the completion of the task and referring to the three components of the epistemological plane: its 
drawing aspect (representamen), the material artefact aspect (ruler, compass, square) or symbolic 
artefact (area calculation formula) associated with the trapezoid, and its property and definition. All 
these elements constitute what we call the Epistemological Entity associated to the trapezoid 
overlapping with what is called Context in AiC. 

The subject’s visualization of the "trapezoid" object as being a quadrilateral with two parallel lines, 
his construction of a figure and the area with techniques associated with the artefacts to develop the 
trapezoid, and his justification of these constructions by citing the properties that characterize the 
trapezoid are all part of what we name the Cognitive Unit associated with the mathematical object 
“trapezoid”. Identifying the existence and role of the Cognitive Unit and Epistemological Entity 
associated with the mathematical object “trapezoid” enables to characterize the mathematical work 
and understand mathematical thinking in terms of epistemic actions developed by AiC.  

A joint study between the APOS (Action, Process, Object, Schemas) and MWS theories 

In her research, Camacho (2021) uses the APOS (Arnon et al., 2014) and ThMWS together to study 
the linear algebraic concepts of eigenvalues and eigenvectors in relation to their geometrical 
representation in the plane. This study helps to further consider action by underlining the diversity 
of meanings of this term. Indeed, in the APOS theory, which assumes the heritage of Piaget, the 
term Action is one of the basic terms of the theory. The acronym APOS stands for Action, Process, 
Object and Schema. The action to which it refers is a mental structure that must be distinguished 
from "material action", which Dubinsky interpreted as actions that are performed by a subject but 
are external to the subject (Arnon et al., 2014, p. 7). From a set of actions on objects, the subject can 
derive a property arriving at a more general Action that allows passing from Action to Process 
through the mental mechanism of interiorization. The mechanism of encapsulation then transforms 
the Process into an Object as a cognitive entity. A Schema is then build by acting on the 
mathematical object. In her research methodology, Camacho applies an approach, specific to APOS 
theory, which consists of discovering the cognitive functioning of subjects according to their failure 
or success about an Object in some mathematics tasks. It is then a matter of recognizing, which of 
the components of the quadruplet (APOS) is operative or not. In Alphonse task, the starting point of 
the analysis is an initial reflection on the mathematical Object, with its Schemas, which is at stake 
in the situation. For us, it is the Area of a quadrilateral (Object) and this area is associated to a 
decomposition by triangulation (Schema) or more generally to the triangulation of any polygon, 
(Kuzniak & Nechache, 2021). Francis however, activates another scheme acting on another 
mathematical object: he constructs a trapezoid by approximation and calculates its area with a 
formula via measuring. The actions as conducted do not lead to processes of building the area of a 
quadrilateral with the given side lengths because he elaborates the schema of an already existing 
mathematical object (trapezoid area), which is insufficient for the task.  

In APOS, authors seek to elaborate the genetic decomposition of the Object of concern to be more 
precise in their analysis. Camacho elaborates the genetic decomposition of the Object "collinearity" 
within a digital environment and in terms of the different MWS geneses. When we analyse Francis' 
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work with the MWS, we may notice that he relies on his old and well-established knowledge of the 
trapezium of which he knows both the different elements (signs, artefacts, properties) in relation to 
what we referred to as the Epistemological Entity associated with the trapezium. He also knows the 
cognitive processes related to the use of the corresponding cognitive unit. He knows well the Object 
"trapezoid", unfortunately, it is not the right Object, which should be used to perform this task about 
the area of a generic quadrilateral. The case of Francis shows that students do not really regulate 
their work once they have embarked on a solution that seems to be in line with their knowledge. An 
illusion of knowing-how that fosters certainty in action emerges. In the example, it was however 
possible to see that the order of the sides used in the construction was not the one indicated by the 
statement (semiotic control). It was also possible to see that different quadrilaterals fulfilled the 
same condition since Francis searched, by approximation, among these figures the one with parallel 
sides (semiotic and instrumental control). An internal control of the instruments (instrumental 
control) should have been based on another construction without approximation. Finally, it is 
interesting to see that his proof reasoning is biased to reach the desired result (discursive control). 

Conclusion and perspectives 
All of the studies we reviewed emphasise that ThMWS and its organization around the three 
geneses was an important structuring element in the analysis of actions and helped to describe and 
better understand the relationship between cognitive and epistemological aspects. Conversely, the 
triadic and prismatic geometric structure of the MWS generates theoretical notions that are not 
always easy to interpret as a tool for studying issues of mathematics teaching and learning. 
However, these joint studies on students' mathematical actions focussing on cognitive aspects 
enrich and flesh out a number of emerging notions in ThMWS. In particular, they have provided us 
with a better understanding of the importance and value of the following ideas: 

1. The Epistemological Entities and Cognitive Units account for the importance of knowledge and
cognitive functioning of individuals who perform a task using particular mathematical objects. To
achieve description and characterization of mathematical work, which captures adequately
interactions between cognitive and epistemological aspects, it is important to make visible the
mathematical knowledge involved in the solution by identifying precisely the components of the
Epistemological Entity and the Cognitive Unit associated with a mathematical object

2. These Cognitive units and Epistemological Entities depend on forms of work implemented,
which can be described by different paradigms associated with the teaching contents. Based on AiC
epistemic actions and on APOS contributions, it is thus possible to describe how the observed work
conforms to particular modes of mathematical reasoning.

3. Finally, we have also made progress in understanding the regulation and control of outcomes
through the importance of knowledge and cognitive repository as tools for regulating actions.
However, we also met the attracting force of an “illusion of knowing” on acting.

The question of actions regulation and control is a research direction that we plan to develop 
further. Controls and regulation questions are not new in the field of mathematics education, it has 
existed since at least the first research on problem solving, seeking to make students more 
autonomous. Particularly Arzarello and Sabena (2011), who also emphasise the variety of actions 
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implemented by students and the teacher, have recently addressed this. They have analysed the way 
in which gestures, considered as a semiotic resource, intervene in the learning and teaching process 
of mathematics. This extension of research to gestures and the body raises the question of how to 
analyse and identify their real impact on students’ actions and beyond on their mathematical work 
and thinking. We are now engaged in a new project (E-ESMEA) dealing with enacting in 
astronomy education. We are mainly interested in the mathematical part of the project: relations 
between proportionality and velocity. The project focuses on the concept of embodied action, which 
assigns a key role to perceptual and bodily processes in the formation of abstract concepts and 
knowledge. The sensory-motor engagement of the body carries these processes in situations out that 
constitute the functional system, on which actions are based. From this study, we expect that it will 
help us to identify the limits and the right levels of analysis of mathematical action that are really 
necessary to advance in the mastery of mathematical work and in the learning of mathematical 
knowledge. This is, in our opinion, a fundamental question to develop a didactic approach in phase 
with the school reality. 
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The theory of Mathematical Working Space (Kuzniak & Nechache, 2021), provides theoretical and 
methodological tools to study three main issues on mathematical work: its description, its 
characterization, and its formation and/or transformation. Description and characterization of 
mathematical work help to understand and then to transform it, especially when it is not correct. We 
intend here to show how focusing on these three issues can help to design didactical situations based 
on the theory of Mathematical Working Space (MWS).  

Describing mathematical work 
Describing mathematical work aims at capturing the work undertaken in an educational context. The 
description is based on the constructs of MWS theory and has an explanatory purpose.  

Describing the development of mathematical work within a mathematical domain 

In their research on the teaching of geometry, Kuzniak and Nechache (2015) used the theory of MWS 
to describe the different components and processes of the work as they emerged during a teaching 
sequence (consisting of 5 sessions) on the notion of the circle in Grade 4 - 6 lessons. In their study, 
they introduce the use of a “comics” as a set of MWS diagrams to give a global and quick vision of 
the development of mathematical work throughout a teaching sequence.  

Describing the circulation of work between different mathematical domains 

Derouet's (2017) research on the teaching of continued probability distributions in high school classes 
to describe the interactions and circulations between mathematical domains and subdomains. She 
used of coding (red for what is the students’ responsibility, green for the teacher) combined with the 
MWS diagram. This enabled to highlight the various transitions between different MWS associated 
with three domains: Probability, Statistics, and Integral Calculus during the completion of task by 
students (high school).   

Describing the subject’s personal work 

To provide an account of the mathematical work actually produced by student teachers, Kuzniak and 
Nechache (2021) designed an analysis method based on a division of the students' activity into 
episodes. Each of these episodes comprises a sequence of mathematical actions, which lead to achieve 
a subtask. In this view, each episode corresponds to a sub-task self-prescribed by a student and 
includes the sequence of mathematical actions used to solve the task. All these actions are then 
analysed in great detail using the theory of MWS.  
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Characterizing mathematical work 
The objective of characterizing mathematical work is to identify certain invariants from the 
description of work.  

Cognitive unit associated with a mathematical entity 

To Kuzniak and Nechache (2015), the mathematical work is structured according to a cognitive unit 
associated with a mathematical entity. In this way, they differentiate the cognitive and 
epistemological aspects of a mathematical object. The mathematical entity associated with a 
mathematical object is defined as being a triplet of elements of the epistemological plane, composed 
of representamen or signs, artefacts, and the mathematical properties and definition associated with 
the object. This Cognitive Unit is generated from the interaction of the three MWS geneses: 
instrumental, semiotic, and discursive (Kuzniak & Nechache, 2021), which trigger the cognitive 
processes.  

Forms of mathematical work 

Kuzniak and Nechache (2021) sought to characterise forms of mathematical work developed by 
students preparing for a master's degree. The authors gave three criteria for assessing the process, 
outcome, and circulation of mathematical work in the MWS: compliance, correctness, and 
completeness. 

Forming mathematical work 
Research on the formation or transformation of mathematical work aims to build a new structure for 
the epistemological plane of work or to provide a new structure for the cognitive plane. The method 
used by Reyes (2020), to develop and form mathematical work around the notion of ‘function’ to 
make it more accessible to students, is based on task design using the theory of MWS. Reyes uses 
MWS theory to account for the flow of mathematical work produced by students (using the MWS 
diagram) and to analyse how the work was completed. 
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For about half a century now, it has been known and widely discussed that the field of study of 
mathematics education research is extremely complex. In mathematics classrooms, mathematics 
emerges from a complex interplay between bodily, cognitive, and social processes; and the crucial 
question for mathematics education research is: How can we develop methodical and theoretical 
means to ‘tackle’ these complexities? Given this challenge, which we will call the complexity 
problem, this paper aims at two things: First, to indicate at what point we think two well-known 
theories, namely Ernst von Glasersfeld’s Radical Constructivism and Anna Sfard’s Theory of 
Commognition fail at the complexity problem; and second, to attempt to point out an alternative route 
to a general theory that might be able to account for the complex dynamics between the bodily, 
cognitive, and social dimension of mathematics classrooms.  

Keywords: complexity, transdisciplinarity, the social turn, commognition, radical constructivism 

Introduction: The complexity problem 
For about half a century now, it has been known and discussed that the field of study of mathematics 
education research is “characterized by an extreme complexity” (Steiner, 1985, p. 11). In order to 
provide some evidence for this thesis, it is, we think, helpful to take a look at the ‘prototypical’ object 
of study – the mathematics classroom – and ask: What does actually go on in there?  

First of all, in every mathematics classroom there is communication that takes place. Teachers and 
students talk about mathematical topics, about mathematical problems and their solutions, and of 
course also about extra-mathematical issues (e.g. about an upcoming class trip). Regardless of how 
much the particular forms of communication may vary from one classroom to another, one will 
always observe some sort of communication processes between teachers and students. So, the first 
aspect that must be considered when answering the question above is communication – or, more 
general: the social dimension of mathematics classrooms. Now when social processes unfold, at the 
same time, numerous cognitive activities take place. Both teachers and students are presumably 
thinking, imagining, expecting, or fearing something when participating in classroom 
communication. Thus, besides the social dimension, there is also the cognitive dimension of 
mathematics classrooms that must be taken into account. Finally, a third area also comes into play: 
the bodily dimension of mathematics classrooms. Whether teacher or student, everyone participates 
with his or her body in the classroom – be it sitting, standing, walking or lying – and, for instance, 
reacts completely different to social events on the neuronal level than on the cognitive level.  

So, one is always confronted with the simultaneity of at least three different kinds of processes – 
namely, the simultaneity of bodily, cognitive, and social processes – that are involved in one way or 
another when mathematics is constituted in the classroom. Now the crucial point about these three 
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kinds of processes is that their simultaneity rules out the possibility of one of them being considered 
‘the’ cause of the other two. It is rather that each of the three dimensions obeys its own logic. Each 
dimension (and that justifies the use of this metaphor) is able to vary independently from the other 
two dimensions. And yet it is precisely this complex web of bodily, cognitive, and social processes 
that one inevitably encounters in the study of mathematics classrooms. 

This brief description of what happens in mathematics classrooms leads to a more general problem, 
which lies at the core of research in mathematics education: How can we, as mathematics education 
researchers, handle the extreme complexity of our field of study? How can we design theoretical and 
methodical tools which can account for the complex relationships between the bodily, cognitive, and 
social dimension of mathematical activity in its many facets and forms? It shall be this fundamental 
challenge to research in mathematics education which we will call the complexity problem. Once the 
complexity problem has been identified, it becomes apparent in what a difficult situation research in 
mathematics education finds itself in. For to arrive at a theory capable of accounting for the 
complexities of mathematical activities in educational contexts, the analytical tools of psychology, 
sociology, or biology are not sufficient. If we ask, for instance, for the conditions of success of a 
teaching-learning process in a mathematics classroom, we ask about a process that lies perpendicular 
to the boundaries between these three disciplines: Mathematical teaching-learning processes are 
processes that require cognitive activities on the part of both students and teachers, and these 
activities, in turn, depend on neural activities and other bodily processes. If one now continues and 
asks how teachers can teach and students can learn what they are taught, one encounters the mediating 
function of communication. Teachers affect the cognitive activities of their students and students 
affect the cognitive activities of their teachers by participating in communication. To ask about the 
conditions of success for such complex processes, thus, means to choose a unit of analysis that goes 
beyond the respective ‘fields of responsibility’ of the three disciplines. Because here it is about the 
question of the possible relationships between the social, cognitive, and bodily dimension of 
classroom events.  

But how do we deal with this situation in our field? Is the complexity problem already solved? Are 
there theories that are not only able to describe either the bodily, the cognitive, or the social 
dimension, but all of them together with their interrelationships? And on what grounds can such a 
general theory be built? These are precisely the questions we would like to explore in this paper.  

From the cognitive to the social dimension and back again 
We begin with a brief look at the history of mathematics education research and discuss how two 
theories – Glasersfeld’s Radical Constructivism (1) and Sfard’s Theory of Commognition (2) – 
struggle with the complexity problem. By choosing these two much-discussed theories, we aim to 
show that the complexity problem is indeed of key importance for research in mathematics education. 
Thereby, we will focus on one aspect of the complexity problem, namely, how to theorize the 
relationship between the cognitive and the social dimension of teaching and learning in mathematics 
classrooms.  

(1) Radical Constructivism is based on the assumption that only the mind of an individual can be 
considered as the ‘bearer’ of knowing and knowledge. To Glasersfeld, all processes of knowing – 
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and thus also: all knowledge structures – must be located in the mind of an individual. But how does 
one get from this focus on cognitive activities of the individual to the social dimension? Against all 
critics who accuse Piaget of not paying attention to the social dimension, Glasersfeld argues:  

But the child’s experiential world also comes to contain other people, and the almost constant 
interaction with them is an even richer source of perturbation and consequent accommodations. 
Piaget has stressed many times that the most frequent cause of accommodation is the interaction, 
especially linguistic interaction, with others. Yet he is often criticized for not having taken into 
account the social component. (Glasersfeld, 2003, p. 66) 

If a child calls a rectangle ‘square’, then it is corrected in communication; and this communicative 
correction then leads in many cases to a perturbation (i.e. to a disappointment of its expectation that 
the word ‘square’ fits these environmental circumstances) and then perhaps to an accommodation 
(i.e. to an alteration of its knowledge base through an adjustment of this expectation). Thus, without 
a doubt, it is possible to account for the social dimension from the standpoint of Radical 
Constructivism. But the social is considered only insofar as it appears on the ‘screen’ of an individual 
mind. Social events can be investigated for their causal contributions on the individual’s cognitive 
development. They have the character of an external ‘source of perturbation’, which may then lead 
(or not lead) to an internal reorganization of what an individual knows and believes. Hence, Radical 
Constructivism is and remains a purely psychological perspective on the social. The ‘unit of analysis’ 
is the individual knower and his or her processes of knowing.  

It was this unit of analysis that a number of researchers objected to in the second half of the 1980s. 
The representatives of this new ‘movement’, which Stephan Lerman called ‘the social turn in 
mathematics education research’ a decade later, no longer had in mind the study of the social from 
the perspective of an individual mind.  

The social turn is intended to signal something different; namely, the emergence into the 
mathematics education research community of theories that see meaning, thinking, and reasoning 
as products of social activity. This goes beyond the idea that social interactions provide a spark 
that generates or stimulates an individual’s internal meaning-making activity. (Lerman, 2000, p. 
23)  

From this standpoint, the social should thus be understood from within itself. To account for the fact 
that the social obeys its own logic, the unit of analysis was shifted from the cognitive to the social 
dimension. Although familiar concepts such as knowing, learning, or meaning continued to be used, 
these concepts were no longer tied to the mind of the individual, but were located in the social. The 
question was no longer, ‘How do social events influence the constructions of an individual mind?’. 
But rather, ‘How is the individual mind participating in the social?’. Researchers of the social turn 
began to study cognitive activities from the perspective of the social, and the crucial question then 
became whether the individuality of the individual could still be accounted for in this way: 

A major challenge for theories from the social turn is to account for individual cognition and 
difference, and to incorporate the substantial body of research on mathematical cognition, as 
products of social activity. (Lerman, 2000, p. 23)  
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The challenge for Lerman, then, is to make the insights of psychologically inspired theories accessible 
again from the sociological perspective without having to return to a primacy of the individual mind. 
The question that has emerged from the social turn is therefore: If one apparently cannot get from a 
theory of mind to a substantial theory of the social, does it perhaps work the other way around? 

(2) It is, we believe, Anna Sfard who has most decisively pursued this question with her Theory of 
Commognition. Sfard’s theoretical program can be read as a systematic exploration of the question 
of how far one can get with a theory of mind when starting from a theory of the social. In the 
introduction to her book, Sfard writes: 

In this book […] thinking is defined as the individualized version of interpersonal communication 
– as a communicative interaction in which one person plays the roles of all interlocutors. The term 
commognition, a combination of communication and cognition, stresses that interpersonal 
communication and individual thinking are two facets of the same phenomenon. (Sfard, 2010, 
p. xvii) 

The key word for a proper understanding of this theoretical program is: ‘defined’. Sfard does not 
claim that there is no need to distinguish empirically between thinking and communication, between 
the cognitive and the social dimension. Rather, her thesis is that one can define the concept of thinking 
by means of the concept of communication. Sfard does not make a statement about the empirical 
world, but about the theoretical description of it. She claims that one can get to a substantial theory 
of mind from a theory of the social. For this, Sfard argues, one can start with a concept of 
communication and then characterize thinking as self-communication–more precisely: as an 
‘individualized version of communication in which one person plays the role of all interlocutors.’ But 
it is precisely the extraordinarily clear way in which Sfard presents her theoretical program that also 
reveals a potential weakness: Thinking is by definition declared to be a special case of 
communication. If one can now come up with an example of a cognitive function that is different in 
type from communication in Sfard’s sense, then the theoretical program is, at best, incomplete. Sfard 
herself states: “In my case, no such instance comes to mind” (Sfard, 2010, p. 82). In contrast, we 
believe that the cognitive function of perception can be deployed to generate such a counterexample. 
Sfard admits that she is “prepared to compromise and leave the more primitive form of perceiving, 
that which leads to immediate instinctive reactions, out of the realm of thinking” (Sfard, 2010, p. 82). 
This move, however, which may seem ‘generous’ at first glance, undermines, we believe, the whole 
theory of mind. For it is precisely the primitive form of perceiving in which all higher cognitive 
functions – especially all those functions that presuppose the use of signs, such as all sorts of 
mathematical thinking (Duval, 2006) – are ultimately founded.1 Although a comprehensive 
development of the counterexample is beyond the scope of this paper (see Lensing, 2021, pp. 43–52), 
we will at least hint at how the argument runs: Sfard defines a communicational action recursively as 
an action A which is followed by an action B so that A is interpreted by B as being an action about 
an object (cf. Sfard, 2010, pp. 86–89). A communication is thus seen by Sfard as an operation that 

                                                 
1 It was probably Edmund Husserl (1992) who showed most impressively in Experience and Judgement that every theory 
of logical and mathematical thinking finds its ultimate support in a theory of experience (cf. §1-14, especially: §10).  
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always processes a distinction. Action A must be ‘seen’ by action B in a dual way, namely as a 
communication about a certain object. In a second step, it is then argued that elementary perceptual 
processes are not processing distinctions. For example, one sees a figure in front of a ground and not 
the distinction between figure and ground. It is then concluded that the cognitive function of 
perception cannot be characterized as a specific mode of communication in Sfard’s sense.  

The social turn had emerged in mathematics education research around the problem that one could 
not get from a theory of mind to a substantial theory of the social. However, as we have argued in 
this section, more recent attempts to travel the same route in opposite direction do not seem to be 
completely successful either. But if there is no clear evidence so far that the path is viable in either 
direction, what should we do then? Should we consider ourselves defeated by the complexity problem 
and accept that, while we may well be able to study certain aspects of what happens in mathematics 
classrooms, we will probably never make the whole picture accessible to theoretical description?  

We believe that there is in fact another way out. It comes into sight if one asks: What do the two 
aforementioned attempts at bridging the gap between the cognitive and the social dimension have in 
common? Both, Glasersfeld as well as Sfard, begin their theoretical endeavors by aligning themselves 
with a particular discipline: psychology in Glaserfeld’s case, sociology in Sfard’s case.2 While 
Glasersfeld takes a psychological perspective and thus does not get through to the social dimension, 
Sfard starts from a sociological perspective and does not get a grip of the cognitive dimension. And 
it is this beginning, the alignment of one’s theoretical program to one particular discipline, be it 
psychology or sociology, that we believe to be undermining the possibility of arriving at a general 
theory. To put it bluntly: Developing a general theory that can actually ‘grasp’ the complexities of 
mathematics classrooms must be considered as a transdisciplinary endeavor from the very beginning. 
However, such a theory can only be developed from a theoretical standpoint that is not associated 
with any of the classical disciplines. But how can this be possible? What ways of theorizing might 
lead to such a transdisciplinary theory? 

The formal method: Following the example of modern mathematics 
In order to address those questions, we believe it is helpful to take modern mathematics as an example 
and adopt a theorizing strategy that has revolutionized the field of mathematics over the last two 
centuries. We will call this theorizing strategy the formal method. Now what is the formal method 
and how can it be employed for theorizing in mathematics education research?  

In his or her undergraduate studies, every mathematics student learns concepts from abstract algebra, 
order theory, topology, measure theory, and so on these days. These theories provide concepts (e.g. 
the algebraic concepts of group, ring, and field) that allow for relating the seemingly most remote 

                                                 
2 That we make this assignment arises from the unit of analysis that the two theorists choose as their starting point: While 
Glasersfeld chooses the individual knower and his or her processes of knowing as his unit of analysis (= psychological 
perspective), Sfard starts from the concept of communication and defines it in such a way that communication can only 
emerge through a certain kind of recursive linking of the actions of at least two different individuals (= sociological 
perspective).  

Proceedings of CERME12 3000



 

 

 

areas of mathematics (e.g. permutations, geometric transformations, and numbers). Although these 
new concepts have become part of the standard repertoire of a mathematician, surprisingly, it is rarely 
stated explicitly from which new way of theorizing those concepts have actually emerged.  

It was most likely Edmund Husserl who, in 1900, in the first volume of his Logical Investigations, 
first provided a satisfactory answer to the question of what was new about these revolutionary 
developments in mathematics from a methodological standpoint. Husserl argued that the key idea 
was to formalize existing mathematical theories in their entirety. Thus, instead of investigating 
mathematical domains consisting of entities with a determinate content (e.g. numbers and their 
operations or geometrical transformations and their compositions), mathematicians proceeded to 
investigate their purely formal counterparts. That is to say, they no longer investigated particular 
mathematical domains, but rather general ‘domain-forms’ (Husserl, 2012, §70): In this sense, abstract 
algebra is no longer concerned with particular operations on particular kinds of numbers. Rather, it 
is concerned with the question of what can be said about mathematical domains of a particular form, 
namely about all those domain-forms in which certain operations on objects are defined by their 
operational laws. When the addition symbol ‘+’ is used in group theory, it does not stand for the 
operation of addition, which composes two numbers giving their sum, but for any operation that 
satisfies the group axioms. What these operations and objects on which they are performed then 
actually look like remains completely indeterminate in terms of content. Not the content of the objects 
and operations is determined, but only certain conditions for their form are demanded. A theory in 
abstract algebra, such as group theory, is actually a theory-form. It is freed from all numerical or 
geometrical content. By means of formalization, these contents are “converted into indeterminates, 
modes of the empty ‘anything-whatever’” (Husserl, 1969, §29). And it is this particular way of 
theorizing, this ‘conversion’ of a theory (or of a whole class of theories) with a determinate content 
into its (their) corresponding theory-form which we want to call the formal method.  

With this in mind, it is no longer difficult to understand the networking power of ‘theories’ such as 
abstract algebra or topology. Since these ‘theories’ are theory-forms, they do not really consist of 
concepts, theorems, and proofs, but of concept-forms, theorem-forms, and proof-forms (cf. Husserl, 
1969, §29). And since a theory-form is precisely something that many theories can have in common, 
it seems quite natural that one can study connections between remote mathematical domains this way. 
But what, one may now ask, does any of this have to do with research in mathematics education? 

Towards a transdisciplinary approach to research in mathematics education  
The crucial point is that a proper understanding of the formal method suggests an entirely new 
approach to theorizing in mathematics education research. Rather than concluding from the striking 
similarities between cognitive and social processes (e.g., both kinds of processes utilize signs, process 
meanings, and refer to all sorts of objects through these very meanings) that they are essentially “two 
facets of the same phenomenon” (Sfard, 2010, p. xvii), our proposal is that they are in fact two quite 
different phenomena that share a common form. And we hence believe that it may be better to start 
from an appropriate theory-form to explain similarities and differences between these processes. In 
order to avoid a potential misunderstanding right away: Our proposal here is not to apply 
mathematical theories in the human sciences, but rather to adopt a particular way of theorizing, 
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namely the formal method, and apply it for theorizing in these fields. Fortunately, such a project does 
not need to be started from scratch. By formalizing and enriching the theory of autopoietic systems, 
which was first developed by Maturana and Varela as a biological theory (Maturana, 2002), Niklas 
Luhmann was able to arrive at a general theory of autopoietic systems (or more correctly: at a general 
theory-form of autopoietic system-forms). And just as the formalized complement of the concept of 
addition in group theory is no longer about numbers, the formalized complement of the concept of 
autopoiesis in this general theory is no longer about organic processes. Rather, the formalized version 
of the concept (= its concept-form) merely captures a certain self-referential form of (re-)production: 
“We want to call systems autopoietic, which produce and reproduce the elements of which they are 
composed by the elements of which they are composed” (Luhmann, 1985, p. 403, translated by F.L.). 
The criticism of an illegitimate transfer of biological concepts to social and cognitive phenomena is 
hence unfounded, because such a transfer simply does not take place. Instead what Luhmann does is 
formalizing the biological concept of autopoiesis. He first converts all biological terms into empty 
forms (‘system’, ‘element’, and so on) and then asks for the concrete modes of reproduction that 
characterize social and cognitive systems. In this way, Luhmann is able to conduct a systematic study 
of similarities and differences between organic, cognitive, and social systems and arrives at a theory 
of mind (Luhmann, 1985) as well as a theory of the social (Luhmann, 1995). And it is this work that 
Lensing (2021) takes as a point of departure to develop the outlines of a general theory which can 
account for the bodily, cognitive, and social dimension of mathematical activity and model such 
phenomena as mathematical teaching-learning processes within a single theoretical framework.   

Since a detailed exposition of this theoretical program hardly seems possible on the few lines we have 
left, we would like to conclude this paper with a brief indication of how the formal method may 
operate for mathematics education research. For this purpose, we have chosen a concept that is used 
quite frequently in our field, but almost never explicitly discussed with respect to its conceptual 
content: the concept of structure. In Lerman (2020), for example, authors speak of ‘knowledge 
structures’, ‘mental structures’, ‘cognitive structures’, but also of ‘social structures’, the ‘structure of 
classroom discussions’, ‘structures of power and control’, and many more. What is striking about this 
list is the ‘parallel terminology’ that cuts across various disciplines: Psychology deals with cognitive 
or mental structures, sociology examines all sorts of social structures, and mathematics education 
research is concerned with both areas and how the formation of structures in one area might have a 
bearing on the formation of structures in another (i.e., how certain structures of communication in 
mathematics classrooms affect the formation of students’ cognitive structures). These considerations 
indicate that it might be of great value to our field to gain possession of a concept of structure that is 
not bound to any of the disciplines relevant to mathematics education research, a concept that, due to 
its formality, can be employed in both the cognitive as well as the social sphere.  

But how do we actually get to such a formal level of analysis? The answer is: by starting off at the 
empirical level and then employing the formal method to work our way up. We may start, for instance, 
with the well-known example of the ‘IRF-Pattern’ (Initiation – Response – Feedback) and the 
observation that this social structure constraints the possibilities of the occurrence and linking of 
communications in the classroom. The pattern thus structures communication events as they occur in 
the classroom in two respects: communications should be of certain types (initiation, response, 
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feedback) and they should be linked in a certain way (first, initiation, then, response, and so on). If 
we now continue and include other kinds of social structures, such as norms, roles, social positions, 
etc., we can see that the way in which these structures exceed constraints on social events varies 
greatly from case to case, but that all instances of social structure at least agree in that there is some 
sort of constraints: A structure of a social system, quite generally, constraints the possibilities of the 
occurrence and linking of social events in that system. With this step we still reside in the realm of 
social theory and the next step of formalization would then be to abandon the qualification of events 
as social events and thus elevate our ‘definition’ of structure to the transdisciplinary level of a general 
theory of autopoietic systems: A structure of an autopoietic system constraints the possibilities of the 
occurrence and linking of elements in that system.  

Clearly, this brief example is only a very rough sketch of how the formal method may be employed 
for the purposes of theorizing in mathematics education research. Yet we hope that it will at least 
motivate the thesis that this method allows for theorizing that yields to a theory that is beyond all 
disciplinary boundaries. And it is the transition to this transdisciplinary level of theory that we believe 
provides a possible starting point for solving the complexity problem.  
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Vygotsky’s concept of perezhivanie considers the interplay between cognition and emotion of an 
individual’s development within an environment. Empirical research using perezhivanie has mainly 
focused on early years education and has hardly ever been used in mathematics education. This 
theoretical paper starts with the problematic issue of the role of the environment in cognition and 
proposes the use of perezhivanie as a unifying concept to study an individual's development in 
mathematics education. We provide an exposition of the concept of perezhivanie, seeking to 
understand its relation to key memorable events and threshold concepts, which are currently being 
used to analyse classroom activities and events. We conclude by pointing out the importance of 
perezhivanie as an analytical approach to four areas of study in mathematics education. 

Keywords: Perezhivanie, university mathematics education, emotion, cognition. 

 

The Russian word perezhivanie (plural pereshivaniya; from zhivat – to live, and pere – carrying 
something over something) has been used in educational research to describe a series of personally-
significant, emotionally-charged experiences and how an individual has overcome them to become 
the person they are today. The concept has rarely been used in mathematics or science education 
research literature (e.g., Black et al., 2019; Fragkiadaki & Ravanis, 2021), and it has predominantly 
been used in research on early years education (e.g., Ng & Renshaw, 2019). Perezhivanie nevertheless 
is a powerful concept that considers the unity of person-environment and cognition-emotion as central 
to explain an individual’s development, something that in general has not been prominent in 
mathematics education research. For instance, some theoretical perspectives have looked through a 
mental cognitive lens (e.g., the development of student’s algebraic thinking is characterised by the 
use of alphanumeric symbolism). Some others have studied emotions from the individual’s 
perspective without regard to how socio-cultural factors shape those emotions and hence the cognitive 
processes of the person. These perspectives neglect or downgrade the inherent relation between 
cognition and emotion. In response, we agree with Radford (2014) that a study of the development 
of students’ mathematical thinking should be thought of as an unfolding dialectic process of culturally 
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and historically constituted forms of knowing which involves, for example, embodied forms of 
thinking and emotional and ethical engagement, amongst others. 

Hence, we take the position that perezhivanie is a meaningful research tool for a developmental 
account of an individual but how to conceptualise and investigate it is still “an open research problem 
for sure” (Radford, 2014, p.275). Therefore, this paper aims to advance the understanding and use of 
perezhivanie in mathematics education research. We explore the concept of perezhivanie within the 
research literature of mathematics education and beyond. We start with an introduction to the problem 
of the environment as it was conceived by Vygotsky (1934/1994) and an exposition of the concept of 
perezhivanie as understood by him and later expanded by other scholars. We then seek to understand 
its relation with other concepts used in mathematics education literature, which relate to emotion (i.e., 
key memorable events) or cognition (i.e., threshold concepts) and that seem to be used to study similar 
problems to those that can be studied with perezhivanie. We ask: How does perezhivanie provide a 
deep and detailed understanding of individual development, not captured by key memorable events 
or threshold concepts? We conclude with a discussion on the added value of perezhivanie in four 
areas of study in mathematics education. 

The problem of the environment 
In The Problem of the Enviroment, Vygotsky used the word perezhivanie in relation to the study of 
the role that a child’s social environment has in the formation of their personality, as opposed to the 
part played by their genetic inheritance. Central to Vygotsky’s thought was the idea that rather than 
a setting, the environment should be considered as dialectically related to a person’s development: 

“environment should not be regarded as a condition of development which purely objectively 
determines the development of a child by virtue of the fact that it contains certain qualities or 
features, but one should always approach environment from the point of view of the relationship 
which exists between the child and its environment at a given stage of his development.” 
(Vygotsky, 1934/1994, p. 338) 

Vygotsky exemplified the two-way relation between person and environment from his own research. 
The example was that of three children experiencing the same environmental condition (mother with 
alcoholism) in different ways. The youngest child developed neurotic symptoms, the second 
demonstrated contrasting emotional attitudes towards his mother, whereas the third and eldest acted 
as a senior member of his family to protect his youngest siblings. 

Through the interactions with the different aspects of a given environment, an individual’s 
perezhivanie determines what influence this environment has on their development. In that sense, in 
order to analyse the impact of a learning environment on developmental processes, one should 
consider both cognitive and emotional aspects. In the research field of mathematics education there 
are studies that consider these aspects, but separately. For instance, Key Memorable Events (Marmur 
& Koichu, 2018) focus on emotion to study events in the classroom with which students identify or 
strongly remember. By using this concept one can point out various prominent events that take place 
in the mathematics classroom and that could potentially be important for students’ learning; but 
research on these events has no direct link to students’ development as (mathematics) learners. 
Further, Threshold Concepts have been used in mathematics education to study cognitive events. The 
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learning of concepts such as the limit, continuity, etc. in calculus, are fundamental for students’ 
mathematical development. The existing literature nevertheless leaves aside the emotional aspects or 
the contextual factors that the learning of these concepts entails. Hence, there is a need in the field 
for the use of a concept that takes into account both cognitive and emotional aspects in the interaction 
of an individual with their learning environment and that highlights the influences on their 
development. 

What is perezhivanie? 
Perezhivaniya are the events, episodes, activities, happenings or experiences in which people are 
active participants. The perezhivaniya in someone’s life help them answer the question “Who am I?”, 
by showing who they were and how they came to be the person they are now – the experiences they 
had and how these formed them.  

In relation to learning, Kim (2021) argued that perezhivanie experiences can facilitate the learning 
process when the learner recognises meaning in the environment, evaluating or appraising the 
experience as important. In other words, the experience provides “what is available to the person to 
do something with” (van Lier, 2004, p. 90), thereby becoming developmentally significant. Hence, 
perezhivaniya become for the person that which proves to be personally significant for them 
(Rubenstein, 1957). They are the chapters of one’s autobiography, the events that were life-changing 
and emotionally-charged. 

As a research tool, perezhivaniya are the units of consciousness or of the personality as a whole. They 
encompass intellect, affect, memory, attention, will, etc. They are experiences as a whole, and each 
has their own plot, its own inception and movement towards its close (Dewey, 1939). Perezhivaniya 
are both subjective and objective, they are both personal and environmental (e.g., the loss of a job for 
a young person is not the same as for someone whose job is their entire career). A perezhivanie is the 
prism through which the subject refracts the influence of the environment. Vygotsky (1934/1994, p. 
342) remarked that “in perezhivanie we are always dealing with an indivisible unity of personal 
characteristics and situational characteristics”.  

These experiences are life-changing in the sense that they are problematic, and one has to overcome, 
survive or over-live (überleben) them. Perezhivaniya do not have to be only painful, there can be 
good perezhivaniya (e.g., a risk that paid off and opened a new life phase) (Kotik-Friedgut, 2007). 

Success in overcoming a perezhivanie entails changing the social situation, either by transforming 
the object of activity, transforming the subject or both. Blunden (2016) asserts that development 
comes from a process of catharsis. In ancient Greece, catharsis was the experience of an audience 
who, when watching a play at the theatre, externalised their emotions by empathising with the 
performers who were acting the emotional experience out for them. This had a “purging” effect. 
Blunden (2016) points out that Freud (1914) was also familiar with perezhivanie, and that he used 
psychoanalysis to make a patient remember and repeat an emotional experience and working through 
it, overcoming and “surviving”, ‘transcending” it, or “sublating” it (in the manner of Hegel). The 
psychoanalytic process seems to suggest that the aid of another person, who is capable of objectifying 
and reflecting back the feelings of the person going through a perezhivanie, of guiding them and 
making use of the resources of the culture to assist them in finding and accommodating their new 
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situation, is usually needed (e.g., teacher, therapist). 

The concept of perezhivanie also allows us to understand experiences that are not so dramatic, and 
what has been said above applies to those relatively minor joys and embarrassments that “stick in our 
minds” and become part of our development, that evoke an emotional response and are connected 
with our motivation, without becoming life-changing traumas. 

How is the concept of perezhivanie related to other concepts of emotion or 
cognition that are used in mathematics education literature? 
In spite of its potential, perezhivanie is rarely used in mathematics education research. In this section, 
we seek to understand the concept of perezhivanie by critically analysing the concepts of Key 
Memorable Events and Threshold Concepts that seek to explain similar phenomena with perezhivanie 
in mathematics education. 

Key memorable events 

The concept of Key Memorable Events (KMEs) refers to classroom events that are accompanied by 
either positive or negative strong emotions and are imprinted as meaningful in students’ memory, 
because of their contribution to students’ learning (Marmur & Koichu, 2018). In that sense, KMEs 
can be used as a theoretical lens for analysing affective moments and gaining an insight into the 
learning process. With their use, one can recollect memories and thoughts of emotionally loaded 
events that seem to be particularly interesting for the individual. In this way one can consider the role 
that affect plays in students’ experiences during the learning of mathematics and in this regard we 
can recognise a similarity with the concept of perezhivanie. However, for us, the difference is in the 
consequences that this experience has for the development of the individual. With KMEs we have a 
tool for listing and categorising the kind of events that stay in the individual’s memory and can have 
an effect on their learning. Perezhivanie provides us with a very detailed process, where different 
perspectives and aspects are considered with the scope to give us a deeper understanding of the 
situation and of the impact on the individual’s learning trajectory and development. 

The use of KMEs as an analytical tool in mathematics education research requires particular 
methodologies, such as the stimulated recall methodology. Students are assisted in recollecting their 
experiences from a particular lesson and provide information regarding their thought-processes. This 
raises criticism regarding the degree of importance of each event in students’ learning, since the 
students are reminded of specific classroom events and then comment on them, instead of recalling 
themselves what was distinctly important for them. We assert that an experience becomes significant 
for an individual (and not necessarily for others) and changes outcomes for that individual by 
requiring a challenging situation that has been overcome and resulted in a cathartic outcome. 

Furthermore, although with the KMEs one can identify and classify emotionally charged events that 
take place in the learning of mathematics, there is not an explicit way to understand whether the 
students act or not upon these events. For instance, in a recent work by Marmur and Koichu (2018) 
where the concept was used in order to pinpoint the incidents that were memorable for students during 
undergraduate mathematics tutorials, most of the students referred to events that played a role in their 
motivations regarding the learning of mathematics (e.g., “It was beautiful. It’s an eye opener.”), rather 
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than their engagement. Based on these recollected events it is not clear if students took action in 
changing their ways of learning or if these events had an impact on their identities as mathematics 
learners, something that is crucial in perezhivanie. Overall, KMEs can be a useful instrument for 
classifying strong affective moments and explain various phenomena that take place during the 
learning of mathematics in the classroom (or in the lecture hall). They can improve the lesson design 
by analysing students’ emotional reactions to particular teaching practices, but they do not give us a 
clear picture of the impact that these emotionally-charged situations have on students’ further learning 
and engagement with the subject.  

Threshold concepts 

Threshold concepts are topics that are considered crucial when a person tries to master a certain 
subject. Meyer and Land (2006) described threshold concepts as portals which open a new and 
previously inaccessible way of thinking about a subject. According to them, threshold concepts have 
five characteristics that can be used in identifying them: (1) they are transformative i.e., they result 
in a shift of a person’s perception of a subject; (2) they are irreversible, meaning that the change in 
perception is irreversible; (3) they are integrative due to their ability to allow connections of 
previously unrelated concepts to be made; (4) they are bounded because they might lie at the 
conceptual border between disciplinary areas; and (5) they are troublesome because they are 
inherently difficult to grasp.  

In the mathematics education literature, Breen and O’Shea (2016) proposed that limits, functions, 
cosets and quotient groups are mathematical topics that hold the above characteristics and can thus 
be considered threshold concepts in analysis and group theory. They argued that traditional teaching 
approaches and curricula in undergraduate mathematics often result in memorising content and 
procedures which leads to shallow or rote learning. In order to address these issues, Breen and O’Shea 
proposed to change the curriculum (often built around the structure of mathematics and a linear 
fashion of teaching content) to one structured around threshold concepts (leading to a recursive design 
that enables learners to revisit threshold concepts throughout the duration of the course). 

Threshold concepts offer ways of identifying topics that act as portals and thus represent important 
stages of a learner’s mathematical development. As a construct, threshold concepts relate to the 
cognitive aspects of learning mathematics, i.e., what has to be learned in order to master a certain 
topic. However, their transformative and troublesome nature suggests that a learner’s experience in 
understanding a threshold concept could result in an emotionally charged situation, an aspect that is 
not acknowledged or taken into account by threshold concepts. In that sense, perezhivanie offers a 
more holistic account that can capture the interplay between both the cognitive and emotional 
phenomena involved while a learner tries to master a threshold concept. 

In summary, choosing a threshold concept as context may be useful for researching an individual’s 
mathematical development and for introducing perezhivanie as a research tool. In contrast to key 
memorable events, perezhivanie identifies significant experiences of an individual in a certain 
environment; importantly, perezhivanie considers the working over of such experiences that 
characterise the development of an individual as well as who they came to be regarding those 
experiences.  
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Final reflections on perezhivanie in mathematics education 
The concept of perezhivanie was left unfinished by Vygotsky. Many scholars have since contributed 
to its development and the concept has recently received increased attention by researchers interested 
in the topics of emotion, motivation and subjectivity. In empirical research in education, perezhivanie 
has been used as an analytical approach to the unity of emotion and cognition (e.g., Fleer & Hammer, 
2013) and/or the unity of individual and environment (e.g., Chen, 2015). Researchers using 
perezhivanie have mainly focused on understanding the refracting prism of an individual who 
interacts with an environment and interprets it in a subjective way (e.g., Adams & March, 2015). 
Perezhivanie has rarely been used to study the experiences that are significant for the individual and, 
due to its cathartic nature, play a significant role in their development and life-long learning. We 
contend that this was Vygotsky’s main aim at developing the concept of perezhivanie.  

We take the position that perezhivanie is a useful tool and concept in mathematics education research, 
by providing an analytical approach to a phenomenon under study that considers the unity of 
cognition and emotion and/or individual and environment, while allowing researchers to see how 
these units become the key pieces in an individual’s development. These are powerful features that 
can offer new, in-depth understandings in mathematics education research and practice. Based on our 
readings of the literature, we present four areas of mathematics education research as examples of 
where perezhivanie could be a useful research tool. The majority of empirical research using 
perezhivanie has focused on early years; we will focus on areas of the study of older students.  

The first area is the study of educational transitions (e.g., mathematics transition to university) and 
the identification of students at risk of dropping out. For many students, the transition to university is 
a highly emotional event where past experiences merge with the social relations and material aspects 
of the new environment. Studying the prism through which individuals refract transitional events, 
researchers can understand the situations that help or hinder students in different ways to make an 
un/successful transition and document a pool of perezhivaniya experiences from longitudinal data, or 
from cross-cultural comparisons. The cathartic nature of these experiences is evident since the 
transition to university is a defining event in students’ lives; some see it as a ‘rite of passage’, or an 
opportunity to become someone new, hence determining their development as individuals. 

The second area we suggest is the study of mathematical resilience. Researchers have related 
resilience to individuals’ cognitive and affective abilities to overcome obstacles and challenging 
situations in the learning process, turning them into situations that support them (Hutauruk & Priatna, 
2017). A view of resilience as relational between the individual and their environment can be potently 
studied through perezhivanie. Research on the perezhivaniya of resilient learners (i.e., the reflected 
lived experience of overcoming a challenging situation) might illuminate practices that encourage 
dispositions that allow individuals to negotiate their contexts in advantageous ways (cf. Hernandez-
Martinez & Williams, 2013).  

A third area of study is the research of life-changing decisions with respect to mathematics education, 
particularly the choices of women or other underrepresented groups in mathematically-demanding 
careers. Perezhivanie can be used to understand those choices where objective circumstances are 
refracted through the prism of gendered or racialised subjectivities. Using perezhivanie as the lenses 
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through which we understand these choices allows for a holistic perspective of the life trajectories of 
these individuals. 

A final area is the study of how individuals become professional mathematicians. A study of this 
type, which uses perezhivanie as a research tool, would look for events that steered an individual to 
become interested in mathematics, the contexts and circumstances that made possible for that 
individual to sustain, or even nurture, their mathematical identity. Surprisingly, research into 
narratives of being or becoming a mathematician, or different ways to be a mathematician, is still 
limited; stereotypical views of mathematicians as “geniuses” or “eccentric” are still widespread 
among students and society at large, which in turn discourage many from pursuing a career in 
mathematics. 

This paper described the concept of perezhivanie as first conceived by Vygotsky and subsequently 
extended by many other scholars. We compared this concept with others in the mathematics education 
literature that share commonalities with perezhivanie, and described how the concept could be used 
in mathematics education research. We believe that this concept is useful in understanding the 
interplay between cognition and emotion, and personal and environmental factors in a way that other 
theoretical frameworks do not. 
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This poster presents an empirical case of two students working with a task sequence on the concept 
of differentiability, designed with the purpose of investigating students’ mathematical thinking 
competency (MTC), as defined in the Danish competency framework (KOM). The MTC is one of 
eight distinct, yet mutually related, mathematical competencies that all together constitute the KOM 
framework (Niss & Højgaard, 2019). The MTC involves the ability to distinguish “between different 
types and roles of mathematical statements (including definitions, if-then claims, universal claims, 
existence claims, statements concerning singular cases, and conjectures), and navigating with regard 
to the role of logical connectives and quantifiers in such statements” (ibid., p. 15). Hence, students’ 
work with definitions is part of their MTC. 

In relation to the topic of analysis, the theoretical distinction between concept definition and concept 
image has proved useful (e.g., Tall & Vinner, 1981). The concept image is “the total cognitive 
structure that is associated with the concept, which includes all the mental pictures and associated 
properties and processes” (p. 152). Thus, concept images and the distinction to concept definition are 
part of the MTC. Due to the MTC’s focus on processes of doing mathematics and to access the 
students’ concept images, it is suitable, in this case, to study what the students are saying, writing and 
doing as part of their work with the concept of differentiability. For this, Duval’s (2006) perspective 
of semiotic registers offers a promising lens. Transformations of representations, namely treatments 
within one register (e.g., symbol manipulation) and, in particular, conversions between registers (e.g., 
from a symbolic expression to its corresponding graph) are key to mathematical activity and the 
mathematical way of thinking. Duval (2006) argues that considering comprehension as being 
conceptual and mental and semiotic representations as being external is a deceptive division. “In fact, 
mental representations that are useful or pertinent in mathematics are always interiorized semiotic 
representations” (ibid., p. 126). Hence, the semiotic representations are part of students’ concept 
images. Thus, with this poster, I address the question: How does the ‘concept definition’-‘concept 
image’ distinction in the case of differentiability assist in characterizing students’ MTC, and how 
may an attention to conversions between different registers add to such characterization? 

The empirical case reported stemmed from a study carried out in a class of 29 students in Danish 
upper secondary school (age 16-17) during two 90-minute lessons on the topic of differentiability. 
The students were working in groups of two or three sharing one computer. Their actions on the 
computer were recorded using screencasts, also capturing webcam and audio, resulting in 14 
recordings. The present case was selected due to the students’ thorough work with the concept 
definition of differentiability, while still not connecting the concept definition to their work with the 
graphs of non-differentiable functions. The two students were working on the final set of tasks, where 
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they are to explain with their own words, when a function is differentiable and when it is not; then to 
construct an example of a function that is not differentiable, and then a function that is continuous 
but not differentiable. The case illustrated how the students shifted, both written and orally, between 
the semiotic registers of natural language, symbolic representations, and graphic representations. 
However, using natural language, the students elaborated on the symbolic representation of 
differentiability as a limit in terms of graphic representations. Afterwards, when attempting to 
construct a discontinuous function, the students typed in a piecewise defined function f1 using a 
template in TI-nspire, such that f1 consisted of a linear function for x<0 and a quadratic function for 
x>0. Thus, f1 was not defined for x=0. When the students drew the graph of f1 in TI-nspire, they saw 
that the graph “jumped” just around x=0, why they concluded that f1 was discontinuous, hence non-
differentiable, without taking into account that the domain of the function did not include 0. Notably, 
even though the students made shifts between representations of different semiotic registers, and 
related to the definition of differentiability, their concept image of differentiability was based on their 
notion that a graphic representation of a function should not “jump.” 

The three theoretical perspectives serve different roles. KOM’s MTC frames the interest and purpose 
of the study: to investigate students’ MTC. For such investigation, the distinction between concept 
definition and concept image provides a terminology for the students’ associations with their work 
related to the formal concept definition (of differentiability). Furthermore, it focuses on the cognitive 
processes by which mathematical concepts are conceived (Tall & Vinner, 1981). The perspective of 
semiotic registers helps to elaborate students’ concept images by explaining cognitive processes 
related to transformations of representations (Duval, 2006). This is to say that they are both of 
cognitive nature, as is the KOM framework, but focusing on different objects as part of the cognitive 
processes. Hence, with the application of the two lenses, there is a potential for a ‘coordinated’ 
analysis. Such ‘coordination’, focusing on the students’ concept images, elaborated through the lens 
of semiotic registers, can help characterize students’ work related to the formal concept definition. 
From the perspective of MTC, the two perspectives can elaborate on the processes of relating to the 
roles and types of mathematical statements, even though the students may not work with consistent 
concept images coherent with the formal concept definition. Thus, this case implies that Duval’s 
(2006) perspective of semiotic registers offers an analytic tool to focus on the students’ activities with 
different representations and thereby elaborate on students’ concept images related to the cognitive 
processes of MTC.  
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Freudenthal and Davydov—two giants of mathematics education research—had a similar 
sophisticated vision on the position of mathematical models and symbols in abstract–concrete 
dialectics. In our vertical analysis of those approaches, we integrate them in a spiral vision of 
mathematics learning. Starting from concrete enactment, students abstract previously latent aspects 
of their reality. Further, students fixate abstract ideas in mathematical artifacts, which in turn 
enable new concrete experiences. We show how local integration of two theoretical approaches can 
support an empirical analysis of embodied design for proportions and act as backing a design 
heuristic for embodied technologically supported activities. 

Introduction 
The relation between abstraction and concrete experience inevitably lies in the core of mathematics 
education studies. Should concrete experience become a starting point for teaching abstraction? Can 
abstract ideas be derived from empirical observation or enactment with concrete objects, or shall 
abstract ideas be exposed to students directly, through 'symbolically structured environments' 
(Coles & Sinclair, 2019)? Traditional views on abstract and concrete—established within inductive 
empirical science—are questioned in contemporary investigations of mathematics learning, 
particularly by those who take an embodied stand.  

The variety of visions on the problem of abstraction in mathematics learning creates a need to base 
theoretical work on a solid ground. In this paper, we coordinate the approaches of two giants in the 
field of mathematics education research, Davydov and Freudenthal, with respect to the role of 
mathematical artifacts and students’ concrete experiences in teaching abstract ideas. Revealed 
similarities in the views of such major yet independent figures makes, in our opinion, the emerging 
theoretical proposal particularly strong and related design heuristics well backed up. The 
compatibility of views is based on Davydov’s approach belonging to the Marxist tradition of 
cultural-historical activity theory, which can be aligned with Freudenthal’s approach to 
mathematics as a human activity of mathematizing. Neither Davydov, nor Freudenthal used the 
term artifacts, however symbols, models, and visuals lied in the core of their ideas. We refer to 
these and any other instances of material culture developed within mathematical activity as 
mathematical artifacts. We interpret cultural artifacts as a broader category of entities developed 
within cultural practices. 

The paper consists of two main parts. Firstly, we integrate Davydov’s and Freudenthal’s thinking 
into a joint view on concrete and abstract. For this local integration of theories (Bikner-Ahsbahs & 
Prediger, 2014) we conduct a vertical analysis (Shvarts & Bakker, 2021) as we go beyond 
comparing current states of the theories and dive into the history and philosophical roots of their 
development. Secondly, we apply the results of this theoretical analysis to guide an analysis of 
students’ interaction with (cultural) artifacts within embodied design (Abrahamson & Sánchez-
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García, 2016) and further suggest some design heuristics for technologically supported embodied 
activities. Two research questions guide our study: (1) What are Freudenthal's and Davydov's 
positions towards the role of mathematical artifacts in facilitating concrete experiences and abstract 
ideas? (2) How to introduce mathematical artifacts in embodied designs informed by the integrated 
Freudenthal-Davydov approach to mathematical abstraction? 

Freudenthal and Davydov: concrete, abstraction, and mathematical artifacts  
Freudenthal dedicated quite some publications to Davydov's approach (Freudenthal, 1974, 1977, 
1979). Moreover, the Davydov's curriculum has been implemented in some Dutch schools, and 
compared to Wiskobas—a curriculum inspired by Freudenthal (Nelissen, 1987). In our view, 
Freudenthals’ interest in Davydov is rooted in a deep agreement on the research and teaching 
methods. Within both research programs, intensive investigatory implementations were conducted 
in schools and referred to as formative experiments in Russia and developmental research in the 
Netherlands, presenting historical variants of what we know now as design research (Bakker, 2018). 
As we explain below, the similarities in the teaching methods convey insights on abstraction, the 
role of cultural artifacts, and the progressive development of concrete experiences.  

 (1) An abstraction is not based on recollection of empirical impressions  

The fundamental innovation of the Davydov approach lies in an intensive critique of empirical 
thinking and pedagogy that treats abstraction as deriving from empirical examples (Davydov, 
1990). As van Oers (2019) explains, Ernest Cassirer was apparently the first to criticize this type of 
abstraction because of the impossibility to limit the set of empirical observations from which to 
derive abstract qualities. Per Davydov (1990), new classes of objects are created within human 
practical activity, and theoretical thinking later describes those classes not through empirical 
observation but through transformative actions that reveal otherwise hidden properties. In the 
course of learning, students are to "develop special object-related actions by which they can 
disclose in the instructional material and reproduce in models the essential connection in an entity, 
then study its properties" (p. 174). Analyzing Davydov's approach, Freudenthal highly appreciated 
this perspective on abstraction and stressed that “abstraction and generality are—in many cases—
not reached by abstracting and generalizing from a large number of concrete and special cases” 
(Freudenthal, 1974, p. 412). Later, Freudenthal tried out Davydov's approach of deriving arithmetic 
operations from practical actions with magnitudes—such as length and volume—with his grandson 
and found this approach to be effective (Freudenthal, 1977, 2002b, p. 102).  

(2) Children need to reinvent mathematical models and symbols 

Another point of the clear coordination between the approaches of Davydov and Freudenthal lies in 
addressing the role of mathematical models and symbols. Per Freudenthal, the mathematical 
activity consists of progressive schematization and algorithmization of solving problems that are 
meaningful for students. Those schematizations and algorithmizations are later preserved in the 
form of mathematical models and formalized rules (Freudenthal, 2002a). The rules preserve the 
history of problem-solving for those who came up with them in their own problem-solving. So, the 
only way for the learners to meaningfully extend their understanding of reality through 
mathematics, lies in reinventing mathematical rules and symbols. Otherwise, “having been 
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imposed, they [rules and symbols], never had a real chance to develop into common sense of a 
higher order” (p. 8).  

Davydov similarly assigned a primary role in scientific thinking to models, symbols, and signs. 
“Symbols and signs, as well as mixed forms of them, serve as the material means of idealizing and 
constructing scientific objectness” (Davydov, 1990, p. 121). Constructing these material means 
(artifacts) is exactly a process of abstraction, which fixates (reifies) the essential (for a practical 
activity) aspects of the object under investigation: “The construction of this new object [idealized 
model] functions as a certain mode of activity—as abstraction” (p. 117). In learning, children pass 
through a quasi-investigation, in which they uncover an essential (theoretical, mathematical) aspect 
of an object and reproduce it “in particular object-related, graphic, or symbolic models” (p. 174). 

(3) Progressive development of concrete experiences  

The origins of Freudenthal’s ideas lie in the observation that mathematics education tends to inverse 
the development of mathematical ideas by presenting students the final products. He referred to his 
approach as phenomenological, and—although he insisted on the divergence with Husserl, Hegel, 
and Heidegger (Freudenthal, 2002b, p. 28)—he was apparently essentially influenced by 
phenomenological thinking. This influence can be traced in his ideas of developing common sense: 
in "the course of life, common sense generates common habits, in particular, where arithmetic is 
concerned, algorithms and patterns of actions and thoughts, initially supported by paradigms, which 
in the long run are superseded by abstractions" (Freudenthal, 2002a, p. 7). So, mathematical 
abstraction, such as arithmetic, derives from the common sense experience of acting and thinking. 
Further, those mathematical abstractions support later common sense experiences: “These products 
of common sense acquire in turn the behavioural status of common sense, while their common 
sense ancestry may have even been forgotten” (p. 7). Per Freudenthal, good mathematical education 
develops students’ ability to see reality mathematically; mathematical symbolism is a lens for 
this newly developed common sense.  

We find Freudenthal's idea of developing common sense to be close to the dialectical materialist 
method of ascending from abstract to concrete that Davydov exploited. This method does not mean 
presenting abstraction from the beginning. As Ilyenkov explains, “the ascent from the abstract to 
the concrete without its opposite, without the ascent from the concrete to the abstract would become 
a purely scholastic linking up of ready-made meager abstractions borrowed uncritically” (Ilyenkov, 
2008, p. 137-138). So, abstraction starts from concrete experience, as well as progresses towards 
concrete experience: “the ascent from the concrete to the abstract and the ascent from the abstract to 
the concrete, are two mutually assuming forms of theoretical assimilation of the world, of abstract 
thinking” (p. 137). However, those two directions are not forward and backward. Abstraction 
reveals the latent aspects of initially experienced concrete reality, and those aspects further become 
salient in the theoretically grounded concrete perception of the objects. So, ascending from the 
abstract to concrete does not mean a detachment from the initial concrete experiences but a 
transformation of perception towards seeing concrete objects in a new way—through the lens of 
abstraction, facilitated by the artifacts as if superimposed on the perceptual field.   

Proceedings of CERME12 3026



 

 

Concluding the theoretical analysis 
Answering our first research question, we interpret Freudenthal's and Davydov's positions towards 
concrete experiences and abstract notions preserved by mathematical artifacts as converging in the 
following vision of the learning process. Students derive an abstract understanding from the 
concrete experiences within a specially organized practical problem-solving activity. This practical 
transformative activity elicits latent aspects of the world, which students fixate in cultural artifacts, 
such as mathematical models and symbols (movement from concrete to abstract). Having 
constituted an abstraction supported by the artifacts, students can put these artifacts into action and 
distinguish new initially latent aspects (movement from abstract to new concrete). In this iteration, 
students develop their common sense (in Freudenthal's words) or ascend from abstract to 
concrete (in Davydov's words) in establishing a theoretical vision of an object. Thus, we see 
students’ development as a spiral: from concrete approaching the world in practical activities to 
abstracting latent aspects and fixating them in mathematical artifacts, and further towards 
establishing new-concrete perception mediated by those artifacts. From this approach, cultural 
artifacts emerge as reifications of the actions, which have elicited abstract features. Students need to 
actively constitute those artifacts to preserve the history of initial concrete enactment.  

Concrete–abstract–new-concrete in implementing embodied design  
Embodied action-based design is one of the quickly developing paradigms related to radical-
embodied-enactivist-phenomenological reconsiderations within cognitive science (Abrahamson & 
Sánchez-García, 2016). The learning sequence in this design genre consists of a few major steps 
(Alberto et al., 2021; Abrahamson et al., 2020). At first, students are invited to solve a motor 
problem, i.e. discover a new coordination between their hands based on continuous feedback, and 
uncover the rule of positive feedback to their actions. Later, artifacts are introduced into the 
problem space, and students are guided towards the quantification of their experiences. Within this 
paradigm, the researchers have intensively questioned the position of embodied activities and 
cultural artifacts within abstract–concrete dialectics. In particular, they consider a sensorimotor 
scheme as “the epistemological core of mathematical learning and knowing” (Rosen et al., 2016, 
p. 1509), which can be further developed in both directions: towards abstract notions through 
semiotic signification by cultural artifacts, and towards concrete situations through providing 
context. Our empirical analysis of embodied activities through the lens of a joint view of 
Freudenthal and Davydov hints towards another role of the artifacts in abstract–concrete dialectics 
and further advances the design framework. 

Stage 1. Action-based abstraction: Seeing new structures in concrete embodied experience 

When solving a motor problem, students discover new abstract qualities,—at first at the embodied 
level and later in conversations with tutors—such as a proportional relation between the length of 
two bars, or a coordination of a unit circle circumference and an x-coordinate of a sine graph. 
Solving a motor problem is coherent with Freudenthal’s and Davydov’s ideas about abstraction as 
emerging from a goal-oriented practical actions. Technological environments restrict students’ 
degrees of freedom, thus facilitating quasi-investigation, as Davydov would insist. Although 
restricted, the students appear to come up with a multiplicity of personal strategies and perceptual 
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orientations, thus meeting Freudenthal’s idea of reinventing rather than exposing culture. So, initial 
embodied enactment with concrete, tangible objects enables the discovery of abstract mathematical 
relations.  

Stage 2. New-concrete: Looking through the lens of emerging cultural artifacts 

While the phase of solving a motor problem has been extensively studied, researchers paid 
relatively less attention to the stage when artifacts are introduced. Therefore, we bring forth a small 
classroom episode from an experimental tryout of an embodied action-based design for proportions 
in an ordinary third grade (8-9 years old) classroom in the Netherlands (see a description of the data 
collection in Alberto, van Helden, Bakker, submitted). Four student pairs were video recorded and 
the following episode is selected to provide the best insights on the use of mathematical artifacts in 
establishing new understanding. Two girls (Iris and Frida) collaborated in the tablet-based activity: 
they manipulated two bars on a screen, which turned green when their lengths were in a particular 
fixed ratio. The girls were required to keep the bars green while moving and later “to guess a code” 
that determines the bars’ green color, thus describing the proportional relation between the green 
bars’ lengths. In the analysis, we contrast the use of two cultural artifacts: a dice, which was 
spontaneously appropriated by the students, and a grid, which was imposed by the educators.  

 

Fig. 1. (a, b, c, d): Seeing proportional relation through a dice. (e, f, g,): Missing proportional relation 
when applying a grid 

By the moment of the episode, the girls have already solved the task with the bars being in ratio 1:2. 
In order to see that the length of one bar is doubled in the length of another bar, the girls 
spontaneously used a dice that was occasionally lying on a table: They positioned the dice in the 
middle of the big bar, marking that small bar fits in it two times (Fig. 1a). In the next task, the bars 
turned green at a ratio 1:4, but the girls did not know this yet. Adjusting one hand upwards 
somewhat slower than the other one, Iris found several green positions. She exhibited a general 
abstract strategy of maintaining two lengths in the same proportional relation, which needs to be 
concretized in quantifying the exact relation. Iris again took a dice and marked the length of the 
shorted bar on the longer bar (Fig. 1b), thus marking a unit of measurement that would help assess 
how many times the small bars would fit into the big one—a concretization of the abstract relation 
of “fitting into the other one.” Then both girls tried to measure with their fingers how many times 
the length of the short bar would fit into the long bar (Fig. 1 c, d). The relation between two bars is 
seen through the lens of a cultural artifact, a dice, which here means marking down a measurement 
unit. The dice served as a reification of previous sensory-motor coordination; it allowed for 
distinguishing a new-concrete, new previously invisible aspects of the bars, namely a measurement 
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unit that helps assess how many times one bar fits in another bar. A common sense action, in 
Freudenthal’s terms, developed for Iris towards seeing the big bar as containing some number of 
small bars. Iris ascended from abstract coordination of two lengths to concrete quantification of 
their relation mediated by a dice (in a very physical sense). Unfortunately, a dice was barely an 
appropriate artifact for marking the small bar length: its own size distorted the measurement. As a 
result, the girls efficiently exploit an abstract idea of proportional relation as “fitting some number 
times in” but miscalculated the relation as 1:3 (combining two possible mistakes, see Fig 1 с, d). 

The activity progressed towards the next stage of introducing cultural artifacts (Abrahamson et al., 
2020), in which the girls were asked to confirm their code using an imposed grid (Fig. 1 e, f, g). 
With the help of a teacher, two bars were positioned at lines 8 and 2 and the bars were green. The 
teacher asked: “What does it mean?” expecting that 2:8 relation was obvious enough to dissolve 
students’ 1:3 hypothesis. “Three times smaller” was the answer. The teacher invited the students to 
check: “Does it fit in three times? Look?” Frida did not use the grid, but took the dice (!), and 
marked the length of a small bar on the large bar by a horizontal gesture (Fig. 1e). Despite ignoring 
the imposed grid, by this horizontal gesture, Frida re-invented the functionality of grid’s horizontal 
lines, as both artifacts serve the same function of marking equal units of measurement. The dice 
was big, and an approximate measurement led to the answer 1:3 again. Supporting the use of the 
imposed mathematical artifact, the teacher guided the students’ perception towards the grid 
(Abrahamson & Sánchez-García, 2016): She gestured the horizontal alignment of the large bar and 
number 8 and then pointed at number 2, Frida read the numbers (Fig. 1f). However, their relation 
did not guide further enactment. Following the sequence of the teacher’s gestures from top to 
bottom, Iris made a new measuring attempt counting from the top without clear measurement unit 
(Fig. 1g). She came up with an answer 2,5. The initial abstraction of “fitting in” was lost, and the 
students could not concretize (quantify) abstract proportional relation using the grid. 

The dice was a natural continuation of the students’ thinking and bodily enactment (see Shvarts et 
al., 2021 for conceptualization of this situation as a body-artifact functional system), and it allowed 
the girls’ common sense development. By exploiting the dice, the girls could mark a measurement 
unit and concretize an abstract embodied idea of proportional relations in the given situation. 
Contrary, an imposed grid was not reinvented and stayed alien to the emerging abstraction. The 
teacher could see the bars’ proportional relation naturally through the grid, while the girls could use 
the grid in this way. Their phenomenological realm did not the grid, contrary, a dice that became a 
mediator for a new concrete, i.e. for distinguishing new mathematical aspects of reality.  

Towards a new design heuristic 
As the theoretical and empirical analyses reveal, a cultural artifact might become a reification of 
practical actions, which helped to distinguish an abstract relation—a proportional relation between 
the bars, tangible as “small bar fitting into the big one.” Importantly, an imposed mathematical 
artifact (a grid, see Abrahamson et al., 2020) did not fulfill this function, even with the teacher’s 
guidance. Another artifact (a dice) spontaneously was appropriated by the students to reify an action 
of distinguishing a unit of measurement and served as an instrument in concretizing the ratio. Yet, 
this other artifact was barely appropriate for fulfilling this function. A design solution to this 
dilemma might be in creating an environment where students could spontaneously find suitable 
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materials for creating the target artifacts. Such material might include thin sticks to mark the 
horizontal position of a small bar, paper stripes for creating a measuring unit and overlaying it on 
the big bar, or even a ruler, which was spontaneously and efficiently appropriated by some other 
pairs in the study. This way, a classroom can be enriched by appropriate means for progressive 
mathematizing/modeling of the situation, which could support establishing the perception and use 
of new mathematical aspects of concrete situations, thus distinguishing new concrete.  

Concluding remarks  
Freudenthal and Davydov are unique figures by the scale of their influence on the mathematics 
education and educational psychology communities. However, the program of each of them does 
not flourish nowadays in the countries where they were working despite intensive and successful 
experiment-based elaborations. Our analysis brings forth the complexity of their understanding of 
mathematical abstraction and concrete experience. Those approaches aim to develop in students a 
new ability to see an object concretely within its mathematical interrelations, i.e., developing a new 
common sense. From a concrete action-based experience, students come to distinguish abstract 
relations that are later reified in cultural artifacts. Further, the artifacts come to illuminate their new-
concrete experiences. We hope that contemporary technologies can support students and teachers in 
fulfilling the aim of learning to see the world mathematically. This type of mathematics learning is 
in particular valuable for the 21st century with routine calculations being outsourced to the 
machines and increasing importance of skills such as mathematical modeling and recognizing 
mathematical patterns in everyday situations (Gravemeijer et al., 2017).  

Looking back at the interaction of theoretical ideas and design heuristics, we notice that we used 
two prominent theoretical approaches as a way of backing a design idea that has been already 
emerging in our design work and empirical data. We uncovered the essential coherence of two 
approaches in seeing cultural artifacts as instruments that transform students’ concrete experiences. 
The fact that those approaches are widely recognized as highly valuable strengthens the design 
heuristic of re-inventing mathematical artifacts and its potential for curriculum design.  
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The aim of the article is to analyze the phenomenon of understanding in mathematics. Two concepts 
are introduced: mathematical picture of the world (MPW) and individual mathematical picture of the 
world (IMPW). A distinctive feature of the work is that understanding in mathematics is treated as a 
process of forming IMPW. The basic element of IMPW and its structure are distinguished. It is 
accepted that a coherent and complete representation of a basic element of IMPW means 
understanding of a mathematical concept. The paper offers a scheme enabling the formation of 
mathematical concepts among students.  

Keywords: Understanding, image, meaning, personal meaning  

Introduction 
Problems related to understanding in mathematics have long been the subject of discussion (e.g., Pirie 
& Kieren, 1989; Sierpinska, 1990; Skemp, 1976; Tall & Vinner, 1981). Skemp (1976) divides 
understanding into two categories: relational understanding and instrumental understanding. The 
difficulty is that remembering a large number of common problems or tasks is already a problem. 
Tall and Vinner (1981) introduce the concept image, which is a total cognitive structure bearing a 
definition of a mathematical concept. Sierpinska (1990) offers a methodology of "acts of 
understanding". Pirie and Kieren (1989) conceive of understanding as a dynamic, transcendent, 
recursive, non-linear process. Even though decades have passed since these studies were published, 
but the problem of understanding in mathematics continues to be of interest to researchers.  

It is clear that a subject cannot identify, classify, name any object unless they have a corresponding 
mathematical picture of the world (MPW), an image of the world (according to Leontiev's (1975, 
p. 73) terminology). Since mathematical concepts cannot exist in isolation from each other, learning 
mathematics is the construction of an individual mathematical picture of the world (IMPW) in the 
learner's mind. Mathematical development occurs as the formation of a holistic structure (network) 
through its relationship with other concepts, namely, through the formation of MPW. The aim of this 
paper is to investigate understanding as the formation of an MPW of the learner. 

Theoretical background 
Further, we will proceed from the definition: "A world picture is a general idea of the world, its 
structure, types of objects and their interrelations. All world pictures are distinguished according to 
two main features: 1) degree of generality and 2) means of modeling reality" (Lebedev, 2004, p. 48). 
Stepin (2003) has made a classification of scientific pictures of the world. 

The objective mathematical picture of the world is a "horizon of systematization of knowledge" 
(Stepin, 2003, p. 213, own translation) in mathematics. This MPW represents a base of objective 
mathematical data for the students; it participates in the formation of mathematical concepts and 
relations. The problem in teaching math deals with how to form an MPW in the consciousness of a 
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learner. The formation of an IMPW means that the learner is able to identify the basic concepts of a 
studied area of mathematics and to build a network linking the basic selected mathematical concepts. 

The ideas of Vygotsky's cultural-historical approach (2005) and Leontiev's theory of activity (1975) 
became a psychological foundation for constructing the basic element of the IMPW. Vygotsky 
proposed to consider the social environment as the main source of personality development that 
determines the formation of higher mental functions of an individual. The main feature of higher 
mental functions is that they are mediated by certain psychological tools, namely, the sign systems 
that have arisen as a result of the long socio-historical development of mankind. Sign systems include, 
for example, language, writing, speech, and counting systems. Mental function, such as attention, 
memory, thinking, and imagination pass the stage of external activity in which the cultural means—
psychological tools—have an object form and are related to a certain sequence of actions. This 
sequence is then interiorised (i.e. it is transferred from the external to the internal plane). From 
Leontiev's point of view (1975), the condition for adequate perception of an individual object is the 
adequate perception of the object world as a whole and the object's relation to this world. Leontiev 
stressed: "The predetermination of this indicated, meaningful subject world to a concrete act of 
perception, the necessity of "inclusion" of this act in an already ready picture of the world" (1983, 
p. 36, own translation). According to Leontiev's theory of activity, the existence of the IMPW and 
the MPW is interdependent and necessary, since the formation of the IMPW can be imagined as 
"drawing out" a subjective image of the world (world picture) from the objective MPW. The IMPW 
is the imprint of the learner's interaction with the MPW. 

The thinking process is carried out with the help of sign system and the accompanying idea of 
semiotic mediation (Presmeg et al., 2016). As a result of multi-level abstraction, each mathematical 
object is represented by a special sign, which forms, together with the rule of operations on them, a 
mathematical language. A prerequisite for students to build their MPW is the knowledge content of 
the names of the objects being studied and their meanings, as well as having motivation. Any sign 
denotes a concept and connects a concept and a name into a single whole, therefore finding out the 
structure of a sign reveal the structure of a concept as well. According to Leontiev, any sign consists 
of three components: an image, which is "an encoded representation of the object of activity; meaning 
as a transformed, coiled in the structure of language ideal form of existence of the objective world, 
its properties, connections, relations revealed by social practice" (1975, p. 68, own translation); 
personal meaning or "meaning for me, which connects the available experience of the subject of 
activity, and the meaning of the object. Let us use the structural representation of the sign given in 
Panov (2015, p. 42) and specify that the sign is interesting for us first of all because it denotes some 
mathematical concept. The sign and its structure can be represented in the form of a pyramid. A 
subject’s awareness of the pyramid structure and relations between its components means 
understanding of the concept. The basic element of the subject's MPW is this pyramid, which can be 
called a pyramid of understanding (Figure 1). The base of the pyramid represents the essence of a 
mathematical concept (triangle of understanding). Consider the components of the pyramid of 
understanding. 
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Figure 1: The Pyramid of Understanding 

 

The image of a mathematical concept is created not so much by direct perception, but with the help 
of five processes: imagination, memory, a certain idea in the process of abstraction, generalization, 
and idealization of objects and phenomena. In contrast to perceptions, which have a sense-object 
character, the mental image of a concept reflects its content, which expands and enriches as the 
mathematical experience of the cognizing subject is refined. Mathematical imagery, on the one hand, 
has the function of supporting mathematical thought and, on the other hand, it is an inseparable part 
of the conceptual structure. If mathematical images are formed, the learner operates not so much with 
the given algorithms of working with mathematical objects, as with the mathematical objects 
themselves. The presence of images allows the mathematical concept to be presented holistically. 
Herewith only controlled images (Aspinwall et al., 1997) serve the formation of adequate 
mathematical representations. 

Meanings are the result of cognitive activity of people, a system of laws. Meaning is transferable 
without loss of sense. A set of meanings is a systematically organized knowledge base that exists 
objectively. The concept of meaning expresses the connectivity of individual consciousness to social 
consciousness. The concept of meaning captures the fact that human consciousness develops within 
a cultural whole, that is, within an MPW, in which the experience of mathematical activity, 
communication and world view is historically crystallized, which the individual must appropriate, 
thereby creating an IMPW. 

Personal meaning or "meaning for me" connects objects and properties of reality with the experience 
and present needs of the subject, and is always emotional and sensitive in nature, giving the picture 
of the world a special individual nuance. Personal meaning determines the extent to which a given 
object or process or attitude corresponds to the needs the subject's needs. The concept of personal 
meaning indicates that understanding cannot be reduced to impersonal knowledge. Rather, it 
expresses the rootedness of individual consciousness in human being. Understanding presupposes a 
close connection between the learner's interests and the problem to be solved. 

Osipov and colleagues state that "an image without meaning reflects incompleteness of perception as 
a categorization process, while meaning without personal meaning reflects the learner's non-
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involvement in the activity" (2017, p. 75, own translation). Naming connects the three components 
into a unified structure, so that the sign and its components become elements of the subject's 
mathematical language system. In this way, the concept is incorporated into the IMPW. 

If image, meaning and personal meaning do not form a coherent whole in the learning process, the 
image is called a percept, that is, an image of perception; in this case the meaning is only used for 
this particular situation and called a functional meaning (Panov, 2015, p. 38). The functional meaning 
of an object allows the learner to use it to carry out specific operations to solve concrete tasks. 

Most often in the course of learning elements of a concept (triangle of understanding) are formed at 
the beginning. Here is the scheme of thought movement from percept to the functional meaning and 
from here to the choice of goal (i.e. to satisfaction of a concrete, temporary need). Because in this 
case the pyramid of understanding is not closed, this approach does not allow looking at a 
mathematical concept holistically, so there is a need to give the name of the concept (Osipov et al., 
2017). The model constructed allows us to outline a six-item scheme of reasoning (presented next), 
which is useful for facilitating an understanding of mathematical concept.  

1. Based on the similarity or difference with an object known to the subject, the learner's perception 
is formed independently or with the help of the teacher. The teacher's presentation of the image 
presupposes the preservation of the essential geometrical properties of the object and should take into 
account students' practice of using it. A mathematical concept should be presented in different ways, 
because different students usually have different visualizations. 

2. The initial percept is superimposed on the student's past experience of using the given or similar 
image, which forms the functional meaning of the given concept and leads to the primary pair percept 
– functional meaning. On the basis of the percept formed in item 1 and the existing experience, the 
student develops an idea of what can be done or what this percept allows to be done. Thus, the 
formation of a functional meaning takes place. The process of forming this relationship is dynamic 
(i.e. an initial perception emerges). For this perception the student looks for a suitable image for a 
perception with an appropriate application, which may not be accurate. Then the initial image is 
changed or refined depending on the function of the image. At this stage, the role of the teacher is 
important in helping in establishing the percept – functional meaning connection. 

3. The functional meaning obtained in item 2 is then compared with the goal (i.e. the suitability of 
the functional meaning for solving the problem is assessed). If the obtained functional meaning does 
not enable the problem to be solved, the student revises the initial perception independently or with 
the help of the teacher. This process (percept  functional meaning) is repeated as many times as 
necessary until the functional meaning suitable for the solution of this particular problem is 
determined and the process is usually interrupted by the teacher. 

4. The functional meaning obtained in item 3 is compared with the name characterizing this functional 
meaning taken from the MPW. If the meaning of a concept accepted by mathematicians is close to 
the functional meaning, a name of the sign – meaning relationship emerges. It is linked to the original 
percept, which from this point can be called an image. If it turns out that the functional meaning and 
the exact accepted meaning are not close, there is a return to the formation of the percept. This 
convergence of meanings is carried out through communication with the teacher in the form of a 
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dialogue. It is desirable to carry out a dialogue in a flexible, probabilistic form. In general, this item 
implies a repeated transition to item 2, which creates a certain cyclical process (item 4  item 2 
item 3 item 4), which is interrupted when the student achieves an adequate image concept. The 
teacher intuitively knows when interrupt the process. 

5. Image formation is a dynamic process because it is, usually, the result of repeatedly going through 
the sequence from item 1 to item 4, and it influences the student's initial need for solving the problem. 
In addition, it enriches and generalizes the student's idea of the problem, generating personal meaning 
from the temporal need. Thus, through the pair name – functional meaning there is a connection with 
the name of the concept, which means that the functional meaning has turned into meaning and the 
temporal need has turned into personal meaning. 

6. Ultimately, understanding means that a learner knows the sign structure of the given concept, which 
is made up by binding image, personal meaning and meaning through the name of a concept. 
Independently or with the help of the teacher, the learner interconnects all components of the sign. 

In contrast to Panov (2015), the scheme presented here is more flexible, as the discussion of a concept 
can start not only with the image, but also with other items, and also takes into account the fact that 
formation of a concept usually takes place with the help of the teacher. Let us consider an example 
of a dialogue, which shows how the above scheme functions in real practice. The conversation is with 
the 1st year bachelor students of the Institute of Transport Structures of Kazan State University of 
Architecture and Engineering. At the lecture before the conversation the definition of a function and, 
in particular, linear function was given. Below P stands for the professor, S1 to S5 for the students. 

1 P: What can you say about the function 32xy  ? 
2 S1: It is a straight line on the plane. 
3  P: How is such a function called? 
4 S: I don't know exactly, but e.g. The function 3xy  is the same.   
5 P: Is the function xy 3 a straight line in the plane? 
6 S: Yes. (Makes a drawing). 
7 P: Is a straight line a function xy 2  or a species baxy in general? 
8 S1: (Thinking). Yes. Such functions always define a straight line in the plane. 
9 P: How are the variables x y related to each other and in the case of a straight 

line? 
10 S1: When the argument changes by the same amount, the value of the function 

also changes by the same amount. Increases x , increases also y , for 
example, for a function 32xy . 

11 P: And how exactly does the value of the function change when the value of 
the argument changes? 

12 S1: It simply increases. 
13 P: Take the function 32xy and calculate the value of the function at 1x , 

and then calculate the value of the function at 2x . 
14 S: For 1x we have 5y , and for 2x we have 7y . 
15 P: Now calculate the difference of the function values and find the value of the 

function at 3x . 
16 S1: This difference is 2 and the value at 3x will be 9y . 
17 P: Find now the difference of the values at 3x and 2x . 
18 S1: The difference is equal to 2. The same difference as was before. 
19 P: Yes. When the argument changes by the certain amount, the value of the 

function also changes by the certain amount. This is true for any function of 
the form baxy . You can see it on your own. (Students do it in general 
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form and confirm the conclusion). This function is called a linear function. 
In which problems can you observe a dependence of the form baxy ? 

20 S2: In speed problems. When moving at a constant speed. When moving at a 
constant speed, the distance as a function of time changes according to the 
formula vts . Here s  is distance, v  - speed, t  - time. 

21 P: What do you imagine when you see a linear function of the form baxy ? 
22 S3: I imagine a straight line on a plane. 
23 S4: And I see uniform motion. 
24 P: Uniform rectilinear motion? 
25 S4: Yes. It turns out that a linear function in the plane is always represented by a 

straight line. And are there other applications of functions of the form 
baxy ? 

26 P: There are many such applications in physics, mechanics. For example, 
Hooke's law lkF  is known in the theory of elasticity, where F  is force, 
which stretches (compresses) a rod, l  is absolute elongation (compression) 
of the rod, k  is known coefficient of elasticity. We see that the force is a 
linear function of l . 

27 S5: Ah ... ah, we had Hooke's law. It turns out to be a linear function.  
28 P: So, a function of the form baxy  is called linear, here a called the 

angular coefficient, b is the free member. So, what is a function of the form
baxy  called? 

The analysis of the dialogue shows that in lines 4, 6, and 8 a percept of the concept of linear function 
is formed (this corresponds to the first item of the scheme of actualization of understanding), and 
from line 10 the formation of a connection between the percept and the functional meaning begins. 
This continues in lines 12, 14, 16, and 18 (items 2 and 3 of the scheme apply here). The student at 
this stage can use the concept of linear function only concretely, without presenting the general 
properties of a linear function. In lines 20, 22, 23, and 25 the functional meaning is associated with 
the name, which leads to an awareness of the image of the linear function (corresponding to item 4 
of the aforementioned scheme). Line 25 shows the manifestation of personal meaning, as it becomes 
important for the students to apply the concept of linear function in other areas, which means the 
implementation of item 5 of the scheme. Line 27 already shows that the name of the function has 
been associated with the meaning and personal meaning. Line 29 shows the students' understanding 
of the concept of linear function within our model. Lines 25, 27, and 29 correspond to item 6 of the 
scheme. 

Results 
This article offers a model how students learn mathematics by forming an IMPW. The IMPW is a 
network consisting of basic elements of mathematical picture of the world (network nodes). The basic 
element of the IMPW is seen as a structure having the following components: image, meaning, and 
personal meaning. By connecting these three components through naming, a holistic structure, the 
pyramid of understanding, can be formed. In this paper it is accepted that a holistic and coherent 
representation of the pyramid of understanding means the student's understanding of the concept.  

Discussion and conclusions 
Understanding does not happen in isolation, it means getting into a network of known relationships 
and connections (i.e. fitting into a certain picture of the world, so understanding can only be realized 
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within a certain picture of the world). The subject's picture of the world is a sign-mediated picture of 
the world. 

Tall and Vinner (1981) introduced concept image and concept definition to carefully analyze students' 
understanding of limits and continuity, as well as other concepts. The concept image can be attributed 
to the image component of a sign in our model, while the concept definition is consonant with a 
functional meaning.  

Serpienska's model (1990) proposes a methodology of acts of understanding through the categories 
of identification, discrimination, generalization, synthesis. Skemp (1976) defines understanding in 
terms of knowledge rather the functional meaning of the concept. Pierie and Kieren's model (1989) 
takes into account both image representation of mathematical objects and abstract, operational 
representation. The proposed model of understanding in mathematics does not contradict the main 
known models of understanding, but complements them, considering the social and psychological 
dimensions of understanding in unity.  

This paper proposes a new model for understanding mathematical concepts that link the components 
of understanding (meaning, image, and personal meaning) into a coherent whole through naming. 
Particularly, the model allowed us to recognize the importance, value and power of the following 
ideas: 

1. Understanding cannot be viewed only in a social or psychological framework (as most of the 
mentioned authors in the article suggest), nor can it be reduced to one of these. 

2. The introduction of personal meaning into the structure of understanding is a new view. Personal 
meaning is not only a condition of understanding, but is a necessary component in the structure of 
understanding. Understanding cannot be reduced to impersonal knowledge. 

3. The introduction of the concept of mathematical picture of the world is a new idea. The MPW is 
intrinsically necessary as a fundamental condition of cognitive activity of students. The IMPW is an 
imprint of the MPW in the learner's mind. 

It seems that further research could go in the following direction: wide testing of this approach for 
different sections of mathematics. 
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We aim at exploring the relationships and intertwinings of the theories of metaphor, a-didactic 
situations and enactivism in mathematics education. We present and discuss some illustrative 
examples of the didactical implications of these theoretical approaches, involving geometry and 
probability,  drawn from our teaching to a rather broad spectrum of learners, including humanistic 
first year university students, besides mathematically inclined students.  
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Introduction. 
Our aim in this paper is to focus on three cognitive theories which are especially relevant to 
mathematics education, and which we have been exploring for more than a decade, to wit: the theory 
of metaphor (English  1997; Lakoff & Núñez, 2000;  Sfard,  2008, 2009; Soto-Andrade,  2014, 2018 
), the theory of enaction (Varela, Rosch & Thompson, 1991; Riegler & Vörös, 2017) and the theory 
of (a)-didactic situations (Brousseau, 1998;  Brousseau & Warfield, 2014).  We are interested in the 
relationships and intertwining of these theories as well as in their epistemological stances. 
Operationally these relations may be complex. For instance, in what follows, we use metaphorising 
as a meta-theory to describe theories, which we see just as “unfoldings” of  poietic metaphors (Soto-
Andrade, 2014, 2018). This applies also to metaphor itself, in a circular way (cf. Ricoeur, 1975).   
Also, Brousseau’s theory of a-didactic situations, an unfolding of the emergence metaphor for 
mathematical concepts, may be seen as a forerunner of enactivist approaches to mathematics 
education. Indeed Brousseau coined himself the term “experimental epistemology of mathematics” 
to refer to his theoretical approach, in the 60’s, at the same time that Maturana and Varela (1992) set 
up their laboratory with the same name at the University of Chile.  

We recall first  the main tenets of metaphor theory, enaction (and enactivism) and a-didactic situation 
theory. We discuss then some concrete examples of their implementation with a rather broad spectrum 
of learners in Chile, involving math inclined as well as humanistic first year university students.   

Metaphorising in cognitive science and mathematics education. 
Notice that we focus on metaphorising, the action of “looking” at something and “seeing” something 
else, carried out by a cognitive subject, instead of metaphor, the object,  independent of an observer.  
It is acknowledged nowadays that metaphor serves as the often-unknowing foundation for human 
thought (Gibbs 2008, Sfard, 2009) since our ordinary conceptual system, in terms of which we both 
think and act, is fundamentally metaphorical in nature (Johnson and Lakoff, 2003). In our view, 
though, the classical theory of metaphor is just “the tip of the iceberg”, regarding human cognition. 
Metaphors are not just rhetorical devices but powerful cognitive tools that help us in building or
grasping new concepts, as well as in solving problems in an efficient and friendly way (Chiu 2000; 
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Diaz-Rojas and Soto-Andrade 2015; English 1997; Lakoff and Núñez 2000; Sfard 2008, 2009; Soto-
Andrade, 2014; and many others).

Lakoff and Núñez (2000) highlight the intensive (and often unconscious) use we make of conceptual 
metaphors that appear—metaphorically—as inference-preserving mappings from a more concrete or 
down to earth  ‘source domain’ into a more abstract or opaque  ‘target domain’, enabling us to fathom 
the latter in terms of the former. In our view, representations go the other way around.  Indeed, we 
re-present something given beforehand, typically to explain it,  and we usually metaphorise to try to 
fathom something unknown or not yet constructed.   Our approach to the learning of mathematics 
emphasises the poietic (from the Greek poiesis = creation) role of metaphorising, which brings 
concepts into existence. For instance, we create the concept of probability when, while watching the 
random walk of a “fair frog” jumping equally likely right or left on a row of stones in a pond, we 
“hallucinate” (Seth, 2021) seeing it splitting into two equal halves that go right and left! This 
“metaphoric sleight of hand” turns a random process into a deterministic one, and we just need to 
keep track of the frog’s splitting into pieces to answer “impossible questions” like “Where will the 
frog be after n jumps?”. The probability of finding the frog at a given stone after n jumps is 
constructed as the portion of the frog landing there after n splittings.  (Soto-Andrade, 2018). 

In this connection, it is pertinent to recall that in the German school of didactics of mathematics, 
originally mostly concerned with primary mathematics education and going back to Pestalozzi ( vom 
Hofe 1995), representation and metaphor were ubiquitous: as Darstellung—representation, aiming at 
explaining something to others—and Vorstellung—a personal way to figure out or fathom something, 
operationally equivalent to metaphor (Reyes-Santander and Soto-Andrade 2012). So metaphorising 
has a long history in German didactics of mathematics, well before its irruption from cognitive 
psychology and linguistics into mathematics education (Lakoff and Núñez 2000).

The ubiquity of metaphorising in mathematics education should not be underestimated: Besides 
bringing into existence mathematical concepts or objects and helping learners to fathom them, 
unconscious metaphorising often dramatically shapes the way teachers teach, for instance. A foremost 
example is afforded by the “second nature” metaphor ‘teaching is transmitting knowledge’.  
Unperceived here is the ‘acquisition metaphor’ (Sfard 2009, Soto-Andrade 2014), that sees learning 
as acquiring an accumulated commodity.  This is criticised in Plutarch’s metaphor: ‘A mind is a fire 
to be kindled, not a vessel to be filled’ (Sfard 2009). Paraphrasing Bachelard (1938), who advocated 
epistemological vigilance, we suggest nowadays to practise metaphorical vigilance, i.e., the art of 
noticing our unconscious or implicit metaphors, that shape our way of interacting with the world 
(even to construct it) and particularly our approach to teaching and learning.    

Last but not least, metaphorising plays also a key epistemological role. We have claimed elsewhere 
(Diaz-Rojas and Soto-Andrade 2015) that, metaphorically, a theory is just the ‘unfolding’ of a 
metaphor (a process, that may be laborious and technical, though). A paradigmatic example is the 
‘tree of life’ metaphor in Darwin’s theory of evolution. We will use below metaphorising as a meta-
theory to describe other theories relevant to us in terms of their generating metaphors, something 
more helpful to fathoming how they arose than just describing them a posteriori.  

Enaction and enactivism 
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An unfolding metaphor for enaction is Machado’s poem (Machado 1988, p. 142): “Caminante, son 
tus huellas el camino, y nada más; caminante, no hay camino, se hace camino al andar” [Wanderer, 
your footsteps are the path, nothing else; there is no path, you lay down a path in walking]. Indeed, 
Varela himself metaphorized enaction in this verse (Varela, 1987, p. 63), when he introduced the 
enactive approach in cognitive science (Varela, Thompson, & Rosch, 1991) writing: “The world is 
not something that is given to us but something we engage in by moving, touching, breathing, and 
eating. This is what I call cognition as enaction since enaction connotes this bringing forth by concrete 
handling”. He also metaphorised it with the well-known  Drawing Hands lithograph by Escher where 
each hand draws the other into existence (Varela, 1984). 

Key aspects of enaction are: perceptually guided action, embodiment and structural coupling through 
recurrent sensorimotor patterns (Varela et al. 1991; Reid and Mgombelo 2015). In an aphorism: ‘All 
doing is knowing, and all knowing is doing’ (Maturana and Varela 1992, p. 26). Notice en passant 
how the ‘laying a path in walking’ metaphor is transversal to the traditional one for learning as 
following a pre- given well-marked path.  

Enaction in mathematics education may be traced back to Bruner (1953), who was following the 
traces of Dewey’s (1910) “learning by doing”, when he described the enactive, iconic and symbolic  
modes of representation.  Bruner’s enaction, which means essentially acting out or doing, is however 
far less radical than Varela’s, in that it does not challenge the notion of a reality ‘out there’, that we  
represent to our selves more or less successfully. Dewey, however, emphasised the role of 
sensorimotor coordination in perception, acknowledging that movement is primary and sensation is 
secondary (Gallagher and Lindgren 2015). 

In what follows, to to avoid confusion between Bruner’s and Varela’s enaction, we use the now 
prevalent terms enactivism and enactivist to refer to Varela’s anti-representationalist ‘enactive 
program’, which sees cognition as embodied action, more precisely, cognition as enaction. We will 
speak then of an enactivist approach to problem solving or to mathematics education.  On the other 
hand, unless otherwise explicitly stated, ‘enact’, ‘enacting’ and ‘enactive’ are to be understood in the 
sense of everyday language and also in the sense of Dewey (1997) and Bruner (1966), i.e., as 
synonyms of ‘acting out’ or ‘acted out’, in an embodied way. So ‘enacting a metaphor’ just means 
‘to act it out’, with your body, as in Gallagher and Lindgren (2015), where they refer to ‘enactive 
metaphors’ (metaphors in action, that we act out bodily) as opposed to what they call ‘sitting 
metaphors’. We use ‘enactive metaphorising’ below in this sense.   

Learning is neither determined by a didactical environment nor a result of teaching; it arises from the 
interaction of the learner’s structure and environment, which plays at most the role of a ‘trigger’. 
Traditionally, however, problem solving involves problems given beforehand, lying ‘out there’,   
waiting to be solved, independently of us as.. In the enactivist perspective, because of our structural 
coupling with the world (Varela et al. 1991), we bring forth emergent problematic situations instead. 
This is what Varela calls problem posing, opposing the usual gas fitter metaphor, where solvers look 
into their toolboxes of predefined strategies and choose the appropriate one for solving the problem 
at hand, instead of mathematical strategies emerging continually in the interaction of solver and 
problematic situation. In an enactivist didactics of mathematics, the teacher is an enactivist 
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practitioner acting in situation and learning is an emergent, situated and embodied process (Proulx 
&Simmt 2013). For a survey of enactivism in mathematics education, see Goodchild (2014).   

According to Varela, we are always ‘enacting’ a world, most of the time unconsciously. So we cannot 
choose to enact or not to enact (in his sense); enaction is just the way we cognise as living beings. 
We may nevertheless entertain the ‘representationalist illusion’ (a privilege of humankind!) that we 
are perceiving and representing an objective reality ‘out there’. Also, we can choose to enact (in the 
everyday sense of the term, of bodily acting out) a given metaphor or situation or not, for instance. 
Paradoxically, we are definitely able to teach in a way that ignores enaction (in Varela’s sense) and 
does not allow for enacting (as bodily acting out): a non-enactivist stance that paves the way for 
cognitive bullying to the learners. Our enactivist approach to education, distilled in the ‘lying down 
a path in walking’ metaphor for cognition and learning, leads us on the contrary to foster metaphor 
enacting among the learners. 

Adidactic situations and didactic contract
The theory of didactic situations ( Brousseau, 1998; Brousseau & Warfield, 2014) may be seen as an 
unfolding of the “emergence metaphor” for mathematical content. Indeed, mathematical concepts or 
procedures we intend to teach,  instead of being parachuted from Olympus as in traditional and 
abusive teaching, should emerge in a suitable challenging situation the learner is enmeshed in, as the 
only means to “save her/his life”. This type of situation is called a didactic situation, because of the 
avowed didactical intent of the teacher who set it up. It becomes an a-didactic situation when the 
teacher steps back, to let the learners interact (enactively) on their own with the situation, unable to 
fathom beforehand the teacher’s didactical design or the mathematical content she is aiming at.

Brousseau (1998), aiming at accounting for the actions and reactions of the partners involved in a 
didactic situation, also introduced the metaphor of a “didactic contract” as an interpretative 
embodiment of their mutual expectations, beliefs and commitments (Brousseau, Sarrazy & Novotna, 
2014). This sort of contract is necessarily tacit and unspoken; its effects are nevertheless often 
perverse and dramatic. Indeed, the prevailing didactic contract in our classrooms usually thwarts 
idiosyncratic metaphorising and enacting among the learners.

Illustrative examples 
We discuss some examples, in geometry and probability, drawn from our teaching at the University 
of Chile, which illustrate important aspects of the implementation of our different theoretical 
perspectives and their intertwining. Our learners include prospective secondary school math teachers, 
undergraduate math students, humanistic first year students and in service primary school teachers.
They usually work in (random) small groups of 3 to 4, and they were observed by teacher and 
assistants, in the spirit of ethnomethodology (Ingram & Elliot, 2020).    

Example 1.  Angles in polygons and stars. 

One radically enactivist way in which we approached this topic (which includes the classical “sum of inner 
angles and exterior angles” problems) was to just show the students or participants in a workshop, the weird 
irregular seven-pointed star of Figure 1 and keep silent, waiting for their reactions to arise. If a student asks: 
“But, which is the question?”, our answer is: “That is the question!”  
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Participants and students were at first puzzled and intrigued. Some even said “Splash!” Especially, in service 
teachers and mathematics educators tried to make sense of the star by 
decomposing it somehow, into triangles. The reaction of deforming the given
weird star to a friendlier regular, one did not appear spontaneously.   After 
some prompting: Do you like this star? What would you like to do with it? 
they recalled the magician’s star, or the ubiquitous regular star in our flag. 
Most students did not dare to change anything, because of the prevailing 
didactical contract: the star was not an object to be explored. Primary school 
teachers noticed the way the star was drawn, like the usual regular five pointed 
star, approaching the problem in an enactive way in the sense of Bruner 
(1966), see Fig. 2. They recalled that for the regular five pointed star, they
could calculate easily  the values of the inner acute angles, but not so with 
irregular stars. However, by deforming enactively their drawing of the star 

they realised that stretching one arm of the star decreases the corresponding inner acute angle and increases 
the others. So the conjecture emerged that maybe the sum of all inner acute angles was preserved under 
deformation, a clever insight indeed! Notice that this way of thinking: looking for invarians under deformation 
of a system, is unfortunately not much fostered in our math classrooms.   

Our approach was radically enactivist in that no specific problem or task was given to our subjects to solve,
but only a situational seed or germ for them to explore and make sense of. They were enactive in Bruner’s 
sense when they drew the stars themselves and deformed it. This enaction allowed them to bodily feel the 
compensation between increasing and decreasing inner angles, when varying their free hand drawing.  

Nevertheless, a more enactive approach to the angle sum problem is possible, inspired by the “laying down a 
path in walking”.  We have indeed described elsewhere (Soto-Andrade, 2018) how the value of the sum of the 
exterior angles of a polygon may be “seen”, with no calculation, just by “lying down a polygon in walking”. 
When you go around the polygon, inflecting your rectilinear trajectory at each 
vertex as needed, you are summing up all exterior angles! In our case, 
students were able to “lay down a star in walking”! And so they gleaned 
immediately the value of the sum of its inner acute angles. They realised that 
the most clever walking, among various possibilities, is to follow the path 
that we lay down when drawing the star, starting as indicated by the arrow in 
Figure 2.  To add up the inner angles at the points of the star, we should be 
able to “span” or “sweep” them somehow, while walking across the star.  If 
metaphorising is already unleashed among the students, many avatars of the 
walker may emerge. Among them, a metaphorical hummingbird flying back 
and forth along our star. 

The bird begins its flight as indicated by the red arrow in Fig. 2, but when 
arriving to the next vertex, it sweeps (i.e. spans) the corresponding inner angle with its tail and then flies 
backwards along the next edge. Then it sweeps the inner angle at the next vertex with its beak and flies 
forwards, and so on. So it will sweep the inner angles: tail-beak-tail-beak-tail-beak-tail, to end up at the initial 
vertex again, but looking in the opposite direction. Moreover, during its flight, it always turned its beak 

Figure 1: A weird 
seven- pointed star.

Figure 2: The irregular 
seven pointed star 

revisited.
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clockwise at each vertex. So our flying hummingbird teaches us that the sum of all inner acute angles is just 
half a turn. A playful enactment arises, where one student enacts the hummingbird’s flight, wearing a fake 
beak and tail, and another keeps track of the rotation of the beak or tail. In one of our workshops, a couple of 
primary school teachers discovered this idea on their own, walking across the star holding a duster. 

We see that in this case an enactivist approach to a “concrete” geometric problem triggers all the same 
significant idiosyncratic metaphorising among the learners, which is also enactive (in Bruner’s sense). 

Example 2.   Various avatars of the frog’s random walk.  

We claim that random walks constitute a royal road to probability, because they are ubiquitous, 
they constitute models for sundry probabilistic problems, which can be easily enacted and 
simulated, and when approached metaphorically, they allow learners to construct along the way 
the “abstract” notion of probability (Diaz-Rojas & Soto-Andrade, 2015; Soto-Andrade, 2013; 
Soto-Andrade, Diaz-Rojas, Reyes-Santander, 2018).  

A typical example is the case of a frog random jumping asymmetrically between just two stones 
A and B in a pond (with a non-zero probability of remaining stationary), which may be seen as a 
metaphor (or a model) of an unmerciful market struggle between two yoghurt producers A and B, 
which month after month seduce each other’s consumers according to a fixed pattern. The random 
walk is a metaphor for the market struggle, or the other way around, according to whether the 
involved learner is more acquainted with jumping frogs or with market struggles.

In our courses, we told the students the tale of Filomena, a frog which jumps randomly but symmetrically 
(like heads or tails, to its two next neighbours each time), on a row of 6 stones (tagged 0 to 5), starting at
stone 3.  Stones 0 and 5, however, are in fact two lurking alligators, called Anibal and Artemio, camouflaged 
as stones. Filomena will be instantly swallowed if it ever lands on the head of either alligator. Naturally, 
the students wonder about Filomena’s fate...

We also told these students about the classical “ruin problem” : two players A and B, having a certain 
amount of euros each, flip repeatedly a fair coin to decide who wins. After each flip, the winner 
receives one euro from the loser. No credit is available, so the game ends when any player runs out 
of money (is “ruined”). In our case, A would have an initial “fortune” of three euros, and B would 
have only two (metaphorically, A’s ruin means that Filomena was eaten by Anibal). Sundry questions 
arise, like: How likely is that in the long run A, or B, becomes ruined? How likely is that the game 
goes on forever? Students tackling the ruin problem might move metaphorically to the frog’s walk, 
and then in turn, to a splitting process or to a water draining process. Notice here that metaphorising 
involves a cascade of metaphors, so the skill to move between them becomes significant for the 
learners.

We were interested in investigating students’ reaction when being proposed both the frog’s random 
walk and the ruin problem (with the same data) in a (prepandemic) test. We found  that our students, 
who have being exposed to traditional teaching leaving no room for metaphorising, had trouble in 
recognising both problems as the “same”, but in different guises. Some even solved  one right, and 
the other wrong! A few, less than 5%, realising that they were given the same problem twice, did not 
dare  to say so; another effect of  the prevailing didactic contract, we deem.  
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Discussion 
From our viewpoint, the theories associated with enaction, metaphorising and a-didactic situations, 
besides helping us understand complex phenomena in mathematics education, provide us with an 
epistemological perspective, which positions us in a particular relationship with what we observe. 
That is, we see the enactive as inherent in the learning-teaching processes of mathematics, beyond 
the merely embodied. Likewise, metaphorising would be a ubiquitous emergent, whether or not we 
are aware of its presence or its role in mathematics education. They would both be, therefore, 
inevitable phenomena.

The perspective resulting from embracing these theories forces us to rethink the pedagogical chore, 
the didactics, the methodologies, the methods. In this way, it becomes necessary to open up spaces 
(construct situations, contexts) where the emergence of (idiosyncratic) metaphorising is welcomed as 
a legitimate possibility of mathematical thinking, exploring what it allows, and being aware of its 
limitations. This exploration, accompanied by an enactivist approach, means valuing “learning by 
doing” in the context of problem-posing instead of problem-solving. In other words, we will need to 
propose situations where students have the freedom to interact and re-construct, giving raise to the 
emergence of their own problems. In this context, the approach from a-didactic situations provides 
not only a theoretical frame of reference in the didactics of mathematics education, but also proposes 
to the teacher a way of doing, where she will need to step back and allow students to interact with 
each other and with embodied mathematical knowledge, where enaction and metaphorising are even 
more visible than in traditional didactics.
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This study is based on revisiting a previously analysed (Zagorianakos & Shvarts, 2015) learning 
episode. Mary, a prospective teacher of mathematics, engaged in a mathematical task that was 
initiated in an embodied manner, which utterly permeated her noetic treatment of the task. The study 
opens new space for discussing perception in mathematics education, as being phenomenologically 
grounded, while linking it with the late Vygotskyan perezhivanie (Vygotsky, 1994), as being a critical 
learning phenomenon, concerning the challenge of a rich environment. What Vygotsky (2012, p. 110) 
calls “the ascent to concept formation” is investigated here through a phenomenological 
methodological lens (Zagorianakos, 2019, p. 3081), with a movement from the natural to the 
phenomenological attitude.  

This study introduces allusions concerning crossroads between phenomenology and Vygotskyan 
cultural historical activity theory, crossroads that emanate from perezhivanie, a so far untranslated 
Vygotskian term. For Vygotsky (1994, p. 343) perezhivanie is an “emotional experience”, a 
(psychological) “unit”, “a unity of environmental and personal features”. He sees perezhivanie as a 
refraction of the environment through the personal psychological state (p. 341) and the current 
research takes it as pointing towards the analysis of “how I, myself, am experiencing this (i.e., the 
interplay of) all the personal characteristics and all the environmental characteristics” (p. 342), aiming 
at reviving discussions on perezhivanie in the existing literature (e.g., Roth & Jornet, 2016).  

Mary’s bird’s-eye-view intuition, her tree of perception and perezhivanie 
The task was set for the students by asking them to embody the line that is equidistant from a wall 
and a fixed point that is set at a distance of 10 paces from the wall (Zagoriankos & Shvarts, 2015). 
As Mary was attempting to embody the fixed point in her group of three students, she was thinking 
that the sought, equidistant line must be a parallel line to the wall, halfway between the wall and the 
fixed point. Hence, Mary was utterly confused during her initial perezhivanie (lived experience) of 
the task. When she came home, she used grid paper, a ruler and coloured pencils in order to represent 
the classroom setting, as she drew the wall and the fixed point. And then the bird’s-eye-view intuition 
of her diagram surfaced. Her intuition transformed both her diagram and her classroom experience, 
allowing her to acquire a new sense for both of them, starting with the wall, which was perceived as 
infinitely long. With her bird’s-eye-view intuition Mary entered into a constitutional mode, drawing 
from the communicating vessels of pre-reflective and reflective perception (see Figure 1: soil-
trunk/pre-reflective and branches-crops/reflective parts of the tree). Her task perception was filled 
with crops/mathematical results, serving as an exemplification of how intuitions operate as 
mathematical space generators.  
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Figure 1: The tree of perception 

The tree of perception (Figure 1) exemplifies the personal characteristics that “are represented in an 
emotional experience [perezhivanie]” (Vygotsky, 1994, p. 342). The environment set by the teacher 
was allowing ample breadth of scope that each student could push towards. Mary’s bird’s-eye-view 
intuition transformed her class experience, as the cultural artefacts (ruler, pencils, grid paper, 
Cartesian plane) opened up abstract geometrical/algebraic affordances. Hence, the growing of her 
tree of task perception also represents the features of the student’s environment, in the sense that for 
Vygotsky (1994) perezhivanie is a unit, namely a vital and irreducible part of the whole, a significant 
unit in which personal and environmental components are represented. The suggested crossroad 
between phenomenology and activity theory is concerned with the inextricable interplay between the 
complementary and irreducible poles of personal perceptions and of the environment’s affordances, 
for the constitutions emanating from the former, as they are refracting the latter, rendering 
perezhivanie as an emotional transcendental lived experience. To better understand “how a child 
becomes aware of, interprets, [and] emotionally relates to a certain [learning] event” (p. 341). 
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In this paper, we review all of the contributions to TWG18, focusing on the range of research 
interests, theoretical perspectives and frameworks, and methodological approaches. From this 
review, the presentations, and discussions, the following future directions have emerged in relation 
to teacher education (TE): 1) Establishing and exploring research informed design principles; 2) 
summarising relevant theoretical directions; 3) exploring teacher change from an ethical 
perspective; and 4) scaling up innovative approaches within TE. In relation to professional 
development (PD), the following future directions have emerged: 1) Exploring the different roles of 
participants in PD; 2) exploring what makes change difficult and how professional growth best can 
be supported; and 3) understanding how we can best build on previous research, and each other, in 
order to develop the field of mathematics PD research.  

Keywords: Educational research, mathematics teacher education, professional development. 

Introduction. 
Over recent decades, the study of mathematics teacher education (TE) and professional development 
(PD) has been a central focus of research. During previous ERME conferences, various research 
activities regarding these topics have been presented and discussed. Hošpesová et al. (2018) 
thematised the history of Thematic Working Group 18 (TWG18) and linked those topics addressed 
since CERME1 to questions related to theory and practice, collaborative environments, and 
reflection. In the CERME12 call for papers, TWG18 addressed a focus on research into prospective 
mathematics teachers’ professional preparation as well as in-service teachers’ professional 
development. The call invited discussions in relation to models and programs of PD as well as related 
practices (e.g., contents, methods, tools, and impacts). Within TWG18, 27 papers and 14 poster 
proposals were presented and discussed. Due to this large number of submissions, the TWG was 
divided into two sub-groups, specifically: 

● TWG18a: Mathematics Teacher Education (TE) and Professional Development 
● TWG18b: Mathematics Teacher Education and Professional Development (PD) 
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By offering a communicative, collegial, and critical forum for the discussion of these and other related 
issues, TWG18 attracts research from a diverse range of perspectives and theoretical approaches and 
contributes to the development of our knowledge and understanding as researchers, educators, and 
practitioners. TWG sessions 18a and 18b comprised both plenary and sub-group working phases. 
During the plenary phases, two or three papers and/or poster proposals were presented for a maximum 
of five minutes each, in which the authors highlighted their research interests, the main perspectives 
and frameworks (explicit, conceptual, theoretical, or practical), as well as the main methodological 
considerations in their research. These short presentations were followed by one or two discussants 
reacting to the research presented. Plenaries were followed by parallel sub-group discussions, which 
were each chaired by one of the discussants. Participants were able to choose and join a sub-group, 
where discussions lasted for approximately 20 minutes. All sub-group participants then came back 
together where central topics and issues were shared from each of the discussions. These central 
topics and issues, which came out of group discussions, often highlighted issues beyond the papers’ 
scope and were recorded in the TWG’s Padlet. Examples of issues beyond the papers’ scope are 
ethical considerations in relation to teacher change and exploring how we can learn more about 
different participants’ roles in PD. The content recorded in the Padlet was used when arranging 
specific topic discussions within TWG 18. The outcome, in form of emerging issues for the future, is 
described in the final section of this paper. 

Building on Eisenhart (1991) and Lester (2005), this review of submissions to TWG18 is organised 
around three key aspects concerning the research process. The first aspect concerns the phenomenon 
of interest in the specific study, and how that research interest is justified, positioned, and explained. 
The second aspect is the choice of framework (theoretical, conceptual, or practical). According to 
Eisenhart (1991), theoretical perspectives include pre-defined concepts and assumptions that guide 
the research design. A theoretical framework uses a formal theory to establish explanations about a 
phenomenon. A conceptual framework can be viewed as a skeleton that justifies the study in relation 
to the aim (i.e., a set of assumptions about reality that underlies the research). A practical framework 
is guided by finding approaches that work in practice. Lester (2005) points out that the aim of research 
is not solely to select and use a conceptual framework, rather, researchers need to adjust and justify 
the conceptual framework in relation to their specific study. The final aspect concerning the research 
process is the set of methodological considerations concerning how to reduce the empirical material 
into meaningful data and how to present the results. 

Based on this, this review paper will include sections aiming at answering the following questions: 

● What were the research interests in the papers and poster proposals within TWG18?  
● What were the main perspectives and frameworks in the papers and poster proposals? 
● What were the main methodological considerations in the papers and poster proposals? 

In addition to these three aspects, as explained above, we also summarise the emergent issues from 
the presentations and discussions within the groups, which we present towards the end of the paper. 

Research interests. 
A diverse range of research interests were presented within TWG18. Within TWG18a, research 
presented involved all phases of mathematics TE (primary, middle, and secondary phases). Most 
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commonly, research was focused on prospective mathematics teachers (PMTs) and their responses 
to: tasks and resources; hypothetical or real student(s); hypothetical or real interactions between 
teacher(s) and student(s); other prospective teachers; teacher educators; learning environments and 
tools. In TWG18b, many papers and poster proposals explored the design of research-based PD 
interventions as well as researching the different aspects of these interventions. The main aim of the 
PDs studied and presented in TWG18b can be summarised as collaboration between teachers or 
teachers and teacher educators or researchers in order to develop teaching practices, mainly towards 
more explorative approaches to teaching. In the PD research presented, the roles as facilitators, 
teachers, students (one or several) were explored. 

Research interests: Teacher education. 

Concerning the way PMTs respond to tasks and resources, Sødal researched PMTs’ views in relation 
to the benefits of different aspects of working with resources in university coursework in preparing 
them for teaching mathematics. She found that working with resources can provide PMTs with 
practical and useful experiences as well as a way of combining content knowledge and core practices, 
to close the perceived gap between theory and practice. With regards to researching how PMTs 
respond to students’ mathematics, Henriques and Oliveira researched the development of PMTs’ 
knowledge in relation to students’ mathematics reasoning. In this study, the PMTs’ interpretations of 
students’ mathematical reasoning processes were analysed and findings suggested that, over time, 
PMTs knowledge level improved. With a focus on the interactions between teachers and students, 
Schnell and Fellenz researched the role of ‘Perspective Taking’ in relation to PMTs’ noticing 
students’ mathematical thinking. In their study, they analysed the content of PMTs’ written responses 
to a video clip of a mathematical interview. They found the most common perspective taken was one 
of task solver as opposed to teacher or student. Only two papers presented placed their focus upon 
the mathematics teacher educators (MTEs). Longwe-Mandala and Fauskanger explored ways in 
which MTEs in Malawi invite PMTs to participate during teacher education programmes, to better 
understand how these PMTs are enculturated into the practice of inviting learners to participate 
actively in lessons about number concepts and operations. Ebbelind and Helliwell explored the 
experiences of a group of primary PMTs during their teacher education programme in relation to the 
language-in-use of one MTE in Sweden.  

Research interests also included ways to develop meaningful designs of mathematics teacher 
education programmes. Across the papers and poster proposals, researchers utilised well-established, 
as well as innovative pedagogical approaches within mathematics TE which, in some cases, became 
their focus of research. Examples of innovations include Frejd et al’s use of a team-teaching approach 
called Socratic lectures to develop PMTs’ communication skills and Samková’s use of concept 
cartoons in primary teacher education to help assess prospective primary school teachers’ knowledge 
on topics related to the primary school curriculum. 

Research interests: Professional development. 

As an example of research that explored the design of research-based PD interventions, Grimeland 
et al. investigated what kind of co-learning and learning gaps could be identified in a PD session on 
the topic of programming, a topic newly included in the Norwegian curriculum across grade levels. 
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Their findings indicate that both teachers and teacher educators learn about programming and lesson 
planning for programming during the PD. In addition, teacher educators learn about teachers’ 
programming knowledge. One of the learning gaps identified is teacher educators’ knowledge about 
use of programming in school.   

Aiming at understanding how teachers reason about the role of high-quality mathematical tasks, a 
second example study analyses three groups of mathematics teachers engaged in collegial discussions 
as part of a national large-scale PD programme in Sweden. In this study, Kaufmann explores how the 
teachers reflect upon and explain the role of high-quality mathematical tasks when choosing tasks for 
use in their lessons. Kaufmann’s results indicate that the teachers appreciate high-quality tasks for 
providing student-to-student talk and for supporting students’ collaborative efforts to solve problems. 
However, although these teachers appreciate high-quality tasks, they referred to such tasks as 
inappropriate for their students, blaming their students’ capabilities, their lack of motivation to engage 
in such tasks, and their lack of experience with such tasks.  

Problem solving was a focus of attention in several contributions. As an example, Keller and Kohen 
explore the learning processes occurring in online discussion forums as part of a 2-year PD 
programme where the teachers first acted as learners through collaborative solution of complex 
mathematical problems in small groups. Secondly, they led collaborative problem solving in forums 
as mentors. Based on exploring what is reflected in the teachers’ pedagogical activities, Keller and 
Kohen conclude that problem solving forums have a high potential for developing teachers’ own self-
regulation skills, increasing their effectiveness in collaborative problem solving and empowering 
their support to students in solving complex mathematical problems.  

In relation to exploring the roles of those participating in PD, one example is the study by Skott and 
Ding who focussed on the facilitator’s role in lesson study by comparing how facilitators talk with 
teachers and what they focus their talk on. They use a framework consisting of mentoring strategies 
and content categories; both developed empirically in a Chinese and European context respectively. 
Their analysis showed big differences in the facilitators’ ways of engaging in talk with teachers, 
including the dynamic and relational patterns in the Danish case as compared to the lengthy talk in 
the Chinese context. Based on their analysis, Skott and Ding argue that these differences are not only 
related to the fact that lesson study is new in Denmark, but also to social and cultural differences.  

Perspectives and frameworks.  
The studies shared within TWG18 were based on a wide variety of frameworks, depending on the 
research questions being answered and on the researchers’ perspectives. In TWG18a different 
theoretical perspectives were used for the different facets of the teaching profession that the PMTs 
were prepared for. In TWG18b, different theoretical perspectives were used to guide the design of 
the PD programmes and also as underlying sets of concepts and ideas guiding the research design and 
the analysis.  

Perspectives and frameworks: Teacher education. 

Among the frameworks informing the facets of the teaching profession that the PMTs were prepared 
for, all three main objectives could be found in the papers and posters: knowledge, beliefs, and 
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practices, both individually and combined. From the perspective of Shulman’s (1986) subject-matter 
knowledge (SMK) and pedagogical content knowledge (PCK), the majority of the papers and posters 
focused on PCK. In several cases (e.g., Reitz-Koncebovski et al.), SMK was connected to PCK via 
the model of school-related content knowledge (Dreher et al., 2018). The contributions studying PCK 
focused on one or more components of mathematical knowledge for teaching according to Ball et al. 
(2008) (e.g., Schreiber), on professional vision and noticing according to van Es and Sherin (2021) 
(e.g., Karatsioli et al.), or on diagnostic judgement according to Loibl et al. (2020) (e.g., Schreiter et 
al.). From the perspective of PMTs’ beliefs and motivations, there were papers focusing on beliefs 
about resources for teaching mathematics (Sødal) or on motivation and communication skills (Frejd 
et al.). From the perspective of PMTs’ practices, Chikiwa and Graven proceeded from the six-lens 
framework for guiding teachers’ reflections on video-recorded lessons (Karsenty & Arcavi, 2017). 
One of the papers (Karagoz Akar et al.) focused on knowledge, beliefs, and practices all at once, and 
studied consistencies among them.   

In TWG18a a wide range of different approaches to TE were introduced, including some recent or 
innovative approaches: for instance, transferring the concept of lesson study from PD to TE (Ponte 
and Quaresma), or transferring clinical simulations from the context of professional preparation of 
pilots, medical doctors, or nurses to the context of professional preparation of mathematics teachers 
(Schreiber).  

Perspectives and frameworks: Professional development. 

Among the frameworks informing the structure of the presented PD programmes, collaborative work 
between teachers is a common factor. The implementation of lesson study in new contexts was the 
focus of some studies including Haringová and Medová who studied the implementation of the lesson 
study approach in Slovakia. A further example of collaborative work in PD programmes can be found 
in the study by Nurick et al. where teachers participated in the VIDEO-LM project and discussed 
videotaped mathematics lessons using the “six-lens framework” (Karsenty & Arcavi, 2017).   

There was a wide variety of approaches among the frameworks used to analyse research data and 
explain the phenomena behind them. The meta-didactical transposition framework (Chevallard, 
1999) was used by Pocalana et al. as an interpretative lens to describe the interactions between 
teachers participating in PD and researchers acting as facilitators in the PD. In particular, they focused 
on the evolution of the praxeologies of both communities. In addition, Pocalana et al. used the 
boundary objects (BO) framework (Akkerman & Bakker, 2011) to explain the development of a 
shared praxeology between teachers and researchers, the internalisation processes of new elements 
for both communities, and the learning mechanisms activated by the design choices made by 
researchers for the PD program. Another study using the BO framework is the one by Casi and 
Sabena who interpreted museum collections to be BO connecting communities of students, teachers, 
and museum staff. As BOs, components of non-scientific museums acted as prompts for 
epistemological discussions about mathematics.   

Collaboration among teachers has also been the focus of research analysis. Keller and Kohen studied 
the interactions of teachers in an online environment, where teachers participated in online forums. 
They analysed the participation of one teacher in the forum using the framework of collaborative 
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mathematics problem solving and its taxonomy of interactions (Clark et al., 2014), together with the 
components included in the Self-Regulated Learning framework (Boekaerts et al., 2000).  

Methodological considerations.  
Methodology can be understood as methods used for creating, gathering, or collecting empirical 
material and the specific reasons researchers have for using such techniques. As highlighted by 
Eisenhart (1991), this step also concerns how to reduce the empirical material into meaningful data 
worth highlighting in the result section. This section focuses therefore on the research design and 
sample size, methods for generating empirical material, structuring information, and generating data 
material for the results section in TWG18a and TWG18b.   

Methodological considerations: Teacher education. 

Research presented in TWG18a covered various research designs: qualitative, quantitative, and 
mixed methods research. Quantitative research included intervention studies involving a pre– and 
post– intervention test. For instance, the study by Volkmer. Other quantitative studies used written 
formats as data, such as Dröse, who used written diagnostic judgements from a group of PMTs (n = 
26). These written judgements were coded with relation to knowledge elements for current or prior 
learning content using two dimensions of procedures and concepts. Quantitative studies consisted of 
up to 300 participants.  

Half of all papers and posters related to TE were qualitative, covering single-case studies to those 
consisting of more than 50 participants. For example, Samková used indicative questions concerning 
a concept cartoon. The participants worked on tasks individually, and the data collected was 
processed using open coding and constant comparison to display subject-matter knowledge. Ebbelind 
and Helliwell, on the other hand, used a methodological tool  to structure their empirical material 
from different contexts. Four contributions involved mixed methods. Schreiter’s use of eye-tracking 
as a data collection method was a novel methodology within the TWG18a group.  

Because of the various sample sizes and methods, the nature of the data is diverse. Methods for 
generating empirical material in TE research related to either: written reflections, answers to 
indicative questions, task solutions, lesson plans, questionnaires, recorded or transcribed interviews, 
video-recorded lessons, task analyses and movement tracking (mouse and eye). It is sometimes 
mentioned that theory sets standards for methodology, however, those researchers that use Loibl et 
al’s (2020) diagnostic judgement use the full range of methods displayed within the TWG18a group.  

Methodological considerations: Professional development. 

Studies on teachers’ PD in TWG18b included a systematic review of the literature on PD programmes 
and their relationship with student achievement (Peri & Gomez Zaccarelli) and a survey project on 
professional journals for mathematics teachers (Asami-Johansson & Otaki). The sample sizes in the 
presented studies ranged from two to 47 and up to several hundred participants: Österling conducted 
a visual and fine-grained analysis of two teachers’ lessons in order to develop a framework for 
representing changes in mathematics teaching over time; Keller and Kohen explored the learning 
processes of 47 teachers when engaging in collaborative problem solving in online discussion forums. 
Knaudt et al. aim at developing adaptive training modules for in-service teachers at 125 primary 
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schools with the aim to foster teachers’ diagnostic competences whilst considering the heterogeneity 
in the participants’ individual learning prerequisites.  

The majority of the presented studies in TWG18b used qualitative methods for investigating the 
participating teachers’ professional growth: Data sources were videos from lessons (e.g., Österling), 
videos from PD sessions (Nurick et al.; Haringová & Medová) or interviews (e.g., Neururer & 
Shúilleabháin). In their comparative case study, for instance, Koellner et al. conducted semi-
structured interviews using think aloud protocols for an in-depth investigation into teachers’ practices 
five years after taking part in a PD programme. Many of the studies analysed written reflections or 
responses from teachers (e.g., Keller & Kohen; Knaudt et al.). Kaufmann, for example, analysed data 
on the reflections from teachers engaged in collegial discussion about the role of high-quality 
mathematical tasks. Skott and Ding investigated teachers’ planning of lessons as data sources and 
explored potential changes. Only two studies (Pocalana et al.; Knaudt et al.) also made use of 
questionnaires: Pocalana et al., for instance, administered a questionnaire to investigate teachers’ 
praxeologies including teachers’ beliefs about their students and about the teaching and learning of 
mathematics to complement qualitative data collected through interviews, written protocols, video 
recordings and reports about teachers’ classroom experimentations. Looking across all studies 
addressing the professional growth of in-service teachers, various analytical frameworks were applied 
to analyse and structure the collected data: the commognitive framework (Österling); boundary 
objects theory (Casi et al.; Pocalana et al.); directed content analysis (Keller & Kohen); co-learning 
dimensions (Grimeland et al.), abductive process analysis (Kaufmann) or comparative case study 
analysis (Koellner et al.). Corresponding to the research focus of the respective studies, coding of 
participants’ responses was, for instance, also based on levels of teacher noticing (Fauskanger & 
Bjuland) or stages of teachers’ concern (Neururer & Shúilleabháin).  

Emerging issues.  
As highlighted in the introduction of this paper, group discussions often highlighted issues beyond 
the papers’ scope. Therefore TWG18a and TWG18b arranged specific topic discussions during the 
conference. These issues were highlighted as emerging issues for the future and can serve as 
inspiration for forthcoming CERME conferences.  

Issues from the discussions during TWG18a related to future TE research can be summarised as 
follows. Firstly, exploring whether it would be possible to establish a set of research based design 
principles for TE courses that would be applicable across different contexts, and what such principles 
might look like is a next step for TE research. To accomplish this, there is a need to share concrete 
task and course designs for TE programmes. Secondly, there is a need to summarise relevant 
theoretical directions in TE, to get a better sense of the different frameworks used within our 
community. A better understanding of different perspectives will not only strengthen our own 
research, but also contribute to more nuanced discussions in the future. Thirdly, teacher change was 
considered from an ethical perspective, with questions asked such as whether it is right to try to 
change teachers in certain ways, and who should make those decisions. Such ethical perspectives is 
in need for future explorations. Lastly, the question of how our research community might scale up 
innovative approaches should be explored. 
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Issues from the discussions during TWG18b related to future PD research can be summarised as 
follows. Firstly, future research should aim at exploring how we can learn more about different 
participants’ roles in PD (i.e., students, teachers, teacher educators and researchers) whilst, at the 
same time, facilitate collaboration between all participants. Secondly, there is a need for exploring 
what makes change difficult and how professional growth best can be supported. Lastly, better 
understanding how we can build on previous research and each other in order to develop the field of 
mathematics PD research is an implication for future research. 
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Journals for disseminating professional scholarship of mathematics teachers 
This presentation describes a framework and an analytical method we employ in our project, the aim 
of which is investigating the characteristics of professional journals for mathematics teachers in 
different countries. Professional journals for schoolteachers in mathematics function as an important 
venue to disseminate different kinds of professional knowledge necessary for carrying out teaching. 
The contents of journals can deal with individual teacher’s work for designing lessons in certain area, 
proposals for different methods for assessment, philosophical articles about mathematics education, 
columns by mathematicians, presentation of results from research, etc. The selecting and editing from 
such possible contents depends on the needs of the readers—the roles and responsibilities of 
schoolteachers that are devolved from a given society to which they belong. What similarities and 
differences are there between different journals around the world? As a first step for answering this 
question, we report here a preliminary analysis on a Swedish journal Nämnaren (The Denominator).  

Levels of didactic co-determinacy and paradidactic stakes 
A sequence of didactic situations in classroom depends upon a family of conditions of different kinds 
and origins. The hierarchy of such conditions is modeled by the anthropological theory of the didactic 
as a scale of levels of didactic co-determinacy (e.g., Chevallard, 2019). We apply the scale to situate 
foci—or paradidactic stakes (Otaki et al., 2020)—of journals, for identifying the properties of the 
journals. We have categorised the contents of the articles and related them to the different levels of 
the co-determinacy as the following: Society, related to general issues, e.g., Swedish national traits, 
culture and world trend. School, related to school educational issues, e.g., national curriculum, 
Swedish school and its policies. Pedagogy, related to generic teaching principles e.g., methods for 
promoting students’ interaction. Discipline, related to mathematics itself as an academic subject or 
school subject. Domain, related to relatively general areas in mathematics such as algebra, geometry, 
function, etc. Sector, related to the general topics of mathematical objects such as equations, 
similarity, operations. Theme, related to contents of teachers’ activity such as how to teach the concept 
of triangles, etc. Subject, related to one simple type of task (in a lesson) and a corresponding solving 
method. From this point of view, our research question in this survey project is formulated as the 
following: what levels of paradidactic stakes do professional journals for mathematics teachers 
include or exclude? 

Pilot analysis on Nämnaren  
Nämnaren has been established in 1974 and publishes four issues a year. The journal is currently 
directed by the National Center for Mathematics Education, the task of which is to support the 
development of mathematics education from preschool to secondary school levels. Authors of articles 
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are mixture between teachers in service in different levels, teacher educators, researchers in 
mathematics education and mathematicians. In this pilot study, four numbers from the year 2020 are 
analysed. The total number of published articles in these four numbers is 58, and the main issues of 
the submitted articles are following: teachers’ activities, students’ phycology and special pedagogy, 
history of mathematics, research and survey reports, and use of manipulatives and ICT. Of the 58 
articles, 49 of them aim at primary and (mostly lower) secondary levels. The rest aims at pre-school 
education, adult education, and education in general. Nämnaren has three standard topics in every 
issue: book reviews on newly published educational books, problem bank and language column. The 
last two topics often deal with the issues related to lower levels such as theme and subject. Contents 
of several articles are related to more than one level of the co-determinacy. For example, an article, 
which describes using double number lines for better understanding for algebra, deals with conceptual 
description of algebra and equations (sector), but its actual focus was giving suggestions for teaching 
design (theme) and task examples (subject). Even though two articles present activities on number 
theory, the focus of one article is on the level of theme, while the other is related strongly to the 
pedagogy level. In the same way, one article treats a topic of Pascal’s triangle for an analysis of a 
sports context (theme), while the other describes conceptual differences of algorithms using Pascal’s 
triangle in different institutions in several countries (sector). As a summary, two articles are related 
to the society level, five to the school level, 15 to the pedagogy level, four to the discipline level, 
three to the domain level, seven to the sector level, 24 to the theme level, and 15 to the subject level.  

The tendency that the paradidactic stake of the journal tend to gather in the lower levels and the level 
of pedagogy is not surprising, since the readers of the journal could have a disposition so called the 
paradidactic bipolarization (Otaki et al., 2020). This phenomenon indicates that schoolteachers’ 
interest and their professional knowledge lie exclusively either pinpoint mathematical matters or 
general-purpose teaching methods. A notable fact is that a professional journal, one of the missions 
of which is disseminating teachers’ professional scholarship, traces the pattern of the bipolarisation 
of schoolteachers’ scholarship. In our view, this illustrates an aspect of the functioning of the teaching 
profession, whereby schoolteachers are reproduced together with the didactic worldview supported 
by certain norms (remember the expression “normal school”). Such institutional structure may hinder 
forthcoming reforms of mathematics education. Understanding the epistemological economy (and 
ecology) of the teaching profession—which is often recognised as a semi-profession—is crucial, not 
only for research but also for practice. The information on current states of the teaching profession 
should be useful for developmental actions for teacher education in the future. 
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Teaching planning as a process and as a tool to develop didactic analysis  
This work addresses the question: What are the criteria used in planning a class on the perimeter, by 
preservice teachers? The objective refers to identifying the criteria that preservice mathematics 
teachers (PMT) use to assess the didactic suitability (DS) in managing a study process, in the class 
plans for teaching the perimeter. The inquiry process to construct plausible plans is guided by the 
Onto-semiotic Approach (OSA) of Mathematical Knowledge and Instruction (Godino et al., 2007). 

Theoretical framework 
The Ontosemiotic Approach (OSA) of Mathematical Knowledge and Instruction (Godino et al., 2007) 
is assumed; several features related to didactic analysis (DA) are studied, such as the notion of 
didactic suitability (DS) and normative system (NS) in the context of pre-service mathematics 
teachers’ teaching practices.  

Methodological framework 
The research was conducted with six preservice mathematics teachers based on a qualitative research 
approach which allows obtaining complex details related to human thought and emotions. Data was 
obtained through interviews including previous personal ideas about planning before the 
interventions and then about actions, evaluation and improvements done to their previously presented 
lesson plans regarding the topic of perimeter for sixth grade students. 

The general fieldwork was organized in three phases: in phase 1, the object of this report, previous 
and personal ideas about planning and evaluation that students use when designing a class plan are 
studied; in phase 2, an intervention-training is implanted, to analyze the didactic suitability in the 
study process; and in phase 3, the actions and evaluation and improvement criteria used in the 
redesign of the plans to teach the perimeter object projected in phase 1 are studied. In the first phase 
information was obtained by recording video audios, transcripts and reviewing student responses (I-
1), and data on the reflection on the planning of “my class in mathematics (I-2)”.  

Analysis 
The First Phase of the research, focused on the elaboration and a priori analysis of the lesson plans 
designed by the PMT, has four moments: moment 1) contextualization and investigation of previous 
ideas about teaching planning; moment 2) application of I-1, and discussion of designed plans; 
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moment 3) application of the I-2 instrument and discussion; moment 4) analysis in teams on a lesson 
plan based on I-1 and I-2. 

On the a priori criteria emerging 
Based on the coding, initially open and then axial (Strauss & Corbin, 2012) of the actions and reasons 
(A-R) present in the plans, we could to identify eight groups of actions-reasons with different levels 
of presence- shown in Table 1-. Some of the configured A-R groups presented in the PMT plans are 
described and explained: 

Table 1: Action groups and reasons (A-R) emerging in planning. Source: Authors 

Action groups and reasons (A-R) 
emerging in planning 

Emerging A-R in lesson plans and level of prevalence 

A-R1. According to training area Curricular (32%), didactic (7%), disciplinary (44%) and formative-
pedagogical (17%) 

A-R2. According to the nature of the 
meanings 

Institutional (68%) and personal (32%) 

A-R3. According to the teaching model 
or trajectory 

Active-constructivist (11%), problem-based (10%), collaborative 
(10%), lecture-mechanistic (17%), traditional-expositive (52%) 

A-R4. Depending on the time of the 
class 

Start (32%), development (32%) and closure (36%) 

A-R5. According to the role of the 
students 

Passive receiver (30%), collaborative (15%), individualist (11%) and 
active receiver (44%) 

A-R6. According to the teaching 
intentions 

Use of technological tools (54%) and motivation with games (46%) 

A-R7. On the approach to the 
mathematical object to be taught 

Routine exercises (29%), associated properties (2%), related concepts 
(20%), definition-concept of perimeter (7%), procedures (14%), 

representations (13%) and problem situations (14%) 

A-R8. On processes associated with the 
development of mathematical thinking 

Problem solving and problem posing (14%), reasoning (14%), 
communication (8%), formulation and application of procedures (47%) 

These results confirm that the criteria and norms used by the PMT, emerging from the plans, are 
descriptive and evaluative. They are organized based on indicators associated with the different 
components that make up the didactic suitability criteria. The other A-R groups identified in the plans 
are related to interactional aspects in the A-R linked to the teaching model. In this sense, according 
to Table 2, A-R groups identified and organized according to lesson plans, are related to interactional 
ID criteria. The same occurs with A-Rs referring to the teaching model (A-R3). Concerning epistemic 
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and cognitive ID criteria, they are found in the approach to the mathematical object to be taught (A-
R7), as well as in the processes associated with the development of mathematical thinking (A-R8). 
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Informal mathematics education 
In informal mathematics education research, learning spaces other than school are explored, and 
experiences with mathematics that are different from the traditional ones offered by the educational 
institution are lived. According to Nemirovsky and colleagues (Nemirovsky et al., 2017), informal 
mathematics education contexts differ from school-based mathematics activities mainly due to three 
structural features: the voluntariness of learners’ participation, the fluidity of disciplinary boundaries, 
and the absence of traditional forms of assessment. In recent years, we have been involved in projects 
aiming at preventing school dropout in disadvantaged neighborhoods of some Italian cities, namely 
the Proud of You project (Carotenuto et al., 2020) in Napoli and the Next-land project in Torino. In 
both projects informal mathematics learning was chosen for its potential to convey alternative visions 
of mathematics and to engage all learners in ways that are creative and different from usual school 
practice, with the underlying hypothesis that engaging students and changing their vision of 
mathematics may contribute to prevent school dropout. In accordance with the perspective of 
Culturally Responsive Mathematical Education (Gay, 2010), we decided to situate the informal 
mathematical learning activities in the history and culture of the students’ own territory, allowing 
them to create, recreate, and shape their meanings. In our experience, two elements emerged as crucial 
for reaching the desired aims: the collaboration with teachers in co-designing the activities, and the 
relationship between informal and formal mathematics learning. They need further investigation, and 
in this contribution we will focus on the idea of exploiting the informal settings provided by museums 
(and specifically non-scientific museums) in a teacher development perspective. Our starting point is 
our experience of co-designing informal mathematics learning activities with museum experts. This 
was accomplished within the Next-land project, which we will briefly introduce. 

The co-design experience in the Next-land project 
In the Next-land project (https://www.next-level.it/progetti/next-land/), grade 7 students from 
disadvantaged areas of Torino (Italy) are involved in out-of-school workshops, during the first two 
weeks of school in their curricular hours. Workshops vary a lot as regarding locations and content. 
Our research group1 is responsible for the mathematics workshops, which are located in four 
museums (Egyptian Museum, Museum of the Risorgimento, Palazzo Madama, Park of Living Art). 
In collaboration with the staff of each museum, we co-designed four workshops aimed at learning 
mathematics through the discovery of historical and artistic heritage of the City of Torino, involving 
students in experiences of observation, exploration and manipulation. 

 
1 The research group is composed by the authors and by two teacher-researchers: Valentina Leo and Chiara Pizzarelli.  
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In Autumn 2020, about 200 students, accompanied by their teachers, took part in the workshops, led 
by the staff of the museums. From our own field observation and the feedback given by the teachers, 
the students and the museum staff, we gained evidence of some positive results with respect to the 
project aims. However, we found also that the lack of the teachers’ engagement in co-designing the 
activities limited the workshop experience to just an interesting activity that had no further 
implication on the students’ mathematics experience, and therefore on the possibility of changing 
their view of mathematics on the long run. But how may teachers be involved in co-designing 
informal mathematics education activities in collaboration with mathematics educators and museum 
experts? The need for teacher professional development emerged in a striking way. 

What potential for teacher professional development? 
Based on our co-design experience with museum experts, we are convinced that informal learning in 
non-scientific museums may be exploited to engage teachers in rethinking their teaching practice and 
their relationship with mathematics. The informal character of teaching by workshops in museums 
and the encounter with different knowledge coming from other domains (like history and art) will 
favor the teachers’ creativity in designing tasks to be carried out, with the perspective to develop in 
students an emergent learning rather than achieving predefined goals. Since informal education is 
still under-researched in relation to student learning, and to our knowledge has not yet been studied 
for teacher education, we plan to work by letting teachers first experience the workshops of the Next-
land project, and then co-design more workshops with museum experts and mathematics educators. 
It is our hypothesis that the museum collections can be the boundary objects (Akkerman & Bakker, 
2011) connecting the three communities, prompting a discussion about an epistemological analysis 
of mathematics and bringing to the fore different visions of mathematics itself.  

The teacher development process will be the focus of a PhD study aiming to answer the following 
research questions: What difficulties may teachers experience in designing informal mathematics 
workshops, and how may they overcome these difficulties? What actions can be implemented to 
support teachers? What changes can be generated in teachers’ practices and beliefs? What impact on 
the usual classroom activity? To answer these questions, we will collect data through questionnaires, 
focus groups and audio/video recordings of meetings, which will be analyzed under a qualitative lens. 

References 
Akkerman, S., & Bakker, A. (2011). Boundary Crossing and Boundary Objects. Review Of 

Educational Research, 81(2), 132–169. https://doi.org/10.3102/0034654311404435 

Carotenuto, G., Mellone, M., Sabena, C. & Lattaro, P. (2020). Un progetto di educazione matematica 
informale per prevenire la dispersione scolastica. Matematica, Cultura e Società – Rivista 
dell’Unione Matematica Italiana, 5(2), 157–172. 

Gay, G. (2010). Culturally responsive teaching: Theory, research, and practice. Teachers College 
Press. 

Nemirovsky, R., Kelton, M. L., & Civil, M. (2017). Towards a vibrant and socially significant 
informal mathematics education. In J. Cai (Ed.), Compendium for Research in Mathematics 
Education (pp. 968–980). National Council of Teachers of Mathematics. 

Proceedings of CERME12 3066



 

 

How the six-lens framework supports pre-service teachers’ reflections 
Samukeliso Chikiwa and Mellony Graven 

 Rhodes University, Faculty of Education, South Africa; s.chikiwa@ru.ac.za; m.graven@ru.ac.za  

Keywords: Pre-service teachers/teacher education, six-lens framework, reflective practice. 

Introduction. 
The ability to reflect on one’s practice is an essential skill for all mathematics teachers because of 
its significance in promoting effective teaching and learning. Pre-service teacher education (PTE) in 
South Africa is foregrounding this skill as one way to redress the long-standing record of poor 
performance in mathematics. This poor mathematics performance is often attributed to poor 
teaching which result from teachers’ inadequate knowledge for teaching mathematics. Reflective 
practice (RP) is potentially useful for developing this knowledge. A mathematics methods lecturer 
at a South African university engaged her third-year pre-service teachers (PSTs) in three sessions of 
video-based lesson analysis to develop their RP for mathematics teaching. She employed the six-
lens framework (SLF) developed by Karsenty et al. (2015) to guide mathematics teachers as they 
reflected on selected video-recorded mathematics lessons. Our research explored how the SLF 
supported the primary PSTs during the process of reflective practice development.  We sought to 
answer the question: How do the various lenses of the six-lens framework influence how pre-
service teachers reflect on video lessons? 

Reflective practice and the six-lens framework 
Although RP is a difficult concept to define or understand, it has many educational benefits. 
Scholars such as Dewey as early as 1933 suggested “it is impossible to become and remain an 
effective teacher without commitment to reflective practice” (p.9). The multiple perspectives on RP 
however have led to a lack of common definition and furthermore it is increasingly acknowledged 
that it is a skill that is difficult to develop (Russell, 2005). However, the skill is critically important 
as teachers reflecting on their teaching regularly tend to improve their own professional practices 
and adapt to the day-to-day ever-changing teaching demands (Dewey, 1933). In support of 
developing this critical skill Karsenty at al. (2015) developed the SLF to assist teachers to consider 
and reflect on six important aspects of lessons, namely:  mathematical and meta-mathematical ideas 
(MMI); explicit and implicit goals; tasks and activities (T&A); dilemmas and decision making 
(DDM); interactions with the students, and teacher beliefs.  

Methodology 
The empirical field for the research was three lecture sessions on video-based lesson analysis (using 
the SLF) provided by a lecturer to her 52 third year PSTs at a South African university in 2017. The 
lecturer explained each lens to the PSTs before requesting them to use these lenses as they analysed 
the given video-recorded lessons. We employed a qualitative case study with 19 PSTs who 
volunteered to take part in the research. All written reflections of these participants were analysed 
across the three 2-hour lecture sessions. Our poster focuses on the written reflections during the 
third session where PSTs used all six lenses. We analyzed the reflections of the 14 PSTs who 
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indicated each lens in structuring their reflections (5 PSTs did not indicate lenses). We analysed the 
reflections per lens to understand and ascertain how the different lenses influenced the nature and 
levels of PST reflections. We used content analysis and our four levels of reflection model (adapted 
from Lee, 2005 and Muir & Beswick, 2007) to analyse and summarise the data. The levels of 
reflection from first to fourth were Description; Explanation; Suggestion and Reflectivity. We also 
classified reflections as general (G) or mathematical (M).  

Findings and discussions 
The 14 PSTs wrote 628 reflections using the six lenses. Table 1 below shows how the reflections 
were spread over the six lenses and over general versus mathematical reflections. 

Table 1 The results of the analysis of 14 PSTs reflections by lens 

Lens Level 1  Level 2  Level 3  Level 4  Total G M 

MMI 116 85% 19 14% 1 1% 0 0% 136 49 36% 87 64% 

Goals 64 82% 15 19% 0 0% 0 0% 79 17 22% 62 78% 

T&A 128 84% 22 14% 3 2% 0 0% 153 50 33% 103 67% 

Interactions 89 82% 18 17% 1 1% 0 0% 108 98 91% 10 9% 

DDM 62 83% 10 13% 3 4% 0 0% 75 47 63% 28 37% 

Beliefs 63 82% 11  3  0 0% 77 48 62% 28 38% 

From the table we noted that some lenses like T&A and MMI attracted more reflections than others 
and some (e.g. goals, MMI and T&A) tended to lean students towards greater mathematical rather 
than general focus. Of interest across all lenses PSTs tended to focus on description and explanation 
rather than suggestion and reflectivity. In the presentation we will talk to some further insights and 
implications for teacher education.   
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This communication presents a lesson study conducted with prospective mathematics teachers and 
seeks to know what the participants consider having learned and what is their perception of the lesson 
study. The participants are 14 prospective mathematics teachers with a master’s degree in teaching. 
Data collection was made by participant observation with a research journal and individual 
interviews with six prospective teachers. The results show that the participants needed some time to 
understand this formative process but recognize that they made significant learning in several aspects 
concerning mathematics teaching. 
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mathematics teaching. 

Introduction 
Lesson study is a process of professional development of teachers originated from Japan (as 
jugyokenkyuu) in the late 19th century, popularized since the late 20th century from the USA (Stigler 
& Hiebert, 1999), and currently used worldwide (Huang et al., 2019). The work done in a lesson 
study focuses on students’ learning. This work is informed by the curriculum guidelines and research 
related to a given theme, assuming a collaborative nature and center on school practice.  

A lesson study is developed from the identification of a learning problem identified by the 
participants, who study curriculum documents, research and professional papers, textbooks, and other 
relevant material that can help to understand how to deal with this problem and, based on this study, 
plan a lesson in detail. This lesson, called research lesson, is taught by one of the participants and 
observed by the others, and is then the subject of a post-lesson reflection. Finally, the participants 
present their experience, in particular to other teachers. It is a process close to an investigation on 
professional practice, involving the definition of a research problem, the realization of preparatory 
work that includes a literature review, the realization of an experiment (the research lesson), the 
analysis of data related to that experience, and the dissemination of results.  

Lesson study is a formative process developed for in-service teachers. Given the agenda of initial 
teacher education (ITE) in preparing future teachers regarding all aspects of teaching practice, the 
question arises if lesson study can be used in this field and how that may be done (Larssen et al., 2018; 
Ponte, 2017). Given the specificities and constraints related to ITE, there are several questions that need 
to be considered, such as: (i) How to define the research question? (ii) In which class can the research 
lesson be taught? (iii) Who teaches this lesson, the class teacher, a prospective teacher, or the university 
teacher? (iv) Who observes the research lesson? In cases where the prospective teachers constitute a 
large group, it is not easy to establish an organization to carry out the lesson study, and microteaching 
experiments have been carried out with the prospective teachers teaching each other in small groups 
(Fernández, 2005). In this communication, we present the main aspects of a lesson study conducted 
with prospective mathematics teachers during the 2020-2021 school year. Our aim is to know what the 
participants consider having learned and what is their perception of the lesson study. 
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Theoretical framework 

Many different organizational arrangements have been used to introduce lesson study in prospective 
teacher education (Ponte, 2017). Two main situations may arise: the lesson study is made with a 
relatively large group of prospective teachers, in the frame of a university course, or the lesson study 
is carried out during student teaching with very small groups of prospective teachers. For example, 
in an experience carried out in the USA, Burroughs and Luebeck (2010) describe a lesson study made 
in the frame of a middle school mathematics methods course with 24 prospective teachers. The lesson 
study was carried out by a team of seven experienced mathematics teachers from local schools, with 
the prospective teachers in the role of observers of this activity, collecting and analyzing data from 
specific moments of the lesson study sessions. The research lessons were observed by just a few 
prospective teachers that reported to the whole class. 

An example of an experience carried out during student teaching is described by Nakamura (2019), 
with the case of a prospective teacher in Japan involved in lesson study that focused on problem 
solving. The work was done in three weeks, with teaching in three mathematics classes, following 
the steps of preparation, teaching and reflection. The participants were the cooperating teacher and 
other prospective teachers (5 or 6) but there was no participation of a university teacher. The 
preparation of the lessons was made by the prospective teacher in interaction with the cooperating 
teacher but with no interaction with other prospective teachers. The most distinctive aspects of this 
activity were the intensity of the work carried out and the key role of the cooperating teacher. 

One of the main aspects of the preparation of prospective mathematics teachers concerns the 
development of their knowledge about mathematics and mathematics teaching. Current discussions 
about such knowledge are framed in a decisive way by the seminal work of Shulman (1987) who called 
attention for a kind of knowledge that he considered neglected in initial teacher education—pedagogical 
content knowledge. Following the European tradition of defining didactics as the study of teaching and 
learning in different curriculum subjects, (Ponte, 2012) highlights the central role of the teacher’s 
knowledge of the teaching process, that includes key concepts necessary to develop a practice aligned 
with curriculum frameworks, particularly the notions of task and classroom communication. Besides 
the content of knowledge to develop in future teachers, another important issue concerns the processes 
of development of such knowledge. In this respect, a key contribution was provided by Ball and Cohen 
(1999) who consider the work in practice-based situations a fundamental strategy for teacher education. 

Lesson study allows to establish a relation among these theoretical perspectives. On one hand, it has a 
strong connection with practice, developing around the preparation, undertaking, and reflection of a 
lesson. On the other hand, lesson study requires the mobilization of knowledge of the content, regarding 
concepts, procedures, solving strategies and representations and of didactics knowledge, in key issues 
such as lesson planning, selection of tasks, and analysis of students thinking processes and of classroom 
communication. What prospective teachers learn in a lesson study depends very much of the emphasis 
of the work (Ponte, 2017). They may learn about mathematics teaching including the planning of a 
lesson, the features of tasks that best support students’ learning, the strategies and difficulties of 
students, the dynamics of a mathematics class (Burroughs & Luebeck, 2010; Ponte 2017) and develop 
professional competences such as reflection and collaboration (Gunnarsdóttir & Pálsdóttir, 2011; 
Lewis, 2019). 
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Research methodology 
This study took place in a semester course (in February to May 2021). The participants were 14 
prospective teachers who attended the first year of master’s degree in teaching (a 2-year course after 
a 3-year bachelor’s degree). Two of these prospective teachers, come from the bachelor’s degree in 
mathematics and 12 come from degrees in other areas. The course had two co-teaching instructors 
(the authors of this paper). We chose to organize the 14 participants in 4 groups, doing 4 lesson studies 
in parallel, with some superimpositions in the preparatory phase. Although the teacher education 
program does not require the prospective teachers to teach lessons during this semester (but only in 
the 3rd semester), the research lessons were taught by two prospective teachers in their classes since 
they were already teaching. The analysis of the school curriculum planning and the university 
calendar circumscribed the possible topics to address. Clarisse, who was teaching grade 7, choose the 
theme “Internal and external angles of a triangle” and Joana, who was teaching grade 8, choose the 
theme “Isometries”. Thus, two lessons were held in grade 7 with the topics (i) Justification of the 
properties of the internal and external angles of a triangle and (ii) Problem solving involving internal 
and external angles of a triangle. Two other lessons were held in grade 8 with the topics (i) Rotation, 
and (ii) Central Symmetry. This option for the organization of the class into 4 groups was based on 
the idea that work, to be productive, must be organized into groups with a small number of elements. 

The work on the four lesson studies had 12 sessions (S) and developed in four strands, addressing 
different aspects of teacher knowledge. The first strand (S1-S2) focused on mathematics, including 
solving mathematical tasks and reflecting on solving strategies and representations. The second strand 
(S3-S4) addressed students’ strategies and difficulties on the topics. The third strand (S5-S8) 
concerned the detailed planning of four lessons, considering the curriculum documents. Finally, the 
fourth strand (S9-S12) included the observation and reflection on the lessons. A very important 
emphasis of all activity was work from tasks (Swan, 2017-2018). Prospective teachers were required 
to look for tasks that could be used in the research lessons. The tasks were solved and their features 
were discussed in detail according to the learning objectives defined, as well as the possible 
difficulties of the students in solving them. Another important emphasis was the organization of the 
mathematics class based on a work on tasks that can contribute to students’ learning, in a perspective 
identical to what Japanese researchers call “structured problem solving” (Fujii, 2018). 

Data collection was made by participant observation with a research journal of sessions (Sx) and individual 
final interviews (FI) with 6 prospective teachers. For these interviews (all transcribed), we selected prospective 
teachers with different profiles, with some or no professional experience and with high or low participation in 
the classes. As data analysis strategies, we use content analysis (Bardin, 1979). Data analysis began by 
identifying significant moments in the sessions and interviews, that is, moments in which future teachers’ 
discourse may be a signal of teachers’ learning, taking into account the prospective teachers’ perspectives 
about the work done in the different sessions, namely about the (1) lesson study’s organization in the course; 
(2) the work on tasks; (3) the preparation of the lesson plan; and (4) the preparation of the observation of the 
research lesson. Regarding their perspectives about mathematics knowledge, we analyzed, (5) their awareness 
of own difficulties in mathematics, and, regarding their knowledge of mathematics teaching, we considered 
(6) lesson planning; (7) selecting tasks; (8) anticipating the reasoning and difficulties of students; and (9) 
conducting classroom communication. The interpretation of data was originally made by one of the 
authors and cross-checked by the other author. In some cases, the original interpretation was revised. 
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Results 
Understanding and getting involved in the lesson study process 

In the first session of the course, the work to be carried out throughout the semester was presented, with 
a complete script indicating all phases of the lesson study. It was in the second session that the work in 
the lesson study really began. A document was presented explaining in detail the work that was to be 
carried out and an article with a detailed description of a lesson study was discussed. However, for the 
prospective teachers, it was not sufficiently clear what was to be done. In the final summing up, carried 
out in the last session of the course, several prospective teachers indicated that they were confused 
regarding the work of the lesson study, namely the exploration of tasks related to the chosen topics: 

Joana:  Well, I think that at first the [course] was a little confusing. [...] First, we were 
looking at textbooks for a long-time and... I think that it was too much time for that. 
When we started being more oriented [by the teachers] and we realized what it was 
to do, I think it went very well. I think it was quite interesting. (S12) 

Carolina:  I confess that only from the third session I begun reading about it and I realized 
what we were doing [laughs]. Really, we were studying textbooks and [I thought] 
“and now we’re going to have to study the textbooks?” Then I understood what we 
were actually doing... And I really enjoyed it. (S12) 

Clearly, the prospective teachers were not used to do the type of work that was proposed – working 
in detail with mathematics tasks. For the first time, they were asked to select and analyze tasks in 
depth, anticipate possible strategies and difficulties of students, and plan a lesson. They began by not 
understanding why doing that. At the very beginning, they showed some difficulty in foreseeing and 
understanding the whole process. However, this problem was overcome in later sessions, with the 
continuation of the work, as they saw the structure of the lessons to be taught getting shape. 

The planning of four research lessons at distance was very demanding and the prospective teachers 
suggested the need for more time for the planning, to prepare the observation, and to elaborate and 
reflect on the observation script: 

Joana:  So, I think if we had a little more time there to think a little more about these issues 
and write a better script... Not that our scripts were horrendous, but I think I could 
have a little more time there on the observation part. Especially in this issue, I think 
it was very fast. It was just one lesson, basically. (FI) 

In a similar direction, Carolina indicated that observation is a very demanding process: 
Carolina: The issue of focus... Of the focus spoken by [the teacher] in the last session… That 

was important to me because I dispersed a bit and tried to focus and even then after 
the lesson I ended up dispersing myself because I had not pointed [some aspects] 
and even as I had the script and still did not record everything I wanted... I ended 
up not being able to point well the times... And other things... (FI) 

Learning about mathematics and mathematics teaching 

Despite the initial difficulties of understanding the formative model, the prospective teachers 
considered important the opportunity they had to put into practice the knowledge recommended in 
the course. They valued that they had the opportunity to plan a lesson in great detail, even if the 
course does not yet provide for prospective teachers to teach: 

Olga:  I ended up liking this course very much, because it was a course where I could feel 
a little bit of what my future will be like as a teacher [...] and then do that with a 
grade 7 class. I managed to have participative students, enthusiastic about the tasks. 
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I do not know if it was good for me or not, but I will continue with the positive 
feeling that students will like the tasks ... And I always try to enthusiasm them. (FI)  

For Olga, the lesson study was a complete experience with the preparation of a lesson that was then 
taught by another prospective teacher. Olga was excited with the outcome that the lesson that she 
planned with her group and, more specifically, the tasks, had on the students, and expressed a wish 
to maintain a similar practice in the future.  

The whole group was involved in a deep analysis and reflection on the nature of tasks, their relevance 
to the learning of the selected topics, as well as the possible difficulties that could arise for students, 
culminating in the observation of students’ work in these tasks. The prospective teachers had already 
studied in other courses the classification and characteristics of the different types of tasks, so they 
already knew some of the language associated to this theme. They acknowledged, however, that the 
deep work of solving and analyzing tasks, considering the objectives defined for the research lessons, 
provided them with new knowledge: “the work on tasks added something to what we already knew...” 
(Beatriz, FI). It also led them to deepen the previous knowledge “about the type of tasks we had already 
seen in the 1st semester” (Carolina, FI). They highlighted that this work became more productive 
because it was practical: “the most productive work on tasks is as practical as possible” (Carolina, FI).  

Clarisse, the prospective teacher who taught the grade 7 research lessons, pointed out that, despite 
already having some teaching experience, she did not use to solve the tasks before proposing them to 
her students, “most of the tasks I did not solve and took immediately to lessons” (Clarisse, FI). The 
solution of the tasks and the analysis of their suitability for the objectives of the lesson and the 
students made her learn and value the solution of the tasks and the anticipation of the students’ 
strategies and difficulties “Ah! I’ve learned a lot about teaching. The planning part, the part of 
bringing responses already foreseen, possible answers from students” (Clarisse, FI).  

Joana, the prospective teacher who taught the grade 8 research lessons, also mentioned that she 
learned several issues about tasks. She became to value exploratory tasks, recognizing that they 
provide the opportunity for students to do practical work and build their own knowledge:  

Joana:   To take a task that is to practice, it is to do something, it is not to stay there just 
listening to the formula, hear the concept, but start from something and go working 
that task to learn the concepts, I found it very interesting... (FI) 

Although Joana already knew some of the characteristics of exploratory tasks from the work previously 
carried out in other courses, it was the planning of a lesson based on such tasks that had more novelty for her:  

Joana:  In fact, I had never thought of beginning a lesson, although we had heard enough 
in [a previous course] about investigation and exploration tasks, I had never thought 
of doing a lesson around the task itself. […] I found it interesting also that certain 
lessons could unfold just from the task... Really, beginning from a task and 
preparing the lesson based on it and observing the difficulties of the students and 
what is expected from them and what can be done from this is very interesting. (FI) 

In the lessons led by Joana, on isometries, the moment of whole class discussion did not go as planned. 
She had difficulty in orchestrating the discussion because the students were not very involved and 
did not know this way of working. However, Joana valued the moment of whole class discussion: 
“and also, yes, the moments of discussion, although in my lesson it did not go very well...” (FI).  

The prospective teachers had already worked on many of the ideas on mathematics teaching 
considered in the lesson study. However, when they had to put these ideas into practice, supervised 
by the teachers of the course, these ideas acquired greater meaning, much closer of what it will be in 
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their profession. This is what Vítor says: “I had heard of exploratory lesson in [previous courses], but 
it is one thing to speak in a theoretical way and it is another thing to do it” (FI).  

For Clarisse, who taught the grade 7 lessons, the experience with a new approach to teaching was 
positive: “I think it went very well (…) and the students also liked it very much”. The lesson ran 
according to her expectations and the students were very involved. This led her to value exploratory 
teaching based on the learning that students may develop, “but I think it’s really essential, I even 
think that learning is much faster achieved in this type of teaching than in a type of teaching that I 
have being doing perhaps wrongly” (FI).  

The detailed planning work of the lessons also caused initial confusion to the prospective teachers. 
For example, Clarisse pointed out that “we had some initial difficulty in planning” (FI) while Vítor 
found some difficulty in determining the desirable level of detail “I don’t know if we didn’t 
exaggerate in detail” (FI). Despite the difficulties with the preparation of the lesson plan, Carolina 
stressed that the realization of the plan, in the context of the lesson study, allowed them to understand 
the relevance of each of the elements of this plan and how it was thought:  

Carolina:  I had heard of planning and one person ends up copying the plan from some other 
place... Or from the internet. But the fact that we […] realize that column, that topic 
of planning, is important and then, in practice we realize that it is effectively 
important. […] This here in the planning […] it even seemed like it wasn’t 
important and then we ended up... The students ended up having a different reaction 
in that part and even should have been more thought of, wasn’t it? [...] (FI)  

In addition, Carolina recognized that the fact that they had also observed the lesson in practice makes 
each of the reflections and elements of the lesson plan more important to understand the work and 
learning of students. She recognized the importance of elaborating such a detailed lesson plan.  

For Beatriz, all this detail in the preparation of the lesson plan made her more aware of the fact that 
there are different ways to solve a task and also of the importance of the teacher to be attentive to 
different solutions and value them in the classroom: 

Beatriz:  Not so much in the way of looking at students, more in the way of looking at the 
diversity of student solutions. That’s right, because sometimes we only think in one 
way and when we see, there are several students who have several ways to solve 
and that is also correct, and I think it is important to give due value. (FI)  

All prospective teachers assumed that they made significant learning on mathematics teaching issues, in 
some cases with new ideas, in other cases bringing a different perspective on things that they already knew. 
This contrasts with their views regarding mathematics, in which they did not identify any significant 
learning. However, we note that there were several discussions on mathematical issues in which the 
prospective teachers seemed somehow confused. This happened, for example, with the issue of how to 
prove that the sum of the measures of the internal angles of a triangle is 360º, as they were willing to accept 
that a physical demonstration involving cutting vertices from a triangular sheet of paper could be seen as a 
mathematical proof. It seems that the fact that they had made many courses in mathematics previously, in 
their undergraduate study, led them to assume that they had a strong mathematical preparation despite the 
discussions in the course sessions seemed to suggest that they had several ideas to revise and clarify. 

Conclusion 
Several prospective teachers indicated an initial confusion regarding the work to be carried out in the 
lesson study, namely the exploration of tasks related to the chosen topics. More than a difficulty in 
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understand the lesson study process, the teachers had difficulty in understanding why to do a so detailed 
analysis of tasks related to the chosen topics. Perhaps this needs to be better explained in the future. 

In previous courses, the prospective teachers had already studied the classification and characterization 
of different types of tasks. However, they tended to look at the tasks superficially. They selected tasks 
to propose to students without solving them and without analyzing the possible strategies and 
difficulties involved in their solution. The deep work of task analysis and anticipation of students’ 
strategies, as well as the detailed planning of an exploratory lesson, as well as its observation, provided 
significant learning on the teaching of mathematics. As indicated in Ni Shuilleabhain and Bjuland 
(2019), the future teachers highlight the value of going to the school in order to plan a lesson that is 
then put into practice, emphasizing that this experience favors the understanding of the characteristics 
of the tasks. In the end of the course, the future teachers also emphasized the importance of the practical 
work of selection, analysis and discussion of tasks, underlying the value of working from practice for 
the development of teachers’ knowledge (Ball & Cohen, 1999; Smith, 2001). 

The format proposed for the planning of research lessons also caused some initial confusion. However, after 
observing the lesson, the prospective teachers tended to value the realization of a detailed planning, 
recognizing the importance of anticipating the possible strategies and difficulties of students, as pointed by 
Burroughs and Luebeck (2010). Overall, the prospective teachers highlighted significant learning about the 
teaching of mathematics but not on mathematics. This may be regarded as natural, given that so far, they 
had many courses in mathematics, but they still do not have much experience in mathematics teaching.  

The pandemic brought some challenges to the lesson study, namely the difficulty in accessing 
classrooms. The definition of an organizational model with a group of 14 participants proved to be 
challenging. As in the study by Burroughs and Luebeck (2010), the proposed format contemplated the 
division of the group into 4 subgroups. However, contrary to this experience, two future teachers taught 
the research lesson. In previous experiences, the research lesson was led by a cooperating teacher who 
contributes with his practical experience to the definition of research questions. The option that we 
assumed in this course, provided an important opportunity for these two future teachers, who are already 
teaching with other qualification, to reflect on their own practice. Despite the restrictions imposed, it 
should be noted that, contrary to what happened in the study by Burroughs and Luebeck (2010), this 
division into 4 subgroups allowed all future teachers to attend the research lesson they planned, 
completing the entire cycle of the lesson study, with the observation of the research lesson, so valued 
by them. Although the overall view taken by the prospective teachers regarding the work done is very 
positive, it is important to adjust the distribution of lesson study sessions to the number of research 
lessons to plan, considering, in particular, also the need for a deep preparation of the observation of the 
research lessons.  
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In recent years, different studies have emphasized the necessity to improve prospective teachers’ 
professional knowledge and teaching competences, especially prospective teachers’ diagnostic com-
petence, which accounts for perception, interpretation, and decision-making concerning students’ 
individual thinking processes and learning obstacles. In order to do so, this paper follows a content-
related approach that focuses specifically on diagnostic judgments on conceptual under-standing and 
procedural skills of students’ understanding of conditional probabilities and their underlying prior 
knowledge elements. Prospective teachers are known to face challenges in adequately focusing on 
these aspects in their diagnostic judgments. Therefore, written diagnostic judgments of 26 prospec-
tive teachers on two transcript vignettes are investigated. The results indicate that prospective teach-
ers show a high focus on prior knowledge and on procedures in their diagnostic judgments. 

Keywords: Diagnostic judgments, conditional probabilities, prospective teachers, vignettes. 

Introduction 
As part of prospective teachers’ professional preparation student-centered teaching plays an im-
portant role. The latter requires teachers to diagnose skillfully, i.e. to master the mental processes of 
perceiving, interpreting, and decision-making (Empson & Jacobs, 2008). In order to prepare prospec-
tive teachers for adequate diagnostic judgements, it is necessary to gain deeper insights into their 
diagnostic thinking processes, that can be inferred from their diagnostic judgements. Already existing 
studies line out that prospective teachers are known to struggle with addressing conceptual under-
standing and procedural skills in their diagnostic judgments (Bartell et al., 2013). This underlines the 
importance of focusing on the mathematical content, such as relevant knowledge elements of the 
current learning content as well as the underlying procedural skills and conceptual understanding in 
prospective teachers’ diagnostic judgements (Prediger, 2020). Therefore, our research interest is to 
investigate which elements of the mathematical content teachers perceive and interpret (as processes 
of diagnostic thinking) in students’ understanding of conditional probabilities in a one-to-one teacher-
student discussion. This topic was chosen as it is a pivotal, but often challenging concept and holds 
relevance in vocational contexts (Binder et al., 2020). 

Theoretical Background 
Prospective teachers’ content-related diagnostic judgments 

Teachers’ diagnostic competence has been found to be important for student-centered teaching (Emp-
son & Jacobs, 2008). Synthesizing different approaches on diagnostic thinking and diagnostic com-
petence, Loibl et al. (2020) provide a framework for locating different research approaches (see Fig-
ure 1). In addition, the framework displays the impact of the diagnostic thinking processes on diag-
nostic behaviors.  
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Figure 1: DiaCom framework of diagnostic thinking (Loibl et al., 2020, p. 3) 

Therefore, those processes can be derived from diagnostic judgements, influenced by situation and 
person characteristics. Stahnke et al. (2016), with their systematic review of different studies and 
research approaches, show that although most of the studies investigating diagnostic competence use 
a particular mathematical content, only few studies explicitly integrate the content into the analysis 
of the diagnostic judgments. The study presented in this paper also focuses on content-related aspects 
in analyzing the diagnostic judgments, following Dröse and Prediger (submitted). 

When taking this content-related approach, the principal distinction (as in Kilpatrick et al., 2001) is 
between conceptual understanding (as meaning of mathematical concepts, operations, and terms) and 
procedural skills (as procedures for algorithms and solution strategies). This allows for conceptualiz-
ing students’ understanding as a network of the main mathematical knowledge elements, conceptual 
and procedural (Hiebert & Carpenter, 1992). The ensuing network contains knowledge elements of 
the current learning content as well as prior knowledge elements, i.e. conceptual understanding and 
procedural skills from previous years as a foundation (Prediger, 2020; Dröse & Prediger, submitted).  

Prospective teachers in particular have been shown to focus (in the sense of perceiving and inter-
preting) more on general aspects of learning in their diagnostic judgments than on mathematics- and 
content-specific aspects (Jansen & Spitzer, 2009). Moreover, when focusing on content-related as-
pects, prospective teachers are more likely to perceive procedural obstacles – albeit not their cause 
(Cooper, 2009). What is more, they often misinterpret conceptual obstacles as procedural (Son, 2013). 
While obstacles are mostly interpreted by prospective teachers as lack of a procedural skill, when it 
comes to students’ resources, prospective teachers often interpret students’ statements as indicating 
conceptual understanding – even if the aspects they refer to are procedural skills (Bartell et al., 2013). 

Against this background, it makes sense to first take a closer look at the conceptual understanding 
and procedural skills concerning conditional probabilities and the related students’ obstacles. 

Knowledge elements and students’ understanding of conditional probabilities 

For the current mathematical content of conditional probabilities, procedural skills as well as con-
ceptual understanding are relevant learning goals. Conceptual understanding of conditional proba-
bilities implies concepts concerning stochastic (in)dependence for describing the likelihood of an 
event under certain conditions or independent of conditions (Hoffrage et al., 2015). Students face 
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various obstacles in the area of conditional probabilities, e.g. distinguishing joint and conditional 
probabilities (Shaughnessy, 1992). For determining conditional probabilities and solving Bayesian 
problems, different visualizations and solution strategies can be used, e.g. tree diagrams, frequency 
grids, unit squares, or 2x2 tables, viewed as procedural skills (see overview in Binder et al., 2020).   

These knowledge elements for conditional probabilities build on prior mathematical content 
knowledge, especially the part-whole relationship as well as the part-of-part determination as an im-
portant mental model for the multiplication of fractions. Both belong to the conceptual understanding 
of fractions (Post & Prediger, 2020; Prediger & Schink, 2009) and are known to present serious ob-
stacles, e.g. in identifying the appropriate whole (Prediger & Schink, 2009). In this context, proce-
dural skills (e.g. routine calculations with fractions, decimal numbers, and percentages) may also 
constitute a learning difficulty (e.g. Prediger & Schink, 2009).  

In this paper, we will focus on the procedural skills and conceptual understanding of the current 
learning content, conditional probabilities, and its underlying prior knowledge elements, in connec-
tion to possible students’ obstacles and individual mental models, found in the diagnostic judgments 
of prospective teachers. For designing adequate learning opportunities for prospective teachers, it is 
important to investigate the knowledge elements addressed in their diagnostic judgments.   

Considering this design interest as well as the research areas and gaps, our research question reads: 
Which concepts or procedures of the current / prior learning content do prospective teachers include 
in their diagnostic judgments on students’ understanding of conditional probabilities?  

Methods 
Data collection 

The data was collected in a university mathematics education course for German prospective sec-
ondary school teachers. The sample consists of n = 26 prospective teachers, 81% studying for sec-
ondary and upper secondary school, and 19% for vocational schools. All students have reached the 
last year of their bachelor program, 69% after three and 31% after four years. They attended the first 
and second author’s university course, which covered content knowledge as well as pedagogical con-
tent knowledge on conditional probabilities, e.g. students’ errors, and related knowledge elements.  

The prospective teachers’ written diagnostic judgments were gained by analyzing a vignette as part 
of the weekly assignments (see Figure 2 for our vignette). Vignettes can be seen as an established 
instrument for investigating prospective teachers’ competences (cf. overview in Buchbinder & 
Kuntze, 2018) and have been used to investigate content-related diagnostic judgements on procedural 
and conceptual knowledge elements in the mathematical content of arithmetic (Dröse & Prediger, 
submitted). 

Our vignette consists of a task, two written student solutions and transcripts of subsequent dialogues 
between student and teacher. For the transcript, a real dialogue (based on transcripts in Post & Predi-
ger, 2020; Post, in preparation) was chosen as basis, which was adapted taking theoretical consider-
ations on conditional probabilities into account (current learning content from Hoffrage et al., 2015; 
Shaughnessy, 1992; Binder et al., 2020; prior learning content perspectives from Post & Prediger, 
2020; Prediger & Schink, 2009).  
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Figure 2: Transcript vignette with task for prospective teachers 

The transcript vignette therefore provides sample insights into students’ understanding of conditional 
probabilities and the underlying prior knowledge elements, and thus sufficient possibilities for 

Transcript vignette 

For the following task you should put 
yourself in the teachers’ position and react 
appropriately within the situation.  
Background information for the following 
scene: The class in a German upper 
secondary school has covered conditional 
probabilities and their calculation.  
In the following you will read two 
transcripts displaying excerpts from 
conversations between two students (Ole 
and Nazan) and their teacher, regarding the 
task displayed on the right.  

Task: Exercising Teenagers 

In a survey, 1200 teenagers were asked if they  
exercise regularly. 600 out of the 1200 teenagers  
are female.  of the female teenagers do not exercise  

regularly.  of the teenagers are male and exercise on  
a regular basis. What is the probability that a random  
male person exercises regularly?   
    (JIM study 2018) 

 

Part 1: Ole solves the task. He writes down the following solution.  
 = 0.375= 0.375%, the probability is 0.375%. 

The following interaction with the teacher evolves: 
1 T:  Ole, how did you solve the task? 
2 Ole: Actually, there is not much to calculate. The text says that ‘   of all teenager are male and do sports’ [reads from the 

text]. And then I just have to convert this into percentages and that is 0.375%. 
3 T:  Aha. This share is very small. Hm. Perhaps it might help you, if we had a look at the unit square below the task again? 

[Points at the unit square that is printed below the task.] 
4 Ole:  So, look at this numbers here, 600 male [points at the labelling “male (600)”] and 850 exercising. The 600 are male 

and the 450 are the ones who exercise, in addition. So, these are the 450 [points to the area with the number 450]. 
5 T:  And what’s the size the share that is sought in the task? 
6 Ole: Ehm, the share is 450 of the whole, 1,200? Ehm [reads the question again] no, in the question there is just this group 

here [points at the area with the labelling “male (600)”] so this, these are the males, but these here [points at the two 
areas on the left], those are not considered in the denominator, and the counter would be 450 [points to the area with 
450]. Or in other words: This is the whole group, these are the males and this is the share of them exercising regularly. 

7 T:  Good, so you have the fraction . But what about the probability or… ehm the share that you calculated before, so 

the ? 
8 Ole:  Perhaps it can be cancelled, and then it is equal. 

Part 2: Nazan also solves the task. She writes down the following solution. 
 
                
 
The following interaction with the teacher evolves: 
1 T: Nazan, how did you solve the task? 
2 Nazan: So at first I calculated that the probability for boys is 50%, that is  Than I can write this into the tree diagram 

[points at her tree diagram] and then I have to calculate   times  .  So you convert them to the same 

denominator, and   is equal to   [points to her written calculation] and multiplied this is . And this is 18.75 
percent. So the probability is 18.75%. 

3 T: Let’s have a look at the unit square below the task to be sure. Which parts do we have to look at? [Points at the 
unit square below the task.] 

4 Nazan: So for the numbers we have 600 here [points at the label “male (600)”] and 850 exercising [points at the label 
“exercising (850)”]. Yes, and then this is  times , because ehm those are the important issues, male and 
exercising. 

5 T: And how did you transfer that into your tree diagram? 
6 Nazan: So, the that is  in my tree diagramm, the probability for boys.   , cancelled out. Are   the same as  

, if you cancel? Somehow this has to beo, because in the text says teenager, who are male and exercise 
regularly, and that is the same as in the question. Just the “and” here, that has changed in the question [points at 
the “and” in the text and then at the question]. 

Task: Analyze the two transcripts: 
(1) Describe which prior knowledge and resources (conceptual knowledge, procedural knowledge, representations, etc.) Ole and 

Nazan draw on.  
(2) Describe which obstacles Ole and Nazan display. Explain the possible causes of these obstacles. 
Give transcript lines for (1) and (2) that underpin where you locate the aspect within the transcript or the notes. 
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diagnostic judgements on conceptual understanding and procedural skills as well as knowledge ele-
ments of the current learning content and prior knowledge elements. Cues for the different knowledge 
elements are presented in equal numbers. 

Data analysis 

The 26 written diagnostic judgments were coded with respect to the knowledge elements for the 
current or prior learning content in the two dimensions of procedures and concepts. The coding 
scheme was deducted from the theoretical analysis of the knowledge elements and inductively en-
riched by the knowledge elements named by the prospective teachers. Two raters following the cod-
ing scheme yielded an interrater reliability of Cohen’s  = 0.86, which is almost perfect. Table 1 
displays the codes used and excerpts of exemplary diagnostic judgements. 

Table 1: Excerpt of a written diagnostic judgement and knowledge elements assigned to them 

 Conceptual understanding  Procedural skills 

Current learning  

content 

Knowledge element: understanding condi-
tional and joint probabilities 

Excerpt: “Does not know the difference 
between P(A∩ B) and P(B|A).” 

Knowledge element: calculating and solution 
strategies for conditional probabilities 

Excerpt: “Difficulties in calculating condi-
tional probabilities.” 

Prior  

learning  

content  

Knowledge element: understanding of 
fractions (part-of-part), unit square 

Excerpt: “Ole has an understanding of 
part-of-parts” 

Knowledge element: calculating with frac-
tions, decimal numbers and percentages 

Excerpt: “Ole can transform fractions into 
decimal numbers.” 

Empirical findings on prospective teachers’ diagnostic judgments 
In total, 327 codes were set for the statements of the 26 prospective teachers. Figure 3 displays the 
coded knowledge elements in prospective teachers’ diagnostic judgments. Table 1 provides first ex-
cerpts of written diagnostic judgements. In the following the relationships between the coded 
knowledge elements are described and enriched by excerpts of the written diagnostic judgements. 

Comparing the knowledge elements, the results indicate that the prospective teachers tend to focus 
more on the prior learning content in their diagnostic judgments than on knowledge elements of the 
current learning content (Figure 3, first line). In Addition, their statements address a higher amount 
of procedural knowledge elements than of conceptual knowledge elements (Figure 3, second line). 
For the procedural elements there seems to be a higher number of obstacles addressed, while for 
conceptual knowledge elements a higher amount of statements is related to resources. 

For the current learning content (Figure 3, third line), procedural and conceptual elements seem to 
be addressed equally. While the conceptual elements are equally described as resources and obsta-
cles (e.g. conceptual resource: “has a concept of probabilities”, conceptual obstacle: “doesn’t know 
the difference between joint and conditional probabilities”), only few statements concerning 
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procedural skills address them as resources (e.g. procedural resource: “knows how to calculate joint 
probabilities”, procedural obstacle: “has difficulties in calculating conditional probabilities”). 

Most of the statements for the prior learning content as well as most of the statements overall con-
cern procedural skills, e.g. operating with fractions, decimal numbers, and percentages (Figure 3, 
third line). These elements are equally addressed as resources and as obstacles (e.g. procedural re-
source: “can shorten fractions”, procedural obstacles: “cannot convert fractions into decimal num-
bers”). The addressed elements of conceptual understanding are expressed more often as resources 
than as obstacles (e.g. conceptual resource: “can interpret parts in the unit square”, conceptual obsta-
cle: “cannot derive part-of-part relations from the unit square”).  

 
Figure 3: Knowledge elements in diagnostic judgments   

Discussion and outlook 
Referring to the research question (Which concepts or procedures of the current / prior learning 
content do prospective teachers include in their diagnostic judgments on students’ understanding of 
conditional probabilities?), our content-related approach revealed the following findings: 

In general, the prospective teachers in our study focus more extensively on procedural skills than on 
conceptual understanding. These findings are in line with previous research (Cooper, 2009; Son, 
2013; Bartell et al., 2013). For the current learning content, however, statements on conceptual un-
derstanding are dominant. Further qualitative investigations (e.g. interviews) are needed to interpret 
this result, which is divergent to previous research. By distinguishing resources and obstacles, we 
saw that procedural skills are far more often addressed as obstacles than as resources overall, although 
they are categorized equally as obstacles and resources for the prior learning content. As Cooper 
(2009) indicates, prospective teachers are more likely to perceive procedural obstacles in students’ 
utterances but not their origins which might be conceptual. Future studies could ask prospective 
teachers to classify their judgements as referring to conceptual or to procedural knowledge elements, 
as Son (2013) revealed that prospective teachers misinterpret conceptual obstacles as procedural. 
However, the current study can provide no insights here. Yet, it might present a problem if prospective 
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teachers (in terms of the DiaCom framework) mostly perceive and identify procedural obstacles in 
students’ utterances, as that might influence their decision-making as active teachers, hindering them 
to address conceptual learning adequately (see Loibl et al., 2020, for details). On the basis of these 
findings, starting points for redesigned learning opportunities can be identified, e.g. using authentic 
tasks for diagnosis and discussing with prospective teachers’ options for student activities that ex-
plicitly promote conceptual understanding.   

In addition, by distinguishing prior and current learning content, we found that prospective teach-
ers are indeed able to describe different content elements building upon each other. This is relevant, 
as an interconnected network of mathematical knowledge is paramount for the sustainable learning 
of mathematics. In particular, low-performing students have been shown to lack sufficient prior con-
tent knowledge for keeping up with the current learning content (Prediger, 2020). Therefore, our 
analysis reveals possible potentials of prospective teachers’ diagnostic judgements that have not yet 
been investigated in depth and can provide first starting-points for offering further learning opportu-
nities and developing teaching-learning arrangements, e.g combining and connecting university 
courses concerning CK and PCK more deeply. 

Due to the aforementioned aspects it would be beneficial to compare the prospective teachers’ diag-
nostic judgements and the identified knowledge elements to the diagnostic judgments of experienced 
in-service teachers or teacher educators. By doing so, it might be possible to identify further aspects 
that could in turn be integrated as learning content in prospective teachers’ courses at university. 

Our research is limited due to the following aspects: (a) Our sample comprises only 26 prospective 
teachers all from the same university. Future research is planned to extend the sample size and the 
sample itself to in-service teachers. (b) Our research addresses a specific content. As diagnostic judg-
ments might vary between contents, other content should also be investigated. (c) The use of a tran-
script vignette meant that it could have been read several times. It is possible that the diagnostic 
judgments would focus on less aspects in a different format, e.g. video vignettes (Buchbinder & 
Kuntze, 2018). (d) The vignette displays a teacher-student one-to-one interaction and not a whole 
group classroom discussion. Where the vignette can be extended to in the future. Future research 
should also clarify and investigate these limitations. In addition, it should be explored how transcript 
vignettes can be used to foster prospective teachers’ diagnostic judgments. 
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The role of the teacher education programme in preparing mathematics teachers to teach 
mathematics is an under-researched area within mathematics education. In this paper, we analyse 
four components of empirical material, each captured from a teacher education programme based in 
Sweden. Using a methodological approach informed by enactivism and Systemic Functional 
Linguistics, we build on previous analysis of the language-in-use of one mathematics teacher 
educator to situate a further layer of analysis, this time, from the perspective of a prospective 
mathematics teacher. Our findings suggest the prospective teacher in this study, who had positive 
experiences of mathematics at school, learns to align linguistically with the mathematics teacher 
educator’s contrasting views of mathematics teaching and learning, and in doing so, creates herself 
a safe space. 

Keywords: Mathematics teacher education programmes, mathematics teacher educator language, 
prospective mathematics teachers, enactivism, systemic functional linguistics. 

Background and context of the study 
This paper sets out to illustrate a problem related to mathematics teacher education, as part of a more 
extensive study, to understand how prospective mathematics teachers negotiate meaning from the 
language of mathematics teacher educators during teacher education situations (Ebbelind, 2020). We 
set out to address the relationship between interactions during teacher education situations and the 
kinds of meanings realised by the prospective mathematics teachers. Previously our focus has been 
on developing a methodology for studying the language-in-use of the mathematics teacher educator 
(see, Ebbelind & Helliwell, 2021), whereas in this paper, we foreground the prospective mathematics 
teacher. Specifically, we turn our attention to how one prospective teacher, Lisa, discursively 
assembles language-in-use when taking part in her teacher education programme. Our research 
question is: How does one prospective primary teacher navigate her initial mathematics teacher 
education programme? We are interested in what can be learned, as mathematics teacher educators, 
from exploring the experiences of prospective teachers during their mathematics teacher education 
programmes in relation to the language-in-use of mathematics teacher educators.  

The empirical material used for this paper consists of four components, each captured during a teacher 
education situation in Sweden. The first component is a transcript from a mathematics teacher 
education lecture, the second is a transcript from a seminar where a group of prospective teachers 
worked on a task set during the lecture, the third is a transcript from an interview with one of those 
prospective teachers, Lisa, and the fourth is a set of extended field notes (Delamont, 2008) that were 
taken based on Lisa’s reflections on the lecture. Lisa is in her early 20s and began teacher education 
directly after finishing school. She described herself as an extremely competitive athlete playing 
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soccer (football) at a high national level. Much of her terminology can be interpreted as related to 
sports and management. During Lisa’s teacher education programme, she studied 30 ECTS credits 
(one full semester) in mathematics education. Lisa perceived herself as a “good” mathematician when 
re-engaging in her past school mathematical experiences at upper secondary school (aged 17-19 
years). After her education she will work as a teacher in an upper primary school (aged 10-12 years). 
The context in Swedish mathematics teacher education is the reform mathematics movement that 
“promotes a vision of school mathematics that focuses on students’ creative engagement in 
exploratory and problem-solving activities as they develop their understandings of significant 
mathematical concepts and procedures” (Skott et al., 2018, p. 164). In Sweden, prospective teachers 
at primary level (aged 7-12 years) educate to become generalists, as opposed to subject specialists. 
As a consequence, primary teachers in Sweden will teach a range of different subjects as well as 
mathematics and their level of education in each of the school subjects is often modest. In Sweden 
(Ebbelind, 2020), and other western countries (Stoehr, 2015), the professional background of a 
primary teacher is linked less to the teaching of specific subjects than to the profession as a whole. 
The subject of mathematics itself becomes subordinated for these prospective teachers, and social 
development becomes the primary aim of schooling. As a result, prospective teachers create a “safe 
space” for themselves and their future students (Gellert, 2000). 

The role of teacher education programmes for prospective mathematics teachers 
The role of teacher education programmes in the educational system is increasingly discussed and 
problematised. There is an underlying assumption in the research field of mathematics education that 
teachers matter in relation to students’ learning. To become a mathematics teacher at primary level 
concerns a shift from viewing oneself as a learner of mathematics in school to a perspective of oneself 
as a mathematics teacher who teaches others to learn mathematics. Being enrolled in a teacher 
education programme has been shown to change the relationship one has to mathematics teaching 
and learning (Hošpesová et al., 2018).  

Some researchers regard becoming a primary school teacher through teacher education as problematic 
because of the relationship prospective teachers have regarding their own past school-related 
experience, even concluding that teacher education has little impact on prospective teachers’ beliefs, 
with a limited chance of affecting their future teaching (Ebbelind, 2020). Prospective teachers past 
experiences will shape the way they become teachers. Those prospective teachers who struggled with 
mathematics at school continue to struggle during their teacher education programmes, whilst the 
prospective teachers who enjoyed mathematics in school also continue to do so (Player-Koro, 2011). 
The political agenda, as well as some research into teachers’ knowledge and beliefs, have both 
established a deficit model of prospective mathematics teachers (Askew, 2008). Much attention has 
been given to what prospective teachers do not know (based on formulations of what they need to 
know) and how to improve their knowledge by incorporating more mathematical content within 
teacher education programmes. However, as Hemmi and Ryve (2015) explain, this deficit story needs 
to be used gently by the research community, otherwise the therapeutic (pastoral) aspect of teacher 
education becomes too dominant (Hannula, 2002). The deficit story, and the pastoral aspect of teacher 
education, are considered a part of Swedish teacher education (Hemmi & Ryve, 2015; Player-Koro, 
2011). Gaining insights into the experiences of prospective primary school teachers in relation to their 
development during teacher education programmes is a gap that this study seeks to address. 

Proceedings of CERME12 3090



 
 

 

Methodology: A recursive inquiry  
In our research, we draw on enactivism as our theoretical and methodological basis. From an 
enactivist perspective cognition is viewed as “the enactment of a world and a mind on the basis of a 
history of the variety of actions that a being in the world performs” (Varela et al., 1991, p. 9). One 
corollary of this view is that, as individuals, the way we see and act in the world is determined by our 
own unique history of experiences and interactions. On this basis, we look to explore how prospective 
mathematics teachers, whose past experiences of mathematics teaching and learning are many and 
diverse, experience, and thus navigate, their teacher education programmes, specifically in relation 
to the practices and language-in-use of mathematics teacher educators. 

Reid (1996) sets out two features of enactivist research, derived from key principles of enactivism 
(Varela et al., 1991), that are “the importance of working from and with multiple perspectives, and 
the creation of models and theories which are good-enough for, not definitively of” (p. 207). From 
an enactivist perspective, any model or theory used to describe and explain a phenomenon cannot be 
definitively of some external truth. This does not mean that models and theories are of no use, rather, 
models and theories are accepted as being good-enough descriptions and explanations for the 
phenomenon under study rather than mirrors of reality. Thus, utilising multiple perspectives is one 
way of expanding what is possible to grasp during the research process. In combining our different 
methodological approaches, we also aim to disrupt the potential interdependency of theory and 
research findings that are often associated with the use of single perspectives, particularly in relation 
to sociologically related research within mathematics education (Gellert, 2008). As researchers we 
bring with us our “theories, beliefs, and biases” (Reid, 1996, p. 206), determined by our own history 
of experiences and interactions which shape the way we view and analyse the data that we collect. 
Thus, in addition to utilising multiple perspectives, an important methodological principle for us is to 
share some of our history as teachers and researchers so that our analysis can be framed within this 
context.  

Since an enactivist perspective endorses a view of learning (and thus researching) as “a recursive 
process linked to actions in the world giving feedback leading to adapted actions” (Brown, 2015, p. 
192), we have adopted a recursive approach to our research design. For an inquiry to be recursive, it 
involves an iterative process of data collection and analysis, where for example, the initial analysis 
of data feeds into subsequent analyses in an ongoing process. In this recursive inquiry, we utilise our 
multiple perspectives through looking at the same empirical data but through different lenses, making 
multiple revisitations of the data. In this paper, we use our previous analysis of the language-in-use 
of one mathematics teacher educator (Ebbelind & Helliwell, 2021) to situate a further layer of 
analysis, this time, from the perspective of a prospective mathematics teacher. We include our own 
reflections on the process of analysis alongside any observations and findings that emerge as a result 
of the analysis, which we share with one another in an ongoing dialogue, which then feeds into the 
next stage of analysis. Specifically, we see enactivism as an overarching methodological framework 
within which systematic functional linguistics (SFL) provides a complementary analytical tool. 

Previously we have developed a detailed description of our research methodology for analysing the 
language-in-use of a mathematics teacher educator. This research methodology was developed by 
extending the enactivist informed “methodology for studying talk” described by Coles (2015, p. 235) 
through utilising SFL as a systematic tool for identifying patterns in the transcript of the mathematics 
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teacher education lecture. In the next section we begin by sharing some of our own history and context 
(as explained above) before summarising findings from our previous analysis (see Ebbelind & 
Helliwell, 2021) where our focus was on the interpersonal aspects of the mathematics teacher 
educator’s language-in-use such as voice, tense, polarity, and modality (or certainty) during an early 
mathematics teacher education lecture for a group of prospective primary teachers in Sweden (the 
transcript of this lecture providing the first component of empirical material used in this study). 
Having established our reading of the mathematics teacher education lecture from analysing the 
language of the teacher educator, we then move on to explore the perspective of one prospective 
teacher, Lisa, in relation to the same lecture and the mathematics teacher education programme more 
generally.  

Analysis 
The authors of this paper were both mathematics teachers before becoming university-based 
mathematics teacher educators and researchers. Andreas teaches prospective pre-school (aged 1-6 
years) and prospective primary (aged 7-12 years) school mathematics teachers in Sweden. His 
research background links in different ways to social practice theory and symbolic interaction. Tracy 
teaches prospective mathematics teachers on a one-year postgraduate course for secondary (aged 11-
18 years) mathematics teachers in the UK. Her research background links to the perspective used in 
this study, enactivism, which she has used in researching mathematics teacher and mathematics 
teacher educator learning and development.  

During the lecture, the mathematics teacher educator, who from this point we refer to as Ian, talks 
about what it means to know something, for example, “one has an understanding of things when one 
does not have to remember what one must remember to be able to know”. He positions the prospective 
teachers as a unit, and ascribes the prospective teachers as all having had negative experiences of 
mathematics [note: in the transcripts that follow, ... represents a pause, [...] represents some missing 
text]: 

Ian: I think most students here today… who have gone through the whole school system 
and high school do not feel that way... was mathematics not really something you 
had to remember ... do this here and it will be alright [...] Students often do not have 
the skills needed to be able to present their thinking in for example writing ... It is 
not simply [...] how many doors do you have at home? What you come up with, we 
will then try to bring into this lecture. You should start thinking ... 

One possibility here is that Ian, perhaps unintentionally, is suggesting that the prospective teachers 
have had negative past experiences of mathematics as a way of promoting the reform agenda. When 
Ian focuses on current and future practices, we interpret this as relating to the deficit story of 
prospective teachers: 

Ian: Too many students have not understood anything ... We know that from the national 
board of education reports. If you understand, you do not have to keep such a lot in 
mind because you know why it is as it is, and you can pick it up and use it, and we 
want our students to be able to do that in the future. 

The level of certainty in Ian’s utterances is low when he speaks in relation to the prospective teachers. 
For instance, when he talks about the prospective teachers as solving the problem. The level of 
certainty is also low when Ian addresses the prospective teachers, encouraging the prospective 
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teachers to make sense for themselves of the lecture’s content. There are also low levels of certainty 
relating to mathematics as something for students to master.  

In the background, there seems to be a theme of general failure in relation to the past teaching of 
mathematics. This theme of failure is potentially being used to promote another type of teaching by 
Ian, “We must… you must in the future be able to write yourself mathematically ... we have to give 
students these tools to pass the national tests.” We interpret that Ian is (perhaps unintentionally) 
positioning all prospective teachers within a deficit story. Even though he promotes another agenda, 
the reform agenda, the perplexity, or exclusivity of mathematics is still a part of how the lecture is 
conveyed. There seems to be a narrative style that can be identified within the transcript of the lecture 
in that there is a story that unfolds, a story that involves the prospective teachers themselves. 
Throughout this lecture, Ian promotes the idea that there is another story to tell about teaching and 
learning mathematics than the expected experience of the prospective teachers. 

Following the lecture was a seminar where Ian set tasks for the prospective teachers to complete in 
their study groups (each study group consisting of a subgroup of the prospective primary teachers). 
The lecture and seminar were both based around the prospective teachers’ past participation in 
mathematics education, whether that participation was experienced as positive or negative. However, 
Ian made no reference to any positive experiences during the lecture, and neither did any of the 
prospective teachers. During the lecture, the majority of the prospective teachers commented on their 
lack of positive experiences as mathematics students. For prospective teacher Lisa, it became clear 
that her positive experiences of learning mathematics at school were uncommon within the group. 
When the different study groups were given a task related to the lecture concerning how their own 
experiences may have differed from those portrayed during the lecture, Lisa and her peers, Kira, and 
Dina, expressed how the reform-oriented ideas troubled them. This is reflected in the extended field 
notes from this session. 

On the way to the group work, Kira [one of Lisa’s study-group members] says that this is different 
from what she expected, something different from what she had done in school. The prospective 
teachers in this study group had good experiences of mathematics, they are interested in 
mathematics and seem to understand the mathematics to a higher extent than many of the others. 

During the seminar, members of Lisa’s study group indicate that some of their own experiences do 
not align with those emphasised in the seminar questions introduced by Ian, the teacher educator. 
Kira contrasts her past in relation to the present teaching during the teacher education programme, 
“[my past mathematics teachers] did not demonstrate mathematics in that way, with all these words 
on the board, that is said to be so good.” Lisa adds, “but doing mathematics was something that I was 
good at... I liked the textbook.” In relation to the reform-oriented teaching promoted by Ian, Dina 
concluded that “it was probably only later on in the national test you had to [do problem-solving 
questions] but otherwise, we were not allowed discussions in our class.” The three prospective 
teachers reacted to Ian’s utterances which emphasised the failure of schools, the prospective teachers’ 
“old” mathematics teachers, and the school system more generally, all of which contributed, 
according to Ian, to the prospective teachers’ “dislike” of the subject of mathematics. However, no 
one within this study group “disliked” mathematics, instead, they enjoyed it. They recall enjoying 
being challenged either by the mathematics textbook or the competitive elements or competitive 
teaching strategies. 
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Before calling the study groups back to the lecture hall, Ian has brief discussions with each study 
group. Lisa’s study group is the last group that Ian attends. He seems hurried and begins by discussing 
their negative feelings against the subject without asking them about their experiences: 

Ian: It seems that you got into the same thing as all the groups, I think, and that is 
probably it. Typical, that what you bring with you into this course. Is it possible to 
change this then? It will be a nice task ahead. Yes, you are to become excellent 
maths teachers. 

However, Lisa, Kira and Dina do not challenge Ian during this discussion, instead, they seem to play 
along and have a tentative conversation with him, aligning with his views. This deviation is brought 
up in an interview with Lisa one week after the seminar: 

Andreas: I attended your seminar when you had a group discussion ... and from what I 
perceived, you had a pretty good discussion, but then I thought, when [Ian] came, 
suddenly, he started talking ... 

Lisa: About many things that we did not discuss. 
Andreas: I was wondering ... 
Lisa: It felt a bit strange because it felt like what we had done was very wrong ... at the 

same time, it felt like we answered the questions ... and he replied ... it did not feel 
as if things were connected [...] Yes, it was bizarre [laughing]. But at the same time, 
you understand what he says, but it is not like you have considered ... often when 
you think back, you remember what was good ... one does not think in this way 
when you are young ... then, everything was good, and you quickly calculated 
things in the mathematics textbook, and it was damn good ... great fun and then 
when he puts it ... so maybe it was not so good ... it was probably a little awakening 
for us all...  

Discussion 
We set out, in this paper, to research the ways in which a prospective primary teacher navigates her 
initial mathematics teacher education programme and what we can learn, as mathematics teacher 
educators, by exploring the experiences of prospective teachers in relation to the language-in-use of 
mathematics teacher educators. In this section we present some tentative findings that prospective 
mathematics teacher Lisa, who had positive experiences of mathematics at school, learns to align 
linguistically with Ian’s (the mathematics teacher educator) contrasting views of mathematics 
teaching and learning, and in doing so, creates herself a safe space. 

The prospective teachers Lisa, Dina, and Kira all expressed their appreciation of mathematics as 
related to the way it was taught. They each remember the positive feelings that they had when 
participating in mathematics as students in school. However, Ian’s argumentation is somewhat 
different. He promotes another way of teaching mathematics, together with rejecting the teaching 
that, for example, Lisa recalls as being positive. There seem to be conflicting stories about effective 
teaching and learning of mathematics. When the prospective teachers participate in these teacher 
education situations, they can experience a form of tension, realising that their view of effective 
mathematics teaching is not accepted as valid within the teacher education programme. Lisa, Kira, 
and Dina, who enjoyed mathematics at school, re-negotiated the content taught by Ian. One 
interpretation here is that the prospective teachers do this as a way of creating a “safe space” (Gellert, 
2000) allowing them to continue enjoying mathematics in their own ways (Player-Koro, 2011).  

The deficit model of prospective teachers (Askew, 2008) seems to guide the story of the lecture, but 
at the same time, Ian seems to be convincing the prospective teachers that more (and different) subject 
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knowledge is needed as part of mathematics teacher education. The complex phenomenon arising is 
that while expressing mathematics as being difficult, Ian is simultaneously enacting the pastoral side 
of teacher education (Hannula, 2002). In other words, one potential challenge for the mathematics 
teacher educator is to create an environment where prospective teachers, who may be looked upon as 
problematic, are convinced that a problem indeed exists (within mathematics teaching and learning), 
without themselves becoming dejected. The majority of the prospective teachers embrace the ideas 
presented at the mathematics education course as a revelation, and Lisa, Dina and Kira also embrace 
the intentions linguistically. This means that when they participate in the teacher education setting, 
they align their language with the language of the teacher educator. However, beyond the formal 
setting, these prospective teachers express a different view of mathematics teaching and learning, to 
that being encouraged within the teacher education programme. The prospective teachers engage in 
different social practices, or in enactivist terms, they bring forth different “worlds of significance” 
(Reid & Mgombelo, 2015, p.181), triggered by the different environments (the formal and the 
informal) in which they participate.  

From an enactivist perspective, the way we respond to situations is determined by our history of 
experiences. The situation itself does not (and cannot) determine how an individual might respond, 
rather, different environments trigger different responses. From this position, a vital aspect of 
mathematics education programmes is acknowledging and working with the experiences (however 
varied these experiences may be) of the group of prospective teachers. By foregrounding the 
experiences of the prospective teachers, we need not abandon the quest to improve mathematics 
teaching and learning, but the emphasis shifts to supporting the prospective teachers in realising, for 
themselves, what might be possible in the mathematics classroom, that they have not yet themselves 
encountered. We are left with a set of new questions, both as mathematics teacher educators and 
researchers: How do prospective teachers in teacher education situations prioritise the content taught 
during mathematics teacher education programmes? Do prospective teachers prioritise the content 
taught during the teacher education programme, or do they prioritise something other than what seems 
to be expected from the mathematics teacher educator’s point of view? What is essential or relevant 
from the perspective of prospective teachers’ when attending the teacher education programme in 
general and in mathematics education in particular? How can we foreground the diverse experiences 
of the prospective teachers whilst supporting them to explore potentially new ways of teaching and 
learning mathematics? These questions we take with us into the future.  
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The study explores teachers’ opportunities to learn professional noticing while co-planning, 
rehearsing, co-enacting and reflecting on mathematics instruction in learning cycles of enactment 
and investigation. Fourteen primary school in-service teachers collaborated with teacher educators 
in the cycles and the study focuses on exploring what and how these teachers noticed. A framework 
of noticing was applied in the analyses with the aim of shedding light on the ways in which the 
participation in learning cycles enables teachers to collectively learn professional noticing. 
Findings reveal that teachers were provided with opportunities to learn high-level noticing. For 
instance, they attended to particular students’ mathematical thinking and made connections 
between teaching strategies and students’ mathematical thinking.  

Keywords: Professional development, learning cycles, professional noticing. 

Introduction 
Equipping teachers with practices that support students from diverse backgrounds is a critical role of 
professional development (PD). Such teaching practices “aim to deepen students’ understanding of 
mathematical ideas” and support the learning of all students “across ethnic, racial, class and gender 
categories” (McDonald et al., 2013, p. 385). Teachers’ professional noticing – a process through 
which teachers make sense of what occurs during instruction and make plans to respond to students’ 
mathematical thinking (SMT) – has become widely accepted as a key teaching practice. What and 
how teachers notice, matters for student learning (van Es & Sherin, 2021). Novice teachers are often 
able to talk about SMT (i.e., students’ strategies, representations and reasonings), but they find the 
enactment of practices based on what they noticed challenging (e.g., Thompson et al., 2013). Also 
experienced teachers are unprepared to notice SMT (Empson & Jakobs, 2008). Learning to enact 
practices that support all students takes time and because “teachers can be responsive only to what 
has been noticed” (Jacobs & Spangler, 2017, p. 192) learning such practices is important for PD (e.g., 
Kavanagh et al., 2019). Such learning is explored in this study.  

Noticing is an awareness that enables action and skilled teachers are quicker to identify situations that 
require intervention (van Es, 2011). Because it can lead to changed teaching practices, noticing is “a 
key component of teaching expertise and of mathematics teaching expertise in particular” (Sherin et 
al., 2011, p. 79). Teacher noticing is conceptualised in a variety of ways (van Es & Sherin, 2021). 
The term is here considered to include a) attending to SMT throughout learning cycles of enactment 
and investigation (Figure 1), b) reasoning about SMT, and c) making informed teaching decisions 
according to an analysis of observations of SMT. 

Developing the ability to notice can be learned through collaboration and scaffolded support (e.g., 
Star et al., 2011). In the Mastering Ambitious Mathematics teaching project (MAM), in-service 
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teachers collaborated in learning cycles so they could develop their ability to notice SMT and enact 
on what they noticed. The analysis meets the call from previous research (Stockero, 2021) when 
drawing on sociocultural perspectives while aiming at shedding light on the ways in which learning 
cycles might enable teachers to collectively learn to notice SMT. Within MAM, an exploration what 
teachers prepare to notice in co-planning discussions suggests that the teachers focused both on 
particular SMT and on pedagogy (Fauskanger & Bjuland, 2021b). In addition, Fauskanger and 
Bjuland (2021a) suggest that developing the ability to notice – both what to notice and how to notice 
(van Es, 2011) – can be learned through scaffolded support and collaboration in co-enactments in 
MAM. While these previous studies within MAM offer the field a glimpse into co-planning and co-
enactment in the context of PD, they point out that in order to make clearer conclusions, we need to 
develop our understanding of how all the different elements in whole learning cycles provide teachers 
with opportunities to learn professional noticing. Bearing this in mind, the present study examines 
one representative learning cycle. It draws to a large degree on the analysis of teachers’ learning from 
participation in video-based programs (for a review, see Santagata et al., 2021). However, our work 
augments the literature by situating practicing teachers in the authentic work of teaching (asked for 
by Stockero, 2021). By also exploring co-planning, this study meets limitations from previous 
research, namely the lack of focus on preparation to notice (Choy et al., 2017). Exploring what as 
well as how teachers notice in whole learning cycles is one way to meet this call. The following 
research question is addressed: How can teachers’ engagement in learning cycles provide them with 
opportunities for learning what and how to notice? 

Methods 
Sociocultural views on teacher learning inform the presented study which draws on a description of 
learning, thinking and knowing as “relations among people engaged in activity in, with, and arising 
from the socially and culturally structured world” (Lave, 1991, p. 67). We see learning cycles as 
contexts for having reasoned dialogues (i.e, dialogues where everyone engages critically but 
constructively with each other’s ideas and where everyone’s ideas are treated as worthy of 
consideration) providing “affordances for changing participation and practice” and thus opportunities 
for the participants to learn (Greeno & Gresalfi, 2008, p. 172). Opportunities to learn is understood 
as emerging in activities, and from this perspective, teacher learning includes developing the ability 
to engage in particular practices. Learning cycles (Figure 1) were designed to engage teachers in 
learning professional noticing.  

 
Figure 1: Cycle of enactment and investigation for PD (Wæge & Fauskanger, 2021) 
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In designing the cycles, we gave the teachers repeated opportunities to co-plan, rehearse, co-enact 
and reflect upon a set of intentionally selected instructional activities (e.g., choral counting, quick 
images, number strings) with teacher educators as supervisors. The activities supported the teachers 
in noticing SMT and in making judgments on how to respond in principled, instructive ways 
(Kavanagh et al., 2019). Throughout the cycles, the teachers were encouraged to 1) ask questions, 
explain and justify their mathematical and instructional ideas, 2) find multiple strategies and 3) try to 
understand what other participants said and did. Thus, a setting was developed where teachers could 
be engaged in the joint enterprise of learning to notice in which questions and disagreements were 
viewed as a productive part of the enterprise. Fourteen Norwegian primary-school teachers (divided 
into two groups) met for nine full learning cycles over the course of two years, producing 18 
videotaped cycles. In this paper, the analysed data material has been taken from video recordings of 
one representative cycle (shaded in Table 1) where the instructional activity worked on was a quick 
image (Figure 2, more about quick images at https://tedd.org/quick-images-2/). 

Table 1: Video material analysed – an overview (group 2, session 4) 

MAM 
cycle/ 

group 

Collective 
analysis (all 

groups) 

Co-plan-
ning 

(gr2) 

Re-hearsal 

(gr2) 

Co-enact-
ment 

(gr2) 

Collective 
analysis 

(gr2) 

Discussion 
(all groups) 

Discussion 
(supervisors/r
esearchers) 

4/2 24:51 59:21 21:29 26:46 19:56 29:42 58:18 

 

A framework developed by van Es (2011) was used to analyse the depth and analytic stance of 
noticing, focusing on the teachers’ discussions. This framework includes four levels. The first two 
levels (baseline and mixed) are considered as low-level noticing since the noticing is related to the 
class as a whole and teacher pedagogy (what teachers notice), and the teachers provide descriptive 
and evaluative comments from particular events throughout the learning cycle (how teachers notice). 
van Es (2011) denotes the two next levels (focused and extended) as high-level noticing since the 
teachers are then attending to particular SMT, or they are concerned with the connections between 
teaching strategies and particular SMT (what they notice). The extended level of noticing (how 
teachers notice) is described by van Es (2011, p. 139) as highlighting “noteworthy events”, providing 
“interpretive comments”, referring “to specific events and interactions as evidence”, elaborating on 
“events and interactions”, making “connections between events and principles of teaching and 
learning”, “using interpretations”, and proposing “alternative pedagogical solutions.” The co-
planning and the collective reflection session were divided into small sequences of utterances which 
were coded baseline, mixed, focused and extended respectively. Each Teacher Time Out (TTO) in 
the rehearsal as well as in the co-enactment were coded including these four levels of noticing.   

Our analytical stance has primarily been to focus on high-level noticing, identifying whether the 
teachers are attending SMT and highlighting noteworthy events. When presenting findings from the 
exploration of how the teachers’ engagement in this particular learning cycle provides them with 
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opportunities for learning what and how to notice (whether they interpret, explain and give reasons 
in their discussions), we will follow the learning cycle (Figure 1) step by step, starting with the co-
planning session.    

Findings and discussion 
The focus of attention in the co-planning discussion is summarised in Table 2. 

Table 2: The co-planning session  

Time Focus of the co-planning discussion 

00:00-
22:00 

The teachers present student strategies based on student responses from trying out the quick image in their 
own classrooms. The supervisor writes the strategies on the smartboard. The strategies are then illustrated 
on a quick image before the participants discuss how to write the students’ strategies by using symbols. 

Based on this discussion, the supervisor initiates a discussion of the commutative property (i.e., 8 × 3 = 3 
× 8). 

22:00-
51:40 

The supervisor initiates a discussion about what goal for students learning they should aim at. The 
associative property of multiplication, as well as the idea of generalisation (extending the quick image) is 

discussed. About 45 minutes into the discussion, the supervisor suggests a goal from their previous 
discussion: “Yes, what mathematical idea should we focus on? Is it the associative property or is it more 

to develop a general expression for the total amount of chocolates in the boxes? [the dots in the quick 
image represent pieces of chocolate].” They agree to aim at the associative property. 

51:00-
59:21 

Discussion of practical teaching strategies and how to structure and teach the activity for the students. 

 

Whereas practicalities were the focus of attention in the last part of the co-planning discussion, 
different levels of noticing were visible in the first two parts. When predicting student strategies and 
representing them in the quick image as well as by using symbols, the teachers attend both to the 
relationship between particular SMT (what, focused) and between teaching strategies and SMT (how, 
extended). As an example, the suggestion “I see four times three, twice” from one of the teachers is 
followed by a discussion of how this strategy might be represented in the quick image as well as by 
using mathematical symbols. The teachers make connections between SMT and teaching strategies 
(how, extended). In the mid part of the co-planning session, a discussion of the connection between 
student strategies and teaching is visible when the aim for the lesson is in focus. It ends by a decision 
that they will challenge the students to develop their strategies into three factors (e.g., 8 × 3 = 4 × 2 
× 3) in order to aim for the goal for the lesson: the associative property of multiplication (e.g., (4 × 
2) × 3 = 4 × (2 × 3)). Throughout the co-planning session the participants return to the commutative 
property of multiplication and some of the participants seem to mix commutativity and associativity. 
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However – and similar to findings from Fauskanger and Bjuland (2021b) – the participants’ 
preparation to notice (Choy et al., 2017) seems to provide the teachers with affordances for changing 
practices of how and what to notice on extended levels (van Es, 2011) and thus opportunities for the 
participants to learn (Greeno & Gresalfi, 2008) professional noticing. 

In the rehearsal as well as in co-enactment in MAM, the participants can pause the instruction by 
initiating a TTO (Figure 1) so they can think out loud together in the moment, discuss how the teacher 
might respond to students’ contributions and determine the direction of the further instruction. In the 
rehearsals across all learning cycles in MAM, 175 TTOs were asked for (Wæge & Fauskanger, 2021), 
18 in the particular rehearsal analysed here. In four of the TTOs from this particular rehearsal, the 
participants focused on representing anticipated students’ strategies in a quick image, discussing how 
to write the mathematical ideas in a symbolic language (2 × 12 and 4 × 6). We will show one example 
from the participants’ discussion in one of these TTOs to illustrate their opportunity to reason and to 
gain insights into SMT. This is an important component of high-level noticing (van Es, 2011). One 
of the teachers came up with the following strategy: “I saw another pattern: eight in each row,” and 
went to the board and showed three groups of eight dots (Figure 2b). Based on this initiative, the 
teacher, who was chosen as the instructor in the enactment, wrote 3 × 8 on the board and said: “In 
which way is it possible to see the eight here [points to the first row].” Another teacher went to the 
board and showed two groups of four dots in the quick image. Based on this initiative, the instructor 
wrote 3 × (2 × 4) (Figure 2c). This example shows how predicted student strategies are discussed and 
represented in the quick image by the participants, gaining insights into SMT (focused). The instructor 
expressed the following utterance: “We have three factors in each and then they [the students] can 
talk together about what they see.” This utterance indicates that the participants are attending to the 
relationship between SMT and between teaching strategies and SMT (extended). Teacher noticing is 
conceptualised in a variety of ways (van Es & Sherin, 2021). This example in one of these TTOs 
illustrates signs of the two interrelated and cyclical processes of attending and making sense of 
particular events (SMT and teacher strategies), often involved in teacher noticing (Sherin et al., 2011). 
At the end of this rehearsal, the goal set for the enactment, focusing on the associative property of 
multiplication was briefly mentioned.  

In the co-enactments across all learning cycles in MAM, 189 TTOs were asked for (Fauskanger, 
2019) and out of these 125 were identified as opportunities to learn professional noticing on various 
levels (Fauskanger & Bjuland, 2021b). The co-enactment in the learning cycle analysed here included 
three TTOs and two out of these were instances of high-level noticing (van Es, 2011). In the 
following, we delve into one of these TTOs to illustrate the teachers’ opportunity to reason about 
SMT and to make informed teaching decisions based on these observations made in the moment of 
instruction. Just before the TTO, a student presents her strategy as seeing four six times in the quick 
image. The teacher circles four dots six times in the image (Figure 2d). When invited to the board, 
this student writes 4 × 6 = 24.  
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Figure 2: All student strategies from the co-enactment (The multiplication sign used is “∙”. This is the 

most common sign to use in Norway. In this paper we decided to use “×” for easier reading.) 

The teacher asks the students how to split the 6 in 4 × 6 into “another multiplication task.” A student 
answers: “two times three” and the instructor writes 4 × (2 × 3) on the board and says that she realised 
that 4 × (2 × 3) could not be represented as the six fours in the image (Figure 2d). From what follows, 
the teacher obviously is thinking of 2 × 3 as six dots and is confused. She draws six in Figure 2e. The 
supervisor asks for TTO saying: “I think I see the six in the upper image (Figure 2d)” and asks the 
students if they “see six” in Figure 2d. They point to the six fours. This TTO invites the participants 
to attend to the relationship between particular SMT (i.e., that six in this quick image could be 
represented as six groups of four dots (Figure 2c)), SMT (i.e., six in this quick image represented as 
six dots (Figure 2e)) and teaching strategies such as representing SMT (what) and to work on 
alternative pedagogical solutions (how) as alternative ways of representing students’ strategies. 
Whereas this TTO provides the teachers with opportunities for learning extended noticing, in the 
second TTO the teachers attended to particular students’ mathematical thinking (focused). In the third 
TTO, time issues were discussed. Similar to findings from Fauskanger and Bjuland (2021a), our 
findings indicate that by being provided with affordances for changing practices, the participants have 
opportunities to learn (Greeno & Gresalfi, 2008) extended levels of noticing (van Es, 2011) in-the-
moment of teaching in the co-enactment analysed. 

In the collective reflection discussion following the co-enactment, all participants looked at the 
smartboard from the co-enactment and focused on the different student strategies represented in the 
quick image (Figure 2). The focus of attention is summarised in Table 3.  

Table 2: The co-planning session 

Time Focus of the collective reflection after co-enactment 

00:00- 

05:30 

The participants focus particularly on two ideas introduced by two individual students from enactment. 
One of the students expressed that he/she “saw a box with four across and three upwards, then there were 

two boxes and I took [multiplied] eight times three”, writing 8 × 3 = 24 on the board (see Figure 2a). 
Another idea was to see four six times in the quick image, writing 4 × 6 = 24 on the board (Figure 2d). 

05:30-
13:20 

They put efforts into practical issues related to the instructional activity of the quick image. One of the 
participants thinks that only spending 20 minutes on this activity is too demanding and suggests that 45 

a 

b 

c 

d 

e 
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minutes would be a more realistic time frame. They are also discussing the use of talk moves and 
mathematical language related to mathematical terms and concepts.    

13:20- 

19:57 

The participants focus particularly on the commutative and associative property of multiplication. The 
teacher (instructor) posed quite a few questions related to these properties. This is exemplified by the 

following questions, presented in Fauskanger and Bjuland (2019, p. 126): “Why is it called commutative 
[property for multiplication] when there are two [factors] and associative [property for multiplication] 

when there are three [factors]? What’s the difference? Why couldn’t we just use [the word] commutative, 
why is another word used there? It’s just the same, isn’t it? It’s all about the order of the factors, or are 

they [commutative and associative properties of multiplication] two different things?” 

As seen in Table 3, the second part of the discussion after the enactment attends to the whole class 
environment with general descriptions and teacher pedagogy related to time frames, the use of 
mathematical language and the use of talk moves. This indicates low levels of noticing. Whereas a 
discussion related to the commutative and the associative property of multiplication was the focus of 
attention in the last part of this session (no levels of noticing), higher levels of noticing were visible 
in the first part. From one of the student strategies, seeing eight times three (what, focused), the 
participants agreed that it seemed to be difficult for the students to split the eight (8 × 3 = 24), 
illustrating the mathematical representation in the quick image, (4 × 2) × 3 (how, focused). The 
supervisor elaborated on this particular event (SMT) and challenged the participants to consider how 
to use this idea with the aim for three factors which are related to their mathematical learning goal 
for the lesson (how, extended). In a similar way, they discussed the other student’s idea (4 × 6 = 24 
on the board), how to “split the six”, reiterating this situation from the enactment. The supervisor 
summarises this discussion by concluding that “the number six could be represented in the quick 
image in different ways, depending on whether six is seen as the number of groups or as dots within 
a group” (Fauskanger & Bjuland, 2019, p. 139). 

Conclusion and implications 
Meeting the call from Stockero (2021) – to explore noticing in-the-moment during the act of teaching 
– and from Chong et al. (2017) – to explore teachers’ noticing while planning instruction – this study 
explores how teachers’ engagement in learning cycles (Figure 1) provides them with opportunities 
for learning professional noticing. Our analysis indicates that all parts of the learning cycles are 
contexts where teachers can learn to notice students’ ideas and respond to them. When working 
together in learning cycles, the participants practise how to build on SMT (Empson & Jacobs, 2008), 
as has been endorsed in many reform documents. In conclusion, developing the ability to notice – 
both what to notice and how to notice (van Es, 2011) – can be supported through collaboration (e.g., 
Star et al., 2011) as in the learning cycles in MAM.  

While this study provides the field with a glimpse into one learning cycle in the context of PD, more 
research is needed. Compared to studies of teacher noticing in video clubs (Santagata et al., 2021), 
the learning cycles (McDonald et al., 2013) appear to provide teachers with opportunities to learn 
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higher levels of noticing. However, in order to be able to make clearer conclusions we need to provide 
systematic explorations of more learning cycles, inside as well as outside of the MAM project. 
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This study investigates the potential of engaging secondary pre-service teachers in a team-teaching 
approach called Socratic lectures to develop their communicational skills. An intervention was 
designed centered around a workshop sandwiched between a pre- and a post-presentation on natural 
logarithmic and derivatives to an audience of undergraduate students. A quantitative and qualitative 
analysis of 155 pre- and 92 documented post-experiences of the undergraduate students’ shows that 
the pre-service teachers’ presentations and communicating skills developed positively over the 
course of the intervention. The accompanying statistical analysis of Likert evaluation items shows a 
significant increase of multiple communicational aspects of the pre-service teachers, and the line-by-
line analysis of written evaluations support this claim regarding the pre-service teachers’ 
interactivity. Issues about generalizability and future research is also discussed. 

Keywords: Interaction, pre-service teachers, socratic lectures, team teaching, questions.  

Introduction 
Asking the right questions to support, motivate and engage students in learning is a central part of the 
teaching profession (Paoletti et al. 2018). Mathematics teaching in Sweden has a long history of 
traditional teaching, a method based on directing students’ learning by presenting mathematical 
content at the blackboard followed by individual work in the textbook. Research reports (Jablonka & 
Johanssson, 2010) show that the traditional teaching influence students to lose interest in 
mathematics. In this research project, we investigate the potential of so-called Socratic lectures to 
develop pre-service secondary teachers' strategies to ask different types of questions with different 
purposes to motivate and engage students to learn mathematics. We report on preliminary results 
from an intervention, organized around a workshop introducing the Socratic lecture strategy, where 
48 pre-service secondary teachers (PSSTs) prepared and presented a focused mathematical content 
to undergraduate students before (Pre) and after (Post) a workshop. In this paper, we focus on a set 
of empirical data gathered on the audience’s experiences of their level of engagement in the 
intervention (the undergraduate students’) during the PSSTs’ the pre- and post-presentations.  

Socratic lectures is a teaching strategy we have developed from research literature on Self-
Determination Theory (SDT, see e.g. Ryan & Decis, 2000), rhetoric and team-teaching/co-teaching 
(see e.g. De Backer et al., 2021; Kamens, 2007). The teaching strategy, which is based on the Socratic 
method (Thompson, 1998), is constructed in the form of a play, where two lecturers use the Socratic 
method by asking questions to each other (and to the audience) in the form of a dialogue and thereby 
engaging the audience to make them interested. The teaching strategy is to some extent applied in 
computer courses at the Department of Computer and Information Science at Linköping University 
and has been praised by students as an engaging and productive way of teaching. Students’ course 
evaluations have emphasized communicational aspects, such as developing a friendly and pedagogic 
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atmosphere for discussions, as fruitful for their learning. Motivated by these positive evaluations and 
that team teaching has shown many valuable effects in research literature, such as increased dialog 
about learning and teaching (De Backer et al., 2021), we aim to explore if applying Socratic lectures 
by PSSTs also develop their communication skills in the teaching of mathematics. Communication 
is here broadly understood as “a process by which information is exchanged between individuals 
through a common system of symbols, signs, or behavior” (Merriam-Webster, n.d.), which include 
written, verbal and non-verbal interactions. The research question posed to address the aim is: 

How, if at all, did the PSSTs’ communication skills in the mathematics of teaching, viewed from 
undergraduate students’ expressed experiences, develop after participating in the workshop on 
Socratic lectures? 

Socratic lectures 
Self-Determination Theory (SDT, see e.g. Ryan & Decis, 2000) emphasizes competence, autonomy, 
and relatedness as central psychological features for increasing motivation. Thus, participation in 
social contexts (relatedness) affects individuals’ motivation to learn if the contexts entail 
opportunities to influence (autonomy) and to draw own conclusions (competence). Adopting a feeling 
of being interested in something and being involved in one’s own learning are keys to success in 
school, which also applies to the subject of mathematics (Murayama et al., 2013). In trade and sales, 
it is important to ask the right questions to make customers feel that they 'really' need a certain 
product. Salespeople often use rhetorical tricks and techniques based on asking questions, which lead 
the customer to think in a certain direction, so that they desire to buy the product. One such technique 
used in courtrooms and in political discussions is the Socratic method (Thompson, 1998), which is 
based on asking leading questions to steer other people’s thinking in a certain direction. The central 
parts of the method are the questions themselves and questioning, because they can facilitate students’ 
knowledge production (Lew et al., 2017). There are several categorizations of the types of questions 
used in teaching, such as fact, next step, proof framework, warrant, evaluation, and convention 
(Paoletti et al. 2018). Frequently the different types of questions are connected to factual-, procedural-
, conceptual-, or meta cognitive knowledge (Smith & Julie, 2014), which also illustrates the 
importance of using different types of questions to enhance the development of all types of 
knowledge. 

Socratic lectures as a teaching strategy is related the paradigm of team teaching sometimes, also 
sometimes called co-teaching, which refers to “two or more professionals jointly deliver substantive 
instruction to a diverse, or blended, group of students in a single physical space” (Cook & Friend, 
1995, p. 1). In teaching practices, however, the level of collaboration between teachers and how they 
jointly deliver instructions may vary. Based on a research literature review, Baeten and Simons (2014) 
identified five models for team teaching: the observation model, the coaching model, the assistant 
teaching model, the equal status model and the teaming model. The models capture the roles of the 
actors in terms of taking passive or active responsibility for the teaching. The models range from 
passive to active participation in the classroom. One of the teachers can act as a passive observer, to 
coaching students to assisting the other teacher or even taking more active responsibilities by sharing 
the working load and splitting the number of students and/or the content to teach as in the equal status 
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model. The teaming model is the ideal model where the teachers collaborate in all phases of planning, 
delivery, and evaluation, with the characteristics of two teachers “in front of the entire class group 
and there is a lot of interaction and dialogue between them” (Baeten & Simons, 2014, p. 94). Socratic 
lectures has these features and should be categorized in accordance to this model. A recent literature 
review (De Backer et al., 2021) concluded that team teaching has the advantages of increased support, 
increased dialog about learning and teaching, professional growth, and personal growth, but also 
potentially the disadvantages of lack of compatibility of peers, comparison between peers, difficulty 
of providing constructive feedback and increased workload. In this paper, we only investigate on the 
potential of increased dialog about learning and teaching, which exactly emphasize the frequent 
opportunities of team teaching for PSSTs to discuss and evaluate teaching approaches between each 
other. While there is a wide corpus of literature about team teaching in educational research generally, 
to date this strand of research in mathematics education it is more limited. The existing literature 
concerns how experienced teachers can teach together with teacher students (Yopp-Edwards et al., 
2014), and the use of "team teaching" for developing special education courses on mathematics 
teaching and learning (Guðjónsdóttir & Kristinsdóttir, 2011), but to our knowledge no research 
focusing on how PSSTs develop their ability to teach in dialogue. This study will contribute with new 
knowledge in this area of research as well as address the call by Kamens (2007, p. 156) “to include 
realistic classroom-based experiences in co-teaching” in teacher education.  

The intervention and data collection 
The 48 participating PSSTs were enrolled in a first course on mathematics education in a secondary 
teacher training programme. About two thirds (30 out of 48) of the PSSTs had completed a 2,5-week 
introductory course in educational science and started taking a mathematics course in algebra prior 
to participating in the study, the other third had taken a course in geometry as well as started the 
algebra course, in addition to courses at the university for a year on other subjects, such as English or 
Biology. The intervention was designed in three parts a pre-presentation, a workshop and a post-
presentation. After the pre-presentation the PSSTs had one week of teaching practical practice a at 
regular school before attending the workshop, thereafter, a few days until the post-presentation. 

For the pre-presentation the PSSTs were grouped in 24 pairs and instructed to prepare and present a 
15-minute presentation on a given mathematical content for a set of undergraduate students enrolled 
in a preparatory course on secondary mathematics for achieving qualification for entering the 
university. The PSSTs were asked to present either the basic rules for differentiating (i) polynomials 
and power functions; (ii) exponential functions of type y=akx; or (iii) natural exponential function and 
how work with the logarithm rules. The aim for the pre-presentation was to deepen and consolidate 
the undergraduate students’ knowledge in these areas, since the undergraduate students previously 
had received two lectures within their course on these topics. The PSSTs were not instructed how to 
organize and arrange their presentation more than to observe basic principle such as engage and 
motivate the students, write clear and concise, use proper mathematical notations, speak so the 
audience can hear, don’t talk to fast, etc. In other words, the instructions provided the PSSTs with 
freedom to independently select presentation strategy. The undergraduate students were organized in 
ten classrooms and experienced two or three pairs of Socratic lectures by the PSSTs.  
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The 4-hour workshop on Socratic lectures was mandatory for all PSSTs and was taught and organized 
by four teachers from the Department of Computer and Information Science. The first and third 
authors were observing and videotaping the activities during the workshop. The workshop included 
both theory on the teaching strategy and practical training. In short, the workshop was organized in 
the following blocks: an introduction (30 min) describing the background of Socratic lectures and the 
basic principles of using a dialog conversation mode in pair teaching; a first practical training session 
(45 min) where students were instructed to re-work their pre-presentation using the Socratic teaching 
strategy, including a presentation of one of the PSSTs pairs whom also received feedback from the 
four teachers; more theory (15 min) a presentation on how to engage the audience using questions; a 
second practical training session (45 min) were organized as the first practical session, but with the 
exception that the PSSTs were instructed re-work their presentation again to also engage the 
audience.; a model example (20 min) on recursion presented by two of the programming teachers to 
show how the method is used in one of their courses; and finally a concluding discussions (35min) 
where the teachers summarized the day and opened up the floor for more discussions and comments. 
The four teachers teaching the workshop applied the strategy of Socratic lectures during their 
theoretical presentations and assisted and coached the students during the practical training blocks. 

In preparing their 15-minute post-presentation the pairs of PSSTs were instructed to use their notes 
from the workshop and to implement the Socratic lectures strategy to the same undergraduate students 
as in the pre-presentation. The PSSTs tasks in their post-presentation were to demonstrate and discuss 
solutions of assessment tasks on differentiation and logarithms, such as: Find the local maximum and 
minimum values to f(x)= x2- 2x4+ (5/8) and Find the maximum area of a perpendicular triangle 
inscribed with its base on the x axis and its upper corner on the parabola y = 36 − 3x2. 

The data collected document: the video recordings of all PSSTs pre- and post-presentations; the 
PSSTs’ written reflection of their experiences and expressed views after each presentation; and the 
undergraduate students’ evaluations of the pairs of PSSTs’ presentations. This paper focuses on the 
undergraduate students’ evaluation forms, which were distributed and filled out individually directly 
after each presentation. The pre- and post-presentation evaluation forms were identical and included 
seven statements to be ranked on a 5-point Likert scale, and three open questions. The Likert items 
concerned: if the content was relevant; if the presentation was instructive; if the presentation was at 
the right level; if the presentation was inspiring; if the PSSTs engaged in good dialogs with the 
students; if the PSSTs asked enough questions; and if they like mathematics. The three open questions 
were What aspects have you experienced as positive in the presentation? What can be further 
developed in the presentations? and Additional comments. There was also a question about the 
undergraduate students’ last grades in mathematics from secondary education. The question if they 
like mathematics and last grades do not focus on communication and are not analyzed in this paper. 

Analysis and results 
The undergraduate students’ responses, 155 on the pre- and 92 on the post-evaluation forms were, 
copied into a spreadsheet (SPSS). Answers on all Likert items were analyzed and compared using 
descriptive statistics and paired sample tests (dependent t-tests). The answers to the two first open 
questions in the evaluation forms filled out by the undergraduate students were short in length (from 
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just a few words to a few sentences). These answers were explored through a qualitative iterative 
process of open coding using a line-by-line analysis (cf. Chenail, 2012), with a focus on what 
communicational aspects in the presentations were emphasized and what aspects were expressed to 
be potentially improved. The open codes were grouped into six themes, which are discussed below. 

First however, we report on the statistical analysis of the undergraduate students’ responses on the 
evaluation forms regarding their expressed experiences about the presentations in terms of the 
presentations being relevant; at the right level; instructive; inspiring; engaging the in dialogs; and 
regarding the use of adequately many questions (see Table. 1 below). 

Table 1: Undergraduates’ expressed experiences of PSSTs’ presentations 

 Relevant Level Instructive Inspiring Dialogs Question. 

Pre Mean 4,47 3,77 3,60 3,52 3,18 3,51 

N 155 155 154 155 155 153 

Std. Dev. 0,70 0,95 1,09 1,03 1,10 1,12 

Post Mean 4,60 4,22 3,88 3,89 4,08 4,01 

N 92 92 92 92 92 91 

Std. Dev. 0,54 0,75 1,00 0,89 1,06 0,94 

 

With respect to the undergraduates’ experience of the PSSTs’ engagements in dialogs, Table 1 
indicates that the workshop made a significant positive impact on the PSSTs’ interactions with the 
undergraduate students (Mpre = 3,18, SDpre = 1,10; Mpost = 4,08, SDpost = 1,06; t(91)= -5,75, p = .000). 
There was also a significant increase found with respect to the undergraduates’ experiences of the 
PSSTs use of questions (Mpre = 3,51, SDpre = 1,12; Mpost = 4,01, SDpost = 0,94; t(91)= -3,46, p = .001), 
as well as the workshop having a significant positive impact on the PSSTs communication skill in 
terms of adopting an accurate level of presentation (t(91)= -3,68, p = .000); being relevant (t(91)= -
2,23, p = .028); being instructive (t(90)= -2,49, p = .015); and being inspiring (t(91)= -2,05, p = .043). 

The line-by-line analysis of the undergraduate students’ answers on the pre- and post-evaluation 
forms to the open questions What aspects have you experienced positive in the presentation? and 
What can be further developed in the presentations? generated six themes: (i) personal attributes 
such as if the PSSTs were experienced as friendly, confident, nervous, etc.; (ii) interactivity focuses 
on aspects of discussions, checking, opening th floor for questions, developing a positive atmosphere, 
etc.; (iii) planning captures the experienced prepared communication in terms of suitable level of 
instructions, how to end, choice of tasks, etc.; (iv) delivering focuses on the instrumental aspects of 
communicating such as black board skills, being loud and clear, pedagogic, etc.; (v) mathematics 
relate to aspects of how the content of mathematics was presented such as step-by-step explanation, 
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mathematical rules, use of mathematical language, arguments for why, etc.; and (vi) collaboration 
concerns the communication dynamics between the presenting PSSTs. To compare the 
undergraduates’ answers between the pre- and post- evaluation forms we report, in table 2 below, on 
the relative frequency of codes in the themes, as well as the frequency of those undergraduates that 
explicitly answered the question about what aspects of the presentation that could further be 
developed with lines such as “everything was good” or “hard to find aspects to improve”. 

Table 2: Undergraduates’ answers to the two open questions in the evaluation form 

Themes: Attri. Interac. Plan. Deliver. Math Collab. Good N 

Pre + 11% 13% 25% 38% 10% 3%  313 

Post + 7% 25% 25% 39% 4% 0%  177 

Pre  - 10% 15% 14% 38% 16% 2% 6% 150 

Post - 5% 8% 16% 36% 14% 2% 20% 64 

 

The thematic categorization of the undergraduate students’ answers as displayed in table 2 show that 
the proportion of codes in the themes of planning and delivering the presentations was stable between 
the two occasions both regarding what was positive (+) and what can be further developed (-). The 
same can be concluded with respect to the question of what could further be developed when 
presenting the mathematical content. Commonly among the third of the undergraduates that provided 
an answer within this theme in the pre-evaluation suggested the PSSTs to be more explicit: “Please 
ask more questions and explain WHY you do as you do and why I should learn this” or “Explain why 
it is like that, not just say it is”. In the post-evaluation forms these types of suggestions were sparse. 
The first quote above indicates a suggestion to the PSSTs to try to interact more with the audience by 
asking question. This was a frequently found argument in the pre-evaluation answers, but a type of 
argument that decreased in number in the post-evaluation. The undergraduates’ suggestions on the 
post workshop presentations instead commented on the use of too many questions: “The organization 
of the presentation was messy and they asked too many questions just like being students”. Regarding 
the relative frequency of codes in the interactivity theme there is an increase of positive experiences 
after the workshop and a decrease in suggestions for improvement. Although the workshop focused 
on the collaboration between the presenters, the undergraduates only provide a few comments within 
this theme (collaboration) and the relative frequency was low and quite stable between the pre- and 
post-presentations. The results from the Likert items showed that the undergraduates were more 
satisfied with the post-presentation, which also is supported by the increase of relative frequency 
within the category addressing that presentation was good (an increase from 6% to 20%) and that 
hardly any further suggestions for improvement were provided in the post-evaluation.  

Proceedings of CERME12 3111



 

 

 

Conclusion and discussion 
The statistical analysis of the answers on the Likert questions showed a significant increase between 
the pre- and post-presentation of many communicational aspects of the PSSTs. We therefore conclude 
that the PSSTs’ presentations and their communicating skills developed during the intervention as 
experienced by the undergraduate students. This conclusion is also supported by the line-by-line 
analysis regarding the increase of the relative frequency of interactivity and the quality of the 
presentations as experienced as good. The results may be summarized by the following quote of an 
undergraduate students on the post-evaluation arguing: “They asked a lot of questions to all of us in 
the group, good pace, an incredible improvement since last time”.  

The results presented in this paper are in accordance with other research studies (e.g. Baeten & 
Simons, 2014; De Backer et al., 2021) showing that team teaching provides a platform where 
interaction and dialogue between the presenters and their audience is a central component of the 
activity. From the line-by-line analysis of the pre-presentation experiences, the undergraduates voiced 
that the PSSTs showed the procedures to apply when solving tasks, but they were missing 
explanations of “why” the mathematical procedures were applied. A possible reason for this is the 
PSSTs’ lack of experience of doing presentation. Indeed, for two thirds of the PSSTs this might have 
been their first chance to act as a teacher and presenting mathematical content. In addition, since all 
PSSTs just had begun to study mathematics at the university level, they might not have felt confident 
enough regarding the mathematical topics to get into conceptual issues. The type and number of 
questions asked by the PSSTs could better be explored using video analysis of the actual situations, 
which we will follow up with in an upcoming study. The results show, however, that undergraduate 
students experienced that the interactivity increased after the workshop possibly indicating that the 
number of questions increased. 

What effect the workshop had on the results, require further analysis. On the one hand, all PSSTs 
attended the workshop and practically tested the new teaching strategy of Socratic lectures focusing 
on their communicational skills. But, on the other hand, the students also had a week of teaching 
practice in regular school where they also had opportunities to work on their communicational skills 
when presenting to a group of students. In addition, the decrease between the undergraduate students 
participating in the pre- and post-presentations could be another reason for the increase in positive 
experiences. The students that did not enjoy the first presentation may not have attended the second 
presentation, which may impact on the results. In addition, the mathematical content presented in the 
two presentations (logarithmic rules and differentiation), might have invited the PSSTs to focus on 
standardized solution strategies and procedures for calculating and simplifying, and hence impacted 
on the type of communication they engaged in. Likely other mathematical content would have 
generated another result. We are careful not to generalize our results beyond the intervention, the 
mathematical content presented, the participating PSSTs and undergraduates. Therefore, our first 
results, that the intervention had a positive effect on the development of the participating PSSTs’ 
communication skills, needs further justifications of new research studies on Socratic lectures. 
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strategies with cartoon vignettes  

Marita Friesen1 and Alyssa Knox1 
1University of Education Freiburg, Germany; marita.friesen@ph-freiburg.de, alyssa.knox@stud.ph-

freiburg.de 

The flexible use of different problem-solving strategies is key for processing mathematical problems 
successfully. The question of how future teachers can be supported to learn about such strategies and 
their use in the mathematics classroom is consequently of high relevance. In a one-semester 
university course, we provided a unit on problem solving focusing on the use of primary-school 
students’ problem-solving strategies. To support the pre-service teachers’ learning, we designed two 
types of cartoon vignettes: short cartoons, each illustrating a different problem-solving strategy (e.g., 
work backwards) and more complex cartoons providing the opportunity to analyse how students 
make use of different strategies and/or struggle while solving a non-routine problem. Our evaluation 
showed that the participants perceived the cartoons as valuable learning opportunities. Learning to 
analyse students’ problem-solving strategies could be supported but remained a challenging task. 

Keywords: Vignettes, cartoons, problem-solving strategies, teachers’ competence of analysing. 

Introduction 
Mathematical problem solving is considered a core mathematical activity and it has been incorporated 
as a key component in mathematics curricula and national standards worldwide (Liljedahl et al., 
2016). Related studies have provided evidence that the flexible use of so-called heuristics or problem-
solving strategies can enhance problem solving (e.g., Carlson & Bloom, 2005). Various mathematical 
problem-solving strategies, such as make a table, draw a picture or look for a pattern, can already be 
introduced for primary school children (Charles et al., 1992) and corresponding instruction achieved 
a positive impact on students’ use of strategies and problem-solving abilities (Verschaffel et al., 
1999). However, there are also studies showing that many students do not spontaneously use problem-
solving strategies or struggle when applying them to non-routine problems (e.g., Schoenfeld, 1992). 
It can therefore be assumed that mathematics teachers do not only need professional knowledge about 
students’ problem-solving strategies but must also be able to analyse their students’ strategy use in 
order to provide them with support. With this study, we build on prior research into mathematics 
teachers’ analysing of classroom situations, described as the competence to link classroom 
observations with relevant professional knowledge in order to make sense of what has been observed 
(e.g., Friesen & Kuntze, 2020). In the present study, we were particularly interested in the question 
of how future primary-school teachers can be supported in their professional learning to analyse 
students’ problem-solving strategies. The study was conducted in the framework of the ERASMUS+ 
project coReflect@maths, aiming at designing and evaluating vignette-based learning material in 
mathematics teacher education courses with a particular focus on cartoon vignettes (cf. Ivars et al., 
2020). Correspondingly, we explored in this study the potential of different types of cartoon-based 
vignettes for (1) developing pre-service teachers’ professional knowledge about various problem-
solving strategies and (2) their competence to analyse primary-school students’ use of such strategies 
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in classroom situations. The following sections outline the theoretical background of the study, in 
particular with respect to mathematical problem-solving strategies and teachers’ corresponding 
competence to analyse classroom situations. We then introduce our vignette-based approach and 
describe the unit about problem solving in which the pre-service teachers of this study participated. 

Mathematical problems and the use of problem-solving strategies 
We follow Schoenfeld’s (1983) definition of a mathematical problem as an unfamiliar situation for 
which an individual does not know how to carry out its solution since no routine or familiar 
procedures are (yet) available to him or her. Such problems are often described as non-routine 
problems in contrast to routine problems, where students can apply familiar or routine solution 
methods to solve them (Elia et al., 2009). Solving non-routine mathematical problems, in contrast, 
requires the use of so-called heuristics or problem-solving strategies (Liljedahl et al., 2016). Various 
problem-solving strategies can already be introduced to primary-school children, such as guess–
check–revise, draw a picture, act out the problem, use objects, solve a simpler problem, make a table, 
look for a pattern, make an organized list, write an equation or work backwards (cf. Charles et al., 
1992). A study with primary-school children by Elia et al. (2009) showed that the flexible use of 
strategies (adapting the strategy to the given task or changing in case the chosen strategy was not 
successful) led to higher performance in problem solving. Knowing various problem-solving 
strategies and being able to change or modify a chosen strategy is therefore an important prerequisite 
for the successful solving of problems. However, the same study also showed that many of the 
primary-school children struggled with applying different strategies or could not reach a correct 
answer since they did not have a sufficient understanding of the problem (Elia et al., 2009). These 
findings highlight in particular the important role of the teacher in supporting the students in 
understanding the given problem as well as in choosing, applying and reflecting on the use of different 
problem-solving strategies.  

Analysing classroom situations regarding the use of problem-solving strategies 
In order to support students in using different problem-solving strategies in a flexible manner, a 
mathematics teacher must know about different strategies, how students can apply them to problem-
solving tasks and where they might struggle. Taken together with the definition of problem solving 
which is characterised by the fact that the problem-solver cannot simply apply a routine or familiar 
solution method (e.g., Schoenfeld, 1983), a mathematics teacher’s knowledge about content and 
students (KCS, cf. Ball et al., 2008) can be assumed to form an important prerequisite in this context. 
However, to provide learners with appropriate support, teachers must also be able to apply their 
knowledge in the course of instruction, meaning that they have to link relevant observations in the 
classroom with their knowledge to make sense of what they have observed in order to make follow-
up decisions. Based on the concept of teacher noticing (Sherin et al., 2011), we described such ability 
as teachers’ competence of analysing classroom situations (e.g., Friesen & Kuntze, 2020). Numerous 
studies have shown that teachers' analysing of classroom situations informs their decision-making 
and is highly relevant for instructional quality and student learning (Sherin et al., 2011). A teacher 
who is competent in analysing classroom situations regarding the use of problem-solving strategies 
is consequently able to identify the problem-solving strategies used by his or her students and to 
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evaluate the strategies’ potential for solving a particular task. Such competence is an essential 
prerequisite for supporting students in choosing and applying problem-solving strategies, for helping 
students where they struggle and for engaging them in reflection on the use of different strategies. In 
the following section, we describe the potential of using vignettes for developing and evaluating pre-
service teachers’ professional growth in this context alongside with the cartoon-based approach we 
take in the framework of the ERASMUS+ project coReflect@maths (Ivars et al., 2020).  

Vignette-based learning and the potential of cartoons for teacher education 
Using representations of classroom practice, so-called vignettes, in the form of short video clips, 
teacher-student dialogues or cartoons, has proven to be an effective approach in teacher education 
and corresponding research (e.g., Buchbinder & Kuntze, 2018). Vignettes provide the opportunity to 
engage in classroom practice without the pressure to act and can help future teachers to analyse 
classroom situations and to discuss and reflect on alternative approaches. In this way, vignettes can 
become both, representations of practice and theory: As learning opportunities, vignettes are often 
used to illustrate particular aspects of quality teaching or where norms are challenged and can 
therefore support future teachers in applying their theoretical knowledge to teaching practice in a safe 
context. Vignettes have, therefore, also proved to be an effective method to assess development in 
teacher education courses (Jeffries & Maeder, 2005). Correspondingly, questions regarding possible 
designs of vignette-based learning and testing environments have become essential and the potential 
of cartoon vignettes has gained increased attention. Cartoon vignettes combine numerous advantages 
ascribed to vignettes in the formats video and text: They allow the systematic, theory-based design 
and variation of classroom situations where individual characteristics that are important to 
comprehend a classroom situation can be added easily (Friesen, 2017). Compared to the formats of 
video and text, cartoon-based vignettes can be equally suitable to assess and foster teachers’ 
competence in analysing classroom situations (Friesen, 2017). The design and evaluation of cartoon-
based learning material is a main objective of the ERASMUS+ project coReflect@maths and the 
present study has been conducted in the framework of this project. The following section describes 
the organisation and contents of the university course in which the study was conducted as well as 
the design and use of the cartoon-based learning material.  

The university course: organisation and cartoon-based learning material 
The present study was conducted in a one-semester university course (April-July 2021) for pre-
service teachers studying to teach mathematics at primary schools. The course took place at a 
University of Education in the south of Germany where primary school comprises the first four years 
of schooling for students aged between six and ten years. Due to the pandemic situation, the course 
had to be delivered completely online with meetings organised as video calls and study material 
provided via the university’s online learning platform. The course covered different topics related to 
the teaching and learning of mathematics at the primary-school level. Problem solving was one unit 
within the course covering four weeks and three group meetings (3 x 90 minutes). The problem-
solving unit contained key topics with special regard to the primary-school context (e.g., what are 
mathematical non-routine problems, problem solving according to Polya, problem-solving strategies, 
how can learners be supported). Figure 1 (on the left) shows the organisation and contents of the unit. 
In order to support the pre-service teachers’ learning about students’ problem-solving strategies, we 
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designed two types of cartoon-based vignettes: (1) short cartoons with the aim to develop the 
participants’ professional knowledge about different problem-solving strategies and (2) more
complex cartoons with the aim to develop their competence to analyse primary-school students’ use 
of such strategies in classroom situations. Figure 1 (on the right) shows one of the short cartoons 
illustrating the problem-solving strategy “work backwards”. Based on Haering (2016) who describes 
various problem-solving strategies used by primary-school students, 16 of such short cartoons were 
designed, each depicting a problem-solving task and how one or several students solve that task using 
a particular strategy. The other cartoons of that type show strategies such as: guess–check–revise, 
draw a picture, act out the problem, use objects, solve a simpler problem, make a table, look for a 
pattern, make an organized list, write an equation, etc. (cf. Charles et al., 1992). 

Week I Week II

online meeting I: 
introduction of 
unit; release of 
online learning 

material and 
study plan

online meeting II: 
questions, group 

work

Week III Week IV

self-study time online meeting III: 
presentation of 

tasks, questions,      
course evaluation

between meetings: self-study time with 
online material supported by study 

groups and online forum

Figure 1: Organisation and contents of the unit on problem solving (left);                                              
Short cartoon vignette illustrating the problem-solving strategy “work backwards” (right);                             

(cartoon designed by Alyssa Knox based on Haering (2016); characters drawn by Michael Weninger)

During the unit, the pre-service teachers worked on different tasks provided with the vignettes. They 
explained, e.g., the strategies used in the cartoons and verified their use with the cartoon characters’ 
solutions or comments. They were also asked what alternative strategies students could have made 
use of for solving the given task and to compare and reflect on the potential of different strategies.

Figure 2 shows one of the more complex cartoon vignettes. These vignettes were designed based on 
lesson transcripts by Rasch (2016), representing typical classroom scenarios around primary-school 
childrens’ solving of non-routine word problems. Four vignettes of that type were used in the unit 
about problem solving, each showing one or several students who use various strategies while solving 

Proceedings of CERME12 3118



a non-routine task, who struggle in choosing and/or applying a strategy and who are supported by 
their teacher. The participants of the course were asked to identify the strategies used by the cartoon 
students and to evaluate their potential for solving the task. They were also asked to make assumptions 
about reasons for the students’ difficulties in solving the task and to verify their answers with the 
students’ use of strategies as shown in written solutions, use of material or comments. Finally, the 
participants were given the task to evaluate the teacher’s support and to think about alternative 
approaches. For sharing these approaches, they received a cartoon with empty speech bubbles that 
could be adapted. In this article, we focus on the students’ use of problem-solving strategies. 

Figure 2: Complex cartoon vignette illustrating different strategies and need for learning support 
(designed by Alyssa Knox based on Rasch, 2016; cartoon characters drawn by Michael Weninger)

Research interest and research questions
This study aimed at exploring the potential of cartoon-based vignettes for pre-service teachers’ 
professional learning regarding students’ use of problem-solving strategies. Accordingly, we 
addressed the participants’ own perceptions regarding their learning with the cartoons and their 
competence to analyse students’ use of problem-solving strategies in classroom situations at the end 
of the unit. The research questions were the following: (1) How do the participating pre-service 
teachers perceive the potential of cartoon vignettes in terms of their professional learning? (2) To 
what extend are the participating pre-service teachers able to identify the strategies used by students 
when analysing a complex cartoon vignette? (3) Can they suggest alternative strategies? 

Sample and methods
The course evaluation took place at the end of the unit on problem-solving after the fourth online 
meeting (cf. Figure 1). The pre-service teachers received an online questionnaire and were asked to 
analyse a complex cartoon vignette and to evaluate the cartoon-based learning material in terms of 
their professional learning. They could use their course material and as much time as they needed. 
N=42 pre-service teachers gave consent to have their data analysed in an anonymised way and 
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participated in the study. The items for the pre-service teachers’ evaluation of the cartoon vignettes 
in terms of their learning (RQ 1) are displayed in Table 3. Since participants’ engagement with 
vignettes is an essential pre-requisite for analysing them (cf. Friesen, 2017), items 1–3 addressed the 
pre-service teachers’ perceived motivation, authenticity and immersion when working with the 
cartoons. Items 4–5 evaluated to what extent the participants felt supported by the use of cartoons in 
their learning about problem solving and items 6–7 evaluated the perceived potential of cartoons for 
teacher education in a more general way. Figure 2 shows the cartoon used for the course evaluation 
(RQ 2+3) together with the following task: In the presented situation from a second grade classroom, 
Max is working out the solution to a problem-solving task while his teacher is supporting him. Please 
read through the situation and answer the following questions: What problem-solving strategies does 
Max use to solve the task? What other problem-solving strategies could he have used to find a 
solution?

Data analysis and results
Related to the first research question, Figure 3 displays the results of the participants’ evaluation of 
the cartoon vignettes in terms of their learning. Regarding pre-service teachers’ engagement with the 
cartoon vignettes, they rated their perceived authenticity, motivation and immersion on average as 
positive. The pre-service teachers perceived the cartoons as supportive for their learning regarding 
students’ different strategies and difficulties in solving problems. They evaluated the use of cartoons 
in teacher education as helpful and as a good connection to practice. 

Figure 3: Pre-service teachers’ own perceptions of their learning with cartoons                                          
(means and standard deviations; 0 = I strongly disagree; 4 = I strongly agree.)

To answer research question 2, an a priori analysis of the cartoon vignette used for the evaluation (see 
Figure 2) was conducted. In this way, the strategies used by the student in the cartoon vignette (e.g., 
work backwards, use objects, guess-check-revise) and further potential strategies for solving the 
given task were identified (e.g., try systematically, make a table). The pre-service teachers’ written 
analyses for the complex cartoon vignette were coded accordingly. The findings show that all of the 
participants were able to correctly identify at least one strategy used by the student in the complex 
cartoon; 32 pre-service teachers (76.2%) were able to correctly identify two or three strategies and 
eight pre-service teachers (19.0%) were able to correctly identify four or five strategies. There were, 
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however, also participants who identified strategies that were not appropriate (e.g., “write an 
equation” although the student did not use the equation to solve the problem, but only when writing 
down the answer). In this context, 21 pre-service teachers (50.0%) described one or two such 
unsuitable strategies and five participants (11.9%) matched three or four strategies in an incorrect 
way. Although not explicitly asked for, providing explanations for the choice of the strategy was 
found to be significantly correlated (r(40) = .41, p = .008) with the number of correctly identified 
strategies. All of the participants were able to suggest between one and four suitable alternative 
strategies for solving the task in the vignette. However, 27 participants (64.3%) suggested also one 
or two unsuitable alternatives; 11 participants (26.2%) suggested three or four.  

Table 1: Sample answers showing the relation between correctly identified strategies and explanation 
for the choice of strategy by referring to relevant events in the vignette 

(…)“Try systematically” as he 
goes through examples in 

order (first 16, then 17, then 
18) and comes to a result this 

way (PST #2) 

(…)“Look for a pattern” 
as he always has to check 

for two numbers 
(difference 6 and result 

30) (PST #2) 

(…) When he works with the objects later, he also tries 
systematically, because he notices for 17 and 13 that 
the difference is still too small and moves one brick 
from the bar with 13 bricks to the bar with 17 bricks. 

(PST #22) 

Summary and discussion 
Vignettes provide safe environments for future teachers’ analysing of classroom situations and can 
support them in  connecting classroom observations to theory – an essential prerequisite for making 
sense of what has been observed when teaching and for making suitable follow-up decisions 
(Buchbinder & Kuntze, 2018). This study shows that cartoons hold great potential in this context: 
they can be purposefully designed to represent key aspects of practice and theory on the learning of 
mathematics while considering different levels of complexity (cf. Friesen, 2017). Although the study 
has limitations (e.g., no control group or pre-post design), it encourages further research into the use 
of cartoons in teacher education: The participants perceived the cartoon vignettes as a valuable 
learning opportunity, not only in the context of problem solving but also for teacher education in 
general. The findings show that pre-service teachers’ analysing results were more often correct when 
they explained them by referring to relevant events in the given classroom situation. When working 
with vignettes, validating observations with specific classroom events should be part of that work and 
pre-service teachers need to be supported in a systematic way. Whereas numerous studies have shown 
the importance of teachers' analysing for instructional quality and student learning (Sherin et al., 
2011), this study contributes by showing how pre-service teachers can learn to analyse in a university 
course on problem solving and how different types of cartoon vignettes can support their learning.  
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The maths trail seminar 
A maths trail is a walk through the neighbourhood where one can find objects to solve mathematical 
problems, such as calculating the volume of a pond (cf. Shoaf et al., 2004). The MathCityMap project 
enriches the idea of maths trails with new technologies like smartphones and the internet to create an 
analogue and digital learning experience. After establishing the MathCityMap project to revive the 
idea of mathematics trails (cf. Ludwig & Jesberg, 2012), there was a need to educate and train teachers 
using it in classrooms. Because it is known how hard task design is for in-service teachers (Jones & 
Pepin, 2016). Furthermore, recent studies have shown positive effects of maths trails on pupils' 
learning outcomes and motivation (cf. Zender et al., 2021). All this leads to the decision to implement 
maths trails in pre-service teacher education. So that maths trail seminars were offered for pre-service 
primary school teachers in the summer semester of 2021 at the University of Koblenz-Landau, at 
which 45 students took part. The idea was to offer a varied learning experience, analogue and digital, 
building competencies for the upcoming teachers in outdoor mathematics. Therefore, theory and 
practice have been equal parts of the seminars: Learning about the theory of outdoor education on the 
one hand and creating an outdoor learning environment on the other hand. The mathematical topics 
of the seminar are related to algebraic and geometric content for primary school. The seminar closed 
with an oral exam:  the students produced a video of a task they had created and analysed it from a 
didactic perspective (cf. Geisen & Zender, 2022). 

The conceptualisation of the seminar is based on the interconnected model of professional growth of 
Clarke and Hollingsworth (2002) for professional development in teacher training, since the seminar 
for pre-service teachers can be considered similar to training for in-service teachers (see Geisen & 
Zender, 2022). In this regard, Clarke and Hollingsworth (2002) identified the following four domains 
as relevant: Personal Domain ("Knowledge, Beliefs and Attitude"), External Domain ("External 
Source of Information or Stimulus"), Domain of Practice ("Professional Experimentation") and 
Domain of Cobcequences ("Salient Outcomes") (ibid., p. p. 951). Changes concerning these domains 
can occur through reflection and enactment processes (ibid., p. 950). The practical implementation of 
theoretical content imparted in teacher training impacts the learners' learning processes. That can be 
reflected by the teachers and ultimately lead to a changed practise (ibid.). At university and in 
particular, in terms of the maths trail seminars, theoretical content is conveyed to pre-service teachers 
like that in teacher training. Nevertheless, in most cases, they cannot implement this input in school 
practice. However, they can analyse and reflect on the level of lesson preparation, which can also 
lead to changes concerning the Domain of consequences and the Personal Domain. 
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Exploratory evaluation study 
The aim of the study is accompanying research to check the effectiveness of the maths trail seminars 
based on the model for professional growth (cf. Clarke & Hollingsworth, 2002) and the 
conceptualisation and implementation of the seminar. Therefore the following research questions 
were fundamental: Is it possible to consider the four domains of the model of professional growth of 
students through the conceptualisation and implementation of the maths trail seminars? Can this also 
be confirmed based on the results of the evaluation? 

Two digital surveys were used to answer the research questions, the first concerning the seminar itself 
and the second for the oral exam. The first survey was the general survey of the university to evaluate 
the lectures and seminars. It was inserted at the end of the semester and contained 64 items, most of 
them evaluating demographical data or being six-point Likert scales. The second survey contained 
seven items (4-point Likert scale) and the possibility of leaving a comment for checking the oral 
exams about its suitability for querying acquired competencies, enabling a multi-stage learning 
process and a long-term learning effect. 

Results and Conclusions 
The seminar addressed all four domains of importance for learning identified by Clarke and 
Hollingsworth (2002): Personal, External, Practice, and Consequences. In the survey, most students 
agreed that the seminar "established a connection between theory and practice", "makes me interested 
in the topic", and "makes me want to work on the content". In addition, students reported being highly 
motivated and voluntarily invested much time into the seminar. Finally, in written feedback, students 
highlighted the experience and new perspective on mathematics and stated that they felt confident 
implementing outdoor mathematics in school. Hopefully, the students remember their impressions 
when being in-service teachers at schools. 
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In this study we investigated what kind of co-learning and learning gaps could be identified in a 
professional development session on the topic of programming. We found that both teachers and 
teacher educators learned about programming and lesson planning for programming. Teacher 
educators also learned about what kinds of knowledge teachers possessed about programming. 
Learning gaps identified were teacher educators' knowledge about didactical aspects of 
programming as well as the use of programming in school. We found that teachers express a need to 
learn more programming. 

Keywords: Mathematical literacy, teacher professional development, inquiry-based learning, co-
learning, programming. 

 

Background and theory 
Programming 

In the new national curriculum in Norway launched in 2020, programming is introduced as an 
integrated part of mathematics and science. This comes in addition to digital skills as one of the basic 
skills that are to embrace all subjects. At year 5 the mathematics curriculum specifies that “The pupil 
is expected to be able to create and programme algorithms with the use of variables, conditions and 
loops” (Utdanningsdirektoratet, 2020a, bullet 10). The science curriculum for years 5–7 specifies that 
“The pupil is expected to explore, create and programme technological systems that consist of parts 
that work together” (Utdanningsdirektoratet, 2020b, bullet 7).  Programming is a new theme in the 
national curriculum in science and mathematics for primary school, which implies that there is an 
authentic need for professional development. Programming is a new theme for teachers, both because 
they have not been teaching it but also because they themselves have never studied this theme. At the 
same time programming is new for teacher educators. Even if they may have studied programming 
at university, they have to a very limited degree been teaching it as teacher educators. Inquiry-based 
learning (IBL) is a way to investigate and explore new ideas in the classroom and may be a helpful 
approach in introducing a new curriculum. This leads us to our research question in this paper: What 
kind of co-learning and which learning gaps can be identified in an IBL-inspired professional 
development session on programming? 

Inquiry-based learning (IBL) 

IBL is seen as a way to organize education so as to make students able to function in a society which 
is changing and where the ability to think, reason and ask new questions are more important and 
higher valued than the ability to re-answer questions already asked. Bruder and Prescott (2013) point 
out that IBL is beneficial for motivation and understanding of mathematics and science, as well as 
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beliefs about relevance for society. Our understanding of IBL builds on the model developed in the 
EU Primas project (e.g., Artigue & Blomhøj, 2013; Maaß et al., 2017). In IBL students inquire, pose 
questions and engage in exploration in collaborative settings. Teachers foster students’ reasoning, 
connect to student experiences and scaffold learning. The classroom culture is dialogic, and questions 
are open, experienced as real and relevant with multiple solution strategies. It is thus a goal to foster 
inquiring minds and build understanding of the nature of science and mathematics. Referring to 
Jaworski (2006) we consider three forms of inquiry practice in an inquiry community of teachers and 
educators: inquiry in mathematics (pupils engage in inquiry to learn mathematics), inquiry in teaching 
mathematics (teachers engage in inquiry to develop the teaching of mathematics), inquiry in research 
on developing teaching of mathematics (teachers and educators engage in inquiry into the research). 

Four co-learning dimensions 

Jaworski (2003) launched a four-dimensional framework for investigating the development of 
mathematics teaching and learning.  Development is seen as processes of inquiry, involving critical 
reflection, in a community of inquiry. In the community experiences are shared, this supports 
individual inquiry and the development of norms. Hence, there are elements of both individual and 
community relationships that allow the inquiry and reflection to take place, which is seen as the 
learning and development. Participants can be insiders in the community or outsiders supporting the 
research and development. This gives rise to four interrelated reflexive pairs: Knowledge and 
learning, Inquiry and reflection, Insider and outsider, Individual and community. Investigations along 
these four dimensions are suitable and will provide insights into the inquiries and co-learning taking 
place in a learning community consisting of teachers, educators and students. Jaworski (2003) 
suggests guiding questions for each reflexive pair. To answer our research question, it will be helpful 
to answer questions related to each of the four dimensions: 

Knowledge and learning: Who is learning and what knowledge is being developed?   

Inquiry and reflection: Who is inquiring and into what? What kind of reflections are taking place?   

Insider and outsider: Who are the insiders and who are the outsiders, and in what situations? 

Individual and community: How is the community comprised, and how is the dialectical relationship 
between individuals and community played out?  

By searching within each of the four dimensions, a more complete picture may appear of what kind 
of co-learning is taking place and of which learning gaps can remain. 

Methods 
The professional development session studied in this paper was carried out as part of a larger, 
longitudinal research project with focus on mathematical and scientific literacy and IBL. Participants 
were three mathematics and two science teacher educators from the university, and five teachers from 
a local school (teaching grade 4, 5 and 6, and one teacher leader). All teachers were generalist 
teachers. The TEs all had PhDs in mathematics or science, some with teacher education in addition. 
The lesson study was carried out according to the following plan: a) Teachers suggested a theme and 
a lesson plan, b) Teacher educators (TEs), including both mathematics teacher educators (MTEs) and 
science teacher educators (STEs), discussed the suggested theme and plan, c) Teachers and TEs met 
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in a joint planning meeting, d) Two lesson iterations with reflection and redesign in between. 
Teaching carried out by one teacher, with other teachers and TEs observing. Final reflection after the 
second iteration. 

The theme suggested by the teachers for this session was programming with micro:bit 
(https://microbit.org/). Micro:bit is a small computer originally launched by BBC in 2015 with the 
purpose to be used in schools for pupils to learn programming. To program the micro:bit, pupils use 
a block-based visual programming language on a computer or tablet, and then transfer the program 
to the micro:bit using Bluetooth or a USB cable. In the lesson plan suggested by the teachers, pairs 
of pupils were given the task to make a flashing heart on the micro:bit’s LEDs, and then try to make 
the heart flash with the same rate as their own heart rate. The teachers based this plan on an example 
found on the Norwegian website Lær Kidsa Koding, which provides resources related to teaching 
programming to children (Lær Kidsa Koding, n.d.). In the TEs’ meeting, the main discussion related 
to whether the proposed plan opened up for sufficient inquiry or whether it was too focused on 
following recipes. An alternative task involving using the micro:bit to steer a car was launched. In 
the joint planning meeting, it was agreed that the lesson plan suggested initially by the teachers would 
be kept, but some changes were made in the material that the pupils would use. 

The following data material was collected: Proposed lesson plan and final lesson plan, field notes 
from the TEs’ meeting, audio recordings of the joint planning meeting and the two reflection and 
redesign meetings.  

The audio recordings from the joint planning meeting and the first reflection and redesign meeting 
were transcribed. The three authors coded the transcript from the joint planning meeting separately, 
using the four dimensions from Jaworski’s framework as categories (Jaworski, 2003). The three 
different versions of the coded data were then discussed to come to a joint understanding of each 
category. To help in guiding the discussion, the lesson plan and field notes were consulted. 
Subsequently the transcript of the first reflection and redesign meeting was coded separately using 
the new understanding of the categories. The audio recording of the second reflection and redesign 
meeting was also analysed using the common understanding of the categories. After this the findings 
were compiled. The project has been submitted to, and approved by, NSD – Norwegian centre for 
research data. In this paper, teachers are referred to as T name, where all names are pseudonyms.  

Findings 
The findings are structured according to the four dimensions suggested by Jaworski (2003).   

Knowledge and learning 

Our data shows multiple answers to questions related to knowledge and learning. The participants 
can be divided into three groups according to their prior knowledge of programming, see Table 1. 

Table 1. Participants’ prior knowledge of programming 

Extensive knowledge Some knowledge No knowledge 
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MTE Øystein, STE Arne MTE Benedikte, MTE Svein STE Ragnhild, T Fay, T Camilla, T 

Marie, T Erik, T Jenny 

Teachers Fay and Erik had some experience with micro:bit in fourth and sixth grade, respectively. 
Apart from that, no participants had any prior knowledge of programming in school. Four of the TEs 
had knowledge of programming from university courses and have used it at some level. Having 
sufficient programming knowledge at university level is however not sufficient to design tasks that 
function well at primary school level. The tasks discussed by the TEs in their prior meeting turned 
out to progress too fast to a too advanced level. 

MTE Svein:  It can be that, when we talked about it, that it took off and became too advanced.  
T Jenny:  Is it too advanced?  
STE Arne:  It is hard for me to say, really, since I have the knowledge. 

STE Arne was not able to judge whether the task at hand would be too advanced for the pupils. He 
had extensive knowledge of programming, so could do the task himself, but did not have experience 
with programming in primary school, and so needed teachers’ inside knowledge of their pupils’ 
abilities and prior knowledge as feedback to judge the appropriability of the task. 

Teachers’ lack of knowledge about programming is clearly an obstacle for developing good teaching 
plans that would enhance pupil knowledge.  

T Fay:  We don’t have sufficient knowledge in programming to design good enough tasks.  

TEs had knowledge of programming, but not in a school setting. Teachers had knowledge of their 
pupils, but not of programming. Through the cooperation, both groups had opportunity to enhance 
their knowledge into new ground. Teachers were given opportunities to develop their knowledge of 
programming in school: 

T Camilla:  I ask a lot of questions because I need input on how to continue teaching 
programming. 

We thus see that teachers are learning about teaching programming by cooperating with TEs who 
have programming knowledge. TEs learn about teachers’ knowledge of pupils, and how to integrate 
knowledge about programming with knowledge of pupils to develop lesson plans. So both teachers 
and TEs learn how to plan a programming lesson in mathematics or science. 

Inquiry and reflection 

Several types of inquiry and reflection are evident in the data. During the planning meetings and 
reflections, ideas were discussed and assessed according to whether they were easy or difficult for 
the students (mainly with input from teachers) and easy or difficult to program (mainly with input 
from TEs). Together these constitute inquiry into teaching. Teachers and TEs inquired into pupil 
knowledge and learning after observing lessons, with reflection on the teaching and how the pupils 
reacted to the teaching, including how they were able to cooperate and work together in pairs. 

As the lessons are to be IBL-inspired, a common quest regards whether the suggested activities offer 
opportunities for the pupils to inquire and explore. In our case this quest led to a discussion about 
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whether doing programming would provide opportunities for inquiry or whether the programming 
had to be embedded in something else. 

STE Arne:  In this particular task at hand, there is little inquiry involved (…) Because, in terms 
of programming it is not so much exploring. 

T Jenny:   I believe, we were satisfied when we came up with this about heart rate, since that 
may be inquiring.  

STE Arne wanted to make the programming itself more explorable, while the teachers had put 
programming into the context of heart rate to make it into something the pupils could explore. 
Discussions continued regarding how to make it more IBL-like, and inquire in programming: 

T Jenny:  Do you think that, it is possible to do inquiry with the programming; and that it will 
be too difficult to combine it with exploring their own heart-rate in addition? 

The question relates to what types of inquiry is possible if you haven’t done any programming? 
Teachers expressed thoughts that when something is new to you, then maybe it does exactly give you 
opportunities to explore. Since the pupils have not worked with programming or micro:bit before, 
starting playing is exactly to engage in exploration and inquiry. This was expressed at various points 
during the planning. 

T Fay:  We were thinking that it will be some kind of inquiry since they haven’t worked 
with it before. 

T Fay:  Like this, now, like when I am trying it out, it is inquiry for me; will it not be the 
same for the pupils? 

A teacher asks whether there will be multiple solutions and strategies, relating to an important part of 
IBL: 

T Erik:  Will there be many different methods for how they can solve it? Will they come up 
with more examples of how they have done it? 

In order to solve the task, the pupils had to find an appropriate pause (in number of milliseconds) 
between each heart beat shown on the micro:bit, in order to make it match their own heart-rate. Two 
possible strategies were mentioned: 

T Fay:  Some will do as I do now, just trying to make it equal, just moving the numbers 
around. Or some will try to compute the number of heart beats in a minute. 

During the planning meeting, only these two solution strategies were suggested. In the reflection 
meetings, it became clear that this did not correspond well to what actually happened during teaching. 
Most of the students did, to a certain extent, follow one of these two strategies, but many of them did 
so in ways that were not expected. Of those following the strategy of trying out different numbers, 
many pupils changed the numbers in so small increments that there was no noticeable effect of the 
change. Those following the strategy of finding the number of heart beats in a minute did not continue 
in the expected way by computing the correct pause to use in their programs, but rather used the 
number of heart beats as the length of the pause.  

At the reflection after the first lesson, it became apparent that the way the task was designed made it 
difficult to observe what impact changing the input in the program had. For example, if pupils 
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changed input from 60 to 70, they were not able to observe any change since those numbers are in 
milliseconds. In addition, the program block used to display a heart on the LEDs had a built-in pause 
of 600 ms, meaning that even if pupils put their own correct numbers into the program, the output 
would be wrong by 0.6 seconds. 

MTE Øystein: So that is the biggest problem. That if someone has understood it, and apparently 
does everything right, they get the wrong result. 

As we have seen, the main type of inquiry was inquiry into the teaching, with critical reflection on 
the lesson and the task. 

Insider and outsider 

The data reveal several pairs of insider-outsider configurations. An obvious instance is that teachers 
are insiders in school while TEs are outsiders.  Among the teachers, class-teachers are insiders 
regarding knowledge of the particular group of students, while other teachers and TEs are outsiders. 
Moving to the classroom, both teachers and TEs are outsiders inquiring into how pupils work during 
the lesson.  

The insider-outsider perspective also relates to programming. Those who know programming are 
insiders, while those who don’t are outsiders. Without pre-knowledge of programming, you don’t 
know what the possibilities and options are, e.g., what is easy to accomplish and what is more 
difficult. Those who don’t know programming are bound by following given recipes. Those who 
know programming can supply information/knowledge on how to use the recipe, and change it, for 
their own means. Even so, pupils have to be guided, like STE Arne is guiding the group during the 
planning: 

STE Arne:  They either need a recipe, or you have to tell them, like I do now. 
T Fay:  Yes, if we have a recipe, then it is quite OK. 

Part of being an insider in programming is knowing about the terms and concepts and what 
possibilities these may constitute. Before you reach that level, having a recipe constitutes a safety net. 

Individual and community 

A prominent example of how the community of teachers, TEs (and pupils) relate to the wider society 
is the fact that programming as a theme in mathematics and science in the school curriculum was 
imposed from the government without much support from teachers, and to a degree resistance, from 
teacher organisations and teacher educators. The competence aims formulated in the national 
curriculum provided the basis for the session, and were referred to several times during the 
discussions, to assure that the task designed for the lesson was appropriate for fulfilling the learning 
goal formulated in the curriculum. 

STE Arne:  But then it is not that competence aim, then it is another competence aim. 
T Marie:  Because it says “design and make a program based on user needs”. 

An interesting aspect is connected to what resources that are available, e.g., the micro:bit technology 
that was used in this session. Why and how had the micro:bit technology been chosen? Was the 
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decision made by the teachers or the school or at some higher level? It turns out that the micro:bit 
technology has been launched at national level: 

T Fay:   All schools in our commune have been given class-sets of these. 
STE Ragnhild:  All schools in the whole country have been given such class-sets. 

Thus the society at large influenced the lesson both concerning the theme (the curriculum) and the 
resources (micro:bit). The influence of the national curriculum is obvious and natural. The choice of 
technology is more surprising, and shows that apparently random choices have big influence on lesson 
design. 

Discussion and conclusion 
This lesson study provided ample possibilities for co-learning for teachers and TEs as programming 
as a theme in school was new to all participants. Misfeldt et al. (2019) point out that even if teachers 
have a positive attitude towards working with programming, they do not feel prepared to take on the 
task. Miller (2019) states that the school as a system needs to provide support and opportunities for 
teachers to gain skills in how to implement computational thinking and coding. Since programming 
in school was new to all participants in our project, all were learning at some level: a) Teachers 
learned about teaching in/with programming, b) TEs learned about what teachers know about 
programming, c) Teachers and TEs learned how to plan a lesson in/about programming, d) Teachers 
and TEs learned about programming in school.  

Learning to teach programming concerns the interplay between teachers’ knowledge about teaching 
and pupils, and TEs’ knowledge about programming. How to find or develop a common language? 
Through the cooperation, teachers provided knowledge about what may work in school so that the 
two types of knowledge, teacher educators’ knowledge of programming and teachers’ knowledge of 
the school setting, resulted in co-learning about programming in primary school. 

How easy is it to understand that programming is open to inquiry? Programming involves making 
algorithms, recipes, which make programming appear “closed”. On the other hand, making changes 
to the code is easy, just do it and see what happens, thus programming is very open to inquiry. Maybe 
there is an analogy with Lego? You can follow the recipe on the box or play with the pieces freely. 
We found that teachers with little experience in programming tended to view programming as a closed 
activity that simply consists of following pre-made recipes. The teachers did, however, also express 
the view that there is inquiry involved in learning to program. 

In the professional development session studied here, both teachers and TEs neglected to work 
completely through the planned task before the lesson. Everyone simply agreed that the task could be 
solved, and there was only a very brief discussion about possible solution strategies. It seems clear to 
us that all teachers and TEs should have attempted to solve the task completely during the planning 
meeting. This would have made the teachers better prepared for teaching the lesson. But perhaps more 
importantly, it would mean that the teachers and TEs would sit together actually doing programming 
(as opposed to just talking about programming), which we believe would have given good 
opportunities for additional co-learning. 
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Our findings indicate that teacher educators need to acquire more knowledge about didactical aspects 
of programming and the use of programming in mathematics and science for primary school. 
Teachers expressed a need to learn more about programming, learn coding, and thereby gain 
knowledge that will help them choose or design tasks that are relevant, both in the sense of being 
relevant for pupils in their learning of programming, and relevant in the sense that they are attainable 
for the age group.  
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Professional development and collaboration 
Nowadays, collaboration among teachers in activities closely linked to mathematics lessons is 
considered to be the most appropriate form of professional development of in-service 
(mathematics) teachers (Prediger, 2020). Current Slovak legislation makes it possible to situate 
in-service teacher training directly in schools. A well-designed in-service professional 
development programme influences the knowledge and beliefs of mathematics teachers.  

Lesson study, when experienced teachers of mathematics and didactitians work together to 
design an optimal lesson on a pre-agreed topic, seems to be a suitable method of professional 
development. It has a cyclic nature consisting of four stages: study, plan, teach and reflect 
(Lewis et al., 2019) intervening changes in teachers’ knowledge, beliefs, routines of 
professional learning and pedagogies which influence the instruction and therefore students’ 
learning. Beliefs play an important role in assessing curricula, teaching, learning and assessing 
students' knowledge and are grounded in teachers’ knowledge and experience (Carrillo-Yañez 
et al., 2018). Teacher knowledge and beliefs influence various areas of mathematics lesson 
planning, implementation, and reflection (Ball et al., 2008; Carrillo-Yañez et al., 2018) 
including the use of student-oriented teaching methods such as a math trail. 

Mathematical trails in teachers’ professional development 
A math trail is a path during which students can discover and solve mathematical problems 
related to real objects. MathCityMap trails (MCM trails) are part of outdoor education 
supported by mobile technologies (Barlovits & Ludwig, 2020). They use a ‘bring your own 
device’ approach in school as well as in out-of-school contexts. The purpose of the MCM trails 
is not only to popularize mathematics for the general public, but also to offer students the 
opportunity for collaborative problem solving related to their lives. In addition to the 
mathematical version of geocaching, students engaged in MCM trails solve mathematical 
problems related to real objects (Čeretková & Bulková, 2020), create the original solutions of 
the problems and communicate their ideas, reasoning and strategies during collaboration in 
teams what makes math trails a suitable tool to develop the competences for 21st century.  

Methodology 
Implementation of the lesson study varies across the countries and needs to be tailored to the 
national context. Based on the interviews with experienced mathematics teachers, the students 
in Slovakia lack the opportunities to develop the competences for 21st century. We suggest that 
it may be caused by teachers’ insufficient repertoire and experience with instructional tools and 
routines. The following research question is addressed: What mathematics teachers’ 
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specialised knowledge is addressed during reflection on enacted MCM trails in form of lesson 
study? The lesson studies will be conducted with mathematics teachers in Slovakia. 
Didactitians will be participant-observers. First, the teachers solve the MCM trail prepared by 
didactitians to allow them to experience the MCM trail from the students’ view. During the 
design of the MCM trail for grade 8 students, the teachers gain a different perspective on 
problem-based learning. Communication with students during the trails and subsequent whole-
class discussion after its implementation is different than in transmissive teaching prevalent in 
Slovakia. All the four steps of lesson study will be audio- or videotaped to enable thorough 
analysis of obtained data. The mathematics teachers’ specialised knowledge will be categorised 
according to Carrillo-Yañez et al. (2018). The preliminary results from the lesson study 
conducted in autumn 2021 will be presented. 
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The importance of developing students’ mathematical reasoning (MR) is emphasized, both in 
curriculum documents and research, as an essential skill for their learning. Nevertheless, as the 
teaching practice for promoting MR is often challenging for prospective mathematics teachers (PTs), 
it is essential to highlight MR as a goal for preservice teacher education. This study aims to analyse 
the growing knowledge of a group of 13 middle school and secondary mathematics PTs about the 
justification process, a critical component of MR, throughout a teacher education course. The results 
show that before working on this theme in the course, PTs revealed difficulties in the interpretation 
of MR processes and lower levels of knowledge about justification. However, their knowledge level 
has improved, which may confirm that the type of work carried out in the course was valuable to a 
deeper and adequate MR knowledge necessary for their future practices. 

Keywords: Mathematical reasoning, justification, pre-service teacher education, prospective 
teachers´ knowledge. 

Introduction 
The development of students’ mathematical reasoning (MR) is currently emphasized in national and 
international curriculum documents for teaching mathematics (ME, 2018; NCTM, 2000), as it is 
recognized as an essential skill for students to succeed in understanding mathematics by making sense 
of concepts and actively constructing mathematical ideas (Lannin et al., 2011; Stylianides et al., 
2013). From this perspective, it is important that teachers place greater emphasis on MR in their 
practices, by providing students the opportunity to engage in and develop MR processes, since their 
learning depends on the experiences that teachers offer to them in mathematics lessons (Boston & 
Smith, 2011; Breen & O’Shea 2019).  

This recommendation is significant in Portugal, since the curricular documents emphasize the 
development of students’ MR ability, including justifying as an essential MR process to also help 
them reach a broad nature generalization (ME, 2018). However, school practices are still not 
consolidated and focused on the promotion of this MR process, since it is challenging for prospective 
teachers (PTs). Even though they struggle to produce and identify justifications, commonly judge 
empirical arguments by seeing examples as justifications for a generalization, as they may not have 
that experience as students and are unfamiliar with the MR meaning and processes (Melhuish et al., 
2018; Stylianides et al., 2013). Therefore, it is essential highlighting MR as a goal for pre-service 
teacher education, to develop the required prospective teachers’ knowledge about MR (Stylianides & 
Stylianides, 2006) to be proficient in promoting this students’ skill in their future practices 
(Buchbinder & McCrone, 2020; Loong et al., 2017; Ponte & Chapman, 2015).  
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Mathematical tasks involving the analysis of students’ reasoning processes may provide opportunities 
to develop the PTs’ knowledge in the context of initial teacher education focused on MR, but how 
they interpret and understand it and notice students’ justification process is still an under researched 
issue (Melhuish et al., 2018; Park & Magiera, 2020). The current study aims to analyse the growing 
knowledge of middle school and secondary mathematics PTs about the process of justification, 
throughout a teacher education course focused on MR. In particular, we address the following 
question: What improvement do the PTs evidence in their knowledge about the justification process, 
when they analyse examples of students’ work in solving MR tasks, before and after a teacher 
education course?  

Thus, this study may contribute to support the development of PTs’ reasoning and the necessary 
enhancement of the design principles of the teacher education course to better assist prospective 
teachers in developing the needed knowledge of MR to carry out practices focused on it. 

Theoretical framework 
Mathematical reasoning 

Mathematical reasoning, a process of making justified inferences based on previously known 
information (Jeannotte & Kieran, 2017; Mata-Pereira & Ponte, 2018), covers diverse kinds of 
reasoning: inductive and abductive to infer and draw new information, particularly plausible 
conjectures, and a general conclusion, based on examples and empirical experience; and deductive 
reasoning using formal rules to validate the inferences made from that information. 

In addition, the MR conceptualization and the engagement in this activity involves diverse reasoning 
processes (Jeannotte & Kieran, 2017): generalizing and justifying processes, which are recognized as 
central for mathematical reasoning and may be achieved by inductive, abductive, and deductive 
reasoning; and also exemplifying, which is conceived as a relevant support for generalization and 
justification (Mata-Pereira & Ponte, 2018). Generalization starts from a conclusion or conjecture 
about a property or procedure, often based on patterns identification after an exploration of specific 
examples using inductive reasoning, to assert that it is common or valid to a set of objects. Afterwards, 
the conclusion or conjecture needs to be validated by testing examples or find counterexamples, 
checking if it works for diverse objects, or also justifying it through deductive reasoning (Jeannotte 
& Kieran, 2017; Lannin et al., 2011). Justification involves generating arguments, and explaining 
why they are true, to provide compelling reasons for established conjectures, but students often 
evidence difficulties in writing their justifications (Bersch, 2019). The understanding of the 
definitions and counterexamples’ roles in this process allows students to make their reasoning clear 
and to increase their conceptual understanding, recognizing that a justification validity is a critical 
component of MR that is expected to be supported by mathematical procedures, properties, and 
definitions.  

Finally, exemplifying appears associated with other reasoning processes, and involvies finding 
examples to support the identification of similarities and differences, and performing a validation to 
support the justification (Jeannotte & Kieran, 2017). 
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Prospective teachers’ knowledge of mathematical reasoning 

As mentioned in literature, it is essential that PTs learn how to create learning environments for 
promoting their students’ reasoning, attending to the mathematical education demands (Davidson et 
al., 2019). PTs’ knowledge of MR involves different dimensions, particularly the concept of 
reasoning and the kinds and processes it encompasses. Moreover, that knowledge involves 
recognizing the importance of developing students’ MR as it is essential for their learning, and to be 
able to identify the reasoning processes they are able to use, namely justification, to support them 
through mathematical reasoning tasks (Bersch, 2019; Cihan & Akkoç, 2019; Park & Magiera, 2020;). 
However, several studies (e.g., Lannin et al., 2011; Stylianides & Stylianides, 2009) show that PTs 
usually express incorrect ideas on MR processes, especially about justification, even after having 
attending courses targeting this process.  

Regarding these difficulties, there is a need to study how PTs may develop that knowledge during 
their teacher education programs. For PTs access to MR, it is essential that in teacher education they 
read and discuss documents focus on framework concerning MR (meaning, kinds and processes) and 
are asked to solve mathematical learning tasks from a school student’s perspective (Jeannote & 
Kieran, 2017; Mata-Pereira & Ponte, 2017). Complementarily, the PTs’ engagement on tasks, 
focused on noticing evidenced distinct ways of student’s reasoning, require them to justify and 
sharing interpretations of MR. This PTs’ analysis of students’ work, in a first stage of teacher 
education course, may provide information that helps them to increase the required justification 
knowledge throughout the training course (Park & Magiera, 2020). To analyse this improvement of 
PTs’ knowledge on MR, their interpretation of justification process should be assessed at initial and 
final phases of the course, using distinct levels which may characterize the diverse understanding of 
specific aspects associated to MR processes. For this purpose, we adopt a framework to describe the 
PTs’ knowledge about MR processes, focusing on generalizing and justifying (Rodrigues et al.,  
2021).  

This framework identifies six important levels (subcategories) to classify the knowledge of the 
reasoning processes and to characterize distinctions among main activities (Table 1), which provide 
“a tool to assess the learning of the prospective teachers in this domain” (p.10).  

Table 1: Subcategories for classifying the knowledge of the reasoning process (Rodrigues et al., 2021, 
p. 6) 

 
According to these authors, the lower levels (0, 1 and 2) are recognized as insufficient knowledge of 
the reasoning processes, as do not reveal understanding of their distinct characteristics by attributing 
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meanings to associated terms. The other upper levels (3, 4 and 5) already correspond to better MR 
knowledge of processes, illustrated mainly by the identification of examples and specific properties 
that characterize the process as defined in literature, and being able to presuppose relationships of 
inclusion.  

Context and methods  
This study has a qualitative nature (Erickson, 1986), and assumes a descriptive and interpretative 
analysis of PTs’ growing knowledge about justification. It developed during a preservice teacher 
education course in the context of the REASON project (http://reason.ie.ulisboa.pt/en/english/) that 
aims to develop PTs’ knowledge to promote students’ MR. The participants are 13 (3 male and 10 
female) Portuguese PTs who attended the 1st year of a master’s program in the teaching of 
mathematics for middle and secondary school levels. The majority of them had a degree in 
mathematics, with about 3 years of advanced mathematics study, or a degree in an area with a strong 
mathematical component, complement with mathematics subjects in the master’s program. All PTs 
volunteered to participate in the study and are identified by a random capital letter for guaranteeing 
their anonymity. 

The eight sessions (two hours each) of this course on MR were conducted by the first author and 
observed by second, as researcher, and were part of one semester mathematics education methods 
course. The sessions were conceived to deepen PTs’ knowledge about MR, where they autonomously 
(individually and in pairs) solved mathematical tasks involving Algebra and Geometry topics that 
required them to make generalizations and justifications. And after that they analysed episodes 
revealing some students’ reasoning processes in solving the same tasks. In addition, their work on the 
tasks was collectively discussed with the intention of giving them opportunities to better understand 
the MR processes. The sessions also considered the reading and whole class discussion of documents 
focused on a framework concerning MR (Jeannotte & Kieran, 2017) and theoretical principles for 
task design to promote RM.  

Data collection for this study concerns two phases of the PTs’ work which includes their written 
answers to an initial task proposed on the course before working on MR and one task at the end of 
the course, in order to analyse their knowledge development. Both proposed tasks include some 
students’ resolutions of them, and a question that asks PTs’ analysis of the reasoning processes 
illustrated in students’ answers, as following, intending to gather a wide diversity of data regarding 
their knowledge of justification process: 

Initial task question: For each of the students’ written work on the task, identify how they 
attempted to justify the stated property. Which students’ answers evidence “convincing 
justifications”? Justify your answer. 

Final task question: Analyse each of the students’ written work on the task and characterize 
the justifications they present. Specify the ones you consider most “convincing” and explain 
why. 

In data analysis, to answer the question of this study, we used the framework reported above 
(Rodrigues et al., 2021) to analyse PT’s knowledge about the reasoning process of justification in 
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both tasks. Based on that, we present in table 2 a quantitative description levels of knowledge 
exhibited by the PTs in the process of justifying based on their answers of the tasks, and comparing 
them to illustrate their knowledge development. The PTs’ answers were independently coded by the 
authors, focus on the identification of the categories proposed. Divergent interpretations or doubts 
concerning a codification were then discussed by both authors to reach a full agreement. After that, 
we also present some examples of the PTs’ answers to the tasks that show the discrepancies of the 
process meaning attributed by them and their interpretation of students’ answers, associated to each 
subcategory. This examples may provide evidence of PTs’ MR knowledge and difficulties they reveal 
in their work. 

Results: PTs’ knowledge about justification 
Table 2 shows the PTs’ different levels of knowledge about justification, based on their answers in 
each task. Generally, the results show that PTs have improved their knowledge in the reported 
answers and the interpretation of the students’ answers.  

Table 2: Levels of PTs’ knowledge about justification 

ju
st

ify
in

g 

PTs 
Levels of reasoning process 

Initial task (*) Final task  

A 1 5 

D 0 4 

F 0 3 

K 0 4 

L 0 3 

M 0 4 

N - 2 

O 3 4 

P 3 4 

R 0 3 

S 4 4 

T - 4 

U - 3 
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* Three PTs did not answer this question in the initial task 

In the initial task, most PTs (6 + 1) evidenced lower levels (0 and 1) of knowledge about reasoning 
process of justifying, which is indicative of the common PTs’ difficulties in interpretation of MR 
processes. They mainly confuse the justifying process with others, namely with the generalizing. For 
example, to contend for the convincing justifications in students’ task answers, in their answers they 
argue that: 

The most convincing justification is the one that reaches generalization … He concluded that all 
even numbers added to odd numbers give odd … without exemplifying or generalizing. (D) 

The student used the generalization and verified its divisibility by 2. (F) 

They perceive the property and generalize. (M)  

One PT also associated this process with the use of a mathematical procedure, a term used in everyday 
language as illustration of the process, although the procedure in the student’s answer is clearly not 
justified: “The resolution is accessible and assertive. They seek to justify from the use of algebraic 
addition” (A). 

Only few PTs (2 + 1) showed higher levels (3 and 4), that comply with the definition process, although 
two of them just identified the justification through transcribed examples of the students’ answers 
associated to this process, mentioning for instance that: “Use of equations and acquired knowledge 
of the sum of even and odd numbers” (P) and “Uses algebraic language and concept of parity” (O). 

We also observe that one PT already evidenced deeper knowledge about justification, outlining its 
properties, recognizing an algebraic expression and mathematical properties as relevant 
characteristics of this process: “Generalizes algebraically … and uses the property that says the sum 
of two even numbers is an even number” (S). 

At the final task, compared to the initial one, the PTs’ levels of knowledge of justification have 
increased (2 to 5). The only PT at level 2 assumes that, for considering the justification as a reasoning 
process, it needs to be properly complete and correct, namely using mathematical logic: “he is not 
able to come to a logical justification” (N).  

We also find, in this task, that the most common levels are 3 and 4, as evidenced by 11 PTs (4 + 7). 
The four PTs showing level 3 were able to identify the justification process through transcribed 
examples of the students’ answers, for example: 

it was based on previous knowledge and reached a new conjecture and validated; justified through 
examples and search for patterns. (F) 

part of a general case to justify this property. (R) 

The answers of the PTs’ most evidenced level (4) express knowledge of justification and outline their 
properties, recognizing an algebraic expression and mathematical properties as relevant 
characteristics of this process. For example: 
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The justifications presented use inductions, for generic examples and formal demonstrations; 
reveal the understanding of the concepts involved and necessary for the demonstration, even 
though ... general algebraic expressions are used. (T) 

He relies on geometric construction…, on knowledge that he already possesses… and gives a 
deductive generic example. (M) 

Resolution D is an example of a justification through deductive reasoning characterizing 
justifications; justifies through examples, …where its representation allowed reaching the property 
and justifying. (P) 

Finally, we remark that one PT has reached the highest level of knowledge (5), as in her answer she 
identifies the justification and highlights the relationship between this process and generalization, by 
assuming that the last is inherent to the first: “The student … ended up finding two regularities that 
justify his reasoning quite well … discovers the regularity, making a generalization” (A). 

Conclusions 
This study investigated the improvement of middle school and secondary mathematics PTs’ 
knowledge about the MR process of justification, in the context of a pre-service teacher education 
course, particularly focused on how they recognize this process in students’ solution approaches in 
MR tasks which are analysed by them at an initial and final moment of the course. The PTs’ work on 
those two moments of the course and its comparative analysis provided an opportunity to evidence 
their growing levels of knowledge regarding justification process, based on the framework by 
Rodrigues et al. (2021) and recognised by the authors as essential to establish the progression of MR 
knowledge. Although almost all PTs had a solid mathematical background, with about 3 years of 
advanced mathematics study, at the beginning of the course, most of them still revealed difficulties 
with this MR process that is central to the mathematical activity. They seem not to be familiar with 
MR knowledge, as they reveal lower levels of knowledge about justification. This is indicative of 
common and serious PTs’ difficulties in the interpretation of MR processes before working on this 
theme in teacher education, as pointed out also by other studies (Buchbinder & McCrone, 2020; 
Lannin et al., 2011; Stylianides & Stylianides, 2009). 

As expected, after being involved in the teacher education course, it seems that in the final task, the 
PTs were using knowledge they have learn during the course, as all of them show a progress in their 
level of justification knowledge, although revealing a wide diversity among them. 

Finally, we remark, concerning the research question, that the results of the study evidence that the 
PTs have improved their knowledge, which confirm the importance of providing PTs opportunity to 
develop their MR knowledge in initial teacher education. The results of this research could also 
indicate that the privileged type of work carried out in the course, particularly the discussion of 
theoretical texts about MR meaning (definition, types, and processes) and the exploration and analysis 
of tasks proposed to students focused on their types and processes of MR, was valuable to bringing 
them closer to a deeper MR knowledge necessary for their future practices. 
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The limitations of this study are related to the fact it only focuses on the PTs’ justification process 
and does not analyse other relevant MR processes worked on the course, but the research will be 
extended to adress more dimensions of PTs’ MR knowledge.    
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Introduction and theoretical background 
On the basis of the adjustments in the school system and the accompanying requirements of the teach-
ers, in-service training aiming at continuous professional development (PD) is indispensable. In this 
context, Prediger et al. (2019) differentiate between three different levels: classroom level, teacher 
PD level and facilitator PD level. On the ‘classroom level’, many studies have been carried out look-
ing at the heterogeneity of students and teachers dealing with this heterogeneity. However, within the 
‘teacher PD level’, hardly any research was found dealing with the heterogeneity of teachers within 
PD trainings. In order to design effective PD trainings, Barzel and Selter (2015) identified six design 
principles: 1) competence orientation, 2) participant orientation, 3) teaching-learning diversity, 4) 
case reference, 5) stimulating cooperation and 6) promoting reflection. Participant orientation means 
taking into account the “individual, heterogeneous prerequisites and needs of the participants” and 
“fostering and demanding their active and autonomous participation” (p. 271, translated by RH). 

Based on these six design principles, Korten et al. (2019) developed an evaluated, blended-learning 
training concept. This is divided into an individual distance learning program and a joint attendance 
program. The aim of the study was to support teachers in inclusive classrooms and to investigate their 
diagnostic competence. They found that although they considered participant orientation, there was 
a great deal of heterogeneity among teachers in terms of their diagnostic competence when attending 
the training. This implies that their blended-learning concept needs further development in order to 
successfully address in-service teachers’ heterogeneity within all learning phases of a PD training. 

Research interest and design of the study 
Embedded in the broader project ‘School makes strong’ (Schule macht stark), we investigate the 
following questions: (1) How could a PD training be designed (e.g. using design principle ‘participant 
orientation’) to address teachers’ heterogeneity in a holistic way? (2) By which elements it could be 
enriched meaningfully for heterogenous in-service teachers? The project ‘School makes strong’ aims 
at supporting schools in socially challenging situations. To do so, trainings for in-service teachers at 
a total of 125 primary schools are being developed. Content wise, we focus on mathematical basic 
skills, e.g. basic arithmetic operations, number sense and the interlinking of theory and practice.  

Our study is conducted using topic-specific didactical design research (Hußmann et. al., 2016). Three 
cycles – each consisting of a design and a research process – will be passed through. At the moment, 
we carry out the first cycle, in which we develop a concept for the structure of the in-service trainings 
and material to design the PD trainings. Within the research process of the first cycle, we will collect 
various data: (1) questionnaires to evaluate if and how the teachers work with the mini-modules; (2) 
vignette-based interviews to learn more about the teachers’ heterogeneity and their learning progress 
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by the mini-modules and (3) observations of the teachers’ lessons to identify how new learning is 
implemented within mathematics teaching.  

Structure of a PD training focusing on teachers’ heterogeneity  
Building on the theoretical background, the in-service training courses are planned in a holistic way 
(see Figure 1). Classically, there will be built two training sessions according to the six design prin-
ciples, focusing on participant orientation. Each training session is structured in the same way: wel-
come, (reflection phase), theoretical input, planning of practical phase. A differentiated, individual 
study phase is integrated between the trainings consisting of mini-modules and a practical phase.  

 
Figure 1: Concept to handle teachers’ heterogeneity in PD trainings 

Within the practical phase, teachers are encouraged to implement their new knowledge in their reg-
ular lessons by implementing the new material in their lessons. The teachers are then asked to collect 
the students’ work and reflect their teaching after the lesson. The students’ work and the teachers’ 
self-reflection build the basis of the group discussion in the reflection phase of the next training. 

Between the trainings, all teachers are offered mini-modules. These aim at building and activating 
knowledge about mathematical or didactical issues, e.g. understanding of mathematical operations. 

Future steps 
In the future, the concept will be piloted, evaluated and revised within the next design research cycles. 
A focus will be on the design, planning and reflection of the practical phase and the mini-modules.  
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In this study, we report on data from videotapes of two prospective secondary mathematics teachers’ 
practicum teachings. The aim of the study was to investigate the relationship between prospective 
teachers’ mathematical knowledge for teaching and their perspectives on mathematics, mathematics 
learning and mathematics teaching. We analyzed data using both the Teacher Perspectives and 
Knowledge Quartet frameworks. Results showed that prospective teachers having a progressive 
incorporation perspective or perception-based perspective depicted all the codes in Knowledge 
Quartet; indicating that they held mathematical knowledge for teaching. Yet, results pointed that they 
had different reasons behind their actions indicating their mathematical knowledge for teaching. We 
discuss implications of these results on teacher education.  

Keywords: Teacher perspectives, mathematical knowledge for teaching, prospective secondary 
mathematics teachers. 

Background and Rationale 
Teachers’ having mathematical knowledge for teaching is important (e.g., Rowland et al., 2005). In 
this regard, considerable amount of research conducted with both in-service and prospective teachers 
pointed that although focusing on what teachers have or lack has importantly informed the field (e.g., 
Wilson & Cooney, 2002), consistencies among knowledge, beliefs, and practices (prospective) 
teachers might hold need to be given further attention (Chapman, 2016).  

Teacher perspectives as a robust construct is one of the ways to investigate such consistency. 
Researchers stated that perspectives “…can be thought about as … paradigms with respect to the 
development of mathematical knowledge...the term paradigm emphasizes the existence of internally 
coherent systems...” (Simon et al., 2000, p. 599). That is, a teacher’s perspective (i.e., meaning 
making systems) underlies the teaching practices that indicate not only what teachers think about, 
know, believe and do but also everything that contributes to their teaching (planning, assessing, 
interacting with students) (Simon et al., 2000). Therefore, teacher perspectives go beyond 
understanding particular knowledge and beliefs in the context of practice of teachers in transition 
(Simon et al., 2000) which have affordances and limitations on their teaching (Jin & Tzur, 2011). 
Particularly, doing research with in-service teachers, researchers reported on teacher perspectives in 
a continuum between traditional perspective, perception-based perspective (PBP) and conception-
based perspective (CBP) on mathematics, mathematics learning and mathematics teaching (Simon et 
al., 2000; Heinz et al., 2000; Tzur et al., 2001). Later, Jin and Tzur (2011) have placed the progressive 
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incorporation perspective (PIP) between the (PBP) and the (CBP). Tzur et al. (2001) stated that 
teachers holding (CBP) act accordingly with the views of radical and social-constructivist 
epistemology such that knowledge is actively built by the learner; so knowledge is re-invented. And, 
individual and social mathematical learning are reflexively related. Therefore, CBP has two important 
aspects: First, teachers are aware of his/her current mathematical understandings being qualitatively 
different from their students’ understandings (Jin & Tzur, 2011); and second, teachers focus on what 
students currently know rather than what they don’t know (e.g., Heinz et.al., 2000). On the contrary, 
(PBP) like the traditional approach, views mathematics as part of the external world independent of 
the knower, compatible with Platonist view of knowledge (Jin & Tzur, 2011). Thus teachers expect 
their students to see mathematical situations in the same way as they do. That is, mathematics learning 
means coming to see a first-hand experience of mathematical reality shared by all through discovery. 
Mathematics teaching occurs through teachers creating situations that reveal the mathematical ideas. 
Teachers having this view, in contrast to having a CBP, focus on what students do not understand 
(Heinz, et.al., 2000). Jin and Tzur (2011) postulating an intermediate perspective (PIP) stated that 
PIP “underlies an integrated stance on knowing and learning---reflecting both ‘existence outside the 
learner’ (hence, teacher involvement) and ‘dependent on what a learner knows’ (hence, student active 
problem solving)”. Mathematics learning is therefore an active mental process. Teachers’ main goal 
is to create learning opportunities for all students to activate their existing knowledge related to the 
intended mathematics, the old incorporating the new rather than being transformed as in CBP. Thus, 
we concur that perspectives not only include the foundational knowledge one needs to hold but also 
how such knowledge is embedded into teaching.  

Table 1: Placing PIP within teacher perspectives (Jin & Tzur, 2011, p. 20) 

Perspectives View of knowing View of learning View of teaching 

Traditional 
Perspective (TP) 

Independent of 

the knower, out there 

Learning is passive reception Transmission, lecturing 
instructor 

Perception-Based 
Perspective (PB) 

Independent of 

the knower, out there 

Learning is discovery via 
active perception 

Teachers as explainer (points 
out) 

PIP (PIP) Dialecticallyindependent and 
dependent on the knower 

Learning is active (mentally); 
focus on the known required 
as start, new is incorporated 

in to known 

Teacher as guide and 
engineer of learning 
conducive conditions 

Conception-based 
Perspective (CBP) 

Dynamic; depends on 
theknower’s assimilatory 

schemes 

Active construction of the 
new as transformation in the 

known (via reflection) 

Engaging students in 
problem solving; Orienting 

reflection; facilitator 

This takes us to mathematics knowledge for teaching in action (MKT) depicted in the Knowledge 
Quartet framework (Rowland et al., 2005). Knowledge Quartet (KQ) framework is based on four 
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main categories (See Table 2). The foundation dimension relates to teachers’ beliefs on the nature of 
mathematics and mathematics learning and teaching. It is also about teachers’ knowing ‘why’ behind 
the mathematics they teach. Transformation regards teachers’ presentation of ideas to learners in the 
form of illustrations, examples, explanations and demonstrations. Connection includes sequencing 
the material for instruction and awareness of the relative cognitive demands of different topics and 
tasks. Finally, contingency is the ability to make cogent, reasoned and well-informed responses to 
unanticipated and unplanned events during the lessons (Thwaites et al., 2010).  

Table 2: The Knowledge Quartet: dimensions and contributory codes (Thwaites et al., 2010, p.86) 

Dimension Contibutory Codes 

Foundation (1) (1.a) theoretical underpinning of pedagogy (1.b) awareness of purpose (1.c) identifying pupil 
errors (1.d) overt display of subject knowledge (1.e) use of mathematical terminology (1.f) 

adherence to textbook (1.g) concentration on procedures 

Transformation (2) (2.a) teacher demonstration (2.b) use of instructional materials (2.c) choice of representations 
(2.d) choice of examples 

Connection (3) (3.a) making connections between procedures (3.b) making connections between concepts, 

(3.c) anticipation of complexity (3.d) decisions about sequencing (3.e) recognition of 
conceptual appropriateness 

Contingency (4) (4.a) responding to students' ideas (4.b) deviation from lesson agenda (4.c) teacher insight 

(4.d) responding to the (un)availability of tools and resources 

So, we hypothesized that the three dimensions, the nature of mathematics, mathematics learning and 
mathematics teaching expressed in the perspectives corresponds with the (KQ) framework (Rowland 
et al., 2005). This is because as well the theoretical knowledge and beliefs related to mathematics and 
mathematics education are handled in KQ, the theoretical knowledge possessed by teachers is 
transformed into teaching through connections and the existence of contingency moments revealing 
students' thoughts, mistakes and difficulties. This implies a link between teacher perspectives and 
MKT; yet, there is few studies focusing on their relationship (Karagoz Akar, 2016; Bukova Guzel et 
al., 2019). Also, we hypothesize that (prospective) teachers holding different perspectives might 
depict different codes in KQ (Karagoz Akar, 2016). By the same token, even if (prospective) teachers 
depict the same codes referring to their MKT they might do so with having different reasons (Weston, 
2013). Therefore, we conjectured that once prospective teachers had different perspectives, their 
MKT would reveal itself at different levels during their teaching. Scrutinizing the coherency between 
teacher perspectives and MKT is important: it might help uncover the reasoning behind (prospective) 
teachers’ MKT. Diagnosing the reasons might provide teacher educators with particular steps to 
follow towards establishing more sophisticated perspectives and a full grasp of MKT on part of not 
only (prospective) teachers but also in-service teachers during professional development studies. 
With the results reported in this study we also aim to contribute to the field in the following ways: 
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First, how the practices of prospective mathematics teachers with PBP and PIP before, during, and 
after teaching will be depicted. Secondly, how such practices comprehensively revealing the relation 
between these perspectives’ characteristics and the codes of KQ through empirical data, including 
before-during-after teachings and interviews, will be shown. It is in this respect that, in this study, we 
investigated the following research questions: What are the indicators that prospective teachers have 
a particular teacher perspective? How is their mathematical knowledge for teaching revealed in the 
act of teaching? How are prospective teachers’ perspectives reflected in their mathematical 
knowledge for teaching?  

Methods 
Participants and Data Collection  

In the larger study, participants were six prospective secondary mathematics teachers who were senior 
students at one of the universities, in which the medium of language is English, in Turkey. We chose 
to work with these participants since they volunteered to participate in the continuing set of interviews 
and the practice teaching sessions till the end of the study. Data from six prospective teachers depicted 
that four of them hold PBP perspective and two of them hold PIP perspective. For the report in this 
paper, we specifically depict data from two prospective teachers, Alin and Meryem for illustrative 
purposes as the data from them were providing context to examine the relationship between the two 
perspectives (e.g., (PBP) and (PIP)) and (MKT). For the larger study, six prospective teachers’ two 
practicum teachings and interviews were videotaped and transcribed. Also, we conducted pre-
interviews on their lesson plans, observed the teachings and conducted post-interviews upon 
completion of the teachings within the same week. For instance, in the pre-interviews, we asked the 
rationale behind prospective teachers’ choice of learning goal(s), the tasks and how they consider the 
tasks they have chosen would allow students to learn meaningfully. In this paper, the reports will be 
on Alin’s and Meryem’s practice teachings. Alin taught an 80-minute lesson to the 10th grade students 
at a private high school. Alin had created a task for her students to make sense of the graph of the 
function  in terms of the meaning of real coefficients a, b, and c.  Meryem 
taught a 40-minute lesson to the 11th grade students at a public high school. Meryem had modified a 
task for her students to make sense of piecewise functions.  

Data Analysis 

We analysed the data using coded analysis (Clement, 2000).  First, based on previous research results 
(e.g., Jin & Tzur, 2011; Simon et al., 2000) we created a chart regarding teacher perspective 
characteristics. Following, each researcher read the lesson plans, transcripts from the pre-interviews, 
the practice teachings and the post-interviews line by line, looking for participants’ explanations 
regarding their perspective. Using the characteristics of teacher perspectives, we looked for their 
existing meanings. Once we spotted a line of explanation regarding their meanings in any of the data 
sources in terms of mathematics, mathematics learning, and mathematics teaching, we also checked 
other sources to possibly provide further evidence of such meaning. Then, we came together to have 
a consensus on the data set and our analyses going back to the whole data set to challenge our 
conjectures. Following, we created the table showing the frequencies of the teacher perspectives. The 
reason was that in different data sources, the same characteristic has been represented more than once. 
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For instance, the code PIP.1a1 was depicted five times within the lesson plan. Secondly, engaging in 
the same process using the codes from KQ we examined both this same data set and read further each 
of the data sources line by line to determine their MKT. Then, again we came together to have a 
consensus on the whole data set to challenge our conjectures. For example, the code KQ.1a was 
depicted five times in all the data sources for Alin. Finally, we wrote the narratives. 

Results 
Data showed that, Alin had a PIP and Meryem had a PBP. Also, compared to Meryem’s practice 
teaching, the number of KQ codes from each data source from Alin’s practice teaching indicated that 
Alin had shown more actions regarding the MKT in every aspect of the teaching. Now, based on 
some data from Alin and Meryem (the pre-interview data), we explicate how different perspectives 
and MKT are depicted and how some of the same KQ codes might reveal different reasoning patterns 
pertaining to different teacher perspectives. As mentioned earlier, Alin had created a task (PIP 1a) for 
her students to make sense of the graph of the quadratics functions,  in terms 
of the meanings of coefficients a, b, and c. During the pre-interview, when asked how the lesson plan 
would possibly promote the learning goal Alin had in mind for her students, Alin stated the following:  

Researcher: Why do you think this [lesson] plan will promote your students’ learning? 
Alin: I’m starting with the amount of change in ; therefore, students need to 

recognize the arms of the graph gets open and there is a decrease, I mean, there is 
a change in slope... Starting always with , how this change is formed and 
how this change affects the graph, so thinking this point… I mean, my activity 
provides quantitative operations by playing with something existing in their mind 
that they know.  

Researcher:  You said playing with something they know, what do they know? Like could you 
explain one more time what is quantitative operations?  

Alin: They know what  is, what its roots are, how the change occurs in , 
I mean, how the slope is changing and how it looks in the graph. However, they 
don’t have any idea about what happens to the graph when “ ” changes, because 
they don’t observe  for changing “ ” values. Therefore, the 
quantitative operations formed in their mind when they changed “ ”, I mean the 
thing they know in their mind, is like how the slope in  is, how the amount 
of increase is, and drawing the graph…. we need to observe the change of “ ” one 
by one, and keep “ ” and “ ” constant so that we can only be aware of the change 
in “ ”…Let me say the amount of change in y in terms of x, rather than amount of 
increase, because “ ” can be negative too. It is necessary for students to observe 
how the amount of change in y is changing. When “ ” changed and x changed as 
one unit, they can compare the amount of change corresponding to y, so that they 
can have an idea about the shape of the graph, I mean the arms (referring to the 
parts of the parabola)… Actually, what I am learning is to compare the amount of 
change in y with respect to change in x as one unit for different “ ” values.  

In terms of MKT, data showed that Alin had an awareness of purpose for her teaching (KQ 1b). She 
also effectively analysed which mental operations students need to engage in to make sense of the 
effect of the coefficient “ ” on the graph, in her own words: “compare the amount of change in y 
with respect to change in x as one unit for different “ ” values”. Her analyses revealed that she has a 
strong subject knowledge and theoretical background about coefficient “ ” for quadratic functions 
(KQ 1a and 1d). Also, she anticipated the complexity of the concept: She planned her lesson in such 
a way that by keeping “ ” and “ ” constant, students’ examining the change of “ ” would be more 
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efficient (KQ 3c). In addition, her consideration of graphical demonstrations such as starting with the 
graph of  while students were examining the coefficient “ ” together with the tables showing 
x and y values showed that Alin had knowledge about different representations (KQ 2c) and she could 
integrate these representations into her lesson with relations to each other (KQ 2d). Regarding the 
perspectives, data showed that Alin’s statement about comparing the amount of change in the 
dependent variable with respect to the one unit change in the independent variable suggested that for 
Alin students might create an idea about the graph of the quadratic functions and its structure through 
their mental operations (covariation). This suggested that Alin considered mathematics as constructed 
on the learner's mind. Alin’s planning her lesson hypothetically depending on her students’ mental 
operations and actions (PIP 1a1) also suggested that she considered mathematics dependent on the 
knower. In fact, further data in her written lesson plan pointed to more evidence for this claim: She 
articulated how students might possibly reason on the questions in the task sequence for different 
values of a such as a=1, 2, 4 and 10. Alin wrote: “By giving "a" different values and obtaining related 
y values, this time students compare the respective rate of changes in y values for different values of 
"a". For the same change in x values, the rate of change in y gets bigger as absolute value of "a" 
increases. Meanwhile, in students’ minds legs of the parabola gets steeper and hence the width of the 
opening of the parabola gets narrower.” Data suggested that she was hypothetically envisioning how 
students would reason given different values of “a”. In other words, she would expect students to go 
through the mental activity, the simultaneous comparison of the change in the variables x and y, so 
that they would know the reason behind the effects of the changes in the values of “a” on the graph 
(PIP 1a1). In addition, her choice of example y  to start the lesson indicated that she has chosen 
this example as a conceptual anchor to activate what they already know for the intended learning to 
take place (PIP1b). Alin stated “It is because , I mean it will be easier for them to understand, 
to start with, they can start from what they can compare, like for that reason I did not include bx+c 
first, so that they don’t get confused. This way, because   stays on the symmetry axis, like this 
is what they already know, they do not have to deal with finding the roots, they can focus on the 
changes on “a” more easily”.  On the contrary, regarding the same interview question, Meryem stated: 

Researcher:  Why do you think this [lesson] plan will promote your students’ learning? 
Meryem: I will be asking “could you explain for each of the graph?” I mean, after they have 

written for the first graph, the second graph, the third graph, I think they will realize 
the sets of domain and range will differ, like for different intervals we will be 
writing them. I think they will realize this. I mean I will ask again after they work 
on the examples, “if anything gets your attention”, “if you see anything similar in 
those examples?” If they can see, they can say for different intervals of domain 
corresponds to different intervals of range, then I will ask them how they can name 
it. Like I will ask for their guess, like they can say this or that. If they like they 
cannot say anything then I will ask them to write down domain and range sets for 
each example…If like noting comes from them, then I will tell them if we can call 
these functions as piecewise, “do you think this makes sense?” Then I will ask if 
they can support my explanation by different examples. I think they can say that. I 
mean I do not expect them to write it but they can see it in the graphs like they can 
explain that the graphs start and end at some points and then start again at the same 
point. I think they can give examples. Then I will summarize the lesson.     

In fact, Meryem had planned to provide three problem situations to the students based on which she 
expected them to draw the graphs. Regarding MKT, Meryem had a sense of awareness of purpose 
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such that she had modified the task based on her learning goal for the students (KQ1b). Similarly, 
once asked how she determined the leaning goal, Meryem stated that she had read about a research 
article on students’ understanding of piecewise functions. The article was about how students made 
sense of domain and range of different functions. Such analyses also revealed that she had a strong 
subject knowledge and theoretical background about piecewise functions (KQ1a and 1d). She further 
stated “If I have enough time, like I will ask them to draw graphs of linear, quadratic and constant 
piecewise functions”. Her choice of examples (KQ 2d) in her lesson plan together with her further 
planning of including different piecewise functions also indicated that she had sequenced examples 
supporting students’ deductions (KQ 3d). In terms of the perspectives, though, Meryem expected her 
students to see a similarity among the graphs they would construct based on the problem scenarios. 
That is, after their examination of the graphs visually students would realize that the domain and 
range of those functions would differ. This suggested that Meryem had expected her students to see 
the mathematics obvious to her in those representations (PBP 1b). Her use of problem scenarios 
having similar characteristic suggested that she wanted to create a learning trajectory for students so 
that those problems would make the mathematical relationships as apparent to them as possible (PBP 
1a). In contrast to Alin’s planning of her lesson on her students’ background knowledge, Meryem’s 
focus was on mathematics of other students. That is, albeit important, Meryem’s rationale for how 
she has chosen the learning goal for her students was based on some other students’ understanding of 
the domain and range of different functions. This also suggested that she might have believed that 
mathematics as part of objective reality existed in those representations ready for students’ perception 
through engaging in tasks that would allow them to ‘see’ and connect the intended ideas (PBP 1c). 

Conclusion 
This study investigated prospective teachers’ mathematical knowledge for teaching and their 
perspectives. In particular, data from two prospective teachers having a PIP and a PBP revealed that 
prospective teachers having both PBP and PIP depicted all the codes in Knowledge Quartet; 
indicating that they held mathematical knowledge for teaching (MKT). Data from the pre-interviews 
both from Alin and Meryem had shown that they did not adhere to the textbooks, rather they focused 
on students’ prior knowledge while they were deciding and arranging the lesson activities, they had 
a sense of choice of examples and sequence of ideas within the lesson.  Similarly, they had strong 
subject matter knowledge and theoretical background about the topics they have taught. Yet, their 
reasons behind such knowledge were different: Alin’s focus on students’ mind activities and their 
abstracting the relationships between the covarying quantities (the dependent and independent 
variables) suggested that she thought of mathematics as dependent on the knower. Similarly, this 
suggested that Alin viewed mathematics learning occurring through students’ own activities. On the 
other hand, Meryem had different reasoning behind such mathematical knowledge that she viewed 
mathematics as depicted in the graphs and examples she expected students to perceive. These results 
are consistent with Weston (2013) results, who found that although different prospective teachers 
demonstrated the same codes in KQ, the nature of such demonstration differed from one prospective 
teacher to the other in terms of how much of such knowledge they had. Results suggest that teachers 
with different teacher perspectives might depict a strong MKT albeit different reasons behind such 
knowledge. This therefore suggests the need to pay attention to teachers’ mathematical knowledge 
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together with their rationale behind it. Yet we acknowledge that the data came from only two 
prospective teachers. Therefore, we suggest further examination of MKT of prospective and in-
service teachers having different perspectives. Also, since the results suggest that prospective teachers 
having PIP might have a strong rationale behind their MKT we suggest to promote at least the 
development of a PIP on the part of prospective and in-service teachers during professional 
development studies.  
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This paper proposes an analytical tool for the evaluation of prospective mathematics teachers’ 
(PTs) diagnostic competencies through noticing critical incidents in hypothetical classroom 
situations (mathtasks). Data were collected from nineteen PTs attending an undergraduate course 
for one semester. Data analysis highlighted variations within the four characteristics of teachers’ 
diagnostic competencies that are described by four internal levels inspired by how teachers notice. 
This analysis resulted to the analytical rubric we present and exemplify in this paper. We see the 
potential of the proposed rubric in research and mathematics teacher professional development.  

Keywords: Noticing, mathtask, prospective teachers (PTs), professional development. 

Introduction 
Research has highlighted the significant role of critical incidents, which, according to the Goodell 
(2006), are classroom incidents that have the potential to trigger teacher reflections on students’ 
mathematical learning. Such reflections have been connected to the development of diagnostic 
competencies, namely their competencies to interpret students’ mathematical actions by identifying 
the rationale behind these actions (Prediger, 2010). Very often, teachers encounter unanticipated 
situations in their lessons to which they are expected to respond on the spot. Especially prospective 
teachers, with limited teaching experience, often face difficulties to give immediate interpretations 
and multifaceted responses when they needed. For that reason, teachers’ education on ways of 
analyzing students’ thinking and different teaching practices is pertinent (Grossman, 2011). Such 
education can be supported by the analysis of critical incidents (Psycharis & Potari, 2017). Also, 
studies report improvement in teachers’ engagement with mathematical and pedagogical 
terminology when they interpret students’ reasoning (Grisham et al., 2002). 

Recently, researchers have been using videos, pictures or texts from classroom incidents in order to 
support teachers’ observation of students’ reactions (Prediger & Zindel, 2017; Sherin & Van Es, 
2003; Van Es, 2011). The ability of teachers to observe students’ mathematical thinking is 
attributed by Van Es (2011) to their ability of noticing. She argues that teachers need to learn how 
to observe and interpret classroom interactions that affect learning. Teacher noticing is analyzed in 
three dimensions: the monitoring of noteworthy events; their justification; and, their interpretation 
in order to make an appropriate teaching plan. The key element for teachers’ noticing ability is 
whether the substantiation of their arguments is based on the principles of teaching and learning. 
Van Es proposed a two-component analytical framework for teacher noticing: What teachers notice 
and How teachers notice. The How teachers notice component can be categorized into four levels: 
Level 1, when the analysis of a fact they notice includes general impressions, providing descriptive 
and evaluative comments, with little or no evidence to support it; Level 2, when in addition to Level 
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1 the analysis includes some interpretive comments referring to noteworthy events or interactions as 
evidence; Level 3, when in addition to Level 2 the analysis includes interpretive comments and the 
elaboration of specific noteworthy events and interactions; and, Level 4, when in addition to Level 3 
the analysis include connections between the events and principles of teaching and learning and 
proposals for alternative pedagogical solutions (Van Es, 2011). 

Noticing has also been connected to the diagnostic competences of PTs through their interpretation 
of aspects they have noticed in familiar or non-familiar instructional episodes (Prediger & Zindel, 
2017). Characterisation of mathematics teachers’ diagnostic competencies is related to the work of 
Biza et al. (2018). In their work, Biza and colleagues design hypothetical classroom situations 
(mathtasks1, see Figure 1) that are inspired by mathematical and pedagogical issues likely to occur 
in the mathematics teaching practice, and they invite mathematics PTs and in-service teachers to 
reflect on these situations. The classroom situations, although hypothetical, are designed with 
potential critical incidents in mind (in the sense of Goodell, 2006) that PTs are invited to notice, 
interpret, and propose intended actions. Mathtasks were used in the study we present here towards 
the familiarisation of PTs with critical incidents that may arise in their classroom as we explain in 
the next section. In earlier work of Biza et al. (2018), the analysis of teacher responses to mathtasks 
proposed a typology of four characteristics of teachers' diagnostic competencies in recognising the 
issues in the incident described in the classroom situation and in responding to students’ needs: 
consistency, how consistent a response is in the way it conveys the link between the respondent’s 
stated pedagogical priorities and their intended actions; specificity, how contextualized and specific 
a response is to the incident under consideration; reification of pedagogical discourse (RPD), how 
reified2 the pedagogical discourse of the response is in order to describe and interpret the 
pedagogical and mathematical issues of the incident and to propose appropriate actions; and, 
reification of mathematical discourse (RMD), how reified the mathematical discourse of the 
response is in order to describe and interpret the underpinning mathematical content of the incident 
and to propose appropriate actions (Biza et al., 2018). The four characteristics are attentive to 
teachers’ both mathematical and pedagogical discourses. However, the operationalization of the 
typology in analysis requires more transparency on the level of sophistication within each one of the 
four characteristics (e.g., what does justify a high level of RPD?). Such lack of transparency is 
addressed by this study that examines the research question: “what levels of variation can be 
identified within each one of the four characteristics of PTs’ diagnostic competencies as evident in 
their responses to hypothetical classroom situations (mathtasks)”. To address this issue, we propose 
an analytical tool that draws on Van Es’s (2011) levels of how teachers notice in order to describe 
variations within each one of the four characteristics as we exemplify through the analysis of 
empirical data in the next section. 

 
1Mathtasks are designed in the context of the MathTASK research and development program on mathematics teachers’ 
pedagogical and mathematical discourses (https://www.uea.ac.uk/groups-and-centres/a-z/mathtask). 
2 Reified means that the mathematical discourse (the mathematical content and practices PTs have become familiar 
during their studies) and the pedagogical discourse (the theories and findings from mathematics education research PTs 
have become familiar during their studies) have been integrated productively into PTs’ responses.  
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Methodology 

The research took place in the context of a 14-week mathematics education undergraduate course at 
a Greek university with nineteen PTs. The 19 PTs who participated in the research were also those 
who participated in the semester course.The condition for attending the course was the completion 
by PTs of mathematical courses and at least four courses related to psychology, philosophy and 
mathematics education. During the course, PTs engaged with school based activities – such as 
lesson observations, lesson planning, delivering sessions, noticing of critical events from the 
classroom and the interpretation of these events – and university based activities – such as 
introduction to theories and findings from research into the teaching and learning of mathematics, 
engagement with mathtasks and discussion on PTs’ school school based activities. One of the aims 
of the course was the development of PTs’ pedagogical discourse also through their engagement 
with research in mathematics education literature. 

In this paper we draw on PTs responses to the 
mathtask of Figure 1 (translated from Greek), the 
last of the three mathtasks used in the course as 
instances of potential critical incidents, that was 
given to PTs towards the end of the semester. 
PTs’ responses were collected electonically one 
week after the assignment. The hypothetical 
scenario of the mathtask is based on an open 
mathematical problem, different from what is 
considered as usual in the Greek mathematics 
school curriculum. We expected PTs to analyze 
the goals of the activity, to identify the flexibility 
of using it in different classes (and specify the 
class), to notice the issues in students’ dialogue, 
to interpret these issues and to respond to them 
accordingly. Thus, we aimed to trigger PTs’ 
noticing in the given incident and through this to 
analyze and evaluate their diagnostic 
competencies. All the PTs who attended the 
course consented to the use of their work for 
research purposes. The research was implemented 
within the framework of the qualitative research 
methodology. 

 

 

 

 

 Reasoning 
In a class of maths, students are asked to solve the following problem: 
“Can you make the two columns of numbers below add up to the same total 
by swapping just two numbers between the columns? Explain why or why 
not.” 

 1   
 7  

 3   
 2  

 8   
 4  

 5   
 9  

 
The following conversation between students A and B takes place: 
Student A: If I add up the number in the columns, I get totals of, umm…17 

and 22. So we need to make these the same. 
Student B: How about we just try swapping some numbers and see what 

happens! 
Student A: Okay, let’s try the top two numbers first…If we swap 1 and 7, 

we get new totals of 23 and 16. That’s worse than before! 
Student B: Let’s try some others…what about swapping 5 and 7? 
Student A: No, that gives 19 and 20. 
Student B: We’re getting closer, though! 
Student A: What about if we swap two numbers that are close together, like 

2 and 3? 
Student B: Ummm…that gives 16 and 23, that can’t be right. 
Student A: We could be here doing this forever! 
Student C joins the conversation. 
Student C: Maybe it can’t be done and we have to show why not. 
Student A: How would we do that then? We can’t try every single possible 

swap…that would take too long! 
You have just heard this exchange between students A, B and C. 
Questions:   Lesson for: (specify the class) 
a. Solve this mathematical problem. What is the main goal of this problem? 
b. For what reasons do you believe that this episode is important? (from 
mathematical and pedagogical view) 
c. How you would interpret this dialogue? (refer to the literature) 
d. How would you respond to Students A, B and C and to the whole class? 
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The data were coded with the analytical tool of a rubric (Andrande, 2000) with two-dimentions (see 
Table 1): the typology of the four characteristics (criteria) proposed by Biza et al. (2018) in rows; 
and within each of the characteristics, in columns, the four levels inspired by Van Es’s (2011) levels 
of how teachers notice and concern quality differences within each characteristic. 

Initially, the first author analysed PTs’ responses in relation to the four characteristics by looking 
for quality differences within each characteristic. Then, the quality differences between these levels 
were described with an adaptation of Van Es’s (2011) levels. The rubric in Table 1 is the outcome 
of this phase of the analysis.  Finally, PTs’ responses were analysed again with the use of the rubric. 
The other two authors validated the analysis in each one of the three phases described above. In this 
paper we present the rubric together with examples from the final analysis that concerns the RPD 
characteristic with some reference to the other characteristics. 

Results 
In Table 1 we present the rubric with the four characteristics in each row and the levels in each 
column. Then, we exemplify the RPD levels from the responses of PTs to the mathtask of Figure 1.  

Table 1: The rubric of four characteristics 

 Level 1: 
Irrelevant 

Level 2:  

Superficial 

Level 3:  

Evolving 

Level 4:  

Multidimensional 

Co
ns

ist
en

cy
 

There is no 
consistency in 

the 
interpretation 
of the incident 

and the 
proposed 
actions. 

There is consistency in 
the interpretation of the 

incident and the 
proposed actions. There 
are general references to 

the incident with 
superficial interpretation 
of what is happening in 

it. 

There is consistency in the 
interpretation of the 

incident and the proposed 
actions. There are specific 
references to the incident 
with interpretations and 

identification of 
connections of what is 

happening in it. 

There is consistency in the 
interpretation of the incident and the 
proposed actions. There are targeted 
suggestions based on evidence from 
what is happening in the incident, 

specific and/or alternative approaches, 
links to principles of teaching and 

learning related to them. 

 S
pe

ci
fic

ity
 

There is no 
accuracy in 

the 
descriptions of 
the incident. 

There is accuracy in the 
descriptions of the 
incident. There is a 

general reference to what 
is happening in the 

incident. 

There is accuracy in the 
description of the incident. 

There are specific 
references to the incident 
with interpretations and 

identification of 
connections of what is 

happening in it. 

There is accuracy in the description of 
the incident. There are detailed 

interpretations based on evidence of 
what is happening in the incident, 

which are connected to teaching and 
learning principles related to them. 
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RP

D
 

Wrong, 
irrelevant or 

no use of 
pedagogical 
terminology. 

Limited use of 
pedagogical terminology. 

There is general 
reference to pedagogical 
issues from the incident. 

Good use of pedagogical 
terminology. There is 

interpretation of 
interactions happening in 

the incident with evidence, 
using pedagogical terms 
related to principles of 
teaching and learning. 

Very good use of pedagogical 
terminology. There are interpretations 

and identification of connections in 
what is happening in the incident with 

reference to relevant literature of 
principles of teaching and learning 

and alternative pedagogical 
suggestions. 

RM
D

 

Wrong or no 
use of 

mathematical 
terminology. 

Limited use of 
mathematical 

terminology. There is 
general reference to 

pedagogical issues from 
the incident. 

Good use of mathematical 
terminology. There is 

interpretation of 
interactions happening in 

the incident with evidence, 
using mathematical terms 

and description of 
suggestions based on the 

mathematical content. 

Very good use of mathematical 
terminology. There are interpretations 

and identification of connections in 
what is happening in the incident with 
reference to the relevant literature of 
the basic principles of teaching and 
learning and alternative suggestions 

focused on the mathematical content. 

Exemplification of RPD levels 

The Levels in Table 1 are inspired by Van Es’s (2011) levels and the headings in the table were 
named in order to attribute the quality differences from one level to another. To exemplify the 
levels of the RPD characteristic we present characteristic examples from four different PTs’ 
interpretations at various levels in terms of the RPD. The levels within each one of the 
characteristics are interconnected in the responses of each one of the PTs. Due to space limitation, 
we only exemplify the rubric from PTs’ responses to questions b and c of the mathtask in Figure 1.  

Specifically, at the Irrelevant level (L1), Mania responds to question b: 

From the teaching point of view, we can see how the students manage a problem without 
solution and how the need of the concept of the proof emerges, as student C quote.  

Mania seems to recognize two teaching objectives: managing a problem without solution and the 
emergence of a need for proving. Then, in question c, she writes: 

The concept of proof is not a standalone concept, it comes together with the sense of 
“legitimizing a proposition” and “theory” [her quotation marks]. … It requires a substantial 
transition of the student to an epistemological state: the transition from a practical state (ruled by 
a kind of practical logic) to a theoretical state (ruled by the physical particularity of a theory). 

Her response above includes text retrieved from the internet. This is not necessarily a problem when 
the right reference is used, which she has not done. Also, it seems that she is using terminology 
without connection to elements arising from the dialogue in Figure 1. Yet it is not clear, when she 
refers to “theory” and “epistemological state” if she means proof and, while she refers to “a 
practical state”, if she means the tests that students make when they try to give a solution. 
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Mania’s responses are coded as L1 for the other three characteristics as well, which means that she 
does not interpret the elements from the dialogue, neither she proposes how she could manage this 
open-ended task in a classroom. Especially for L1 in RMD, she presents a few tests from MATLAB 
as solution and insisted on experimentation, which alone is not enough to help students to think of 
an algebraic explanation. 

At the Superficial level (L2), we present part of Anna’s response to question b in which she 
highlights the pedagogical interest of the episode because: 

The dialogue, the exchange of views and the collaboration between students are encouraged in 
this episode. Moreover, the intervention of the teacher cultivates the mathematical thinking and 
ability of abstraction. It is an open-ended problem that allows students to take initiatives.  

Then, in question c, she writes: 

[she describes a mathematical solution] This problem was given to the class with the aim [to 
make] students to distinguish the meaning of even and odd [numbers]. 

She notes that through an open-ended activity, dialogue and different ways of resolving are favored. 
Nevertheless, the comments in her interpretation are general without connection to points of the 
episode. Moreover, she doesn’t cite any reference from relevant literature. Overall, Anna focuses on 
the mathematical content both to her response the problem and to her interpretation of students’ 
answers, without making any reference or connection to the principles of teaching and learning. We 
notice that comments such as “exchange of views and cooperation are encouraged” or “teacher 
cultivates mathematical thinking and abstract abilities” and “open-ended problems allow students 
take initiatives” are general in terms of the pedagogical content and brief that they can be applied to 
other cases as well. In addition, she does not support her points with evidence from the incident 
under consideration and with references to student interactions. The difference between Mania and 
Anna is the relevance of Anna’s pedagogical comments to the critical incidents she identified in the 
dialogue. Moreover, in relation to the characteristics of Consistency and Specificity, Anna’s 
response is at L2. However, in relation to the RMD characteristic, her response is at L3: Anna’s 
interpretations are based on the mathematical content of the problem and she proposes specific 
interventions as a response to the difficulties of the students she identified in the dialogue. 

At the Evolving level (L3), Vaso’s response in question b included the following: 

The teacher lets the students discuss the exercise with each other without intervening. This 
practice encourages the exploration and the exchange of views. The problem is a good example 
of a task that sharpens students’ mathematical thinking and curiosity. The students are expected 
to engage actively and try to think of a shorter way to solve it. 

Here she points out that the teacher promotes the dialogue without guiding the students. 
Furthermore, she commends students’ involvement as important in the demanding activity of the 
incident. However, she neither makes any comment on students' approaches nor she makes 
connections to the dialogue. Continuing with her interpretation, she comments in question c: 
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…students face difficulties in relating the proof with their attempts to find a solution. The 
literature confirms that a large percentage of students find it difficult to acknowledge the 
importance and usefulness of proof. This often happens because students do not understand why 
the proof validates the original claim or they do not yet fully understand the meaning of proof. In 
this example, proof occurs as a result of a conjecture-and-test process to solve a problem which 
turns into an algorithmic exercise. The students seem to find it difficult to move from conjecture 
to proof. 

Finally, we notice that Vaso refers to basic principles of teaching and learning such as tasks of high 
or low demand, key points of the proof (tests, conjecture, and proof), students’ difficulties in 
understanding the meaning of a task, student habits with algorithmic solutions. This indicates that 
Vaso has studied the relevant literature suggested by the course although she does not refer directly 
to it. This approach is more detailed and focused in comparison to Anna’s. Vaso’s interpretation is 
more justified as she uses evidence from the situation to describe students’ interactions through 
pedagogical terms. In relation to the other characteristics, Vaso’s response is at L4. 

At the Multidimensional level (L4), Anastasia’s response involves pedagogical terms connected 
with the incident and references to relevant literature. In question b, Anastasia noticed some 
significant points of the dialogue like the cooperation between the students through the discussion, 
the investigation through tests to lead to the conjecture and the proof. Moreover, she focuses on the 
type of activity and the flexibility of strategies it allows to the students. She also refers to time 
effectiveness, number of tests and the conjecture-proof relationship. Later in question c she writes: 

According to F. Furinghetti, open problems include activities with a short formulation that does 
not imply the solution method, but instead stimulate the production of conjectures and encourage 
discovery. As M. Mariotti points out, the teacher plays a key role in helping students dealing 
with such problems. […] Student A observes that the solution to the problem seems time 
consuming. This student concern could clearly be a sign of despair or lack of willingness on his 
part to be further involved in the solution process. On the other hand, it may be a way by which 
the student expresses the need to change the way they work, or try to come up with a shorter 
solution.[…] It is possible, however, that student A's observation that the problem is time-
consuming may have caused student C to "think cunningly" and assume that something else 
might have happened. [...] In any case, he seems [student C] to have realized part - if not all - of 
the functions of the mathematical proof (according to Bell, Hanna and de Villiers), that is, to 
verify the truth of a proposition, to explain it, to contribute to the discovery and exploration of 
new situations, concepts and properties and to "communicate" the new knowledge. The 
evolution of the event is expected to be critical too. 

Here Anastasia describes in detail what happens in the incident by commenting on students’ 
reactions. Her answers reveal familiarity with the curriculum and the relevant literature on teaching 
and learning. She refers to the open problems that motivate the production of conjectures and she 
comments on the role of the teacher in managing such problems in the classroom, with references to 
relevant literature. The pedagogical terminology she uses is constantly in connection with points of 
the incident. The importance she gives to the interaction is crucial in order to provoke further 
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dialogue about the mathematical proof. Overall, she approached the incident comprehensively by 
interpreting the students' reactions and their interactions and offered alternative pedagogical 
solutions. All the above with the fact that she connects the pedagogical terms with the literature, 
classify her response as L4. Finally, Anastasia’s response is at L4 for all the other characteristics.  

Conclusion 
In this paper, we address the lack of transparency on the level of sophistication of PTs diagnostic 
competencies and we proposed an analytical rubric that describes how teachers notice within each 
one of the four characteristics of PTs’ diagnostic competencies (Biza et al., 2018). At the broader 
research, in which this rubric was used, we explore the levels of the characteristics of PTs in three 
consecutive mathtasks, the third one (Figure 1) is discussed in this paper, in order to study the 
development of PTs diagnostic competencies across the course. The analysis evidence that the 
typology of the four characteristics and the proposed quality differences within them provide a 
detailed picture of PTs’ diagnostic competencies and their development as PTs moved from the first 
mathtask to the third one across the course. We note that such development is attributed to the 
course design that prioritized appropriate connections to the teaching and learning of mathematics 
literature and supported PTs’ reflective activities. Therefore, we would say that the results agree 
with studies that report the benefit of teachers’ interpretation of their students’ mathematical 
thinking (e.g., Psycharis & Potari 2017; Van Es & Sherin 2010). Also these results reinforce 
research findings that emphasize the critical role of the kind of intervention (in our case based on 
the use of critical incidents in hypothetical classroom situations) on the improvement of PTs’ 
diagnostic competence (Prediger & Zindel, 2017). The proposed rubric has affordances to map out 
PTs’ development across the course and to identify areas for further enhancement. Following 
Grisham er al. (2002) observations about teachers’ engagement with terminology, the co-existence 
of mathematical and pedagogical aspects in the MathTASK activities and the proposed rubric 
makes them valuable tools for PTs’ education and teacher professional development as well. 

In this paper, we chose to present the levels of RPD in a classroom situation related to a 
mathematical problem that was not familiar to PTs due to the critical role of the teacher in such 
situations and the variety of responses we elicited in our data. The choice of the classroom situation 
and its impact on PTs’ response is of interest for future research. Moreover, we observed 
interrelations between the four characteristics. For instance, PTs who improved their RMD level 
across the course, they demonstrated similar improvement in the Consistency levels of their 
responses. In the future, it would be interesting to see in more detail the factors that influence the 
level change of one characteristic in comparison to the level change of another. 
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This paper investigates how teachers reflect on and explain the role of high-quality mathematical 
tasks when selecting tasks for use in lessons. By analysing data from three groups of mathematics 
teachers engaged in collegial discussions, this study aims to elucidate how teachers rationalize the 
role of high-quality mathematical tasks. The results indicate that teachers appreciate high-quality 
tasks in providing discussions among students and supporting the collaborative efforts to solve 
problems. Conversely, despite this appreciation, teachers refer to such tasks as inappropriate for 
their students. For this reason, they pointed to the capabilities, lack of motivation to engage, and the 
lack experience of their students. 

Keywords: Professional development, collegial discussion, high-quality tasks. 

Introduction 
The reform movement in mathematics education, which emphasizes the learning of additional 
mathematical competencies apart from procedural fluency, typically encourages the development and 
reorganization of syllabi, curriculum materials, and classroom practices. A central policy initiative 
that facilitates change frequently involves professional development (PD), which aims to support 
teachers in establishing productive classroom practices. A typically important component of such PD 
programs is the collegial discussions of teachers (Cobb & Jackson, 2011; Cobb et al., 2018). Within 
PD programs, collegial discussions may be viewed as a means for facilitating teacher development, 
which, in turn, is conceptualized as a means for improving and changing classroom practices 
(Desimone, 2009). According to Munter (2014), collaborations between teachers are less effective 
unless they share vision of high-quality instruction that gives meaning and purpose. High-quality 
instruction can be defined in three related dimensions of classroom instruction (Munter, 2014). The 
first is the role of the teacher, where the teacher supports students in learning mathematics by 
facilitating understanding. The second is developing a classroom community. Teachers are 
responsible for orchestrating discussions, such that students can share multiple problem-solving 
strategies, analyse relationships among strategies, and explore contradictions in ideas to provide more 
insight into mathematical thinking. The third dimension is the role of mathematical tasks. High-
quality tasks should support students in developing problem-solving strategies (Hiebert et al., 1997) 
and should hold the potential to “engage students in solving challenging, ambiguously defined 
problems without the suggestion of a particular procedure or path to a solution” (Munter, 2014, p. 
607). A central aspect of a concept labeled “ambitions instruction” (Kazemi et al., 2009) is using 
cognitively demanding tasks to challenge students. Engaging students in cognitively demanding and 
challenging tasks is characteristic of a reform-oriented approach to mathematics instruction. The 
study focuses on the third dimension, that is, the role of mathematical tasks and, specifically, how 
teachers rationalize the role of mathematical tasks in collegial discussions as they engage with a PD 
program in mathematics education. Investigating the explanation of teachers regarding the role of 
mathematical tasks when selecting tasks to use in lessons is important for understanding their 
reflection on the role of mathematical tasks. In this context, the following research question guides 
this paper: “How do three groups of teachers, who are participating in a PD program in Sweden, 
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rationalize the role of mathematical tasks in collective planning with colleagues?” I seek to answer 
this question by analysing three groups of mathematics teachers engaged in collegial discussions as 
part of a national large-scale PD program in Sweden. In the context of the current study, I understand 
collegial discussion in a pragmatic manner. In other words, when teachers work in teams with the 
support of the large-scale program, the boost in mathematics is designed to support such groups of 
teachers to engage in collegial discussions regarding resources as well as planning lessons and 
collective reflections on classroom instruction. 

Relevant research 
The notion of high-quality or challenging tasks is relatively common (Ingram et al., 2020). Through 
tasks in the mathematics classroom, compared with other methods, opportunities to learn are made 
available to students (Munter, 2014). Therefore, considering the mathematical ideas behind a task, 
the potential to engage students in solving such challenging problems, and possible solutions, 
strategies, and misconceptions that students may provide when attempting to solve a task is important 
prior to teaching (Munter, 2014). Based on the importance of high-quality tasks in mathematics 
teaching and learning, scholars have investigated the justification and characterization of teachers 
regarding the tasks they opt to use in terms of the potential of the task for students’ work. For example, 
Heyd-Metzuyanim et al. (2019) interviewed two teachers as they participated in a PD program. The 
authors found that the main justification of teachers for selecting tasks was their location in a certain 
place in the curriculum, instead of mathematical goals. Another justification for selecting a task was 
that the task would lead to a discussion. However, the two teachers did not explicate the nature of this 
discussion during the interview. Through analyses of teacher interviews, Sun (2019) examined the 
beliefs of four teachers about mathematical tasks. The author found that their beliefs are frequently 
related to the concept that certain forms of mathematical activity are not viable for certain groups of 
students due to their different innate abilities. Thus, students with low achievement tend to be 
excluded from engaging in high-quality tasks. 

Researchers also distinguish between high- and low-quality tasks. Cobb et al. (2018) investigated the 
aspect required to support the development of ambitious instructional practice among teachers. One 
of Cobb et al.’s. (2018) perspectives in this large-scale PD program was the nature of the task. One 
distinction is whether a task is of low or high cognitive demand. For tasks with low cognitive demand, 
students apply known procedures. Thus, little ambiguity exists in solving such tasks. High-cognitive 
tasks are frequently open-ended and can be solved using various strategies. In other words, students 
tend to struggle with such tasks for a certain period without intervention from the teacher. One of the 
findings by Cobb et al. (2018) was that maintaining the cognitive demand of a task is challenging for 
teachers. As a result, they frequently reduce the challenge of the task over the course of the lesson. 
Their views on high-quality tasks are that these tasks do not align with their structure of the lesson. 
Moreover, these tasks are considered inappropriate for the students. Munter (2014) developed a 
framework for characterizing the perceptions of teachers toward high- and low-quality tasks on the 
basis of more than 900 interviews. In this manner, he modeled the trajectories of the perceptions of 
high-quality instruction along the findings in the literature. At the lowest level, teachers fail to view 
tasks as being of high or low quality. At the next level, the responses of teachers suggest that tasks 
can vary in quality. However, those performed by the students should first enable procedural practice 
before problem-solving and application. At the third level, teachers refer to more sophisticated 
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descriptions of high-quality tasks, such as tasks that require multiple solutions or support the 
conceptual understanding of students. At the highest level, teachers refer to the rationale that high-
quality tasks support students in learning and doing mathematics, such as making and testing 
conjectures, opening up for examining, and comparing several strategies. To better understand how 
teachers discuss and reflect on the role of mathematical tasks, I have opted to focus on the collective 
planning of teachers with colleagues during a PD project. 
Method 
The Swedish National Agency for Education launched a curriculum-based PD project. Called “Boost 
for Mathematics1” (Skolverket, 2018), this project intends to improve the teaching of mathematics. 
Its major components are 24 modules, where eight are disseminated per grade level (1–3, 4–6, and 
7–9). Each module focuses on certain mathematical contents, the manner in which students learn 
these contents, and how teachers can support learning. A central part of these modules is high-quality 
tasks.1 Each module presents several high-quality tasks and encourages teachers to discuss these 
tasks, such as selecting which ones to use in lessons and adjusting the task to be suitable for their 
class. The curriculum, which is distributed digitally on a website, includes articles, instructions, high-
quality tasks, and videos. Each module is designed to support groups of teachers in engaging in eight 
iterations, comprising individual preparation, conducting collective planning with colleagues, 
teaching individual classrooms, and facilitating collective reflections in classroom instruction. This 
study focuses on the collective planning of teachers with colleagues at three selected schools. The 
selection process was based on two factors. Selecting one group of teachers from each of these three 
grade levels was convenient, because the data material was intended teachers from each grade level 
(i.e., 1–3, 4–6, and 7–9). The other process of selecting groups was including groups that opted to 
study the module in terms of problem-solving, which included high-quality tasks. Data were collected 
by videotaping two meetings with each group for a total of six sessions. The first meeting was based 
on collective planning with colleagues during the first semester, whereas the second was based on 
collective planning with colleagues during the second semester. 

Analysis 

To understand what teachers engage in when focusing on high-quality tasks in collegial discussions, 
as previously described, I have chosen to deeply examine the collective planning of the three groups 
of teachers for their classroom instruction. As part of data reduction, I identified and transcribed all 
discussion episodes that involved the teachers in the discussion of tasks. For analysis, I defined an 
episode of pedagogical reasoning as a coding unit: 

Units of teacher-to-teacher talk allow teachers to exhibit their understanding of an issue in their 
practice. Specifically, episodes of pedagogical reasoning are moments within teachers’ 
interactions in which they describe issues in, or raise questions about, teaching practices that are 
accompanied by some elaboration of reasons, explanations, or justifications. (Horn, 2007, p. 46) 

Episodes of pedagogical reasoning, in which the teachers explicitly discussed the tasks presented in 
the PD, were analysed. The abductive process was used to develop the analytical framework for the 
research (Bryman, 2016). Inspired by the framework of Munter (2014), I made modifications to their 

 
1 The modules and the high-quality tasks: https://larportalen.skolverket.se/#/moduler/1-matematik/alla/alla 
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categories to create a total of three categories. Developing the analytical framework has been a 
continuous process, which required moving back and forth between the data and the analytical 
framework. Gradually, I made clear distinctions between different categories with a focus on entire 
episodes of the discussions among teachers regarding high-quality tasks. Munter (2014) categorized 
the different views of teachers about high-quality tasks. At the first level, they are aware that tasks 
can vary in quality; however, students require procedural practice before working with high-quality 
tasks. In the data material, several utterances occurred about the difficulties, limitations, and 
inabilities of students in working with high-quality tasks. These utterances were categorized as 
appropriateness for the students. At the next level, the teachers described the nature of tasks as being 
oriented toward reform. However, they fail to describe a function or describe it in terms of increasing 
interest levels and student engagement (Munter, 2014). Moreover, teachers were concerned about 
leisure gained from tasks and their potential to lead to discussions. Such views were categorized as 
the function of tasks. At the highest level, Munter (2014) described the view of teachers about high-
quality tasks to support student learning and performing mathematics and to provide content for the 
entire class discussion. In the data material, the teachers were concerned about the structure of the 
lesson and the presentation and discussion of tasks across the phases of the lesson. These concerns 
were, therefore, categorized as the structure of the lesson. The results section provides further 
elaboration on these categories. Table 1 demonstrates the overview of schools and number of episodes 
identified for each category. 

Table 1: Analysis of video materials — an overview 

School (pseudonyms) 
and modules 

Teachers 
(pseudonyms) 

Video-Recorded 
Meetings. 

Function 
of tasks 

Structure 
of 

lessons 

Appropriateness 
for students 

Rafford 1–3.  
Problem-solving and 

number sense 

Amy, Maria, Helen, 
Grace, Julie, and 

Hannah 

First session: 50 
min. Second 

session: 49 min. 

3 5 12 

Hadlow 4–6.  
Problem-solving and 

number sense 

Mary, Mona, Celia, 
Fred, Josie, and 

Nicole 

First session: 83 
min. Second 

session: 55 min. 

3 5 6 

Padstow 7–9.  
Problem-solving and 
teaching mathematics 

using IT. 

Emely, Michael, 
Lily, Tyler, and 

Stella 

First session:  
63 min. Second 
session: 57 min. 

5 3 9 

 
Results 
This section presents an elaborate characterization of the rationalization of the three groups of 
teachers with regard to high-quality tasks during their participation in the PD program for 
mathematics education. The results from the three teacher groups were combined and discussed in 
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the following sections in terms of appropriateness for students, the function of tasks, and structure of 
lessons. 

 

Appropriateness for students 

This category was the most dominant when the teachers discussed high-quality tasks. Although the 
teachers agreed that high-quality tasks are beneficial, because they support the conceptual 
understanding of students and enable multiple solutions, they were relatively concerned regarding 
whether the tasks were appropriate for students. Nearly all arguments involved these tasks as being 
extremely difficult for students. I categorized these arguments of the appropriateness of high-quality 
tasks, which resulted in five aspects, namely, 1) students are only concerned with one correct answer 
and are satisfied when they arrive at a solution; 2) students do not challenge themselves but want an 
immediate answer; 3) students lack the patience to work on a task over time; 4) students are locked 
and unable to think outside the box, an aspect frequently required by such tasks; lastly, 5) students 
are preoccupied with the mathematics textbook and believe that all work apart from those that involve 
the textbook is not mathematics. For these reasons, the teachers explained that the students are 
unwilling to work with high-quality tasks. The following excerpt illustrate teachers refer to students 
being extremely locked and unable to think outside the box: 

Mary:  What about these tasks? How do you think the students are able to place a number 
of given fractions on a number line? What would it look like in your groups? Are 
they able to put them on a number line? 

Mona:  I think this is very difficult, at least for my students. Many of these tasks, it feels 
like it’s too high a level. So, it’s good for us to think, maybe, but it’s not, not for 
my students anyway, so it feels too difficult. 

Celia:  No, it’s too difficult. 
Mary:  Is it too difficult? 
Fred:  Yes. And my students are too locked, they’ll get stuck, they’re not able to think 

outside the box. 
Mary raises an issue about her students’ ability to mark fractions on a number line. This scenario is 
viewed as extremely difficult for Mona’s students with agreement from Fred and Celia. The difficulty 
is partially related to the students’ abilities and partially to the high level of task difficulty. As Fred 
mentioned, these students are too locked and unable to think outside the box, which Fred believes is 
a demand of such high-level tasks. 

Function of tasks 

The teachers presented three main arguments regarding the function of tasks. Two of these, which 
are the most common, are that the tasks should be fun for students and that the tasks should lead to 
and open discussions. In these categories, the teachers did not emphasize how these tasks can support 
the learning of mathematics. In one case out of all arguments, however, they discussed how tasks can 
support student learning, which is illustrated by the following excerpt: 

Stella: We want to capture students’ knowledge, whether they know this or that. Then we 
should choose the tasks based on that, I think, what we should work on or think that 
we benefit from getting to know about them. What gives us the most. How I as a 
teacher have intended to continue working, so that I choose a task that suits how I 
think I can continue working with it later. 
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In this case, Stella is looking for assignments that reveal the knowledge of students in mathematics 
and how the assignment can be used as a starting point for a further understanding of mathematics. 
This excerpt is an exception to the arguments that the teachers made regarding the function of tasks. 
The most common argument was that the tasks should be fun and motivating for the students, as 
shown in the next excerpt: 

Josie: This one might not be so exciting for them, so they should … this with decimals, 
they should just …. I think they would think this was cool. 

This case is an example of the fairly common argument that teachers use tasks that they consider fun 
for students. Thus, no argument was raised about the type of mathematics that students should work 
with or how the tasks can lead to learning. 

Structure of lessons 

A three-phase classroom activity structure, namely, the phases of introduction, students working on 
mathematical tasks, and finalizing the lesson, was recurrent in the collegial discussions. The teachers 
frequently referred to this structure as introduction, pair or alone, and all. According to Jackson et al. 
(2013), a common lesson structure in a reform-oriented mathematics curriculum is the three-phase 
lesson (which these teachers refer to), where a complex task is introduced, students work on solving 
it, and the teacher orchestrates a conclusive discussion with the entire class. This structure is typical 
of lessons in PD. These descriptions of the classroom structure espouse the reform-oriented view on 
the structure of lessons, although such characterizations may fail to describe the introduction of the 
task and the content of the interaction among students. According to the content of the interaction, 
the teachers are more concerned about holding a discussion or the tasks leading to a discussion instead 
of the quality and content of the discussion based on high-quality tasks. Furthermore, in the 
discussions, they frequently emphasized lowering the cognitive demand for high-quality tasks during 
their introduction: 

Helen:  Actually (...) what should I do, should we do a problem first together or should we 
just (..). 

Amy: Don't you think yours (students) can do one? 
Helen: Yeah, some of them. 
Hannah: Mmm (...) mine are rather weak. 
Helen: But eh (Amy (C): mm), yes but we’ll do one, we’ll formulate a problem based on 

an image. 
Maria: Yes, you do a similar problem then (Hannah: mm). 
Julie: With your group. 
Maria: So they (Helen: mm) have a similar (...) structure to follow (Hannah: mm). 

 
Helen expresses concern about whether the students should tackle tasks/solve problems immediately 
or if the lesson should start with an introduction. The teachers plan to introduce a problem based on 
arguments about the capacity of the students and the necessity for a teacher to provide structure for 
them. Other studies (e.g., Boston & Smith, 2009) have demonstrated that teachers experience 
difficulty in maintaining the cognitive demand of tasks during teaching. As seen in this example, the 
teachers are concerned about the difficulty of high-quality tasks. Therefore, they decide to lower the 
cognitive demand of the task to ensure that each student has the opportunity to work with it. 
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Discussion and conclusion 
This article contributes to research on the collegial discussions of teachers engaged in a PD program 
on teachers’ development as a process of change toward a reform-oriented educational practice (Cobb 
et al., 2018; Jackson et al., 2013). Specifically, this study adds to the literature by highlighting the 
views of teachers about high-quality tasks. Analysis indicates that the teachers are relatively 
ambivalent about using high-quality tasks in their lessons. On the one hand, they share certain 
elements of high-quality instruction that are aligned with the reform-oriented teacher practice. In 
other words, they emphasize and appreciate high-quality tasks as they correspond to their structure 
of the lesson according to the three-phase lesson structure called introduction, working together in 
pairs or alone, or both and summaries the lesson in whole-group discussions (Jackson et al., 2013). 
Within this lesson structure, the teachers are aware of the value and importance of high-quality tasks 
in promoting discussions among students and supporting their collaborative efforts to solve problems 
without relying on the teacher for explanations or to offer solution strategies. They emphasize high-
quality tasks, because such tasks will support students’ discussions better than low-quality tasks. Such 
discourse communities are unlikely to develop unless students gain opportunities to engage in rich 
mathematical work, which is typically initiated by a high-quality task (Munter, 2014). This notion 
forms part of a reform-oriented classroom practice (Cobb et al., 2018). An important aspect of reform-
oriented teacher practice is the use of cognitively demanding tasks (Kazemi et al., 2009). On the other 
hand, although these teachers appreciate high-quality tasks, they stated, nearly in unison, that they 
referred to such tasks as inappropriate for students. For this reason, they blamed the capabilities, lack 
of motivation to engage, and lack of experience of their students with such tasks. The teachers’ 
discussion about the role of high-quality tasks may be helpful in understanding their potential for 
learning in collaborative meetings to improve and change classroom practices (Desimone, 2009). The 
current findings reveal an ambivalent vision regarding high-quality tasks in relation to the reform-
oriented teacher practice (Jackson et al., 2013). Such ambivalent views may influence the potential 
offered by implementing the reform-oriented classroom practice, given that teachers hold an 
unproductive framing of the capabilities of their students (Jackson et al., 2017; Sun, 2019). 
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The current study explores the learning processes occurring in online discussion forums, from a 
perspective of self-regulation learning which facilitates in planning, monitoring and reflecting on 
learning.  Participants were 47 teachers, who took part in a 2-year mathematics teachers professional 
development program. The study was conducted in two stages. In the first stage the teachers acted as 
learners through collaborative solution of complex mathematical problems in small groups, while in 
the second stage they led collaborative problem solving in forums as mentors. The study showed that 
problem solving forums have a high potential for developing teachers' own self-regulation skills and 
increasing their effectiveness in collaborative problem solving. This experience is reflected in their 
pedagogical activities, aimed at developing self-regulation skills of their students. It also empowers 
teachers to support students in solving complex mathematical problems. 

Keywords: Problem solving, online forums in social networks, self-regulated learning, professional 
development of teachers. 

Introduction 
Currently, the mathematical community has largely reached a consensus on the importance of 
mathematics problem-solving (PS) as a central goal for mathematics teachers. Mathematics problem-
solving involves active role of students, which are involved in a discussion with each other for solving 
the mathematical problem. Technology allows the application of such collaborative mathematical 
problem-solving through the use of Problem-Solving Forums (PSF). Studies of the effectiveness of 
PSF for teaching mathematics has shown that PSF has great teaching potential due to a number of 
key features such as a shared discussion space, opportunity for asynchrony communication, or 
preservation of the content of the discussion for a long time. The virtual property of PSF significantly 
expands the boundaries of classroom both in the space and in time (Kramarski, 2012). Studies show 
that over time, students participating in PSF develop norms of collaboration, the most important of 
which is the habit of sharing the ideas in the process of solving problems, rather than publishing the 
final result or the complete solution (Koichu & Keller, 2019). However, research has shown that 
realizing the potential of discussion forums is challenging (Koichu & Keller, 2019). One of the main 
reasons for these difficulties, according to the literature, is the lack of skills in non-traditional forms 
of education for both teachers and students (Kilpatrick, 2016; Lester & Cai, 2016; Schoenfeld, 2013). 

Participation in PSF requires students to be motivated, able to plan, track ideas and results, and reflect 
on the work done. All of these skills are key components of Self-Regulatory Learning (SRL) (Pintrich, 
2000; Zimmerman, 2000). Thus, the effectiveness of the learning process, which includes PSF as an 
integral part, requires the teacher to use teaching methods that focus on the development of SRL skills 
and use them in collaborative problem solving (Hogan, et al., 2015). A number of studies have shown 
that one of the priority ways for teachers to acquire the skills needed to successfully implement new 
methods is to first test those methods on themselves as learners (e.g. Kramarski & Kohen, 2017). 
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Specifically, it was found that projects aimed at developing SRL skills in teachers also develop their 
pedagogical skills focused on developing SRL skills among their students. This approach to education 
has been called self-regulated teaching (SRT) (Kramarski & Kohen, 2017; Kramarski & Mikhalsky, 
2009). The purpose of this study is to study the processes of forming SRL and SRT skills among 
teachers who participate in PSF, first in the role of learners, and t-hen in the role of mentors. 

Theoretical framework 
Collaborative mathematics problem solving 

In recent years, collaborative problem solving in small groups as form of learning based on problem 
solving has been widely studied. Proponents of this method argue that it is based on mathematical 
discourse that fosters mathematical thinking (Hogar & Harney, 2014; Shindler & Bakker, 2020). The 
effectiveness of group work largely depends on the type of interactions between its participants 
(Carlson, & Bloom, 2005). Clark and colleagues have suggested a taxonomy of interactions in the 
process of collaborative problem solving in two dimensions. The first of these are questions directed 
to another member or the whole group, such as questions to clarify or define the group's status in 
moving towards an intended goal. The second-dimension concerns group synergy, which the authors 
define as long-term collaboration in which participants continue and develop each other's ideas. 
According to the researchers, the group progresses in learning when group synergy is the most 
significant interaction in its activities (Clark, et al., 2014). Modern technologies allow using online 
forums in social networks as one of the possible platforms for collaborative solving of math problems 
in small groups. This is possible due to the characteristics of online forums as having a common space 
for discussion, asynchrony, preservation of discussion content and virtuality. 

Self-Regulated Learning (SRL) 

In this study, SRL is defined according to Pitrich and Zimmerman, as a cyclic recursive process 
combining motivational, cognitive and meta-cognitive components (Pitrich, 2000; Zimmerman, 
2000). In this definition, cognition refers to direct mathematical actions aimed at solving a problem; 
meta-cognition refers to the ability to understand and control cognitive processes, and motivation 
refers to the student's attitude to his/her abilities to solve a problem. According to Schoenfeld (2013), 
the meta-cognitive aspect – including the ability to plan, monitor and reflect on the work done – is 
especially important for the successful solution of mathematical problems. To successfully tackle 
complex challenges in collaborative learning, in addition to each student's SRL, meta-cognitive 
collaboration is required, where team members or groups act as a unit, defining common goals and 
choosing common strategies (e.g. Hogar & Harney, 2014). Research shows that SRL skills are not 
acquired spontaneously. Their development requires an environment, targeted learning, and guidance 
referred to as Self-Regulated Teaching (SRT) (Kramarski & Michalsky, 2009). 

Many studies point out the need of developing advanced training programs for mathematics teachers, 
that will help them develop the SRL skills of their students (Hoover et al., 2016; Kramarski & 
Michalsky, 2009). In recent years, a theory of the teacher's dual role in the acquisition of SRL skills 
has been developed. The theory has proven the effectivity of developing SRL skills in teachers, to 
increase their ability to develop these skills in students (e.g., Kramarski & Kohen, 2017). Research 
on teacher professional development (PD) in online environment, which has become widespread in 
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the past few years, has shown that the online environment has a positive effect on the development 
of teacher skills in SRL (e.g., Broadbent et al., 2021). 

Research questions (RQs) are: a) How do teachers' SRL and collaborative PS skills evolve during 
their continued participation in PSF as learners? and b) How are the teachers’ SRT and PS skills 
reflected in leading a PSF as mentors? 

Methodology 
The study took place in two stages. At the first stage, within the framework of the course 
"Fundamentals of Geometry: Plane Transformations”, each teacher participated in six PSF meetings 
as a learner in a group of four. Each meeting was devoted to joint discussion and solution of a complex 
geometric problem. At the second stage, within the framework of the course "Methods of teaching 
mathematics", each of the participants acted as a mentor (teacher) in two forums, where students, 
under their guidance, also solved complex geometric problems. Throughout the study, teachers 
received targeted SRL support by the facilitator of the PD program, through collaborative discussions 
on forum processes, and guidelines during the forums themselves. 

Participants and research background 

The study was conducted as part of a 2-year Mathematics Teacher PD Program at the Faculty of 
Education in Science and Technology at the Technion, Israel. The program aims at expanding the 
mathematical and pedagogical knowledge and skills of teachers, for the goal of reaching a teaching 
license that will enable them to teach all levels of mathematics. The study involved 47 teachers with 
5 to 15 years of experience, teaching in high schools in the north of the country. This paper focuses 
on the activity of one of the teachers, named John. John (35 years old) is a math teacher at a school 
in the north of Israel with 12 years of experience. John was selected as a case study for two reasons. 
On the one hand, his activity in the forums in which he acted as a learner, which was evaluated by 
the number of statements he posed, was similar to the average number of statements posed by the 
entire group of teachers. On the other hand, John's example shows clear patterns of change relating 
to his PS and SRL skills, as was reflected in the forum in which he acted in the role of a mentor. 

Data and data analysis 

In the course of the study, 96 protocols of the forums' work were obtained and analyzed. Of these, 72 
protocols of the work of the forums, in which teachers acted as learners (12 groups with a permanent 
composition) and 24 forums, in which some of the teachers acted as mentors. This paper focuses on 
the analysis of the PSF protocols of three forums of John's group, where John and the other 
participants act as learners in three forums (with the facilitator of the PD program as a mentor) and 
one forum in which John acts as a mentor, while the other forum participants are in the role of learners. 
For responding the first RQ, we present PSF protocols analysis that reflects the development of all 
participating teachers’ SRL and PS. For responding the second RQ, we focus the analysis of the PSF 
protocols on the activity of John.  

We have applied directed content analysis (Hsieh & Shannon, 2005) to code forums in light of SRL 
and collaborative PS theories. For the research unit, the message (post) sent by the participant was 
selected. Most of them were text messages, but sometimes participants posted a photo of a drawing 
or part of a solution. This method of analysis allowed us to analyze the data qualitatively as well as 
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quantify it as described below. First, we distributed the forum to posts, where each post was assigned 
two codes – one for collaborative PS and one for SRL. For collaborative PS, data analysis was based 
on the taxonomy proposed by Clark et al. (2014). This study examines the success of the PSF in terms 
of the level of group synergy achieved in the forum. There was evidence of group synergy in cases 
where a group of related posts from several participants discussed ideas for solving a problem. We 
calculated the ratio between the number of posts included in the synergy chains and the total number 
of messages on this forum. On the SRL aspect, forum posts were codified in accordance with the 
definitions of SRL models by Pintrich (2000) and Zimmerman (2000). We determined the level of 
SRL in each of the forums, both as a whole and per individual components. The SRL attributes were 
defined as follows: a post was classified as motivational if it indicated the participant's attitude to his 
knowledge, capabilities, and teamwork in the forum. A post was classified as cognitive if it contains 
specific mathematical actions aimed at solving a problem, such as: in my opinion point B will move 
to B’. With regard to metacognitive attributes, it was determined that a post refers to planning if it 
concerns the general analysis of the problem, the choice of the solution strategy, the definition of the 
general and intermediate goals, such as: Shall we start rotation around the center of a circle ? 
Monitoring attribution was assigned to a post if it evaluates progress towards a solution in terms of 
correctness and effectiveness in achieving a goal, such as: Moment, checking. So, after the rotation 
K moved to M, then… Finally, a post was classified as reflection if it includes a retrospective look at 
the process of solving a solution problem, such as: The problem is interesting in that its first part 
solves a standard with a section of means. After assigning a classification for each message, we 
calculated the ratio between the number of messages for each component and the total number of 
messages in a given forum. These values are presented in the findings as percentages.  

Findings 
We will present three forums out of six in which John participated as learner: at the beginning (PSF1), 
in the middle (PSF3) and at the end (PSF6) of the part of the study in which the teachers were in the 
role of learners. All problems proposed for discussion in the forums were carefully selected in 
accordance with the criteria specified in the theoretical base and were equal in complexity. As an 
example, we will give a problem that was proposed to the participants for discussion in the first forum: 
“Given a square ABCD. Point K is on segment BC, and point M is on segment DC. Line AM bisects 
the angle KAD. Prove that the length of the segment AK is equal to the sum of the lengths of the 
segments BK and DM”. The following table summarizes the performance of the group of teachers 
that John was a member of throughout the study.  

Responding to the first RQ request, Table 1 and Table 2 present the SRL attributes and group synergy 
scores (respectively) that were assigned to all posts made by the entire group of teachers in these 
forums. Data is presented in percentage of the total number of posts in the presented forum. 

The data indicate that with long-term participation in the PSF, the weight of group synergy in the 
discussion increases significantly, in parallel with increase in the number of messages related to the 
collaborative PS. In the final forum, almost all posts are related to SRL: 48% of them are meta-
cognitive, while in the initial forums only 28% of posts were meta-cognitive. 
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Table 1: Indicators of SRL attributes at the initial, middle and final stages of teacher participation in 
forums as learners (P = planning; M = monitoring; R = reflection; Other = non-SRL messages) 

SRL components PSF 1 PSF 3 PSF 6 

Metacognition P 5 13 17 

M 14 16 17 

R 9 3 14 

gCognition 23 22  24 

Motivation 19 22  24 

Other 30 24 4 

 

Table 2: Indicators of group synergy at the initial, middle and final stages of teacher participation in 
forums as learners  

PS interaction PSF 1 PSF 3 PSF 6 

Group synergy 9 32 61 

Others 91 68 39 

Moving forward to John’s case, we might delve into these changes, as well as responding to the 
second RQ that aims to explore the SRT and collaborative PS skills of John’s who were reflected in 
the forum in which he took part in the role of a mentor. Figure 1 demonstrates the dynamics of changes 
in the SRL components and the participation in the group synergy of John as an individual teacher. 
This figure contains characteristics that describe the forums in which John was in the role of learner, 
as well as the one forum he was in the role of mentor. The data in the figure is presented as the 
percentage of John's posts that we attributed to a certain type when analyzing the data, out of the total 
number of John's posts in the presented forum. For example, 66% of John's posts in the first forum 
had been classified as “Cognition”. An additional column shows John's participation in the group 
collaboration (the percentage of his posts that make up the group synergy of all his posts). 

 
Figure 1: Jonn's activities in PSF as a learner and as a teacher 
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Figure 1 shows that, as in the group as a whole, an increase relating to the meta-cognitive component 
was seen in John’s posts, in the forums where he participates as a learner. While low indication for 
metacognitive activity was revealed in the first forum, in the third forum over 60% of his posts were 
characterized as metacognitive. Another increase had been seen in the participation of John in group 
synergy. Particularly, in the third forum, group synergy was accounted for over 60% of group 
interactions and half of John's interactions. Below we describe the events that took place in each of 
the forums, focusing on John's activity. 

Forum 1 is John's first attempt at PSF as a student. On this forum after a while (about 20 minutes) he 
published a complete solution to the problem. Soon, he removed the solution, saying it was wrong. 
John did not participate in the discussion. His motivational messages were about appeals to think, 
indications that the task is simple and multiple references to his successful solution. Forum 3 was 
John's third attempt to collaborate on the forum as a student. This time, John also did not participate 
in the discussion for a relatively significant period of time (about 15 minutes). He solved the problem 
again on his own. However, he did not publish the complete solution, but took part in the discussion, 
sharing his ideas. His reasoning was meta-cognitive in nature. For example, he shared with the group: 
"To prove that a polygon is a square, I started looking for segments that could be equal, and angles 
that should be 90. This gave me the idea to prove the equality of triangles in advance ...". In the last 
forum where John participated in the student role (Forum 6), he unexpectedly took the lead in the 
discussion. He reasoned and involved others in the discussion. The share of group synergy in this 
forum was 61%. And the average length of the synergetic chain (a number of interconnected and 
continuing each other messages related to the solution of the problem) was equal to 10.5 messages. 
This demonstrates the collective nature of the search for a solution. John was very much involved in 
the discussion. Often, a new round of discussion began with his proposal to think about other tasks 
of this kind or a proposal to return and analyze the data. 

John's work as a teacher deserves special attention. Figure 1 shows that at this stage he has achieved 
a balanced proportion of SRL characteristics that are equally expressed. John participated in the 
discussion to stimulate group synergy in the students' work. He motivated them to jointly search for 
ways to solve the problem with phrases such as "Listen to each other. It will give you good thoughts." 
Most of John's advice was meta-cognitive. For example, "Let's talk about the essence of the problem 
and outline an action plan." The cognitive notes hinted at a way to solve the problem, not a direct 
solution. Many of John's posts as a teacher had prototypes in his student forums. These were either 
the lines of the group mentor or colleagues. 

Discussion 
The results of the study support the conclusions made in previous studies about the beneficial effect 
of self- experience as learners on the pedagogical activity of teachers, especially when it comes to the 
use of non-standard teaching methods (Hoover et al., 2016). Using the example of John and other 
teachers, we traced how their ability to listen and help the development of other people's ideas 
developed in the process of participation in the PSF, which is especially important in pedagogy aimed 
at developing independent thinking in students. We recorded a significant increase in the role of the 
meta-cognitive approach in solving problems by teachers, which was subsequently reflected in the 
role of John as a mentor of his colleagues. The participating teachers did not require the provision of 
a complete error-free solution by each learner separately, but facilitated a discussion aimed at 
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understanding the essence of the mathematical ideas inherent in the problems. At the same time, in 
the development of the idea of the double role of the teacher in light of the theory of SRL-SRT (e.g., 
Kramarski, 2012), it was found that the process of forming SRT in PSF environment occurs not only 
sequentially, but also in parallel with the development of SRL. It can be assumed that the explanation 
of the discovered phenomenon lies in the fact that the development of SRL skills in the process of 
participation in the work of forums contributes to the desire for a meta-cognitive assessment not only 
of the cognitive processes pertaining to the solution of the problem, but also a “top-down” view of 
the entire communicative and cognitive process, occurring in the forum. This conclusion is confirmed 
by numerous episodes of teachers' reflection on the processes taking place at the forum, both from 
the point of view of the ways of solving the problem, and from the point of view of the analysis of 
the interactions that took place. The discovered phenomenon makes it possible to use PSF, in which 
teachers solve mathematical problems, in a new context, as a model for exploring the mechanisms of 
development of communicative and mathematical aspects of teaching. 

The present study has demonstrated the dynamics in the development of group synergy as participants 
gain experience of participating in PSF. A friendly, safe atmosphere has emerged in the forums, 
including mutual interest, willingness to listen and accept someone else's opinion, and not to be afraid 
to make mistakes in expressing one's opinion, which, according to Schindler & Bakker (2020), is 
necessary for the successful work of the group. We found that with an increase in the proportion of 
episodes of group synergy among interactions in the forum, groups progressed not only in terms of 
efficiency in solving problems, as Clarke and colleagues' research (2014) shows, but also in terms of 
self-regulation of their participants, in particular, their meta-cognitive approach to problem solving. 
It might be that the orientation of the participants towards self-regulation allowed them to notice and 
evaluate the episodes of successful joint work and purposefully strive to expand them, thus 
contributing to the emergence and strengthening of group synergy in the forums as a factor 
contributing to success. 

In conclusion, this study contributes to the theory of the mutual influence of the collaborative solution 
of mathematical problems, in particular in the PSF environment, and the development of self-
regulation skills. The fact that the participants of the forums are teachers allowed us to move to the 
next level of understanding of this issue and to trace the reflection of these processes on the 
pedagogical activities of teachers, in particular as mentors of PSF. 
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Mathematics professional development (PD) has been prevalent, and scholars have been 
investigating interventions that target teacher knowledge, while also maintaining a focus on 
instructional practice and student learning. Findings have been mixed and we hypothesize that 
teacher learning takes time and that teachers learn more than studies report. Case study analysis 
allow for an in-depth investigation into what teachers take up and enact in their classroom context. 
The study that is the focus of this paper uses comparative case study analysis to examine three 
different and distinct professional development programs that are geographically situated across the 
US, focused on different mathematical content, and utilize different PD structures. This paper 
highlights three cases of enduring and evolving teacher practices resulting from their three respective 
PDs.   

Keywords: Professional development, teacher knowledge, case studies, mathematics.  

Introduction 
There continues to be a widespread effort within the international research community to carefully 
consider how to support teachers’ on-going professional development (c.f. Bautista & Ortega-Ruiz, 
2015). Mathematics professional development (PD) has been prevalent, and scholars have been 
investigating interventions that target teacher knowledge, while also maintaining a focus on 
instructional practice and student learning (Jacobs et al., 2020). Funding opportunities typically target 
large quantitative proposals that study impact using pre post measures usually across one academic 
year and two at most. Findings have been mixed. Some studies have found incremental gains related 
to content and instructional practices (Koellner & Jacobs, 2015) and others have found no change at 
all (Santagata & Yeh, 2014) We hypothesize that teacher learning takes time and that teachers learn 
more than these studies have reported. This study investigates the impact of three different National 
Science Foundation (NSF) funded PD projects and what teachers use in their mathematics classrooms 
today. More specifically the research question that this study addressed is: What do teachers take up 
and use from participation in mathematics PD four to five years after engagement in the workshops?   

Theoretical Frameworks 
Situative theorists define learning as changes in participation in socially organized activity (Greeno 
et al., 1996). They consider the acquisition and use of knowledge as aspects of an individual’s 
participation in social practices. With respect to professional learning, situative theorists focus on the 
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importance of creating opportunities for teachers to work together on improving their practice and 
locating these learning opportunities in the everyday practice of teaching. All three PDs were 
designed around this premise. For instance, all three PD studied in this paper used a collaborative 
approach and focused on relevant content that was currently being used in teachers’ classrooms. In 
addition, artifacts of practice such as student work or video tapes of teachers’ classrooms anchored 
conversations and connected the classroom to the PD. Lastly, resources were used that were aligned 
with curriculum and standards. A situative perspective suggests that groups of teachers who take part 
in different PD workshops using different materials, with different facilitators, and are situated within 
different educational contexts (e.g., different geographical locations within the United States) might 
have very different learning opportunities and experiences impacted by the role of context. 

Overview of TaDD Project  
The Taking a Deep Dive (TaDD) project is collecting qualitative data from three large U.S. National 
Science Foundation PD projects to use case studies and cross case analysis to further inform what 
teachers take up and use from participating in different PDs in different contexts and examine why 
some teachers appear to take up and use more than others. The TaDD study is unique and does not 
follow the typical impact methodology in that it utilizes a qualitative theoretically based case design. 
Additionally, as opposed to quantitative studies that typically examine impact one year after the 
intervention, this study examines impact of different PD models in classrooms four to five years after 
the intervention. This approach allows for a deep dive into the variations among models of PD and 
across teachers. As noted, the field has conducted numerous scale-up studies focused on the impact 
of PD on teacher and student learning with positive but not necessarily dramatic results – the TaDD 
project seeks to uncover what specifically teachers take up from professional learning opportunities 
and the factors associated with impact. TaDD utilizes a multi-case method (Stake, 2013) which 
centers on a common focus of what content, pedagogy and materials teachers take up from PD 
experiences.   

Case study analysis allow for an in-depth investigation into what teachers take up and enact in their 
classroom context five years after participating in PD. The case study allows us to understand the 
different ways teachers interpret and take up aspects of content and pedagogy from a PD. It allows 
us to unpack teachers’ thinking and their practice through interviews and videotapes respectively. 
Additionally, case study analysis allows us to consider the context in which teachers work, their 
philosophy of teaching and learning, and the ways they work with diverse learners in their classroom. 
The construct of variance between teachers and types of PD has the potential to shed light on the 
factors that are associated with uptake, and the similarities, differences and subtle nuances of teacher 
uptake and use. These factors have implications for PD design, PD selection and associated policy 
and would be an important contribution to the field of research on PD.   

Using a specified sampling procedure, TaDD selected teachers from each of three PD projects to 
serve as case study teachers (n=19). This paper highlights three cases of enduring and evolving 
teacher practices resulting from their three respective PDs. In the next section, we briefly describe 
the three different PD projects.  
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Learning and Teaching Geometry (LTG) 

The LTG project is an efficacy study of the learning and teaching geometry professional development 
materials: Examining impact and context-based adaptations, sought to improve teacher’s own 
knowledge and instructional strategies in transformations-based geometry. This PD consists of 54 
hours of highly specified video-based PD that is grounded in modules of dynamic transformations-
based geometry aligned with the Common Core State Standards in mathematics (CCSSM). Through 
video analysis and analysis of student work, teachers work together to solve problems and further 
their knowledge in mathematics teaching in the domain of geometry. The PD allows teachers to better 
support students in their attempt to gain a deeper understanding of transformations-based geometry 
through activities like rate of change on a graph, scaling activities, and similarity tools. The material 
strongly connects to other critical domains including similarity, proportional reasoning, slope, and 
linear functions.  

Problem-Solving Cycle (PSC) 

The PSC project developed two interconnected PD models--the Problem-Solving Cycle (PSC) and 
the Mathematics Leadership Preparation (MLP) models for preparing PD facilitators (Borko et al., 
2015). The PSC model consists of a series of interconnected workshops organized around a problem 
that can be solved using multiple representations and solutions and can be adapted for multiple grade 
levels. Each cycle focuses on a different math problem. During the first cycle, teachers collaboratively 
solve the focal math problem and develop plans for teaching it to their students. Teachers then teach 
the lesson in their classes and videotape the lessons. Subsequent workshops focus on participants' 
classroom experiences teaching the problem using videotapes and artifacts of practice to anchor their 
conversations. 

Visual Access to Mathematics (VAM)  

The VAM project aimed to build skills in mathematical problem solving and communication using 
visual representations. This PD consisted of face-to-face PD as well as online workshops where 
teachers implemented problems from the PD and shared their student work to discuss access for 
English Learner’s (EL’s) and all students. The project investigated the instructional strategies and 
supports that teachers of EL’s need to provide access to mathematical learning while advancing 
academic language development. The approach was grounded in the use of visual representations, 
such as diagrams and geometric drawings, for mathematical problem-solving with integrated 
language support strategies. The intended goals of VAM were to help teachers properly select 
appropriate visual representations for the use of different rational number task types and 
communication tools to show and explain mathematical thinking.   

Methodology 
Sampling, Data Collection and Analysis 

During Spring 2021 pairs of project researchers conducted two one-hour semi-structured interviews 
using “think aloud” protocols with the 19 teachers individually (LTG 10; VAM 7; PSC 2). The 
participants selected two to three video clips that showed their routine daily teaching practices yet 
potentially could show instructional strategies and/or content from their respective PDs. The 
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participants included time stamps and a justification for why they selected the clip prior to each 
interview. Pairs of researchers watched the entire video as well as the clips before interviewing 
participants and analyzed the lesson and the selected clips for instances where the participants could 
show evidence of instructional impact from the PD that they participated in- including content, 
resources, or instructional strategies. Then participants watched the clip with the pair of researchers 
on a video conference that was recorded and the participant discussed why they selected the clip and 
what it represented in terms of their learning related to their PD. With these data, field notes from the 
interviews and prior survey data, we created initial profiles for each teacher collaboratively in pairs. 
These profile documents initiated the development of our case studies – three of which are presented 
here. 

Results: Three Case Studies 
Tyra (LTG): Case of a Teacher’s Evolving Learning 

Tyra has taught math for eight years at two different high schools. She was warm, reflective and 
engaging throughout our semi structured interviews and enthusiastic about how much she learned 
from PD over the last five years. Interestingly, she team teaches with Diantha, another teacher with 
six years of teaching experience. Tyra and Diantha regularly talk about their own learning and reflect 
together especially when they attended the same PDs. Tyra has taught 9-12 graders throughout her 
career and typically teaches Algebra, Algebra II, Geometry. Tyra and Diantha teach in an urban high 
school in the northeastern part of the United States where more than half of the students receive 
free/reduced breakfast and lunch. Trya spoke highly about her administration and mentioned that her 
assistant principal serves as a mentor by providing feedback and suggesting PD opportunities that she 
believes will assist Tyra in her ongoing professional learning. There appears to be mutual respect 
between them.   

Tyra participated in the LTG PD in the 2016-2017 school year and shared with us that she was “very 
committed” to the PD sessions – and that she always completed homework (which was voluntary). 
She recounted the transformations-based concepts that she learned and how she uses the content and 
resources from the PD in her classroom. This was also evidenced in the videotapes that she shared 
with us both when she was teaching with Diantha and without. Tyra explained that attending the LTG 
PD that was focused on geometry, and another PD offered through a university in her area that was 
focused on algebra, dramatically changed the way she teaches in the classroom.   

She explained that these two PDs that she had taken at the same time (five years ago) moved her from 
using “chalk and talk” (direct instruction) to using mathematical practices and collaborative learning 
techniques. Tyra indicated that “before the PD she would give the rule and then give students 
problems to apply the rule.” She also shared that she did not originally think that these methods would 
“work for her kids” but once she started using them her students responded and seemed more engaged 
and learned more. In addition, she explained that she wants her students to know how to derive 
formulas through tools such as tracing paper, but had not thought about using tracing paper when 
learning geometry concepts. She explained that when students used tracing paper (when solving 
dilation problems) she said, “they are remembering a process rather than just a rule.” She reflected 
that talking to her peers during the LTG PD influenced much content and pedagogy that she learned, 
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as a result she started incorporating more time for students in her own class to talk to one another for 
more engagement and learning to take place.   

When we spoke about the school climate, she stated that “her environment was great because she had 
professional freedom in her classroom and a collaborative math department.” Diantha and Trya 
shared what they learned from LTG with the math department and the following year they made some 
significant changes to how they teach geometry. In addition, they incorporated a transformations-
based geometry unit to begin their Algebra II course. They saw the connections between the two and 
realized that understanding proportionality and similarity are keys to understanding the foundations 
of algebra. 

Megan (VAM): Case of a veteran teacher’s evolving learning 

Megan is a veteran high school math teacher that lives and teaches in a northeastern town in the US. 
She has taught for 28 years and courses ranging from 6th grade math through Calculus. Megan teaches 
in a school where most of her students are English Learners (EL’s) and more than half of the students 
receive free/reduced breakfast and lunch. Megan appeared to be a very committed teacher and she 
relayed her excitement about participating in the VAM PD to learn more about how she could reach 
her EL’s. She told us some stories of her students and the difficulty she had teaching students that 
spoke a variety of languages in one class. She felt that she needed to learn strategies to support the 
different languages. Megan participated in the VAM PD in 2016-2017. She shared that she really 
liked the PD and that the philosophy aligned with her own thinking about teaching mathematics, 
“Some of the strategies I had already been using but the others were new and built on the directions 
of the district.”  

A highlight of the PD for Megan was “sharing instructional strategies and resources with teachers 
from other districts.” She remembers learning how to “create visual representations to solve problems 
and apply language strategies to make sense of word problems.” She selected a video clip to share 
with us that showed aspects of her learning from the VAM PD that she continues to use in her 
classroom today. In the video clip, she teaches remotely with a white board application using a double 
number line. The double number line represented two quantities from a word problem that the kids 
had to solve. She explained to us that she had never used or heard of a double number line before 
VAM. After we watched the clip, she emphasized how cool she thought the double number line was 
because it allowed her to show students the varying quantities on the number line and how the 
quantities translated to a coordinate plane visually. She attributed this to have a big impact on 
students’ conceptual understanding. She also commented that she learned how to use color in 
representations to help students “see” the math and she believed the use of color had “visual impact.”  

Megan continues to use representations for access that she learned in the VAM PD as well as other 
strategies that she has researched or developed to provide more access to her students. Megan shared 
a story about how she decided to use easels to support five students with Individualized Education 
Plans in her class that struggled with the amount of time they had to sit during remote instruction. In 
her school, some students came to class in person while others joined remotely through a video-based 
conferencing application. These boys were in the classroom with her during instruction. Megan 
decided to bring in easels and the students worked in pairs to work on the math problems. They only 
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had one pen and they had to take turns using the pen, again strategies that address access and 
collaborative working relationships. At the end of the class, the students wanted to do another 
problem. She said that this ended up being “the best teaching day all year.” She shared the “vertical 
workspace” strategy with the rest of the staff at her school and they have implemented this technique 
in their school - using easels, chart paper and white boards, which Megan believed helped the students 
collaborate and talk with one another. This is an example of how instructional strategies from PD can 
be modified and translated into best practices in schools. Noticing and listening, aspects important in 
the VAM PD, potentially provided Megan new perspectives on addressing student needs.   

Linda PSC: Case of a teacher leader’s continual learning with other leaders 

Linda is a math and science teacher as well as a PD leader in her school and district located on the 
west coast of the US. She is a veteran teacher that has taught in the district for many years. Linda 
served as a teacher leader, a person that was trained to lead the PSC PD with teachers in the math 
department at her school. Linda explained that her involvement in the PSC PD “has been a defining 
and productive exploration of herself as a math teacher.” She said she appreciated being part of a 
professional community and she noticed growth in her math teaching. Linda found the PSC PD 
experience “productive and valuable”, and she valued being around people passionate about teaching 
math and teaching in general. Linda believes that the involvement in the facilitator group helped her 
and the other participants to become better mathematics teachers and bring back instructional 
strategies to their math departments. She also said that this group supported the facilitators in 
becoming leaders and helping each other as colleagues.   

Linda reported that participating in our TaDD project helped her reflect on what she learned six years 
ago when she participated in the PSC project. She compared it to other PDs focused on learning 
strategies and found it challenging to incorporate something new without practice and reinforcement. 
Linda found great value in participation because the PSC PD was ongoing, and she was involved in 
it for 2-years. She explained that extended involvement was important for her as well as developing 
as a teacher. She appreciated the opportunity to be part of a community and that revisiting her learning 
by “doing math, practicing math” was a more valuable experience than other PDs because she learned 
“good math teaching strategies” and gained more confidence as a math teacher.   

Linda told us that one of her current goals is trying to use academic vocabulary with her students. She 
also mentioned that she is in support of “productive struggle” in math and trying to engage students 
and have them “do the work” for three reasons. She believed productive struggle helps to amplify 
student voice, respond with academic language, and allows students to answer informally.  

Laura felt positively about the facilitators in the PSC PD—she appreciated how they set up the PD so 
that the participants could explore ideas together. She said it is hard to separate what she learned from 
how they facilitated the PD. When asked about her role as a facilitator of the PSC at her school, she 
admitted that it didn’t go well, in fact “it was a disaster”. She loved her own participation with the 
community of facilitators but struggled with how to productively facilitate the PSC with the teachers 
at her own school stating that they did not want to participate. 
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Discussion and Implications 
Our current study aims to understand and capture long-term learning from a more nuanced 
perspective. Teachers have shared their own perceptions of learning that is more detailed and provides 
clarity about the evolution of their practice including new ideas from other PD opportunities that may 
or may not have aligned with the various PDs in our study (VAM, LTG, PSC). These other 
professional opportunities ranged from additional formal professional development workshops to 
professional conferences, to collaborations and conversations with colleagues, as well as advice from 
key constituents, such as a principal. In the US and in other countries as well, professional learning 
is required in most contracts, but teachers also participate because they are motivated to learn formally 
and enjoy debriefing with colleagues either formally or informally. We believe these additional 
learning opportunities do not shade the results of our study but rather illustrate the actual ways 
teachers learn. Even though as stated above, our goal is to understand how teachers use the content, 
pedagogy, and resources from PDs in our study, we believe it is necessary to consider these additional 
learning situations and how they may have also contributed to the learning of a teacher not only 
because it is the reality of their job but also in order to be transparent in our research.   

The three case studies illustrate continued learning at least five years post PD experience. The full 
case studies illustrate much more complex and nuanced variance among cases but the shortened 
versions in this paper show the ways in which three different teachers’ learning has evolved over 
time. They all have shifted practices and are trying new teaching strategies, noticing and listening to 
students in new ways, and recognizing the importance of PD and reflecting on their everyday teaching 
practice.   

All three case study teachers are motivated to learn and had a purpose for attending and learning from 
their respective PDs. Tyra was motivated by the geometry content and resources for teaching 
transformations-based similarity. Megan was motivated by a need to learn more strategies for 
supporting her English learner students. Linda was motivated by an interest in becoming a teacher 
leader and participating in a learning community of facilitators from others outside of her school. Yet 
they were each different as well. Tyra was interested in learning content and better ways to reach 
more students. Megan needed new resources and strategies to serve her students while Linda wanted 
a new challenge as a teacher leader. Each of our 19 teachers are on their own journey and we are 
continuing to investigate the trajectories of change which vary across participants yet have the 
potential to provide and contribute understandings of variance across different teachers and different 
types of PD. We anticipate a cross case analysis will help us disentangle similarities and differences 
within and across the three PDs and contribute a more in depth understanding into what teachers take 
up and enact in their classroom context. 
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People need mathematical higher order skills to participate successfully in society (Hoogland, 2016). 
Working together on and discussing non-routine math problems promotes the development of these 
skills. In Dutch primary education however non-routine math problems are most of the time presented 
to high-performing students only (Van Zanten & Van den Heuvel-Panhuizen, 2018) and whole-class 
discussions on solving problems to develop higher order skills are rare. In what way can whole-class 
discussions be organised to foster the development of higher order skills of all students? 

Theoretical framework 
A productive whole-class activity on problem solving should start with a non-routine mathematical 
‘low-floor-high-ceiling task’ (Boaler, 2016). Teaching such problems involves: (1) explaining the 
problem, (2) putting students to work, (3) observing their problem-solving approaches, (4) guiding 
whole-class discussion and (5) summarising learning outcomes (Stein et al., 2008). In the whole-class 
discussion the teacher encourages his students to present, compare, evaluate and defend their 
problem-solving approaches. This places high demands on teachers. They must deal with a broad 
spectrum of students’ problem-solving approaches and simultaneously challenge all students to think 
and reason about those approaches. To achieve this, mathematical and pedagogical content 
knowledge is needed (Ball et al., 2008), together with specific teaching skills as described in the 
Mathematical Quality of Instruction (MQI) instrument, like mathematical sense-making, using 
multiple problem solving-approaches and using students' ideas (Hill et al., 2008). Stein et al. (2008) 
advise teachers to prepare their problem-solving lessons thoroughly, by (1) solving the problem in 
multiple ways, (2) predicting mistakes of students, (3) devising hints and support, (4) selecting and 
order problem-solving approaches to be used in the discussion and (5) predicting learning outcomes. 

Research question 
To support preservice teachers in preparing and performing whole-class activities with non-routine 
problems we developed a preparation form based on the aspects mentioned by Stein et al. (2008). 
During the activity, while the students work on their problem, the preservice teacher observes their 
problem-solving approaches. Having his own preparation in mind he then makes a selection to be 
used for the whole-class discussion. During this discussion the preservice teacher invites students to 
present their problem-solving approach. The preservice teacher then challenges the other students to 
discuss and evaluate these. The preservice teacher guides the discussion and ensures participation and 
understanding. His thorough preparation will support him in responding to and developing the 
thinking and reasoning process of the students. The discussion is more productive when the preservice 
teacher has explored beforehand how students might solve the problem (Stein et al., 2008). In light 
of the above, the following research questions emerge: 
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How and to what extent are preservice teachers able to prepare a whole-class activity on a non-routine 
mathematical problem using a structured preparation form? 

How and to what extent does structured preparation of a whole-class activity on a non-routine 
mathematical problem improves the quality of teacher behaviour during this activity?  

Method 
Approximately 80 Dutch preservice primary teachers will participate. For their first lesson they will 
use a preparation form completed by a teacher educator (the so-called “expert”). For the next two 
problems, chosen from a selection of 30 problems, they will complete the preparation form 
themselves. After teaching with the three problems, they will complete a questionnaire evaluating 
their own teacher behaviour while performing the third lesson. They will score themselves on certain 
aspects of the MQI instrument using a four-point Likert scale (Hill et al., 2008). They will answer 
questions about the perceived impact of their preparation on various aspects of their teacher behaviour 
and about experienced differences in using their own preparations and that of an expert. 

For the first research question, the preparations of the preservice teachers will be analysed and 
compared with the experts’ preparations. For the second question, the scores of the preservice 
teachers will be analysed and how they attribute these to their preparations and those of the experts. 

To be continued 
Rich preparation of problem-solving activities will support teacher behaviour (Stein et al., 2008). We 
plan to publish the problems and experts’ preparations in the near future. Should it turn out that 
teachers perform better while using their own preparations we will publish the problems with empty 
forms. In any case we will encourage the use and preparation of problems in whole-class activities. 
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Introduction and theoretical framework 
Teachers’ diagnostic competence is crucial for understanding and evaluating students’ thinking and 
differentiating teaching strategies. What teachers pay attention to in the classroom and their 
interpretation are decisive for supporting students (Kaiser et al., 2015). In mathematics classrooms, 
students’ errors are a rich source of information about their thinking. They can reveal students’ 
understanding of mathematical concepts and procedures. The diagnostic competence in error 
situations is the competence needed by teachers to identify, interpret and then manage error situations 
in a way that promotes students’ mathematical understanding (Heinrichs & Kaiser, 2018).  

The development of preservice teachers’ (PST) diagnostic competence in error situations can begin 
in initial teacher education. Teacher educators can support PST in learning to identify relevant details, 
ask relevant questions and apply specialized content knowledge to understand students’ thinking. 
However, such learning opportunities are complex, which raises multiple questions about the 
characteristics they should have to be effective. Moreover, it is necessary to extend our understanding 
of the characteristics of the competence in the early developmental stages and the interactions 
between the competence and PST’s knowledge, beliefs and practical experience.  

Thus, the goal of this study is to contribute to the characterization of preservice primary school 
teachers’ diagnostic competence and its development. We focus on the interpretation dimension of 
the competence, i.e. on PSTs’ competence to formulate hypotheses about causes of students’ errors. 
This dimension of the competence is decisive for the subsequent pedagogical decision-making 
process and the quality of the teaching strategies that can be implemented. 

Method 
The goal of this study is to characterize PSTs’ competence to formulate hypotheses about causes of 
students’ errors and its development after they participated in a university seminar sequence. In 
addition, based on the model of competence as a continuum (Blömeke et al., 2015), we examine if 
beliefs, knowledge and practical experience are related to PSTs’ competence. The seminar sequence 
was aimed at developing PSTs’ competence to identify, interpret and deal with students’ 
mathematical errors. It consisted of four 90-minute sessions, in which PST were engaged in individual 
and group analyses of students’ errors and discussions about students’ mathematical thinking. Short 
videos of error situations and samples of students’ written work were used as prompts.   

Participants were 131 undergraduates from 11 Chilean universities in their initial teacher education 
for primary schools. Before the seminar sequence, they answered an online survey, that collected 
demographic data, beliefs questionnaires (from the TEDS-M study) and two error analysis tasks. In 
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addition, they answered a mathematical knowledge for teaching (MKT) assessment. After the seminar 
sequence, participants completed another two error analysis tasks.  

In each error analysis task, they were asked to suggest three possible causes for the student error 
shown in a video vignette. Their responses to these open items were coded using qualitative text 
analysis. Five thematic categories were used to classify the types of hypotheses to which PST 
attributed the error: lack of conceptual understanding, lack of procedural understanding, instructional 
wrong decisions, ambiguous hypotheses and not valid hypotheses. In addition, the relationship of 
PSTs’ competence to their professional knowledge, beliefs and practical experience was examined. 

Results 
Results indicated that PST had difficulties formulating hypotheses about causes of students’ errors. 
They often gave incorrect, incomplete or contradictory suggestions. The valid hypotheses mostly 
attributed the error to a lack of conceptual understanding of some mathematical issue. Further 
analyses showed that beliefs, knowledge and practical experience were related to PSTs’ competence. 
Their beliefs about learning mathematics as an active process showed the strongest correlation, 
together with practical experience.  

Analyses revealed a significant improvement in the number of valid hypotheses PST could formulate 
between pre- and post-test. After the seminar sequence, PST formulated more hypotheses attributing 
the errors to a lack of conceptual and procedural understanding and to a lesser extent, hypotheses 
focusing on inappropriate instructional decisions. This showed that they were more able to focus on 
students’ thinking. Study progress (number of finished university semesters) was a significant 
predictor for greater changes in the competence to hypothesize about causes of students’ errors.  

Our findings highlight the role of beliefs in the competence and its development. They also provide 
insights into the role of teaching experience and knowledge for the development of the competence. 
The poster format will provide us with the opportunity to share and further discuss characteristics of 
the seminar sequence and of PSTs that contribute to the development of the competence. 
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This paper examines the long-term effects of a teacher education program that prepares preservice 
elementary mathematics teachers to work specifically in Detroit schools. The study was designed to 
better understand the degree of alignment between the program’s curated field experiences and the 
work graduates currently do as teachers; the aspects of program design that contributed or detracted 
from graduates’ understanding of culturally relevant practice in mathematics classes; and the 
reasons for graduates’ retention in high-poverty schools over time.  
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Objectives 
This paper examines the long-term effects of a teacher education program designed to prepare 
teachers to work specifically in Detroit. Although teacher education programs are frequently studied 
for their near- and medium-term effects, this study sought to uncover the longer-term traces of the 
program for its graduates. The TeachDETROIT program was established in 2016, and its first cohort 
entered the workforce as teachers of record in 2017.  The program was founded to contribute to the 
revitalization of the city with special emphasis on the importance of schools in their efforts to build 
a just educational system for minoritized people.   The TeachDETROIT program welcomed its sixth 
cohort in fall 2021. As part of program evaluation, the program leadership along with external 
evaluators sought to understand the longitudinal traces of this context-specific (Matsko & 
Hammerness, 2014) urban teacher residency program, regarding graduates’ perceptions of 
preparedness to teach mathematics in under-resourced schools; implementation of culturally relevant 
teaching practices in the context of teaching mathematics; and program graduates’ current 
commitment to remain in under-resourced schools. The study was designed to better understand the 
graduates’ pathway into, through and beyond the program; the degree of alignment between the 
program’s highly curated field experiences and the work graduates currently do as teachers; and the 
aspects of program design that contributed or detracted from graduates’ understanding of culturally 
relevant practice in mathematics classes. 

Theoretical Framework 
As one of the most important factors for improving student achievement (Darling-Hammond et al., 
2009), teachers need to be prepared to offer their students the high-quality mathematics instruction 
they deserve and require (National Council of Teachers of Mathematics, 2000; Conference Board of 
Mathematical Sciences, 2012). Unfortunately, there is evidence that students in the United States are 
not experiencing high-quality instruction. The 2019 National Assessment of Educational Progress 
(NAEP) showed that only 41% of fourth-grade and 34% of eighth-grade students were “proficient” 
at mathematics. For Black students in large, urban school districts, those numbers fall to 18% and 
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13%, respectively. In Detroit, Michigan the situation is even more dire: only 5% of fourth-grade, and 
5% of eighth-grade students were “proficient” in mathematics. 

Researchers have long posited a connection between the quality of instruction teachers can offer and 
the quality of the preservice preparation they experience (Schmidt et al., 2011; Senk et al., 2012). 
Although the familiar mix of content, methods, and social science foundational courses, together with 
supervised practice teaching, has endured (Donoghue, 2006; Fraser, 2007), so has the finding that 
this type of preparation is disconnected from the work of teaching (Feiman-Nemser, 1983, 2001). 

After decades of interest in learning to teach at some remove from classroom experience (Feiman-
Nemser, 1985; Floden & Buchmann, 1993), the pendulum swung back in the early 2000s to 
emphasize a focus on learning “in and from practice” (Lampert, 2010). A flurry of work in teacher 
education called for preservice teacher education to focus on “practice” (Ball & Forzani, 2009; 
Grossman et al., 2009; Grossman & McDonald, 2008; Lampert, 2010; Zeichner, 2010). The emphasis 
in this line of work is that preservice teachers should learn “in and from practice” (Ball & Cohen, 
1999), not just educational theory learned at a distance from classroom life. Today clinical residency 
programs abound, where preservice teacher education is predominantly a full immersion in a field 
placement classroom. Yet the quality and specifications of these field experiences can vary widely: 
the insides of the classroom environments, the quality of cooperating teachers and school principals, 
and the experiences that preservice teachers have can often go largely unspecified (Ronfeldt, 2012). 
Furthermore, there are few studies that investigate how well preservice teachers learn to do the 
interactive work of teaching mathematics in such programs. In this study, we describe an early field 
experience designed for preservice teachers to learn to carry out mathematics instruction in 
elementary classrooms, and we report on its relevance to participants five years later. 

The curated field experience in TeachDETROIT is composed of four primary elements: 1) Highly 
scaffolded instructional activities in mathematics; 2) Shared classroom spaces where mathematics 
teaching and review of teaching is public; 3) Ongoing study and conversation about teaching 
mathematics to children of color living in poverty; 4) Group explorations of the city of Detroit.  

In contrast to reports that the quality of field experiences is often poor (Greenberg et al., 2011; 
Ronfeldt, 2012), the field experiences described in this paper are carefully designed and sequenced. 
We have named this intentionally designed field experience the curated field experience, one in which 
the cooperating teachers and the instructional activities in field experience classrooms are highly 
specified and aligned, bringing together a team of teacher educators, cooperating teachers, school 
administrators and support staff. We used the word curated to refer to the careful selection and 
sequencing of field experiences, including the preparation of cooperating teachers for this program, 
the matching of cooperating teacher to intern, and the progression of field experiences where the 
complexity and demands grow according to the needs of each intern.  Researchers designed this study 
to better understand how the early curated field experience was viewed by graduates of the program 
some five years later. In this section we provide some detail about the four elements of 
TeachDETROIT’s early curated field experience.  

Highly scaffolded instructional activities. One important feature of the curated early field experience 
is that interactive instructional work is woven into the mathematics methods class from preservice 
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teachers’ first day in TeachDETROIT. Each methods class session is held in an elementary school, 
and interns enter one 3rd grade classroom for 30-40 minutes during the methods class of 150 minutes. 
Preservice teachers work with small groups of children in the same classroom.  Preservice teachers 
learn to conduct four instructional activities in mathematics to rising 3rd grade students in a summer 
school setting:  teaching a mathematical game using compositions of ten; interval counting (Franke 
et al., 2018); modeling number facts with concrete materials; and using a variety of strategies to 
represent multidigit addition and subtraction. In this setting, preservice teachers learn to enact a short 
instructional activity by observing an experienced teacher conduct the activity, rehearsing the activity 
with a peer using a script, rehearsing the activity in front of the larger group of preservice teachers 
for feedback, and finally enacting the short activity with a small group of children. In the first weeks 
of the early field experience, the instructional activity is highly scripted. Although scripted teaching 
has been the subject of lively critique in teacher education, in the early field experience the script 
serves to quiet the complexity of classroom work by reducing some of the cognitive load for novices 
until strong mathematics teaching practices become more familiar and internalized. As the term 
progresses, novices rely less and less on scripted lessons and take on increasingly complex facets of 
planning and enactment. Preparing for teaching includes analysis of video from the previous session’s 
lesson, reviewing and adapting lesson plans, and rehearsing for teaching enactment. The rehearsals 
underscore the unspoken notion that teaching is something to be studied, practiced, and constantly 
improved. This feature of TeachDETROIT draws on the scholarship of Lampert et al. (2013). 

Shared classroom spaces where teaching is made public. Preservice teachers, host teachers, and the 
methods instructor are all present in one classroom for every class session, so that all teaching is 
always conducted in the company of others. From the very first day of TeachDETROIT, preservice 
teachers experience teaching as an activity that is witnessed by others, and the subject of collegial 
conversations towards improvement. The preservice teachers videorecord their teaching enactments 
and review them each day; following a teaching enactment, preservice teachers share excerpts of their 
recordings and write about them in journals and video platforms designed for such purposes. In this 
way, teaching is positioned as work that is done in the presence of other colleagues, with frequent 
collaboration, and guided by review of prior lessons with ongoing attention to evidence of student 
learning. Each lesson plan is shaped by the review of the previous day’s teaching and learning as 
documented in video records, student work, and in consultation with peers, the instructor, and the 
host teachers. This feature of TeachDETROIT, making practice visible and shared, follows the work 
of Lewis (2007). 

Teaching children of color living in poverty. In a course titled Detroit Families, Communities, and 
Schools,  TeachDETROIT participants learn about the history of schooling in Detroit, and study the 
effects of poverty and systemic racism on families. The course is part of an ongoing open conversation 
in the program about working with children of color living in poverty and their families and 
caregivers, and promotes a strengths-and-assets view of students and their families. Curated field 
experiences are especially important in preparing preservice teachers to do ambitious teaching in 
high-poverty settings with children of color, since some preservice teachers may not have had such 
experiences themselves, either with children of color or with ambitious teaching practice—and the 
challenges of the two combined can be especially daunting. The empirical experience provided by 
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curated fieldwork in conducting ambitious practice with children of color living in poverty serves as 
a kind of existence proof to preservice teachers: that such practice is possible, that teachers and their 
students are capable of doing such work, and that this kind of work is what is done in “regular” 
schools, real-time, day in and day out. Ambitious mathematics teaching may not be the norm in many 
schools that serve Black children living in poverty, or preservice teachers may not imagine that such 
practice can be done with minoritized populations. For this reason, the curated field experiences 
described in this article are intentionally situated in schools that serve children of color living in 
poverty. This feature draws on the work of Matsko and Hammerness (2014). 

Exploring the city of Detroit. The TeachDETROIT experience includes multiple excursions around 
the city, especially to venues and events where families are present. Experiencing Detroit as a place 
of vibrant cultural and social ferment emphasizes the possibilities of a city that has been portrayed in 
the media as a blighted, scary place. Program participants come to see Detroit as a compelling place 
to work; being part of the city by visiting libraries, parks, artist studios, outdoor murals, urban farms, 
museums, coffee shops and lectures together is part of the education that TeachDETROIT provides 
beyond the preparation for teaching academic subjects. The required course Detroit Families, 
Communities, and Schools features such excursions, and optional social gatherings in the city are an 
integral part of the TeachDETROIT experience. This feature of TeachDETROIT was introduced 
following the literature on place-based education (cf. Gruenewald & Smith, 2014). 

“Slow food, small batches.” Although not a primary feature of the curated field experience, it 
bears mentioning here that an important characteristic of the TeachDETROIT program is the 
maintenance of small cohort size so that the preservice teachers receive individualized attention 
and wraparound services as needed. Each preservice teacher progresses through the program on 
pace with their own growing proficiency; individual strengths, resources, and interests are 
addressed as much as possible. For example, by knowing the preservice teachers well, the program 
is able to place them with mentor teachers who are matched to their needs. The program endeavors 
to be the educational analog to the Slow Food movement, which prizes the production of high-
quality, environmentally responsible food over industrialized food production. Thus, 
TeachDETROIT cohorts are purposely small, and the program resists the trend to abridge the time 
and requirements for teacher certification 10.1111/0161-4681.00141 

increasingly allowed by the Michigan Department of Education. 

Methods 
All members of the inaugural TeachDETROIT cohort were invited to participate in the study by 
external evaluators for the program.  TeachDETROIT preservice teachers are eligible to join the 
program if they have a bachelor’s degree with a 2.75 grade point average, some experience working 
with children (even minimal experience), and an expressed interest in working with children in 
Detroit. Candidates are often returning to school after other careers or raising families, so their prior 
educational experience may be distant and not necessarily a predictor of success in TeachDETROIT; 
for this reason, weak academic history is not necessarily a barrier to entry in the program.  

Program graduates received three email invitations and three phone calls to take part in 45-60-minute 
interviews. Study participants were offered a gift card of $75 for joining the study, and were 
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approached by the external evaluation team, not program personnel, and interviewed by the external 
evaluators to encourage study participants to speak candidly about their experiences. Stimulated 
recall (Calderhead, 1981; Kennedy, 1991) using photographs of the interns themselves during their 
first semester of program participation was used to prompt graduate recollections about their curated 
field experiences. These photographs were taken for marketing purposes at the time, and show each 
intern engaged in the instructional activities with children as detailed above, including the conduct of 
small group work, writing on the whiteboard, and peering over students’ shoulders as they work, for 
example. The photographs were not staged; they were taken during regular instruction. A structured 
interview was developed making use of the photographs and the memories they sparked for study 
participants. As mentioned above, interviewers were external to the program and had conducted 
external evaluation activities in years prior to the current study. The study was conducted with IRB 
permission. 

Data sources 
67% of the cohort (N=4) participated in the study. Interviews were audio recorded and transcribed; 
the transcripts were then coded using an approach that closely follows methods explicated by Miles 
et al. (2019). This approach emphasizes well-defined study variables to ensure the comparability of 
data and reduction of data using data displays and matrices so that the common themes can be 
identified.  

Findings 
Findings of the study are summarized here. 

1. Most graduates found out about the program through their academic advisors at the University.  

2. Study participants reported that memories of their preparation experiences in the field were 
triggered when shown a photo of themselves in the classroom. Participants recalled particular 
instructional routines and named them.  

3. All study participants said that their mathematics lessons did not go as planned in their first months 
in the program, and that they had to learn to adjust to what students knew in the moment. The 
following exchange illustrates this finding: 

Interviewer: Do you remember any of the content of the lessons that you taught? 
Graduate: Oh, my gosh. Yes. Shared reading, guided reading and read alouds for reading. And 

then for math, we did number talks.  
Interviewer: Okay. And do you remember feeling that the lessons went as planned? 
Graduate: Sometimes. I mean you never know what children are going to say and they're going 

to throw you off, but most of it, I would say that the majority of the time, yes, with 
the exception of you just don't know how many children are going to respond. And, 
for example, when we would do a number talk and talk to children about math, your 
expectation is that at some point, they're going to get it while sometimes they didn't. 
So in that regard, no. 

4. All study participants valued the interactions with peers, found those relationships to be educative 
and sustaining, and reported that they continue to stay in contact five years later.  

Interviewer: Do you remember discussing your teaching with your peers? And if you do, what 
do you remember kind of taking away from those discussions? 
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Graduate: Oh, absolutely. It was very beneficial because we would talk about what our 

strengths were during that lesson, what we could improve upon and how we would 
change it if we had to do it again. And the thing is we were talking to our peers, so 
some of the feedback came from teachers, mentor teachers, but then other times, it 
came back from our peers, which helps a lot. 

5. Reflecting on their early mathematics teaching experiences, all graduates noted that those early 
preparation experiences were aligned with the teaching work they did after graduation.  

Interviewer: So looking back on these experiences, were they kind of aligned or misaligned with 
the teaching work that you would do once you graduated? 

Graduate: Oh, they were very aligned. 

6. Graduates named classroom management as an area for which they felt underprepared upon 
entering the profession. Graduates felt that the program did not address this topic adequately, and 
noted that the demands of managing a classroom alone were greater than they had anticipated. 

7. All graduates felt that the program prepared them to teach mathematics in a culturally responsive 
way. They reported learning about culturally responsive instruction through their coursework, 
specifically in their methods course and the course titled Detroit Families, Schools, and Communities; 
during discussions with teachers and university instructors and coaches; and by participating in a 
series on trauma-informed teaching.  

8. Nearly all program graduates from all cohorts have remained in teaching and are working in high-
needs schools. Typically, graduates stay for two years in their first job and then move to another 
school, to follow a principal or to work closer to home. 

Scholarly significance of the study 
Teachers, especially minority teachers, leave the profession at astonishing rates and soon after 
graduation (Ingersoll & May, 2011). This problem is especially acute in schools for children of color 
living in poverty. TeachDETROIT graduates defy this national trend: nearly every graduate from all 
six cohorts of TeachDETROIT has remained in teaching and serves in high-poverty schools. We 
hypothesize that the curated early field experience is a significant factor contributing to increased 
teacher retention in hard-to-staff schools. This study provides some preliminary evidence that teacher 
retention, particularly in schools for children of color living in poverty, can be strengthened by 
preparing teachers to teach ambitious mathematics, along with attention to teaching for equity. We 
hypothesize that the curated field experience provides teachers with the skills and knowledge to teach 
ambitious mathematics and work in schools much like those they will teach in, and this in turn leads 
to feelings of self-efficacy and job satisfaction once graduates are teachers of record. Their shared 
explorations of the city of Detroit further cement program graduates’ sense of commitment to the 
families in the city and the sense that as teachers, they are part of something bigger than themselves. 
Although limited by the small number of participants, this study sheds some light on the longer term 
effects of a program that is designed for preservice teachers to learn “in and from practice” (Lampert, 
2010).  Further investigation is needed to understand the intersection of culturally relevant teaching 
practices and the instructional routines in mathematics that graduates learned while in the program. 
Additionally, external validation of graduates’ perceptions would greatly strengthen the claims made 
here, and to obtain the quality of their instruction Finally, although retention in hard-to-staff schools 
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is strong for TeachDETROIT graduates, we have yet to study the quality of teaching and the extent 
to which graduates continue to carry out ambitious mathematics instruction.  
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This study explores the nature of pre-service teachers’ participation in their lessons on how to teach 
number concepts and operations to learners in early years of primary school. The paper is part of a 
qualitative case study aimed at exploring how pre-service teacher education prepares pre-service 
teachers to teach number concepts and operations in early years (Grades 1-4) in Malawi. This paper 
reports on findings from two mathematics teacher educators. The lessons were analyzed using the 
Mathematics Discourse in Instruction framework. The analysis involved segmenting the lessons into 
episodes, each of which was recognized by change in content focus. Findings indicate that the pre-
service teachers were mostly invited to participate through answering yes/no questions or supplying 
one-word responses to the teacher educators’ unfinished sentences. Implications of these findings are 
discussed. 

Keywords: Pre-service teacher education, early years mathematics, learner participation, malawi.  

Introduction  
In any mathematics lesson, meaningful learner participation is fundamental for understanding the 
mathematics made available for learners to learn (Carpenter et al., 2003; Trocki et al., 2014). 
Mathematical understanding develops best when learners participate actively and are encouraged to 
discuss mathematical concepts and to generate and argue mathematical solutions with one another 
(Carpenter et al., 2003). However, Trocki et al. (2014) argue that it is usually challenging for teachers 
to facilitate such type of discourse in their mathematics lessons. This suggests that teachers need to 
be supported to learn the practice of inviting learners to active participation. Inviting learners to 
participate in the lessons is one of the practices that teachers perform regularly in their work of 
teaching. As such, teachers need to learn how to do it (Adler & Pournara, 2019). This learning needs 
to begin from pre-service teacher education because pre-service teacher education is expected to 
expose pre-service teachers (PSTs) to learning environments that help them to experience active and 
meaningful learning, while at the same time helping them to learn to create the same learning 
opportunities for their learners (Taylan, 2017).  

In Malawi, little is known about how teacher educators (TEs) invite PSTs to participate in their 
mathematics lessons and how these PSTs are enculturated into the practice of inviting learners to 
participate actively in the lessons about number concepts and operations. Number concepts and 
operations is the predominant focus of early years mathematics in Malawi; it also takes a big part of 
mathematics teacher education content (Ministry of Education Science and Technology [MoEST], 
2017). Mastery of number concepts and operations plays an important role in the development of 
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learners’ future mathematical abilities. Yet, studies continue to show that early years learners in 
Malawi perform below the expected achievement level in mathematics, including in the core-element 
of number concepts and operations (Brombacher, 2011, 2019). A study by Saka (2019) indicated 
some challenges in the way teachers teach number concepts and operations in early years. Saka 
argued that the way teaching is done in early years does not fully support the development of number 
concepts and operations for learners. This finding may indicate some gaps in the way PSTs are helped 
to learn to teach number concepts and operations. Research indicates that what teachers learn during 
their pre-service training greatly influences how they teach (Ball & Forzani, 2009). Thus, if PSTs are 
engaged in active and meaningful participation during their teacher education, they are likely to 
engage their learners in active and meaningful participation during their work of teaching. This makes 
it necessary to explore how the teaching practice of inviting PSTs to participate in the lesson is 
enacted in pre-service teacher education. The main argument being put forward here is that teachers’ 
ability to encourage meaningful participation among learners does not come naturally; it is a function 
of how they were enculturated into the practice during their pre-service teacher education. Thus, this 
study focused on answering the question ‘How do mathematics TEs invite PSTs to participate in the 
lessons about how to teach number concepts and operations in early years?’ In this paper, ‘teacher 
educator’ refers to the one teaching pre-service teachers how to teach, ‘pre-service teacher’ is the one 
learning the work of teaching, while ‘learner’ is the one whom the PSTs are expected to teach at the 
end of their pre-service teacher education.

Theoretical Framework
This study was guided by the Mathematics Discourse in Instruction (MDI) framework, developed by 
Adler and Ronda (2015). This framework was chosen for use in this study because it helps in 
describing the mathematics that is made available during teaching (Adler & Alshwaikh, 2019), and 
it specifically targets mathematics teaching practices that teachers meet regularly in their teaching. 
The framework considers four key elements to the teaching of mathematics: object of learning, 
exemplification, explanatory talk and learner participation as shown in Figure 1.

    
Figure 1: Constitutive elements of the MDI framework (Adler & Ronda, 2015, p. 239)

The object of learning is what learners are expected to know and be able to do. In a mathematics 
lesson, the object of learning is brought into focus through three mediational means: exemplification, 
explanatory talk and learner participation. Exemplification is concerned with examples and tasks used 
in the lesson, and how these provide opportunities for learners to learn mathematics. Explanatory talk 
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is talk which names and legitimates important aspects of the object of learning, while learner 
participation is about how learners are invited to participate in the lesson (Adler & Ronda, 2015).  

In the larger study, which explored how pre-service teacher education prepares PSTs to teach number 
concepts and operations in early years (Longwe, 2021), all these elements of the MDI framework 
were used to analyze how the TEs enacted the teaching practices of exemplification, explanation and 
PST participation in helping PSTs to learn how to teach number concepts and operations. However, 
the focus in this paper is on the element of learner participation, which is concerned with interactions 
that happen in a mathematics lesson. With this element, attention is focused on how learners are 
invited to talk mathematically and verbally show their mathematical reasoning (Adler & Ronda, 
2015). Adler and Ronda (2015) characterize learner participation in three categories depending on 
the level of participation and opportunities they provide for learners to learn mathematics. Level one 
is where learners are invited to either answer yes/no or supply words to teachers’ unfinished 
sentences. Level two is where learners are invited to answer what or how questions in phrases or 
sentences, while level three is where learners are invited to answer why questions, present ideas in 
discussion and the teacher re-voices, confirms or asks questions (Adler & Ronda, 2015). This 
framework was used in the present study to analyze how mathematics TEs invited PSTs to participate 
in their lessons about the teaching of number concepts and operations.  

Methodology 
This was a qualitative case study (Creswell, 2014). Four mathematics TEs were purposively selected 
for participation in the larger study where all the lessons were conducted through face-to-face mode 
of learning. Data being reported here is from two TEs. These were selected for this paper because 
data from one of the two TEs showed some differences in the way PSTs were invited to participate 
while the other one was selected as a representative of the three TEs who presented some similarities 
in the way they invited PSTs to participate. Data were collected through lesson observations. From 
the first TE (TE1), six lessons were observed. Two lessons focused on the teaching of place value of 
whole numbers and four lessons focused on the teaching of addition. This class had a total of 37 
PSTs. From the second TE (TE2) four lessons on addition of whole numbers were observed. In TE2’s 
class, there were 39 PSTs. It is important to note that the core-element of number concepts and 
operations is a wide area which encompasses many topics, and the topics of place value and addition 
of whole numbers also fall under this core-element (MoEST, 2017). Each of the lessons was 
videotaped and subsequently transcribed.  

Data analysis was done by dividing the transcribed data into episodes. Coding for PST participation 
was done by indicating beside the utterances whether the PSTs participated by answering yes/no; 
answering what/how questions; or answering why questions, involved in discussions, or asking 
questions. At the end of each episode, a descriptive summary of all forms of participation was 
provided. The summary also included the number of occurrences of each form of participation. This 
quantification guided the analysis in determining the extent to which each form of participation was 
enacted and later make claims of how PSTs were invited to participate based on how each form of 
participation was enacted. 
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Findings 
As stated earlier, this study explored how mathematics TEs invited PSTs to participate in the lessons 
on number concepts and operations. Following the MDI framework, analysis focused on whether 
PSTs were invited to either answer yes/no questions or one-word responses; answer what/how 
questions; answer why questions, present ideas in discussion, or ask questions (Adler & Ronda, 
2015). Attention was also paid to how these forms of participation provided opportunities for PSTs 
to further their knowledge of number concepts and operations and learn how to teach these concepts 
to their learners. The findings are presented by first providing a summary of instances of how PSTs 
were invited to participate in all the lessons as shown in Figure 2. In presenting the findings in Figure 
2, the forms of participation are presented as ‘Y/N’ where PSTs were invited to participate through 
answering yes/no or provide one-word responses, ‘what/how’ where they were invited to answer what 
or how questions, ‘discussion’ where they were invited to present ideas in discussion, ‘why questions’ 
where they were invited to answer why questions, and ‘ask questions’ where they were invited to ask 
questions. As explained in the methodology section, six lessons were observed in TE1’s class 
(presented as L1-L6 in the graph) and four lessons were observed in TE2’s class (L1-L4). 

 
          Figure 2: Summary of forms of PSTs participation in TE1 and TE2 lessons  

As Figure 2 shows, TEs invited PSTs to participate through different forms of participation, as 
categorized in the MDI framework. PSTs were invited to participate through answering yes/no or 
one-word response, answering what/how questions, presenting ideas in discussion and answering 
why questions. However, these forms of participation were enacted to varying degrees. 

Participation through answering yes/no or supplying one-word responses 

While all forms of participation were observed in the lessons, findings indicate that TE2 mostly 
invited PST to participate through answering yes/no or supplying one-word responses. In all the 4 
lessons the most common form of participation was where he invited PSTs to participate through this 
form of participation. For TE1, however, findings indicate that it was in 2 out of 6 lessons (L2 and 
L4), where he mostly invited PSTs to participate through answering yes/no or supplying one-word 
responses (see Figure 2). The following excerpt offers a representative example of how TEs invited 
PSTs’ to participate through answering yes/no or supplying one-word responses (TE2, lesson 2 
episode 1.2).  

35 TE:  Yes. If I say ten plus nine, will this be a basic addition fact? 
36 PSTs:  No 
37 TE:  Why say no? 
38 PST:  Because there’s two-digit number 
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39 TE:  Because we have used two-digit number, are we together? 
40 PSTs:  Yes  
41 TE:  Otherwise, we would like to concentrate on one-digit number added to one-

digit number…In addition, what are addends? When you put two addends 
together, you get a sum, so what are addends. Yes! 

42 PST:  Are numbers which can be added  
43 TE:  The numbers that can be added. Are we together? So, in this case, if ten is 

added to nine, therefore, ten is a what? 
44 PSTs:  Addend 
45 TE:  Nine is a what? 
46 PSTs:  Addend 
47 TE:  And nineteen is what? 
48 PSTs:  Sum 
49 TE:  The sum, the result, are we together? 
50 PSTs:  Yes 

In this dialogue, the TE focused on the basic facts of addition and how to come up with addition 
sentences from the basic facts of addition table. Throughout this dialogue, PSTs participated by 
answering yes/no or supplying one-word responses, except in utterances 38 and 42 where they went 
beyond giving yes/no or supplying one-word responses. This implies that most of the mathematical 
talk was being done by the TE while the PSTs were only supplying one-word responses.   

Participation through answering what/how questions in phrases or sentences 

Findings from data analysis indicate that PSTs were also invited to participate through answering 
what/how questions in phrases or sentences. For TE1, findings indicate that this was the most 
prevailing form of participation through which he invited PSTs to participate (see Figure 2). For TE2, 
findings have indicated that the most common form of participation was through answering yes/no 
or one-word responses, as indicated in the section above, but participation through answering 
what/how questions was also present as shown in Figure 2. Instances where TEs asked PSTs to answer 
what/how questions, such as to define concepts about number concepts and operations were observed. 
Below is an example of how PSTs were invited to participate through answering what/how questions. 

TE:  Our today’s lesson is about place value, (writes place value on the board). Have you 
ever heard of that word, place value? Or what comes into your mind when you hear 
about these two words, place value? (TE1, lesson 1, episode 1.1) 

In this excerpt, the TE invited the PSTs to explain what the concept ‘place value’ means. This form 
of participation invited PSTs to go beyond supplying single words to TE’s questions, to reasoning 
about the concept of place value. 

Participation through presenting ideas in discussion, answering why questions, and asking 
questions 

In all the lessons, findings indicate some instances where PSTs were invited to participate through 
presenting their ideas in discussion. Some of the activities in which PSTs were invited to participate 
through discussion include discussing how to model addition of whole numbers using different 
resources such as place value box, spike abacus, and on a number line. Findings also show few 
instances where PSTs participated through answering why questions—one instance for TE1 and two 
instances for TE2 (see Figure 2). In these forms of participation, PSTs were seen to be exposed to 
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more open discussions where they shared their mathematical thinking. Below is a representative 
example of instances where PSTs were invited to participate by answering why questions.  

TE:  Now, can you explain why addends in the basic addition facts do not go beyond 
nine? (TE1, lesson 3, episode 2.1) 

This question provided opportunities for PSTs to go beyond just giving a definition, to applying their 
mathematical thinking considering the properties of basic facts of addition. Findings also indicate that 
participation through asking questions was not observed in any of the lessons (see Figure 2), implying 
that the PSTs were not exposed to the practice of getting to ask questions from their TEs.  

Discussion and conclusion 
In this study, an exploration of how TEs invited PSTs to participate in their lessons about how to 
teach number concepts and operations in early years, the observed TEs invited PSTs to participate 
through all the three forms of participation as characterized by the MDI framework, namely, 
participation through answering yes/no or supplying one-word responses, participation through 
answering what/how questions in phrases and sentences, and participation through discussions and 
answering why questions (Adler & Ronda, 2015). However, it was revealed that PSTs were mostly 
invited to participate through answering yes/no or supplying one-word responses and through 
answering what/how questions. In few instances, they were invited to participate through discussion 
and answering why questions. Also, findings have revealed that in these observed forms of 
participation, there were some variation in the way the two TEs enacted them. It was observed that 
TE1 mostly invited PSTs to participate through answering what/how questions, while TE2 mostly 
invited PSTs to participate through answering yes/no or supplying one-word responses. Although 
there were such differences, both forms of participation—participation through answering yes/no and 
participation through answering what/how questions—as enacted by the TEs, did not appear to 
provide enough opportunities for PSTs to engage in more active and meaningful participation. This 
finding appears to be in contrast with what Taylan (2017) argues about engaging PSTs in meaningful 
participation. Taylan (2017) contends that PSTs are expected to create active and meaningful learning 
situations for their learners. But for these PSTs to be able to do this with their learners, there is need 
for them to encounter similar learning opportunities during their pre-service teacher education. This 
implies that if PSTs are given opportunities to participate meaningfully in their mathematics lessons, 
they are likely to provide the same learning opportunities to their learners during their work of 
teaching. Thus, this finding from the current study suggests that the PSTs had limited opportunities 
to learn to do this to their learners. 

During mathematics teaching, What learners are invited to say determines their opportunities to talk 
mathematically and demonstrate their mathematical reasoning (Adler & Ronda, 2015). The same can 
be said about PSTs, implying that exposing PSTs more to participations that required them to answer 
yes/no or one-word responses limited their opportunities to talk mathematically, develop and 
demonstrate knowledge about number concepts and operations. Also, when PSTs are only invited to 
supply one-word responses, it is difficult for TEs to spot misconceptions that PSTs might have about 
the mathematics they are learning (Taylan, 2017).  
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On the other hand, inviting PSTs to participate through answering what/how questions in phrases or 
sentences appeared to create opportunities for them to show what they know and also opportunities 
to learn about number concepts and operations, but it may not have provided enough opportunities 
for them to argue mathematically and expose their mathematical thinking. The few instances where 
PSTs were invited to participate through discussions and making presentations appeared to have 
provided opportunities for them to engage in greater and more meaningful participation where they 
shared their ideas and were able to make mathematical arguments. The MDI framework advocates 
inviting students to participations where they present their ideas in discussion, answer why questions 
and also ask questions (Adler & Pournara, 2019). However, the finding that the practice of inviting 
PSTs to answer why questions was rare and that there was no instance where they asked questions 
may indicate that the PSTs had limited opportunities to demonstrate their mathematical reasoning and 
to learn to provide such kind of participation to their learners. It might also indicate that the practice 
of facilitating meaningful mathematical discussions is challenging for TEs. Encouraging PSTs to ask 
questions is an important practice for teachers to learn to do as it promotes active learning and also 
helps to unveil misconceptions that PSTs might have (Taylan, 2017).  

The findings of this study suggest that PSTs were mostly exposed to participations that provided 
limited opportunities for them to talk mathematically and verbally show their mathematical reasoning. 
The challenges in the way teachers teach number concepts and operations, and the resultant poor 
learner performance (Brombacher, 2019; Saka, 2019), as indicated in the introduction section, might 
be related to the way these teachers were prepared to teach during their pre-service teacher 
education— how they were invited to participate in their mathematics lessons as PSTs, as visualized 
in this study. In order for early years learners in Malawi to improve from performing under the 
expected achievement level in the core-element of number concepts and operations (Brombacher, 
2011, 2019), an implication from this study might be to extend the ways PSTs are invited to 
participate in Malawi pre-service teacher education. Learners learn more from their mathematics 
lessons when they are given the opportunity to discuss mathematical concepts and argue mathematical 
solutions with others (Carpenter et al., 2003; Taylan, 2017). Therefore, exposing PSTs to such a 
learning environment would be useful in helping them understand primary school mathematics better, 
and at the same time help them to develop knowledge of how to facilitate such type of participations 
with their learners.    
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In this paper we are interested in understanding how pre-service teachers use programming to design 
digital learning situations (learning objects). We discuss a case study of a pre-service teacher 
creating a learning object to teach a mathematics concept. Using a development-process model and 
the instrumental approach, with its concept of scheme, we analyze the pre-service teacher’s 
engagement with the activity of creating the learning object and identify two schemes that she 
developed and mobilized for articulating the learning trajectory and articulating it in programming 
language. The analysis of schemes highlights the need for understanding operational knowledge in 
the context of pre-service teachers’ experiences of using programming to design learning objects.  

Keywords: Instrumental approach, programming, pre-service teachers, learning objects.  

Introduction 
Integrating computer programming into education is increasingly becoming a necessity in all levels 
and fields, from preschool to life-long learning (Schina et al., 2021). In the decades since Seymour 
Papert published his seminal work Mindstorms in 1980, the increasing research has emphasized the 
importance of programming in supporting students’ understanding of mathematical concepts 
(Wilensky, 1995). Accordingly, teacher education and instructional programs are creating new 
learning paths and integrating programming. In particular, the Department of Mathematics and 
Statistics at Brock University has integrated programming into mathematics education for 
mathematics majors and future mathematics teachers through a sequence of Mathematics Integrated 
with Computers and Applications (MICA) courses (MICA I, II, III –for math and science majors / 
III* –for pre-service teachers). The MICA program is the context of the study reported in this paper. 
The learning objectives of MICA courses are to develop mathematics concepts in conjunction with 
programming skills and to encourage mathematical creativity. In the progression of the sequence of 
these courses, students engage in 14 programming-based mathematics investigation projects (4 in 
MICA I, 5 in MICA II, and 5 in MICA III or III*). Unlike other projects where instructors specify 
the topics, in each MICA course final project, students choose a topic of their interests and the type 
of project. Pre-service teachers may choose to create a “learning object (LO)” (Muller et al., 2009), 
i.e., a step-by-step guided learning interactive object of a school mathematics concept, and to work 
individually or in pairs in its design, which may be relevant to their future profession. Research 
highlights the importance of developing pre-service teachers’ understanding of computational 
thinking in the context of the subject matter, such as mathematics (Yadav et al., 2014). However, 
there is limited research on pre-service teacher’ learning experiences (Aslan & Zhu, 2016). This paper 
focuses on MICA pre-service teachers’ learning experiences of creating LOs.  Specifically, the paper 
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discusses a case study aimed at exploring a pre-service teacher’s engagement, and her development 
and mobilization of schemes through the activity of creating a learning object. 

Theoretical Framework 
We frame the pre-service teachers’ engagement with the activity of designing an LO using a 
development-process (dp) model (Figure 1), proposed by Buteau and Muller (2010), that represents 
the student engagement in the activity, involving multiples steps that arise in a dynamic and non-
linear way. 

 
Figure 1: Development process model of an LO of a mathematical concept (Buteau & Muller, 2010) 

Our understanding of pre-service teachers’ development and mobilization of schemes is framed by 
an instrument-mediated activity approach –the instrumental approach– which was developed in the 
field of ergonomics to account for the active role that a user of an artefact plays, and the development 
of competence during his/her activity (Rabardel & Beguin, 2005). The instrumental approach has 
been further articulated and used in mathematics education research to conceptualize teaching and 
learning situations involving artefacts (Guin et al., 2005). In contrast with the dyadic subject-object 
interaction, the approach highlights the triad interactions among the subject, the instrument and the 
object towards which instrumented action is directed.  

Critical to our study is the theory of instrumental genesis, which articulates a distinction between an 
artefact as a material or semiotic construct and an instrument as a psychological construct that 
emerges from the subject’s activity with the artefact for a given goal. Put differently, “…during the 
activity and in situation… the user constitutes the artifact (whether physical or symbolic) as an 
instrument” (Rabardel & Beguin, 2005, p. 4) through an instrumental genesis process. The instrument 
is composed by a part of the artefact and a scheme of its use. A scheme (instrumented action scheme) 
is a stable organization of the subject’s activity for a given goal, which is developed and mobilized 
by the user in action. It constitutes a whole or a set of mutually dependent components: i) one or 
several goals of the activity; ii) rules-of-action (RoA), to generate action, information seeking and 
control according to the features of the situation; iii) operational invariants: concepts-in-action (CiA), 
which are concepts considered as relevant and theorems-in-action (TiA), which are propositions 
considered as true and governing the RoAs; and iv) possibilities of inferences (Vergnaud, 2009).  
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Methodology 
This paper is part of a 5-year ongoing research study, that seeks to examine how post-secondary 
mathematics students learn to use programming as a computational thinking instrument for 
mathematics inquiry. The naturalistic (non-interventional) study utilizes a mixed methodology and 
an iterative design approach. Data collected include each participant’s programming-project 
assignments (e.g., the LO; and its associated report), and semi structured interviews with each of the 
participants after completing each of the project assignments. The design of the interview guiding 
questions was informed by the students’ dp-model (Figure 1). In addition, data collected included 
post-laboratory session reflections and a questionnaire. After each of the 10 weekly 2-hour MICA lab 
sessions, participants recorded their reflections on their learning during the lab session (guiding 
questions were provided). All participants filled an online questionnaire before and after their MICA 
course. In this paper, we discuss the case study of a MICA II student, Kassie (pseudonym). Kassie 
was among eight MICA II participants recruited in year 2 of our larger study. Kassie was selected 
because she was particularly reflective and elaborative in her interview and lab reflections. Data for 
the case study include Kassie’s final project –an LO and report, a semi-structured interview about her 
final project, and post-laboratory reflections related to her final project. The interviews were recorded 
as audio files and then transcribed into word documents. To describe Kassie’s engagement with the 
activity, we analysed Kassie’s final project interview, her report and the LO by trying to observe her 
activity in the steps of the dp-model. To analyse Kasie’s schemes, first Kassie’s interview and lab 
reflection data were coded individually by two coders, followed by a thematic analysis (Cresswell, 
2014) done jointly by two coders. 16 subthemes were grouped in five main themes, two of which 
corresponded to strategies and perceptions. In addition to those themes, other themes specific to LOs 
were identified. Using codes under themes for the strategies (associated to rules-of-action) and the 
perceptions (associated to operational invariants) and informed by the steps in the dp-model, we then 
analysed the scheme according to its components (RoAs and operation invariants). 

Findings 
We present the results of the case study. First, we describe Kassie’s engagement with the activity of 
creating the LO. Second, we present two examples of Kassie’s schemes that were identified through 
analysis.  

Kassie’s engagement with the activity 

As indicated below in Figure 1, the development process of an LO begins with the student selecting 
a school concept to teach (step 1). Kassie and her assignment partner started by looking for potential 
high school mathematics topics on the internet. They decided on the derivatives topic after discussing 
three possible topics between each other and their professor. They stated on their LO report that the 
focus was on first derivatives, specifically focusing on velocity. After deciding on the topic, they 
referred mostly to their personal notes from high school, the internet and library resources to find out 
when and how the derivatives are taught in the Ontario school curriculum and what the prerequisite 
mathematical knowledge for the topic would be (step 2). They chose grade 11 and 12 for their LO 
and assumed that the students would have sufficient background knowledge on derivatives and 
velocity because they would have just learned or would be in the process of learning about derivatives. 
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In deciding on didactical strategy (step 3), Kassie and her partner decided to focus on the derivatives 
as a concept and planned to show the relationship between the derivatives and the graphs. They aimed 
at enhancing the students’ understanding of derivatives, give prompts and fun refreshers to help them 
understand one of the applications of derivatives–velocity. 

After deciding on their didactical strategy, they began to design and implement (through code in the 
vb.net programming language) an interactive LO with a self- contained interface (step 4). Kassie 
stated that they gradually built on the LO as they were developing it. For this activity, Kassie and her 
partner created a random equations generator, derivatives and graphs and led the user to match the 
graphs to derivatives. They designed their LO in a way as to lead the user to find the derivative, then 
find the graph, then find the velocity. Kassie and her partner tested the interface in terms of its 
functioning, communication and/or navigation in several different cases, to ensure the accuracy of 
their coding (step 5). Kassie indicated that she and her partner had to debug the programming when 
they randomly generated the questions. She also stated that, after they tested the LO, they improved 
the look of the picture and textboxes for the user. 

Kassie and her partner revisited their didactical strategy by having three university students who are 
not in a math program to use the LO and complete a survey to control if any change or improvisation 
was needed in the activities (step 7). Kassie stated that the feedback they received from the university 
students affirmed that their LO was adequate for high school grade 11 and 12 students, and that it 
portrayed the information in an entertaining and interactive way. Subsequently, they submitted the 
LO and their corresponding LO report, which included the didactical purpose and strategies, the target 
audience and the mathematical background of the target audience, a summary of the school pupil’s 
experience, and a discussion (step 8).  

Kassie’s examples of schemes 

Table 1: Scheme of Articulating the learning trajectory 

Goal Rules of Action Operational Invariants (TiA or CiA) 

Articulating 
the learning 
trajectory / 
development 
of the topic 

I identify the way students learn 
the best  

I identify a concept 
development 

I identify an interesting context 
to capture interest (Friends) 

I identify the possible 
applications between the 
selected topic with other topics 
(not only in mathematics) 

When learners can relate the topic that they are learning with 
something from their lives, they are more interested. (Theorem 
in action) 

High school students need interesting situations/contexts to 
learn math (Theorem in action). 

A good context or situation to learn is one that relates 
mathematics to other area (e.g., physics) (Theorem in action) 

Relation between math concepts and other contexts (Concept in 
action) 

Math concepts can be applied to other areas (e.g., physics)  
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Table 1 summarizes components of Kassie’s scheme of articulating the learning trajectory (step 3 of 
the dp-model). During the interview, Kassie was asked to articulate on what kind of a didactical 
strategy she used for the LO user to learn, and she noted: 

Well, we wanted them to learn the most basic way possible, but in a way that they could relate to, 
not something that's like just straight math. So, we put like a storyline and tried to enhance that so 
they would be interested in actually doing it. (LO, 15) 

We interpreted this description by Kassie as indicating a rule of action such as “I identify the way 
students learn the best” and a theorem in action such as “When learners can relate the topic that they 
are learning with something from their lives, they are more interested”. We interpreted Kassie’s 
reflection on how the students learn the best as she is aiming to establish connections between real 
life situations. Kassie assumed that a story that LO users can relate to, is likely to draw the targeted 
age group’s interest to the mathematics activity. Kassie was asked if her focus was more on the 
algebra and calculations, or more on the concept of what a derivative is. She stated: 

I think I focused more on the concept of what a derivative is, because we were looking at velocity 
and how fast something moves. So, we did a Friends (tv series) theme, and we gave them three 
options for Ross (a character in Friends) to get to work, and what was the fastest way for him? So, 
we said that they had a background in derivatives, we just wanted them to understand the concept 
of velocity and what that means and how you see if something has a faster velocity than something 
else. (LO, 14) 

We interpreted Kassie’s answer as indicating many RoAs such as “I identify a concept development”, 
“I identify an interesting context to capture interest”, and “I identify the possible applications between 
the selected topic with other topics that are not necessarily in mathematics”. Kassie’s emphasis on 
the derivatives as a concept, indicated that she intended to design the LO to develop the user’s 
understanding of the concept with its relationship to other concepts such as velocity. In her 
explanation, Kassie identified a learning objective (comprehension of the derivative concept); and its 
relations to other areas (velocity in physics); and how the mathematics problem could be presented 
to the learner in a relatable and entertaining context to capture interest (the Friends theme and going 
to work). On her LO report, she expressed her thoughts on how learners are more interested when 
they can relate the topic with something from their lives, stating: 

By having our program F.R.I.E.N.D.S. themed, it not only engages the students in what is being 
taught to them, but it also gives them ideas and leeway into being creative with other concepts of 
math in order to better their own understanding. The students will gain a better understanding of 
velocity by comparing the velocities of three different modes of transportation, and actually 
conducting their derivatives in order to find the fastest velocity. This not only enhances their 
understanding of derivatives, but also allows them to explore a real-life situation in regard to 
velocity. (LO Report)  

We interpret her explanation as she regards a good context or situation to learn is to be one that 
relates mathematics to another area such as physics.   

Table 2 summarizes the components of scheme of articulating the learning trajectory in 
programming language. The scheme relates to the planning stage of step 4 of the dp-model. 
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Table 2: Scheme of articulating the learning trajectory in programming language 

Goal Rules of Action Operational Invariants (TiAs and CiAs) 

Articulating 
the parts of 
the learning 
trajectory in 
programming 
language 

I identify the parts of the learning trajectory to be 
coded  

I code the parts separately step by step (e.g., equations, 
graphs)  

I use the story/context of the to code the parts 

I use my previous programming knowledge from 
previous assignments to code the parts  

Learning trajectory shows how the user 
will develop understanding of the concepts 
to be learned 

The parts of learning trajectory must align 
with the story/context of the learning  

Programmed math must help the user to 
visualize the mathematics  

When Kassie was asked how she incorporated the graphs with the concept of velocity and derivatives 
in her design, she expressed that she envisioned the user to first understand what a graph is and how 
it looks, then understand what a derivative graph is and how it looks and finally understand the 
relationship of velocity with the graphs and the concept of derivatives through finding the actual 
velocity. Kassie noted: “We wanted them to know what the graph looked like, know what the 
derivative graph looked like, and know like, what the actual velocity was.” (LO, 15) 

We interpret the above as Kassie developing a RoA “I identify the parts of the learning trajectory to 
be coded” supported by the TiA, “Learning trajectory shows how the user will develop understanding 
of the concepts to be learned.” To design and execute these steps in the LO, Kassie and her partner 
started to design and work with the original graphs, then with the derivative graphs and finally find 
the velocity to imitate the user’s steps. Kassie noted: “So, I think we started with the original graphs, 
and then we started with the derivative graphs and then we went to find the velocity.” (LO, 15)  

We interpreted this explanation as Kassie developed a RoA, “I code the parts of the learning trajectory 
separately step by step (e.g., equations, graphs)”. Kassie further elaborated on how she and her partner 
embedded a storyline –in this case, a character from a TV series trying to go to work– as they coded 
step by step the parts of the LO: 

We built on the learning object, because we explained the story where “he needs to get to work, 
let's try and find him the fastest way”. So, then they had the graphs, the original graphs, and then 
they had to match them to what they thought it was, and then they took the derivatives, or they 
practiced derivatives, just like random equations, then they took the derivative graphs and matched 
it to the derivatives that they took and then they found the velocity. So, it was kind of "here's your 
first part, then find the derivative, then find the graph, then find the velocity. " (LO, 16). 

We interpret this explanation as Kassie developing a RoA, “I use the story/context of the learning 
task to code the parts” and the TiA, “The parts of learning trajectory must align with the story/context 
of the learning object." 

When Kassie was asked why they wanted to include the graphs and the function with its derivative 
in their LO, she elaborated:  
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I feel like it's really important because they make sure you know it in high school but also for our 
own understanding, I thought that "you want to know what that looks like", you want to know that 
the derivative of a parabola is like a straight line. I feel that is really important to know, so that 
they can visualize it while they're actually learning, the concept of it. (LO, 26) 

We interpret the above explanation as Kassie developing a TiA such as “programmed math must help 
the user to visualize the mathematics”. Kassie was asked if she referred to her previous programming 
knowledge that had been covered previously in the course and she stated: 

Yes, definitely. Because there was certain things that I didn't remember how to do that, but I know 
we did it in previous assignments, so it was easy to go back and be like "this is how you do it, okay 
let's do it like that". (LO, 18) 

We interpreted Kassie’s answer as indicating a RoA she developed during her design process of the 
LO as “I use my programming knowledge from previous assignments to code the parts”.  

Discussion and Concluding Remarks 
In this paper we presented a case study of a pre-service teacher experience of using programming to 
design a learning object. Using the dp-model and concept of scheme we described a case of a pre-
service teacher engagement, development and mobilization of two schemes for the activity. The 
concept of scheme is crucial in understanding Vergnaud’s (2009) distinction between operational 
form of knowledge (action in the physical and social world) and the predicative form of knowledge 
(linguistic and symbolic expressions of the knowledge). While both kinds of knowledge are important 
in understanding pre-service teachers’ activity, mathematics education research tends to focus more 
on predicative knowledge (Vergnaud, 2009). Our analysis of engagement and two schemes developed 
by the pre-service teacher highlights the need to understand operational knowledge in the context of 
pre-service teachers’ learning experiences of using programming to design learning objects. As 
integrating computer programming into mathematics education is increasingly becoming a necessity, 
more research is needed to understand this kind of knowledge and its implication to mathematics 
teacher education. In our previous work on exploratory objects for pure or applied mathematics 
investigations, we have argued that the schemes that students develop and mobilize are associated to 
steps in the related dp-model (e.g., Gueudet et al., 2020). Likewise, our case study on learning objects 
indicates that the schemes that pre-service teachers develop and mobilize are associated with the dp-
model for LOs. The two pre-service teachers’ schemes identified in the case study are associated with 
Step 3 and 4 of the dp-model (Figure 1).   
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Background to the Research 
In line with an international trend of curriculum reform towards a greater focus on problem-solving 
and mathematical literacy, significant reforms of mathematics curricula have taken place in Ireland 
in recent years. A new secondary curriculum was introduced in 2010 representing a comprehensive 
overhaul of content, assessment, and teaching and learning practices (Johnson et al., 2020). 
Incorporated in this reform was an attempt to move towards a more problem-solving approach to 
teaching mathematics. In 2015 the mathematics curriculum was revised once again for the junior 
cycle (ages 12/13 – 14/15). Classroom-based assessments (CBAs) were introduced representing a 
dramatic change in teachers’ roles assessing their students’ learning, as formal assessment in Ireland 
has traditionally been anonymous and centralized without any input from a student’s teacher. 

Teachers play a central role in the adoption of curriculum reforms and the successful enactment of 
reform depends on the teachers who will interpret and implement it (Spillane, 1999). However, 
educational reforms can aggravate teachers’ concerns (Charalambous & Philippou, 2010), thereby 
influencing the implementation of reforms. Identifying and attending to the concerns of teachers can 
contribute to the successful implementation of educational reforms (Christou et al., 2004). 

This research intends to gain an insight into the nature of Irish secondary mathematics teachers’ 
concerns about problem-solving and asks the question: What is the nature of Irish secondary 
mathematics teachers’ concerns with regards to problem-solving and the associated classroom-based 
assessment following recent curriculum reforms? 

Methodology and Theoretical Framework 
Hall et al. (1977) proposed seven “Stages of Concern” (SoC) which teachers experience as they 
implement a reform: awareness, informational, personal, management, consequence, collaboration, 
and refocusing. More recent studies have identified these stages of concern in teachers’ interpretation 
and implementation of reform (Charalambous & Philippou, 2010) and found a pattern where teachers 
move through these stages, though not necessarily linearly, as a reform is introduced, implemented, 
and becomes established (Johnson et al., 2020). It has been suggested that the success of a reform 
depends on this development of concerns (McKinney et al., 1999).   

This research uses a qualitative approach to generate data on teachers’ concerns around problem-
solving and the CBAs. Semi-structured interviews were conducted with 12 mathematics teachers, 
representing a range of teaching experiences (e.g. gender, mathematical background, years of 
experience etc.) and school contexts (e.g. urban/rural; single-sex/co-ed; small/large pupil population 
etc.). The SoC framework informed the design of the interview and data analysis is being undertaken 
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using this same framework. The anonymized transcripts are being analysed through qualitative 
content analysis with the seven stages of the SoC framework serving as “a priori” codes. 

Preliminary Findings 
Following the initial phase of data analysis, the research provides a snapshot of participating teachers’ 
concerns in each of the seven stages of the SoC framework. All participants demonstrated 
management concerns, most of which were related to time pressures with regards to classroom time 
within an already over-loaded curriculum. 

Mary: It’s just being able to facilitate [problem-solving] in the classroom under the time 
constraints seems to be a serious challenge to me. 

Collaboration was a dominant theme. It was highlighted as a source of support but there was also an 
explicit desire for more collaboration with colleagues.  

Cillian:  I think having more opportunities there to engage with other schools around and 
share practice there would be the biggest thing. 

Findings from this research will feed into the design of a specific teacher development initiative, 
where curriculum materials will be developed in order to provide targeted support for mathematics 
teachers enacting these reforms. 
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The scientific literature points to the importance of reflection and its contribution to teachers’ work. 
However, the reflective process involves some challenges. Definitions of reflection are abstract, and 
models of reflection are complicated and not always accessible to practitioners. The goal of this study 
was to unpack the concept of reflection into categories – actions or phases which are part of a 
comprehensive reflective process. For this aim, we analyzed 11 mathematics teachers’ reflective 
expressions, collected in three different settings of professional development. Six categories of 
reflection were identified in the study, which suggest different actions that teacher educators can 
consider when designing guiding tools to support teachers through the reflective process. 

Keywords: Reflection, professional development, journal writing, stimulated-recall interviews. 

Introduction 
Beginning with John Dewey, reflection is a central concept in many fields, among them the field of 
mathematics education. Reflection is a special kind of thinking, a process of looking back at 
experiences and learning through and from them (Finlay, 2008). Involvement in a reflective process 
is considered to be important and beneficial for teachers’ professional development: Reflection 
enables teachers to be more aware of their actions and of the beliefs and assumptions that stand at the 
basis of these actions, so decision-making processes become more deliberate (Finlay, 2008; Karsenty 
& Arcavi, 2017). Reflection is linked to the mechanism of knowledge development (Clarke, 2000; 
Karsenty et al., 2015; Schön, 1983), and was also found to be a key aspect in processes of change 
regarding teaching practices (Clarke, 2000; Karsenty & Arcavi, 2017; Schwarts & Karsenty, 2020).  

However, there are still some considerable challenges in understanding this concept. Specifically, 
there is a need to understand what it is that mathematics teachers do when they reflect on the teaching 
practice. In this study, we analyzed mathematics teachers’ reflective expressions, with the goal 
shedding light on the complex concept of reflection, and to unpack the definition of reflection into 
categories – actions or phases which are part of a comprehensive reflective process. 

Theoretical Background 
Based on John Dewey’s ideas, Schön (1983) related to reflective practices, where practitioners 
examine their actions. Schön distinguished between two types of reflection: (1) reflection in action – 
the practitioner’s thinking about his/her actions while doing them; and (2) reflection on action – a 
process where the practitioner is consciously looking back at a situation and critically examining, 
analyzing, and evaluating it, in order to gain new insights which will improve future practice.  

Dewey’s and Schön’s ideas led to development of various definitions for the concept of reflection, 
which relate to diverse kinds of categories of reflection, to aspects included in the reflective process, 
to the purposes of the reflective process, or to its results (Finlay, 2008; Lyons, 2010). In the field of 
mathematics education, Clarke (2000) distinguished between three types of reflection: the first two 
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are similar to Schön’s – reflection in practice and reflection on practice. The third type, reflection for 
practice, refers to the development of teachers' awareness to decision-making processes. Geiger et al. 
(2016) offer a two-dimensional framework for looking at mathematics teachers’ reflections: the level 
of reflection (technical, deliberate, or critical reflection) and the object on which the reflection is 
focused (self, practice, or students). As the basis of this study, we chose the following definition, 
which is concise, yet relates to diverse aspects of reflection which the literature emphasizes:  

[Reflection is a] detailed, analytical, and careful observation of ‘‘what was done’’ in order to 
attempt to understand intentions, plans, actions and utterances and to consider alternative decisions 
and their possible implementation (Karsenty & Arcavi, 2017, p. 435). 

Different models were developed in order to support teachers, and other practitioners, in the process 
of reflection. Two central models are Gibbs’ (1988) Reflective Cycle, which offers six phases for the 
process, and Korthagen’s (2014) ALACT model, comprised of five phases, alongside the ‘core 
reflection’ model, which highlights the aspects teachers should relate to in the reflective process. 
Finlay (2008) stresses that different models for reflection are discerned from each other in the phases 
and actions they include, the aspects that the reflection relates to and the tools and means that the 
model offers (guiding questions, peer discussions, writing journals, etc.). 

However, although reflection is a keyword in the field of education for many decades now, the 
literature shows that it is not easy to be involved in a reflective process (Finlay, 2008; Korthagen, 
2014; Lyons, 2010). The definitions for reflection are somewhat abstract, and models for reflection 
include many components. It is difficult for teachers, as well as for  teacher educators, to understand 
what the process of reflection should look like in actuality (Brown & Coles, 2012; Finlay, 2008; 
Korthagen, 2014; Lyons, 2010). Since the guiding lines for reflection are not clear, teachers tend to 
reflect on their teaching in technical, superficial, or inefficient ways, which do not necessarily support 
their teaching (e.g., Korthagen, 2014). 

Rationale and Research Question 
As we aim to support mathematics teachers as they are involved in reflective processes, the 
overarching goal of our study is to bridge the gap between the theoretical knowledge that exists on 
reflection on the one hand, and the way it is implemented and practiced by teachers, on the other 
hand. In our study, we analyzed mathematics teachers’ articulations, in which they reflected on the 
teaching practice in three different settings of professional development (details follow). When we 
tried to analyze these articulations with the definition of Karsenty & Arcavi (2017), we found this 
definition does not capture all the actions that teachers perform when they reflect on their practice. 
Other existing definitions were not operational either. Therefore, the first step of the study, reported 
in this paper, was aimed at unpacking the definition of reflection into operational categories which 
relate to actions that mathematics teachers perform when they reflect on their teaching practices. 
Accordingly, the research question was: What categories of reflection can be identified in 
mathematics teachers’ reflective articulations, within different settings, and how do these categories 
relate to, correspond, or add to the existing literature? 
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Methodology 
Study participants  

70 secondary mathematics teachers took part in one of seven VIDEO-LM PD courses held in Israel 
in 2015-2016. Out of the 70 teachers, 11 teachers were chosen to participate in this study. The 11 
teachers were selected to represent various characteristics of the 70 teachers, such as teaching record, 
gender, academic education, and teaching experience (high/middle school; low/advanced track, etc.). 

Data collection 

For each teacher, data was collected from the following sources, which refer to three different settings 
of professional development that allow teachers to reflect on their mathematics teaching practices: 

(1) VIDEO-LM PD meetings: The participating teachers all took part in one of seven VIDEO-LM 
PD courses’ meetings held in Israel in the academic year 2015-2016. The VIDEO-LM project 
(Viewing, Investigating and Discussing Environments of Learning Mathematics) is a project 
aimed at enhancing mathematics teachers’ reflection skills and mathematical knowledge for 
teaching. A typical VIDEO-LM course is composed of 7-10 meetings, 30 hours in total. In each 
meeting, teachers watch a videotaped mathematics lesson and discuss it, while using the “six-
lens framework” – an analytic framework focused on aspects of mathematics teaching (see 
Karsenty & Arcavi, 2017). All meetings in the seven PD courses were videotaped. From these 
meetings, all excerpts in which the participating teachers spoke were transcribed. The number 
and length of excerpts vary between the teachers.   

(2) Weekly journals: The 11 teachers wrote personal journals on a weekly basis, for five months. 
In these journals, the teachers were asked to write about the most significant event that happened 
to them during the past week, either while preparing for class or during a mathematics lesson. 
They were also asked to explain why it was significant for them. There were no additional 
guiding questions, and the teachers wrote the journals independently and without feedback. Each 
teacher wrote between 10 to 19 journals (15 in average). The average journal’s length was 165 
words. 

(3) Stimulated-recall interviews (SRI), based on a videotaped lesson: One lesson of each of the 
participating teachers was videotaped. The teachers chose which lesson will be videotaped, with 
no limitations regarding the class, level of group or the subject/setting of the lesson. A while 
afterwards, an individual interview was held with each of the teachers, where the first author 
watched their videotaped lesson together with them. The teachers were asked to stop the video 
whenever they saw a “issue of interest” which they wanted to talk about. The conversation was 
held in an open manner, with no specific instructions, with requests for clarifications as needed.  
The interviews lasted some 60-90 minutes. The teachers stopped their videos about 10 times in 
average, and in most cases the conversation continued after the video watching has ended. All 
the interviews were videotaped and transcribed. 

The three settings differ in many features, like the manner of expression (written or oral); the object 
in the basis of reflection (the teacher’s own experiences, or another teacher’s lesson); and the level of 
guidance in the settings (high level of guidance in the VIDEO-LM meetings compared to minimal 
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guidance in the weekly journals and in the SRIs). These differences influence the manner of reflective 
process, and so can highlight different aspects in teachers’ reflections. 

Data analysis 

The data analysis process consisted of moving back and forth between two processes: (1) The 
teachers’ reflections in the different settings were analyzed in an inductive approach, in order to 
identify actions that teachers perform in actuality when they reflect on their teaching (i.e., analyzing 
the situation, referring to intentions\plans or considering alternative decisions). (2) Examination of 
definitions and models of reflection offered by the literature, both inside and outside mathematics 
education. While the result of the inductive process was in a list of coded categories of reflection, the 
comparison to the literature enabled us to refine these categories. 

Results 
The analysis resulted in the identification of six main categories of reflection (some have sub-
categories): (1) analysis of the situation; (2) consideration of alternatives, doubts, or dilemmas; (3) 
re-orientation; (4) consideration of beliefs; (5) addressing the emotions that a situation evokes; and 
(6) addressing challenges of teaching. Below we describe and demonstrate each of these categories. 

Category (1): Analysis of the situation 

A central part of a reflective process is to look back at a situation and analyze it. In different models 
of reflection, such as the ‘Reflective Circle’ (Gibbs,1988), this is the first phase of the process. 
However, the literature is not clear on what is included in such an analysis. Therefore, we decompose 
this category into four subcategories: (a) Observation of ‘what was going on’ and thinking about 
reasons for what has happened; (b) Consideration of goals that stand at the basis of the teacher’s 
decisions and actions; (c) Attendance to broad assumptions and contexts, such as social, political, 
affective, or institutional assumptions; and (d) Evaluation of the situation and of teachers’ actions 
(e.g., practices, assignments, or interactions). In order to exemplify these subcategories, we will 
describe a section from Diana’s SRI, where she watched her own videotaped calculus lesson: 

After watching a part of the lesson where she phrased some conclusions to her students, Diana stopped 
the video and talked. She began with an evaluation of her action: “Horrible! I remember that while I 
phrased the conclusion, I felt I wasn’t phrasing it in a good way. And now when I watch it, I wonder 
if it is even worthwhile to write down this conclusion”. Diana then related to the reason for her action: 
“I did it because I always think about the weak student that learns in the advance track, and there are 
many here”. Then, Diana explained that “We used to have only 12 students, in average, in the 
advanced level class […] and now we have 40 students. It is clear to us, the mathematics teachers, 
that not all of them are in the same level, and they need our help”. This explanation referred to the 
political context of the situation: due to the Israeli Ministry of Education’ reform, which aims at 
increasing the number of students in the advanced track classes, Diana’ class became larger and more 
heterogenous. Diana continued and deliberated her reasons, while considering her goals:   

Diana: When I phrase rules and conclusions, I always think about these students, that must 
have this reminder when they do their homework. It is a good goal, right? But now 
I think that these things must be well prepared, in advance. If a weak student gets 
home and reading his notebook – does he understand what is written there? 
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The first two subcategories were prominent in all the three settings, while the subcategory evaluation 
of the situation and of teachers’ actions was identified mainly in the weekly journals and in the SRIs. 
The subcategory attendance to broad assumptions and contexts appeared sometimes in an implicit 
manner in the teachers’ articulations. We will also mention that the subcategories are connected to 
each other and the distinction between them can be delicate, as can be seen in the example above. 

Category (2): Consideration of alternatives, doubts, or dilemmas 

This category includes expressions where the teachers discussed alternative actions, practices or 
perspectives, with correspondence to the second part of the definition of Karsenty & Arcavi (2017).  
This category also includes expressions where the teachers referred to dilemmas or deliberated some 
issues, which quite often were accompanied with consideration of alternative actions. The following 
excerpt exemplifies this category, when in her second VIDEO-LM PD meeting, Mila related to a 
situation she identified in a videotaped probability lesson in an 11th grade class:  

Mila: It seems like the [videotaped] teacher believes she should present many solutions, 
and so she went along with the student’s idea […]. It is a dilemma, to choose whose 
idea to hear, because some students can make things complicated. For instance, I 
sometimes choose to hear someone’s idea personally, so he will not confuse the 
other students. I have this dilemma, but I didn’t feel this teacher has it. On the 
contrary, it seems like she encourages the most problematic students, goes along 
with them: ‘show me your way’. 

According to Dewey, a situation of dilemma or doubt is the basis for reflective process. Consideration 
of alternative actions can be found also in models for reflection. For instance, Korthagen's (2014) 
ALACT model, creating alternative methods of action is the fourth stage, before a new trail. In the 
data, this category was more prominent in the VIDEO-LM PD meetings than in the other two settings.  

Category (3): re-orientation 

This category refers to gaining new insights or adjustments, and includes two subcategories: 

(a) “looking forward”: Expressions where teachers refer to possible future actions, as a result of 
their analysis. There is a subtle difference between this subcategory and the category of considering 
alternatives. Expressions were identified as “looking forward” when teachers referred to new insights 
they gained from their analysis which could be used in future actions. However, expressions were 
identified as considering alternatives when teachers explicitly referred to “what would I have done 
differently”. The following excerpt, taken from Ivan’s 8th weekly Journal, exemplifies this category: 

Ivan: A concluding lesson in the subject of ‘scale’, in a low-track 8th grade class. I asked 
the students to draw a sketch of the class’s tables. Then, after a short discussion, the 
students drew objects they chose. The lesson was more free than usual. During the 
lesson I felt uncomfortable, like there’s no real learning. But in the end of the lesson, 
I was pleasantly surprised [by the students’ cooperation and outcomes]. I plan to 
combine more activities of this kind in my teaching. I believe I should “let go” more 
often, to give the students opportunities to learn and to make mistakes.  

(b) A change in perspective: Expressions in which a change could be identified in teachers’ beliefs, 
attitudes, or perceptions regarding the teaching practice or the students. The change was either 
articulated explicitly, for example when teachers used expressions like: “I learned”, “I realized” or “I 
noticed”, or it was implied, for instance by a change in the teacher's tone (e.g., decisiveness vs. 
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hesitancy), or when a teacher expressed openness to new ideas. The following excerpt, taken from 
Nora’s 4th weekly Journal, exemplifies this category:  

Nora: This student’s case helped me realize that students can go through a real change, 
and I should not stop believing this can happen (although, unfortunately, sometimes 
it happens to me).  

Re-orientation is emphasized in the literature (Clarke, 2000; Finaly, 2008; Schön, 1983), since 
gaining new insights and tools for future practice is, in a way, the purpose of a reflective process. In 
the data, however, this category was identified only in some of the teachers’ expressions, and it seems 
like teachers need more guidance in order to implement it.  

Category (4): consideration of beliefs 

Expressions where teachers explicitly referred to their beliefs, orientations and attitudes towards 
mathematics and mathematics teaching and learning – considered, wondered about, or doubted these 
beliefs. The following excerpt exemplifies this category when Sam, in his 4th VIDEO-LM PD 
meeting, watched an analytic geometry videotaped lesson and related to the teacher’ choice:  

Sam:  How mathematics should be learned – is a question. In my opinion, this subject gets 
pretty heavy later, so [the videotaped teacher] tried to soften it in the beginning, 
when he connected it to worlds which were relevant to the students. I liked it. I 
teach both stronger classes, where the students are more active, and harder classes, 
where the students are less confident, less engaged, they don’t even try to 
understand. But we should think about how to connect them [to the mathematics]. 

Beliefs influence teacher’s actions and decisions (Karsenty & Arcavi, 2017), and awareness to 
teachers’ beliefs is mentioned as one of the reflective process’ goals (Finlay, 2008; Korthagen, 2014). 
This category was prominent in the data, in all the three settings and within all teachers’ expressions. 

Category (5): Addressing the emotions a situation evokes 

Expressions where the teachers addressed emotions that certain situations evoked in them. This was 
realized explicitly (“I was glad to see”, “it is hard for me”), but was also realized implicitly: For 
example, in a change of tone, in gestures, or in use of exclamation marks. The following excerpt, 
taken from Michelle’s 2nd weekly Journal, exemplifies this category:  

Michelle: A student does not respond to any of my questions, and not for the first time. For 
10 minutes (during the lesson) I tried to get her to say something – but not even one 
word!! After the lesson – again, nothing! I was very angry about this situation. In 
similar cases before I was told that this student is “weird”. This time I was very 
disappointed and could not tolerate such behavior.  I turned to all the concerned 
parties and asked for their help […] I’m racking my head, how to deal with her. 

This category was identified in some of the weekly journals and SRIs, but its frequency was relatively 
low. However, we decided to include it since the literature emphasizes the importance of connecting 
between a situation and the emotions it raises (Gibbs, 1988; Korthagen, 2014; Schön, 1983). 

Category (6): addressing challenges of teaching 

Expressions where the teachers addressed challenges and difficulties they experienced during their 
work, and analyzed them: the source of the challenge, its implications on their decision, etc. The 
teachers addressed various challenges: mathematical-pedagogical challenges (e.g., how to present 
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mathematical subjects); challenges in classroom management; addressing students’ pedagogical, 
personal, or emotional difficulties; challenges the teachers experience as part of their belonging to 
the institutional system. The following excerpt, taken from Leo’s SRI, exemplifies this category: 

Leo: Often, when I give assignments, many students have questions. And I still don’t 
know how to, let’s say, ‘split myself’ between them. Many times, I give a direction 
[to one student] ‘do this in the meantime’ and then go to another student. And then 
they tell me ‘Stay, don’t go!’. They don’t understand that they are not alone, that 
while they do something I can help other students as well. This is something I still 
didn’t figure out how to handle. 

This category appeared sometimes with proximity to consideration of doubts or dilemmas. However, 
we chose to include this category separately since it was prominent in the teachers’ expressions, 
especially in the weekly journals and in the SRIs settings. 

Discussion 
In this study, we analyzed the concept of reflection in a process that went back and forth between 
reading the scientific literature and gaining insights from the data. This process resulted in the 
unpacking of the concept of reflection into six main categories. The identified categories offer actions 
that extend the categorizations found in the literature. Furthermore, they relate to different aspects of 
a mathematics teacher’s practice and require the teacher to address various factors, some of which 
are not emphasized in the domain of mathematics education. Observing different teachers through 
the three different settings simultaneously, resulted in a broad perspective on the concept of reflection. 
Such perspective might not have been possible from an analysis of only one setting. Connecting 
between the empirical analysis to the literature suggests validation of different aspects of reflection, 
in the sense that the categories are congruent with definitions and models offered by the literature. 

The study suggests practical implications teacher educators can consider when designing guiding tools to 
support teachers through the reflective process. Following Brown & Cole’s (2012) question “how do 
we do reflection?”, the categories offer actions from which guiding questions for reflection can be 
derived, such as: What are the goals, assumptions or beliefs that influence your actions and goals? 
What alternative actions\practices could have been taken, and what are the advantages or disadvantages 
of each one of them? What emotions does the situation induce? What challenges can be identified in 
the situation? What can be done differently in a similar situation in the future? This study also offers 
theoretical contributions: The categories can be used as a theoretical framework for analyzing 
reflective expressions of teachers. Said framework was implemented in a continuance study, where 
we looked at opportunities for reflection teachers have in different PD settings. 

The literature relates to issues and challenges of involvement in the reflective processes, such as a 
struggle to deeply analyze the teaching practice, to consider emotions situations evoke or to connect 
situations to broader contexts (Finlay, 2008). As the categories of reflection were identified in the 
data, the study indicates that teachers are able to perform such actions. However, the variety of 
categories stresses that reflection is indeed a complex concept, and teachers should have an adequate 
guidance and tools in order to be involved in a beneficial reflective process. Furthermore, teachers 
should experience reflective processes in different PD settings, as the results indicate that teachers’ 
actions are influenced upon different settings and contexts in which the reflection takes place. 
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To trace and represent changes in mathematics teaching over time is a challenge for research. This 
methodological paper proposes a framework for visually representing teacher moves in mathematics 
lessons. Based on commognitive theory, a framework of de-ritualising moves towards explorative 
teaching is developed. Two lessons of mathematics student teachers ‘teaching-as-usual’ in their final 
practicum are used for the development of a coding-scheme. The analysis enables to represent several 
de-ritualising moves, and the visual and fine-grained analysis is a promising result for longitudinal 
research on de-ritualisations in teaching-as-usual. 

Keywords: Commognition, teacher education, secondary mathematics, analytic framework. 

Introduction 
This methodological paper proposes a framework for visually representing teacher moves in 
mathematics lessons. The challenge is to capture important characteristics in mathematics teaching, 
and at the same time avoid normative or idealised views of teaching. Research in mathematics teacher 
education was found to often take a fidelity approach, where teaching is researched relative to 
particular reform idea or intervention (Österling & Christiansen, 2018). In a classic article, reform 
mathematics is claimed to depend on cognitively demanding instructional tasks with multiple possible 
responses (Stein et al., 2008). However, the majority of mathematics lessons are not based on such 
tasks, and Nachlieli and Tabach (2019) remind us that the resilience among teachers to change in line 
with reforms may indicate that there are gains in engaging in ritual, so called ‘traditional’ teaching. 
In Sweden, contrasting norms are balanced in mathematics teaching. On the one hand, collective 
reasoning where both learners and teachers contribute with arguments is found (Eriksson & Sumpter, 
2021). On the other hand, textbooks do not privilege problem solving tasks (Brehmer et al., 2016), 
and learners value mainly facts and procedures as important in mathematics learning (Andersson & 
Österling, 2019). In this paper, I use teaching-as-usual to describe teaching which is not part of a 
research intervention or reform initiative.  

Categorisations, as traditional versus reform-based teaching, imposes a dichotomising view on 
mathematics teaching. Under dichotomising views, learning to teach means to choose between 
extremes, rather than becoming aware of complexities. Despite training in so-called reform-based or 
student-centred teaching, mathematics student teachers find it challenging to pursue such teaching in 
their classrooms (see f. ex. Bahr et al., 2014). When norms of the school context contradict norms 
from campus-based education, student teachers abandon the norms of campus-based education 
(Nolan, 2012). In addition, idealised views of mathematics teaching make norms and practices in the 
field unintentionally devalued (Horn & Campbell, 2015). However, when norms and practices are 
implicit in teacher education, they are less available to learn (Christiansen et al., 2019; Helgevold et 
al., 2015), and the dilemma between normative views on teaching and visible teaching practices raises 
a need for a descriptive way of talking about mathematics teaching, where dichotomies as good or 
bad teaching are avoided. 
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For that purpose, this paper aligns with recent developments in commognitive theory, and 
operationalises commognitive routines for the analysis of teaching. An assumption in commognitive 
theory is that mathematics learning, like all human activity, entails a modelling of actions based on 
what was done in the past in a similar situation, a routine (Lavie et al., 2019). Routines range between 
rituals and explorations, where explorations are the desired end-condition for learning, but rituals the 
essential starting point. Ritual activities are performed to please someone else, hence, ritual learning 
is to recognise and stepwise imitate different processes. Explorations on the other hand, are oriented 
towards truths about mathematical objects, where the performer has control over both the enactment 
and the end-conditions for the activity. Keeping in mind to not re-introduce dichotomies, Lavie et al. 
(2019) claim that no mathematics activity is fully-fledged rituals or explorations. Instead, teaching 
and learning mathematics means participating in de-ritualising moves, moving gradually from ritual 
routines, towards explorations. Six such moves are suggested by Lavie et al. (2019): flexibility, 
bondedness, applicability, performer’s agentivity, objectification and substantiability, detailed below.  

The strength in using de-ritualising moves for describing teaching is that it connects disparate aspects 
in mathematics teaching to a move towards explorations. The aim of this paper is to develop a coding-
scheme for de-ritualising moves in teaching, and provide a visible representation of teaching-as-usual, 
to be able to compare lessons. The question posed is: What adaptations are necessary to operationalise 
de-ritualising moves for the analysis of teaching-as-usual? 

Methodology 
This section describes the data and context for the adaptations, and thereafter the steps taken for 
developing the analytic framework and visible representations.  

Data 

Two lessons were used for the development of the coding-scheme. The lessons were led by Eva and 
Kristin (pseudonyms), two secondary mathematics student teachers. Both Eva and Kristin followed 
a programme for upper secondary teachers in mathematics. The included lessons were part of their 
final practicum. Both had substantial mathematical and mathematics educational knowledge, 
however, commognitive theory, which is the basis of analysis in this paper, had not been part of their 
education. The students both agreed to participate in the TRACE-project (see acknowledgements), a 
longitudinal study where new teachers are followed from their final practicum through the first three 
years of teaching. For 17 student teachers, now teachers, over 90 lessons were video-recorded, with 
researchers present in the classroom, and with informed consent from participants. 

The lessons were selected as examples of teaching-as-usual. They were similar in their mathematical 
level, and both were the last lesson before a test. The lessons reinforce what is important content, and 
learners can be expected to be familiar with it. Kristin taught a mathematics intensive class in the first 
year of upper secondary. The learners had worked on a set of three examples as homework, so-called 
“real-world situations” described by mathematical models: a linear, a quadratic and an exponential. 
Eva’s lesson was from the third and final year in upper secondary mathematics. Eva had prepared 
three examples on antiderivatives to present in front of the whole class, thereafter, five different sets 
of examples were provided for learners to work on in five groups. 
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Method for developing the analytic framework 

The developing framework of de-ritualising moves is based on recent developments in commognitive 
theory. An important contribution is the work by Nachlieli and Tabach (2019), who researched 
opportunities to learn in ritual-enabling and exploration-requiring teaching. Their approach informs 
both the connection between commognition and teaching, but also how the start and end of a task are 
important aspects in a lesson for determining who has the agency to determine initiations or end-
conditions. Rather than using rituals and explorations, the present framework is based on six de-
ritualising aspects, as Lavie et al. (2019) suggest are important for moving learning towards 
explorations. These de-ritualising moves were adapted by Österling (2021) for privileged teaching in 
mentor conversations, and the present paper presents a further adaptation for the analysis of teaching. 
The coding-scheme targets descriptions of teacher moves which encourage or legitimise de-
ritualisations. A unit of analysis was obtained through two steps: First, when a new example is 
introduced, and second, when there is a transition into a new way of organising the lesson, i.e. from 
teacher presentation to learners group work, or from learners group work to presenting solutions.  

The operationalisation of objectification, flexibility, bondedness, substantiability, applicability and 
performers’ agentivity are based on first, a theoretical translation from learning processes to teaching 
moves, and thereafter iteratively coding and empirical fine-tuning of the coding scheme, exemplified 
below by transcripts from the two lessons. These units were the base for the visible representation.   

Results 
This result section first presents the development of the analytic operationalisation of de-ritualising 
moves, and the resulting coding-scheme. Next, the visual representations of the lessons are provided.  

Developing a coding-scheme for de-ritualising moves 

Objectification in Lavie et al.’s (2019) description is when the story about routines becomes more 
abstract, a narrative about mathematical objects rather than concrete objects or procedures. In upper 
secondary calculus, the task situation rarely involves concrete objects, as manipulatives, rather, 
calculus often involves examples with different mathematical realisations of the object, as graphs, 
tables, symbols or real-world-situations. Thus, learning objectification is the abstraction from 
questions and examples rather than from concrete objects. It is often recognised in language by the 
use of nouns. Objectification in teaching is hence when the teacher encourages discussions through 
the use of objects (as nouns), or about what characterises objects. Kristin posed several questions to 
encourage objectification, for instance:   

Kristin  How can we tell that this is a power function? 

Kristin encouraged learners to focus the characteristics of objects, in this case, power functions. For 
Eva, objectification is traced in her explanations, as in the antiderivative of  

Ari: But Eva, the , why does it get a negative sign?  
Eva: It is always like this, now when it is like this [points to ] this must be 

sine, which means that it has been cosine. But the derivative of cosine is negative 
sine. There we have no negative sine [points at ], therefore, this need to be 
negative [points at ]. 
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Eva treated the derivatives of sine and cosine as familiar and abstract objects, as in “the derivative of 
cosine is negative sine”, Even though her questions to learners never encouraged them to engage in 
objectification, her own explanation legitimised objectification when she referred to familiar content, 
such as derivatives, as abstract objects. 

Flexibility, according to Lavie et al. (2019), is that learners realise there is more than one way of 
solving a task, or that previously unrelated procedures results in the same outcome. For teachers to 
encourage flexibility is to ask for different solutions, or the comparison of solutions. In the two 
lessons, the one instance akin to encouraging flexibility is when Kristin started the lesson by asking 
learners to discuss their solutions with a peer. 

Bondedness is when the routine is changed from a mixture of steps into a compound, where the output 
of a given step is used as input in latter steps, and hence only necessary steps are performed (Lavie 
et al., 2019). In teaching, moves towards bondedness is to encourage turning previously disparate 
steps into a new compound procedure through focusing the connections between steps. Several 
examples were found in both Eva’s and Kristin’s teaching, and the transcript below is from the 
beginning of Eva’s lesson on antiderivatives: 

Eva: This is a derivative, yes. [Writes ]. Now, imagine going backwards, one 
step up with the derivative and get the function.  

Ari: It is x and remove two… 
Eva: So we are looking for this [writes y=], and we want… what must this have been 

before to obtain… . [Writes ].  

Here, Eva connected a familiar procedure, the derivatives of quadratic functions, to the antiderivative. 
The antiderivative is not yet treated as an abstract object in teaching, but the encouragement of 
bondedness between procedures for derivatives and antiderivatives is prevalent throughout the lesson. 
A similar pattern is found in Kristin’s lesson. In both lessons, it was the teacher who made moves 
towards bondedness, whereas learners provided brief factual or procedural answers. 

Substantiability is when learners provide criteria for the performed routine, rather than paying 
attention to the processes or rely on the judgment of those they regard as authority (Lavie et al., 2019). 
In teaching, this means an encouragement of substantiations beyond the steps of a procedure. Kristin 
used “why”-questions to encourage substantiations: 

Kristin: The maximum is 93, why is the maximum 93? 
Frida: Because it is 50, so take  
Kristin: [Writes the solution on the board] Exactly, because this is the amount of time where 

we leave the Sauna on, and hence the time for the temperature to rise. To 93 degrees. 

Learners responded to the why-question by giving the steps of a procedure; however, Kristin 
reinforced the move of substantiability, and drew on the information given in the example and about 
the situation of a heating sauna in her substantiation. In the included two lessons, substantiations 
based on mathematical properties were rare.  

Applicability is when the range of task situations for a given routine is expanded beyond the precedent 
situation (Lavie et al., 2019), and for teaching, this means encouraging the extension of task situations 
where previously known procedures can be used. One move of applicability was when Kristin applied 
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the range of a function to the real-life situation of a heating sauna (above). Another is when Eva 
reminded her learners of familiar procedures: 

Eva: Ok, so we must find the antiderivative for this, h(x)=… [Points to ].  
Do you remember how to write square roots differently? 

David: 0,5, the power of 0,5. 
Eva: So we have , I prefer to write it like this, as one over two. [Writes 

]. 
In this example, the procedure of manipulating expressions of powers was applied in the new situation 
of finding antiderivatives. Thus, applicability moves include both the extension of task situations into 
real-world situations, but also into new mathematics content. 

Performers agentivity contribute to de-ritualisation when performers are free to make a growing 
number of decisions without the help of others, as in the initiation, on how to proceed, and in the 
evaluation of a task (Lavie et al., 2019). Teachers’ de-ritualising moves are when they encourage or 
legitimise learners’ decisions, as in the transcript below: 

Kristin: What do we need to do to find the temperature after 20 minutes? What are your 
thoughts? 

Here, Kristin asked for learners’ thoughts, rather than the right answer or the way to proceed. Thus, 
she encouraged learners’ freedom to make decisions on the way to proceed. Here, the distinction 
between de-ritualisation as learning, and de-ritualising moves in teaching come to a head. Even 
though Kristin encouraged learner agentivity, learners provided a correct answer or the steps of a 
solution, thus, learners interpreted the situation as if they were expected to engage in ritual 
participation. Nevertheless, for the purpose of this analytic framework, teachers’ encouragement of 
learner participation is enough for the coding of a move for learner participation. Table 1 presents 
codings: 

Table 1: Coding-scheme for de-ritualising moves in teaching 

De-ritualising moves Descriptions 

Bondedness Encourage turning a sequence or previously disparate steps into a new compound 
procedure through focusing the connections between steps. 

Flexibility  Encourage learners to find more than one way of performing a task. 

Substantiability Encourage substantiation of results beyond the steps performed as procedure. 

Applicability  Encourage the extension of task situations for previously known procedures. 

Learner agentivity Encourage learner agentive participation, e. g. to decide for themselves what the task is, 
what to do, and if a procedure worked or not. 

Objectification Encourage discussions of what characterises objects (rather than how to use it), or 
legitimise objectification in explanations. 

Proceedings of CERME12 3233



 

 

A visual representation of de-ritualisation 

After sectioning each lesson into time-slots based on the start of a new example, and/or a transition 
in the organisation of the lesson, the time-slots were marked as black where de-ritualising moves 
were engaged by the teacher. The shaded columns are sections where learners work in groups or 
individually, where only the initiation by the teacher was coded. Kristin’s lesson was divided into 12 
sections, represented in columns in table 2 below.  

Table 2: De-ritualising moves in Kristin's teaching 

Total: 55 min. 0:00 1:55 4:05 6:20 7:27 10:21 13:30 17:21 22:00 26:40 30:45 33:10 

Example 1 1a 1b 1c 1c  2ab 2ab 3a 3bc 3c 3c individual 

Bondedness   x     x   x   x   x   

Flexibility x                       

Substantiability   x     x   x   x   x   

Applicability         x x   x     x   

Agentivity x x   x x     x         

Objectification       x x x             

It is visible how Kristin engaged several de-ritualising moves, where bondedness and substantiability 
was used throughout the lesson, agentivity was prevalent at the start, and objectification and 
applicability relate to particular tasks. Eva’s lesson was divided into nine sections, as in table 3 below: 

Table 3: The de-ritualising moves in Eva's teaching 

Total: 50 min. 1:27 2:25 4:01 9:20 30:00 32:00 32:20 35:40 37:00 

Example 1 2 3 1:1-5:3 2:2 3:3 3:3; 4:3  5 individual 

Bondedness   1 1   0         

Flexibility                   

Substantiability                   

Applicability                   

Agentivity           1       

Objectification                   
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Eva encouraged bondedness in the beginning of the lesson, where she repeated procedures for finding 
antiderivatives. In the follow-up discussion after group-work, Eva also engaged elements of 
applicability, objectification and learner agentivity.  

The visual representation facilitates the comparison of the two lessons. In Kristin’s lesson, the grey 
and black sections show how she uses several transitions between tasks, and between whole-class or 
group-work, and that these transitions initiate new de-ritualising moves. Although she encourages 
learner agentivity in the beginning, she abandons this ambition towards the end. Eva’s lesson has 
visibly fewer black sections, and learner agentivity is only engaged after group-work section. Hence, 
although bondedness is a repeated move, more de-ritualising moves are only engaged after the group-
work section.  

Discussion 
The visual representation provides an overview of the de-ritualising moves in mathematics teaching-
as-usual. Thereby it facilitates comparisons of what moves are present and when they are used, and 
the model has the potential to capture developments in teaching over time.  

The analysis of the two lessons adds aspects to be further investigated. First, objectification was found 
to be legitimised mainly in relation to familiar content, a pattern which is important to engage further. 
Second, bondedness is dominant, and it is interesting to enquire whether this is a characteristic for 
secondary mathematics. A third pattern in Kristin’s teaching when she attributes learners agentivity, 
learners return to ritual responses, as asking for correct answers. Thus, the relation between de-
ritualising moves in teaching and learning is a central investigation to continue. Analytically, the 
boundaries between the de-ritualising moves are not always sharp. There may be a need to add more 
distinctions or sub-moves in future analysis. 

In the two included lessons, teachers engaged in teaching-as-usual, where a dichotomising analysis 
can be insufficient to capture the complexity of what is going on. Instead, the analysis of de-
ritualisations has the potential of making the complexity visible, and thus possible to describe. To 
continue the logic of Nachlieli and Tabach (2019), teachers engage where they see potential for 
substantial gains. Therefore, I propose the analysis of de-ritualising moves in teaching has the 
potential to reveal not only what is going on, but also what teachers find important in teaching.  
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Introduction 
The present poster proposal will show a Systematic Review of the Literature (SRL) on Teacher 
Professional Development (PD) programs in mathematics education and their relationship with 
Student Achievements (SA). A relationship will be established between the theoretical framework 
of effective PD programs and research outcomes that address and consider student achievements as 
a source of data on the programs' effectiveness. 

Theoretical framework 
Over the past few decades, the number of PD programs in mathematics education has increased 
significantly, as has research in the field (Sztajn et al., 2017). This has impacted guidelines, and 
characteristics suggested when designing an effective PD (Desimone, 2009; Sztajn et al., 2017). In 
particular, the most used characteristics are those proposed by Desimone (2009): 1) focus on 
content, 2) active learning, 3) coherence with the context and reality of teachers, 4) duration, and 5) 
collective participation. These characteristics have established a debate about their relevance, which 
has had researchers in favor (e.g., Sztajn et al., 2017) as researchers in opposition (e.g., Lindvall, 
2017). This broad debate has led to progress in establishing those key elements that should be 
present in the design of PD programs even if there is not 100% agreement in the community about 
the minimum. In addition, it has made the scientific community debate about the most crucial 
objective of PD programs. Many academics agree that the main aim of PD is to improve the 
classroom practices of teachers and the SA (Jacob et al., 2017; Lindvall, 2017). 

Based on the above, the problems addressed by this SRL seek to answer the question: What is the 
evidence in research on the approach to the relationship between effective PD programs and student 
achievements in mathematics?  

Methodology 
In this research, the methodology of a SRL was used (Boote & Beile, 2016). The search for articles 
was carried out in the two central education databases: Web of Science (WoS) and Scopus, with the 
criteria summarized in Table 1. Then the articles were reviewed on two more occasions to establish 
their relevance to the research, which finally obtained 35 studies. 

Table 1: Search criteria in WoS and Scopus 

Criteria Data 
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Keywords included 1. Professional development; 2. Mathema*; 3. Student* effect* 

Excluded keywords 1. STEM; 2. Science*; 3. Higher educ* 

Type of documents 1. Articles 

Languages 1. Spanish; 2. English 

Years 2008-2020 

Results found WoS 111 

Results found Scopus 174 

Results 
From the analysis process, we identified a sparse presence of articles focused on student 
achievements between 2008 and 2018 (12 out of 24), while this trend changes in 2019 and 2020 (7 
out of 11) with a greater focus on them. In particular, the 35 reports offer student information, but 
most present them as second priority data or a source used to support that the PD studied is 
effective in teachers and students. Indeed, only 19 projects explicitly state their objectives to 
measure, evaluate or relate the PD to student achievements. In addition, the results of this review 
show that 100% of qualitative studies (8 out of 8), 66.6% (2 out of 3) of mixed studies, and 79.17% 
(19 out of 24) of quantitative studies achieve favorable changes in student achievements in the 
analyzed programs. Finally, another relevant finding of this review is that the six studies that show 
no change in student achievements used some test as a measuring instrument.  

Discussion 
Based on the findings made in this SRL, we identify a tendency for studies that use PD effective 
characteristics (Desimone, 2009) to incorporate SA as one of their primary objectives. We also note 
the dominance of tests as an instrument to measure SA, where there is a clear trend to use 
standardized tests, which may not comprehensively determine the effects of PDs on the students. 
Finally, we recommend that to assess SA, instruments should be extended to standardized tests 
constructed by third parties and should increase the utilization of more than one of them. 
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The aim of this study is to discuss how specific educational researchers’ choices, regarding the design 
of a professional development (PD) program for in-service mathematics teachers, influence the 
praxeologies of both the teachers and the researchers. In particular, we aim to highlight what 
learning mechanisms are activated by these choices. We use the Meta-Didactical Transposition 
(MDT) and the Boundary Object (BO) frameworks to describe the interactions between the two 
communities involved in the PD program, the researchers’ and the teachers’ one. The choices 
regarding the design of the program, made by the researchers, trigger internalization processes for 
both communities, as a result of the learning mechanisms activated during the joint work on a BO. 
These internalization processes led to an evolution of the initial praxeologies of the two communities 
and to the creation of a new, shared praxeology.  

Keywords: Teacher professional development, meta-didactical transposition, boundary object, 
inquiry. 

Introduction and theoretical framework 
The study of mathematics teacher professional development has been an important focus of research 
over recent decades. Within CERME11 TWG18, open questions and issues emerged regarding, 
among the others, the crucial role of teacher educators (Zehetmeier et al., 2019). The present study is 
focused on the analysis of a teacher professional development (PD) program for lower secondary 
school (6th-8th grade), in-service mathematics teachers, held by a group of educational researchers 
(the authors), with particular regard to the researchers’ choices in the design of the program itself. 
We aim to highlight the evolutionary process undergone by both communities, the teachers’ and the 
researchers’ one, and to describe how convergence on some theoretical and practical aspects was 
favored by specific researchers’ choices. 

Meta-Didactical Transposition 

We use the MDT framework as an interpretative lens, which allows us to describe the interactions 
between two communities, one of teachers and one of researchers, in a dynamic way, showing the 
evolution over time of their respective praxeologies. The term “praxeology” was introduced by 
Chevallard (1999): it refers to the combination of a practical component, or praxis, and a theoretical 
component, or logos: in the case of didactical praxeologies, this combination is referred to teachers’ 
activity in the class. The practical component includes tasks to be solved and techniques to solve 
them, while the theoretical component includes the justification and the explanation of the techniques. 
In the case of MDT, the praxeologies involved are meta-didactical ones, because they are referred to 
teachers’ activities in the context of a PD program, not in their everyday classes. The evolution of the 
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praxeologies of the two involved communities is described as the result of internalization processes 
of elements that were previously external to the communities. 

Boundary Object 

Robutti et al. (2020), in order to explain the evolution of praxeological elements from external to 
internal, suggest conceptualizing the meetings between mathematics teachers and educational 
researchers as “boundary encounters” between communities with different perspectives and 
objectives, which work together on a BO. Following Star (2010), we can say that a BO allows 
different communities to work together without preliminary consensus, due to its interpretive 
flexibility. Cusi et al. (in press) focus their attention on the internalization process during a 
professional development program. They show an example in which the MDT framework is 
integrated with the BO construct, to explain how the evolution of the praxeologies has been triggered. 

Akkerman and Bakker (2011) identify four potential learning mechanisms activated by the joint work 
of two communities on a BO: identification of the practices of the different involved communities; 
coordination through cooperative exchanges between the two communities; reflection on the 
practices of both communities and transformation through the co-development of (new) practices and 
perspectives. Transformation has several steps, including: confrontation with some lack or problem, 
recognition of a shared problem space and hybridization, in which a hybrid cultural form emerges 
from the encounter and dialogue of different practices.   

Aim and research questions 

In this study, we use the MDT and BO frameworks as lenses to discuss how the researchers’ design 
choices for the PD program influence the praxeologies of both communities, in terms of activation of 
learning mechanisms. The learning mechanisms, identified by Akkerman e Bakker (2011), can 
explain how the development of a (completely or partially) shared meta-didactical praxeology 
between the community of the teachers and the community of the researchers took place. We will 
describe, in the following sections, the evolution of both the praxis and the logos components of the 
praxeologies of the two communities, the consequent internalization processes and the learning 
mechanisms triggered by specific design choices for the PD program. 

In the light of what has been said, our research question is: What researchers’ design choices for the 
PD program trigger learning mechanisms towards a shared praxeology, in the context of the joint 
work on the BO? In order to better understand the effects of the design choices made by the 
researchers for the PD program, we will also answer two sub-questions: Which internalization 
processes can be identified in the two communities, following the activated learning mechanisms? 
and Which evolution of the praxeologies of the two communities can be highlighted and which shared 
meta-didactical praxeology, if any, is developed? 

Context and features of the PD program 
The PD program we are studying is included in the University project SSPM: Scuole Secondarie 
Potenziate in Matematica, which is part of the national project Liceo Matematico (Commodari et al., 
2020). The program is directed to lower secondary school mathematics teachers, who participate 
because their schools signed an institutional agreement with the University. They are all experienced 
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teachers, only two of them have less than 10 years of service, and they have already participated in 
the previous three years of the program. The PD program consists, in fact, of two phases: the first 
lasted for the first three years of the program, while the second began with the fourth year and will 
continue for two more years. The object of this study is, in particular, the first year of the second 
phase of the program. 
During the first phase (10 meetings of two hours per year), the two communities worked on inquiry-
based learning (IBL) (Maaß & Artigue 2013) in mathematics, with a specific focus on problem 
solving and laboratory teaching. The researchers designed mathematics IBL tasks for students, 
already in a complete form, plus tasks for teachers. The teachers, during the meetings, had to solve 
the students’ tasks in small groups, and the teachers’ tasks, based on educational requests. Later, they 
had to experiment with the resources in their classrooms and to provide reports. 

During the second phase of the PD program (10 meetings of two hours per year, as for the first phase), 
the teachers have been engaged in the design of resources for their students in a collective work, with 
the cooperation of the researchers, who provided to teachers these tasks in a not completed 
formulation. After the group work, in every meeting there was a collective discussion on the potentials 
and the limits of the tasks designed by the different groups and on the most suitable learning 
environment to be experimented in the classroom. The last two meetings were devoted to teachers’ 
reports about their classrooms experimentations, with the resources designed during the PD program, 
and to collective discussions about possible improvements for the re-design of the resources. 

Methodology 
The authors, who were also the researchers/educators in the PD program, collected data by written 
protocols and videos related to the 18 teachers who participated in the first year of the second phase 
of the PD program, which took place online in a synchronous mode during the pandemic period. In 
particular, data come from: 

1. A written preliminary questionnaire, administered during the first meeting, with open 
questions and a Likert Scale. The questionnaire had the aim to investigate the teachers’ 
praxeologies, with a particular focus on their logos component, including teachers’ beliefs 
about their students and about the teaching and learning of mathematics.  

2. Video-recorded semi-structured interviews, conducted in order to better understand the 
answers to the questionnaire about which we had doubts or we wanted a deeper insight. 

3. Teachers’ written protocols related to the design of resources, carried out during the group 
work, and written reflections about it.  

4. Video-recordings of the collective discussions that took place during the meetings. 
5. Teachers’ written and oral reports about their classroom experimentations. 

In all the collected material, we looked for elements of the teachers’ praxeologies referred to the 
design of resources, both regarding the praxis and the logos component and we traced their evolution 
over the ten months of the fourth year of the PD program. 
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As a hypothesis for our study, we considered the IBL approach as the BO on which the researchers’ 
community and the teachers’ community have been working for many years. A BO should be 
conceptualized, according to Star (2010), as a dynamic object consisting of several components, so 
that, when teachers and researchers work together, they often focus only on some components and 
not on the whole object. Specifically, during the second phase of the PD program, the BO on which 
the two communities interacted consisted in the design of resources for students, according to the IBL 
approach.  

In order to answer our research questions, we looked for clues of the activation of learning 
mechanisms, due to the joint work on the BO. According to Akkerman & Bakker (2011), 
identification occurs when a new insight is gained into what the diverse practices concern. 
Coordination entails a “communicative connection” between diverse practices or perspectives, 
allowing cooperation between two communities. Reflection entails the realization of differences 
between practices and thus the learning of something new about their own and others’ practices. 
Finally, transformation is identifiable when profound changes in practices occurred, potentially 
leading to the creation of a new, in-between practice.  

We also looked for evidence of internalization processes, occurring in both communities as a 
consequence of the learning mechanisms, that led to a shared meta-didactical praxeology. We 
particularly focus on the elements of the praxeologies of both communities, which refer to the design 
of resources for students: they include the mathematics tasks and all the elements of the learning 
environment. Each of the three authors worked, at first, autonomously, proposing also a possible 
correlation between the choices made by the researchers and the mechanisms observed. After 
numerous meetings, the three authors agreed on a shared proposal. 

Results 
The first and most general design choice for the second phase of the PD program was to involve 
teachers directly in the design of resources for their students, and it was inspired by what emerged in 
the ICMI Study 22 (Watson & Ohtani, 2015).  This researchers’ choice contributed to shed light on 
issues that had not emerged in previous years and constituted the basis of the activation of all the 
learning mechanisms that we will describe, in chronological order, in the following. 

Identification 

With the analysis of the preliminary questionnaire and of the collective discussions of the first 
meetings, we could identify some elements of the teachers’ initial praxeologies, which did not emerge 
clearly during the previous phase. At the same time, during the collective discussions, the teachers 
could come to understand some elements of the initial researchers’ praxeologies, that probably 
previously were not totally explicit. This objective has been pursued through the conscious choices 
made by the researchers in the design of the PD program and it led to the first learning mechanisms, 
i.e. the identification of the practices of the different involved communities, as well as of the 
justifications (logos) for these practices. The logos component of the initial researchers’ praxeologies 
can be identified in the educational literature on IBL, recalled above. In the light of the literature and 
on the basis of their experience with classroom experimentations, the researchers deem it appropriate 
to propose inquiry-based tasks to all the students, without excluding anyone from this learning 
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opportunity. For this reason, at the beginning of the second phase of the PD program, they asked 
teachers to design resources inspired by the IBL approach, in which all their students could have the 
opportunity to think, to explore, to conjecture and to share their ideas. We can, therefore, identify the 
praxis component of the initial researchers’ praxeology, related to the design of resources for the 
students, with the proposal of inquiry-based tasks to the whole class, without reducing for anyone the 
learning opportunity to the resolution of too guided tasks. In this respect, there was an initial 
praxeological ‘distance’ between teachers and researchers. For example, in the written questionnaire, 
many teachers expressed doubts and reservations regarding the possibility to engage all the students 
in inquiry-based tasks and open problems: 

Teacher 1: At lower secondary school, we have to build problem solving ability, the 
horizon is limited. We have to work slowly, with guided problems. Only 
sometimes, someone in the class is able to treat a situation with something a 
little different from the acquired method. 

Teacher 2: Some [students] manage to identify the solution to a problem only among 
previously proposed strategies […] 

During the first meetings, this kind of reservation emerged from different teachers in different 
moments, leading the researchers to understand that the teachers were used to propose inquiry-based 
tasks only to the high-achieving students. This can be considered part of the praxis component of the 
initial teachers’ praxeologies, regarding the design of resources for their students. During the 
discussion related to the resources designed by the teachers during the second meeting, one of the 
teachers clearly stated her perplexities about the proposal of IBL tasks to the whole class: 

Teacher 3: We are always a lower secondary school, we have very heterogeneous 
classes, there is nothing to do, there is the one who, with all due respect, 
will learn a job, will live peacefully, knowing how to calculate the rest […], 
get up to there, is needless to hide it. […] There are one or two in each class 
that you need to stimulate, but there are one or two in the whole class. 

We assume that these considerations, related to the idea that only few students should be exposed to 
inquiry-based tasks and the others should do the “basic things”, have to be included in the logos 
component of the initial teachers’ praxeologies, because they are justification for practices deriving 
from the teachers’ experience in the classroom and from their didactical praxeologies. 

Coordination and reflection 

In order to foster a productive collaboration with the teachers, the researchers decided to prompt, 
during the third meeting, a collective reflection on some answers to the preliminary questionnaire and 
on some resources designed by the teachers, in order to highlight possible inconsistences and to 
promote awareness about them. For example, in the questionnaire the teachers were asked to express 
with a score, from 1 to 6, how much they felt that certain goals are central to the role of the 
mathematics teacher. The options that received the highest scores were: “To create situations in which 
students have to make decisions and choices”, “To promote freedom of thought and creativity”, and 
“To promote students’ awareness and critical sense”. The researchers showed these answers during 
the third meeting and asked the teachers to think if the resources they had designed were coherent 
with the goals chosen in the questionnaire. This discussion led to a coordination and reflection on the 
practices related to the design of resources, as exemplified by the words of this teacher: 

Proceedings of CERME12 3244



 

 
Teacher 5: We actually gave some suggestions, so maybe we didn't think about a real 

exploration activity, it seems to me. At this point, if I reflect, the exploratory 
activity on the part of the students is missing. 

Coordination and reflection laid the foundations for the subsequent learning mechanisms of 
transformation. 

Transformation 

The mechanisms outlined above led to the confrontation with a lack of coherence and to the 
recognition of a shared problem space (Akkerman & Bakker, 2011). The researchers understood that 
there was the need to build a hybrid, shared praxeology, fruit of the evolution of the meta-didactical 
praxeologies of both communities and of internalization processes on both sides. To do that, they 
began to look for an expansion of the theoretical framework of reference for the PD program and they 
found what they needed in the work of Cusi et al. (2017), performed in the context of the European 
Project FAsMEd. The researchers decided to propose to the teachers “theory pills” extrapolated from 
this work, regarding methods for formative assessment, which can be adapted, in this case, to inquiry-
based resources for the whole class. In particular, the researchers proposed to integrate to the already 
established practices, the subdivision of students in level groups and the creation of “helping 
worksheets” (Cusi et al., 2012, p. 758) with specific suggestions or guiding questions, besides 
“problem worksheets”, to be given to the different groups, if they request or need it. This decision 
triggered the hybridization step of the transformation learning mechanism and the teachers began to 
elaborate on these new ideas, evolving their praxeologies. During the following meetings, the teachers 
introduced new elements, namely the “help cards”, that would constitute components of the hybrid, 
shared praxeology between the researchers and the teachers: 

Teacher 6: […] we thought of preparing helping sheets, but without already addressing 
them to strong groups or weak groups, we have prepared them by points 
[…] So, we give help cards to those who ask for them. We didn’t think of a 
single worksheet but, we give different cards with specific suggestions, 
depending on how the work in the groups goes. Because we create 
homogeneous groups but we cannot a priori know where they get stuck, 
what their difficulty is […].  

An internalization process of praxeological elements occurred for both communities (as summarized 
in Table1), because of the introduction of “help cards” as part of the shared praxeology related to the 
design of resources for the students. The subdivision of students in level groups was a practice already 
internal to the teachers’ community, but, at the beginning, only the groups of high achieving students 
received inquiry-based tasks to work on. At the end of the fourth year, instead, the praxeology element 
related to the proposal of inquiry-based tasks to all the students became internal also to the teachers’ 
community, thanks to the introduction of “help cards” for the groups who needed them. 

Table 1: Internalization processes for the two communities involved in the PD program 

Internalization processes Task design 

Researchers’ community  Level groups 
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 Help cards with hints for the groups that need 

them 

Teachers’ community 

 Inquiry tasks for the whole class 

 Help cards with hints for the groups that need 

them 

The researchers asked the teachers to experiment with the new resources in their classes and to report 
the results during the last two meetings of the PD program. During the collective discussion about 
the experimentations, an ex-post reflection on what had been designed took place attested the creation 
of a new praxeology for the design of resources for students:  

Teacher 7: The idea was to have a series of cards and, as we faced their difficulties, […] we gave them 
that help card just to help them take a step, without giving them too many elements, too 
much information. 

In Table 2, we summarized the researchers’ choices at the basis of the described learning mechanisms. 

Table 2: Researchers’ choices triggering learning mechanisms 

Researchers’ choices 
Learning 

mechanisms 

 Preliminary questionnaire 

 Teachers’ involvement in the design of the resources to be used with their 
students 

 Collective discussions, during the first meetings, about teachers’ practices and 
the justifications of their practices. 

Identification 

 Teachers’ involvement in the design of the resources to be used with their 
students 

 Collective reflections on the questionnaire and on the task design proposed by the 
teachers 

Coordination and 
reflection 

 Teachers’ involvement in the design of the resources to be used with their 
students 

 Integration of new elements in the theoretical framework of the PD program 

 Proposal of the integration of new practices 

 Request to experiment with the new practices 

Transformation  

Discussion 
In this study, we discussed how specific design choices, made by a group of educational researchers 
for a PD program devoted to in-service mathematics teachers, influenced the evolution of the 
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praxeologies of both the involved communities. We studied, in particular, the learning mechanisms 
activated thanks to these design choices and the subsequent development of a shared meta-didactical 
praxeology between the researchers’ community and the teachers’ community. We described the 
evolution of the praxis and the logos components of the praxeologies of both communities and the 
occurred internalization processes, relating them to the researchers’ choices.  

We highlighted how the choice to involve the teachers in the design of resources based on the IBL 
approach, including the tasks for their students and the learning environment, was at the basis of all 
the learning mechanisms activated during the PD program. Besides that, the choice to administer a 
preliminary questionnaire to the teachers, with questions about their practices and justifications for 
these practices, as well as the choice to make collective discussions about teachers’ answers to the 
questionnaire and about their task design, triggered the learning mechanisms of identification, 
coordination and reflection. The subsequent choice to integrate new theoretical elements and new 
praxeologies, inspired by the work of Cusi et al. (2017), related to the FAsMEd project, and the 
request to incorporate these integrations in the design of resources and in the classroom 
experimentations, triggered the mechanism of transformation. In particular, the hybridization step led 
to the construction of a new, shared praxeology between the two communities, and to internalization 
processes of new elements for both communities.  

In this way, we showed the process which led from an initial praxeological ‘distance’ between the 
researchers and the teachers, towards a shared ‘in-between’ praxeology, as a result of the contribution 
of both communities. The shared praxeology, at the end of the PD program, included the proposal of 
inquiry-based resources for all the students, the subdivision of students in level groups and the 
creation of “help cards” to be given to the groups that needed some guidance. Further research is 
needed to study if the shared praxeology between the two communities can be considered stable or 
other evolutions could be triggered during the future years. The analysis we conducted can be also 
extended to other PD programs, held in different contexts, in which other types of BO are involved. 
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Research context and aim 
Lesson study (LS) is a model of teachers’ professional development that originated in Japan at the 
end of the 19th century and gained popularity outside Asia almost a hundred years later. Since then, 
it has been at the centre of a growing interest by researchers in mathematics education, both in the 
case of in-service and pre-service teaching.  

In the latter context, a large amount of experimentation has been made over the past twenty years. 
Research on this topic shows a variety of promising results for prospective teachers, such as 
increasing knowledge in and for teaching (Ni Shuilleabhain & Bjuland, 2019). Nevertheless, some 
issues have been highlighted, such as the risk of simplifying the process, and the subsequent changes 
in key features of LS itself (Ponte, 2017). 

The PhD project outlined in this poster takes place in the context of the training program held at the 
Lausanne University of Teacher Education, in the French-speaking part of Switzerland, for pre-
service mathematics teachers at the secondary level. The project aims to describe and analyse an LS-
based class to pursue the following double-folded objective. On the one hand, it seeks to investigate 
the relevance of introducing LS in this particular context and the potential learning outcomes to 
prospective teachers. On the other hand, it intends to explore the adaptations and changes needed for 
LS to fit in with this new setting. For this poster proposal, I focused mainly on the first objective.  

Theoretical background 
Investigating the relevance of introducing LS into a new context can be done from multiple points of 
view, such as analysing pre-service teachers’ knowledge or perspective-taking. In this doctoral 
research, these aspects are taken into account together with the study of the characteristics of LS as a 
didactical situation, according to Clivaz’s research (2018) and the Theory of Didactical Situations 
(TDS, Brousseau, 2002). 

In particular, Clivaz considers that in LS teachers are engaged in some adidactical situations, in which 
they can acquire new knowledge under the pretext of designing a lesson, which, in TDS terms, 
constitutes the milieu of these situations. To analyse a situation’s potential, Hersant (2010) identified 
three properties of the milieu, namely the capability to provide feedback, bring out the desired 
knowledge and ensure that the knowledge needed to enter the situation is available to the learners. 

Moreover, Hersant extended TDS investigation on situations where the milieu is less robust, and the 
didactical contract is more binding. This seems to be the case of LS when applied to initial teacher 
education. In fact, pre-service teachers’ limited teaching experience makes the situation’s milieu 
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weaker. At the same time, the new setting implies constraints including a strict schedule, partially 
established content and evaluation, which entail a stronger didactical contract. In this case, Hersant 
analysed the didactical contract according to four dimensions: the mathematical domain, the 
didactical status of the knowledge at stake, the distribution of responsibility between the learners and 
the teacher and the characteristics of the didactical situation. 

Methodology 
The experimental design of the research is that of didactical engineering, in accordance with the TDS 
framework. The study of the LS class has been hence organised into three parts: a priori analysis of 
the milieu, data collection, a posteriori analysis of the milieu and the didactical contract. 

The LS-based class included 12 sessions with five prospective lower-secondary school mathematics 
teachers. The class was organised around studying a teaching problem and the subsequent 
preparation, teaching and discussion of a research lesson related to it. The mathematical topic, chosen 
in advance, was that of integers. A university trainer with experience in LS served as the facilitator, 
while experienced schoolteachers supported the group’s work during certain LS phases. 

Data collected consists of the video recordings of each session and preparation meeting, the lesson 
plan, the prospective teachers’ notes, and the documents shared within the group. These are used to 
reconstruct the situation’s milieu during a posteriori analysis and examine the four dimensions of the 
didactical contract. To gain better insight into the participants’ learning, a posteriori analysis will be 
supported by the course final assessment, and it will be completed by semi-structured interviews.  

Since the data collection was postponed due to Covid-19, data analysis is at a preliminary stage. Some 
expected results include a dynamic description of the situation’s milieu and an evaluation of LS 
potential as a didactical situation, despite some limitations due to the initial teacher training setting. 
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Research shows that a considerable number of pre-service primary mathematics teachers enter 
university with deficient mathematical knowledge, especially on fractions. As part of a design 
research project that aimed at improving the pre-service education of primary teachers (Grades        
1–6), a normative question and a descriptive question arose: What should pre-service mathematics 
teachers know about rational numbers? And what do they know after completing an arithmetic course 
at university? The normative question was answered based on mathematical knowledge for teaching 
models. To answer the descriptive question, a test instrument was designed and administered to 123 
pre-service teachers. The results show pre-service teachers’ well-developed didactic knowledge, but 
difficulties in taking a meta-perspective on their knowledge. Some failed to catch up on school 
knowledge gaps. The results are discussed regarding their theoretical and practical implications. 

Keywords: Pre-service teacher education, mathematical knowledge for teaching, school-related 
content knowledge, teaching fractions, natural number bias. 

 

Motivation: A fractional math problem and pre-service teachers’ solutions 
Consider the numbers 1/9 and 1/8.  

a) Is it possible to find a rational number that is between these two numbers? If so, please provide 
this number.  

b) Could there be more than one number? If so, include any of the numbers that fall between 
these two numbers.  

This problem might be posed to Grade 6 students. Pre-service teachers, as a matter of course, should 
be able to solve it correctly. — This is not as self-evident as it first appears. Equivalent tasks were 
given to all pre-service teachers that were enrolled in the 2020 (N = 111) and 2021 (N = 84) arithmetic 
courses in their first year of bachelor degree studies. They had to complete a test on the fractional 
computing ability (Stampfer et al., 2019) before starting the topic “rational numbers.” The first task 
was as follows: a) “Enter a number between 12/4 and 13/4. If you think there is no such number, click 
impossible.” In total, 32.4% of the pre-service teachers of the 2021 course stated “impossible,” 
another 8.1% stated an incorrect intermediate number. The results of a 2020 survey were similar: 
33.3% stated “impossible,” and even 28.6% an incorrect intermediate. The latter result can be 
explained by the fact that this time there were fractions given with the same numerator and different 
denominators (6/18 and 6/19), whereby it was apparently more difficult for the pre-service teachers 
to calculate an intermediate number. The second task was as follows: b) “How many numbers are 
there between 10/4 and 10/8?”. It is distressing that 69.4% of the pre-service teachers of the 2021 
course gave a wrong solution. Particularly often (21.6%) the solutions 4, 3 or 2 were provided. This 
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can be interpreted as an indicator of a natural number bias (Stampfer et al., 2019; van Hoof et al., 
2015). Presumably, the participants simply counted how many fractions there were with the same 
numerator 10, and various denominators between 4 and 8. Again, the 2020 survey results were similar 
with 58.3% of wrong answers. These incorrect answers, and the underlying misconceptions, remained 
persistent even after six weeks of intensive study of rational numbers and the didactics of fractions. 
Concretely, in the 2021 post-test with similar tasks, still 21.6% of the pre-service teachers (compared 
to 32.4% in the pre-test) answered “impossible” for task a), and 24.3% for task b) (compared to 69.4% 
in the pre-test) gave incorrect answers. These results were used as a challenging starting point for a 
design research project which aimed to improve, among others, the arithmetic course for pre-service 
teachers (Grades 1–6), who will be teaching fractions in their future classes. Many of them, as our 
data showed, enter university with rather poor mathematical school knowledge, and more than a fifth 
of the total number of pre-service teachers do not manage to catch up on their knowledge gaps 
concerning fractions during their studies, as we found out with several further tests. 

In this paper, we will first investigate what knowledge pre-service teachers should acquire, especially 
concerning fractions. This analysis formed the basis for the design of new university courses, in 
particular the arithmetic course mentioned above. The second part of the paper deals with the 
effectiveness of the newly designed university courses with respect to the first goal. 

Theoretical background: What should teachers know? 
Broadly speaking, mathematics teachers should know the subject they teach and they should know 
how to help learners to acquire that same knowledge in the setting of school lessons. When describing 
the content knowledge teachers need to carry out their work, Shulman (1986) discerned between 
subject matter knowledge (SMK) and pedagogical content knowledge (PCK). In the course of several 
decades of research on teachers’ knowledge, Shulman’s foundational work was differentiated in 
various directions. Ball et al. (2008) developed a framework of mathematical knowledge for teaching 
(MKT), distinguishing, inter alia, two subdomains within PCK, knowledge of content and students 
and knowledge of content and teaching. Furthermore, they recognized a type of SMK which was 
exclusive to teachers, namely specialized content knowledge (SCK). Another approach to define the 
content knowledge specific for the mathematics teacher profession is Dreher’s et al. (2018) model of 
school-related content knowledge (SRCK). This model is based on the fundamental distinction 
between academic and school mathematics1, and describes the knowledge teachers need about the 
interrelations between the two in top-down and in bottom-up directions, as well as knowledge of the 
curricular structure and its legitimation. The latter includes knowledge about fundamental ideas of 
mathematics, and the significance of certain topics regarding these ideas (e.g., Why are fractions 
taught at school?) (Dreher et al., 2018). When we deal with content knowledge in this paper, then 
with the focus on SRCK. In the area of PCK or, to use the term common in most parts of Europe, 
subject didactic knowledge, we are particularly interested in pedagogical content knowledge that 
derives from mathematics itself (see Carrillo-Yañez et al., 2018). Thereby, we will follow the 
distinction of a learning and a teaching perspective (Ball et al., 2008; Carrillo-Yañez et al., 2018).  

 
1 … rather than that between common and specialized content knowledge as defined by Ball et al. (2008). 
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We exemplify the different relevant types of knowledge using the initial example. Starting with the 
teaching perspective of PCK, pre-service teachers need to acquire the knowledge of how to explain 
mathematical content to students, for instance a strategy to find or calculate an intermediate number. 
And not only one strategy, but several strategies, as their students might suggest different approaches, 
and they should be able to support each of them. Concerning the learning perspective of PCK, they 
need knowledge about students’ typical errors, misconceptions, and difficulties in understanding in 
order to assist them in their learning. As to our example, a typical misconception might be that there 
is no (natural) number between 8 and 9, and subsequently, there is also no number between 1/9 and 
1/8. An algorithmic hurdle could be that students come up with the strategy of expanding to the main 
denominator, but still cannot find another fraction between 8/72 and 9/72. Or students might find a 
few fractions between 1/8 and 1/9, but have no idea of how to provide all the numbers. 

In order to explain the task correctly, when considering different levels of students’ knowledge, pre-
service teachers need to understand the mathematics involved deeper than their students. What 
mathematical content knowledge exactly, above mere school knowledge, should they possess? With 
respect to our example, we would argue that they need to know specific properties of rational numbers 
as distinct from those of integers, in particular the properties of order and density (Freudenthal, 2002; 
Padberg et al., 1995). For instance, a rational number, unlike an integer, does not have a clearly 
defined successor and one can always specify an intermediate between any two rational numbers (i.e., 
arithmetic mean). Pre-service teachers also need to know how rational numbers are mathematically 
constructed and defined as equivalence classes of pairs of integers (Padberg et al., 1995). This 
knowledge would allow them to flexibly shift between representatives within equivalence classes. 
This is academic mathematical knowledge, and pre-service teachers will not teach fractions in this 
way to their students. Sometimes, as we experience, pre-service teachers use this as an argument why 
they do not need university mathematics. We, however, consider important for them to possess this 
knowledge and we regard it to be close to or even coincide with what was described as SRCK above.  

The idea of using equivalence relations to construct new number systems can be regarded as a 
fundamental idea or “big idea” (Kuntze et al., 2011) of mathematics, and the knowledge about 
fundamental ideas is part of SRCK (Dreher et al., 2018). Pre-service teachers should have answers to 
the above mentioned question “Why are fractions taught at school?” (Dreher et al., 2018) or more 
specifically, “Why is it interesting to know whether there is a number between two fractions and, if 
so, how many?”, as the reasoning on the legitimation of curricular structure and content belongs to 
the SRCK.  

Constructing new number systems as extensions of natural numbers by preserving some number 
properties and altering others is a typical mathematical procedure. We consider the knowledge about 
typical procedures, strategies for solving problems and paths of generating mathematical knowledge 
as an important (meta-)knowledge for teachers and would also assign it to SRCK. In a similar way, 
Carrillo-Yañez et al. (2018) distinguished the knowledge of practices in mathematics as an essential 
subdomain of teachers’ mathematical knowledge in their mathematics teacher’s specialized 
knowledge (MTSK) model. In order to convey an adequate image of mathematics, pre-service 
teachers should do mathematics themselves, and experience mathematics as a science. Such 
expectations are aligned with the demands paced on modern school mathematics: In the German 
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educational standards for mathematics education (Ständige Konferenz der Kultusminister der Länder 
in der Bundesrepublik Deutschland, 2005), great importance is given to process-related 
competencies, such as communicating, arguing, problem-solving and modeling. In this sense, not 
only mathematics lessons, but also mathematics teacher education needs to meet these general 
educational requirements. Doing mathematics is an integral part of human culture, and aspiring 
mathematics teachers should embody that culture. 

Different conceptualizations of MKT (Ball et al., 2008; Carrillo-Yañez et al., 2018; Dreher et al., 
2018) together with the above-mentioned considerations, led to a completely new design of courses 
for pre-service teacher education at the primary level which connect subject content and subject 
didactics at the curricular level (Mayer et al., 2018). The intended facets of MKT were mapped into 
specific design principles for these courses (Reitz-Koncebovski et al., 2020), namely follow 
fundamental ideas of mathematics, connect fundamental ideas to main principles of mathematics 
didactics, and experience the process nature of mathematics. Moreover, the principles of mathematics 
didactics are not only being taught, but are also implemented while teaching following the idea of a  
“pedagogical biplane“ (Wahl, 2013), and by making learning processes of students experienceable. 
Lastly, a cross-sectional principle demands the design principles as well as the processes of teaching 
be made explicit and reflected with pre-service teachers on a meta-level (Reitz-Koncebovski et al., 
2020). At the end of each course, we research to what extent this has been achieved. Especially for 
the arithmetic course, we were interested in the following research questions: To what extent have 
the pre-service teachers acquired the desired knowledge of rational numbers? What understanding 
(and what misconceptions) can we identify at the end of the two-semester arithmetic course?  

Test instrument and methods of analysis: What do pre-service teachers know? 
To evaluate the effectiveness of the arithmetic course and to answer the descriptive research questions 
just mentioned, we developed a knowledge test. This included, among others, an item on pre-service 
teachers’ knowledge of the density of rational numbers in the real numbers which was an attempt to 
operationalize the aspired content knowledge of fractions with its different facets as was described 
earlier in the paper. The item comprised four subitems with respect to our introductory math problem 
(see above): 

(1) Solve the problem parts a) and b) in the way you expect students in Grade 6 might solve it.  

(2) Now give an explanation for a student how the problem can be solved correctly. 

(3) What difficulties may arise when a student is working on the problem? 

(4) Name two essential mathematical ideas that you as a teacher need to understand in order to 
use the problem in class. 

Subitem (1) concerns mathematical school knowledge, the other subitems relate to different facets of 
MKT: (2) PCK in the teaching perspective, (3) PCK in the learning perspective, and (4) SRCK in the 
form of knowledge about the interrelations between school mathematics and academic mathematics 
in bottom-up direction: Starting point is a school mathematics problem (1), and the last subitem 
focuses on essential or “fundamental” mathematical ideas, in particular on the academic mathematics 
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behind it. Both mathematical content and didactic knowledge are necessary for answering the test 
item. These were discussed in detail in the course, so the task appeared to be reasonable. 

The knowledge test was carried out at the end of the two-semester arithmetic course as part of the 
final examination. The written answers to the exemplary item of all 123 pre-service primary teachers 
enrolled in the course were analyzed using the qualitative content analysis method (Kuckartz, 2019; 
Mayring, 2014). For it, a deductive-inductive category system was employed. Main categories were 
developed deductively (i.e., concept-driven) from a sample solution to the task which was derived 
from the desired teacher knowledge presented in the theoretical part. The inductive categories 
emerged from the data (i.e., pre-service teachers’ answers) building a basis for subcategories. For an 
easier understanding, more details about the categories are reported below, together with the results. 
We created a coding guide which was supplemented by definitions and anchor examples, and used it 
for the coding of the entire written material. This approach made it possible to analyze the pre-service 
teachers’ answers in great detail and to make visible different, often unpredictable, expressions of 
knowledge and understanding. In a subsequent step, a quantitative analysis was carried out using 
descriptive statistics to determine the frequency of occurrence of certain categories or subcategories 
(Kuckartz, 2019) as well as of correct and incorrect, complete or missing answers per participant. 

Results 
Table 1 shows that between 15% and 27% of the pre-service teachers did not give an answer to one 
or more subitems. Only very few (4.7%) answered all subitems correctly. The first subitem (1a), 
which requested school knowledge alone, was answered incorrectly, inadequately, or not at all by 
nearly 40% of the participants. The results to subitem (2) relating to teaching as a facet of PCK as 
well as subitem (4) relating to SRCK were particularly weak: nearly half of the explanations for Grade 
6 students (2) were incorrect or missing, and less than 20% of the test participants were able to name 
adequate essential mathematical ideas.  

Table 1: Rough quantitative evaluation of the test item on rational numbers (total N = 123) 

Item with subitems Completely 
correct answer 

Incomplete or partially 
correct answer 

Incorrect 
answer 

No answer 

(1a) „Is there a number between …“ 
(1b) „are there more …  how many“ 

(2) Explain to a student 
(3) Difficulties for a student 

(4) Essential mathematical ideas 

61.8% 
43.9% 
15.4% 
47.2% 
18.7% 

1.6% 
26.0% 
36.6% 
27.6% 
56.9% 

21.1% 
6.5% 
21.1% 
6.5% 
4.9% 

15.5% 
23.6% 
26.9% 
18.7% 
19.5% 

Qualitative content analysis allowed a more in-depth investigation of pre-service teachers’ answers. 
In subitem (1a), the pre-service teachers chose different strategies to specify a number between 1/9 
and 1/8, namely determining the arithmetic mean, expanding the fractions to the same denominator 
or the same numerator (possibly several times), the “wrong addition” (divide the sum of the 
numerators by the sum of the denominators) or converting into decimal numbers. Almost a quarter 
of the test participants chose the latter way. This preference of converting to decimal numbers was 
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also seen in pre-service teachers’ explanations for subitem (2), whereby most of them did not explain 
the procedure in detail. In general, a lack of accuracy and concreteness was the greatest shortcoming 
of many of the explanations for subitem (2). In addition to referring to decimal numbers, there was 
often a reference to a visual model (i.e., circle, rectangle, number line), but without an explanation of 
how exactly this was supposed to help. The didactically impeccable explanations (15.4%) used the 
strategies of arithmetic mean or expansion, and described in detail how this can be done several times 
in order to find more and more numbers in-between. 

Subitem (3) that focused on possible students’ difficulties tended to be answered much better than 
subitem (2). Many test participants considered problem part a) and mentioned difficulties at the 
procedural level (e.g., expanding and shortening, calculating the arithmetic mean, converting to a 
decimal number), but also typical misconceptions about the order of fractions (e.g., no number 
between 1/9 and 1/8, as there is no natural number between 8 and 9, or 1/8 is smaller than 1/9) were 
mentioned by 51.2% of the participants. Only 7.3% of them mentioned misconceptions concerning 
the density of fractions or lack of understanding of the concept of infinity required in part b). 

Less than 20% of the test participants succeeded in naming essential mathematical ideas in subitem 
(4). Test participants could get partial credits for this subitem by naming suitable keywords. Most of 
those keywords were quite unspecific like “knowledge on basic ideas about fractions” (66.7%), 
without specifying which basic ideas, “general understanding of fractions” (37.4%) or “knowledge 
of number systems” (13.8%). Here again many test participants referred to procedural knowledge 
(60.2%). The intended answers regarding knowledge on the equivalence of fractions (7.3%), 
understanding of the order (10.6%), density (4.0%) or infinity of rational numbers (5.7%) were 
mentioned to a limited extent. Moreover, some test participants (4.9%) described knowledge 
requirements of the students, and not those of the teachers. 

Discussion and Conclusion  
In our study, we investigated what kind of knowledge of rational numbers the pre-service teachers 
had acquired at the end of the two-semester arithmetic course. Thereby, we focused on mathematical 
content knowledge at school and at university level, in particular SRCK, as well as subject didactic 
knowledge (i.e., PCK). Two major difficulties faced by the pre-service teachers stood out: 

The first major difficulty concerns mathematical school knowledge. Obviously, a sizable group of 
pre-service teachers have the same or similar problems with the task as school students and thus lack 
basic subject matter knowledge (Dreher et al., 2018; Shulman, 1986). This can be derived from the 
incorrect and missing answers to subitem (1), incorrect explanations for students in subitem (2), and 
also from the results of the arithmetic test reported in the beginning. Hence, the pre-service teachers 
obviously need to catch up on school knowledge and skills in fractions. The arithmetic course alone 
seems not to suffice to compensate for their deficits. We might also ask: What are the causes of these 
deficits? Is it pre-service teachers’ lack of motivation for their mathematics studies in general? Have 
there been obstacles as a result of mathematics anxiety since school? For pre-service teachers in the 
Inclusive Pedagogy Teacher Education Program, mathematics is a compulsory subject, and some of 
them have reported about own mathematics anxiety. Or do they perceive the mathematics university 
course having low relevance for their future professional work, which resulted in poor performance?  

Proceedings of CERME12 3256



 

 

The second major difficulty concerns perspective adoption. As to different perspectives of the PCK 
considered in theory (Ball et al., 2008; Carrillo-Yañez et al., 2018), it seems to be easier for pre-
service teachers to adopt the learning perspective addressed in subitem (3) than the teaching 
perspective addressed in subitem (2). This may be due to the fact that they are only in the second 
semester of their bachelor’s degree. The results showed that it was particularly difficult for the pre-
service teachers to adopt a meta-perspective, as was required in subitem (4). This finding is consistent 
with those by Kuntze et al. (2011) who reported that the pre-service teachers in their study often were 
unable to link mathematical content to the big ideas of mathematics. In view of this difficulty, the 
design principles for our course (Reitz-Koncebovski et al., 2020) require the lecturers to occasionally 
adopt the meta-level, and to make explicit what “school-related content knowledge” means in certain 
contexts, as outlined in the theory chapter above. Consequently, the lecturers explicitly motivated 
their audience to take a meta-perspective themselves. The participants’ poor results regarding the 
latter aspect raise a number of questions: Why was subitem (4) so difficult? Is it generally difficult to 
adopt a meta-perspective? Do pre-service teachers lack a deeper knowledge about rational numbers 
(Freudenthal, 2002; Padberg et al., 1995) which we consider an essential part of SRCK? Or do they 
actually possess this knowledge, but rather have difficulties in articulating it in a written form?  

A critical view of the test results implies further development of the course, in particular regarding 
the implementation of the cross-sectional design principle (Reitz-Koncebovski et al., 2020), namely 
adopting the meta-level and making explicit what SRCK (Dreher et al., 2018) means in certain 
contexts, and why this knowledge is important and useful for pre-service teachers. Our assertion is 
that it is not only necessary to allow pre-service teachers to question the usefulness of the content of 
the mathematics courses at university, but also to explicitly discuss their usefulness in seminars, and 
to a greater extent than has been done in the past. Some arguments for this kind of discourse with pre-
service teachers can be drawn from the lines of argument in the theoretical considerations above. 
Another, perhaps even more difficult endeavor, is to address the level of attitudes and emotions. We 
assume that some pre-service teachers’ poor performance on fraction tasks was related to specific 
aspects of the affective domain since the MTSK model of mathematics teacher knowledge (Carrillo-
Yañez et al., 2018) places beliefs at the center of the various facets of knowledge. 
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Using Concept Cartoons in primary school teacher training: the case 
of a mathematics content course 

Libuše Samková1 
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The contribution focuses on an educational tool called Concept Cartoons and the possibilities to use 
the tool in teacher education. It perceives Concept Cartoons as educational vignettes and show how 
they can be incorporated into mathematics content courses to help assessing future primary school 
teachers’ knowledge on topics related to the primary school curriculum. The paper introduces one 
of the Concept Cartoons created on the topic of divisibility and a qualitative empirical study 
conducted with 67 future primary school teachers within a mathematics content course. The aim of 
the presented study is to observe and investigate the nature of knowledge displayed in written data 
collected via the Concept Cartoon. The results of the study confirm the potential that educational 
vignettes such as Concept Cartoons have in future primary school teacher education.  

Keywords: Concept cartoons, educational vignettes, elementary school teachers, mathematics 
education, preservice teacher education. 

Introduction 
An integral part of primary school teacher education consists of mathematics content courses where 
mathematical content related to the primary school curriculum is reviewed and applied in contexts 
outside the primary school level. For instance, the primary school curriculum in the Czech Republic 
covers the four operations with natural numbers (addition, subtraction, multiplication, division) and 
their properties, and the secondary school curriculum in this area starts with prime and composite 
numbers, common multiples and divisors, and criteria of divisibility. So that the content course for 
future primary school teachers contains all these secondary school topics, to bring the future teachers 
a broader perspective and to engage them in intensive argumentation related to the mathematical 
content they are supposed to teach in their future school practice. Such an arrangement helps verifying 
that the future primary school teachers understand and comprehend primary school concepts properly. 

This contribution focuses particularly on the topic of divisibility and on subject-matter knowledge 
(Shulman, 1986) of future primary school teachers. From the more detailed perspective of 
mathematical content, it focuses on conditional reasoning within the topic of divisibility – an area 
that appears to be difficult for future teachers as they often tend to handling the topic of divisibility 
procedurally rather than conceptually (Zazkis et al., 2013) and having deeply rooted misconceptions 
about argumentation that affect their conditional reasoning (Simon & Blume, 1996).  

The following text describes a qualitative study of an explorative character that uses an educational 
vignette (Skilling & Stylianides, 2020) in the form of a Concept Cartoon (Samková, 2020) as a tool 
for collecting data. The study addresses the research question “What kind of subject-matter 
knowledge can be revealed in future primary school teachers when using Concept Cartoons as a 
written assessment tool within a mathematics content course?” The paper follows up on the 
contributions from previous ERME conferences where various educational vignettes were used in 
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teacher professional preparation: e.g. for investigating professional vocabulary of future teachers 
(Friesen et al., 2019), assessing how future teachers respond to hypothetical student ideas within 
primary school topics (Buforn et al., 2017; Samková & Hošpesová, 2015), how they respond to 
hypothetical learning support situations (Kuntze & Friesen, 2017) or what awareness they have about 
potential student ideas (Samková, 2019b). The presented study was conducted within the framework 
of the ERASMUS+ project coReflect@maths that aims at designing and evaluating vignette-based 
learning environments for various mathematics teacher education courses, with a particular focus on 
cartoon vignettes (Krummenauer et al., 2020).  

Vignettes and Concept Cartoons 
In this paper, educational vignettes are understood as stories representing school practice (Buchbinder 
& Kuntze, 2018), i.e. as representations of classroom situations or situations that relate to content 
taught and learnt in the classroom. In that sense, vignettes are rather short, descriptive episodes that 
may take the form of texts, single or multiple images, videos, or their combinations (Skilling & 
Stylianides, 2020). The protagonists of vignettes might be various combinations of teachers and 
students, e.g. a teacher with one or more students, one or more students without a teacher, one or 
more teachers without students. With future teachers as respondents of research or intervention, the 
purposes for implementing vignettes are wide (Herbst & Chazan, 2011); they usually lay in aiming 
for development or analysis of professional knowledge and skills such as noticing (Schack et al., 
2017), professional vocabulary (Schleppegrell, 2007), etc.  

Among vignettes, we may also include Concept Cartoons – individual pictures showing a content-
related situation and a group of several children discussing the situation via a bubble-dialog. The 
opinions in the bubbles may be correct, incorrect, unclear or incomplete (Keogh & Naylor, 1993). 
Originally, Concept Cartoons were developed as a means of supporting the quality of discussion in 
primary school classrooms (Naylor et al., 2007), with the key aspects for the discussion being the 
absence of the teacher in the picture (i.e. the presence of just the peers) and the diversity of opinions 
given in the bubbles. However, Concept Cartoons may be created for different target groups and 
different purposes, including the target group of future primary school teachers and the purpose of 
analysing their pedagogical content knowledge (Samková & Hošpesová, 2015) or subject-matter 
knowledge (in this paper). Within this context, the protagonists in the picture may not be just children 
but also adults (future teachers, i.e. peers of the respondents). For the purpose of collecting data on 
teacher knowledge, Concept Cartoons are usually accompanied by some set of indicative questions, 
and this combination appears to be able to provide data that are ample and relevant (Samková, 2019a).  

When creating a new Concept Cartoon, one has to choose the focus of the mathematical task in the 
background (calculation, proposition, application), its openness (e.g. single vs multiple correct 
solution procedures), determine the nature of correctness of individual bubbles (ambiguous, 
unambiguous, conditioned), and choose the form of texts in bubbles (results, procedures, statements); 
for more details on the typology of Concept Cartoons see Samková (2020). This study is based on a 
Concept Cartoon that has a group of future teachers as protagonists, a propositional task with multiple 
correct solution procedures in the background, four bubbles with unambiguous correctness, and texts 
in bubbles in the form of statements (see Figure 1). 
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Figure 1: The Concept Cartoon on divisibility 

The Concept Cartoon in Figure 1 presents two statements that are correct (Celest, David), and two 
that are incorrect (Adele, Ben). One of the statements (David) refers to a manipulation with numbers 
(based on finding a nearby multiple of 18 that is easily identified), while each of the other three 
statements (Adele, Ben, Celest) informally refers to an application of a general rule. The rules can be 
formally rewritten as follows: 

Adele: If the sum of digits of a given number is divisible by 18, then the number is divisible 
by 18. 

Ben:  If a given number is divisible by 3 and by 6, then it is divisible by 18. 
Celest: If a given number is divisible by 9 and by 2, then it is divisible by 18. 

For the rule behind the Celest bubble, the condition in the statement is necessary as well as sufficient, 
i.e., the rule is valid and can be also rewritten in the form of equivalence. For the rule behind the Ben 
bubble, the condition in the statement is necessary but not sufficient, since 3 and 6 are not coprime 
numbers; numbers 6, 12, 24, 30 are some of the counter-examples for the rule. For the rule behind 
the Adele bubble, the condition in the statement is not necessary (even the number 18 itself does not 
have the sum of digits divisible by 18) nor sufficient (swapping the order of digits does not change 
the sum of digits but may easily create a number that is not even and thus not divisible by the even 
number 18; e.g. 1467, 7641).   

Such an arrangement creates an environment that challenges skills in conditional reasoning, by 
requiring proper differentiation between necessary, unnecessary, sufficient and insufficient 
conditions in an informally worded statement (Buchbinder & McCrone, 2019). The statement in the 
Adele bubble is also closely related to overgeneralizing – a frequent misconception consisting in 
improper use of analogical reasoning (Hemmi et al., 2017); here the overgeneralizing stems from 
criteria for divisibility by 3 and by 9 that are both based on the sum of digits. 
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Design of the study 
Participants of the research study were 67 future primary school teachers – full time students of the 
first year of the 5-year teacher training program at the University of South Bohemia in České 
Budějovice. In the time of the study, they were attending the content course on arithmetic. They have 
not worked with Concept Cartoons before the study. The participants were randomly labelled by code 
names V1 to V67.  

In the data collection stage, the participants were assigned the Concept Cartoon from Figure 1 and a 
set of indicative questions to respond. Having the new environment where the protagonists of the 
Concept Cartoon were not children but future teachers, also the set of indicative questions had to be 
newly created. Taking inspiration from various sets of indicative questions verified in previous 
research and proceeding from the fact that it has proved useful to have the indicative questions 
purposefully fragmented in their focus (Samková, 2019a), the following three indicative questions 
were distributed to the participants in order to find out about how they draw on their subject-matter 
knowledge: (1) What thoughts could be behind the student teachers’ thinking? (2) How could you 
help the other student teachers to correct their answers or to improve their argumentation? (3) Write 
YOUR solution into the empty speech bubble. The participants worked on the task individually, in 
the form of a compulsory written homework. 

Collected data were processed qualitatively, using open coding and constant comparison (Miles et 
al., 2014). The process of open coding focused on various displays of subject-matter knowledge or 
lack of it, and their interrelations. Data were compared repeatedly across participants, across bubbles, 
and across indicative questions. 

Findings  
The four following code categories appeared as relevant at the end of the analytic process: Coprime 
condition (codes coprime forgotten; missing coprime reported, prime factorization misused), 
Language (codes inaccurate terminology, shifted meaning, shifted interpretation), Argumentation 
modes (codes counter-example for sufficient, counter-example for necessary, objection towards 
coincidence, overgeneralizing, rule followed instead of verified, use of assumptions not mentioned in 
the bubble), and Alternative ideas (codes favour on the use of rules, favour on the non-use of rules). 
Below, we describe the code categories in detail and provide illustrative data excerpts related to them. 
Coprime condition 

The first of the code categories refer directly to weak or good knowledge of divisibility concepts. The 
most occurring concept in focus appeared to be the concept of verifying divisibility by decomposing 
the divisor into a product of two coprime numbers (e.g. 18 = 9 ∙ 2) and verifying the divisibility by 
these two numbers. Almost half of the respondents (33 out of 67) forgot about the coprime condition 
and agreed with Ben who decomposed 18 into a product of two numbers that are not coprime. Usually, 
they then (incorrectly) included a prime factorization as a proposed enhancement of Ben’s reasoning. 
As a direct consequence, these 33 respondents labelled Celest as incorrect: 

V15 Ben:  18 = 3 ∙ 6 → 6 = 3 ∙ 2   divisibility criteria for 3 and 2 must be met  
  3 → sum of digits is divisible by 3   2 → must be even 
  → holds good (meets both criteria) 
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  I would be more specific and decompose as 18 = 3 ∙ 3 ∙ 2, it is enough to 

check whether the number is even and its sum of digits is divisible by 3. 
 Celest:  She just made another decomposition. She is not right, both decompositions 

are good.  
V31 Celest: I think she is not right. It is enough. She must decompose the 6. 
V65 Ben: I think that the divisibility by six is a little extra. It is enough to verify 

divisibility by two and by three. 
In responses to the third question, 22 of these 33 respondents offered as their own solution the 
decomposition into 9 ∙ 2 or 2 ∙ 9, and 5 respondents offered the decomposition 3 ∙ 3 ∙ 2 or 2 ∙ 3 ∙ 3. 
On the other hand, there were respondents who remembered the coprime condition and pointed it out:  

V64 Ben:  We cannot decompose this way. The numbers you decompose into must be 
coprime (cannot be divisible by the same number) → 3 and 6 are divisible 
by 3, we do not want it.  

Language 

Some of the respondents displayed shortcomings in the language of mathematics that transpired in 
the form of an inaccurate terminology (V30), a shift of a meaning of a mathematical concept (V36), 
a shift in an interpretation of the text in a bubble (V47), or a combination of them (V34 – terminology 
& interpretation):  

V30 David:  1800 is the closest whole number. 
V36 Ben: The idea is good, but it is not sufficient to have the number divisible by 3 

and by 6, it must also, after dividing by one of the numbers, be divisible by 
the other.  

V47 Celest: According to Celest, we have to check divisibility by 3, 6, 9, and 2. It is 
sufficient to check just divisibility by 9 and 2.  

V34 Celest: She thinks that we have to check all variants of multiples, but it is not true. 

Argumentation modes  

The third code category refers to modes of argumentation and logical aspects in general. Among the 
proper argumentation modes, it included counter-examples that some of the respondents provided as 
a reaction to Adele. These counter-examples referred either to a condition that is not sufficient (V14) 
or a condition that is not necessary (V29):  

V14 Adele:  She tried to sum the digits of 1764 → it came out 18, and 18 : 18 = 1, so that 
she thinks this is a rule for divisibility by 18. However, when we take e.g. 
the number 4455, the sum of its digits is also 18 but the number is not 
divisible by 18.  

V29 Adele:  Her opinion surprised me. The sum of the digits is 18, so it is divisible by 
18, but I did not find this kind of criterion anywhere. … I chose the number 
126 (a multiple of 18) to check it → 126 : 18 = 7 → 1 + 2 + 6 = 9 → 9 : 18 
= 0,5. Other example: 1710 : 18 = 95 → (1 + 7 + 1 + 0 = 9) 

  118764 : 18 = 6598 (1 + 1 + 8 + 7 + 6 + 4 = 27 → 27 : 18 = 1,5). 
  In my opinion, it implies that we cannot use the sum of digits this way as 

decisive. It was just a coincidence that it worked out for her. 
Surprisingly, none of the respondents offered a counter-example as a reaction to Ben. However, 
several of them provided to Ben an objection towards coincidence similar as the one by V29 to Adele:  

V46 Ben:  That Ben’s claim comes out in this particular case is, in my opinion, just a 
coincidence. 
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The improper argumentation modes included using an assumption that was not mentioned in the 
bubble (V18), overgeneralizing (V46/David) or following a rule in the bubble instead of verifying it 
(V46/Adele):  

V18 Adele: She is right, because if a number is even and a sum is divisible by 18 → it’s 
true. 

V46 David:  Number 1800 is divisible by 18, number 36 as well, in this case she is right. 
Check: 18 ∙ 4 = 72 = 100 – 28 

     100 is not divisible by 18 
      28 is not divisible by 18 
  In my case, it did not work out, which means that it was just a coincidence. 
 Adele: 1 + 7 + 6 + 4 = 18 → 18 : 18 = 1 → she is right, it will work.  

Alternative ideas 

The last code category summarizes how respondents reflected the fact that there were alternative 
opinions shown in bubbles. Aside from the discourse between Ben and Celest that got assigned its 
own code category (Coprime condition, see above), there were also two different correct statements 
presented by Celest and David. Here, some of the respondents favoured the Celest‘s way based on a 
well-known rule (V13), others appreciated that David had managed without the rule (V29, V5); one 
of the respondents favoured both the statements (V44):  

V13 David:  This procedure is logically correct, but might be time consuming. It is better 
to use divisibility criteria instead. 

V29 David: His opinion is interesting and might also be considered correct … He came 
to the conclusion logically even without knowledge of the divisibility 
criteria. 

V5 David: Nice, quick reasoning!  
V44  (3) I myself would support both opinions (C and D). C is a classical method. 

For D, we have to think a bit but, for one, it is faster. 

Discussion and conclusion 
As illustrated in the previous section, using educational vignettes, namely Concept Cartoons, as an 
assessment tool within a mathematics content course for future teachers might bring a broad insight 
into various facets of knowledge that is more or less related to the mathematical content that the future 
teachers would teach in their future teaching practice. The environment consisting in a Concept 
Cartoon presenting various correct and incorrect opinions on a chosen topic (divisibility by 18) and 
a set of three differently aimed indicative questions has proved to be able to indirectly provoke 
reasoning of future teachers and obtain rather talkative responses from them (even if only in writing). 
These responses reflected in detail how future teachers reasoned about the topic, how they understood 
key concepts, what mathematical language they used, what kind of arguments they were able to 
provide, and how they reacted to various alternative ideas.  

The results of the study highlighted the advantage that Concept Cartoons have over standard written 
tests: 33 of the 67 respondents labelled as correct a solution that was not correct (Ben, missing 
coprime condition), however, 22 of them offered as their own solution a solution that was correct. It 
is reasonable to assume that if only a standard test were used as a method of assessment (e.g. with a 
task “Is 1764 divisible by 18?”), these 22 respondents would succeed in the test and there would be 
no doubt about their subject-matter knowledge. Moreover, using the format of Concept Cartoons for 
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assessing subject-matter knowledge also allowed to learn about future teachers’ mathematical 
language and argumentation. The findings of the study confirmed weaknesses in conditional 
reasoning (cf. Simon & Blume, 1996; Buchbinder & McCrone, 2019) as well as a tendency to 
overgeneralizing (cf. Hemmi et al., 2017), a tendency to handling the topic of divisibility rather 
procedurally than conceptually (cf. Zazkis et al., 2013), insecurities in mathematical language (cf. 
Schleppegrell, 2007). Such findings show that vignettes might be implemented meaningfully into 
teacher training not only to advanced courses focusing on pedagogical content knowledge and 
teaching practice (Buchbinder & Kuntze, 2018) but also to initial content courses. 
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Learning to notice is perceived as an important aspect of the professional development of pre-service 
mathematics teachers in Germany. It includes attending to specific elements of a complex situation 
and using one’s knowledge to make sense of them. This article makes the argument that taking over 
a different perspective might provide a valuable starting point to facilitate noticing of mathematical 
thinking processes. The qualitative content analysis of 280 pre-service teachers’ written statements 
shows that some participants take over different perspectives, which plays an important role in their 
describing, evaluating, and interpreting of the situation.  

Keywords: Pre-service teachers, noticing, perspective taking, qualitative content analysis. 

Introduction 

Over the last decades, there has been a lot of research into teachers’ practices with a focus on 
professional vision and noticing (van Es & Sherin, 2021). Especially noticing students’ mathematical 
thinking is perceived as a prerequisite to providing rich learning environments and a productive 
mathematical discourse (Jacobs et al., 2010). Nevertheless, not only what teachers notice is important, 
but also how they analyze what they have noticed (van Es & Sherin, 2008; van Es, 2011). Several 
studies have shown how regular video club meetings can improve the way participants reason (van 
Es & Sherin, 2008; van Es & Sherin, 2021). Mathematical content knowledge (Friesen et al., 2015) 
and pedagogical content knowledge (Prediger & Zindel, 2017) provide categories along which certain 
aspects of a situation (including student thinking) can be noticed. However, more research is needed 
into to what extent pre-service teachers (PSTs) are able to notice specific aspects if they are provided 
with video material that allows them to focus more closely on a mathematical situation rather than a 
whole-classroom activity. In this paper, we will make the argument that Perspective Taking – i.e. 
imaging oneself in the teaching-learning situation presented in the video clip – facilitates noticing 
and especially interpreting rather than merely describing events.  

Noticing as a goal in teacher education  

Important aspects of teaching are to provide students with learning opportunities and to react 
adequately to their needs and potentials. The construct ‘teacher noticing’ refers to the process of 
making sense of complex classroom environments (Jacobs et al., 2010, p. 170). Generally, noticing 
is divided into three dimensions: (1) identifying what is noteworthy in the situation (attending or 
selective attention), (2) using one’s knowledge and experience to make sense of what is observed 
(interpreting or knowledge-based reasoning), and (3) constructing interactions to gain further 
information during the noticing process (shaping) (van Es & Sherin, 2021). According to van Es 
(2011) and van Es and Sherin (2021), there are three general stances to interpret what is noticed: 
descriptive, evaluative, and interpretive. Interpreting is perceived to be the most sophisticated action 
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and is driven by a stance of inquiry, i.e. the intrinsic motivation to figure out what is going on: 
“interpreting is not only about trying to make sense of a phenomena [sic] but also involves seeing 
observed phenomena as something worth trying to figure out” (van Es & Sherin, 2021, p. 22; see also 
van Es, 2011). 

As research has shown, the ability to notice can be facilitated by (regularly) reflecting on video clips 
from situations related to teaching and/or learning (Friesen et al., 2015; Prediger & Zindel, 2017; van 
Es & Sherin, 2021). Providing regular meetings of video clubs with in-service teachers, van Es (2011) 
and Sherin and Han (2004) found that the participants had a tendency to take a descriptive and 
evaluative stance in the first session, but adopted more often an interpretative stance in the last. In-
service and pre-service teachers alike tend to focus on the teachers in the beginning, but over time 
shift their attention to students’ actions and thinking (van Es & Sherin, 2008; Star & Strickland, 
2008). Regarding the evaluative stance, Karsenty et al. (2019) illustrate how in-service teachers move 
from predominantly judgmental comments to justifying different perspectives over the course of a 
video club. While they argue that this allows for more productive discussions, they also find an overall 
decline in evaluating actions in favor of openly discussing specific aspects of practice and pedagogy.  

Looking specifically at PSTs, it is not surprising that they tend to be less proficient in noticing as they 
normally lack the experience of teaching as well as the theoretical categories from content knowledge 
and pedagogical content knowledge. They tend to chronologically report on events rather than 
interpreting them (van Es & Sherin, 2002) and provide limited or no evidence for interpreting 
children’s understandings (van Es & Sherin, 2002; Jacobs et al., 2010). However, the depth of the 
analyses by PSTs may depend on the type of video clip: Using a full-length video of a whole-
classroom period, Star and Strickland (2008) found that PSTs had trouble focusing on important 
aspects and “generally do not enter teaching methods courses with well-developed observation skills” 
(p. 107) – but were able to develop them over time. In contrast to that, Prediger and Zindel (2017) 
used a shorter sequence from a one-on-one interview with a student in a study with 159 PSTs. Their 
findings illustrate how – even before an intervention - a majority (roughly 65 %) is able to focus on 
student thinking rather than making only surface judgments.  

While the goal is to deal with the full complexity of a whole classroom, these findings indicate that 
it might be fruitful to start with a reduced setting for PSTs. Overall, learning to notice is complex, 
requires time and experience. Especially for developing an interpretative stance, PSTs should learn 
to be aware of themselves and their own expectations as a prerequisite for noticing (Mason, 2009). 

Perspective Taking as a personal interpretative frame 

Mason (2009) describes the importance of self-awareness to being able to notice and facilitate student 
thinking:  

Ongoing enquiry into the actions available to learners and into ways of both triggering them and 
making them available for inspection involves ongoing enquiry into the origins of the actions, 
which underpin different topics. Ongoing enquiry into the origins and variations of those actions 
in one’s own experience is necessary in order to be sensitive to learners. (p. 207) 
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Thus, the own experiences and approach to a certain task can serve as an important starting point for 
understanding and interpreting students’ actions. Freudenthal (2002) uses the term reflection for 
“mirroring oneself in someone else in order to look through his skin, to explore him, to take him in” 
(p. 104). This type of reflection leads to a gain of knowledge not only about the other person but also 
about their own behavior and knowledge. The own experience serves as an anchor and/or priming for 
perceiving and analyzing the student’s behavior. It also plays into the idea of recognizing choices and 
alternatives for a specific situation (Mason, 2009). 

Regarding the process of diagnosing, Nickerson (1999) proposes a descriptive framework, in which 
experts use their own knowledge as a model to compare to another (a child’s) model of knowledge. 
As Philipp (2018) points out, using the own (expert) perspective as a starting point for assessing a 
learner might yield potential biases, such as over-or underestimating the challenge for a novice. 
However, carefully comparing and contrasting the own and the child’s actions might lead to a higher 
awareness of both differences and commonalities, and support the focus on student thinking.  

The idea of Perspective Taking as a means for noticing is included in the construct of interpretative 
frames proposed by Sherin and Russ (2014). These frames function as lenses, through which a 
situation is perceived: “In each interpretative frame, the way [a teacher] makes sense of the video 
([i.e.] knowledge-based reasoning) is both constrained by and contributes to what [he/she] notices in 
the video ([i.e.] selective attention)” (p. 10). In an interview study with 15 in-service teachers, the 
authors identify 13 interpretative frames, one of which is Perspective Taking. This frame was found 
in regard to teachers imagining themselves in the role of the teacher in the video clip, but only four 
out of the 15 participants showed this frame. The authors offer as a brief potential explanation that 
the teachers only use Perspective Taking when the depicted instruction is in line with their own 
pedagogical approach. However, we see two problems with this explanation: First, by only taking the 
perspective of the shown teacher (rather than a student), Perspective Taking might not lead to a better 
understanding of student thinking. Second, if Perspective Taking only occurs in situations close to 
the own approach, it cannot help with getting to know alternative interpretations and actions.  

Overall, one can assume that Perspective Taking has the potential to facilitate PSTs’ learning to notice 
student thinking processes. In this paper, we address to what extent it might be found in PSTs’ written 
analyses even at the beginning of their university studies in order to identify potential starting points 
for subsequent teacher education material. Thus, our presented study aims at the following research 
questions:  

1. To what extent analyze PSTs the video clip by taking over a different perspective?  
2. Which role does the Perspective Taking play in PSTs’ analyses?  

 
Study design & methodology 
Data Gathering: To pursue the research questions, the study was carried out in the context of a 
lecture on mathematics education aimed at prospective primary school teachers (PSTs) in their first 
year of their three-year-long university studies in Germany. We collected written analyses of a video 
clip by 280 PSTs (35 male (12.5 %), 244 female (87.1 %), 1 diverse), of which 256 were in their first 
or second semester.  
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The video clip is roughly four minutes long and shows an excerpt from a one-on-one mathematical 
interview with the second-grader Mats, which is situated in the context of arithmetic learning. In the 
video, Mats first is working on a task where he has to find pairs of red and blue cards (unstructured 
and structured representations) with the same number of dots. Later, he describes his strategies. The 
video was uploaded to the lecture’s accompanying online learning platform and was used as a 
preparation for the following lesson on counting and number sense. The PSTs were asked to answer 
the following questions in a text of up to one page: “Describe how Mats solves the task. What do you 
notice and which parts are especially interesting to you?” 

Data Analysis: In order to see if PSTs were using a Perspective Taking frame and which role it 
played in their analyses, we used a qualitative content analysis approach (Kuckartz, 2019). The 
content analysis performed included the following steps:  

1. Preparing the data  
2. Segmenting written products of the 280 participants into idea units for analysis and coding 

each idea unit with one or more of the concept-driven categories based on the interpretative 
frames by Sherin and Russ (2014) 

3. Focusing on all instances of the interpretative frame Perspective Taking: inductively 
identifying sub-categories from the data by comparing and contrasting the codings in regard 
to the questions whose perspective was taken (cf. resulting set of subcategories in Table 2). 
In addition to Sherin and Russ’s (2014) definition of Perspective Taking, we included not 
only instances where someone in the situation was mentally replaced, but also where the 
participants imagined themselves (possibly additionally) in the situation. 

4. Focusing on all instances of Perspective of > PSTs as Task Solver: coding each idea unit with 
one Stance identified by van Es and Sherin (2021) and van Es (2011) (cf. Table 1) 

All steps were carried out by both authors and results were consensually validated.  

Table 1: Deductively derived categories relating to the Stance, slightly modified to fit the situation  

Stance (van Es, 2011; van Es & Sherin, 2021) 

  Descriptive  Simply stating identified differences or commonalities 

  Evaluative Evaluating the quality of the child’s approach against the own perspective or 
proposing a (better) alternative  

 Interpre-
tative 

Reasoning Identifying a cause/explanation for observed differences or commonalities 

Generalizing  Drawing a generalized conclusion in terms of either attribution of competence to 
the child or communicating a personal ‘lesson learned’  
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Findings 
Out of the 280 PSTs, 32 persons were identified to use a Perspective Taking frame with 38 different 
instances in total. Table 2 gives an overview of the findings. Overall, four different sub-categories 
were identified in terms of whose perspective was taken.  

In nearly all instances (32), the PSTs imagined themselves in the situation as the ones who had to 
solve the task (but with their current mindset and skills). We identified three instances of taking the 
child’s perspective, in which actions and/or statements of Mats were either explained or questioned 
from a student’s point of view (as in the example in Table 2). There were two instances in which we 
used the category of “Teacher”, however, both are far less explicit than what Sherin and Russ (2014) 
found. Rather, in the example shown below, the assessment that the second part of the video is “where 
the actually important process of the task takes place” was interpreted as taking over a diagnostic 
perspective by identifying Mats’ explanations as especially meaningful for understanding the 
student’s thinking. The second utterance in this category also shows a diagnostic perspective referring 
to “immediately being aware of Mats’ problems” (f1215). Lastly, one PST took the perspective of 
the course instructors who had administered the video analysis task (cf. Table 2).  

Table 2: Inductively derived sub-categories of Perspective Taking > Perspective of  

Sub-
category 
(number 

of 
instances) 

Description for the sub-category 
Exemplary quote from the PSTs’ written statements  

(identification-code in parentheses) 

PSTs as 
Task 

Solver (32) 

Taking the perspective of being the one 

who has to solve the task presented in 

the video but with the current mind- 

and skill-set 

"What I find noteworthy here is that Mats split the blue card 
with seven points into six and one, while I myself would 
rather split between the lines into three and four." (f1059)  

Child 

(3) 

Taking the perspective of Mats or 

another child with their mind- and 

skill-set 

“I would have thought - especially as a child - that he thinks 
of a die, which he knows from playing with it, and not of 

two rows of four with a dot in the middle” (f1148) 

Teacher 

(2) 

Taking the perspective of the 

teacher/interviewer or another teacher 

with their mind- and skill-set 

"Afterwards, the student is asked to explain his approach. 
This is where the actually important process of the task takes 

place." (f1207) 

Course 
Instructors 

(1) 

Taking the perspective of being the 

course instructor who administered the 

video analysis task to the PSTs 

"I think this assignment is trying to make us students aware 
of how important good arrangement and structured 

representations are for elementary school children to be able 
to understand abstract mathematics based on them." (f1017) 
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Due to the dominance of the PSTs as Task Solver category, further analyses were concentrated on 
these 32 instances. Of these, 26 instances focused on differences between their own approach and the 
one shown by the child in the clip, five referred to commonalities, and one did neither. 

As Table 3 shows, all stances identified by Sherin and van Es (2021) and van Es (2011) were found 
when looking at Perspective Taking > PSTs as Task solver. In eleven cases, there was a mere 
description of differences (none of these instances related to commonalities) between the own and 
the child’s approach. Looking at the evaluative stance, we included similar to Karsenty et al. (2019) 
assessments of the situation in which the different perspectives served as a sort of measure or 
suggestions of alternatives (as shown in Table 3). Here, in six cases, the PST’s approach served as a 
better way to solve the task than what Mats did. In the only instance where a commonality was 
described, the PST gave a positive evaluation, stating how they were surprised that a child was able 
to tackle the task similarly to themselves. 

Table 3: Identified sub-categories of Perspective Taking > PSTs as Task Solver > Stance 

Sub-category 
 

Exemplary quote from the PSTs written statements 

Descriptive Stance  
(11) 

"What I find noteworthy here is that Mats divided the blue card with seven points into six and 
one, while I myself would rather divide between the lines, so into three and four." (f1059) 

Evaluative Stance 
(7)  

"Here I notice in particular that I personally would probably have done it the other way 
around, [... because] I think it would be quicker to find the matching card." (f1083) 

Interpretative –
Reasoning (8)  

“For me it was very obvious to calculate 3+4=7 but for him there were six dots and one more. 
Probably he compared the structure of the dots with a structure known to him, namely the two 

times three dots on the card with six dots." (f1062b) 

Interpretative – 
Generalizing (6)  

"What I personally also find very interesting is how each person uses a different method for 
counting points, as I myself would have approached some numbers very differently." (f1068) 

Belonging to an interpretative stance, we identified two categories: reasoning and generalizing. 
There were eight instances in which PSTs described differences (5) or commonalities (3) and 
formulated possible reasons for these observations. Here, the participants used background 
knowledge for example on developmental levels or everyday experiences of young children (cf. Table 
3). Lastly, there were six instances in which the Perspective Taking resulted in stating generalizations. 
Here, in two instances, the PSTs used the comparison with their own perspective to attribute certain 
competencies to the child. In the other cases, they communicated how they themselves as PSTs 
learned something from the differences perceived. 

Discussion 
Regarding the first research question, 32 out of the 280 PSTs did use an interpretative Frame by 
taking a different perspective in their analysis of the video clip. Comparing our results (Table 2) to 
Sherin and Russ (2014), it might be surprising how often our participants imagined themselves in the 
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situation and how rarely they took the perspective of the teacher or the child. One explanation for this 
might be the type of video clip, in which the interviewer is staying mostly in the background so that 
there is not much of a teacher’s perspective in the situation to take over - especially as academically 
young PSTs lack experience with teaching. Furthermore, relating to the thinking of a second-grader 
might be challenging due to the age difference, and therefore neither the perspective of a teacher nor 
a child is close to the PSTs. However, most of our participants recently graduated from school and 
might well remember how they themselves solved tasks. As Philipp (2018) pointed out, there is a 
potential risk of a biased judgment when using oneself as the sole point of reference. However, 
according to Mason (2009), drawing on differences between the own approach and the child might 
lead to widening the own knowledge of possibilities and make PSTs more receptive to student 
thinking.  

As our analysis regarding the second research question shows, only in a third of the cases was the 
own perspective used for a mere description of the video clip. Some PSTs managed to use their own 
perspective in an evaluative or even interpretative stance. Keeping in mind that these PSTs were 
participating in their first course on mathematics education, not all did use adequate categories of 
content knowledge or pedagogical content knowledge in their analysis. However, they seemed to be 
inclined to not only describe the student’s behavior in contrast to their own but also look for possible 
explanations. This might be an indicator of an inquiry stance, which was argued by van Es and Sherin 
(2021), van Es (2011), and Mason (2009) as the driving force in noticing. While one could argue that 
the generalization from one case (or video clip) might lead to an over-generalization and thus to an 
assessment bias (Philipp, 2018), we believe that especially those PSTs who communicated a ‘lesson 
learned’ widened their knowledge horizon on possibilities how young students make sense of a task, 
which is an important prerequisite for noticing (Mason, 2009). 

Furthermore, the number of evaluating instances is lower than what was expected with respect to the 
study by Karsenty et al. (2019). A possible explanation lies in the sample of looking only at 
Perspective Taking instances – the ongoing analysis of other frames indicates a much higher number 
of evaluative stances overall. A carefully formulated hypothesis is that Perspective Taking might be 
less likely to lead to evaluating, which would be in line with the benefits described by Mason (2009).  

Implications for teacher education and further research 
Overall, the presented study showed that even though there was no specific prompt for it, roughly  
10 % of the PSTs used Perspective Taking in their written analyses of a video clip from a 
mathematical interview. Imagining oneself as a PST being presented with the same task as the child 
in the video can lead to different interpretative stances. Similar to Sherin and Han (2004) and van Es 
(2011), describing and evaluating dominated overall in our results. However, roughly half of the idea 
units were identified as interpretative, which not only showed how PSTs without prior experience in 
mathematics education reason about student thinking, but also provided insights into how some of 
the PSTs became aware of their own personal learning from Perspective Taking. This is in line with 
Freudenthal’s (1991) suggestion that reflection on another person’s behavior by taking their 
perspective does not only provide insights into their thinking but also about oneself.  
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We perceive the results from this ongoing study as possible starting points for designing a teacher 
education course, which aims at facilitating PSTs’ noticing from the beginning of their university 
studies. The next steps will be to finish the analysis on the other interpretative frames in order to 
acquire a more comprehensive picture of PSTs resources for noticing mathematical thinking. 
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Clinical simulations for mathematics teachers' training: the impact on 
preservice teachers' sense of self-efficacy regarding their knowledge  
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Forty-four preservice teachers participated in clinical simulations as part of their training. The 
simulations were designed to improve teachers' knowledge. The study investigated the advantages 
and disadvantages of this method concerning the teachers' self-efficacy regarding their knowledge. 
Results demonstrate that the simulative experience did not enhance teachers' confidence and exposed 
gaps in teachers' knowledge.  

Keywords: Mathematics, preservice-teachers, knowledge, self-efficacy, clinical simulations. 

 

Introduction and theoretical background. 
Clinical simulation is a learning process in which the learner copes with a simulated action or 
occurrence from the real world of employment. It is unique in that it allows the learner to experience 
an authentic scenario that may occur in real professional life (Sauvé et al., 2007). The main advantage 
of simulative experiences is the formation of a direct connection between abstract concepts and the 
reality of which one learns, allowing the learner to implement theoretical ideas and terms on a realistic 
event (Davidovitch et al., 2008). Such experience is considered more effective than mere theoretical 
training on the professional knowledge demonstrated by the learners, their self-confidence in their 
ability to cope with different situations, and their inner motivation (Kolb et al., 2014). It is extensively 
used in the context of vocational training for pilots, medical doctors, nurses, social workers, and more. 

In recent years, clinical simulation has become common in teacher training institutions, as part of a 
general tendency to incorporate more real-life scenarios. Traditionally, mathematics teachers' training 
courses include content aimed at improving the knowledge needed for teaching and enhancing the 
sense of self-efficacy regarding the ability to teach; this could be achieved in diverse methods, such 
as workshops, lectures, and practical work in school. Nowadays, the use of analyzing real-life 
situations, rehearsing lessons, and discussing realistic scenarios is commonly used (Horn, 2010), 
sometimes using virtual reality that simulates a classroom (Barmaki, & Hughes, 2015). The present 
study focused and explored a method of clinical simulations, not by rehearsing scenarios in front of 
fellow students or colleagues, nor engaging in an imaginary scenario, but a simulation with actors. 
As part of the simulations, the preservice teacher (PST) takes on the role of the teacher, and the actors 
the role of the students. Each simulation can be conducted around a scenario that portrays either an 
event in the classroom (a teaching-learning event, or a disciplinary event) or an individual meeting 
conversation (with a student or a parent). The clinical simulation allows the PST to experience (or 
watch others experience) the event in a safe environment, so they can practice coping with different 
and varied confrontations, learn from them and receive professional feedback about them. Studies 
dealing with teacher training through clinical simulation with actors have mainly dealt with conflict 
situations (Cil & Dotger, 2015; De Coninck et al., 2021), and focused on discussions with parents or 
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colleagues. These studies have found that this method of learning has improved teachers' awareness 
and empathy, and their sense of confidence for dealing with such situations in the future. The present 
study used simulations not for conflict situations, but for everyday teaching-learning experiences, to 
promote teachers' knowledge and to enhance teachers' self-efficacy regarding their knowledge.  

What is the knowledge required for teaching? In the context of mathematics teaching, four 
components of knowledge were defined (Ball et al., 2008): Common Content Knowledge, CCK (e.g., 
knowing how to solve or calculate); Specialized Content Knowledge, SCK (e.g., knowing how to 
solve a problem in more than one way); Knowledge of Content and Teaching, KCT (e.g., knowing 
how to choose the suitable examples for presenting a topic); and Knowledge of Content and Students, 
KCS (e.g., familiarity with common student errors). Teachers' knowledge is a very significant factor 
in the teaching-learning processes: the broader the teachers' knowledge is, the better they cope with 
students' difficulties, the better intervention programs they prepare, and the better attainments their 
students have (Tchoshanov, 2011; Van Inger et al., 2016). 

Another factor that may affect the teaching-learning processes is the teacher's sense of self-efficacy 
(Bandura, 1977): one's belief in his ability to successfully organize and perform a series of actions 
necessary to achieve the desired result. Performing a task properly requires both suitable skills and 
confidence in the ability to employ them. Thus, self-efficacy affects people's functioning: the higher 
self-efficacy is, the greater efforts and time they invest. Self-efficacy may affect teaching-learning 
processes: the higher teachers’ self-efficacy, the better relations they have with school staff, the higher 
job satisfaction they have, and the more involved they are in promoting students (Dellinger et al., 
2008; Sarıçam & Sakız, 2014). Studies exploring teachers' self-efficacy regarding their knowledge 
found a difference between the different components of knowledge. The highest level of self-efficacy 
is related to common content knowledge, and the lowest level of self-efficacy is related to knowledge 
of content and students (Schreiber & Fillo, 2019). 

As mentioned above, simulative experiences might be used to promote teachers' knowledge and their 
sense of self-efficacy regarding their knowledge. Thus, it is important to explore the influence of 
simulative experience on the teachers' knowledge and the associated sense of self-efficacy. As far as 
I know, no simulative studies have been conducted that focused on the effect of simulations on 
mathematics teachers' knowledge and their sense of self-efficacy regarding their knowledge.  

The aim of the study: To examine the effect of simulations on the teachers' confidence in their 
knowledge (both their knowledge in general and specific knowledge components). The research 
question: (1) Are PSTs able to express their knowledge during simulations? (2) What is the impact 
of clinical simulation on PSTs' level of self-efficacy regarding their knowledge?  
Methodology 
Participants: Forty-four PSTs, who participated in a practice-based course for mathematics teachers 
training, as part of their studies for a teaching certificate in mathematics. During the course, they 
participated in several simulation sessions with professional actors who played school students. In 
these sessions, 23 PSTs actively participated, playing the teacher in the simulation, while 21 
participants watched them. Among the 23 active participants, 14 PSTs participated as a teacher with 
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3 players (class simulation), and 9 PSTs participated as a teacher with one player (individual meeting 
simulation). 

The participants have a bachelor's degree in mathematics education/science/economy, and they have 
very little experience in teaching (only a few hours a week). During the course, they acquired 
theoretical knowledge regarding students' conceptions and misconceptions, and knowledge regarding 
teaching specific mathematical concepts and topics. They also watched and analyzed lessons videos. 

Research tools:  

1. Scenarios that were written as scripts and simulated a teaching-learning event. Two types of 
scenarios were constructed: a scenario that simulates a classroom event, in which the teacher teaches 
three actors, and a scenario that simulates an individual conversation, in which the teacher teaches 
one actor. In each script, there is a math problem, given to the teacher in advance. The actors 
(professional actors who do not know mathematics) get in advance the solution that they are supposed 
to present during the simulation (correct/wrong/correct but unusual solution) and are instructed how 
to react to every possible response of the teacher. The teacher must choose how to explain the problem 
to them, whether to answer their questions and how to respond to their suggestions for solutions or to 
continue in the path he has chosen. The solutions presented by the actors were aimed at probing the 
knowledge component needed for mathematics teaching (Ball et al., 2008): an unusual solution is 
aimed at SCK, the wrong solution is aimed at KCS.  

An example for a scenario involving an arithmetic sequence problem: "the third number in an 
arithmetic sequence is 10, and the seventh number is 20. Find the fifth number". Each of the actors 
presented one of the following solutions: (1) A correct solution: using the equation an=a1+(n-1)d for 
the third and seventh numbers, and then solving a system of two linear equations; (2) A correct 
answer: finding the fifth number by performing arithmetic mean of the two given numbers; (3) An 
incorrect solution: the student wanted to find the constant difference between the consecutive 
numbers, so he wrote: 10, a4, a5, a6, 20, subtracted the values of the two given numbers (20-10) and 
divided the result by 5, instead of by 4, because he counted 5 numbers and not the 4 differences 
between them.  

2. Simulation videos: Each simulation is filmed. The videos were transcribed and then coded - 
mapping events to the relevant knowledge component: CCK - participants knew how to solve the 
problem correctly, SCK - participants chose to show the students alternative or unconventional 
solution, KCT - participants prepared an explanation or a teaching method to the problem, KCS - 
participants addressed student difficulty or error. For the data analysis, the number of events in which 
participants displayed each knowledge component was counted, as well as the numbers of misses - 
events in which the participant was expected to demonstrate knowledge and did not (for example, an 
occasion in which a participant refused to acknowledge an easier solution suggested by a student).  

3. Self-efficacy questionnaires: The participants were asked to address thirteen different statements 
that dealt with different components of knowledge and indicate whether their level of confidence 
increased, decreased, or did not change after participation in the simulations' workshops. For 
example, they were asked to refer their level of confidence in their ability to examine an 
unconventional student solution to a problem and determine whether it is correct (SCK). Or their 
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level of confidence in their ability to anticipate students' common errors (KCS). In addition, 
participants were asked to answer a concluding question: whether they generally felt that their level 
of confidence in their knowledge increased, decreased, or did not change after participation in the 
simulations' workshops. 

4. Interviews: To elaborate on the self-efficacy questionnaire findings, interviews were conducted 
with 10 PSTs who participated as teachers in the clinical simulation. Participants explained their 
answers regarding their general level of confidence in their knowledge and elaborated on the reasons 
for the change in their confidence level. 

Procedure: The actors were instructed how to respond and what to say to the PST. The active 
participant, who played the role of teacher, was given in advance the mathematical problem the 
simulation deals with. He could think about it and choose the solution and the way he wanted to 
explain it. But he did not know what solutions the actors would present, what their errors would be, 
and what they were going to ask. This was intended to imitate a real experience in the classroom, in 
which a teacher does not know in advance what the students will ask and what solutions they will 
offer. Each simulation lasted from 6 minutes to 15 minutes and immediately after it a feedback 
discussion was held with all present. During this feedback session, the teacher explained his motives, 
what guided him in his responses, the difficulties he had in managing the scenario his conclusions for 
a similar situation in the future; the actors explained how they felt as students, what the teacher’s 
strengths were and what they would offer him to do differently; viewers highlighted the teachers' 
strengths, his actions they approved of, and suggested additional approaches and additional possible 
responses to the simulative situations.  

The participants could (if they wanted) participate again in another simulation. 

Results 
Teachers' knowledge: As previously written, in each simulation, the PSTs coped with a problem 
they received in advance. The solution they chose to present, their reaction to an error or an 
unconventional solution, revealed their knowledge and their ability to use it in real-time. Watching 
the videos, I analyzed the responses and pedagogical decisions the teachers had made and examined 
what components of teachers' knowledge were expressed during the simulation. 

The PSTs showed common content knowledge, but they had partial and even lacking knowledge in 
specialized content knowledge and knowledge of content and students. Regarding CCK, the teachers 
had no gaps: all the PSTs but one solved the problem correctly. The one teacher who brought a wrong 
solution noticed it right at the beginning of the simulation and corrected her solution right away. But, 
regarding SCK, some PSTs were not familiar with solutions presented by the actors, either choosing 
to ignore it or forbidding the actor to present it. Most teachers did not know whether and how to 
present a second solution after one was presented, so they chose to adhere only to one solution –in 
all the scenarios but two, no solution was discussed other than the one that the teacher had prepared 
in advance. Furthermore, no connection was made between different representations, and many PSTs 
found it difficult to explain the mathematical principle underlying the solution they chose. All these 
expressions of SCK were missing or partial among the PSTs. Another gap in teachers' knowledge 
was regarding KCS: it was found that there was great difficulty among most PSTs in dealing with a 
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student's error or wrong solution: most of them could not identify the difficulty, and none understood 
what the source of the error was. While most of them did pay attention to the actor who played the 
struggling student, their communication was merely personal, expressing empathy and patience, 
rather than educational; it lacked the necessary instruction tailored to a specific difficulty or specific 
error. Since the teachers did not understand exactly what the difficulty was, they chose to repeat the 
same solution instead of explaining to the student what the mistake was and how it could be avoided 
in the future. 

Teachers' self-efficacy: The findings of the concluding question in the self-efficacy questionnaire 
(Table 1) vary depending on how the PSTs participated in the simulation.  

Table 1: Changes in the level of confidence in the knowledge 

 
Increase in 

confidence 

No change in the 

confidence level 

Decreased 

confidence 

Active participants: 

All active participants N = 23 

Active with 3 actors N = 14 

Active with one actor N = 9 

 

 

4 

1 

3 

 

17% 

7% 

33% 

 

10 

7 

3 

 

 

44% 

50% 

33% 

 

9 

6 

3 

 

39% 

43% 

33% 

Inactive participants: 

Only audience N = 21 

 

 

8 

 

38% 

 

12 

 

57% 

 

1 

 

5% 

Total N=44 12 27% 22 50% 10 23% 

 
Table 2 demonstrates that in general, only a quarter of those present in the simulation reported an 
increase in the level of confidence in their knowledge. Among those who were observers only, the 
simulation seemed to raise the confidence level or at least did not cause a decrease. Among those who 
were active with one actor, there was no difference in reporting between increase and decrease of 
confidence: a third of them reported an increase, a third of them reported a decrease, and a third of 
them reported no change in their confidence. In contrast, participants who were active as teachers 
with three actors were more likely than other participants to report a decrease in their level of 
confidence in their knowledge, even though in the discussions that took place immediately after the 
simulations, the strengths of the teacher were emphasized. 

For a better understanding of these findings, interviews were conducted with some of the participants 
to explore the reasons for the effect of the simulation on their level of confidence. The interviews, as 
will be explained in detail below, highlighted that the change in confidence level mainly depends on 
the knowledge component the teachers inadvertently focused on. 
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Four PSTs reported that coping with the scenarios strengthened their confidence in their knowledge 
and in their ability to deal with similar situations in the future. In their interviews, they all referred to 
their knowledge of content and students. One of them, David, had a successful simulation experience 
with three actors. When one of them posed a question, David felt he answered it well. In the self-
efficacy questionnaire, he indicated that his level of confidence in the knowledge of content and 
students increased, and so did his overall level of confidence. In the interview, he said: "When I was 
at school and my students had difficulties, I realized that I had already experienced something similar 
during the simulation. That was the moment I felt more confident. The scenarios we were given are 
very similar to what is happening in a real class with real students. The simulations improved my 
sense of confidence in my ability to deal with different situations in the classroom". Another one, 
Eva, also reported an increase in her general level of confidence and referred in her explanation 
mainly to the knowledge of content and students: "A situation like the one I experienced in the 
simulation happened to me in a classroom, and then I realized I was given tools to deal with it. I knew 
what to focus my explanation on. It strengthened my confidence that I could deal with situations in a 
real classroom". In these statements, the PST emphasized that coping with a scenario helps to cope 
with a similar experience in the future and strength the sense of confidence in the ability to handle 
similar situations.  

However, it seems that first-time encounters with real-life situations might have the opposite effect. 
Unlike the above statements, many PSTs reported that the simulations decreased their confidence. 
They also explained their feelings in the interview by referring to what they know or don't know. For 
example, Ron said: "I feel that I don't always know how to explain a solution that I am not familiar 
with, or how to explain errors to the student who made them". Ron's confidence was influenced by 
two components of knowledge: specialized content knowledge, e.g., dealing with an unconventional 
way of solving, and knowledge of content and students, e.g., dealing with a student's error. Lina, 
another PST, also focused on these two types of knowledge, because during the simulation she had 
to deal both with an unusual solution, and with a wrong solution: "During the simulation, I felt the 
need to bridge between my desire to show a nice mathematical solution and the actors' desire to get 
an answer... there were situations where I felt that I directed my explanations at a particular actor, 
while the others were not silent… On the one hand, it feels like a real classroom, but on the other 
hand, here it was a little harder for me, and it undermined my confidence. All I wanted at that moment 
was for the actors to listen to me and to understand their error, but I felt my explanation was lacking". 

Summary and conclusions 
In mathematics teacher training courses, PSTs are aimed to gain the knowledge required for 
mathematics teachers: learn teaching methods, different representations for mathematical objects, and 
common errors of students. One of the tools used in the training process is simulation workshops, in 
which the PST can experience a reality-like scenario that allows him to use the theoretical knowledge 
he has acquired. The rationale for conducting these is that teacher knowledge is best developed 
through the experience of teaching a classroom; for this reason, it is believed that PSTs should be 
trained to develop a wide range of skills experientially and practically (Ball, & Forzani, 2010). The 
advantage of this experience is that the scenario's focus is on specific types of knowledge and enables 
the participants to watch themselves and discuss with others their decisions and their responses. 
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The questions of the present study were: (1) Is the knowledge imparted to PSTs reflected during the 
simulation workshops? (2) Does attending workshops increase PSTs' sense of self-efficacy regarding 
their knowledge? 

The study described in this paper does not seem to give clear-cut answers to these questions. 
Regarding the knowledge of the PSTs, the findings show that differences were found between the 
levels of proficiency and control the PSTs demonstrated in each component of knowledge. In 
common content knowledge, the teachers were more knowledgeable; in pedagogical-content 
knowledge, they were less knowledgeable, which may adversely affect their teaching and the learning 
process of their students; and in specialized content knowledge and knowledge of content and 
students, they were least knowledgeable. These findings support the findings of past studies, in which 
it was found that teachers in general, and particularly novice teachers, lack these components of 
knowledge (Schreiber & Fillo, 2019). If the teaching quality of teachers is an outgrowth of their 
knowledge, the findings suggest that PSTs should strengthen mainly the two components of 
knowledge that were found missing (SCK and KCS), and therefore training should include workshops 
with scenarios that require an online active use of these components; for example, unusual (SCK) and 
wrong (KCS) solutions. 

Regarding the PSTs' sense of self-efficacy, the results indicated that the simulation might not be the 
best experience for the participants, since only a few participants reported improved confidence. It 
was found that after participating in the simulation workshops, most of the participants reported that 
their general confidence was undermined, as well as their confidence in their knowledge. A possible 
explanation for the results is that the teachers lack certain knowledge components. In the interviews, 
the explanations that teachers gave for their decrease in their general sense of confidence, usually 
focused on their difficulty to handle unconventional solutions and students' difficulties, which is 
linked to SCK and KCS. Most of the participants' explanations focused on a particular knowledge 
component that lowered their confidence. It can be deduced from the PSTs' answers that for each of 
them there was one component of knowledge in which they were less knowledgeable, and thus has 
more influence on their sense of confidence. Another possible factor for the decrease in the general 
confidence that was expressed in the interviews is the difficulty of addressing three actors at once 
while being subjected to criticism from many spectators, as well as from the actors themselves. 

How can the benefits of simulative experience be maximized so that they improve participants' sense 
of competence and increase their level of confidence? How to avoid a situation of feeling 'failure' in 
dealing with the scenario? The results suggest that some measures should be taken to increase the 
positive effect of clinical simulations on preservice mathematics teachers. First, more work needs to 
be done to support the PSTs' development of SCK and KCS in positive experiences, to increase their 
self-efficacy before engaging in this type of simulation. Second, the self-efficacy aspect should be 
strengthened in the training process in general, and in the feedback for a simulation in particular; 
more emphasis should be put on the strengths of the participant and his empowerment. Third, 
simulations with one actor are less intimidating and should be the only kind used; the course and the 
simulations should focus on one type of knowledge. The present study and its findings imply that 
while providing guidance and consultation to novice teachers, it is important to strengthen their 
confidence while promoting their knowledge, especially concerning specialized content knowledge 
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and knowledge of content and students. This recommendation has also been mentioned in previous 
studies (Schreiber & Fillo, 2019; Van Inger et al., 2016). 
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In this ongoing study, the focus is put on the potential influence of specific knowledge on pre-service 
teachers’ judgment processes when diagnosing the difficulty of mathematics tasks. It is assumed that 
pre-service teachers use their knowledge in order to identify difficulty-generating task characteristics 
and to evaluate them in terms of their difficulty for students. To examine this assumption, an 
experimental group, in which participating pre-service teachers acquire knowledge about typical 
student difficulties and specific difficulty-generating task characteristics is compared with a control 
group. Using eye-tracking technology and stimulated recall interviews, indicators for diagnostic 
judgment processes are collected and compared between conditions. First results suggest that 
specific knowledge leads to a more efficient judgment process and enables pre-service teachers to 
identify and correctly evaluate difficulty-generating task characteristics more frequently.  

Keywords: Diagnostic judgment processes, knowledge, eye-tracking, stimulated recall interview. 

Introduction 
For effective mathematics instruction, the use of tasks that are adapted to the students' ability level in 
terms of difficulty is considered central (Leuders & Prediger, 2016). A prerequisite for this is that 
teachers are able to identify task difficulties and evaluate them adequately. The difficulty of 
mathematics tasks is influenced by mathematical task characteristics (e.g., in the domain of fractions: 
like vs. unlike fractions; Padberg & Wartha, 2017) and instructional characteristics (according to 
cognitive load theory (CLT): e.g., split-attention vs. integrated task design; Sweller et al., 2011), 
among other characteristics. However, research findings show that teachers often make inadequate 
judgments about task difficulties (Karing & Artelt, 2013) and do not sufficiently consider the task’s 
instructional design (Schreiter et al., 2021). Specific knowledge of difficulty-generating task 
characteristics was found to play a significant role for the accuracy of teachers’ diagnostic judgments 
regarding task difficulty (Ostermann et al., 2017). However, most of the research on teachers' 
diagnostic judgments has so far focused on judgment accuracy. Therefore, little is known about how 
teachers get to their result and what role knowledge plays in the judgment process (Loibl et al., 2020). 
To gain insight into internal judgment processes, eye-tracking in combination with eye-tracking 
stimulated recall interviews has proven to be an effective method (Schindler & Lilienthal, 2019). 

Theoretical background: Diagnostic judgment processes 
It is assumed that in the genesis of diagnostic judgments, teachers use the information available in a 
diagnostic situation and process it on the basis of their knowledge to get to their result (Herppich 
et al., 2018). When judging the difficulty of a task for students, the relevant information constitutes 
the task characteristics that hold information about the tasks’ difficulty (“difficulty-generating task 
characteristics”; Leuders & Prediger, 2016). In the judgment process (Loibl et al., 2020), these 
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difficulty-generating task characteristics should be identified by teachers and adequately evaluated in 
terms of difficulty for students. Diagnostic judgment processes, such as identifying and evaluating 
task characteristics, constitute internal cognitive processes that cannot directly be observed. Research 
showed that eye-tracking is an effective method to investigate prospective teachers’ diagnostic 
judgment processes (Brunner et al., 2021). However, as the interpretation of eye-tracking data can be 
challenging and ambiguous (Moreno-Esteva et al., 2017), a triangulation with qualitative data, such 
as eye-tracking stimulated recall interviews (ET SRI), is recommended (Schindler & Lilienthal, 
2019). ET SRI is a research method to investigate cognitive processes by asking probands to 
retrospectively describe their own thoughts using a video sequence of their eye movements. In their 
systematic review on teacher’s professional vision, Grub et al. (2020) report that numerous eye-
tracking studies determined significant differences in gaze behavior between experts and novices. For 
example, experts were found to have shorter fixation durations, which were interpreted as an indicator 
of faster information processing. However, in most of these studies, experts were distinguished from 
novices only by the number of years of job experience, and other knowledge components were not 
considered. It therefore remains unclear how and whether teachers' knowledge – regardless of job 
experience – influences their gaze behavior during diagnostic activities. 

This Study 
This ongoing study aims to examine pre-service teachers’ diagnostic judgment process when 
diagnosing the difficulty of mathematics tasks in the domain of fractions and angles. In this regard, 
it is intended to examine which task characteristics (mathematical vs. instructional) pre-service 
teachers identify and evaluate when judging task difficulties. In addition, a particular research interest 
is to investigate the potential influence of specific knowledge about difficulty-generating task 
characteristics on identification and evaluation processes. Please note that this contribution 
constitutes a pre-report of an ongoing study and only covers a sample of the data and results of a 
larger data set. Based on the above-mentioned findings of Schreiter et al. (2021), we expect for both 
content areas (fractions and angles) that a) mathematical task characteristics are identified and 
correctly evaluated more frequently compared to instructional characteristics (H1a) and b) 
instructional task characteristics are to a large extent not identified and correctly evaluated (H1b). 
Furthermore, building on the results of existing research on the influence of specific knowledge on 
judgment accuracy (e.g., Ostermann et al., 2017), we assume that specific knowledge enables pre-
service teachers to identify and correctly evaluate more difficulty-generating task characteristics 
(mathematical and instructional) (H2). As eye-tracking studies focusing on teachers’ professional 
vision revealed significant differences in gaze behavior between experts and novices (here: teachers 
with and without job experience; Grub et al., 2020), we further aim to exploratively investigate 
whether specific knowledge influences the gaze behavior of pre-service teachers (who have no job 
experience) during their diagnostic judgment of task difficulties.  

Methods 
Participants. N = 25 pre-service mathematics teachers were assigned to two conditions: an 
experimental group (n = 11), that received a 90-minute intervention and a control group (n = 14) 
without treatment. The intervention addressed specific mathematical task characteristics in the 
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domain of fractions and angles that are known to cause difficulties for learners. Furthermore, 
theoretical foundations of CLT and related instructional task characteristics were addressed. 

Material. Eight mathematics tasks were created (four fraction tasks and four angles tasks). Between 
these tasks, difficulty-generating mathematical and instructional task characteristics were 
systematically varied. The mathematical difficulty of the fraction tasks was varied by modifying the 
denominators (like vs. unlike), by mixing natural numbers and fractions, and by using mixed fractions 
(Padberg & Wartha, 2017). The mathematical difficulty of the angle tasks was varied by the number 
of argumentation steps needed to solve the task and by the angle values used (tens vs. units) (e.g., 
Reiss, 2002). The instructional difficulty of both content areas (fraction and angle tasks) was varied 
according to specific CLT design principles (Sweller et al., 2011): based on the split-attention effect, 
the tasks’ relevant information is presented either close or distant from each other. Furthermore, 
building on the redundancy effect, the tasks were created in such a way that a) one and the same 
information is presented by different information sources or b) additional information irrelevant for 
the solution is included or c) no redundant information is included. The instructional design of the 
sample fraction task (figure 1) causes potential difficulties, as different information sources (the 
graphic and the time information) are presented distant from each other (split-attention effect) and 
redundant information (the route from Neckarsteinach to Ziegelhausen) is included (redundancy 
effect). The instructional design of the sample angle task (figure 1) causes potential difficulties, as 
the same information (values of the given and missing angles, tip) is presented by the text as well as 
in the graphic which causes unnecessary processing procedures (redundancy effect). 

 

Figure 1: Sample of a fraction task and an angle task with specific difficulty-generating mathematical 
and instructional task characteristics  

Procedure. The participating pre-service teachers were asked to assess eight mathematics tasks 
regarding the question "What makes the task easy/difficult for students?" The tasks were presented 
individually and in randomized order on a 24’’ LCD screen. Eye-tracking data was collected using a 
monitor-based eye-tracker (Tobii Pro Fusion) that captures binocular eye movements at a sampling 
rate of 120 Hz. For adjusting the eye-tracker, a 9-point calibration was performed before each task. 
The time interval between the diagnostic task on the eye-tracker and the subsequent ET SRI was kept 
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as short as possible to avoid loss of memory (approx. 1-3 min.). During the interview, subjects 
described what they did and thought during the diagnostic task, based on their shown gaze behavior. 
For the recording of the ET SRI, the software OBS was used, which records screen contents including 
sound, so that the videos of the eye movements with the corresponding comments of the subjects 
were available for the later analysis.  

Data analysis. Tobii Pro Lab software was used to analyze the eye-tracking data. In each task, specific 
Areas of Interest (AOIs) were defined around the varied mathematical and instructional task 
characteristics. The number of fixations and fixation durations were determined using the Tobii I-VT 
Fixation Filter. To determine the number of transitions between two AOIs, the videos of eye 
movements were visually inspected. A mixed-methods approach was used to analyze the ET SRI 
data: The ET SRI were first transcribed and coded deductively using qualitative content analysis. The 
following category system was used and binary coded (in parentheses): difficulty-generating task 
characteristics can be identified (1), or not identified (0) when diagnosing a task. It turned out that 
some task characteristics are only identified when reflecting on one's own gaze behavior during the 
SRI. This resulted in another category retrospectively identified, which was evaluated as a 
subcategory of not identified. Identified task characteristics can be correctly evaluated in terms of 
difficulty for students (1) or incorrectly / not further evaluated (0). Task characteristics that are only 
evaluated during the SRI are assigned to the category retrospectively evaluated that counted as a 
subcategory of not further evaluated. Transcripts were coded by two raters with high interrater 
reliability (Cohen's Kappa = .88). The assigned codes were then integrated into a quantitative data set 
to examine differences across experimental conditions using variance analysis. 

Preliminary Results 
Identification and evaluation of difficulty-generating task characteristics 

Two repeated-measures ANOVAs were calculated with the within subject factors task characteristics 
(mathematical/instructional) and the between subject factor condition (experimental/control group), 
separately for the fraction and angle tasks. Figure 2 gives an overview of the average percentage of 
difficulty-generating task characteristics that were identified and correctly evaluated in terms of 
difficulty for students. 

Regarding the fraction tasks, the results showed that there is a significant difference with high effect 
size between the identification and evaluation of mathematical vs. instructional task characteristics 
(F(1,23) = 15.01, p < .001, η2 = .40). This effect is, however, dependent on the experimental 
condition. Bonferroni-adjusted post-hoc analysis showed that differences between mathematical and 
instructional task characteristics can only be determined for participants of the control group (cf. 
figure 2). Here, significantly more mathematical task characteristics were identified and correctly 
evaluated compared to instructional characteristics (H1a). Instructional task characteristics were to a 
large extent not identified and adequately evaluated (H1b). Without specific knowledge, less than 
half of the instructional task characteristics were identified and correctly evaluated on average (M = 
.42, SD = .12). A significant difference with high effect size could be determined between 
experimental conditions (F(1,23) = 31.29, p < .001, η2 = .58). Bonferroni-adjusted post-hoc analysis 
revealed that participants of the experimental group identified and correctly evaluated a significantly 
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higher number of both mathematical and instructional task characteristics (cf. figure 2). Specific 
knowledge about difficulty-generating task characteristics has thus enabled pre-service teachers to 
identify and adequately evaluate more difficulty-generating task characteristics when judging task 
difficulties for students (H2).  

Regarding the angle tasks, however, no significant difference could be determined between the 
identification and evaluation of mathematical vs. instructional task characteristics (F(1,23) = 0.43, p 
= .521, η2 = .02). In the case of the angle tasks, both the mathematical (M = .34, SD = .24) and the 
instructional task characteristics (M = .29, SD = .30) were to a large extent not identified and correctly 
evaluated by the participants of the control group. Thus, only H1b can be confirmed for the angle 
tasks. Comparing the two study groups, a significant difference with high effect size could be 
determined (F(1,23) = 26.29, p < .001, η2 = .53). As can be seen in figure 2, participants of the 
experimental group identified and correctly evaluated a significantly higher number of both 
mathematical and instructional task characteristics. H2 can thus also be confirmed for the angle tasks.  

Figure 2: Means and Standard Error for identified and correctly evaluated difficulty-generating task 
characteristics (mathematical and instructional). *p<.05, **p<.01, ***p<.001. 

Analysis of gaze behavior 

The collected eye-tracking measures were used as indicators of visual attention in diagnosing task 
difficulty. Regarding the fraction tasks, a lower number of fixations and lower fixation durations 
within predefined mathematical AOIs as well as shorter total recording durations could be determined 
for the participants of the experimental group compared to the control group. These group differences 
are statistically significant with high effect sizes (cf. table 1). Against the background that participants 
of the experimental group identified and correctly evaluated significantly more difficulty-generating 
task characteristics, these eye-tracking measures may indicate a more efficient approach to 
diagnosing with specific knowledge. For the instructional AOIs, however, no significant differences 
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in gaze behavior were found between the control and experimental group. Regarding the angle tasks, 
the eye-tracking data analysis is not yet complete but will be presented at the conference.  

Table 1: Eye-Tracking measures (only fraction tasks) 

AOI ET measure Control Group 

M (SD) 

Experimental Group 

M (SD) 

t p Cohens d 

Mathematical Fixation count 

Fixation duration 

28.71 (12.71) 

8.31 (4.34) 

19.14 (7.84) 

4.89 (2.22) 

2.19 

2.55 

.039 

.019 

0.91 

1.00 

Instructional Fixation count 

Fixation duration 

Transition count 

34.35 (6.95) 

6.92 (1.37) 

9.04 (3.90) 

34.21 (11.03) 

7.68 (2.93) 

8.68 (4.24) 

0.04 

0.79 

0.22 

.972 

.442 

.830 

0.02 

0.33 

0.09 

Overall Total record duration 118.62 (12.74) 102.07 (12.03) 3.30 .003 1.34 

Discussion 
The aim of this ongoing study is to investigate which task characteristics (mathematical vs. 
instructional) pre-service teachers identify and evaluate when judging the difficulty of mathematics 
tasks in the domain of fractions and angles. Furthermore, a particular research interest is to explore 
the potential influence of specific knowledge about difficulty-generating task characteristics on 
identification and evaluation processes during the judgment.  

In line with expectations, instructional task characteristics were to a large extent not identified and 
adequately evaluated, both regarding the fraction as well as the angle tasks. These findings support 
existing research on diagnostic teacher judgments (Schreiter et al., 2021), which showed that 
instructional task characteristics are insufficiently considered by teachers. In comparison to the 
instructional task characteristics, difficulty-generating mathematical task characteristics were 
identified and adequately evaluated significantly more frequently in the fraction tasks. In the case of 
the angle tasks, however, both mathematical and instructional task characteristics were to a large 
extent not identified and adequately evaluated. One explanation for this finding could be differences 
in prior knowledge. The results of the prior knowledge test of this study (results will be presented at 
the conference) showed that the participants of both study groups have more prior knowledge 
regarding difficulty-generating mathematical task characteristics in the domain of fractions compared 
to the domain of angles. Overall, the results of the study point to deficits with regard to the 
identification and evaluation of difficulty-generating instructional task characteristics, and, 
depending on the content area, also regarding mathematical task characteristics. However, for an 
effective mathematics instruction, teachers should choose, modify, or create tasks in such a way that 
task difficulties occur in appropriate doses and students are neither over- nor under-challenged 
(Leuders & Prediger, 2016). To do so, teachers need to be able to identify difficulty-generating task 
characteristics and to adequately evaluate them in terms of difficulty for students.  
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In line with expectations, the results showed that specific knowledge enables pre-service teachers to 
identify and correctly evaluate more difficulty-generating task characteristics. This effect could be 
found for both mathematical as well as instructional task characteristics. These results are consistent 
with existing research that highlights the importance of specific knowledge for the accuracy of 
teachers’ diagnostic judgments (e.g., Ostermann et al., 2017). In our study, the collection of direct 
process indicators allowed to gain insights into the positive influence of specific knowledge on 
identification and evaluation processes that underlie teachers’ judgment. Regarding the fraction tasks, 
the collected eye-tracking data further suggested a more efficient approach to diagnosing with 
specific knowledge: pre-service teachers with specific knowledge showed fewer fixations with 
shorter durations in task areas with difficulty-generating mathematical task characteristics. At the 
same time, they identified and correctly evaluated more difficulty-generating task characteristics. 
These results indicate that prospective teachers with specific knowledge are able to process relevant 
information faster, which is often seen in experts compared to novices (Grub et al., 2020). For 
instructional task characteristics, however, no significant group differences were found in terms of 
gaze behavior. It might be possible that there are no observable differences between persons who 
focus on task characteristics and process them fast and those who only pay little attention to the same 
characteristics. One possible explanation for our study finding could be that pre-service teachers 
without specific knowledge may have paid little attention to instructional task characteristics overall.  

Overall, impulses for teacher training can be derived: An intervention on specific difficulty-
generating task characteristics enables pre-service teachers to identify and adequately evaluate more 
difficulty-generating task characteristics and allows a more efficient approach to diagnosing. These 
results point to a need for learning opportunities to build specific knowledge during teacher training. 
Such learning opportunities should cover a wide range of difficulty-generating task characteristics 
(Leuders & Prediger, 2016) and typical student difficulties.  

In addition to the practical relevance, the research strategic approach of this study should be 
emphasized: In the present study, theoretical predictions were made about how person characteristics 
(here: specific knowledge of prospective teachers) and situation characteristics (here: difficulty-
generating task characteristics, content area of the task) influence the assumed information processing 
processes (here: identification and evaluation of task characteristics). These hypothesized 
relationships were then experimentally tested by systematically varying both situation and person 
characteristics and collecting process indicators (here: Eye-tracking data, and ET SRI) to examine 
internal judgment processes. This research strategy allows to generate knowledge about the 
information processing involved in the formation of diagnostic judgments, as has been widely called 
for (e.g., Herppich et al. 2018). 
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Collaborative forms of mathematics teachers’ professional development, such as lesson study, are 
integrated parts of the educational systems in many East Asian countries, while these forms are often 
new in Western countries. In this paper, we focus on a central role in lesson study, that of the 
facilitator. We compare how they talk with teachers and what they focus on in their talk in a lesson 
study context in Denmark and in China. We use a framework consisting of mentoring strategies and 
content categories; both developed empirically in a Chinese respectively a European context. Our 
analysis shows big differences in the facilitators’ ways of engaging in talk with teachers. One big 
difference is the dynamic and relational patterns in the Danish case as compared to the lengthy talk 
of the Chinese facilitator. We analyze these patterns deeply and argue that their differences are not 
only related to the fact that lesson study is new in Denmark, but also to social and cultural differences.   

Keywords: Comparative study, lesson study, the facilitator, mentoring strategy, content categories.

Introduction  
In this paper, we compare the role of the external facilitator (the expert teacher, the knowledgeable 
other, etc.) in the varied forms of lesson study (LS) in Denmark and Shanghai, China. While LS is 
new in Denmark, it has long been a school-based teacher professional development activity in China 
which vary in forms for teachers with different teaching experiences (Huang et al., 2017). Given the 
challenge of importing a routine developed in one culture and one educational system into countries 
with different cultures and systems (Stigler & Hiebert, 2016), it is important to develop insights into 
the roles of central actors in LS, in particular the role of the facilitator. At the level of interaction 
between facilitators and mathematics teachers, we investigate the research question: To what extent 
are there similarities and differences between LS in Denmark and Shanghai in relation to how the 
facilitators talk to the teachers and what content aspects they talk about?  

The role of external facilitators in lesson study 
Research into the role of the external facilitator in LS is scare, though studies emphasize the role as 
crucial (Takahashi, 2014). In countries, where LS is new, there is a lack of external facilitators able 
to support and qualify LS, and the role become often to scaffold the LS processes, not to enhance 
their quality (Hart et al., 2011). Studies from East Asia warn against oversimplifying the role,
emphasizing the complexity of conducting LS (Takahashi, 2014; Ding et al., 2019). We will highlight 
aspects of the role that have been pointed out in different countries.

In a study in the US, Lewis (2016) examines how teacher educators new to LS learn to lead this 
work. The author followed two teacher educators for 18 months, who, among other things, were 
apprenticed

Proceedings of CERME12 3294



to experienced LS leaders before leading LS themselves. For our purpose, especially one challenge 
experienced by the teacher educators seems important: to define a form of leadership that is credible 
and valued and at the same time respectful of teachers’ choices in directing the LS processes.

In a Japanese context, Takahashi (2014) investigates the nature of the final comment of the facilitator 
(i.e., the knowledgeable other). The three selected and popular facilitators (in the Tokyo area) focused
on presenting new knowledge from research and the curriculum, showing the connection between 
theory and practice, and helping others learn how to reflect on teaching and learning. 

Huang et al. (2017) contribute to a better understanding of Chinese LS as regards its social, cultural, 
and institutional aspects. They emphasize that the culture of respect to seniors makes it legitimate for 
teachers to learn from experienced facilitators and from watching exemplary lessons. They suggest 
that in a culture, where less respect is given to seniority and authority, modeling good lessons, and 
getting feedback from facilitators, which are crucial elements of CLS, may not work as effectively.

In another study in China, Gu and Gu (2016) examine the role of the facilitator (i.e., the Teacher 
Research Specialist) in post-lesson debriefings based on more than 100 h. of videos of 50 facilitators. 
They develop a two-dimensional framework for analyzing the mentoring activity: the first dimension 
encompasses the dynamic between the facilitator and the teachers, the mentoring strategies (see 
below), and the second dimension is the knowledge that mentors pay attention to (i.e., mathematical, 
pedagogical and practical knowledge). Regarding the mentoring strategies, Gu and Gu found that 
“the conversations between [the facilitator] and teachers were…monologues rather than dialogic in 
nature”, with the facilitators paying most attention to “what they know and what they anticipated, 
rather than…what teachers were concerned about in their teaching” (p. 451). Regarding the 
knowledge, the facilitators focused on practical knowledge, helping teachers to analyze concrete 
cases that embraced mathematical and pedagogical ideas.  

Theoretical approach 
Given our research questions, we need a theoretical approach that allows us to capture both how the 
facilitators talk with teachers, and what content aspects they focus on. Regarding the ‘how’ question, 
we are inspired by Gu and Gu’s (2016) four types of mentoring strategies, especially because they 
are developed in a Chinese LS-context. The strategies are: 1) General comments: what teachers in 
general should know and do, regardless of the specific LS. 2) Comments on anticipated problems: 
focused on problems, that teachers were expected to encounter, and advice on how to deal with them. 
3) Responses to teachers’ questions: related to issues occurring in the observed lesson. 4) Dialogues
with teachers: the facilitator and teachers discuss and share their views on these issues. Gu and Gu
(2016) characterize the conversation between facilitator and teachers as authoritative, if the first two
types dominate, and as dialogic, if the last two types dominate.

Regarding the ‘what’ question, we are inspired by the Knowledge Quartet (KQ) (Turner & Rowland, 
2011). The KQ consists of four categories: foundation, transformation, connection, and contingency.
Foundation refers to the teacher’s theoretical background and beliefs in terms of what they learned 
at school and teacher education etc. It includes knowledge of mathematics and of research on 
mathematics education, and beliefs about mathematics, its teaching and learning. The three other 
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categories are different as they refer to ways in which “content knowledge comes into play in the 
classroom” (p. 199) as knowledge-in-action. Transformation relates to the choices, teachers make, 
when transforming their own content knowledge into pedagogical forms targeted at students, while 
Connection refers to teachers’ choices and decisions about establishing coherence in students’ 
learning across lessons and class levels. The last Contingency category concerns the teacher’s 
response to unexpected classroom events. The KQ is suited for our purpose since it focuses on content 
that comes into play in classrooms (or in conversations as in this paper), and not explicitly on the 
knowledge possessed by the participants or the knowledge they ought to possess. This perspective on 
knowledge is different from the one in Gu and Gu (2016).  

Methodological approach 
We conduct our comparative study as a multiple case study based on two cases from existing research 
projects, one in Denmark (Skott & Møller, 2020) and the other in Shanghai (Ding et al., 2019). We
introduce briefly the two projects, their contexts in each country, and our analytical strategy.    

The Danish LS case 

Introduced around 2010, LS is new in a Danish context. A LS project is typically initiated by persons 
outside a school as short-termed initiatives that are self-contained and aim to learn teachers to do LS 
on their own. The 1½ year long project, that was initiated by the first author’s research group in 2014 
at a school in the Copenhagen area, fits this description (for details see Skott & Møller, 2020). 

At the time of the project, there were radical educational changes at the political level in Denmark.
Particularity, one change was important: the steering documents now encouraged teachers to plan in 
a certain way and to formulate measurable learning goals. This challenged teachers in general.       

The project used a Japanese approach to LS (Murata, 2011), but with repeated teaching of the revised 
lesson plans. The selected case was from the project’s second year, and the group consisted of three 
experienced mathematics teachers and two facilitators (teacher educators) from the research group 
(Ea and Pia) of which only Ea had experience with LS. Ea and Pia facilitated all the LS processes 
(three two-hour planning sessions, three repeated teaching – one by each teacher – and three one-hour 
post-lesson debriefings) and participated in them on equal terms with the teachers. The teachers aimed 
to design a new teaching approach to the solution of linear equations in which their 6th grade students 
would be supported in developing a structural understanding of the equal sign. 

For this paper, we selected the second planning session since it was representative of the facilitators’ 
ways of engaging in conversations with the teachers. During this session, the teachers presented their 
pre-prepared learning goals and tasks, which the participants further developed together. Transcripts 
of the video-recordings of this session comprise our primary data, but we also include lesson plans.  

The Shanghai Lesson Design Study case (SH LDS) 

The LDS is a variation of the forms of LS (called “Keli” in Chinese) in the school context in Shanghai.
LS is one form of school-based development in which each teacher participates as part of their work 
(Huang et al., 2017).  The LDS model has three LS cycles (L1, L2 and L3) (for more details see Ding 
et al., 2019). It was conducted at an international school in a suburb of Shanghai from 2012 to 2015. 
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The selected case was one of seven Keli topics focused on in the LDS. The LDS group consisted of 
seven Keli elementary teachers (Grades 1-5), two expert teachers invited by the school (one was the 
mathematics Teacher Research Specialist, Zhang, in this paper), one researcher (the second author),
and five other mathematics teachers (Grades 1-8) from the school’s teacher research group (TRG). 
The Keli teacher was a junior with two years of teaching experience. The case topic was to investigate 
the relationship between perimeter and area of rectangles in the Shanghai Grade 3 textbook. 

In this paper, we focus on Zhang’s talk in the first post-lesson debriefing of the selected Keli case.
There were roughly two parts of his talk. The first part lasted 40 min. and focused on the problems in 
L1 and how to redesign the lesson in L2. The second part lasted 35 min. and focused on how to 
reimplement the redesigned lesson. The meeting lasted 75 min. Transcripts of video-recorded TRG-
meetings are our primary data materials, but we also draw on lesson plans and a teacher interview.  

Strategy of analysis 

To examine both the ‘how’ and the ‘what’ questions, we analyzed the facilitators’ utterances line-by-
line and coded them in a two-folded way: mentoring strategies and KQ-categories. However, in the 
Danish case, Gu and Gu’s four types proved to be insufficient to capture all the strategies used by the 
facilitators. We thus added three more types based on our preliminary data analysis: 1) Encouraging 
comments, such as emotional recognition of teachers’ ideas and suggestions (e.g., “I think you did 
the right thing by choosing goals”). 2) Challenging comments, such as disagreeing with teachers’ 
proposals and understandings (e.g.,” I think [your learning goals] are too comprehensive to be reached 
in a single lesson”). 3) Building on or reformulating teachers’ ideas, that are expressed in the 
conversation (e.g.,” but as you said [this] could have been taught in the previous lesson, so in this 
lesson we could start from …”). 

Regarding the KQ-categories we were inspired by the codes provided by Turner and Rowland (2011).
We did not code short utterances that only had a clarifying purpose and was unrelated to the KQ. 

Results of the analysis 
The Danish case 
Few of the facilitators’ utterances in the second planning session fell within the first two of Gu and 
Gu's (2016) mentoring strategies, while slightly less than half fell within their last two types, and 
slightly more than half fell within in the three added types. According to Gu and Gu, the facilitators, 
thus, seemed to talk with the teachers in a dialogic way. However, we nuance this characteristic later.

The main part of the facilitators’ utterances fell within the KQ categories. Of these, the majority fell 
within the connection and transformation categories, while the rest was of a foundational nature. 
There was almost none in the contingency category, which is not surprising, as the focus was on
planning. The contributions outside the KQ, was primarily encouraging comments, such as “What 
you suggest sounds reasonable” (Ea). This indicates that the facilitators primarily focused their 
contributions on knowledge-in-action, which we will elaborate below.   

We will give three examples of different combinations of mentoring strategies and categories. The 
first is an example of: response to teachers’ question (third type) and foundation. The example is 

Proceedings of CERME12 3297



interesting, since this is the only combination where the facilitators brought foundation in the form 
of mathematics education research into play. Initially, a teacher asked, “what does research say,
should it [the context of the task they were designing] be something that the students can relate to, or 
could it be purely mathematical?”. Ea answered that “research does not say anything about that is has 
to be a context from students’ everyday life, but Realistic Mathematics Education emphasizes that it 
should be a context that the students can imagine and experience as meaningful”. Here, the facilitator 
transformed her foundational knowledge of the specific research result into forms that made sense for 
the teacher in relation to the specific issue and that helped all the teachers to broaden their perspective 
on the issue. Note that it was a teacher asking for this kind of knowledge.  

The second is an example of the combination: building on teachers’ ideas (added type) and 
foundation. The participants discussed learning goals in relation to the task they were designing, when 
a teacher claimed that an equation “can be interpreted in many ways as” something to do with concrete 
materials and “something about x”.  Pia replied, “That is exactly why it makes sense to break down 
goals … you need to focus only on parts of them in specific lessons”. Breaking down goals is a term 
introduced by the new steering documents, which the teachers have difficulties assigning meaning to 
in practical situations. As such, the term can be said to be part of the foundation as it needs to be 
learned formally for instance by studying the documents. The facilitator built on the teacher’s idea of 
many layers of goals to provide practical meaning to the term by meta-communicating its purpose 
and how it can affect their planning. We argue again that the facilitator transformed her foundational 
knowledge into forms that were meaningful for the teachers in the specific situations.    

The third is an example of the most frequent combination: dialogues with teachers (the fourth type)
and connection. The participants discussed how to introduce the task to students. Pia suggested to use 
scenarios that they had formulated because “it is a difficult process for students to make up a scenario 
that can be solved without including weird numbers. Then you can also formulate different scenarios 
to meet the needs of different students”. This example is one of many where the facilitators intended 
to make the teachers themselves understand and realize what would be the most appropriate decision 
in a particular situation, instead of telling them what to do. The facilitators formulated their advice as 
suggestions, which they provided reasons for. In this case, the reason was the anticipated 
epistemological difficulty for students (i.e., the connection category).  

In summary, the facilitators contributed to establish a conversation with the teachers, that was much 
more dialogic than authoritative in nature. It was characterized by being dynamics in terms of short 
contributions (less than two min.) from all participants, open and negotiable. The negotiations were 
on the terms of the teachers (as the aim was to produce a lesson plan that suited their needs) and based 
on their contributions (i.e., building on their ideas, questions, and concerns). The facilitators did not 
make decisions (not even when asked) but attempted to support the teachers in making these by 
encouraging and supporting pedagogical reflections. The content of the facilitators’ contributions was 
mostly related to knowledge-in-action (transformation and connection), but also to the foundation 
category. However, then the facilitators contributed something of a foundational nature, they tended
to transform it into forms that were meaningful for the teachers in specific situations and not to present 
it as knowledge per se. Hence, contributions of this kind tended also to be knowledge-in-action.
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Instead of describing this type of conversation as dialogic, we suggest to characterizing it as 
relational, as it was crucial for the facilitators to establish a good relationship with the teachers (cf. 
the nature of the added types). This seemed to be a prerequisite for producing a joint lesson plan.    

The SH LDS case 
During the 75 min. long post-lesson debriefing, Zhang talked most of the time and the teachers 
listened. The conversation can, thus, according to Gu and Gu (2016), be characterized as authoritative. 
However, after a close analysis of the content of Zhang’s talk, we consider the conversation as 
dialogic, which we will illustrate by two examples. First, Zhang initiated the debriefing by saying to 
the teacher, “In LS, you need to pay more attention to other’s critical and creative ideas about your 
lesson…merely praising your lesson will not help you to improve your teaching”. This comment can 
be perceived as contributing to an authoritative conversation. However, given the limited time of the 
school-based LDS and the business of teachers, the general cultural atmosphere in China is to be 
humble and to first learn from the facilitator’s input to the LDS by listening carefully. Second, in the 
end of the first part Zhang said to the teacher, “So now you understand what problems you had in L1, 
and why we must modify the lesson plan. The key learning goal of this lesson is to enable pupils to 
participate into and thus gain learning experience of the whole process of plausible reasoning in 
mathematics”. Hereafter all the participating teachers smiled to Zhang. They thus used a professional 
sign in China to show their respect and high appreciation of his input and practical wisdom. This 
indicates that Zhang’s talk was not driven by his power or position above teachers, and that the 
questions he posed helped them to reflect on alternative ways to deal with their problems of using the 
reformed textbooks. Hence, when we consider Zhang’s talk as a whole, we will characterize it as 
contributing to a predominantly dialogic conversation.  

Regarding the ‘what’ question, in the first part of Zhang’s long talk we could identify the foundation 
category, but with strong links to the transformation and connection categories. For instance, “In the 
west the focus is on the ground theories of the cognitive/psychological processes. We focus on craft 
art on the application of the theories. That is, how we deliberately use these learning theories to 
improve our lesson plan and classroom teaching and learning”. The same picture emerged in the 
second part but combined with an emphasis on contingency of how to design and implement tasks to 
support students’ different needs in class as regards their anticipated reasoning through inquiry-based 
activities. Thus, it was difficult to categorize Zhang’s utterances into the individual KQ categories.

We will give an example of the most frequent combination of mentoring strategies and KQ 
categories. The example combines the two types: responses to teachers’ (not formulated) questions 
and (implicit) dialogues with teachers, with the foundation category that links to transformation and 
connection. In the first part of his talk, Zhang posed a sequence of questions, “Why chose this topic 
in the textbook? … From the van Hiele theory of levels of geometrical thinking …”. Zhang further 
posed questions for teachers to reflect on the updated educational assessment of deep learning, such 
as “whether the construction of the lesson matches our fundamentally shared educational value by 
the majority in the field”. Though, Zhang’s talk may be considered as “monologic rather than 
dialogic in nature” (Gu & Gu, 2016, p. 451), we interpret his sequence of questions “why … 
(because)” and “whether … or” as a mean to support teachers to reflect on the use of updated 
theories and educational assessment in LS.
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In the utterances, Zhang expressed foundational knowledge such as awareness of educational 
purpose, the van Hiele theory, and theories of deep learning of mathematics. However, this foundation 
knowledge is specifically targeted the transformation and connection categories that are related to 
teacher’s struggle in understanding the concepts of mathematics inquiry and inquiry-based teaching 
addressed in the reformed curriculum and textbooks. That is, Zhang links foundational knowledge to 
the transformation and connection categories by relating to the teacher’s actions in L1 and her struggle 
with understanding the key problems embedded in the reformed textbook. Note that the teacher’s 
problems were only evident in an interview with her after L1. It was not uttered during the debriefing. 

In summary, Zhang’s talk was considerably long and dominated the post-lesson debriefing. However, 
our analysis illustrates that he addressed the teachers’ shared problems with the reformed textbooks 
and supported their learning of craft skills according to updated theories and educational assessment.   

Concluding discussion 
We identified major differences by comparing how the facilitators talked with the teachers and what 
content aspects they talked about in the Danish LS and the SH LDS. In the Danish case, the facilitators 
contributed to a type of conversation that we called a relational dialogue. Contributing encouraging 
comments, challenging comments, and building on teachers’ ideas (the three added types of 
mentoring strategies), it was crucial for the facilitators to establish good relationships with the 
teachers to work together in the new LS context. Moreover, the facilitators’ way of talking with 
teachers (incl. also the strategies related to a dialogic conversation) aimed to encourage and support 
teachers in their reflections on appropriate decisions regarding specific issues related to their 
classroom teaching. Our analysis shows that the facilitators supported the teachers’ reflections, 
among other things, by providing reasoned suggestions in close response to the teachers’ expressed 
needs. This is contrary to how the facilitators in Gu and Gu’s study (2016) talked with teachers.   

In contrast, the Chinese facilitator did not need to build up relationships with the teachers due to the 
school-based LS systems (Huang et al., 2017). Thus, Zhang could directly use the limited school-
based meeting time to guide the teachers to deliberately learn craft skills. The use of Gu and Gu's
(2016) mentoring strategies shows that Zhang contributed to an authoritative conversation. However, 
our analysis shows that it is more dialogic in nature. We see roughly two dialogical layers. One layer 
is self-evident as different teachers’ utterances were recorded and thus noticeable in the analysis. The 
second layer concerns the teachers’ gesture (e.g., smiling) and appreciation of Zhang’s contribution.
We interpret this as an expertise of the facilitator, being able to notice (implicitly) the teacher’s
struggle and provide a way to reflect pedagogically through a sequence of why and whether questions. 

Regarding the ‘what’, our analysis shows that the facilitators focused their talk on the content, but 
with emphasis on different aspects. In the Danish case, the foundation category played a lesser role 
than connection and transformation, but the analysis shows, that regardless of which category the 
facilitators related to, their contribution took the form of knowledge-in-action. That is, they tended to 
transform their knowledge into forms that were meaningful for the teachers in relation to specific 
classroom situations and not to present it as knowledge per se. This seems to some extent to be 
different in the Chinese case, where the foundation category was prominent in Zhang’s talk. However, 
Zhang was expected to provide foundational knowledge and gained respect by doing it, while the 
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Danish facilitators only contributed such knowledge, when requested to do so. This difference might 
be explained in terms of the differences between the two countries. In Denmark, teachers generally 
have a high degree of self-determination, a so-called methodological autonomy (Skott & Møller, 
2020). This means that the single teacher tends to acquire the legitimacy to decide on teaching matters 
themselves, not only on those related to methods. For a facilitator, it is thus often demanding to 
balance between orienting teachers’ work in certain directions and at the same time being valued and 
credited, as in Lewis’ study (2016). While in China, there is a cultural belief: ‘there must be a teacher 
from whom one can learn when one works together with other persons’, which conveys a collective 
belief that learning is a process that involves acting, speaking, listening, observing and thinking in a
group where some may be more knowledgeable than yourself. Combined with the cultural values of
seniority and authority (Huang et al., 2017), the facilitator is thus from the outset positioned as a 
competent actor to be listened to. Although, the participating teachers differed in terms of experience 
– the Chinese teacher was a junior – this did not seem to influence our results significantly.

One important contribution of this initial comparative study is that although LS is new in Denmark 
and requires a new actor role, this novelty alone is insufficient to explain the differences in ‘how’ and 
‘what’ the facilitators talk with teachers. The study indicates that cultural, social, and power related 
issues at both the interactional and a broader level influence the role of the facilitator. We shall 
examine such issues and suitable analytical frameworks further in our future comparative work. 
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The relation between pre-service teacher education and the day-to-day practice of mathematics 
teachers in schools is a recurring topic in research on teacher education. Furthermore, the 
Norwegian teacher education programme has been criticised for polarity between theory and praxis.
The following pilot study investigates what aspects of working with resources in university 
coursework pre-service mathematics teachers perceive as valuable preparation for teaching 
mathematics. I found that university coursework can alleviate the gap between theory and praxis 
through resources for teaching mathematics. Working with resources can provide learning 
opportunities that pre-service mathematics teachers experience as practical and useful.

Keywords: Documentational approach to didactics, resources, mathematics teacher education, 
preparedness, theory-praxis gap.

Introduction
Novice teachers leaving the profession is a challenge in many countries. In Norway, nearly 30% leave 
their teaching position within the first four years (Boyesen, 2021). The relation between pre-service 
teacher education and the day-to-day praxis of mathematics teachers in schools is a recurring topic in 
research on teacher education, and there is a call for better alignment of the knowledge development 
that takes place within universities and schools (Winsløw et al., 2009). Norwegian teacher education 
has been criticised for polarity between theory and practice, and developing a teacher education 
programme which better prepares pre-service teachers for their professional lives is pivotal (Mosvold 
et al., 2018).

In Norway, pedagogical content knowledge and, in this case, mathematical knowledge for teaching
has been prominent in teacher education. However, the past decade witnessed a shift of focus from 
mathematical knowledge for teaching to core practices in the work of teaching mathematics (e.g., 
leading group discussions), both in the Norwegian teacher education programmes and in the 
international research literature on teacher education (Mosvold et al., 2018). Nevertheless, several 
researchers have expressed concern about this shift in ignoring content knowledge while highlighting
the teachers' practice (Hovtun et al., 2021). I suggest that both approaches hold promise with respect 
to educating mathematics teachers who are well prepared for their profession.

Paving the way for a more extensive Ph. D study, the research question for this pilot study is: What 
aspects of working with resources in university coursework do pre-service mathematics teachers 
(PSMTs) accentuate as beneficial in preparing them for teaching mathematics in elementary school?
In line with the shift towards core practices, the participants in this study showed an inclination 
towards teaching and experiences derived from praxis and school placement. However, as will be 
elaborated upon in due course, they also expressed appreciation of university courses that facilitate 
connections between knowledge acquired in university and in school placement.
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The overarching goal of my inquiry is to contribute to mitigating the transition from pre-service 
teacher to novice teacher, aspiring to retain novice teachers in teaching positions. I contend that 
working with resources "hands-on" in mathematics teacher education can be beneficial in addressing 
the gap between theory and praxis, albeit not confined to core practices but rather as an activity that 
might amalgamate core practices and mathematical knowledge for teaching.  

Theory 
I propose taking a resource perspective on the issue of connecting theory and praxis. Hence, I chose 
to use the documentational approach to didactics (DAD) as my framework. Moreover, for the pilot, I 
rely on the concept of schemes as retained in the instrumental approach by Vergnaud (1998), which 
draws on activity theory and sociocultural theory of teaching and learning (Gueudet, 2017; Gueudet 
& Trouche, 2009). Further, I consider the process of instrumentation (how an artifact influences the 
subjects' activity) and instrumentalization (how the subject shapes the artifact) as operationalising the 
PSMTs' interplay with resources.  

Pepin (2018) argue that research on curriculum materials (in mathematics education) to date has 
largely focused on how these support student learning with less attention to teacher learning. She 
further claims that simply exploring how teachers interact with curriculum resources “as is” is not 
sufficient (e.g., investigating schemes of use), but that extending the research area by also addressing 
ways of how teachers can usefully work with these “tools” is equally important (ibid., p. 366). For 
this purpose, Pepin distinguishes between curriculum materials and educative curriculum materials. 
The latter are materials designed to support teacher learning as well as student learning. Retaining 
this perspective on teacher learning, I contend that this is also pivotal to pre-service mathematics 
teachers learning and teacher education. However, as described by Pepin (ibid.), this perspective 
focuses largely on materials designed for teachers (e.g., by researchers/ teacher educators) to further 
help teachers design learning sequences. In comparison, the tentative position derived in this pilot 
study is that (student) teachers learn from choosing, transforming resources, implementing them, 
revising them, etc. This is in line with the perspective proposed by Gueudet and Trouche (2012) in 
terms of taking a broad view on resources as anything likely to re-source the teachers’ practice. 
Hence, I argue that involving PSMTs in all aspects of working with and developing resources, not 
limited to curriculum resources, is pertinent. Therefore, I consider the DAD framework apposite for 
this study as it regards teachers’ work with resources as pivotal in their professional activity and 
professional growth (ibid.). 

Thus, following the DAD, the aspects accentuated by the PSMTs in preparing them for teaching 
mathematics are operationalised through the concept of schemes, and studying the first three elements 
of a scheme. According to Gueudet (2017, p. 200), a scheme has four parts:  

- An aim (can correspond with the goal in activity theory); 
- Rules of action: regular ways of acting for the same aim; 
- Operational invariants of two kinds: theorems-in-actions (propositions considered as true by 

the subject) and concepts-in-action (concepts considered as relevant for the subject); 
- Possibilities of inferences: the subject can adapt his/her activity to the special features of a 

given situation corresponding to the same aim. 
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Delineated by Vergnaud (1998), a scheme developed by a subject is associated with a class (“set”) of 
situations which in turn correspond to the same aim of the activity. In this case, the aim I have chosen 
to consider (inferred from the data material) is knowing how to teach mathematics corresponding to 
the situation of being part of a teacher education programme attending classes on mathematics 
education. Hence, the activity considered in this case is at a rather general level and associated with 
a “big scheme” (Gueudet, 2017). One might be critical of this level of generality. However, as I have 
chosen to focus on consistent schemes in all the participants' responses, I suggest that a “big scheme” 
is applicable for rendering the different aspects in this context. 

As the participants in this pilot study have not been followed and observed over time, rules of action 
represent what the PSMTs perceive to be regular ways of receiving lectures and teaching in their 
education programme. This is operationalised through their answers in this inquiry, consisting of a 
questionnaire and written reflections. Moreover, rules of action also represent omissions in relation 
to the same education programme as evidence of what the PSMTs would have preferred their 
education to contain. The operational invariants are inferred from these rules of action as the 
reasons/beliefs behind said omissions and experiences. As long-term follow-up was not done, the last 
element of schemes, possibilities of inferences, is beyond the scope of this interim study.    

Finally, the process of instrumentation/instrumentalization details the PSMTs' interaction with 
resources. Resources in this case, denotes an activity that, in their own view, prepares the PSMTs for 
teaching mathematics supporting their learning process for the aim presented above.  

Methodology 
Since 2017, the Norwegian teacher education has been a five-year education programme (previously 
four years), and the graduates receive a master’s degree. In their fourth year, the student teachers 
choose their specialisation. The participants in this pilot are in their fourth year. They specialise in 
mathematics education, which also entails having at least 60 ECTS credits in mathematics from 
previous courses, which are didactical courses focusing on the learning and teaching of mathematics 
in primary schools. The data collection for the pilot was based on the participants’ efforts in 
coursework in the fourth year of their educational trajectory.  

As I try to solicit the opinions and experiences of the participants, the pilot study is conducted from 
an interpretivist position (Scheiner, 2019). Through a qualitative case study involving seven student 
mathematics teachers, I investigated what aspects of working with resources this group of PSMTs 
accentuate as beneficial in preparing them for teaching mathematics in school. The participants 
attended a course on problem-based mathematics education at a university in Norway. In this course, 
the PSMTs are introduced to a variety of resources on the subject of problem-solving and exploration 
as work methods in mathematics. At the end of the semester, the PSMTs were required to write down 
some overall reflections relating to their experience in this course, at which point they had only had 
one week of school placement. Seven responses were produced and gathered from the participants. 
Further, the participants took part in a qualitative questionnaire with open-ended questions at the end 
of the academic year. The questions focus on resources and the feeling of preparedness for teaching 
mathematics in elementary school. When completing the questionnaire, the PSMTs had been in 
school placement for five weeks, giving them opportunities to test and use their resources. 
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The overarching aim of the pilot was to gain an account of what the PSMTs regard as important in 
their mathematics teacher education. Simultaneously, I also ventured to discern what encourages or 
stymies their vocation for teaching mathematics. The concept of schemes as described within the 
DAD is pertinent for both objectives. Moreover, the data have been analysed using a qualitative 
content analysis approach where the theoretical categories (Kuckartz, 2019) are derived from the 
concept of schemes, namely aims, rules of action, and operational invariants, and further, the 
resources associated with the aim. The data analysed are the participants' answers to the given 
questionnaire and their written reflections from the coursework. The questionnaire was in Norwegian 
while they wrote the “overall reflections” in English.  

As the data material in this pilot is limited, a discussion on trustworthiness is apposite. It is important 
to observe that this paper should be viewed in the context of a report on a pilot study. With respect to 
transferability, the sampling has indeed been purposeful as these participants are the predecessors in 
line of study to the participants selected for the main study. Hence, despite the lack of “thick” 
descriptions, I argue that the collected data give a reasonable foundation for interim inferences. 
Further, some degree of triangulation is applied by juxtaposing the overall reflections and the 
questionnaire. 

Results 
Because the scope of this pilot is not to study the resources used in a specific teaching unit nor the 
PSMTs documentation work per se, I do not present the data using specific tools from the DAD, such 
as a document's table. Rather, in the following, I present excerpts from both the PSMTs' reflection 
notes and their answers in the questionnaire, emphasising shared features or attributes in the PSMTs' 
schemes that might inform the overall goal of better alignment of the knowledge development 
happening within schools and universities. For the situation of studying to be a mathematics teacher, 
the aim at the crux of all the PSMTs responses was knowing how to teach mathematics. In this paper, 
I have chosen to focus on this aim as it is salient both for theoretical and practical knowledge 
development. 

Aim: Knowing how to teach mathematics 

In the questionnaire, the PSMTs were asked what they had found useful in their teacher education so 
far and what made them (better) prepared to teach mathematics:  

PSMT 1: Lectures in didactics of mathematics, so how to teach mathematics. 
PSMT 2: Another thing that I think has been very useful is learning about different strategies 

for teaching which we can use to plan good lessons for teaching mathematics. 
PSMT 4: More school placement and to learn more about ways to teach [mathematics]1. 

These excerpts serve as examples of an attribute present in all the participants' responses, without 
exception, namely the expressed desire to know more about how to teach mathematics to children in 
elementary school. Typically, they emphasised learning about methods for teaching mathematics as 
particularly useful so far in their teacher education and simultaneously as something they wanted to 

 
1 Words enclosed by brackets are added for the sake of context when not evident from the excerpts themselves. 
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learn more about to be more prepared for teaching. Several of the PSMTs put this in contrast to what 
they discern has been the norm in their teacher education:  

PSMT 3: They often focus more on teaching us mathematics and not on how to teach 
mathematics. 

PSMT 7: The introductory course was mainly doing mathematics. A lot of the curriculum 
was repetition from upper secondary school. 

As demonstrated in the quotes above, some of the participants criticised previous mathematics 
courses in their teacher education programme, claiming that they focused too much on learning 
mathematics (which they, e.g., PSMT 7, described as a repetition from upper secondary school) and 
not on teaching mathematics. Triangulating these results with the PSMTs' “overall reflections”, the 
PSMTs have a want for understanding how the knowledge acquired in their teacher education 
programme can have practical applications: 

PSMT 3: This is the first course [problem-based mathematics education] that has allowed us 
to use what we already know and have learned before to make something that is 
going to be useful for us as teachers in the classroom. 

The PSMTs express a lack of relevance and a call for practicable knowledge in their teacher 
education. Investigating this further, I now turn my attention to the rules of action and operational 
invariants interconnected with the aim described in this section and proposed resources thereof.  

Rules of action and operational invariants 

A possible operational invariant inferred from what has been explored thus far can be that the PSMTs 
consider themselves proficient in mathematics and that teacher education should focus on learning 
how to teach mathematics in elementary school practically. The rule of action in the PSMTs 
experience has, to a large extent, been learning mathematics. However, drawing on the operational 
invariant expressed above, what they would have liked to be the rule in their education is rather 
learning practical ways to teach mathematics. Examples they list, among others, are teaching 
methods, how to introduce new mathematical topics to young students, learning about how to 
differentiate their teaching to include all the students in a class, and learning about students with 
learning difficulties in mathematics.  

In the question of what could help them to be better prepared for teaching mathematics, five out of 
seven participants answered more school placement: 

PSMT 5: We could use more school placement, and to work with connecting what we are 
taught [in university] to practical situations and how to use it. 

When comparing with the “overall reflections”, all the participants have contemplated the connection 
between what they learn in university and in praxis. Drawing on these responses, another operational 
invariant is deduced. The connection between what is taught at university and the field of praxis is, 
in many cases, not apparent to the PSMTs. Hence, learning in and from praxis is seen as more relevant 
and useful. Albeit this is by no means a new discovery (Hammerness, 2013; Solomon et al., 2017), it 
is still salient in context of this study as an overarching goal is to find a viable way to attend to the 
gap between theory and praxis. The PSMTs then perceive theoretical learning as the rule of action 
while they prefer learning in and from school placement. However, when they receive help in 
connecting the two, they are more positive as elaborated upon in the following section.   
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Resources: What helps the PSMTs in learning how to teach mathematics 

With respect to preparing them for teaching mathematics, the PSMTs endorse activities that help 
them connect theoretical and practical considerations – here represented by two of the participants 
reflections: 

PSMT 6: Some of the [problem-solving] task [sic] has been hard to find the “right” learning 
goal [from national curriculum], and then we had some discussions around different 
goals. This has been so learning full [instructive] for me2. 

PSMT 7: It has been exciting to read about what authors think students think and feel about 
problem-solving, and afterwards go out and actually see that a lot is true. I use a lot 
of what I read, and have used it both when planning a lesson plan, but also during 
planning in practice [school placement] and as a substitute teacher.  

All the participants accentuated how working practically with tasks in coursework at the university 
helped them connect research on mathematics education to practical situations. Further, as PSMT 6 
exemplifies, connecting this activity to the national curriculum was experienced as positive and 
instructive. Through a process of instrumentation, problem-solving help the PSMTs reflect on 
practical and theoretical considerations for teaching. Moreover, as PSMT 7 shows, it leads them to 
enact what they have learned in coursework in their own teaching and thus, appropriating the 
knowledge from their coursework (instrumentalization). This holds implications for mathematics 
teacher educators as it exemplifies what activity PSMTs might experience as meaningful and relevant 
in their further work as pre-service teachers. 

Moreover, the PSMTs appraise problem-solving tasks as an asset both for their understanding of 
students (experience how the students might think/feel) and as a method for teaching which supports 
them in several ways: 

PSMT 1:  Having the opportunity to work practically with tasks we can bring to the students 
ourselves has given me a greater experience of what it is like to work with such 
tasks with the students.  

PSMT 7:   Now I am so lucky that I have many problem-solving tasks in my folder, as well as 
which learning goal they are under. This helps me a lot later. I have already planned 
to have a folder with problem-solving tasks that are sorted by year level. This way 
they are easy to retrieve when needed. 

Thus, in working with resources for problem-solving, some of the PSMTs' requests for their education 
appear to be met (instrumentation) e.g., learning methods for teaching (problem-based teaching) and 
ways to differentiate their teaching through using mathematically rich tasks. Moreover, as PSMT 7 
shows, it can also affect their overall practice as mathematics teachers.  

Discussion and conclusion 
The RQ of this study was the following: What aspects of working with resources in university 
coursework do pre-service mathematics teachers accentuate as beneficial in preparing them for 
teaching mathematics in elementary school? I venture that explicitly working with resources for 
teaching mathematics might be one feasible way to align better what pre-service mathematics 
teachers learn in university coursework with what PSMTs themselves accentuate as beneficial in 

 
2 I have not corrected their English writing to prevent conveying misconstrued reproductions.  
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preparing them to teach mathematics in elementary school (as expressed by PSMT 7 above). The 
PSMTs in this study express discontent with the current allocation of theoretical and practical learning 
in their mathematics teacher education, claiming that praxis and school placement provides more 
relevant and applicable knowledge. The PSMTs express that when entering mathematics teacher 
education, they expect coursework and teaching to give instruction on how to teach mathematics to 
students in elementary school. In contrast, their experience is that more attention is given to teaching 
them (the PSMTs) mathematics rather than how to teach the subject themselves (e.g., PSMT 3). 
However, when they work with resources for problem-solving in university coursework, they 
perceive this activity as practical, instructive, and relevant to their future professional work as 
mathematics teachers. Following this, I claim that working with resources in university coursework 
can be auxiliary in amending the strategy of mathematics teacher education.  

Further, two important aspects of working with resources is evident from the participants' responses. 
First, it is the mathematical content of the problem-solving tasks themselves and the opportunities 
these provide in the teaching of mathematics as expressed by both PSMT 6 and 7. They appreciate 
both solving the tasks themselves in preparing them for what meets the students, but also how these 
tasks facilitate learning with respect to the national curriculum. Hence, they regard content knowledge 
as relevant in preparing them for teaching mathematics. Second, they accentuate the methods for 
teaching that problem-solving tasks provide, such as problem-based teaching, differentiation, and the 
more general activity of gathering problem-solving tasks they can use later in their own teaching. As 
PSMT 3 exemplifies, such activity is “useful for us as teachers in the classroom”. This suggests that 
working with resources may also promote core practices in university coursework.  

A recent study in Norway shows that student teachers often see theory and praxis as separate entities 
and that theory does not have a place in discussing their experience when in school placement (Brekke 
& Leikvoll Eide, 2021). The results presented in this paper are in line with these findings and show 
that PSMTs need help establishing meaningful connections between knowledge acquired in 
university and in school placement. Evidently, these results are the expressed experiences of a small 
group of PSMTs. However, from what has been conveyed in this pilot I consider it reasonable to 
suggest that there is an imbalance between teaching related to praxis and strictly teaching on 
mathematical content in their educational trajectory. Moreover, Hammerness (2013, p. 411) found 
that when asked about learning opportunities grounded in practice, teacher educators, in line with 
their student teachers, saw the school sites as the places that provided those opportunities suggesting 
a discrepancy in the structure of the teacher education and how student teachers prefer to be educated. 
As seen from the results of this pilot study, the PSMTs accentuate working practically with resources 
for teaching mathematics in university coursework as meaningful and relevant to them, hence, 
supporting their vocation for teaching. Thus, resources for teaching mathematics can provide learning 
opportunities grounded in practice while at university, showing that coursework can also contribute 
to alleviating the gap between theory and praxis. How such work can facilitate professional growth 
(as described by Gueudet and Trouche (2012)) for PSMTs in mathematics teacher education requires 
further study, and is the scope of my ongoing PhD study.  
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A main focus in the field of research on competences of teachers is on diagnostic competence. 
Although it is stated that prospective teachers’ diagnostic competences are trainable, they are still 
described as too low. Therefore, the present study aims to foster diagnostic competence of prospective 
primary teachers. In the study diagnostic competence is conceptualised with so-called epistemic 
activities. The treatment bases on empirically known factors about fostering diagnostic competence 
and follows the teaching and learning method of comparing and contrasting. The success of the 
method is proven for various fields but has not yet been researched in the field of professional 
development of prospective teachers. The article introduces the theoretical framework, the method 
and results of the data analysis.  

Keywords: Diagnostic competence, developing diagnostic competence, measuring diagnostic 
competence, comparing and contrasting, inquiry-based learning. 

Introduction 
Within the field of teachers’ competences an important focus lies on diagnostic competence that we 
understand as a teacher’s ability to identify weaknesses and strengths in students’ mathematical work. 
It is considered as an essential part of teachers’ professional knowledge which impacts the quality of 
teaching and students’ learning (Baumert & Kunter, 2006). Research showed that teachers’ 
competences are trainable (Herppich et al., 2018) but it is also stated that teachers’ diagnostic 
competences are too low (van Ophuysen & Behrmann, 2015). Therefore, the systematic development 
of teachers’ diagnostic competence has become a relevant issue of educational research (Chernikova 
et al., 2020; Larrain, 2019; Hoth, 2017). 

For this reason, the aim of this PhD-project is to design interventions that improve prospective 
primary teachers’ diagnostic competence and to analyse the effect of these interventions. The PhD-
project is called “KoVe-Dif” (Comparing and contrasting solutions to inquiry-based leaning tasks as 
a basis for improving diagnostic competences of prospective teachers). The design of our 
interventions is particularly emphasising different processes of comparing and contrasting products 
of students’ mathematical work (Alfieri et al., 2013). Comparing and contrasting is also an integral 
part of the diagnostic process of teachers (Philipp, 2018). The teachers’ ability of identifying students’ 
competences based on students’ written mathematical work is the main focus referring to teachers’ 
diagnostic competence. The project addresses the following main question: 

(RQ): What is the effect of different interventions based on the teaching and learning method of 
contrasting and comparing on diagnostic competence? 

Diagnostic competence 
Competences are defined as “[…] context-specific cognitive dispositions that are acquired and needed 
to successfully cope with certain situations or tasks in specific domains” (Koeppen et al., 2008). 
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Context specificity can be interpreted in different ways.  On the one hand, it can refer to different 
school classes and, on the other hand, to different subject areas. In the project described below we 
are focussing on a specific set of tasks from the arithmetic which will be described in the description 
of the treatment. We assume that the diagnostic skills developed in the context of the specific topic 
are transferable to different school classes. 

In the past, diagnostic competence was conceptualised in three different ways (see also Philipp, 
2018). First, there is research about cognitive dispositions such as knowledge or motivation.  
Focusing on the cognitive disposition such as knowledge, diagnostic competence is part of 
professional knowledge of teachers. For example, Brunner et al. (2011) conceptualised diagnostic 
competence as a part of pedagogical content knowledge and of pedagogical psychological 
knowledge. Second, diagnostic competence is equated with the so-called judgement accuracy 
(Südkamp et al., 2012). This research line focused on the performance of teachers regarding the 
comparison between a teacher’s estimation of students’ performance and the actual test scores of their 
students. This approach got criticized for being distant to a teacher’s daily work (Praetorius et al., 
2012). As an answer to this critique, the diagnostic competence started to get framed as a process. 
According to this conceptualization, research focuses on the diagnostic process itself (e.g. Klug, 
2013) and on the cognitive process during the teacher’s diagnosis (e.g. Philipp, 2018).  

In the framework of Loibl and Leuders (2020) diagnostic competence is understood as a process of 
diagnostic thinking influenced by situation characteristics and person characteristics. While a 
situation is defined through framing and cues, the person characteristics include cognitive 
dispositions. The external diagnostic behaviour is either observable by process indicators (such as 
“think aloud”) or by product indicators (such as a “decision”). Diagnostic thinking is the core of the 
framework, and Leuders et al. (2018) state that it is possible to conceptualise this thinking process 
similar to the “clinical reasoning”. In our study we use this approach and follow Chernikova et al. 
(2020) as well as Fischer et al. (2014) who conceptualise processes of diagnostic thinking based on 
clinical reasoning by epistemic activities. These activities are characterised by “(a) identifying a 
problem, (b) questioning, (c) generating hypotheses, (d) constructing artefacts, (e) generalizing 
evidence, (f) evaluating evidence, (g) drawing conclusions, and (h) communicating process and 
results” (Chernikova et al. 2020, p. 161; see also Fischer et al. 2014). These epistemic activities are 
an adequate basis for modelling the process of a teacher’s diagnosis of students’ written solutions. 
For example, a teacher may identify a problem in a students’ solution by perceiving an error. The 
teacher he/she asks for the reason of the error and develops a hypothesis. If possible, the teacher 
sustains his/her hypothesis by other errors and generalise the hypothesis by evaluating evidence. In 
this PhD-project, we analyse the diagnostic processes conceptualised with the epistemic activities of 
prospective teachers while looking at school students’ solutions to tasks. In our research, we refer to 
students’ solutions of inquiry-based tasks that are comprehensive and offer many possibilities for 
teachers to use their diagnostic competence to draw conclusions about the students’ solutions.  

Fostering diagnostic competence 
Recently, Chernikova et al. (2020) published a meta-study investigating different approaches to foster 
diagnostic competence. The meta-study contains studies that investigate teacher or medical 
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education. In these studies, a special context, a specific problem or the method of scaffolding was 
used to foster diagnostic competence. While all aspects showed positive effects, orientation towards 
specific problems (problem orientation) stands out most positive. So-called inquiry-based tasks are 
specific problems and, particularly, diagnosing cases of extensive students’ solutions of these inquiry-
based task comprise the orientation towards specific problems of diagnosing. Therefore, the present 
study is based on recommendations on how to design a course aiming to foster diagnostic 
competences concerning problem orientation.  

The epistemic activities that are the basis of diagnostic thinking rely more or less on contrasting and 
comparing.  Chernikova et al. (2020) state: „More generally, diagnosing first focuses on comparing 
the current state of learners’ knowledge and skills to predefined learning objectives“. Referring to 
Nickerson (1999), Philipp (2018) describes the ongoing comparison of a solution with relevant prior 
knowledge or further information as a central part of the diagnostic process. Beyond the specific 
subject of developing diagnostic competence, Alfieri et al. (2013) pointed out contrasting and 
comparing to be an effective teaching and learning strategy. However, it has not been investigated 
regarding the professional development of prospective teachers yet. With our research we target to 
fill the gap by addressing contrasting and comparing to foster teachers’ diagnostic competence.   

Method 
The design of our study is shown in Table 1. Both, the three treatments and the control group were 
conducted in winter 2020 and in summer 2021. All three treatments (see Table 1) follow well-known 
characteristics to effectively support the development of teachers’ diagnostic competence 
(Chernikova et al., 2020).  

Table 1: Treatment-Design 

Treatment 1 (n = 37) Treatment 2 (n = 40) Treatment 3 (n = 35) Control group (n = 25) 

Pre-test Pre-test Pre-test Pre-test 

Students solve inquiry-
based tasks  

Analysing primary school 
students’ solutions to 
inquiry-based tasks 

Students solve inquiry-
based and analyse primary 
students’ solutions to these 

tasks 

Neither analysis of 
students’ solutions nor 
analysing of arithmetic 

tasks 

Post-test Post-test Post-test Post-test 

 

The main element of the three treatments were inquiry-based tasks. In each treatment group we 
provided the same inquiry-based tasks; one example is shown in Table 2. Those tasks are challenging 
for prospective teachers and primary school students. As our example in Table 2 shows also primary 
school students are able to provide substantial solutions. In addition, all solutions to be analysed are 
genuine, to make them as authentic as possible.  
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Table 2: Example 

Task-Example Solution example of a student 

How can you get to the number 20? Choose two 
numbers for the first and second position in the row. Add 

these two numbers up to get the third number. Finally, 
add the second and third number to get the number at the 

fourth position.  Your goal is to reach the number 20 
with this step (position 4). 

 

For example, you choose 3 and 4 the result will be: 

3, 4, 7, 11. This means you cannot get to 20 if you start 
with the numbers 3 and 4. 

 

Task is to find all possibilities to get to 20. 

(Birnstengel-Höft and Feldhaus 2006) 

 

 

In the first treatment group, prospective teachers got a brief introduction into inquiry-based tasks. 
Subsequently, they were encouraged to solve these tasks and to compare their solutions in pairs (first 
and second week). In the third week, the prospective teachers got the prompt to compare their 
approaches and solutions with the whole group. The prospective teachers repeated this proceeding 
for three inquiry-based tasks. Referring to Chernikova et al. (2020) the first treatment group followed 
the perspective of learners that solve mathematical tasks and got related prompts. 

The second treatment group did not get the prompt to solve the inquiry-based tasks. Instead, there 
was a brief introduction in the process of diagnosing students’ solution based on epistemic activities. 
Subsequently, the prospective teachers got the prompt to individually analyse the solution of school 
students and to afterwards compare their analysis of students’ solutions in pairs (first and second 
week).  In the third week, the analyses of all pairs were compared in the whole group. In this treatment 
group the same inquiry-based tasks were used as in treatment group 1. Similar to group 1 the 
procedure was repeated three times. Referring to Chernikova et al. (2020) the second treatment group 
followed the perspective of teachers that analyse primary school students’ solutions to mathematical 
tasks and got related prompts (problem orientation). 
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The third group firstly got a brief introduction to inquiry-based tasks as well as in diagnosing students’ 
solutions according to epistemic activities. Further, this group solved one inquiry-based task and 
compared their own solutions in the same way as treatment group 1 (weeks 2 and 3). Afterwards the 
group analysed the students’ solutions and compared their analyses in the same way as treatment 
group 2 (weeks 4 and 5). Finally, the prospective teachers in the third treatment group solved a second 
inquiry-based task, analysed related students’ solutions and compared their own solutions with the 
solutions of primary students (week 6 and 7). 

We conducted the pre-test before the semester started and the post-test after eight weeks. We 
developed these tests to measure diagnostic competence. Each test comprises three items with 
solutions of primary school students. The three items refer to three different inquiry-based tasks (in 
Table 2 an example of the pre-test is displayed). To prevent learning effects, we changed two items 
by slightly modifying the external form of primary school students’ solutions, and we exchanged one 
item completely. Primary school students’ solutions of the inquiry-based tasks provided in the pre- 
and post-test are analysed by the prospective teachers who participated in the treatment and control 
groups. The prospective teachers’ analyses are the basis to investigate their diagnostic competence. 
Therefore, these analyses are categorized with content analysis regarding two dimensions. In the first 
dimension we distinguish between statements about manifest characteristics and hypotheses. 
Manifest characteristics are for example a student’s wrong solution, a specific way of a student to 
write something down, or a specific way of a student to develop different examples regarding a 
problem. Statements that we classify as hypotheses are for example, prospective teachers’ 
interpretations of (school) students’ abilities shown in their solutions that were sometimes backed by 
manifest characteristics. With this dimension we want to measure the diagnostic thinking 
conceptualised by the epistemic activities described earlier. In the second dimension we assigned 
single statements to spheres of competence inspired by Rathgeb-Schnierer and Schütte (2011). The 
coded data was further analysed by descriptive and inferential statistics. 

Results 
In the following, the data is analysed regarding the two epistemic activities “identify manifest 
characteristics” and “generate hypotheses” while comparing the three treatment groups and the 
control group. 

Table 3: identify manifest characteristics 

 

8

13

18

23

Pre Post

manifest characteristic

Treatment1 Treatment2
Treatment3 Control

Treatment N Pre-M Post-M 

1 37 14,27 11,65 

2 40 14,62 21,12 

3 35 13,14 15,37 

C 25 12,24 9,76 
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Regarding the identification of manifest characteristics (Table 3) in primary school students’ 
solutions our results exhibit that all groups start at nearly the same level but differ at the post-test. 
Mixed-anova shows a significant interaction effect between time and group (F(3,133) = 11,253; p < 
0,00001 , η² = 0,202). Pairwise t-tests reveal that the difference between the groups is not significant 
in the pre-test (p = 1 with Bonferroni correction), but in the post-test significant differences were 
revealed. For example, treatment group 2 and treatment group 1 differ significantly (pairwise t-test p 
< 0,0000001 with Bonferroni correction). Only the pairwise t-tests between group 1 and the control 
group (p = 1 with Bonferroni correction) and between group 1 and group 3 (p = 0,0548 with 
Bonferroni correction) reveal no significant differences. 

Table 4: generate hypotheses 

 

Similar results are shown concerning the generation of hypotheses (Table 4). Mixed-anova shows a 
significant interaction effect between time and group (F(3,133) = 12,209; p < 0,000001 , η² = 0,216). 
Again, all groups start on a close level in the pre-test (pairwise t-test p = 1 with Bonferroni correction) 
but differ in the post-test. For example, the difference between group 2 and group 1 is significant (p 
< 0,0000001 with Bonferroni correction). Again, the difference between treatment group 1 and the 
control group is not significant (p = 1 with Bonferroni correction). 

In the presented study, diagnostic competence is conceptualised and measured with epistemic 
activities (Fischer et al., 2014). Presented results indicate that the analysis and the contrasting and 
comparing of primary school student solutions (treatment 2) have a significant impact on the 
development of diagnostic competence. In contrast, creating and then contrasting and comparing the 
own solutions with peers (treatment 1) does not seem to have influence on the diagnostic competence. 
Finally, creating and then contrasting and comparing the own solution with peers followed by 
analysing primary school students’ solutions (treatment 3) also leads to an increase regarding the 
epistemic activities. Although this increase is not as high as focussing only on the analysis of primary 
school students’ solutions (treatment 1). The results presented allow the interpretation that this applies 
independently of the specific epistemic activity. Accordingly, contrasting and comparing student 
solutions seems to be another aspect of effectively promoting the diagnostic competence of 
prospective teachers (Chernikova et al., 2020). We are left with the open question: Why is solving 
tasks and contrast and compare the solutions to peers not increasing or even decreasing the amount 

4

6

8

10

12

14

Pre Post

hypotheses

Treatment1 Treatment2

Treatment3 Control

Treatment N Pre-M Post-M 

1 37 6,68 5,97 

2 40 6,35 12,9 

3 35 6 9,14 

C 25 5,48 6,24 
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of epistemic activities? At this stage, only hypotheses are possible. It could be due to motivational 
reasons. Or the fact that it is about peers with whom is compared, hinders the development. In the 
future, we want to use different research approaches to gain deeper insight into how our treatments 
change diagnostic competence.   
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Introduction 
A central goal of mathematics education in primary school is to develop flexible calculating and solid 
arithmetic competencies. These competencies require a comprehensive understanding of numbers 
and operations (number sense), which should be established during the early school years (Rathgeb-
Schnierer & Rechtsteiner, 2018). In this context, teachers face every day the challenging task of 
comprehending their students' ways of thinking in order to provide them with appropriate learning 
opportunities. An essential condition for succeeding in this task is the teachers’ diagnostic 
competence: When mathematics teachers want to find out what number sense a child has, they use 
information about the student's behaviour when solving arithmetic tasks to draw conclusions about 
his or her thinking and knowledge in this area. The quality of corresponding diagnostic judgements 
appears to depend on whether information valid for the diagnosis can be identified and used for this 
purpose. There is evidence that novices have limited ability to select valid information when 
diagnosing complex situations and also use invalid information, often resulting in lower quality of 
their judgements (Kellman & Massey, 2013). However, it is still unclear how and what information 
is used by pre-service teachers when diagnosing first graders' number sense, and whether the quality 
of their diagnostic judgments can be attributed to their use of information. 

Theoretical background 
In order to investigate how teachers form diagnostic judgments, a line of research has developed that 
focuses on the cognitive processes of information use that underlie diagnostic teacher judgments. 
Studies of this type examine cognitive processes, which are situational skills that mediate between a 
teacher's dispositions and actions (Loibl et al., 2020): Teachers, in order to accomplish a professional, 
complex task such as diagnosing learning processes, must (1) perceive information, (2) interpret it 
and (3) make decisions. Additionally, the influence of information use on judgment quality is 
illustrated in Brunswik's lens model (Brunswik, 1956): The better a person is able to select and use 
information with high validity, the higher the judgment quality will be. Although findings suggest 
that pre-service teachers are less likely to focus on children's learning and thinking processes when 
assessing their mathematical concepts, there is still little evidence on how pre-service teachers use 
information of different validity when diagnosing first graders' number sense and whether judgment 
quality depends on the information use. Accordingly, our research questions are: (1) How do pre-
service teachers use information of different validity when diagnosing first graders' number sense? 
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(2) Does the quality of the pre-service teachers’ diagnostic judgment increase when valid information 
is made explicit? 

Methodology 
The presented study uses an experimental design to investigate pre-service teachers' information use 
when diagnosing first graders' number sense. For this purpose, nine authentic text-image vignettes 
were designed based on literature, each showing a typical classroom situation with a first grader’s 
learning of number sense. Each of the vignettes comprise of a task, a student’s solution, notes on the 
observed solution process and a short teacher-student dialogue. After the validation with experts, four 
vignettes were provided in three varying information environments which contain: a) additional valid 
and invalid information about student behaviour, b) additional valid and invalid information about 
student behaviour, where validity is made explicit and c) only additional valid information about 
student behaviour. A valid information in the context of number sense is for example the use of 
manipulatives, an invalid information is for example the social behaviour of the student while solving 
an arithmetic task. The sample consists of N=173 pre-service teachers at the end of a one-semester 
course covering key topics on the development of number sense. The participants were randomly 
allocated to the three experimental conditions. Using the Restricted Focus Viewer (RFV) (Jansen et 
al. 2003), frequency, order, and duration in which the pre-service teachers accessed the different units 
of information were collected during the experiment. The analysis and comparison of the data 
between the experimental groups will provide information about the use of the presented information. 
Additionally, the participants will be asked to write down their diagnostic judgement in order to 
choose a suitable follow-up task. The analysis and comparison of the answers with the expert norm 
will show the quality of the diagnostic judgment. The poster presents the theoretical framework and 
methodology of the study, highlighting in particular the design of the text-image-vignettes and the 
use of the RFV for investigating the pre-service teachers’ use of information.  
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This introduction for TWG19 offers a brief history of the group and describes past challenges the 
group has experienced when discussing papers — seeing papers as related and as contributing to a 
common effort. These challenges led us as TWG19 team leaders to develop three initiatives to support
communication among researchers who work in different contexts with different purposes. The 
initiatives are presented and used to discuss the papers. We conclude with implications for the future.

Introduction
Thematic Working Group 19 (TWG19) is concerned with the study of mathematics teaching and 
teacher practice(s). From its inception, it has struggled to clarify its focus. TWG19 was created after 
CERME8 from a division of a TWG titled From a Study of Teaching Practices to Issues in Teacher 
Education. Having grown too large, this group split into three: one targeting teacher education and 
professional development (TWG18); another targeting teacher knowledge, beliefs, and identity 
(TWG20); and a third with an uncertain target (TWG19). Participants at CERMEs 9, 10, and 11 spoke 
of challenges in thinking and talking across papers. Studies had different purposes, were conducted 
in different contexts, and used different conceptualizations, theories, and methods. How should the 
group understand the “theme” and how should it make sense of submitted papers? The title was 
changed from Mathematics Teacher and Classroom Practices to Mathematics Teaching and Teacher 
Practice(s) after CERME10 to clarify interest in studying teaching rather than teachers and teacher 
practices rather than broader classroom practices. Still, the distinction between teaching and teacher 
practice(s) remains unclear and communicating across papers continues to be challenging. 

Perhaps challenges should not be surprising. Despite its long history, research on mathematics 
teaching remains relatively underdeveloped. Well-developed learning theories abound, but teaching 
theories are scant. Important frameworks capture key aspects of teaching but fall short of 
comprehensive, elaborated theories. Two compelling reasons come to mind. First, teaching is 
extraordinarily complex. It is an involved human activity that navigates other complex human 
activities, such as learning, communication, child development, and social life in and beyond schools. 
Second, teaching has a familiarity that breeds a presumption that teaching is little more than common
sense. As Lortie (1975) argues, the “apprenticeship of observation,” carried out by everyone from the 
perspective of being a student for countless hours, renders teaching either invisible or distorted in 
ways that have to be unlearned. Nor are researchers immune. It is little wonder then that participants 
struggle to think and talk across the fragmented glimpses of teaching that papers provide. 
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To meet these challenges, as organizers of TWG19 who are both equal participants and responsible 
for leading, we have invited participants to experiment with three initiatives:

1. Think, write, and talk more explicitly about the meaning of “teaching”
2. Use five proposed analytic domains to stimulate communication and reflection
3. Contribute to and use shared datasets to provide common referents. 

In addition, we have set goals in the spirit of ERME’s commitment to communication, cooperation, 
and collaboration. First, we aim to give all participants opportunities to develop as scholars. We invest 
in thoughtful reviews and design sessions for participants to present their work, have colleagues react, 
and respond to others in turn. Second, we aim to support communication and collaboration among 
participants by having them explore the meaning of teaching across studies, use the domains to 
organise and reflect on studies, and study shared data. We offer these as ways to build bridges among 
diverse studies. Third, we aim to characterise TWG19’s collective effort to study teaching and teacher 
practice(s), including reflecting on what we are learning and priorities for future work. This is no 
small feat, and our efforts are nascent at best, but this is an important goal. 

Exploring the meaning of teaching
Papers studying teaching often take the concept for granted. The call for proposals for CERME12 
asked that papers explicitly say what is meant by “teaching” in the paper. Nevertheless, only five 
papers did so (all involving an organiser as an author). Mosvold and Wæge offer a practice-based 
conception grounded in instructional interactions as collaboratively constructed between teacher and 
students around particular content, and situated in broader environments, where teaching is the work 
involved in managing these interactions. Grundén offers a linguistics-based conception grounded in 
sociolinguistics of power relations and power struggles, where teaching is a social, cultural, and 
political practice of situated and habitual actions and interactions. And Nowinska offers a discipline-
based conception grounded in socio-mathematical norms and a developing theory of metacognitive-
discursive activities that shape them, where teaching is expert participation in and scaffolding of the 
doing of mathematics. More implicit definitions differ as well. For example, Holmedal draws on 
discourse analysis to explore the idea of teaching as identity performance, and Arnesen and Dahl 
draw on commognition to explore the idea of teaching as expert participation in classroom discourse.

At CERME12, participants considered the meaning of teaching implicated each paper in group 
discussions and posted their in-the-moment thoughts on a Padlet1 page for the paper. In additional 
sessions, participants discussed the meaning of teaching across papers and posted thoughts on another 
page. Discussions appeared meaningful and lively. Posts reflected thinking more deeply and together 
about what is meant by teaching. One participant reflected on teaching as a complex set of tasks and 
professional judgements made in real-time, and another wrote about the importance of finding a 
balance among six dimensions of a teaching-learning process: epistemic, cognitive, mediational, 
ecological, emotional, and interactional. Others highlighted teaching as creating opportunities to learn 
or as managing dilemmas. Some raised questions about how values and theories shape views of 

1 Padlet is an online digital canvas where users can post text, videos, and images.

Proceedings of CERME12 3322



teaching. One post asked for strengths and limitations of thinking about teaching as “what teachers 
do” versus “work to be done,” an idea discussed at CERME11 (Sakonidis et al., 2019). Another 
suggested that the two might be used alternately by looking for what teachers do in the classroom, 
analysing and discussing these observations, and then considering the specialised work to be done. 

Some participants raised questions about the meaning of teaching in relation to teacher education and 
teacher development: What do we teach teachers when we teach teaching? Another asked where 
teachers learn what we as researchers expect them to do. These questions emphasised that how we as 
researchers and teacher educators think of teaching has consequences for what is possible for 
prospective and practicing teachers to learn. Participants also pondered whether a choice of how to 
conceptualise teaching might differ for mathematics teaching versus teaching other subjects; whether 
norms, values, beliefs, and emotions (as related to mathematics) influence what might be meant by 
teaching; and how intuition and habits might play a role.  

Several insights emerged from attending to the meaning of teaching. First, meaning is not as obvious
as often presumed. Furthermore, what is meant by teaching matters for understanding all aspects of 
a study (questions, methods, and claims). In addition, attending to the meaning of teaching made it 
easier to think across papers. No one argued for a single, shared meaning, but many saw a need for
being clearer about what is meant and how this would help us make sense of research.

Domains of research on teaching
The second initiative is to experiment with using five domains as an analytic frame to locate and 
discuss studies being conducted. The domains are:

(i) Consideration of mathematics and the central endeavour of extending the subject to 
students. 

(ii) Organizing and enacting the design, interactions, and discourse of teaching and learning. 
(iii) Becoming acquainted with, relating to, and responding to students as people and learners.
(iv) Attending to broader social, cultural, and political issues that matter for teaching and 

learning, including imperatives of social justice.
(v) Addressing all domains of teaching in a comprehensive way, with that as an explicit aim.

The domains are based on the didactical/instructional triangle evident in studies of teaching across 
intellectual traditions (cf., Brousseau, 1970-1990/2002; Cohen et al., 2003; Jaworski, 1994; 
Steinbring, 2011; see Goodchild & Sriraman, 2012, for a discussion of this breadth). More recently, 
attention has been given to how the interactions of teaching and learning are situated in broad socio-
political, historical, and cultural environments (cf., Ball, 2018; Jaworski & Potari, 2009). Any study 
of teaching necessarily involves all domains, but a study may foreground one while maintaining 
regard for others. Hoover et al. (2022) posit capacity for maintaining mutual regard for all aspects of 
teaching while focusing on a single aspect as key to professional growth of mathematics teacher 
educators but propose that this capacity is likely crucial to both doing and understanding teaching.
The goal is to support thinking, not to prescribe studies. One can imagine a study investigating the
interplay between two domains, with others in the background. Yet, we identify only these five, where 
a dual-regard paper could be addressed in either. The fifth domain, comprehensive, is meant for 
studies that deliberately attempt to attend to all aspects of teaching together. 
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The domains were first presented at the virtual meeting of TWG19 in February 2021 and, with some 
modifications, were used to organise papers and to stimulate discussion at CERME12. The intention 
is to use the domains to support elaboration and understanding of the contribution of each paper in 
relation to others. It is also hoped that the domains offer an analytic lens that might characterise our 
collective research and help make sense of research on teaching and teacher practice. All papers 
grouped together belonged, at least loosely, to the same domain. After individual papers were 
discussed, the papers and then the domain itself were discussed. Participants reflected on the types of 
research questions being asked and what other important questions might be asked for the domain. 

At CERME12, papers were presented in the domains of Mathematics, Enactment, and Issues, with 
no papers submitted in the domains of Students or Comprehensive. The absence of papers in the 
Students domain was noted by participants but not much discussed. 

Mathematics

Studies in this domain foreground mathematics and how it can be extended to students, but the 
meaning of mathematics and what it means to foreground it vary across studies. Hummes et al. and 
Lovemore et al. consider teacher engagement in collaborative processes, namely lesson study and a 
community of practice respectively, with a focus on irrational numbers in the Pythagorean theorem 
(Hummes et al.) and using music to support the teaching of fractions (Lovemore et al.). Within the 
context of teaching geometrical patterns, Gray and Kleve examine the demand on mathematical 
knowledge for teaching when supporting students’ agency, identity and access to mathematics. 
Papadaki and Biza present a method of analysis suitable for investigating teachers’ use of 
opportunities to go beyond the “mathematics of the moment” in the context of teaching geometry. 
Finally, Adler and Mosvold use shared data to illustrate how the Mathematical Discourse in 
Instruction framework identifies four tasks of teaching central to making mathematics available to 
students, regardless of the nature of the pedagogy employed (e.g., traditional or reform). 

Studies in this domain are different, yet participants appeared to find it provocative and rewarding to 
reflect on these papers as located in a common territory that emphasizes mathematical considerations.
All are concerned with teaching, but specifically with questions of creating mathematical 
opportunities for students and recognizing and taking them up as they arise. They focus on discourse,
as well as identity, agency, and autonomy, as distinctly mathematical, central to the doing and 
learning of mathematics. Comments on the Padlet for this domain wondered how mathematics 
teaching is distinct from the teaching of other subjects and how conceptions of mathematics might 
shape conceptions of mathematics teaching. Considering this domain led to reflections on both the 
essential role it needs to play in studying teaching and how incomplete it is as a lens. 

Enactment

Twelve papers and one poster foreground the enactment of mathematics teaching, with diversity in 
the focus and intent of individual studies, the underpinning theory, and the nature of the methods 
employed. Papers involve empirical investigations of teacher actions. In some cases, specific 
hypotheses are investigated, for example, whether teachers’ use of why-questions supports student 
reasoning (Arnesen & Dahl). In other papers, efforts are made to investigate or describe aspects of 
teaching. Drawing on data from different classrooms, van Bommel et al. analyse teachers’ 
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communication of learning goals and Sigurjónsson investigates features of teaching in classrooms 
where cognitive activation was high. In a more fine-grained analysis, Gray et al. use data from a 
single lesson to report on the role of progressing and focusing actions in students’ appropriation of 
mathematical ideas, while Gobede and Mosvold use data from a single classroom to identify 
dilemmas of teaching arithmetical notation to young learners. Some papers report descriptions and 
investigations of teacher or student actions after, or in the context of, interventions to support 
particular forms of teaching and learning. Kovács-Kószó et al. investigate a teacher’s responses to 
significant moments of student thinking after participation in a professional development programme; 
Røsseland et al. report on students’ participation in mathematics tasks where roles and positions were
used to foster explorative talk.

Several
illustrates a set of negative discursive activities that may lead to negative socio-mathematical norms, 
while Svensson and Wester propose a method for identifying socio-mathematical norms through 
analysis of student and teacher responses in mathematical activity. Drawing on discourse and 
positioning theory, Drageset and Eidissen develop and test a framework using shared data gathered 
for TWG19. Their framework describes teacher positions based on an analysis of their interactions. 
Concepts from theatre practitioners, in addition to organisational and educational theory, inform the 
framework proposed by McIvor for identifying and analysing the practice of improvisation in the 
secondary mathematics classroom. Most papers in this domain analyse recordings of mathematics 
lessons. In contrast, Mosvold and Wæge examine collective planning activities within a professional 
development initiative to investigate and propose entailments of questioning practices.

Comments about this domain on the Padlet reflected on how much of the work in this domain focuses 
on what is easily observable, both with a sense that this domain is central to teaching yet also with 
questions about what we might be missing, the less observable. One participant commented that the 
students seemed to be missing in this domain, and others commented that studies in this domain do
not attend to context, or to teaching as influenced by larger structural systems. Another wondered 
whether a focus on frameworks in different studies might hide similarities across studies. 

Issues

Boundaries, influences, and contradictions are highlighted in the set of four papers in this domain. In 
the context of a collaboration between mathematics teaching and visual art teaching communities, 
Choutou and Potari use grounded theory to analyse data from group meetings to identify the 
boundaries that emerged, as well as the ways in which these were handled. In a paper where 
mathematics teaching is seen as a social, cultural, and political practice, Grundén investigates 
textbooks as actors in the transformation of the intended curriculum by conducting thematic analysis 
on focus group discussions among primary school teachers. Holmedal draws on the notion of big D 
Discourse and figured worlds to unpack the role of teacher identity in navigating contradictions. 
Finally, Mwale and Jakobsen use the Mathematical Discourse in Instruction framework to investigate 
teachers’ practices when teaching mass.

Padlet posts that reflected on this domain surfaced concerns and new insights. The “name” of this 
domain, especially shortening it to “issues,” is seen as inadequate. It lacks clarity, but participants 
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have different ways of thinking about this domain and widely agreeable terms are hard to find. 
Participants discussed and commented on the advantages of “ecology” and “environment.” Part of 
the concern is about language; part is about meaning. Some participants wondered how broader 
social, cultural, and political issues matter for doing research as well as teaching. Several commented 
on the need to acknowledge differences among countries, both for teaching and for research. Another 
theme in the Padlet posts was about how much the teacher and teaching matter for how these issues 
influence what happens in classrooms. This insight prompted comments about needing to consider 
methodological tools for addressing such complexity. Prominent across comments was a newfound 
appreciation for needing to keep this domain in mind. One post described a view of teaching as being 
about classroom interactions and how the papers in this domain seemed initially unrelated to teaching. 
The participant went on to write:

Thinking about them in light of this domain, however, at least helped me see how and why these 
can be considered as studies of mathematics teaching. Whereas many other studies focus on 
dialogue, moves or interactions, these papers identify and analyze different kinds of structures that 
might influence teaching and learning. This is a useful way of looking at teaching. 

Views of this domain varied, but having it as a domain seemed to help the group see how these studies 
were contributing to research on teaching and to see the work as having challenging yet important 
implications for all studies in TWG19.  

Sharing data to study teaching
The third initiative is to contribute to and use data that others in the group have shared — for analysis 
in papers, as illustrations in presentations, or more generally as a common reference point in 
discussions. For CERME12, five contributions were available. Most included video, along with 
transcripts, a document that provides information about the context, and a document containing 
information from the owners of the data about restrictions. Seven papers made use of the shared data 
for CERME11, and a session was devoted to discussion of these papers. The initiative appeared to 
create enthusiasm and productive discussions. For CERME12, only two papers used the shared data.

Gathering and preparing data for sharing and reuse can be rewarding but comes with challenges. One 
is navigating the General Data Protection Regulation (GDPR), which provides directives for 
protecting personal data. These regulations can discourage, but there are important reasons to work
to make data available. Besides reproducibility and replicability of research, as Dewey (1904) points 
out, to teach is to be a student of teaching. Teaching is a public act, and its study is a foundational 
professional activity. In part, we need to educate ourselves and others in the role of responsibly 
generating and sharing records of practice. Responsible data sharing requires careful planning, 
crafting proper consent, and establishing secure infrastructure for storage and access. Among the 
benefits of sharing and reusing data, scholars have highlighted the promise of better utilization of 
data, access to rich and unique data, saved costs for data production, reduced burden for participants, 
validation and extension of previous work, and increased quality in analysis. In TWG19, we have 
experienced potential for new and productive research collaboration and having a common ground 
for improving communication as significant benefits. Going forward, we hope to explore new ways 
of organising this work.
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Implications for the future of TWG19
The focus on the meaning of teaching, the use of domains to organise and examine studies, and the 
establishment of shared data have provided greater cohesion for TWG19. They are also helping the 
group realise CERME’s commitment to communication, cooperation, and collaboration. Attending 
to what is meant by “teaching” is pushing participants’ thinking regarding individual studies and is 
occasioning new conversations across studies. Seeing other’s thinking about teaching and what it 
affords for their research adds perspective to our own thinking. Likewise, the use of domains is 
helping us think together about each study as well as across studies. So far, the domains appear to be 
functioning without privileging some work over other work. Instead, they are helping us see diverse 
studies as part of a larger, concerted effort to investigate teaching. Last, while establishing and using 
shared data is challenging, it remains a promising tool for supporting the work of TWG19. 

In addition to these three innovations, the organisers have also been exploring ways of working 
together. The pandemic forced us into virtual meetings. Designing online sessions was not easy, but 
several new approaches may be worth keeping. Participants recorded 5-minute presentations 
beforehand, which seemed to encourage preparation, lead to better and efficient presentations, and 
helped everyone get familiar with the work. Viewing presentations does not replace reading all 
papers, but it helps everyone recall what they read and provides a quick way to revisit and remember.

A second novelty was designing sessions for authors to hear reactions from a small group of 
colleagues. These author sessions were highly structured to engage authors in listening and 
participants in honing professional skills. After viewing the 5-minute recorded presentation, one 
volunteer had 3 minutes to describe what they heard, then two other volunteers had 2 minutes each 
to say what stood out to them as significant about the work. This was followed by time for brief 
reaction from the author and then discussion of the meaning of teaching evident in the work and its 
place in the identified domains. Perhaps the skills identified in these sessions should be more 
scaffolded and the sessions facilitated. Perhaps participants should know ahead of time which papers 
they will be reacting to, so they might prepare. Notwithstanding potential improvements, participants 
appeared to appreciate deliberate attention to building professional skills, and authors appeared to 
appreciate the opportunity to listen to how their work was being understood and taken up.

In this design, individual papers were not presented to the whole group. However, the author sessions 
were seen as valuable to both authors and participants, and authors received several other types of 
feedback. Having an organiser comment on a set of papers after everyone had a chance to engage 
with one paper in a small group seemed to help participants go deeper with the one paper and extend 
thinking across the papers. In addition, having individual papers discussed in parallel allowed for 
more whole-group discussions across the papers, where authors again had a chance to hear their paper 
discussed, albeit in relation to other papers, a specific domain, or meanings of teaching. Last, we 
created a Padlet page for each paper. This allowed authors to ask for pointed feedback and provided 
all participants with an expedient way of offering comments and raising questions. We now have 
better ideas about how to support participants’ productive use of these online tools and plan to 
continue exploring their use when we meet in person.
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In planning for the conference, we strove to provide opportunities for in-depth discussions of teaching 
and teachers’ practice(s). Our sense is that the three initiatives together with thoughtfully designed 
sessions contributed to such in-depth discussions. However, we think there is more to do. As we plan 
for CERME13, we will continue to consider how to design sessions that support each participant 
while also supporting our collective efforts to advance research on teaching.
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Mathematics Discourse in Instruction (MDI) is a framework developed to describe, interpret, and 
support development of mathematics teaching. Since its inception, it has been successfully used as a 
tool for research and professional development in South Africa, where it was developed, but it has 
been less used in other contexts. In this paper, we use shared data as a starting point to explore how 
the MDI framework can contribute to thinking about research on mathematics teaching. We elaborate 
on the conception of teaching underlying the framework, describe its elements and their rationale, 
and show how these can illuminate four core tasks of teaching mathematics.  

Keywords: Exemplification, explanatory communication, learner participation, discourse, 
mathematics. 

Introduction 

In the past decades, multiple frameworks have been developed, each offering different perspectives 
on mathematics teaching. The underlying conceptualization of teaching is often not made explicit in 
these frameworks, and it can be challenging to communicate across theories and frameworks. To 
stimulate communication and move the group forward, sets of shared data were provided for 
participants of thematic working group 19 (TWG19) to use at CERME11. Papers applied different 
theoretical and analytical lenses on these data. For instance, Nic Mhuirí’s (2019) application of the 
Teaching for Robust Understanding (TRU) framework enabled her to compare the quality of teaching 
across datasets according to the pedagogical norms of the TRU framework, but it also raised questions 
about underlying values of frameworks and usability across cultural contexts. Bass and Mosvold 
(2019) applied the instructional triangle as a conceptual framework, adding theoretical perspectives 
on agency, authority and identity. This allowed them to explore how various teacher moves may 
influence student agency and position. These examples illustrate how frameworks can offer different 
perspectives and allow researchers to notice different aspects of the data. Having shared data available 
in the group thus provided a productive space for discussion. In the present paper, we continue this 
effort by applying the Mathematics Discourse in Instruction (MDI) framework on one of the shared 
datasets to investigate what the framework might help us see, what underlying conception of teaching 
it has, and how a framework like this can contribute to research on mathematics teaching. 

The framework1  
MDI was developed in the Wits Maths Connect Secondary (WMCS) research and professional 
development project working with teachers in schools serving low-income communities in one 
province in South Africa. The goal was to improve teaching and learning. Mathematics teaching in 

 
1 References to ‘we’ and ‘our’ in this section are to the WMCS research team, and not to the authors of this paper.  
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secondary school classrooms is predominantly direct instruction, and typically described as 
‘traditional’. Our initial observation was that within this similarity were both important teaching 
differences and incoherence in the mathematical messages across lessons (Adler, 2017). In this 
context, we sought a framework that describes what mathematically is made available (or not) to 
learn, irrespective of pedagogical norms, and provide for developmental trajectories that we could 
use with teachers to improve the coherence of teaching and opportunities for learning mathematics. 
In its initial form MDI was used analytically to describe and compare lessons (see Adler & Ronda, 
2015). Between 2015 and 2019 the project focused on using it to develop practice. It is thus a living 
framework and has functioned as a boundary object, shifting flexibly across teaching and research 
practices in the project (Adler, 2017). This paper contributes to current work of refining MDI.  

MDI is underpinned by key tenets of sociocultural theory. Briefly, these include an orientation to 
mathematics as coherent and connected scientific knowledge (Vygotsky, 1978); and to mathematics 
teaching as goal directed with mediation towards learners’ appropriation of increasingly sophisticated 
and increasingly general ways of thinking to progress in the discipline. Critically, teaching is always 
about something – an object of learning (Marton, 2015) – and the coherent mediation of that 
‘something’ is the teacher’s work. To focus the project’s work, we foregrounded what we considered 
were high leverage practices in this work, and specifically in preparing for and teaching a lesson.  

If teaching is always about ‘something’, a first core task of teaching is to identify the object of learning 
– that which students are to come to know and be able to do in a lesson. Our analysis below will show 
that while this task is obvious, its enactment is not trivial. Key next core tasks are selecting and 
sequencing examples, their related tasks, and representational forms (exemplification), attending to 
explicit mathematical word use and justifications/substantiations (explanatory communication) and 
to what learners are invited to do, say and write (learner participation). Our conceptualization of each 
of these tasks has been informed by two literature strands: on exemplification and variation in 
mathematics and mathematics education (e.g. Al-Murani et al., 2019), and on language as a resource 
in mathematics teaching and learning – including attention to lexicalisation (Planas, 2021) – and 
explicit criteria for mathematical explanations (Prediger, 2019). Our sociocultural perspective sees 
tasks of teaching as mediational, drawing in cultural tools that shape and are shaped by contexts (see 
Figure 1). The further salience of the four elements (tasks of teaching) in the framework was their 
resonance with practice and possibilities for connection and developmental work with teachers. 

Task 1: Identifying the object of learning requires both mathematical and curriculum analysis. The 
‘object’ in the lesson we study here is placing a fractional number on the number line (for more 
information about the context and task, see Ball, 2017). This task requires analysing (1) where this 
‘content’ is located in the curriculum (and so on the trajectory of student learning), (2) its 
mathematical meaning and what other mathematical concepts, procedures and practices are connected 
and entailed. In analysis of shared data, we only had access to the enacted object (what is actually 
taught) and can only infer what was intended. Below, we show that the intended object of learning is 
provided in the description of the lesson, enabling mathematical and curriculum analysis. 
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Figure 1. The MDI conceptual framework, adapted and refined from Adler & Ronda (2015). 

Task 2: There is considerable literature foregrounding exemplification in mathematics education – as 
specialised knowledge for teaching, and as teaching and learning through discerning variation (for a 
review, see Adler & Pournara, 2020). Watson and Mason (e.g., 2006) brought these two strands 
together in mathematics. Al-Murani et al. (2019) build on this earlier work and use principles of 
variation to analyse example sets in mathematics lessons. They argue that discerning similarities and 
differences in an example set – what is changing over a stable background, or what is invariant as 
features change – is particularly useful in illustrating opportunities created for building generality 
and/or recognizing structure in mathematics learning. Resonant with this approach, two key principles 
of variation were recruited into MDI: similarity and contrast. We analyse variation amidst invariance 
(what is the same and what is different) and contrast (what is and what is not) across example sets to 
interpret opportunities made available for mathematics learning. 

Task 3: Research in mathematics education has attended to important language practices – referred 
to as language responsive mathematics teaching (e.g., Prediger, 2019). That such teaching needs to 
extend beyond the communicative function of language to its epistemic function has long been 
recognised (e.g., Pimm, 1987). The epistemic function includes both vocabulary work, explaining 
words and phrases, thus requiring teaching to create opportunities for students to participate in (hear, 
see and use) specialised discourse (e.g., Planas, 2021). This is well illustrated in Planas’ (2021) study 
of teaching equation solving, where she argues for the specific language practice of lexical 
elaboration. She shows how deliberate attention to the equivalence relation, and the appropriate words 
to support this meaning create opportunities for learning specialised discourse. The two elements of 
explanatory communication (word use and justifications) in MDI link with this work.  

Task 4: Learners obviously need to engage with mathematics to learn. MDI focuses on how students 
are invited to hear, see, write and speak mathematics, the latter beyond chorusing and one-word 
answers to teacher questions, and so to use specialised discourse themselves. 

Exploration of framework with shared data  
The MDI framework was developed for analysis of a lesson. Adler and Ronda (2015) operationalise 
key constructs of each task, with codes developed to distinguish, for example, similar and contrasting 
examples, differing task demands, colloquial and mathematical word use, criteria for explanations 
and learner participation. They describe how lessons are chunked into episodes and the analysis of 
episodes accumulate to describe the example set and other elements in terms of levels of a trajectory 
towards more coherent teaching. The exploration of the shared data below cannot do this kind of 
analysis as we only have one episode. Given the coherence of the overall lesson, the tasks would 
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likely all be coded the highest level 3. As a coherent lesson, it thus is more useful to elaborate our 
exploration descriptively, and this is how we proceed. 

The shared data we use – the Hoover data set – is a short episode (video recording and transcript) 
within a lesson together with a context document describing the class (rising fifth graders who attend 
a summer school in the United States), the motive for the lesson, its mathematical focus and student 
responses to a warm-up problem at the start of the lesson, and a similar exit task at the end. We use 
all of this for our analysis and discussion of what the MDI framework allows us to see.  

The first step in MDI analysis is to identify the “ostensible” object of learning: analysis of the example 
set and related tasks, and the explanatory communication are all in relation to this ‘object’. The warm-
up problem asks: “What number does the orange arrow point to? Explain how you figured it out”. 
The arrow points to the position of  on a number line that extends from just before 0 to just past 2 , 
with thirds marked on the line. In the context document accompanying this shared data set, the lesson 
is described as marking a turning point in mathematical work from “naming fractions as parts of 
areas to identifying fractions as points on the number line” (p. 1), with a critical aspect of the object 
of learning being the important “shift” in understanding that “on the number line the whole is defined 
as the distance from 0 to 1. With area models, the whole can be greater than 1” (p. 2). This is 
something students are to know. What they need to be able to do – the focus of the lesson – is to carry 
out “steps for naming a fraction correctly”. This key procedure is evident in the chart provided. It is 
presented as the interpretation for teaching of an extract from curriculum documents (p. 7). The 
intensive mathematical and curriculum analysis highlighted in the italicized phrases that was done in 
preparation for this lesson are made visible. These foci for the lesson are not trivial and require 
specialized teacher knowledge of fractions as part of an area, and fraction as a number, where and 
how the progression from one to the other is located in the curriculum, and consequently what prior 
learning brings to the shift learners need to make. The next analytic step is to analyze the mediation 
of these object(s).  

Exemplification – examples, tasks and representations 

The focal example in the episode is the fraction  and the task for the students is high demand. They 
are required to name the fraction being pointed to on the given number line which extends from 0 and 
past 2, and to explain their reasoning. There are no other given examples in the episode. The example 
in the concluding task is the fraction , and the task is the same. The fraction  is also discussed in the 

episode, bringing in a second fraction example. We see other fractions ( , ) written on the board and 

possibly offered prior to the , and still other responses to the warm-up task such as . We do not 
have access to other examples of fractions and their location on the number line that were likely to 
have been discussed later in the lesson. Specifically, we do not know whether different ‘thirds’ were 
discussed – where the ‘whole’ in thirds (the denominator) remained invariant, and the number of 
‘parts’ (numerator) varied ( , , , ) – or whether there was discussion of examples with a 

different denominator, with a similar range of numerators (e.g. , ). There are thus limits to what 
can be said about the example set across the lesson and variation with respect to similarity, and so 
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what of the written fractions were varying and invariant and how these might have been publicly 
discussed. The intended generality is the procedure for naming a fraction on a number line. What is 
observable is the chart that outlines the steps for the procedure in general terms, indicating that there 
were probably more examples of fractions with varying numerators and denominators, with the 
generalized fraction name written as . The extent of how these varied, and what was invariant are 
what is salient to what is made available to learn.  

What is observable in the episode is variation through contrast through the selection of  for public 
discussion. This brings ‘what is not’ the name of the fraction, into focus i.e. specifically naming the 
fraction by counting the hash marks, or the ‘parts’ without reference to the unit whole. The selection 
of  (as opposed to , or ,  is salient, provoked by the number line extending past 2. Unfortunately, 

the episode does not include the discussion of  only some clarifications of the thinking that produced 
this, and so counting all the parts, making available a discussion following on the unit whole and not 
the length given (as in the case of the area model). Other student questions about starting at ‘zero’ 
and what was counted draw attention to the hash marks (as opposed to spaces). In MDI terms, and 
the application of principles of variation of similarity and contrast, we would conclude from what is 
available in the video, transcript and the context document, that the lesson provided opportunities for 
learning to discern the correct place of a fraction between 0 and 2 on the number line, specifically for 
identifying the whole, and focusing on counting spaces not hash marks.  

Looking at the students’ successful responses at the end of the lesson leads one to speculate that the 
whole lesson included discussion of a varied example set, with purposefully selected similar and 
contrasting examples, making available opportunity for generalizing the mathematical steps for 
marking a fraction on the number line (and through contrast not over-generalizing).   

What is made possible to learn is, of course, not only a function of the selection and sequencing of 
examples, tasks and representations2, but how the example set is discursively mediated. 

Explanatory communication – word use and justifications  

As the episode is restricted to the presentation and clarification only of the answer ,  and questions 
posed by other students (the teacher’s task here is focused on students hearing the explanation 
offered), there is limited possible analysis of word use towards the object of learning in the transcript. 
However, the description of the teachers’ work through the rest of the lesson, and the extracts of 
students’ explanations of their responses to the exit task in the context document enable analysis of 
what was or what was likely to have been made available in the classroom discussion. 

From the selected written student explanations in the document, words they used initially to explain 
their answer included “count”, “equal parts”, “count from zero” indicating that they associated 
fractions with equal parts that needed to be counted, but not what or where these equal parts were nor 
the whole they were referring to. In contrast, in the exit task, we see the following: “You have to 

 
2 Of course, in this lesson and episodes the shift in representation from area to number line is built into the lesson and not 
focused on here. 
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count the space”; “all the spaces have to be equal”; “… because I saw what the howl (whole) was. 
Then I made sure it had equal parts. Last I counted the spaces.”; “I counted the spaces” 

The students’ use of specialized discourse relevant to fraction as number is evident. Contributions to 
how this was made available to learn in the lesson is observable in the chart at the end of the context 
document that emphasizes the words: “Whole”, “equal parts”, “unit fraction”, “count parts”; as well 
as in the extract below that elaborates the discussion (though we are not privy to who said what, 
when). From the context document (p. 4): 

… the discussion emphasizes the importance of partitioning the unit interval in equal parts and 
being sure to count spaces (i.e. the intervals, not hash marks) to determine the distance from 0 for 
a given point on the line. The students practice naming points on the line and also explaining 
carefully with reference to the whole and to the equal parts and to counting spaces to determine 
the number. 

We have italicized the specialized discourse and interpret that these words and aspects of 
justifications for the fraction name were used in the lesson by both teacher and students. Moreover, 
as indicated in the underlined sections, we observe that students practiced this specialized word use 
and justifications, probably repeated on a range of different fraction examples. 

Using MDI, we would analyze all episodes in a lesson for specialised discourse coding word use by 
distinguishing colloquial from mathematical, and coding justifications by distinguishing those that 
are non-or pseudo-mathematical (assertions – e.g. because the textbook says, or visual cues – e.g. the 
hash marks), from those that are local, partial, and then full explanations. Our data here is different 
and coding the given episode would put word use as colloquial and mathematical in name only. 
However, specialized mathematical word use coherent with the object of learning (whole, equal parts, 
counting spaces) was made available, as was a full explanation of the steps for correctly placing a 
number on the number line. If we had the full lesson transcript, MDI analysis by episode would show 
what and how word use and justifications build up through the lesson, and so through the temporal 
flow of the lesson, as well as who says what, and so what the teacher inserts, repeats, revoices and 
reinforces (as this is her work), and what students get to hear as well as say for themselves. This last 
point is apposite, for specialized discourse (word use and criteria for valid mathematical argument) 
is not spontaneously available, and thus a crucial aspect of knowledge for teaching and task of 
teaching (Planas, 2021; Prediger, 2019). 

Learner participation 

Given the traditional teaching context in which MDI was developed, the focus of research in the 
WMCS project was on the extent to which students themselves had opportunities to hear, speak and 
write mathematically. These opportunities are extensive even in this one episode. We discuss this 
further below. 

Concluding discussion  
Different frameworks enable scholars to notice different things about mathematics teaching. For 
instance, the TRU framework allowed Nic Mhuiri (2019) to evaluate and compare the quality of 
teaching across contexts in analysis of shared data. Theoretical constructs like agency and authority 
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enabled Bass and Mosvold (2019) to explore different aspects of the same data sets. Their framework 
allowed them to notice how the pedagogical moves that teachers make can influence the agency and 
position of students in mathematics classrooms, and they argue that this is particularly important to 
notice when responding to apparent student errors. While these perspectives are indeed salient, the 
MDI framework was developed with the aim of describing the mathematics that is made available to 
learn. The emphasis is thus primarily on the mathematics as it is made available through examples, 
tasks and representations, and through word use and justifications. As we have tried to show in our 
discussion of shared data, selection and sequencing of examples is a key task in mathematics teaching, 
which is not straightforward, yet often overlooked. One thing the MDI framework allows for, is to 
highlight exemplification and how it may or may not contribute to the set learning goal. 

A potential weakness of the framework is that the underlying conception of teaching is left implicit, 
linked only with being goal directed and involving mediation. We highlight two aspects of the 
conception of teaching underlying the MDI framework. First, like Ball (2017), it useful to think about 
mathematics teaching as a special mathematical work. Others have suggested a distinction between 
considering teaching as something teachers do, as opposed to a work to be done. This distinction was 
not considered in developing the MDI framework. However, the framework operationalizes four core 
mathematical tasks of teaching, and so the kind of work to be done: 1) deciding a mathematical object 
of learning, 2) selecting and sequencing examples, tasks, and representational forms, 3) attending to 
mathematical word use and justifications, and 4) considering what learners are invited to do, say, and 
write. Second is an underlying issue of teaching methods. Some frameworks of mathematics teaching 
are bound to specific teaching methods or pedagogical values. Nic Mhuiri (2019) highlights this in 
her discussion of the TRU framework, which appears to value an approach to mathematics teaching 
that corresponds with ongoing reform efforts in the United States. In contrast, the MDI framework 
aims at being useful across methods or pedagogies of teaching. It was developed in a context that is 
dominated by traditional teaching, but our effort to apply it to Deborah Ball’s teaching in the shared 
data set indicate that it can be useful also for analysis of nontraditional mathematics teaching. 

In the call for papers to TWG19, five domains were identified to facilitate communication and 
collaboration. When considering the potential contribution of MDI in relation to these domains, we 
first notice that MDI has a primary emphasis on extending mathematics to learners. Whereas the 
organization of interactions is less in focus, the framework does focus on the mathematical discourse. 
The MDI framework was not developed with an emphasis on responding to students, but equity was 
an underlying issue of concern. Although social, cultural, and political issues are not directly visible 
in use of the framework, access to mathematics is an issue of equity in many countries. Since learners 
in areas with significant poverty often do not get the opportunity to learn mathematics, improving 
their access to mathematics in the classroom is thus an equity issue – and a key motivation for the 
development and use of the MDI framework.  
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“Why have you written six times five?” Teachers’ use of why in 
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From classroom data consisting of transcripts from 20 videotaped lessons, we studied five Norwegian 
mathematics teachers’ use of the word why. It is our initial assumption that asking why in 
mathematics is a means to support students’ mathematical reasoning. We found evidence for this 
assumption in our data. However, the analysis of the 114 occurrences of why indicated that the most 
common purpose for asking why was to make students re-state thinking they had already done, thus 
not prompting new mathematical reasoning. Moreover, when teachers used why in questions not 
about mathematics, they usually did so in a rhetorical and reproachful manner. We discuss these 
ambiguities and implications for teaching. 

Keywords: Mathematical reasoning, questioning, mathematical discourse, interactions. 

Introduction 
In the mathematics classroom, teachers’ questioning is acknowledged as crucial in supporting 
students’ learning (see e.g., Franke et al., 2009).   Martino and Maher (1999) claim that there is “a 
strong relationship between (1) careful monitoring of students' constructions leading to a problem 
solution, and (2) the posing of a timely question which can challenge learners to advance their 
understanding” (p. 53). Recent studies have pointed out that asking why is a type of question that 
particularly holds the potential to encourage students to explain or reason (Ingram et al., 2016; 
Drageset, 2021). In those studies, the researchers first identified students’ explanations in classroom 
data, and then considered what the teacher did to prompt the explanations. In contrast, we are taking 
as a starting point all teacher-initiations given in the form of a why-question, and we aim to categorize 
the possible implication of the question in the given situation, not unlike Enright et al.’s (2016) 
typology of questions according to the function they serve in instruction. We are particularly 
interested in the potential why-questions hold to challenge students to advance their reasoning, 
reflecting Martino and Maher’s (1999) “timely questions” mentioned above. 

In our study, we take a commognitive view of mathematics teaching and learning (Sfard, 2008). 
Within this tradition, learning is seen as increased participation in a discourse, and discursive behavior 
is characterized in terms of routines (Lavie et al., 2018). Teachers have the role of expert participants 
in the classroom discourse, and the theory of commognition states that imitation of expert participants 
is a central aspect of the learning process (Sfard, 2008). Martino and Maher (1999) point out that 
students do not naturally seek to build a justification or proof of the validity of a solution. Thus, 
routines related to reasoning and proving in mathematics must be made visible by the teacher. 
Therefore, teachers’ use of why-questions influences students’ routinization (i.e., individualization 
of routines in the community), regarding when it is a timely question to ask, and what kind of actions 
such a question requires.  
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Thus, to get the whole picture of how teachers’ why-questions relate to students’ mathematical work, 
we need to extend our knowledge beyond the why-questions identified by Drageset (2021) and 
Ingram (2016) that actually led to students’ conceptual explanations. Other uses of why-questions 
will also affect how students routinize asking why in mathematical discourse. To this end, we employ 
the following research question: How is the word “why” used by five middle-grade teachers in 
mathematical classroom discourse? The data for the study consists of transcripts of 20 lessons given 
by the five teachers. As all occurrences of the word “why” in the data material are part of a question 
(this includes a few instances of implicit questions), we will use “why” and “why-questions” 
synonymously in this paper. 

The routines of asking why 
Within the commognitive framework, routines are important features of discourse in a community 
(Sfard, 2008). Routines are discursive patterns which are evoked whenever a participant finds herself 
in a situation similar to one she has experienced before, and acts thereafter (Nachlieli & Tabach, 
2018). Routines consist of an initiation, a procedure, and a closure (Nachlieli & Tabach, 2018). The 
initiation is the clue that is recognized and thus prompts the participant to perform the expected 
actions, and the closure is “the conditions under which a procedure is considered complete” (Nachlieli 
& Tabach 2018, p. 3), together they form the “when” of a routine. The procedure is the action taken 
in between the initiation and the closure, also referred to as the “how” of the routine. Lavie et.al 
(2018) consider two types of discursive routines in mathematical discourse: Explorations and rituals. 
Explorations are outcome-oriented routines, where the aim is to produce or endorse new narratives 
(i.e., statements about mathematical objects and their relations). They are motivated by the question 
“What do I want to achieve?” and are often performed by the more experienced participants of the 
discourse. In contrast, rituals are process-oriented routines, guided by the question “How do I 
proceed?”. Rituals are often performed by novices in the discourse, typically by imitating the 
teacher’s actions, and the motivation is social acceptance. Routines can be nested – a new routine can 
be initiated, carried out and closed as a sub-routine of another routine (Nachlieli & Tabach, 2018). 

As previously mentioned, we are particularly interested in routines that are connected to students’ 
mathematical reasoning (MR). Therefore, we need to elaborate on what we mean by MR. We employ 
Jeanotte and Kieran’s (2017) conceptual model of MR for school mathematics, which is constructed 
in coherence with the commognitive framework. The model consists of two interrelated aspects: The 
structural aspect addresses the underlying construction of an argument (e.g., deductive, inductive, 
abductive), while the process aspect capture activities related to searching for similarities and 
differences, validating, and exemplifying. A search for similarities and differences is aimed at 
producing new narratives, a validation is aimed at establishing the correctness (or wrongness) of 
narratives, while an exemplification works as a support for the first two types of MR processes. We 
note that all the MR processes – when considered as overall routines performed by students – are 
exploratory routines, because they seek to produce or endorse narratives. We thus use the term MR 
exploration for an exploratory routine involving one or more MR processes.  

Both Drageset (2021) and Ingram et al. (2016) found that why-questions were connected to student 
explanations of reasoning. However, in their studies, it is not possible to separate students’ 
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explorations and rituals, although it is likely that many of the explanations of reasoning were 
connected to an exploratory routine. Nor is it possible to see whether the teacher’s question prompted 
the student to share his reasoning, or whether it invited the student to start to reason. This distinction 
between starting and explaining routines is also not evident in the typology of questions suggested 
by Enright et al. (2016). Our study aims to give more insights into these matters.  

Methods 

The study presented in this paper is part of an ongoing, large-scale study with a focus on reasoning 
and proving in primary education (ProPrimEd). As a first part of the ProPrimEd study, we collected 
classroom data (videotaped lessons, and interviews with some students and all teachers who 
participated in the lessons) to describe the “state of the art” of work with reasoning and proving in 
ordinary mathematics education. The data for the study reported here consist of the transcripts of the 
videotaped lessons. In total, we observed five teachers (T1, fifth grade; T2, sixth grade; T4, fourth 
grade; T5, seventh grade; T6, sixth grade) for two weeks each, a total number of 20 lessons of various 
lengths. All the five teachers were male. T1 and T2 worked at the same school, so did T4, T5 and T6. 
All were educated as primary school teachers with mathematics as one of their subjects. Some had 
additional professional development courses in mathematics. Their teaching experience varied 
between 2 and 17 years, with an average of 9 years. The researchers took the role of non-participating 
observants during the data collection and played no part in lesson planning. Topics of lessons were 
whole-number multiplication, addition and subtraction with rational numbers, problem solving 
involving geometrical shapes and multiplication, prime numbers, and operator precedence. Most 
classes consisted of a variety of activities. Although the data is limited to two schools and five 
teachers, we consider it to represent ordinary mathematics discourse in Norwegian classrooms. 

The transcript documents consist of a total number of 143 448 words (including meta-data). From 
this material, we identified (using the search functionality in Microsoft Word) every occurrence of 
the word why used by a teacher in whole-class discussion and in discussion with (groups of) students. 
We found 114 occurrences.1 For each teacher, we made a new document of cut-outs from the original 
transcript, consisting of a separate text block for each occurrence of why – including enough text 
before and after the word to make the context clear, so that we would be able to interpret the possible 
implication of the why. Sometimes, during the coding process, we would go back to the complete 
transcripts to review more of the context, and we also had the opportunity to consult the video 
recordings. We did not seek to identify differences between the teachers, and therefore treated all 
why-questions as a pool.  

We were inspired by other studies on the use of certain words in mathematical discourse, such as 
Monaghan (1999) and Wagner and Herbel-Eisenmann (2008), who studied the words diagonal and 
just, respectively. These studies pointed to the influence of single words in mathematical discourse: 
Monaghan showed how an “informal” meaning of diagonal could possibly weaken the mathematical 
content at stake, while Wagner and Herbel-Eisenmann showed how a seemingly innocent word like 

 
1 The lessons, and thus the transcripts, were in Norwegian. We searched for the Norwegian word “hvorfor”, which holds 
the same meaning as the English word “why”. The data excerpts used in this paper are translated to English by the authors. 
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just could open or close discourse. In our study, we were guided by the commognitive concept of 
routines when analyzing and discussing data. The two authors read some of the material together and 
agreed on a temporary set of codes. These codes were: 

- initiating, later renamed routine-initiating: Why’s that prompt new reasoning (based on the 
underlying assumption of the study) 

- recalling, later renamed routine-re-initiating: Why’s that prompt students to share (aspects of) 
mathematical thinking they have already done 

- non-mathematical: Why’s used in contexts not about mathematics. 

Each author then coded the material separately. When discussing the coding afterwards, we found 
that we agreed for most occurrences and came to agreement on the few we had coded differently. We 
added a category Other for why’s occurring within a mathematical context, but not fitting into the 
first two categories. We started the process of analysis with an open coding that was as close as 
possible to the data. As we interpreted our interim findings, we employed Sfard’s and Jeannotte and 
Kieran’s theories to further nuance the content of each category, and the categories were appropriately 
renamed. In the next section, we elaborate on some typical uses of why from each category. 

Findings 
Table 1 shows the number of occurrences of the word why in each of the categories routine-initiating, 
routine-re-initiating and non-mathematical (and other).  

 Table 1: Number of occurrences of the word why 

routine-initiating routine-re-initiating non-mathematical other 

34 65 7 8 

We note that the most common use of why is to recall mathematical thinking (routine-re-initiating). 
In the following, we provide examples from the four categories. The examples are chosen to indicate 
both “typical” usage of why and to demonstrate the variation within a category.  

Teachers’ use of routine-initiating why-questions 

Routine-initiating why-questions invite the students to choose and take action. Almost all instances 
of routine-initiating why-questions in our data material called for an MR exploration. The data 
material provides examples that why-questions were used both to prompt students to search for 
similarities and differences, thereby producing a narrative, and to validate a conjecture. An example 
of the former is given below. Two students are working on a jigsaw puzzle of the multiplication table 
(the pieces in the puzzle consist of more than one number). 

Teacher:  What I’m wondering is why does it [a piece] fit so well here? 
Student:  Because here it says 36 and here it says 32 
Teacher: Why do 36 and 32 fit together? And together with 28 and 24? What’s going on with 

these numbers? 
Student: Because (…) because. It’s 4 between them. 
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In this example, it seems that the students first placed the piece in the puzzle because of its shape. 
The teachers’ questions made them reason about the mathematical relationships, and eventually 
identify the pattern in the 4-times table. Next is an example of a why-question that is used to initiate 
a validation process. The excerpt is from a situation where the students are asked to calculate the 
surface area of the (glassed-in) walls of different buildings, all having the shape of rectangular prisms, 
and all having the same circumference of the ground floor and the same height.   

Oline: Like. Around the walls. It’s the same for all around the glass? Isn’t it the same for 
all? 

Teacher: Yes, why is it so? 
Oline:  It’s the same outline, it, it [Norw. outline is omriss] 
Teacher: The same circumference? [Norw. circumference is omkrets] 
Oline: Yes. 
Teacher:  Yes. Why is the glass the same when it’s the same circumference? 
Oline: I don’t know, but it feels that way. 

Here, the student claims that there is a relationship between the circumference of the ground floor 
and the area of the walls but has no ready-made reasoning to support the claim. Hence the two why-
questions serve as possible initiators for a validation process of the student’s hypothesis. 

We conclude this section with two examples of routine-initiating why’s taken from a lesson on prime 
numbers. Common for these why’s is that they are not self-contained as routine initiators; they are a 
part of a more extensive initiation. In the first example, the students are investigating whether all 
whole numbers between 4 and 20 can be written as a sum of two prime numbers. During the students’ 
group work the teacher reminds them of the task: 

Teacher: You’ll get 3 more minutes. Remember that, although I claim, I claim that it’s 
possible for all the numbers from 4 to 20, but it’s not certain it’s the case though. 
So it could be that you find some numbers where it doesn’t work. But then maybe 
you have to say something about why it doesn’t work. How can we be completely 
sure that it doesn’t work? So we work for 3-4 more minutes (…) 

Here, the why is a support for the process of validating a hypothesis, which is already going on in 
many students’ work (thus, the why initiates a sub-routine nested within the routine initiated earlier, 
when the task was given). The students are working on a task, and this why clearly does not refer to 
an answer provided by a student. Later, the teacher discusses an answer with some students: 

Teacher:  Yes, there you only have to explain why some numbers aren’t prime numbers. Such 
that he said that 8 isn’t a prime number, since you can get that by using the factors 
2 and 4. You can just write down that computation.  

The use of why here points to a validation, and the teacher add some information about the possible 
nature of this explanation. Thus, this why is connected to the structural aspects of a reasoning process. 
In our data material, we found very few examples of such why’s.  

Proceedings of CERME12 3341



 

 

Teachers’ use of routine-re-initiating why-questions 

Routine-re-initiating why-questions invite students to recall, share and elaborate on the routine they 
have already performed. In most cases, this happens during a whole-class discussion after the students 
have worked on a task. As with the previous category, we find different uses of why within this 
category. In many cases, the why-questions were (mainly) addressing the procedure aspect, or the 
“how” of the routine performed.  This is the case in the following example, taken from a lesson on 
negative numbers. The teacher is requesting details of a calculation: 

Teacher: Seven minus negative three. What will that be, Anja?  
Anja: Ten  
Teacher:  That is ten. Why? 
Anja: Because it is the same as seven plus three.  
Teacher:  It is the same as seven plus three. Yes. 

In the next example, the teacher’s why-question addresses the procedure of regrouping in addition 
with decimal numbers. Again, this excerpt addresses the “how” of the student’s performed routine, 
but the “when” is also addressed as the teacher probably seeks to highlight conditions for taking this 
action (when to regroup: if we get ten tenths). 

Teacher:  Yes, we get in a way zero tenths at the end. But why do we get zero tenths? What 
have you done then? 

Anniken:  Because we transfer to the ones’ place.  
Teacher:  Yes. That is right. As soon as we get ten tenths, we have to regroup. That is the way 

the decimal system works.   

In other cases, re-initiating why-questions were used mainly to highlight features related to the 
“when” of a routine. The next example, taken from a lesson on early multiplication, shows how a 
why-question seeks to emphasize the connection between the given context and the numerical 
expression, i.e., in what situations a multiplication procedure is called for.       

Teacher:  Six times five. Ok. Adele, why have you written six times five? 
Adele: Because it [the worm] climbs six centimeter each hour.  
Teacher:  Mm, it climbs six centimeters each hour. So it does.   
Adele: And it climbs for five hours.   

There were also some examples where the teacher asked why to make students elaborate on a routine, 
but where the teacher (most likely) did not know what the student had done (e.g., when the student 
had provided a wrong answer). Why-questions used in this way have the potential to provide the 
student with an opportunity to revise his/her thinking, which would be a routine-initiating why. 
However, in our data we only find examples where the teacher guides the student to the correct answer 
by asking closed questions (like Drageset’s (2014) closed progress detail). Thus, the student’s 
possible contributions are limited to yes/no-replies and short answers, with few or no opportunities 
to engage in mathematical reasoning. 
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Non-mathematical and other uses of why 

The few why’s in the Other category are either not part of a question to students, or meta-questions 
which we do not discuss further in this paper. Similarly, the non-mathematical why’s are rare in the 
material, and occur in data from only two of the teachers. Yet, they are interesting because all of them 
are used in a rhetorical and even reproachful manner, such as: 

Teacher: Six. Why don’t you raise your hand when you know it? 

This example, as well as the remaining six instances of this code, are rhetorical and reproachful 
because the teacher does not expect an answer and the aim of the questions is to address something 
unwanted in the student’s behavior.  

Discussion 
We started this paper with an assumption that why-questions can serve as initiators of exploratory 
routines involving MR processes, in line with Martino and Maher’s (1999) “timely question[s] which 
can challenge learners to advance their understanding” (p. 53). In our data, we found evidence that 
this indeed happens. Yet, we found that by far most examples of why-questions are routine-re-
initiating. They are usually asked after the students have finished their work on a task. Thus, in 
commognitive terms, we could consider those why-questions initiators of subroutines that are nested 
within the closure of the outer routine, the task itself (“work on the task is done after the teacher has 
got all the details”). Still, they have an indisputable potential for developing students’ mathematical 
reasoning: The student gets an opportunity to express her thinking; the (teacher and) other students 
get access to this reasoning; and the teacher is given the opportunity to emphasize for the whole class 
what he considers to be important ideas. Moreover, some of the routines expressed by the students 
may initially have been exploratory, and insights into explorations could model other students’ later 
attempts at explorations. 

So, is there a problem with this bias towards routine-re-initiating why-questions? Although earlier 
studies recognize the potential of why-questions as routine-initiating (Drageset, 2021; Ingram et al., 
2016), we must remember that if students should interpret a why-question as a “signal” to start an 
MR exploration, then they must be exposed to why-questions used in this way. Lavie et al. (2018) 
write that “[t]he teacher’s own mathematical discourse is the model for the learners to follow, and the 
question is whether its explorative nature gets through to the students” (p. 20). If why-questions are 
mostly restricted to the recalling of performed work (which may even not have been explorations), 
or to aspects that are non-mathematical, the connection between asking why and the need for MR 
explorations is not likely to be routinized by the students. Accordingly, we note from further reading 
of the transcripts that in many of the cases where routine-initiating why’s are used, explorations did 
not consequently occur. We do not elaborate on the reasons for that here – that would be outside the 
scope of the paper – but we remark that a possible reason could be that students simply does not 
interpret the question as a “signal” to start an MR exploration. One implication for teaching could be 
for teachers to be careful of how they use the word why. In situations where the aim is not to invite 
students to reason, but rather to invite them to share their thinking (and in particular when it concerns 
rituals and concepts rather than explorations), could there be other phrases to choose from? “What 
does that mean”, “how does it work” and so on. But most important is probably that teachers should 
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stress to use why in connection with MR explorations, also when it is the teacher himself who takes 
the lead in the process. 
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Focusing on mathematics and visual art teacher collaboration and drawing on Communities of 
Practice and boundary crossing, this study aims to examine the boundaries that emerge between 
mathematics teaching and visual art teaching communities in regard to mathematical practices and 
tools, as well as the way they are handled among collaborating members. Using a grounded theory 
approach, data from 10 group meetings of art and mathematics secondary school teachers who try 
to develop ways of linking mathematics and art teaching were analyzed. Results indicate the emerging 
boundaries by means of epistemological differences regarding “formal vs informal”, “theoretical vs 
empirical”, “analytical vs visual”, “terms vs meaning” and “terms vs representations”. In handling 
these, brokering, identification, coordination, reflection, transparency, and negotiability emerged. 

Keywords: Mathematics teaching practice, visual arts teaching practice, interdisciplinary 
mathematics teacher collaboration, boundaries, boundary crossing. 

Introduction 
Recent research examines arts integration into other subjects and the benefits it provides in learning, 
such as supporting different learning styles (An & Tillman, 2014), enhancing motivation-emotions 
and constructing meaningful knowledge (Baird, 2015). Students of mathematics may also benefit 
from such an integration, by engaging in processes such as problem solving and modeling (Jacobs, 
2000), supporting exploratory learning approaches through the process of creating art (von Renesse 
& Ecke, 2016), developing mathematical thinking and connecting classroom mathematics with 
students' personal experiences (Presmeg, 2009). After all, the connection between mathematics and 
art is not new and can be used in common curriculum content as well as in integrated curriculum, 
where teachers in both subjects are required to work together to reshape them (Bickley-Green, 1995). 
This interdisciplinary collaboration seems crucial, as teachers alone naturally do not have the 
knowledge needed to integrate art in their classroom. However, according to Akkerman and Bakker 
(2011), people collaborating across disciplines may face boundaries between different perspectives 
or practices. In response to these challenges, interest exists in how continuity in action or interaction 
is established despite of sociocultural differences. In describing potential forms of continuity across 
sites, boundary crossing and boundary objects seem central. According to Kisiel (2010), a successful 
collaboration “would rely on clarifying the potential boundaries between communities” and “on the 
introduction of appropriate boundary objects as well as the utilization of brokering to make fruitful 
connections” (p. 99). This inherent learning potential makes boundaries important to education fields, 
mathematics education included (Potari et al., 2019). 

In mathematics education, interdisciplinary collaborations are often placed in a professional 
development context, with interactions between communities being studied in terms of boundaries 
and boundary crossing, often framed by Communities of Practice (CoP) (Wenger, 1998). For 
example, Psycharis and Potari (2017), by adopting an activity theory framework, use boundary 
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crossing to study teachers’ learning in relation to integrating workplace contexts into mathematics 
teaching; and Bouwma-Gearhart et al. (2014) focus on interdisciplinary collaboration between 
postsecondary STEM and education faculty, highlighting the critical roles of brokers. In our study, 
we focus on collaboration between mathematics teaching (MT) and art teaching (AT) communities 
of practice, via collaboration of teachers from these communities, as well as on boundaries and 
boundary crossing between the two practices. The research questions are: 1) What are the emerging 
boundaries between MT and AT communities of practice in regard to mathematical practices and 
tools? and 2) How are these boundaries handled by members in collaborative group discussions? 

Theoretical perspectives 
Arts integration, communities of practice, boundaries and boundary crossing 

Burnaford et al. (2007) recognize arts integration as learning through/with the arts, a curricular 
connections process and collaborative engagement (pp. 11–12), citing aspects such as building links 
between learning in arts and in another subject area and professional development as a key element 
that defines it as an integration of people (p. 18). In addition, Silverstein and Layne (2010) define it 
as an approach to teaching where students construct understanding through an art form, engage in a 
creative process that connects the two fields and evolve in both. They consider that it can be used as 
incentive to enter the field being taught, as a tool for verifying existing knowledge or as equivalent 
to the other subject. This definition is embraced by our own conceptualization of mathematics and 
visual art integration. However, it implies a shift in daily teaching practice, something that is not 
easily achieved. It would seem, though, that it is the kind of engagement that the students will be 
drawn in that would be most crucial (e.g., problem solving, instead of coloring tiles in a worksheet). 

Furthermore, the “integration of people” mentioned above implies the concept of community. On to 
this, Wenger (1998) describes CoP as groups of people who share a practice reflecting their mutual 
learning, being mutually engaged in a joint enterprise generating a shared repertoire, where 
negotiation of meaning is generated through participation and reification. Focusing on interactions 
between different communities, he is not the only one to talk about boundaries and boundary crossing. 
Boundaries are defined as “sociocultural differences leading to discontinuity in action or interaction”, 
simultaneously suggesting “a sameness and discontinuity in the sense that within discontinuity two 
or more sites are relevant to one another in a particular way” (Akkerman & Bakker, 2011, p. 133). In 
relation to this, boundary crossing refers to a person’s interactions across different sites (Suchman, 
1994), facing the challenge of “negotiating and combining ingredients from different contexts to 
achieve hybrid situations” (Engeström et al., 1995, p. 319) in order to establish continuity across them 
(in Akkerman & Bakker 2011, p. 133). In this, people and objects that transcend boundaries are 
central: brokers introduce elements of one practice into another via creating connections, moving 
knowledge, exploring new territories (e.g., Wenger, 1998), and boundary objects enable multiple 
practices to negotiate relationships and connect perspectives, including artifacts (tools or documents), 
discourses (common language) and processes (shared routines or procedures) (Wenger, 1998).  

Thus, although boundaries can be sources of misunderstanding, as moving across them means moving 
into unfamiliar contexts, so being unqualified (Suchman, 1994, as cited in Akkerman & Bakker 2011, 
p. 133), they can also be resources for learning, as moving across them also means engaging in 
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dialogue and negotiating perspectives, through which new meaning and new possibilities may arise. 
In fact, Wenger (1998) suggests that communities must exceed their own boundaries so to preserve 
their dynamism and refers to three dimensions for boundary processes to create bridges that connect 
practices in deep ways: a) coordination (enabling coordinated actions, accommodation and 
standardization of practices so that everyone can engage in them); b) transparency (access to 
meanings and understandings of practices); and c) negotiability (negotiation of perspectives and 
multiple voices). Moreover, Akkerman and Bakker (2011) name four boundary-learning 
mechanisms: a) identification (recognizing what each practice is about and the boundaries that exist 
between them: how they do and do not relate to each other, how either differs from the other); b) 
coordination (ways that make transitions between practices smoother: a communicative connection, 
efforts of translation [with boundary objects serving as mediating artifacts], enhancement of boundary 
permeability and processes of standardization [organizing activity as smoothly as possible] and 
routinization [creating routines to rely on]); c) reflection (perspective making, i.e. defining the 
different perspectives that each practice brings or amplifying one’s understanding and knowledge of 
a particular issue; and perspective taking, i.e. looking at one’s own practice through the eyes of the 
other); and d) transformation (changes in practices or creation of an in-between practice [e.g., 
Wenger’s “boundary practice”, p. 114]: a confrontation with a situation, a recognition of a shared 
problem space, a hybridization and a crystallization of the new practices [Wenger’s reification], 
maintenance of the characteristics of each practice and continuous work at the boundary). 

Methodology 
Situated in two Greek art-based schools (grades 7–12), the study initially adopted an ethnographic 
approach (Allan, 2017). R1 (first author) visited each school twice a week for a whole day for a period 
of 8 months and kept field notes from MT and AT classroom observations, audio-visual records of 
lessons and events and informal discussions with the teachers. In the next school year, 2 collaborative 
groups were formed, 1 at each school (2 mathematics teachers, 5 visual art teachers and R1 in each 
one (R2 [second author] was present in each of the first meetings). The meetings (sum of 17) were 
held in teachers’ office once every two weeks and embedded in the daily school setting. In the first 
10 the meetings, members engaged in a familiarization phase between the two communities. Special 
resources (visual-artistic artifacts, students’ actions, common ground in curriculums, examples from 
teaching issues) were chosen by R1 as potential boundary objects and given for the group to negotiate 
upon. In the last 7 meetings, teachers were asked to co-design and co-implement integrated tasks in 
their classrooms and to reflect on what happened.  Data included field notes, audio-visual records of 
the meetings as well as teachers’ lesson plans and written reflection reports. In Choutou (2019), a 
more detailed view on the design of the study and R1’s role as facilitator is provided. 

In the analysis, grounded theory approach is used (Charmaz, 2014), identifying themes and categories 
in Atlas.ti. We are interested in the emerging boundaries (based on Akkerman’s & Bakker’s 
definition) in connecting MT and AT. Here, we draw on the data from the first ten meetings of one 
of the groups. We report the boundaries identified as epistemological differences or tensions that lead 
to discontinuity in action or interaction in regard to mathematical practices and tools, and the ways 
these are handled by members, tracing any action or interaction that relate to establishing continuity 
and characterizing them using terms related to boundary crossing. 
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Results
Boundaries between MT and AT communities

Several boundaries between MT and AT, in the form of epistemological differences between the two 
contexts, emerged, in relation to mathematical practices (including constructions, processes, 
procedures, ways of thinking and inquiring) and to tools (concerning language and artifacts [hands-
on materials]). In Figure 1, we present the systemic network developed from the data analysis in 
relation to these emerging boundaries. Following, we discuss the categories and the subcategories 
offering examples from the data to illustrate them. MT1, MT2 stands for the two mathematics teachers 
and AT1, …, AT5 for the art teachers accordingly.

Figure 1: The systemic network describing the emerging boundaries between AT and MT

In regard to differences in mathematical practices a first difference concerns formal (in MT) vs
informal (in AT) mathematical practices. For example, the following extract illustrates an artist’s 
informal construction of a circle starting from a square:

R1: In the beginning he makes a square. And then he focuses on the middle of that 
distance and marks a little further inside. He does it in each of these points, he joins 
them as circularly as he can and so he gets a circle.

AT3: “A little further in” is not very mathematical… it can be visual-artistic (laughs) but 
it does not seem very mathematical to me (laughs).

R1: (laughs) It's a little over the mean… if you do it algebraically, a square root emerges. 
That's why it does not come out exactly in the middle.

A second difference concerns theoretical (in MT) vs empirical (in AT) mathematical practices. For 
example, towards the construction of the development of a solid in art, AT4 says: “it’s not enough to 
construct a theoretical development. The development you’ll make (e.g., out of cardboard) will 
probably have to have edges (left/glued around the sides of the development) so you can glue it all-
closed-together.” An interesting highlight here, is the non-existence of mathematical proof in AT as 
we know it in MT. More specifically, AT1 says that her interest lies in how she can support her 
students, so that they can learn mathematics more easily and without hating it, “because, theoretically, 
mathematics is the basis of everything. I cannot prove it, this is what science is for, but I really feel 
this”, thus pointing to an empirical sense of feeling (vs proof) coming from her experience as an artist.

A third difference concerns analytical (in MT) vs visual (in AT) mathematical practices. For example, 
when inquiring about why the pentagon does not tessellate the plane, MT1 came up with the algebraic 
formula, whereas AT1 engaged in a visual inquiry in dividing the regular polygons into triangles in 
order to see what is happening with the angles. Ways of thinking in AT seem more visual in general:

AT1: Are there indeed two equal lines?
MT1: Mmm… it says… 10, 10. Yes, 10, 10.

Boundaries  
between     

MT and AT

Mathematical practices in MT vs in AT
Formal vs informalFormal vs informal

Theoretical vs empiricalTheoretical vs empirical
Analytical vs visual

Tools in MT vs in AT

Analytical vs visual
Formal vs informalFormal vs informal
Terms vs meaningTerms vs meaning

Terms vs representations
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AT1: So out of the 4, two are equal. And this helps (in making the tile tessellate the plane), 

I imagine… look. In the drawing (tile), here, this is equal to this, this is equal to 
this… and I imagine that this side is two times another side. 

MT1: It’s true! (enthusiastically). 
AT1: You can see it with your eye. 
MT1: YOU can see it with your eye... 
AT1: Because, this is equal to this, so… this is true because, this side is equal to this, and 

this side here, I mean the one that lies next… is two times the first ones. 
MT1: So they can complement the big one… hm... 
AT1: Yes, because, the way this side is here, that’s how these two should be here also. 

And then, the pattern can develop further. If it wasn’t for this, the development of 
the pattern would not be feasible to develop... 

In regard to differences in tools, a first difference concerns formal (in MT) vs informal (in AT) tools. 
These concern differences in language, as for example, mirror instead of axial symmetry and cookie 
instead of circle. Metaphorical descriptions are included, for example, directions and meetings of the 
lines (informal) instead of angles (formal), turning like a windmill, but at equal distances (informal) 
instead of rotation of equal degrees (formal). They also concern differences in artifacts, for example, 
rope and string or circular objects (informal) instead of compasses (formal) for making circles and 
“eye scaling” and measuring needle (informal) as means of comparison instead of ruler (formal), or 
even working only with their hands and drawing instinct. It must also be noted that hands-on materials 
“guide” the mathematical practices the artist will use (informal or empirical), as in the case of the 
construction of the development of a solid mentioned above. 

Moreover, some of the concepts that appear both in AT and MT, such as positive-negative, rhythm, 
symmetry, small-big, shrinkage-enlargement, pattern, share the same terms but have different 
meanings. For example, the concept of pattern in AT, it seems to have the meaning of a single shape 
or a decoration instead of a sequence of shapes. In the next extract, R2 focuses on the pattern as a 
whole, whereas AT5 focuses on the shape that is repeated: 

AT5: I am thinking of Minoan decorative rhythmic shapes that could be very useful in 
10th grade. They can be made into friezes. And then move on to mandalas and what 
MTL was saying (fibonacci spiral) and end up in the costume (students’ artwork). 

AT3: Yes, because it’s a repetition, it still has the (notion of) rhythm. 
R2: Ok, that, in the sense of what we might say “pattern” in math. 
AT5: A pattern and a blank space then a pattern and a blank space and so on. 

In addition, the opposite relation emerged too, pointing to artifacts that share the same meaning in 
the two contexts, but appear with a different term in each. For example, during a discussion on the 
connections that teachers find between a grid resource for artwork and mathematics, MT1 says: “I 
see the Cartesian (coordinate) system, with squares. Like a millimeter sheet.” Also, the concept of 
vanishing point (AT) (the point where two parallel lines seem to meet, in linear perspective), shares 
the same meaning in both contexts, but appears with a different term in MT, i.e., a point at infinity. 

In addition, other concepts appearing with the same term have different representations. For example, 
AT2 reports for the stretching of a line in graphic design, that they have different thicknesses and 
sparsity, so when the artist chooses to do a line (in the program), he must choose the thickness he 
wants, thus, “… say I have scanned a line. The distortion starts and the line thins… because the pixels 
are removed. But the line doesn’t have a second dimension, only one, so in theory this isn’t possible!” 
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Handling of the emerging boundaries among group members 

Results in regard to how boundaries were handled indicate several actions and interactions among 
members, including: identification processes (identifying other’s way of thinking, recognizing own’ 
disciplines features), perspective making (defining other’s perspective in light of owns perspective), 
efforts of translation and explanations for coordination and transparency [translating and linking 
perspectives, translating terminology/perspectives in ones’ own context, (AT) describing artifacts 
using formal language, translating informal/empirical/visual into formal/theoretical/analytical 
accordingly, explaining relative/according AT or MT content, proposing coordination of teaching, 
reducing teaching expectations/requirements, designing properly an activity], brokering (bringing 
mathematical knowledge), transparency (reasoning one’s own context’s practices) and negotiability 
(sharing an expert’s perspectives on fixing students’ negative feelings, counter-proposing own 
perspective). The following example from the data illustrates how a specific boundary was handled. 

The group discussed on two students’ construction of a ballerinas’ tutu (a resource found in the 
ethnographic phase), where students made a circular ring out of cardboard and after cutting it (like a 
radius), crossed one edge over the other, forcing it to tilt (informal). According to AT1, “It was a very 
good job, but the mathematics teacher didn’t interfere there at all. The mathematics used there is 
empirical. Clearly.” However, MT2 disagrees, saying that what students did is mathematics indeed: 
“well, they've done mathematics so far. The fact that they want it to curve and the lines they made, 
it’s still mathematics. It’s fine, it’s not bad.” Here, AT1 stresses that the students had to construct a 
cone which would become the tutu, adding that “there is the form of truncated cone” (formal). At this 
point, AT2 comes to sooth things down by pointing out that using formal mathematics for this 
construction would be using stereometry (formal) for calculating the development of the shape and 
the dimensions of the tutu, thus proposing it as the solution: “We used to do stereometry at 
school…we took cardboard and they were teaching us how to cut it to make a cone, a pyramid. These 
are needed,” adding that “the equivalent, if we collaborated, when I do this (tutu), you teach 
stereometry, even for 1 hour, so that we can have coordination, so students can see these important 
stuff,” stressing the importance of having “an epistemological stance to coordinate our speeds.” AT1 
enthusiastically agrees and adds: “Well done, that’s it! We (AT) go in (classroom) and show them: 
how to make a cube, how a cone is constructed. Basically, it's not exactly our stuff. We rely on it. But 
we introduce it. So, all I am saying is, I did not see this here, that's why I come a little like that. This 
is empirical.” In addition to this, MT1 also identifies the matter of transfer from the empirical 
implementation of mathematics in AT (the tutu construction here) to the theoretical knowledge in 
MT, saying: “to start from what AT1 said about students liking to use geometric instruments, and see 
how far they can go from this to the most theoretical. That there are formulas, for how we calculate 
(and) construct, areas, triangles, taking advantage of the aim of this situation, this construction.” 

The tension described above seems to be generated by the difference between the formal 
(stereometry) and the informal practices of students. A trigger for it seems to be AT1’s brokering 
ability to bring and compare the formal mathematical practices used in this construction with the 
existing formal “form of truncated cone”. In negotiating with AT1, MT2 suggests the acceptance of 
the informal practices as “mathematics indeed” (negotiability), and the boundary is, finally, handled 
through AT2’s suggestion of coordination of the respective teaching sides, for linking the two for 
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boosting students’ learning. AT2, here, acts as a broker between the two communities, bringing and 
naming formal mathematical knowledge of stereometry from MT community to the AT community 
and relating it to the according informal practices the students used. Side with AT2 lies MT1, who 
propose linking the empirical implementation of mathematics and the theoretical mathematical 
knowledge for achieving better results in respect to students’ learning. It is evident that, here, the 
coordination mechanism/dimension between the two sides plays a central role, as being proposed to 
being the solution itself for bridging the formal-informal and theoretical-empirical gap. 

Discussion 
In this paper, we focus on the emerging boundaries between AT and MT communities and the ways 
these are handled among members in respect to boundary crossing. First, taking under consideration 
Akkerman’s and Bakker’s (2011) definition of boundaries, we focused on emerging epistemological 
differences between the two contexts in regard to mathematical practices and tools. Mathematical 
practices emerge as formal/theoretical/analytical in MT and informal/empirical/visual in AT 
accordingly. Tools in relation to language and artifacts bring to the fore different terms, 
representations and meanings of concepts and practices. For example, formal in MT and 
corresponding informal language in AT, as well as formal mathematical tools compared to informal 
in AT and tools with same meaning but different terms, describe ways in which MT and AT differ 
from one another. All these differences create forks between MT and AT, leaving “blanks” in 
member’s actions and interactions and nevertheless, juxtaposition the two, suggesting that “within 
discontinuity (the) two…sites are relevant to one another in a particular way” (Akkerman & Bakker 
2011, p. 133), implying a set of relationships between learning in art and learning in mathematics 
(Burnaford et al., 2007), thus giving meaning in an effort of crossing them. Secondly, for locating 
how boundaries are handled, we used terms related to boundary crossing. Here, brokering (bringing 
M knowledge) and coordination (e.g., linking theoretical and empirical ways of thinking), seem to be 
crucial, along with transparency and identification, as well as reflection and negotiability (Wenger, 
1998; Akkerman & Bakker, 2011). Overall, our findings seem to indicate aspects of mathematics and 
their teaching, highlighting this teaching as something that is being or can be done, not only in the 
mathematics classroom but also in non-mathematical settings, and describing the nature of 
mathematical practices taught and tools used in either of them. Through their inevitable comparison, 
the co-existence of the two poles of the boundaries links these aspects and a more complete “image” 
of mathematics and teaching mathematics is provided. Their interplay is commented by members to 
be beneficial for mathematics teaching and students learning. Thus, the feasibility of building bridges 
to connect MT and AT communities and create learning potentials for both teachers and students is 
suggested. Future research will focus on the negotiation among members towards the integration of 
the MT and AT and the potential creation of a hybrid, art and mathematics integrated practice. 
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How do teachers share and develop student ideas? 
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This article aims to try out a framework describing teacher positions based on an analysis of their 
interactions, and through this, gather ideas for further development of the framework. This article 
uses shared data from TWG 19, with data from five classrooms. These were analyzed by categorizing 
interaction from transcripts of the data. The analysis focuses mainly on the interactions related to 
one position: A teacher that shares and develops student ideas. The findings illustrate how this 
framework can characterize and contrast these five classrooms. 

Keywords: Positioning theory, interactions. 

Introduction 
In all social settings, including classroom discourse, the participants position themselves and each 
other based on personal preferences and social interactions. In the classroom context, a teacher 
typically will position students continually, and this positioning can be seen by the type of questions 
asked, the types of tasks given, and who the teacher groups together (Harré & Langenhove 1999). 
This study aims to use the shared data in TWG19 to try out a framework describing five teacher 
positions: A teacher that knows and tells, a teacher that supports, a teacher that shares and develops 
student ideas, a teacher that participates, and a teacher that facilitates (Drageset, 2021). The results of 
this will be used as a base for further developing the framework. We will particularly study the third 
position with this research question: How can a study of how teachers enacted the third position, a 
teacher that shares and develops student ideas, be used to characterize and contrast different 
mathematics classrooms? 

Theory 
It is well established that in a discourse, a turn is thoroughly dependent on previous turns (Linell, 
1998). Consequently, it is possible to argue that student interactions are affected by the teacher, and 
this is particularly true when the teacher speaks every second time as in the Initiation-Response-
Evaluation (IRE) pattern. However, there is more to communication than responding to the prior turn. 
Other factors are in play, such as when a teacher asks a question, students might know what is 
accepted as an answer and not. This is not only related to the content of the prior turn (the teacher 
question) but might also be related to established classroom norms. Such norms are described by 
Yackel and Cobb (1996) as socio-mathematical norms. These are developed over time in all 
classrooms, whether worked on deliberately or not. Another factor that affects communication is 
related to positions in the classroom. When joining a social setting, one might have dispositions that 
guide one's preferences for positions, such as trying to keep silent because of insecurity or a feeling 
of safety and curiosity in mathematics, making you an active participant. On the social level, such 
positioning is a reciprocal, sometimes competitive, process where you do not choose a position freely 
but might be positioned by others' positions or actions, and your positioning affects others (Harré & 
Langenhove 1999). In the classroom context, a teacher typically will position students continually 
based on the teacher's beliefs about the competency and personality of the student (Harré & 
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Langenhove 1999). Also, this positioning of others, being by the teachers or fellow students, might 
be intentional or not. However, it is not just the teacher that positions students. It is more plausible 
that positioning is a form of negotiation, such as in socio-mathematic norms. One basic example 
could be when a teacher presents a rule to be used, and the student wants to know why. This can be 
seen as the student trying to position the teacher as something other than a teller of methods. 
Moreover, Drageset (2021), in a study of how explanations are initiated and responded to, has found 
that teacher interactions are far less dependent on the prior turn than student interactions. This 
illustrates how teacher typically has other agendas than responding to prior turns, and positioning 
might be a tool to describe the difference between how teachers and students contribute to classroom 
talk. 

According to both Harré and Langenhove (1999) and Wagner and Herbel-Eisenmann (2010), 
positioning can be observed through a study of interactions. This means that one way to explore and 
describe different positions in a classroom is to study what each participant says. A framework that 
is being developed from a review of literature on classroom discourse in mathematics suggests five 
broad teacher positions (Drageset, 2021). The first position is a teacher that knows and tells. A teacher 
that knows and tells takes a position as somebody who knows something and has the authority to 
decide and evaluate. This position can be further detailed into three ways of telling: telling as initiation 
(such as teacher as initiator by Lobato et al., 2005), telling what or how to do (such as teacher 
explanation by Henning et al., 2012), and telling about connections (such as connections by Rowland 
et al., 2005). The second position is a teacher that supports. A teacher that supports helps students in 
their work to reach answers and develop their mathematical understanding. Also, this position can be 
further detailed into three ways of supporting: supporting by reducing the complexity (such as 
simplification by Drageset, 2014), supporting by assessing (such as confirmation by Henning et al., 
2012), and supporting by progressing student thinking (such as probing guidance by Warshauer, 
2014). The third position is a teacher that shares and develops student ideas. Such a teacher position 
focuses on student thinking as the source for discussions and learning. This position is based on a 
large number of concepts from the literature and can be further detailed into three parts. First, the 
position is based on the teacher accessing and sharing student thinking (such as eliciting student 
thinking by Fraivillig et al., 1999). When ideas are accessed and shared, the teacher might point out 
what is important in different ways (such as clarifying statements by Conner, 2014) or using student 
thinking as the core of the discourse (such as by encouraging reflection by Cengiz et al., 2011). Such 
use of student thinking has been described as uptake by Correnti et al. (2015). The fourth position is 
a teacher that participates. When a teacher participates, the teacher works together with students to 
find solutions or understand new concepts. This might be done in two ways, either by being a real 
collaborator in an inquiry where the teacher does not know the answer (such as in a landscape of 
investigation by Skovsmose, 2001) or by playing a role (such as in teacher in role, by Drageset et al. 
2021). The fifth position is a teacher that facilitates. When taking this position, the teacher facilitates 
the discourse and mathematical work without engaging in the content. This can be further detailed 
into three ways of teacher facilitating: facilitating by orchestrating the discourse (such as guiding 
participation and norms by Drageset, 2019), facilitating the development of ideas (such as turn-and-
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talk by Kazemi et al., 2014), facilitating a focus on peer thinking (such as requesting evaluation by 
Conner et al., 2014).  

Table 1: Five positions and further detailing (first row) and characterization of each (second row) 

A teacher that knows 
and tells… 

A teacher that 
supports… 

A teacher that shares 
and develops student 

ideas… 

A teacher that 
participates… 

A teacher that 
facilitates… 

… as initiation 

…  what to do 

… about connections 

… by reducing 
complexity 

… by assessing 

… by progressing 
student thinking 

… by accessing and 
sharing 

… by pointing out 

… by using student 
thinking (uptake) 

 

… as a real 
collaboration 

… as a teacher in 
role 

… by orchestrating 
the discourse 

… by developing 
ideas 

… focus on peer 
thinking 

Some teachers may maintain one position most of the time, while other teachers might change 
position frequently, deliberately or not. It is also probable that the students sometimes are willing to 
take positions aligned to the teacher positions, and at other times not. If the teacher takes the position 
as a teacher that knows and tells, this only works if the students align themselves by taking a position 
of listeners. Accordingly, a teacher can only facilitate the discourse without engaging in the content 
if the students are willing to take positions as active participants by asking questions, explain, 
evaluate, and argue. This negotiation can also be seen as part of developing classroom norms, where 
different teacher positions are accepted and aligned student positions are accepted.  

Method 
This article reports from a study of shared data within TWG19 for the CERME12 conference. 
Different participants of the thematic working group shared five videos from different classrooms. 
This is done so that the participants can achieve a deeper understanding of each other's analysis and 
frameworks when not only the results but also the data is shared. The article is also connected to the 
SUM project that aims to develop teachers' capacity to teach through inquiry-based learning. 

We use a framework describing five teacher positions (Drageset, 2021) to explore characteristics and 
contrasts between the five classrooms, aiming at trying out and further develop the framework. The 
analysis is based on a turn-by-turn analysis, categorizing all teacher interactions related to the five 
positions and their further detailing (see table 1). Then we chose to explore the most frequently used 
position further (a teacher that shares and develops student ideas). We then used the characterizations 
from table 1 as categories (access and share, pointing out, using student thinking) and categorized all 
teacher interactions in this position. We discovered a need for a new category through the data 
analysis, which we named requesting mere answers. 

The data from each classroom is too limited to say much about the classrooms. However, this type of 
data from different classrooms is valuable because one can try out how a framework might be useful 
to characterize different practices and use this for further development of the framework. This result 
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also illustrates different ways teacher positions themselves during mathematical classroom discourse, 
which may be a foundation for conducting larger studies.  

Findings 
Table 2: Overview of the frequency of positions taken in each classroom (empty means zero) 

 Classroom 1 

Drageset 1 
(King’s birthday) 

Classroom 2 

Drageset 2 
(whiteboards) 

Classroom 
3 

Hoover 

Classroom 
4 

Sakonidis 

Classroom 
5 

Santos 

A teacher that knows and tells 7 (16%) 27 (31%)  11 (34%) 21 (22%) 

A teacher that supports 10 (22%) 9 (10%)    

A teacher that shares and develops 
student ideas 

17 (38%) 42 (47%) 2 (15%) 18 (56%) 62 (67%) 

A teacher that participates      

A teacher that facilitates 11 (24%) 11 (13%) 11 (85%) 3 (9%) 10 (11%) 

When looking at table 2, we can see a considerable difference between the classrooms. However, the 
data from the classrooms vary in length and type of interaction to such a degree that it is not possible 
to use table 2 as a basis for comparison. But as Table 2 illustrates, the most frequent teacher position 
in these five classrooms is to share and develop student ideas. Since this position is most frequent in 
total and in four of the five classrooms, we will look more into how the interactions of this position 
look like and what these can tell us about classroom characteristics.  

According to Drageset (2021), the teacher position of share and develop student ideas can be 
characterized by three types of teacher interactions: access and share, pointing out, and using student 
thinking (uptake). During the analysis, we discovered that these could not characterize all teacher 
interactions, and therefore, we added a new type: requesting mere answers. With these four types, we 
were able to categorize all teacher interactions related to this position.  

 Table 3: Frequency of each type of interaction within the teacher position of sharing and developing 
student ideas (empty means zero) 

 Classroom 1 

Drageset 1  
(King’s birthday) 

Classroom 2 

Drageset 2 
(whiteboards) 

Classroom 
3 

Hoover 

Classroom 
4 

Sakonidis 

Classroom 
5 

Santos 

Access and share 7 (16%) 28 (31%) 2 (15%) 3 (9%) 12 (13%) 

Pointing out 7 (16%) 8 (9%)   1 (11%) 
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Requesting mere answers  5 (6%)  14 (44%) 40 (43%) 

Using student thinking 
(uptake) 

3 (6%) 1 (1%)  1 (3%)  

As seen in Table 3, the first type of interaction, access and share, is the only interaction found in all 
the classrooms. Drageset’s second classroom (whiteboards) is the classroom that uses this interaction 
most frequently, while the data from Hoover’s classroom only have two interactions related to this 
position. Otherwise, we see a common pattern in these classrooms. To access student ideas, they all 
ask how, what, and why. Examples include “How did you think?”, “What do you mean?” or simply 
“why?”. Typically, when asking what and how the teachers request a chronological explanation of 
how an answer was reached or what to do to reach an answer. When asking why, they request a reason 
or argument for why one should use this method or why an answer should be seen as correct. These 
three types of questions (how, what, why) are about what Fraivillig (1999) labels eliciting student 
thinking. When doing this in plenary talk, it is also about sharing student ideas with their peers. This 
can be seen as the foundation of the position of sharing and developing student ideas, as accessing is 
about sharing, and sharing is needed to develop the student ideas further, particularly to include other 
students in the development of the ideas. 

The second type, pointing out, was found in three of the five classrooms. There was little difference 
in the frequency of the use between the classrooms, but we found two quite different ways of pointing 
out. Most frequently, the teachers used this position to revoice parts or all of what the students had 
said. There were two different applications of revoicing, either simply revoicing the student's point 
or revoicing while adding additional information. One example of simply revoicing is, "Okay. So you 
used the fact that you know twenty present is one-fifth.”.  The other way of pointing out was when 
the teachers summarized students' explanations. We saw this most frequently in Drageset’s first 
classroom (King’s birthday), where the teacher frequently gave a thorough summary of how a student 
had solved a given task, based on the student's explanation. One of these summaries is this one: 

Teacher:  First, she wanted to go to the year 2000 first, and then go from 2000 to the year the 
King was born. Right? So you started with 80 minus 17, and got 63. She removed 
17 from 80. Then you got 63. Then she wanted to find what 2000, from here, and 
jumping 63 years backward from the year 2000. That's how she thought. So you 
tried to do 2000 minus 63, but this is a really difficult equation, to do it like this. 
Because... You haven't really learned this, with such large numbers. Did you 
manage to finish it, too? 

This way of pointing out still focuses on the student's ideas, but the teacher takes an active role in 
repeating and emphasizing the student’s solution, possibly also modeling how to explain. 

The third type, requesting mere answers, is the most used interaction in this position, but we only 
found it in three of the five classrooms. There are mainly three ways the teachers requested mere 
answers. One way whereby asking yes and no questions, such as “Did you agree that this was the 
best way?”. Often we recognized these types by how the students answered the given question. As 
we mentioned earlier, the student's response to the teacher’s questions seems to be based on what 
their experience tells them is an acceptable answer for that type of question, in what looks to be an 
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example of socio-mathematical norms (Yackel & Cobb, 1996). An interesting variant of these yes 
and no questions were questions that, in reality, were yes-questions (the correct answer was obviously 
yes) and no-questions (the correct answer was obviously no). A second way of requesting mere 
answers was by requesting answers to tasks, where the answers typically were a number, such as 
“and here, how many do I need for a whole pizza?”. A third way of requesting mere answers was to 
ask for the meaning, such as “What did percentage mean then Ole?”, which we only saw in 
Drageset’s second classroom (whiteboard). Since we only saw this at the beginning of the lesson, it 
seemed that the teacher wanted to get the students thinking about the subject they were going to focus 
on in that lesson.  

The fourth type, using student thinking (uptake), was not observed in these classrooms. However, in 
Hoover’s classroom, the teacher did use student thinking in a comparable way but without interfering 
in the mathematical content. Consequently, these interactions were seen as part of the position called 
a teacher that facilitates and the code focus on peer thinking. 

Discussion and conclusion 
This part will discuss what the findings related to the position of sharing and developing student ideas 
mean for each classroom and use this to characterize and contrast the classrooms. According to Harré 
and Langenhove (1999), teachers position students continually, so we will also comment on how the 
teachers' choice of positions might position the students. 

Classroom 1: Drageset 1 (King’s birthday) 

In this classroom, we see that 38% of the teacher's interactions belong to the position of sharing and 
developing student ideas, primarily by accessing and sharing, and pointing out. This teacher was the 
one with the most thorough summaries of student’s solutions when pointing out. This shows a teacher 
focused on getting access to and sharing the students' ideas and then gathering any loose ends into a 
coherent whole. This can position the students as owners of ideas while the teacher maintains the 
authority to define and model the solutions. 

Classroom 2: Drageset 2 (Whiteboard) 

In this classroom, 47% of the teacher's interactions belong to the position of sharing and developing 
student ideas, primarily be accessing and sharing, where the teacher’s goal seems to be to share 
several different student ideas and methods. This teacher rarely summarizes the student’s ideas but 
instead lets the students' answers stand on their own. This means that the students also here are 
positioned as owners of ideas, but without the teacher using the authority to point out a more precise 
or correct solution. 

Classroom 3: Hoover 

In this classroom, the teacher mainly takes the position of facilitating, but only twice the position of 
sharing and developing (see table 2), which is not enough to analyze related to the latter position. 

Classroom 4: Sakonidis 

56% of this teacher's interactions belong to the position of sharing and developing student ideas, 
primarily by requesting mere answers and occasionally accessing and sharing. This means that the 
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teacher focuses on sharing answers and quite rarely on sharing solutions. This teacher positions 
students as task solvers and the teacher continually uses the authority to confirm or reject the answers.  

Classroom 5: Santos 

In this classroom, 67% of the teacher's interactions belong to the position of sharing and developing 
student ideas, primarily by requesting mere answers. However, this teacher also uses access and 
share as well as pointing out to a certain extent. This means that the teacher positions the students as 
task solvers and occasionally as the owner of ideas. At the same time, the teacher continually uses 
the authority to confirm and reject answers. 

Conclusion 
As illustrated above, the teacher position of sharing and developing student ideas is the most frequent 
one in this data set. However, while four of the five teaches use this position frequently, there are 
clear differences. One is most focused on sharing student solution methods and let them be the end 
product. Another is also focused on sharing solution methods but also refine them through long 
summaries. Furthermore, two others seem most focused on sharing answers and using their authority 
to confirm or reject them. This work illustrated how a study of the position of a teacher that shares 
and develops student ideas can be used to characterize and contrast different classroom practices, 
which indicates that this framework might be used for studies of larger datasets. This work has also 
revealed that the three original types of teacher interactions suggested by Drageset (2021) were not 
sufficient to characterize all teacher interactions related to the position of a teacher that shares and 
develops student ideas. By adding one new type, requesting mere answers, we were able to categorize 
all teacher interactions related to this position. 
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Dilemmas of teaching arithmetical notation to young learners 
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This study takes the analysis of a Malawian Grade 1 teacher’s mediation of mathematics as a starting 
point for discussing dilemmas that might be entailed in the teaching of arithmetical notation to young 
learners. Two exemplar episodes are selected from six video-recorded lessons that were analysed 
using the Mediating Primary Mathematics Framework. The teacher introduced the writing of 
numbers and mathematical symbols with their corresponding hand movements and used these 
movements as the criteria for enabling learners to assess the correctness of their written inscriptions. 
Two inherent dilemmas of this complex work of teaching are identified and discussed. 

Keywords: Early years, mediation, gesture, inscriptions, interactions. 

Introduction and theoretical background 
It has recently been suggested to distinguish between considering teaching as something teachers do 
and as work to be done. The latter corresponds with Ball’s (1993) investigation of dilemmas that arise 
in mathematics teaching and the more recent conceptualization of the special work of teaching 
mathematics (Ball, 2017). Our study further explores this distinction. As a case, we use the 
introduction of elementary mathematical notation in a Malawian Grade 1 classroom.  

When learners are introduced to new mathematical concepts and notation during the early years of 
primary school, they often make errors. The teacher’s reaction to a learner’s error made during whole-
class activities has implications for the individual learner and the whole class (Bass & Mosvold, 
2019). For instance, when a learner has made a writing error, the teacher may just compare the wrong 
inscription or notation made by the learner with the correct one presented on a chart or workbook. 
However, as observed by Venkat and Askew (2018), young learners may not have yet developed the 
mental faculties for distinguishing features of seemingly related representations and may require 
appropriate teacher’s mediating talk and gesture to make these features apparent.     

Handling learner errors is complex (Sapire et al., 2016). For persistent errors and misconceptions, 
learners may need to be equipped with strategies for checking the correctness of their work even in 
the absence of the teacher. One possible strategy is to embody some mathematical concepts and 
processes that learners often find difficult to remember. The embodiment of mathematical concepts 
enables learners to view the subject as an activity involving physical actions and gestures (Edwards 
et al., 2014). This makes the association of mathematical concepts and processes with their 
corresponding physical actions essential, especially to young and inexperienced learners, who are just 
being inducted into school mathematics. Eventually, the teacher is supposed to help the learners 
progress from the embodied physical representations to their corresponding abstract mental structures 
(Venkat & Askew, 2018). If the teacher sticks to the physical representations, the learners may no 
longer see the need to look for mental conceptual structures to make some necessary connections and 
generalisations (Askew, 2019; Wilson, 2002). This implies that teaching can either enhance or 
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constrain what is made available to learn in a lesson—thus constituting numerous dilemmas. In this 
paper, we share the same understanding of a dilemma as Ball (1993) to mean paradoxical situations 
where the teacher has several alternative choices to make, each having varied consequences, and 
oftentimes the decision is required instantly. 

Drawing on these insights from research on early mediation of mathematics, and on the perspective 
of considering the teaching of mathematics as work to be done, we ask:  

What dilemmas can be entailed in the work of teaching mathematical notation to young learners?  

To answer this question, we first apply the Mediating Primary Mathematics (MPM) framework by 
Venkat and Askew (2018) in the analysis of data to enable careful description of the mediating work 
that is performed by the teacher, before we discuss dilemmas entailed in this work. Like Bass and 
Mosvold (2019), we focus only on a small slice of the work of teaching mathematics here, namely 
what may be involved in attending to learners’ errors. 

Analytic framework 
The MPM framework is guided by Vygotsky’s sociocultural view of teaching as a set of mediated 
transactions, with the teacher as the main mediating agent in the classroom—who works with a set 
of sociocultural tools of mediation (Kozulin, 2003). We adopted the MPM framework to understand 
the sociocultural tools for mediating mathematics in the early years of primary school. The MPM 
framework identifies four strands or means of mediating primary mathematics, namely: Tasks and 
examples, artefacts, inscriptions, talk and gesture. The framework further subdivides talk and gesture 
into three sub-strands: Talk and gesture for generating solutions to problems, talk and gesture for 
making mathematical connections, as well as talk and gesture for building learning connections. Even 
though the teacher works with all the four means of mediation when teaching, we were particularly 
interested in the teacher’s mediating talk and gesture for building learning connections (see Table 1). 
As shown in Table 1, teachers’ mediating talk for building learning connections is manifested when 
handling errors from learners’ offers. Venkat and Askew (2018) observed that learners’ errors provide 
a context for richer mediation as teachers are prompted to make “responsive moves” to address the 
errors. In some cases, the learners’ errors provide an ideal moment (or “teachable moment”) where 
they could be more receptive to the teacher’s remedial actions than if the error was just ignored or 
the teacher’s response was deferred to a later time (Muir, 2008). 

Research design and methodology 
A qualitative case study design was adopted, which enabled an in-depth inquiry into the complex task 
of teaching mathematics to young children. Our case is a Grade 1 teacher with an overall teaching 
experience of seven and half years after graduating from a two-year teacher training programme. The 
teacher had been teaching mathematics to different cohorts of Grade 1 learners for four consecutive 
years. The teacher was selected as a paradigmatic case (Flyvbjerg, 2006), exemplifying outstanding 
learner achievement in resource-limited settings. The school consistently outperformed other primary 
schools in the same geographical area both during the standardised end of primary school 
examinations as well as during quiz competitions with nearby schools. The school was based in a 
remote village where learners mostly relied on the teacher as the sole source of mathematical 
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instruction, as learners had limited access to extra tuition through books, parents and relatives, or 
educational television programs. The rural setting increased the possibility of attributing the school’s 
exemplary learner achievement to the classroom practices of its teachers.  

Data collection was scheduled for the week when the teacher was introducing the addition of whole 
numbers to the Grade 1 learners. This was done across six lessons that were observed and video 
recorded. Unstructured interviews were conducted at the end of each lesson to seek clarification on 
some observations made in the classroom. An in-depth video-stimulated recall interview was 
conducted with the teacher after a preliminary analysis of the lesson transcripts. Interview data were 
analysed thematically. Themes were centred around the reasons for the teacher’s choices made in the 
use of the means of mediation observed during the lesson. Analysis of the affordances that were made 
possible through the teacher’s presentation of the chalkboard inscriptions was done through the 
application of variation theory (Kullberg et al., 2017), which is one of the theoretical foundations of 
the MPM framework.  

The recorded videos were segmented into instructional episodes that are considered as a unit of 
analysis in the MPM framework. Even though this paper reports on the observations that were made 
while the teacher was working with written inscriptions, the analytical focus was on the teacher’s 
mediating talk and gesture for building learning connections that accompanied the inscriptions in 
each episode. We referred to the indicators for mediating talk and gesture for building learning 
connections provided by the MPM framework, as shown in Table 1 that follows: 

Table 1: Mediating talk and gesture for building learning connections. Adapted from Venkat and 
Askew (2018, p. 90) 

Indicators for mediating talk and gesture for building learning connections Level 

Pull back to naïve methods OR No evaluation of offers (correct or incorrect). 0 

Accepts/evaluates offers Accepts learner strategies or offers a strategy OR Notes or questions 
incorrect offer. 

1 

Advances or verifies offers. Builds on, acknowledges or offers a more sophisticated strategy OR 
Addresses errors/misconceptions through some elaboration e.g., “can it be….?” Would this be 

correct, or this? Non-example offers. 

2 

Advances and explains offers. Explains strategic choices for efficiency moves OR provides rationales 
in response to learner offers related to common misconceptions OR Provides rationale in anticipation 

of a common misconception. 

3 

As indicated in Table 1, analysis of the teacher’s mediating talk for building learning connections 
examines the extent to which a teacher handles the evaluation of learners’ offers in a lesson episode. 
A learner’s offer could be a correct or an incorrect response to the teacher’s question or a strategy for 
solving a problem. In some cases, the teacher may verify an offer or build on it in response to 
“teachable moments” (Muir, 2008). Ultimately, the teacher may make a “responsive move” (Venkat 
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& Askew, 2018) or an “asset oriented response” (Bass & Mosvold, 2019) in the form of explaining 
strategic choices made or providing the rationale for each option while taking into account the 
common misconceptions. 

Findings and discussion 
During the study, the teacher was introducing the addition of two whole numbers with a sum not 
exceeding 5. By this time, the learners had been in Grade 1 for ten weeks, and the teacher had taught 
them how to write the numbers 0 to 5. In the Malawi context, about 60 per cent of learners do not 
attend pre-school education before starting Grade 1 (Robertson et al., 2017), hence the preceding ten 
weeks were their first school experience in life. During classwork, the teacher asked learners to write 
the worked-out solutions on pre-written papers and the chalkboard, thereby opening up more 
opportunities for making “responsive moves” (Venkat & Askew, 2018) to the “teachable moments” 
(Muir, 2008) made possible through the writing errors made by the learners. 

Verbalisation of hand movements when working with the plus sign 

The teacher introduced the writing of the plus (+) sign during the first lesson of the study by 
demonstrating how to write the sign in the air while verbalising the hand movements as “Dot! Down! 
Cut-in-the-middle!” She then asked the learners to do the same: 

Teacher:  Aa-aah! We have not yet started writing! Just raise your hand and get ready to write 
[inaudible], alright? Everybody use your right hand! Begin!  

Class and Teacher: [Verbalise the movement of the hand while tracing the + sign in the air] Dot! 
Down! Cut-in-the-middle! 

Teacher:  Again!  
Class:  [Verbalise the movement of the hand while tracing the + sign in the air] Dot! 

Down! Cut-in-the-middle! 
Teacher:  Again!  
Class:  [Verbalise the movement of the hand while tracing the + sign in the air] Dot! 

Down! Cut-in-the-middle! 

After teaching the hand-movement for the plus sign, the teacher asked learners to suggest the hand 
movement for the equal sign. The hand movements verbalised by the teacher acted as the basis for 
the justification of the correctness or incorrectness of the notations made by the learners during the 
subsequent lessons. For instance, when reviewing how to write the plus sign in the introduction of 
the fourth lesson in the study, one learner wrote a plus sign that was not accepted by the class (see 
part (a) of Figure 1). The learner required a convincing explanation on why the written sign was 
rejected by the class. The teacher reasoned with the learner the original hand movement that was 
verbalised when the plus sign was introduced for the first time; that is, “Dot! Down! Cut-in-the-
middle!” To remediate the error, the teacher asked a second learner to write the plus sign, but this 
time making sure that the downward stroke of the line making the + sign is cut in the middle by the 
horizontal stroke. The explanation of the hand movement clarified the contrasting feature of the sign 
offered by the first learner and the expected sign. After a second learner had written the correct sign, 
the teacher asked a third learner to re-write the correct notation for the plus sign (Figure 1, part b). 
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(a) Rejected + sign. 

 
(b) Two accepted + signs. 

Figure 1: Correction of an incorrectly written plus sign 

The teacher used the verbalised hand movements as the rationale for either rejecting or justifying the 
offers provided by the three learners. We coded this as the highest level of the MPM framework’s 
mediating talk and gesture for building learning connections (see Table 1) – where a teacher “provides 
rationales in response to learner offers related to common misconceptions.”   

The teacher’s approach to verbalize hand movements when introducing new inscriptions was not only 
done for the plus sign. In the interview excerpt that follows, the teacher explained that even when 
teaching her learners to write numerals before the observed lessons, the same strategy of verbalising 
hand movements was used: 

214 Teacher: How to write? We have several ways. Aah, first, we start to write in the air.  
215 Researcher: Okay? 
216 Teacher:  If you had come when I was teaching numbers you could see that. Because 

when we say: “Let’s write four!” We say: “Dot! Then down! Then right! 
Then….” Those things. We first start in the air, then after in the air, it’s 
when we go on the ground, before they write in the exercise book. 

In the interview excerpt above, the teacher referred to an example of how she introduced the writing 
of the number 4 based on learners’ aptitude. We notice towards the end of Utterance 216 that the 
teacher must decide when it is appropriate to present the notation as verbal, gestural, written, or any 
combination of these forms, without losing the mathematical meaning of the notation―thus 
constituting a dilemma to the teacher.  

Using verbalised hand movements when remediating errors related to the writing of 4 

The teacher demonstrated the third level of the MPM framework’s mediating talk and gesture for 
building learning connections (Table 1) when responding to learners’ errors related to the writing of 
4 during the fifth observed lesson. The teacher gave strategic explanations targeting the main source 
of the observed errors. In that lesson, learners were given pre-written problems on pieces of paper 
and were asked to find the sum in their groups. The worked-out solutions were then pasted on the 
chalkboard. One group wrote the answer on their paper as shown in Figure 2. 

 
Figure 2: A wrong answer that was written as flipped 4 
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The representative of the group that was assigned the task shown in Figure 2 read the statement as 
“three plus two answer four”. Rather than quickly dismissing the answer by looking at the expected 
sum of the given addends 3 and 2, the teacher approached the remediation in phases. Firstly, the 
teacher asked the class if 4 was supposed to be written as shown in Figure 2, and the class was divided. 
This posed another dilemma to the teacher―whether to quickly dismiss the incorrectly written 
numeral and work out the correct sum with the class or consider this as the right moment for 
remediating the inscription error first, even though the lesson’s focus was on the addition of numbers. 

The teacher started with remediating the writing error in Figure 2 by asking another learner to write 
4 on the chalkboard (see part (a) of Figure 3) and asked the class if the 4 was written correctly. Instead 
of applying common logic or sentimentality, the teacher reminded the class of the verbalised hand 
movements for writing 4 (“Dot! Down! Turn-right! Cut-in-the-middle!”) while moving a pointing 
stick. Thus, the teacher used the verbalised hand movement as the basis for justifying the correctness 
of the 4 offered by the group. The teacher repeated the verbalisation of the hand movement while 
writing another 4 above the one written by the learner as shown in part (b) of Figure 3. 

 

(a) A correct 4 written by a learner. 

 

(b) Another correct 4 written by the 
teacher above the one written in part 

(a) by a learner.  

 

(c) An incorrect 4 written by the 
teacher alongside the two 

correct 4s in (b). 

Figure 3: Remediating errors related to the writing of 4 using similarity and contrast 

The teacher employed similarity to emphasize the correct way of writing 4 (Figure 3, b), and she 
continued the discussion by providing a plausible contrast of an incorrectly written 4 alongside the 
two correctly written 4s (Figure 3, c). The teacher wrote the wrong “4” while simultaneously 
verbalising its hand movement as: “Dot! Down! Turn-left! Cut-in-the-middle”. Rather than providing 
the contrast by rewriting the disoriented 4 shown in Figure 2, the teacher probably noted from the 
learners’ inscriptions that the common error was the horizontal direction of the hand. After 
remediating the inscription error of 4 in Figure 2, the teacher then prompted the class to check if 4 
was the correct answer to 3 + 2 as initially proposed by the assigned group. After working out the 
expected sum for 3 + 2, the next group of learners had been assigned to find 1 + 3 and wrote their 
answer (Figure 4, a). 

 

(a) Distorted 4 written by learners. 

 

(b) Teacher’s emulation of the error. 

Proceedings of CERME12 3366



 

 

Figure 4: A distorted 4 written by one group and emulated by the teacher 

The teacher used her technique of verbalising hand movements to check if the 4 shown in Figure 4 
was correctly written. The teacher expressed the hand movement “Dot! Down! Go-up! Cut-in-the-
middle!” while simultaneously writing the movements on the chalkboard (Figure 4, b). Next, the 
teacher isolated the feature that made the just written 4 incorrect, that is, the expected angular turn in 
the acceptable hand movement. This was verbalised by the teacher with an emphasis on the turn as 
“Dot! Down! Turn-right!” while simultaneously writing the hand movements on the chalkboard.  

Concluding discussion 
The findings indicate how the teacher worked with the MPM framework’s mediating talk and gesture 
for building learning connections (shown in Table 1) related to the writing of arithmetic notations. 
After receiving an offer from the learners, the teacher first checked with the whole class whether the 
offer was correct or not. When the error was not apparent, the class was not sure if the offered notation 
was correct. By providing the rationales (verbalised hand movements) for justifying the learners’ 
offers, the teacher achieved the highest level of the MPM framework’s mediating talk and gesture for 
building learning connections (Venkat & Askew, 2018). Whereas the findings highlight remediation 
of notations written on the chalkboard, the teacher explained in an interview that the remediation 
starts with writing in the air, followed by writing on the ground, before using notebooks. 

Analysis of data from this Malawian classroom illustrates two common dilemmas entailed in the work 
of teaching early mathematics. The first dilemma relates to deciding on how to establish correct 
mathematical notation in a way that is suitable for the learners’ age and development (Ball, 1993), 
while at the same time maintaining mathematical integrity. In the episode analysed, the teacher used 
similarity and contrast (cf. Kullberg et al., 2017) to help learners identify key characteristics of correct 
mathematical notation, and she also used verbalised hand movement. Still, there is a risk of confusing 
learners about the underlying mathematical idea in the process. Instead of just telling learners if the 
offered inscriptions were correct, the teacher in this study attempted to justify the acceptance or 
rejections. This may provide the learners with an opportunity to learn about the importance of 
justification in mathematics. However, young learners may lack the necessary understanding on 
which the teacher can base justifications for actions taken during lessons (Venkat & Askew, 2018), 
and this provides a risk that the teacher must attend to. In this episode, the teacher used gestures to 
justify the correctness of the written arithmetic notations. This use of bodily based resources such as 
hands and fingers can make the learners feel competent to work out mathematical tasks anywhere 
anytime (Wilson, 2002). 

A second dilemma relates to identifying and interpreting student errors on the fly and deciding on 
what errors to attend to first when several errors are present (Muir, 2008). The reasoning that is 
required for probing learners’ errors on the fly tends to be one of the highest and complex forms of 
teacher knowledge (Sapire et al., 2016). In the second episode of the lesson, a learner presented an 
incorrectly written 4 as the sum of 3 + 2. The teacher then had to decide on whether to attend to the 
error, or to use other pedagogic moves that do not attend directly to the errors—like assigning 
competence to learners and positioning them as contributors (Bass & Mosvold, 2019). Deciding on 
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whether a situation constitutes a teachable moment (Muir, 2008), and deciding on how to act in ways 
that provide opportunities for learning, constitutes a common dilemma for mathematics teachers. 

The MPM framework provides a useful lens to describe observations in mathematics classrooms, and 
to evaluate the level of teacher mediation, and it provides a useful language to describe what teachers 
do. This can be useful to some point, and it provides a simplification of teaching that can be useful to 
teachers as well as researchers. However, shifting attention toward the work of teaching opens the 
way to understanding what is actually involved in carrying out the complex, dynamic, and situated 
work of teaching (Ball, 1993; Ball, 2017). This does not simplify the picture, and it does not provide 
immediate solutions for how to act, but it approves of the real nature of the complex work of teaching 
mathematics. The dilemmas of this special work of teaching cannot be easily solved, and their 
management requires professional knowledge and judgment.  
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Mathematical knowledge for teaching: challenges and potential in the 
case of geometrical patterns 
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We report on an observation of a lesson where students were working on geometrical pattern tasks 
in pairs. The teacher’s intentions for the paired setting and his reflections upon seeing a video of the 
lesson are presented, and through the lens of a TRU analysis and the Knowledge Quartet, we identify 
potential for exploiting the task and the environment to afford students’ mathematical engagement. 
We focus on the interplay between the Contingency and Foundation dimensions in the Knowledge 
Quartet, and the potential of developing retrospective awareness into in-the-moment awareness.  

Keywords: Paired learning, geometrical patterns, knowledge quartet, awareness, teacher insight. 

Introduction and theoretical background 
The new mathematics curriculum in Norway (LK20) has a specified learning goal that 9th grade 
students should be able to explore in the sense of describing, explaining, and presenting the structure 
and development of geometrical patterns and number patterns. Although geometrical patterns were 
not outside the remit of the previous curriculum, they were not mentioned specifically and the 
requirement to teach them is new. Within mathematics education literature, geometrical patterns have 
been promoted as a rich entry point to algebraic and functional thinking (Bednarz et al., 1996; 
Carraher et al., 2008). However, working with geometrical patterns in this way presents both 
possibilities and challenges for students and teachers (Orton & Orton, 1999). Moss and McNab (2011) 
argue that the challenges are due to pedagogical choices and not due to an inherent difficulty in subject 
material. Thus, mathematical knowledge for and in teaching plays a central role. In this article, we 
will study one teacher, here called Erik, while working with geometrical patterns as a means for 
developing students’ ability to express relationships algebraically in a 9th grade class. Specifically, 
we will address the research questions: 

What demands were placed on the teacher’s mathematical knowledge for teaching in exploiting 
the task and the environment to afford students’ engagement with mathematics? 

We explore how the teacher’s intentions in carrying out exploratory activities were enacted in a 
setting where working in pairs was supposed to encourage collaboration. In that respect, we pay 
attention to how the potential in paired learning and the mathematical potential of the task were 
exploited and what demands it put on the teacher’s mathematical knowledge for teaching, MKT. 
Several frameworks for investigating MKT have been developed, and much research on the theme 
has been reported (Skott et al., 2018). The Knowledge Quartet, KQ, (Rowland et al., 2005) is based 
on the work of Shulman and his categories of knowledge. KQ was developed through a grounded 
approach to video data focusing on how teachers’ mathematical knowledge surfaced in mathematics 
lessons. 18 codes from the categorisation were grouped into 4 broad dimensions; Foundation 
(teacher’s mathematical knowledge possessed), Transformation (teacher’s capacity to transform 
his/her foundational knowledge to accessible knowledge for others), Connection (connections 
between concepts which bind different parts of the mathematics together), and Contingency. 
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Contingency is informed by the three other dimensions, and concerns situations in the classroom 
which are not planned for. In later studies, this dimension has been further explored. A new code, 
“Teacher’s Insight” which is demonstrated when a teacher is aware that students construct 
mathematical ideas and something which sounds “half baked”, was included in the Contingency 
dimension (Rowland, 2012). Rowland and Zazkis (2013) related the contingency dimension to 
Mason’s (1998) description of “knowing to act in the moment” (p.139). This in-the-moment-
pedagogy is “the teacher’s capacity to engage flexibly and productively with their students” (Mason 
& Davis, 2013, p. 184). Knowing to act-in-the-moment, puts a demand on the teacher’s mathematical 
knowledge as well as on how he or she is aware of this knowledge and how it is used and exemplified. 
“A teacher who is aware [...] is in a position to direct student attention to what really matters” (ibid, 
p. 189). Contrary to teacher’s insight or awareness is what is known as funnelling of which the effects 
are described by Wood (1998): “students’ thinking is focused on trying to figure out the response the 
teacher wants instead of thinking mathematically himself” (p.172). A challenge for teachers will often 
be to balance between funnelling and scaffolding. A pitfall may be “fostering dependency on teachers 
and cap opportunities for more independent learning” (Mazenod et al., 2019, p. 2). 

Methodology 
We observed five mathematics lessons with one teacher (Erik) in two different mixed ability ninth 
grade classes. Here we report from one of these lessons. The students were seated in pairs and worked 
on growth pattern tasks. Prior to our first classroom observation, we had a semi-structured pre-
interview with the teacher. We asked him to describe a typical mathematics lesson, his intentions in 
teaching mathematics and how he dealt with mixed abilities, adapted education, and grouping. 
Additionally, we interviewed some of the students in the classes. We also conducted a semi-structured 
post-interview with Erik one month after having observed in his classes. The interview included a 
session in which we showed him several episodes from the five observed lessons, so he could share 
his reflections with us. The lessons were videotaped, and the teacher wore a microphone. The camera 
followed the teacher as he moved from one pair to another.  After the observations, we studied the 
videos and selected episodes which were transcribed and analysed.  

During the classroom observation, we used the Teaching for Robust Understanding (TRU) 
Framework (Schoenfeld & Floden, 2014) as an observation scheme. Schoenfeld (2016) emphasizes 
that there is “no one ‘right way’ to teach. The key idea is that TRU specifies the attributes of learning 
environments in which students flourish” (p.2). In advance the researchers had prepared for the 
application of the framework to ensure reliability. The Framework offers ways to reflect along five 
dimensions: 1-The richness of the mathematical content (How accurate, coherent, and well justified 
is the mathematical content?). 2-Cognitive demand (To what extent are students supported in 
grappling with and making sense of mathematical concepts?). 3-Access to mathematics (To what 
extent are all students supported in meaningful participation in (group) discussions?). 4-Agency, 
Ownership, and Identity (To what extent did teacher support and/or group dynamics provide access 
to "voice" for students?) and 5-Uses of Assessment (To what extent does the teacher monitor and 
help students refine their thinking within small groups?). The Framework has different rubrics: Whole 
class activities; Small Group Work, Student Presentation, and Individual Work. Since students 
worked in pairs, we used the rubric for Small Group Work. TRU assigns scores of 1, 2, and 3 for each 
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dimension. Although we assigned approximate scores when observing, we find it more appropriate 
to report the analysis with aspects of the content within the levels rather than scores, and we relate to 
the dimensions of KQ with a focus on teacher’s insight and awareness in the Contingency dimension.  

Findings and discussion 
In the pre-interview, Erik explained his thinking in choosing the tasks that students were working on.  
We see that his intentions are inclusion based on differentiation: 

To include everyone, even the ones who aren’t so good, I try to find self-differentiating tasks, that 
have a low entry threshold and that one can do a lot with them [e.g.] a figure that is growing. 

In the post-interview, we asked Erik if he thought it made sense for the students to sit in pairs in 
mathematics lessons. He responded that he intended for them to problem-solve together: 

After all, maths is a language... When they are going to solve a problem, they should talk together 
and come up with ideas on how to solve it. And then the other partner comes up with “maybe that 
way” and that they …[in] a social way ... find some solution together.  

Commenting in the post-interview he talked about the need for student agency: 

[There are] many ways of seeing the figure. Then they make a formula that looks different at first, 
then they simplify it and then they get the same formula in the end. [You] can solve the problem 
with different approaches. What do they want to be left with? Well … their agency that should be 
their own. [It] shouldn’t be that the subject has its agency and on the other side the students have 
their identity and their agency and [it] should be … that they experience that they have a sense of 
determination over the subject…The subject should not define everything for them. They should 
also define what it means to have flexible solution strategies then, I think. For they should have 
their own strategies at the end of the day. 

Erik used learning pairs actively in all his lessons. At the start of the lesson Erik encouraged the 
students to “help each other”. Based on what the students said in interviews, this seemed to be an 
established way of working: “if I cannot complete an exercise, I ask my partner for help”. This tells 
us that Erik’s intention that students should collaborate in pairs was exploited by the students.  

Figure 1: Task: “Find a formula for the -th figure” 

In the following we explore to what extent Erik realised his aims. The episode below was typical of 
the interactions that we observed between Erik and different pairs. Here Finn, who was working at a 
desk with another boy, had his hand up. Erik had just finished helping another pair and went over to 
Finn. The task they were working on is shown in figure 1. 

Finn:  Is the exercise there … is it …  plus …  plus two? Or? 
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Erik:  erm ... n[o] .. [He takes the pen from the student] Add the bit that comes up here 

[He draws a dot to represent the figure  on the task sheet.] This one will always 
be there. Then it’s the arms that grow.  

Finn:  Yeah 
Erik:  It’s always there. Plus one is always there. Right. That one, if you go back. , I 

mean, then you will get rid of those two, then you will just be left with … with one, 
right. [He holds up one finger to Finn.]  

Finn:  Yeah 
Erik:  So there is plus one in each one there. 
Finn:  Hmm 
Erik:  Here is . What do you times one with to get two? What do you times two with to 

get four? Three to get six? Four to get eight? What do you times with there? 
Finn:  Four to get eight[?] 
Erik:  Yeah 
Finn:  Two 
Erik:  Two yeah. [Holds up two fingers.] Then it’s always plus one and then it’s  times 

by…[Knocks the table several times with his finger and then holds up two fingers.] 
Finn:  Two  
Erik:    
Finn:  Yeah … yeah …  [?]  
Erik:  Yeah. Because there you have … this one, if you look at this here, you will always 

have it … that there, right … that will always be there  
Finn:  Hmm  
Erik:  It becomes plus one.   
Finn:  Yeah  
Erik:  When you see… Here is , then it is times by two. Here is . Then it is times by 

… here there are four. Here there are six. Here there are…? 
Finn:  Four  
Erik:  Eight  
Finn:  Ah [Sounds resigned and disappointed]  
Erik:  It’s . Two times by one is two, plus one is three. Two times by two is four, plus 

one is five.  
Finn:  Hmm  
Erik:  Here there are eight arms [points to the next task on the sheet]. You may see it better 

there because it is a bit better version. [He stands up and walks away.] 
Finn:  Yeah  

Initially there was discrepancy between the student’s question and the teacher’s response. In the task, 
the number of dots per figure were increasing by two. The student therefore asked: “is it ?”. 
The student was trying to express the solution as a recurrence relation and was grappling with “half 
baked” mathematical ideas. Here was a potential for the teacher together with the students to explore 
the relationship and difference between recurrence relations and closed formulas for geometrical 
patterns. As reported in the research literature, this is a challenge both for students and teachers (Moss 
& McNab, 2011) which leads to mathematical and pedagogical demands. The Foundation dimension 
of the KQ, as well as teacher’s insight and awareness are of crucial importance in order to exploit this 
potential. Finn’s idea was not followed up by the teacher, who guided him to a full solution to the 
task based on the closed formula. During this episode Erik addressed only the student who asked for 
help while the other student paid attention without contributing nor being invited to contribute to the 
conversation. The potential in paired seating was not exploited. This differs from Erik’s intention 
about the students working in pairs to find a solution together. 
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In terms of the mathematical content offered in this classroom environment - the first dimension of 
the TRU framework (Schoenfeld & Floden, 2014) - the teacher’s focus was on the answer and how 
to get there. The question “What do you times one with to get two?”, is an example of funnelling 
(Wood, 1998). The task in hand has been reduced to a simple question about multiplication with 
answer “two”. In the TRU framework, this would indicate a low score on cognitive demand as teacher 
intervention constrained students to activities such as applying straightforward or memorized 
procedures, and was explaining how he would solve the task (Schoenfeld & Floden, 2014). It appears 
that Finn did not see the relevance of the answer “two”, since when Erik tried to get him to relate it 
to the closed formula, he needed to hold up two fingers as a prompt. Later Finn answered wrongly 
(“four”) on a related line of questioning, another indication that he was being funnelled into giving 
correct responses. As in Wood’s (1998) description of the effects of funnelling, Finn appeared to be 
focused on answering the teacher and abandoned his own recurrence-relation based ideas.  

In the conversation Erik asked closed-ended questions, and Finn’s contributions after the initial 
question were just single word responses. Thus, the two boys were not given the opportunity to 
discuss, explain or reflect on their mathematical ideas, processes that would indicate a fostering of 
the students’ sense of agency.  Much of the episode had the feel of a teacher monologue because Finn 
interjected the “yeah” responses rather than them being invited by pauses from Erik. The monologue 
with closed questions indicated the teacher’s ownership of the mathematics. 

In the post interview the teacher realised that he had been too eager to give the solution to the task, 
remarking on his impatience both before and after seeing himself in the video. In response to the 
video of the episode, Erik said: 

I remember this one here, yes, the problem here is that he really struggled to understand - to crack 
the code here [What we] see immediately here [in the video] is that here I probably explain a bit 
more than…am probably, in a way, a little too quick to give him an answer or solution to the 
problem. I think. That he himself should have had a little longer to ponder the problem. I see that 
now, yeah. I should have done that. Eh, but it is clear that, on the other hand, if I help him with 
one task, then maybe he understands; can maybe move on to the next task and understand it … 

We see that Erik’s focus is on helping the student. However, he expressed an insight about the 
student’s mathematical capacity - that he should have given him some more time to ponder himself. 
We consider this expressed insight and awareness as a potential for the teacher to develop his in-the-
moment pedagogy so he can act flexibly and productively with his students so he instead of funnelling 
can direct students’ attention to what really matters. However, in the actual moment of this lesson, 
Erik did not seem to try to analyse and understand Finn’s thinking, what he has said and why he said 
it. In the post interview, we suggested to Erik that when Finn said “  plus two” he was trying to 
express how the number of dots increases, and we asked Erik how he might get from there to the 
closed formula. He said: 

He was thinking of this [the recurrence relation] I would assume. Because we spent a lot of time 
last year finding patterns in how it grows. We have been working on that. Then clearly to go from 
there and find that it is . It is clear that we have not [done that]… We have worked a lot 
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with the graphical representation. Because we should have had a … a type of square number 
variant then. 

Here he went on talking about certain shapes (square numbers, rectangular numbers, and triangles 
numbers) that he had given the closed formula for on a hand-out sheet. In Norwegian, use of “clearly” 
in the sentence “Then clearly to go from there and find that it is ” is expressing that it is clearly 
difficult to do. We see that Erik struggled to suggest a way to support this transition. This quote 
indicates the heart of the matter: Erik struggled to understand the students’ utterances and he had to 
rely on his own solution and understanding due to not being able to transform the connection between 
the different parts of mathematics to something accessible for students.  

The fourth dimension of the TRU framework considers the “extent to which students have 
opportunities to conjecture, explain, make mathematical arguments, and build on one another’s ideas, 
in ways that contribute to students’ development of agency, authority, and identities as doers of 
mathematics” (Shoenfeld & Floden, 2014, p.1). In the episode above the environment offered the 
chance for Finn to make a conjecture “  plus two”. Finn’s subsequent contributions were constrained 
by the teacher’s questions. The episode above was picked out because it was typical of the interaction 
between Erik and the students. Thus, we argue that there was little opportunity for developing a sense 
of agency, authority, and an identity as a doer of mathematics in this classroom environment. 

There was one interaction between Erik and another pair of students (Anna and Berit) which was 
atypical due to the students explicitly saying that they wanted to retain authority over their work. As 
Erik approached the desk Berit said “No, we don’t want any help from you” and waved her hand as 
if to indicate that Erik should go. Erik persisted to ask questions about Anna and Berit’s progress, 
but, before they would show anything, Anna demanded that Erik promise not to “give any hints at 
all”. Anna underlined this point by saying it three times. Apart from confirming how the classroom 
environment constrained the students’ ownership of the mathematics, the interaction between Anna, 
Berit and Erik indicates potential within this environment. We noted earlier that the mathematical 
authority was retained by the teacher in his interaction with Finn. In the interaction with Anna and 
Berit, we see a willingness from Erik to give that authority to the students, and a relaxed classroom 
environment that allows the students to challenge established patterns of social interaction. 

The ensuing conversation with Anna and Berit returns to a pattern that resembles the other 
interactions with the students. Erik asked Anna about her solutions to the questions on the worksheet, 
and sometimes told her the solution before she had time to answer. Erik commented on one of the 
expressions that Anna had found by saying “No, this one I would multiply with this, to make it look 
prettier”. Anna objected but eventually said: “Ah, but OK” in a resigned way. Schoenfeld’s 
introduction to TRU refers to Engle when defining agency: 

Learners have intellectual agency when they … share what they actually think about the problem 
in focus rather than feeling the need to come up with a response that they may or may not believe 
in, but that matches what some other authority like a teacher or textbook would say is correct. 
(Engle, 2011, in Schoenfeld (2016), p.9).  

In the exchange between Anna and Erik, the response from Erik constrained Anna to writing 
expressions that conformed to his idea of pretty. 
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Discussion and Conclusions 
We would like to highlight that there are many positive aspects that we observed in this classroom: 
the teacher’s intentions were for the students to collaborate and explore mathematics; he was using 
low threshold high ceiling tasks to promote inclusion and collaborative learning; there was a safe 
working environment as demonstrated by the girls’ frank comments to the teacher; and the teacher 
was aware of the ideas of agency and ownership in the context of mathematics. The analysis of the 
mathematics revealed that students were directed to the answers and their form, not included as a 
pair, and the mathematics was reduced to a step-by-step procedure. Thus, the mathematics being 
offered by the interactions with the teacher is only limited in nature and scope. From the pre interview, 
this seemed not to be his intention. However, when reflecting on this episode in the post interview,  
rather than having shown in-the-moment awareness, which is an important aspect of the contingency 
dimension of the KQ (Mason & Davis, 2013; Rowland & Zazkis, 2013) he displayed a retrospective 
awareness. It is unclear if the teacher was aware that the way he spoke mathematics with the students 
reduced their access to it. Rather than the potential of students’ half-baked ideas being exploited, 
learning was capped by over-nurturing, fostering teacher dependency. In particular, there was little 
awareness of and planning to address the difficulties of the transition from recursive relations to 
closed formula. For teachers to understand students’ starting points, and how these can be built on to 
develop genuine understanding and agency, this study has demonstrated the importance of developing 
awareness of the interplay between the Foundation and Contingency dimensions of the KQ, especially 
the aspects of teacher insight and awareness in the Contingency dimension. There is potential here in 
the teacher’s retrospective awareness, and further research could look at how retrospective awareness 
can develop to an in the moment awareness. 

Furthermore, we saw that it is not sufficient to place students in pairs to promote collaboration. There 
is a possible mismatch between the teacher’s intention (problem solving together) and the teacher’s 
instruction to the students (to help each other) - the latter does not necessarily imply working on a 
joint product. The teacher’s intention also contrasts with the manner of the help (a conversation with 
an individual not a pair) and the nature (demonstration through funnelling). Exploiting the 
environment with paired learning thus places demand on teachers’ skills to initiate a mathematically 
rich discussion. We have identified the need for Teacher Insight to be able to build on the students’ 
utterances. Thus, the interplay between the Contingency and Foundation dimensions of the teacher’s 
MKT plays a crucial role here. Initiating a mathematically rich discussion in paired learning activities 
may place other demands on a teacher’s MKT than orchestrating a whole class discussion does. We 
see this as an avenue for further research. In our experience, paired learning has become widespread 
in Norwegian schools in the last decade and, thus, the demands of paired learning for teacher 
knowledge have general implications beyond the teacher in the present study. 
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In a lesson in a challenging 5th grade classroom environment, we observed interactions between a 
teacher and a student that displayed characteristics of an appropriation process. We analysed the 
conversations focusing on the teacher’s contributions that build on the student’s ideas using a 
framework to identify redirecting, progressing, and focusing actions. A pattern emerged from the 
analysis: focusing actions dominate initially with a later shift to progressing actions. The implications 
of this pattern, and also how the teacher introduced the progressing actions, are discussed with 
regard to the fostering of the student’s appropriation process. 

Keywords: Appropriation, classroom observation, conversation analysis. 

Introduction 
The way teachers and students interact with each other in the social context of the mathematics 
classroom is of central importance to student learning (Franke et al., 2007). In every classroom, no 
matter how challenging such a demand might be, there needs to be room for students to engage in 
sense making and productive struggle (Schoenfeld, 2019). Maintaining this room creates a dilemma 
for the teacher: How to help without “robbing the student of initiative” (Schoenfeld, 2019, p. 367)? 
Drageset (2014) provides a framework for analysing teacher responses but points out that “in order 
to understand classroom communication, it is necessary to study both a single [teacher] 
question…and the larger picture” (p. 288). To this end, this paper studies all the interactions between 
a 5th grade mathematics teacher (Joe) and one of his students (Mira) during a lesson where they engage 
in sense making. With the intention of setting the scene, we start by providing a short narration from 
the beginning of the lesson:  

While most students have found their seats, some keep walking around.  It is not quiet: Some throw 
rubbers in the air – there are constant movements of arms and legs. In this tumult, Joe starts the 
lesson by asking his students to write down different calculations that give 36 as an answer. Then he 
begins a whole class conversation, trying to tune them in on the connection between multiplication 
and division. During this 10-minute whole class conversation, Mira leaves her desk five times. One 
of her many ‘errands’ is changing a bin liner, causing her to leave her desk for three minutes.  

Despite this start, the lesson ended with Mira presenting a detailed solution to a fairly complicated 
division on the blackboard. By viewing Joe and Mira’s interactions through the lens of Drageset 
(2014), we search to understand a teacher’s role in how a student can appropriate mathematics.  

Theoretical framework  
When studying how a student appropriates aspects of division and its close connection to 
multiplication, we draw on the work of Moschkovich (2004). As most research on different forms of 
appropriation, Moschkovich (2004) takes the work of both Newman et al. (1989), Rogoff (1990) and 
Radford (2001) as her point of departure, and uses it as a foundation when elaborating on the notion 
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of appropriation. Appropriation is a central Neo-Vygotskian concept that has been used to describe 
how learning in students is mediated by interaction with others and how students learn through the 
teaching and guidance of a teacher (Newman et al., 1989). It involves joint productive activity, a 
shared focus of attention, and shared meaning (Rogoff, 1990). Additionally, Newman et al. (1989) 
focused on the situation of an expert helping a novice, where the expert provided alternative 
interpretations of the novice’s actions. Grounded in these rudimentary insights, Moschkovich (2004) 
set forward two aspects of appropriation: what the learners appropriate, and how learners actively 
transform what they appropriate (pp. 49–50). This involves “taking what someone else produces 
during joint activity for one’s own use in subsequent productive activity while using new meanings 
for words, new perspective, and new goals and action” (Moschkovich, 2004, p. 51).  

By drawing particularly on Newman et al. (1989) who used appropriation to describe in detail how 
interaction with an adult can affect cognitive change in children, we focus on the teacher’s role in an 
appropriation process where both aspects set forward by Moschkovich (2004) are under investigation. 
That is, we seek to see the teacher’s role in what Mira appropriates, and in how she actively transforms 
what she appropriates. Drageset (2014) reminds us that “an appropriation process often includes 
actions that in isolation can be labelled as funnelling, teacher-dominated communication, or IRE 
[where the teacher does the main work], but as part of the appropriation process these actions might 
be both beneficial and necessary” (p. 288). While acknowledging the many possible theoretical lenses 
that can shed light on classroom communication (such as wait time (Ingram & Elliott, 2016); 
funnelling (Wood, 1998); and revoicing (O’Connor & Michaels, 1993)), we turn to Drageset (2014) 
who states that, in so doing, there is a need to consider both single questions and the larger picture, 
such as an appropriation process. In this quest, it is necessary to take utterances, dialogue and 
sequences of dialogues into consideration.  

Viewing a dialogue as a joint construction “made possible by the reciprocally and mutually 
coordinated actions and interactions by different actors” (Linell, 1998, p. 86), Drageset (2014) 
focuses on the value that is hidden in the details in teachers’ comments and questions. He proposes a 
framework consisting of 13 categories of teacher comments that are grouped into redirecting, 
progressing, and focusing actions (the detailed categories are given in Table 1 below). These 
categories summarise how communication can contribute to students progressing towards a 
conclusion, “or to redirect the students into alternative approaches focusing on the mathematical 
content” (Drageset, 2014, p. 281).  

Drageset (2014) proposes several ways of using his framework, one of which is to study how 
combinations of his categories occur and if there are patterns that can have “explanatory power 
beyond the study of single comments, for example by studying how a teacher uses different actions 
or categories as part of an appropriation process when the students have to learn something new” (p. 
303). Solomon et al. (2021) used Drageset’s framework to analyse an appropriation processes in the 
case of whole class discussions and found that, in addition to focusing actions, “the teacher is forced 
to intervene with a series of … progressing actions in order to progress the lesson” (p. 186), and 
“although teachers keep the intellectual authority in such actions, their strong focus on the students 
as originators of the appropriated contributions appears to provide the means by which they …leave 
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students with the responsibility of solving the problem” (p. 187). This paper builds on Solomon et 
al.’s (2021) approach, but in the case of a one-to-one interaction.  

Table 1: Redirecting, progressing, and focusing actions (Drageset, 2014) 

1. Redirecting actions 
  a Put aside 

  b Advising a new 
     strategy 

  c Correcting 
    questions 

 

2. Progressing Actions 
 a Demonstration 
 b Simplification 

 c Closed progress 
    details 

 d Open progress 
    initiatives 

3. Focusing actions 
  a Requests for student input 

     i Enlighten details 
     ii Justification 

     iii Apply to similar problems 
     iv Request assessment from other students 

  b Pointing out 
     i Recap 
     ii Notice 

As both researchers and teacher educators, we are drawn to the transformation of Mira’s practice 
during this lesson and wonder what it was about her interactions with Joe that fostered Mira’s process 
in this case. Hence, we use Drageset’s (2014) framework to analyse the nature of different sequences 
of conversations. Assuming that there is an appropriation process that has happened, we ask the 
following research question:   

How do redirecting, progressing, and focusing actions facilitate the appropriation process in 
a one-to-one interaction between a teacher and a student?  

Methodology  
As part of a larger research project on inclusive mathematics teaching in Norway, a series 
of   observations of 5th grade mathematics classes (ages 10–11) in an inner-city school were 
conducted. There were three parallel classes of between 23 and 27 students. The school had a diverse 
student population with many students who had Norwegian as a second language. The classrooms 
were organized with rows of paired desks, facilitating students working in pairs with their assigned 
learning partners. All classes were video recorded using a fixed camera at the back of the 
classroom.  A wireless microphone recorded the teacher’s voice and voices of nearby students. 

The video allowed us to identify a possible appropriation process in the interactions between Joe and 
Mira, and additionally the way in which Joe acts in the classroom. These interactions appeared to 
change over the course of the lesson, and Mira seemed to be gradually more engaged in the 
mathematics. We chose therefore to analyse the dialogue in the interactions to see what they revealed 
about the teacher’s role in the emerging mathematical processes. This was performed in a three-step 
process. We first transcribed all of their conversation in the original language (Norwegian) and 
watched the video paying careful attention to their movements and interactions. Then, we coded the 
transcriptions using the 13 categories from Drageset (2014) framework, which we operationalised in 
close connection with the understanding put forward by Drageset (2014) (see Table 1). Each of the 
authors coded the transcripts, the codes were discussed until agreement was reached, and associated 
discussions were noted as these gave us a deeper understanding of the material. The dialogues were 
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translated to plausible English, making sure that the intended meaning was kept. We used the 
transcription conventions given in Table 2 to indicate the rhythm and intonation of the original.  
Finally, we conducted a holistic reading of the data in order to capture their changing actions and the 
development of the conversations and interactions.   

In presenting our analysis, we have referred to the numbering of the categories given in Table 1. The 
three dialogues between Mira and the teacher appear in the analysis in chronological order. 

Table 2: Summary of transcription conventions adapted from Jefferson (2004) 

(1)   
(.)   
= 

↑word 
[word]  

wo:rd 
((description)) 

Numbers in brackets represent elapsed time measured in seconds 
Brief pause of less than a second 

No pause.  
Noticeable rise in pitch 

Overlapping talk.  
Colons indicate a stretched sound 

Indicates the transcriber’s description 

Findings 
We continue Joe and Mira’s story where we left off in the introduction. At the end of the initial whole 
class conversation, the students were assigned a new task – to discuss in pairs the connection between 
multiplication and division. Joe went straight to Mira’s pair:  

Joe: How are timesing and dividing related? ((Interruption from another student. Joe 
turns back to Mira)) [How] 

Mira:  [Times]ing and dividing (.) Timesing and dividing are just about the same, it’s just 
that when you times, then you sort of add (.) but instead of adding (.) you are to (9)  

Joe: What do you think? ((addressed to Mira’s learning partner who looks down and 
then up again but does not speak)) (19) If you look at these ((points at the 
blackboard)) calculations, how do you think they connect?=It says 36 divided by 9 
(.) is 4, (.) because 4 times 9 (.) equals 36.  

Mira:  It is because it’s backwards= 
Joe:  =Yes, it’s backwards. (.) Is it possible that it’s the opposite, is that another way to 

look at it?=  
Mira:  =Yes (.) 
Joe:  So the opposite of timesing is dividing and the other way around? (1) So can we 

use (.) ((looks at the blackboard)) timesing to (.) calculate dividing ↑perhaps?  
Mira:  ↑↑Maybe= ((sounds satisfied, not doubtful)) 
Joe:  =↑Maybe? (.) If you know that 4 times 9 is 36, (.) can you turn it around? (.) Then 

36 (.) ((He looks at the blackboard, and then back at Mira)) divided by 9 must be 
4?  

Mira:  Yes ((she sounds very satisfied and nods eagerly)) 
Joe:  ↑Yes. (.) If you know how to times, then you actually know how to divide, maybe? 

hm: Good ((Joe leaves)) 

When Joe is asking for input from Mira we identify his actions as enlighten details (3.a.i) or 
justification (3.a.ii), while Joe makes details explicit to Mira with recap (3.b.i) and notice (3.b.ii) 
actions. A possible interpretation of Joe’s two turns where he introduces the term “opposite” is as a 
progressing action either in category (2c) or (2d). Drageset (2014) describes these progressing actions 
as a way of “moving the process forward” (p. 294) either with closed or open questions. We argue 
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that the purpose is rather that of highlighting and clarifying the connection so that it may be used 
later. Indeed, Drageset (2014) expands on to the description of the category notice (3.b.ii) by adding 
that “[t]he teacher often slightly changes the statement or adds new information to make the point 
clearer... to support the students by pointing out... important aspects to notice which they should 
understand or use in the future” (p. 297).  

Two minutes after Joe left Mira a new whole class discussion took place. During this discussion Joe 
asked if Mira could repeat what she said during their conversation:  

Mira: 36 divided by 9 is 4. So if you do it (.) ba:ckwards, first you take 4 divided by (.) 4 
times 9 is 36, so, it is just the opposite! 

We note that Mira has adopted Joe’s academic language using the word “opposite”. Joe highlights 
this to the whole class by writing “The opposite of multiplication is division” on the blackboard at 
the end of the discussion. Then a new task was given: 264 divided by 4.  

After four minutes working on the task, Mira left her chair and interrupted Joe (who was speaking 
with other students) asking “Does 200 divided by 4 equal 50?” He confirmed and continued his 
ongoing conversation. Mira listened for a while before she started doing dance moves. A few seconds 
later, Joe followed Mira back to her desk, where she immediately started to explain her thinking:  

Mira:  100 divided by 2 is 50=  
Joe: =Yes= 
Mira:  =100 divided by 4 is 25=no 100 divided by 4 is not 25, is it? (1)  
Joe:  Yes, (.) because 25 times 4 is 100.= 
Mira: =And then, 200 divided by 2 is 100 and then I thought, then it has to be like, since 

100 divided by 4 is 25, 25 plus 25 is 50. So if 200 divided by 4 (.) then 200 divided 
by 4 needs to be 50.  

Joe:  =Mm. I agree. And then we have spent 200, and we are left with 64. (.) Ok. Then 
we know that they all get 50 each (.) and we are left with 64. ((Interruption from 
one student and then another. Joe encourages them and says he is coming.)) Yes, 
and next it is 64 divided by 4. (1) Can we make this number any easier? 

Mira: Yes, maybe ((Mira sounds positive. Joe leaves to get students back in place.)) 

During this dialogue, Joe begins with a notice action (3.b.ii) and then makes an open progress 
initiative (2.d): “Can we make this number any easier?”  

Mira worked for a couple of minutes before she started wandering around looking thoughtful counting 
on her fingers. Suddenly, she jumped, turned around, and ran to Joe while shouting “Joe, I have the 
answer!”. She continued to shout it six times, and “104. 104. It is 104”. He took her back to her desk:  

Mira:  Because I divided it by 2, and it is 36= ((referring to her calculation 64 : 2 =32)) 
Joe: =Yes 
Mira: And, (.) it is sixty (.) 64=And six (.) 50, 50 pl[us 64] 
Joe: [but, look,] you took 62 divided by 2 is 32, and then half of that is? 
Mira: Half of tha[t] 
Joe:  [Then] 64 divided by 4 must be half of this one? ((points at something in Mira’s 

notebook, presumably 32))  
Mira: Yes [Don’t look] 
Joe:  [What is half] of 32? (.) That was very smart. ((Presumably 64 : 2 = 32 in Mira’s 

notebook.)) (.) What is half of 32? (1) What is half of 30?  
Mira:  Half of 30 is 15.  
Joe:  Then half of 32 needs to be one more. (.) 
Mira:  16 
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Joe:  Yes (.) So (.) So then 64 divided by 4 is 16.  
Mira: Is it 50 + 16? ((Mira sounds unconvinced, but another student grabs Joe’s attention 

and he leaves to help them.)) 

Both Mira and Joe mis-spoke in this conversation. Mira said 36 when she meant 32 and Joe said 62 
when he meant 64. It is noteworthy that this did not affect the meaning and we will discuss this later. 

It seems that Mira had incorrectly calculated 50 + 64 = 104 as the solution when she invited Joe to 
her desk (see also the right hand column in Mira’s notebook in Figure 1). Hence Joe made a 
redirecting action which could be interpreted as a correcting question (1.a). However, this turn also 
has elements of a notice action (3.b.ii), “you took [64] divided by 2 is 32”, and a progressing action, 
“half of that is?” Even though this progressing action is a closed question it could be interpreted as 
an open progress initiative (2.d). Drageset (2014) points out that “comments in this category...are also 
aimed at moving the process forward, but without pointing out the direction” (p.294) and, by asking 
“half of that is”, Joe was following up a strategy determined by Mira, not Joe. In any case, and 
crucially, Joe’s response allows Mira to retain at least part of the intellectual responsibility. Joe 
continues by pointing out both orally and physically, and repeating the question “What is half of 32?” 
After a short pause, Joe makes a simplification action (2.b) by splitting 32 into 30 + 2 and taking Mira 
through step by step. 

 

Figure 1: Mira’s notebook (left) and her presentation on the blackboard (right) 

Less than one minute after Joe had left her desk, Mira ran to find him again, repeating “Joe, I have 
the answer!” She was very eager, shaking her book, jumping, saying, “66, can I show my answer on 
the blackboard?” Joe agreed. She climbed on a shelf placed under the blackboard and began to write. 
While she wrote nothing was commented upon by her or Joe (see Figure 1 for her presented solution).  

We note that Mira’s presentation on the blackboard diverged from her notebook. In particular, she 
had reorganised the calculations so that they follow a logical progression. Crucially, Mira’s 
presentation of 64 divided by 4 used her strategy of repeated halving, and she did not split 32 into 
30+2. This was now her solution. 

Discussion and concluding remarks 
Appropriation involves joint productive activity, a shared focus of attention, and shared meanings 
(Rogoff, 1990). As noted earlier, both Joe and Mira misspoke in the last conversation without it 
affecting the communication or the dialogical flow. We take this as a sign that they are locked-in to 
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the mathematical process as a shared focus of attention. In addition, appropriation involves taking 
what someone else produces during joint activity for one’s own in subsequent productive activity 
(Moschkovich, 2004). After the first conversation, Mira adopts Joe’s alternative interpretation 
(Newman, 1989) by using the word “opposite” in her whole class discussion contribution, and, in the 
end of the previous section, we saw that Mira had made the solution her own when she presented it 
at the blackboard. We thus argue that the interactions between Joe and Mira displayed characteristics 
of an appropriation process where the student is working with mathematical practices. But, what has 
the analysis uncovered? 

An overarching view of the analysis with respect to Drageset’s framework (2014) reveals a shift in 
Joe’s responses during the lesson. In the first conversation, Joe used focusing actions exclusively, 
and these were also present in the other conversations. In the second conversation, there was an open 
progress initiative. Progressing actions were also present in the third conversation in addition to 
simplification and a correcting question. This pattern may play a part in the appropriation process. 
The initial focusing actions may have indicated to Mira that her thinking was valued. Once this was 
established, progress was encouraged with actions that allow the student to retain intellectual 
authority (Drageset, 2014), wholly or partially. Finally, there was a simplification sequence. This 
final sequence taken out of the context of the lesson could be interpreted as a case of funnelling 
(Wood, 1998). However, Joe’s previous careful handling of Mira’s intellectual offerings allowed for 
a shared focus to be retained and a shared meaning to be developed (Rogoff, 1990) as evidenced in 
Mira’s presentation to the class. The pattern is similar to the strategies employed by the teachers in 
Solomon et al.’s (2021) study of whole class discussions. In the whole class setting, the teachers 
explicitly emphasised student authorship (Solomon et al., 2021). Joe makes one such move (“that was 
very smart”) in the conversations analysed above, but as we have argued, his choice of actions 
emphasises student authorship and “help maintain the shift of authority away from the teacher 
towards at least shared responsibility” (Solomon et al., 2021, p. 187). 

Our analysis highlights what we believe to be an important feature of this interaction: The way in 
which Joe starts with focusing actions, and later introduces progressing actions sparingly. However, 
it is clear that this is not the whole story. Depending on what we focus on, there will always be 
nuances that come to the fore and we see potential for fruitful further research. For instance, the wait 
of nine seconds and then 19 seconds after Mira’s first turn is unusually long (Ingram & Elliott, 2016) 
and especially so in this busy classroom environment. It is possible that these indicate to Mira that 
her thinking is valued. Similarly, we saw several instances where vocal intonations featured. In the 
first conversation when the idea of “opposite” is introduced, it is accompanied by a high pitched 
“maybe” that is then repeated by both parties in the following turns. This may function as a way of 
softening Joe’s imposition of intellectual authority on the conversation. These diverse features have 
a commonality that is also revealed in the analysis: Through the interactions Joe and Mira co-produce 
a way of thinking that Mira can eventually inherit. 
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Textbooks as actors in the transformation of the intended curriculum  
Helena Grundén  

Dalarna University, Sweden; hgn@du.se  

Teachers are central in the process of making learning situations out of intentions expressed in 
governing documents, such as the national curriculum. However, there is no straight line from 
intentions to learning situations – the teacher actively designs the planned curriculum and the 
enacted curriculum. In the process of planning, the teacher interacts with the material, and her 
decisions are also influenced by, for example, textbooks. This study aims to explore in what ways the 
textbook participates in the process of planning, i.e., the transformation from intended to planned 
curriculum. Based on focus group discussions with primary teachers, results show a variety in 
teachers’ relations to the textbook, which have consequences for how the textbook participates in 
decisions. Results also show that students’ positive feelings about the textbook influence the planning 
and that textbooks sometimes function as “emergency exits” in the process of planning. 

Keywords: Curriculum, planning, teachers, textbooks, issues. 

Introduction  
Often curriculum materials are seen as ways to implement reform and influence teaching. However, 
teachers do not just transfer the content in them; they rather interact with the curriculum material 
(Remillard, 2005). Hence, teachers are central in the process of transforming ideas in tasks and 
pedagogical recommendations into events in the classroom (Lloyd et al., 2009), which means that the 
teacher – rather than being a transmitter or an implementer – is an active designer of curriculum. 
Consequently, there is a need to distinguish between the intended and the enacted curriculum 
(Remillard, 2005). The intended curriculum can, for example, be described as “the overt curriculum 
that is acknowledged in policy statements as that which schools or other educational institutions or 
arrangements set out to accomplish” (Kridel, 2010, p. 489). In a Swedish context, this would mean 
that the national curriculum and other policy documents such as national tests in school years 3, 6, 
and 9, and the mandatory tests in pre-school class and school year 1 can be seen as the intended 
curriculum. According to Remillard (2005, p. 213), the enacted curriculum is described as “what 
actually takes place in the classrooms (Gehrke et al.[, 1992]).”  

Taking teachers’ active role as curriculum designers seriously and using the terms intended and 
enacted curriculum means that what is stated in the intended curriculum is processed by the teachers 
and transformed into the enacted curriculum. However, there may be reasons for dividing the process 
further. Teachers seem to be active designers and make decisions of importance for their teaching 
both in the process of planning and in the process of transforming the plan to classroom events, which 
means that there in addition to the intended and the enacted curriculum there is also a planned 
curriculum (Grundén, 2022). When teachers construct the planned curriculum, they are influenced by 
actors and structures on different levels – one such actor is the textbook which in a focus group 
conversation with primary mathematics teachers about planning, emerged as a prominent actor 
related to the teacher and her decisions (Grundén, 2022). The textbook as a prominent actor means 
that although the teacher is central in the construction of the planned curriculum – she is the one 
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making the decisions – the textbook influences the decisions to a fairly large extent. A common notion 
about textbooks is that the use of textbooks increases the older the students get, which is supported 
by results from the latest national review of mathematics teaching in Sweden (The Swedish School 
Inspectorate, 2009).  

Research on textbooks is a common theme in mathematics education research. According to Rezat et 
al. (2018), the research field has moved from focusing on the textbook itself to focusing on the design 
and use of textbooks, and textbooks are seen as one resource among many. Several studies focus on 
understanding processes involved in teachers’ textbook use (Rezat et al., 2018). However, textbooks 
have consequences for teaching based not only on how they are used and how teachers interact with 
them but as previously mentioned, also on how they participate in the process of planning – the 
curriculum transformation. Hence, textbooks’ role in the transformation from intended to planned 
curriculum might be one of the keys to understanding more about why intentions in the intended 
curriculum do not always reach all the way into the mathematics classroom. This paper aims to shed 
light on in what ways textbooks as actors participate in transforming the intended curriculum to the 
planned curriculum in primary school and to discuss possible consequences and implications for 
mathematics teaching. 

Background  
Mathematics teaching 

There is a diversity in what is meant by mathematics teaching, and depending on how teaching is 
conceptualized, researchers can contribute in various ways to the expanded understanding of 
mathematics teaching and learning. In this paper, mathematics teaching is seen as a social, cultural, 
and political practice, which according to Fairclough (2015), means that there are situated and 
habitual actions and interactions going on. In a practice, there are people and relations involved, and 
the people involved act among other things by using language. Included in a practice is also the 
material world (Fairclough, 2015). In a practice, such as mathematics teaching, actors participate in 
the actions and interactions, and structures are influencing them. However, the structures are also 
influenced by the actors in the practice (Fairclough (2015).  

When the intended curriculum is transformed into a planned curriculum it is done within the practice 
of mathematics teaching. Hence, the process is influenced by structures as well as by actors. An actor 
is, according to Oxford University Press (2021), “a participant in an action or in a process” and 
according to Enserik et al. (2010), an actor is “able to act on or exert influence on a decision” (Enserik 
et al., 2010, p. 79). Leaning on a definition of practices as including the material world (Fairclough, 
2015) opens for actors as physical objects. In this paper, this means that planning involves several 
actors. Some actors are human, such as colleagues and school leaders. Some are organizational, such 
as the National Agency of Education. Others are material, such as textbooks or templates for planning. 
When a group of primary teachers talked about planning, textbooks were one of the most prominent 
actors that influenced decisions by virtue of how often they showed up in the discussion (Grundén, 
2022).   
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Textbooks in Sweden 

In Sweden, there is no national control of curriculum materials. The national curricula state that each 
principal is responsible for students having access to and conditions to use teaching materials of good 
quality (The National Agency of Education, 2019). Although no recent national large-scale studies 
focus on textbook use, results from prior studies might give indications. TIMSS 2007 and 2011 show 
that teachers in Sweden use textbooks as a base for mathematics teaching to a high degree compared 
to other countries.  However, there seem to be differences depending on school years. In a national 
review of mathematics teaching students in school years 1–3 work with tasks in the textbooks 11% 
of the time in the observed lessons, in school year 4–6 31%, and in school year 7–9 47% of the time 
(The Swedish School Inspectorate, 2009). Although these numbers indicate that younger students 
work less with textbooks than older students, textbooks seem to influence teachers’ planning 
(Grundén, 2022).  

Traditionally, textbooks in Sweden do not consist of detailed lesson plans or instructions (Van 
Steenbrugge, & Ryve, 2018). However, as Van Steenbrugge and Ryve point out, a prior study by 
Boesen showed that teachers follow the content as it is sequenced in textbooks.  

Method  
This paper builds on four focus group discussions with teachers who teach mathematics and other 
subjects in school year 1–3. The teachers that participated in the four groups worked in three different 
schools. In total, the groups consisted of 17 teachers.  

In focus group discussions, participants interact with each other in the conversation, which often leads 
to greater insights into experiences, and hence, richer data than individual interviews would have 
given (Carey & Asbury, 2012). In the discussions – where teachers were asked to freely talk – the 
theme was planning for mathematics teaching. At the beginning of the discussion, pieces of paper 
with words written on them (aspects identified in an earlier study) were placed in the middle of the 
table and used as stimuli. The words were students, school management, national tests, 
template/forms, parents, and textbook. The teachers could remove aspects or add things they thought 
were missing. My role during the discussion was to – by small words and gestures – confirm that I 
was hearing. I also asked follow-up-questions on themes already introduced by the teachers and 
invited all participants into the conversation, for example, by asking: “What do you think when you 
hear her say …”?  

Analysis 

Before the analysis, passages in the transcript of the four discussions where textbooks influenced 
considerations and decisions in the process of planning were extracted. This phase can be seen as the 
first step – getting familiar with data (Braun & Clark, 2006) – in the thematic analysis that followed. 
Each extract was coded with respect to what it was about. The next step in a thematic analysis is to 
collect extracts together within each code (Braun & Clark, 2006), and the different codes were sorted 
into sub-themes. Relations between codes and sub-themes were considered, resulting in four main 
themes: Teachers’ relations to textbooks, Students’ relations to textbooks, The teaching and 
textbooks, and Governing documents and the textbook.   
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Results  
In this section, the four themes that represent the core content of how textbooks influence decisions 
in the process of planning are presented. Not all teachers or all groups of teachers talked about 
everything that is in the results. However, some issues came up in all discussions and when those are 
presented in the result, I emphasize that they came up in all discussions. When only one teacher, or a 
few teachers, say something, that is marked in the text as well.  

Teachers’ relations to textbooks 

When textbooks are actors, i.e., participate in decisions in the process of planning, teachers’ 
relationship to the textbook has an impact on how the textbook’s participation looks like. Many 
teachers in the study seem to see the use of the textbook as something negative that they would rather 
avoid. Although mentioned in all the groups, especially teachers in one of the groups talk a lot about 
“dare to let go of the textbook.” In this group, the teachers agreed on that they need something that 
supports them with the structure, but they are not satisfied with the way the textbook does that. One 
teacher expresses: “I think we will have to do such thing by ourselves,” and another teacher continues, 
“We simply write a textbook,” and the other teachers in the group agree. 

All groups agreed that textbooks give teachers confidence – following the book is, according to some 
of the teachers, a way to ensure that nothing is left out and that students learn everything in the right 
order. The more experienced teachers get, the more they can let go of the book, and according to one 
of the teachers, the critical evaluation of textbooks comes with experience.  

According to one of the teachers, planning is first and foremost about coming up with fun activities. 
When the teacher does not have enough energy to do so, she turns to the textbook and lets the students 
work in it. The teacher ends her post by saying: “But fortunately, the periods that you are so tired are 
not that long.”  

Students’ relations to textbooks 

Students’ relationship to textbooks also plays a role in how textbooks participate as actors in teachers’ 
process of planning. In the planning, students’ individual work in the textbook seems to be considered 
an alternative that often brings out positive feelings in students, which is an argument for planning to 
use it in teaching. The teachers talk, for example, about how the students love their textbook and how 
they enjoy working with tasks in the book. One teacher says: “They – most of them – can tackle them 
[the tasks in the book] with life and desire because they think it is so fun when they come to the stop”. 
However, some teachers talk about the importance of thinking about when and how they use the 
textbook with students in the early school years. For example, how to plan so that students who cannot 
read the tasks themselves can work independently. Some teachers beforehand choose tasks for 
individual students while others in their plan think that students shall work with some pages and 
adjust the plan for those who cannot keep up. When teachers use the textbook for planning, it seems 
common that they do it with their students in mind. They evaluate the tasks based on their knowledge 
about the students and decide what students shall do. However, there are also examples where 
teachers express that the goal is that students do all tasks, for example, when a teacher says: “You 
can skip these tasks and go back and do them later if you have time.”  
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One of the reasons for students’ positive feelings that teachers consider when they plan is that when 
students work in their textbook they can see a result – what they have done – while when they do 
other things there is no visible evidence of what they have done. One of the teachers points to her 
head and says: “The only thing left is in here.” This means, for this teacher, that when she plans for 
activities outside the textbook, she also needs to plan how to make visible for students what they have 
learned.  

The teaching and the textbook  

This section presents results concerning the textbook and its relation to the teaching that comes out 
of the planning. Teachers in the study agree that what textbook is used influence the teaching. Most 
common seems to be that teachers are the ones who decide what textbook to buy, although there are 
examples where the school district has decided that all teachers must work with the same book series 
from year 1 to 9. A reason for keeping the same book for several years is that when teachers have 
worked with the same textbook for several years, planning gets easier. The book used must not be 
too advanced; the students must be able to work on their own. However, one teacher talks about how 
she has her students working in pairs to communicate and figure out together how to solve the tasks.  

Some of the teachers talk about textbooks as an obstacle to teach the way they want. According to 
many of the teachers, using the textbook as a base for planning implies a focus on procedural skills. 
In one of the groups, teachers agreed that the best would be to make a structure and a plan together. 
A teacher expressed one of the reasons they emphasized: “I want to decide by myself when and how 
much procedural training I do [with the students]”. However, all groups emphasized the textbook as 
a source for structure and tasks. Textbooks facilitate the planning work, and by following the book’s 
structure, the teaching is about the same things in parallel classes at the school.  

There are also examples where a teacher talks about how she turns to a specific textbook for specific 
mathematical content, for example, when teaching algorithms with regrouping. One textbook covers 
this content and has better tasks and activities than the others. Some of the teachers express that when 
they use the textbook in their planning, they choose what to do in the textbook based on their 
experience about what students need. For example, one teacher says: “Now we will work with 
multiplication. There are endless ways to work outside the textbook. You still see all the parts [in the 
book], but we pick this part out and work experimentally with it. And I think you can actually do that 
without having to feel that ‘oh now we have not done these pages’ “. Another teacher who advocates 
that she as a teacher can be flexible when she plans, i.e., the textbook does not decide what she does 
and when. She talks about how the students she has now need more challenges than other groups she 
had. She decided to introduce algorithms in year 2, although it was not in the textbook until later.  

Teachers in the study seem to agree that procedural skill training is an important part of mathematics 
learning, and when they plan for that, they use the textbook. When teachers need to keep students 
busy, for example, when the teachers are absent or when they know some students will work faster 
than others, they also plan for students to work individually with tasks in the textbook. As one teacher 
expressed it: “It [the textbooks] is self-propelled. The students know what to do”. Several teachers 
express that the textbook functions as an “emergency exit” they can use when the energy is running 
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low or when the teacher is to be absent. Then the planning becomes “the students shall work 
individually in their books.” 

Governing documents and the textbook  

When textbooks participate as actors when teachers plan, the relation between governing documents 
and the textbook plays a role. In the discussions, teachers refer to the governing documents: national 
curriculum, national tests for school year 3, and mandatory assessment material for school year 1, 
and how they influence decisions in the process of planning. However, references to the national 
curriculum are rare and sometimes implicit. There are differences in how the teachers in the study 
think of the textbook in relation to the national curriculum. For some of them, it is obvious that 
textbooks do not cover everything in the national curriculum, while others state that textbooks are 
approved by the National Agency of Education and aligned with the national curriculum. Many of 
the teachers agree that the textbook needs to be evaluated against the national tests and mandatory 
assessment material when planning. What is not in the book, the teachers need to supplement with. 
According to several teachers in the study, there are differences in what students need to know to 
manage the mandatory assessment material and the national test and what is in the textbooks for that 
age group. Hence, following the textbook’s structure might make students less likely to pass all the 
tasks on the tests. 

Some teachers state that the national curriculum is where the goals for teaching are presented, and 
the textbook is just a resource among others that the teachers can choose to use in their teaching. 
According to teachers in one group, textbooks participate in planning by offering the “what” – the 
content – while the “how” – which according to one teacher is the abilities [stated in the national 
curriculum] – is what teachers need to come up with by themselves.  

Discussion  
The purpose of this paper is based on results showing that for teachers in one of the focus groups, the 
textbook was an actor in the process of planning (Grundén, 2022). The results of this study confirm 
that the textbook participates in the planning for the other groups of primary teachers as well. In this 
section, the most prominent results about in what ways textbooks are actors in primary teachers’ 
process of planning will be discussed. The discussion will also highlight some possible consequences 
and implications for mathematics teaching.  

Firstly, the structure and the content of the textbooks are often used to do rough planning. However, 
teachers in the study see the influence of textbooks as negative, as an obstacle to teaching the way 
they want. At the same time using the textbook when planning gives a feeling of confidence. This 
can be interpreted as teachers wanting support when they plan their teaching. The national curriculum 
with its overarching goals and content that should be covered during three years (National Agency of 
Education, 2019) is not enough. Or at least, it is not enough when teachers plan on their own. Several 
teachers in the study expressed that during the in-service teacher development program 
Matematiklyftet, textbooks did not participate in the planning as much as they usually do. Instead, the 
teachers cooperated with colleagues, which raises questions about whether collegial work with 
transformation using textbooks as resources is a way to develop the support. 
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Secondly, there is a great deal of variation in how textbooks participate in planning – from using them 
as a “smorgasbord” to seeing the textbook as an extension of the national curriculum, from choosing 
what tasks to work with to working from page to page. Sometimes, the textbook function as an 
“emergency exit” in the process of planning. These results are not surprising given previous research 
on textbooks (e.g., Van Steenbrugge & Ryve, 2018). However, looking at them in the light of 
textbooks as actors in the transformation from intended to planned curriculum gives new insights. 
The variation raises questions about what would be the best support in the transformation process? Is 
it to go the way some countries do – detailed textbooks and teacher guides teachers can follow? 
According to Remillard (2005), the answer is no, which also the results in this study indicate. The 
use of textbooks in the process of planning is not just a practical operation for teachers but is deeply 
associated with assumptions about mathematics and the learning of mathematics. It seems reasonable 
to believe that these assumptions remain although the textbook is changed. Hence, instead of 
“teacher-proof” textbooks, results indicate that teachers would benefit from support in another way. 
In addition to various textbooks, perhaps discussions with colleagues where assumptions are made 
visible and challenged is one alternative support. 

Thirdly, students’ positive feelings about working individually with their textbooks is an argument 
for planning for such work. However, the positive feelings teachers refer to do not build on an idea 
that students learn more when working in textbooks, but rather that students gain good self-
confidence by working on tasks they can manage to do on their own. The teachers also emphasize 
the evidence of “what has been done” that the textbook offers. One may wonder if this has to do with 
a tension between performing mathematics and learning mathematics, and one of the teachers might 
sense this tension when she emphasizes the importance of making visible to students what they have 
learned when working with other activities than textbooks – what they are able to do and talk about 
that they could not do before. When students’ positive feelings about performing mathematics are an 
argument for the participation of the textbook when planning, this might build on students’ ideas 
about what counts as mathematics and mathematics learning that might not benefit their learning. 
Hence, rather than letting the textbook be the planning to meet the students’ preferences, teachers can 
involve them in discussions about learning and signs of learning.  

This study indicates reasons for learning more about the transformation from the intended to the 
planned curriculum. In this paper, the focus is on the textbook as an actor. However, there are also 
other actors – and perhaps other assumptions - that somehow participate in the transformation and 
might be obstacles to intentions formulated to benefit students’ learning.  
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Navigating the contradiction between attainment grouping and 
inclusion in mathematics: the role of teacher identity   
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This paper focuses on teaching mathematics in attainment groups as a means of fostering “equal 
opportunities for learning” (Norwegian: tilpasset opplæring, TPO) and thus meeting the Norwegian 
education system’s historical aim of inclusive teaching. I report on interviews and classroom 
observations of one teacher working in a school which has introduced attainment grouping, focusing 
on how she explains her practice in the context of TPO. Applying Gee’s (2014) theory of language in 
use and situated meaning, I focus on her enactment of practice in relation to teacher identity and the 
notion of big D Discourse. The analysis highlights the contradiction between the practice of 
attainment grouping and the policy of TPO and its implications for the role of teacher identity.  

Keywords: Attainment grouping, inclusion, big d discourse, teacher identity, issues. 

Introduction 
The Norwegian school system has deep roots in inclusive mainstream schooling where teaching is 
mainly organized in whole class mixed groups. Indeed, the Education Act § 8-2 (Opplæringslova) 
states that “students shall not normally be organised according to level of ability, gender or ethnic 
affiliation” (my emphasis) (Opplæringslova, 1998). In addition, the national curriculum emphasises 
the pedagogic principle of “equal opportunities for learning” (tilpasset opplæring in Norwegian, or 
TPO) which emphasizes that education should develop each student’s full potential; it is the teacher’s 
responsibility to facilitate this. Despite this background, some schools have introduced attainment 
grouping as a means of organizing TPO, particularly in mathematics. This appears contradictory in 
the context of an inclusive approach to mathematics teaching and based on what we already know 
from research on attainment grouping. Drawing on observation and interview data, this paper 
explores how one teacher navigates this situation in both her teaching and her account of attainment 
grouping as a means of organizing for TPO. It argues that exploring teacher identity is crucial if we 
are to understand her stance. 

Background literature 

There is little research in Norway on the impact of teaching mathematics in attainment groups, 
particularly on classroom level practices. However, international research reports on differences in 
teaching practices between groups: teaching in lower attainment groups tends to be more traditional 
and is dominated by teacher-led teaching and the use of restricted and repetitive tasks. Teachers’ 
questions are often closed with little opening for critical reflections on mathematical thinking (Kaur 
& Ghani, 2011). High attainment groups on the other hand are often characterized by more reform-
oriented teaching, emphasizing critical thinking and deep learning through problem solving and open-
ended tasks. However, work can also be fast-paced, emphasising fluency in procedural algorithms 
(Beswick, 2017; Francis et al., 2019; Solomon, 2007).  Research also suggests that teaching in mixed 
groups may be less restricted and more investigative: teaching in mixed groups tends to be more 
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differentiated, while attainment grouping treats students as a homogenous group on the same level 
(Francome & Hewitt, 2020; Taylor et al., 2017). Attainment grouping may therefore lead to a more 
restricted access to mathematics in terms of both pedagogy and content, leading to student labelling 
and a fixed ability view of both low and high attainers (Francis et al., 2017; Taylor et al., 2017). 
Teachers’ perceptions of students are important. Beswick (2017) asked teachers to describe “poor” 
and “rich” students, finding that poor students were described as lacking proficiency, understanding 
and ability to explain mathematics. “Rich” students were described as being proficient in describing 
skills and knowledge. On this basis the “poor” students were offered restricted tasks and “good” 
students more open-ended tasks (Beswick, 2017). Similarly, Mazenod et al. (2019) found that 
teachers of lower attainers took a nurturing approach, believing that students should not be over-
challenged; this led to an “over supportive” pedagogy which limited development.  

As noted above, the literature indicates that attainment grouping leads to limited access to 
mathematics and differences in teaching approach which suggest that the practice of attainment 
grouping is not consistent with the view of inclusive mathematics teaching encapsulated in the 
Norwegian emphasis on inclusion through TPO. This tension is observed by education researchers in 
Norway, but the increasing practice of attainment grouping is largely unquestioned, driven as it is by 
pressure from international tests which show Norway underperforming in comparison to other 
countries (OECD, 2016) and arguments that grouping benefits higher attainers (National Centre for 
Science Education, 2015). Hence, to explore how teachers meet TPO policy in the context of 
attainment grouping, this paper addresses the Research Question: How do teachers navigate the 
relationship between TPO and attainment grouping?  

Theoretical framework: “big D Discourse” 
In this paper I draw on Gee’s (2014) theory of language in use and situated meaning to enable a focus 
on teachers’ enactment of their classroom practice within the context of policy requirements and 
school organisation. Gee’s theory emphasizes the role of “big D” Discourses which are distinct from 
“small d” discourse and its focus on language. “Big D” Discourse captures actions as well as words, 
and in this sense, it also captures identity performance, which involves 

ways of enacting socially situated identities and associated practices in society through language 
and ways of acting, interacting, valuing, knowing, believing and using things, tools and 
technologies at appropriate times and places. (Gee, 2014, p. 127) 

Enacting and being recognized in a Discourse requires more than language. When people are engaged 
in Discourse, they use language to engage in a practice to do things, but also to be things as they take 
on socially situated identities. Gee emphasizes that saying-doing-being gains its meaning from the 
practice it is a part of and enacts (Gee, 2014, p. 11). He foregrounds identity, arguing that saying 
things “never goes without also doing things and being things” (Gee, 2014, p. 3), and thus concerns 
recognition as a certain kind of person engaged in a certain kind of practice. To “pull off” a Discourse 
therefore requires the individual to both “talk the talk” and “walk the walk” (Gee, 2014, p. 24).  

Gee also draws on the idea of figured worlds (Holland et al., 1998) to understand how situated 
meanings are constructed: 
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Figured worlds is a theory, story, model or image of a simplified world that captures what is taken 
to be typical or normal about people, practices, things or interactions. (Gee, 2014, p. 226)  

A figured world is thus a local simplification which mediates between local social interactions and 
Discourses, enabling enactment of a Discourse. This simplification aspect of figured worlds means 
that they often relate to particular values about how things are, or should be. The concepts of big D 
Discourse and figured worlds provide not only a theoretical perspective on the nature of situated 
meanings, but also a method of inquiry as outlined below.  

Methodology 
The work presented here is part of a larger study focusing on attainment grouping in mathematics 
teaching and TPO, involving four 9th grade mathematics teachers in one lower secondary school (Berg 
School) in Norway. Berg School had organized mathematics teaching so that the four 9th grade class 
groups were taught for two of their three weekly lessons according to attainment level, and in their 
remaining lesson as a whole class mixed group. Each of the four teachers were responsible for one 
attainment group and one whole class mixed group. This paper focuses on a case study of Lena, who 
teaches group 4, the highest of the attainment groups. The data includes two semi-structured 
interviews and classroom observations of three of Lena’s lessons (one week of teaching).  The first 
interview took place before observation and focused on her view of teaching in attainment grouping 
and TPO; the second interview took place after the classroom observations and included reflections 
on the lessons observed. All names of people and places are pseudonyms. 

Interviews were transcribed in full and analysed by searching for references to “big D Discourse” 
(what kind of teacher Lena described herself as or how she wanted to be) and “figured worlds” 
(Lena’s theories of teaching and learning, in particular her references to values about how 
mathematics teaching is or should be). The observation episodes were also transcribed and annotated 
to record Lena’s and students’ movement about the classroom, student hands up and so on. My 
analysis focused on Lena’s use of questions and discussion, wait time, her use of tasks, and her use 
of explanations.  I was interested in her choice of whole class teaching or individual work for 
particular activities. I also noticed how she distributed time among students and her use of positioning. 
Seeing big D Discourse as enactment of identity and associated practices, these references enabled 
an analysis of Lena’s teaching practice as socially situated identity performance – that is, as 
performed within the context of TPO and the school’s emphasis on attainment grouping. 

Analysis 
In this section, I draw on both the interview and observation data to analyse Lena’s enactment of 
teaching in attainment groups and TPO, bearing in mind the big D Discourse emphasis on “saying, 
doing and being”. Hence the interview and observation data are presented together in the analysis, 
since they mutually support each other in the application of big D Discourse.  

A figured world of fixed ability  

In the interview, Lena is clear that she sees attainment grouping as the best way for organising 
mathematics teaching for TPO. Her arguments suggest that she draws on a figured world in which 
mathematical ability is fixed. This becomes evident in her descriptions of teaching in different 
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attainment groups and students learning according to different levels: “everyone gets something on 
their own level (…) and everyone is about the same level then (…) it will not be too easy or too 
difficult. That it is right where someone is”. Lena talks about the students as “different kinds of 
students” and describes them in the context of homogeneous groups based on different levels, where 
the students in one group are alike and have the same ability, both in terms of understanding 
mathematics as well as in their way of thinking: “...the others [in the group] have the same opinion, 
... and everyone really thinks the same way”. 

This view of students being alike can also be seen in how she describes what characterizes the 
mathematics and teaching approaches in the different groups. Referring to teaching for the low 
attainers she talks about “the “didactics” of the weak”, in which teaching is “a bit easier and a bit 
more practical”. In contrast she describes high attainers as taking a more formal approach to 
mathematics. This approach was also evident in the observation data, where her group 4 teaching 
valued a procedural approach to practicing Pythagoras’ theorem and how to write it down correctly:  

Lena: And then when we write down and solve those tasks, what do we always start with then? … 
Kari: Writes that formula. 
Lena: Writes that formula k2+ k2 = h2 (Lena writes the formula on the board) 

She also contrasts the low and high attainers in terms of what she sees as the usefulness of drawings 
for the low attainers, while the high attainers are not in need of images and examples to the same 
extent as the low attainers “…because that’s the way their brains are made”. 

Lena’s figured world of fixed ability is also apparent when she refers to how she limits the content of 
talk in mixed whole class discussions because of all the different levels represented in the class. 

When I have a whole [mixed] class, I often set the level on use of concepts and… like I do not go 
into depth in the class talks…. Have them explain to me what they think… Instead of (…) problem 
solving tasks where there is a little ... high level then. 

This assumption of a figured world in which there is an average level of whole class mixed group 
was also evident in her teaching in this group. Lena started the lesson by giving a short repetition of 
how to make diagrams in Excel before the students were asked to try this out as a repetition activity.  

Being a caring teacher 

Lena is concerned about having a good relationship to the students and she refers to this as “most of 
her job”, assuming a figured world in which good relations between teacher and students is an 
important basis for learning. This perspective indicates a Discourse of being a kind teacher who cares 
about the students. This is also evident in how she justifies parts of her teaching based on what the 
students “like to do” and what they think is “fun”: “…they like to do tasks. (…) at least in the high 
group, they learn a lot from working for themselves. (…) And at the same time, it is the task that they 
want for themselves” 

The Discourse of a caring teacher is also visible in her theory of the importance of providing a 
comfortable learning environment for all the students in an attainment group. Comparing teaching in 
group 4 with teaching in whole class mixed groups, she says that it is “better” with group 4, because: 
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“… the students may feel a bit more comfortable, that it’s kind of okay to be quite good. Because 
here all are good”. 

This caring aspect is also evident in her teaching. Often, Lena’s discussion with the students does not 
focus on mathematics but is more about everyday life. Her language can be characterized as youthful 
and friendly in tone, almost like chatting. For example, Lena joins in when some of the girls start to 
talk about the price of the food in the school canteen, and when other students talk about the next 
tests and assignments in other subjects that week. Lena also enacts the caring teacher when the 
students work individually on tasks. As she circulates around the classroom, her comments are mainly 
“how is it going” rather than on the mathematics in the tasks – she does not probe what lies behind 
the students’ frequent answers of “fine”. There is thus a lot of social work going on in the lesson. 
Lena’s position in the classroom in this part of the lesson is more as a “mate” to the students than as 
the teacher in a position of authority. 

Lena’s argument for teaching in the different attainment groups also draws on a theory of the need to 
take a nurturing approach to teaching. She is concerned that the mathematics teaching and content 
should be manageable for the students, and especially the low attainers, and that teaching should not 
expose the students to “too much or too difficult” stuff. As a caring teacher, Lena argues that they 
should be exposed to a limited mathematics content, just enough to get by: “…they should at least be 
able to ..., enough to do well enough on the exam anyway”. 

This theory of teaching is also evident in a group 4 lesson where one of the students, Tom, stops Lena 
in her teaching of the procedural solution of Pythagoras’ theorem. Although this is the higher 
attainment group, Tom is unhappy with the pace, and asks (implicitly) for things to slow down. Lena’s 
immediate response and her subsequent action suggests that she positions him as weak in the group 
and in need of individual attention: 

Tom: It's going too fast 
Lena: Am I going too fast? ... We'll look at that a bit afterwards. 
Tom: Yes 

Lena does not treat Tom’s interruption as a request for the whole group to engage in further 
explanation of the mathematics. Instead, she finishes her teaching with the whole group, then comes 
back to talk to Tom individually. She repeats the procedure for him, going through it step by step, but 
now at a slower pace. Importantly, she limits her explanation to how to write the solution down, 
telling him to use the example as a model for the next questions. It seems as though she tries to reduce 
the demands on Tom, making the question merely manageable for him. 

“I need control in teaching” 

Lena is also a teacher who needs to be in control in her teaching. She explains that she chooses 
teaching approaches which are comfortable for her. One of these is talking to the students individually 
instead of in whole class discussion, so that she can maintain control, as in the example with Tom 
above. She also explains that she prefers to teach the high attainers in group 4, and that she is not 
comfortable with teaching the low attainers: “And, you maybe need to go down to the practical level, 
which I am not fond of. And then I get uncomfortable too, it just gets messy all together”.   
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For Lena, attainment grouping makes it possible to avoid “uncomfortable” teaching where she is not 
in control. She argues that Jon, one of the other teachers, is the best person to teach the low attainers, 
simultaneously ensuring that she should not have to teach this group.  

… the one who has group 1, he has actually always had group 1, is very good at the 
[pedagogy]/didactics of the weak. (...) and is very good with that kind of student ... So, he wanted 
to have that group. 

Although Lena argues for attainment grouping as the best way to teach TPO she also argues for it as 
better for teachers, because they are more in control: “And then we wanted to try it out to make it a 
little better for us teachers, to have a little more, control of the lesson then”. This emphasis on control 
is enacted in her practice in her emphasis on ensuring that the students write solutions in “the right 
way”. For example, she tells the students to start each new question by writing up Pythagoras’ 
formula: 

And what is it that is important to watch out for when we are going to WRITE pieces like this? 
(…) The equal symbol below each other (Lena points to her correct notation on the board) … 
because then it looks much tidier. 

Identifying with the high attainers 

Lena’s wish to teach in group 4 is not just related to her need for control in teaching. When she 
describes her own mathematical thinking, she identifies herself with the group 4 students:  

I like, I like it best in group 4. Because they, eh, I'm a bit bound by rules myself. Because I'm kind 
of the same type. (…) Eh, so that's a bit like that, there I can see how it, why they think what they 
do too. Because that's also the direction I'm going. 

She describes herself as the same kind of mathematics person as the students, as a mathematically 
strong teacher. In her teaching, this view appears in how she explains the mathematics to the students, 
positioning herself as the authority in the classroom. She appears to emphasize the mathematics in 
group 4 as the most valued, enacting the Discourse of a mathematically strong teacher which assumes 
a figured world of fixed ability both about the students and herself as the teacher. She appears to see 
herself as ideally suited to teaching the high attainers. 

Discussion 
In this paper I have addressed the research question, “how do teachers navigate the relationship 
between TPO and attainment grouping?” I have focused on the story of one teacher, Lena, and her 
enactment of teaching in attainment groups. The analysis reveals that Lena brings TPO and the way 
her school organises mathematics teaching together by identifying as a caring teacher, and by drawing 
on a figured world of fixed ability which enables her to enact the big D Discourse of the 
mathematically able teacher meeting the needs of mathematically able students. 

Inclusive mathematics teaching means that all students are included regardless of assumptions we 
might make about their potential for learning. Lena argues for attainment grouping as the best way to 
address TPO and inclusive teaching, but her enactment of teaching does not necessarily lead to an 
inclusive mathematics teaching for all students. In her fast-paced work on applying the Pythagorean 
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algorithm she excludes Tom from taking part in the teaching with the rest of the class. Rather than 
opening up a whole class discussion, Lena isolates Tom and enacts the approach of the caring teacher, 
giving him a barely modified instruction that repeats her original teaching more slowly, with an 
explicit instruction that he should just follow the procedure with other questions. Lena’s teaching can 
also be seen as non-inclusive in that she sees procedural knowledge as valuable for the high attainers, 
compared to limited content and restricted tasks for low attainers. It appears that her view of TPO 
and inclusive mathematics teaching concerns adapting teaching approaches and mathematical content 
in accordance with a figured world in which ability is fixed. Furthermore, her procedural approach 
excludes group 4 students from an explorative approach to mathematics and discussion for deep 
learning. This too is closely connected to a figured world in which ability is fixed. Coincidentally, 
this appears to serve a need for control, which may itself be an element of the same figured world in 
which teachers are authority figures.  

Lena’s enactment of teaching in attainment groups and her figured world of fixed ability is also 
related to the Discourse of being a caring teacher, in line with the nurturing approach to low attainers 
identified by Mazenod et al. (2019). Lena justifies limiting content for the low attainers on the 
grounds that they need only to pass the exams, and for her, seemingly as a good way of organising 
for TPO and inclusion. Although the Discourse of being a caring, nurturing teacher may be a way of 
enacting inclusion, Lena appears to prioritise good relationships and care for her students as a basis 
for their learning, but the result is their exclusion from engagement with mathematics learning. 

This big D Discourse analysis of Lena’s identity as a mathematics teacher brings together observation 
of her enactment of teaching in attainment groups and her account of her practice within TPO. It 
reveals complexity and tensions in her practice, values and enactment which make sense when we 
take the context she operates in into account. As noted above, in Norway the move to attainment 
grouping is not contested despite research evidence that it is not beneficial. Locally, Berg School has 
compounded this situation by deciding that TPO in mathematics teaching will be addressed through 
attainment grouping. Although Lena has been party to this decision, it is not hers alone; additionally, 
there are pressures outside of the school which prioritise examination performance. In this general 
context, Lena’s socially situated identity as a mathematics teacher draws on particular figured worlds 
in which doing mathematics is seen as procedural and fixed in order to support her enactment of the 
mathematically able and competent teacher who supports all her students.  

Lena seems unaware that her approach to teaching in attainment groups can lead to exclusion from 
mathematics. She seems also unaware about the tension between her figured world of fixed ability 
and the idea of inclusive teaching, and the potential impact of a nurturing approach on inclusion. An 
implication of this study is that it is important for teacher educators to work with teachers to explore 
teacher identity and their “big D Discourse” in order to support a more reflective enactment of their 
teaching practise for TPO and inclusion. 
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This work investigates the role of the Didactic Suitability Criteria in the argumentation oriented 
towards action when introducing irrational numbers in the teaching of the Pythagorean Theorem in 
a teacher training course that combines Lesson Study and Didactic Suitability. We analysed the 
dialogues of the lesson planning stage of the Lesson Study cycle by means of an argumentative 
trajectory and the Didactic Suitability Criteria, also considering practical argumentation. We 
evidenced the conflicts between the cognitive and the epistemic suitability criteria in which teachers 
gave more importance to one criterion than another depending on the context. Epistemic suitability 
gives rise to considering a representative sample of problems for a partial meaning of the 
Pythagorean Theorem, and cognitive suitability promotes argumentation about which intended 
meanings can be achieved. 

Keywords: Irrational numbers, pythagorean theorem, practical argumentation, lesson study, didactic 
suitability. 

Introduction 
Research in Mathematics Education highlights the need to consider students’ previous knowledge in 
teaching and learning processes. This entails the teacher should know and comprehend students’ 
previous knowledge and then decide what to do in the instructional process. Among some trends that 
regard the importance of previous knowledge, we focus on Lesson Study (Huang et al., 2019), which 
originated in Japan and later spread to other countries, and the Didactic Suitability Criteria (Breda et 
al., 2018), proposed by the Onto-Semiotic Approach (Godino et al., 2019).  

In Lesson Study, implicit agreements between participants on the aspects that are positively valued 
emerge. These aspects can be reinterpreted in terms of the components and indicators of the Didactic 
Suitability Criteria. In Lesson Study, some of these components and indicators may emerge as 
consensuses from the reflection of the group of teachers. This justifies the inclusion of the Didactic 
Suitability Criteria in a training course involving Lesson Study. This phenomenon is the origin of 
proposals for teacher training which focus on the development of reflection on teaching practice by 
combining Lesson Study and Didactic Suitability Criteria (Hummes et al., 2019). In addition, analysis 
of teachers’ reflections indicates that teachers engage in argumentation about the actions that they 
agree to undertake, which some authors call practical argumentation (Gómez, 2017). This 
argumentation occurs when the participant teachers try to find a consensus and explain their reasons 
as equals. The structure of this type of argument is of interest in our research.  
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This work is part of broader research whose objectives are designing and implementing training 
experiences aimed at developing reflection and teachers’ argumentative competence in order to study: 
i) How they argue in their lessons; ii) What is their practical reasoning about the actions they decide 
to carry out in lessons; and iii) How Didactic Suitability Criteria relate to (teachers’) arguments about 
their practice during the teaching and learning processes. In particular, this study focuses on an 
episode from a training course for mathematics teachers that combines the Lesson Study and the 
Didactic Suitability Criteria. It aims to analyse the argumentation oriented towards action when 
introducing irrational numbers in the teaching of the Pythagorean Theorem and the role of the 
Didactic Suitability Criteria in this argumentation.  

Theoretical Framework 
Lesson Study: This is the collaborative and detailed design of a lesson, its implementation and direct 
observation in the classroom, and its joint analysis after its implementation (Huang et al., 2019). A 
group of teachers and experts with a common concern about their students’ learning gather, plan a 
lesson, and finally analyse and discuss what they observed in the implementation. Multiple iterations 
of this process bring the teachers many opportunities to discuss the students’ learning and how the 
teaching influences this learning. A Lesson Study cycle should follow these stages (Lim-Ratnam, 
2013): 1) study of the curriculum and goals, when participants choose content to teach and set the 
learning goals; 2) lesson planning, when participants set the objectives of the lesson and describe its 
development; 3) implementation and observation of the lesson, when they record the impact of the 
planning on the students’ learning and collect data generated from the observation; 4) joint reflection 
on the collected data, when participants use the data from the observation to reflect on the 
implemented lesson, the students’ learning and the previous planning. 

Didactic Suitability: In the Onto-Semiotic Approach, the didactic suitability of an instructional 
process is the degree to which it meets certain characteristics that allow it to be described as suitable 
(optimal or adequate) to achieve an adaptation between the personal meanings developed by students 
(learning) and the institutional meanings intended or implemented (teaching), taking into account the 
circumstances and available resources (environment) (Godino et al., 2019). This is a 
multidimensional construct that consists of six suitability criteria: 1) epistemic criterion, to assess 
whether the mathematics that is taught is ‘good mathematics’; 2) cognitive criterion, to assess, before 
starting the instructional process, whether what is intended to be taught is at a reasonable distance 
from what students know; 3) interactional criterion, to assess whether the interaction solves students’ 
doubts and difficulties; 4) mediational criterion, to assess the adequacy of time and material resources 
used in the instructional process; 5) emotional criterion, to assess the students’ involvement in the 
classroom; and 6) ecological criterion, to assess the adequacy of the instructional process to the 
educational project of the school, the curricular guidelines, and the conditions of the social and 
professional environment, among others factors (Godino et al., 2019). 

Argumentation oriented towards action: In the Theory of Communicative Action, argumentation is 
defined as a “type of speech in which participants state the validity claims that have turned dubious 
and try to accept or decline them using arguments” (Habermas, 1987, p. 37). We focus on 
argumentation oriented towards action (or practical argumentation) and on the consensus that 
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emerges from the reflection of a group of teachers on their own practice. Gómez (2017) defines 
practical argumentation as a “reasoning in social contexts directed to choose an action to solve a 
practical problem” (p. 215). The argumentative speech may be considered as a process, a procedure, 
and a product (Habermas, 1987). As a process, one may exclude any coaction and focus on the search 
for truth as an action directed to understanding. As a procedure, the discursive process of 
understanding is regulated as a cooperative work division between proponents (P) and opponents (O), 
where a validity claim (VC) that has become a problem is stated, examining with arguments whether 
this claim is recognized or not. In the case addressed here, some VC are discussed and the teachers 
can be distinguished, based on their reasons -supporting and providing argumentative strength (AS) 
to the VC, or trying to invalidate it (InvVC)- to recognise or not its validity. Finally, as a product, the 
argumentative speech is producing appropriate arguments that are convincing by their intrinsic 
properties and can be used to accept or refuse the VC. Arguments are the ways to obtain a common 
acknowledgment of the VC that the proponent states hypothetically, and through which an opinion 
can become a knowledge or an action. The argument trajectory (Ramos, 2006) is a tool that allows 
the elements of the argumentative speech mentioned above to be identified. In this study, we used an 
argumentative trajectory to analyse the participants’ practical argumentation. 

Methodology 
This is a qualitative-interpretive study. Eight mathematics teachers working in schools in the south 
of Brazil (students aged 11-18) participated in this research. They were graduated in mathematics and 
had three-to-fifteen-years of teaching experience. In addition, three of them had a master’s degree in 
Mathematics Education. The training program was planned as a face-to-face implementation, but it 
had to be restructured as a virtual implementation due to the COVID-19 pandemic. The sessions were 
conducted using Skype and were recorded with the participants’ permission. The training course 
followed these phases: 1) implementation of two complete Lesson Study cycles (two groups of four 
teachers, each group developed a cycle); 2) introduction of the Didactic Suitability Criteria as a tool 
to guide the teacher reflections; 3) new analysis of the implemented lesson and its redesign using 
these criteria. The first author led the training course and acted as a participant observer.  

We identified different episodes of practical argumentation between the participants along the phases 
of the course. We also identified the role of the Didactic Suitability Criteria within the arguments 
given in each session, with different relevance. The analysis presented in this work can be reproduced 
for each of these episodes. However, due to a lack of space, we present the analysis of only one 
episode from the lesson-planning stage of the Lesson Study conducted by one of the groups. The 
participants chose the Pythagorean Theorem as the topic to be taught as it allowed them to implement 
the original lesson and its redesign for two different student groups (aged 14-15) at two different 
moments of the semester.  

With the argumentative trajectory, we considered the three aspects of the argumentation in the 
episode: ‘process’, aiming to achieve ideal conditions for communication between participants; 
‘procedure’, considering the teachers’ argumentations in the form of cooperative work division 
between proponents and opponents; and ‘product’, obtaining appropriate arguments to accept or not 
the VC about including irrational numbers in the teaching of the Pythagorean Theorem. In addition, 
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the argumentative trajectory allowed the argumentation to be related to the components and indicators 
of the Didactic Suitability Criteria, in order to identify the role of these criteria in the argumentation 
oriented towards action about introducing irrational numbers in the teaching of the Pythagorean 
Theorem. The analysis followed some phases similar to those used by Ramos (2006): i) We reviewed 
the sessions to identify the episodes of practical argumentation between the teachers, meaning 
discussions between them about the decisions made to plan the lesson. ii) Once we identified the 
episodes of argumentation in the videos, we recognised the teachers’ roles, the achieved consensus, 
the invalidated claims, and the reasons to invalidate them, using the constructs described in the 
theoretical section (P, O, VC, InvVC, AS) plus RMC (rationally motivated consensus), and CO 
(consensus by omission). iii) We made an argumentative trajectory to visualise the relation between 
VC, InvVC, and AS in the episode, and thus conclude with the RMC. We distinguished the 
participants as P or O, and identify who participated in the CO. Regarding the latter, some elements 
of the argumentation are implicitly expressed in the sessions. These elements were inferred in the 
argumentative trajectory from the general context where the episodes of argumentation occur. To do 
this, we reviewed the videos recorded during the first and second stages of the Lesson Study cycle 
several times. iv) We analysed the argumentative trajectory using the components and descriptors of 
the Didactic Suitability Criteria to identify the role of these criteria in the participants’ argumentation. 
v) We used triangulation by experts to validate the obtained results. 

Analysis 
In this section, we present the analysis of an argumentation episode that occured in the planning phase 
of the Lesson Study cycle implemented by four participant teachers (P1, P2, P3, P4). In the first phase 
of the Lesson Study cycle, where learning goals were established, P1 suggested a problem about 
finding the length of the diagonal of a square of side one using the Pythagorean Theorem, aiming to 
include examples of triangles with irrational lengths, in addition to examples with natural lengths. 
However, at that moment, the teachers did not discuss this proposal. Nevertheless, in the phase of 
planning the lesson, the teachers considered presenting examples of right-angled triangles with 
irrational lengths. They suggested using the Pythagorean Theorem to identify the length of the 
diagonal of a square of side one. In the following lines, we present the argumentation episode 
developed by the teachers: 

P1:  I think that this will be light for them [he refers to the Pythagorean Theorem as a 
relation between natural lengths in a right-angled triangle]. They will have 
problems when we talk about the square root of two, since […] students have a 
great difficulty understanding the irrational numbers and, when we make the square 
of side one, I think that it will generate certain difficulty. Don’t you think so? 
(VC1). 

P2:  But the idea was only showing that it also works for the square root, was it not? 
(InvVC1). 

P1:  This is the idea. In this case, we should remind that the square of the square root of 
two is two. (AS1 to VC1). 

P4:  They didn’t learn that. (AS2 to VC1). 
P1:  Then, as they have not seen that, there should be an easy way to verify… Did they 

not learn the notion of the square root of two in the number line last year? (AS3 to 
VC1) 
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P4:  We worked on the irrational numbers quite well. But what you said is true, they 

have difficulties accepting that the square root of two is a number. I doubt that they 
remember it. (AS4 to VC1) 

P1:  […] we could propose how a square of area two is. For instance, you have a square 
of side one, then the area is one. In order to obtain the area two, what must happen? 
If the square side is two, then the area will be four. Thus, they will have a notion 
that, in order to obtain an area two, the length of the square side should be a number 
between one and two […]. (AS5 to VC1) 

P4:  I think that this is a wonderful idea when the lesson is face-to-face. (InvAS5 to 
VC1) 

P3:  Because many times they see a root and get blocked. They do not even wait to see 
what you want to do. I think that we should do a previous class to delve into the 
content of roots. (VC2) 

P4:  I think that, after learning the Pythagorean Theorem and really showing that it 
works, we could make a triangle with two sides one and try to find the third side. 
Then, I can mention that the square root of two is an irrational number and that 
length that we have just found is an irrational number. (VC3) 

P1:  What about using the ruler and the compass to make, for example, a square of side 
one and using the compass to show the length of the diagonal on the number line? 
What do you think? (VC4) 

P4:  I like it. (AS1 to VC4) 

We identified proponents (P1, P3, P4) and opponents (P2, P4). The theses are: i) introducing irrational 
numbers with the Pythagorean Theorem applied to the right-angled triangle of cathetuses one; ii) the 
sample of problems cannot be extended due to a lack of previous knowledge and the classroom 
conditions. 

Argumentative trajectory 

i) P1 posed the problem of working on the Pythagorean Theorem with irrational lengths. (VC1) ii) 
P2 tried to invalidate VC1 returning to the initial proposal of just showing some examples of right-
angled triangles with irrational lengths. (InvVC1) iii) P1 considered that it is important to bear in 
mind the properties of irrational numbers, specifically, the operations with roots. (AS1 to VC1) iv) 
P4 indicated that the students did not learn operations with irrational numbers. (AS2 to VC1) v) P1 
tried to discover what the students know about irrational numbers. He said that they should find an 
easy way to verify the Pythagorean Theorem with irrational numbers. (AS3 to VC1) vi) P4 explained 
that she has worked on that, but she was not sure whether the students remember it. She confirms that 
students also had difficulties understanding that the square root of two is a number. (AS4 to VC1) 
vii) P1 proposed to remind the students that the square root of two is an irrational number, doing an 
approximation of the decimal expansion. (AS5 to VC1) viii) P4 argued that this would be a good idea 
if this were a face-to-face implementation. (InvAS5 to VC1) ix) P3 highlighted the need of doing a 
previous lesson about operations with roots to address the students’ difficulties. (VC2) x) P4 only 
mentioned that the number found is an irrational number. (VC3) xi) P1 proposed that they could use 
the ruler and the compass to make a square of side one and show the irrational number that 
corresponds to the length of the diagonal, representing it on the number line. (VC4) xii) P4 said that 
she liked that idea. (AS1 to VC4) xiii) Participants achieved a rationally motivated consensus 
(RMC). P2 and P3 did it by omission (CO). 
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Participants continued discussing about the resources for the lesson. The following questions arose: 
How could they use the ruler and the compass in a virtual lesson? How will they record the lesson? 
Which should be the position of P4 during the recording with the resources?  

Analysis of the argumentative trajectory from the perspective of the Didactic Suitability 

i) P1 highlighted the students’ difficulties during the learning of irrational numbers. He questioned 
whether “the intended meanings can be achieved”, an indicator of the component “prior knowledge” 
of the cognitive criterion. ii) P2 proposed to present a situation with irrational numbers as the lengths 
of the sides of a right-angled triangle, without delving into the concept of irrational numbers and 
operations with them. P2 tried to maintain the idea of having a representative sample of problems 
within the same partial meaning of the Pythagorean Theorem. This is related to the indicator “for one 
or more partial meanings, a representative sample of problems is provided” of the component 
“representativeness of the complexity of the mathematical object” of the epistemic criterion. iii) P1 
considered whether “the students have the previous knowledge necessary to learn the topic”, 
particularly the knowledge on operations with irrational numbers. It is related to the component “prior 
knowledge” of the cognitive criterion. iv) P4, who implemented the lesson and knew the students, 
confirmed the students’ lack of knowledge on operations with irrational numbers. The component 
“prior knowledge” of the cognitive criterion emerged again. v) When P1 asked if the students placed 
irrational numbers on the number line, he looked into the students’ previous knowledge. Thus, the 
component “prior knowledge” of the cognitive criterion was present again. vi) P4 confirmed the 
students’ difficulty understanding the square root of two as a number. This assertion also corresponds 
to the component “prior knowledge” of the cognitive criterion. vii) P1 proposed an activity to work 
on the idea of irrational number as a relation between the area of a square and its sides (particularly, 
he proposed the square of area two), searching for an approximation of the decimal expansion, as a 
way to review irrational numbers for the students. He tried to propose a task that included a relevant 
mathematical process. This is an indicator of the component “richness of processes” of the epistemic 
criterion. viii) P4 explained that the idea of P1 would be wonderful for a face-to-face lesson. Although 
she did not mention it, P4 implicitly refered to the “classroom conditions” and “teacher-student 
interaction”. These are components of the mediational and the interactional criteria respectively. ix) 
P3 mentioned a possible aversion to the lesson, when the students see the roots of non-perfect square 
numbers. This idea is related to the component “emotions” of the emotional criterion. In addition, she 
proposed to do a pre-lesson activity to address the prior knowledge necessary to comprehend the 
mathematical object that would be taught. This proposal is related to the indicator “adaptation of the 
intended meanings” of the cognitive criterion. x) P4 proposed only to show that using the Pythagorean 
Theorem they could obtain an irrational number (in this case, the square root of two), without doing 
a mathematically rich process (a component of the epistemic criterion) or considering the students’ 
lack of previous knowledge on irrational numbers (a component of the cognitive criterion). xi) P1 
proposed the use of material resources (ruler and compass), a component of the mediational criterion. 
At the same time, he proposed an activity rich in mathematical processes (using the ruler to translate 
the length of the diagonal of the square on the number line). It is related to the component “richness 
of processes” of the epistemic criterion. This episode ends with the discussion about the means and 
resources for the lesson. Thus, both the mediational and interactional criteria were highlighted. 
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In this episode, the practical argument took place when the teachers considered an indicator of the 
epistemic criterion: a representative sample of problems must be provided. The group tried to find a 
certain balance between the epistemic and the cognitive criteria and, in this search, they resorted to 
other Didactic Suitability Criteria (mediational and interactional criteria). The group agreed to briefly 
introduce the square root of two as an irrational number after applying the Pythagorean Theorem to 
a right triangle with length one. This was, in a certain way, a reformulation of the initial proposal that 
triggered the episode. The consensus obtained depended on the relevance of the different didactic 
suitability criteria in the argumentative trajectory. 

Conclusions 
The episode of argumentation that we analysed occured in the lesson-planning phase. When the 
teachers were planning to work on the Pythagorean Theorem as a relation between the lengths of the 
sides of a right-angled triangle, they proposed to extend the sample of problems with tasks that 
included right-angled triangles with irrational lengths, in addition to tasks with natural numbers 
(Pythagorean triples). This generated an episode of practical argumentation about which actions to 
do, that evidences how the teachers gave importance to the students’ knowledge of irrational numbers 
to teach the Pythagorean Theorem. Throughout the episode of argumentation, the teachers became 
aware of the students’ knowledge through the validity claims that they made. 

In order to answer our study aims, first, we could identify moments of practical argumentation in the 
course of Lesson Study and Didactic Suitability Criteria. As explained in the last section, the analysis 
of the argumentative trajectory from the perspective of the didactic suitability made evident the 
important role of the Didactic Suitability Criteria to argue either for or against a certain action. 
Didactic Suitability Criteria were essential to provide argumentative strength to the proponent. In 
terms of Toulmin’s (Molina et al., 2019) model, the Didactic Suitability Criteria took the role of the 
warrant. An area of interest is why Didactic Suitability Criteria provide argumentative strength and 
are present even when they were not taught. Our interpretation is that this happens because the 
Didactic Suitability Criteria emerge from a wide consensus among the educational community. 

Moreover, it is worth noting that some criteria that are recommendable a priori, such as working on 
the Pythagorean Theorem in a mathematically rich way or considering the students’ previous 
knowledge, can be in conflict when they are applied to a certain context. Regarding the epistemic 
suitability, the sample of problems for a partial meaning of the Pythagorean Theorem (the relation 
between the lengths of the sides of a right-angled triangle) should be representative. The cognitive 
suitability fosters arguments about the intended partial meanings that are achievable and the students’ 
previous knowledge. In this case, in the practical argumentation about introducing irrational numbers 
in the teaching of the Pythagorean Theorem, conflict arose between the cognitive suitability criterion 
and the epistemic suitability criterion. Then, the teachers focused on one criterion or the other, 
considering the specific context. We observed that the teachers who are in favor of extending the 
sample of problems, focus on epistemic suitability. While the teachers in favor of limiting the 
extension of the sample focus on cognitive aspects. 

In the broader project, where this study is located, the main objective is to develop teacher reflection. 
In that sense, it is already known that teaching the Didactic Suitability Criteria to the participants 
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improves reflection. In addition, with the design and implementation of the course that combines the 
Lesson Study and Didactic Suitability Criteria, it is expected to obtain data to analyse the practical 
argumentation in different stages of the course and, in this way, verify the influence of the 
combination of Lesson Study and Didactic Suitability Criteria in the promotion of teacher reflection 
as a professional competence. From the analysis carried out, our conclusion is that we could identify 
several moments of practical argumentation in which the Didactic Suitability Criteria had a relevant 
role. In our opinion, this occured because the training course implemented facilitates collective 
argumentation, among other reasons. 
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This paper investigates a professional development program's (PD) effect on classroom discourses. 
The PD was based on problem-based curriculum processing and intensive use of classroom 
discourse. The authors analyze seven pilot lessons of one of the teacher training's participants,
providing an example of how a teacher with 20 years of experience in mathematics teaching, but 
using traditional teacher-centered methods, can apply the new approach in the classroom. Our 
analysis is based on a combined theoretical approach that starts from students' mathematical 
thoughts and examines the teacher's responses. We found numerous possibilities for starting 
classroom discussions building on students' thinking, and the teacher responded to most of them.
Furthermore, the teacher's responses also included several invitations for students to classroom 
discourse, although these elements were almost absent before the PD.

Keywords: Professional development, problem-oriented instruction, student-centered teaching, class 
discussion.

Introduction
Based on the Hungarian tradition and inspired by the ideas of Tamás Varga in mathematics teaching 
(Varga, 1988), the second and third authors have developed a research-based professional 
development (PD) program. This program was piloted in 2018-2019, with four voluntary teachers as 
participants. One teacher's lessons are the basis for this paper, since the authors analyze the PD's
effect on classroom discourses during the PD's lessons.

The PD program's two main basis points were problem-oriented curriculum processing and the 
systematic use of classroom discourses. Kónya and Kovács (2021) characterized the problem-
oriented approach to learning mathematics by three attributes: (1) students analyze mathematical 
problem situations; (2) students critically adapt their own and their classmates' thinking; (3) students 
learn to explain and justify their thinking. This approach is very close to the idea of Roh's definition 
of problem-based learning: it describes a learning environment in mathematics, where problems drive 
learning (Roh, 2003).

Cirillo et al. (2014) believe that mathematics classrooms' discursive nature impacts students' identities 
as mathematical knowers and doers. Leatham et al. (2015) hypothesize that high cognitive demand 
tasks support the emergence of mathematically significant moments as possible starting points of
mathematical discourses in the classroom. However, teachers' and students' proper reactions are 

Proceedings of CERME12 3410



crucial. Whether the active knowledge construction takes place in a discourse is decided by the 
teacher's reaction. Sfard (2003) points out "a productive mathematical discussion (…) turns out to be 
an extremely demanding and intricate task. The role of discussion coordinator is particularly difficult"
(p. 375). Teachers tend to teach and make decisions by routine (Shavelson & Stern, 1981), and it is 
challenging to change this routine. One of the PD's aims was to break the teacher-centered pattern 
among practiced teachers and create more complex and precious whole-class discussions. 

Therefore, this paper concentrates on two aspects: firstly, the possible starting points of classroom 
discussion generated by students' thoughts identified by Leatham et al.'s (2015) framework. The 
second focus is the teacher's reactions to these, analyzed by Sohmer et al.'s (2008) framework. With 
these tools, our research question is: How does a problem-oriented professional development with 
additional focus on classroom discourses impact an experienced teacher's lessons with teacher-
centered instructional habits?

Theoretical frameworks applied for the analysis
A student's action is characterized as a Mathematically significant pedagogical Opportunity to build
on Students Thinking (MOST) moment when it fulfills six criteria built on each other – each 
represented by a question (C1…C6) (Leatham et al., 2015), see Figure 1. "In their analytic process, 
the unit of analysis is an instance (…) Typically an idea unit is one conversational turn or physical 
expression (such as writing a solution on the board)" (Leatham et al., 2015, p. 92).

Figure 1: The MOST Analytic Framework

This framework was used to identify MOST moments in the videotaped and transcribed lessons. To 
find these moments, one should examine each student's utterances with six questions. These questions 
are built on each other, starting from the very basic point: whether the student's utterance contains
understandable mathematical thoughts or not (C1, C2), then examining whether it is accessible for 
the students (C3) or whether it is the central goal of the lesson (C4). The fifth criteria (C5) can be 
described by the following question: Does the expression of the student mathematics seem to create 
an intellectual need (called opening) that, if met, will contribute to understanding the mathematical 
point of the instance? These expressions can classify into one of the following five groups: (a) a 
correct answer with novel reasoning, (b) an incorrect answer that involves a common or 
mathematically rich misconception, (c) a mathematical contradiction, (d) incomplete or incorrect 
reasoning, (e) why or generalizing questions. The sixth criterium (C6) is about the timing, whether it 
is worth taking advantage of the student's opening. Later, these criteria will be presented through an 
example.

Identifying MOST moments provide a quantitative description of a lesson, which can inform about 
the active and meaningful participation of the students. However, this framework does not provide 
information about the quality of the teacher's reactions. Therefore, the authors added Sohmer et al.'s
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(2008) framework to analyze the teacher's reactions to the MOST moments. This framework seems 
to provide supportive information to assist teachers in making in-the-moment decisions about whether 
or how to react to those MOST moments. The authors found the combination of these two frameworks
highly fruitful.

Researchers try to identify how some types of teacher interaction influence the following student's
utterances to support teachers in activating students more effectively (Dahl et al., 2019). Sohmer et 
al. (2008) identified talk move as 

a turn at talk that (1) responds to what has gone before; (2) adds to the ongoing discourse; and (3) 
anticipates or ‘sets up’ what will come next. A talk move is inextricably tied to the context. It 
reaches beyond a single turn (p. 107).

They studied teachers who have been effective in using talk to promote learning. Six moves were
identified that can be useful to model and to elicit academically productive talk: (1) revoicing 
students' utterances, (2) asking to restate someone else's reasoning, (3) asking students to apply their 
reasoning to someone else's reasoning, (4) prompting students for further participation, (5) asking 
students to explicate their reasoning and provide evidence, and (6) challenging or providing a 
counterexample.

The professional development program
The analysis of this research concentrates on a teacher with 20 years of experience in teaching 
mathematics. She joined the PD program voluntarily, out of an inner urge to renew her practice. The 
researchers visited her before the PD, observed her class, and discussed the teacher's professional 
view as a starting point. She used to prefer a teacher-centered way of teaching: explaining the new 
material, driving the students with direct questions, and rarely initiating open classroom discussions.

Figure 2: Scheme of the PD-program

In an opening workshop, the researchers explained the design of the program and the principles based 
on work by Varga (1988). The most important of them were the followings:

1. Problem-solving both alone and in pairs or small groups.
2. Improving students' oral and written communication skills encourage independent opinions.
3. Let students learn through experience and using heuristic strategies.
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4. The teacher's role should include encouraging group discussions, planning classroom
discussions, and implementing students' proposals into the flow of the lesson.

5. Differentiation and individualized treatment for each student.

After selecting the pilot lessons from the teachers' agenda, the researchers developed detailed lesson 
plans and provided all the teaching materials. These lesson plans explicitly contained reminders and 
advice on how to realize the principles of the PD. For example, there were time slots devoted to 
classroom discussions after solving a problem in small groups. 

The teachers gave their opinions and suggestions and finalized the lesson plans. The teacher needed 
to feel that the lesson plan suited her at the end of the collaborative planning. At the end of the lessons,
the teacher should reflect on it both alone and accompanied by the researchers.

The researchers organized six teaching cycles (three per semester during one year of the experiment) 
and concluded the year-long program with one trial lesson (Figure 2). During the planning for the 
trial lesson, the teacher had to come up with her own lesson plan.

The whole research process and focus are summarized in Figure 3.

Figure 3: Scheme of the research

The process of analysis
Each 45-minutes lesson was videotaped and transcribed. Two researchers analyzed the transcripts 
independently and looked for moments where all the six MOST criteria appeared. In a disagreement, 
the three authors' consensus fixed the MOST moments. The transcripts of each lesson were 
investigated in the same way:

1. The authors separated those parts of the lesson in which the whole class discussion occurred
and identified each observable student utterance according to Leatham et al. (2015).

2. All of these instances were coded according to the six MOST criteria.
3. Further distinctions between the MOST units were made according to the situation that caused

it (see criterion C5) and assigned one of the above codes a, ..., e to each unit.
4. After gathering the MOST moments, the authors examined the teacher's response to these

MOST moments in a new analysis process according to Sohmer et al.'s (2009) framework.
Three categories emerge A) The teacher evaluates the student's action and tells the correct
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answer if it was incorrect. B) The teacher starts a classroom discussion. C) The teacher does
not notice the MOST moment.

5. Case B was further refined, determining the occurred talk move. In line with the work of
Sohmer et al. (2009), the authors used the following codes: the teacher B1) revoicing the
student's utterance, or the teacher asks a student for B2) restating someone else's reasoning,
B3) commenting on someone else's reasoning, B4) further participating, B5) providing
evidence or B6) providing counterexample. The traditional Initiation–Response–Evaluation
pattern (IRE) completes the code system as B7.

We illustrate our coding system with an example.

Example - Class 9, fourth pilot lesson

Topic: Divisibility

Episode: Whole class discussion after finding all divisors of 54 in pair work. (Time: 35:49-36:16)
Student: Can I write them as products? (He writes on the blackboard 1∙54,2∙27)
Teacher: [Please use] semicolon…
Student: (He corrects and writes 1∙54;2∙27;3∙18; 6∙9)
Teacher: How did you know you had to finish here?

This activity is considered as mathematical problem instead of routine task because the student has 
to define the procedure itself. The teacher does not present the solution as usual, but it appears as the 
students' activity, as he uses the structure of products to identify all divisors of 54. 

The two student manifestations were considered a single action because the teacher's interruption is 
mathematically insignificant. However, this interruption demonstrates the teacher's accustomed state 
of controlling everything. The authors classified this student action as a MOST moment because it 
meets the C1-C6 criteria: 

C1. The student is concentrating on mathematical ideas and not offtopic themes.
C2. The mathematical point of the instance is to determine all divisors of a number and decompose 
it into two-factor products in all possible ways.
C3. The mathematical point is accessible to all students, but at that point not all students realized it 
as a helpful tool for the task.
C4. A deep understanding of the above procedure is one of the lesson's goals.
C5. A deeper analysis of the fifth criterion shows that this is the case (d), i.e., incomplete reasoning,
as the student wrote the products in a logical order but did not verbalize the reason behind it.
C6. Finally, the timing is considered appropriate as all students were paying attention, and there were 
still nearly 10 minutes left in the lesson.

The teacher recognized the MOST moment and asked the student to provide evidence, i.e., to explain 
why the presented procedure is appropriate for finding all the divisors. Therefore, the authors coded 
the teacher action responding to the MOST moment as B5.
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Findings and analysis
The emergence of MOST moments

The analysis found numerous MOST scenes that have emerged applying the problem-oriented lesson 
plans, which were considered satisfactory from the researchers' point of view (Table 1).

Table 1: The emergence of MOST moments

MOST category
a) Novel
reasoning

b) Incorrect
answer

c) Mathematical
contradiction

d) Incorrect
reasoning

e) "Why"
question

Total

Occurrence during 
the 7 lessons

13 22 0 16 2 53

Most of the MOST situations in this research emerged from students' incorrect answers (42%), and 
"MOST" situations based on the student's novel approach or the student's "why" questions were less 
frequent while mathematical contradictions did not appear.

Teacher's reactions on MOST moments

The teacher identified the MOST scenes effectively (Table 2). The authors attribute this success to 
the teacher's 20 years of practice, in addition to the influence of the PD. Leatham et al. (2015) also 
support this view implicitly, as they stated that novice teachers could miss realizing when a MOST 
scene has developed more often.

Furthermore, 64% of the identified MOST moments do not end with a simple teacher evaluation but 
lead to a "talk move." The authors consider this to be the result of the PD's approach, as the teacher 
was aware of the importance of classroom discourse, which she almost neglected in her previous 
teaching practice.

Therefore, the PD's result is considered to be the realization of the importance of the MOST moments 
and the use of the appropriate talk moves in the teacher's reactions. In conclusion, the teacher started 
using the learner's initiative to guide the lesson.

Table 2: Teacher's reactions on MOST moments

MOST category A (evaluation) B (talk move) C (unnoticed) Total

Occurrence 18 32 3 53

The subtle structure of "talk move" reactions

The dominant "talk move" reaction was that the teacher involved others in the conversation (B4, 20 
out of 32 talk moves, 62.5%), see Table 3. Thus, B4 has become an almost permanent behavior, 
especially in the case of novel reasoning by the students. However, the teacher has also used it when 
a more detailed explanation of the student's own thinking, i.e., elaboration (B5), would have also been 
adequate. Moreover, since the problem-based approach requires the learner to think critically about 
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his/her thinking, encouraging this elaborative behavior would also have been part of the problem-
based learning approach.

Table 3: The subtle structure of "talk move" reactions

MOST category
B1

revoicing
B4

participate
B5

elaboration
B6

counterexample
B7
IRE

Total

a) Novel reasoning 0 7 0 0 0 7

b) Incorrect answer 1 5 3 2 2 13

d) Incorrect reasoning 0 7 3 1 0 11

e) "Why" question 0 1 0 0 0 1

Total 1 20 6 3 2 32

Conclusions and pedagogical implications 
During the PD's lessons, when the teacher got support from training, lesson plans, and collaborative 
lesson planning, numerous MOST moments mainly emerged from students' incorrect answers or 
incorrect reasoning. Furthermore, the teacher identified MOST scenes effectively. Most of them do 
not end with a simple teacher evaluation but lead to a talk move, supporting students' activity. Based 
on one previously observed lesson and the discussion on her professional view of teaching before the 
PD, the authors believe that this is the result of the PD's approach. Although further research is needed 
to prove this finding.

Based on the above result, the authors conclude that the PD is probably suitable to improve the 
amount and the quality of classroom discourse in an experienced teacher's lessons. It would be worth 
examining lessons after the PD to explore more about the PD's long-term effect.

It is worth to highlight that identifying mathematically valuable moments is insufficient. Teachers 
must also be aware of the importance of MOST moments and consciously apply potential talk moves.
However, we still know little about how the implementation of talk moves unfold and what is needed 
to enable teachers to apply them effectively in practice. In connection with it, this paper also argues 
that the two joined frameworks were beneficial to examine how the demanding mathematics gets 
leveraged into productive discourse.
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This paper derives from the early phases of the first author’s doctoral study. Eight primary school 
teachers at a school in South Africa’s Eastern Cape Province were invited to be part of a community 
of practice in which strategies for using music to support the teaching and learning of fractions would 
be explored. Wenger’s theory of community of practice guided the first author as facilitator in this 
collaborative space. Having immersed herself as a researcher in the school context, she began by 
inviting the participating teachers to interrogate and trial a series of integrated mathematics and 
music lessons designed by the authors. In this paper the authors analyse some of the early trials and 
triumphs of working within a community of practice.

Keywords: Community of practice, curriculum integration, primary school mathematics teachers.

Introduction
The first author has, as part of her doctoral research, initiated a Community of Practice (CoP)
(Wenger, 1998) with a group of primary school mathematics teachers, all of whom teach at the same 
school in South Africa’s Eastern Cape Province. The intended purpose for this CoP is to explore
strategies for integrating music into the teaching of fractions to Grade 4, 5 and 6 students (children 
between the ages of 9 and 12). Initiating the CoP has, however, been compromised by a number of
factors and the first author has had to make a number of adjustments to her initial research design
choices. In this paper, the first author, together with her co-authors (the joint supervisors of her 
doctoral study), share their analysis of some of the initial data from this early phase of the study. 

Researcher-teacher relationships are not new to education research, and much focus has been placed 
on the fostering of positive interactions. Initiating and working within a CoP is not without 
challenges. In the present instance, some of the challenges encountered are unique to the particular 
setting; some derive from the unprecedented current global Covid-19 pandemic situation; some are 
common to CoP platforms more generally (see for example, Pyrko et al., 2017). Many CoPs fail to
“reach maturity” (Bouchamma et al., 2018, p. 91). Reasons for challenges noted in the literature 
include a lack of the appropriate means and strategies to initiate and develop a CoP, as well as 
difficulties encountered in ensuring that CoP members’ needs are met in ways that sustain mutual 
engagement (Bouchamma et al., 2018; Pyrko et al., 2017). Our initial findings around some of the
challenges, and some of the successes, we encountered in getting our particular CoP up and running, 
may, we believe, be relevant and helpful to other researchers working in similar CoP contexts.

Literature around national, regional and international bench-marking assessments point to low levels 
of mathematics achievement in South African schools. In writing about these concerning achievement 
levels, Venkat and Graven (2017) argued that inadequate support is given to South Africa’s 
mathematics teachers in achieving curriculum aims and that this has contributed to a lowering of 
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teacher morale. Spaull (2019) similarly noted that many South African teachers were found to lack 
confidence in their mathematics content and pedagogical knowledge which negatively impacted their 
morale. Such observations highlight a need to better support teachers, providing them with 
opportunities to enhance their competencies, and ensuring they have access to appropriate teaching 
and learning resources and associated strategies all of which might also then contribute to boosting 
teacher morale. The first author’s setting up of the CoP thus represents one such initiative. It provides 
a forum through which to support her own ongoing professional development together with that of 
the participating teachers while simultaneously being able to interrogate task and learning support 
materials design decisions. For brief discussion of some of the first author’s earlier work on the use 
of music to help strengthen her own Grade 5 students’ fractional understanding, see Lovemore, 
Robertson and Graven (2021).  

Literature review and theoretical framework 
The South African mathematics curriculum (South Africa. Department of Basic Education [DBE], 
2011) aims to develop deep conceptual understanding of mathematical concepts, as well as 
recognition of mathematics as an elegant and creative human activity. Furthermore, integration across 
subjects is encouraged. The authors recognised potential benefits of integrating music into 
mathematics lessons, which, as literature suggests, can contribute to increasing student motivation 
and participation, and decrease anxiety (see for example, Edelson & Johnson, 2003).  

Wenger’s CoP model (1998) was used to explore such integration strategies. A CoP is a space where 
professionals can share strategies, solve problems and learn from one another (Bouchamma et al., 
2018; Pyrko et al., 2017). In particular, Wenger’s CoP model interrelates the concepts ‘community’, 
‘identity’, ‘practice’ and ‘meaning’ so providing participating teachers with rich opportunities to 
reflect critically on their teaching practices and resources. As Wenger (1998) explains, community 
refers to developing “relations of mutual accountability” (p. 81) where information and resources are 
shared responsibly in supporting members; identity reflects members’ ways of talking about their role 
in the context of their community (for example, their professional confidence as mathematics 
teachers); practice implies action within a social context which, in turn, gives meaning through 
community members’ shared experiences. 

The first author, in her role both as researcher and as CoP facilitator (for the sake of simplicity, 
throughout the remainder of this paper, the phrase ‘first author’ will be consistently used), was 
mindful of the deficit perspective noted in literature where, all too often, teachers are viewed as 
objects rather than professional partners in research undertakings. Such a perspective makes teachers 
feel ‘used’ rather than genuine “research collaborators” (Makar, 2021, p. 440). Setati’s (2005) 
distinction between research ‘with’ teachers and research ‘on’ teachers is useful, highlighting as it 
does the merit in creating reciprocal power dynamics between researcher-teachers whereby all benefit 
from the research interactions. Consistent with Horne and Makar’s recommendations about designing 
a “win-win project” (2013, p. 769), teacher choice and empowerment needs to remain key throughout. 
Mutually positive relationships help ensure that all members of the group find the project significant 
to their own practice. This, as Horne and Makar (2013) note, requires planning a mutually agreed 
upon vision and values, maintaining mutual respect, valuing all members’ input and practicing 
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patience and perseverance. Challenges in sustaining a CoP (Bouchamma et al., 2018) 
notwithstanding, the first author hoped that once the CoP had got off the ground, participating 
teachers would want to continue in this collaborative space to explore further opportunities for 
curriculum integration even after her own withdrawal from the site. In our next section we outline 
key aspects of the methodological decision-making process.  

Methodology 
Guided, as noted, by Wenger’s CoP principles (1998), the first author issued an invitation to eight 
practising mathematics teachers to explore with her music/mathematics integration strategies. The 
CoP first met in February 2021. The school at which all of these teachers are employed is a private 
one and well-resourced relative to many other schools in the country. The school’s teaching and 
learning philosophy actively encourages its teachers to explore innovative teaching strategies, 
including more integrated approaches towards curriculum delivery. The school’s principal welcomed 
the ideas informing the first author’s proposed CoP, adjudging them as fully consistent with the 
school’s commitment to the ongoing professional development of its teachers and he granted the 
requisite gatekeeper permission to approach the teachers accordingly. All eight teachers voluntarily 
gave their informed consent. The first author emphasized to them that she was researching with them 
as co-researchers (Setati, 2005). She emphasised too that the research would focus on teaching 
strategies and resources, not on individual student or teacher achievement. 

The design of the broader qualitative, participatory design research study consists of three phases: (1) 
preliminary introduction phase, (2) collaborative phase, (3) evaluation phase. It is the first and second 
phases of initiating and maintaining the CoP that constitute the substance for the present paper.  

Ahead of the preliminary introduction phase, the first author immersed herself in the school context 
to gain the kinds of autoethnographic insight (Du Plooy-Cilliers et al., 2014) that would help inform 
her researcher interactions with the CoP teachers. Although some have questioned the value of auto-
ethnographic studies because of their interpretive and subjective nature, auto-ethnography provides a 
powerful mechanism for researchers to “self-interrogate” (Denshire, 2014, p. 834) their role within a 
research setting. The first author strove to consistently and critically evaluate her ongoing 
researcher/facilitator relationship and interactions with the CoP teachers. As a full member of the 
social group being studied (Anderson, 2006) she continues with her auto-ethnographic journey, 
spending full days at the school and observing classes, engaging in reflexive practice by writing 
entries in her reflective research journal during and after every CoP meeting. Reflective journals and 
field notes represent, as noted by Farrell et al. (2015), an important part of data collection in 
autoethnography 

The preliminary introduction phase is now complete. It consisted of introducing the music-
mathematics connection and sharing with the CoP teachers integrated mathematics and music 
activities. The second (collaborative) phase is still underway. Teachers have been invited to 
interrogate and adjust the suggested strategies and resources, to experiment with them, and to then 
reflect on what worked well or otherwise in their integration of music into their teaching of fractions. 
Via mainly focus group discussions and interviews, the CoP teachers have been providing the first 
author with valuable feedback data from their early trialling of the various strategies and resources. 
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Transcriptions of the audio-recorded CoP meetings, focus group interviews and electronic 
communication between the researcher and the teachers have been made. Data continue also to be 
collected via the first author’s ongoing reflective research journal entries detailing reflections on 
critical moments, as well as on her verbal exchanges, both formal and informal, with the teachers. 
Together with the external data from the other participants, this self-reflection provides a means of 
triangulating the data.  

Farrell et al. (2015) explain that thematic analysis in ethnography requires the researcher to “step 
back and think about the story” (p. 979), which may then result in the development of themes which 
describe the social interactions. The first author’s transcribed field notes, reflective research journal 
and supplementary external data such as the CoP meetings and interviews, allowed for thick 
description (Maxwell, 2013) of some of the trials and triumphs experienced both by the CoP teachers 
and by the first author. The focus here is on identifying patterns and themes emerging from these 
transcriptions during these two phases of the study. Themes were identified deductively, based on 
Wenger’s (1998) CoP model, by coding the data according to the four elements, community (C), 
identity (I), practice (P) and meaning (M). Patterns emerged from the data which allowed the authors 
to identify lessons around the trials and triumphs of initiating a CoP to trial novel integration 
strategies. These are discussed in our following section. 

Discussion on preliminary findings – trials and triumphs 
In this section, we share preliminary findings on, and insights deriving from some early trials and 
triumphs encountered by the first author in her working with the CoP. Before doing so, however, we 
note also that many aspects of the study have been, and continue to be, affected by the global Covid-
19 pandemic. Disruptions included the school having to close for periods of time; some teachers being 
forced to isolate in quarantine; the need to introduce a blended learning approach. Such circumstances 
placed additional pressures on the participating teachers, and many planned CoP meetings had to be 
postponed, resulting in a break in momentum and affecting the first author’s communications with 
the teachers. It also created additional time constraints.  

Clear communication to maintain momentum 

In facilitating the CoP, the first author found a lack of continuous communication delayed the CoP 
teachers’ trialling of some of the strategies and resources. Weeks would pass between meetings and 
communication, and lines of communication became blurred. She noted in her reflective research 
journal, ‘There is no clarity as to what communication channels to follow’ [06/05/21]. The Head 
Teacher had, for example, suggested the first author communicate directly with the CoP teachers. 
The teachers, on the other hand, requested that arrangements should rather go through the Head 
Teacher. This challenge in communication threatened to compromise the ‘community’ aspect of the 
CoP (Wenger, 1998). Graven (2004) emphasizes the importance of access to other members in the 
community and a wide range of “ongoing activity” (p. 182) in order for a CoP to be successful. 
Finding time, however, in which all the teachers could meet as a group proved a challenge. Normal 
expectations on teachers, with the additional demands of blended teaching and learning due to Covid-
19, meant that their time to meet were limited, leading to the first author deciding to rather be more 
of a physical presence at the school, something that had initially been suggested by the school 
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principal. She made her visits to the school more frequent and regular. This provided opportunities 
for more informal ongoing discussion with CoP members. She found that the teachers responded 
more favourably to these informal, small group discussions, and welcomed opportunities to share 
their experiences around their trialling of the various integration strategies and resources. The less 
formal visits appeared to strengthen the first author’s relationships with the teachers, and 
communication increased. Rather than waiting for the next scheduled, face-to-face meeting, teachers 
began to show a greater willingness to communicate with her via platforms such as WhatsApp and 
email when they had questions requiring immediate responses, or simply wanted to share a comment 
about something that had happened in a lesson. This development led to the first author making the 
research and ethical decision to continue these informal (individual, or small group) conversations 
alongside the CoPs more formal discussion sessions. They gave her an additional means of supporting 
the teachers. She observed in her reflective research journal: “I came to the conclusion that supporting 
Teacher P individually is ethical, as I do not want the study to cause additional pressure or anxiety 
for her” [28/05/21]. Key points arising from these informal exchanges were noted for subsequent 
follow-up at the scheduled whole group CoP meetings.  

A further challenge the CoP teachers experienced was trying to fit the integrated lessons into their 
term plans. These were already under strain due to the school days missed because of Covid-19. The 
Head Teacher alerted the first author to this, during a Zoom meeting, “… something that the teachers 
are wrestling with … is to find time to fit in these lessons, over and above their weekly curriculum 
work” [02/06/21]. The first author realised that CoP members had not yet come to recognise the 
potential value of the integrated lessons as a time-saving mechanism for their teaching of fractions. 
Instead, they saw the integration ideas as an ‘add on’ to their existing workload. Data showed this to 
be an example of the teachers questioning the ‘meaning’ (Wenger, 1998) of the CoP goals, but the 
first author was reassured when some of the teachers acknowledged that, once they had become more 
confident in delivering their integrated mathematics-music lessons, this approach may indeed have 
represented a more efficient use of teaching time. 

The fostering of equitable power relations 

Makar's (2021) description of teacher-researcher collaboration resonated with the first author relative 
to roles within the CoP. She was aware of possible difficulties to do with differential power relations. 
In the introductory meeting she had emphasised to the CoP teachers that she intended for them to 
work together as a team of equals, interrogating and adjusting various ideas around integration 
strategies and resources. Early on, however, she noticed that teachers were experiencing concerns 
and challenges in trying to teach the initial suggested lessons to try to 'get it right'. She therefore re-
emphasised Makar’s point (2021) that there is no ‘right’ or ‘wrong’ way to carry out lessons, and 
that, as co-researchers, teachers were at liberty to adjust initial ideas around the design and teaching 
of a lesson. Recognising that her status as a researcher may inadvertently have made teachers feel 
somewhat disempowered, the first author reiterated in follow-up meetings the point about their status 
as co-researchers meaning that, far from following top-down directions from her, they were free to 
make their own choices as to how to tackle the lessons. Once they had accepted this point, and due, 
also, to the challenges limiting the frequency of scheduled CoP meetings, the teachers began 
discussing amongst themselves elements of their lessons and of the challenges encountered. They 
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nominated Teacher P to communicate the substance of these discussions to the first author. Consistent 
with Wenger’s CoP model, they appeared now to be developing a genuine community and embracing 
their identity as participants/ co-researchers. This data was interpreted as evidence that the CoP was 
succeeding in encouraging members to exercise greater autonomy over their decision-making. 
Reflecting on this in her research journal, she wrote: 

Perhaps this is a sign that the participants in the CoP are starting to work together and share 
common goals. I don't want to be prescriptive or top down in the CoP but rather facilitate the 
teachers to act. [06/05/21] 

The creation of a safe space to trial and interrogate new ideas 

During the introductory meeting, there was every sign of initial buy-in from the teachers. They 
appeared interested in finding out more about the novel idea of integrating music and mathematics. 
During the preliminary introduction phase, the teachers pro-actively made suggestions as to how they 
might adjust the resources to make the application of the lesson easier in their classes. Teachers 
discussing adaptations early on in the study, the first author noted as a positive element of the CoP, 
taking this as evidence of shared ‘practice’ and ‘meaning’ (Wenger, 1998). Keeping in mind a 
warning from Krajcik et al. (1998, p. 41), she remained aware, however, that challenges teachers face 
when trialling new strategies and resources may lead to “premature rejection” of such innovations. 
Cautious to avoid this happening, she spent time reflecting with the teachers on their challenges in 
teaching their mathematics-music integrated lessons. Some teachers, for example, expressed 
uncertainty about the second lesson which was based on Western Staff notation of music note values.  

Teacher K: I am starting to wrap my head around it. [21/05/21] 
Teacher D: I didn't feel like in my mind, I knew what I was doing. So that was my mistake. I 

think I did it fine, but in my mind I still– I wasn't 100% confident. [10/09/2021] 

It was these sorts of aspects that the CoP teachers identified as challenging that led to the co-authors 
having to further grapple with the wisdom of using Western Staff notation. They adjusted the musical 
representations, stepping back from Western Staff notation (for example, two eighth notes: ♫) and 
instead, adopting a percussion representation of music beats per bar (using Xs to indicate claps), 
which, further along, could then be adjusted to reflect a number line. The following comments 
indicate that the teachers responded favourably to this adjusted musical representation, expressing 
greater confidence about being able to integrate the music into their fraction lessons: 

Teacher P: I’m really feeling more confident with that [the Xs representing claps] than with 
the music notes. 

Teacher D: For me, taking the notes out of it and that you say adding a set of claps makes a 
total difference. I feel more confident. [10/09/2021] 

Seven months into the study, after many disruptions, a CoP meeting was held where Teacher K 
described to the other teachers how her own teaching of mathematics had evolved in response to her 
participation in the study. The first author recognised this as positively representing the collaborative 
intention that ideally informs a CoP’s research focus and ‘meaning’. 

Teacher K: I've changed the way I've taught fractions. Today we had to do a table on common 
fractions to decimal fractions to percentages. And for the first time ever, I've said, 
“Okay, but now this common fraction is five fourths –”, because I've always just 
given them three fourths or two thirds…And then they were fascinated, because 
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they said, “But then you can't get a percentage!” And I said, “You actually can. It's 
125%.” And then we had a very interesting conversation because of how you would 
use it; you can't get 125% for a test, but you can have 125% mark-up… Yeah, and 
I would never have thought to do that without that jumping/clapping exercise and 
talking about a fraction as a measure, rather than part of a whole…I think it's taught 
me how to teach fractions. [10/09/2021] 

Conclusion 
Analysis of the critical feedback from CoP members, together with first author’s preliminary auto-
ethnographic data suggests some key lessons which can support researcher-facilitators when trialling 
new strategies for teaching mathematics. Three key lessons were identified for this paper. A first key 
lesson is that clear communication channels are of utmost importance for maintaining momentum 
within a CoP. Immersing oneself in the CoP’s school context provides opportunities for gaining 
deeper insight into the experiences of the teachers which not only helps build more meaningful 
relationships with the CoP teachers but also provides more time to support them via informal, small 
group meetings. This became particularly important given the additional time-constraints caused by 
Covid-19 circumstances. A second key lesson is that the potential for power inequities need to be 
countered to foster teacher-researcher teamwork and action essential for this kind of collaborative 
research endeavour. And finally, a third key lesson is that a CoP context has rich potential to act as 
an invaluable, supportive and empowering space in which not only researchers, but also teachers are 
able to reflect upon, interrogate, and adjust innovative strategies for enhancing teaching and learning, 
such as, in this instance, the integration of mathematics and music.   
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Identifying improvisation in the secondary mathematics classroom 
Nick McIvor 
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This paper argues that improvisation is a common feature of expert mathematics teaching, but that 
the processes involved remain under-explored by the research community. Drawing on ideas from 
organisational theorists and improvisational theatre practitioners as well as educational writers, it 
proposes a framework for identifying and analysing the practice of improvisation in the secondary 
mathematics classroom. It then goes on to place a more clearly defined concept of classroom 
improvisation within a wider understanding of teacher expertise and suggests future directions of 
study. 

Keywords: Secondary mathematics teaching, creative teaching, decision making, interactions. 

Why improvisation matters. 
‘Good teachers think on their feet,’ was the opening statement of Robert Yinger’s 1986 paper 
presented at the AERA Conference that year (Yinger, 1986, p.263). He clearly regarded this as a self-
evident truth, making no attempt to justify the claim beyond the assertion that ‘few educators or 
researchers of teaching would deny this’ (Yinger, 1986, p.263) and going on to use the term 
‘improvisation’ on four separate occasions as he discusses the key skills that underpin successful, 
interactive teaching.  

Yinger’s discussion is entirely theoretical and does not focus on any particular subject, but his ideas 
were developed by Borko and Livingston (1989).  They found that the ‘expert teachers’ of 
mathematics (identified as such by both school and county leaders) were very skilled at keeping the 
lesson on track while including the comments and questions of their students in the discussion 
whereas novices struggled to accommodate student input in their lessons. Borko and Livingston 
concluded that a key marker of maths teacher expertise is a capacity to improvise productively. 

Berliner (1994) draws on a range of different sources including Borko and Livingston in an influential 
survey exploring the nature of teacher expertise more generally. He proposes eight characteristics 
that distinguish the ‘exemplary performance’ of expert practitioners including the practice of being 
‘more opportunistic and flexible in their teaching than are novices’ (Berliner, 1994, p.161), and, like 
Yinger, repeatedly uses the term ‘improvise’ to describe this behaviour. Rowland, et al. (2003) choose 
the term ‘contingency’ in preference to ‘improvisation’ as one of the four pillars of  ‘The Knowledge 
Quartet’, which they propose as a framework for understanding mathematics teacher knowledge, but 
are clearly describing a very similar phenomenon, echoing Yinger when they define it as ‘the ability 
to “think on one’s feet”’, (Rowland, et al. 2003, p.98).  More recently, Pinto (2017), explicitly linked 
expert mathematics teaching to jazz improvisation in title of his paper delivered at the CERME 
conference that year. 

Improvisation appears to be a recurring theme in discussions of teacher expertise, including expert 
mathematics teaching, and the brief account offered above draws on a much wider body of work. 
Despite these frequent references, however, there are very few detailed descriptions of what 
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improvisation might actually look like in the classroom, and still fewer suggestions about how 
teachers might develop their skills in this area. Borko and Livingston, for example, offer only a few, 
quite general indications of teacher practice, such as the post-lesson reflection by expert teacher 
‘Scott’ who explains: “I sort of do a little and then they do a little. And then I do a little and then they 
do a little” (Borko & Livingston, 1989, p.484). This, seemingly casual approach to defining such a 
key concept is because Borko and Livingston are not primarily concerned with the practice of 
improvisation, but with the nature of mathematics teacher expertise. Specifically, they are trying to 
articulate the distinctive ways in which novices and experts conceptualise their mathematical 
knowledge and conclude that the experts have ‘an extensive network of interconnected, easily 
accessible schemata’ (p.485) which enable them to respond more quickly and productively than 
novices with less well-connected schemata. For Borko and Livingston, therefore, the capacity to 
improvise well is a pointer towards the structure of this expert teacher knowledge. The implication is 
that such schemata are a necessary condition for improvisational teaching; the question that remains 
unasked is whether it is also a sufficient one. 

Borko and Livingston (1989) link the notion of improvisation to the metaphor of the teacher as a 
performer. Developing this line of inquiry, Barker and Borko (2011) explicitly connect classroom 
practice to a number of seminal texts on stage improvisation such as Spolin (1963) and Johnstone 
(1981). This is an appealing prospect, because improvisation for the stage is recognised as a teachable 
skill by drama schools and theatres across the world. If similarities between successful classroom and 
theatrical improvisation can be identified, well-established methods for developing improvisatory 
skills on the stage may offer a route for mathematics teachers to move towards expertise more rapidly. 
The remainder of this paper is devoted to a consideration of how this might be accomplished, offering 
a conceptual framework for re-examining existing literature and undertaking further investigation. 

Identifying improvisation in existing Maths Education literature. 
The near silence of Borko and Livingston (1989) with regard to the processes involved in 
improvisation has already been noted. A decade later, Remillard (1999) described improvisation as 
‘on-the-spot curriculum development’ (p.331), claiming that the practice is central to the way in 
which textbooks and other curriculum materials are used in the classroom. In contrast to Borko and 
Livingston, Remillard’s primary concern is on the effect this practice has on the way teachers use 
textbooks and other materials, rather than the way their knowledge is structured, but like them, her 
interest in the processes involved is secondary; she does, nonetheless, identify one broad category of 
improvisatory practice – that of ‘task adaptation’ (Remillard, 1999, p.328) – as an important feature 
of expert teaching and gives some thought to the way in which this accomplished. 

Remillard situates improvisation within a framework of curriculum development comprising three 
‘arenas’ in which teachers participate: the over-arching arena of ‘curriculum mapping’ which defines 
the organisation and content of the entire school mathematics curriculum and two distinct, subsidiary 
arenas of ‘design’ and ‘construction’ where the day-to-day decisions made by individual teachers 
take place (Remillard, 1999, p.322). In this conception, a central feature of the construction arena is 
‘improvising in response to students’ (p.322), and although it is not her primary focus, Remillard 
offers some analysis of what she terms the process of ‘task enactment’, breaking it down into two 
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distinct activities, first ‘reading of students' performances, that is, observing and listening to students 
in order to assess their understandings’ then ‘improvising in response’  (Remillard, 1999, p.329, 
author's italics). 

Brown (2009), develops Remillard’s discussion of the way teachers improvise in their use of 
curriculum materials, explicitly associating the process with the way in which jazz musicians interact 
with a musical score. Drawing on of Yinger’s proposal that teaching can be seen as a ‘design 
profession’ (Yinger, 1986, p. 275), he describes this design process as one which treats ‘curriculum 
artifacts’ – textbooks, slides, worksheets and so on – as tools with which the teacher interacts. In 
Brown’s model, these interactions can be placed on a 3-point scale that characterises the level of 
teacher agency involved according to the way the artifact is used. The lowest level of agency is 
labelled ‘offloading’ (Brown, 2009, p. 24, author’s italics), which would be exemplified by a teacher 
simply issuing a worksheet without offering any guidance to pupils beyond that provided by the 
publisher. The next level is termed ‘adapting’ (ibid., p. 24) and involves the use of some existing 
artifact but involves the teacher making some adjustment to its original use in response to the needs 
of the class. It is worth pointing out that this kind or adaptation could potentially be planned prior to 
the lesson, distinguishing from highest point on Brown’s teacher-agency scale, which he identifies 
with the term ‘improvising’ (ibid., p. 24). To be classified as falling into this final category, Brown 
envisages the teacher moving beyond the scope of the original artifact and devising their own 
spontaneous strategy. 

Like Remillard, Brown’s focus is on the use of curriculum resources, but he also identifies three types 
of ‘teacher resource’ that have a significant impact on the way those curriculum resources are used, 
‘a) subject matter knowledge, (b) pedagogical content knowledge (Shulman, 1986), and (c) goals and 
beliefs’ (Brown, 2009, p. 27). In terms of relating these concepts to practice, however, the discussion 
is largely theoretical and focuses on ‘The Design Capacity for Enactment Framework’ which the 
author proposes as ‘a starting point for identifying and situating the factors that can influence how a 
teacher adapts, offloads, or improvises’ (ibid. p. 27). While the notion of teacher-as-designer is an 
intriguing one, and Brown’s framework offers an indication of the factors that may be in play when 
a teacher is engaged in the kind of ‘on-the-spot curriculum development’ described by Remillard 
(1999), it offers little insight into the processes involved in classroom improvisation. 

Any attempt to explore existing literature on classroom improvisation soon encounters the problem 
that the term is often deployed in studies that appear to be addressing quite different issues. Even the 
Borko and Livingston study which uses the term in its title is addressing the broader issue of expertise, 
while Remillard and Brown are concerned with the use of curriculum materials. To identify what is 
known about improvisation in the mathematics classroom, the first step is therefore to identify the 
terms in which it has been discussed in the past. In their systematic review of adaptive teaching in 
mathematics, Gallagher et al. (2022), use the term ‘Teacher Improvisation’ as one of several for their 
initial database trawl (although for some reason they ignore ‘contingency’). The mere fact that they 
have placed improvisation within the scope of their search shows that they are adopting a far broader 
understanding of ‘adaptation’ than the one proposed by Brown, and indeed some of the studies cited 
in that review seem to regard the terms ‘improvisation’ and ‘adaptation’ as virtually interchangeable. 
In fact, the Gallagher et al. review offers a useful collection of related terms for conducting a survey 
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of improvisation-related research in Mathematics Education, including adaptive teaching, responsive 
teaching, unexpectedness, noticing and orchestrating.  

Having established an approach to identifying the work that has addressed improvisation in the past, 
an even more fundamental question arises, namely: what do all these different concepts have to do 
with ‘expert improvisation’ as it is understood in the theatre? To answer that question a clear 
definition of improvisation is required alongside an account of what constitutes expertise in both the 
classroom and the theatre. The next section proposes a conceptual framework for understanding both 
ideas in these two very different settings, and perhaps surprisingly, starts in the office. 

Improvisation and expertise in the office, on the stage, in the maths classroom. 
Organisational theorists Crossnan and Sorrenti define improvisation as ‘intuition guiding action in a 
spontaneous way’ (2002, p. 27, author’s italics). They are concerned with behaviour in commercial 
settings which are very different from a secondary mathematics classroom, nonetheless, aspects of 
their theoretical framework shown in Figure 1 offer useful insights into how it might be possible to 
differentiate between spontaneous classroom actions that might be considered fully improvisatory 
and those which are to some extent prepared.  

  
Figure 1: Adapted from Crossnan and Sorrenti (2002) 

A key insight of this model is way it places planning and improvising at opposite ends of a spectrum, 
with the intermediate notion of ‘planned for scenario’ in between. The proximity of ‘planned for 
scenario’ to ‘improvisation’ in the diagram hint at the possibility that improvisation may be more 
accessible for teachers who have considered possible scenarios more thoroughly, as they are able to 
move easily into the semi-improvised region of working within anticipated contingencies, bringing 
improvisation within easy reach, but it is premature to read too much into what is, after all, a 
conceptual structure with no obvious scale.  The other aspect of the structure which is of interest at 
this stage is the positioning of the ‘transaction’ category to describe ‘spontaneous but not intuitive’ 
actions. The Crossnan and Sorrenti model therefore allows for the possibility of actions which are 
spontaneous – in the sense of being immediate but not part of the teacher’s formal plan – and yet not 
improvised. This distinction narrows the concept of improvisation being explored here from the wider 
category of ‘adaptation’ described by Gallagher, Parsons and Vaughn as ‘any diversion from the 
lesson plan stimulated by some classroom event’ (2020, p.1). 
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A drawback of Crossnan and Sorrenti’s definition of improvisation is that it rests on two other 
concepts: spontaneity and intuition. Their understanding of spontaneity as acting ‘in-the-moment’ 
without time for serious forethought is clear enough, but their view of intuition as ‘an unconscious 
process based on distilled experiences’ (2002, p.28) is more elusive. The view taken here is captured 
in the aphorism: ‘intuition and judgment – at least good judgment – are simply analyses frozen into 
habit’ (Simon, 1987, p.63). Intuition is therefore seen as a rapid decision-making process rooted in 
prior learning which may be inadvertent or deliberate.  

While organisational theory has provided a succinct definition, the practical appeal of improvisation 
is its supposed ‘teachability’, at least in the sense in which it is understood by stage performers. This 
raises the obvious question of how the improvisational performances that might win applause in a 
theatre relate to those that have the potential to support learning in a mathematics classroom. To 
address these difficulties, the first step is to move the ‘theatrical’ metaphor from the public setting of 
the stage to the relative privacy of the rehearsal room. This simplifies the analogy by removing the 
audience but leaves the teacher in the role of director and continues to situate the pupils as performers. 
The next step, therefore, is to move yet further from the metaphor of the stage, and rather than 
envisaging the classroom as a rehearsal space, view it as an ‘improvisation workshop.’   

One of the most influential figures in the development of improvisational theatre in the mid-twentieth 
century was the American, Viola Spolin. She talks at length of the ‘workshop’ (Spolin, 1963, p.18), 
as the space where performers can develop the skills they need before embarking on formal 
rehearsals. For Spolin, the key task of the workshop ‘teacher’ – and it is interesting to note how often 
she uses the term teacher – is ‘giving problems to solve problems’ (Spolin, 1963, p.20, author’s italics) 
through ‘problem-solving games and exercises’ (Spolin, 1963, p.9). The final step in mapping an 
improvisational performance to an improvisational mathematics lesson identifies the students as 
workshop participants the with the teacher adopting the dual role of ‘workshop leader’ (or ‘game-
chooser’) and player. 

To explain the connection between Spolin’s notion of a ‘problem-solving game’ and the mathematics 
classroom, the key improvisational principle of ‘accepting offers’ is required. In improvisational 
theatre, an ‘offer’ is defined as ‘anything that an actor does’ (Johnstone, 1981 p. 97); to ‘accept’ an 
offer, another performer – or player of the game – must acknowledge that action and build on it, a 
strategy that is sometimes codified as the ‘yes, and…’ principle. The brief extract below illustrates 
this principle in action during a Year 7 class (11– 12 years old) in the autumn of 2020. To make sense 
of the exchange, the reader needs to know that the pupil has mistakenly interpreted the marker for ‘–
6 degrees’ on a temperature scale as ‘negative four’. 

1 Teacher: How did you know that one’s a negative four? 
2 Pupil: Because it’s like, one line behind negative five. 
3 Teacher Yeah, we’re at negative five and we’ve gone one down… 
4 Pupil …negative six! 
5 Teacher Negative six degrees, okay. Remember, when we’re going in the negative 

direction, we’re counting down the number line 
In line 1, the teacher starts the game by making an ‘offer’ which involves questioning a pupil who 
has given an incorrect answer. In line 2 the pupil ‘accepts the offer’ by answering the teacher using 
the ambiguous term ‘behind’ and in line 3, the teacher uses a ‘yes, and…’ structure to accept the 
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pupil’s offer while simultaneously clarifying the term ‘behind’ through what they say, and by moving 
their pen one unit to the left along the number line drawn on the board. In line 4 the pupil accepts the 
teacher’s offer and corrects their earlier answer, then in line 5, the teacher accepts the pupil’s new 
offer and builds on it by offering a more general description of what is meant by the word negative, 
again reinforcing their spoken words with actions, this time, walking backwards across their pre-
drawn number line in a ‘negative direction’. The way in which the teacher responded, incorporating 
details of what the pupil had said in their responses provides strong evidence that their remarks were 
spontaneous rather than planned, and the ease with which the dialogue flowed, with no pause for 
deliberation, indicates that any decision-making process was intuitive. It is therefore argued that this 
exchange demonstrates genuine improvisation according to the definition being used here. 

According to Johnstone, ‘good improvisers seem telepathic; everything looks prearranged. This is 
because they accept all offers made – which is something no 'normal' person would do’ (Johnstone, 
1981, p. 99). Lines 2 to 5 demonstrate both participants immediately accepting each other’s offers, 
but the interaction seems rather brief to serve as an exemplar of expert practice. In fact, the offer-
acceptance structure continues and is shown below  

6 Teacher: This is just a number line; it’s just a number line disguised a thermometer. 
7 Teacher: Negative six degrees. 

At the end of line 5, the teacher had reintroduced the number line (which was discussed earlier in the 
lesson) and in line 6, they ‘accept their own offer’ taking the idea of the number line and relating it 
back to the thermometer on which the original question was based. Finally, in line 7, the teacher 
rejects their own ‘offer’ of the thermometer, and simply restates the correct answer offered by the 
pupil earlier, ending the improvised episode. Johnstone describes this kind of rejection with the rather 
pejorative term ‘blocking’ and regards it as something to be avoided, but in this instance, the teacher 
is using the tactic deliberately to end a diversion from an existing plan, judging that enough time has 
been spent on this particular question. 

The discussion above highlighted several similarities between theatrical and classroom 
improvisation, but the exchange on which it is based also illustrates several key differences, one being 
the very different levels of knowledge possessed by the participants. In a workshop situation, it is 
reasonable to expect all those involved to be aware of the ‘yes and…’ principle, but this does not 
apply to a mathematics classroom. In a well-run class, the teacher can reasonably expect a pupil to 
‘accept’ a direct question and ‘offer’ an answer, which is exactly what happens in line 2. The teacher 
is then able to incorporate the answer into their next statement. However, the next utterance by the 
pupil was not so much an offer as an inadvertent calling out of the correct answer, and it was only the 
skill of the teacher that allowed them to transform line 4 into an offer by responding instantly, 
accepting, and incorporating it into their next statement. Realising that they could not rely on the 
pupil to productively maintain the dialogue any longer, the teacher then elected to continue with the 
offer and acceptance structure in the form of a monologue for as long as they felt necessary. A second 
important difference between theatrical and classroom improvisation is its purpose: in classroom, it 
serves to draw in the student by including them in a learning dialogue that serves the teacher’s wider 
goal. This contrasts sharply with a workshop where the priority is to explore a situation until is 
mutually agreed that the scene has run its course. Given the different priorities of the classroom, 
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‘blocking’ by the teacher is legitimate strategy. It is therefore argued that the episode above shows 
expertise in theatrical improvisation re-interpreted for the classroom. 

It is further argued that this brief exchange includes behaviours which are consistent with the account 
of expert teaching outlined by Winch (2017). In this model, successful learning is identified as 
‘epistemic ascent’ (EA), which is explained using the following metaphor: consider a subject expert 
(who may or may not be an expert teacher) as someone with an overhead view of a room, that room 
represents the subject, and the view they have of every item within it and all the relationships between 
those items represents their knowledge. The novice is ‘gradually opening the door to that room, 
initially gaining partial glimpses of apparently unrelated items’ (Winch, 2017, pp. 80-81), and the 
process of EA is moving from the view of the novice to the view of the expert. To facilitate this 
journey among their students, the expert teacher must therefore understand ‘the kind of difficulty that 
they may be experiencing in learning’ (Winch, 2017, p. 137, author’s italics). To take the learner on 
this journey, the teacher obviously needs a thorough grasp of the relevant subject knowledge – 
metaphorically, an ‘expert’ grasp of where all the items within the room lie and the relationships 
between them – but Winch goes further, suggesting that the expert teacher needs the ability to switch 
between the perspective of the omniscient expert and that of the novice at will (2017, p. 81). The 
teacher response in line 3 could be explained by imagining the teacher making such a perspective-
shifting move: ‘seeing’ how their pupil has (mis)read the number line, then moving rapidly to teacher 
mode and homing in on the point where they moved in the wrong direction from the correctly 
interpreted ‘–5’ marker. The speed of the pupil’s response in line 4 adds weight to this hypothesis.  

Conclusion and next steps 
This paper adopts Crossnan and Sorrenti’s (2002) definition of improvisation as ‘intuition guiding 
action in a spontaneous way’, going on to argue that the language of theatrical improvisation – in 
particular, the so-called ‘yes and…’ principle – offers an approach for identifying the practice in 
mathematics classrooms. It embeds these ideas within a wider understanding of teacher expertise and 
proposes a mechanism by the which the interconnected framework of knowledge referred to by Borko 
and Livingston and further explored by Winch might facilitate the practice.  

The published evidence cited here is inevitably limited. Borko and Livingston's observations from 
1989 are consistent with the view of expert teachers as skilled in perspective shifting, but a more 
detailed review of existing literature, starting with the terms noted earlier in this paper, needs to be 
undertaken to ascertain whether there is widespread support for this view. The empirical research 
described here is still sparser, and the few lines of classroom dialogue merely hint at the ways in 
which expert teachers might exercise their improvisational skills. More thorough investigation is 
clearly required. Nonetheless, the prospect of finding simpler ways to articulate, and ultimately teach 
others to productively engage in spontaneous classroom interactions continue to inspire this author 
to keep searching. 
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The work of teaching mathematics is complex and involves numerous problems and challenges for 
teachers to handle. Questioning is a slice of mathematics teaching that is both common and 
challenging. In this paper, we use the context of collective planning in a Norwegian professional 
development initiative as a space for investigating questions and questioning practices in ambitious 
mathematics teaching. Based on analysis of nine co-planning sessions, which were carried out over 
the course of two years, we suggest that questioning practices involve considerations of: 1) what 
types of questions to ask, 2) purpose of questions and questioning, and 3) timing of questioning. Based 
on our conceptual framework, we propose a fourth logical entailment relating to the positionality of 
students, and we suggest that further research is needed to explore this entailment.  

Keywords: Questioning, planning, mathematics teaching, interactions. 

Introduction 
More than a century ago, in her seminal study of questions as a measure of effective teaching, Stevens 
(1912) investigated if the number of questions asked by teachers could serve as a proxy for efficiency 
in instruction. Interestingly, she found that it was also necessary to consider the quality of questions. 
Based on observations across different subjects, Stevens identified three elements of questioning that 
indicate quality: questions have to stimulate reflection, they must be adapted to students’ experience, 
and questions must aim at moving students’ thinking forward. Despite an increasing number of 
studies of teacher questions and questioning practices, Gall (1970, p. 707) introduced her review of 
research on the use of questions in teaching by stating that even though everyone agrees that questions 
are important in teaching, “researchers still do not know much about them. What educational 
objectives can questions help students to achieve? What are the criteria of an effective question and 
how can effective questions be identified?” As evident from the review of Gall, as well as from other 
reviews of research on questions and questioning in (mathematics) education, studies tend to highlight 
either how questions are used in the classroom (e.g., Gall, 1970), or what constitutes effective 
questions and questioning practices (e.g., Shahrill, 2013; Wilen & Clegg, 1986). In other words, 
studies often have a similar focus to the seminal study of Stevens (1912).  

Following recent discussions in Thematic Working Group 19 (TWG19), this study attempts to shift 
focus from what teachers do to consider teaching as a work to be done. Instead of focusing on 
activities performed by teachers – and their effects on student learning — we follow Ball (2017) in 
our attempt to investigate what constitutes the special work of teaching mathematics, and we seek to 
explore and understand the entailments of this work. In particular, we focus on questioning practices, 
which constitutes a slice of the work of teaching. Whereas Stevens (1912) focused on questioning in 
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recitation, we focus on questioning in discussions within the context of ambitious mathematics 
teaching when we approach the following research question:  

What can be entailed by questions and questioning practices in ambitious mathematics teaching? 

Our use of the word ‘entail’ indicates that something is logically involved or necessitated, and it 
points toward a view of teaching as work, which implies that it is something to be done, or task(s) to 
be undertaken (Work, n.d., para. 3). When we use the term ‘questions and questioning practices’, we 
follow Enright et al. (2016), who use the term with reference to a collection of practices that are 
carried out within the teaching profession.  

Conceptual framework 
This study draws on a conceptualization of teaching as instructional interactions that are 
collaboratively constructed between teacher and students around a particular content, and situated in 
broader environments (Cohen et al., 2003). Mathematics teaching can never be considered as 
transmission of content in isolation, but it is “co-constructed in classrooms through a dynamic 
interplay of relationships, situated in broad socio-political, historical, economic, cultural, community, 
and family environments” (Ball, 2017, p. 15). In addition, we draw on the notion of teaching as work, 
as described by Ball (2017) and Lampert (2010). Following their interpretation of the work of 
teaching, we consider teaching as a complex work that entails many demands and dilemmas that 
teachers must manage. A study of the work of teaching mathematics, in this sense, thus involves 
efforts to identify and understand these demands and dilemmas, rather than describing what teachers 
do and attempting to make sense of these actions.  

Our study also draws on a conceptualization of ambitious mathematics teaching where students’ 
emerging mathematical thinking and sensemaking is at the forefront. Ambitious mathematics 
teaching aims at positioning students as sense-makers and provide equitable access to learning. To 
achieve these aims, ambitious mathematics teaching typically includes facilitation of mathematical 
discussions that elicit and build on students’ thinking (Kazemi & Hintz, 2014). The study draws on 
data from a larger project, called Mastering Ambitious Mathematics teaching (MAM). This project 
is organized around cycles of enactment and investigation, and it is inspired by similar projects in the 
United States (e.g., Lampert et al., 2013).  

Methods 
Thirty Norwegian elementary teachers participated in the project. In the cycles, teachers were divided 
into four groups. We analyze data from one group of eight teachers in the present study. The groups 
participated in 12 sessions over a period of two years, and nine sessions were organized around 
learning cycles that include the following phases: 1) Preparation that involved reading and watching 
videos; 2) Collective analysis guided by a teacher educator around principles and practices central to 
the instructional activity; 3) Co-planning of the instructional activity; 4) Rehearsal where one or two 
teachers tried out the activity with colleagues acting as students; 5) Enactment of the instructional 
activity by the same teacher with a group of students (age 11–12); 6) Collective analysis that included 
reflections on how the principles and practices had worked out. We anticipated that experienced 
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demands and dilemmas would become most visible in the planning phase, so our focus here is 
therefore on the third phase of the learning cycles. 

We analyzed nine co-planning sessions using Sportscode video analysis software, which allowed for 
direct coding on the videos. Initial deductive coding followed an adapted version of the discussion 
planning framework of Boerst et al. (2011). We then conducted inductive coding of the segments that 
were coded as questioning in the initial coding phase, with an emphasis on trying to identify tasks 
that are entailed in the work. Instead of asking what teachers did, and what they discussed in the 
planning sessions, we asked what kinds of problems, dilemmas, or decisions they were faced with. 
Three categories emerged from the inductive coding, and these are presented and discussed below.  

Entailments of questions and questioning practices 
In the following, we present excerpts from our data material to illustrate and discuss the proposed 
categories of entailments.  

Considering type of question to ask  

In the planning sessions, we observed several instances where the group engaged in discussion of 
what questions they could ask students. This is not surprising, as questions abound in mathematics 
lessons; when teachers want to guide students in a certain direction, they often try to use questions 
instead of teaching by telling.  

In the second session, when the teachers planned an activity using quick images, they discussed the 
challenge of stimulating the students to identify a certain pattern. One teacher suggested that they 
could ask: “How can you use the 4 times table to get the first number? In other words, how can you 
get 5 as an answer when you have to use the 4 times table.” Another teacher commented that this is 
hard for students, both to visualize and discuss. One of the teacher educators in the group interrupted, 

TE1: Yes, but let’s try to come up with a really good question that helps the students 
understand where we want to go, shall we? Because this is really where we are at, 
right. If we want them to discuss this, which we might not want to eventually, but 
if we want them to discuss this…  

This was one of several instances where the teachers discussed how to use questioning to guide the 
students in a particular direction, which is a task that is entailed in the work. In this case, the teachers 
wanted to help the students discover the pattern of 4n + 1. From the teacher educator’s reference to 
“a really good question”, and from the overall discussion, it appears that the aim here was to identify 
a particular question that could work as a prompt to stimulate exploration through discussion, rather 
than to check students’ understanding, as in recitation.  

Although the primary focus in this discussion seemed to be on finding the best question to ask, we 
notice that there is also an embedded focus on purpose. This leads to the next, and tightly related, 
kind of entailment that teachers are faced with in questioning practices.  

Considering purpose of questions and questioning 

Another entailment is thus to consider the purpose of questions and questioning practices. For 
instance, teachers can consider how to formulate a question to stimulate students’ thinking. We 
noticed that this is also at play in the above discussion of the type of question to ask. In another 
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session, the teachers discussed how they wanted students to discover connections between a string of 
tasks, but they hesitated to ask the students straight away if they could see any connections. One 
teacher reflected, “So, we want to tell them: I want you to consider these numbers now. Do you see 
any connection between them?” Then she added, “Is it wrong to be so direct about it?” The teacher 
educator affirmed that they could ask students directly if they could see any connections, but this 
challenge of how direct they should be, and what kind of questions they should ask, persisted.  

As the teachers continued to discuss this, the issue of whether to use an open question came up. 
T1: When we say, in the context of 4000 divided by 160, we could ask: Do you see a 

connection with the previous task? 400 divided by 16.  
T2:  Should we say that?  
T1:  Well, if we say that, they have to consider it for a while, and then they will notice 

that both are multiplied by 10. And, what do you think happens there? 
T3:  That is kind of more open. If you consider these expressions, what do you think 

about?  

Although this appears to be another example of considering what type of question to ask, we notice 
an underlying challenge relating to purpose here. The task of deciding on a type of question to ask is 
thus entailed by considering the purpose of stimulating students’ thinking, which is important in 
ambitious mathematics teaching. Sometimes teachers consider using an open question to allow for 
more creativity and exploration, but, at other times, they might consider using a more closed and 
directive question to check on students’ understanding. This choice depends on the purpose.  

Considering order and timing of questioning 

A third entailment of questions and questioning practices relates to timing. In direct response to the 
discussion above, T2 asked: “But do you think we should say that first? Should we begin by asking 
if they see a connection, or should we let them think for a little while first, before we hook them on?” 
This points at two considerations that need to be made in questioning practices: one concerning the 
order of questions, and another concerning the timing in the sense of finding the exact right moment 
to ask a question. If the overall aim of an activity is to stimulate exploration, which is prominent in 
ambitious mathematics teaching, teachers might want to start by asking a more open question, before 
asking for connections more directly. T2 seemed to be conscious about this challenge. When one of 
the other teachers moved on without responding, he continued to press for reflections about this: “But 
should we ask them: Do you see a connection with the previous task? Or should we allow them to 
think a little bit on their own first, to see if someone actually discovers it … before we hook them 
on?” On the one hand, we notice that this comment is indicative of a challenge concerning the order 
of questions. On the other hand, there appears to be an entailed issue concerning timing, both with 
respect to timing of the questions in the overall trajectory of the class, but there is also an entailed 
challenge of how long to wait before providing the students with a more directed question.  

The discussion of order and timing above relates to a situation that the teacher controls. Deciding 
what question to ask first or how long students may think before posing a more directive question, 
are both examples of issues that teachers can consider beforehand, as they plan the lesson. However, 
in a classroom with real students, unexpected situations often occur. For instance, a student might 
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immediately come up with a solution that ends the discussion prematurely. This kind of situation was 
discussed in the third session, where the teachers planned an activity on quick images (see Figure 1).  

TE1: What do we ask if this [pattern] comes up quickly?  
T1: This relates to our previous discussion about how 9 can be represented in different 

ways. So it might be a good idea to bring up that one in addition, showing that they 
are almost similar. Perhaps put this [pattern] below the other one.  

TE1:  But what if someone says 3 times 9? Yeah, that was nice. Then the discussion is 
kind of over. What kind of questions do we ask then, in order to move on?  

 
Figure 1: Reconstruction of some of the teachers’ annotations on the quick images discussed 

This question was followed by a pause in the conversation, indicating that it was considered a 
dilemma by the teachers. One of the teachers followed up, suggesting that they could prompt the 
students to explain their thinking, and show the others how they see the 9 in this representation. This 
suggestion corresponds with the literature on cognitively guided instruction (e.g., Carpenter et al., 
2015), and points at eliciting students’ thinking. The initial issue of timing in questioning is thus 
related to the more foundational question about purpose of questions and questioning practices.  

Discussion 
In her review of research on questioning, Gall (1970) emphasized the type of questions being asked, 
and Stevens (1912) focused on type of questions as well as the number of questions that were asked. 
Early studies of questioning in teaching had less emphasis, however, on the purpose and functions of 
questions, and they did not emphasize timing of teacher questioning. Yet, we can recognize some of 
these as underlying perspectives in many studies of teacher questioning. Another important difference 
between our study and other studies of teacher questioning is that most other studies focus on what 
teachers do – what types of questions they ask, what purpose their questioning has, and how their 
timing of questioning influences students’ learning – and not on the entailments of the work of 
questioning. In the following, we discuss results from our study in relation to previous research, and 
in relation to our conceptual framework. Analyses of what teachers do often end up in evaluation of 
their performance, attempts to explain why they performed in a certain way, or in efforts to measure 
the effects of their performance on students’ learning. As opposed to this, analysis of teaching as 
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work tends to focus on understanding the complexity and entailments of teaching and its demands. 
Such analysis thus contributes to unpacking and conceptualizing the work of teaching, and it may 
also contribute to developing a much-needed professional language to describe this work.  

Every review of questioning in teaching that we have seen involves a focus on types of questions that 
teachers ask. In her review of the use of questions in teaching, Gall (1970) notes that studies have 
used different taxonomies for classifying types of questions. She highlights Bloom’s taxonomy as the 
one that “best represents the commonalities that exist among the systems” (p. 710). Later reviews, 
both in general education and in mathematics education, also highlight the importance of considering 
cognitive levels of questions (e.g., Shahrill, 2013; Wilen & Clegg, 1986). With respect to the 
instructional triangle, considering the type of question to ask relates to what is described in the triangle 
as interactions between teachers and students. In ambitious mathematics teaching, deciding on the 
type of question to ask is particularly important. Whereas use of questions might be appropriate to 
check on students’ understanding, it can be challenging to decide on a good question to prompt 
discussion.  

Considering the purpose and function is another entailment of questions and questioning practices, 
and Enright et al. (2016) unpacked this entailment in their attempt to develop a typology of questions 
by instructional function — also by applying the instructional triangle as conceptual framework. 
Whereas teachers in the context of planning would typically consider the purpose of questions and 
questioning, the entailments that teachers are faced with inside of the instructional interactions would 
often be more related to considering the functions of questions. Consideration of purpose and 
functions of questions would often be located along the axis of interactions between teachers and 
content, for instance when considering purpose in relation to the learning goal for the lesson. 
However, purpose and function of questions might also involve considerations around what types of 
interactions between students and content that teachers wish to facilitate. For instance, teachers might 
decide to use open questions or why-questions when they aim at facilitating a discussion, whereas 
more closed questions or what-questions might lead to recitation. Ambitious mathematics teaching 
aims at facilitating discussions that elicit and build on students’ mathematical thinking (Kazemi & 
Hintz, 2014), and our analysis illustrates some of the challenges teachers are faced with when trying 
to build on students’ thinking without being too directive. This balancing of drawing on students’ 
thinking while at the same time leading a class toward a mathematical goal may constitute a dilemma. 

Entailments of considering order and timing of questions might involve similar considerations as 
those teachers have to make in the context of purpose and function. One aspect of timing that has 
frequently been described in research on questions and questioning is wait time (e.g., Shahrill, 2013; 
Wilen & Clegg, 1986), and this was also visible in the planning discussions we analyzed. Considering 
what is the appropriate time to pose a question has been less focused on in previous research, but it 
is also something teachers need to consider when interacting with students. Our analysis also indicates 
that considerations of order and timing of questions and questioning might constitute a task of 
teaching that is particularly pressing in the context of ambitious mathematics teaching. As one of the 
teachers noted, a student might come up with a response that are perceived by the class to end the 
discussion, and the teacher is then faced with a considerable challenge of coming up with a follow-
up question or prompt to move the discussion forward.  
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All three entailments of questions and questioning practices that we have identified thus appear to fit 
well within the instructional triangle, and we have discussed above how these entailments are 
particularly pressing in the context of ambitious mathematics teaching. What we did not observe in 
our analysis of planning sessions, and what we have not seen much of in other studies, are 
considerations around interactions with environments with respect to questions and questioning 
practices. Recent studies of the work of teaching mathematics that build on the conceptual frames of 
the instructional triangle have explored interactions with environment in terms of considering identity 
and positioning of students. For instance, in her discussion of what constitutes the mathematical work 
of teaching, Ball (2017, p. 17) states: 

Central to bear in mind is an inherent fact of teaching, namely, that teachers are always 
communicating, relating, and making sense across differences, including differences in age, 
gender identities, race and ethnicity, culture and religion, language, and experience. This important 
dimension of difference in identity and positionality means that a fundamental part of the work of 
teaching is being aware of and oriented to learning about and coordinating others’ perspectives. 

Thus, a logical entailment of questions and questioning practices would be to also consider identity 
and positioning. As can be seen from the quote above, such considerations tap into interactions with 
environments and is a fundamental — but often overlooked — part of the work of teaching 
mathematics. There are a couple of possible reasons why positionality did not emerge as a category 
from our analysis. On the one hand, it might be a feature of the project. The teachers in the MAM 
project engaged in cycles of planning and enactment in a context where they did not know the 
students. When planning the activities, they had to make assumptions about students, since they did 
not know what students they would encounter before the enactment phase. In a context when teachers 
do not know their students, they might not be expected to consider positionality, which requires 
knowledge of students and their identities. On the other hand, the lack of emphasis on positionality 
in planning of these instructional activities might also indicate a general lack of emphasis on 
positionality among (these) Norwegian mathematics teachers. If that is the case, it is even more 
important to emphasize this — both as a fundamental part of the work of teaching mathematics, and 
as a fundamental part of questions and questioning practices in mathematics teaching. We believe 
that considering positionality might constitute a fourth entailment of questions and questioning 
practices in mathematics teaching, and we call for future studies to investigate it. This is particularly 
important in the context of ambitious mathematics teaching, which aims at positioning students as 
sense-makers and provide equitable access to learning mathematics (Kazemi & Hintz, 2014). There 
is thus a need to explore what this might look like in questions and questioning practices. 

Conclusion 
Questions and questioning practices in teaching have been studied for more than a century. Whereas 
much research has focused on how teachers use questions and the effects of these questioning 
practices on student learning, we propose to instead focus on trying to understand what might be 
entailed in questions and questioning practices — considered as a slice of the professional work of 
teaching mathematics. From our analysis of teacher planning sessions, we identified three entailments 
that relate to considering what types of questions to ask, the purpose of asking questions, and the 
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timing of questioning, which includes considering both the order of questions and deciding on the 
right moment to ask questions. In addition, we suggest that a fourth entailment is also involved in 
questions and questioning practices: considering positionality of students through questioning 
practices. This involves attending carefully to how teachers’ questions and questioning practices can 
contribute to providing equitable access for all students and thus serve as part of an overall effort 
toward justice and inclusion — in school, but also in the society at large.  
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This paper reports on a study on teachers’ practices when teaching mass measurement in grade 4 in 
Malawi. Data was collected from video recordings of three grade 4 teachers (two lessons each) who 
were purposively sampled to ensure they were teaching measurement of mass. The teachers’ practices 
were analysed using the Mathematics Discourse in Instruction (MDI) framework. Findings of the 
study showed that the common teachers’ practices included: having lesson plans with clear lesson 
goals, using similar examples and tasks throughout the lessons, involving learners in hands-on 
activities without providing the conceptual understanding of the tasks, and asking low level questions. 
We argue that teachers’ practices when teaching mass measurement should focus more on developing 
learners’ conceptual understandings of mass measurement. 

Keywords: Teacher’s practices, mathematics discourse in instruction, measurement, mass.  

Introduction 
Measurement of length, area and mass is a central part of primary school curriculum in many 
countries (e.g., Ministry of Education, Science and Technology [MoEST], 2006; National Council of 
Teachers of Mathematics [NCTM], 2020). Research on the teaching of measurement shows it is 
poorly taught in many countries and is focused on procedures rather than conceptual understanding 
(Clements, 2003, Irwin et al., 2004, Zacharos, 2006). Stephan and Clements (2003) have attributed 
this to curricular content, teachers’ knowledge and instructional practices. Cheeseman et al. (2011) 
challenged the traditional-curriculum approach of using informal units for an extended period of time 
before introducing standard units of measure, and Zacharos (2006) showed that both students and 
teachers have difficulties in understanding the concepts of measurement.  

While several studies have investigated the teaching of length and area measures, less is known about 
the teaching of mass measurement in primary school. For example, in our review of research reported 
in CERME11 (see Jankvist et al., 2019), we found 12 studies reporting on the measurements of length 
and area, but none reporting on the teaching of mass measurement. In addition, research about the 
teaching of mass measurement in the Malawi context is specifically lacking. This motivated us to 
investigate Malawi teachers’ practices in the teaching of mass measurement. Measurement is one of 
the core elements of the mathematics curriculum in Malawi, from grade 1 through secondary school. 
For grades 1 and 2, the curriculum includes mass measurement using non-standard units, while in 
grades 3 and 4, learners are introduced to the standard units of mass and are taught how to measure 
mass in kilograms and grams (MoEST, 2006). The learning of measurement involves the use and 
understanding of procedures and the development of conceptual understandings. In the literature, 
these are commonly discussed in relation to length measurement (e.g., Battista, 2006; Lehrer et al., 
2003) but can be transferred to other measurement concepts like mass.  
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According to Cheeseman et al. (2011) children need rich experiences involving the measurement of 
mass, especially in the early grades. Rich experiences are those in which learners are offered 
opportunities to engage in activities that lead to conceptual understanding in mathematics and 
challenge them to think and foster the communication of mathematical reasoning.  

We describe teacher practices as what teachers do and say in a lesson. Teacher practices matter in 
mathematics lessons and determine what learners learn and the skills they acquire (Adler, 2017). This 
is particularly critical in teaching measurement and in early grades where learners depend on teachers 
to learn. The need to understand practice in the Malawian context motivated our research question: 

What are teachers’ practices when teaching measurement of mass in grade 4 in Malawi? 

Literature review 
McDonough et al. (2012) found that although measurement may look simple, insights gained from 
research into young children’s concepts of mass measurement show that the learning of measurement 
can be complex. Some studies on mass have focused on learning in early grades. McDonough (2010) 
showed that children in the early years of school have informal knowledge of mass measurement. 
They develop this knowledge during outdoor play activities prior to formal schooling. Some acquire 
the knowledge of mass measurement from handling or weighing things at home (Spinillo & Batista, 
2009). Cheeseman and McDonough (2013) reported that children’s learning about measurement 
continues from experiences prior to school through formal schooling, where they are taught about 
attributes of measure including length, mass, time, area, angle, and volume. MacDonald (2010) found 
that children four to six years old have an awareness of the attribute of mass, as revealed in drawings 
of measurement situations. These and other findings reveal the importance of underlying knowledge 
and skills that early grade learners bring to the learning of mass measurement. These include informal 
knowledge of mass, handling or weighing objects and attributes of mass. Knowing learners’ prior 
knowledge ensures that the teacher works towards building on what is already known and correcting 
misconceptions. 

The teaching of mass in early grades involves measuring in both standard units and non-standard 
units. McDonough and Cheeseman (2015) found that in learning to measure, children develop other 
skills, such as how to use a balance scale, and develop understanding of foundational ideas, including 
awareness of the attribute, comparison and unit iteration.  Other skills that learners develop in 
measuring mass are precision and origin (Lehrer et al., 2003, Sarama & Clements, 2009). Therefore, 
in teaching measuring mass in standard units, more skills and knowledge are developed in learners. 
These skills are used or applied in other mathematics topics and subjects like science.  

Other researchers have pointed out the need for learners’ conceptual understanding and reasoning 
when they are measuring in standard units. Wilson and Osborne (1992) found out that while the basic 
idea of direct measurement is simple, there are complex mental accomplishments within measuring 
that are often downplayed in typical lessons. Opportunities for children to reason, with the purpose 
of coming to understand foundational or key ideas of measurement, can be enhanced by task design 
and teacher actions when carrying out those tasks. This makes the teaching practice important as what 
teachers say and how they say it matters for children’s learning (Adler, 2017). 
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Theoretical framework 
This study used the Mathematics Discourse in Instruction (MDI) as its theoretical and analytical 
framework. The framework was developed from extensive research among poorly resourced schools 
in South Africa (Adler & Ronda, 2015). The MDI framework describes the lesson “bit by bit” 
meaning step by step, thereby analysing teaching shifts that take place in a mathematics lesson. This 
way of analysing the lesson was useful in this study as it enabled thorough understanding of the shifts 
in teaching practices and how each shift made mathematics available to learners. 

In describing the framework, Adler and Ronda (2015) represents it diagrammatically as below: 

 
Figure 1: Constitutive elements of MDI (Adler & Ronda, 2015, p. 3) 

The four constitutive elements of MDI are object of learning, exemplification, explanatory talk and 
learner participation. Object of learning is regarded as the lesson goal (that which students are to 
know and be able to do). In the diagrammatic representation above, Adler and Ronda (2015) separate 
the object of learning from the other components of MDI. The three components of exemplification, 
explanatory talk and learner participation are viewed as the key mediational means or cultural tools 
in a typical mathematics classroom instruction.  These tools are used to achieve the object of learning. 
Exemplification which is further divided into examples and tasks is a common practice in 
mathematics teaching where lessons start with examples followed by similar tasks for learners’ 
practice. Examples are categorized into three levels, from Level 1 to Level 3, depending on whether 
the selection of examples are similar, contrasting, or a combination of the two.  

Explanatory talk involves communication by the teacher that takes place during the lesson. It is 
divided into naming (words used to name the mathematics being discussed) and legitimation 
(explanations of what is to be known and done in the lesson). Naming is also categorized into three 
levels: Level 1 meaning colloquial language is used, including ambiguous referents such as this, that 
thing, to refer to objects; Level 2 if some math language is used to name the object or component, or 
the string of symbols is simply read when explaining; and Level 3 if appropriate names of math 
objects and procedures are used. If non-math legitimation is used (such as visual cues, or metaphors 
relating to features), it is classified as Level 1 NM (nonmathematical); Level 2M (math) if a 
specific/single case, real-life application or purely mathematical explanation are used; Level 3M 
(math) if equivalent representations, definitions, or previously established generalizations are used 
but explanations are unclear or incomplete; and finally, Level 4M if it is a general full explanation. 

Learner participation on the other hand allows learners to participate in the teacher’s communication 
even if it may be in form of mostly listening to the teacher (Adler, 2017).  It also involves their 
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participation in answering questions. It is also categorized in three levels: Level 1 if learners simply 
answer yes/no questions or offer single words to teachers in the form of unfinished sentences; Level 
2 if learners answer (what/how) questions in phrases/sentences; and Level 3 if learners answer why 
questions or present ideas in discussion, or the teacher revoices/confirms learners’ questions.  

Methodology 
This study collected qualitative data from three teachers in three classrooms in two schools in Malawi. 
The teachers were purposively sampled to ensure that they were teaching mass during the time of 
data collection. Two lessons from each teacher were observed and video recorded. We used the MDI 
framework to analyse what the teachers were doing and saying in class to make the idea of mass 
available to learners. We sought consent from the District Education Office, Head teachers and 
teachers themselves to record the lessons. Teachers were free to withdrawal from the study anytime 
within the data collection exercise.   

Findings of the study 
Due to limited space, in this section we present one sample lesson in detail and its analysis using the 
MDI analytic framework. The title of this illustrated lesson was “Kulemera kwa Zinthu” meaning 
mass of objects. The teacher guide gave the following success criteria of the lesson: i) measure mass 
in kilograms (kg) and ii) measure mass in grams (g). 

Following the MDI framework, the lesson was divided into five events, with a new event 
distinguished by a shift in activity. Below is a detailed description of the events with dialogue between 
the teacher and the learners. 

Event 1: Measuring using non-standard units 

The teacher carried a stone and a duster in her hands and asked learners to identify which one of the 
two was heavier than the other. The learners were able to identify the stone as being heavier than the 
duster. The activity was repeated using two stones of different sizes. The learners were able to identify 
the heavier stone, judging from the sizes of the stones.  

Teacher Which stone is heavier between Stone A and B? 
Learners Stone A. 

Event 2: Measuring using unmarked simple balance 

Learners were shown a simple balance and the teacher explained how it is used to determine which 
object has more mass than the other or if any two objects have the same mass. 

Teacher The balance tilts on the side where there is a heavier mass. That shows that one 
object is heavier than the other. When the two objects have the same mass, the 
balance does not tilt. 

The teacher demonstrated how to measure two stones by putting them in bags and hanging the bags 
on the simple balance. The learners were able to identify the stone with a bigger mass. This activity 
was repeated using different objects such as duster, stones, books and pencils. Learners carried out 
the rest of the activities in pairs. 
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Event 3: Comparing masses of objects with a 1 kg packet of sugar 

In this activity learners were comparing mass of an object with a 1 kg packet of sugar on a simple 
balance. The teacher put a stone in one bag and a packet of sugar in another bag and hung the bags 
on a simple balance. Learners were able to identify which one of the two had more mass than the 
other by looking at how the simple balance tilted. The learners repeated this activity using stones of 
different sizes and a chalkboard duster. 

Teacher Which is heavier between a 1 kg packet of sugar and a stone? 
Learners A packet of sugar. 

Event 4: Introducing gram (g) 

In this event, the class continued to compare the mass of 1 kg of sugar with various objects using a 
simple balance. The teacher was careful to choose objects that were less than 1 kg this time around. 
The learners were then informed that objects that were less than 1 kg are measured in grams. The 
learners identified items such as 500 g salt and 100 g baking soda that were present in class. The class 
was comparing masses of items in grams with the 1 kg packet of sugar using the simple balance. 
Similarly, the teacher put the 2 masses under comparison in bags and hung them on a simple balance. 

Teacher Which is heavier between a 1 kg packet of sugar and a 500 g packet of salt? 
Learners 1 kg packet of sugar. 

Event 5: The relationship between kg and g 

The last event was for learners to establish the relationship between kg and g. The teacher showed 
that 500 g + 500 g = 1 kg by comparing two packets of 500 g salt and 1 kg packet of sugar on a simple 
balance. Learners identified the two sides of the simple balance as the same and concluded that 1000 
g = 1 kg. The learners were later given the following three exercises to write individually in their 
exercise books: i) 250 g + 250 g + 500 g = ____ kg, ii) 3 kg = ___ g, and iii) 200 g + 500 g + 300 g 
= _____ kg. 

Discussion 
There were two lesson goals given by the teacher: i) measure mass in kilograms, and ii) measure mass 
in grams. These identified objects of learning were well captured in the lesson plan. Most of what 
happened in this class was direct comparison of masses of objects using standard and non-standard 
units. The common question by the teacher in the first four events was: Which is heavier between a 
stone and a packet of sugar? At this point, learners’ judgement of “heavier than” was based on how 
the simple balance tilted.  In event 5, learners were comparing known masses of items such as 1 kg 
of sugar and 500 g of salt.  

The lesson intended to teach learners how to measure masses in kg and g. However, what happened 
in this class was mostly comparing and ordering masses of objects. According to Cheeseman et al. 
(2011), comparing, ordering and matching masses of various objects are important skills in mass 
measurement. They form part of the preliminary skills that children should acquire in measurement. 
However, more skills and knowledge of mass measurement need to be acquired in the early years of 
primary schooling.  
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The second element of MDI is exemplification and it consists of examples and tasks. Mathematical 
goals are supposed to be achieved through elaborated examples and given tasks. Since the lesson 
under discussion was mainly hands-on, we analysed the hands-on examples and tasks that the learners 
were given and the materials with which the children were engaged. However, when analysing the 
five events of the lesson, it was observed that the tasks were similar in terms of level of difficulty and 
demands for cognitive ability. The instructions for the tasks were the same and repetitive. Further, 
the tasks were set procedures in comparing the given masses. The lesson focused on teacher’s 
instructions on how to compare different masses of objects. Conceptual understanding of the 
underlying idea of mass and measuring mass in standard units of kg and g was missing in the lesson.  

The third element of MDI is explanatory talk. The MDI framework divides teacher explanatory talk 
into naming and legitimations. In this case, naming are mathematical terms used in the lesson while 
legitimations are explanations of mathematical ideas and procedures. The two are divided into three 
levels (low to high) depending on the teacher’s use of mathematical language in the lesson. In terms 
of naming, we observed that the teacher mostly operated at Level 2 and 3 where she was able to use 
appropriate mathematical language to name objects, simple balance, 1 kg, 500 g masses, and 
measuring mass in kg and g among others.  

In terms of legitimations, we observed that teacher talk was generally of Level 1 and 2. The teacher 
was giving explanations that were simple, single and isolated cases with real life examples. For 
example, she explained with the help of a simple balance that the mass of two 500 g salt packets is 
equal to 1 kg of sugar. The teacher’s explanations were characterised by the use of unspecialised 
mathematics to name mathematical terms and compare masses of objects. In line with Adler (2017) 
reporting that what teachers say and how they say it matters in mathematics lessons, especially in 
early grades where learners depend more on teachers, we observed that the selection of tools of 
measuring mass affected the teaching and learning of the lesson.   

The fourth element of MDI is learner participation.  Learners participated in carrying out activities in 
measuring masses of various objects and in answering questions from the teacher. The MDI 
framework describes learner participation in terms of levels of answers provided by learners. It was 
observed that learners’ answers were of both Level 1 (the yes/ no answers) and Level 2 (what, which 
and how answers). For example, the common question in this lesson was: Which is heavier between 
stone A and stone B? 

Conclusion 
This study collected and analysed qualitative data to find out teachers’ practices in grade 4 when 
teaching mass measurement. Using the MDI framework, we divided the lesson into five events, in 
which each event was characterised by a shift in the activity. We analysed the three cultural tools of 
a typical mathematics lesson according to MDI; exemplification, explanatory talk and learner 
participation based on their level of complexity. The object of learning was also analysed to find out 
if the intended goal of the lesson was achieved.  

While we only presented detailed data from one lesson, the study established that all the teachers had 
lesson plans with clearly stated lesson goals (success criteria); to measure mass of objects in kg and 
g. However, it was not clear whether learners achieved this intended lesson goal. In terms of examples 
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and tasks, teachers used similar examples in different events of the lesson such that the examples 
looked like a repetition of what had already been done. The examples were teacher demonstrations 
of measuring in grams and kilograms. Most of what was called measuring in g and kg activities were 
direct comparisons of objects of known masses. Teachers’ explanations followed the examples and 
tasks that they did in class with learners. These were mostly instructions on how to compare objects 
using simple balances.  

Possible implications from using these identified practices in the teaching of measuring mass in grade 
4 in Malawi is that some learners may not be able to measure mass of objects in kg and g by the time 
they finish grade 4 because the teaching of mass did not prepare them adequately with the measuring 
knowledge and skills.  We also noticed that teaching is compromised by the lack of resources such 
as scale balances to use during the teaching of measuring mass. A final observation is that teachers’ 
practices are determined by suggestions from the curriculum material. Therefore, improving 
curriculum materials would provide better guidance to teachers so they can better support learners to 
develop conceptual understanding of mass measurement. 
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„That is how you do it, when you justify something in math“: 
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Promoting students’ mathematical reasoning skills is a challenging teaching goal. This paper 
exemplifies that the construct “negative discursive activities” provides a useful theoretical 
perspective to capture characteristics of class discussions that might impair students’ understanding 
of what acceptable justifications in mathematics are. By applying this construct to three episodes 
from mathematics lessons in Grade 7, an unintentional evolvement of a sociomathematical norm with 
potentially negative consequences for students’ reasoning skills is reconstructed. The core purpose 
of this paper is to broaden researchers’ understanding of interactions involved in the process of 
establishing sociomathematical norms.  

Keywords: Justification, reasoning skills, discourse, sociomathematical norms, interactions. 

Introduction 
In this paper, teaching is considered as a continuous process, in which teachers establish and maintain 
a specific classroom culture of doing mathematics, where “doing mathematics” refers to students’ 
activities when they learn and use mathematics in the classroom. According to this understanding of 
teaching, one goal of teachers’ practices in the classroom is to support students’ enculturation into 
the ways of speaking, working and thinking that are specific for mathematics. Teachers do it, among 
other things, through the negotiation of social and sociomathematical norms (Yackel & Cobb, 1996). 
Both kinds of norms pertain to normative or students’ taken-as-shared interpretations of their 
mathematical activities in the classroom. They describe what learners are expected to do in certain 
situations, e.g. when presenting their solutions to others (Yackel & Cobb, 1996). Social norms refer 
to the expected activities in class discussions, whereas sociomathematical norms to their quality. 
Examples of a social norm can be that learners are expected to explain and justify their own answers. 
Sociomathematical norms, on the other hand, regulate what is an acceptable explanation or 
justification in their class. For example, they may specify that explanations must be comprehensible 
for others and that justifications must be based on actions performed on mathematical objects known 
in the class or on properties of these objects. Both kinds of norms are not simply imposed by teachers 
and accepted by students. Instead, they are negotiated through student-teacher interactions. In this 
process teachers play a crucial role as representatives of the mathematical community in a class. They 
legitimize certain aspects of learners’ mathematical activities and sanction others by pointing them 
out as inadequate or incorrect.  

Sociomathematical norms described in research literature are commonly associated with means that 
have a positive potential to support students’ mathematical enculturation and their intellectual 
autonomy in doing mathematics, i.e. their ability to judge and decide in action on what is an 
appropriate cognitive activity in a given situation (Yackel & Cobb, 1996). Teachers can intentionally 
initiate the negotiation of these norms (McClain & Cobb, 2001). However, also negative, i.e. 
unproductive, norms can emerge unintentionally. Thereby norms are meant that might hinder the 
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mathematical enculturation of students, their intellectual autonomy or their understanding of what 
they learn. To avoid such norms, the process of their development must be understood. In this paper, 
the construct “negative discursive activities” (Cohors-Fresenborg & Kaune, 2007) is used to shed 
light on this process. The paper exemplifies that this construct provides a useful theoretical 
perspective to identify activities and interactions in class discussions that might lead to an 
unproductive sociomathematical norm. This is the pragmatic purpose of this paper. The theoretical 
purpose is to broaden teachers’ and researchers’ understanding of the role of negative discursive 
activities in interactions involved in negotiating sociomathematical norms. Given the teachers’ 
interest in improving teaching quality, this paper is also of practical relevance.  

The insights presented in this paper result from our1 reflection on a communicational pattern that we 
unexpectedly noticed when analysing instructional data from the perspective of a metacognitive-
discursive teaching quality (Nowińska, 2019) in a broader empirical study (Nowińska & Praetorius, 
2017). The following section explains the theoretical perspective that gave rise to these insights. 

Metacognitive-discursive teaching quality 
The construct metacognitive-discursive quality (Nowińska, 2019) has been developed to analyse how 
class discussions promote students’ metacognitive skills, i.e. their ability to spontaneously and 
adequately regulate (plan, control and reflect on) their own cognitive activities and comprehension in 
learning mathematics (Cohors-Fresenborg & Kaune, 2007; Nowińska, 2019). This construct has its 
roots in theoretical considerations (Flavell, 1979) and empirical findings (Veenman et al., 2004) 
indicating that metacognitive skills improve students’ learning in mathematics. Furthermore, it also 
considers the social context of learning in the classroom, in particular its role in constructing students’ 
shared understanding of what they learn in the classroom (Iiskala et al., 2011). Metacognitive-
discursive quality encompasses characteristics of class discussion that are considered favourable to 
improve the process and the effects of learning mathematics in the class by promoting students’ 
metacognitive skills. One of these characteristics is that teachers provide students with opportunities 
to engage in metacognitive activities, e.g. to plan how to approach a given question, task or problem, 
control the validity of answers and solutions generated in class discussions, and reflect on their own 
understanding of what they learn. Another characteristic is that teachers promote students’ discursive 
activities, in particular they support students in making their own cognitive and metacognitive 
thoughts comprehensible to others. That is necessary to construct a shared understanding of the 
mathematics discussed in the class. The term discourse refers thereby to a class discussion, where the 
participants make an effort to provide precise, extended explanations and justifications and to build 
on or elaborate previous contributions from themselves or others. They link their contributions to 
previous questions or comments, provide a justified agreement or disagreement on other 
contributions, paraphrase what has been said in order to avoid a misunderstanding. These are 
examples of discursive activities. Negative discursive activities, on the other hand, refer to activities 
that might impair or even hinder a discourse, and consequently also students’ shared understanding 

 
1 References to our and we are to a mathematics research team in the study presented in (Nowińska & Praetorius, 2017).   
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of the mathematics discussed in the class. Examples of these are: (NDa2) providing unclear or 
fragmentary statements/argumentations or (NDb) statements in which it is not clear what is meant, 
(NDc) providing inappropriate (with an uncommented substantial change to what was said) 
summaries  or repetitions of what was said, (NDd) uncommented change of the reference point or of 
the meaning of the issue discussed, (NDe) using false logical structure in an argumentation, and (NDf) 
asking a sequence of different questions or (NDg) asking a leading question. A metacognitive-
discursive teaching quality is characterised by teachers’ and students’ efforts to prevent negative 
discursive activities from impairing their communication in the class.  

Analysis of negative discursive activities and their effect on the learning process 
The instructional data analysed in this paper consists of three consecutive episodes selected from one 
of four lessons on locus lines videotaped in Grade 7 in Germany. The following task is discussed in 
this lesson: “The perpendicular bisector of chord ( ) of a circle with the centre A passes through 
point A. Justify why.” The episodes are chosen for this paper as representative examples of 
communicational patterns observed in all four lessons, where the students learned examples of locus 
lines (e.g. a perpendicular bisector and an angle bisector) and used their properties to justify relations 
between geometrical objects. One goal of doing mathematics in this lesson series is to foster students’ 
reasoning skills and promote their understanding on how mathematical statements can be justified by 
drawing conclusions from statements accepted as “true” or “given”, or justified before (deductive 
reasoning). Based on tasks that require this kind of reasoning, the teacher created opportunities for 
students to learn what is an acceptable justification in mathematics. At the end of this lesson series, 
however, the students were not able to decide in action what to focus on in order to provide a correct 
justification without asking the teacher if their answers are what the teacher wants them to say. 
Analysing class discussions in these lessons from the perspective of metacognitive-discursive quality 
allowed us to identify a communicational pattern based on negative discursive activities. This pattern 
might have led to the development of one unproductive sociomathematical norm of what are 
acceptable mathematical justifications in this class. It seems plausible that this norm contributed to 
the problem observed in students’ understanding of correct justifications.  

In the following, the three lesson episodes are analysed from the perspective of the negative discursive 
activities. The analytical work was done by two researchers in mathematics education who were 
trained to code metacognitive, discursive and negative discursive activities using the category system 
published in Nowińska (2019). Afterwards, it will be explained how these activities might have led 
to an unintentional evolvement of the unproductive norm.  

Episodes from the class discussion 

According to the teacher in the observed class, the learners know the definition of a perpendicular 
bisector (The perpendicular bisector of a line segment  is the locus of all points that are equidistant 
from points A and B.) and two properties of it (P1: The perpendicular bisector to a line segment is a 
line which meets the segment at its midpoint perpendicularly. P2: All points that lie on the 

 
2 The codes given here for negative discursive activities will be used to code these activities in lesson transcripts. 
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perpendicular bisector to a line segment  are equidistant from A and B.). Since in this context the 
term “locus line” is defined as a set of all points, whose location is determined by one specified 
condition, one more property of a perpendicular bisector can be concluded (P3: Every point that is 
equidistant from A and B belongs to the perpendicular bisector of the segment line AB.).  

Although a justification required in the given task can be reduced to three steps (1., 4. and 5. in the 
following argumentation), its logical structure is quite complex.  

1. The perpendicular bisector of  consists of all points that are equidistant from B and C.  
[Reference to the definition of a perpendicular bisector as a locus line (or to the property P3)  

2. Points B and C of the chord  belong to the circle line with the centre A. 
[Reference to the definition of a chord of a circle.] 

3. Points B and C are equidistant from point A. 
[Conclusion from 2. with a reference to the definition of a circle line as the locus of all points 
with the same distance to the centre of the circle.]  

4. The centre A of the circle is equidistant from B and C. 
[Conclusion from 3. with a reference to a property of the distance between two points.] 

5. The centre A of the circle belongs to the perpendicular bisector of . 
In other words: The perpendicular bisector of  passes through the centre A of the circle. 
[Conclusion form 1. and 4.] 

Episode 1: The teacher starts the discussion by constructing a circle with the centre A, a chord   
of this circle and the perpendicular bisector of   using GeoGebra and asking the following question:  

Teacher: The perpendicular bisector passes through the centre of the circle. (…) Is that 
always the case? What do you think? 

Karen:  I think so because I mean it’s called perpendicular bisector2. (NDa) 
Teacher: Mhm. Lea  
Lea: I would also say that it always passes through the centre of the circle, because it is 

a circle as well, and is equidistant to every uhm to every point, the centre of the 
circle. (NDa) 

Teacher: Mhm. Tom  
Tom:  And the line that passes through the centre of the circle always lies in the middle of 

point B and C, I mean the one that passes through to the right … so then that’s 
automatically the centre, because uhm… (NDb) 

In Episode 1, negative discursive activities, which turned to be typical for class discussions in all 
lessons videotaped in this class, can be identified. Karen’s answer refers to the name “perpendicular 
bisector”, which in German is associated with a middle (Mittelsenkrechte (Ger.) = perpendicular to 
the middle (Eng.)). She uses the word “because”, but she does not explain how the argument “it is 
called a perpendicular bisector” is to be used to justify the observed relationship. Her answer can be 
regarded as an unclear, fragmentary statement/argumentation (NDa). Lea, on the other hand, refers 
to an appropriate argument – to a property of a circle. However, likewise Karen, she does not explain 
how this argument can be used to draw the conclusion that the perpendicular bisector passes through 
the point A. Her answer has the form of an unclear, fragmentary statement/argumentation (NDa) too. 
Tom’s contribution consists of broken sentences. Based on them it is difficult to reconstruct his 
reasoning. Therefore, for the teacher and for the classmates is may by not clear what exactly he wants 
to say (NDb). The negative discursive activities observed in this episode may indicate that the 
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students lack an adequate understanding of what are precise, acceptable justifications. As a 
consequence of these activities it might be difficult for the classmates to grasp logical relations 
between the given arguments and the relationship to be justified.  

Coding the learners’ contributions as negative discursive activities does not mean that their reasoning 
is fundamentally wrong or irrelevant for the intended argumentation, nor does it mean that perfectly 
articulated justifications are expected there. These codes are used to mark parts of the discussion that 
clearly indicate opportunities for the teacher to explicitly negotiate with the students what acceptable 
justifications are. Instead, the teacher implicitly accepts the contributions (“Mhm.”) without 
challenging the students to explain their reasoning.  

Episode 2: Following Tom’s answer from Episode 1, the teacher asks: 
Teacher: Have you noticed what those, who have answered the question, actually have done? 

What have they paid attention to? How have they justified their opinion, their view? 
What kinds of arguments have they used? Felix. (NDf) 

Felix: Because the circle is round, and B and C are always the same distance away from 
A. And then uhm that’s where that comes from. (NDd) 

Teacher: Mhm. Exactly. Right. One argument is the one about the circle. There has been 
another argument, or another justification, that has been brought up. (4 sec) Ines. 

Ines: I also think it’s the case, that it always passes through the centre, because… The 
perpendicular bisector divides the lines into right angles, so to speak, and that is 
why that is, I think, that it’s always like that. (NDb) 

Teacher: Mhm, what do you say to Ines? (15 sec) Where in the circle do you have right 
angles? 

Ines:  Well, I mean, if you … if you divide a circle in four equal sized halves, you get four 
right angles, that’s what I meant. (NDb) 

The teacher tries to make students’ answers from Episode 1 explicit objects of the class discussion. 
In doing so, she asks a sequence of different questions one after the other (NDf). This may impede a 
clear course of the subsequent class discussion and is therefore to be coded as a negative discursive 
activity. Each of these questions does definitely have the potential to initiate students’ reflection on 
the logical structure of the arguments mentioned in Episode 1 and to explicitly negotiate the meaning 
of an acceptable justification – of what a justification is based on and how it is used. However, the 
subsequent reactions indicate that this potential is not productively used. 

Felix seems to refer to Lea’s answer, but he changes the meaning of her argument (NDd). Lea named 
a property of the point A, whereas Felix describes a property of the points B and C. He does not make 
a mistake here, but he shifts the focus of attention from the centre of the circle to points B and C on 
the circle line. This activity has the consequence that even more argumentation steps would be needed 
to justify the relationship in question (see steps 3.-5. in the argumentation). Since Felix responds to 
one of the teacher’s questions about the arguments mentioned by others, his utterance is not a new 
unclear and fragmentary utterance/argumentation. The teacher explicitly expresses her acceptance of 
the given answer. She stresses the reference point of this argument (“the one about the circle”) and 
suggests that another relevant argument can be found in Lea’s and Tom’s answers. Her statement has 
the potential to initiate students’ reflection on their own understanding of their classmates’ arguments. 
Unfortunately, Ines does not directly respond to the teacher’s contribution. Instead, she expresses her 
own reasoning. In doing so, she changes the reference point of the conversation without any comment 
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on this change (NDd). This activity might impair the clarity of the discussion. Furthermore, in her 
first answer Ines refers to the results of actions on objects that cannot be interpreted unambiguously 
(“the lines [divided] into right angles”). Therefore, there is a risk that for the teacher and for her 
classmates it is not clear what exactly she means (NDb) there. Particularly, she does not make it clear 
which “lines” she refers to. Her answer is the only one, where the teacher asks for clarification. 
Unfortunately, also in her second answer Ines refers to the results of actions on objects that cannot be 
unambiguously interpreted (“the circle [divided] into four equal sized halves”). Consequently, it 
might still be unclear for others what she means (NDb). Thus, in Episode 2, the teacher explicitly 
accepts justifications based on imprecise arguments “about the circle”. Implicitly she does not accept 
justifications based on ambiguously described mathematical objects or actions. As far it is left to the 
learners themselves to interpret how the accepted argument can serve as a justification for the 
relationship described in the task.  

Episode 3: 

Teacher: (…) Ines wanted to link the circle and the perpendicular bisector, their properties. 
And you guys also mentioned the properties of the circle before. Lea did it first and 
Felix just picked it up again. So, what you did is that you looked at the properties 
of the circle. The points B and C of the circle are always equidistant to A. And you 
also used another argument. You also linked the circle and the perpendicular 
bisector, just like Ines tried to do again just now. What did you say and what did 
you use about the perpendicular bisector? (4 sec) You also used these in your 
statements, maybe you weren’t even aware of it, again the properties of 
perpendicular bisectors used. Which ones? (5 sec) Eva. (NDc, NDg) 

Eva:  Every point on the perpendicular bisector has uhm is equidistant uhm to B and C. 
Teacher: Mhm, exactly. That is what you used. Sometimes you didn’t even say that directly 

because we have always talked and known about that in class. And so that is what 
you used: B and C are equidistant to the perpendicular bisector and the centre of 
the circle is equidistant to both points as well. And that is what you linked to justify, 
that the centre of the circle A has to be on the perpendicular bisector. That’s actually 
a useful strategy or that is how you do it, when you justify something in math, that 
you take different properties of different objects and try to link them and to look for 
connections. (NDe, NDc, NDa) 

The teacher’s comments in Episode 3 indicate a typical feature observed in all four lessons videotaped 
in this class. She interprets Ines’ contributions in Episode 2 as an attempt to “link” the properties of 
the circle and those of the perpendicular bisector. Ines mentioned both concepts, but clear attempts 
to “link” them cannot be observed in her statements. Therefore, a part of the teacher’s comment can 
be regarded as a summary with a substantial change to what was said (NDc) and to what can be 
interpreted unambiguously with regard to the learners’ reasoning. The “links”, i.e. the logical 
relations between the properties of the circle and those of the angle bisector, are not made explicit at 
any point in the class discussion. This would be, however, necessary for the students to understand 
the logical structure of the intended justification, and to construct a shared understanding of how 
arguments are to be used to provide an acceptable justification.  

Since no student answers the teacher’s question “What did you say and use about the perpendicular 
bisector?”, the teacher changes it to a leading question (NDg) about “Properties of the perpendicular 
bisector”. In her second comment, the teacher points out that the pupils did not explicitly mention 
this property. Despite this fact, she does not specify the expected chain of arguments and the 
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conclusion derived from this property, nor does she clarify the logical structure underlying the 
intended justification. In her second contribution, she suggests that since this property is a part of the 
knowledge shared in the class, it did not need to be explicitly mentioned. This comment might cause 
the learners to feel not obliged to express their reasoning precisely and in a way that can be understood 
by others.    

The argumentation given by the teacher in her second comment in Episode 3 indicates a false logical 
structure (ND3e). The teacher should have used the property P3 instead of P2. P3 describes conditions 
that must be fulfilled for a point to belong to the perpendicular bisector. P3, on the other hand, 
describes properties of points that are known to belong to the perpendicular bisector. This comment 
is not to be understood as a negative discursive activity just because it includes a mistake. The reason 
for coding it as a negative discursive activity is that this mistake makes it more difficult for others to 
understand how the teacher generates her justification based on the mentioned properties of 
mathematical objects. Moreover, the teacher’s comments differ from what the students actually said 
(NDc). No student said that B and C are equidistant to the perpendicular bisector. Since this argument 
is not relevant for the intended argumentation, this comment must be regarded as an unclear and 
fragmentary statement/argument (NDa). For the learners, it might be unclear how the arguments 
mentioned by the teacher should be “linked” together to form an adequate justification. Consequently, 
the learners must find their own interpretation of the statement “that is how you do it, when you 
justify something in math, that you take different properties of different objects and try to link them 
together and to look for connections”. One possible interpretation, supported by the way how the 
teacher provides the final justification, is that of linking together as collecting properties of 
mathematical objects given in a geometrical representation; for an acceptable justification, the 
arguments on which a justification is based must refer to unambiguously described mathematical 
objects or actions.   

Conclusion 
The negative discursive activities identified in the three episodes occur in all four lessons videotaped 
in this class and create a pattern with the following regularities: (1) The students make an effort to 
provide justifications based on their knowledge about mathematical objects given in a particular 
geometrical representation, but their justifications lack precision with regard to the language and 
logical structure. (2) The teacher usually does not comment on students’ imprecise answers nor does 
she provide comments that could help the students improve their reasoning. Instead, she implicitly 
accepts arguments and justification despite their negative discursive character. Only if students’ 
contributions refer to ambiguously described mathematical objects, the teacher asks for a 
clarification. In doing so, she implicitly negotiates the boundaries of what is an acceptable 
justification. (3) The teacher inaccurately summarizes the students’ contributions. There she gives an 
answer to the question under discussion without referring very precisely to the learners’ previous 
answers. Her explanations support the interpretation of justifications as collections of arguments 
related to mathematical objects.  

Since the regularities occur in all four lessons, the students seem to have it as a rule that the teacher 
“summarizes” their contributions and gives the expected answer or solution. This is evidenced by the 
fact that they often try to guess what the teacher expects them do say (e.g. “Do you mean this?”) and 
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do not question the teacher’s “summaries”. Their behaviour can be interpreted as acting according an 
unproductive sociomathematical norm. According to this norm, acceptable justifications are 
collection of properties of clearly named mathematical objects. This norm promotes activities and 
interactions that are unproductive in the sense that they impair students’ understanding of 
mathematical justifications and their reasoning ability.     

The paper has demonstrated that negative discursive activities can be used to capture interactions in 
class discussions that might lead to unproductive sociomathematical norms. In class communication 
negative discursive activities cannot be completely avoided and this should not be an idealistic 
teaching goal. Moreover, not each negative discursive activity necessarily implies negative 
consequences for students’ understanding. The consequences depend on whether teachers accept 
these activities or rather sanction them and use them as learning opportunities to negotiate ways of 
thinking and talking that are specific for mathematics. In the first case, there is a risk that unproductive 
sociomathematical norms emerge. The negative norm identified in this paper indicates a challenge 
for teachers’ educators to make teachers aware of consequences that negative discursive activities 
might have for students’ learning and to enable teachers to productively deal with these activities.  
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In this paper, we showcase a method of identifying opportunities during the lesson where the 
communicational patterns go beyond the mathematics of the moment, namely beyond the boundaries 
of the curriculum. Drawing on the literature around Horizon Content Knowledge and building on the 
Theory of Commognition, we look at a lesson from one teacher and study instances where her 
communication with the students goes beyond the mathematics of the moment. Our analysis identifies 
three types of opportunities (manifested, potentials of the discussion and potentials of the task). 
Further analysis of manifested opportunities indicates that intersubjectivity is a characteristic of the 
discourse of the teacher at the mathematical horizon. 

Keywords: Discourse, mathematical horizon, teaching practices, mathematics. 

Introduction 
This paper reports on preliminary results from the first author’s doctoral study that aims to explore 
in-service mathematics teachers’ discourse that goes beyond the boundaries of the curriculum, what 
is described by Ball and Bass (2009) as “the larger significance of what may be only partially revealed 
in the mathematics of the moment” (para. 17, our emphasis). The importance of this idea has been 
described in the literature in connection to teacher actions in response to students’ contributions and 
towards addressing students’ learning needs (Ball & Bass, 2009). However, the boundaries of the 
curriculum, even more going beyond them, are not always identifiable. Initially, this study, in its 
effort to describe such boundaries, was inspired by Ball and colleagues’ idea of the Horizon Content 
Knowledge (HCK), one of the mathematical domains of the Mathematical Knowledge for Teaching 
(MKT) model for teacher professional knowledge: 

an awareness – more as an experienced and appreciative tourist than as a tour guide – of the large 
mathematical landscape in which the present experience and instruction is situated. (Ball & Bass, 
2009, para. 17)  

HCK is theorised to influence, among others, teaching practices related to noticing and evaluating 
mathematical significance in what the students are saying, foreseeing and making connection across 
educational levels and disciplines and evaluating opportunities (Ball & Bass, 2009). So far, several 
studies drew on the idea of the HCK with variations in the use and the narratives about the ‘horizon’ 
metaphor (see also Papadaki, 2019). Evidence of the role of the HCK in the quality of teaching relys 
on these different uses and narratives of the ‘horizon’ metaphor. In our work, we argue that bridging 
the gap between an all-encompassing mathematical knowledge for teaching and teaching practices 
aiming to enrich the learners’ experience of mathematics as a subject, could lessen the reliance on the 
metaphor. To this aim we propose a discursive approach to the “horizon” embedded in the 
communicational patterns of the classroom. Specifically we draw on the commognitive theory (Sfard, 
2008) to address the theoretical and methodological question: How can we identify opportunities 
during the lesson where the communicational patterns go beyond the mathematics of the moment? 
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Theoretical background 
To study the communicational patterns in the mathematics classroom, we use the Theory of 
Commognition (Sfard, 2008). According to this theory, a discourse is signified by four elements: 
word use, endorsed narratives, visual mediators and performed routines. Thus, mathematical 
discourse is the type of communication signified by specific word use (e.g., ‘circles’), visual 
mediators (e.g., diagrams, symbols), endorsed narratives (e.g., theorems, definitions) and routines 
(e.g., calculating angles). Learning of mathematics is conceptualised as change in learners’ discourse 
(Sfard, 2008). Tabach and Nachlieli (2016) define teaching as “the communicational activity the 
motive of which is to bring the learners’ discourse closer to a canonic discourse” (p. 303). In this 
study, the canonic discourse is the Mathematical Discourse1 of the class which is confined by the 
curriculum. The role of the teacher in mediating changes is vital. The Mathematical Discourse for 
Teaching (MDT) model (Cooper, 2016; Mosvold, 2015), an adaptation of the MKT, provides a basis 
to study teachers’ discourses shifting the attention to word use, narratives, visual mediators, routines 
and “the kinds of mathematical activities that are valued” (Cooper, 2016, p. 21).  

MDT consist of two main Discourses that could be viewed as a way to partially distinguish between 
mathematical narratives situated in the social context of the classroom (Mathematical Discourse) and 
pedagogical narratives situated in the context of teaching mathematics (Pedagogical Content 
Discourse). The two Discourses are distinguished into six sub-Discourses. One of them is the 
Discourse at the Mathematical Horizon (DMH), which is described as “patterns of mathematical 
communication that are appropriate in a higher grade level” (Cooper & Karsenty, 2018, p. 242). In 
our work DMH spans across the Mathematical and Pedagogical Discourses and regards the 
recognition of mathematical as well as pedagogical significance in students’ work beyond the 
mathematics of the moment by addressing, for example, issues of content (e.g., ‘what should be 
learnt’) and access (e.g., ‘who should learn’). 

So far, the MDT has been used in the context of teachers’ professional development (e.g., Cooper, 
2016; Mosvold, 2015). However, in our work we aim to identify and analyse aspects of DMH in 
lesson observations, where Mathematical and Pedagogical Discourses are intertwined in teaching 
actions. To this purpose, we encompass recent developments of the Theory of Commognition. We 
are interested in identifying teaching practices, seen as routines performed by the teacher in the 
mathematics classroom, that go beyond the expected Mathematical Discourse of that classroom. 
Attending to the mathematical elements of the communication between teacher and students could 
provide evidence about mathematical aspects of DMH. To account for pedagogical aspects, we adopt 
Nachlieli and Elbaum-Cohen’s (2021) view that teaching practices could be considered as objects of 
Pedagogical Discourse. Furthermore, to investigate situations in which the communication between 
the teacher and her students makes or does not make sense at both ends, we use the notion of 
intersubjectivity, namely “an action that makes sense from the perspective of two discourses – the 
learner’s and the expert’s–which may be incommensurable” (Cooper & Lavie, 2021, pp. 8–9).  

 
1 Here, the term ‘Discourse’ denotes community established patterns of communication while ‘discourse’ is used to refer 
to the individualised version of that communication between the interlocutors. 
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Data and methods 
The study is conducted in England and participants are secondary school mathematics teachers, their 
students and teacher educators. In England, schools develop a program of study following the 
guidelines of the curriculum for Key Stages 3 and 4 (KS3, ages 11 to 14 and KS4, ages 15 to 16) and 
the specifications of the qualification provider the school collaborates with. Thus, what students are 
expected to learn each year varies across schools. Mathematics teachers prepare their lessons using 
resources available on the internet, textbooks or their school’s repository. Data of lesson observations 
consist of an audio recording of the lesson and notes produced by the first author during the 
observation and revised shortly after. The notes include recreations of the writings on the board, the 
slides used by teachers and accounts of their actions during the lesson. The lesson was transcribed, 
we also produced a factual account summarising the lesson. The data collection process complies 
with the code of ethics of the University of East Anglia. 

The analysis of the data consists of four phases. First, we created a template to study teacher’s 
contributions by dividing each lesson into sections according to the actions of the teacher (e.g., talking 
to groups of students, introducing a task, initiating a whole class discussion etc.). Second, all sections 
were coded in relation to the mathematical objects (e.g., angles) and/or practices (e.g., measurement 
of angles) accounting for the discursive elements (word use, visual mediators, narratives, and 
routines) identified in each section. By comparing the codes with the topic of the lesson, as identified 
by the teacher and the specifications of the curriculum, we eliminated the sections that were directly 
related to what the students are expected to learn during the academic year. We regarded the 
remaining sections as opportunities to engage in communication beyond the mathematics of the 
moment and proceeded analysing them further. Thirdly, we categorised the identified opportunities 
in three groups: potential of the task (the mathematical object or practice is not made explicit during 
the lesson, it is only attributed by the analysis), potential of the discussion (the mathematical object 
or practice is made explicit in the lesson but is not addressed by the teacher), and manifested (the 
mathematical object or practice is made explicit and addressed by the teacher during the lesson). 
Finally, we revisited the opportunities proposed in the third phase to identify deviations or alignments 
in teacher-students communications from the intersubjectivity perspective.  

Exemplification of the analysis: The lesson of the ‘nine-point circle’ 
Here, we draw on one lesson of a newly qualified mathematics teacher, Liz (alias), and her 11-year-
old students. The students are in Year 7, the first year of lower secondary education. Liz designed the 
lesson by combining resources available on the internet and the school’s repository. For her lessons, 
Liz shares slides on the interactive whiteboard. At the beginning of the lesson we discuss here, Liz 
invited the students to calculate the value of an angle in a composite shape. Figure 1, depicts the main 
task of the lesson that consists of four parts (1, 2, 3 and 4). The common characteristic of the parts is 
a circle with nine equally spaced points on its circumference. Liz referred to this shape throughout 
the lesson as “the nine-point circle”. In part 1, the students were asked to identify all the different 
triangles with one vertex on the centre of the circle and the others on two of the nine points and 
calculate their angles. In part 2, they were asked to find a way to calculate the angles in a triangle 
with all the vertices on the circle. In part 3, the students were asked to find their own triangles by 
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joining three points on the circle and work on their angles. Finally in part 4, Liz asked the students to 
calculate the angles ACB and ADB and tell her if they notice anything. By the end, Liz pointed out 
that the observation made in part 4 was related to one of the ‘circle theorems’ included in the highest 
band of their qualification requirements (GCSE, acquired at age 16).

In this lesson, we identified four opportunities to engage in communication beyond the mathematics 
of the moment. Two of them were categorised as manifested (‘auxiliary lines’ and the ‘Star-Trek 
lemma’), one potential of the discussion and one potential of the task. In the following sections, we 
present the opportunities alongside the curriculum expectations.

Figure 1: A recreation of the main task of the lesson

Manifested opportunities to go beyond the mathematics of the moment

Auxiliary lines: The completion of the main task, requires drawing auxiliary lines (i.e., additional 
lines) in order to divide the inscribed triangle in part 2 appropriately and calculate its angles. The
process of drawing auxiliary lines was used by Liz as an approach to tackle an open problem.

Liz: Yeah. Right. [slide of part 2 on the board] So, I’ve got a slightly trickier question 
for you now. So here is a triangle formed by joining three dots on the edge of a 
nine-point circle, nine-point circle [points towards the diagram]. However, this time 
it doesn't go through the centre. Can you work out the angles of this triangle?

The process of drawing additional lines is not new to students at this age. As part of their primary and 
secondary school education, the students are expected to use auxiliary lines for the purposes of 
calculating the area of composite shapes or identifying a line of symmetry. Highly attaining students 
are also expected to learn to use auxiliary lines when proving certain theorems, in known situations, 
at the end of KS4, but not at Year 7. Also, this task requires the students to explore unfamiliar to them 
situations where auxiliary lines are necessary. Similar uses of auxiliary lines are observed in more of 
Liz’s lessons suggesting that engagement with this process was not an one-off event.

Initially, Liz prompts the students to explore possible ways of tackling the problem. The students try 
to measure or estimate the angles of the given triangle. Five minutes later, she addresses the class:

Liz: […] it's taken him [student A] quite a long time to ask me a really, really good 
question. But, I think I should share it with everybody. He said, can I split it up into 
other triangles.

Student B: Oooh.
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From a commognitive perspective, drawing auxiliary lines to modify the triangle in an appropriate 
way is a routine. For student A, the initiation of this routine is prompted when other routines failed. 
However, he requested Liz’s approval before moving on. For other students the initiation was 
prompted by the teacher: 

Liz: Yeah, I'm not going to tell you the answer. I'm going to show you the clue. So, this 
is the clue. [draws three line segments from the centre to the edges of the triangle]  

Student C: Oh. 
Liz: […] if you can split it into other triangles and using the triangles where we can 

where we can start. We know some facts, don't we? An isosceles triangle is nice. 
I'm not trying to find three unknown angles now, am I? I know that two are the 
same. […] plus we did all that work beforehand. 

Here the procedure is presented to the students as a “clue”. The use of the word could signify a step 
to a direction that was previously hidden from the students who are now invited to follow this clue to 
complete the task. The use of the phrase “split up into other triangles” and the absence of words like 
‘draw’, ‘line segment’, that are usually present in formal geometric proofs, indicates that the 
discussion is mediated by the specific drawings of the task (Figure 1). We interpret the use of these 
words as evidence of intersubjectivity. For the students, this task is a new situation where they need 
to draw additional lines to solve a problem - similar to what they are doing when they are asked to 
calculate the area of a composite shape. While for Liz, this is a routine towards the modification of a 
shape in order to use properties established in earlier stages of a task. This routine is not part of the 
canonic discourse (Tabach & Nachlieli, 2016). Liz presents the students with a broad spectrum of 
situations that promote the routine of auxiliary lines beyond the requirements of the curriculum of 
Year 11. The instance presented here illustrates her teaching practice of providing gradual support to 
her students, of expanding the applicability of the routine and of establishing this process as 
conventional in geometric reasoning. Evidence of this practice were observed across Liz’s lessons. 

The Star-Trek lemma: Liz uses the ‘nine-point circle’ to introduce her students to a theorem about 
angles in circles also known as the Star-Trek lemma: 

The angle subtended by an arc at the centre is twice the angle subtended at the circumference.  

Liz presents the last part of the main task (part 4, Figure 1) as a challenge to the students: 
Liz: So, I'm going to give you one last challenge, which is to take a look at this. [Liz 

puts up the slide with part 4 of the task]. And you're going to need to start 
calculating the angles and see if you notice anything. So, I'd like you, actually we 
can start from, we've got a starting point, haven't we? We know this angle here. 

According to the curriculum, the Star Trek Lemma, named after the resemblance of the logo of the 
popular series, is one of the theorems that only highly attaining students are expected to learn to prove 
and apply during KS4. According to the school’s program of study, Liz’s students might come across 
circle theorems in Year 11 (age 16), subject to their grades until then, but not at Year 7.  

The analysis shows that with the help of the nine-point circle and building upon the previous parts of 
the task, Liz and the students have an opportunity to go through the main ideas of the proof of the 
Star-Trek lemma despite not having yet engaged with algebraic routines and relevant terminology 
(e.g., arc, subtended, etc). Throughout the lesson, Liz and the students communicate using the words 
‘angle’, ‘triangle’, ‘circle’ and ‘point’ or ‘dot’. The new narratives about angles can be negotiated 
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through routines and other narratives endorsed in previous lessons or earlier parts of the task. In the 
lesson students engage with simple algebraic routines based on the visual mediator of ‘the nine-point 
circle’ in comparison to the proof of the lemma seen later in KS4. Table 1 illustrates our 
reconstruction of the narratives observed during the lesson (left column) alongside a canonic proof 
of the lemma seen in KS4 (right column). To produce the reconstructed narrative, we collated parts 
of the recording and the notes in a way that corresponds with the steps of the proof. 

Table 1: Reconstruction of narratives observed in lesson (left) and a canonic proof seen in KS4 (right) 

The nine-point Circle task A proof of the Star-Trek Lemma 

 

 

 

[Spliting the shape into the triangles 
ACD, ACB and CDB.] 

 

Draw AB and the radius CD. 

On the diagram angle ADC=x and 
CDB=y.  

Therefore, ADB=x+y 

Liz: Two sides when I'm going from the centre point 
out to the edge of my circle, that line there is exactly the 

same distance as that line there. 

DCA=160o [task 1/angles around a point] 

ADC=10o because the triangle is isosceles. 

ACB=120o 

BCD=80o [task 1] 

CDB=50o because the triangle is isosceles. 

ADB=60o  

Student: Mmm, Double! 

 

Angle CAD=x because the triangle ACD is isosceles, 
CA=CD radius of the circle. 

And DCA=180o-2x (i)  

Also, angle DBC=y because the triangle DCB is 
isosceles, CB=CD radius of the circle. 

And BCD=180o-2y (ii) 

ACB+DCA+DCB=360o because angles around a point 
sum up to 360o. 

From (i) and (ii): 

ACB+180o-2x+180o -2y=360o  

ACB=2x+2y  

ACB=2(x+y)  

ACB=2ADB 

The students are not yet familiar with advanced algebraic routines, such as rearranging algebraic 
equivalences with more than one variable. However, with the mediation of ‘the nine-point circle’ Liz 
and the students negotiate the Star-Trek lemma and its proof, using an example where the angles can 
be calculated. Students are familiar with routines such as using angle facts to substantiate their actions 
or naming unknown angles towards their calculating. Additionally, drawing auxiliary lines was 
introduced in part 2. The action above led Liz to conclude: 

Liz: […] this angle here [centre] will always be double the size of that one there 
[circumference]. 
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Phrases like “this angle here” and “that angle there” act as placeholders for missing words that the 
students might come across in the future. Liz is aware of the words but does not name them to her 
students. Yet, the constructed narrative make sense both from the perspective of Liz, as an application 
of the Star-Trek lemma, and to the students, as an observation that can be confirmed following the 
steps of the task. Also, she uses the word “always” to signpost the generality of the argument. The 
task and Liz’s actions gear students towards constructing a narrative about the two angles by the end 
of the lesson. Actions beyond the mathematics of the moment are seen here as she engages students 
with mathematical content that students might see in the future in ways that are accessible to them.  

Potentials of the discussion and the task to go beyond the mathematics of the moment 

We also identified potential opportunities where the discussion could go beyond the mathematics of 
the moment but were not addressed by Liz. In part 3, the students are asked to create as many different 
triangles as they can by joining three points on the ‘nine-point circle’, during a specified time. An 
opportunity that emerged regards the total number of the different triangles: 

Student: Miss, do you have us drawing thousands of triangles? 
Liz: Are there thousands of triangles to find? 
Student: Yeah… [Liz moves on] 

Later, Liz makes the following comment during the whole class discussion: 
Liz: There are, I believe there are about thirty-six different triangles that you can make 

out of this. There are lots. But we're running out of time, so I can't show you and I 
can't load up the the document I wanted to show you. 

Time limitations and technical difficulties seem to be the reason why this opportunity did not 
materialise despite Liz’s intentions. Determining the exact number of different triangles relies on 
observations about congruent shapes which is part of the students’ compulsory education, as well as 
elements of problem solving and combinatorics that go beyond the mathematics of the moment. 

Finally, one opportunity we observed emerging from the task is to use the same visual mediator, the 
‘nine-point circle’, to introduce more circle theorems e.g., exploring the angles of cyclic polygons. 
As mentioned earlier, circle theorems, including cyclic quadrilaterals, could be mentioned in KS4. 

Discussion and Conclusion 
The analysis yielded opportunities to engage in mathematical conversation beyond the mathematics 
of the moment. Some of these opportunities were taken (manifested) and others were missed 
(potentials of the discussion and the task). Using intersubjectivity, we discuss opportunities that 
materialised during the lesson, to identify the elements of the teacher communicational patterns at the 
Mathematical Horizon. The teaching actions exemplified here, regard Liz inviting her students to 
endorse intersubjective narratives (the Star-Trek lemma with word use and routines which are 
accessible by the students) or to perform intersubjective routines (auxiliary lines prompted by 
teacher’s ‘clues’). We observed Liz and her students using words, endorsing narratives and perform 
routines that make sense from both teacher and student perspectives through the mediation of the 
‘nine-point circle’. Liz’s expectation is that students, with her support would utilise known routines 
to justify their arguments mathematically. Our observations are in line with nested routines and ritual-
enabling opportunities to learn as stepping stones for the students to enter a new discourse (Nachlieli 
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& Tabach, 2019). The missed opportunities identified here indicate that the communication might be 
constrained by factors such availability of time and resources or teacher’s priorities. 

The data reported here, illustrate a theoretical frame and a method of analysis to account for teaching 
situations where the communication goes beyond the boundaries of the curriculum. We consider the 
opportunities discussed here as evidence of DMH and, thus, contributes to the work on how DMH is 
conceptualised and investigated in research. The identification of opportunities (manifested and 
potential) can be utilised to determine what facilitates or hinders the opportunities to go beyond the 
mathematics of the moment. What, for example, does stop teachers to act upon students’ contributions 
that have potential for a discussion that goes beyond the mathematics of the moments? How could 
these discussions be beneficial to students? These are the next steps of our work on the analysis of 
data collected from teachers (interviews and class observations) and teacher educators (interviews). 
In our work, our attention is on teachers: we study their narratives and how they react to student 
contributions. We note, however, that this study does not explore connections between DMH and 
students’ learning. Finally, what we discuss here is connected to our own horizons as mathematicians 
and mathematics education researchers. Therefore, further research and collective work will give a 
nuanced view of DMH and its implications in teaching and teacher professional development.  
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This article is part of the Theatre in Mathematics project (TIM), where we use drama and roles to 
involve students’ actively in their learning of mathematics. In this article, we report on the use of 
roles in group work in mathematics. The data comes from one group of six students that were given 
roles to use during joint task solving, and the analysis is based on transcriptions from the lesson. In 
this particular group, two of the students enacted the role of the curious very actively. We find that 
these two ask almost all the questions. Looking further into it, we find four types of questions that are 
most frequent: requesting answers and claims, requesting explanation, requesting evaluation and 
clarification, and requesting argumentation. The last three types are essential parts of explorative 
talk, and we conclude that our study has illustrated how an active role of curios can move the 
discussion forward in ways similar to explorative talk. This study is an example how the teacher can 
shift the focus from teacher questioning to student questioning in the mathematics classroom.   

Keywords: Positioning, interactions, roles, explorative talk. 

Introduction
Our experience from the classroom indicates that many students rarely participate in discussions in 
mathematics. There are several reasons for this, ranging from some students taking a dominant 
position that makes other students passive to students lacking sufficient self-confidence in 
mathematics to dare to express themselves in the classroom. The background for this project was to 
explore whether we could change the classroom discourse by giving the students different roles and 
positions, and if this could lead to a more exploratory talk in mathematics and if more students will 
be actively involved in the mathematical discussions. This included a shift in focus from searching 
for the correct answer in mathematics to discussion, argumentation, and in-depth explanations. 

Both Mortimer and Scott (2003) and  Mercer and Wegerif (2002) describe different types of 
classroom discourse. Mortimer and Scott (2003) suggest four communicative approaches, where one 
is preferable (the interactive-dialogic approach) as it gives room for several points of view and allows 
several persons to participate. In the same way do Mercer and Wegerif (2002) present three types of 
talk where one is preferred. In explorative talk, all partners actively participate, opinions are sought,
and decisions are jointly made. This means that the interactive-dialogic approach and explorative talk 
both emphasize participation and openness to different ideas. Through positioning theory, we might 
explain and understand why not all classrooms look like this. We can even use positioning theory as 
a mean to change the classroom towards the ideals of Mortimer and Scott (2003) and Mercer and 
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Wegerif (2002). In this article, we report from a European project called Theatre in Mathematics 
(TIM), where we use positions, roles, and drama to create classroom discourses characterized by 
active participation, openness for ideas, and a clear focus on questions, challenges, explanations, and 
arguments. Our research question for this article is: How can assigned roles and positions, particularly 
the curious role, foster a more interactive and explorative talk in mathematics? To answer this 
question, we needed a framework capable of describing student interactions on a turn-by-turn basis. 
As we could not find one that suited, we developed one based on literature.  

Theory
Mortimer and Scott (2003) suggest a model that describes teacher’s communicative approach along 
two dimensions (table 1). The first is the authoritative-dialogic dimension, which refers to whether 
only one point of view (authoritative) or more than one point of view (dialogic) is paid attention to. 
The second dimension is the interactive-non-interactive dimension that separates between approaches 
that include or exclude people from participating. 

Table 1: Communicative approach (Mortimer & Scott, 2003, p. 35) 

INTERACTIVE NON-INTERACTIVE

DIALOGIC A Interactive/Dialogic B Non-interactive/Dialogic

AUTHORITATIVE C Interactive / Authoritative D Non-interactive / Authoritative

The result is four different communicative approaches, where the interactive-dialogic approach, 
which opens for several points of view and includes participants, is preferred. Another one is the 
interactive-authoritative, where the teacher allows students to participate, but there is only one point 
of view. This has apparent similarities with the IRE pattern (Initiation-Response-Evaluation) 
(Cazden, 1988; Mehan,1979), as the students typically are allowed to answer questions and tasks but 
rarely allowed to introduce other points of view by initiating new ideas or evaluating. 

While Mortimer and Scott (2003) present a model for a teacher’s communicative approach, Mercer 
and Wegerif (2002) look at the dialogue per se and suggest three general types. The first is the 
cumulative talk in which each interaction builds on the prior one, in a positive and supportive way, 
but also uncritically. Repetitions, confirmations, and elaborations characterize cumulative talk, and 
only one idea is heard. The second is the disputational talk which is characterized by disagreement 
and individual decision making. Even though multiple ideas are heard, there is no genuine attempt to 
understand each other. Instead, it is characterized by assertions and challenges, and the participants 
are trying to win the discussion. The third is the explorative talk, where the participants engage 
critically but constructively, and multiple ideas are accepted and even wanted. It is also typical that 
suggestions are offered, justified, and challenged. It is characterized by making knowledge publicly 
accountable and making reasoning visible as part of the talk. While explorative talk is preferred by 
Mercer and Wegerif (2002), the characteristics of Mercer’s categories are further explained and 
nuanced by Sjåstad (2018). A central argument that Sjåstad (2018) argues that all three types of talk 
have some positive sides. For example, the cumulative talk might be consensus-based or explanatory,
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and particularly the latter has potential for learning even though only one idea is discussed because 
the idea through discussion is modified. Also, disputational talk may be argumentative or true 
disputational, and the first has potential for learning even though they do not try to agree because 
their ideas are substantiated (Mork, 2006; Sjåstad, 2018).

However, how do we identify the different types of communicative approaches or talk? One way to 
do so is to study the discourse on a turn-by-turn basis. Scholars have developed a wide range of 
concepts describing different types of interactions, and some have also developed frameworks. One 
such is the inquiry co-operation model by Alrö and Skovsmose (2004), suggesting eight types of 
interactions that both teachers and students use: getting in contact, locating, identifying, advocating, 
thinking aloud, reformulating, challenging, and evaluating. Another framework that separates 
teachers' and students’ interactions is suggested by Drageset (2014, 2015 ), which describes four main 
types of student comments: (mere) answers to mathematical questions, explanations, initiatives, and 
evaluations. Such frameworks, and their concepts, are helpful when trying to characterize different 
types of communication in the classroom, based on a turn-by-turn analysis.

While it is well established that a turn is dependent on the prior turn (Linell, 1998), communication 
is more than responding to prior turns. For example, some students never talk even when invited in 
by the teacher, while others tend to dominate any discussion. This might be explained by using 
positioning theory. According to Harré and Van Langenhove (1999), people have preferences that 
guide their position in social settings and discourse. Also, taking a position could affect other 
positions, so positioning may not be taken freely but instead a negotiation. Such positions, and 
positioning of others, could be intentional sometimes and unintentional at other times. For example, 
if one student position herself as a helper for those who do not understand during group work, this is 
also a way to position someone else as needing help. Also, if one or two positions themselves as a 
solver of a task, this might exclude or passivate others.  

Roles relate to positions. Roles are a central part of any drama, and even though roles are used in 
many ways (Drageset et al., 2021), two key factors separate roles in drama from positions. One is that 
roles include fiction, while positions do not. The other is that you are always aware of playing a role, 
while you are not always conscious of your positioning and how this affects your surroundings. At 
the same time, there are apparent similarities as it is possible to choose both a role and a position 
deliberately, and it is possible to change to another role or position deliberately. In the TIM project, 
we use limited roles (which we call role categories) to make students aware of possible positions they 
can take in the classroom and give them experience in taking them and changing between them. One 
such role category is the curious, a role where you ask questions until you understand, sometimes 
rather insistent. It is well known that asking questions may be a scary thing to do as one might be 
seen as dumb, but when you are given the role of curious, you are asking because it is your task. 
Another role is the skeptic that tries to find other solutions or challenge ideas. We also use the role of 
authority, where this is a democratic authority that requests arguments and explanations and several 
points of view before deciding. Furthermore, we use a mediator that tries to find common ground for 
a joint decision. Then we try to establish these roles as positions in the classroom by giving students 
roles and encourage them to use the given position in the discussion around the math problems. 
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To study the dialogue, we have built an analytical framework based on the above theory. The starting 
point was a limited search for concepts that could describe student interactions in a group-work setting 
(without teacher participation). Then we grouped the concepts in different ways and arrived at seven 
quite distinct types of student interactions (see table 2). The framework was also adjusted during the 
analysis.

Table 2: Analytical framework describing seven main types of student interactions

Code Description Developed from

Answers & 
claims

These are answers to questions and might be correct, 
partial, or wrong. No explanation or argument is given. 
Often part of a flow of questions and answers, which is 

typical for cumulative talk.

(mere) answers to mathematical questions 
(Drageset et al., 2021)

Cumulative talk (Mercer & Wegerif, 2002)

Argumentation Argumentation is focused on why something is correct or 
beneficial, or logical.

Advocating (Alrø & Skovsmose, 2004)

Challenges Challenges break with the flow, present a new idea, or 
opposes a presented idea. This is an essential part of 

explorative talk if it leads to arguments or explanations but 
might also create a disputational talk if challenges are met 

with challenges and no arguments or explanations.

Challenging (Alrø & Skovsmose, 2004)

Explorative talk and Disputational talk 
(Mercer & Wegerif, 2002)

Evaluation & 
clarification

Evaluating is an assessment of any of the other codes, 
typically related to correctness or logic. It might also be 

about clarifying, typically seen in reformulating.

Evaluation (Alrø & Skovsmose, 2004)

Explorative talk (Mercer & Wegerif, 2002)

Reformulating (Alrø & Skovsmose, 2004)

Explanation Explanations are focused on what is done, or has to be 
done, to reach an answer, typically chronologically.

Explanations (Drageset et al., 2021)

Questions Questions about what, how, and why. It is typical for an 
explorative talk that students take initiatives and ask 

questions.

Initiatives (Drageset et al., 2021)

Explorative talk (Mercer & Wegerif, 2002)

Suggestions Suggestions are an initiative to a way of solving a task, 
often related to thinking aloud. These typically will be 

followed by arguments or explanations.

Thinking aloud (Alrø & Skovsmose, 2004)

Initiatives (Drageset et al., 2021)

Method
This article builds on data gathered as part of the Theatre in Mathematics (TIM) project financed by 
Erasmus+ and partners from Italy, Norway, Greece, and Portugal. The aim is to develop a 
mathematical teaching methodology that involves students actively in their mathematics lessons by 

4
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using drama techniques. The methodology builds on two approaches. One approach uses process 
drama, where the participants take on specific characters or roles in a story. This is a form of drama 
where there are no fixed lines, but the participants instead interpret how the role or character would 
act in the different situations of the story. The other approach is called Mathemart, where theatre 
workshop techniques that include mathematical games and performative activities are used to explore 
a particular mathematical topic. These activities aim at creating a trusting atmosphere where mistakes 
are not stigmatized but instead considered elements of a creative process.

The data reported in this paper comes from a lesson in a tenth-grade class with 25 students and their 
teacher. The students have used role categories since they were in grade 8. In this lesson, they were 
given a set with nine problem-solving tasks to complete in groups (five to six students) in 60 minutes. 
The tasks covered statistics, relations between metrics, physics and variables, geometry, equations, 
and functions. An example is how to make and analyze diagrams that show how many apprentices 
there are in different educational programs. Another is to find the relations between density and 
volume in a practical situation. The students had worked on the tasks on their own before the group 
session. Each group of students was given three different role categories to be used during the work
with the tasks: authority, curious, mediatorial. One can see the curios as a role that cultivates what 
Mercer and Wegerif (2002) call explorative talk, while the mediator cultivates the cumulative talk. 
Arguably, an authoritarian role could be seen as cultivating disputational talk, but we seek to create 
a more democratic authority that listens to all before deciding, hence supporting both cumulative and 
explorative talk. The working process of each group was video-recorded, and a desk microphone 
captured their speech. For this paper, one group of six girls was chosen as a case study because two 
students were playing curios in a very active way.

The group discussions were transcribed, and the analysis was done using NVivo, where we first coded 
all student turns into the seven categories from table 2. Then we identified one group where two of 
the students were actively playing the role of curios and looked further into this. In the second step 
we coded the two girls’ questions based on what they asked for (of the six other categories), to 
characterize how they used their role to include others in different ways. The analysis of turns was 
supported by observation of non-verbal communications seen in the video.  

Findings
The group consisted of six girls, one being an authority, three being curios, and two mediators. First,
we categorized all turns related to table 2 (See table 3). The first analyzes showed that two of the 
three students who had a role as curious asked 90% of all the questions in the group. The girls in the 
role of curious were aware of their roles as questioners. One of them even asks at the beginning of 
the lesson: Should I ask questions, even though I know the answer? We decided to analyze in more 
detail the type of questions they asked. 

Table 3: Amount of each type of turn for each girl, named by their role category

Categories Sum
Girl 1 

(curious)
Girl 2 

(curious)
Girl 3 

(curious)
Girl 4 

(mediator)
Girl 5 

(mediator)
Girl 6 

(authoritarian)
Argumentation 3 1 0 0 0 2 0
Evaluation/clarification 76 28 9 3 10 19 7
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Explanation 48 12 5 0 3 21 7
Suggestion 35 9 8 0 4 13 1
Question 88 55 18 3 1 4 7
Answer/claim 52 13 11 4 5 12 7
Challenge/initiative 32 15 2 0 0 6 9

In the analysis below, we looked for the qualities of the questions in terms of the type of response 
they asked for. This means that we coded the questions of these two active curios based on what they 
asked for (using the categories of table 2). Figure 1 highlights the type of questions the two girls 
asked. The category challenge/initiative are excluded as we only found one example of that kind. 

Figure 1: Type of questions in the percentage of all questions

There were four types of questions most frequently asked by these two curious girls. The first, 
requesting answers and claims, could be questions such as “how long was that (line between A and 
B)?”, “are they all of equal length?” and “what is the formula?” Such questions are essential to create 
progress and get something on the table to discuss or work on. At the same time, they just request 
what Drageset et al. (2021) call (mere) answers without any explanation. When such questions and 
(mere) answers go on with confirmations and no elaboration, it is a typical cumulative pattern 
described by Mercer and Wegerif (2002).  

The second, requesting explanation, could be questions such as “hmm, how do we find the average 
then?” and “how do we construct that (an angle of 120 degrees)?” These questions focus on revealing 
what was or could be done to reach an answer, often step by step. Such questions and explanations 
are typically about elaboration, and if these explanations are mostly accepted without further 
questions, they might be explanatory as part of a cumulative talk.  On the other hand, when questions 
are further worked on or challenged, they might form a basis for Mercer and Wegerif’s (2002) 
explorative talk.  

The third, requesting evaluation and clarification, could be questions such as “What if there were no 
number in the middle, what if so? (talking about the median)”. While these questions request an 
evaluation, they also typically request clarification of detail, or what Alrø and Skovsmose (2004) call 
reformulation, which is vital to move the process or understanding forward. Such questions form an 
essential part of an explorative talk (Mercer & Wegerif, 2002) since clarifications and evaluations 
form the basis for further developing each other’s ideas.

The fourth, requesting argumentation, could be questions such as “Why did you do that?” and “Why 
is it so that we can add and divide?” These questions could be separated from explanations as they 
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request a logical explanation or advocating (Alrø & Skovsmose, 2004) for a reason and not just a 
chronological explanation of the steps that lead to the answer. Such questions are an essential part of 
an exploratory talk, but when they are rhetorical with no genuine interest in the answers, they belong 
more to Mercer and Wegerif’s (2002) disputational talk. 

Overall, girls 1 and 2 moves the mathematical talk forward with their different types of questions. 
When one question is asked, suggestions and explanations are often followed up by additional 
questions, requiring elaboration and involvement from several students. Since both multiple students 
and multiple points of view were accepted, the conversation in the group is characterized by having 
an interactive-dialogic approach (Mortimer & Scott, 2003). One example of how girls 1 and 2 move 
the talk forward is this, where they support and elaborate on each other’s questions: 

Girl1:           Which education programs have more apprentices than the average for all education 
programs? What must be done then? 

Girl2: Then we must find the average
Girl1: Of all of them?
Girl2: Yes. How do you do that then? I have forgotten
Girl1: Hmm, how do you find the average here then? 
Girl6: You add everyone, and then you divide by the number. 
Girl1: Lovely, and then once we have done that, then we find out which ones are over? 
Girl2: Yes, which one is more than average? 
Girl1: Why is it so that we can add and divide? Why is it like that?

The students’ discussion can be seen as negotiations about understanding where meaning is 
constructed together. It is not necessarily the correct answer that gets the most attention, but rather 
the process that leads to the answer. The students build on each other's input, which is a characteristic 
of cumulative talk. At the same time, the conversation shows elements from an exploratory talk where
statements are being challenged and required for further explanations. The situation above can also 
be characterized as a dialogical interaction (Mortimer & Scott, 2003). The students are open to each 
other’s ideas, and they build on the suggestions that emerge. They do not respond by pointing out 
errors but ask for further argumentation and explanation when they do not understand.  

Although not all the girls were equally active orally, for example, the third girl who had the role of 
curious, the video shows that even the students who did not contribute with many statements were 
involved. They responded with yes, no, and other statements of support such as hmm, and visual 
expressions such as nodding their heads. Questions, explanations, and clarifications given by some 
of the students in the group seemed to contribute so that all students became actively involved in the 
mathematical discussions, some with an active role as listening more than talking.  

Discussion and conclusion 
This article reports from a study of how assigned roles and positions, particularly the curious role,
can foster a more interactive and explorative talk in mathematics. Our findings show that the 
discussion in the group we studied is characterized by both cumulative talk and explorative talk (as 
defined by Mercer & Wegerif, 2002). Cumulative talk is most clearly seen when the curios request 
answers and claims and when they request explanations without using the explanation further. At the 
same time, almost two thirds of the questions request explanations, evaluations, and arguments. Such 
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questions help to shift the focus from the search for mere answers to inviting peer students to focus 
on reason. These are signs of explorative talks, and these questions are so frequent that this group 
discussion is more explorative than cumulative. Further, the questions from girl 1 and 2 invites the 
other students to share their ideas, which means that the discussion is also characterized by dialogic 
and interactive communication, as defined by Mortimer and Scott (2003). 

These findings illustrate how roles in mathematics, where we especially highlight the role as curious, 
can influence the mathematical talk towards a more interactive and explorative talk. This is done by 
requesting explanations, evaluations, and arguments, and in this way inviting other students into the 
discourse while simultaneously shifting the focus from finding mere answers towards reasoning. 
More generally, this article illustrates how the teacher can change the emphasis from teacher 
questioning to student questioning in the mathematics classroom.   
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This study identifies existing socio-mathematical norms through student and teacher responses in 
mathematical activity in grade eight in Sweden. The data consist of one video observed research 
lesson, and the analyses contribute to methodological identification of socio-mathematical norms 
through student responses and connected teacher activity during dialogues. Through these dialogues, 
the study identifies how students and the teacher expressed aspects of mathematical knowledge in 
their responses based on socio-mathematical norms in this classroom.  

Keywords: Mathematical reasoning, socio-mathematical norms, student responses. 

Introduction 
Socio-mathematical norms (SMN) are jointly agreed upon between teachers and students in the 
mathematical classroom, constituted through participation (Cobb, 2002). SMN are common cognitive 
and social structures that frame what is communally valued by the classroom community (Cobb, 
2002). These are shaped and reflected by cultural traditions that emerge specifically in mathematics 
classrooms through the configuration of activities. Focus is directed towards what knowledge is 
rewarded during the learning process (Yackel & Cobb, 1996). What distinguishes a mathematics 
classroom from another is the structure of classroom norms, not their existence or absence (Yackel 
et al., 2000). According to Yackel and Cobb (1996), the teacher has a significant role in suggesting 
SMN, which the students can collectively accept. For example, the teacher can do so based on the 
type of solution and arguments from students (McClain & Cobb, 2001), which influences the type of 
mathematical knowledge to be valued in the activity.  

Some previous studies have identified limitations where social classroom norms limit the 
establishment of SMN when the focus is more on how teachers or students should behave 
democratically in an activity (Fredriksdotter et al., 2021; Kazemi & Stipek, 2001), instead of 
promoting discussions or arguments for which a mathematical model is best suited for the task (Cobb 
& Yackel, 1996b). SMN frame both the knowledge and structure for interaction (Cobb & Yackel, 
1996a). However, sometimes the teacher will intend to gather short student responses with a character 
of correct answers. Responses like that contrast with occasions where the student response is more 
comprehensive, containing conceptual understanding and elegant reasoning (Kilhamn & Skodras, 
2018).  

Methodologically it is challenging to detect classroom norms. These are often indirect and implicit 
but somehow obvious to participants through their participation in practice (Cobb, 2002). Different 
perceptions of existing norms may coexist within the classroom (Cobb & Yackel, 1996b). One way 
to methodologically detect classroom norms is when teachers and students explicitly discuss 
expectations (Cobb, 2002; Wester, 2015). Another opportunity to identify SMN occurs through 
participants’ reactions when existing norms suddenly get challenged (Cobb, 2002). These reactions 
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will be indicators when existing norms are broken. The current study will contribute to identifying 
SMN through video observation of interactions between students and teachers in a mathematical 
teaching activity. Instead of methodologically using teachers’ intentions to promote SMN (Wester, 
2015), this current study elucidates student response through dialogical patterns in the classroom 
community of practice aiming to identify SMN. We address the following research question: How 
can student response and connected teacher activity be used to identify socio-mathematical norms 
(SMN)? 

Method  
We analysed a whole-class discussion (50 min) to answer this study’s research question. To capture 
students’ responses and connected teacher activity, the students were video-observed during a whole-
class discussion in a grade 8 classroom in Sweden (one teacher and 25 students). The video 
observation was transcribed verbatim and analysed by the two authors. We have used an abductive 
approach during the analysis of empirical data and use of the framework (see Table 1). First, we 
divided the whole-class discussion into parts based on dialogue patterns. Each pattern consists of the 
students standing in front of the class discussing their own solutions to a given task (see Figure 1). 
Students’ responses in the discussion, together with the related teacher activity, form the unit of 
analysis. By studying several dialogue patterns in the whole-class discussion during the same lesson, 
the opportunity for detecting how SMN directs and influences the mathematical teaching activity 
regarding the structure of the whole-class discussion increases. According to Kilhamn and Skodras’ 
(2018), framework dialogue patterns are illustrated in the operationalising approach (see Table 1).   

In operationalisation, different characters of reasoning are elucidated, and these have been inspired 
by Hjelte et al. (2020). Reasoning can be characterised as either general or domain-specific for 
mathematics (Hjelte et al., 2020). General reasoning is like a logical chain attempting to reach a 
solution, using necessary mathematics regardless of domain. Domain-specific reasoning belongs to a 
specific mathematical domain. Hjelte et al. (2020) suggest the following mathematical domains in 
research-based studies: Spatial reasoning, Informal Inferential Reasoning, Additive, multiplicative 
and distributive reasoning, Algebraic reasoning, Proportional and covariational reasoning, 
Quantitative reasoning, and Transformational reasoning. Different types of reasoning may be 
connected to each other and form a network of reasoning.  

The operationalisation of the framework also focuses on different characters of mathematical 
knowledge as procedural or conceptual, based on Yackel and Cobb (1996), concerning SMN. 
Procedural knowledge focuses on solving the already constructed mathematical calculation 
structures, while conceptual knowledge means that the student knows mathematical concepts and 
their relations between each other (Yackel & Cobb, 1996). Knowledge is valued as SMN in category 
LC through the operationalisation procedural, while conceptual understanding is valued as SMN in 
category HC. 
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Table 1: Operationalisation of Kilhamn and Skodras’ (2018) framework according to student response 
and associated SMN 

Level of response Student’s response associated to SMN 

F 

Factual 

An accepted answer related to the task or to teacher's questions. No attempt at 
descriptive or explanatory response. Ex: Name, identify, repeat, recall known facts or 

procedures, “correct” answers wanted. (often short answers, including yes/no) 

LC 

Low-level 
Conceptual 

The descriptive response values procedural knowledge (Yackel & Cobb, 1996) 
containing expressions of step-to-step solutions and may contain general reasoning 

(Hjelte et al., 2020) 

HC 

High-level 
Conceptual 

The explanatory response values conceptual knowledge (Yackel & Cobb, 1996) and 
is based on domain-specific reasoning (Hjelte et al., 2020). 

E 

Evaluative 

Apply and evaluate domain-specific reasoning (Hjelte et al., 2020) in relation to 
mathematical content containing in specific task. Different domain-specific reasoning 

forms   a network for explanation. 

 

Ethical procedures of informing participants of their rights to refuse to participate and obtaining 
verbal and written consent for their voluntary participation were followed using Swedish guidelines 
for research (Vetenskapsrådet, 2017). Furthermore, the collected data were anonymised and coded to 
protect participants’ confidentiality, and the researchers had no teaching or grading role for the 
students involved. In addition, the names of the participants and other sensitive data were removed 
from the stored data, and these data were secured in a safe locker to avoid unauthorised access. 

 

 
Figure 1: Task 

Result 
Analysis of this whole-class discussion reveals the following lesson sequence of dialogue patterns 
based on the operationalised framework: F-F-LC-LC-HC-LC-F. Three dialogue patterns are 
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emphasised (bold) to answer the research question: How can student response and connected teacher 
activity be used to identify socio-mathematical norms (SMN)? 

Dialogue 1 (student’s response level LC) 
66 Teacher: We will stick to problem 3 (How many white plates are needed in figure n?) 

Namely the formula (point to the formula that the students wrote on the 
board: 2 * n + 6) and then I take problem 4 (How long will the discount be 
if they have 158 white tiles to put?) which was also to find out how many or 
which figure how many blacks what discount is it that has 158 tiles around 
it and then we have student A and student B, welcome. 

67 Student A We have taken 2 times n plus 6 (read out what is written in the formula 2 * 
n + 6 on the board for the teacher). 

68 Teacher. How have you used this since, in task number 4 where what have you done? 
69 Student B 2 was the difference, after all, any number plus 6 (rename the formula for 

the teacher). 
70 Teacher. How have you used this since how have you done to calculate, ie which 

figure you are looking for? 
71 Student A We took 2 times 54 plus 6. 
72 Teacher Hm 
73 Student A. It will be 158 minus 6 it was the edges and then 152 divided by 2 and it will 

be 76. 
The teacher (line 66) begins by inviting students to the board and asks them to focus on parts 3 and 4 
in the task (Figure 1). Through the introduction (line 66), the students explicitly request no specific 
student response. Still, it is up to the students themselves to interpret what is expected of them when 
they stand by their solution at the board. Student A responds by reading out the expression for the 
formula without mentioning the answer to part 3 in the task (line 67), which constitutes a limited 
student response. The situation that, as a student, sometimes occurs at the board is not new for these 
grade eight students. Students have support for their interpretation of what is expected of them at the 
board based on previous similar experiences, which follows prevailing classroom norms for the 
situation and similar contexts. Pretending that the students’ responses do not contain the direct answer 
to the task may mean that the students have interpreted that the teacher is looking for something other 
than just the answer to part 3 in the task, of which the indication of the formula becomes their attempt 
at what can constitute an acceptable response (level F). 

The teacher follows up students’ short responses by asking a more investigative question (line 68), 
aimed at part 4 in the task, which the students also did not answer with their short response. This 
how-to question has the potential for student responses at higher levels than F. Student A’s response 
continues as before by repeating the formula in different ways (line 69 and line 71), although the 
formula alone still does not answer the teacher’s consecutive how-questions (lines 68 and 70). The 
student’s response remains at level F. 

Only when the teacher (line 72) does not provide the expected feedback on the given student response 
(based on the formula), do the students develop their responses to a description at the LC level. 
Student A describes how they arithmetically worked their way to answer part 4 in the task. LC level 
because the student in their response expresses different steps in their calculation against the answer. 
In their arithmetic description, the student also names a geometric representation (the edges of the 
figure) to support the calculation. Therefore, we cannot answer whether these students are able to 
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make an explanatory response at the HC level or if the students’ interpretations of the norm system 
prevent them from providing an explanatory response.  

In writing, the students show the way to the answer on the board and orally express what they value 
is most interesting and of the highest mathematical quality (the formula). These responses show how 
these two students interpret prevailing SMN. Since the teacher is repeatedly not satisfied with the 
students’ responses, the students finally succeed in changing the content in their responses (line 73). 
Based on its arithmetic calculation, the steps to the answer are described (level LC), and no further 
teacher questions are then asked. 

Dialogue 2 (student response level LC) 
80 Teacher: Now there are two solutions left that do not do exactly the same […] can 

you come up and tell? 
Already in the introduction (line 80) of dialogue 2, the teacher expresses that one should compare 
two different solutions. This teaching document challenges the accounting students to develop their 
response since they have different solutions that must be compared in an investigative way. 

83 Student C: May I draw? 
84 Teacher:  Yes 
85 Student C:  Ok, then we'll see (draw a rectangle and another rectangle inside) if you 

have, so to speak, the whole figure here, i.e. 158, (draw around the inner 
rectangle) then you take minus 2 and you get (draw again) you get the 
cubes. And then you get 156 which is this and that (shows in the drawing) 
then you divide by 2 so you get 78 and 78 is then this one down as well 
(shows in the drawing) and since we knew there was one on each side 
(shows in the drawing) instead of taking it minus 2 you know yes it is the 
solution (aimed at the teacher). 

90 Teacher: (fills in more the four boxes in the middle) these are the discount in the 
middle and this is what you want to find out so C removes this and that 
piece (point to the boxes next to the right and left of the discount) to remove 
them simply and then he has left the top row and the bottom row (points in 
the rectangle) and then he divides them by two and then he only gets one 
row (points to the bottom row) but that row is two pieces longer still than 
the one in the middle so then he takes minus two again. Are you in? Turns 
to the class and then you did a formula of this (turns to student C). 

Contained in the introduction (line 80) of dialogue 2, the teacher expresses that one should compare 
two different solutions. This teaching document challenges the accounting students to develop their 
response since they have different solutions that must be investigated. Student C asks if it is ok to 
draw (line 83). After the teacher’s approval to draw, the student enters a dialogue with the teacher 
using some verbal caution and then tries to describe the chosen calculations based on a drawn picture. 
Through general reasoning, the student uses, without verbal expression, concepts in the mathematical 
domains geometry (perimeter) and algebra (Figure n). Based on the student’s response, there are 
possible conditions to end up at the HC or E level. However, expressions in students’ responses are 
not explanatory and contain domain-specific reasoning. Instead, this student’s response is a step-by-
step description, strengthened through the drawn picture, of the path to the task solution (level LC). 

In line 93, the teacher once again verbally expresses the student’s description of the solution based 
on the picture. For the context, the teacher possesses more functional language than the student, and 
the teacher’s revoicing of C’s description becomes more accessible to the listening students. 
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However, in terms of content, the teacher’s narrative is on the same level as the student’s (level LC) 
as it intends to explain the path to the solution. As the content of the teacher’s responses remain at 
the LC level, the prevailing SMN in the internship community are confirmed for the context. 

Dialogue 3 (student response level HC) 

D: accounting student, Ex: students in the class. 
97 Teacher: [...] can you tell us how that formula came to be? 
100 Teacher: Look at what you have done (point to the formula Y = (1n + 2) * 3 and 

student D looks) 1n plus 2. 
101 Student D:  In order to … 
102 Teacher: What is 1 and why 2? 
103 Student D:  Hm. 
104 Teacher: Can you tell others what he did? (turns to the class)? 
105 Student E1: 2 is probably the difference between the different ones. 
106  Student E2: n is well that in the middle.    
107 Student E3: n is well the figure plus ... 
108 Student E1: not always. 
109 Student E2: Now we'll find out in the middle. 
110 Student D: Wait n is it (points to the flowerbed in the middle, the four coloured squares 

in the rectangle) plus 2 is equal to it (points to the bottom row) and 
111 Student E2: Why multiplied by 3? 
112 Student E3: Y is the whole set.    
113 Teacher: Yes exactly, he has taken the middle plus the edge pieces (points) and so he 

has called it y. So he puts someone else's letter. One row is (points) and 
taken it three times, there are three rows, but after doing that you have to 
remove what is in the middle to get what is around. 

In line 97, student D is asked to unpack the formula they have formulated. Since the student cannot 
answer the question, it is reformulated by the teacher (lines 100 and 102). When the student is still 
unable to formulate a response (line 103), the teacher (line 104) turns to the whole class and asks 
them to investigate what is identified in the formula. This teacher’s action breaches norms that open 
the norm system for investigative conversations. This invites interactions from students who have 
previously only listened and not been involved in the dialogue. Student D and some listening students 
then formulate a joint understanding of the formula (lines 105–112). As a collective unit, they unpack 
the formula and express the meaning of the parts in words. Each of the individual students’ responses 
contains short responses and statements. Through joint interaction in the investigative conversation, 
the short contributions together explain domain-specific reasoning in algebra reasoning and spatial 
reasoning. In the common dialogue (lines 105–112), there is a knowledge of mathematical content 
based on spatial reasoning linked to numbers (numerical), which are allowed to meet algebraic 
reasoning about the variables and constants of the formula to create a common relational 
understanding of what the formula expresses. Despite students’ mathematical knowledge, their verbal 
response does not contain expressions of reasoning and mathematical ideas. Instead, the students 
express different statements about how different parts of the formula can be interpreted in their 
responses. It does not become an open dialogue about which mathematical ideas and mathematical 
reasoning are behind the various statements. Instead, statements that are not met during dialogue with 
alternative statements are silently accepted. Therefore, the common student response remains on the 
HC level. Both the students’ knowledge and the teacher’s activity – to encourage students into 
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exploratory conversations – contain the potential for HC and level E. However, there is a lack of 
support in the SMN for students’ responses to be able to reach level E in this situation.  

Also, in this episode, the teacher sums up the discussion by re-telling and verbalising the jointly 
expressed opinions by the students. The teacher thus responds to students’ responses at both the LC 
and HC levels. 

Discussion 
Through an operationalised framework (Table 1), it becomes possible to categorise students’ 
responses in the dialogue patterns. The level of student response and connected teacher activity is 
used to identify the prevailing SMN. Based on an analysis of each dialogue pattern, a lesson sequence 
for the whole lesson is possible. In the current lesson sequence (F-F-LC-LC-HC-LC-F), F and LC 
levels became the most common student response. This means that prevailing SMN supports dialogue 
patterns at the F and LC levels through this classroom discussion but lacks support in SMN for both 
the HC and E levels. However, one dialogue pattern still ends at the HC level during this lesson. This 
exception happened when the current teacher opened up the prevailing norm system for that moment. 
After this particular dialogue pattern, the following dialogue patterns once again returned to the 
normative for F and LC levels. This then saw the identification of the F and LC levels around the 
mathematic knowledge valued in the activity (McClain & Cobb, 2001).  

A complementary methodological way to identify SMN can be done through potential norm breaks. 
According to Cobb (2002), another way to identify SMN are manifested through participants’ 
reactions when existing norms are challenged. In dialogue 1, the teacher’s action (line 72) challenges 
students’ perceptions of their existing valued response. Instead of the students becoming frustrated at 
expressing the algebraic formula once again (level F), the teacher’s activity leads to the students 
developing a response containing a description of the calculation steps (level LC). In dialogue 2, the 
student explicitly asks the teacher for permission to break existing SMN about valid representations 
(line 83). This student’s response aims to precede that there will be no reactions to the drawing. This 
student response leads to be descriptive or explanatory and contains reasoning. In this episode, the 
student response still ended up at the LC level by being descriptive and containing general reasoning 
(Hjelte et al., 2020). In dialogue 3, the teacher insinuates norm break (line 104) by challenging the 
prevailing SMN to change temporarily. This teacher activity made it normative for other students to 
become temporarily involved in a joint explanation activity. Through the mentioned potential norm 
breaks, we will receive similar SMN as we would when analysing through the framework (Table 1).  

The operationalised framework contains four “levels” of student responses, and these levels in our 
approach are somehow considered misleading. This is because they are more about four different 
structures, with different teaching intentions linked to different SMN due to classroom community of 
practice (Cobb & Yackel, 1996a). From this point of view, we will consider the analysis through the 
framework as non-normative for teaching, rather a contribution to developing and challenging teacher 
practice. Based on the findings in this research study, our implications for practice indicate that SMN 
impact and even regulate the opportunities for developments in the mathematical community of 
practice. Therefore, implications for practice will be to contribute through this framework teachers’ 
professional learning development about their own teacher practice according to deeper insights in 
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different SMN. We suggest further research in this area, with the aim to contribute to professional 
teaching-learning development. Such research could also contribute to further elaboration of the 
operationalisation of the framework and analysis through the framework according to SMN. 
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This paper reports the results from a large-scale video-observation study where 127 mathematics 
lessons were coded with regard to the way teachers communicated learning goals. Four consecutive 
lessons were collected in 35 classrooms (grade 7, students age 14) in Sweden. The PLATO-manual 
was used to code the lessons with a four-grade scale. The results show that teachers mostly 
communicate vague or inferred learning goals. Tasks are in line with these (inferred) learning goals 
and the teachers give clear instructions to students regarding what to do. Throughout lessons, 
teachers seldom refer back to the learning goals. However, half of the teachers occasionally express 
more detailed learning goals and relate the content of the lesson to a learning outcome.  

Keywords: Learning goals, video-observation study, lower secondary school, interactions. 

Introduction 
So, the coming lesson we will work from page 64 and work through task 83 to 94. For task 93 and 
94 you might need a calculator which you can find in the cupboard here in front of the class. Don’t 
forget to explain your calculations! Now let’s get started.  

When a teacher gives instructions such as the one above, students are given clear instructions on what 
to do and can immediately start working on the tasks. What is to be done has been clarified, but what 
is to be learned is vaguer. Further, no discussion is initiated on how or why students are expected to 
learn this. Research on instructional techniques in all core content areas has found that explicitly 
linking classroom activities to learning goals helps students understand the purpose of the instruction 
and make them feel motivated to engage with the ideas (Baker et al., 2002; Banilower et al., 2010; 
Spinath & Steinmayr, 2012). Further, clarity and explicitness of learning goals help students to create 
a context in their learning (Spinath & Steinmayr, 2012). 

The situation presented above describes a rather common lesson start as observed in a large-scale 
video-observation study in grade 7 (14-year-olds) in Sweden (Tengberg et al., 2021). This LISA-
study (Linking Instruction and Student Achievement) aims to capture different aspects of teacher 
instruction, in which the way teachers present their learning goals is one such aspect. In this paper 
data from the LISA-study will be presented with a specific focus on learning goals. It aims to answer 
the following question: To what extent and in what detail are learning goals communicated across 
lessons and classrooms in Swedish 7th grade mathematics? 

Previous studies 
Detailed and clearly communicated learning goals influence students’ learning achievements (Hattie, 
2009; Boden et al., 2019; Locke & Latham, 2002, Reed, 2012). Further, clear learning goals can 
motivate students (Spinath & Steinmayr, 2012) and clarify what is expected as an outcome of the 
lesson (English & Steffy, 2001; Hattie, 2009). Communicating learning goals enables both students 

Proceedings of CERME12 3485



 

 

and teachers to see connections between previous lessons and the current one but also to see 
connections between activities and instruction within a lesson (Vaughn & Bos, 2010).  

Within a Swedish context, Hemmi and colleagues (2019) found that Swedish teachers, when working 
with Finnish curriculum materials, expressed their goals vague and implicit. This is in line with 
previous studies in Sweden (c.f. Boesen et al., 2014). In an interview-study, Fauskanger and 
colleagues (2018) found that Norwegian teachers preferred goals focusing on the content and 
supporting student learning. Yet, observing teachers’ instructions on a large scale is relatively 
uncommon in the Nordic countries. In Sweden, a limited number of observation studies have been 
conducted either led by The Swedish Schools Inspectorate (2009), or as an evaluation of a nationwide 
mathematics professional development program (i.e., The Boost for Mathematics, Matematiklyftet) 
dedicated to the improvement of the teaching of mathematics (Ramböll, 2016: Österholm et al., 2016; 
2021). One of the outcomes revealed that while lessons are often structured in terms of planned 
activities, they seldom start with a presentation of goals and purposes of the lesson, and teachers 
seldom leave time for reflection or evaluation of what was learned at the end of the lesson (Österholm 
et al., 2016; 2021).  

Since the importance of communicating clear learning goals to students has been discussed and has 
been the subject of professional development initiatives in Sweden, this element deserves special 
attention. Also, the Swedish goal-oriented curriculum (Swedish National Agency for Education, 
2011) pleads for an attention to communication of learning goals in class.  

Background – the LISA-study 
The LISA-study aims to capture the quality of teaching of different subjects in the Nordic countries. 
This article focuses on mathematics taught in Sweden. LISA uses an observation protocol (see below) 
to explore the quality of teaching. In Sweden, we observed 35 classrooms, taught by 31 teachers at 
15 schools. Each classroom was video-recorded for three or four consecutive lessons in the middle 
of the school year, which resulted in 127 video-recorded mathematics lessons. 

To obtain a representative sample and to match the national distribution, the schools were stratified 
according to different variables such as the schools’ locality (urban/rural), the percentage of 
immigrant students; achievement level; the organization of the school (public/charter). Also, age, 
gender and qualifications of the teachers included in the sample varied which provided a fair and 
diverse representation of mathematics teachers in Sweden (for a more detailed description, see 
Tengberg et al., 2021).  

Method 
Video observations 

In the present study, two cameras and two microphones were used to capture the teaching. One 
camera in the back of the class, capturing the teacher, and one in front of the class, capturing the 
students. The teachers wore a microphone so all their talk could be recorded. Another microphone 
was placed in the middle of the room to capture students’ speaking. Students who did not want to be 
video-recorded were seated on one side of the classroom, and the cameras were adjusted in order not 
to capture that part.  

Proceedings of CERME12 3486



 

 

Four consecutive lessons were recorded in order to enable reliable information and to capture enough 
variation of teaching practice, this choice was led by findings from previous studies (cf. Kane & 
Staiger, 2012). However, the question of how many lessons that are needed to capture a teaching 
phenomenon (like clarifying and communicating learning goals) has been raised by several 
researchers (Cohen & Goldhaber, 2016; Ho & Kane, 2013) and consensus has, so far, not been 
obtained.  

Each lesson was divided into segments, 15 minutes each, constituting the unit of analysis. If the last 
minutes of a lesson did not make up a whole segment, these minutes were either included in the 
previous segment (if the segment was shorter then 7,5 minutes) or added as a new segment (if the 
segment was at least 7,5 minutes long). When analyzing a lesson, a division into smaller units, 
following the different stages of a lesson is advisable (Clarke et al., 2006). These stages correspond 
to the structural level a teacher adopts to a lesson and often follows 15-minute segments.  

Observation protocol 

The protocol for language arts teaching observation (PLATO) was used to code the video recorded 
lessons. It was first designed for observing lessons in language arts (Grossman, 2015) but has been 
used in other subject areas as well. For mathematics the observation protocol has been revised, which 
has resulted in qualitative criteria similar to those used for language arts, but valid for mathematics. 
In specific, the PLATO-element purpose attempts to focus on whether or not the learning goals are 
clarified, and if coherence is established between the tasks, activities and the learning goals. By doing 
so, the quality of instruction is coded on a four-grade scale. In the example at the beginning of this 
paper, no specific learning goal was communicated. However, an implicit goal (connected to the 
mathematical content of the exercises) can be inferred. This would score a ‘2’ according to the 
PLATO-manual. General instructions like “Today we will learn about linear functions” would also 
score a 2 (Figure 1). If a teacher would communicate a more specific learning goal such as “Today 
we will learn more about the slope of a linear function in relation to the values a and b in the formula”, 
this could result in a score of ‘3’. In order to score a ‘4’, there should also be evidence that the students 
are aware of the purpose or that the teacher or the students refer back to the purpose during the 
segment. Each segment is coded separately and only for what is present during the segment. However, 
if a teacher or students refer back to a purpose that was presented more specifically during a previous 
segment, the coding will take that level of specificity into account in the later segment in order to 
score a ‘4’. 

 
Figure 1: Scoring criteria of Purpose in mathematics (adapted from Grossman, 2015) 
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Reliability 

Video observations enable repeated analysis to capture important details and patterns to greater 
extend then observations in classrooms (Borko et al., 2017). Further, they enable joint coding. In the 
present study, around 40% of the data were scored jointly by two raters, in order to obtain and monitor 
reliability. The observers were all certified PLATO-raters. Certification was obtained after a four-day 
course and a test in which .80 reliability per item had to be obtained.  

To obtain a reliability of .80 on PLATO, at least five lesson segments should be observed (Cor, 2011). 
In our study we have an average of 12,7 observed segments per teacher, with a minimum of 7 
segments.  

Ethics 

The principals of all schools were contacted first after which our request for participation was 
forwarded to the teachers. Teachers and students were informed about the aim of the research and 
how the data would be used as well as their rights as participants. Questions could be asked prior to 
data collection. All participating teachers, students, and guardians of students signed an informed 
consent. As stated, students who did not want to participate were seated on one side of the classroom 
so they would not be captured on video. The research was conducted in line with Swedish guidelines 
on research ethics (Swedish Research Council, 2017). 

Results  
Learning goals per segment  

Of all 403 segments, 358 segments scored a ‘2’ (89%) on the four-grade scale. Often this was due to 
the fact that teachers only described the topic to work with in a broad way (e.g. “algebra”, “functions”, 
“fractions”), but on some occasion teachers would also refer back to previous lessons and just state 
that “today we will continue from where we ended yesterday”. Thus, they would not make it clear 
how the lesson would support the students’ development of mathematical competencies. Just as in 
the introductory example, teachers frequently instructed students on what to do “work from page 64 
and work through task 83 to 94. Don’t forget to explain your calculations”, but did not explain why 
or what they were supposed to learn during the lesson.  

One might assume that communicating goals would mostly occur during the beginning of a lesson, 
like in the following example (scoring a 3 or a 4): “We start with today’s schedule. The goal is to be 
able to calculate part of whole and to be able to simplify and reduce fractions”. Indeed, of the 41 
instances where a score at the high end (3 or 4) was observed, 23 were observed in the first segment 
(Table 1). This means that, even when only the scores of the first segments of each lesson are 
included, still as many as 103 out of 127 segments (81%) scores a ‘2’. One could also argue that the 
goal of a lesson can be communicated at other stages of the lesson: for instance, at the end of a lesson. 
Looking at final segments, high scores of purpose occurred ten times out of 127 in the last segment 
of the lesson, which means that in just below 8% of the last segment of a lesson, teachers would come 
back to previously stated (implicit or explicit, vague or detailed) learning goals: “To sum up, todays 
lesson was about (…)”. There were in total four segments where no learning goal at all was 
communicated. One instance occurred in a lesson where a fifth segment was recorded (thus a lesson 
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of consisting of more than 127,5 minutes), the other three segments occurred during one single lesson, 
indicating that no learning goals were communicated that lesson. 

Table 1: Scores on Purpose divided over start, middle and closure of the lessons 

Learning goals per teacher 

If we look at the different teachers and see in what way the scores were divided, we can see that the 
majority of teachers scores a mean value at or close to 2,00 (Mean 2,11; SD 0,38). Of all 31 teachers, 
16 scored only on the low end (score 1 or 2), the other 15 teachers scored both at the high and the low 
end (scores ranging from 1 to 4). These teachers, who scored distinctly higher than 2,00 on average, 
communicated their goals more explicitly and in more detail. On rare occasions, this was done 
through utterances like: “at the end of the lesson you are expected to be able to (…)” or “yesterday 
we dealt with functions with one unknown, today we will continue and you will learn how to handle 
functions with two unknows or variables”. The scores on the high end require that the learning goals 
are in some way connected to a learning outcome, which could for instance be through exit tickets 
where students were to write what they had learned during the lesson.  

Summary 
We set out to answer the research question “To what extent and in what detail are learning goals 
communicated across lessons and classrooms in Swedish 7th grade mathematics?” and found that 
learning goals are typically implicitly stated and addressed in a vague way. Half of the teachers, 
express their learning goals more explicitly and, on rare occasions, learning goals are revisited by the 
teacher at the end of the lesson.  

Discussion 
The present study aimed to contribute to previous literature about learning goals through analysing 
how the purpose of the lesson is communicated in class, in specific in 35 mathematics classes in 
Sweden. The results showed that learning goals in lower secondary mathematics instruction are often 
implicitly stated, which is in line with the findings of Hemmi and colleagues (2019). Also, in a study 
including LISA data from all Nordic countries, similar results were found with a large number of 
segments scoring a ‘2’ (Selling & Klette, 2021). Their study also examined if the goals were focusing 
on content or competencies and found that most often content was addressed. If competency goals 
were included, these addressed procedures rather than conceptual knowledge.  
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A lack of clarity and detail can lead to a difficulty for students to perceive coherence within a lesson 
(Vaughn & Bos, 2010). In the present study, we found that even when instructions indicate some kind 
of coherence (e.g., when teachers say “Today we will continue from where we ended yesterday”) the 
connection between previous lessons and the current one might nevertheless be unclear. Also, the 
outcome of a lesson might be unclear for students, as no guidance is given regarding to what they are 
supposed to learn during the lesson. As there were few deliberately planned closures of lessons, 
learning goals and learning outcomes were very seldom reflected upon.  

In light of the goal-oriented curriculum in Sweden, where it is considered to be important for students 
to understand what they are expected to accomplish for a specific grade (Swedish National Agency 
for Education, 2011), implicit goals in class do not offer students such an awareness (English & 
Steffy, 2001; Hattie, 2009). A critical note to our choice of method (video observations) is that a 
phenomenon like communicating learning goals might be observable elsewhere, and not only through 
the teachers’ communication captured on the video-recordings. For instance, detailed plans that 
explain what students are expected to do are often available for students on digital platforms, and in 
such plans, learning goals might be more explicitly stated. Furthermore, when giving feedback to 
students, teachers might indicate more explicitly what an expected learning outcome might be, related 
to detailed learning goals (Hattie, 2009). PLATO includes feedback as an element, and the analysis 
of that element might reveal some more insights on the communication of learning goals. The 
implicitness and vagueness of the orally communicated learning goals do not have to imply that 
students are not aware of the more detailed ones. During the observations we saw that students were 
constantly working on their tasks (measured in the PLATO-element ‘time management and behaviour 
management, for more details, see Tengberg et al., 2021). Students ask relevant questions and 
teachers replied accordingly, seemingly in line with specific learning goals.  

In sum, we argue that since communication of learning goals influences the students’ learning 
achievement (Hattie, 2009; Boden et al., 2019; Locke & Latham, 2002, Reed, 2012), the results of 
this study could suggest that the students in half of the classrooms (with teachers scoring at the high 
end) might be affected in a positive way, whereas the other half of the students (with teachers only 
scoring on the low end) might obtain lower results. The next step will thus be to link teachers’ 
instruction to student achievement as our data enables us to do so. 
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Rationale
The TWG 20 had 28 papers and 8 poster presentations. Due to the high number of participants, we 
had to split the group into two subgroups, A and B. We had 5 parallel paper sessions for each subgroup 
and one all group poster session. Like all other CERME TWGs, we used Padlet to share materials 
and reflections that were visible to both subgroups. The final session has been an all group discussion 
on the main crucial points discussed along the work developed. The discussions occurred around four 
main themes: (i) teacher knowledge and research – including the specificities of prospective and in-
service teachers; (ii) teacher beliefs and identity; (iii) teacher knowledge and reflections and (iv)
collaborative knowledge development. The discussions revealed the need to perceive and study 
teachers’ beliefs, identity, teaching practice, emotions and teacher knowledge has a complex system,
and the need to design (and to deepen in how to do it) and research collaborative professional 
development dynamics for teachers taking into account cultural context.

Here, instead of presenting what has been discussed in each one of the presented papers we opted for 
a more holistic approach: we present some of the main ideas and questions raised in collective 
discussions and at the end of TWG20 work, hoping that pursuing finding answers to such questions 
would lead us to advance to new paths and bring possible insights and approaches also to be discussed 
in the next CERMEs. For doing so we address the four main themes and conclude with some open 
questions and provocations for (possible) future work. 

Teacher knowledgeand research

Research on teachers’ knowledge seems to have assumed naturally the existence of different teachers’
knowledge models with all its diversity and focus on particular specificities of the knowledge 
considered. In both CERME9 and CERME11, there was an effervescence of model development. 
The focus was on their use for a deeper understanding of teachers' knowledge in various contexts and 
on various topics. The discussions developed in TWG 20 during CERME 12 revealed a research shift 
of attention from the knowledge teachers (don’t) have to the knowledge teachers use to teach 
mathematics which lead to the “superman/woman teacher” idea and on how to deal with it.
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The ideas, theoretical discussions and methodological viewpoints emerged can be summarized as:   

the role of teacher knowledge frameworks – discussing the importance of the different 
teachers’ knowledge models and knowledge conceptualizations and their use in and for 
research;

research tools that “serve” both educators and researchers – focusing on the intertwined way 
of perceiving how the research tools can (should) be employed in both contexts (for teacher 
education and for doing research in and for teacher education); 

the need to pay attention to the specificity of teacher knowledge This problematic emerged 
associated to the large amount of research supposedly being done focusing in teachers’
mathematical knowledge that can be carried out similarly with students from the school level 
those (prospective) teachers are (will be) teaching. 

Some of the emerging questions are:

(a) What are the differences amongst prospective teachers and practice teachers in terms of 
content knowledge? Are we "taking care" of prospective teachers as teachers or as "older" 
students? And do we consider them in the work we do?

(b) The focus of attention in teachers’ knowledge research has been mainly (in TWG 20) in 
prospective teachers, do we need to shift this focus and what are the affordances of and for 
doing so?

(c) What are the differences amongst these groups in terms of mathematical and pedagogical 
knowledge and what are the implications of the research being done and of the conclusions 
obtained?

(d) When doing research in prospective teachers, are we looking at the transition from student to 
teachers? What can we learn from that transition?

Teacher beliefs and identity

The themes of beliefs and identify have been addressed mainly in an intertwined manner to other 
issues. Teachers’ beliefs, identity, teaching practice, emotions and teacher knowledge seem to 
represent a complex system, in which each dimension informs the others in a direct or indirect 
manner. The discussions carried out on these themes during TWG20 can be synthetized around three 
main ideas: 

(a) the importance for prospective teachers and in-service teachers of collectively discussing and 
reflecting on core teaching practices for the development of their identity and their knowledge;

(b) different definitions and conceptualizations of identity allow for the study of different aspects 
of teacher (learner) identity and change;

(c) the relationship between teacher beliefs, culture and traditions: culture and traditions represent 
factors which inform beliefs.
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Teachers’ knowledge and reflections

Reflection is transversal to teachers’ practices and thus, related with all the teachers’ cognitions (and 
not only). A set of discussion went around reflecting on the relationships involving enactment of 
teacher knowledge on:

(a) student thinking – associated to the research being done using student productions as a 
reflective tool and the analysis of students’ assessment items for investigating teachers’ 
knowledge;

(b) online environment – choosing and implementing tasks for online learning environment, the 
(dis)advantages of each one of the tasks and its types and the knowledge involved and 
required;

(c) developing measurement items – metacognitive aspect of developing measurement items to 
measuring teachers’ knowledge and the different dimensions of knowledge being measured. 

In this space of discussions, also influenced by experiences during the pandemic period, the online 
practices emerged in an interconnected explicit manner and some questions related worth mention:

(i) What kind of practices allows teachers to improve themselves for online learning 
environment and what knowledge is involved?

(ii) What does it mean to have a strong mathematical knowledge for teaching online? In what 
terms it differs from other contexts of teaching?

(iii) How can different teacher knowledge models – considering or not explicitly technology 
– can be used for practical and methodological research purposes? 

Collaborative knowledge development

The cultural dimension emerged strongly during the TWG meetings last CERME and TWG20 
participants addressed it again during this CERME. There is the need to continue considering the 
international audience we have in the TWG and its cultural diversity in order to make explicit the 
particularities of the context research occurs. It will allow also the findings to be important to such a 
broader audience, and allowing, thus, contributing for the broader picture of improving the quality of 
research and its impact. 

Some questions and reflections that emerged were:

(a) How to design and research collaborative professional development for teachers taking into 
account cultural context?
(i) the need to a productive middle way between ‘anything anywhere’ and ‘nothing 

nowhere’ – the two ends of trying to implement anything anywhere or not implementing 
due to cultural factors are not beneficial;

(ii) the need for comparison and exchange between professional development programs in 
different local contexts for further understanding of both local contexts and important 
aspects in implementation and the research being done;

(b) How to describe and/or analyze a cultural context that is useful in research relating to 
professional development?
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(i) the need to consider that the awareness of culture/context might not be enough leading 
to the need to be explicit in how and what ways the specificities of the cultural context 
and considered and impact on the research being done;

(ii) the need for precise terminology for describing what was actually taken into account in 
the research being done so it can be also meaningful to a broader audience and impact 
on the more global level.

These questions were framed with the background of “direction with potential”, thinking on the 
research being done and its intertwining with teacher education and professional development 
programs – both with prospective and practice teachers. In that sense in a transversal manner to the 
discussions there were to topics of cooperation, comparison and extension of these professional 
contexts and the tasks involved both in micro, local and global levels of practices.

Transversal ideas and new emerging questions 
The structure of the work carried out during TWG 20 was designed to move from the discussion of 
the specific papers presented (which can be perceived as case studies) to the elaboration of a set of 
possible new trends for research on teachers' knowledge, beliefs and identity in initial and continuing 
education contexts.

In doing so we have been able to frame new possible paths and inquiry questions that have, indeed 
guided some of the research being done afterwards and which reflect the problematic themes from 
this community. Some of these transversal ideas to all the discussions refers to:  

(a) a more concrete and explicit focus of attention in the connections and relationships between 
research and teacher education, emerging from: (i) the diversity of roles each one of us 
assume as researchers, teacher educators, and teachers; (ii) the research tools conceptualized 
and employed – e.g. tasks for data collection and its intertwined required relationship with 
teacher education; 

(b) a specific aim of considering the impact of what we do (in research) in what it’s expected to
be done in the future – in terms of public policy about teacher education.

Some of the emerging open questions are related to: 

(i) How researchers will manage zooming in on knowledge for teaching specific topics within 
a cultural context while zooming out of teacher knowledge models?

(ii) How can we balance the role of cultural context in conducting research and implementing 
teacher education with developing common understanding from research results? 

(iii) What does it mean to have a “sound mathematical knowledge” allowing students to 
understand (online or not)? How can this be improved?

(iv) How can we (researchers, educators) address, utilize and examine different definitions of 
identity?

(v) How should we look into the system of teacher knowledge, identity, beliefs with lens of 
situated learning? 
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Mentoring in pre-service teacher education is defined as a process in which mentor teachers assist 
the professional development of pre-service teachers. In this study, teacher practicum at the time of 
pandemic is examined through supervisor and mentor practices. This study aims to unveil how the 
practices of the two stakeholders in Turkey, and their interaction with each other in the context of 
teaching practicum evolved during Covid-19 pandemic. The sample of the study was 2 supervisors 
and 4 mentor teachers from Istanbul who worked with secondary school preservice mathematics 
teachers. Data was collected by using interviews with supervisors and mentor teachers. The findings 
of the phenomenology analysis showed that the adaptation of the interaction of stakeholders emerged 
to be in three categories; i) discontinuity of practicum due to practicum school online teaching policy; 
ii) online micro-teaching at university as practicum; iii) online teaching at high school courses.  

Keywords: Mentoring, teaching practicum, secondary school preservice teacher education. 

Introduction  
In line with the fast changing world, education has an important role to shape nations’ generations 
who are capable of overcoming the challenges. Therefore, the quality of education is important for 
countries in order to raise qualified citizens who make their counties much better. The most essential 
component of education is teachers and raising effective teachers is the first step of education for 
students. Because, "the quality of teachers determines the quality of education” (Jan, 2017, p.50) and 
the quality of teachers are determined by the quality of the continuum of teacher education. Teacher 
education is a life-long learning and preservice teacher education is the first step of it. The most 
essential part of preservice teacher education is teaching practice because teaching practice gives 
opportunities for preservice teachers to transform their theoretical knowledge into practice (Azkiyah 
& Mukminin, 2017). During the practicum process, mentees need guidance and support. The people 
who are responsible for providing such support and guidance are supervisors-instructors of mentees 
in the teacher education program and mentor teachers-collaborating teachers from practice schools.  

Understanding the practicum process is difficult because it should be evaluated in terms of opinions 
of three stakeholders, university supervisors, mentor teachers and mentees. When the research studies 
about teacher practicum are examined, it can be seen that there is a limited number of studies to 
examine the practicum process in terms of the relationship and collaboration between three 
stakeholders. Because of the Covid-19, understanding these relationships has gained more importance 
to provide effective teacher practicum for mentees. Thus, the purpose of this study is to contribute to 
the literature on how the practices of the triad stakeholders in Turkey, and their interaction with each 
other in the context of teaching practicum evolved during Covid-19 pandemic. 
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Even if the importance of teacher has started to increase, many people think that anyone who has 
such content knowledge can be a teacher (Darling-Hammond, 2000). According to Shulman (1987), 
being a teacher, and skills that teacher must have are underestimated. Being a teacher contains within 
itself many roles, responsibilities, knowledge, and skills. Even if content knowledge is an essential to 
be a good teacher, it is not the only component of teaching because it just forms the “what” part of 
teaching. Teachers should also have pedagogical knowledge to be qualified to “how” s/he will teach 
the content. 

Knowing how these skills and knowledge can be got as much as important knowing which skills and 
knowledge are necessary to be a teacher (Darling-Hammond, 2006). According to Shulman (1987) 
and Darling- Hammond (2000), preparation is an important step for getting these kinds of skills and 
knowledge because teaching can be learned. Therefore, teacher education has a significant role to 
raise qualified teachers.Teacher education is not short-term learning, it is a life-long learning. 
Therefore, it is not true to say that each teacher who graduates from undergraduate teacher education 
program completes their teacher education. Undergraduate teacher education program is just the first 
step of the teacher education process, and it has a great role to shape preservice teachers’ lives as a 
teacher. 

Preservice teacher education and practicum 

Due to the fact that preservice teacher education is the first step of teacher education, planning and 
applying the preservice teacher education is important to raise qualified teachers for countries. Even 
if each county may have its own preservice teacher education program, preservice teacher education 
has generally two parts to prepare students teachers as a teacher. One part constitutes the theoretical 
side of preservice teacher education and the second part constitutes the practical side of preservice 
teacher education.Even if theoretical knowledge is necessary, it is not sufficient to be a teacher. 
According to Munby et al. (2001), knowledge of teaching can be acquired and improved by the 
preservice teachers’ own teaching experience. Therefore, preservice teachers should have 
opportunities to apply their theoretical knowledge into practice (Azkiyah & Mukminin, 2017; 
Zeichner, 2009; Nguyen, 2020) to build a bridge between theory and practice.  

In Turkey, recently, the Ministry of National Education and the Council of Higher Education made 
regulations on pre-service teachers' practices, the partnership between universities and schools and 
revised the roles of pre-service teachers, mentors and supervisors (MEB, 2018). Based on these 
regulations, mentees are expected to take subject-matter courses and teaching methods courses and 
to experience teaching in practicum schools. Universities are responsible for providing teacher 
candidates with the courses of subjects and teaching methods. In the field experience, both 
universities and partner schools have responsibilities for teaching practices of teacher candidates. 
Especially, mentoring provided by mentor teachers who are the supporters of teacher candidates at 
practicum schools plays a significant role in the development of teacher candidates' knowledge and 
skills on teaching. 

There is a limited number of studies that focused on triad stakeholders in teacher practicum in Turkey. 
One of the studies of Yılmaz and Bıkmaz (2020) aims to examine the mentors' needs within the 
context of Classroom Teacher Education from the perspectives of supervisors, mentors and mentees. 
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According to findings, each stakeholder stated that mentors had a need for their roles and 
responsibilities to be clearly stated, which confirms Curran's and Goldrick's (2002) argument that 
mentoring should be based on clearly stated objectives. Moreover, Yılmaz and Bıkmaz (2020) 
emphasized that even though the mentor training program was built on a collaborative approach, in 
practice, mentoring diverges from being a collaborative effort. Even though the literature suggests 
investigating mentor teacher practices for area specific studies, the pandemic created an unexpected 
crisis on teacher education. In Turkey, schools were closed for a long period of time which required 
preservice teachers to finish their senior year practicum with emergency solutions. This study aims 
to investigate how mentors and supervisors of preservice secondary school mathematics teachers 
adapted teacher practicum while conducting emergency remote teaching in Turkey.     

Methodology 
In order to investigate the experiences of two stakeholders, mentors and supervisors, at the time of 
pandemic in 2020 for teacher practicum, phenomenology design is used. In the context of teacher 
education, in order to examine preservice teachers’ learning processes it was necessary to examine 
the interaction between these stakeholders. In order to do so, data was collected from the two 
stakeholders by the end of teacher practicum semester, Spring 2020. There are only two secondary 
school mathematics teaching programs in Istanbul. Researchers contacted both of these programs and 
reached mentor teachers (n=4) of their practicum schools and supervisors (n=2) in order to conduct 
individual interviews. In the semi-structured individual interviews both groups of participants were 
first asked about pre-pandemic practices of teacher practicum. Then they were asked to talk about 
their experiences of practicum after all high schools and universities were closed and continued 
education as emergency remote teaching. Both stakeholders were also asked about their relationship 
with others during the adaptation of practicum at the time of pandemic. These interviews transcripted 
and coded for themes. 

Findings and Discussion 
Findings from two supervisors (one from two universities) and four mentor teachers showed that the 
pre-pandemic interactions among stakeholders were consistent with each other in terms of how they 
interacted. The interaction was evident, carefully planned and regulated by both universities and the 
Ministry of Education. Both parties mentioned these regulations and how the Ministry of Education 
requirements really regulates mentee preservice teachers’ practices but not providing much direction 
for supervisor-mentor interactions. 

One expected finding was the limited direct interaction between these two stakeholders. Supervisors 
and mentors interacted through the mentee preservice teachers. Their answers for elaboration of the 
interaction revealed the nature of interaction in two categories; i) cooperation or ii) collaboration. 
When mentors’ practices were limited with Ministry of Education requirements (mentees to do six-
hour weekly observations, four teaching practices) the interaction became at cooperation level. For 
some supervisor-mentor pairs, there was clear differentiation from others in terms of how they 
interacted beyond the regulations. These supervisor-mentor interactions were extended from mentee 
evaluation into deliberate communication and visits for topics other than specific mentees. For such 
cases, stakeholders collaborated with extended share of interest and resources.  
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As the Turkish government decided emergency curfew, all schools were closed by March 23rd, 2020. 
After one week of emergency spring break, schools started emergency remote teaching. In addition 
to the online synchronous teaching, the Ministry also provided TV broadcasting. Meanwhile 
universities started emergency remote teaching. But it brought a great challenge for teacher education 
because mentees could not complete their internship. Most of them were able to attend only one third 
of the internship. Due to curfew, the Ministry waived all the requirements, asked supervisor and 
mentors to evaluate mentees based on the work during face-to-face education, before curfew.  

We found that, when the Ministry of Education waived all practicum requirements as an emergency 
reaction, the adaptation process was directed by supervisors’ priorities for teacher education rather 
than mentors’ practices. This may imply how stakeholders positioned themselves for teacher 
education during the pandemic. Findings also revealed three types of adaptation: i) discontinuity of 
practicum due to practicum school online teaching policy; ii) online micro-teaching at university as 
practicum; iii) online teaching at high school courses as practicum.  

In this presentation, authors will discuss these adaptation types which provide insights to how 
stakeholders considered new normal in teacher education by relating them to pre-pandemic practicum 
interactions and also how it may transform teacher practicum for the following years. 
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Despite project-based learning (PBL) benefits, its use when teaching mathematics is not as common 
as expected, partly because of the required changes in teachers' role and knowledge. In this case 
study, we map and characterize the changes undergone by one teacher while transitioning from 
teacher-centered instruction to PBL. This transition was accompanied by a  teacher community where 
the teachers experienced authentic real-life problems from the tech industry as learners, then led 
project-based learning in their 9th-grade classrooms. The findings indicate a development in the 
content knowledge, the pedagogical content knowledge, and the general pedagogical knowledge of 
the teacher and demonstrate the formation and implementation of an up-to-date didactic contract 
between her and her students. Recommendations include integrating the topics of teacher's 
knowledge components and didactic contract in teacher training for PBL. 

Keywords: Teachers' knowledge, teacher community, didactic contract, pedagogical content 
knowledge, project-based learning. 

Introduction and background 
Project-based learning (PBL) is a teaching method known throughout the world for several decades, 
and there is extensive knowledge and literature on its characteristics and advantages (e.g., Condliffe 
et al., 2017; Thomas, 2000). It is rooted in Dewey's (1938/1963) educational ideas stating that 
learning is a social activity and emphasizing the effect of real-life situations, students' choice of 
context, and ways of learning. The projects allow students to work relatively autonomously, over 
extended periods of time, with a tangible product created by the students at the end (Thomas, 2000). 
When students perform PBL in mathematics, they implement strategies such as reducing the 
complexity of the problem, searching a simple model, and moving from the specific case to 
generalization (Halverscheid, 2005). In PBL of mathematics, students engage in problem solving, 
decision making, and investigative activities (Palatnik & Koichu, 2017). 

Despite these advantages, PBL is not a common practice in math classes as one might have expected, 
partly because the planning and the implementation in class are challenging (Thomas, 2000). Being 
student-oriented and constructivist, PBL challenges teaching practices and learning methods and thus 
requires a significant change in the work of teachers and students. PBL requires a modification in 
teachers' role from director to a facilitator of learning and requires them to tolerate ambiguity and 
higher levels of noise and movement in the classroom (Condliffe et al., 2017). These challenges 
suggest the need for new models of professional development and teachers' training geared to the 
specific characteristics of this teaching method to provide teachers with the tools and skills they need 
to successfully implement PBL in class (Barron et al., 1998). 

Proceedings of CERME12 3503



 

 

The purpose of this study is to begin building a conceptual, cultural, and organizational framework 
that will enable PBL based on real-world industrial problems to be widely implemented in schools. 
The motivation is based on the aforementioned characteristics of PBL contributing to the 
development of students' independence, strengthening their sense of ownership of knowledge, and 
encouraging learning out of curiosity (Thomas, 2000), and on a perception that tackling real-world 
context problems leads to higher-order thinking processes, integration of critical thinking, and 
improvement in communication and reflection (OECD, 2018). 

Given the importance of the teacher's role and the need to rethink and refine this role while 
implementing student-centered pedagogy (Condliffe et al., 2017), we chose to focus our research on 
teachers and the changes that occur when transitioning from teacher-centered instruction to PBL in 
mathematics. Based on the second author's experience in implementing PBL (Palatnik & Koichu, 
2017; Palatnik, 2022) as well as on Brousseau, 1997; Condliffe, 2017 and Thomas, 2000, we 
hypothesize that this transition creates changes in the teachers' knowledge, as well as changes in the 
nature of the interaction between the teacher and her students. To map and characterize these changes, 
we conducted a multiple case study of teachers who, for the first time, used real-life context PBL in 
their classrooms. This report describes the case of one of these teachers, Sarah.  

Theoretical Framework and Research Questions 
As mentioned, our study aims to identify and characterize the development of the teacher's knowledge 
when transitioning to teaching mathematics using PBL and to map and describe the changes in the 
nature of the interaction and the set of mutual expectations between the teacher and her students as a 
result of this transition. Thus, we acknowledge Shulman's categorization of teachers' knowledge 
(1986) and recent developments in the field (e.g., the Mathematics Teacher's Specialized Knowledge 
(MTSK) model, Carrillo-Yanez et al., 2018). However, as our study focuses on the professional 
development of mathematics teachers within a learning community and the enactment of new 
knowledge  in class, we sought a more dynamic theoretical framework that will emphasize the 
knowledge flow between various layers of teachers' knowledge. Hence our theoretical framework 
draws on the Refined Consensus Model of PCK (Carlson & Daehler, 2019) for science teachers' 
practice. Their model describes the flow of knowledge from the outer circle of collective PCK (cPCK) 
of peers, teacher educators, researchers, and mathematicians to the personal PCK of the teacher in 
question (pPCK), and then on to enacted PCK (ePCK), which is "the unique subset of knowledge that 
a teacher draws on … during the planning of, teaching of, and reflecting on a lesson" (Carlson & 
Daehler, 2019, p. 82)  

When the teacher shifts to student-centered pedagogy, students become more responsible for learning. 
Hence, we incorporate into the theoretical framework of this study the notion of didactic contract—
the set of reciprocal obligations and mutual expectations between the teacher and the students (the 
theory of didactic situations, Artigue et al., 2014; Brousseau, 1997). 

In terms of the theoretical framework, our research questions are: 

(1) Which components of teachers' knowledge develop when transitioning from teacher-centered 
pedagogy to PBL in a real-life context? 
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(2) What changes does the didactic contract between the teacher and her students undergo due to 
this transition? 

The context of the study – Practimatics program 
The study is a pilot study accompanying "Practimatics", a novel program that brings industry system 
engineers, mathematics education researchers, and mathematics teachers around one table. The 
program relies on three elements: new mathematical content – tech-related real-world problems, new 
pedagogy – PBL, and a dedicated teacher community. During the program, we exposed the teachers 
to several real-life industry-based mathematical problems that were processed by the research team. 
The mathematical content needed for the inquiry was consistent with the 9th-grade Israeli curriculum 
(Pythagorean theorem, linear and quadratic equations and functions, the ratio, etc.) In addition, the 
tasks allowed the students to combine algebraic and geometric content, which is not usual for regular 
curriculum tasks. The milk container problem (see below) was chosen based on these considerations. 
The teachers who participated in the program and their 9th-grade students had no prior experience in 
PBL. As mentioned, a key element in the program was establishing a teacher community led by the 
research team. The community incorporated means to facilitate PBL implementation, as mentioned 
in the literature. Namely, it provided initial training, allowing teachers to experience project-based 
learning as learners (Condliffe et al., 2017), supported and accompanied the teachers through 
networking and training (Kokotsaki et al., 2016), was a safe meeting place for them to draw emotional 
support and conduct peer dialogue on the various projects (Tsybulsky et al., 2019), and provided 
teachers with explicit models of possible student learning trajectories before they enter the classroom 
(Barron et al., 1998). The first author of this paper is one of the community leaders and is a high 
school math and physics teacher. His background as an electronics engineer who worked extensively 
with systems engineers for over a decade before becoming a teacher helped create a common 
language between the program participants – teachers, engineers and researchers.  

The original problem in the described case study 

The students' projects originated from "TetraPak", a revolutionary pyramid-shaped milk container 
presented in the 1950s by a group of engineers and entrepreneurs (Figure 1a). The students were 
asked to create a model of such a container using as much as possible from an A4 paper sheet and to 
present it along with calculations and justifications. 

(a)   (b)  

Figure 1: TetraPak pyramid-shaped milk container and a diagram from one of the student projects 

Methodology 
Our method is an instrumental case study, exploring the issue over time with detailed, in-depth data 
collection involving multiple sources of information. In this paper we present the case of the teacher 
Sarah, whom we perceive as a typical case of an experienced teacher with no acquaintance and no 
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prior experience with PBL or any other form of inquiry-based pedagogy. Sarah was very cooperative, 
verbal, and informative, and she was eager to share with us the nature of the interaction in her 
classroom, which made her a valuable informant. Data included transcriptions of seven 1:30 hr. 
community meeting recordings. We used inductive coding when analyzing Sara's account of her 
experience implementing the new teaching method. Both writers read the transcripts together, 
associating each teachers' expression with the categories based on our theoretical framework and our 
hypothesis: subject matter knowledge, pedagogical content knowledge, pedagogical knowledge, 
didactic contract. We created and examined a new category in cases where an expression did not fit 
any of these categories. We then cross-referenced data from additional sources: observation of Sarah's 
class, questionnaires, and documents collected in the field (Sarah's notebook, WhatsApp, and email 
correspondence), and compiled the account of Sarah's case. 

Findings 
Sarah teaches at a six-year religious high school for girls in central Israel. At biweekly community 
meetings, Sarah spoke in detail about PBL implementation in her class. Her students worked on a 
project that originated from the milk containers problem for about four and a half months. The 
mathematical content of the projects was mainly geometry (see example Figure 1b) and, in particular, 
the properties of the pyramids. Starting with reference to the didactic contract, we describe the 
findings in chronological order as possible to account for the gradual change. All descriptions and 
entries were made in Hebrew and translated by the authors of this article. 

Formation of an up-to-date didactic contract between the teacher and her students 

Already at Sarah’s first meeting with her students, at which she planned to present only the structure 
of the program without delving into mathematics, she decided to introduce them to the problem of 
the milk container. At a learning community meeting, she explains why:  

Sarah: Because…. well…, the audience demanded…it was as if they were curious and they said: "no, no, 
give us the problem now." So, of course, I said OK. Luckily, I prepared in advance. 

Four months later, Sarah looks back at the beginning of the process and recalls how the students had 
to adapt to the new pedagogy and to the clauses of the updated contract with the teacher:  

Sarah: …they never worked that way. These students did not even know what it means project-based 
learning…They are so used to learning in a specific way, to have all knowledge and information 
'thrown' on them. It is really like a new language they had to learn.  

During the following lesson, in which the students tried to build pyramids using rolls of paper, they 
asked why one should study this subject, which is not in the curriculum. Sarah replies: 

Sarah: There is a reason for that, but wait, you will see soon. That's why I want you to try to look for the 
subjects yourself... In this program, you will learn on your own, and you will be able to teach me. 

She builds on the students' questions to reveal another aspect of the new didactic contract as she tells 
them: "learning in this program will be different; responsibility is on you now." At the end of the 
lesson, when the students' attempts to create pyramids were unsuccessful, they asked her to reveal the 
answer. Sarah insisted they keep trying at home. According to Sarah, the students were surprised.  Up 
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to this point, in such situations, students were used to receiving solutions to the problem from her. 
Sara's actions and students' surprise indicate the start of redesigning the didactic contract—students' 
responsibility for learning and ability to deal with initial failure as part of mathematical inquiry. 

Note, Sara's persistence in not revealing the answer is not arbitrary. She learns to be a learning 
facilitator to her students (PCK related to PBL). One of the elements of facilitation discussed lengthily 
in the community was that the teacher needs to avoid revealing the answer to motivate students to 
complete the inquiry. Thus, through community sessions and WhatsApp group, an element of the 
collective knowledge regarding the implementation of PBL in mathematics becomes part of Sarah's 
personal knowledge. When she acts in class applying this knowledge in the specific situation with 
specific students, this knowledge becomes enacted PCK (we elaborate on this later on).  

A few weeks after the start of the project, a student told Sarah that she did not understand what she 
wanted from her in this project. Sarah was stunned because this was their fourth meeting already. As 
the project progressed, Sarah found herself constantly explaining to students what she expected of 
them. Indeed, the didactic contract should be re-clarified repeatedly for students and the teacher.  

The final part of the project was an event held at the Hebrew University, in which the students 
presented their work and answered questions of prospective teacher program students. One of the 
questions concerned the way of learning. In the words of Ella, one of the students: 

Ella: Learning this way was much more interesting because in regular math classes, you often study 
subjects you are less connected to, that interest you less. But when you choose the subject on your 
own, out of curiosity, you always have more motivation to learn, discover, and solve. 

The student demonstrates the contrast between her motivation and interest during regular math classes 
and those during the project, highlighting another facet of a didactic contract for PBL: student choice 
of a problem.  

Development of Sarah's pedagogical knowledge 

Throughout the project, we witnessed the development of Sarah's pedagogical knowledge in aspects 
related to PBL, including ways to motivate and recruit students and ways to deal with procedural and 
social challenges in the working groups in her classroom. For example, at the fourth community 
meeting, she shared her opinion about the low pace compared to conventional pedagogy, and the 
teacher's need to be prepared widely for more than just the intended content: 

Sarah: It takes a lot of time. It took me at least double the time I planned...I learned that one should be very 
flexible and be prepared not only for the specific lesson, right? You need to be ready for more. 

At the seventh community meeting, she referred to the ways she has to prepare for a PBL session: 

Sarah: So what you (members of the learning community) are saying here is that even if I give them this 
question in class, I should not try to solve it on my own beforehand. 

These two excerpts illustrate bilateral knowledge exchange between enacted, personal and collective 
pedagogical knowledge of teachers. Sara's understanding of PBL planning and implementation 
includes now notions of teacher's flexibility regarding students’ projects and acting as a research 
partner of her students. 
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In yet another session, she shared her thoughts about encouraging low-motivated students who are 
stuck. Her pedagogical knowledge is challenged here: 

Sarah: On the one hand, I can turn to them now and ask, but on the other hand, I wonder maybe it's supposed 
to come from them? Because if I'm the one asking, then ...well... I have to think, what's better. 

However, two months later, she already has a solid opinion regarding ways to engage students: 

Sarah: Explain to them the goal, show them the whole process so they can understand what's planned, so 
they have a sense of belonging. If you want students to feel a sense of belonging, you must share. 

After enacting new pedagogy of PBL for a relatively long time, Sarah contributes her insights to 
collective pedagogical knowledge—sharing the goal and the process creates engagement. 

Development of Sarah's content knowledge and pedagogical content knowledge 

During the project, Sarah had to acquire new content knowledge. She learned some of it on her own, 
while in some cases, she relied on the community, as in the following example: Sarah tells the students 
tried to understand the pyramid volume formula by building a physical model. They managed to put 
six pyramids into a cube, as seen in Figure 1b, but not three pyramids. Sarah says: 

Sarah:  Maybe it came out by chance, but to really insert three pyramids into a cube, you cannot... I mean 
in volume, yes, but not in shape, not in dimensions. 

In response, a discussion in the community  begins as to whether it is possible to physically insert 
three pyramids into a cube. The program mentor demonstrated with the help of GeoGebra how it 
could be done, and Sarah now refers to her own lack of expertise in using GeoGebra: 

Sarah:  You see, say I would like to show them such a thing, (but) just looking it up... it would take me 
forever. 

This example demonstrates how collective PCK becomes personal. Now Sarah knows it is possible 
to insert three pyramids into a cube, and she saw a new tool that allows visual illustration. The new 
knowledge she acquired here will most likely serve her in the future when teaching similar topics, 
thus becoming enacted PCK. 

In a different case, Sarah seeks help from the community  to bridge  another content knowledge gap. 
She raises a question in the community's WhatsApp group regarding the characteristics of right 
pyramids and their heights. One of the community leaders replied without revealing the answer, in a 
way that encouraged Sarah to investigate and expand her knowledge on her own, while at the same 
time demonstrating how to communicate with students in PBL.  

Discussion and conclusions 
This study examines the case of an experienced teacher with no acquaintance and no prior experience 
with PBL and analyzes the development in her knowledge while transitioning to student-centered 
pedagogy. As mentioned in the literature, transitioning to student-centered pedagogy presents 
challenges and difficulties to teachers, as they require to adapt to new roles. This study brings 
empirical evidence of these challenges in the context of tech-related PBL and of the process of 
overcoming these challenges and developing relevant knowledge with the help of a teacher 
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community. For instance, Sarah and the other teachers in the community realized that planning needs 
to be modular and flexible, much beyond a specific lesson, and must rely on broad mathematical 
knowledge, so they would be able to cope with surprises that arise from student inquiries. Teachers 
learned how to motivate and engage students in inquiry-based learning. They witnessed the power of 
learning through curiosity and experience and the notion that "breaking down the isolation of the 
classroom and designing performance opportunities in which students present to outside audiences 
can be a powerful way to support learning" (Barron et al., 1998, p. 285). Moreover, our findings 
demonstrate that PBL summons interpersonal situations and challenges that influence learning 
progress and requires teachers to develop and apply mediation skills. These insights and nuances 
regarding the implementation of PBL were new to Sarah and therefore represented an expansion of 
her knowledge. 

In line with Brousseau's theory of didactic situations (1997), transitioning to student-centered 
pedagogy requires a new didactic contract between teachers and their students. Our study brings 
empirical evidence to the implementation of such a contract. Throughout the entire project, Sarah 
finds ways to convey her new set of expectations and re-clarify them when students lack 
understanding of these expectations. This movement back and forth in students' understanding of the 
expectations from them and the teacher's need to re-clarify the clauses of the contract is in line with 
Artigue's notion of an “appropriate didactical contract and the difficulties attached to the progressive 
negotiation of such a contract” (Artigue & Blomhøj, 2013, p. 804). From the teacher's knowledge 
perspective and in line with the RCM-PCK model (Carlson & Daehler, 2019), the whole notion of 
didactic contract, its formation, and the ways to convey and clarify it to the students represent a 
knowledge flow from the outer circle of community's collective knowledge to Sarah's personal and 
enacted knowledge. 

Applying the RCM-PCK model in science to mathematics education, we demonstrated the flow of 
knowledge between the community leaders, peers and the teacher's personal knowledge and the 
development in her subject matter knowledge, pedagogical knowledge, and PCK. The case study 
exemplified that the notion of didactic contract and the need to redesign it when implementing PBL 
is a development of pPCK, thus suggesting a theoretical connection between this element of the TDS 
with a model of teachers' knowledge. Further research is needed to characterize these connections 
and how the formation of multiple didactic contracts by teachers in the community will enhance 
cPCK. Sarah's awareness of these developments and processes and her willingness to share and 
expand her knowledge helped her to implement PBL in her classroom successfully. We therefore 
recommend incorporating the subjects of didactic contract and the RCM-PCK model of teacher 
professional knowledge in mathematics teacher PD programs.  
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In this paper we inquire about the knowledge of the meanings of probability of preservice primary 
and secondary school teachers from Slovakia and Spain. At the end of their training on this content, 
we wonder about their conceptions of randomness and how they quantify its uncertainty. From the 
results obtained through a questionnaire filled in by 89 preservice mathematics teachers of Primary 
and Secondary in both countries and the interview to some of these informants, we highlight that they 
associate randomness mainly to future events and drawing experiments; they show knowledge of the 
classical meaning of uncertainty and little acquaintance with the subjective meaning. Besides, they 
seem to separate uncertainty from probability assignment.  

Keywords: Probability, uncertainty, preservice teachers, Primary and Secondary School. 

Introduction 
Compared to other topics in mathematics, probability is especially difficult to understand. Unlike 
logical reasoning, which deals with statements which are either true or false, probabilistic reasoning 
deals with events for which there is no complete certitude. The intuitions underlying concepts of 
probability, such as dependence or fluctuations, are usually obscured by mathematical counting 
methods. These reasons, among others, make this a particularly difficult content item for both stu-
dents and teachers, as Batanero et al. (2004) and the references therein, point out. These authors note 
that one aspect of teacher training concerning probability on which special emphasis should be placed 
is epistemological reflection on the concepts to be taught. We concur, and stress that understanding 
the inherent nature of probability should be one of the main goals in teaching the topic.  

Probabilistic contexts can be understood from different perspectives. One major approach is the clas-
sical approach, which imposes the need for objective mathematical rules to explain random processes; 
in addition, the epistemic approach sees probability as the degree of personal belief about the 
ocurrence of an event, which is dependent on the information available, and constrained by theoretical 
decision rules. These two major trends can be included among what many authors have called the 
different perspectives on, or meanings of, probability, which also include the classical, frequentist 
and subjective approaches, among others (Batanero et al., 2016). 

In our approach, following the Mathematics Teachers’ Specialised Knowledge model (MTSK, Car-
rillo et al., 2018), teachers’ knowledge of the different meanings of probability is located in their 
Knowledge of Topics (KoT). Numerous researchers have highlighted that, in order to offer students 
a richer learning experience, it is important for teachers to develop a broad understanding of the range 
of meanings of mathematical objects (e.g. Martín-Fernández et al., 2019; Thompson, 2016). In the 
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case of the probability theory, realizing that uncertain situations can be described in terms of proba-
bilistic models is especially significant. Ultimately, from the teachers point of view, we think that 
probability should be identify as the main mathematical tool for dealing rationally with uncertainty 
in daily life contexts. 

This work is a descriptive exploratory study which focuses on the knowledge of preservice primary 
and secondary school teachers from Slovakia and Spain at the end of their training on probability. 
The research questions are: What are their conceptions of randomness, and how do they quantify 
uncertainty? In other words, our goal is to explore to what extent preservice teachers consider prob-
ability as a measure of uncertainty or of partial information. 

Theoretical framework 
We are especially interested in the subjective interpretation of randomness and its use in decision-
making, as a way of teaching inferential reasoning. This approach is based on the probability theory 
initially presented by Ramsey (1926) and De Finetti (1937) and developed by authors such as Jeffrey 
(1965) and Savage (1967). Under this theory, randomness is associated to any observation or experi-
mentation for which the observer has no total information or certainty. That is, randomness is a 
property not related to a situation, but related to the judgement of the subject that observes. That 
judgement translates in conditions governing a set of personal preferences so as to obtain coherent 
behavior in uncertain situations. Informally, such preferences and coherence refer to actions and con-
sequences depending on the uncertain events considered. Technically, those concepts are defined 
inside the axiomatic for decision theory and based on concepts such as betting and Dutch book.  

From the subjectivist point of view, probability is seen as a model for partial information, or uncer-
tainty, of the decision-maker. This means that, e.g., two physicians could assign different coherent 
sets of probabilities (in fact, for possibly different diagnoses) and consider treatments and conse-
quences in different ways according to their personal judgement. 

As any other mathematical problem, random contexts can be modeled by different approaches inside 
the probability theory, the main two being the classical one, based on equiprobability and counting 
methods, and the decision theoretical one, based on personal information and coherence axiomatic. 
Their implications in statistical education are discussed in (Batanero et al., 2016). 

These approaches are related, though. The axioms for coherence have been shown to be equivalent 
to Kolmogorov’s, which means that the usual rules of the calculus of probability are coherent, and, 
inversely, a coherent assignment of probability satisfies the usual properties, for instance, that the 
probability of the union of disjoint events is the sum of their probabilities. Additionally, the classical 
interpretation of probability, which assigns equal probability to the elementary events, is a particular 
case of subjective assignment, when we consider conditions such as the symmetry of the results of 
an experiment or lack of information. Similarly, the acceptance of conditions that guarantee the limit 
frequency as an adequate assignment of probability for a given event is a subjective choice, relative 
to the subject that is mathematically modeling the problem. Finally, the subjectivist interpretation 
implies that our own assignment of probabilities can change when updating our knowledge. Both 
prior and posterior assignments must follow coherent consequential rules, equivalently to the relation 
between conditional probabilities and the Bayes rule.  
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Several authors mention that preservice teachers are unfamiliar with different meanings of random-
ness and probability and that they need to be aware of these approaches, because they influence their 
students’ reasoning (e.g., Chernoff & Zazkis, 2011; Batanero, 2016). That is why, in this paper, we 
focus on the meanings that preservice teachers attribute to randomness and its measure as mentioned 
above. More specifically, we explore the preservice teachers’ conceptions of uncertainty in relation 
to certain daily situations, and how they quantify it. We locate this knowledge as distributed among 
knowledge of notions of uncertainty (KoT – definitions, properties, and their foundations), situations 
that this knowledge models (KoT – phenomenology) and calculation procedures for quantifying this 
knowledge (KoT – procedures). This is consistent with Di Bernardo et al. (2019) and the references 
therein, where subjective knowledge about probability and knowledge of connections between dif-
ferent meanings was divided into: knowledge of definitions, properties and their bases (intra-concep-
tual connections between different meanings); knowledge of procedures (calculation of probabili-
ties); knowledge of representations; and knowledge of phenomenology (modeling a situation from 
the appropriate meaning). 

Methodology 
Our informants were 89 preservice mathematics teachers (PSTs), in Spain and in Slovakia. The Span-
ish group consisted of 43 preservice teachers at the University of Huelva, who had completed a course 
on statistics and probability as part of their degree. Both the classic approach to probability and a 
preliminary introduction to the subjective perspective had been covered during the course. The Slo-
vak group of informants consisted of 46 preservice secondary school teachers (grades 5-13) from 
Pavol Jozef Šafárik University in Košice. All the Slovak PSTs had passed the compulsory classes in 
statistics and probability. During those courses, they were exposed to the classical definition of prob-
ability, and worked with the Kolmogorov axioms. The subjectivist view was not directly dealt with 
on that course. The training of both groups of students in probability has not been equivalent, neither 
in depth (greater in the case of the preservice Slovak secondary teachers) nor in that the preservice 
Spanish primary teachers have received some notions of subjective probability (idea of uncertainty 
and its relation to decision-making). Both groups have in common that they have received their last 
course on probability. Our goal is to explore whether differences in training and context are reflected 
in differences in their understanding of probability as uncertainty. 

The information was collected through a questionnaire with four sets of questions. We analyze in this 
paper the first two (Table 1). The first question focused on the concept of randomness in a variety of 
situations including the result of a lottery taking place both in the past and the future, a social or 
economic index in the past, the location of a historical event, and a weather forecast. For each 
situation, we then asked for the PSTs' personal estimation of the probability of specific events.  

In the case of Spain, the questionnaires were completed in the training classroom, while in Slovakia 
the questionnaires were completed online due to COVID-19 restrictions. One group of Slovak PSTs 
(13 participants) was explicitly asked to explain precisely the thinking behind their responses at the 
end of each question. A few days after they finished the questionnaires, they had a group discussion 
in which some of the PSTs explained the reasoning for the answers given in the questionnaire.  

Once the data for each country had been collected, they were analyzed by the corresponding country 
team. Later, they were jointly analyzed by all the authors of this work. The main aspects of this 
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analysis are: the students’ conception of randomness, the assignment of probabilities and the 
coherence of this assignment. In Table 2 we point out how we analyzed each of these aspects, and 
explain them with more detail in the Section Results. 

Table 1: Questions for information gathering 

Task 1 
Indicate if you think that the following situations are 
random (A) or non-random (N), according to your 
current information. 
A: ( ) Next week’s result of the 1st prize in the Na-

tional Lottery.  
B: ( ) Last week’s result of the 1st prize in the Na-

tional Lottery.  
C: ( ) The birthplace of Alexander the Great.  
D: ( ) The temperature in Bratislava/Málaga tomorrow 

at noon.  
E: ( ) The Euribor index at close of business yester-

day.  
F: ( ) The proportion of primary school pupils diag-

nosed with attention deficit disorder in 2019 in 
Slovakia/Spain. 

Task 2 
Indicate your estimation of the probability that each of 
the following statements is true. Assign the numerical 
values that you consider appropriate according to your 
current information. 
(a) Next week the 1st prize in the National Lottery 

will be the number 89342.  
(b) Last week the 1st prize in the National Lottery was 

the number 89342.  
(c) Alexander the Great was born in Greece. 
(d) The temperature in Bratislava/Málaga tomorrow at 

noon will be between 18°C and 20°C. 
(e) The Euribor index closed down yesterday.  
(f) The proportion of primary school pupils diagnosed 

with attention deficit disorder in 2019, in Slo-
vakia/Spain, is greater than 5%. 

Table 2: Process of analysis 

Aspect Research question  

 
Conception of 
randomness  

Is randomness associated with uncertainty or partial information, as opposed to situations 
where the exact probability can be calculated? (KoT, notion of randomness –definitions, 
properties and its foundation)  
Task 1: Comparison of events A,B vs C,D,E,F  

Is randomness assigned to past / future events? (KoT, situations that randomness models –
phenomenology)  
Task 1: Comparison of events B,C,E,F vs. A,D  

Assignment of 
probabilities  

To which events is a subjective probability assigned, and to which a value obtained by La-
place’s rule? (KoT, calculation procedures –procedures) 
Task 2: Analysis of the students notes 

Coherence  
(in decision ma-
king) 

Is probability assigned only to the events associated with random contexts? 
Task 1 and Task 2: Comparison of corresponding events – focusing on non-random contexts 
with probability within the interval (0,1) 

Results 
Conception of randomness 

Within this aspect, our goal was to identify the contexts that are believed to be random or nonrandom 
in the students conception. Two kinds of contexts were stated in the assertions of the Task 1: drawing 
experiments (A,B) vs. daily life events (C,D,E,F), and events occurring in the past (B,C,E,F) vs events 
in the future (A,D). Both groups of students agree on what they consider random, as can be seen in 
Figure 1, where each bar represents the percentage of respondents who regard the situation as random. 

The situation described in item A is a random draw, the prototypical context for exemplifying 
probability in introductory courses at school – and was consequently universally considered random, 
as expected. The situation described in B, identical to that of item A but formulated in the past, shows 
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a decrease in the assignment of randomness to about 65%. Events C, D, E and F were identified as 
nonrandom by most PSTs. The contexts of these situations do not offer the possibility of using 
combinatorics or frequencies, except perhaps for the context based on the weather, which has a 
slightly higher proportion. Moreover, neither the Spanish nor the Slovak PSTs had received the ap-
propriate training for solving such tasks, nor had Slovak PSTs been introduced to subjective proba-
bility. In the Table 3, we associate the results of Task 1 for the past contexts  (items B, C, E and F). 

 
Figure 1: Proportion of answers (in percentage) which consider situations A-F as random 

From the Table 3, we can see that 10 out of 43 Spanish PSTs (shaded orange) and 14 out of 46 Slovak 
PSTs (shaded blue) considered all past contexts as nonrandom. However, if situation B is excluded 
(a draw – usually connected with randomness) we get 28 out of 43 (18 + 10 shaded orange) Spanish 
PSTs and 23 out of 46 (14 + 9 shaded blue) Slovak PSTs. These numbers make up at least 50% of 
PSTs in each of the countries. Five PSTs from the group of 13 PSTs in the Slovak sample that 
commented on their answers argued that the situation is nonrandom because it happened in the past. 
The other argument was that a past situation is not random at all, since it is either true or false. 

Table 3: Consideration of randomness for the past contexts. 

  E – R E – nR 

Total   F – R F – nR F – R F – nR 

  ESP SVK ESP SVK ESP SVK ESP SVK 

B – R 
C – R 0 0 0 1 3 2 1 1 8 

C – nR 0 0 5 6 2 9 18 9 49 

B – nR 
C – R 0 0 0 0 0 1 1 0 2 

C – nR 0 1 1 2 2 0 10 14 30 

Total 0 1 6 9 7 12 30 24 89 

Assignment of probabilities 

Two main methods of assignment of probabilities used by the PSTs emerge: the classical calculation 
from equiprobability and personal reasoning based on their previous knowledge. 

For events A and B, a significant number of the PSTs in both countries assigned a probability based 
on the rules of combinatorics and classical calculus of probability: 33 out of 46 Slovak PSTs for event 
A, and 16, for B; 20 out of 43 Spanish PSTs for event A, and 12 out of 29 who assigned a probability 
less than 1, for event B. For the 13 PSTs in the Slovak sample who commented on their answers, a 
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few of them tried to use Laplace’s rule for the events C and D (4 PSTs in C, and 2 in D), but the 
corresponding values were chosen according to subjective considerations. For instance, the “number 
of countries at that time” was used for counting probability in event C, or “according to the weather 
forecast, I expect that tomorrow’s temperature will be between 15 and 20, so the probability will be 
3/5”, for event D. No Slovak PST used Laplace’s rule in connection with events E and F. However, 
in situation F, two PSTs explained their answers in a way which combine estimation with personal 
experience, e. g.: “5% means that every 20th child has been diagnosed with attention deficit in 2019, 
which is too many in my opinion. In my class we had nobody with such a condition”, “If we have 800 
thousand pupils 5% means 40 thousand pupils at approximately 2000 schools, that is 20 such pupils 
at one school – it is too many”. During the discussion with the 13 Slovak PSTs after the questionnaire 
filling, 2 PSTs stated that the Task 2 was too challenging: “Task 2 makes no sense to me. I don’t know 
what to do”; “It was a big problem for me”. In some of PSTs’ explanations, we could explicitly 
identify assignment of subjective probability: “First, I tried to find some relevant number in a ques-
tion about Alexander the Great. Then, I decided that he was either born in Greece or not, so I assigned 
a probability of ½. I used the same logic in the subsequent questions”. Spanish PSTs made similar 
remarks for events they do not have any information about. 

Coherence 

Finally, the third aspect is related to the coherence of the answers. For each case, the following four 
possible options can occur: the situation can be considered random or not, and the probability 
assigned to the specific event can be 0 or 1, indicating certainty, or a number within the interval (0,1), 
indicating uncertainty. Table 4 shows the coherence state for each pair. 

Table 4: Probability assignment and random situations. 

 Random Nonrandom 

Probabilities within the interval (0,1) coherent incoherent 

Probability equals 0 or 1 may be coherent coherent 

From the perspective of our research question, it is most interesting to look at incoherence and there-
fore to display how many PSTs assigned probability within the interval (0,1) to events in the situations 
described formerly as nonrandom. We can see that this incoherence is quite common among our 
informants (see Figure 2).  

Conclusions 
From the results of our study, we conclude that: 1) regarding the situations associated to randomness 
(KoT -phenomenology), past events seem to be considered mostly as non-random, with the exception 
of when they are linked to a kind of draw, in which case, especially among the Spanish PSTs, it is 
mostly considered as random; 2) regarding the assignment of probability ((KoT- procedures), the 
PSTs have little experience in using a subjective or any other approach, even though it can be very 
useful in daily life. It seems that PSTs do not consider that kind of reasoning to be within the scope 
of mathematical modeling; and 3) regarding coherence, the results may reflect a narrow use of the 
concept of randomness (KoT- definitions, properties and its foundation), which does not include sit-
uations of uncertainty. Although the probabilistic language can be used to make statements about 
uncertainty, randomness as a mathematical model is not used in daily contexts. 

Proceedings of CERME12 3516



 

 

 

Figure 2: Probability assignation to events in contexts considered non-random                                          

Therefore, PSTs’ conception of randomness is not as deep and complex as might be desired. It enables 
them to use probability as a tool to inquire about contexts where Laplace can be utilized. This may 
be influenced by the fact that “Laplacian definition is echoed in today’s textbooks” (Chernoff & 
Zazkis, 2011, p. 16). However, out of this box, most of the students do not develop a coherent 
probabilistic reasoning. Their knowledge of situations that can be modelled by uncertainty is 
restricted. They seem to be familiar with the classical meaning and do not consider the absence of 
information as uncertainty, although they use subjective arguments to justify their probability 
assignments. Contrastingly, they seem to separate uncertainty from probability assignment.  

These results indicate that an axiomatic formation in probability, exclusively linked to the classical 
meaning (Slovak PSTs) leads to a limited knowledge of the topic, both in terms of the notion itself, 
as well as procedures and situations related to it (KoT – definitions; procedures; and phenomenology). 
On the other hand, a brief introduction to subjective probability (Spanish PSTs) does not seem to 
affect such knowledge. It seems that the knowledge of the PSTs is barely expanded in relation to that 
of secondary school students and does not acquire a specialized profile.  

Multiple authors suggest activities for students which comprise subjective probability (e.g. Borovcnik 
& Kapadia, 2017; Martignon & Krauss, 2009) . The reason consist on  large presentation of subjective 
probability in daily-life. On the other hand, to this time, subjective approach is rarely represented in 
national curricula. Moreover, our results show that PSTs who received their last course on probability 
have not developed KoT concerning probability properly, and they are not well-prepared to teach 
subjective approach to probability. If we want to include subjective probability in the curriculum, 
then it is necessary to develop their KoT in this area. One possibility is to include activities and tasks 
as it is suggested e.g. in Di Bernardo et al. (2019). 
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This study aims to characterise elements of specialised knowledge of a group of pre-service teachers 
using procedures related to the comparison and rearrangement of surfaces when solving area tasks.
For this purpose, emphasis is placed on the subdomains of knowledge of topics and knowledge of the 
structure of mathematics. The written justifications and procedures that pre-service teachers used to 
solve two area tasks are analysed. The results indicate that when tasks condition the strict use of
procedures related to the comparison and rearrangement of surfaces, written justifications 
supporting the procedures become more rigorous. These rigorous justifications appear, exclusively, 
when pre-service teachers mobilise specific geometric properties and principles, either implicitly or 
explicitly.  

Keywords: Area measurement, knowledge of the topics, knowledge of the structure of mathematics.

Introduction
Area measurement has been identified as a problematic topic to both students and pre-service teachers
(PST). The literature shows that students' difficulties related to the limited variety of procedures for 
solving area tasks are also evident in PST (Baturo & Nason, 1996; Caviedes, De Gamboa & Badillo, 
2019; Chamberlin & Candelaria, 2018; Hong & Runnalls, 2020; Murphy, 2012). Hong and Runnalls 
(2020) show that PSTs have difficulties for accepting the conservation of area in non-prototypical 
figures, as they do not have numerical values to compare the areas of the triangles with the same base 
and height but different kinds of shapes, so they prioritise visual estimation without reasoned 
justification. The same authors emphasised that understanding the ideas behind area conservation 
would enable a better understanding of formulas for PSTs, helping them develop procedural fluency; 
based on the acquisition of the initial concepts. Similarly, Caviedes, De Gamboa, and Badillo (2019) 
point out that PSTs have a limited repertoire of strategies to solve area tasks, prioritising formulas 
rather than geometric procedures (procedures related to the comparison and rearrangement of 
surfaces) that may simplify a solving process. 
This study assumes the specialised nature of mathematics teachers' knowledge in the sense of Carrillo 
et al. (2018) since it allows a first approach to characterise aspects of knowledge about specific 
mathematical concepts. In this context, we pose the following research question: What specialised 
knowledge about area measurement do PSTs mobilise when solving tasks that require using 
geometric procedures? Thus, we attempt to characterise elements of knowledge of topics (KoT) and 
knowledge of the structure of mathematics (KSM) in a group of PSTs when solving two tasks that 
require the use of geometrics procedures.

Theoretical framework 
Amongst different possible ways of perceiving teachers` knowledge we consider the Mathematics 
Teachers` Specialised Knowledge -MTSK- (Carrillo et al., 2018). The MTSK model studies, mainly, 
the knowledge at stake in teachers' practice, but recent studies consider that it is possible to assume 
the MTSK model as a reference of the desirable components of a teacher's specialised knowledge, 
and as a consequence, as a first approximation of what PSTs should know for their future practice 
(Policastro, Ribeiro & Fiorentini, 2019). The MTSK conceptualisation is conceived as a theoretical 
and analytical tool to better understand teachers' knowledge specificities and it has been shown that 
MTSK model could be useful in conceptualising tasks for accessing and developing knowledge of 
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procedures, representations and connections in certain concepts (Policastro, Mellone, Ribeiro & 
Fiorentini, 2019). Specifically, we are interested in two subdomains of knowledge - Knowledge of 
Topics (KoT) and Knowledge of the Structure of Mathematics (KSM). KoT includes teachers'
knowledge of definitions (i.e., what is area mathematically speaking?); properties and their principles 
(i.e., the role of each element involved in solving an area task); the phenomenology or contexts of 
use (i.e., comparing and reproducing shapes; measuring, or sharing fairly); procedures (i.e., knowing 
how, when and why using certain procedures), and representations (i.e., the geometric, numerical and 
algebraic representations involved in solving area tasks).
The KSM refers to teachers' knowledge of connections, considering four categories: simplification 
connections and complexities connections, auxiliary connections, and transversal connections. For 
instance, knowing that the area of an unknown figure can be calculated by decomposing the area into 
known figures, such as triangles, rectangles, and-or squares is a simplification connection because 
figure decomposition can be a precursor to formulae; knowing that the area of a scalene right triangle 
can be calculated using Heron's formula is a complexity connection, because it involves more 
advanced mathematical knowledge, also considering the perimeter; knowing that the procedure of 
iterating units of measurement, lined up in rows and columns, can evoke the measurement procedure 
involving multiplying number of rows by the number of columns, is an auxiliary connection because 
it uses one procedure to introduce a different one; and knowing that an area model can be used as a 
basis for working on fractions and algebraic operations is a transversal connection since the concept 
of the area can relate different mathematical contents. Due to the scope of our work, we focus only 
on knowledge of auxiliary connections.

Method
The study is situated in an interpretative paradigm with a qualitative approach (Bassey, 1990) and is 
part of broader research that seeks to characterise the specialised knowledge about area measurement
in a group of PSTs. Data collection was carried out in the first term of the 2020-2021 school year. 
The participants were non-randomly selected, and they were 70 PSTs studying the third year of the 
Primary Education Degree at the Autonomous University of Barcelona. The PSTs had previous 
instruction on different procedures for measuring areas as part of their study program. Content 
analysis is carried out (Krippendorff, 2004) using two of the subdomains of the MTSK model: The 
KoT and the KSM. The MTSK defines, for each of these subdomains, specific categories. For the 
KoT, we consider representations, procedures and justifications, properties and principles, and intra-
conceptual connections. For the KSM, the auxiliary connections. In each category there are indicators
which have been constructed by the authors based on a previous study (Caviedes, De Gamboa &
Badillo, 2020). The MAXQDA software is used to facilitate the process of assigning indicators to the 
PSTs responses.
Instrument and procedure 
A semi-structured open-ended questionnaire (Bailey, 2007) was designed to be completed 
individually. The PSTs were asked to justify each procedure in writing. To solve the tasks the PSTs 
could use manipulative material (cut-outs as an annex to the questionnaire), as well as measuring 
instruments (ruler, square, protractor). The questionnaire consisted of 8 tasks and was structured as 
follows: three tasks responding to contexts of equal sharing, and comparison and reproduction of 
shapes (Tasks 1, 2, and 3); two measurement tasks (Tasks 4 and 5); one task to classify statements 
and one task to define the concept of area (Tasks 6 and 7); finally, one task to analyse students' 
responses (Task 8). In Tasks 1, 2, and 3 the use of calculations and measuring instruments was 
prohibited. The questionnaire was administered by the subject teacher in online format due to the 
COVID-19 health contingency. The official language to administrate and to answer the questionnaire 
was spanish and the translation was executed by a professional translator. The validation of the 
instrument considered external research experts, in-service and pre-service primary school teachers. 
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The PSTs had one week to answer it and send it in pdf or word format. In order to answer our research 
question, the analysis of the resolutions to Tasks 2 and 3 is presented (Table 1). 

Table 1: Tasks proposed to the PST group

Task statement Graphical representation of the tasks

TASK 2: Camila is making a ceramic mosaic with 
different colours. To finish her mosaic, she needs 
to cover a rectangular space, but she doesn't have 
any ceramic pieces with that shape. What can 
Camila do to cover the missing space in her 
mosaic? Justify your answer. (Adapted from Puig and Guillén, 1983)

TASK 3: Using the shaded surface of Figure (T) 
as a reference: Which of the following figures has 
a shaded surface equivalent to Figure (T)? 
Why? Justify your answer.

(Elaborated by the authors)

Methods of analysis

Since we have not found any studies detailing the KoT and KSM indicators of area measurement,
these have been constructed based on the results of a previous study that allowed for the construction 
of an epistemic configuration of area concept (Caviedes, De Gamboa & Badillo, 2021). From this
epistemic configuration we define the KoT indicators to focus on the analysis of the PSTs’ responses 
to the tasks. Each indicator was adapted to the categories that the MTSK model proposes for KoT 
(representations, procedures and justifications, properties and principles, and intra-conceptual 
connections) and allowed a deductive coding of the PST responses, with the support of MAXQDA 
software. The indicator corresponding to the KSM (auxiliary connections) emerges from the analysis 
of PSTs’ responses to the questionnaire (Table 2).

Table 2: Categories of specialised knowledge

Categories of KoT 
and KSM

Indicators

Representations (R) (R1) Written: use of adjectives such as "equal", "thinner" "wider", "double", 
"half" "a quarter" related to surfaces. 
(R2) Manipulative: use of physical objects or dynamic geometry software.
(R3) Geometric: use of convenient decompositions to compare and-or 
estimate surfaces quantities..
(R4) Symbolic: use of the R+ set to compare two or more surfaces, for counting 
units or adding up areas.  

Procedures (P) and 
justifications (J)

(P1) Compare two or more surfaces directly by total and-or partial 
overlapping.
(P2) Compare two or more surfaces indirectly by cutting and pasting.
(P3) Decompose in a convenient way, graphically or mentally, two or more 
surfaces. 
(P4) Carry out movements of rotation, translation and superimposition of 
figures.
(P5) Measure areas as an additive process by counting units and-or sub-units 
that cover the surface.
(J1) The act of comparing two or more surfaces by placing one shape over 
another is useful for establishing equivalence and/or to include relationships
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(J2) The mental act of cutting the two-dimensional space into parts of equal 
area as a basis for comparing areas.
(J3) The act of changing the shape of a surface does not change the area of 
the surface, as the figures can be decomposed and reorganised while 
keeping the same "parts".

Properties (Pp) and
principles (Pr)

(Pp1) Use of conservation
(Pp2) Use of accumulation and additivity
(Pp3) Use of transitivity 
(Pr1) Use of the fact that a parallelogram that has the same base as a 
triangle, both placed between the same parallels, has twice the area of the 
triangle.
(Pr2) Use of the fact that the triangles placed on equal bases and between 
same parallel are equal.
(Pr3) Use of the fact that two polygons are congruent if their sides and angles 
are respectively equal or congruent.
(Pr4) Use of the fact that every polygon can be broken down into triangles.
(Pr5) Use of the fact that every triangle is equidecomposable from a 
parallelogram.

Auxiliary connections
(Cau)

(Cau1) Use of a procedure or concept to introduce a new procedure or 
concept. 

Results
Figures 1, 2 and 3 show examples of resolutions of PST 2 and PST 39, who mobilise specialised
knowledge from the KoT and KSM subdomains. These resolutions are considered representative of 
PSTs’ set that evidence mobilization of these subdomains, as these are the type of resolutions that 
allows for the emergence of different indicators from PSTs’ resolutions. Figure 1 shows indicators of 
KoT in Task 2. 

Figure 1: PST 2 resolution for Task 2

PST 2 uses written representations (R1) in her justifications, evidencing use of (J1) and (J2), as she 
superimposes the surfaces, as well as breaking them, in order to compare them. When breaking 
surfaces and rearranging their parts, she makes use of (J3). PST 2 uses manipulative representations 
(R2) to make visible decompositions and reorganizations of figures; and geometric representations 
(R3) as it compares surfaces indirectly (P2) and decomposes the surface in a convenient way (P3). In
addition, she performs rotation and translation movements of the parts (P4), in order to check that 
both the triangle and the rectangle correspond to half of the piece that needs to be covered. PST 2 
also shows an implicit use of the transitivity property (Pp3), while she compares between the surface 
to be covered and those represented by the pieces. Furthermore, PST2 shows an implicit use of the 
properties of accumulation and additivity (Pp2) and conservation (Pp1), as PST2 recognizes that 
figures can be decomposed and recomposed into other figures, while retaining the same "parts". 
Finally, it is possible to infer that PST 2 recognizes that a triangle is equidecomposable to a 
parallelogram (Pr5); that is, that a triangle can be decomposed into a finite number of polygons and 
form a parallelogram (and vice versa), conserving the area. Similarly, she implicitly recognises that 
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a parallelogram with the same base and height as a triangle, both placed between the same parallels, 
is twice as large as the triangle (Pr1).

Figure 2: PST 2 resolution for Task 3

Figure 2 shows indicators of KoT knowledge in Task 3. It can be seen that PST 2 uses written (R1), 
manipulative (R2) and geometric (R3) representations, as she decomposes each of the figures in a 
convenient way (P3) and performs rotation and translation movements (P4) to verify and illustrate, 
manipulatively, that each of the figures is equivalent to the model figure. Thus, PST 2 manifests an 
implicit use of the properties of accumulation and additivity (Pp2) and conservation (Pp1), as she 
rearranges the shaded surfaces into rectangles that represent half of the square containing them. The 
property of transitivity (Pp3) is made explicit when PST 2 says that "if Figure D is equal to Figure C, 
and Figure C is equal to the model, then Figure D is equivalent to the model." PST 2 recognizes that 
triangles placed on equal bases and between the same parallels are equal (Pr2) and that every polygon 
can be decomposed into triangles (Pr4).
It is inferred that the PST 2 also makes use of (J2) which indicates that the mental act of cutting two-
dimensional space into parts of equal area serves as a basis for comparing areas; and of (J3), since 
the PST 2 recognizes that changing the shape of a surface does not change the area of the surface.
Figure 3 shows indicators of knowledge of the KoT and KSM of PST 39 in Task 3. The PST 39 uses 
symbolic representations (R4) in a fractional register; that is, she uses fractions to compare the shaded 
area of each of the figures, and sets the shaded fraction relative to the total area. PST 39 also shows
knowledge of addition of fractions with different denominators and simplification of fractions, 
showing an auxiliary connection (Cau1) to this concept. By rearranging the parts, PST 39 implements 
the procedure of surface decomposition (P3) and rotation and translation movements (P4). In this 
sense, it is inferred that PST 39 recognizes the properties of conservation (Pp1) and accumulation and 
additivity (Pp2). In turn, the comparisons made between the figures are associated with the property 
of transitivity using (Pp3). The procedures allow us to infer an implicit use of (J2), since PST 39
recognizes the usefulness of cutting the two-dimensional space.
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Figure 3: PST 39 resolution for Task 3

Due to the geometric nature of the tasks, the results showed that PTSs solve Tasks 2 and 3 mostly 
using geometric type representations (R3) that are materialised through convenient surface 
decomposition procedures (P3), or the use of rotation, translation, and superimposition movements 
of figures (P4). These procedures, in turn, are supported by some of the properties as the mental act 
of cutting the two-dimensional space into parts of equal area serves as a basis to compare areas (J2); 
or that changing the shape of a surface does not produce changes in its area, since the figures can be 
decomposed and reorganized while retaining the same "parts" (J3).
The resolutions presented in the analysis show the way in which the PSTs mobilise knowledge about 
the different categories of the KoT and KSM, but do not allow us to identify the tendency of PSTs at 
the time of solving the task. For this reason, we consider it appropriate to show the frequency of each 
of the categories mobilised by the PSTs.  Table 3 details this frequency and it can be seen that only 
11 PSTs establish auxiliary connections (KSM), which are linked to KoT and associated with 
knowledge about fractions. Thus, knowledge about fractions is made explicit through the use of 
convenient surface decomposition procedures (P3), or the use of rotation, translation and 
superposition of figures (P4). Moreover, this type of knowledge is associated with a context that 
requires establishing equivalence or inclusion relations between different surfaces, linked to the 
properties of conservation (Pp1), transitivity (Pp3) and accumulation and additivity (Pp2). In this 
way, the relationship between KoT and the establishment of auxiliary connections becomes clear.  

Table 3: Categories of specialised knowledge mobilized by PST (N=70)

Code Frequency Code Frequency

P3 57 R4 13

Pp3 57 P2 11

Pp2 57 Cau 1 11

Pp1 57 R2 6

P4 56 Pr1 3

R3 56 J1 3

J3 56 No response 3

Pr5 56 Pr4 3

J2 53 Pr3 2

Pr2 51 P1 2
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Discussion and final remarks 
This study focused on the characterisation of PST’s knowledge related to the topics and the structures 
of mathematics, according to the MTSK conceptualization. Results show a relation between 
descriptive answers that do not justify what is done and why it is done with the lack of use of 
geometric principles. As it can be seen in the examples presented in the above section (Figures 1, 2 
and 3), PST  2 and PST 39 were able to justify and support the procedures they were using based in 
some of the geometric principles, such as: two polygons are congruent if their sides and angles are 
respectively equal or congruent (Pr3); every polygon can be broken down into triangles (Pr4); and a 
parallelogram that has the same base as a triangle, both placed between the same parallels, has twice 
the area of the triangle (Pr1). However, these principles are not mentioned in most of the PST’s
resolutions and written justifications, revealing a gap in their KoT and a link between the lack of this 
kind of knowledge and descriptive answers. Regarding KSM, the auxiliary connections that emerge 
from the PSTs responses showed a close relationship between knowledge about fractions and the use 
of procedures, properties and representations of a geometric nature. Although some research 
highlights the difficulties of PSTs in accepting area conservation (Hong & Runnalls, 2020), in the 
present study the use of this property is implicit in the justifications and-or procedures used and PSTs 
do not present major difficulties. This may be due to the time PSTs had to solve the questionnaire, or 
to the geometric nature of the tasks themselves, since by restricting the use of calculations and 
measuring instruments, PSTs are forced to use procedures of a geometrical nature.
The indicators proposed for the KoT subdomain serve as a reference of what PSTs should know for 
their future practice (Policastro, Mellone, Ribeiro & Fiorentini, 2019), as they allow detailing 
different representations, procedures and justifications, properties and principles underpinning area 
measurement.  This could provide hints for PSTs trainers on how to propose tasks to promote the 
mobilisation of specialised knowledge, gradually increasing the indicators of knowledge to be 
developed. The need for further research seems evident, specifically in both at enriching the 
conceptualisation theoretically and in conceptualising tasks for developing a deeper knowledge on
area measurement processes. It can also be seen that there is a need to explore the potential of MTSK 
model as a tool for promoting and developing an understanding of area measurement in relation to
different kind of connections and in relation to other sub-domains of knowledge that have not been 
considered in this study.
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The goal of this study is to categorise transformations of existing problems performed by preservice 
primary teachers (PPTs). For this purpose, we propose to PPTs from Autonomous University of 
Barcelona (Spain) to transform two multiplicative problems from two primary school textbooks. 
Following a content analysis, we carry out a deductive-inductive coding process of the problems 
posed, establishing as main categories the four main elements of a problem proposed by Malaspina 
(2003). We describe the categorisation of the context transformations in detail and illustrate its four 
subcategories. The results highlight the abilities of PPTs to perform context transformations that 
encourage the engagement of potential solvers in the problem situation. 

Keywords: Teacher education, professional competences, problem posing, problem solving.

Introduction
There is a broad consensus about the potential of problem solving as an approach to teaching 
mathematics, which promotes a deep understanding of mathematical knowledge and the development 
of mathematical abilities. Therefore, students should approach mathematical problems, being the 
teacher's responsibility to select the mathematical tasks to be faced by his or her students. Although 
the ability to formulate problems has been studied in mathematics education research (e.g. Kilpatrick, 
1987), the focus has been mainly on students' formulation processes, requiring greater attention on 
teachers' ability and capacity to propose problems (Crespo, 2003). 

We understand that proposing school problems is a professional competence of mathematics teachers
in the sense of Weinert's competence (2001), meaning the development of cognitive abilities and 
motivational and volitional aspects to allow teachers to deal with problems of different nature. In 
particular, the professional competence of formulation of school problems (Carrillo, et al., in press) 
is seen as the teacher’s ability to propose problems to their students, with the intention of encouraging 
the construction of mathematical learning. This competence is expressed by three skills: creating, 
selecting, and transforming problems. We focus on the latter skill, concretely the research question 
we address here is: how do PPTs transform existing mathematical problems? The aim is to categorise 
the transformations of multiplicative problems from school textbooks performed by PPTs. We select 
problems from textbooks as they are a didactic resource widely used by teachers for teaching and 
learning mathematics in the classroom (Fan, et al., 2013; Hadar, 2017).

Next, we present our theoretical view on problem formulation and transformation, as well as the four 
main elements of a problem (Malaspina, 2013). Then, the design and qualitative methods of data 
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analysis are introduced. Finally, we describe the categorisation of the context transformations and 
conclude with reflections on the results and their implications on the PPTs’ training.  

Theoretical framework 
Problem posing has a plural nature. It can be conceived as a professional activity inherent to 
mathematicians when they create problems for the development of the discipline. It can also be seen 
as a learning dynamic at different levels of schooling, aimed at promoting a deep and relational 
understanding of mathematics (Kilpatrick, 1987). Likewise, as a professional activity of mathematics 
teachers, focused on proposing problems to their students as learning tasks (Milinkovic, 2015).   
Formulating mathematical problems demands creativity (Silver, 1994), since it requires taking a 
proactive attitude towards mathematics, coordinating different mathematical elements in the 
construction of word problems. Therefore, it is a complex and cognitively demanding activity (Silver, 
1994). Depending on the nature of the mathematical content, posing a problem could require a greater 
proficiency on specific abilities, such as visualisation in the case of geometry. 

In the case of teachers' training, problem formulation is considered a powerful tool for understanding 
mathematical and didactical knowledge (e.g. Tichá & Hospesová, 2013). Moreover, problem 
formulation has been used as a tool to develop professional competences, such as sensitivity to 
students' mathematical thinking (Xu, et al., 2020). However, teachers' ability to propose problems to 
their students has received less attention (Crespo, 2003). This ability has multiple ways of being 
expressed in professional contexts (Carrillo, et al., in press), for instance, the transformation of 
existing problems (Milinkovic, 2015; Lavy & Hourigan, 2019). From a professional perspective, 
transforming a problem involves modifying one or more elements of the word problem with a didactic 
intentionality that may have an impact on the problem solving process (Lavy & Bershadsky, 2003).  

The professional competence in the formulation of school problems is transverse in nature to the 
teaching activity itself. During the preparation of a lesson, a teacher can create, select, or transform 
problems when designing tasks for the students. For example, Lavy and Bershadsky (2003) propose 
transforming geometry problems using the "What if not...?" strategy. On the other hand, during a 
lesson, in response to a student's intervention, a teacher may decide to propose a problem to focus 
reflection on certain mathematical knowledge. Finally, at the end of a lesson, a teacher may reflect 
on some possible transformations of the problems proposed to the students, either for future courses 
or to propose similar problems in following lessons. 

Malaspina (2013) suggests that a word problem can be broken down into four main elements: 
information, i.e., the elements provided explicitly or implicitly in the word problem; problem context, 
which can be either extra-mathematical or intra-mathematical; problem requirement, usually 
expressed as a question, which determines the goal to be achieved; and mathematical environment, 
understood as the mathematical elements useful for solving the problem. In this study we assume that 
transforming a problem implies changing at least one of the main elements. We consider that the 
information of a problem is transformed when some mathematical elements (numerical, algebraic, 
graphical, ...) of the problem are eliminated, added, or changed for others. In the case of the context, 
a transformation occurs when the situation related to the written word problem is totally or partially 
changed, extended or eliminated. Likewise, transforming the requirement involves changing, 
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extending, or eliminating the explicit or implicit demand of the problem. Finally, transforming the 
mathematical environment implies changing the mathematical area useful for approaching the 
resolution of the problem. For example, when multiplicative problems are changed to others that are 
intended to be solved through elements of additive structures, or when problems focused on exact 
division are modified to include a possible remainder. The transformations of different elements entail 
the coordination of the information eliminated and added with the existence of a solution, as well as 
the consistency between the different expressions of a mathematical element and the element itself 
(Wessman-Enzinger and Tobias, 2020, Montes, et al., in press). 

Methodology 
We design a written protocol addressed to PPTs with four tasks involving the transformation of 
multiplicative problems from two primary school textbooks widely used in Spain. We restrict the 
mathematical content to multiplication and division because this crucial content at primary school 
has already been introduced to the participating PPTs during a previous course. We collect 67 written 
protocols solved individually by PPTs in the third year of the Primary Education Degree of the 
Autonomous University of Barcelona (Spain) in 2020-2021. For each task of the protocol, 
participants proposed one or more modifications to the given problems. We identify one or more 
transformations in each modification. For example, a PPT can extend the context (context 
transformation) and eliminate a numerical element (transformation of information) in the same 
modification. In total, the data consists of 186 modifications, 93 for the first problem and 93 for the 
second. Here, we present methods and results related to the analysis of the modifications proposed in 
the first task, which suggests modifying two word problems to promote the mathematical learning of 
the contents identified (Figure 1). Both problems correspond to the structure of isomorphisms of 
measures, where the proportion between two measurement spaces is established (Vergnaud, 1983). 
The first problem belongs to equal groups situation where the total number of elements is unknown. 
The second is a quotative division problem where the number of sets is unknown. Both problems 
have an extra-mathematical context with visual models of multiplication and division. 

Modify the following two word problems to promote the understanding of the mathematical content you identify. For 
each modification, indicate in the table: the type of transformation; the reason why you perform it; and the contribution 
to the students' mathematical learning.  

Problem 1: Bruno has 10 boxes with 
marbles. Each box contains 5 marbles. In 
total, how many marbles has Bruno?  

 

Problem 2: Lola has 30 bracelet beads. She uses 5 
beads to make each bracelet.  

 
Lola makes … bracelets. 

Figure 1: Word problem of the first task of the protocol  

Within a qualitative methodology, we conducted a content analysis in two phases: preparing and 
organising (Elo & Kyngäs, 2008). The aim is to describe the transformations proposed by PPTs as 
the result of a deductive-inductive coding process of each modification. 
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Preparing stage. In this stage, we familiarised with the whole data and established each modification 
as the unit of analysis. We also determined the central categories of coding: information, context, 
requirement, and mathematical environment (Malaspina, 2013). Then, we drew inspiration from the 
data and question codes proposed by Lavy and Bershadsky (2003) to create, a priori, some codes that 
were refined in the following analytical stage. 

Organising stage. We begin the coding process by creating new emergent codes that are refined by 
comparing, contrasting, and abstracting codes across larger and larger samples of the data. The 
process is carried out in three rounds with the following structure: first each researcher codes the 
same sample, then a list of codes is agreed upon by the three authors and, afterwards, each researcher 
analyses an extension of the initial sample using the new codes. We record the agreements adopted 
in the joint discussions, which focus on the delimitation of the meanings of each code, the conditions 
of occurrence and the grouping of codes in each of the main categories. The final codes express the 
element transformed and the specific action to transform it, considering three actions: changing an 
element for another of the same class, extending an element, and eliminating one of the problem 
elements. This leads to descriptive codes such as changing to another extra-mathematical context or 
eliminating the context. Once a stable code set is established, we count the frequency of each code in 
the whole data. For each main category, we calculate the percentage of modifications incorporating 
at least one transformation from that category. As a result, we find that 77,9% of all the modifications 
incorporate transformations of information, 73,2% of them contain context transformations, 51% 
requirement transformations, and 15% mathematical environment transformations. 

In this paper, we focus on the four emerging subcategories of context transformations. To highlight 
the nature of each subcategory, we illustrate each variant with some PPTs’ modifications along with 
excerpts from their justifications.  

Context transformations  
We find that 73.2% of the PPTs' modifications incorporate some context transformation of the 
problem. In Table 1 we present the four emerging subcategories that constitute the context 
transformations, along with their frequency in the data.  

Table 1: Context transformations subcategories and their frequencies 

Context Transformations 

Extending the context Changing the written 
expression 

Changing to another context Eliminating context 

73 48 13 2 

Context extension is the most frequently occurring transformation of context in the data. It refers to 
changes in which the word problem is expanded by adding characters, actions, descriptions, or 
relationships to the original context. These transformations seek to improve the comprehension and 
access of primary students to the problematic situation presented to them. Hence, the new problems 
are more realistic and closer to primary students’ experiences or contains more detailed descriptions 
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of certain information given in the problem. For instance, in the modification of the PPT UAB1.37 
(Figure 2), the story that frames the problem is set in a scenario known to primary students- the school 
-. Also, the characters and actions introduced facilitate the identification of the student with the main 
character –making boxes with marbles to give to friends–. UAB1.37 states that simulating a situation 
close to a primary student’s daily life can motivate him or her to solve the problem. 

UAB 1.37 Modification:  

Bruno has bought 10 boxes to give to each classmate. In each box he wanted to put some marbles, the same 
amount for all of them! Bruno has already made Joan's box and it looks like this:  
Can you tell how many marbles he will need to make all the boxes? 

Justification:  

It is a situation that the student can easily find in his daily life, therefore, it gives meaning to the problem. For the 
student's learning, it motivates him/her to carry out the problem. 

Figure 2: Modification and justification of UAB1.37 

In contrast, elements of the visual model –quantity and colour of the marbles in each box– are 
described in greater detail in the UAB1.4 modification (Figure 3). Therefore, the word problem 
remarks the multiplicative unit, clarifying the elements that make it up, and suggesting a more detailed 
mental image in the primary student. 

UAB1.4 modification: 

Bruno has a green ball, a red ball, a green ball, a pink ball and a blue ball in a box. If he has 
10 identical boxes, how many balls does Bruno have? 

Justification:  

Change in the word problem. Longer and more explicit word problem so that students have a better 
comprehension in reading and understanding it. 

Figure 3: Modification and justification of UAB1.4 

Changes in the writing of the context are micro-transformations of text segments of the word problem, 
such as changing the subject of a sentence that entails a change of the main character of the story in 
which the context is framed (Figure 4). These transformations are based on a social vision of language 
with the potential to transform sociocultural and affective aspects. For example, UAB1.25 changes 
the gender of the main character in response to a change in socially established gender roles. On the 
other hand, UAB1.2 changes the subject to the second person singular which places the reader as the 
main character of the story. As UAB1.2 explains in her justification, the context is more relevant to 
a potential solver and encourages his or her immersion in the problem 
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UAB1.2 modification: 

You have 10 boxes with marbles. Each 
box contains 5 marbles. How many 
marbles do you have in total? 

UAB 1.25 modification: 

Marcos has 30 bracelet beads. To make a 
bracelet he spends 5 beads. How many bracelets 
will he be able to make with the beads he has? 

Justification:  

Change in the writing of the word problem. From 3rd person 
singular to 1st. With this change we make the problem more 
relevant to the student and his context. 

Justification:  

Change the main character of the exercise to 
male to reinforce an image of equality. 

Figure 4: Modifications and justifications of UAB1.2 and UAB1.25 

Less frequently, we found changes to another extra-mathematical context (in no case was there a 
change to an intra-mathematical context) that implied a change in the scenario, objects, subjects or 
actions of the original context, i.e., a change in the phenomenon mathematised in the problem. Mostly, 
the new context poses a scenario and actions familiar to elementary school students, such as eating at 
school in the problem proposed by UAB1.7 (Figure 4). On other occasions, we find changes that 
incorporate references to other mathematical contexts such as measurement in the problem posed by 
UAB1.63 (Figure 5). 

UAB1.7 modification: 

In the school's dining room, there is only 
space for 10 tables. At each table there can 
be a maximum of 5 students. How many 
students can eat at the same time in the 
dining room? Can the whole class eat together? 

UAB1.63 modification: 

Each bracelet beads measures 2 centimetres. If 
my bracelet has 5 beads, how many centimetres 
does it measure? 

Justification:  

The word problem is a bit more contextualised; the exercise allows 
students to place the use of mathematics in their lives. A second 
question is added to show such contextualization. 

Justification:  

This change allows to work on measurement 
units, which is an important concept that is 
usually forgotten in the first years of primary 
school. 

Figure 5: Modifications and justifications of UAB1.7 and UAB1.63 

Finally, we found only two modifications with the context eliminated, i.e., the written word problem 
is deleted. This transformation appears together with a change of requirement. Either the execution 
of a mathematical operation is demanded, or the word problem is demanded from the graphical or 
symbolic-algebraic elements given. This is the case of UAB 1.3, who proposes: "show them the 
operation they have to perform, 30:5, and explain to them that they have to invent a word problem". 
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Final reflections 
This study is part of a broader research project whose final goal is to characterise the professional 
competence in the formulation of school problems. Specifically, we are interested in the 
transformation of existing problems. First, we focus on describing and categorising the 
transformations that PPTs perform. Here, we present the analysis and preliminary results of this first 
step. We have illustrated how PPTs, when transforming existing problems, mostly focus on 
extending, changing, or eliminating elements related to the information and context of the problems 
rather than transformations focused on the requirement or the mathematical environment. 

Regarding context transformations, we have identified four subcategories that describe different types 
of context transformations that result from extending or changing the context, introducing subtle 
changes in the writing of the word problem, or eliminating the context. With the first three types, the 
PPTs mostly encourage the immersion of the primary student in the problem and, to a lesser degree, 
the transmission of education in human values (such as gender equality) or the combination with 
other mathematical contexts (such as measurement). It should be noted that we only found two 
transformations in which the context is eliminated and the word problem itself is demanded. From 
our perspective, this fact supposes a call of attention on the need to train PPTs in problem posing 
dynamics as a type of classroom instruction (Silver, 1994; Malaspina, 2013). 

It must be assumed that if students are to solve problems, their teachers must be active agents in the 
selection and generation of tasks focused on problem solving. Therefore, this line of research should 
result in the design of formative tasks for PPTs to develop and systematise their abilities to transform 
existing problems as the initial step on the route to create entirely new problems (Leavy & Hourigan, 
2019). It seems promising to base these tasks on the adaptation and transformation of textbook 
problems, given their very wide use in Primary Education (Hadar, 2017). This will require 
transcending the cognitive perspective we assumed here about the professional competence to pose 
school problems, taking into account volitive and motivational aspects, in order to ensure a whole 
development of the competence. 
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This paper presents the construction of the analytical framework of an ongoing research about the 
development of teacher mathematical knowledge for the teaching of problem solving in a lesson study 
process. After presenting the context of the research, the article overviews previous research about 
lesson study and mathematical knowledge for teaching, about mathematical knowledge for teaching 
problem-solving and about teachers’ dialogue in order to introduce the two dimensions of our 
analytical grid: the knowledge dimension and the dialogue dimension. 

Introduction 
Mathematical knowledge necessary for teaching has attracted a lot of attention in mathematics 
education. The same tendency is exhibited in problem-solving, seen from the students’ point of view 
and, more recently, the collaboration in teacher professional development. In our research, the 
teaching of problem-solving is studied from the point of view of the development of teachers’ 
professional knowledge in a collaborative process. In this paper, we present the context of our study 
and the analytical framework that we are currently developing, as well as our research questions. 

Context and method 
Our research is part of the ongoing research of the Lausanne Laboratory Lesson Study (3LS, n.d.) 
which studies the work of several lesson study (LS) groups in the French-speaking part of 
Switzerland. We are currently analysing the work of a LS group composed of eight grade 3 and grade 
4 teachers from the Lausanne region and two facilitators. The two facilitators consist of a mathematics 
educator (the first author of this contribution) and a teacher from the institution who participated as 
a member of a previous LS group in mathematics. From 2018 to 2019, this group has completed three 
LS cycles with the question: “how to teach grade 3-4 students on how to solve mathematical 
problems”. The fact that the teachers will be in a (professional) problem-solving situation about 
problem-solving teaching is coherent with Ball and Cohen’s (1999) suggestion that professional 
development programs should situate teacher learning in the types of practice they wish to encourage. 
The data from these three cycles are analysed using Transana (Woods, 2002-2021) to encode video 
recordings which are integrated with the transcripts. The first cycle discussed in this article, includes 
eight meetings that lasted for about 90 minutes each and two research lessons. Interviews with the 
two facilitators were also analysed as a way of data triangulation. Since other research of our team 
used the same type of data (e.g. Batteau, 2017; Clivaz & Ni Shuilleabhain, 2019), the obtained results 
show that this type of data is thorough, systematic, reliable and authentic regarding the perspectives 
and practices of participants. 

The research interests of our research team are two folded. The first series of questions is about the 
mathematical knowledge related to problem-solving which teachers use during this LS, the second 
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series aims to describe the types of interactions related to the construction of this mathematical 
knowledge and, ultimately, to describe how the mathematical knowledge is constructed in a LS group. 
In order to do so, we will present some findings of the previous studies and the analytical frameworks 
which is currently being developed by our research team. 

Lesson study and mathematical knowledge for teaching 
Jugyou Kenkyuu, literally lesson study (LS), was born in Japan in the 1890s. It was popularised in 
the 2000s following international TIMSS comparisons (TIMSS Video, n.d.) and the comparison 
between mathematics education in Japan, Germany and the USA that Stigler and Hiebert (1999) 
presented in The Teaching Gap. Thanks to the efforts made to promote LS, and in particular to the 
work of Lewis, who contributed to formalising and popularising LS in the USA (Lewis, 2002, 2015; 
Lewis & Hurd, 2011), LS was initially introduced in the USA as a professional development approach 
to improve US mathematical classroom teaching and learning (Yoshida, 2012). As a mode of 
professional development, LS has developed all over the world and has attracted the interest of many 
researchers in educational sciences, particularly in mathematics education (see, e. g. among the most 
recent international edited books, Huang et al., 2019; Quaresma et al., 2018). 

LS starts from an area of difficulty in teaching and learning identified by a group of teachers. Teachers 
analyse the targeted learning, study the mathematical concept, consult the various teaching methods, 
study articles from professional journals and other resources. This study allows them to plan a lesson 
together. This lesson is implemented in the classroom of one of the group members. Other teachers 
observe the lesson in real-time and analyse its impact on students' learning. The group may decide to 
plan an improved version of the lesson to be conducted in another teacher's classroom and the loop 
begins again. The results of the work are disseminated, both in the form of a detailed lesson plan for 
future use by other teachers and also in the form of articles in professional journals. 

LS groups are usually led by an experienced teacher or trainer, called a facilitator, who "keeps the 
conversation moving and fair. Involves all participants. Follows an agreed-upon agenda" (Lewis & 
Hurd, 2011, p. 124). While in Japan LS is sometimes facilitated by the group members, it almost 
always involve one knowledgeable other who provides feedback after the research lesson and 
sometimes another knowledgeable other who can draw attention to key elements during the planning 
phase (Watanabe & Wang-Iverson, 2005). In countries where LS is developed (particularly in Japan), 
the role of supporting professionals participating in the group as facilitators and that of occasional 
external experts is well defined. In contrast, these two roles are often assumed by the same person or 
are confused in places where LS is starting to take root (Clivaz & Takahashi, 2018). 

Mathematical Knowledge for teaching problem-solving 
Most of the research about problem-solving have considered the student’s point of view (for a survey 
on the state-of-the-art, see Liljedahl et al., 2016). A few authors have considered the teachers’ point 
of view and Mathematical Knowledge for Teaching (MKT, Ball et al., 2008) framework to 
characterise the knowledge teachers use to teach problem-solving. Wake and his colleagues (Foster 
et al., 2014; Wake et al., 2014) have attempted to broaden MKT to include mathematical process 
knowledge and pedagogical process knowledge, by rewriting with ‘concepts and processes’ instead 
of ‘content’ of the MKT categories (Foster et al., 2014, p. 3.98). The focus on the process and not 
only on the knowledge is undoubtedly noteworthy. Nevertheless, during our data analysis, we realised 
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that the specificity of the knowledge for teaching problem-solving is not only of it being a process. 
Similar insights were found in the work of Chapman (2005, 2012, 2015). In her conceptualisation, 
Chapman (2015) distinguishes six categories of Mathematics Problem-Solving Knowledge for 
Teaching, divided into Problem Solving Content Knowledge and Pedagogical Problem Solving 
Knowledge (Figure 1). All these categories are influenced by the teacher’s Problem Solving 
Proficiency and by his/her Affective Factors and Beliefs. In the line of Chapman’s findings, for the 
purpose of bridging the MPSKT to the MKT categories, we propose the following graphical 
representation of this categorisation (Figure 1). 

 

Figure 1: MKT and MPSKT. MKT upper uncoloured part of the figure is from Ball et al. (2008), 
MPSKT coloured categories are from Chapman (2015). Graphical representation of the coloured 

categories is by the authors of this paper 

Lesson study and teachers’ dialogue 
It is with the objective of accurately describing how teachers' knowledge is constructed or evolves 
and, more generally, to better understand what happens between actors within an LS process, that we 
have been led to focus on discourse analysis in a sociocultural perspective. This perspective is rooted 
in the work of Vygotsky (1962, 1978), for whom the acquisition and use of language transforms 
children’s thinking. One of our first inspirations was driven from the work of Vermunt and his 
colleagues (Vermunt et al., 2019; Vrikki et al., 2017; Warwick et al., 2016) who categorised the 
dialogic processes in LS groups in order to find statistic correlations between certain dialogic features 
and teachers' meaning-oriented learning in LS. With these categories being too broad for a 
comprehensive analysis, we were led to study the work of a sister group within the Cambridge 
Educational Dialogue Research group (CEDiR, n.d.), the Scheme for Educational Dialogue Analysis 
(SEDA, Hennessy et al., 2016) group. Rooted in the work of Alexander (2008) about dialogic 
teaching and of Littleton and Mercer (2013) about interthinking, this SEDA group produced a 
comprehensive grid to analyse classroom dialogue in problem-solving situations. The grid and the 
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method come from an “inductive-deductive cycle that allowed to distil out the essence of dialogic 
interactions and operationalise them in the form of a new systematic indicators for these productive 
forms of educational dialogue” (Hennessy et al., 2016, p. 17). The grid and the method seemed to be 
a good choice to serve as a basis for the construction of a grid of systematic indicators able to capture 
the forms of professional dialogue within a professional development process. Nevertheless, 
adaptations have to be made to SEDA scheme to take into account our research context as well as 
previous research on teacher learning in LS. 

Comprehensive research on LS groups and the fact that they appear to have an impact on teachers' 
professional knowledge often focuses on the essential role of facilitators (e.g. Bjuland & Helgevold, 
2018; Lewis & Hurd, 2011; Lewis, 2016) and possible knowledgeable others (e.g. Seino & Foster, 
2020; Takahashi, 2014). While many studies mention the importance of these roles and give examples 
of facilitator interventions or mention statements by teachers saying how important this role is to 
them, qualitative studies describing precisely how this role allows teachers to build professional 
knowledge are rare to date. 

For our part, in our previous research, we examined the evolution of the trainer's role in terms of 
knowledge sharing in a series of LS (Clivaz & Clerc-Georgy, 2020) and showed which MKT teachers 
use during the LS process (Clivaz & Ni Shuilleabhain, 2019; Ni Shuilleabhain & Clivaz, 2017). 
Nevertheless, interactions within the group, in particular between the facilitators and the teachers, are 
yet to be explored. 

The Construction of the LS Interaction Analysis Grid 

In this section, we will describe our grid for analysing interactions as the result of a process that is 
both deductive and inductive. This grid currently focuses mainly on enunciative modalities but will 
be linked in the rest of our research with MKT and issues related to the topic of problem-solving. 

Composed of 33 codes grouped into 8 entries, the SEDA grid (Hennessy et al., 2016; SEDA, n.d.) 
had to be adapted from students’ mathematics problem-solving classroom situation to teachers’ 
professional problem-solving discussion. We started from the SEDA grid, using the same codes every 
time it was possible and adapting them when necessary. After a one-year coding work, and team 
discussion of the coding, we were able to set up, in an inductive way, our grid for analysing the 
interactions within a LS. This required a fairly radical adaptation of the original grid, as we had to 
take into account our particular context as well as the actors and their intentions. 

The process of the modification of the SEDA scheme lies beyond the scope of this paper, but we will 
highlight here the two main modifications related to the type of exchange in a LS professional 
dialogue which differs from a students’ dialogue in a classroom situation. The first modification is 
related to the two SEDA categories “B-built on ideas” and “R–make reasoning explicit” which were 
close. For example, in our data, it was almost impossible to distinguish “B1-Build on /clarify others' 
contributions” and “R1–Explain or justify another's contribution”. We therefore merged these two 
categories into “R – Answer, develop”. Since the Question-Response type of exchange among 
teachers was often present in our data, the codes for the R category were symmetrised with those of 
category Q - Prompting development or reasoning (categories Q and R in Table 1), both entries being 
specified into clarification-justification-hypothesising categories. The second modification is the 
adaptation of the “connect” category, due to the observation that group participants often make 
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reference to incidents or episodes of the LS cycle or to other teaching experiences (categorie C in 
Table 1). This observation has already been illustrated in the analysis of the work of a different group 
(Ni Shuilleabhain & Clivaz, 2017) and we can relate it to the cumulative principle of Alexander 
(2018) “which underpins enquiry and knowledge growth in academic communities as well as 
classrooms, ensures that discussion is genuinely dialectical yet builds on what has gone before, 
advances understanding and is not merely circular” (p. 566). 

Lesson study dialogue analysis 

The first unit of coding of our analysis is the conversational turn, which allows us to first, code the 
identity of the speaker. Our LS Dialogue Analysis (LSDA) has 30 codes (33 for SEDA) which are 
clustered into 6 categories (8 for SEDA) that allow us to characterise interactions within the LS. Each 
code is characterised by indicators, assuring a good validity of the consensus coding (see Table 1): 

 Categories E, Q, R, P and G allow us to highlight a dynamic of talk. Each turn is coded; 
 Category C allows us to show what is being used as a reference in the conversational turn. 

This enables us to be aware of the connections that are made during the exchanges. In this 
case several turns are coded as a group. 

The categories for LSDA are presented as follows in Table 1. 

Table 1: Categories of codes for LS Dialogue Analysis 

Category Features 
E – Express 
or invite 
new ideas 

This category marks the entry of a new subject into the discussion, a new idea, an 
observation. Distinction between invitations to formulate new ideas and expression 
of a new idea is made. 

Q – Arouse 
development 
or reasoning 

This category is used with the next category R to code a series of exchanges around 
a subject. The Q-coded turn involves reference to a previous input. The three possible 
purposes of the Q-coded turn are, to better understand a factual statement or to 
understand the reasons for a previous statement or to consider other possibilities or 
hypotheses. 

R – Answer, 
develop 

This category has three possible purposes: to provide clarification and explanation, 
to give a justification, to develop other possibilities or hypotheses. 

P – Position 
or 
coordinate 

This category is used to indicate a turn intended to mark one’s stance or to coordinate 
ideas in relation to previous exchanges. It may involve synthesising ideas, evaluating 
different perspectives, challenging an idea or taking a position, approving. 

G – Guide This category is used to indicate a turn intended to guide the course of interaction by 
encouraging dialogue, by verbalising the rules of communication in order to promote 
discourse, by proposing an immediate action, by proposing an action in the future, by 
taking an expert position, by providing feedback, by focusing. 

C – Connect This category is used to show what a series of exchanges refers to. It might refer to: 
 the content of a past discussion episode 
 the research lesson (past or future) 
 one’s teaching experience 
 one’s personal experience 
 a theory or to mathematical principles 

 the LS process (at a meta level) 
 believes about teaching and learning 
 the learning trajectory of participants 
 the mathematical task 
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Towards an analytical framework 
The ongoing coding of our transcribed LS meetings allows us to have three levels of coding: 

1) Identity of the speaker 
2) Dynamic of talk (categories E, Q, R, P, G) and the topic to which the series of utterances 

are connected (category C) 
3) The category of MKT/MPSKT and the problem-solving proficiency and the affective 

factors and beliefs expressed by the participants. 

We illustrate these three levels of coding, only with one intervention because of space constrain. 

T2: Because when you discover [the problem], actually, 
it's not... it's complicated, you mix everything up, but if 
you separate it into four questions, you have the answer, 
so you have to find [the four questions]. 

1) Teacher 2 
2) R: Give a justification, go further, 
develop 
3) Knowledge of mathematical prob. 

F2: Yeah, you have to split the problem up. 1) Facilitator 2 
2) P: Take a stand 
3) Knowledge of mathematical prob. 

T4: That's it, and for them to be able to split it up like 
we do,... I find it interesting 

1) Teacher 4 
2) R: Give a justification, go further, 
develop 
3) Knowledge of Students as 
mathematical prob. solvers 
 Knowledge of mathematical prob. 

T7: And I think that there's also the cover story of the 
problem… that's not easy 

1) Teacher 7 
2) E: Express a new idea, make an 
observation 
3) Knowledge of prob. posing 

These three levels and the relationships among them allow us to operationalise our question about the 
construction of MKT and MPSKT during LS. Level (3) will illustrate the categories of MKT or 
MPSKT observed in the dialogue. It will also allow us to provide some answers to the questions about 
the links between one teacher’s problem-solving proficiency and his/her MPSKT, and about the links 
between one teacher’s affective factors and beliefs and his/her MPSKT. The type of intervention (2) 
linked to the identity of the speaker (1) will lead us to determine the specific dialogic role of each 
facilitator and of each teacher during the phases of the LS process, to answer the questions: Are the 
facilitators mainly in charge of bringing up the mathematical knowledge? Is it the facilitators’ role to 
develop mathematical knowledge or is it a shared responsibility? Are these roles evolving along the 
process? 

Conclusion 
The development of teacher mathematical knowledge about the teaching of problem-solving in a 
collaborative setting is a complex process. Developing a framework to analyse this process has 
proven highly challenging for our team, and we consider this framework as a first result. Our data 
analysis is still ongoing, and we hope that this analysis will bring some fine-grained description of 
how teachers construct knowledge collaboratively during a lesson study process. 
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This paper presents an a priori analysis of a practice-based task designed to be implemented in the 
context of primary school pre-service mathematics teacher education. We integrate two different 
theoretical lenses aimed at describing teachers’ practices and knowledge. By means of our analysis, 
we highlight the potentialities of the task to promote the goals of the educational program and to 
point out pre-service mathematics teacher specialised knowledge. 

Keywords: Pre-service teacher, MTSK model, meta-didatical praxeologies, practice-based tasks, 
mathematics teacher specialised knowledge. 

Background  
This paper focuses on a specific task that was designed to be implemented in the context of pre-
service mathematics teacher education. As Liljedahl et al. (2009) stressed, pre-service mathematics 
teachers (in the following, PMTs) live a unique experience within their educational paths, since  

they are both student and teacher, and through the constant shifting between student and teacher 
they are given the opportunity [...] to recast their initial (pre-conceived) beliefs about what it means 
to be a teacher, what it means to teach, what it means to learn, and even what it means for 
something to be mathematics (Liljedahl et al., 2009, p.29).  

Researchers in the field of mathematics teacher education have stressed on the importance of focusing 
on practice-based approaches to mathematics teachers’ professional development (Ball & Cohen, 
1999), which aim to connect the ongoing professional development of teachers with the actual work 
of teaching. We think that these approaches could be particularly effective in the case of PMT 
education, since they could foster PMTs’ reflections on teaching practice, filling the gap due to their 
lack of real classroom experience (Cusi & Morselli, 2018). In fact, by focusing on tasks aimed at 
fostering “activities that are situated in and organized around components and artifacts of 
instructional practice that replicate or resemble the work of teaching” (Silver, 2009, p.245) – the so 
called practice-based tasks. These approaches foster the development of a “useful and usable 
knowledge that builds mathematics teachers’ capacity for the kinds of complex, nuanced judgments 
required in mathematics teaching” (Silver, 2009, p. 246). Therefore, teachers need to acquire and 
develop both subject matter knowledge and general pedagogical knowledge for teaching, but, as 
already highlighted in the 1980s by Shulman (1986), teachers’ knowledge is characterised by the 
combination and amalgam of content knowledge and knowledge about teaching, students and 
curricula. This characteristic knowledge is defined by Shulman as "pedagogical content knowledge 
(PCK): "the particular form of content knowledge that embodies the aspects of content most germane 
to its teachability" (Shulman, 1986, p.9). Starting from Shulman's studies, different models to 
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describe mathematics teachers' knowledge have been developed in the last decades: for example, the 
Mathematical Knowledge for Teaching - MKT model (Ball, et al. 2008), the Knowledge Quartet 
(Rowland, et al., 2005) and, more recently, the Mathematics Teacher's Specialised Knowledge- 
MTSK model (Carrillo-Yañez et al., 2018). In our study we referred to the MTSK model to describe 
some aspects of the specialized knowledge of PMTs. Teachers used/needed specialized knowledge 
to do their work and this specialized nature of their knowledge is linked to teaching: 

Our starting point is the assumption that in order to carry out their role (including lesson planning, 
liaising with colleagues, giving lessons and taking time to reflect on them afterwards) the teacher 
needs specific knowledge. We associate this specificity with mathematics teaching (Carrillo-
Yañez et al., 2018, p. 239). 

In this paper we present a specific type of practice-based task and we analyse the PMTs’ specialised 
content knowledge that can emerge. The task combines the design of fictional classroom discussions 
representing virtual dialogues between a teacher and his/her students with the explicit request of 
justifying this design by means of specific theoretical lenses introduced during the teacher education 
courses. The activities fostered through this kind of task represent a fundamental component of a 
methodology for PMT education aimed at fostering PMTs’ reflective practices (Jaworski, 2004), by 
actively involving them in the analysis of practice through the theoretical lenses provided by research 
(Cusi & Malara, 2016; Cusi & Morselli, 2018). To develop the a priori  analysis of this type of task 
(in the following, FCD task, acronym for “fictional classroom discussions task”), we will integrate 
different theoretical lenses that are presented in the next section. 

Analytical framework  
The analytical framework is constituted by two main components. The first component is the Meta-
didactical transposition (MDT) model (Arzarello et al., 2014). Based on Chevallard’s 
Anthropological Theory of Didactics (Chevallard, 1985), this model was born to describe and analyze 
the evolution of mathematics teachers’ and didacticians’ practices within institutional contexts, when 
they are jointly engaged in professional development programmes or collaborative research projects 
(Arzarello et al., 2014). We use the term didacticians as “people from the university with knowledge 
of research and theory in the didactics of mathematics, interested to work with teachers to promote 
better opportunities for mathematics learning in classrooms.” (Jaworski, 2012, p. 623). 

In tune with Chevallard’s framework, the MDT model focuses on the notion of praxeology, a tool to 
model the human activities developed within institutional contexts. A praxeology is structured in two 
main levels (García et al., 2006): the praxis or know-how level, which includes the task, or a family 
of tasks, and the techniques used to face the task; the logos or knowledge level, which includes the 
“discourses” developed to justify or frame the techniques for the task. The MDT model distinguished 
between: didactical praxeologies, which refer to tasks related to the knowledge to be taught and the 
technique being recognized and justified within a specific institution; and meta-didactical 
praxeologies, which focus on teachers’ and didacticians’ meta-level reflections on contents to be 
taught and corresponding didactical praxeologies (Arzarello et al., 2014). We chose to refer to the 
MDT model since: (a) it focuses on the role played by the meta-level reflective practices developed 
by communities of teachers and didacticians involved in professional development programs or 
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collaborative research projects; and (b) it acknowledges teachers and didacticians’ reciprocal 
influences when they work together in such contexts. 

The second component of our analytical framework is aimed at describing PMTs’ knowledge. We 
have chosen to use the interpretive lenses drawn from the MTSK model (Carrillo-Yañez et al., 2018) 
in order to describe the mathematics teacher specialized knowledge. This model is suitable for the 
analysis we want to develop since it focuses on the knowledge that teachers may use/need for the 
analysis and design of educational activities. We chose the interpretative tools provided by this model 
to understand and interpret teachers’ praxeologies focusing on knowledge level. The starting 
assumption of the MTSK model is that teachers need specialized knowledge to fulfil their role. 
Therefore, knowledge developed and implemented for teaching is considered specialized. Inspired 
by Shulman's (1986) studies, the MTSK model distinguishes between mathematical knowledge (MK) 
and pedagogical content knowledge (PCK), both of which are considered as sub-domains of the 
teacher's specialized knowledge. The MTSK model describes three sub-domains of mathematical 
knowledge: Knowledge of Topic – KoT (e.g. knowledge of definitions, properties, procedures, 
representations, and applications of mathematics); Knowledge of the Structure of Mathematics – 
KSM (e.g. knowing how to connect activities in different domains of mathematics); and Knowledge 
of Practices in Mathematics – KPM (e.g. knowing how to prove, justify, define, make inferences and 
inductions, give examples and counterexamples). Pedagogical Content Knowledge is divided into 
three sub-domains: Knowledge of Mathematics Teaching – KMT (e.g. knowledge of theories of 
mathematics teaching or knowledge of teaching resources, materials and technologies, but also 
knowledge of strategies for introducing and representing contents and concepts, etc.); Knowledge of 
Features of Learning Mathematics – KFLM (e.g. knowledge of theories of mathematics learning or 
knowledge of the way in which pupils interact with mathematics); and Knowledge of Mathematics 
Learning Standards – KMLS (e.g. knowledge of expected learning outcomes and teaching goals in 
different school segments). The MTSK model in addition to detailing these subdomains of 
Mathematical Knowledge and PCK explicitly highlights the centrality of teachers' beliefs about 
mathematics and mathematics teaching-learning.  

In the study presented in this paper, we integrate the theoretical lenses belonging to the MDT and 
MTSK models to develop an a priori  analysis of a specific FCD task. The a priori  analysis is 
performed in order to highlight the potentials of the FCD task in: (a) fostering the educational goals 
of the professional development programme within which the FCD task has been implemented; and 
(b) bringing out, consolidating and developing different aspects of PMTs’ specialized content 
knowledge. As regards (a), we refer to the MDT model to frame the educational context in which this 
task has been implemented, characterizing, on one side, the praxeologies that guided the didacticians’ 
design of the task and, on the other side, the praxeologies that PMTs have to activate in order to face 
the task. As regards (b), we use the MTSK model to characterize the different aspects of PMTs’ 
specialized content knowledge that can arise when PMTs face the FCD task. 

An example of FCD task  
The example we present in this paper refers to the context of primary school PMT education. The 
FCD task on which we focus has been implemented within a 48 hours course for PMTs enrolled at 
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the first year of the master-degree course “Primary education sciences” at Sapienza University of 
Rome. The course, named “From arithmetic to algebra. From algebra to arithmetic” was aimed, in 
tune with the studies presented in the background section, at making PMTs develop reflections, in an 
integrated way, on specific mathematical contents, mathematical processes and on specific 
pedagogical aspects of mathematics teaching-learning. The main mathematical contents, on which 
the course was focused, are: the use of algebraic language as a thinking tool; the different meanings 
of the equal sign; the construction and interpretation of mathematical representations and tools (such 
as tables, diagrams, graphs…); the study of sequences, relations and functions. As regards the 
mathematical processes, during the course PMTs had to opportunity to experience and reflect on 
generalization, argumentation, problem solving and posing. Finally, the main pedagogical aspects of 
mathematics teaching-learning that were discussed are: the possible approaches to early algebra; the 
use formative assessment in mathematics; the design of laboratorial activities; the role of the teacher 
in guiding classroom discussions. All the reflections, in tune with the MDT model, were always 
developed by referring to institutional aspects, such as the National Guidelines. PMTs faced different 
FCD tasks during the course together with other kinds of practice-based tasks that involved PMTs in 
the role of future teachers (classroom tasks, analysis of students’ written answers, and videos from 
real teaching experiments) and other laboratorial activities that involved PMTs in the main role of 
learners (activities focused on numerical explorations, conjecture and proof and on problem solving). 
The FDC tasks we are going to analyse was carried out at the end of this course. PMTs, at that time, 
had followed two other courses focused both on mathematics and mathematics education, for a total 
number of 100 hours.

The example of FCD task for PMTs analysed in this paper (Figure 3) requires to: (1) design an excerpt 
of a fictional classroom discussion, focused on a specific task for students (Figure 1), starting from a 
collection of six real students’ written answers (the translation of two of these answers is presented 
in Figure 2); (2) organize the discussion by selecting the students’ answers to be discussed, grouping 
them according to their characteristics and identifying the order in which to discuss them; (3) justify 
the choice made when designing the fictional classroom discussion, making explicit reference to the 
theoretical constructs introduced during the course.

Figure 1: The task for students on which the FCD task is based

The task for students (Figure 1) is part of a sequence of tasks. During the work on the previous tasks, 
the students have already discovered the relationships between the numbers on the bricks that 
constitute a mini-pyramid (a pyramid of three bricks), that is “the number on the brick at the top of 
each mini-pyramid is the sum of the two numbers on the bricks at the base of the mini-pyramid”.
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Figure 2: Translation of two of the real students’ written answers on which the FCD task is based

The translation of the text of the FCD task (except the problem in Figure 1 and the real students’ 
written answers in Figure 2) is presented in Figure 3.

Figure 3: Translation of the text of the FCD task

During the course different kind of data have been collected: the PMTs’ written answers to the FCD 
task (that is the fictional classroom discussions they designed and the justifications of this design), 
videos of collective discussions between the didactician and the PMTs, PMTs’ final reflections on 
their experience within the course (with a focus on each activity in which they were involved). 

A priori analysis of the FCD task 
The data collected during the course could be analysed at different levels: (1) the level of the a priori
analysis of the FCD task as a tool for PMT education; (2) the level of the analysis of the excerpts of 
the fictional classroom discussions designed by PMTs and of the ways in which this design was 
justified referring to the theoretical tools introduced during the course; (3) the level of PMTs’ 
reflections on the role played by their work on the FCD task in their professional development. In 
this paper we focus on the first level of analysis. 

In this paper show an a priori analysis of the FCD task presented in the previous paragraph. We 
frame the activity on FCD tasks by using the theoretical lenses presented in the analytical framework. 
We refer to the MDT model to characterize the different practices, developed by the didacticians and 
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the PMTs, in relation to this FCD task. First of all, we focus on the praxeology of the didactician who 
have conceived and designed the FCD task within an educational program for PMTs of primary 
school. This praxeology is related to the task of making PMTs experiment the activity of design of 
classroom discussions starting from students’ answers. The adopted technique consists in the FCD 
task design itself. The logos component of this praxeology is constituted by the theoretical references 
that frame the educational program and support the justifying discourses behind the choice of 
focusing on methodologies for teacher education aimed at fostering PMTs’ reflective practices. In 
relation to this, a fundamental element of the logos component is represented by the research studies 
focused on the role played by theory as a tool to support practice. As concerns the praxeologies 
developed by the PMTs in their role as authors of fictional classroom discussions, the task to which 
these praxeologies refer is that of designing a classroom discussion focused on a specific task for 
students and on specific students’ written answers. The technique to face this task is characterized by 
different processes that have to be realised: the analysis of the task for students, the analysis of the 
students’ written answers and the identification of the possible interventions that the teacher and her 
students could make during the classroom discussion. The logos component is constituted by the 
different theoretical lenses shared with PMTs during the whole course. It must be added that the 
didacticians’ choice of the task for students on which the FCD task is focused (Figure 1) and the aims 
of the classroom discussion to be designed make PMTs direct their attention also on specific aspects 
related to different mathematical and pedagogical contents faced during the course (for instance, the 
role of argumentation in mathematics, early algebra, formative assessment…). Other elements could 
also be part of the logos components of PMTs’ praxeologies, such as the PMTs’ (mathematical and 
not mathematical) previous knowledge and their beliefs about teaching and about the mathematical 
content on which the task for students is focused. In order to analyse which aspect of specialized 
content knowledge might emerge when pre-service teachers face this task, we use the MTSK model. 
In the analysis of the task for students, the students' answers and the possible discussion about them, 
PMTs can use their KoT about: the properties of natural numbers and operations; the additive relation; 
the procedural/relational meaning of the equality symbol. With regard to KSM, their knowledge about 
relations among number sets and about pre-algebra should emerge. The role of examples and 
counterexamples in the production of hypotheses in arithmetic problems and the possibility of using 
different possible arguments are part of KPM. The task could make the PMTs deeply reflect on 
different and effective representations that can be used to work with students to explore numerical 
relations or artefacts and meaningful activities concerning problem solving (KMT). The different 
procedures that students might carry out or students’ possible errors as well as the difficulties in 
producing arguments can be framed in the KFLM domain. The examples of students’ answers (Figure 
2) are useful for the development of shared reflections on students’ argumentative processes and on 
the arithmetic relationships they can identify. It is important to be aware that the pyramid task aims 
not only at implementing computational schemes but, above all, at fostering problem solving and 
argumentation processes. These processes are key issues in the goals for the development of 
competences written in Italian National Guidelines (Standards) that PMTs have to know (KMLS). 
This detailed analysis of PMTs’ mathematical knowledge and pedagogical content knowledge allows 
us to enhance the MDT model with regard to the description of the logos component of PMTs meta-
didactical praxeologies. 
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Conclusion 
In this paper we have presented a specific practice-based task – the FCD task – designed to be 
implemented within courses for PMTs. By integrating two different theoretical lenses, we developed 
an a priori  analysis of the FCD task aimed at highlighting the potentialities of this kind of task in 
terms of promotion of both the educational goals of the course within which it was implemented, and 
development of PMTs’ specialised content knowledge. In particular, the MDT model enabled us to 
reflect on the meta-didactical praxeologies activated by the protagonists of the educational process 
under scrutiny: on one side, the praxeologies that guided the design of the FCD task by the 
didactician; on the other side, the praxeologies activated by PMTs during their work on the FCD task. 
The MTSK model constituted the lenses through which we deepened the characterization of the logos 
component of the PMTs’ praxeologies, by focusing on the specialised content knowledge that could 
emerge and be consolidated by means of the examined task. We detailed, for each of the subdomains 
of the MTSK model, what knowledge can emerge when PMTs face this task. 

The results of our analysis could have both practical and theoretical implications. At the practical 
level, by highlighting the potentialities of FCD tasks, our analysis confirmed the effectiveness of the 
criteria that guided the design of this kind of tasks: focusing on meaningful mathematical problems 
(to foster the activation of mathematics teachers’ specialized knowledge);  asking to design fictional 
classroom discussions starting from students’ real written answers (to promote PMTs’ reflections on 
aspects related to different mathematical and pedagogical contents faced during the course); asking 
to justify the fictional classroom discussions’ design by referring to specific theoretical lenses (to 
better trigger PMTs’ reflective practices). At the theoretical level, our analysis shows that the 
integration of the MDT and the MTSK model was effective in highlighting both the educational aims 
connected to the design of FCD tasks and the possible results of the implementation of such tasks in 
terms of potential emergence of PMTs’ specialised content knowledge. 

In this paper we focused only on the a priori  analysis of the FCD task. As a further step of our study, 
we will focus on the different data collected during and after the implementation of the FCD task to 
perform other levels of analysis in which we will continue to interweave theoretical lenses from the 
MDT and MTSK models. 
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Stakeholders agree that the mathematical education of teachers needs to focus on mathematical 
knowledge for teaching, but the practice-based nature of this knowledge poses challenges for 
mathematics teacher educators — for understanding it, developing tasks that maintain its integrity in 
practice, and teaching it to teachers in ways that meaningfully support their learning to teach. We 
know little, however, about how mathematics teacher educators conceptualize the teaching that 
knowledge is to support. Our analysis reveals that thinking develops from a view of teaching as 
straightforward, where aspects can be treated in isolation, to a view of it as requiring focused 
attention while maintaining mutual regard for the whole. This difference has implications for how 
mathematics teacher educators understand specialized mathematical knowledge and for how to 
support their understanding and teaching of it.

Keywords: Mathematical knowledge for teaching, teaching, teacher educators.

Introduction
At present there is little doubt about the importance of specialized knowledge for teaching 
mathematics. Scholars have invested in supporting mathematics teacher educators (including, 
mathematicians, education specialists, instructional coaches, teacher leaders, and others) to develop 
their understanding (Even & Ball, 2009). As mathematics teacher educators are a diverse group with 
disparate backgrounds and uneven expertise and experiences, such work is often challenging and 
showcases how these differences might matter (Lloyd & Chapman, 2020).  Specifically, the practice-
based nature of mathematical knowledge for teaching together with uneven understanding of teaching 
creates challenges in the work that impede progress. A more detailed and systematic unpacking of 
mathematics teacher educators’ thinking would help professional development efforts, however, 
currently we know very little about how mathematics teacher educators think about teaching or how 
this thinking connects to their understandings of specialized mathematical knowledge.

Theoretical Background and Research Design
For several years, the research group in which we work (based in the United States) has conducted 
workshops that seek to develop mathematics teacher educators’ understanding of the mathematical 
demands of teaching. The current study is part of a larger project designed to support mathematics 
teacher educators’ engagement in collegial development of instructional tasks for teachers that 
address mathematical knowledge for teaching (Ball et al., 2008). We conducted a dozen four-day 
workshops of approximately 30 participants each. Participants applied as teams that were composed 
of individuals from different professional settings engaged in the mathematical education of teachers 
in their local area. Workshops began with a basic introduction to mathematical knowledge for 
teaching, task writing, and the mathematical demands of attending to justice, where teaching is 
understood as management of the interactions among teacher, students, and content, occurring in 
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immediate and broader social environments (Ball, 2018; Brousseau, 1970-1990/2002; Jaworski, 
1994), and justice is understood as an essential feature of professionally responsible teaching (Ball,
2018). Moving between whole-group and small-group work, we introduced participants to tools for 
developing tasks with most of the time spent on writing and reviewing tasks.  

For this study, we asked, how do mathematics teacher educators think about teaching? Throughout, 
our focus was on differences that might matter for their thinking about mathematical knowledge for 
teaching. We selected 12 participants to interview, with varied demographics, professional affiliation, 
and experience with the ideas. Approximately one third were affiliated with university mathematics 
departments, one third with schools of education, and one third were in public primary and secondary 
schools. Roughly half of the participants had over ten years of experience teaching, and the majority 
were white women. (All names are pseudonyms.) Although this is a small sample, sampling was 
purposeful across roles and experiences, and differences in thinking (which is our focus) likely reflect 
differences in the wider community. We collected extensive pre-workshop applications and post-
workshop surveys, including responses to specialized content knowledge tasks with detailed 
explanations. Our guided interview protocol was designed for multiple purposes: to gather feedback 
on the workshop, to gain insight into participants’ understandings, and to inform future development 
efforts. Interviews were conducted via video conferencing, recorded, and transcribed. Open-ended 
questions probed four topics: (i) reasons for applying; (ii) what they learned and found useful; (iii) 
perspectives on a video clip of a workshop discussion; and (iv) thoughts about the mathematical-
knowledge-for-teaching needs of mathematics teacher educators. The interview was not designed 
solely to elicit views of teaching, but teaching was a focus of the workshops and each section of the 
protocol touched on teaching directly and indirectly. Analysis focused on the interviews but also used
applications, surveys, and observations to inform and test interpretations.

To investigate participants’ thinking, we used a conceptual analytic approach (Erickson 1986). Our
approach was empirically grounded, coordinated different perspectives, and was driven by practical 
concerns and logical analysis. Analysis involved cycles of attuning initial conceptualizations, relevant 
literature, and available data with a focus on local meaning and an assumption that what people say 
is sensible from their perspective. We identified units of text in tandem with coding — selecting text 
that focused on the evidence for the code and was enough context to stand alone as evidence. We 
wrote memos, developed a codebook, and coded for salient distinctions in thinking from direct 
viewing recordings of interviews, and when uncertainty or inconsistency occasionally arose, we re-
watched, explored different interpretations, imagined from the participant’s perspective, and set aside 
to revisit later. We developed codes from sections of a subset of interviews until they could be used 
consistently and then applied and documented them for the full set. Our focus was on interpretive 
power, with attention to subjective coder reliability when reconciling our independent coding. 

Analysis and results
Our analysis reveals a fundamental distinction in mathematics teacher educator’s thinking about 
teaching — that it develops from views of teaching as straightforward, where one gives attention to 
an aspect of teaching but with little regard for other aspects, to views of it as involved, where, while 
giving attention to an aspect of teaching, one maintains regard for other aspects and the whole, with 
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a sense of mutuality. By aspect we mean a focused slice of teaching. By a sense of mutuality, we 
mean regard for the comprehensive interactions of teaching and learning, including the influence of 
broader social environments and the need to contend with complexity by specifying practice at a finer 
grain size (Ball & Forzani, 2009; Grossman & McDonald, 2008), while also considering its character 
as dilemma management (Lampert, 1985). 

We coded units of text conveying: (i) regard for only a single aspect of teaching with no regard for 
other aspects; (ii) mutual regard for mathematics content and student thinking, but where these alone 
are privileged; and (iii) mutual regard other than this limited purview, for instance, additionally 
considering classroom culture, students’ developing identities, or the pace and remaining time for a 
lesson. Viewing an aspect of teaching without regard for other aspects is common in the general 
public but is likely rare among mathematics teacher educators (as in our data). Instead, the second 
code is prominent, where teaching is considered in ways that foreground mutual regard for 
mathematics and student thinking to the exclusion of other aspects. Frameworks drawn from 
mainstream mathematics education shape, or at least reinforce, this thinking. Fuller mutual regard 
combines experience and more theoretically grounded consideration of the complex nature of 
teaching as situated human interaction. 

As an example of thinking about teaching as straightforward, consider Claire, a white graduate 
student in mathematics education, with three years of secondary mathematics teaching experience.
She describes interpreting and classifying student thinking as an independent task teachers need to 
do. She talks about not needing to know students’ backgrounds or identities and how this can be a 
distraction. She acknowledges that teaching can seem complex, but in her view, teachers manage 
complexity by focusing on “narrow pieces” of teaching in isolation.  

Instead of thinking about like okay there are forty individual approaches in this classroom, there 
are reasonably like three or four ways my students might be thinking about that, and … based on 
these [students’] comments, we can try to put students into this model that we already have of how 
a student is thinking. 

Her comment suggests that understanding and making good use of idealized conceptual models of 
how students are thinking is the crux of the work in this situation, in almost complete isolation from 
consideration of other aspects of teaching. From this perspective, interpreting students is less an 
attempt to grapple with students’ ideas on their own terms, and more about considering them in 
relation to pre-existing conceptions of content as conceived by the teacher. This view conveys that 
teaching is about being aware of and understanding these conceptions of content and using them to 
assess students and manage the presentation of mathematics going forward.

Such an understanding is limited. It reduces the work of interpreting student thinking to one where 
human beings and their interactions are not the primary focus, but abstract conceptions are. Content 
is given primacy here above all other aspects of teaching, which obscures and distorts essential 
mathematical work required for the multiple and interrelated concerns in teaching. In this view, we 
lose sight of how a student might feel when they are the subject of this kind of classification (what if 
the assigned classification is incorrect?) and the impact such classification might have on future 
interactions and the subsequent mathematical trajectory of the class. We also miss how certain 
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conceptions (even if accurately assigned and skillfully used in service of content goals) might be 
viewed as less mathematically advanced by peers and potentially reinforce stereotypes that undermine 
a productive learning environment. In this way, the central purpose of such an activity shifts away 
from understanding students or making sense of complex human interaction and toward unpacking 
abstract conceptualizations of content. Additionally, as teachers often interact with students across 
cultural and racial differences, their perceptions, unless actively interrogated and disrupted, are likely 
to impose norms of dominant groups that harm marginalized students.

Despite all of this, Claire trusts that care and good intentions will sufficiently address other aspects 
of teaching. She has an abiding regard for mathematics and teaches prospective teachers how, for 
example, to set clear objectives, yet she treats this and other pedagogical tasks as separate matters 
that do not come into play when classifying student thinking. For Claire, the pedagogical tasks that 
make up teaching can each be learned relatively independently and used straightforwardly. 

A second form of constrained thinking about teaching prioritizes two concerns, mathematical goals 
and student thinking, with these treated as interdependent but as so primary that exclusive attention 
to them is given. For example, when debriefing the workshop discussion from the institute, Teresa (a 
Latina instructional coach with over 10 years of teaching experience, whose focus is the professional 
development of elementary teachers) explains: 

The hardest part that we see teachers work with is making connections, helping students connect 
these different ideas ... What I appreciate about this video is that it makes it real time … it’s almost 
asking teachers to write exactly what questions or what they would say to actually bring together 
Aniyah and Katherine’s work and build on the mathematical thinking that is there to reach this 
goal.

This comment highlights mutual consideration of student thinking and mathematical goals, and how 
their navigation requires thinking through and attending to the details of what a teacher needs to say 
and do. She describes Stein et al.’s (2008) five practices for leading a productive discussion as the 
essence of teaching — a dance between mathematical content and student thinking. When she focuses 
on mathematical issues, student thinking is near at hand, and when she scrutinizes student thinking, 
she keeps mathematical goals in mind. Relevant mathematical knowledge for teaching in this view is 
fundamentally shaped by the mutual consideration of student thinking in conjunction with content 
goals. In the quote above, Teresa expresses the need to help teachers formulate what they might 
actually say because she sees that specificity is needed to size up whether and how to probe student 
thinking in a way that maintains mathematical goals. In her interview these two aspects of teaching
are often privileged — to the exclusion of others. 

Another example of our second code is the following from Andy, a white high school teacher with 
two years of teaching experience and a graduate degree in mathematics. He talks about how 
challenging it is to hear the parts of student contributions that are mathematically correct and see how 
to leverage these to advance mathematics. For Andy, this is the heart of skillful, experienced teaching. 
As did Teresa, he emphasizes the challenge of evaluating student responses in real time.

Getting over that fact that this is so crazy, this student has one seventh, and this student is looking 
at fourths, and to get to the point of where their fractions are coming from … you know, you have 

Proceedings of CERME12 3554



five minutes basically in real time … while you’re trying to manage all the other behavior issues 
and the other things going on in the classroom.

From his overall response, we hear Andy describe the need for mutual, interdependent regard in the 
work of bridging student thinking and mathematical goals, but his reference to “other things going 
on” posits these as independent tasks that need to be carried out simultaneously, but do not require 
substantial coordination. Andy does not, for example, note how the real-time nature of this moment 
shapes the kinds of responses that might be available to a teacher, or say how particular responses to 
behavior might exclude certain children from the mathematical work, both relevant concerns that 
significantly impact the mathematical knowledge demands of this situation.

The quotes from Teresa and Andy suggest a view of teaching as coordinated attention to mathematical 
goals and student thinking, but without mutual regard for other aspects, such as for students’ 
identities, classroom culture, materials available, and practical time constraints. Such a conception of 
teaching does bring genuine regard for a dual attention to mathematics and student thinking but does 
not attend much beyond that. Indeed, in this view, teaching is still principally about content, whether 
student-generated or prescribed by curricular and disciplinary goals. While this conception might 
consider interactions between students or student ideas as mathematically relevant, they are 
seemingly only so if they are in service of immediate content goals — to the exclusion of other 
possible goals of teaching (e.g., development of a longer-term mathematical trajectory, encouraging 
individual and collective participation, human improvement, empathy, disrupting status hierarchies, 
or social change). Such a view of teaching continues to idealize content away from context and again 
misses important mathematical work in the interactions among the environments surrounding 
instruction and the multiple interacting components of the instructional triad. For example, work 
concerning student identity development is intertwined with and inseparable from mathematically 
relevant questions such as who should get to speak next, what content might be useful to surface, 
which examples can reasonably be done in the remaining class time, or what examples are likely to 
elicit unconventional responses. Mathematics teacher educators who see mathematical objectives and 
student identity development as isolated and disconnected concerns miss how one can shape the other. 
It is worth noting that this limited view of teaching is evident in much mathematics education research 
and many mathematics-education programs, where learning theory and mathematics are often central 
and integrated but other issues are treated as separate, e.g., classroom management, time 
management, moral and civic education, and social (in)justice.

Our third code identifies mutuality that goes beyond regard for mathematical goals and student 
thinking. As an example, Naima (a black curriculum specialist and professional development 
facilitator with six years of teaching experience and a graduate degree in public policy) focuses on
interpreting students’ contributions and using them together to advance instruction, but she also 
stitches regard for other aspects into her comments. Discussing the mathematical content and the 
collective trajectory of the class, she comments about carefully choosing who should speak, with 
reference to each student’s strengths and growth, how they are positioned, and the overall classroom 
culture. She attends to all parts of the instructional triad. Naima routinely focuses on a specific 
concern yet maintains a sensibility for teaching as complex interactional work, inserting brief asides 
to other aspects of teaching and offering examples that situate her specific point in an overall picture. 
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The participants in our study were recognized professionals. They were connected enough to hear
about and attend a national workshop. The majority of our codes were of this third type (Figure 1).

Figure 1: Percents of coded units for each way of thinking about teaching for each participant

Some participants consistently spoke of teaching as requiring mutual regard, while others did not. 
These two groups are visible at the two ends. The middle four were mixed. For instance, Teresa 
described how attention to justice issues in the workshop was making her realize she was leaving 
significant parts of the work implicit in her work with teachers, not only related to justice but to other 
mutual considerations. She reflected that, in her focus on orchestrating a productive discussion, “the 
characters, for lack of a better word, the little people, the kids have been absent.”

I didn’t realize how powerful it is to actually paint that context and paint the picture of who is that 
student with that voice. Like, as a classroom teacher I think I did attend to that, like I understood 
who kinda- like when you’re working with an equalizer board in music, there are times where I 
need a tone, somebody’s voice, and I was- I felt like I was in tune with that. But I didn’t realize 
how to make that visible and explicit to teachers as they think about how they do that with their 
students. And now I found it seems like a simple solution, tell the whole story. Paint the picture, 
tell who this student is so that it is part of how they are making their decisions when they have this 
much time to think about it … I think is my biggest aha! Like make it visible- it can’t be something 
you hope they think to consider in the moment. 

For Teresa, attention to justice issues became an inroad that extended her constrained thinking about 
teaching as navigation of dynamics only between mathematical objectives and student thinking to 
navigation involving a much fuller set of dynamics at play in the human interactions of teaching and 
learning.  Similar to Teresa, the three other participants in the middle of Figure 1 all have frames that 
constrain their thinking about teaching (limited views of mathematics, of what is interesting or 
important, of students, or of teaching), but also have experiences that allow them at times to take up 
pedagogical concerns with fuller mutual regard.

Conclusion
The distinction we have unpacked here matters. It is likely a source of miscommunication and 
misunderstanding among mathematics teacher educators; it reflects something fundamental about the 
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development of mathematics teacher educators’ thinking about teaching; and it also has implications 
for their understanding of specialized mathematical knowledge. Understanding of teaching as 
straightforward constrains the work that is visible and considered mathematically relevant. 
Consequently, such a view inhibits understanding of specialized mathematical knowledge. The 
tendency to idealize or abstract out of context in service of content goals distorts the purposes of 
teaching and severs its connections to the realities of practice. It reframes a situated activity as one 
that is almost entirely cognitive. Our analysis suggests that in the absence of a well-developed 
understanding of teaching, existing orientations and sensibilities get imported to fill the void. For 
mathematics teacher educators, viewing teaching through a cognitive or content lens is probably a 
natural step given the backgrounds and training these individuals likely bring to the work. It is perhaps 
no surprise then that the practice-based nature of specialized mathematical knowledge often creates 
difficulties for mathematics teacher educators. Writing tasks for teachers that are authentic to practice 
is difficult when one’s understanding of practice is limited. 

In addition, understanding how mathematics teacher educators think about teaching can be used in 
the service of professional development. In a larger study that makes use of the mutuality distinction, 
we found that it aligns with thinking about specialized mathematical knowledge as practice-based or 
resource-based, and with thinking about justice as fundamental or optional (Hoover et al., 2022).

Figure 2: Profiles of the extent to which participants think of mathematical knowledge for teaching as 
practice-based, teaching as mutually involved, and justice as fundamental and consequential

Deeper examination suggests several clusters of participants with distinctive characterizations that 
might benefit from more focused professional development that takes alignment (or misalignment) 
into account. For example, understanding that a mathematics teacher educator thinks of teaching as 
straightforward allows professional development to be tailored to push on the boundaries of that view 
and might help them to see the practice-based nature of specialized mathematical knowledge. 

While other scholars have described dynamics akin to mutuality, using different language, in different 
contexts, our analysis is significant in several ways. Conceptual distinctions are significant for 
specific purposes, and this distinction matters for how mathematics teacher educators work, including 
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how they think about specialized mathematical knowledge, the tasks they write, and the mathematical 
opportunities they provide to teachers. We recognize that our analysis is more suggestive than 
definitive, that our language for and elaboration of the concept of mutuality is limited, and that our 
data draws primarily from mathematics teacher educators working in a U.S. context, but it offers a 
starting point. Important questions to address are the composition of skillful regard for mutuality and 
whether attention to mutuality matters for teachers as well as for mathematics teacher educators.
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Introduction
The purpose for teachers acquiring mathematical knowledge for teaching (MKT) is to use this in their 
classrooms. Research on teachers’ MKT, therefore, also needs to measure their mathematical 
knowledge in teaching (MKiT). The Knowledge Quartet (KQ) framework is designed for such
situations (Rowland, Huckstep, & Thwaites, 2005). The KQ comprises four dimensions: foundation, 
transformation, connection, and contingency, each consisting of four to seven aspects (see 
knowledgequartet.org). Using the KQ, Weston (2013) suggests to quantify the presence and 
appropriateness of MKiT. However, she does not quantify the appropriateness of the absence of
MKiT. Building on Weston’s method, we also analyze whether the absence of particular aspects of
teacher knowledge is appropriate. The research question is: What does the quantified use of the KQ
framework reveal about the appropriateness of present and absent MKiT?

Methods
Using a multiple case study, we applied the KQ in the context of a teacher college intervention that 
aimed to improve the PSTs’ MKT of informal statistical inference (ISI; De Vetten, Schoonenboom, 
Keijzer, & Van Oers, 2018), which can be defined a generalization, based on data, expressed with 
uncertainty. Part of the intervention was to teach an ISI lesson. We observed three of the 21 
participants, Alfred, Celine and Demi (pseudonyms) teaching their 3rd to 5th classrooms. The PSTs
taught a lesson, called “What is the most frequently used word in a stack of children novels?” The 
lesson was modelled at teacher college and was laid out in a lesson plan. The analyses are based on 
transcripts of video recordings of the classroom interactions. The unit of analysis was a teaching 
situation, constituted by a fragment of whole class discussion that concerned one substantive topic. 
Within each fragment the PSTs’ actions were analyzed from the idea that these actions “could be 
construed to be informed by a trainee’s mathematics content knowledge or […] mathematical 
pedagogical knowledge” (Rowland et al., 2005, p. 258). The coding process followed the approach 
of Weston (2013). First, for each fragment the presence of each of the 20 KQ codes was coded 
(present versus non-present). Second, the appropriateness of the (non-)presence was evaluated 
(appropriate versus inappropriate). Present teaching actions were coded as appropriate when these 
teaching actions helped to attain the learning objectives (p-a), and as inappropriate when they 
hindered the attainment of the learning objectives (p-i). Absent teaching actions were coded as 
appropriate when absence did not hinder the attainment of the learning objectives (np-a), and as
inappropriate when they were essential to move the lesson towards attainment of the learning 
objectives (np-i). Coding was discussed with a second coder until consensus was reached. Six out of 
20 KQ codes were present in at most one fragment and were excluded from the analyses. These 
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concerned, for example, procedural codes, which are not relevant for the conceptual nature of ISI, 
and codes related to lesson design issues, which are not relevant for lessons not designed by the PSTs. 
The analyses involved tabulating the presence and appropriateness codes and searching for patterns. 

Results and discussion 
Table 1 shows the results of the analysis. It shows, for example, that Alfred and Demi were not aware 
of the purpose of the lesson in 27 to 28% of the fragments. Another result is that inappropriate 
(absence of) teaching actions often concern the failure to correctly interpret or respond to students’ 
conceptual input, and to provide correct conceptual explanations of the content. Lastly, the use of 
mathematical language was largely absent from the lessons, apart from Alfred and Demi defining a 
sample. This is not surprising given that ISI is informal by definition and stimulates the use of context 
language. The above examples thus show how quantifying the presence and appropriateness of 
teaching actions helps to overall impression of PSTs’ MKiT. Qualitative analyses could provide more 
depth to these results. 

Table 1: Proportion of appropriate (absence of) teaching actions1 

 Alfred  Celine  Demi 
KQ code p-a p-i np-a np-i  p-a p-i np-a np-i  p-a p-i np-a np-i 
Adherence to textbook .09 .09 .82 

 
  .08 .92   .06 .22 .72  

Awareness of purpose .73 
  

.27  .92   .08  .72   .28 
Identifying pupils’ errors .45 

 
.27 .27  .50  .42 .08  .72  .28  

Overt display of subject knowledge 
  

.73 .27  .08  .83 .08    .72 .28 
Use of mathematical terminology .09 

 
.91 

 
   1.00   .22  .78  

Choice of representations .27  .64 .09  .17  .83   .11 .06 .83  
Use of instructional materials .64  .36   .83  .17   .22 .06 .72  
Teacher demonstration .36  .36 .27  .25  .58 .17  .06 .11 .78 .06 
Anticipation of complexity .18  .45 .36  .42  .58   .33  .39 .28 
Decisions about sequencing .09  .91     1.00   .06 .11 .83  
Making connections between 
concepts 

.18  .45 .36  .08  .75 .17  .17  .56 .28 

Recognition of conceptual 
appropriateness 

.45  .27 .27  .67  .25 .08  .50  .33 .17 

Deviation from agenda .09  .91    .08 .92     .83 .17 
Responding to students’ ideas .64 .36    .75 .17 .08   .78 .22   

1Alfred 11, Celine 12; Demi 18 fragments. 2Thin border: proportion inappropriate between 0.1 and .25 ; thick border: proportion inappropriate > .25. 
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In this paper we present a study regarding a professional development course for primary and lower 
secondary teachers designed in the frame of a model of Mathematical Teachers’ Specialised 
Knowledge (MTSK) conceptualization. In particular, taking inspiration from the subjectivist 
approach to probability, the teachers are involved in a context of betting games facing the problem 
of quantifying the degree of confidence of an event. We will focus on some steps of a collective 
discussion emerged in one of the meetings analysing them by the MTSK frame. Starting from this 
analysis we discuss the implications regarding the use of this kind of settings for developing teachers’ 
knowledge in the field of probability.  

Keywords: Probability, subjectivist approach, Mathematic Teachers’ Specialised Knowledge. 

Introduction 
In the last years the topic of Probability has become an increasingly central topic in the national and 
international curriculum around the world (Batanero et al., 2016). Also, the research in mathematics 
education is giving much more attention to this topic, focusing both on the pupils and the teachers 
(e.g., Ireland & Watson, 2009; Chernoff & Sriraman, 2014). Some studies (Franklin & Mewborn, 
2006; Chick & Pierce, 2008) point out that teachers’ training in the field of probability is not enough 
to enable them to deal with challenges posed by the work with pupils. Several teachers present 
difficulties similar to their students' ones in managing basic concepts (Prodromou, 2012). Moreover, 
their pedagogical content knowledge in probability appears to be not appropriate (Batanero et al. 
2004) and they seem to have scarce experience in conducting experimental activities with students 
(Stohl, 2005). In this view, Batanero et al. (2016) have highlighted the necessity of leading research 
on the components of teachers’ knowledge and of designing materials for teachers’ professional 
development concerning probability. 

In this paper we propose an analysis regarding a professional development course (PD) for primary 
and lower secondary mathematics teachers. This PD was designed referring to the subjectivist 
approach to probability (de Finetti, 1931) and to the model of Mathematical Teachers’ Specialised 
Knowledge – MTSK (Carrillo et al., 2018). In particular, the PD has the aim of challenging the 
teachers’ mathematical knowledge and allowing them to invest in designing meaningful activities 
and contexts for teaching probability. The simulation of betting games has been the background for 
this specific PD and one of the games explored was the one related to betting on the sum of the two 
faces outcoming when rolling a six-sided dice.  
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In this study we discuss how the autonomous creation and modification of quotas, together with the 
debate about the associated decisions and the stabilization of quotas, have activated in teachers 
processes of qualitative and quantitative refinement of the degree of confidence, associated to each 
possible event. This discussion aims at answering the following question: Which element of 
specialised Knowledge on the Topic (KoT) of probability is possible to trace in teachers facing the 
problem of quantifying “quotas” in a context of betting game? These elements could be revisited in 
a perspective that allows the construction of a probability measure to be rooted on a subjective choice 
(de Finetti, 1931). 

Theoretical framework 

Teachers’ knowledge plays a crucial role in students’ learning process (e. g. Ball, Hill & Bass, 2005; 
Boyd et al., 2009; Nye, Konstantopoulos & Hedges, 2004). For this reason, the research interested in 
teachers’ knowledge has been an emerging focus of attention in the last years and, in this scenario, 
different approaches were designed and explored in order to help understanding the specificities of 
such knowledge.  In particular, the MTSK’s model was proposed to catch better the complexity and 
the specialised nature of this teachers’ particular knowledge. It comprises two main domains: 
Mathematical Knowledge (MK) and the Pedagogical Content Knowledge (PCK) in which three 
subdomains are considered.  

KoT’s sub-domain (Knowledge of Topics) concerns mathematics content itself and refers to the 
teachers’ knowledge related to definitions and notions about each specific mathematical topic, its 
own set of properties, the intra-conceptual connections between the single items’ content of the topic 
and the understanding of its foundation and history. KoT refers to a mathematical specialised 
knowledge as it comprises the teacher mathematical knowledge situated in the context of practice and 
thus it is a knowledge only required for the task of teaching mathematics. It is composed by a set of 
categories: procedures; definitions; properties and foundations; phenomenology and applications; 
intra-conceptual connection. This subdomain includes teachers’ knowledge on different 
representational systems about the specific mathematical topic and the different meanings connected 
with the procedures related to that topic. According to the MTSK model a sound KoT allows teachers 
to manage mathematical procedures in an aware way and to master the meanings connected to the 
different procedures. Mathematical epistemological aspects, and so all the forms of explorable 
examples in a real context or in connection with other disciplines, characterise the category of 
phenomenology and application, useful to contextualise a problem and a situation. 

In this vision, in the field of probability, it’s important to understand which the kind of specialised 
knowledge is that a teacher needs to have and which the sub-domains are where these knowledge can 
be located. Specialised knowledge of probability is identified in this paper with the words "KoT - 
category name" to simplify the reading. 

It is desirable that a teacher has a strong KoT that involves, among other things, the fact that 
probability needs to be seen not only in the classic probability’s vision, but also with the frequentist 
and subjectivist approach. These three kinds of approaches are linked to each other (KoT - intra-
conceptual connection). It is also relevant that the teacher should have a knowledge of the definition 
and the meaning of probability, which allows to know the potential of each approach. 
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Let’s take the example of the "dice game", that it is also the context of the discussion that we will 
analyse later, and consider the problem of the quantification of the degree of confidence of events 
“sum of faces of two six-sided dice” (KoT - phenomenology). This issue can be faced using all the 
three approaches of probability (KoT - definition, properties and foundation).  

The classical approach to probability sees the probability’s measure like a fraction between the 
number of favourable cases of a given event E and the number of all possible cases of a given event 
space (KoT - definition). Thus, according to the classical approach, in Figure 1 are reported, with the 
black colour, the probability’s measures associated with each sum (listed in green and unpacked in 
orange and blue) of the problem (KoT - procedures) presented in this paper. 

 
Figure 1: probability’s measures associated with sum from 2 to 12 

In the frequentist approach, if an experiment is repeated in the same conditions for a considerable 
number of times (KoT - phenomenology and application), the relative frequency of an event is 
considering a first reasonable valuation of the degree of reliability of the occurrence of the event itself 
(KoT - definition, properties and foundation). With “relative frequency” is meant the ratio between 
the number of occurrences of an event (meaning the number of times that an event happens, that can 
be "how many times the sum 6 came out of the dice") and the number of accomplished proves (that 
can be “the number of times we roll the dice”). By the increasing of the number of experiments or 
accomplished proves (potentially for an infinite number of times), the value of the frequency tends to 
the theoretical value of probability, that is the value given to the classical probability (law of large 
numbers- KoT - definition, properties and foundation). 

The construction of the probability theory from a subjectivist point of view has emerged from the 
intention to give to the probability’s meaning a psychological basis. In particular, the probability of 
an event is a quantitative measure of the degree of confidence based on the judgment that events 
occur (KoT - definition, properties and foundation). In this perspective, what really matters isn’t the 
concept "what I foresee, will happen, because I foresaw it” but, instead we should focus on the 
question “why do I foresee that this event will happen?" (de Finetti, 1931). The answers to the query 
“why different degrees of confidence can be attributed to different events” are various: reasoning 
based on sensations, on statistical analysis or on assessments that rely on the combinatorial 
calculation. Based on the subjectivist approach, the definition of probability P of an event E can be 
given supposing that a bookmaker is obliged to accept bets on a certain number of events, including 
the event E (KoT - phenomenology and application).  
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The bookmaker (B) has the authority to decide the price that a bettor (G) has to pay to bet on some 
events at stake and to collect the amount  if the event E verifies. G has the authority of deciding to 
pay the price related to the chosen event in order to collect 1 or to pay S times that price ( ) to 
collect, in case of victory, S times that amount 1 ( .  

If G decides to bet on the event E, B collects the price  from G who, if the event E is verifies, 
collects S. Let’s indicate this situation as pro E bet. In de Finetti’s frame another possibility is 
provided: if G decides to bet against the verifying of E, B will be obliged to pay  to G if the 
event E doesn’t verify (G-wins), or to collect if the event E verifies (G loses). In this way, 
G is forcing B to play money on an event using the prices set by B. Let’s indicate this situation as 
cons E bet. 

Regardless of the opportunity to build the definition of subjective probability, however, it seems 
useful to take into account that, according to this approach, the probability is "the mathematical theory 
that teaches to be coherent" (de Finetti, 1931). In a betting game contest, probability is the measure 
of the “degree of confidence values” to be attributed to events in order to "not enable competitors to 
win with certainty" (de Finetti, 1931). 

Context and Method  
The research presented in this paper is part of a PhD project that the first author is developing with 
the focus on mathematical teachers’ specialised knowledge in the field of probability. For this project 
of research, a PD was designed and implemented and it involves primary school teachers and lower 
secondary school teachers together with their pupils. The analysed PD, which took place last year for 
a total of 12 meetings; it involved 8 teachers, 4 of primary school and 4 of lower secondary school. 
The teachers of the PD have a very different educational background and so their background in 
stochastics is very heterogeneous. The second part of the PD was interrupted due to the COVID-19 
pandemic. The purpose of the PD was to make explicit the specialised mathematical knowledge 
around the deepening of the probability construct, starting from the de Finetti (1931) vision about 
subjectivist approach.  

An initial part of the meetings was used to develop and expand the teachers’ KoT. For this purpose, 
from the beginning teachers were put in a situation of game immersion. The game consisted in betting 
on the sum of the two faces outcoming in the six-sided dice’s roll (both white) and in establishing the 
quotas to be allocated to each possible sortie (sums from 2 to 12, including). The quota is commonly 
understood as the multiplication factor that is applied to the player’s bet to determine the amount that 
the same player will be entitled to collect if the bet event E occurs. The challenge with the teachers 
was to establish quotas so as to be coherent to de Finetti’s vision (1931) in order to "not enable 
competitors to win with certainty" (de Finetti, 1931). 

The setting of the classroom has been arranged in order to have two gaming stations using the game 
board depicted in Figure 2 that was designed and built for this PD. Some teachers were given the role 
of bookmaker (those who set quotas), while the other teachers were given the role of bettor. Taking 
turns, each teacher played both roles in the game. During the betting sessions, the teachers had the 
opportunity to identify elements in the dynamics of the game and so to rethink the criteria with which 
they chose the first quotas and, possibly, to modify them. 
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Figure 2: Game board to bet 

The purpose of KoT phase’s meetings, was to study the dynamics, created in the group of teachers, 
to analyse the idea of probability that an adult has and how this idea of probability is managed and 
used. All the discussions were recorded and transcribed. For this study, we propose the analyses of 
some excerpts of the discussion that took place during the fourth meeting. In order to comment and 
discuss the choices of bookmakers and bettors, in this specific meeting teachers were involved in a 
simulated game session, that provided the possibility, for the first time, to do pro E bet but also cons 
E bet.  

For privacy reasons we will use pseudonymous for the teachers’ names. 

Analysis and discussion 
After remembering the pro E bet modes and explaining the dynamics of the cons E bet, each teacher 
took some time to set the quotas for each event and to share them with the group. 

In this paper are reported, in Figure 3, the productions of Alba (in red), of Giorgio (in pink) and of 
Mirco (in violet) – in the order in which the quotas are shown in the figure, respecting chronologically 
the sharing’s order of the teachers with the working group. 

 
Figure 3: Representation of teachers’ quotes 

Mirco fixed the quotas symmetrically, using the inverse of the classical probability measure. The 
quotas set by Alba and Giorgio are very different: Alba chose to assign higher quotas to less probable 
events (this choice entails an higher profit in a less probable event) and lower quotas to more probable 
events (KoT - phenomenology and application). Giorgio wrote the quotas using a contrary criterion. 
But during the simulation of the game and the related discussion, Giorgio realised that his quotas 
earned less money to the bettor who risked more and vice versa (KoT - phenomenology and 
application), so at the very first part of the discussion he said: 

Giorgio:  My reasoning upstream was like Alba’s one, but I was wrong writing the numbers. 
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Alba:  If a person thinks about the law of large numbers and calculates all the ratio between 

favorable cases and possible cases, it should be a Gaussian that peaks on the “sum 
7”. Because “sum 7” has more combinations, so quotas need to be symmetrical 
around this point (referring to “sum 7”). If I wanted to give “symmetrical quotas”, 
I would really choose quota five to “sum 7”, quota six to “sum 6”, quota seven to 
“sum 5” ... 

Alba, more qualitatively than quantitatively, employed a criterion which is consistent with her 
classical probability’s knowledge (KoT - definition, phenomenology and application).  

The meeting led to the need to create an “ideal” and “unrealistic” simulation game, in which it is 
possible to roll the dice a very big number of times, and so, to rely on the law of large numbers. Ciro 
is the educator who mediated the discussion: 

Alba:  Let’s say I have to play 36 times; I play 36 times. 
Ciro:  A million times.   
Alba:  Let’s imagine rolling the dice 36 million times. Let’s consider 36 rolls: I’m 

extrapolating the 36 rolls from the case of the million. So, out of 36 rolls: the “sum 
2” comes out one time, the “sum 12” comes out one time, the “sum 7” comes out 
six times. Now, what should I do? In 36 rolls I decide that I bet all 36 bets only on 
one sum. Let’s do the math! 

Alba referred to the frequentist approach of probability (KoT - phenomenology and application) to 
create the "ideal" and "unrealistic" situation described above. Moreover, Alba quantified the “big 
number of times” with the number "36 million" and normalised this number to “36 rolls” using, in a 
non-explicit way, the combinatorial calculation with which it is possible to unpack 36 total possible 
combinations by summing the faces of two six-sided dice (like in Figure 1). The knowledge about 
the frequentist definition of probability allowed Alba to use the classical definition of probability to 
predict what would happen with frequencies (KoT - intra-conceptual connection), since supposing an 
infinite number of throws the relative frequency tends to the classical value of probability. 

Paola: If the bookmaker, in this situation, wants to ensure a certain gain, he must choose 
quotas lower than the probability value. In this sense, if “sum 2” has 1probability 
out of 36, the quota must not be 36, but must be lower. 

Alba: Quota 35 would be enough to make him earn. 
Paola: Yes, the bettor would lose a coin. 

In this example, in the situation previously normalised by Alba, for 36 rolls the bettor plays pro “sum 
2” using each time 1 coin and paying 36 coins in total. Ideally, the "sum 2" event occurs once out of 
36 launches and the bettor wins 35 coins. He pays 36 coins, winning only 35. The bookmaker earns 
1 coin. 

Giorgio:  But are we talking about the previous game where you couldn’t bet cons E? 
Ciro: Why are you saying that? 
Giorgio: Because in a situation like this, the first thing I would do is pointing cons “sum 2”. 

Giorgio remembered that there was the possibility to play cons E (KoT - phenomenology and 
application). With this move, the bettor would reverse the results of the "ideal" bet. If the bettor bets 
36 times cons "sum 2", at the end of the 36 rolls, he wins. 

Ciro:  Using what Giorgio said: so, is the bookmaker at risk? How does the bookmaker 
respond to this move?  

Paola:  So, I have to put higher quotas.  
But the bettor can always bet in both ways. 
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At first Paola, not explicitly, seemed that she had changed idea radically: previously she proposed to 
use “quotas lower than the probability value”, then she was proposing to use quotas higher than the 
probability value. At the same time, she verbalised this "idea’s change", Paola realised that, even 
doing so, the bettor could overturn the situation, once again, betting pro E for 36 times.  

Mirco: And so, this situation is impossible to be solved.  
Ciro: If you use lower quotas? 
Alba: You lose. 
Ciro: If you use higher quotas? 
Mirco: You have to use equal quotas. 
Ciro: Equal to what? 
Paola: To 36 (referring to the “sum 2”). 
Ciro: Yes, quotes equal to the inverse of the probability value. 

It is significant that Mirco said that it wasn’t possible to solve that situation: he was the one who - we 
remember it - from the beginning used the inverse of the probability value to choose his quotas (Figure 
3). In this discussion we could appreciate the collective knowledge development in constructing a 
criterion for establishing quotas (KoT - phenomenology and application) in order to ensure that none 
of the competitors would win with certainty (de Finetti, 1931).  

Conclusion  
The goal of this research is twofold: on one hand we tried to develop an innovative educational 
approach to the topic of probability; on the other one we attempted to identify useful elements for 
experiences of teachers’ professional development. In particular, taking inspiration from the 
subjectivist approach to probability (de Finetti, 1931), we designed a particular PD for primary and 
lower secondary teachers involving them in a betting game context in which they had to quantify the 
degree of confidence associated to each possible event of the game. The analysis of the excerpt of the 
discussion showed how the refinement process of the degree of confidence associated to each possible 
event by the teachers involved both qualitative and quantitative aspects: qualitative, because teachers 
gave meaning to their knowledge; quantitative, because they used, especially at the end of the process, 
their knowledge of the classical and frequentist probability definition as a tool to make conscious 
choices. The actual mathematical systematisation of the subjectivist approach to probability, and in 
particular the results proving its consistency with the other two approaches to probability, is a 
fascinating piece of Mathematics and it entails many mathematical formal and complicated structures 
and techniques. With this study we are not proposing that the subjectivist definition of probability 
should be explicitly taught during PDs for teachers in service and students at school, but we are 
exploring its potentiality as educational innovative paths for teachers and students – to avoid 
proposing not trivial probability activities. In this episode emerges that a betting game like that 
described above (which follows an idea by de Finetti’s) actually generates a dynamic that leads to the 
coherent construction of a probability measure based on the choices of the players. This provides a 
strategy for teachers to design educational paths where a (classical or frequentist) definition of 
probability is not given a priori, but it is established starting from the degree of confidence expressed 
by learners. In this case, the probability measure can be given as the reciprocal of the quote. In this 
perspective, in the second part of the PD we fostered and challenged teachers to design didactical 
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paths of probability for their students, taking inspiration from the experience lived during the PD and 
the knowledge that it developed.  In further studies we will address also these parts of the research. 
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In this paper we describe a pre-service teacher professional development program based on Meta-
Didactical Transposition model. We focus on the encounter between the praxeologies of 
researchers/teacher educators and pre-service primary teachers. We show how specific tasks for 
teachers and information provided by a standardized assessment database (GESTINV) can be used 
to establish a link between Italian National Evaluation System and pre-service teacher professional 
development. We present some aspects of mathematics specialized knowledge that pre-service 
teachers declare to be improved during the educational program. Pre-service teachers’ reflections 
on their specialized knowledge are framed into MTSK model. 

Keywords: Teacher education, pre- service primary teachers, teacher knowledge, MTSK model, 
standardized tests. 

Introduction  
The use of standardized tests in mathematics for both international surveys (such as PISA and  
TIMMS) and national evaluations of school systems is widespread, and the results of these tests are 
also often disseminated in the press and commented on by policymakers and researchers (Doig, 
2006). In order to not confine these data to the ranking of students, schools and nations it is essential 
to develop the dialogue between standardized assessment and educational research (De Lange, 2007). 
The Standardized Assessment data can also become effective and usable tools for improving teaching 
and learning processes. Our study fits in this stream of thought; in particular, we will show 
educational potentials of Italian Standardized Assessment by using theoretical tools to interpret the 
quantitative data they provide and the macro phenomena that emerge from the complexity of 
educational systems (Bolondi et al., 2019;, Ferretti, & Bolondi, 2019). Quantitative data should be 
interpreted and intertwined with a qualitative analysis of tasks. This is possible by means of an 
encounter between Standardized Assessment, mathematics education research and teacher education. 
In this paper we present an example of pre-service teachers’ professional development that profits 
from data collected by the Italian National Evaluation Institute for the School System (INVALSI). 
We will show how to create a link between the Italian National Evaluation System and pre-service 
teacher professional development programs in order to improve mathematics teaching school 
practices. In our study we argue how the analysis of standardized assessment results should impact 
the improvement of the teaching and learning of mathematics. We have been working for many years 
in this perspective and we have carried out educational projects using data from INVALSI tests as an 
object of reflection for teachers (Martignone, 2017; Ferretti et al., 2018; Ferretti, et al., 2020, Santi et 
al., in press). It must be stressed, however, that this use of INVALSI tests is favored by the fact that 
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in Italy the framework of INVALSI tests is closely linked to the National Guidelines and it takes into 
account the research in mathematics education. In this paper we describe some teacher education 
activities carried out during a pre-service primary teacher professional development course. During 
a university course teacher educators/researchers shared with pre-service teachers some theoretical 
tools in order to conduct an a priori qualitative analysis of tasks from INVALSI tests. As final 
reflections, after the introduction of the Mathematics Teacher Specialized Knowledge model - MTSK 
Model (Carrillo-Yañez et al., 2018), the educators/researchers asked pre-service teachers about which 
aspects of mathematics specialized knowledge the course activities brought out and developed 

Theoretical framework  
Mathematical knowledge lives in the institutional dimension where mathematical objects emerge 
from socio-cultural activities shared by individuals belonging to one or more institutions. The 
development of mathematics, teaching and learning of mathematics and mathematics teachers’ 
education are characterized by the dialectics between the personal and institutional relation to 
knowledge (Chevallard, 1985). The Anthropological Theory of Didactics (Chevallard, 1985) 
conceives human activity as a praxeology, which is made up of a set of tasks that drive the practice 
(praxis), the techniques that allow individuals to solve the problems, and the knowledge and 
discourses (logos) that ground the techniques. To describe and interpret the practices of mathematics 
educators/researchers and those of teachers who are engaged in teachers’ education activities, in our 
study we use theoretical lenses from Meta-didactical Transposition Model (Aldon et al., 2013; 
Martignone, 2015). The teacher professional development program described in this paper can be 
seen as an instantiation of the Meta-Didactical Transposition model. In regard to the institutional 
dimension, the teacher education process involves the Italian Ministry of Education via the INVALSI 
institute, Italian Schools and Universities. Researchers/teacher educators and teachers share didactical 
praxeologies and reflect on them. Researchers bring to the fore tasks and techniques related to the 
epistemology of mathematics and mathematics education studies. As we will show in the next 
paragraph, the shared praxeology is linked to the analysis of mathematical and pedagogical issues in 
INVALSI tasks about rational numbers, but not just this. Theoretical lenses for reflecting on 
mathematics teacher specialised knowledge are shared and discussed. In specific, the MTSK model 
(Carrillo-Yañez et al., 2018) was introduced. MTSK model distinguishes between mathematical 
knowledge (MK) and pedagogical content knowledge (PCK), both of which are considered as sub-
domains of the teacher's specialized knowledge. As concerns the MK, are part of the Knowledge of 
Topic (KoT) the knowledge of definitions, properties, procedures, representations, etc. The 
knowledge about how to connect activities in different domains of mathematics is part of the 
Knowledge of the Structure of Mathematics (KSM). As knowledge of Practices in Mathematics 
(KPM), we can identify, for example, the knowledge of how to prove, justify, define, make inferences 
and inductions, give examples and counterexamples. Also Pedagogical Content Knowledge is divided 
into three sub-domains. The Knowledge of Mathematics Teaching (KMT): knowledge of theories of 
mathematics teaching or knowledge of teaching resources, materials and technologies, but also 
knowledge of strategies for introducing and representing contents and concepts, etc. The Knowledge 
of Features of Learning Mathematics (KFLM): knowledge of theories of mathematics learning or 
knowledge of the way in which pupils interact with mathematics. The Knowledge of Mathematics 
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Learning Standards (KMLS): knowledge of expected learning outcomes and teaching goals in 
different school segments. The MTSK model in addition to detailing these subdomains of 
Mathematical Knowledge and PCK explicitly highlights the centrality of teachers' beliefs about 
mathematics and mathematics teaching-learning.  For this reason, in our opinion, MTSK model is 
suitable to be used by teachers to explore, reflect, discuss on what they think/believe about their 
specialized knowledge developed during the education program. Therefore, in our study we show 
that MTSK model can be used by pre- service teachers to reflect on their knowledge during a teacher 
education program. The interpretive lenses provided by MTSK model have become part of the logos 
of shared meta-didactical praxeologies. Moreover, the MTSK model becomes a theoretical object 
shared between researchers and teachers to reflect on tasks and practices. Following MDT model, in 
our teacher educational program the researcher/teacher educator play the role of broker (Rasmussen 
et al., 2009) who belongs both to the community of mathematics experts and to the community of the 
teacher education program. The broker facilitates the sharing of knowledge and practices from one 
community to the other by drawing on boundary objects (Bowker and Star, 1999). Boundary objects 
are meaningful tools, ideal or material, in both the communities and they put them in touch, although 
with different nuances and uses that characterize their respective praxeologies. Boundary objects can 
be material artefacts, digital technologies, mathematical procedures etc. In our teaching education 
programs the database of INVALSI tests, GESTINV, acts as a boundary object between communities 
of researchers and future teachers. GESTINV (www.gestinv.it) is a structured database containing all 
the data of the INVALSI standardized assessments from the 2008 surveys of all surveyed domains. 
In detail, it contains 2121 items from the INVALSI mathematics tests. There are more than 25,000 
registered users in GESTINV and an average of 200 accesses per day. These data, together with its 
structured information in line with the theoretical framework of INVALSI tests, promote Gestinv as 
a tool to be implemented in the design of teacher education models (Ferretti et al., 2020). There are 
many ways in which the database can be used; different forms of research can be carried out within 
it (National Guidelines, scholastic year, school grade, content, percentage of correct/wrong/invalid 
answer). In our research, GESTINV plays an important role in providing teachers and researchers 
with an interactive tool to access a wide range of information and feedback concerning the processes 
of learning and teaching mathematics. In particular, the results of the INVALSI tests highlight and 
quantify relevant macro-phenomena, which can be interpreted according to the methods and results 
of research in mathematics education. By means of specific tasks for teachers the information 
provided by GESTINV can be used to establish the link between the data of the standardized 
assessments and pre-service teacher professional development (PTPD), assuming the role of 
boundary object. In this paper we show some teachers' a-posteriori reflections on specialized 
knowledge emerged and developed in the analysis of INVALSI tasks selected by means of 
GESTINV. The pre-service teachers use theoretical lenses from MTSK model to state which aspects 
of specialized knowledge are improved at the end of the PTPD program. 
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Methodology     
In this paper we show some activities carried out during a pre-service primary teacher professional 
development university course (conducted in presence in 2019). This course lasted 40 hours and each 
activity consists of the following phases:  

Introduction.  The teacher educators address the mathematical contents selected for the educational 
activity from an epistemological and didactic point of view and they also present GESTINV. The 
teacher educators share with future teachers’ possible interpretative tools and research results that can 
be useful in the analysis of INVALSI tasks and data. As we already stressed INVALSI tests’ 
theoretical framework is linked to the National Guidelines and also for this reason the macro-
phenomena emerging from the INVALSI tests are meaningful for the analysis carried out with future 
teachers. 

Analysis of an example. The teacher educators analyze an example of INVALSI tasks selected by 
using GESTINV.  

Group activity. The teacher educators ask teachers to analyze INVALSI tasks on specific topics. 
Teachers work in subgroups of a maximum of 4/5 people. They choose mathematical contents with 
reference to the Italian National Guidelines of primary school. They should identify one or more 
learning difficulties. The small group activity takes place in line with the characteristics of a 
Community of Inquiry in the sense of Jaworski (2006). The group activity aims at the construction 
of a multimedia product, an artefact, the design of an activity for the students, etc. that highlights the 
reflections, beliefs and convictions of the future teachers involved. 

General discussion. The subgroups present their productions to the whole group. Each presentation 
is discussed in order to highlight beliefs and convictions, address doubts, difficulties and unclear 
contents. Then teacher educators presented and discuss with teachers the MTSK model. 

At the end of the course, we administered an open-ended questionnaire to the pre-service teachers in 
which they were asked if and how, in their opinion, the activities carried out during the course had 
increased their knowledge by referring to each sub-domain of the MTSK. Specifically, the teachers 
answered this question: “Using the MTSK model, explain which topics covered during the course, 
which tasks and activities contributed, in your opinion, to the development of your specialist 
knowledge”. The teachers knew that answers would not have been assessed. Data relating to 52 
questionnaires administered to the pre-service teachers a have been collected and analyzed. The 
gathered data were analyzed by an inductive content analysis (Patton, 2002); by using the MTSK 
theoretical lens, a top-down were performed.  

INVALSI tasks analysed by pre-service teachers   
In this section, we describe an example which is part of a broad prospective primary teacher academic 
course, in which different contents were involved and macro-phenomena and teaching practices were 
analyzed and framed with different constructs of mathematics education. The tasks selected, 
according to cross-research allowed by GESTINV according to categories described above, belong 
to INVALSI standardized tests administered to all Italian grade 5 students. Figure 1 shows the texts 
of the INVALSI tasks and the national percentages of correct, wrong and invalid answers.  
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Figure 1: INVALSI items and national rates (www.gestinv.it ) 

As we can see in the Figure 1, in both tasks less than half of the students nationwide gave the correct 
answer. INVALSI provides percentages for each option chosen by the students and these data are 
available in the GESTINV database. These tasks were identified by teachers through the GESTINV 
database, using the "Guided Search" function by searching for tasks from the grade 5 INVALSI tests 
concerning rational numbers and with correct response rates below 50%. Among the items returned 
by the database, the items D25 and D18 were selected because they clearly show some possible errors 
related to the representations of rational numbers. By means of the qualitative analysis of the tasks 
and the quantitative results, researchers/TE and pre-service teachers can share ideas and reflections. 
Starting from the analysis of these data researchers/teacher educators and pre-service teachers discuss 
about students’ difficulties in conceptualizing and making sense of decimal and fractional notations 
(some of the main findings of research in the field were deepened, e.g. Iuculano & Butterworth, 2011, 
Ni & Zhou, 2005). As a matter of fact, they notice that quantitative results show that many Italian 
students gave the wrong answers, in particular in D18 we can notice that 33.5% of the students chose 
option C. The teacher educators/researchers address the mathematical content selected for the task 
from an epistemological and educational point of view. Furthermore, they discuss with pre-service 
teachers the main research findings of the research that can help frame the macro-phenomena that 
emerged (Ball, 1993; Empson & Levi, 2011). As highlighted in literature, often, many difficulties are 
related to the management of the different representations of rational numbers, both in terms of the 
comparison and ordering of fractions and their comparison with decimals. They agreed that, in order 
to answer both tasks correctly, it is necessary to properly perform treatments between different 
semiotic representations (Duval, 2006).  

Pre-service teachers’ reflections 
In this paragraph we show some excerpts from per-service teachers’ answers to the questionnaire 
administered at the end of the teacher educational program.  Pre-service teachers state that the analysis 
of the INVALSI tasks was useful in strengthening their knowledge about the process of teaching and 
learning rational numbers. They stress the importance of discussions about students’ learning 
processes, possible students’ difficulties and effective/ineffective mathematics teaching practices. By 
using the interpretative lenses given by MTSK model, they declare an increase in their Mathematics 
Teacher Specialized Knowledge, in particular in their Pedagogical Content Knowledge (PCK) 
declined into three subdomains: Knowledge of Mathematics Teaching (KMT), Knowledge of 
Features of Learning Mathematics (KFLM) and Knowledge of Mathematics Learning Standards 
(KMLS).  
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For reasons of brevity, we will only provide a few examples of statements for each PCK sub-domain. 

As far as KMT is concerned, some pre-service teachers declared: 

PT_17: As far as fractions are concerned, […] I have become aware that they need to be 
taught from the beginning to represent the same concept in different semiotic 
representations. 

PT_18: Knowing the different representations of a mathematical concept means 
recognizing its connections and underlying structure. In this case, we can see how 
each number is represented differently by a percentage, a fraction or a decimal 
number. Through the analysis of this item we can see the strong connection between 
percentages, fractions and decimal numbers, which every teacher needs to know 
very well in order to foster the most effective teaching-learning process possible 
from a mathematical point of view. 

PT_21: I have therefore understood that the teacher's task will be to offer children different 
representations of the same mathematical object and will have to make them aware 
of this knowledge. […]  

Below we provide excerpts referring to KFLM: 

PT_17: Thanks to this activity, I became aware that for students one representation is not 
the same as another. 

PT_39: I have seen that students have difficulties in both processing and converting, leading 
to misconceptions about fractions. 

Finally, here are some pre-service excerpts referring to their KMLS: 

PT_21: As stated in the National Guidelines, children at the end of primary school will need 
to be able to handle all the different representations and so it is up to the teacher to 
structure pathways and activities to help students achieve this understanding. 

PT_23: With this topic, I got to know the standards of knowledge and skills possessed by 
the pupils, as well as what learning objectives are required at the end of primary 
and secondary school. This activity has also underlined that it is necessary to respect 
the design of the objectives as much as possible, defined in such a way that does to 
create inconsistencies in later grades.  

As we can see in these excerpts, pre-service teachers reflect on their PCK, in terms of KMT, KFLM 
and KMLS, and recognize aspects of their knowledge that have emerged and developed.  

Conclusions and further directions 
In this paper we presented an example of a teachers’ professional development program for primary 
pre-service teachers in which meta-didactic praxeologies, linked to the analysis of selected items from 
the national standardized assessment INVALSI test, were shared. We have shown how the use of 
GESTINV database, as a boundary object in professional development paths, allows an improvement 
of pre-service mathematics teacher specialized knowledge. As a concluding activity of the program 
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the pre-service teachers were asked, using the MTSK model, to identify what specialized knowledge 
they think/believe they had developed during the professional development program. The MTSK 
model was used by pre-service teachers to reflect on teaching and learning processes. MTSK model 
become part of logos component of meta-didactical praxeology and it could also be considered a 
theoretical boundary object between the two communities of researchers/educators and pre-service 
teachers.  This aspect as well as the analysis of the pre-service teachers’ declarations concerning the 
MK domain will be objects of our next studies. As literature highlights (i.e. Doig, 2006), standardised 
assessments, designed with the aim of assessing mathematical learning at the system level, are 
increasingly having implications from an educational, didactic, cultural-historical and political 
perspective at both global and local levels. Using data from standardized assessments in pre-service 
teachers program fits into this line of research and it increases the potential of the educational 
implications of linking standardized assessments to mathematics education. 
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Exploring Indonesian prospective teachers’ teaching belief and 
teaching practice 
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This study aims to report preliminary findings on prospective teachers’ teaching beliefs and teaching 
styles when implementing their proposed problems. Three second-year Indonesian prospective 
teachers who were accustomed to the teacher-centered teaching tradition were involved in a brief 
collaborative workshop. In the workshop, they get an advantageous opportunity to broaden their 
perspective about mathematics teaching through sequential activities, such as formulating problems 
collaboratively, teaching practice, reflecting on their teaching practice, and providing suggestions 
to each other. After the workshop, they expressed their belief in the ideal problem-solving teaching 
style and implemented their proposed problem. 

Keywords: Teaching belief, teaching practice, prospective teacher. 

Introduction 
In the early 1990s, the usual mathematics teaching technique in Indonesia was to directly explain the 
solution of mathematical problems (Kuipers, 2011). Subsequently, the most recent curriculum has 
been introduced as an attempt to upgrade educational traditions with the cornerstone: place problem-
solving as a challenging skill to master and position students at the center of learning to collaborate 
and share ideas. Nevertheless, some challenges remain in practice, such as the persistence of 
conventional teaching traditions along with belief that an effective teaching style is to manage the 
class completely. Thus, when students from this environment become prospective teachers, it is not 
surprising that this belief naturally exists in their minds. 

To support the new curriculum and address the existing belief for better teaching quality, a 
collaborative workshop was held with two principal activities: problem-posing which cannot be 
considered part of the conventional teaching tradition and implementing the posed problems in the 
classroom, which is directed towards a problem-oriented approach. Involving prospective teachers in 
problem-posing activities and asking them to implement their problems, accompanied by discussions, 
can be fruitful endeavors to enrich their perspective to mathematics teaching. Implementing their own 
problems appertains to the classroom activity in which prospective teachers will face in the future. 
Providing opportunities for prospective teachers to practice teaching from the early years of the 
training while most teacher preparation programs put it off towards the final year of the program 
constitutes a complementary point of this study. 

This study focuses on the second principal activity and reports preliminary findings through the 
research questions: (1) What is the prospective teachers’ belief about the ideal problem-solving 
teaching after the workshop? (2) What is the teaching style of prospective teachers when 
implementing their proposed problem before and after the workshop? As supported by Ellerton 
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(2013), disclosing how prospective teachers implement their problems after experiencing problem-
posing activities will contribute to the literature. 

Theoretical background 
When it comes to teaching problem-solving, the diversity of beliefs emerges as an influential 
constituent of teaching styles. Some believe that teaching should be straightforward, focusing on clear 
explanations to pupils (Richardson, 1996). This belief seems to have developed due to familiarity 
with traditional teaching practices that favor teacher-centered learning. On the other hand, some 
believe that teaching should actively involve students to spur their thinking skills in which can be 
considered as student-centered learning (Kofa, 2018). 

Nowadays, there has been increasing awareness in applying student-centered learning due to its 
prosperous benefits. One approach to student-centered learning is problem-oriented instruction. 
According to Kovács and Kónya (2019), problem-oriented instruction has three characteristics: (1) 
students analyze the situation of a mathematical problem, (2) students critically adapt to their own 
and their classmates’ thinking, and (3) students learn to explain and justify their thinking. Considering 
one feature of problem-oriented instruction that the classroom activity evolves into a critical 
discussion of the problem being addressed, the implementation of problem-oriented instruction can 
be recognized by studying talk formats. Critical discussions are triggered by specific forms of talk 
that support a deep understanding of concepts and robust reasoning. Sohmer et al. (2009) 
characterized the talk format into four as shown in Table 1. 

Table 1: Talk format 

Talk format Description 

Recitation The teacher completely controls the content and direction of the conversation by presuming 
special right to ask the questions and evaluate students’ answers. Students are positioned as 

seekers for the correct answers that the teacher is looking for. 

Stop-and-talk 
(Partner talk) 

The teacher gives a pointed question to the students and asks them to discuss it with one or 
more partners. Students are positioned as active reflectors and contributors. During small group 
discussions, the teacher selects key voices among students to be heard by the entire community. 

Student 
presentation and 
group critique 

The teacher asks the student to present his/her work in front of the class accompanied by 
follow-up questions proposed by the other students or teacher. The presenter student is 

positioned as the expert of their work.  

Whole-group 
‘position-driven’ 

discussion 

The teacher leads a discussion on a single problem or question which has more than one answer, 
so that reasonable arguments appear from the students. This kind of discussion promotes active 
participation of the students by proposing an idea and listening to each other even before being 

fully competent in the discussed domain. 

Supportive talk formats for problem-oriented instruction, such as partner talk, student presentation 
and group critique, and whole-group position-driven discussion, require appropriate teachers’ 
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behavior. Rott (2019) classified teachers’ behavior when implementing problem-solving into three. 
In more detail, he stipulated the behavior at each problem-solving step by Polya (1945), as shown in 
Table 2. The classification refers to the differentiation between teachers as controllers or facilitators. 
The indicators show that the closely managed style represents a teacher-centered learning in which 
the teacher acts as a controller, while the other two styles are closer to the teachers’ role as a facilitator 
which aims to generate mathematically rich and meaningful discussions in the classroom. 

Table 2: Teachers’ behavior in each problem-solving step 

 Closely managed Neutral Emphasizing strategies 

Understanding 
the problem 

The teacher explains 
the problem 
formulation. 

The teacher does not comment on 
the problems and does not answer 

students’ questions. 

The teacher gives hints but does 
not explain the problem. 

Devising a 
plan 

The teacher tells the 
students which 

approach is correct to 
use. 

The teacher does not give any 
guidelines and strategic support. 

The teacher hints at (ideally) 
different approaches and 

encourages the students to follow 
their ideas. 

Carrying out 
the plan 

The teacher gives the 
students concrete 
content-related 

support (often early in 
the process). 

The teacher gives (almost) no 
(strategic) help and does not answer 

students’ questions related to the 
problem. 

The teacher gives staggered aids 
(motivational/feedback/general 

strategic/task-specific 
strategic/content-related). 

Looking back The teacher fixates on 
results; perhaps, one 
(arithmetic) approach 

is presented. 

Different approaches are presented; 
however, strategic ideas or the 

differences between approaches are 
not highlighted explicitly. 

The teacher highlights approaches 
and strategies; results might also 

be presented, but it is of secondary 
importance. 

By studying talk formats and teaching styles, we will find the connection between those two. For 
instance, recitation goes hand in hand with a closely managed style, while the other talk formats assist 
neutral or emphasizing strategies styles. In other words, the teaching style could be detected from the 
tendency to use a particular talk format, whether it leads to a productive talk or not.  

Both talk formats and teaching styles during the lesson might indicate tendencies in beliefs about 
teaching. As Rott (2019) emphasized, teachers’ belief is a component of professional teacher 
competence that influences their teaching behavior. Moreover, analyzing talk format and teaching 
style will cue whether the lesson appertains as problem-oriented instruction or not. Figure 1 illustrates 
the relation between talk formats, teaching styles, and problem-oriented instruction. 

Another effort to improve mathematics teaching is to examine teaching practices as has been done in 
Japan. Through lesson study, Japanese teachers discuss lessons they have planned and observed 
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together which then direct them to look for ways to improve it and  broaden their knowledge of the 
teaching profession (Fernandez & Yoshida, 2004). Thus, it is precious to adapt. 

 
Figure 1: The relation between talk formats, teaching styles, and problem-oriented instruction 

Method 
The participants of this study were three second-year Indonesian prospective teachers (Vey, Ann, 
Kay – pseudonym) who enrolled in a 4-year mathematics teacher training program for grades 7-12 in 
a private university. To select the participants, 22 prospective teachers were offered to participate in 
the workshop and implement their proposed problem voluntarily. Prospective teachers who had a 
chance to implement their proposed problems with real pupils, such as those who handled a private 
course, a non-formal additional class outside of school which aims to strengthen the lesson provided 
at school, occupied the priority positions to be selected. The number of participants was limited based 
on several considerations: to get them more actively involved in the workshop and to make the 
activity during the workshop better observed since the workshop was held online due to the ongoing 
COVID-19 pandemic. The cornerstone of the workshop is adapting Japanese lesson study by 
involving prospective teachers. Figure 2 shows the problem-posing backgrounds and the 
implemented problems by Ann as one of the participants. 

 
Figure 2: The problem-posing backgrounds and the example of implemented problems 

Table 3: Research activities 

Pre-test Posing problem autonomously related to patterns on calendar and implementing the proposed 
problem to pupils. 

1st meeting 
(50 minutes) 

Teaching reflection, giving feedback to each other, and discussing how the situation in mathematics 
classes should be. 

2nd meeting 
(100 minutes) 

Discussing several paradigms of problem-posing: free, semi-structured, and structured problem-
posing. 
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3rd meeting 
(100 minutes) 

Analyzing a less feasible problem, fixing it collaboratively, and posing problem collaboratively by 
modifying the initial situation. 

4th meeting 
(100 minutes) 

Posing problem collaboratively by using a what-if-not strategy. 

5th meeting 
(100 minutes) 

Posing problem autonomously based on the given situation and fixing the proposed problems 
collaboratively. 

Post-test Posing problem autonomously related to the padlock and implementing the proposed problem to 
pupils. 

After post-test Filling out a questionnaire and teaching reflection. 

The questionnaire was directed to capture the prospective teachers’ viewpoint on ideal problem-
solving teaching implementation. Among three styles, they were asked to choose which one is their 
ideal teaching style. Since this study is part of a larger research project, only two data are presented: 
data from the questionnaire after the workshop and data from the videos of teaching implementation 
at the beginning and at the end of the workshop. The teaching implementation data consists of 24 
sections, 8 sections for each prospective teacher for the first and the second implementations. It was 
analyzed in terms of behavior by Rott (2019) and talk format by Sohmer et al. (2009). All teaching 
practice data were coded independently by two raters which resulted in 23 of the 24 cases (96%) 
being agreed. While the divergent code was recoded consensually thereafter. 

Research findings and discussion 

 
Figure 3: The results of the questionnaire 

Based on pie charts in Figure 3 that show prospective teachers’ beliefs about the ideal problem-
solving teaching, a closely managed style was not the primary choice. It only appeared in Kay who 
believed in the necessity to control the class when carrying out the plan. Those findings were 
reinforced by the result of the second part of the questionnaire. All prospective teachers gave the 
maximum point to neutral and emphasizing strategies styles that signify student-centered learning. 
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The closely managed style became a secondary preference for them except for Kay, who did not 
indicate her teaching belief tendency (see Figure 3). 

Figure 4 presents the prospective teachers’ teaching styles and beliefs about problem-solving 
teaching. Considering the research of Ellerton (2013), which revealed the impact of problem-posing 
activities on prospective teachers while they were taking courses in teacher preparation programs and 
the impossibility to follow those prospective teachers into their classrooms once they became 
teachers, data in this study regarding the prospective teacher’s teaching practice in implementing the 
problem they posed might be an alternative response to the condition. 

In the first teaching implementation, Vey skipped the looking back step that appeared to be deemed 
unnecessary. As she recognized this step was consistently carried out in the lesson throughout the 
workshop, she stated, “Usually, if we arrive at the solution, that’s all. We don’t think if it’s reasonable 
or not. Now that I think about is there should be follow-up activity like we did in this lesson”. 
Realizing the importance of looking back step, she undertook the step in her second teaching 
implementation. Her teaching styles in the first and the second implementations were neutral and 
closely managed over the classwork activities. Particularly, in the second teaching implementation 
she thought that the fundamental counting rule, which is the mathematical background of the 
implemented problem, had been taught in school but evidently it was an unfamiliar topic for her 
pupils. There was a school lesson delay due to the covid-19 pandemic. This emerged as her 
consideration for performing the closely managed style. The only noticeable difference between the 
first and second implementations was the use of the talk format. In the first teaching implementation, 
recitation was applied in all problem-solving steps, while in the second teaching implementation, she 
applied position-driven discussion in the looking back step among recitations in the other steps. 

Ann had been involving her pupils since the first teaching implementation. She received positive 
reinforcement for her behavior from her peers during a reflection and discussion meeting. They said, 
“I like how she communicates with her students” and “The class is active”. In the second 
implementation, she maintained her behavior and even improved it. She obviously encouraged her 
pupils to express their idea by asking them to tell the strategy they used and explain their reasons. 
The closely managed style had been sidelined in favor of being neutral and emphasizing strategies. 
The combination of position-driven discussion and recitation remained her preferred talk format. She 
also organized student activities in which students worked on the task individually, rather than just 
implementing classroom work activities. 

In the first teaching implementation, Kay controlled the class completely. She explained how to solve 
the problem without allowing her pupils to speak and only asked if they understood or not which led 
them to say they understood but probably not. The closely managed style with full recitation 
dominated her demeanor aside from trying to be neutral in the step of understanding the problem. At 
the discussion and reflection meeting, she received feedback from her peers. They said, “It looks like 
your implementation must be in accordance with your plan. You seem unfree and constrained while 
teaching” and “You must be confident. We are learning how to teach together. Keep your spirit up”. 
The feedback seemed to spur her on to make improvements. Although the closely managed style 
continued to dominate in the second teaching implementation, she tried to be neutral in understanding 
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the problem and emphasized strategies in the looking back step. By involving pupils, she attempted 
to highlight several strategies to solve the problem that did not appear in the pre-test. Both the strategy 
and the result proposed by her pupils were considered. She let them choose their own preferred 
approaches. The entire lesson was classwork activity in both implementations, but she combined 
position-driven discussion and recitation in the second implementation. 

 
Figure 4: Teaching style and belief 

The finding contributes to the literature on whether there is a link between belief and practice or not. 
This contradictory insight appears in Safrudiannur and Rott (2019). In this study, prospective 
teachers’ beliefs and practices are not always in line. Among those three prospective teachers, only 
Ann holds a closer attachment between her belief and practice, either neutral or emphasizing 
strategies that belong to the student-centered paradigm. Meanwhile, belief in student-centered 
learning accompanied by teacher-centered implementation was found in other prospective teachers. 
The discrepancy between belief and practice brings out consideration of another aspect, i.e., their 
pedagogical knowledge since it directs them to a firm understanding on classroom management, 
lesson planning, and student assessment (Koehler et al., 2009). 

The finding also reveals how adapted Japanese lesson study goes among prospective teachers. 
Discussions, sharing ideas, and giving suggestions to each other during the workshop provide them 
empirical experience about student-centered paradigm, as they were positioned not as receptive but 
active members in the class. They can reflect on the activity, make it as a shoot for their teaching 
belief, which then direct them to increasingly involve their pupils in the second implementation. As 
stated by Ambrose (2004), beliefs may lead to behavior in ways that could be depicted as habits. 
Moreover, their beliefs and the second teaching implementation which are more towards student-
centered paradigm might be the impact of reflection and feedback activities, since reflection leads to 
finding new solutions and paths in teaching to improve learning (Šarić & Šteh, 2017) and helps 
teachers to become more successful (Lee, 2005). Thus, the whole activity during the workshop 
appears to be a fruitful endeavor. 

Limitation, further research, and acknowledgement 
This study only involves three prospective teachers in a short action. The contribution is part of 
ongoing research involving prospective teachers on the role of problem-posing and problem-oriented 
teaching in active mathematics learning. The workshop is conducted as an attempt to broaden their 
perspective about mathematics teaching. The author is a member of MTA-ELKH-ELTE Research 
Group in Mathematics Education, and this study is funded by the Hungarian Academy of Sciences 
through its Scientific Foundations of Education Research Program. 
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Developing Preservice Teachers’ TPACK Through a Virtual Number 
Talks Field Experience: A Case Study 
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Field experiences are an important part of preservice teacher education.  However, interruptions 
caused by the COVID-19 pandemic and the sudden shift to virtual and hybrid learning presented 
challenges for implementing classroom-based field experience opportunities. In response to this 
challenge, the authors developed and implemented a virtual field experience based on the Number 
Talks routine in our elementary mathematics methods courses. We utilize case studies to explore the 
technological, pedagogical, and content knowledge (TPACK) development of two preservice 
teachers as they engaged in the Virtual Number Talks field experience. 

Keywords: TPACK, field experience, virtual education, preservice teacher education, elementary 
mathematics education.  

Introduction and Focus 
In Fall 2020, schools across the United States were in a time of great instability due to the COVID-
19 pandemic, with schools shifting between remote, hybrid, and in-person instruction. Mathematics 
teacher education was also at a time of great instability as in-person, school-based field experiences 
were no longer available to preservice teachers. In response to this challenge, the authors collaborated 
with other teacher educators to develop a Virtual Number Talks Teacher Learning Cycle (Joswick et 
al., 2020). The authors implemented this virtual mathematics field experience in their preservice 
mathematics methods courses in Fall 2020. For this study, we explore the following question: How 
does a virtual field experience based on the Number Talks routine develop preservice elementary 
teachers’ technological, pedagogical, and content knowledge (TPACK)? The authors utilize case 
studies to illustrate examples of TPACK development as two preservice teachers engaged in the 
Virtual Number Talks field experience. 

Background and Relevant Literature 
Field experiences provide preservice teachers with opportunities to “observe and work with real 
students, teachers, and curriculum in natural settings (i.e., PK-12 schools)” (Huling, 1998). Due to 
the COVID-19 pandemic, teacher educators had to develop flexible field experiences that could be 
implemented in virtual or hybrid classrooms. For example, Zolfaghari et al. (2020) employed the use 
of multi-perspective 360 videos to provide a virtual preservice teacher field experience. Evagorou et 
al. (2020) shifted a conventional science, technology, engineering, and mathematics fair to a virtual 
delivery using technology to provide preservice teachers with this field experience while schools were 
shuttered. Number Talks were selected as the focus of our virtual field experience due to the structure, 
content, and length of the routine. A Number Talk is a short activity—usually 5 to 15 minutes long—
during which a teacher facilitates a discussion with a whole class or a small group of students about 
a carefully designed sequence of problems (Parrish, 2010). Students solve problems mentally and the 

Proceedings of CERME12 3585



 

 

teacher facilitates dialogue about students’ strategies with open ended questions. The teacher records 
student thinking on the board using equations and visual models to help students consider others’ 
ideas and make connections between strategies and representations (Parrish, 2010; Sun et al., 2018). 

Number Talks are implemented in classrooms to achieve several important goals: to help students 
develop number sense and understanding of numerical relationships (Sun et al., 2018) and to shift 
focus towards making sense of strategies and away from a singular focus on solutions (Parrish, 2010). 
By centering students’ thinking, Number Talks contribute to the development of a community of 
mathematics thinkers, doers, and learners in which “mathematical authority” is no longer held solely 
by the teacher and is instead shared among students (Lambert et al., 2017). 

The US National Council of Teachers of Mathematics (2014) has identified a framework of essential 
teaching practices that stimulate meaningful mathematics learning: “establish mathematics goals to 
focus learning, implement tasks that promote reasoning and problem solving, use and connect 
mathematical representations, facilitate meaningful mathematical discourse, pose purposeful 
questions, support productive struggle in learning mathematics, build procedural fluency from 
conceptual understanding and elicit and use evidence of student thinking” (p. 10). Number Talks were 
chosen as the focus of our virtual field experience due to the potential for preservice teachers to 
engage in these essential mathematics teaching practices while facilitating virtual instruction. 

Theoretical Framework: Technological, Pedagogical, and Content Knowledge  
Built on Shulman’s (1987) conceptualization of pedagogical content knowledge, Mishra and Koehler 
(2006, 2009) introduced the TPACK framework to account for the knowledge that must be developed 
for effective teaching practice given considerable technological change. The framework identifies the 
complex relationships that exist from the interactions between content, pedagogical, and 
technological knowledge for effective teaching practice (see Figure 1).  Utilization of the framework, 
in a theoretical sense, provides a method of communicating the presence or absence of connections 
between content, pedagogy, and technological knowledge (Mishra & Koehler, 2006).   

 
Figure 1: TPACK framework, reproduced by permission of the publisher, © 2012 by tpack.org 

Pedagogical and content knowledge components of TPACK used in Number Talks can be categorized 
into the subdomains of mathematical knowledge for teaching (MKT, Ball et al., 2008). Common 
content knowledge (Hill & Ball, 2009) of school mathematics serves as the knowledge base needed 
to facilitate a Number Talk. Teachers need specialized mathematical knowledge (Hill & Ball, 2009) 
to record number relationships and operations using various visual models during Number Talks. 
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Knowledge of content and students is needed to anticipate and interpret students’ strategies, to be 
aware of common developing (mis)conceptions or points of confusion, and to make sense of 
nonstandard strategies (Ball et al., 2008). Knowledge of content and teaching (Ball et al., 2008) is 
needed in Number Talks to select appropriate tasks and to choose in the moment which 
representations to use, which strategies to explore deeply or save for later, and which probing 
questions to ask to best support students’ sense making. When facilitating Number Talks virtually, 
teachers must use their pedagogical and content knowledge and the subdomains of MKT to 
purposefully select and use technological tools to meet the mathematical goals of the Number Talk. 

Methodology 
Scientific and Cultural Context 

Number Talks have become increasingly common in classrooms in the US as teachers have begun to 
incorporate the US Standards of Mathematical Practice, such as “make sense of problems and 
persevere in solving them, reason abstractly and quantitatively, and construct viable arguments and 
critique the reasoning of others” (NGACBP CCSSO 2010), into daily instruction. However, due to 
the COVID-19 pandemic and the switch to emergency remote instruction, much of the progress made 
in shifting mathematics teaching towards conceptual understanding and sense making came to a halt. 
Schools were forced to put together emergency remote instructional materials in a matter of weeks or 
even days, and many did so with packets of rote exercise worksheets and videos of direct instruction. 
As mathematics teacher educators, we sought to offer a field experience that translated best practices 
in mathematics teaching and learning into the digital environment. 

Development of a Teacher Learning Cycle for the Virtual Number Talks Field Experience 

The Association of Mathematics Teacher Educators’ (2017) Standards for Preparing Teachers of 
Mathematics calls for teacher preparation programs to incorporate practice-based experiences that 
“develop core pedagogical practices and pedagogical content knowledge for teaching mathematics” 
(Indicator P.3.4.). To provide such a field experience while many schools were operating remotely, 
we created a Teacher Learning Cycle (TLC) in which preservice teachers learned about and engaged 
in Virtual Number Talks (Joswick et al., 2020). The TLC was developed using Teacher Education by 
Design’s (University of Washington, 2014) learning cycle and includes four phases: learn, plan, 
implement, and reflect (see Figure 2). 

 
Figure 2: Teacher learning cycle for the Virtual Number Talks Field Experience  

Setting and Participant Selection 

The Virtual Number Talks Teacher Learning Cycle field experience was implemented in two sections 
of an elementary mathematics course taught at a university in the northeastern United States in Fall 
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2020. The course was a requirement for a master’s degree in Elementary Education. 29 students, most 
of whom were preservice teachers, were enrolled between the two sections of the course. Of the 29 
students enrolled, 21 students gave permission for their course assignments to be analyzed for 
research purposes. Most students took the course in the semester prior to their student teaching 
semester. The course was taught as a fully online course. Many students were working as school-
based interns while enrolled in the course. Internship modalities ranged from fully online to hybrid 
and shifted during the semester due to changes in local COVID situations. Purposeful sampling was 
utilized to select “information-rich cases” (Patton, 1990, p. 169) to learn about the potential for 
TPACK development through the Virtual Number Talks field experience. In this paper, we chose to 
focus on two students, Tatum and Skyler, as illustrative cases (Yin, 2009) because they represented 
a range of prior teaching experience and prior technological knowledge and because they each 
demonstrated change over time in their knowledge of various elements of the TPACK framework.  

Demographic Data: Tatum and Skyler 

Tatum was a preservice teacher who worked for three semesters as an intern in a suburban public 
school for grades K-4 at the time of the project. Tatum completed the mathematics methods course 
and Virtual Number Talks Teacher Learning Cycle in their second year of an elementary education 
Master of Arts program during the fall semester before student teaching. Tatum had no prior teaching 
experience outside of their internship placement. Tatum’s school was implementing a hybrid model 
at the time of the project; they completed their Virtual Number Talks Teacher Learning Cycle with 
three third grade students outside of their internship placement due to videotaping not being permitted 
at the school. Tatum demonstrated basic general technology knowledge at the start of the course. 

Skyler was a preservice teacher who was working as an intern in a suburban public school for grades 
3-5 at the time of this project. Skyler was in their fifth year of a five-year integrated Bachelor of 
Arts/Master of Arts program in elementary education, and they completed their mathematics methods 
course and the Virtual Number Talks Teacher Learning Cycle in the fall semester prior to student 
teaching. She previously worked as a paraprofessional in a summer school program for grades 9-12. 
Skyler completed their Virtual Number Talks Teacher Learning Cycle with three third grade students 
from their internship. Their school was implementing a hybrid cohort model at the time of the project. 
Skyler was adept at using newer technological tools and demonstrated more advanced technology 
knowledge at the start of the course. 

Analysis 

In a deductive approach and prior to analysis, a priori codes were developed from the three 
foundational areas of the TPACK framework. A code book containing these a priori codes along with 
their respective definitions from the existent literature was created to assist the analysis, create a 
consensus among coding members of the research team, and “maximize coherence among codes” 
(Creswell & Creswell, 2018, p. 199). Data sources for analysis existed in the form of nine assignments 
related to Number Talk learning, planning, implementation, and reflection completed by student 
participants throughout the semester. Each data source was then read and coded by members of the 
research team to the corresponding a priori codes. As a peer-debrief (Creswell & Creswell, 2018), 
members of the research team discussed themes emerging within the data for consistency, 
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verification, and discrepancies. Validity in qualitative research is identified as one of its 
methodological strengths and was achieved through the triangulation of themes among the multiple 
data sources (Creswell & Creswell, 2018), discussion of discrepant codes, and peer-debriefing.   

Results 
Tatum: Developing Technological Knowledge and TPACK 

Tatum demonstrated growth in their technological knowledge as they moved through the components 
of the teacher learning cycle from planning to rehearsing to implementing their Virtual Number Talk. 
Though Tatum practiced their use of technology tools during the rehearsal of their Virtual Number 
Talk with peers, he experienced technical difficulties when working with children. In their reflection 
on their first Number Talk, Tatum discussed their technical difficulties and the need to practice the 
use of technology tools simultaneously. 

In the beginning, I think that it was working well, but there was a time where I wasn’t sure 
how to move from slide to slide from my screen in Zoom. I think that I should troubleshoot 
my number talk with all of my technology instead of both separately. It worked well during 
my rehearsal, but not as smoothly with my actual number talk. (Assignment 6, Reflection on 
first Virtual Number Talk) 

In their final reflection after conducting two Virtual Number Talks, Tatum reflected on the growth of 
their technological knowledge through the peer rehearsal assignment and the benefit of teaching with 
technological tools. 

After our rehearsal and hearing back from my peers, I was able to use controls in the Zoom 
toolbar to use as ways the students can show me what they’re thinking. I also was able to fine 
tune how to use PowerPoint as a constructive tool to make the virtual lesson feel more like an 
in-class lesson. (Assignment 9, Final Reflection after conducting two Virtual Number Talks) 

Beyond simply learning how to use technological tools, Tatum’s knowledge of using technological 
tools for specific pedagogical purposes in mathematics teaching showed significant development. For 
both Number Talks, Tatum showed images of dots, asking students to share how many dots they saw 
and to describe their strategies (see Figure 3). In their first Virtual Number Talk, Tatum showed dot 
images by screen sharing a PowerPoint but otherwise focused the activity on a verbal discussion. 

          
Figure 3: Images from Tatum’s first (left) and second (middle and right) Virtual Number Talks 

In their second Virtual Number Talk, Tatum once again showed dot images by screen sharing a 
PowerPoint, but this time used the pen tool to record on the screen throughout the conversation. By 
circling dots and writing equations to record student thinking, they made children’s mathematical 
ideas visible to one another (see Figure 3). They closed the conversation by showing a slide with all 
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of the dot images from the Virtual Number Talk, using the pen tool as they facilitated a conversation 
about connections across the dot configurations showing different ways to decompose the number 5, 
demonstrating the knowledge of content and teaching subdomain of MKT (Ball et al., 2008). 

Skyler: Developing Pedagogical Content Knowledge and TPACK 

As Skyler engaged in the Virtual Number Talk Teacher Learning Cycle, they demonstrated growth 
in their both pedagogical content knowledge and TPACK. Skyler focused their first Number Talk on 
dot patterns, facilitating an exploration of composition and decomposition of small numbers with 
their students. For their second Number Talk, they focused again on number composition and 
decomposition, but this time through a series of double-digit addition problems, a significantly more 
challenging task to facilitate. Skyler’s recording of student thinking at the start of their second 
Number Talk was disconnected from place value. She honored students’ thinking by typing what 
children said verbatim, but they did not ask any follow up questions about the value of the digits 
being added in the tens place. In a discussion board post early in the teacher learning cycle, Skyler 
stated the following, “I know in my experiences as a child and adult I have always had a harder time 
with auditory/nonvisual problems. Once the teacher wrote the problem and strategy on the board it 
was easier to follow along” (Assignment 2, learning about Number Talks and discussing with peers). 
Though Skyler recognized the importance of making mathematical ideas visible for children, their 
use of technological tools did not allow them to achieve the mathematical goal or support student 
sense making. 

Midway through their second Number Talk, Skyler stopped typing students’ explanations on virtual 
sticky notes and started recording using the pen tool. In doing so, Skyler began to “mathematize” the 
children’s thinking by connecting their verbal explanations to mathematical equations, demonstrating 
specialized mathematics knowledge, knowledge of content and students, and knowledge of content 
and teaching subdomains of MKT (Ball et al., 2008). Through their recorded equations, Skyler 
highlighted the place value understanding inherent in the student’s partial sums strategy. Skyler’s in-
the-moment shift in their use of technology tools, shown in Figure 4, made one student’s 
mathematical thinking accessible to the other children and helped them to focus the discussion on 
important place value concepts, demonstrating a significant development in their TPACK skills. 

            
Figure 4: Images from the start of Skyler’s second Virtual Number Talk (left and middle) versus the 

end of the Number Talk (right) 

Benefits and Challenges of Virtual Number Talks as a Virtual Field Experience 
There were several benefits to using Number Talks as a virtual field experience for preservice 
teachers. Virtual Number Talks allowed for maximum flexibility of implementation in terms of group 
size, content, and student location, creating access to teaching experiences for preservice teachers 
who were not able to enter schools due to COVID-19. While many classrooms shifted to videos of 

Proceedings of CERME12 3590



 

 

direct instruction and worksheets of practice problems at the start of the pandemic, Virtual Number 
Talks provided preservice teachers the opportunity to facilitate a mathematical conversation with 
students, creating windows into student thinking that many of our students had not experienced 
previously. Planning for and facilitating Virtual Number Talks also aided preservice teachers in 
developing and practicing their technological pedagogical content knowledge (Koehler, & Mishra, 
2009) as they learned to utilize technological tools to create and display visual models, record 
equations and strategies, and facilitate students’ thinking, discussions, and learning in the virtual 
classroom. 

There were also challenges in implementing the Virtual Number Talks field experience for preservice 
teachers. New privacy concerns have arisen from K-12 virtual instruction, which prevented some 
preservice teachers from being permitted to facilitate or video record instruction within school-based 
placements. Virtual classroom management, including using conferencing software and tech tools for 
displaying and recording models and equations while engaging students online, was challenging for 
many preservice teachers. Writing on a digital whiteboard space also proved to be difficult for 
preservice teachers who did not have access to a stylus or touch screen device and had to write with 
a track pad or mouse, impacting the amount and quality of recording of students’ strategies done by 
preservice teachers during their Virtual Number Talks.  

Conclusion 
Number Talks contribute to the creation of a mathematics community in which all students’ 
contributions are valued. Number Talks also allow for the development of teachers’ MKT (Ball et 
al., 2008) through selecting tasks, anticipating strategies, facilitating discussions, and recording 
strategies with equations and visual models. Bringing Number Talks to online classrooms helps 
teachers to maximize limited synchronous class time with a short but effective instructional routine. 
Through Virtual Number Talks, teachers can leverage technology to provide high-quality learning 
opportunities that empower students, center students’ thinking, and position students as creators of 
mathematics. To do so effectively, teachers must start with their mathematical goal in mind and use 
pedagogical and content knowledge, MKT subdomains, and technological knowledge to purposefully 
choose technological tools best suited for the mathematical goal. As a virtual field experience, Virtual 
Number Talks can allow preservice teachers to develop their technological, pedagogical, and content 
knowledge (TPACK) as they learn to engage in essential teaching practices, use technology to 
achieve mathematical and pedagogical goals, and foster a virtual mathematics classroom community. 

Acknowledgment 
We thank the Service, Teaching, & Research in Mathematics Education Fellows Program and 
Jennifer M. Suh and Matthew Felton-Koestler for their support of our research collaboration. We 
thank Kimberly Conner, Candace Joswick, and Brandon McMillian for their contributions to the 
development of the VNT TLC course assignments. 

References 
Association of Mathematics Teacher Educators. (2017).  Standards for Preparing Teachers of 

Mathematics. Available online at amte.net/standards. 

Proceedings of CERME12 3591



 

 

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it 
special? Journal of Teacher Education, 59(5), 389–407. 

Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed 
methods approaches, 5th ed. Sage. 

Evagorou, M. & Nisiforou, E. (2020). Engaging Pre-service Teachers in an Online STEM Fair during 
COVID-19. Journal of Technology and Teacher Education, 28(2), 179–186.  

Hill, H., & Ball, D. L. (2009). The curious—and crucial—case of mathematical knowledge for 
teaching. Phi Delta Kappan, 91(2), 68–71. 

Huling, L. (1998). Early field experiences in teacher education. ERIC Digest. 

Joswick, C., Meador, A., Fletcher, N., Conner, K., & McMillian, B. (2020). Responding to current 
field experience challenges with the virtualization of number talks. Association of Mathematics 
Teacher Educators Connections, 30(2), 1–5.  

Koehler, M. J. (2012). TPACK explained. http://tpack.org/ 

Koehler, M., & Mishra, P. (2009). What is technological pedagogical content knowledge (TPACK)? 
Contemporary issues in technology and teacher education, 9(1), 60–70. 

Lambert, R., Imm, K., & Williams, D. A. (2017). Number strings: Daily computational 
fluency. Teaching children mathematics, 24(1), 48-55. 

National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical 
success for all. National Council of Teachers of Mathematics.   

National Governors Association Center for Best Practices, Council of Chief State School Officers 
(2010). Common Core State Standards for Mathematics. National Governors Association Center 
for Best Practices, Council of Chief State School Officers.  

Parrish. S. (2010). Number talks: Helping children build mental math and computation strategies, 
grades K-5. Math Solutions.  

Patton, M. (1990). Qualitative evaluation and research methods (2nd ed.). Beverly Hills, CA: Sage. 

Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational 
Review, 57(1), 1-23. 

Sun, K. L, Baldinger, E. E., & Humphreys, C. (2018). Number talks: Gateway to sense making. 
Mathematics Teacher, 112(1), 48–54. 

University of Washington. (2014). Teacher education by design (TEDD). https://tedd.org/ 

Yin, R. K. (2009). Case study research: Design and methods (4th ed.). Sage. 

Zolfaghari, M., Austin, C.K., Kosko, K.W. & Ferdig, R.E. (2020). Creating asynchronous virtual 
field experiences with 360 video. Journal of Technology and Teacher Education, 28(2), 315-320.  

Proceedings of CERME12 3592



 

 

Prospective teachers’ specialized knowledge on periodic number: 
mathematics knowledge and beliefs 

Galleguillos Jeannette1 and Miguel Ribeiro2 

1Universidad de Valparaíso, Mathematics Institute, Valparaíso, Chile; jeannette.galleguillos@uv.cl 
2UNICAMP, Education Faculty, Campinas, Brazil; cmribas78@gmail.com 

In this work we analyze the specialized knowledge about periodic numbers of a group of prospective 
mathematics teachers by means of a task for teacher development. The results revealed that a KoT 
and the KPM knowledges were displayed in the transformation of a periodic number to a fraction. In 
the discussion there appeared a resistance to accept the equality =1. The prospective teachers 
(PTs) based their initial discussion on their beliefs rather than on mathematical arguments. 

Keywords: Periodic and semi-periodic number, mathematical knowledge, beliefs.  

Introduction. 

One of the causes of difficulties in rational number is the mechanistic style with which fractions (and 
decimals) are approached, focusing on the application of nonsense rules and due to the 
underestimation of the difficulty of this subject (Streefland, 1991). Thus, it is necessary to implement 
strategies from the initial teacher development that include a comprehensive point of view of this 
issue. In this work we focus on determining this knowledge from a development task focused on 
periodic (and semiperiodic) decimal numbers from the MTSK perspective (Carrillo et al., 2018).  

Theoretical framework. 
One issue that can cause confusion within periodic decimal numbers is the two different 
representations of the number  and 1, which corresponds to the equality =1. Rittaud and Vivier 
(2013) reported the difficulties of university students to establish that =1, since most of them 
answered that these numbers were different. We used the Mathematics Specialized Teachers' 
Knowledge (MTSK) model (Carrillo et al., 2018) particularly in Mathematics Knowledge (MK), 
Knowledge of Practices in Mathematics (KPM) and Beliefs of and about mathematics and its 
teaching.  

Analysis and Results. 
PTs solved a task on periodic number. From question 1 (Figure 1-image 1) they reveal that they know 
the procedure to transform a periodic number into a fraction, which corresponds to the knowledge of 
the topics (KoT) and of the procedure category (KoT-p1: Know the method to transform a periodic 
number into a fraction by applying the usual algorithm). From question 2 (Figure 1-image 1) it is 
shown that PTs know the method to transform a semi-periodic number to a fraction (KoT-p2: Know 
the method to transform a semi-periodic number to a fraction applying the usual algorithm). 

From question: How would you explain the procedure to solve ? From the resolution (Figure 1-
image 2), we observe that the fraction transformation procedure was applied using operations on 
periodic numbers in an equation - method 1 (KoT-p3: Know a procedure to transform a periodic 
number into a fraction by performing operations in an equation). 
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The Figure 1-image 3 shows the use of an example and a mathematical work in which he uses method 
1 to mathematically justify the case of a semiperiodic number. Both issues imply that knowledge 
associated with the KPM was mobilized. From the analysis emerges the label mathematical 
justification (“j”) that is not yet a category since it requires broader discussions (KPM- “j1”: Know 
how to mathematically justify the transformation of a semiperiodic number to a fraction from one 
more case simple). After, despite their knowledge, PTs did not identify than . They stated 
that they believe that <1, which shows a resistance to accept that mathematical equality (Bel-1: 
Belief that different representation records cannot be associated with the same quantity ( . 

Image 1 

Image 2 Image 3 

Figure 1: Answer on (image 1) periodic numbers; (image 2) semiperiodic numbers; (image 3) 
transform a periodic number to a fraction. 

Conclusion. 
Here, mathematical knowledge associated with KoT and KPM was found. In addition, there was a 
resistance from PTs to accept the equality =1 and can be explained because there are two 
numerical representations of the numbers  and 1 for the same value (Rittaud & Vivier, 2013). 
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Introduction 
The amount of research on division of fractions has increased largely since 1970s, however it is still 
a challenging topic both for teachers and students (e.g., Newton, 2008). Among the operations 
involving fractions, the division has been considered the most mechanical and less understanding by 
teachers (Lo & Luo, 2012), which reveal to know how to find the solution, but lack understanding on 
the how’s and whys grounding the division involving fractions. For students to develop such an 
understanding, we, has teachers are required to be in possession of a specialized knowledge which 
we consider in the perspective of the Mathematics Teachers' Specialized Knowledge – MTSK 
(Carrillo et.al, 2018). Also, due to the central role of tasks in teachers’ practices, its essential do 
develop research focusing on the role of such tasks in teacher education. Aiming at enriching our 
understanding of such a knowledge here we focus on the following research question: What 
knowledge is revealed by teachers who teach Mathematics in the context of fraction division when 
solving a task in their continuing education? 

Some theoretical dimensions  
Students reveal difficulties in understanding fractions and the operation involving them, in particular, 
division. The same can be said for teachers and such difficulties might be grounded in the lack of 
understanding multiplicative conceptual field in mathematics curriculum and in previous school 
experiences teachers have encountered (Lamon, 2007). When considering teachers’ knowledge, we 
assume its specificities bit in terms of mathematical and pedagogical knowledge and we assume the 
MTSK conceptualization and aligned with our research focus here we address the Knowledge of 
Topics subdomain and, in particular: procedures, definition and representation. 

Context and method 
Here we report on data gathered in a six hours workshop which occurred in two days in a row (3 
hours each day) with the participation of six mathematics primary teachers (teaching students aged 7 
to 14). Data concern questionnaires, teachers written productions to a task for teacher education and 
video recordings of the sessions – through google meet. Here we focus on one of the questions of the 
task: Why when dividing by a fraction do, we invert the divisor and multiply to get the result in the 
operation 12/15: 3/5= 12/15 x 5/3 = 4/3.? The analysis has been made using the MTSK categories 
related to KoT. 
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Data analyses 
Preliminary results enhance teachers’ knowledge grounding the inability of justifying the IM method 
–the teachers knew how to use the procedure, but they do not understand and cannot explain why it 
works. Only one teacher provided a production trying to give meaning to the arithmetic expression. 
The teacher's representation does not justify the IM and shows that the teacher confuses the concept 
of partitive with measure.  

T1: We do representations to represent 
fractions, but not their operations. 

T5: My students ask me why it is needed to 
multiply to divide, and I was always sad 
that it was the rule, but I didn’t know how 
to explain and why. When I learnt it, I 
learnt it through the rule. 

                                                                                                                    Figure 1: teacher production 
 
The analysis revealed teachers’ knowledge related to sense of division (measure/ partitive); different 
kinds of representation that cope with the sense of each mathematics constructions (beyond the unit 
fractions) and the relationship between division and other topics, for example, measure (Fazi & 
Siegler, 2011).  

T6: Now, I understand why the algorithm works, because I have always used the IM 
and I have never thought about its meaning. 

T3: I didn’t know the division as a measure and now it makes sense to think of rations 
and in the resolution of problems, in a whole. 

Conclusion 
With the task, it was possible to know and develop the knowledge of the mathematical content 
necessary for the teacher in teaching fraction division. The investigation suggests an improvement in 
training courses to develop the teacher's mathematical knowledge in these topics for an improvement 
in teaching. 
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In this paper, we present preliminary results of the study where teachers' lesson plans were analysed 
to inquire about their content knowledge. Our theoretical background stands on the model 
Mathematics Teacher Specialised Knowledge (MTSK), particularly we focus on the element 
Knowledge of Topic. In the paper, an analysis of two lesson plans is provided to answer the research 
question: “What Knowledge of Topic (as described in the MTSK model) and what gaps in it are 
evident in the teacher lesson plans concerning the topic of a linear function?” The analyses revealed 
that indicators of all four components of Knowledge of Topic can be observed in the teachers’ lesson 
plans whereas gaps in the particular components could be diagnosed as well. 

Keywords: Teacher content knowledge, MTSK, lesson plan, linear function. 

Introduction 
A list of scholars starting with Shulman (1987) has tried to provide a model describing knowledge 
specific for (mathematics) teachers. Many others tried to “measure” or “describe” teacher knowledge 
using different methodologies. The broader objective of the research group is to use the collected 
knowledge in their practice as mathematics teachers' educators. Particularly, to develop a tool to track 
the progress of pre-service and in-service mathematics teachers achieved in their practice or during a 
specialised course. Hopefully, such a tool can support the reflection of mathematics teachers' 
educators and subsequently enhance the quality of provided courses or informal professional 
development meetings. This paper refers to the first step of the process. 

Our approach was motivated by the work of Zakaryan and Ribeiro (2019) who used the model 
Mathematics Teacher Specialised Knowledge (MTSK) to classify knowledge about the content of the 
topic of rational numbers. The other resource of inspiration is the paper by Corey et al. (2021) who 
used written instructional products of teachers to “understand what knowledge (of student 
mathematical thinking) is evident in them and how that knowledge is used to justify instructional 
decisions” (p. 635). This idea encouraged us to use the lesson plans of teachers as a resource to learn 
about their knowledge. As pinpointed by Carlson and Daehler (2019) teacher knowledge can be 
enacted in planning, teaching, and reflecting. Therefore, to inquire about planning is as valid as 
inquiring about teaching practice or teachers' reflections. Naturally, it is not enough to inquire only 
about lesson plans, when it comes to the knowledge of an individual teacher. However, in terms of 
having a tool, which should be both – practical and as authentic as possible – we consider a lesson 
plan (possibly supported by an interview or a group discussion) as a good choice. For the beginning 
of the tool development, in the paper, we try to answer the research question: “What Knowledge of 
Topic (as described in the MTSK model) enactments are evident in the teacher lesson plans 
concerning the topic of a linear function?” Further, we will use LP instead of the full “lesson plan”. 
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Theoretical framework 
As already proposed above, we will frame mathematics teachers’ knowledge with a focus on the 
Knowledge of Topic. From many possible ways, we opted for the model Mathematics Teacher 
Specialised Knowledge (MTSK) introduced by Carrillo et al. (2018). The section Knowledge of 
Topic, which is part of the model mainly interesting for this paper, consists of four components: (1) 
The first component (KoTp) is the knowledge of definitions, mathematical properties, 
and their foundations. (2) The second element (KoTph) is knowledge of phenomenology and 
applications for related problems in the topic. (3) The third sub-part (KoTmp) is knowledge of the 
procedures applicable to a specific topic. It includes situations such as "How to do something? When 
to do something? Why is something done this way? Characteristics of the resulting object." (4) The 
last sub-area (KoTrp) covers the knowledge of the different registers of representation and 
representational change. In general, KoT “combines the knowledge that the students are expected to 
learn with a deeper, and maybe more formal and rigorous understanding” (Carrillo et al, 2018). The 
knowledge that the students are expected to learn is dependent on the country's curriculum. This 
cultural aspect is not of a small importance as underscored at previous CERME (Ribeiro et al., 2019). 
Therefore, to describe KoT, it is possible to look at the national textbooks. The following table 
describes KoT specific for teaching the topic of linear function as introduced in the appropriate Slovak 
and Czech mathematics textbooks (Šedivý et al. 2004; Šedivý et al., 2006; Šedivý et al., 2011; Molnár 
et al., 2001; Binterová et al., 2010; Kolbaská, 2014; Berová and Bero, 2015, 2013; Kohanová et al., 
2016; Hecht et al., 2001; Odvárko et al., 1985; Odvárko, 1993). The process of analysis and its deeper 
levels, which are beyond the scope of this paper, is part of the thesis which is being elaborated by the 
first author. 

Table 1: KoT in the topic Linear function 

KoTp: 

def the linear function definition (any of the correct approaches, e.g. function which graph is the straight 
line, the same change in the “x” causes a constant increment in the “y”, or the function which 
equation is y=kx+q) 

nF ability to formulate the examples of the relationship which is not functional (e.g. x=2) 

q knowledge of the q (y-intercept) interpretation, both cases acknowledged q=0 and q≠0 

k knowledge of the k (slope) interpretation, acknowledgment of differences between k<0, k=0 and k>0 

Df knowledge of the domain of the linear functions and its restriction due to the real context of the task 

KoTmp: 

belong to determine whether the point is (not) the point of the function 

x to determine the intersection with the x-axis (graph, notation) 

y to determine the intersection with the y-axis (graph, calculation from the equation) 
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coor to determine the missing coordinate of the point (not in the context of filling the table) 

inters to determine the intersection of two linear functions 

Rf to determine the range of the function in correspondence with the context 

mon to determine whether the function is increasing/decreasing/constant (not using the interpretation of k) 

KoTph: 

dts the context of the task is focused on distance, time, and velocity 

eur the context of the task is money 

t the context of the task is time (but not velocity)  

V the context of the task is a volume of some substance 

n the context of the task is the number of something 

m the context of the task is the weight of something 

KoTrp: 

verbal change of representation from equation / table / graph into verbal description 

equation change of representation from verbal description / table / graph into equation 

tab change of representation from equation / verbal description / graph into table 

graph change of representation from equation / table / verbal description into graph 

One might object that such a list of KoT represents also students' knowledge and thus, it is not 
specialised for teachers. We argue, that firstly (and sadly), it is not granted that teachers have valid 
“students' knowledge”. Secondly, the context in which we will inquire about it is directly connected 
to teaching. Thirdly, the planning of teaching in Slovakia is somehow specific, as our curriculum is 
not well developed and teachers often combine many resources (not always with externally 
guaranteed mathematical quality) in order to prepare a lesson plan, or they build on their ideas. 

Methods and context 
In our study, we analysed ten lesson plans (LP) created by lower-secondary mathematics teachers. 
Only two of them will be presented in the paper. The teachers were from different schools in the East 
Slovakia region. The LPs consisted of the commented materials (e.g. goals formulations, solved tasks, 
instructions for the teacher, comments on expected problems, …) and the student worksheet. They 
were collected during the professional development course provided as part of the National Project 
IT Academy. Before the course module about functions and functional thinking started, some teachers 
were asked to submit the LP about linear function using the inquiry method. All LPs were focused 
on the topic linear function. Some of the teachers elaborated the introduction of a linear function 
(n=5), the others worked on the examination of its properties (n=5). In this paper, we focus on the 
first type of LPs.  
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The main tool of the analysis was the codebook which is presented in the theoretical framework 
(Table 1). In the case, any other KoT indicator would be presented in the LP, we would inductively 
add it into the codebook. The LPs were analysed by both authors and the results of the analyses (for 
the sake of this paper) were summarized in a so-called “KoT map”, where each of the codes is 
presented and coloured in green/red/yellow (see e.g. Figure 2). The analyses were conducted to find: 

(1) the evidence (e.g. correctly solved task, correct mathematical statement, assigned task with the 
specific context, …) that the KoT indicator is actively used by a teacher. In the KoT map, these codes 
are highlighted in green.  

(2) the indication, that the piece of KoT is not valid (e.g. incorrect solution of the task, tasks which 
are not in the line with the mathematical goal of the lesson, …). In the KoT map, these codes have a 
red colour. 

Certainly, one LP from the whole topic is not enough to be analysed to see the teacher’s KoT. If our 
research was aimed at assessing teacher’s level of KoT, it would be true. However, we could use only 
part of the topic because we aimed to inquire about LP as a resource to “measure” teachers' KoT.  

Results 
In this paper, we will provide an analysis of two LPs, which were chosen to pinpoint different 
strengths and difficulties in KoT. The first one, submitted by Jana (names changed), is stated to show 
the following situation: within many different contexts, only a few correct indicators of KoT are 
presented. Moreover, some invalidities were found as well. In the other one, proposed by Kristína we 
want to pinpoint the diversity of correct indicators of KoT revealed within one task for students. 

Jana 

Jana proposed 5 tasks in her LP. All of them were similar to the one presented in Figure 1. 
The brick weighs 6 kg. What is the weight of 2, 3, 4, 5, 6 bricks? Build a table of dependencies between the number 
of bricks and their weight. Write the equation between the number of bricks and their weight. Plot a graph of the 
number of bricks with their weight. 

 
                                 number of bricks 

Figure 1: Task to introduce Linear function (Jana) 

KoT map (Figure 2) pinpoints, that Jana used many different contexts for her tasks and she was 
focused on the representational change. Nevertheless, she did not reveal deep KoT in the other two 
components and what is more, some incorrectness was observed as well.  
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Figure 2: KoT map (LP by Jana) 

KoTp: 

- q (red) – The teacher used exclusively tasks where the y-intercept, q=0, in other words, to 
introduce the topic of the linear function, she used only direct proportionality, which is in the 
contrast to the goals she set in her LP and which directly mentioned linear function. She specified 
direct proportionality as the prior knowledge. 

KoTph: 

- dts, eur, t, n, m (green) – Jana used all marked contexts in her LP. 

KoTrp: 

- equation (green) – Students were required to write the equation which describes the relationship 
between the variables – to change the verbal description/table into an equation, and she had the 
correct solution of this task presented in the LP. 

- tab (green) – Students were asked to fill the table which describes the relationship between the 
variables – to change the verbal description into the table. 

- graph (red) – The teacher asked students to create a graph, however, the graph depicted in Figure 
4 (which is proposed by her) is not correct in the context of the given task. The graph should start 
at (0,0) and its continuity is at least disputable. Moreover, it should not end at (6,36).  

Kristína 

Kristína planned one task to be solved in small groups of students. Each group worked on the same 
situation; however, they were asked to answer different questions as shown below (Figure 3): 

The mobile provider offers two different tariffs. When choosing tariff A, we will pay € 0.10 for a minute. When 
choosing tariff B, we will pay 4 € at the beginning of the month and € 0.05 for each minute. 50 text messages and 1.5 
GB of data are offered on both tariffs for no extra payment.  

Group 1: Which tariff do you think is more advantageous?  

Group 2: Which tariff do you think is more advantageous if you estimate that you will call about 0.5 hours a month?  

Group 3: Which tariff do you think is more advantageous if you estimate that you will call in about an hour in a 
month?  

Group 4: Which tariff do you think is more advantageous if you estimate that you will call in about 1 hour and 20 
minutes per month?  
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Group 5: Which tariff do you think is more advantageous if you estimate that you will call in about 2 hours a month? 

Figure 3: Task to introduce Linear function (Kristína) 

Kristína’s KoT map (Figure 4) is visualised, and the codes are explained below. We can see that 
within the narrow context of only one task she revealed many different indicators of correct KoT and 
did not show any incorrectness. 

 
Figure 4: KoT map (LP by Kristína) 

KoTp: 

- q (green) – We can see the interpretation of the y-intercept q = 4 in her task – Tariff B initial 
payment. 

- k (green) – She offered the interpretation of the slope k by visualization k1 = 0,1 and k2 = 0,05, 
which are different minute prices for the tariffs A and B. 

- Df (green) – She worked with the domain of the function concerning the real context of the 
problem. In her solution, she restricted the graph to the positive x-axis. 

KoTmp: 

- coor (green) – In the subtasks for groups 2-5, she wanted students to determine which tariff is 
better for the particular number of minutes. She had a correct solution for each of the groups in 
her LP and therefore she displayed the knowledge of determining the missing coordinate of the 
point. 

- inters (green) – From the LP, it was visible, she prompted pupils to calculate the time in which 
are both tariffs the same cost and she had solved this task as well. 

KoTph: 

- eur, t (green) – The variables in the task are money and time. 

KoTrp 

- tab (green) – Pupils are asked to fill the table to solve the task, in other words, to change the verbal 
description into the table. The teacher displayed the correct knowledge as well.  

- graph (green) – Pupils are prompted to draw a graph to solve the task, in other words, to change 
the table into the graph. She had the correct solution for this task as well. 

Discussion 
Coming back to the research question: “What Knowledge of Topic (as described in the MTSK model) 
enactments are evident in the teacher lesson plans concerning the topic of a linear function?” we can 
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say the following: Firstly, the LPs are a good resource to find the indicators on teachers’ knowledge 
on the application of the topic (KoTph). It was clear, which context of application teachers was 
familiar with (Kristína – used time and money contexts, Jana – distance-time-speed, money, time, 
number of something and weight). Comparably, LPs reveal teachers’ knowledge on representations 
and representational change (KoTrp). In this case, we were able to observe not only the indicators of 
correct KoT but also signs of the invalid KoT, for example (in the case of Jana) in the graph 
representation, where it was necessary to restrict the line into discrete points (or possibly a ray).  

Moreover, concerning teachers’ Knowledge of definitions, mathematical properties, and their 
foundations (KoTp) and the component Knowledge of mathematical procedures (KoTmp), we could 
observe differences between the LPs, especially in the terms of “being” or “not being” presented. 
These two components were much more elaborated in the LP of Kristína (we observed determining 
the intersection and finding the missing coordinate of the point), however, barely presented in the LP 
of Jana (where we did not observe any indicators and her tasks were focused only on the direct 
proportionality, therefore she did not cover the topic of linear function).  

Based on these two LPs we could exactly name the differences between the two teachers. Therefore, 
we can see that LPs could serve us as a good tool to discern all four components of a teacher’s KoT, 
of course, if analysed in whole (not only one LP for a topic). In the sense of the broader goal 
(development of a tool to track the progress), we also see the potential of such analysis. If two 
presented KoT maps did not describe two different teachers’ LPs, but LPs of one teacher at the 
beginning and the end of the course (or at the beginning of the career and after five years), we could 
be able to reveal how his/her knowledge was developed. This approach is to be applied in future 
research. 

Furthermore, the other issue, which we would like to discuss, are parts of the LPs, which were not 
coded, because none of our codes was applicable. For instance, one of the teachers proposed the task 
focused on reading the statistical information from the bar chart (e.g. to count arithmetic mean) as 
the activity to revise important knowledge before the linear function is introduced. Possibly, this 
could be understood as some gap in the Knowledge of the Structure of Mathematics – another element 
from MTSK. This observation prompts us to the next analysis of the LPs to find out, what – except 
for KoT – we can learn about the teachers from their written instructional plans. 
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This paper sets out the theoretical foundations and design of a future study planned for early 2022. 
The study focuses on the use of concept maps as the object of collaborative knowledge creation. The 
aim of the research is to explore the potential role concept maps have in supporting in-service 
primary teachers in developing their subject knowledge for teaching through collaboratively 
constructing a concept map mediated by an online tool developed by Cambridge Mathematics. 

Keywords: Teacher knowledge, concept mapping, collaboration. 

Introduction 
In the pursuit of supporting teachers to develop richer more connected conceptualisations of 
mathematics this study will explore an example of a technology-mediated knowledge creation 
activity. The activity will involve multiple steps. Initially, I will invite teachers to explicitly describe 
their own image of an area of mathematics, detailing the structure and content of their subject 
knowledge. During the second stage participants will develop a representation of this by sketching 
and refining a concept map in an online environment. Third, an online community will be created in 
which teachers will have the opportunity to reflect on their own and others’ concept maps through 
sharing, analysing and questioning each other. Finally, the participants will collaborate to build a 
single concept map using the online tool. It is hypothesised that the outcome of this collaboration will 
not only be an accumulation of knowledge, which for participants will include the accommodation of 
new or alternative perspectives and connections, but also enable new knowledge to be created. This 
paper discusses the theoretical background to the study and details the phases in the current design. 

What do we mean by teachers’ subject knowledge? 
What teachers need to know to be successful has received a significant amount of attention (Remillard 
& Kim, 2017). International comparative studies persistently search for reasons for and methods to 
avoid poor outcomes for learners of mathematics. Policy makers and mathematics educators have 
placed their focus on the identification, development and improvement of teacher mathematical 
content knowledge. Understanding what is to be learned enables teaching to commence and in this 
role a teacher “must understand the structures of subject matter, the principles of conceptual 
organization” (Shulman, 1987, p. 9). 

In considering teacher knowledge, Shulman (1986) identifies (amongst other types) content 
knowledge that extends beyond recognition of assumptions, facts and concepts and necessitates 
familiarity with the structure of the subject, including how truth is established, why knowledge is 
worth knowing and the relationships within and beyond the subject. Pedagogical content knowledge 
is described as the range and power of representations, analogies, illustrations, examples, 
explanations and demonstrations. Also included is understanding pupils’ preconceptions, many of 
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which may be misconceptions, and their effect on future learning. Within curricular knowledge 
Shulman highlights the importance of teachers’ lateral curriculum knowledge, in other words how 
the content being taught in mathematics relates to that being taught in other subjects. Vertical 
curriculum knowledge, being familiar with the mathematics being taught in preceding and future 
years, is identified as essential. Throughout Shulman’s work, the organisation of mathematical 
content is identified as an important feature of teaching. 

In the study of teachers in China and the United States Ma (1999) describes how successful teachers 
exhibited profound understanding of fundamental mathematics; connected, curricula-structured, 
longitudinal knowledge of core mathematical ideas. Such teachers had a breadth and depth of 
connected knowledge that enabled flexibility in their approaches and an awareness of the implications 
of what and how things are taught on later learning. 

The mental organisation of a teacher’s knowledge plays an important role in developing a positive 
relationship between content knowledge and classroom instruction (Fenneman & Franke, 1992), 
implying that the deeper, more connected knowledge a teacher holds the more successful they will 
be in developing learning with understanding. What is deemed to be a valuable measure of a teacher’s 
potential, in these studies and others (Loewenberg Ball et al., 2008; Mason & Spence, 1999), is not 
just their declarative knowledge but what they understand this knowledge to mean, its place in school 
mathematics, the representations used, and misconceptions held. 

A flexible connected schema of mathematical content knowledge offers a structure into which 
pedagogical content knowledge can be embedded, explored, connected and also developed. This may 
be knowledge of content and students (KCS): typical misconceptions, areas of confusion and 
challenges, learners’ interests and motivations, knowledge of content and teaching (KCT): how to 
teach, worthy examples, representations, or knowledge of content and curriculum (Lowenberg Ball 
et al., 2008). In turn this knowledge enriches the original schema and supports teachers’ 
understanding of why specific tasks, manipulatives, representations, misconceptions, and learning 
sequences arise and relate. What representation can be used productively to enable the development, 
of this schema? What professional activities enable teachers to construct and work flexibly with these 
schemas, allowing them to represent and develop their subject knowledge for teaching? 

Why are concept maps a suitable vehicle to represent mathematical ideas? 
Each individual holds their own visualisation or personal mapping of their mathematical knowledge 
– the schema by which they organise their mathematical ideas (Asiala et al., 1997, Skemp, 1978). 
This structure is not stable, but dynamic, reflecting the developing knowledge and experiences of 
each of us. An individual’s schema is not possible to study, compare or discuss directly. An instance 
of it must be elicited into some explicit form that can then be interpreted. A variety of artefacts could 
support this through being the focus of a discussion, including schemes of work, resources, worked 
solutions or questions. Alternatively, teachers could be interviewed about or observed in their 
classroom practice. Such verbal discussions, written solutions and texts tend to represent ideas in a 
linear manner, offering little insight into the conceptual structure someone holds (Grevholm, 2008). 

Graphic organisers show relationships between concepts and processes, employing spatial position, 
connecting lines and overlapping structures (Nesbit & Adesope, 2006), and therefore offer a tool 
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through which a non-linear structure can be represented. Concept maps are a type of graphic 
organiser, “a diagram representing the conceptual structure of a subject discipline as a graph in which 
modes represent concepts and connections represent cognitive links between them” (McGowen & 
Tall, 1999, p. 2). These links that may be directed or undirected, labelled or unlabelled (Nesbit & 
Adesope, 2006). Crosslinks identify relationships between concepts in different segments or domains 
of the map, showing relations between domains (Novak & Cañas, 2008). 

An individual’s concept map is a visual representation of their concepts (Novak & Gowin, 1984) and 
a tool for analysing expression of current concept structure (Grevholm, 2008). Any map will be 
constructed from a personal mental representation of knowledge although, how accurate the 
representation is, is impossible to know (Williams, 1998). A concept map’s structure depends on the 
context in which knowledge is being applied or considered (Novak & Cañas, 2008). Not only will 
this adapt and change as the context varies; it will also be altered, refined and elaborated as the 
creator’s own maths develops. Concept maps are not “inert and finished, but interactive and 
expandable” (Eppler, 2004, p. 200). 

The software chosen for this study to represent concept maps is based on an off-the-shelf network 
graphing tool; Neo4J (n.d.). This has a bespoke visual interface designed by Cambridge Mathematics 
(n.d.) a curriculum research and design project based at the University of Cambridge. The interface 
consists of nodes and edges. Nodes can include a title, free text description, images and be tagged to 
implement colour coding. Edges can be directed or undirected, include free text and be tagged to 
implement colour coding. As a member of the Cambridge Mathematics writing team, the author 
was instrumental in the design of this software. 

Figure 1: Exemplar concept map using the Cambridge Mathematics interface 

What is collaborative knowledge creation? 
In their discussion of socio-cultural perspectives on collaborative learning, Hakkarainen et al. (2013) 
describe three significant metaphors of learning: knowledge-acquisition, participation and 
knowledge-creation. 

In the knowledge acquisition metaphor for learning knowledge is viewed as a personal characteristic 
that is developed by individuals. Interactions that occur may provoke cognitive conflict enabling 
learning but not as a product of any collaboration but because of an internal dialogue (monological). 
From the perspective of the participation metaphor knowledge is viewed as the objects and practices 
(including rules and beliefs) of communities. It has been influenced by the history and culture of the 
community. Learning is seen as gradually becoming aware of this knowledge, joining the community 
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through learning how to function according to its rules. Through participating in collaborative 
activities learners become aware of their own and others knowledge (dialogical) and develop shared 
meaning. 

In describing their third metaphor, collaborative knowledge creation, Hakkarainen et al. (2013) 
reference ideas of knowledge building (Bereiter, 2002), expansive learning (Engeström, 1987) and 
organisational knowledge creation (Nonaka & Takeuchi, 1995). Rather than acquainting themselves 
with a community, as in the participation metaphor, collaborative knowledge creation focuses on the 
deliberate pursuit of advancing shared objects for future development and use (Hakkarainen et al., 
2013). These knowledge artefacts are to be created and mediate activity (Paavola et al., 2012). Often 
with the help of technology, learners take collective responsibility to design, construct, modify and 
manage versions of knowledge artefacts that partly pre-existed. and have the “capacity to unfold 
indefinitely” (Cetina, 2001, p. 181 as cited in Paavola et al., 2012, p. 2). 

A concept map: A flexible representation that can be created collaboratively 
The knowledge-creation metaphor offers the study a theoretical background which accepts and 
capitalises on teachers’ varied experiences, expertise, beliefs and theories whilst they collaborate to 
develop a deeper understanding of their subject, thus impacting on their teaching. Each participant 
holds their own image of any area in mathematics, including the different types of teacher knowledge 
described above. With the correct mediating object this can be shared, modified and extended through 
collaboration. A concept map provides an example of an epistemic object, its boundaries non-existent, 
as multiple connections link ideas across domains and into related subjects. In fact, a map could 
expand across multiple subject domains. The concept map is being defined as it is being designed, 
decisions are being made about how far to go in any direction and set its limits. It has no boundaries, 
whereas a curriculum, learning resource or learning trajectory tends to be a finite linear progression 
a concept map can expand indefinitely. It is proposed that both the process of collaboratively creating 
a shared concept map and the map itself emphasise eliciting, enriching and creating new teacher 
knowledge. 

Theoretical framework 
The foundations of the learning theory ascribed to in this study are that; mathematical knowledge is 
created and agreed to by a community because of a need to explain, interpret, communicate or explore 
(Hersh, 1979); learning is continuous, evident in every aspect of our lives, there is no one final 
‘knowledge’ in any domain (Vollrath, 1994); and participating in activity, including a social activity 
or personal reflection, impacts on our knowledge, understanding and interpretation of the world, 
hence results in learning (Engeström, 1999; Vygotsky, 1978). 

Research Questions 
The aim of this study is to explore if and how collaborative knowledge creation, concerning teacher 
subject knowledge, can be mediated using an online concept mapping tool (alongside conferencing 
software). The goal is to develop a practical model that elicits deliberate enrichment and creation of 
subject knowledge as well as transform the way in which those teachers perceive and reflect on the 
subject both abstractly and when carrying out the associated activities of teaching. 
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The research questions are: 

1. What types of teacher knowledge do teachers use to create, populate and justify the content 
and design of a concept map? 

2. Does an online concept mapping tool enable teachers to create, share and elaborate upon a 
representation of mathematical ideas? How? 

3. Does an online concept mapping tool enable knowledge creation? How? 

Study Design 
The study design is detailed in table1. It reflects the aim of collaboratively creating a shared structural 
representation of mathematics, viewing knowledge as socially created yet considering individual 
perspectives, experiences, and reflections. An analytical framework has also been designed, details 
of which can be found in an extended version of this paper, available from the author. 

Participants will be purposefully selected, the criteria for participation being that the teachers are in 
their first five years of teaching, have experience of holding online discussions about teaching 
mathematics and do not have existing professional relationships (such as being in the same school, 
co-teaching, training together). The choice of early career teachers was made so that each teacher has 
a similar number of years of classroom experience on which to draw. Participants with no existing 
relationships are being chosen in order to encourage them to be clear in their explanations, as no 
assumptions can be made about each other’s experiences, including approaches during their training, 
specific teaching resources or activities or pupils. In order to promote some heterogeneity, the aim is 
for those selected to have experience of working with different age groups, to have entered the 
teaching professional from a variety of routes and have experiences of a variety of institutions 
(promoting cross-fertilisation). Another aim is for all participants to have had experience of online 
professional development and therefore, have familiarity with online meeting software and in 
participating in collaborative discussions with their peers. 

Table 1: Study design 
 

 
Phase 

 
Part 

 
Activity, participants, and format 

 
Aim(s) 

 
1 

 
a 

 
Online demographic questionnaire 

 
To collect demographic information about each 

participant 

  
b 

 
Administration and answering questions 

To familiarise the participants with the research intentions 
and processes 

 Online discussion (not recorded) To answer any outstanding questions from the 
 between individual participants and participants 

 researcher To explore and clarify answers given to the demographic 
  questionnaire 

   
Eliciting initial concept image 

To elicit a representation of the participants’ concept 
images for the chosen area of mathematics and 
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  Individual participants observed by 
researcher online completing a think 

aloud activity 

To give participants the opportunity to consider the area 
of mathematics in advance of using a concept map 

  
c 

 
Introducing concept maps and software 

 
Online presentation by researcher and 
discussion with individual participants 

To ensure participants have as much of a shared 
understanding of concept maps as possible 

To introduce the Cambridge Mathematics Framework 
software and develop familiarity in using it 

   
Eliciting initial individual concept map 

 
Individual participants observed by 
researcher online completing a think 

aloud activity 

To elicit an initial concept map for the chosen area of 
mathematics 

To give participants the opportunity to consider the area 
of mathematics in advance of group discussions using a 

concept map. 

 
2 

 
a 

 
Paired then group discussions 

concerning individual concept maps 

Pairs then group of participants 
observed by researcher online 

 
To give participants the opportunity to describe, explore 

and critique their own and other’s concept maps 

  
b 

 
Group collaborative construction of a 

concept map 

Group of participants observed by 
researcher online 

To give participants the opportunity to negotiate and 
collaborate in constructing a shared concept map. 

 
3 

  
Reflection 

 
Semi-structured stimulated recall 

interview between individual 
participants and researcher 

To give participants the opportunity to reflect on the 
impact taking part in the study has had on their 

conceptualisation of the chosen area of mathematics 

To give participants the opportunity to reflect on the 
impact taking part in the study has had on their own 

mathematical beliefs; and 

To give the researcher a chance to explore any observed 
identified changes in the way that participants discuss 

mathematics. 

Next steps 
The data from a pilot study (to the main study detailed above) is currently under analysis. The pilot’s 
aims are to: 

 ascertain reasonable expectations for the number and length of interactions; 
 assess the clarity and usefulness of the questionnaire, prompts, and other documentation; 
 allow the researcher to develop their interview skills; 
 verify that the data collection procedures – recording, scanning, transcribing and saving – 

are appropriate and useful; and 
 examine the planned analysis design and process, on a more compact data set. 
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The pilot provides the opportunity to revisit elements such as specific questions, prompts and planned 
use of technology, and use these to make adjustments. This iterative process may yet also result in 
changes to the design of the phases of the full study itself. Whereas there will be four participants 
in the main study, the pilot study involved two. Initial findings from the pilot are promising with 
significant commentary from participants on ideas that they had not considered before, ways in 
which the activity made them re-evaluate existing learning trajectories and their own subject 
knowledge as well as a request to use the mapping tool outside the study. 
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In this paper, we propose a methodological approach—the SCS cycle— suitable to develop 
prospective teachers Interpretative Knowledge (IK). In particular, this study focus on a group of 19 
prospective secondary teachers attending a mathematics education course in Italy who were given 
an interpretative task involving measurement of the surface area of a rectangle. Their work on the 
task followed the SCS cycle and was video recorded and later transcribed. The analysis showed that 
the SCS cycle supported the development of the prospective teachers’ IK, but further work is needed 
to evaluate the effectiveness of the cycle as a way for developing prospective teachers’ IK. 

Keywords: Interpretative knowledge, SCS cycle, measurement, surface area. 

Introduction 
Measurement (e.g., of length, area, volume, mass) is an integral part of the school mathematics 
curriculum (e.g., NCTM, 2000). However, how measurement should be taught for relational 
understanding (e.g., Skemp, 1976) is often neglected by teachers, as this topic is typically approached 
as a problem of “finding the correct number” by using a mathematical procedure, indicating that the 
main goal is finding the final result instead of developing relational understanding. 

In order to enrich the understanding of a mathematical topic and use such understanding in the 
development of fruitful mathematical discussions with students, teachers need to possess a 
mathematical knowledge which is considered specialized to the practice of teaching mathematics. 
One of the teaching tasks entailed in the work of teaching is grounded in proposing and discussing 
tasks with students (Ball et al., 2008). We assume that developing students’ relational understanding 
should be one of the goals of all mathematics teaching, and thus, it is critical to consider the starting 
point for a mathematical discussion on what the students know and how they know it. This requires 
that teachers can “listen to the students’ thinking” and possess what we have termed as Interpretative 
Knowledge (IK), which is a specialized kind of knowledge that is not necessarily developed in 
teaching practice, and is thus an essential focus of teacher education (Mellone et al., 2020). 

In our previous work, we discussed the nature and content of (prospective) teachers’ IK on the topic 
of area measurement (e.g., Ribeiro et al., 2018) posed in a context aimed at giving meaning to the 
area formula for the rectangle. For that purpose, we developed an ad hoc interpretative task. In such 
a task, prospective teachers (PTs) are situated in a practice-based context where they have to mediate 
and give meaning to different students’ reasonings and justifications for the formula for calculating 
the surface area of a rectangle. In particular, by proposing this task, we challenged PTs to give a 
mathematically meaningful justification for the area formula of the rectangle as a direct reading of 
multiplying the measurement of the length by the measurement of the width. In pursuing the goal of 
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developing PTs’ IK, an ad hoc way of implementing the task was developed. We call this method the 
odification of the 

the following research questions: What kind of knowledge development can be recognized in PTs 
when experiencing an SCS cycle involving an interpretative task? In particular, can we recognize any 
development of IK in these PTs? 

Literature review and theory 
Understanding a mathematical topic goes beyond knowing the mathematical procedures associated 
with the topic. This also applies to measurement, considering that it is one of the core mathematical 
topics in the school curriculum since kindergarten (e.g., NCTM, 2000). For this reason, it is of 
fundamental importance to develop PTs’ and students’ understanding of the measurement process in 
general, and in particular in the context of surface area. Such an understanding can be described by 
the six principles defined by Clements and Stephan (2004) for the length measurement, which can 
also be adapted for other magnitudes.  

In traditional school practice, the teaching of surface area measurement tends to focus on formulas 
without meaning, sometimes preceded or followed by teaching of the measurement process where 
only standardized measurement units are used (Policastro et al., 2017). Moreover, no opportunities 
are provided for exploring with students the differences and similarities concerning the measurement 
processes based on different magnitudes. For example, looking at similarities among the 
measurement processes, it is possible to recognize a common planned action of choosing a convenient 
unit of measurement to be compared to the quantity being measured, ensuring that both have the same 
magnitude, and counting how many times the unit of measure fits in the quantity to be measured (e.g., 
Clements & Stephan, 2004).  

The Dynamic Measurement approach is an alternative method of surface area measurement 
(Parnorkou, 2020). The approach focuses on how space is measured by the lower-dimensional objects 
that generate it. An inductive approach to visualizing this generation of area (and volume) attributes 
involves moving objects in space (Parnorkou, 2020). By imagining that a line segment ‘a’ is swept in 
a perpendicular direction across a distance ‘b’, we generate a rectangle with area ‘ab’. These two 
different approaches demonstrate the richness and complexity of a mathematical topic, such as 
measuring the surface area of an object that is usually considered a trivial task. From this perspective, 
we argue that teachers should possess a sound and broad mathematical knowledge that contributes to 
the development of students’ mathematical knowledge. Such knowledge will allow them to take the 
students’ own mathematical work, and the differences in the provided representations and 
argumentations as a starting point—including mathematical work that contains mathematical 
ambiguities, errors, and non-standard reasoning—assuming that they can be used in practice as 
learning opportunities (Borasi, 1996). In this sense, the notion of IK (Jakobsen et al., 2014) refers 
exactly to this deep and wide mathematical knowledge that enables teachers to support students in 
building their mathematical knowledge by starting from their own reasoning and productions (Di 
Martino et al., 2019). It includes the ability to expand one’s own space of solutions by looking at 
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situations from a wide range of points of view and the capacity for developing specific feedback 
based on the meaning ascribed to individual students’ reasoning (Jakobsen et al., 2014).  

Our aim is to develop a methodological approach to support mathematics teachers in the development 
of IK. Extant research indicates that having in/pre-service teachers working on interpretative tasks 
can be an effective tool for this purpose (Mellone et al., 2020). By interpretative task we mean a task 
that in which we ask teachers to solve a mathematical problem and then to interpret students’ answers 
to the same problem (Jakobsen et al., 2014). However, even if PTs’ individual work on the 
interpretative task can contribute to the development of new insights and awareness, it is insufficient 
for developing a sound IK. As a consequence, referring to the design study methodology (Cobb et 
al., 2009), we designed an ad hoc methodology for implementing an interpretative task based on the 
SCS cycle. As implied by the SCS, teachers first work on the interpretative task in small groups of 
two or three members, after which the task is discussed by all participants in a collective discussion 
mediated by the teacher educator. Finally, the same small groups of teachers are asked to work on the 
same interpretative task after one month. This methodology aims at disrupting the vicious cycle of 
teachers being passive listeners by prompting them to assume an active role in their learning—a 
strategy we expect they can transpose to their practice.  

Moreover, it is widely established that, when teachers work and learn through collaboration, this can 
have a crucial positive effect on their practices (e.g., Jaworski et al., 2017). Thus, we used the 
collective mathematical discussion as a collaborative and knowledge-generating activity, in which 
students’ productions are placed at the center of interpretation and feedback construction (e.g., Cobb 
et al., 2009). Perceiving knowledge as a social elaboration (e.g., Bartolini Bussi, 1996) and 
recognizing the crucial role of collective discussions in developing awareness about errors and 
nonstandard strategies (e.g., Levin, 1995) convinced us that we need to allow PTs to be active 
participants in the learning process and not passive listner, as “when they do talk they ask clarifying 
questions or acknowledge that they agree or understand” (Spillane, 2005, p. 394). By focusing on the 
collective discussions about students’ productions related to a mathematical problem, our intention 
is to develop PTs’ (teachers’) IK from their mathematical social interactions with peers. The task for 
teacher education (Ribeiro et al., 2021)—an interpretative task in this case—is used both to measure 
the PTs’ IK level and to stimulate subsequent peer discussions. Owing to its nature and structure, the 
interpretative task aims at prompting PTs to develop novel insights into the mathematical reasoning 
involved in students’ productions. Consequently, IK development is transformed from an individual 
to a collective activity—a transformation characterized by the evolution of community’s norms. This 
evolution is facilitated by the social setting, where the educator’s knowledge is a crucial element for 
the development of PTs’ IK. The collective discussions of PTs’ diverse interpretations, reasoning, 
and reflections upon students’ productions is the resource for the educator to orchestrate collective 
discussions, aimed at identifying mathematical and pedagogical insights and developing the IK. The 
ultimate goal of this strategy is an evolution from a group of PTs into a professional teaching 
community (e.g., Cobb et al., 2009), which requires a set of four types of norms pertaining 
respectively to: (a) general participation; (b) pedagogical reasoning; (c) mathematical reasoning; and 
(d) institutional reasoning. It is worth noting that the evolution of one type of norms creates conditions 
within the group for the evolution of norms of another type (Cobb et al., 2009). 
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Context and method  
The context of this study is a Mathematics Education course held in the Autumn of 2020 as a part of 
a Master’s Degree in Mathematics at an Italian University. The requirement for becoming a secondary 
mathematics teacher in Italy is to have Master’s Degree in Mathematics (or Physics) and to 
successfully pass a public competition organized by Italian government for secondary school teacher 
recruitment. The students had already completed a Bachelor’s Degree in Mathematics or in Physics 
and are considered to have a strong mathematical knowledge. The Mathematics Education course is 
a non-compulsory course, but it is typically chosen by students who intend to become secondary 
teachers, due to which all participants are considered to be PTs. The study participants are the 19 PTs 
who attended the course which was held online in a synchronous way—through Microsoft Teams—
due to the restrictions imposed on mobility and gatherings to prevent the spread of COVID-19. The 
online teaching was recorded. 

Task and activities 

The interpretative task we discuss here was proposed to the PTs during the final part of the course. It 
consisted of three parts. First, the PTs were asked to answer a generic question on how to define the 
area of a figure in a plane. Then, there they were asked to find the area of a rectangle with sides 
measuring 3 cm and 4 cm, to provide an argument for their answer, and relate their answer to the first 
question. Finally, they were asked to interpret four 5th graders’ productions to the area of the 
rectangle problem (Figure 1), focusing on “listening to the students’ thinking and reasoning” to make 
sense of their solutions, and provide a constructive feedback to each one of those reasonings to 
support students’ mathematical understanding (Ribeiro et al., 2018). One of the aims of the task was 
to discuss the meaning of the area formula for the rectangle and to refine the PTs’ understanding and 
meaning attribution to the product of two lengths.  

Consider the following students’ productions to the question: Determine, and justify, the area of a 
rectangle with sides measuring 3 cm and 4 cm. 

Caio:  Multiplying the length by the width, we get 4 cm × 3 cm = 12 cm2. 

Douglas:  The area is a surface measurement and thus it has two dimensions (length and width) 
so we need to put the 2 in the exponent and we get 3 × 4 = 12 cm2. 

Camila:    We just need to count the number of square centimeters needed to cover the square, 
and thus we get 3 cm2 × 4 cm2 = 12 cm2 or, similarly, 4 cm2 × 3 cm2 = 12 cm2.  

Fernanda:  I think the area is 12 cm2 as we have to do 4 × 3 cm2 = 12 cm2 or 3 × 4 cm2 = 12 cm2.  

Figure 1: Students’ productions included in the interpretative task 

Although all students’ numerical answers are correct (12 cm2), their reasoning and argumentation 
differ and are associated with different interpretations of area, area units, and the meaning associated 
with the formula (A = length × width). 

This interpretative task was implemented in three phases using the SCS cycle methodology. It was 
implemented in the middle of the master’s course and the interpretative activity was proposed to the 
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PTs during an online class using the “Activity” function of the Microsoft Teams platform. Using the 
“Breakout rooms” function, the PTs were divided into small groups (of two or three members) for 
working on the task for one hour. At the end of this period, they had to deliver to the educator a shared 
written interpretation using the “Activity” function. Upon completion of this phase, the educator 
orchestrated a 90-minute collective discussion of the task for all the PTs using Microsoft Teams 
(phase two). In the final phase, the PTs were given Parnorkou’s (2020) paper as a reflection on the 
Dynamic Measurement approach for measurement of surface area. The PTs had one month to read 
the paper, reflect upon the task and co-write, using the same small working group as in phase one, a 
reflection on the lived experience and to hand it in to the educator. This phase was also part of our 
goal as educators to constitute a professional teaching community (Cobb et al., 2009). 

When conducting the analysis of the PTs’ productions in the three phases of the SCS cycle, we 
focused on identifying the knowledge mobilized. In what follows, we present our analysis of one 
group’s work during the first and third phase, while attempting to trace the knowledge and awareness 
developed during the collective discussion (phase two).  

Interpretative knowledge revealed and developed – some discussions  
Danilo, Pietro, and Caterina, as a group, wrote in the first phase of task implementation (before the 
collective discussion) the following:  

Caio gave the standard definition and therefore it is not clear to us if he actually understood the meaning of the 
operation or if he simply applied a definition he had memorized. We would recommend a graphic approach in 
which the sides are divided into respectively 3 and 4 equal parts and from there we can see that each of these 
forms a square with a unitary area. 

In some sense, we can see that these students are mature in giving feedback. In particular, in their 
suggestion to divide each side in equal segments—hence linking up to the idea of making a regular 
grid of squares with unit area—we can recognize their effort to help Caio to link his calculations with 
the meaning of covering the surface of the rectangle with unit squares.   

The idea of making regular grid also emerged in the collective discussion: 

Marco:  In my opinion, if we talk about units of measurement and therefore the symbolic expression, only 
Caio wrote well. The others have all made a mistake, either because they didn't write the unit of 
measure or because they added too many of them. 

Rino:  In Fernanda’s case, I don't see formal errors. 

Marco:  In my opinion, Fernanda is wrong because you can't write like this for units of measurement. 

Rino:  The area is expressed in square centimeters, and she took four of them. 

Pietro:  It is as if she had taken four strips three high, or three strips four long and covered the rectangle. It 
could be interpreted like this, obviously I don't know if that's what she thought. 

We can see that there is a collective effort to give meaning to Fernando’s answer, and to create a link 
between Caio’s and Fernanda’s answers by making a regular grid covering the rectangle. After this, 
the educator prompted the PTs to choose between Caio and Fernanda: 
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Educator:  If you have to write on the blackboard which formula would you write? 

Caterina:  If I had to explain the area, I would always use the covering technique. I would try to highlight this 
concept every time because it seems to me the central one in the measurement theory. But obviously 
I also like a unit of measurement written each time and, therefore, a dimensional analysis like Caio’s 
works. 

Danilo:  But in some way also Caio is a covering if you mean a covering of thin strips, as many strips that 
would be the height for how long the base is. 

Caterina:  But in fact he did not make any mistake, he wrote well, if one really has to go to the bottom and ask 
what the area is, then I would like a child to understand that it is a covering with small cells at will.  

Danilo:  But you must also go and explain what the elementary area with which he covers is. 

Educator:  I believe that what Danilo tried to do by reading Caio's formula is to define this elementary square 
with a side of 1 cm and see it as generated by a segment of one cm which is repeated continuously 
a certain number of times. This is strange to say sometimes because it is a continuous movement, 
then cover it with very small strips in this case 1 high, which is precisely the fundamental theorem 
of integral calculus. 

Danilo:  Yes, it was how I imagined it when I was as a child. 

Educator:  So you already had a vision of the fundamental theorem of integral calculus and you didn't know it. 

The educator’s provocation was overcome by Caterina proposing to look at the area first as a covering 
process (referring to Fernanda’s answer), but also expressing appreciation for the dimensional 
analysis present in Caio’s answer. Caterina’s comment created the opportunity to Danilo to present 
his crucial observation that gave new insight into Caio’s answer. He proposed interpreting Caio’s 
answer also as a covering process, but performed by using a “thin” linear segment to repeat for “how 
long the base is.” We can recognize a link between this interpretation provided by Danilo and the 
Dynamic Measurement approach mentioned earlier that relies on visualizing the generation of a 
rectangular area by mentally sweeping a segment corresponding to one side of the rectangle along its 
perpendicular direction, in other words along the other side, for a distance corresponding of the length 
of the side (Parnorkou, 2020). It is important to underline that this interpretation of Caio’s answer 
was not presented by Danilo in the previous phase in which the group comprising of Danilo, Pietro, 
and Caterina just expressed the grid covering perspective, and this represents an evolution of the 
mathematical reasoning norms (Cobb et al., 2009). It is also noteworthy that the evolution of one type 
of norms created conditions within the group for the evolution of norms of another type. In particular, 
the evolution in this mathematical reasoning norm also created an evolution in the pedagogical 
reasoning norms in the sense that the PTs were also expanding their space of solutions by looking at 
the situation from a wide range of different points of view, consistent with the IK approach. 

Caterina’s emphasis of the importance of considering the covering process as the underlying meaning 
of the area measurement shows that she has in fact failed to grasp Danilo’s point of view. Still, the 
fact that Caterina does not understand gives Danilo a new opportunity to advocate for his point of 
view, challenging Caterina’s suggestion for how to define the area of the square, used as unit of 

Proceedings of CERME12 3619



 

 

measure. The educator tried to respond to Danilo’s challenge by proposing that PTs visualize 
generation of the area of the square (used as a unit of measure) using Danilo’s dynamic way of looking 
at it, and by making an explicit reference to the Fundamental Theorem of integral calculus behind 
this vision. 

One month after Parnorkou’s (2020) paper was provided to all the PTs, Danilo, Pietro, and Caterina 
wrote a new interpretation, part of which is replicated below: 

Beyond some errors concerning the units of measurement, two different approaches emerge from the words of 
the students, already known in literature: that of covering and that of dynamic measurement. […] In any case, it 
is important to underline how the teacher must be able to recognize these two different approaches, consider 
them equally valid, but choose a starting one to present to the class, and then show equivalence with the 
alternative approach (perhaps following a discussion in the classroom from which this dichotomy may emerge).  

In this excerpt, we appreciate the careful and effective summary made by this group of PTs of their 
new knowledge, which emerged from their participation in the SCS cycle and by working on this 
interpretative task. We stress that this final writing represents an important part of the cycle. By 
completing this written reflection, the PTs were able to organize their new IK. In particular, in the 
text provided by Danilo, Caterina, and Pietro, we see how their initial IK has been developed and 
enriched by the two approaches to surface measurement, and they are now able to present it in 
organized manner. The awareness of the possibility of approaching the measurement of the surface 
in two ways represents an evolution of the PTs’ mathematical reasoning norms. This also prompted 
an evolution of their pedagogical reasoning norms (Cobb et al., 2009), as evident from this quote 
from one of the PTs: “the teacher must be able to recognize these two different approaches, consider 
them equally valid.”  

Some final comments 
In this study, we have found that the adoption of the SCS cycle methodology has supported the IK 
development among the PTs. This is an initial study, and we propose that further research into the 
effect of the SCS cycle on developing the IK among PTs be conducted. 
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Poster summary 
Already in the seventies Alan Bishop considered decision-making at the "heart of the teaching 
process" (Bishop, 1976, p. 42) and together with other scholars of that time, such as Lee Shulman 
and Richard Shavelson, thought that if we better understand these decisions, we can better understand 
teaching (Borko et al., 2008). In more recent years, decision-making has gained a renewed interest as 
a situation-specific skill, especially within research pertaining mathematics teacher noticing (Dindyal 
et al., 202, Stahnke et al., 2016). In a review by Stahnke et al. (2016) regarding mathematics teaching 
situation-specific skills; perception, interpretation and decision-making, the latter was the construct 
least commonly addressed in the included studies. They also found that especially decision-making 
was difficult for pre-service teachers.  

Within research on pedagogical content knowledge (Depaepe et al., 2013) and situation-specific skills 
(Stahnke et al., 2016) in mathematics education two perspectives are identified: a cognitive and a 
situated. The cognitive perspective focuses more on knowledge as a disposition. The situated 
perspective on the other hand pays more attention to the context where the knowledge is used 
(Depaepe et al., 2013). Common designs for the first mentioned includes larger samples with less 
contextual focus and the latter often utilizes smaller case studies in classroom settings. 

Both perspectives have their merits and pitfalls (see Depaepe et al., 2013, p.23) that will have 
consequences for methodological design and study results. Hence, Stahnke et al. (2016) calls for 
designs that integrates perspectives and further notes that approaches that links mathematics teaching 
competence, skills and performance are rare. This is also in line with Mason (2016) who underlines 
the need for both studies with sufficient samples sizes for multivariate analyses and studies that 
acknowledge teacher actions and their justifications that could be beneficial for teaching 
development. As Depaepe et al., (2013) points out, teachers’ justification of decisions in teaching is 
a core component of their knowledge base, these decisions and their justifications could provide 
grounds to further understand mathematics teachers’ knowledge base.         

In summary, this calls for further attention to mathematics teachers decision-making, its relation to 
other aspects of teaching competence, and how theory and design could address both disposition and 
skills, with attention to context and eliciting justification as means for understanding mathematics 
teaching. This is of importance both to the mathematics education research community but also to 
teacher education.  

The aim of this poster is to contribute to the ongoing discussion regarding mathematics teaching 
competence by focusing on decision-making in mathematics teaching, its foundation and 
justifications. This is done by presenting an ongoing project that combines aspects from different 
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perspectives with the purpose of gaining further understanding of mathematics teaching. The project 
draws from Schoenfeld’s (2010) theory of goal-oriented decision-making together with the view of 
competence as a continuum from Blömeke et al. (2015), where decision-making is seen as a mediator 
between disposition and observable behavior. The project utilizes a mixed methodology to be able to 
explore the foundation and justification of teaching decisions and also connecting this to student 
learning and affective outcomes, which has been rare in previous research. 
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In this paper we investigate how experienced community college mathematics faculty, taking part in 
an item-writing camp designed to generate items to assess mathematical knowledge for teaching 
college algebra, thought about student thinking and the work of teaching in this context. We conceived 
of the participants’ knowledge as practice-based professional learning. By analyzing video records 
of item development sessions, drafts of items produced, feedback sessions on the items, and self-
reports of their learning during the camp, we identified four major themes related to participants’ 
work highlighting the possible advantages of engaging faculty in item-writing: understanding 
mathematical knowledge for teaching, understand the item writing process, drawing on their teaching 
experience in the item-writing process, and noticing the complexity of writing MKT items. These 
themes make salient the advantages of engaging classroom-based faculty in item-writing. 

Keywords: Mathematical knowledge for teaching, tasks of teaching, choosing problems, 
understanding student’s work, student thinking. 

Introduction 
Over the last two decades, researchers have attempted to identify and describe the relationship 
between teacher mathematical knowledge for teaching and student achievement (Hill, Rowan, & Ball, 
2005). Several research groups have developed instruments for measuring this special type of 
knowledge targeting specific grade bands (e.g., Hill, Schilling, & Ball, 2004). To develop items that 
reliably assess this type of teacher knowledge researchers have collaborated with mathematicians and 
practitioners (teachers, teacher educators, and professional developers), so that both the mathematics 
at stake and the ways in which it manifests in the classroom are authentically represented in the items. 
Relevant grade-level teachers have taken part in cognitive interviews, instrument piloting, or 
assessment item-writing camps (Phelps et al., 2014). Selling and colleagues (2016) have argued that 
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item developers need support to make sense of the nuances of the knowledge construct and the best 
ways to assess it, yet there is little documentation about how classroom-based faculty work in 
collaboration with mathematical knowledge for teaching (MKT, Hill, Schilling, & Ball, 2004) 
researchers to create items for MKT instruments, or about their thinking process as they generate 
ideas and contribute to the item-writing process. This paper presents an exploration of how a group 
of 13 practitioners (community college mathematics faculty who teach college algebra), chosen from 
different regions of the United States, thought about their students’ thinking, in the context of a two-
week item-writing camp in which they were asked to produce 10 different multiple choice or testlet 
MKT items each. Involving teaching faculty in writing MKT items is not typically done by other 
MKT-assessment instrument developers—those groups limit practitioner input to feedback through 
cognitive interviews and pilot studies. We set out to answer this research question:  In what ways 
does leveraging hypothetical examples of student work facilitate the development of MKT items 
designed to measure instructors’ knowledge of students’ mathematical reasoning? 

The participants were invited as part of a large project that seeks to develop an assessment for 
mathematical knowledge for teaching college algebra at U.S. community colleges. College algebra is 
a credit-bearing course taught in postsecondary institutions in the United States, and typically covers 
content related to linear, rational, and exponential functions, as well as other relevant algebraic 
concepts in preparation for calculus. The number of students taking this course at U.S community 
colleges has steadily increased from about 190,000 in 2000 to about 300,000 in 2015 (Conference 
Board of the Mathematical Sciences, 2015). This course is considered a gateway to degrees in science, 
technology, engineering, and mathematics (STEM), being a prerequisite for a STEM calculus 
sequence. The immense number of students who take this course at U.S. community colleges, and 
consequently the large number of teachers needed to fill this need, creates an opportunity for 
developing an instrument that assesses the MKT of community college faculty teaching college 
algebra, (MKT-CCA), in these institutions; such instrument can serve as a tool for understanding the 
quality of instruction of this key course and its impact on student learning.  

Sustained prior work to corroborate that MKT is composed of the various dimensions identified in 
the literature (e.g., subject matter knowledge, pedagogical content knowledge, Shulman, 1986) has 
proven very difficult. We chose follow Ko and Herbst (2020) who successfully distinguished 
knowledge needed when geometry teachers perform two different tasks of teaching, understanding 
student work and choosing problems. Tasks of teaching are the “recurrent practices that make up the 
work of teaching [school] subjects” (Phelps, et al., 2014, p. 3). Since these tasks of teaching are indeed 
foundational for teachers’ work and given that there is evidence that it is possible to identify two 
distinct types of knowledge, we chose this conceptualization to develop our instrument. We used a 
tasks of teaching framework and adopted a two-dimensional hypothesis for the construct: (1) 
choosing problems and (2) understanding student work. We hypothesize that the knowledge that 
community college instructors use to choose problems for teaching college algebra can be 
distinguished from the knowledge that they use to understand students’ work in college algebra. We 
(four university researchers, four community college faculty-researchers, three graduate students) 
developed a pool of items after training in instrument development. After developing a set of 
principles for writing items we invited practitioners to develop items along these two dimensions. 

Proceedings of CERME12 3625



 

 

Methods 
We recruited 13 community college faculty to participate in a two-week item-writing camp. These 
practitioners came from different geographical regions, taught at different types of colleges (urban, 
suburban, large, small), had varied demographic characteristics (e.g., race, gender), and had some 
experience writing cognitive tests and working collaboratively in small groups. These criteria 
generated a diverse group and shortened the time needed for training and team building. During the 
virtual item-writing camp we provided training for the participants that included: (1) an introduction 
to MKT literature, (2) definitions of the two tasks of teaching, (3) examples of items from our item 
pool, and (4) ways of checking that items fit the definition of the task of teaching they were targeting. 
We also provided a set of algebra topics we selected as representative of core mathematical ideas in 
college algebra, and that relate to linear, rational, and exponential functions. The faculty worked in 
self-selected teams of 2 to 3 participants; they were asked to draft items with feedback being provided 
by other participants and members of the research team in several cycles of feedback and revision. 

Data and analysis 

We collected two types of data (1) audio and video recorded work sessions in which the faculty 
worked collaboratively in teams to draft items, reviewed draft items from other teams, and used other 
teams’ review comments to change and improve their drafts, and (2) reflection memos from the 13 
instructors written at the end of each week, and that sought personal insights on the work of writing 
items. We used both ongoing and retrospective analyses of the data. Ongoing analysis occurred during 
the item-writing camp and involved reviewing the reflection memos after Week 1 to identify common 
themes using an open coding and a constant comparative method (Corbin & Strauss 2008).  

Theme: Complexity of Writing MKT Items 

Objective Choices for 
Multiple Choice Items 

It is challenging to create tasks with objectively correct options and objectively incorrect 
options (Mark, Memo #1, June 2, 2021) 

Evidence for Student 
Understanding 

A big reminder from the past week or so has been the idea of “what does it mean to 
understand __?” For example, to demonstrate understanding if a student computes the 

annual growth factor based upon 10-year percentage growth, that doesn’t guarantee that 
they understand. (Steph, Memo #1, June 4 2021) 

Metacognition It feels very meta to write not just what student thinking might be but to take it to the 
level of what a teacher might be thinking about student thinking and how student 

thinking can be elicited. (Maggie, Memo #1, June 4, 2021) 

Figure 1: Sample theme, subthemes, and sample quotes 

These themes informed prompts for the reflection memo delivered after Week 2. Figure 1 shows one of the 
themes, its subthemes, and sample quotes that emerged. During retrospective analysis, we examined all 
available data (recordings and memo responses) using the coding system used to analyze the reflection 
memos from Week 1 while adding new themes and sub themes as needed. Four researchers independently 
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coded these records; then met to compare, discuss, and agree on a final list of themes identified across the 
data set. This paper presents preliminary findings focusing on the data found in participants’ memos. 

Preliminary Findings 
Four themes emerged from our data related to the participants’: (a) attempts to understand MKT, (b) 
attempts to understand the MKT-item writing process, (c) attempts to draw on their teaching 
experience in the item-writing process, and (d) realizations of the complexity of writing MKT items. 
The first two themes were not entirely surprising, as they represent issues that anyone doing the work 
of MKT instrument development has to grapple with. Due to space limitations, we present findings 
about the last two themes to highlight insights into experiences of MKT writers who were 
encountering MKT research for the first time. These themes represent ways in which participants 
wrestled with writing items to assess community college instructors’ thinking about student thinking. 

Drawing on Teaching Experience 

Participants leveraged their teaching experience in the item-writing process in two different ways: (a) 
They used common student errors that they have observed in their own teaching of college algebra 
and (b) negotiating the goals of the college algebra course impacted their decisions in item writing.  

Using Common Student Errors. Of the 13 instructors, ten reflected on how they sought to use common 
student errors they have encountered in their experience teaching college algebra to write items that 
would assess community college instructors' thinking about student thinking.  They wrote that they 
began with common “mistakes,” “errors,” or “misconceptions” that they see in their own teaching. 
For example, Steph (pseudonym) wrote: 

I thought about problematic areas… common (from my experience) struggles [students] face or 
challenges they have in making sense of the ideas… like percent, geometric mean, ... then I created 
a couple of items to assess an instructor’s ability to connect their math content knowledge with 
these hypothetical student responses. (Steph, Memo# 2, June 10, 2021).  

Steph gave Figure 2 as an example of an item he created by reflecting on his knowledge of students' 
thinking.  His ability to reflect on a common student struggle informed his decision to draft a realistic 
problem for college algebra at community colleges. Participant’s knowledge of students’ struggles 
with mathematical ideas was valuable for the item development process. 
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Negotiating Goals for College Algebra. Our analysis revealed that participants leveraged their 
teaching experience as they wrote items to assess instructors’ ability to interpret students’ work 
relative to the instructional goals for the course. For example, Taylor wrote about the importance of 
writing items that focus on community college instructors’ ability to understand their students’ 
conceptual and procedural understanding: 

I tried to think about common errors or misconceptions I observe students making consistently... 
I also try to go back and forth between procedural and conceptual knowledge. Having procedural 
knowledge doesn’t guarantee having conceptual understanding but it was difficult sometimes to 
pull and separate the two… I think that some of my items were focused on procedural knowledge 
more so than conceptual knowledge although having conceptual knowledge is key. (Taylor, Memo 
#2, June 10, 2021). 

Taylor’s understanding about the goals for college algebra enabled her to be mindful of the different 
types of understanding that the course seeks to develop, and to then think about the types of items 
needed to assess instructors’ thinking about these types of student understandings. Trent also seemed 
to be thinking about the goals for this course when he wrote:  

There is still a large divide between what different [other participants] think is most important in 
college algebra. My team is very much focused on conceptual understanding and big ideas and 
others appear to still hang on to what I personally think are outdated aspects of the course. (Trent, 
Memo #2, June 10, 2021). 

Trent’s comment highlights a challenge related to intended outcomes for college algebra as there is 
variation in course outcomes for college algebra across institutions and states. Trent’s statement 
seemed to go a step further than Taylor’s by thinking about how other participants in the item camp 
were thinking about teachers’ thinking about student thinking. Professional teacher organizations in 
the U.S. encourage mathematics teachers at all levels to strike a balance between developing their 
students’ conceptual understanding and procedural fluency (e.g., American Mathematical 
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Association of Two-Year Colleges 2018).  The challenge of making sense of a students’ depth of 
understanding using a snapshot of a student’s work presented on an MKT-CCA item in the absence 
of a dialogue with the student complicated the ability of item camp participants to write items that 
would assess an instructors’ ability to think about and make judgements about student thinking. The 
participants’ insights about the varying goals of college algebra contributed to the item-writing 
process in terms of the development of MKT-CCA items that assess test takers’ ability to think about 
students’ understanding in both procedural and conceptual terms. 

Realizations of the Complexity of Writing MKT Items 

Our data showed participants negotiating the complexity of writing MKT assessment items in three 
ways: (a) creating multiple-choice options that could be evaluated objectively, (b) evaluating 
evidence of students’ understanding, and (c) the challenge of metacognition. 

Creating multiple-choice options. Not only did the participants have to contend with crafting an item 
stem about an identified common student error but they also had to create either multiple-choice 
options or binary options for testlets that would be realistic for the stem and for college algebra. Eight 
participants wrote about their struggles with writing multiple-choice options. They gave varying 
reasons for why they struggled including: writing options that could be evaluated without subjectivity, 
writing realistic incorrect student responses, and using snapshots of students' incorrect work produces 
some unpredictability since students’ work cannot be easily explained or packaged into a multiple-
choice item. For example, Steph said:  

Multiple choice questions are VERY hard to write. Do the MC choices have to be right or wrong? 
Or can they all be viable and the response will tell us something about the respondent?  In my first 
case, correct student work is shown and the respondent is asked which question they might ask to 
follow up on student thinking. It might be argued that all 4 questions (MC options) are possible 
(that is... not really “wrong” or “right”...) (Steph, Memo #1, June 4, 2021) 

Like Steph, most participants struggled to decide on how to orient multiple-choice options to best 
assess a test taker’s understanding of students’ work or the test taker’s perceptions of the best way a 
teacher would respond to help a student struggling with a math concept. The latter was further 
exacerbated by test takers’ perceptions of the goals of college algebra and how it should be taught—
two instructors could select diverging paths of intervention (e.g., two different follow up tasks) they 
believe would be appropriate intervention depending on their believes about teaching mathematics. 

Evidence of student thinking. Ten participants wrote about the challenge of using students’ written 
work and how that made writing items assessing community college instructors’ ability to understand 
students' work difficult. Of the ten, five wrote about the difficulty of moving from a common student 
error to an MKT-CCA item, as illustrated in the following excerpt from Star’s reflection memo: 

Nearly all of my items were drawn from actual work that my students have done in the past. I      
found that more often than not, the mistakes that students make cannot easily be explained/do not 
follow a predictable pattern. While it made it very difficult to write options for those stems, I think 
those will be the most valuable for testing MKT! Writing the “Understanding” items was an 
interesting experience because it highlighted the assumptions we make about student work. What 
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evidence do we base those assumptions on? Or is it all experience? (Star, Memo #2, June 10, 
2021).  

Star’s pondering about the challenge of writing items about students’ work, that different test takers 
who bring different teaching experiences, can interpret in a way that leads them to choose the same 
correct choice without the option of asking the student follow-up questions was shared by other 
participants. The jump from identifying common student errors to crafting an item that would 
meaningfully assess a community college instructor’s thinking about the student's thinking posed 
challenges that Star and other participants had never wrestled with.  

The Challenge of Metacognition.  The reflection questions prompted participants to make explicit not 
only their thinking about their knowledge for teaching college algebra but to also think about the test 
takers’ thinking about students’ thinking and how that thinking would elicit knowledge needed in the 
particular task of teaching. The difficulty item writers had in thinking about student thinking suggests 
that the activity is not standard practice among community college instructors, that is, thinking about 
other faculty’s knowledge is not in the scope of community college instructors’ role as teachers, and 
we hypothesize that it is therefore rare. Star said: 

The line between knowledge of college algebra and knowledge for teaching college algebra is 
much finer than I thought. My first pass at a lot of the items I wrote ended up testing the 
participant’s [mathematical] knowledge, rather than their knowledge for teaching. I think a lot of 
my knowledge for teaching college algebra is subconscious, and I still haven’t quite figured out 
what the difference is, in explicit terms. (Star, Memo #2, June 10, 2021). 

Star’s reflection suggests that the work of writing MKT items is different from the work of writing 
assessment items for students that focus on college algebra content. MKT items, especially those 
focused on understanding students’ work are inherently different in the sense that they target to assess 
a test taker's mathematical thinking about students’ thinking. Maggie touched on this in her memo:  

The writing of the items is also new for me. It feels very meta to write not just what student thinking 
might be but to take it to the level of what a teacher might be thinking about student thinking and 
how student thinking can be elicited. Putting that into parallel foils is hard. Heck, writing the stem 
is hard! (Maggie, Memo #1, June 4, 2021) 

Discussion 
Involving practitioners in item writing meant adding a layer of training—as this was a group not 
intimately engaged in researching MKT—but also brought valuable perspectives to our item-writing 
process. Practitioners’ experiences teaching college algebra at community colleges and their 
understanding of linear, rational, and exponential functions helped to enrich our database of items. 
Further, their ability to draw on their experiences to highlight common student errors for students in 
the targeted college algebra topics and their reflections on the goals for the course impacted the types 
of MKT-CCA items they drafted, which we believe will add to the diversity of items in the instrument. 
Finally, we found that the process of writing MKT-CCA items to assess instructors’ thinking about 
student thinking provided the instructors who attended the item camp valuable insights into their own 
practice. Analysis of the data offered clues about how participants wrestled with issues such as what 
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it means for a student to understand an idea and the kind of evidence needed to show understanding. 
The discussions held among partners in the item writing or reviewing process were rich and allowed 
the writers to think about issues around instruction that they do not ordinarily think about outside the 
context of thinking about a colleagues’ thinking about student thinking. 
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Introduction  
This research deals with the teaching of functions and students' functional thinking development in 
Slovakia. According to Doorman et al. (2012) and Pittalis et al. (2020), there are four main aspects 
of the functional concept and functional thinking: 

1. The function as an input-output assignment: This view on function as an input-output machine 
stresses the operational and computational character of the function concept. It also comes 
into play when patterns and structures are investigated (recursive patterning). 

2. The function as a dynamic process of co-variation: This aspect concerns the notion that “two 
quantities varying simultaneously such that there is an invariant relationship between their 
values that has the property that, in the person’s conception, every value of one quantity 
determines exactly one value of the other.” (Thompson & Carlson, 2017, p. 444) 

3. The function as a correspondence relation: A correspondence relation includes identifying a 
correlation between variables, using the function rule to predict far-function values, and 
finding the value of one variable given the value of the other. (Confrey & Smith, 1995) 

4. The function as a mathematical object: “A function is a mathematical object which can be 
represented in different ways, such as arrow chains, tables, graphs, formulas, and phrases, 
each providing a different view on the same object.” (Doorman et al., 2012, p. 1246) 

This set of four views has some taxonomy characteristics, in the sense that it shows an increasing 
level of sophistication and may also suggest an order in which to acquire functional thinking. 
Therefore, the main aim of this research is to describe how is the functional thinking perceived by 
Slovak teachers and how the Slovak textbooks cover this topic.  

Method 
This study is part of the European project Erasmus+ FunThink that tries to improve functional 
thinking in a transnational perspective drawing on the partners’ specific and complementary 
expertise. To describe the situation in Slovakia, we conducted six semi-structured interviews with 
Slovak teachers from primary to tertiary schools and analysis of the Slovak mathematics textbooks. 
Subsequently, we analyzed the data collected in the terms of the mentioned aspects. 

The interviews were focused on the person’s understanding of functional thinking, ways to address 
functional thinking in the class, and the implementation of some design principles. Due to the current 
situation, the interviews took place online, all of them were recorded. The Slovak mathematics 
textbooks, by Kubáček (2010-2012), cover all four years of secondary education in Slovakia and are 
the only mathematics textbooks approved by the Ministry of Education. In the tasks, we monitored 
which aspect occurs in them and which aspect is used most often in the tasks. 
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Results and conclusions 
All six interviewees mentioned the search for connections and relationships between values or 
variables when describing functional thinking. They also agreed on what is the main problem in 
developing functional thinking in Slovakia. That is, as one teacher said: “Mathematics tools - 
variables, algebraic expressions, equations were reduced in the secondary school curriculum. 
Therefore, high school students have a big problem with the perception of variables. That in turn 
hinders the development and inquiry of a mathematical model of a function. The student intuitively 
perceives the dependence between variables, but the problem pops out when it is necessary to work 
with a mathematical apparatus.” Teachers emphasized that as many tasks as possible with a real 
context should be included in the teaching, thus linking knowledge to practice.  

Given the four aspects of teachers' way of teaching, we have come to the following conclusion: When 
teaching some unit e.g., a linear function, they begin with aspect 1. Then their teaching methods 
differ. They either solve problems with the real-world context or everyday situations (aspect 2) by 
which they gradually generalize new knowledge (aspect 3) until they are completed with the 
definition of a linear function (aspect 4), or first they define the concept of a linear function (aspect 
4) and then address tasks involving aspects 3 and 2. We can also add that in Slovak textbooks by 
Kubáček, the first three aspects occur in approximately the same number, tasks for the fourth aspect 
are rare, in some cases absent. In conclusion, we can add that there is a certain discrepancy between 
interviews and textbooks, which is influenced by the tradition of teaching functions. 
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We report the results of a research focused on studying what aspects of the instructional process 
prospective mathematics teachers relate to their reflections on the implementation of mathematical 
modelling in their didactic proposals. To do this, we used the construct Didactic Suitability Criteria 
proposed by the Onto-Semiotic Approach, which is the tool used by prospective teachers in their 
Master’s Degree Final Projects to reflect on their own practice. In methodological terms, we carried 
out a content analysis of 122 Projects written during the 2019-2020 academic year, and whose 
implementation was performed in a virtual context due to the COVID-19 pandemic. Among the 
results, we stress that the prospective teachers related their comments on mathematical modelling 
mainly to the epistemic, affective, and ecological criteria of the implemented instructional process. 

Keywords: Didactic suitability criteria, mathematical modelling, teacher reflection. 

Introduction 
There is a worldwide consensus on the development of competencies that involve the use of 
mathematics to solve real-world problems, among which mathematical modelling stands out (Kaiser, 
2020). This competence is considered as: a) a central aspect of PISA for problem solving 
(Organisation for Economic Co-operation and Development, 2019); b) a beneficial process for the 
learning of mathematics (Blum, 2011); c) essential to train individuals capable of linking their 
mathematical knowledge to contemporary needs (Doerr & Lesh, 2011). Some studies have been 
reported on the role of modelling in teacher training (e.g., Tekin, 2019; among others), which are in 
line with the Maaß’s (2007) idea that it is not enough just to train teachers in modelling, but they must 
also experience it. Unlike such studies, the one here reported focuses on the reflection of prospective 
teachers on the implementation of modelling in their Master’s Degree Final Projects (MFP). 

In the Spanish context, prospective teachers must obtain a master’s degree in order to teach 
mathematics at secondary and baccalaureate education, for which they must prepare an MFP. This is 
an original, autonomous, and individual work, which allows the student to show the training content 
received and the general competencies acquired during the master’s program in an integrated way. 
Furthermore, it must contribute to reflect on and deepen the analysis of their own practice, making it 
possible to propose elements for its improvement. Thus, due to the importance of both modelling and 
teacher reflection within teacher training, this study raises the question: What aspects of the 
instructional process do prospective mathematics teachers relate to mathematical modelling when 
they reflect on its implementation? In order to answer it, we analysed the reflection that prospective 
teachers made in their MFPs on the design and implementation of their didactic proposals, in which 
they included the work with modelling. We analysed this reflection using the Didactic Suitability 
Criteria (DSC) proposed by the Onto-Semiotic Approach (OSA) (Godino et al., 2007), which was the 
same tool used by the prospective teachers to reflect on their own practice. 
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Theoretical framework 
Mathematical modelling 

In general terms, the modelling process is understood as a transition between the «real world» and 
«mathematics» for solving a problem-situation taken from reality. At a theoretical level, different 
cycles have been designed to explain this process (Borromeo, 2006), as well as different perspectives 
on its implementation in classroom have emerged (Abassian et al., 2020). Since in this study we did 
not adopt any particular modelling cycle or perspective, we considered some consensual attributes 
that characterise both the work with this process in classroom and a modelling problem. 

The work with modelling in classroom is usually carried out in small groups of students, to whom a 
real-world problem-situation is posed that they must mathematise (Doerr & English, 2003). 
Modelling activities involve a cyclical process, with different ways to obtain a plausible and coherent 
solution with the context of the situation posed (English, 2003). This problem must be open (not 
limited to specific answers or procedures), complex (useful information must be distinguished from 
the rest of the wording of the task), realistic (adding elements taken from reality), and authentic (a 
situation consistent with a fact from reality) (Borromeo, 2018). 

Didactic suitability criteria 

In the OSA (Breda, 2020), the didactic suitability of a teaching-learning process is understood as the 
degree to which it (or a part of it) meets certain characteristics that allow it to be qualified as suitable 
(optimal or adequate) in order to achieve an adaptation between the personal meanings achieved by 
the students (learning) and the institutional meanings intended or implemented (teaching), taking into 
account the circumstances and available resources (environment). This multidimensional construct 
consists of six suitability criteria: epistemic criterion, to assess whether the mathematics that is taught 
is ‘good mathematics’; cognitive criterion, to assess, before starting the instructional process, whether 
what is intended to be taught is at a reasonable distance from what the students know; interactional 
criterion, to assess whether the interaction solves students’ doubts and difficulties; mediational 
criterion, to assess the adequacy of resources and time used in the instructional process; affective (or 
emotional) criterion, to assess the students’ involvement (interest, motivation) in the instructional 
process; ecological criterion, to assess the adaptation of the instructional process to the educational 
project of the school, the curricular guidelines, the conditions of the social and professional 
environment, etc. Each of these criteria has its respective components, and its utility requires defining 
a set of observable indicators, which allow assessing the degree of suitability of each of the facets of 
the instructional process. The list below shows the components of each DSC with the codes used in 
this research to label them, based on the Breda and collaborators’ (2017) guideline. 

Epistemic: Errors (ES1); Ambiguities (ES2); Richness of processes (ES3); Representativeness 
of the complexity of the mathematical object (ES4). 

Cognitive: Prior knowledge (CS1); Curricular adaptation (CS2); Learning (CS3); High 
cognitive demand (CS4). 

Interactional: Teacher-student interaction (IS1); Students’ interaction (IS2); Autonomy (IS3); 
Formative assessment (IS4). 

Mediational: Material resources (MS1); Number of students, class schedule, and conditions 
(MS2); Time (MS3). 

Affective: Interests and needs (AS1); Attitudes (AS2); Emotions (AS3). 
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Ecological: Curriculum adaptation (EcS1); Intra and interdisciplinary connections (EcS2); 

Social and labour usefulness (EcS3); Didactic innovation (EcS4). 

In the OSA, mathematical modelling is considered as a hyper or mega process (Godino et al., 2007), 
since it involves other more elementary processes (representation, argumentation, idealisation, etc.). 
Furthermore, within this framework, enhancing modelling is an aspect that improves the suitability 
of the instructional process (Ledezma et al., 2021). 

Methodology 
In this study we followed a qualitative research methodology from an interpretative paradigm (Cohen 
et al., 2018), which mainly consists of a content analysis (Schreier, 2012). 

Research context 

This research was carried out in the context of the Master’s Program in Teacher Training for 
Secondary and Baccalaureate Education (mathematics speciality), taught by the public universities 
of Catalonia (Spain), during the 2019-2020 academic year. The master’s program prescribes (within 
the Internships module) to carry out educational internships in collaboration with the institutions 
established through agreements with the universities. In these internships, the prospective teachers 
must design a didactic unit that they must implement, which is determined by the educational 
institution, the students’ level, and the time of the school year in which they carry out their 
intervention. Because of this situation, the margin that a prospective teacher has to work exclusively 
on modelling in his/her didactic unit is subject to certain restrictions, but not in the redesign proposed 
in his/her MFP. Due to the lockdown because of the COVID-19 pandemic, the prospective teachers 
of this course had to implement their didactic units, either partially or totally, in a virtual context. 

For the elaboration of a MFP, the DSC are presented to the prospective teachers, along with the Breda 
and collaborators’ (2017) guideline that allows their application. With these tools, the prospective 
teachers are suggested to assess in their MFP the didactic unit that they implemented, so that they 
propose changes that can help improve the suitability of the instructional process. The structure of an 
MFP consists of five chapters: Introduction (institutional and curricular context of implementation), 
Implementation analysis (assessment of the didactic suitability of the didactic unit, using the DSC), 
Redesign proposal (reformulation of the didactic unit), Competence self-assessment (according to the 
knowledge and competencies acquired in the master’s program), and Annexes. 

Content analysis 

For this study we considered 122 MFPs, corresponding to the 2019-2020 academic year. For their 
qualitative analysis, we followed steps similar to those used by Sánchez and collaborators (2021). In 
a first step, according to the literature review and our knowledge on the topic, we drawn up a list of 
keywords related to mathematical modelling (context*, model*, problem*, real*), in order to identify 
the references about this process in the evaluative comments of the MFPs. In a second step, we 
recorded the data of each document (author, title, educational level, mathematical content), in order 
to have an ordered database to consult the MFPs and, in this way, keep a first record of which MFP 
mentioned the keywords from the first step. In a third step, we classified the MFPs according to four 
levels of reference to modelling that we could identify in their proposals, as detailed below: 

Proceedings of CERME12 3636



 

 
Level 0 (L0): No modelling problems are proposed/implemented; the inclusion of modelling is 

not considered in the redesign proposal. 
Level 1 (L1): No modelling problems are proposed/implemented; the inclusion of modelling is 

considered in the redesign proposal. 
Level 2 (L2): Modelling problems are proposed and there is a reflection on their implementation; 

no improvements are proposed to enhance modelling in the redesign. 
Level 3 (L3): Modelling problems are proposed and there is a reflection on their implementation; 

improvements are proposed to enhance modelling in the redesign. 

In a fourth step, we categorised the comments with references to modelling using the DSC. Various 
studies have addressed the teacher reflection in mathematics teaching training processes (see Breda, 
2020, for didactic analysis; Hidalgo-Moncada et al., 2021, for self-regulation practices; Sánchez et 
al., 2019, for the development of creativity, among others), using a content analysis methodology to 
make evident the use of the DSC components. In this research, these components are considered as a 
priori categories (Schreier, 2012), in order to identify the aspects of the instructional process that the 
prospective teachers related to the work with modelling. More specifically, we considered the 
evaluative comments from the Implementation analysis and Redesign proposal chapters, since they 
include all the prospective teachers’ reflections on their own practice, from the MFPs classified in 
the levels of reference L2 and L3. As an example of the content analysis described above, we use the 
MFP #24. We found several references to the keywords: «model», «modelling», and «problem» in 
this MFP, which consists of a proposal for the teaching of functions in the third grade of secondary 
education (students aged 14-15). Among many others, we found this comment in the assessment of 
the CS4 component: “We tried to have activities and sessions that were more competent to work on 
cognitive and mathematical processes such as […] modelling and problem solving” (p. 12). However, 
this MFP did not include improvements to modelling in its redesign proposal, so we classified it in 
the level L2 (a more detailed analysis can be found in Ledezma et al., 2021). 

Results 
Classification of the MFPs according to the levels of reference to modelling 

From the search for keywords in the MFPs (first step of content analysis), we identified that 86 of the 
122 documents referred to the terms related to modelling. After recording each MFP (second step of 
content analysis), we classified them according to the levels of reference to modelling (third step of 
content analysis), thus we obtained the following results: 33 MFPs in L0, 41 MFPs in L1, 21 MFPs in 
L2, and 24 MFPs in L3. The first and third step of content analysis also allowed us to refine the number 
of MFPs to analyse: a) during the first step we identified three MFPs presented under the research 
project format, so we did not consider them for this study; b) during the third step we identified three 
MFPs which did not explicitly refer to modelling in the Implementation analysis chapter, but they 
referred to implemented modelling activities in the Annexes chapter, including comments related to 
this process but not being attached to any specific DSC. Although we classified these last three MFPs 
in L3, we did not consider them in the fourth step of content analysis. Taking into account these 
considerations, the following results show the analysis of 45 MFPs classified in levels L2 and L3. 

Classification of the comments according to the DSC components 

From the previous classification (third step of content analysis), we categorised the evaluative 
comments related to modelling according to the DSC components. To do this, we focused on the 
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Implementation analysis chapter of the 45 MFPs classified in levels L2 and L3, and then we identified 
in which DSC component the prospective teachers –explicitly or implicitly– made their reflections 
on the role of modelling in their didactic units (fourth step of content analysis). In this way, the results 
presented in Table 1 show the number of comments that we identified in the assessment of each DSC 
component, using the codes mentioned in the theoretical section. 

Table 1: Number of comments referring to modelling in each DSC component 
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ES1 1 CS1 5 IS1 3 MS1 4 AS1 32 EcS1 2 

ES2 2 CS2 1 IS2 4 MS2 0 AS2 3 EcS2 14 

ES3 40 CS3 1 IS3 1 MS3 4 AS3 5 EcS3 20 

ES4 11 CS4 12 IS4 0     EcS4 4 

Total 54 Total 19 Total 8 Total 8 Total 40 Total 40 

Discussion and conclusions 
The first step of content analysis made us evident that around two thirds of the 122 prospective 
teachers referred in some way to modelling in their MFPs, through the keywords related to this 
process. The second step of content analysis allowed us to identify the mathematical contents of the 
MFPs in which the presence of such terms was stressed (in descending order): Functions, 
Trigonometry, and (linear and quadratic) Equations. This tendency to use modelling to teach 
functions, on the part of the prospective teachers, is in line with Michelsen’s (2006) position, who 
highlights the role of this mathematical object as a tool to develop the modelling process in classroom. 
The third step of content analysis refined the results of the first step, as it allowed us to narrow the 
number of MFPs to analyse (from 122 to 119), and also showed us that around a quarter of the 122 
prospective teachers implemented modelling in their didactic units. A relevant aspect is that, although 
the master’s program includes a submodule on modelling (within the Specific Training module) in 
which the cycle proposed by Blum and Leiß (2007) is presented, none of the MFPs referred to this 
cycle (or any other) and neither used it to describe the proposed problems or to analyse their 
implementation. This suggests, on one hand, that there is insufficient clarity on how to use a 
modelling cycle to analyse this kind of problems and, on the other hand, that carrying out this kind 
of analyses in the reflection on their own practice is not considered as a relevant aspect. However, 
since this is an autonomous work, the prospective teachers are not asked to specifically reflect on 
modelling from the theoretical perspective in their MFPs, but rather it is an open decision, taking into 
account the pages number and time constrictions for its elaboration. 
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The fourth step of content analysis made us evident that most of the comments on the implementation 
of modelling focused on the assessment of the epistemic, affective, and ecological criteria, although 
also –to a lesser extent– on the cognitive criterion. Regarding the epistemic criterion, the assessment 
of the ES3 component (on the realisation of relevant processes in mathematical activity) was the one 
that gathered the largest number of comments on modelling, because here the processes worked in 
the didactic unit were defined. A relevant aspect is the tenuous differentiation established in some 
MFPs to define the processes: «problem solving», «modelling», and «contextualisation», in which, 
for instance, if a statement was posed within the mathematical world, then they did «problem 
solving», but if it was posed in the real world, then they did «modelling»; or also, if a problem 
developed «contextualisation», then it was a «modelling» problem. This situation could indicate that 
there is insufficient clarity about the theorising around mathematical modelling and the characteristics 
of this kind of problems (as described in Borromeo, 2018). Derived from above, the comments in the 
ES4 component (on the meanings and representation modes for the treatment of mathematical 
objects) mainly refer that modelling problems allowed working the mathematical objects using 
different semiotic representations. Regarding the affective criterion, the assessment of the AS1 
component (on the interest and utility of the tasks) was the second with the largest number of 
comments on modelling. These comments pointed out that this kind of problems, being 
‘contextualised’ and ‘realistic’, caught (or intended to catch) the students’ attention, due to many of 
them took advantage of the context of COVID-19 and lockdown as a topic in their wordings. 
Regarding the ecological criterion, the assessments of the EcS2 (on the relation between 
mathematical contents with other disciplines) and EcS3 (on the utility of contents for social and labour 
insertion) components included comments referring to modelling as a tool to relate mathematics, both 
to other curricular contents and to the students’ context. We make a special mention regarding the 
cognitive criterion, since the assessment of the CS4 component (on the activation of relevant 
cognitive processes in mathematical activity) stressed that modelling problems made it possible to 
work on other relevant processes of mathematical activity (in line with Godino et al., 2007). 
Regarding the interactional and mediational criteria, it is evident that their assessments included very 
few comments on modelling. Due to the virtual teaching context, the prospective teachers commented 
that they had many difficulties in developing a collaborative work between their students (affecting 
the interactional criterion), as suggested for the work with modelling (Doerr & English, 2003). For 
this reason, in both criteria they made comments on the components that would potentially be 
addressed by the solving of this kind of problems in their redesign proposals. 

Resuming the research question, the main conclusion is that the prospective teachers mainly related 
the epistemic, affective, and ecological (and to a lesser extent, the cognitive) aspects when they 
reflected on the work with modelling in their didactic units implemented in a virtual context (similar 
result to that found in Breda, 2020). The study reported in this paper is part of a broader research 
project, which aims to contribute to research on teacher reflection in teacher training, specifically, on 
the implementation of modelling. Since this part was carried out during the 2019-2020 academic year, 
the next step is to compare these results with the prospective teachers’ reflections in the MFPs from 
the 2020-2021 academic year, implemented in a face-to-face context. As a final purpose, we intend 
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to design a guideline of specific DSCs for the work with mathematical modelling in the instructional 
processes implemented both in a face-to-face and in a virtual context. 
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The global health emergency caused by COVID-19 has had profound repercussions in education 
around the globe. In response, many educational institutions, including universities, have shifted 
teaching to online formats. This sudden and abrupt change has had a significant impact on teachers’ 
emotions. In this study, we use an instrumental case study to explore the effect this unexpected context 
has had on the emotions of a primary teacher educator. Drawing on the theory of the cognitive 
structure of emotions, we analyse the educator’s emotions, as evidenced and as reported, over a 
series of teaching sessions. The results show the occurrence of both positive and negative emotions 
deriving from the situation, which should give pause for thought in the university context. 

Keywords: Emotions, online teaching, affective domain, mathematics teacher educator. 

Introduction 
There is an increasing amount of research focussed on investigating the affective domain and its 
importance in the teaching and learning of mathematics. Interest in the topic has developed over the 
last few decades, and this has been reflected in different theoretical and methodological approaches 
(Hannula, 2011). One of the constructs constituting this domain which has received increasing 
interest is that of the emotions. It has been demonstrated within the fields of cognition and 
neuroscience that emotions are fundamental to people’s learning and development. The importance 
of affect and the emotions is now also beginning to be recognised within the area of educational 
research (Pekrun & Linnenbrink-Garcia, 2012). Furthermore, teacher educators have centered the 
attention of the field as key professionals in the management of (prospective) teachers professional 
development (Goos & Beswick, 2021). 

As the emotions are profoundly intertwined with thought (Immordino‐Yang & Damasio, 2007), it is 
natural that they should play a role in the relationships and situations that the teacher manages in the 
classroom. This is because the emotions reflect not only an individual’s external relationships with 
other people, society and the situation, but also their internal relationships with their own reflections 
and memories (Mayer et al., 2011). Bearing this in mind, and consistent with Zembylas (2007), in 
order to teach effectively, educators should be able to marshal their emotional knowledge to establish 
or strengthen links with the topic and with the students, to develop the syllabus, and to make decisions 
on how to act. Further, it makes sense to assume that an appropriate environment for learning is 
fostered when the experience is pleasant for educator and learner alike. In this respect, various studies 
have set out to describe and analyse students’ emotions and their influence on learning (e.g., 
Fernández-Berrocal et al., 2017; Pekrun et al., 2002). Within a supportive environment, the student 
will be willing to make an effort to learn and to reconfigure their existing knowledge, which is the 
main purpose of learning. 
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On the other hand, the pandemic (COVID-19) has triggered significant changes at all levels of 
education, obliging institutions and teachers to rely on technology to conduct lectures and other 
teaching-learning activities (Engelbrecht et al., 2020). With so much uncertainty, it is unsurprising 
that teachers have experienced a range of emotions more intense and keenly felt than usual.  

In response to this issue, the research question for this paper is the following: What impact has the 
imposed online context had on the emotions felt by a primary level teacher educator while teaching 
the course “Mathematics and its Didactics I”? To answer this question, we carried out an instrumental 
case study. This involved video recording an educator’s classes, and conducting follow-up interviews 
with her to clarify and explore the emotions she had felt.  

Theoretical framework 
In our study of emotions, we draw on the Ortony, Clore, and Collins (OCC) Theory (Ortony et al., 
1996), based on the cognitive structure of emotions. We assume, following Ortony et al. (1996), that 
prior to any emotion there is a system of analysis and information processing, that is to say, the 
subject’s cognitive construal of a specific external situation. We use the definition provided by these 
authors, for whom “emotions are valenced reactions to events, agents, or objects, with their particular 
nature being determined by the way in which the eliciting situation is construed” (Ortony et al., 1996, 
p.13). Emotions arise from specific situations and the perception the subject has of them. The subject 
cognitively construes the situation in a manner which can be more or less conscious, and this construal 
produces a valenced reaction on the basis of the subject’s own internal system of goals, rules and 
attitudes. The valency refers to the positive or negative charge of the emotion, according to whether 
the event taking place fulfils or not the subjects goals, rules and attitudes. 

When a teacher is giving a class, consciously or unconsciously, they are constantly construing the 
different interactions and situations which arise, eliciting different emotional responses: some of 
greater intensity, some longer lasting, and some with a larger cognitive load. One of the functions of 
an emotion is prime the subject for action (Ortony et al., 1996). In this way, emotions can provide us 
with information about both the eliciting situation and the reaction this produces, as we might not 
always react in exactly the same way when faced with similar situations. The explicit analysis of 
these processes can reveal information that the teacher might not have been consciously aware of, 
and can thus help them to understand why they acted as they did, and to decide whether such 
responses would be effective in similar situations. 

According to the OCC model, emotions can be classified into three large groups, corresponding to 
the three major aspects of the world which can trigger them: events, agents and objects (Ortony et al., 
1996). Prior to the emotion, the subject appraises the situation and focuses on one of these three 
aspects, that is to say, either the consequences of the event, or the responsibility of the person (or 
other agency) involved in bringing about the event, or on the simple pleasure or displeasure that the 
event has caused. For this reason it is important to describe the situation which has triggered the 
emotion, and to study emotions in the context in which the event takes place. According to Ortony et 
al. (1996), each individual has a structure of goals, interests and beliefs underlying their behaviour; 
in other words, the construals preceding an emotion vary from person to person on the basis of this 
structure. Naturally, this structure is directly related to the three major aspects of the world mentioned 
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above. Hence, consistent with the OCC theory, the appraisals determining whether or not an event is 
desirable are underpinned by an internal structure of goals; likewise, whether the action of an agent 
is praiseworthy aligns with the subject’s system of norms; and whether or not an object is considered 
attractive is based on their system of attitudes. The OCC theory proposes a classification of emotions 
according to the context that elicits them (Table 1). Hence, it identifies emotions as reactions to 
events, agents, and objects, or a simultaneous combination of event and agent. 

Table 1: Classification based on information from the OCC theory (Ortony et al., 1996) 

Reactions to events 
Well-being Joy: pleased about a desirable event  

Distress: displeased about an undesirable event 
Fortunes- 
of-others 

Happy-for: pleased about an event desirable for someone else 
Sorry-for: displeased about an event undesirable for someone else 
Resentment: displeased about an event desirable for someone else 
Gloating: pleased about an event undesirable for someone else 

Prospect-based Hope: pleased about the prospect of a desirable event 
Fear: displeased about the prospect of an undesirable event 
Satisfaction: pleased about the confirmation of the prospect of a desirable event 
Fears-confirmed: displeased about the confirmation of the prospect of an undesirable 
event 
Relief: pleased about the disconfirmation of the prospect of an undesirable event 
Disappointment: displeased about the disconfirmation of the prospect of a desirable 
event 

Reactions to agents 
Pride: approving of one’s own praiseworthy action 
Shame: disapproving of one’s own blameworthy action 
Admiration: approving of someone else’s praiseworthy action 
Reproach: disapproving of someone else’s blameworthy action 

Reactions to objects 
Love: liking an appealing object 
Hate: disliking an unappealing object 

Combined reactions to event and agent 
Gratitude: pleased about a desirable event and someone else’s praiseworthy action 
Anger: displeased about an undesirable event and someone else’s blameworthy action 
Gratification: pleased about a desirable event and one’s own praiseworthy action 
Remorse: displeased about an undesirable event and one’s own blameworthy action 

In addition to identifying emotions and interpreting the corresponding situations which elicited them, 
we will also analyse whether the unexpected online context had an influence on the educator’s 
emotions, or indeed actually acted as a trigger for them. It should be borne in mind that the majority 
of Universities in Spain opted to switch to online classes during the pandemic. This situation saw 
teachers having to modify not only their material but also their manner of running classes just to keep 
students’ attention. Although the health crisis has been seen by some as an opportunity for change, 
there has also been a degree of uncertainty in the sudden shift to online teaching (Engelbrecht et al., 
2020). These anxieties are likely to be reflected in the educator’s emotions on finding themself in an 
unfamiliar environment, without the kind of control they are accustomed to having in the physical 
lecture hall. 
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At the same time, teachers are aware that if they are to be effective in the new environment, they need 
to adapt their teaching style (Hollebrands & Lee, 2020), and equally importantly, they need to do so 
within the confines of the limited resources and facilities their institutions are able to provide. In the 
best case scenario, they can count on the support of colleagues who generously share their material, 
time and ideas, or even agree to work as a team. Even so, every teacher has found themselves 
investing considerable time in learning how to use new applications which might be of use, and in 
creating or adapting their teaching material so as to fulfil the requirements of the online medium. 
These new challenges facing teachers can make them feel isolated and uncomfortable (Collazos et 
al., 2021; Hollebrands & Lee, 2020). 

It should be remembered that for most teachers and students the circumstances we find ourselves in 
are completely new. Due to the lack of feedback, one of the main challenges for teachers in online 
teaching is how to get the information they need from learners to check that the desired knowledge 
has been acquired (Collazos et al., 2021). This will be the guiding principle when educators plan their 
classes and elicit responses during the sessions, as in the new context, the traditional channels – 
monitoring students for reactions or still less circulating around the lecture hall or classroom – are no 
longer available. 

Methodology 
This study follows an instrumental case study design, taking an interpretative perspective with an 
exploratory intention. The informant for the research, who will be identified as Nora, is a primary 
teacher educator in Mathematics. At the time of the study, she had been a university teacher for 27 
years, the last 7 of which completely focused in teacher education at primary level and in Mathematics 
teaching. She was also an active participant in research projects into Mathematics education. We 
chose Nora because of her great communication skills and her willingness to discuss her own 
emotions, and because of her experience teaching teachers to teach mathematics (more than 10 years). 

The teaching observation took place during the delivery of Mathematics and its Didactics I, a course 
in the second year of the Degree in Primary Education, which focused on teaching arithmetic. Nora 
had taught the course previously, but this was her first time via online/ mixed modality classes, with 
students following the class remotely by computer. Data collection was carried out by means of video-
recording ten sessions of approximately one and half hours each. After five of these sessions, one of 
the researchers – who had observed the sessions in a non-participatory capacity– asked Nora to 
answer a set of questions (formalised as a report) about situations that had arisen; this was followed 
up by four semi-structured interviews aimed at amplifying and confirming Nora’s responses. 

According to Ortony et al. (1996), there are four kinds of evidence which can help us to understand 
emotions: language, personal reports, the type of behaviour elicited, and physiological cues. In our 
case, we were principally interested in the first two of these – language and personal reports – as they 
provide information about the subject’s prior cognitive appraisal leading to the elicitation of the 
emotion. For the purposes of this study, a content analysis was carried out (Krippendorff, 2018), 
taking the emotions proposed by the OCC theory (Table 1) as the categories of analysis. This model 
allows us to work with the cognitive part of the emotion. The analysis will show the triggering 
situation of the emotion and information about Nora's appraisal and how it makes her feel.  
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Analysis of the results 
This section shows the first emotions identified and classified in the research process, and the 
influence on them of the online context. Interlaced with the analysis, and marked by italic, we include 
some of Nora’s commentaries providing further evidence of the emotion. 

Reactions to events 

This category, we remind ourselves, concerns emotions bound up with Nora’s system of goals, and 
focuses on events, adjudged desirable or undesirable, depending on whether or not they enable her to 
achieve her goals. 

At various points, Nora mentions how important it is for her that the students participate and talk to 
each other; they should be at the centre of things, and it is they who should set the pace of the class. 
On occasions she finds it difficult to get any kind of response, while the students claim they are having 
problems activating the camera and even the microphone – when they do respond, they tend to write 
in the chat window. Typical among Nora’s comments is this: It does cause me a bit of frustration, I 
would like there to be more interaction through the microphone or with the camera because that 
makes the session more dynamic. 

Related to this is her sense that sometimes the classes are not going as she would like, according to 
her own conceptions, in direct contrast to the in-person format: I think that the activity with the 
multiplication tables, if they could come up to the blackboard to do it, interact and so on, it would be 
better. I mean, I feel bad for doing it in such a traditional way. In addition, at certain times, she would 
like to be able to deal with her students differently, to be more accessible and elicit the kind of answers 
and interaction mentioned above: Those interactions when you get closer: “Come on, what have you 
seen here?” That leaves me with a sense of disappointment ... in that I don't have a more direct 
relationship with them.  

This is a new challenge for Nora, and when she achieves the dialogue she wants with the students, as 
might be expected, she shows her pleasure: When I began giving the classes online I thought the level 
of interaction would be higher. When I saw that wasn’t the case, each time it happens, I feel pleased. 

When Nora puts herself in her students’ place, she evokes the category ‘fortunes-of-others’ (Table 1) 
with her empathetic response, appraising events as desirable or undesirable for her students. It seems 
clear that she perceives an enforced distance, which it is difficult to avoid in the online context. On 
the one hand, not being able to attend to and manage the emotions of her students is disappointing 
for her: I can’t be with them, the supportive role of saying “Come on everyone, you can do it”. On 
the other hand, she is sympathetic of her students’ situation. She recognises that the online context is 
also proving a challenge for them, particularly with regard to working in groups and to 
communicating with her when they are not in the classroom: They may be right that this year, until 
they get up to speed with deadlines and so on, they need a little more time. 

The final group of reactions to events are prospect-based, that is to say, based on events which the 
educator hopes or suspects might happen. Here we see how the online context causes her unease:  I’ve 
already lost 10 minutes before the class even starts, what with the computer won’t boot up, the 
camera, and whatever ... I don’t have any leeway, I’m much more dependent on the time. 
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Nora modified the activities so as to be more manageable in the online context, but she worried that 
in the end something might not work, or the students might get distracted and it might be difficult to 
gain their attention again: Fear of starting something and taking a long time to get going, or that the 
platform crashes; and then it’s that idea/emotion that stays with the students about the class (those 
problems and not the content). 

To this can be added the background worry that although the class seems to be progressing, nobody 
is asking any questions: In class they are more willing to ask questions, even if they are not following 
you. Online, though, to interrupt, to put their hand up, that is harder for them to do. When the students 
are in the classroom, if Nora spots a look of doubt on their faces, she encourages them to ask for 
clarification. Online, there is no way of seeing whether they understand, there is no visual feedback 
loop. 

In contrast to the above, however, there are also moments of satisfaction, when Nora manages to 
create a dynamic in which the students do intervene: Each time they get more involved, even though 
it is through the chat window, it gives me a certain degree of satisfaction. The same sense of 
achievement is felt after she manages to readjust the classes and still meet the stated objectives: I’ve 
covered what I wanted and I felt good. And I think they liked the slides. 

Reactions to agents 

This category of emotions concerns the attribution of responsibility for the triggering situation to a 
person (in our case usually the students or the teacher educator) on the basis of Nora’s norms, codes 
of conduct, rules and so on. 

When talking about the process of evaluating her students, Nora expresses a degree of discomfort (a 
process she feels is very demanding of her integrity), putting the focus on herself: I’m worried about 
not being fair in the evaluation ... discriminating who is well trained at that moment and who needs 
more time. It is an emotion which could appear in any context, but the fact that the exam is likely to 
be online, and therefore devoid of the usual measures to prevent cheating, increases her unease and 
mistrust. 

At other times, the focus is on the students, such as when in a group none of them is able intervene 
to discuss the activities because no-one has a microphone: I’m not happy about it, I get the impression 
they’re not being honest with me. Such as things are, the students can, if they wish, blame the tech 
and disappear, a ruse to avoid participating which is unavailable to them in the face to face classroom. 

Combined reactions to events and agents 

This category of emotions concerns appraisals involving both goals in relation to events and norms 
in relation to agents. An example is Nora’s sense of gratification for having successfully completed 
the large amount of extra work involved in adapting the course to an online context, and her feeling 
that the results have been good: I’ve done it, I’ve worked hard and have reaped the rewards ... Their 
faces have an expression of ‘Oh, that’s interesting!’ This particular comment arose when some 
students, following a mixed online/in-person methodology, had returned to the classroom with Nora 
and hence she could see their faces. Previously, when all the students were online, she had missed 
this kind of feedback. 
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Finally, there is specific moment when Nora feels indignant at the something a student says. The 
student switches on their microphone to complain about the latency affecting the online students, 
something she had been at pains to warn them would happen: I had gone over it a lot to make sure it 
was clear: I made sure the slides were large, and didn’t use the blackboard too much ... It seemed 
extremely unfair to me and I felt bad. In this instance, in addition to being, in the terminology used 
in OCC theory, an undesirable situation for Nora, she also found the action of the student 
blameworthy, as he had not listened to her or appreciated her efforts. 

Final reflections 
The analysis foregrounds how the educator’s emotions respond to the changes she perceives in her 
interactions with her students and the teaching-learning environment (Mayer et al., 2011), and how 
influential the online context is in triggering these emotions. According to Engelbrecht et al. (2020), 
teachers have to face new problems and may feel uncomfortable and isolated in this online context. 
From the beginning, we verified how for Nora it was a concern and trigger for many of the emotions 
we have analysed. It also makes sense of the fact that eleven of the emotions analysed have a negative 
valence and only four have a positive valence. 

The majority of the emotions which Nora affirms to have experienced are based on her dynamic 
structure of goals, which demonstrates her commitment to planning session with clear objectives that 
she wants to achieve. When this happens, the resultant emotions are happiness, feeling good and 
satisfaction, because the session has worked according to these approaches. If the focus is also on the 
agent (herself), the resulting emotions are of gratification and pride for having achieved them. The 
online context challenges teachers to adapt the way they teach (Hollebrands & Lee, 2020) and to take 
stock of their own capabilities, something worth noting. 

With respect to the events which Nora deems undesirable, we can see that the online context causes 
her anxiety and suspicion, as it does not allow her to carry out the class in the way that she is familiar 
with and that she considers appropriate for facilitating the students’ learning. She highlights this when 
she states that she misses being able to get close to the students to encourage them, guide them in 
what they are doing, and encourage them to share things with the group and enrich the contributions. 
In addition, she lacks feedback from the looks on the students’ faces when she is in the classroom: 
what they are understanding and what not, what they want to ask or reply to, what they like, and so 
on. This forms part of the isolation of the online teacher and the lack of feedback and interactions 
with the students in the online context (Collazos et al., 2021). Based on these emotions, questions 
arise not only regarding the need for support in adapting to the online context, but also for emotional 
support. According to Fernández-Berrocal et al. (2017), training in emotional competences can 
provide benefits at both a personal and group level. 
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Teachers’ professional development in collaborative contexts is a growing trend in Mathematics 
Education research. Particularly, Japanese Lesson Study has seen a great focus on its dissemination 
around the world. Research shows that Japanese culture is one of the main reasons that makes Lesson 
Study effective: understanding Lesson Study means understanding the cultural context in which it 
originated. We attempt to describe the Japanese and the Italian cultural contexts. Since there exists 
no consensus on what is essential to analyse in order to understand a cultural context, we present 
two approaches to this description, and consider some advantages and shortcomings. We hope to 
sprout discussion on the possibility to create guidelines for describing cultural contexts, shared by 
the community of researchers in Mathematics Education: awareness of beliefs, identity and practice 
is a sensitive element for successful mathematics teacher professional development. 

Keywords: Cultural context, culture, Japan, Lesson Study, Italy. 

Introduction 
Over the last 20 years, teachers’ professional development (TPD) in collaborative contexts has 
received ever-growing attention from the community of researchers in Mathematics Education 
(Robutti et al., 2016), and a recent survey by Bakker and colleagues (2021) confirmed the trend. 
Among the many different collaborative methodologies for TPD in Mathematics and Mathematics 
Education, Lesson Study has seen a great deal of research focused on its dissemination (i.e.: Huang 
et al., 2019; Huang & Shimizu, 2016; Quaresma et al., 2018). Lesson Study (LS) is a collaborative 
TPD methodology, part of the Japanese paradidactic infrastructure (Winsløw, 2011) since the 1880s, 
focused on the co-responsibility in the lesson-planning process of the involved teachers and 
knowledgeable others (Huang et al., 2019). 

LS is also the focus of the authors’ doctoral dissertations (in progress), which also aim at introducing 
LS in the context of Italian TPD. During YESS11, TWG1 dedicated to teacher education and 
professional development saw four out of eleven papers focused on LS in different contexts (Italy, 
Mozambique, Portugal, and Switzerland). In the discussions around the four papers, one question 
resulted relevant: what is the cultural context in which the research takes place? Indeed, being aware 
of their cultural context is one of the essential competences of mathematics teachers (and researchers) 
to gain awareness of their beliefs, their identity and their professional practice and to develop their 
teaching knowledge: a sensitive element for successful mathematics teacher professional 
development, and a demand evermore necessary and therefore not negligible (Andrews, 2010). Yet, 
issues arise when we try to address such demand: in the following, we will attempt to describe the 
Japanese and Italian cultural and institutional context and discuss such issues. 

Literature review 
Unsuccessful attempts at translating LS outside of its cultural context (Demir et al., 2012; Fernandez 
et al., 2003) suggest that, if LS is not introduced in a cultural context with proper consideration to the 
differences with the Japanese cultural context, it might be rejected by the institutions. Ebaeguin & 
Stephens (2014) suggest to address the cultural compatibility of LS. A number of scholars proposed 
different theoretical lenses to analyse why LS is so widespread in Japan (i.e.: Krainer, 2011; Lewis, 
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2016). We can suppose that LS exists because of the Japanese culture, and Japanese culture is one of 
the main reasons why LS is effective: LS is a cultural activity (Stigler & Hiebert, 2016). The question 
arises if maintaining the efficacy of LS across different cultural contexts is feasible. 

Despite the rising awareness on the importance of studying cultural contexts and identities to 
contextualize global trends in Mathematics Education (Bakker et al., 2021), the majority of reports 
on LS around the world seems to depict LS as an isolated practice in the Japanese panorama of TPD 
practices (Miyakawa & Winsløw, 2019) and seemingly ignores that the Japanese definition of LS is 
not as clear cut as the American one (Miyakawa & Winsløw, 2013). This suggests that “to develop a 
deeper understanding of Lesson Study in a post-modern global world, there is a need to seek views 
beyond those presented from an American perspective” (White & Lim, 2008, p. 915). 

Understanding LS means understanding the context in which it originated. At the same time, to 
introduce LS in a new context, it is essential to know the TPD practices already in existence 
(Miyakawa & Winsløw, 2013). Yet, there exist no consensus on what is essential to analyse in order 
to understand a cultural context. What is culture? This paper has two aims: to provide arguments to 
the importance of understanding the cultural contexts involved in the research, and to provide a 
currently-missing description of the Italian TPD context in the English language. We provide a 
tentative analysis of the Japanese and the Italian cultural and institutional contexts to guide future 
studies on LS in Italy, and we also hope to sprout discussion on the possibility to create guidelines 
for describing cultural contexts that might be shared by the community of researchers in Mathematics 
Education. 

Theoretical Framework 
Culture may be described as “any aspect of the ideas, communications, or behaviours of a group of 
people which give them a distinctive identity and which is used to organise their internal sense of 
cohesion and membership” (Scollon & Scollon, 1995, p. 127) or as “[t]he system of shared beliefs, 
values, customs, behaviours, and artefacts that the members of society use to cope with their world 
and with one another, and that are transmitted […] through learning” (Bates & Plog, in Freimuth, 
2006, p. 2). Anthropologists have not reached a shared definition (Spencer-Oatey, 2012), and 
proposing one would be outside of our expertise. In fact, our aim is not to propose our own definition 
but to observe how existing approaches and definitions may interact with learning and teaching 
processes in Mathematics, particularly in TPD. It is a facet of our doctoral research, especially within 
a semiotic context (Manolino, 2021). Here we rely on a popular understanding of what culture is, as 
the definition is not central to this paper. In the following, we propose two different approaches to 
the definition and description of culture and cultural contexts: the first one is synthetic, the second 
one is descriptive. We hope to show some advantages and shortcomings of each of them, which 
should provide a mean to engage in this discussion. 

Hofstede’s Dimensions of Culture 
Hofstede defines culture as “the collective mental programming of the people in an environment. 
Culture is not a characteristic of individuals; it encompasses a number of people who were 
conditioned by the same education and life experience” (in de Mooij, 2010, p. 48). Hofstede identifies 
basic value orientations of a certain national culture. These values “are broad preferences for a certain 
state of affairs (e.g., preferring equality over hierarchy) […] transmitted by the environment […] 
shaped by the time we hit 10-12 years of age” (https://news.hofstede-insights.com/news/what-do-we-
mean-by-culture described in five dimensions, scored over 100 points, and represent: 
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 Power Distance Index: “the extent to which less powerful members of a society accept and 
expect that power is distributed unequally” (de Mooij, 2010, p. 75). The higher the score, the 
more hierarchical a society is. 

 Individualism vs Collectivism: “[…] people looking after themselves and their immediate 
family only, versus people belonging to in-groups that look after them in exchange for loyalty” 
(de Mooij, 2010, p. 77). Higher scores indicate individualistic values. 

 Masculinity vs Femininity: “The dominant values in a masculine society are achievement and 
success; the dominant values in a feminine society are caring for others and quality of life” 
(de Mooij, 2010, p. 79). Lower score indicates a feminine society. Please note that this label 
is problematic as it reinforces harmful gender stereotypes, and in the following we will use 
the alternative “Tough vs Tender”. 

 Uncertainty Avoidance Index: “[…] the extent to which people feel threatened by uncertainty 
and ambiguity and try to avoid these situations” (de Mooij, 2010, p. 82). The higher the score, 
the less open to changes is a society. 

 Long-Term vs Short-Term Orientation: “[…] the extent to which a society exhibits pragmatic 
future-oriented perspective rather than a conventional historic or short-term point of view” 
(de Mooij, 2010, p. 85). Lower scores point to a society that prefers short-term planning. 

One peculiarity of Hofstede’s dimensions is that “[t]he country scores on the dimensions are relative, 
in that we are all human and simultaneously we are all unique. In other words, culture can only be 
used meaningfully by comparison” (https://hi.hofstede-insights.com/national-culture). 

Levels of Co-Determination 

We start from “the notion of [teaching] “practice” as a link between culture […] and the larger cultural 
contexts” (Hatano & Inagaki, 1998, p. 80). In the Anthropological Theory of the Didactic, practices 
are described in terms of praxeologies: the know-how (praxis) and the know-why (logos - the 
discourses that justify the know-how) related to a task. Chevallard (1985) suggests that teachers’ 
praxeologies are shaped by a plurality of agents (politicians, scholars…) and historical or institutional 
conditions that defines the boundaries of what teachers can or cannot do, their noosphere (the sphere 
of those who thinks). Chevallard (2002) pictures the complex relations of the factors influencing 
teachers’ praxeologies, which are influenced not only by the teachers’ decision, but at a higher level 
by the society in which the teachers and students are immersed, as shown in Figure 1. 

 

Figure 1: Scale of levels of co-determination (Florensa et al., 2018, p. 5) 
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Similarly, we suggest that professional development practices are influences by the context in which 
teachers and their educators are immersed. It is important to notice that Chevallard’s framework does 
not use the term culture. 

Context Analysis 
Hofstede’s Cultural Dimensions 

Ebaeguin and Stephens (2014) suggest that comparing Hofstede’s scores might be a starting point for 
studying the introduction of LS in Australia, as they connect the efficacy of LS in Japan to the 
Japanese scores. The scores for Japan and Italy according to Hofstede’s cultural dimensions can be 
freely collected from the website https://www.hofstede-insights.com/product/compare-countries/ and 
are shown in Table 1. The labels are simplified because of space constraints. 

Table 1: Hofstede’s score for cultural dimension for Italy and Japan 

 Power Distance  Individualism Tough Uncertainty 
Avoidance  

Long-Term 

Italy 50 76 70 75 61 
Japan 54 46 95 92 88 

Within Hofstede’s description, the two cultures appear different in almost all categories: according 
to these descriptors, Japanese culture appear less individualistic, more prone to success (and therefore 
more competitive), less open to “thinking outside of the box”, and keener to long-term planning. 
There are some similarities, as Japanese and Italian cultures seem to have a shared approach to 
hierarchy.  

Levels of Co-Determination 

Using Chevallard’s didactic transposition lens and moving within the co-determination levels, we 
attempt to provide a description of the Japanese and Italian institutional contexts. Since many sources 
are available on the Japanese context, the description will be briefer. The description of the Italian 
context, on the contrary, will be as detailed as the format allows, inspired to that proposed for Japan 
by Miyakawa and Winsløw (2019). 

Japan is an East-Asian country, influenced by countries of “Confucian Heritage Culture” (Mason, 
2014) such as China and Korea. These countries generally share some cultural values that are reflected 
in the school system, and can be considered part of the Japanese system of school-related beliefs: 

a high regard for education […]; […] the cultivation of the self; a strong work ethic […]; a belief 
[…] that success depends more on effort than on innate capacity […]; respect for teachers […] 
(Mason, 2014, p. 2). 

In Japan, the national curriculum is detailed and rigid. Textbooks are essential for lesson planning. 
Long-term planning is centralized at the prefectural or school level, so teachers’ attention is focused 
on learning units and lessons. Classes are homogeneous by level: strict entrance tests are usually 
required for accessing high schools, while students with disabilities attend special schools. Japanese 
teachers spend the working day at school, where they have their personal workspace in a room shared 
with the whole teaching staff: in this space, they prepare lessons and discuss with their colleagues. 
In-service professional development is compulsory and takes place during working hours (Bartolini 
Bussi & Ramploud, 2018). LS is only part of Japanese TPD activities, which have many common 
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features: in particular, the practice of open classes with observers is common (Miyakawa & Winsløw, 
2013). Participating in optional TPD activities increases teachers’ chances of career advancement 
(Miyakawa & Winsløw, 2019). 

The Italian school system is centralized. Recent reforms (2010 and 2012 respectively for secondary 
and primary school) stressed the importance of inclusiveness (law 133 and 169/2008). Italian school 
is structured around the concept of equity, and special schools do not exist: all students are given the 
same opportunities to reach the same goal, plus aids if needed. The Ministry of Education provides 
the Indicazioni Nazionali (National guidelines), which contain contents and aims for each subject, 
and its number of hours in a year. These contents are not prescriptive, but at the end of the 8th and 
13th grades there are two national exams. Each teacher has the responsibility of the didactical plan for 
their classes, also according to the Piano Triennale dell’Offerta Formativa (Three-year Educational 
Plan – describing the cultural-pedagogical inspiration and the curricular, extracurricular, didactic and 
organisational design of the proposed activities). The contents of this document are specific of each 
school and decided by the collegiality of teachers and school staff. 

Freedom of teaching, understood as professional autonomy in carrying out teaching activities and 
free cultural expression of the teacher, is guaranteed as a constitutional right: Article 33 of the 
Constitution states “Art and science are free and free is their teaching”. Institutionally, the duration 
of the lesson is 60 minutes. The teacher can have up to three consecutive lessons in the same class, 
without interruptions. During the lesson, the teacher is usually the only adult figure in the class. The 
Italian teacher works at school from one to six hours a day, dedicated to classroom lessons. The 
planning of individual lessons is not part of the working hours, nor there are places in the school 
dedicated to this activity: the teacher’s paradidactic activity takes place in personal and private time 
and space. There are no compulsory contents or practices for TPD, they are chosen by teachers 
according to their own needs. In-service TPD is compulsory (law 107/2015), there is no minimum 
number of hours per year, and must be carried out outside working hours. Teachers’ career 
advancement is based exclusively on seniority, although some economic incentives are given to those 
that take relevant roles in the school organization (Blandino, 2008; Capperucci, 2008).  

On paper, teachers have numerous occasions for improving their professionalism. The Ministry1 
attests more than 500 agencies offering TPD opportunities. Universities, academic associations, 
teachers’ associations, and educational companies which fulfil quality standards defined by the 
Ministry, are registered in a national database and can publish their TPD proposals on a digital 
platform (S.O.F.I.A.). The in-service professional development “system” is conceived as a “lifelong 
learning environment” for teachers and is intended as a “network of opportunities for professional 
growth and development for teachers” (law 107/2015). At national level, proposals come from the 
national education centre, academic associations, teachers’ associations, educational companies. At 
regional level, regional school offices intervene by supporting, managing, and publicising the 
proposals. At local level, experienced teachers also offer courses in their school, sometime opens to 
teachers in the surrounding area. No official account is given on how many teachers participate in 
TPD. Yet, the impression is that this vastity of opportunities does not correspond to a high-quality 
offer: the Ministry states that the quality of TPD programmes is compromised by the general “low 
quality of models and methodologies” (law 107/2015) suggesting that teachers might be easily lost 

 
1 https://www.miur.gov.it/accreditamento-enti-e-qualificazione-associazioni 
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and caught in low quality programmes. The Ministry does not provide guidance to orientate in this 
labyrinth. 

Some Reflections 

At the end of this section, we can ask ourselves: is this description complete? Did we miss any 
essential point? Did we provide too much information, and made our description useless? Is this 
description reliable? Hofstede’s synthetic data, for example, provides a quick overlook on the 
differences between two cultures and invite to carefully consider LS introduction in Italy. Yet, this 
description is problematic as it eliminates complexity, and the risk of overgeneralizing is high. 
Furthermore, these scores are open to interpretation. The similar scores for PDI might suggest that 
Italy and Japan have a shared view on hierarchy, but we propose a different interpretation: while 
Japanese invites consciousness of one’s hierarchical position in any social setting and act accordingly 
(Ebaeguin & Stephens, 2014), Italian culture dislike control and formal supervision. An analysis 
based on Hofstede’s cultural dimensions, in support of our assertions, can be found in Giordanengo’s 
Master Degree dissertation (2020)2. 

Discussion 
It emerges that the Japanese and the Italian cultural and institutional contexts share some similarities 
and come with a number of differences. Hofstede’s cultural dimensions show divergent basic values. 
However, to consider Hofstede’s analysis complete enough to understand the similarities and 
differences between Japan and Italy would be preposterous, and similar numbers can still be 
interpreted with very different founding values. A detailed look suggests similarities between the two 
educational contexts, yet striking differences in the institutional and paradidactic organization. We 
believe this is sufficient to justify the importance of a cultural approach when practices from a cultural 
context are brought in different contexts. A tentative description of the Italian institutional (school) 
context was provided as a reference for future studies. Italian researchers are invited to amend this 
description, which is certainly lacking details. 

This paper answers no research questions but considering our attempt to respond to the need to 
provide a description of the Italian institutional context in which students, teachers, and researchers 
work every day, leaves us with some questions. Are we satisfied with the result? No, we are not: the 
description misses many details, and we are not sure that what we provided is enough to really 
understand the context. How is Mathematics as a school subject considered at a cultural level? How 
is the teacher role considered in each society? Many questions are left unanswered, yet we often hear 
from reviewers that we should focus on describing just some aspects. How detailed can these 
descriptions be? Too little or too many information will lead to the same result: little understanding 
of the cultural context. Can we really achieve this correct kind of detail?  Again, the answer, in our 
opinion, is no. The gap is embedded in the notion of cultural context and in any possible analysis of 
it. A number of scholars (e.g., Lotman, 1990) have declared the impossibility of a full knowledge of 
culture, as we are embodied in it and in what François Jullien  - sinologist - calls the unthoughts (for 
a broader understanding, see Mellone et al., 2019). To be aware of these unthoughts may not be 

 
2https://sia.unito.it/studenti/intesi/Ricerca_tesi_libera/ricerca_tesi_dettaglio.asp?id_upload=192959&cdl_tesi=&cdl=&
matricola=781420 
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enough anymore. What is incumbent on us is to frame our research accordingly, as to provide careful 
attention to their influence on teaching and learning processes in mathematics. 
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Math for All (MFA) is an intensive professional development (PD) program for in-service teachers. 
It consists of five one-day workshops and classroom-based assignments, providing a total of 40 hours 
of PD. MFA engages teams of general and special education teachers in adapting math lessons 
collaboratively to help all students, including those with disabilities, achieve high-quality learning 
outcomes in mathematics. A cluster randomized controlled trial (RCT) was used to test the efficacy 
of MFA; it included 32 schools, 98 4th and 5th grade teachers, and approximately 1,500 4th and 5th 
grade students. MFA had statistically significant, positive effects on teachers’ self-reports of their 
preparedness and comfort with teaching mathematics to students with disabilities. A school-level 
analysis found a moderate MFA effect on student achievement. Quasi-experimental analyses of a 
subgroup of teachers showed initial evidence of MFA impacts on their classroom practices. 
Keywords: Mathematics teacher professional development, mathematics teacher beliefs, 
mathematics teacher self-efficacy, mathematics teaching practice, mathematics achievement. 

Introduction 
This paper presents the results of a randomized controlled trial (RCT) that tested the efficacy of a 
professional development (PD) program called Math for All (MFA). MFA is an intensive PD program 
designed to help general and special education teachers in Grades K–5 to personalize rigorous 
mathematics instruction for a wide range of learners, including students who are low performing, and 
students with disabilities. MFA consists of five full-day PD sessions and related assignments (a total 
of 40 hours of PD) carried out at regular intervals throughout the school year. The program is designed 
to have a direct impact on teachers’ knowledge, beliefs, and classroom practice. The PD introduces 
teachers to a neurodevelopmental framework1 (Barringer et al., 2010) as a lens for better 

1 This framework describes eight constructs related to learning processes (i.e., attention, temporal-sequential ordering, 
spatial-ordering, memory, language, neuromotor function, social cognition, and higher order cognition). Those who use 
the framework are encouraged to think through how these constructs interact when student learn, and to adapt mathematics 
lessons based on individual students’ neurodevelopmental learning profiles. 
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understanding individual students’ strengths and challenges and the demands of mathematical 
activities. The PD also engages teachers in in-depth analyses of mathematics lessons, including 
examination of their mathematical goals, and different instructional strategies and teaching practices 
that support the attainment of these goals while attuning to individual students’ strengths and needs. 
MFA was developed by Bank Street College and EDC with funding from the National Science 
Foundation and is published by Corwin Press (Moeller et al., 2012; 2013). MFA incorporates several 
components that RCTs or quasi-experimental studies (QEDs) have shown to be effective for 
supporting elementary school teachers’ professional learning and for improving achievement of 
struggling students, such as teacher collaboration for instructional planning and peer coaching (e.g., 
Stevens & Slavin, 1995), formative assessment and progress monitoring of students (Gersten et al., 
2009), and lesson study (Lewis & Perry, 2017). 

MFA is not tied to any specific K–5 mathematics curriculum. Rather, it helps teachers to use and 
adapt their existing mathematics curriculum to make it more accessible to a wide range of learners. 
With funding from the Institute of Education Sciences at the U.S. Department of Education 
researchers carried out an RCT in collaboration with a large urban school district in a midwestern 
state in the U.S. In this paper is we report findings relating to three main research questions, which 
probed for the impact of MFA on (a) teachers’ comfort and preparedness to teach mathematics to 
students with disabilities, (b) teachers’ classroom practice, and (c) student performance on a 
standardized mathematics achievement test.   

Theoretical framework and related literature 
A number of factors influence student achievement (as measured by performance on standardized 
achievement tests), with teacher quality being the most powerful (e.g., Nye et al., 2004; O’Dwyer et 
al., 2010). Various teacher characteristics such as experience, education background, dispositions 
(beliefs and motivations), as well as their knowledge (content knowledge, pedagogical content 
knowledge, general pedagogical knowledge), have been shown to impact student outcomes to varying 
degrees (e.g., Clark et al., 2014). Classroom practice is another factor that has been linked to student 
achievement (e.g., Clements et al., 2013). Research has helped to identify key features and principles 
of instructional practices that are associated with higher student achievement in mathematics, such as 
strategies for teaching students who struggle in mathematics (Gersten et al., 2009). 

However, major questions remain with respect to how PD can play a role in improving teacher 
quality, practice, and student achievement, given the mixed findings often generated. Recent reviews 
of research on teacher PD (e.g., Darling-Hammond et al., 2017; Gersten et al., 2014; Yoon et al., 
2007) attest to the paucity of rigorous evidence that links PD to improved student outcomes in 
mathematics and other subject areas. Moreover, little is known about the specific aspects of teacher 
quality that PD can most effectively target. Although there is general consensus that teachers must 
have mathematics content and pedagogical content knowledge to effectively teach mathematics, and 
many PD efforts target these teacher qualities, evidence that attests to the effectiveness of content-
focused PD has been difficult to come by. Three recent studies (e.g., Garet et al., 2016; Jayanthi et 
al., 2017; Jacob et al., 2017) found only limited evidence of the impact of content-focused PD on 
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teachers’ mathematical and pedagogical content knowledge and instructional practices, and no effects 
on student outcomes.  

In assessing the efficacy of MFA, we were particularly interested in understanding its impact on 
teachers’ dispositions. Teacher dispositions are related to teachers’ professional background and 
experiences, knowledge, and teaching contexts, and to characteristics of the students they teach (Clark 
et al., 2014). Research has demonstrated that teachers who have negative self-efficacy about 
mathematics (math anxiety) can have negative effects on the mathematics achievement of their 
students (Beilock et al., 2010; Ramirez et al., 2018). Because teachers draw on cognitive and affective 
resources during instruction (e.g., Anderson et al., 2018), teacher dispositions constitute an important 
outcome to measure when assessing the impact of professional development.  

To assess teacher dispositions, we constructed two eleven-item scales that measure teacher comfort 
and preparedness with various practices that have been associated with differentiated mathematics 
teaching practices (see Table 1). These scales have been used in multiple studies of MFA (Duncan, 
et al., 2022) and have demonstrated high internal consistency with Cronbach alphas ranging from .85 
to .95. 

Table 1: Comfort and preparedness scales 

Question stem: How prepared/comfortable do you feel about the following? 

a. Teaching standards-based math to students with disabilities.
b. Identifying the math strengths of students with disabilities.
c. Identifying the math needs of students with disabilities.
d. Understanding the mathematics of the lessons I teach.
e. Analyzing the demands of mathematical tasks on students.
f. Determining the goals of the math lessons I teach.
g. Understanding learning trajectories in mathematics (how the math I teach relates to what students learned before
and what they will learn later).
h. Selecting specific strategies to address the strengths of students with disabilities in math.
i. Selecting specific strategies to address the needs of students with disabilities in math.
j. Adapting math lessons for students with disabilities to help them meet standards-based goals.
k. Collaborating with my colleagues when planning math lessons.
Note. Items are rated on 1-5 Likert scales, anchored by 1=not at all prepared to 5=very prepared, or 1=not at all 
comfortable to 5=very comfortable 

We hypothesized that improved comfort with and preparedness for teaching mathematics to students 
with disabilities will result in high-quality classroom practices, which are differentiated based on 
individual students’ strengths and needs without undermining the rigor of the mathematics to be 
taught. This in turn would lead to improved student mathematics achievement (as measured by 
performance on standardized achievement tests), so we expected coordinated improvements in 
teachers’ dispositions, classroom practices, and student achievement. 

Methods 
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An RCT of MFA was conducted from 2015 to 2017 to help build the evidence base around the impact 
of PD interventions. Schools were randomized by a statistician blinded to study condition into either 
the MFA PD treatment group or business-as-usual (BAU) control group. The sample included 32 
schools from a large, midwestern urban school district in the U.S., 98 4th and 5th grade general and 
special education teachers, and approximately 1,500 4th and 5th grade students. This study focused 
on estimating MFA impacts on teacher outcomes after one year of PD because this was the point 
when the maximum MFA-BAU contrast was expected. For student-level outcomes, a two-year study 
was originally planned but findings presented here describe outcomes after Year 1 because there were 
challenges in maintaining the sample across both years, largely because of student mobility and 
difficulties with collecting parent consent to use achievement data collected by the school district. 
Key Year 1 findings are supported by a strong design and allow for solid causal inference.  

Research Questions and Outcome Measures 

The study’s first research question was: Does participation in MFA PD, compared to business-as-
usual (BAU) experiences of a control group, improve teachers’ comfort and preparedness to teach 
mathematics to diverse students (including those with disabilities) after the completion of the PD? 
Separate measures of teachers’ self-reported comfort-level and preparedness were used as dependent 
variables to address this research question. Two researcher-developed 11-item scales were used (see 
Table 1), and corresponding Cronbach alphas were .886 and.950. The scales were included in a larger 
teacher survey that was administered at the beginning and end of the school year.  

Research Question #2. Does participation in MFA PD, compared to the BAU experiences of a control 
group, result in improved mathematics classroom practice after the completion of the PD? A 
subsample of 40 classrooms were observed at the beginning and end of the school year using the 
Classroom Assessment Scoring System (CLASS). The CLASS, a widely used and psychometrically 
sound observation approach (Pianta et al., 2012), was used to generate dependent variable data for 
this question. Unfortunately, only 40 teachers agreed to be observed and this undermines the benefit 
of randomization. Therefore, related analyses were conducted using a quasi-experimental design 
wherein the strength of causal inference is predicated on showing that teachers across the two study 
conditions were similar on baseline assessments of their classroom teaching practice.   

Research Question #3. Does the use of an MFA approach in the classroom result in improved student 
achievement in mathematics after one year of intervention exposure? The NWEA MAP assessment, 
used by the school district in which the study was carried out, was the measure used to assess student 
mathematics achievement. Coefficient alphas for this measure’s related subtests range from .92 to .96 
and test-retest reliabilities range from .77 to .94; there is also strong evidence of the measure’s 
construct and concurrent validity (see Malone al., 2020 for details).  

Data Analyses 

Impact analyses for Research Questions 1 and 2 entailed using a two-level hierarchical linear model 
with teachers clustered by schools, and a term for assessing the treatment impact at level two (i.e., 
schools, the unit of randomization). Impact analyses for Research Question 3 were conducted using 
three strategies: (1) a school-level analysis; (2) a student-level hierarchical analysis that accounted 
for student clustering within schools; and (3) a hierarchical student-level analysis that included grade 
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level as a moderator. The first strategy was used because of the difficulties with attrition. This school-
level impact model entailed using each school’s mean achievement at post-test as a dependent 
variable to assess MFA’s impact on student achievement at grades 4 and 5. This analysis included all 
32 study schools and does not have cluster-level missing data. The second two strategies both 
accounted for student clustering in schools and included a term for assessing the treatment impact at 
the school level. All mean contrasts presented here adjusted for baseline differences. These baseline 
differences were observed using the same measures that produced dependent variable data. Missing 
data (and by extension Year 1 attrition) were addressed by using multiple imputation procedures, 
which we consider to be our primary analyses. We did however re-run impact models using listwise 
procedures (i.e., no imputed data) to perform sensitivity checks (see Enders, 2010). For Resarch 
Question 3, school-level impact analyses did not formally have missing data; furthermore, Grade 4 
subsample analysis yielded inconsistent results across imputed and listwise analyses, so we present 
related findings from both approaches. All required assumptions for impact modeling were met. 

Key findings 
Research Question #1 

The pattern of results was the same for both scales: the MFA group reported lower levels of 
preparedness and comfort at the pretest, compared to BAU teachers, but there was a steep increase 
from fall to spring. The opposite pattern was observed for the BAU group. Results were statistically 
significant. Effect sizes using the Hedges’ g statistic were g = .54 (p < .05; Mdiff = .803; SDpooled = 
1.48) for preparedness and g= .67 for comfort (p < .05; Mdiff = 1.08; SDpooled = 1.621). To summarize, 
MFA teachers increased their senses of preparedness and comfort in teaching students with 
disabilities, as compared to BAU teachers. 

Research Question #2 

Unfortunately, there was a large baseline difference favoring the MFA group, which undermined 
causal inference, and Bonferroni corrections for multiple comparisons rendered results from this 
small sample not statistically significant. Analyses showed that at the posttest (and after adjusting for 
pretest levels), MFA teachers scored higher in the domains of Emotional Support (g = .98; p > .05; 
Mdiff = 1.115; SDpooled = 1.118), Instructional Support (g = .69; p > .05; Mdiff = .526; SDpooled = .765), 
Classroom Organization (.78; p > .05; Mdiff = .733; SDpooled = .94), and Student Engagement (.54; p 
> .05; Mdiff = .435; SDpooled = .8). These contrasts should be interpreted with caution, but they do
suggest MFA had a positive impact on teachers’ classroom practices.

Research Question #3 

The resulting g from the first school-level analytic strategy was .33 (p > .05; Mdiff = 1.82; SDpooled = 
5.45), favoring MFA schools. This finding was however not statistically significant, which likely 
stems from the analysis being underpowered given there were only 32 school-level means. The 
student-level analyses mirror the pattern shown in the cluster-level analysis; that is, while the results 
favor the treatment group (g = .11; p > .05; Mdiff = 1.54; SDpooled = 14.46), the differences were, again, 
not statistically significant. When grade level was examined as a moderator, different patterns 
between grade 4 and grade 5 students were found. In grade 4, students whose teachers participated in 
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the MFA PD had higher posttest scores than students whose teachers were in the BAU group and 
results based on analyses with imputed datasets were statistically significant (g = .26; p < .05; Mdiff = 
3.62; SDpooled = 13.9). However, impact analyses that did not entail use of imputed data did not allow 
for rejecting a null hypothesis (g = .20; p > .05; Mdiff = 2.77; SDpooled = 13.6). In grade 5, there were 
small mean differences between the MFA and BAU groups. The overall pattern of findings suggests 
MFA PD might have had a positive impact on student achievement, but student attrition prevent 
conclusive findings.  

Discussion 
This study yielded evidence that MFA had a positive impact on teacher’s self-reported sense of 
comfort and preparedness with respect to teaching students with diverse learning needs. While the 
evidence that MFA impacted teacher classroom practice and student achievement is less strong, it is 
still compelling. As we seek to better understand the impacts of PD on teacher and student outcomes, 
it is important to “open the black box” and flesh out the mechanisms by which PD can affect teacher 
practice, which in turn, affects student achievement (cf., Clarke & Hollingsworth, 2002; Goldsmith 
et al., 2014). The data presented here converges with other recent studies that have demonstrated that 
teacher dispositions may be key mediators to consider in our models of teacher PD (e.g., Miele, et 
al., 2019; Schoen & LaVenia, 2019). 

Acknowledgement 
This paper was developed with funding from grant # R305A140488 from the U.S. Department of 
Education. The contents of this paper do not necessarily represent the policy or views of the U.S. 
Department of Education, nor do they imply endorsement by the U.S. Department of Education. 

References 
Anderson, R. K., Boaler, J., & Dieckmann, J. A. (2018). Achieving elusive teacher change through 

challenging myths about learning: A blended approach. Education Sciences, 8(3), 98. 
https://doi.org/10.3390/educsci8030098 

Barringer, M. D., Pohlman, C., & Robinson, M. (2010). Schools for all kinds of minds: Boosting 
student success by embracing learning variation. John Wiley & Sons, Inc. 

Beilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female teachers’ math anxiety 
affects girls’ math achievement. Proceeding of the National Academy of Sciences, 107(5), 1860–
1863. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836676/ 

Clark, L. M., DePiper, J. N., Frank, T. J., Nishia, M., Campbell, P. F., Smith, T. M., Griffin, M. J., 
Rust, A. H., Conant, D. L., & Choi, Y. (2014). Teacher characteristics associated with 
mathematics teachers’ beliefs and awareness of their students’ mathematical dispositions. 
Journal for Research in Mathematics Education, 45(2), 246–284. 
https://doi.org/10.5951/jresematheduc.45.2.0246 

Clarke, D., & Hollingsworth, H. (2002). Elaborating a model of teacher professional growth. 
Teaching and Teacher Education, 18, 947–967. https://doi.org/10.1016/S0742-051X(02)00053-
7 

Proceedings of CERME12 3663



Clements, D. H., Agodini, R., & Harris, B. (2013). Instructional practices and student math 
achievement: Correlations from a study of math curricula (NCEE Evaluation Brief). Department 
of Education, Institute of Education Sciences. https://files.eric.ed.gov/fulltext/ED544189.pdf 

Darling-Hammond, L., Hyler, M. E., & Gardner, M (2017). Effective teacher professional 
development. Learning Policy Institute. 

Duncan, T., Schoeneberger, J., Hitchcock, J. & Moeller, B. (2022, April 22–25). Teacher comfort 
and preparedness for teaching diverse students: Setting the foundation for equitable classroom 
practices. Paper to be presented at the annual meeting of the American Educational Research 
Association (AERA), San Diego, CA, USA. 

Garet, M. S., Heppen, J. B., Walters, K., Parkinson, J., Smith, T. M., Song, M., Garrett, R., Yang, R., 
& Borman, G. D. (2016). Focusing on mathematical knowledge: The impact of content-intensive 
teacher professional development (NCEE 2016-4010). National Center for Education Evaluation 
and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. 

Gersten, R., Beckmann, S., Clarke, B., Foegen, A., Marsh, L., Star, J. R., & Witzel, B. (2009). 
Assisting students struggling with mathematics: Response to Intervention (RtI) for elementary 
and middle schools (NCEE 2009–4060). National Center for Education Evaluation and Regional 
Assistance, Institute of Education Sciences, U.S. Department of Education. 
http://ies.ed.gov/ncee/wwc/publications/practiceguides/. 

Gersten, R., Taylor, M. J., Keys, T. D., Rolfhus, E., & Newman-Gonchar, R. (2014). Summary of 
research on the effectiveness of math professional development approaches. National Center for 
Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department 
of Education.  

Goldsmith, L.T., Doerr, H.M., & Lewis, C.C. (2014). Mathematics teachers’ learning: A conceptual 
framework and synthesis of research. Journal of Mathematics Teacher Education, 17, 5–36. 
http://dx.doi.org/10.1007/s10857-013-9245-4 

Enders, C. K. (2010). Applied missing data analysis. Guilford Press. 

Jacob, R., Hill, H. C., & Corey, D. (2017). The impact of a professional development program on 
teachers' mathematical knowledge for teaching, instruction, and student achievement. Journal of 
Research on Educational Effectiveness, 10(2), 379–407. 
https://doi.org/10.1080/19345747.2016.1273411 

Jayanthi, M., Gersten, R., Taylor, M. J., Smolkowski, K., & Dimino, J. (2017). Impact of the 
Developing Mathematical Ideas professional development program on grade 4 students’ and 
teachers’ understanding of fractions (REL 2017–256). U.S. Department of Education, Institute 
of Education Sciences, National Cetner for Education Evaluation and Regional Assistance, 
Regional Educational Laboratory Southeast. http://ies.ed.gov/ncee/edlabs. 

Lewis, C. & Perry, R. (2017). Lesson study to scale up research-based knowledge: A randomized, 
controlled trial of fractions learning. Journal for Research in Mathematics Education, 48(3), 
261–299. https://doi.org/10.5951/jresematheduc.48.3.0261 

Proceedings of CERME12 3664



Malone, L. M., Cabili, C., Henderson, J., Esposito, A. M., Coolahan, K., Henke, J., Asheer, S., 
O’Toole, M., Atkins-Burnett, S., & Boller, K. (2010). Compendium of student, teacher, and 
classroom measures used in the NCEE evaluations of educational interventions. Volume II: 
Technical Details, Measure Profiles, and Glossary (Appendix A-G)(NCEE 2010–4013). 
National Center for Education Evaluation and Regional Assistance, Institute of Education 
Sciences, U.S. Department of Education. 

Miele, D., Perez, S., Butler, R., Browman, A.S., O’Dwyer, L., & McNeish, D. (2019). Elementary 
school teachers’ growth mindsets predict their differential treatment of high versus low ability 
students. https://psyarxiv.com/qcd83/ 

Moeller, B., Dubitsky, B., Cohen, M., Marschke-Tobier, K., Melnick, H., Metnetsky, L., Brothman, 
A., & Cecchine, R. (2013). Math for All professional development resources for facilitators 
grades K–2. Corwin Press. 

Moeller, B., Dubitsky, B., Cohen, M., Marschke-Tobier, K., Melnick, H., Metnetsky, L., Brothman, 
A., & Cecchine, R. (2012). Math for All professional development resources for facilitators 
grades 3–5. Corwin Press. 

Nye, B., Konstantopoulos, S., & Hedges. L. V. (2004). How large are teacher effects? Educational 
Evaluation and Policy Analysis, 26(3), 237–257. https://doi.org/10.3102/01623737026003237 

O’Dwyer, L. M., Masters, J., Dash, S., DeKramer, R. M., Humez, A., & Russell, M. (2010). e-
Learning for educators: Effects of on-line professional development on teachers and their 
students: Findings from four randomized trials. Boston College, Technology and Assessment 
Study Collaborative.  

Pianta, R. C., Hamre, B. K., & Mintz, S. L. (2012). Classroom Assessment Scoring System secondary 
manual. Teachstone. 

Ramirez, G., Hooper, S. Y., & Kersting, N. B. (2018). Teacher math anxiety relates to adolescent 
students’ math achievement. AERA Open, 4(1), 1–13. 
https://doi.org/10.1177/2332858418756052 

Schoen, R. C., & LaVenia, M. (2019). Teacher beliefs about mathematics teaching and learning: 
Identifying and clarifying three constructs. Cogent Education, 6(1). 
https://doi.org/10.1080/2331186X.2019.1599488 

Stevens, R. J., & Slavin, R. E. (1995). The cooperative elementary school: Effects on students' 
achievement, attitudes, and social relations. American Educational Research Journal, 32(2), 
321–351. https://doi.org/10.2307/1163434 

Yoon, K. S., Duncan, T., Lee, S. W-Y., Scarloss, B., & Shapley, K. L. (2007). Reviewing the evidence 
on how teacher professional development affects student achievement (Issues & Answers Report, 
REL 2007–No. 033). Department of Education, Institute of Education Sciences, National Center 
for Education Evaluation and Regional Assistance, Regional Educational Laboratory Southwest. 

Proceedings of CERME12 3665



Developing an identity as a mathematics teacher through group work
Reidun Persdatter Ødegaard1 and Marit Buset Langfeldt 1

1Norwegian University of Science and Technology, Norway; reidunp@ntnu.no,
marit.b.langfeldt@ntnu.no

A concern in teacher education is to tighten the connection between coursework and practice through 
work with core practices. In this study, we investigated student teachers’ learning processes when 
working in groups in mathematics teacher education, where the tasks the student teachers worked 
with were centered around core practices. Taking a social view of learning, we describe student 
teachers’ learning to teach mathematics through developing an identity as a mathematics teacher.
Group discussions were audiotaped, transcribed, and analyzed using a grounded approach. Our 
findings suggest that group work centered around core practices gives student teachers good 
opportunity to negotiate meaning of core practices and develop an identity as mathematics teachers.

Keywords: Mathematics education, communities of practice, elementary school teachers, group 
activities, educational practices.

Background
The development of a mathematics teacher identity is critical for learning to teach (Goodnough, 
2010). da Ponte and Chapman (2008) suggest that investigation and reflection on practice play 
important roles in developing a mathematics teacher identity, and several researchers have 
investigated opportunities for developing identity during teacher education (Lutovac & Kaasila, 
2018). Essien (2014) found that during instruction in teacher education, student teachers develop an 
identity as mathematics learners, not as mathematics teachers. Learning mathematics and learning to 
teach mathematics is different in that the latter draws upon a broad range of experiences and 
knowledge, and teacher education programs should provide student teachers with coherent 
experiences to support their learning to teach mathematics. Hence, the contexts in which the student 
teachers develop their mathematics teacher identity through the teacher education program need to 
be tightly interwoven (Van Zoest & Bohl, 2005).

A concern in teacher education internationally and in Norway is that there is a gap between the teacher 
education coursework and school practice (Hammerness, 2013). The gap is due to a lack of coherence 
between activities in teacher education coursework and school practice, and teacher education 
programs need to build bridges between the different contexts. To bridge coursework and practice, 
Grossman et al. (2009) suggest that teacher education programs should be organized around the 
central practices of teaching, called core practices. Core practices are something a teacher often does, 
which enhance the students’ opportunities to learn and preserve the complexity of teaching at the 
same time as novices can begin to master them (Grossman et al., 2009). Examples of core practices 
are eliciting and responding to students’ ideas, leading a whole-class discussion towards a 
mathematical goal, or attending to students’ understanding and helping them progress. Teacher 
education programs centered around core practices will help student teachers develop knowledge, 
skills, and identity, which can narrow the gap between coursework and school practice.
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A typical learning activity in mathematics teacher education is group work. The goal is often that the 
student teachers get the opportunity to discuss and develop their mathematical thinking and their 
knowledge of students’ mathematical thinking (Crespo, 2006). Tasks in group work can be organized 
around core practices, such as asking students teachers to make sense of their students’ work (Crespo, 
2006; Kazemi & Franke, 2004) or planning and co-teaching together (Haniak-Cockerham, 2019). 
More research on implementing work with core practices in teacher education coursework is needed 
(McDonald et al., 2013). In this study, we investigate the learning processes when student teachers 
participate in group work organized around core practices. 

Taking a social view on learning, we consider identity to be learning as becoming (Wenger, 1998). 
Our research question is: how does some student teachers’ identity develop as they work with tasks 
centered around core practices of mathematics teaching? 

Theoretical framework 
Wenger (1998) stated that learning is participation in communities of practice. A community of 
practice is defined by mutual engagement, joint enterprise, and shared repertoire. Student teachers 
learn to teach in several communities of practice during their education, for example, the coursework 
in mathematics teacher education, the school in which they have school placement, and the classroom 
in which they have school placement. When student teachers participate in each of these communities, 
they become more central members of the communities, and their learning to teach mathematics is a 
nexus of their learning trajectories in all these communities. Van Zoest and Bohl (2005) argue that a 
theoretical framework that considers the broad range of student teachers’ experiences and contexts is 
necessary when studying learning to teach. 

In studying student teachers’ learning to teach, identity is a useful theoretical construct (Van Zoest & 
Bohl, 2005). Wenger (1998) introduced identity to shift the focus to the individual, but from a social 
perspective. Following Wenger (1998), identity is more than the everyday use of identity as a sense 
of self. The construct includes knowledge, beliefs, our perceptions of others, and others’ perception 
of us as we participate in communities of practice (Van Zoest & Bohl, 2005). As student teachers 
engage in practices related to mathematics teaching, their identity is developed through their modes 
of belonging in these practices, and we can study student teachers’ learning beyond the scope of only 
one community. 

Identity is developed through participation and non-participation in three modes of belonging: 
engagement, imagination, and alignment (Wenger, 1998). First, participation in engagement means 
to contribute to negotiation of meaning and adopt others’ contributions. In engagement, members 
gain ownership over meaning through how they make use of, control, and adopt the meanings they 
negotiate (Wenger, 1998, p. 200). Non-participation is to not contribute to negotiations or to have 
one’s ideas ignored. Second, participation in imagination is to imagine oneself across time and space, 
experiencing the meanings of other communities as one’s own. Non-participation in imagination is 
to have limited access to other communities’ practices, making negotiation impossible. Third, 
participation in alignment is to coordinate actions and efforts with the practices and meanings of 
another community, while non-participation is when directions are strict, leading to inflexible and 
vulnerable coordination. The modes of belonging strongly influence both one’s identity and the 
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community one participates in (Goodnough, 2010). To operationalize mathematics teacher identity, 
we will draw on the practices of mathematics teaching. 

Wenger’s (1998) framework describes learning in general, so we draw on core practices of 
mathematics teaching (Grossman et al., 2009) to describe mathematics teacher learning as modes of 
belonging. We operationalize the development of mathematics teacher identity as modes of belonging 
in the core practices learning about students’ (mathematical) understanding and orchestrating 
(mathematical) discussions. Engagement in these core practices is to mutually participate in 
understanding and fine-tuning how one can learn about students’ understanding through attending to 
their work, responding to their work, asking questions, and eliciting their understanding. Imagination 
in core practices is to understand students’ work and plan questions through imagining oneself as a 
teacher in the classroom. In coursework, the core practices student teachers participate in belong to 
an imagined classroom community. Alignment in the core practices is to align efforts with the valued 
enterprise. In our mathematics teacher education, reform-oriented mathematics education is 
communicated by the teacher educators. Student teachers participate in alignment through 
questioning and responding in line with the reform-oriented view of mathematics. Through modes of 
belonging, student teachers develop a shared understanding of the core practices, and since practice 
and identity influence each other (Lutovac & Kaasila, 2018), participation in core practices influences 
student teachers’ identity development. 

Method 
We collected data from two groups of participants: in-service teachers (ISTs) participating in a one-
year teacher development program and pre-service teachers (PSTs) in their third year of teacher 
education. The ISTs were primary school teachers working in the 1st to 7th grades. From 2019 to 2021, 
group discussions in four lessons were audio-recorded and later transcribed and coded. The group 
discussions centered around different activities that involve working with core practices.  

The tasks in the group work were centered around four core practices: attending to student work, 
eliciting students’ ideas, responding to student work, and asking questions for whole-class 
discussions. First, the student teachers (ten ISTs and sixteen PSTs) practiced attending through 
making sense of students’ written work with a multiplication task, a fraction task, and through making 
sense of students’ utterings in a transcription of a dialogue about area measurement. Further, the 
student teachers practiced eliciting students’ ideas and responding when they were planning questions 
to get insight into their thinking and support further thinking in the fraction and measurement tasks. 
Last, they practiced planning questions for a whole-class discussion in which connecting students’ 
ideas was the goal in the multiplication task. The group discussions on the multiplication, fraction, 
and measurement tasks lasted approximately 50, 20, and 30 minutes, respectively. 

We took a grounded theory approach to the analysis (Charmaz, 2006), meaning that questions arose 
from the codes, minimizing the risk of any pre-existing assumptions affecting our analyses. The two 
researchers first coded the discussions statement by statement, led by the question “what are they 
saying?”. Comparing and grouping led to an initial set of codes, and in the next cycle, we coded the 
discussions based on actions, leading to a set of codes of actions student teachers do when they work 
with core practices in groups. We noticed that what the student teachers said and did depended on the 
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context they were discussing. Further, we chose to analyze our data through Wenger’s (1998) notion 
of identity, taking the multiple contexts into account. The data was coded again through participation 
and non-participation in the different modes of belonging. The researchers coded one of the 
transcriptions together before coding the rest of the data material separately. Dialogue between the 
researchers was maintained throughout the coding process to secure similar coding and increase 
reliability.  

Results 
We organize our results in two sections, participation and non-participation. We found participation 
to be more prominent than non-participation, and through excerpts of our data, we will show how the 
different modes of belonging contributed to the student teachers’ identity as mathematics teachers. 

Participation 

Throughout our data, we observed participation in a combination of engagement and imagination. 
The following discussion between ISTs where they discuss students’ strategies for solving the 
multiplication task 13 27 is an example of this. 

Tiril: Sort of, added them. 
Kaia: Yes, eight and four. 
Tiril: Eight and four is this one. 
Oda: But I don’t understand. Why did she multiply 27 by two first? 
Lisa: In order to be able to double it. 
Tiril: Because now she has, in a way, she is supposed to have 27 thirteen times. Now she 

has 27 two times, which is 54, and that is, if she takes 54 twice, then she will have 
108. 

Oda: Yes, four times. 
Tiril:  And this is eight times. 
Oda: And then she has five left. 
Tiril: Yes, and then she has, she has taken it eight times, right? Plus four times. 
Oda: Ok, like that 
Tiril: So, she has taken not two, but one 
Oda: Thank you, now I understand. 

In the first part of the excerpt, the ISTs participate in engagement, working with the core practice of 
attending to students’ work by discussing every step of a student strategy in detail, building on each 
other’s statements, and listening to each other. Meaning about students’ multiplication strategies and 
their ideas is constructed. Further, in the last half of the excerpt, when they discuss the strategy, they 
actively refer to the student and her work and talk about her as if she was a real student. Through 
work with the representation of the student’s work, they imagine how the student has been thinking 
and participate in negotiation of meaning about attending to students’ work through imagination.  

Further, we identified participation in a combination of alignment and imagination. In the following 
excerpt, PSTs discuss how they can continue to help students develop their ideas about equivalent 
fractions based on some students’ written work.  

Anna: (…) “How can you continue the discussion if a student answers the following?” 
Maybe to get them to explain what they have been thinking. How did you get this? 
What did you do?  

Nina: Yes, I would follow up with “how have you been thinking to reach this answer?” 
Anna: Yes, and put into words what they have done. 
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Nina: Yes. 
Anna: (…) “What can you, as a teacher, ask the students in order to build understanding 

for equivalence and common denominator?” That’s what we have to help Martin 
with, who does not have [common denominator in] his numerical expression. 

Nina: We can ask Jenna, what is, or in another way, but something about her answer, 
which is 1 and 8/16. She must have understood that 8/16 is equal to 1/2. (…) We 
could, for example, use a number line, mark 1/2, and then divide it into 16 pieces, 
and check that 8/16 is at the same place as 1/2. Then they can maybe realize that 
1/2 is the same as 8/16. That they are equivalent, isn’t that what it means to be 
equivalent? 

In the first four statements, Anna and Nina are planning questions they can ask the student to 
emphasize their thinking process, aligning with the view of reform-oriented mathematics teaching 
that has been communicated in the teacher education program. However, the questions they are 
planning are quite general and could be asked in almost any kind of mathematics teaching. In contrast, 
in the last two statements, Anna brings in one of the students and her interpretation of his 
understanding, which Nina builds upon by bringing in the other student and using her answer as a 
starting point for showing equivalence using a number line. When imagining the students and how 
they can elicit and respond to students’ thinking, the PSTs are also negotiating meaning through 
imagination, and their questions are directly connected to the teaching situation in question. 

Further, several discussions were guided by the use of a framework or instructions in the task. Below, 
the ISTs are discussing a dialogue between students measuring the area of a blackboard using sheets 
of paper.  

Hedda: (…) Are we using all these points? Or… the eight, those from Lehrer? 
Oda: Yes, that’s what we’ll do. 
Hedda: The first, they found out with some help from the teacher that they couldn’t write 

letters. Isn’t that the first point? To realize that unit of measure has the same 
property as the object. 

Oda: No, isn’t this two? Where are you? 
Hedda: He got some help from the teacher to figure out that it would be difficult to measure 

using the letters. 
Else: Yes, but that is the same as number four? 
Oda: Tiling… No identical units. 

Here, the ISTs are engaging in the core practice of attending to students’ understanding, trying to 
label student actions in the dialogue using Lehrer’s (2003) framework. In the third utterance, Hedda 
points to what the students do and tries to understand what aspect of measurement they are working 
with by connecting the student actions to the framework. Their attempt to apply the framework to the 
dialogue leads them into a discussion about the meaning of the different aspects and the students’ 
understanding, and together they figure out which of Lehrer’s (2003) aspects is the relevant one. 
When they are engaging in attending to students’ understanding, the framework is supporting their 
work. 

Non-participation 

As mentioned, participation was most prominent in our data, but there were also occurrences of non-
participation in different modes of belonging. In the excerpt below, the ISTs work with students’ 
written solutions to 13 27 and plan questions for the following classroom discussion, where 
connecting students’ ideas is the goal. 
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Else: Why is it 90 plus 50 here? (…) 140. Nothing about why she picked those numbers. 

Maybe it is to figure out 295 plus 54? Then it is just 90 plus 50, and then maybe 
she added 200. 

Anne: And then 9. 
Else: And the ones. I don’t have the slightest clue what I would say, I would call in sick 

that day. 
Bettina: I find this really hard. 
Else: I don’t understand what… 
Anne: I think it looks like her strategy is quite good. Per Christian, on the other hand, can’t 

continue to add forever. He can’t start in the seventh grade and add, for example, 
13 times 69. 

Bettina: That is a very non-effective strategy. (…) What we want is for him to learn a more 
effective strategy. 

Anne: Yes, maybe through the use of the area model, and later learn this strategy. (…) 
How can we facilitate for the students to share their thoughts? That is easy, they 
can just come in front of the class and explain. Which talk moves will we use? Well, 
confirm their strategies, and maybe let someone else repeat. 

Bettina: Yes, that is what we have talked about today regarding conversations. 
Anne: Yes. I think these questions are easy. But this planning sheet, I don’t think I will 

use it. It is not useful for me. 

They are building on their engagement in making sense of the student strategies they have chosen to 
emphasize in the discussion when they try to formulate questions for the whole-class discussion, but 
they do not conclude on any questions they can ask. When Else says that she would call in sick that 
day and the others respond that they find it difficult as well, non-participation in engagement is 
shaping their identity. Further, they try to formulate some questions through the use of talk moves as 
a framework, but the questions they are formulating are not helping them connect students’ ideas. 
The ISTs apply the talk moves inflexibly, not taking the teaching situation at hand into consideration, 
and their identity is shaped through non-participation in alignment. In the last statement, Anne creates 
a distance between herself and the learning material in the group work, and since she is unwilling to 
negotiate meaning, her identity is shaped through non-participation in engagement. 

Further non-participation in imagination shaped student teachers’ identity when they felt that they 
did not have enough information about a situation, as illustrated below. 

Anna: Yes, we might ask those questions, but as I’ve said, I find it hard when I haven’t 
seen what they have drawn or how they came up with these fractions. 

Anna’s statement indicate that she would have been able to negotiate meaning if she had been the 
teacher and had access to the students’ work, but here she lacks information and is therefore not able 
to imagine the students’ work and her responses to it.  

Discussion 
Our analysis of the group discussions provided insight into how participation and non-participation 
shaped the student teachers’ identity as mathematics teachers. Student teachers’ identity was 
developed through engagement in the core practices the tasks were centered around, through 
imagination of the teaching situation, and alignment with the practices for mathematics teaching 
communicated in the teacher education programs. The student teachers’ participation in engagement 
could be supported by frameworks for understanding students’ ideas, as in the discussion about the 
measurement task. However, as we can see in the discussion between Anne, Else, and Bettina, teacher 
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educators need to ensure that the student teachers are not adopting frameworks strictly and inflexibly. 
Further, student teachers’ participation in imagination was supported by a representation of the 
classroom situation, either written work or transcriptions of dialogues. Our results are in contrast to 
those of  Essien (2014), who found that student teachers developed a mathematical, not mathematics 
teacher, identity in coursework. One explanation for differing results can be that the coursework in 
Essien’s (2014) study was not centered around core practices. From our analysis, it is evident that a 
combination of tasks centered around core practices, representations of the teaching situation, and 
frameworks for understanding student ideas support student teachers in developing a mathematics 
teacher identity.  

Wenger (1998, p. 183) stated that most of what we do involves a combination of different modes of 
belonging, which is also evident from our analyses, where the student teachers negotiate meaning 
through more than one mode of belonging. The different modes of belonging working together 
promote student teachers’ identity development, because they counterbalance each other 
(Goodnough, 2010). For example, imagination is helping the student teachers in attending to students’ 
ideas when engagement becomes too narrow in the discussion about the multiplication strategy. Van 
Zoest and Bohl (2005) suggested that the different communities in which student teachers learn to 
teach should be strongly intertwined to help the student teacher develop a mathematics teacher 
identity. Work centered around core practices is a way of intertwining the school community and the 
teacher education community (Grossman et al., 2009), and the student teachers had opportunities to 
develop their mathematics teacher identity in several modes of belonging. 

When we were planning this study, we chose to collect data from both PSTs’ and ISTs’ coursework, 
because we were expecting a difference in how they would work with core practices. Despite our 
expectations, our analyses did not reveal any differences in the two groups of teacher students’ 
participation in core practices. Since identity captures beliefs, experiences, and knowledge (Van 
Zoest & Bohl, 2005), one could expect that PSTs’ and ISTs’ identity development would be different. 
However, the ISTs in our study are participating in a teacher development program for teachers who 
do not have any prior education from mathematics teacher education. The ISTs’ mathematics teacher 
identity might therefore not include much prior experience or knowledge, making their identity more 
similar to the PSTs’ identity. Further, in our study we are not giving a description of the student 
teachers’ identity before and after group work, because we would need longitudinal data, and possibly 
interview data, to do so. Rather, we describe the processes in which the student teachers develop their 
identity, finding that group work around core practices gives both PSTs and ISTs opportunities to 
participate in different modes of belonging. 
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This study investigates how secondary school mathematics teachers think about infinity when they 
deal with this in different context. The research tool was two tasks based on hypothetical scenarios. 
The first one concerns the calculation of an infinite sum and the second is a version of the Ping-Pong 
Ball conundrum. Two math teachers evaluated the hypothetical students’ reasoning and expressed 
their views in writing and during interviews. From the findings emerged that the different context of 
the tasks, formal and non-formal context, influenced the teacher’s approach to infinity. The 
perspective through which the participants approached the infinite processes of the tasks, as well as 
the duration of these determined their views.  

Keywords: Teachers conceptions, infinite sum, infinity, paradox. 

Introduction 
The concept of infinity as a learning item has been widely studied by mathematics education 
researchers (Montes, Carrillo & Ribeiro, 2014). Montes et al. (2014) highlighted that the process of 
developing the cognition of infinity and the differing conceptions of infinity were the focal point of 
the research. However, they consider that a study on the conception, knowledge, and practice of 
secondary teachers, especially in-service, about infinity is needed.  Dubinsky, Weller, McDonald & 
Brown (2005a) noted that “Philosophers, mathematicians, mathematical historians, students, and 
mathematics education researchers, among others, have struggled to resolve various paradoxes, 
dichotomies and issues regarding conceptions of infinity” (p.336). Kolar and Čadež (2012) referred 
that the abstract nature of infinity, the understanding of it as an endless process or as a set of an 
infinite number of elements as well as the understanding of paradoxes are the difficulties that the 
individuals have to manage.  

The paradoxes can be used as a lens to understanding infinity and as means to identify specific 
difficulties of the actual infinity (Mamolo, 2014). It is noted that these paradoxes are based on 
paradoxical assumptions, and they are inspired by the attributes of the mathematical infinity and the 
overturns of fundamental preconceptions (Mamolo & Zazkis, 2008). Kolar and Čadež (2012) 
focusing on primary teacher students, pointed out that an individual’s understanding of infinity can 
be influenced by the context and type of the given task.  

This paper aims to investigate how the context influences secondary mathematics teachers’ 
conception of infinity through their engagement in two tasks with different context. 

Theoretical Background 
The conception of infinity is related to the dichotomy between potential and actual infinity. In 
particular, the potential infinity is considered as an infinite – endless process, and the actual infinity 
can be perceived as a completed process (Dubinsky et al., 2005a). In this context, Dubinsky, Weller, 
McDonald & Brown (2005a; 2005b) focused on understanding the aspects of infinity using the APOS 
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Theory. The potential infinity is seen as a process of infinite repeating steps and the actual infinity is 
the mental object obtained through the encapsulation of that process. Thus, they highlighted that 
infinity can be perceived as an infinite process, as a single operation that can be carried out and 
finished as well as a completed totality (Dubinsky et al., 2005a). According to them, it is important 
to notice that the potential and actual infinity represent two different cognitive conceptions that are 
related to mental mechanisms. Dubinsky, Arnon, and Weller (2013) studying the preservice teachers’ 
understanding of the 0,999… =1 introduced an intermediate stage in APOS Theory between Process 
and Object, which they called Totality (TOT). Thus, the completed idea for the infinity can be 
constructed by the interiorization moving from action to process, detemporalization to progress from 
process to totality, and encapsulation to progress from totality to object (Dubinsky et al., 2013).  

Moreover, Dubinsky, Weller, Stenger and Vidakovic (2008) and Mamolo and Zazkis (2008) studied 
the understanding of infinity using paradoxes, in which procedures with infinite steps could be 
completed in a finite time. As Dubinsky et al. (2008) found, when resolving the Tennis Ball paradox, 
university students focused on the existence of an incomplete process, or they claimed that infinite 
balls would be in the two bins at the end of the process. Mamolo and Zazkis (2008) studied high 
school mathematics teachers who participated in a master program and undergraduate students of 
liberal arts and social sciences, the perceptions of infinity using the “Hilbert’s Hotel” paradox and 
“Ping-Pong Ball” conundrum. They noted that the students’ answers focused on the practical 
impossibility of paradoxes. Thus, they concluded that “the students who acknowledged the gap 
between their intuitive and formal understandings of infinity may have taken an important first step 
toward encapsulating infinity as an object” (Mamolo & Zazkis, 2008, p. 180).  

Methodology 
In this paper, we present a part of border research focused on secondary education mathematics 
teachers’ conception of infinity. This research is a multiple case study focusing on ten in-service 
teachers, with various teaching experience. They were informed about the aim of the research and 
they agreed to participate in this. They had a degree in mathematics and during this research, they 
were postgraduate students in mathematics education. In this paper, we analyse the data of two of 
them, Alice and Sergio. These cases were chosen since they approached the infinite processes under 
different perspectives. Specifically, perspectives based on the actual, potential, a combination of the 
potential and actual conceptions, and finite reasoning of an infinite process have emerged.  

The research data were the teachers’ written answers in two tasks and semi-structural interviews. The 
aim of the interviews was to insight into teachers’ thinking. The interviews were recorded with 
teachers’ consent and transcripted. The presented extracts in the results are a translation from Greek, 
which is the language that interviews were conducted, into English. 

The research tool was two tasks regarding the conceptualization of infinity. They are based on 
hypothetical scenarios grounded on previous research findings and experience concerning learning 
and teaching of series. The tasks aimed to engage the teachers with students’ misconceptions. Thus, 
we are not focused exclusively on the correctness of the responses but on whether the teachers can 
identify students’ errors and their causes, as well as teachers’ reasoning about them (Biza, Nardi & 
Zachariades, 2007). 
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1st Task 

Two math students were asked to calculate the infinite sum  +  +... The students thought for a 
while and continued with the following dialogue: 

Stud. A: This is the infinite geometrical series , which converges due to |  | < 1. Am I right; 

Stud. B: Yes. So, the infinite sum is converging to .  

Stud. A: No, it is equal to  .  

Stud. B: It cannot be equal to   since as we add terms the infinite sum is continually increasing. So 

it will converge on  .  

Stud. A: It is continually increasing, but when the process will be completed, it will be .  

Stud. B: In an infinite sum the process is infinite and endless. Thus, this cannot be equal to a number. 
It is continually approaching the number and it tends to this. 

a) Do you consider that one of the two answers is correct? Justify your answer. b) If you think all the 
answers are incorrect, which one do you think is the correct answer? Justify your view. c) For the 
ones that you think are incorrect, which are the misunderstandings that led to this answer.  

The first task provides a context based on the formal mathematical knowledge about series. However, 
it is inspired by the dilemma of series’ (as an infinitely repeating process) equality or convergence to 
a number. According to Spivak (2008, p.389) the expression “the series  does or does not 
converge” used to refer to infinite series is somewhat peculiar because the symbol  denotes 
at best a number (so it can’t converge) and nothing at all unless  is summable. Thus, the given 
answers are based on the fact that the used terminology is conflicting since we refer that a series 
converges despite that it is equal to a number.  

2nd Task 

Three math students were given the following problem: “Imagine you do the following mental 
experiment with a duration of just 1 minute. It is assumed that you have an infinite set of numbered 
balls 1, 2, 3. . . and put them in a box as the following procedure demands. Firstly, you put the first 
10 balls into the box, and then remove the number 1 ball in 30 seconds. Then, in half of the remaining 
time, you put the balls 11 to 20 into the box and remove the number 2 ball. Next, in half the remaining 
time (and with faster movements), you put the balls 21 to 30 into the box and remove ball number 3, 
and this process continues. After 60 seconds, at the end of the experiment, how many balls will there 
be in the box? ”. The three students thought the problem and the next dialogue followed: 

Stud. A: I think that at the end of the experiment there will be infinity balls in the box since those we 
insert each time are more than those we remove. In particular, at each step of this process, we put in 
the box 10 balls and we remove one, so we add 9 balls. Due to the infinite steps of the process after 
60 seconds we will have infinity balls in the box.  
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Stud. B: This is accurate but does not mean that at the end there will be infinity balls in the box. I 
think that the box will be empty. 

Stud. A: I do not think that will be empty. How do you think about it?  

Stud. B: I think that firstly we will get the number 1 ball, after the number 2 and finally we will get 
all the balls.  

Stud. C: Is it because the experiment has infinite steps that will not be completed?  

a) Do you consider that one of the three answers is correct? Justify your answer. b) If you think all 
the answers are incorrect, which one do you think is the correct answer? Justify your view. c) For the 
ones that you think are incorrect, which are the misunderstandings that led to this answer. 

The second task is based on a version of the Ping-Pong Ball conundrum (Mamolo & Zazkis, 2008; 
Mamolo, 2014), promoting a non-formal context focusing on “realistic” processes. The conundrum 
is referred to an infinitely repeating process and its ending due to the existence of a finite time. For 
its solution, they are needed the formal mathematical knowledge on series and the coordination of 
the infinite processes (inserting balls, removing balls, splitting the time). The key point for this 
coordination is the order of removing balls so there will be a specific time interval in which each of 
the inserting balls will be removed. 

The analysis of data was carried out in two phases. In the first phase, we analysed teachers’ written 
responses identifying keywords in their reasoning in order to design properly the upcoming 
interviews. In the second phase, we analysed the transcriptions of the interviews, reading them line 
by line, identifying keywords, and characterising an argument according to the conception that was 
based on.   

Results 
In the following, we analyse the data from all the phases of the analysis of Alice and Sergio.  

The case of Alice 

Alice in her written response to the first task agreed with Student A that the series is equal to the 1/8. 
She calculated the infinite sum   by using the formula of the infinitely decreasing geometric 
progression and she noted that “the infinity sum indeed is continuously increasing but in the end, it 
ends”. She also mentioned the infinite sums 0.3 + 0.03 + 0.0003 + ... =  and 0.9 + 0.09 + 0.009 + ... 
= 1 as most direct and intuitive examples. 

During the interview, she distinguished the process from the outcome of the process saying: 

“The process is different from the result. The process will give a result… If we deal the process as 
a whole, if we are able to see it as a package, as a whole, the whole process… the whole sum, if 
we consider it as a whole then it will be 1/8.” 

The use of terms “package” and “the whole process” indicates that she understands the process as 
complete. This shows her ability to perceive infinity as actual infinity. 

Then, commenting on Student B’s view of the infinite sum, she mentioned: 
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“Student B sees this endless process that is continuously increasing, and he just cannot see it from 
outside. He cannot come out from it, but he is inside… the result is the one that I see from outside, 
the infinite sum but from outside.” 

The teacher used the terms “inside” and “outside” to describe the views from which an infinite process 
can be approached. She claims that the internal view of the infinite sum results in seeing it as an 
endless process, while the external view helps you to see the result of the process. She then went back 
to Student A and mentioned: 

“The use of future tense in Student A’s argumentation is the point that I focused on…. So he indeed 
considers that it will be completed sometime… we do not know how “time” will take, but we 
know that whatever time it takes this [infinite sum] will be 1/8. It is like we don’t care about the 
addition. He sees it from outside.”   

In the above excerpt, Alice connects the external view of an infinite process with its completion time 
and argues that in order to have an external view of the infinite sum we have not to care about the 
time required for it. 

Regarding the second task, Alice in her written answer she rejected all students’ answers and claimed 
that there will be a finite number of balls in the box at the end of the experiment.  

I disagree with all the students. I consider that the experiment is going to be completed since the 
time will end. I think that in the box will be a finite number of balls, different than 0 (since the 
balls are increased continuously so the sum is increasing), and there will not be an infinite number 
of balls (since the time is going to end despite that the process giving us an increasing number of 
balls. The time is ending because:  ), so neither infinite 

balls either zero balls.  

In the interview, she first expressed her initial thoughts after reading the task: 

“[This task] reminded me the Zenon’s paradox, and Hilbert’s Hotel paradox. ... And then the time 
is introduced and confused me.”  

She recalled two well-known paradoxes as tasks that have similarities with the given one. 
Nevertheless, she mentioned that the existence of finite time in this task confused her. So, the 
connection of the infinite process with time seemed to create a conflict to Alice. 

Then, Alice reiterated the view she had expressed in her written answer focusing on the realistic 
aspect of the mental experiment: 

“I think that there is a natural number of balls different than 0 in the box. It will not be empty… 
since we have a sum of positive numbers continuously. Despite that, we remove balls, we add 
more, so the sum is always positive. And there will not be infinite balls because it is referred [in 
the task] that the process ends due to time. Just I mentioned I saw it realistic… Sometime the time 
will run out.” 

Alice seems to be influenced by the fact that it is explicitly stated in the task that time is fixed and 
this is a key for her view. This is how she deals task 2 as an outside observer: 
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“I saw it [the experiment] realistically… So, it says that “time will end” and hence I disagree with 
all three students…  I saw it from the outside, it will end, and the time is changed to zero. I still 
consider the same about the concept of infinity [as in the first task]. I just decided whether I will 
be in or outside of the process. I decided to see it outside…. I think that the balls are an infinite 
set. We have infinite balls, but we are going to use a finite number of them.” 

She seemed to consider that the process of inserting and removing balls will stop at the end of the 
time and so finite balls will have been used. Summarizing, it has emerged that Alice demonstrates 
an actual conception in the first task and a conception based on finite reasoning in the second one. 

The case of Sergio 

In his written answer regarding the first ask, Sergio disagrees with both students.  He calculated the 

partial sum of the series but he started from k=0. He wrote   and 

 . He stated “this is a geometric sequence with α = , where | α | <1, and therefore 

the sequence is convergent”. Then, for Student’s B answer he wrote “Incorrect calculation, probably 
due to carelessness or not remembering the formula correctly” and for Student A: 

He considers that the process will be completed and that the infinite sum is equal to 1/8, which 
shows that he has not understood that the infinite sum is the limit of a sequence of partial sums. 

In the interview, it was initially made clear to Sergio that the sum starts from k = 1 thus the result is 
1/8. Then, referring to Student A, he said “…it bothered me that on the one hand, he said converge 
and then he said equal.”. When asked if he agrees with Student B, the next dialogue followed: 

Sergio: …you have troubled me. I say it converges…in the end sums converge to the value 1/8. It 
is convergence. It is not equal. This is not another representation. 

Researcher: OK. What does the series do? 
Sergio: The series, you mean the infinite sum, is the limit of the partial sums. 
Researcher: So the series is equal or converges to 1/8? 
Sergio: It is equal to the value that converges… OK, it is equal to 1/8 … I don’t know, I have 

mixed feelings, I fall into contradictions... 

Then, when asked if he still disagrees with both students, Sergio answered: 

“I disagree with both of them regarding the completion of the process … The one said that “when 
it is completed” but it will never be completed, and the other one that he cannot decide because it 
[the process] will not be completed. … We can admit that if we had infinite time this would be 
equal to 1/8…. If you stop somewhere ... then you are close to , but you did not reach it 
…However, if you do not stop then is going to be .” 

From the above, we see that Sergio is not sure if the series converges or is equal to 1/8. He also puts 
the dimension of time and considers that the infinite sum will be equal to1/8 in infinite time. 

In his written response for the second task, he recalled Zeno’s paradox and he wrote “…I “tend” to 
agree to Student A” but he also writes “...but what happens, in the end, I do not think we can decide.”. 

In the interview he said:  
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“I disagree on whether it [the experiment] will end. Thus, I do not know if we can talk about the 
end of the experiment…. We have two times. The time experienced by the one who is in the 
experiment and the one who observes it. He who is in the experiment will always have half of the 
remaining time. It will not stop…  the one who is inside in the experiment will tend to have infinite 
balls because he is constantly holding more and more in his hands [he means in the box] but I 
cannot say for sure  that when it [the experiment] will end because it will not end.” 

In the above extract, Sergio highlighted the fact that the infinite sum of time intervals will not be 
completed even though the experiment will end in a given time. In addition, he deemed that the 
process of inserting and removing balls cannot have a result since the process is endless. At the end 
of the interview, when he asked which student he finally agrees with, he agreed with Student C. In 
conclusion, it has emerged that Sergio demonstrates a combination of potential and actual conceptions 
in the first task and potential conception in the second one. 

Discussion 
From the preceding analysis, the secondary teachers’ conception of infinity has emerged. As the 
literature stated, the teachers were able to perceive the infinity either as potential or as actual infinity 
(Dubinsky et al., 2005a). However, it is revealed that an individual’s conception may be at an 
intermediate level, between potential and actual infinity, as Dubinsky et al. (2013) stated.                   
Both teachers demonstrated different conceptions of infinity in the two tasks. Alice demonstrated an 
actual conception of infinity in the first task and a conception based on finite reasoning of an infinite 
process in the second one. On the other hand, Sergio demonstrated a combination of the potential and 
actual conceptions in the first task and a potential in the second one. In particular, in the first task, 
Alice seemed to have an actual conception of infinity since she approached the infinite process as a 
completed set. In addition, even though the task did not provoke it, she distinguished the views that 
the infinite process can be approached as the participant in it or as the observer of it. Her decision to 
be an observer led her to the actual conception. However, Sergio’s conception is between potential 
and actual infinity. He referred to the external and internal view on the infinite process, as Alice did, 
but he considered himself as a participant. Therefore, the endless conception of infinity has appeared. 
Even though he faced a conflict on the used terminology about series, his prior formal mathematical 
knowledge seemed to influence him to consider that an infinite process can have an outcome. Thus, 
this intermediate conception has emerged.  We note that in the first task, the teachers introduced the 
aspect of time in their reasoning, even though its context does not promote it, and they expressed 
different views on it. Alice noticed that time could not influence the extraction of an outcome because 
sometime this will be completed, reinforcing her actual conception. On the contrary, Sergio 
considered that only in infinite time the series will be completed, presenting a potential conception.  

Regarding the second task, the “realistic” and controversial context of the paradox seemed to 
influence the teachers’ conceptions of infinity. In particular, both teachers could not correctly 
coordinate the infinite processes, and they approached the experiment time differently. Alice focused 
on the finite time of the experiment, and she considered that the process of inserting and removing 
balls is not completed but will stop when the time is up. Therefore, she approached the infinite process 
under finite reasoning. On the contrary, Sergio focused on the infinite process itself, so he opposed 
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that the experiment ends and the extraction of an outcome (Mamolo & Zazkis, 2008), presenting a 
potential conception 

The above findings illustrate that the context of this task influences secondary mathematics teachers’ 
conceptions of infinity. This type of task seemed to allow teachers’ misconceptions to emerge and 
could be used in mathematics teachers’ education to enhance their knowledge. 
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The current study aims to reveal the development of the pre-service teacher’s awareness on students’ 
strengths and weaknesses in learning the limit concept through lesson study. We focused on a 
participant’s development within instrumental case study. The findings showed that the two phases 
of lesson study including planning and enacting contributed to the development of the pre-service 
teacher’s awareness on students’ strengths and weakness in learning the concept of limit through 
different aspects.  

Keywords: Pre-service teacher education, specialized knowledge, knowledge of features of learning 
mathematics, lesson study 

Introduction 
The common idea of many alternative views - how teachers reveal their knowledge rather than what 
they know - is one of the reasons that makes mathematics teacher knowledge specialized (Scheiner 
et al., 2019). This specialized knowledge includes mathematical and pedagogical content knowledge 
as well as reflecting this knowledge on practice. In this structure, one of the most important and 
comprehensive knowledge can be considered as understanding the nature of learning mathematics 
which includes students’ mathematical thinking, their interaction with content and their strengths and 
weaknesses in learning the concept (Carrillo-Yañez et al., 2018). The literature has revealed that 
mathematics teaching, which is carried out in order for students to make sense of the concept and 
provide a correct conception, is a very complex process (Cengiz, Kline, & Grant, 2011). Therefore, 
teachers need to attend students’ mathematical thinking and make instructional decisions considering 
students’ thinking (Sherin, Jacobs, & Philips, 2011).  

On the other hand, the concept of limit can be considered as a cornerstone and one of the 
comprehensive concepts in mathematics to conceptualize related mathematical concepts. Besides its 
central position in mathematics (Cornu, 1991), the concept comprises many topics all of which are 
based on a common basis, either explicitly or implicitly. One of these topics is indeterminate forms 
(e.g., , , , ) and accordingly the difference between indeterminate-undefined forms in limit. 
In addition to the difficulties experienced by the students regarding the limit concept itself, students 
have difficulties in knowing the distinction between the notions of undefined and indeterminate, and 
they often tend to use these terms interchangeably (Jaffar & Dinyal, 2011). Moreover, the limited 
literature about these notions indicated that most of the students calculate limits in the indeterminate 
forms and use L’hospital rule without questioning the reason behind the forms and related 
calculations (Hulliet & Mutemba, 2000; Arce, Conejo, & Ortega, 2016). Considering these 
difficulties, teachers need to be aware of students’ mathematical thinking, strengths and weaknesses 
in teaching the concept and its related notions to provide an effective learning environment. Teachers 
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can gain this awareness through the combination of knowledge of content and students, more teaching 
experience with different level of students, and interaction with their colleagues. Since these notions 
are quite complex even for pre-service teachers (Hulliet & Mutemba, 2000), this awareness could be 
acquired while being a pre-service teacher before performing the teaching profession.  

One of the ways to nurture the awareness of pre-service teachers for learning students’ strengths and 
weaknesses (Lee, 2019) is lesson study development model which is a cycling process that a group 
of teachers/pre-service teachers work collaboratively (Stigler & Hiebert, 1999). It includes four main 
phases: (1) investigation: setting a learning goal in consideration that students have difficulty in 
understanding, (2) planning: building a research lesson plan in collaboration, (3) research lesson: 
conducting the lesson plan in a real classroom where one of the group members teach the concept 
while others record students’ reactions and take notes of their thinking processes, and (4) reflecting 
and discussing on how effective the lesson was in facilitating student learning (Stigler & Hiebert, 
1999). This phase might be followed by discussions on how to improve lesson plan, and the cycle 
might be applied again to revise missing points. Bearing all these in mind, the current study aimed to 
develop pre-service teachers’ knowledge of students’ mathematical thinking for the notions of 
indeterminate-undefined forms through lesson study.  

Theoretical Framework: Mathematics Teachers’ Specialized Knowledge 

As a part of a longitudinal project, we adopted the model of Mathematics Teachers Specialized 
Knowledge which includes two main domains as mathematical knowledge and pedagogical content 
knowledge encircled around the belief towards mathematics and teaching mathematics. There are 
three sub-domains for each knowledge domain: knowledge of topics (KoT), knowledge of structure 
of mathematics (KSM) and knowledge of practices in mathematics (KPM), which are under the 
domain of mathematical knowledge. On the other hand, knowledge of features of learning (KFLM), 
knowledge of mathematics teaching (KMT) and knowledge of mathematics learning standards 
(KMLS) are under the domain of pedagogical content knowledge. For an effective mathematics 
teaching, in addition to mathematical knowledge, having knowledge about the students’ interaction 
with the content and how they learn is actually one of the basic requirements of being a good 
mathematics teacher. Therefore, we paid attention to KFLM which is concerned with the areas of 
knowledge about mathematical content, the process of learning the content, and the characteristics of 
this process, and how students interact with the mathematical content in this learning process 
(Carrillo-Yañez et al., 2018). It should be indicated that the focus of KFLM is not solely students, 
rather the focus of KFLM is the interaction between the content and students (Carrillo-Yañez et al., 
2018). There are four indicators for KFLM including learning theories related to the content, strengths 
and weaknesses in students’ learning relation with the content, the students’ interaction with the 
content, and the student’s motivation, expectations and interests with regard to mathematics. In this 
paper, we focused on the pre-service teacher’s awareness of students’ strengths and weaknesses in 
the context of learning indeterminate-undefined forms.  

Bearing the lesson study, theoretical framework and the aim of study in mind, we addressed this 
research question: (1) What is the nature of pre-service teachers’ knowledge of features of learning 
mathematics in the learning indeterminate-undefined forms in the context of limit concept during the 
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lesson study process? (a) How does lesson study contribute to the nurturing of the pre-service 
teacher’s awareness about students’ strengths and weaknesses in learning indeterminate-undefined 
forms in the context of limit concept? 

Method 
The study was an instrumental case study (Mills, Durepos, & Wiebe, 2010) in which we used lesson 
study as an instrument to provide insight into development of the pre-service teacher’s awareness on 
students’ strengths and weaknesses. To deepen the analytic stance, we focused on one of the three 
pre-service teachers, Mila, who was chosen purposefully for several reasons, one of which was the 
fact that she didn’t have any experience on making a lesson plan or teaching the concept of limit in 
addition to her eagerness to learn the concept and to hear the students’ voices in learning mathematics. 

The study was carried out in the last semester of the undergraduate mathematics teacher education 
program, as the pre-service teachers take the fundamental mathematics and mathematics education 
courses until their last semester in the program. The procedure of lesson study was conducted in a 
similar way with the description in the introduction section. To nurture the pre-service teacher’s 
awareness about students’ mathematical thinking, based on the suggestions of the literature on 
improving teachers’ awareness of students’ mathematical thinking (Lee, 2019), the phases of the 
lesson study were designed with some additional steps such as promoting the group to think about 
interrelationships among important mathematical ideas and students' mathematical thinking.  

Data Collection and Analysis 

The data were generated through mainly observation of lesson study process including group 
discussions in planning and reflecting phases and teaching episodes in research lessons which were 
conducted in Turkish in two lesson study cycles. In addition, the field notes and lesson plans were 
used to support the claims generated from the data. The first author was the knowledgeable other in 
the lesson study process. We obtained the data through audio- and video-recording during the data 
collection process. After all the data was transcribed, we started the data analysis with partitioning of 
the snapshots of the pre-service teacher’s interthinking and exploratory talk (Littleton & Mercer, 
2013), which includes contributions of students’ mathematical thinking process considering their 
strengths and weaknesses within the collaborative process of lesson study.  

We used thematic analysis with deductive approach in which we determined the codes and the theme 
before analyzing the data. We used the indicator of KFLM-awareness about students’ strengths and 
weaknesses- as a theme in analyzing data. The codes were determined as (i) lack of awareness- the 
general expressions about students’ mathematical thinking or without consideration of students’ 
strengths and weaknesses, and (ii) being aware- interpretative comments on students’ mathematical 
thinking and the relationship between students’ learning and the content in planning. In a similar vein, 
the codes for enacting were determined as (i) lack of awareness-acting without consideration with 
students’ strengths and weaknesses, and (ii) being aware- acting with considering students’ 
mathematical thinking, using their strengths to overcome their difficulties. In this way, we dealt with 
the nurturing process from lack of awareness to being aware in the journey of the pre-service teacher.  
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Findings 
We deal with the nurturing process of lesson study in two parts: planning (determining lesson goals 
and planning of the research lessons), and enacting (implementing the research lesson and writing 
reflections). 

Planning 

The topic of indeterminate-undefined forms was the subject that Mila herself had difficulty in 
understanding, and furthermore she developed her mathematical knowledge on this subject during 
the lesson study process. To put it right from the start, Mila actually developed her knowledge of 
students' strengths and weaknesses based on her own learning process in the past.  

We observed in the pre-interview that Mila, similar to other group members, had some confusions 
about the difference between indeterminate and undefined forms. Therefore, her awareness about 
students’ confusions between these two notions was gained (or developed) in accordance with the 
awareness of her own lack of knowledge. The following excerpt showed a starting point of the 
discussion on these two notions in the planning phase:  

Mila: For example, let’s imagine that  equals . Multiply the ins and outs.  can take 
more than one value. 

Participant 1: Ah yes. 
… 
Participant 2: When you spoke of indeterminate, something came to my mind. I realized that it 

was undefined. I realized it after reading the article: Undefined and indeterminate 
are two different things. 

Mila: Honestly, I didn't know either, I think students might get confused. 
... 
Researcher: Then what do you say about the number divided by zero? 
Participant 2: Undefined. 
Participant 1: Professor, I think first of all let's start with the difference between undefined and 

indeterminate? Let's start, as in the way Mila said. 

In the excerpt above, we did not pay attention to the mathematical correctness of the expression. 
Rather, we focused on how the pre-service teacher considered students’ mathematical thinking while 
constructing the content in planning. The development was observed through development of her 
mathematical knowledge.  

In addition, the observation of other group members’ lessons provided her to see beyond her thoughts 
about students’ strengths and weaknesses in learning the concept of limit. The observation of the 
Participant 2’s research lesson which was just before Mila and then watching it on video enabled her 
to make more mathematical contributions to students' learning about mathematics during the planning 
phase. 

Researcher: You can also explain it in that way when you are explaining. You will start with 
indeterminate forms. There was a question the students asked Participant 2 as “why 
infinity divided by infinity does not equal to ”. Participant 2 will ask you if it's a 
sufficient explanation. 

Participant 2: I said that if there is only one number, there is infinity divided by infinity which 
equals to the number of , then infinity equals to ‘  times infinity’. Well, do I know 
this , but it may be , it may be , it may be , I asked whether I could say 
something definite for , they said no, so I said there would be indeterminate. 
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Mila: This is not the answer of the student's question "why not ", instead it looks like 

the answer to the question of "why does this indicate indeterminate"! 
Participant 1: Let’s say, here is already undefined! Again, infinity divided by infinity must be one 

for the inside and outside product. 
[Researcher intervened here] 
Participant 2: I should have said infinity can be described as an increase; it is not an infinite 

number. 
Mila: We need to be particularly careful about the infinity; a bit as an adjective! So, we 

can start from there and talk about indeterminates. 
Researcher: So, you can start here! 
Participant 2: For example, they asked why  to the power of infinity and zero times infinity 

indicated indeterminate. 
Mila: They are right about the 1 to the power of infinity, we should definitely mention it! 

It can be understood that Mila's ability to express more mathematically what aspects of students can 
be strengthened and which weaknesses can be eliminated shows the change that occurred during the 
planning phase.  

Enacting 

In implementing the third lesson plan aiming to grasp the concept of continuity by establishing 
mathematical relations and to use it together with limit in mathematical applications, Mila started her 
lesson based on her experiences. In other words, she knew that it would happen because she got to 
know the students from the narrations of her previous friend and told them about their learning only 
out of curiosity. 

Mila: Now I guess you guys were pretty curious about indeterminate. 
Student 1: Yeah! 
Mila: Yes, I've already had such a feeling, so I want to examine these indeterminates 

together with you. First, let's talk about the  and  uncertainty. What do you think 
might be the reason for this indeterminate? 

Students: [Grumbling sounds of what they don't know] 
Mila: So, I'm going to write you two functions and ask you to find the limit at the point I 

gave you.  

In the excerpt given above, Mila tried to make them notice the different results of the same limit 
forms which caused the indeterminateness. By wanting them to calculate the limits of the given points 
of the functions, it can be understood that Mila considered students’ strengths about the concept of 
limit. Moreover, it should be indicated here that this is an example about Mila’s awareness about 
students’ expectations about mathematics. 

The example given above is an example from a planned situation in implementing the lesson plan. 
However, our main expectation was to observe the pre-service teacher’s awareness and actions in 
unplanned and unexpected situations. It would show how the pre-service teacher use her awareness 
in her teaching. In the enacting phase of the first cycle, there were two situations she faced with in 
this way. In the continuation of the indeterminate form of  and , she observed that students tended 
to make mistakes while exemplifying or demonstrating indeterminates based on the question 
frequently asked by students in the implementation of the second lesson plan. 

Mila: If I ask you a question now (She turned to her presentation but realized that the 
question she wanted was not there). Yes, I didn't write it here... (Closing the 
presentation screen) Forget about it then. I will write the question myself. Let's say 
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I take  to the  as limit x goes to infinity ( ) What if  
was  for me as the limit goes to  If limit  goes to infinity and  is infinity 
for me, what will the result be? So, when I think about this  to the  
structure…? 

Student 1:  to infinity ( ). 
Mila: 1 to infinity becomes infinity. Because I know from the limit rules that I can 

distribute this limit and the limit  to the  would be  to the infinite for me. 
Student 2: I think it should be too. 
Student 3: I've always wondered about that too. 
Mila: You were wondering, right? I heard it. There is actually a reason for this. What we 

said is that the main reason for the indeterminates is that we get different results in 
the same form of the limit. In fact, nothing different from the ones here (she showed 
what she wrote about  ) appears for . Now I will write you two examples. 

Up to now, the excerpt showed that she tried to use students’ strong sides to teach them the logic of 
indeterminate forms. In addition, it can be said for this introduction that she considered the students’ 
interest (emotional aspects of learning the concept) which was their curiosity about why the forms of 

 is not equal to . In the continuation of the excerpt, she wrote the functions:  

and . While she aimed to use their strengths, students got confused about why 

they look for the same results for different functions. The following excerpt showed her awareness 
about the aspects related to students when she answered students’ questions. 

Mila: So that's why  to the power of infinity is indefinite. 
Student 1: But that's not  to the power of infinity, right? We said 1 to the infinitely indefinite 

thing, isn't it something different?  is here. 
Mila: Hmm, is it confusing that it's equal to ? 
Student 1: No, there is a number called . 
Mila: Yes.  
Student 1: 1 is not infinity, I mean, I don't think they are the same thing! 
Mila: There is a number called n, is your question related to it? 
Student 1: n goes to infinity or exactly  to the infinity is not equal to this. 
Student 3: He means something (talking about his friend) different in two functions. As if the 

two functions are different, it's logical that we find different results anyway, isn't 
it? 

Mila: Hmm I got it! But I'm telling you this. So, let's look at the equation I got over here, 
okay (it shows the resulting limit )? When I look over there the limit  goes to 
infinity and that inner side is equal to  for me. Therefore, when I overwrite it here, 
I get the 1 to the infinity form. Here I got  to the infinity, and what happens when 
I get the same form of other functions? Here I am writing the same thing again 
(showing the second function). Here, my inner side became  and my upper side 
became infinity. In other words, they seem to be different functions, but since we 
do not perceive infinity as a number, we say that it is increasing gradually, but we 
do not know how much it increases, so this is the reason why it creates 
indeterminate. 

Student 1: I get it! 
Student 2,5,7: Yeah, I understood perfectly! 

In the face of this unexpected situation, the pre-service teacher drew an unplanned path for herself by 
using the strengths of the students and at the same time establishing mathematical connections. It 
showed that gaining awareness of students’ understanding is closely related to her knowledge of 
practices in mathematics which can be explained as awareness of mathematical reasoning on how to 
explore mathematics by seeing connections. At the beginning of lesson study process, Mila 
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commonly preferred to reason by means of counterexample not considering students’ learning 
whenever it was asked how she would show one’s correctness or incorrectness. Developing her 
awareness of students’ learning mathematics provided her to use students’ strengths for 
demonstrating the concept in teaching. The fact that the pre-service teacher is aware of the example 
she gives to create a mathematical knowledge is closely related to the students' awareness of using 
calculation, which is one of students’ strengths. 

As a result, the lesson study process contributed the development of the pre-service teacher’s 
awareness on students’ strengths and weaknesses in learning the notions through various aspects. The 
planning phase provided her to discuss on students’ learning and develop her awareness through 
different perspectives in the discussion with her colleagues. The enacting phase supported her 
development by enabling her to see what she had discussed and planned in a real classroom through 
students’ interaction with mathematical content.  

Discussion 
The findings showed that the lesson study process promoted the pre-service teacher’s knowledge for 
gaining awareness of students’ strengths and weaknesses in learning the topics of indeterminate-
undefined forms. In planning, at the beginning of the lesson study process, Mila used her own 
experiences related to learning the concept. However, such views can be considered as limited, in 
other words, lack of awareness, for effective mathematics teaching, because attentions of both pre-
service and in-service teachers to students’ mathematical thinking and learning process in interaction 
with mathematical content provide them to see beyond what they think about mathematical 
knowledge and enable them to make instructional decisions (Sherin, Jacobs, & Philips, 2011). As the 
literature supported (Guner & Akyuz, 2020), working collaboratively on students’ learning in 
planning might promote to open their eyes to observe students’ strengths and weaknesses in 
interaction with mathematical content. Accordingly, the development of Mila’s awareness enabled 
her to make the instructional decision to create her own path by being aware of the strengths of the 
students rather than applying the lesson plan as it is in the enacting phase. The indicator of KFLM 
does not only include knowing where students have difficulties or strengths; rather it covers to enact 
this knowledge combining with content knowledge in making instructional decisions (Carrillo-Yañez 
et al., 2018). Considering that Mila took instructional decisions to help students overcome difficulties 
by leveraging their strengths, it can be concluded that the enacting phase of lesson study presented a 
great opportunity to develop this side of knowledge of students’ learning mathematics.  

The study focused on one pre-service teacher within classroom discussion during the lesson study 
process. In future research, the focus could be given on more participants in classroom discussions. 
Furthermore, the study contributed to the limited literature about the pre-service teacher’s knowledge 
of indeterminate-undefined forms in the context of limit concept. In addition, as a part of the nature 
of the limit concept, there is a powerful relation between the development of mathematical knowledge 
(KPM, in this study) and increasing awareness of students’ learning mathematics. Therefore, the 
future studies which examine other notions within the nature of the limit concept considering other 
indicators of MTSK can shed light on the literature on mathematics teacher knowledge. 
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This paper explores fundamental assumptions about the notion of transforming subject matter, which 
is widely regarded as a central practice of teacher work and a crucial feature of teacher knowledge. 
First, the notion of transforming subject matter and the ways in which it has been taken up in 
discourses on teacher knowledge are discussed. Second, fundamental but mostly implicit assumptions 
are explored and challenged, including the individual teacher as the locus of transformation, the 
possessor of the knowledge in question and the gatekeeper who provides students access to subject 
matter content. Finally, these widely held assumptions are problematised against the background of 
French and German traditions of didactics. These traditions see the ability to transform subject 
matter not as a characteristic of the individual teacher, but of social and cultural systems that are 
institutionally contextualised and oriented towards normative conceptions of education. 

Keywords: Didactic transposition, elementarisation, pedagogical content knowledge, pedagogical 
transformation, subject matter content. 

Introduction 
It would be fair to say that Shulman’s (1986, 1987) work on teacher knowledge has been a major 
driving force in promoting teaching as a profession, particularly in the English-speaking educational 
research community. Shulman (1986, 1987) provided the impetus for the view of teaching as a 
profession by asserting that teachers have a specialised knowledge base that differs from other 
professionals. Of particular importance was Shulman’s (1986) introduction of the construct of 
pedagogical content knowledge, which refers to a specialised kind of content knowledge that goes 
beyond subject matter knowledge per se and encompasses subject matter knowledge for teaching. 
Pedagogical content knowledge, according to Shulman (1986), includes “the most powerful 
analogies, illustrations, examples, explanations, and demonstrations – in a word, the ways of 
representing and formulating the subject that makes it comprehensible to others” (p. 9). 

It is these ways of representing and formulating of the subject matter content – the transformation of 
subject matter in ways comprehensible to students – that Shulman (1987) conceived as the core task 
of teaching and the defining feature of pedagogical content knowledge. Teachers must transform 
subject content into pedagogical forms, such as examples, representations, and instructional tasks, 
which make the content accessible to pupils. Guided by this orientation, Shulman (1987) defined 
pedagogical content knowledge as “the blending of content and pedagogy into an understanding of 
how particular topics, problems, or issues are organised, represented, and adapted to diverse interest 
and abilities of learners, and presented for instruction” (p. 8).  

While the construct of pedagogical content knowledge has received wide attention and has been the 
subject of numerous examinations (e.g. Abell 2008; Bromme 1995; Cochran et al. 1993; Depaepe et 
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al. 2013; Gess-Newsome & Lederman 1999; Hashweh 2013; McEwan & Bull 1991), the underlying 
notion that teachers necessarily transform subject content into pedagogical forms has, for the most 
part, been taken-for-granted. Indeed, the notion of transforming subject matter has often been used 
implicitly instead of explicitly thematised in educational research, and thus, has hardly been the 
subject of debate and hence remained beyond the scrutiny of critical reflection (see Deng 2007). 

This paper examines the notion of transforming subject matter by identifying and questioning 
theoretical underpinnings that have not been discussed in any substantial way. Such examination is 
particularly relevant in the field of teacher knowledge, where the vast majority of the literature has 
reproduced and reinforced the basic assumptions in Shulman’s path-defining contributions. 

On the notion of transforming subject matter and its context 
The notion of transforming subject matter came to light in Shulman and his colleagues’ research 
program Knowledge Growth in Teaching (e.g. Grossman et al. 1989; Shulman 1986, 1987; Wilson et 
al. 1987), which studied the interaction of content knowledge and pedagogical development among 
novice school teachers of different disciplines. The primary focus of this research program was on 
how novice schoolteachers adapt their content knowledge of an academic discipline so that it becomes 
suitable for classroom teaching. The fundamental assumption was that subject matter contents “must 
be transformed in some manner if they are to be taught” (Shulman 1987, p. 16). It is this 
transformation of subject matter into pedagogical forms accessible for students that has been taken 
as the central intellectual task of teaching and that became the defining principle for pedagogical 
content knowledge. In arguing for a knowledge base of teaching, Shulman (1987) claimed that  

the key to distinguishing the knowledge base of teaching lies at the intersection of content and 
pedagogy, in the capacity of a teacher to transform the content knowledge he or she possesses into 
forms that are pedagogically powerful and yet adaptive to the variations in ability and background 
presented by the students. (p. 15, italics added) 

The notion of transforming subject matter has sparked wide interest in the English-speaking education 
research community after Shulman (1986, 1987) introduced it as the defining premise for pedagogical 
content knowledge. The notion of transforming subject matter content has been described and 
interpreted in multiple ways. For instance, Gudmundsdottir (1991) described this transformation 
process as a ‘reorganisation’ of content knowledge that derives from a disciplinary orientation, and 
Grossman et al. (1989) defined it as a ‘translation’ of subject matter knowledge into instructional 
representations. Marks (1990), on the other hand, portrayed it as a process of ‘reinterpretation’ that 
means, “the content is examined for its structure and significance, then transformed as necessary to 
make it comprehensible and compelling to a particular group of learners” (p. 7). 

Common to these considerations is the view that the transformation of content knowledge into a form 
of knowledge “that is appropriate for students and specific to the task of teaching” (Grossman et al. 
1989, p. 32) is seen as a means and an end in itself. However, such considerations can hardly be 
regarded as new from the point of view of several European traditions of didactics, especially the 
French and German traditions of didactics. Questions of preparing subject content are described in 
these traditions yet as part of didactic theories and broader educational considerations, not as 
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characteristics of teacher cognition. For example, in the French tradition of didactics (didactique), it 
has long been known that disciplinary subject content cannot be directly adopted as content for 
teaching. The notion of didactic transposition (transposition didactique) refers to the processes that 
take place from the moment it is decided that some scholarly body of knowledge should be taught, to 
the moment this body of knowledge is taught in educational settings such as school classrooms and 
learned by a group of students (Chevallard 1985). The taught knowledge, however, is not a 
reproduction of scholarly knowledge, but originates from it and is shaped by various institutional and 
cultural forces that may vary in time and space. In the German tradition of didactics (Didaktik), on 
the other hand, the preparation of subject matter for teaching was not only about making it accessible 
to students, but also about expanding its potential for the personal and cultural formation and 
maturation of students. An important approach in this tradition is the didactic analysis (Klafki 1958), 
in which subject matter is examined for its exemplary significance and its present and future relevance 
for students, in addition to its accessibility.  

Though different in their suggested practices, these traditions share the idea that disciplinary subject 
matter needs to be structurally modified in ways teachable by the teacher and learnable by the 
students. 

On the fundamental assumptions about the notion of transforming subject matter  
For Shulman (1986, 1987), the bridging from the disciplinary subject matter teachers acquired in 
college or university to the content they teach in school is the central issue that novice teachers have 
to face. The key to this bridging is the transformation of the disciplinary subject matter knowledge a 
teacher possesses into pedagogical forms accessible to students – a transformation assumed to be 
engineered by the individual teacher. The teacher’s own content knowledge of the academic 
discipline is the matter or substance of transformation, and the teacher’s orientation to the structure 
of the discipline and the structure of students’ minds (including their prior knowledge) is the 
foundation for the restructuring of content knowledge for pedagogical purposes. 

On this view, the subject matter content knowledge taught in school is a pedagogical and personal 
revision of the disciplinary content knowledge of the teacher. How well this pedagogically revised 
content knowledge fits or connects with students’ prior knowledge, then, determines whether students 
have access to the knowledge at stake. Consider, as a case in point, Shulman and Quinlan’s (1996) 
retrospection on the research program Knowledge Growth in Teaching:  

The central feature of this research program was the argument that excellent teachers transform 
their own content knowledge into pedagogical representations that connect with prior knowledge 
and dispositions of learners. The effectiveness of these representations depends on their fidelity to 
the essential feature of the subject matter and to the prior knowledge of the learners. The capacity 
to teach […] is highly dependent on […] how well one understands ways of transforming the 
subject matter into pedagogically powerful representations. (p. 409) 

On this view, the individual teacher is the locus of transformation. It is the teacher who possesses the 
content knowledge at stake and who controls the selection, sequencing, and pacing of what 
knowledge is learned and how it is learned. Such assumptions rely on a teacher-direct view of the 
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teaching-learning process, in which learning is directed and modelled by the teacher. Figure 1 
illustrates the simplicity of which this view operates from within the didactic triangle, focusing the 
attention on the teacher–subject-matter edge of the didactic triangle.

Figure 1: Shulman’s view of the transformation of subject matter 

For Shulman, it is the individual teacher who structures the subject matter content; represents it in 
the form of analogies, demonstrations, examples, metaphors, and so forth; adapts these 
representations to students’ general characteristics; and tailors the adaptations to those specific 
individuals or group of students to whom the subject matter will be taught in the classroom (Shulman 
1987, pp. 16–17). Through structuring, representing, adapting, and tailoring of subject matter, the 
teacher identifies and creates ways of representing and reformulating content knowledge that makes 
it comprehensible for students.

According to this view, the decision of what knowledge (and how knowledge) is acquired is made 
through the authority of the individual teacher, as the possessor or owner of the knowledge at stake. 
That is, the teacher controls what is learned and holds the criteria for what forms of knowledge are 
valued. This view, however, is problematic as the choice of which forms of knowledge are valued 
becomes a question of whose forms of knowledge are valued, leaving unexamined the problématique
that any issue of ‘what knowledge’ is indeed an issue of ‘whose knowledge’ (see Moore 2009). 
Knowledge, consequently, is reduced to those who hold it or gain access to it, and those who have it 
or get it are in power. The teacher is positioned in the locus of power – as the knowledgeable who 
grants students access to the content knowledge in question. What students have access to are the 
pedagogically and personally revised forms of the content knowledge the teacher possesses. This 
understanding is problematic as it prevents realisation that the knowledge students have access to 
might not necessarily be ‘powerful knowledge’, which is deemed critical for responsible citizenship 
in a society (Young & Muller 2013). It might instead be ‘knowledge of the powerful’, which 
reinforces the interest of those previously educated within a system built on that understanding.

What the French and German traditions of didactics set apart from the notion of 
transforming subject matter 
The notion of transforming subject matter reflects certain premises of the French and German 
traditions of didactics. One of the commonalities of these approaches and traditions is that they 
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consider the content knowledge of an academic discipline to be an essential point of departure for 
transformation or transposition. Another commonality is the idea that such content knowledge is to 
be transformed or transposed in some ways to be accessible for students. These traditions differ 
fundamentally, however, in regard to their theoretical underpinnings. First, in Shulman view, the 
individual teacher is the locus of transformation, and transformation is seen as an internal process 
that takes place in the mind of the teacher. In the French and German traditions, however, didactic 
transposition is institutionally contextualised and culturally shaped and directed towards normative 
conceptions of education. 

Second, the unit of analysis, in Shulman approach, is the individual teacher and her or his mental 
processes, and the capacity of transformation is a key characteristic of teacher expertise. How well a 
teacher transforms her or his personal content knowledge into forms that fit or connect with students’ 
prior knowledge and dispositions defines whether students have access to the knowledge in question. 
Access for students is, thus, a pedagogical and psychological matter. In the French and German 
tradition, however, the unit of analysis goes well beyond the individual teacher. It includes how social, 
cultural, and political contexts shape and frame the work of teachers. Knowledge is institutionally 
contextualised and actualises in social practices and cultural activities, such as teaching. The issue of 
student access is as much a social, cultural, and political one as it is an epistemological, cognitive, 
and didactic one. In the following, the theoretical principles and foundations of the French and 
German traditions and their implications are discussed in more detail.  

Transformation of subject matter content knowledge, in Shulman’s view, is something engineered by 
the individual teacher. Chevallard (1985), the initiator of the French tradition of didactic 
transposition, however, portrayed transposition as socially and culturally produced. Didactic 
transposition describes the inevitable processes of change by which scholarly knowledge as it is 
produced by scholars, for instance, is transformed through various negotiations to knowledge to be 
taught that is socially considered as important and, as such, officially prescribed by the curriculum. 
Over different elaborations according to various circumstances, this knowledge is then transformed 
to knowledge as it is actually taught by teachers in their classrooms, and eventually to knowledge as 
it is actually learned by students. The theory of didactic transposition accounts for the various 
constraints the diverse agents in the transposition process are subject to, and it attempts to reveal the 
‘transparency illusion’ of those who think of transformation of subject matter as something 
deliberately chosen (see Bosch & Gascón 2006). 

The activity of transposition does not belong to any individual but involves groups of people who 
interact with one another, including disciplinary experts, education researchers, curriculum 
developers, and teachers, among others. These groups of people belong to what is called 
the noosphère, the sphere of those who think about education, an intermediary between the education 
system and society (Chevallard 1985). 

The capacity of transformation is, in this view, a property not of a single teacher, but of social and 
cultural systems that enable the development of subject matter knowledge in social institutions and 
the organised and institutionalised preparation of subject matter for students. This tradition 
acknowledges institutions at the source of knowledge and highlights the fact that what is taught at 
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school originates in other institutions and is a result of complex processes of negotiations among 
different actors involved in the process of didactic transposition (Chevallard 1992). 

The process of didactic transposition, thus, underlines the ‘institutional relativity of knowledge’ and 
situates didactic phenomena at an institutional level, beyond individual characteristics of the 
institutions’ subjects (Bosch & Gascón 2006). What is taught at school has to be legitimised by 
external entities that guarantee the social value and epistemological significance, as well as the 
cultural relevance of the subject matter content (Chevallard 1992). 

Similarly, subject matter content, in the German tradition of didactics, is selected based on normative 
criteria according to its educational value for promoting and actualising Bildung – that is, the personal 
and cultural formation and maturation of students (von Humboldt 1795/1960). Via didactic analysis, 
the role, meaning and importance of the subject content in contributing to general educational aims 
are to be explored and questioned (Klafki 1958). The selection of subject matter content is, thus, a 
selection of aims, goals, and values of education in a given society. What content knowledge is valued 
and what is worth teaching are not left to be decided by the individual teacher but are based on formal 
criteria developed in the interplay of cultural-historical traditions and current societal needs.  

For subject matter content to become educative, it needs to be ‘elementarised’ (elementarisiert) that 
is, concentrated, intensified, or abstracted to what has fundamental relevance for students (Klafki 
1954). Elementarising does not simply mean a simplification of subject matter content, but a 
magnification of educational content (Bildungsinhalt) for opening or unlocking the educational 
substance (Bildungsgehalt) of the subject matter content.   

Conclusion 
The introduction of pedagogical content knowledge in the English-speaking community has re-
introduced the centrality of subject matter content into the teaching equation, a centrality well-known 
and well-established in several European traditions of didactics. This paper in no way undermines 
Shulman’s efforts in bringing the subject matter to the forefront in discourses of teaching, teacher 
knowledge, and teacher education. Instead, this paper has examined fundamental assumptions 
underlying the notion of transforming subject matter as introduced by Shulman in light of the French 
and German traditions of didactics. The fundamental differences between Shulman’s lines of thinking 
and these European traditions of didactics are not in the focus, in the instructional process itself, but 
in their theoretical principles and foundations. 

Transforming subject matter content, for Shulman, has been seen as a central characteristic of an 
effective teacher, a process that takes place in the teacher’s mind. It is the individual teacher that is 
the locus of transformation, the possessor of the content knowledge at stake, and the gatekeeper for 
granting students access to the subject matter content. Such an understanding has largely derived from 
cognitivism and the individualisation of the teacher in engineering the transformation. That is, 
questions of core practices of teacher work and issues of access have been mostly psychologised, 
with little or no account of broader social, cultural, and political aspects of education. In the process 
of individualising the transformation process, any serious sense of social structures and the cultural 
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and political forces that shape and form the transformation of subject matter for educational purposes 
have generally been disregarded. 

The French and German traditions of didactics, on the other hand, are based on social and cultural 
aspects of education, and on tradition and history. Processes of transposition or elementarisation in 
these traditions are socially and culturally constructed, institutionally contextualised and directed 
towards normative conceptions of education. The capacity of transformation of subject matter 
content, thus, is not a property of an individual teacher, but of social and cultural systems that organise 
ways of preparing subject matter content for students, in which certain kinds and forms of knowing 
are valued based on history and tradition, as well as on societal needs and cultural practices. Rather 
than an end state, the didactic transposition and elementarisation are continuously driven by 
unrelenting negotiations – balancing different interests and concerns of a given society. 

The unit of analysis, thus, goes well beyond the individual teacher and includes the cultural and 
institutional contexts that shape how transformation unfolds in any given community and institution. 
Such considerations reveal that ways of transformation always reproduce social arrangements of 
power and privilege that need to be carefully examined and questioned. This may be of particular 
importance as the reliance on the individual teacher as the locus of transformation and the possessor 
of knowledge in Shulman’s account perpetuates an educational system that favours the interests and 
concerns of those who already control intellectual and thus curricular legitimacy. 
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Introduction 
The title of this poster is a name of a Horizon 2020 project with the acronym MaTeK. The project 
belongs to the Twinning action, which stands for research infrastructure building and institutional 
networking. The general goal of MaTeK project is to strengthen the research performance and 
develop the excellence of the Department of Mathematics Education (DME) at the Faculty of 
Mathematics, Physics and Informatics of Comenius University in Bratislava, Slovakia (UK BA), in 
the field of mathematics teacher knowledge enhancement. Teacher knowledge is the prerequisite of 
the education enterprise, and student knowledge development its objective. For researchers, it is 
essential to understand what kinds of knowledge mathematics teachers develop, and how they use 
their expertise in teaching in order to help students to develop deep knowledge in mathematics. One 
of the ways how to address this issue is to work with pre-service mathematics teachers on lesson and 
learning progression design capacity (Pepin et al., 2017). The specific goal of MaTeK is to provide 
the DME with opportunities to work with and learn from partners and exchange best practices in the 
field of mathematics lesson and learning progression design, with focus on the topic of reasoning and 
proof (R&P). R&P is an important strand of mathematical proficiency (e.g., Kilpatrick et al., 2001), 
and research has shown that pre-service teachers are often not adequately prepared to cultivate 
opportunities for students to engage with reasoning and proof (e.g., Stylianides & Stylianides, 2009).  

MaTeK is twinning the departments of Mathematics Education of five European universities: 1) 
Comenius University in Bratislava, Slovakia (UK BA), coordinating/applicant institution; 2) Charles 
University, Prague, Czech Republic (CU); 3) University of Palermo, Italy (UNIPA); 4) Norwegian 
University of Science and Technology, Trondheim, Norway (NTNU); and 5) Middle East Technical 
University, Ankara, Turkey (METU). 

Research plan and activities 
The general goal of MaTeK will be achieved through a series of twinning schemes, including 
workshops, seminars, summer schools, staff exchanges, and conference attendance, that will all be 
closely related to a well-defined common research study, with the following research question: How 
can pre-service teachers’ design capacity in terms of reasoning and proof be enhanced?  
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The project has started in January 2021 and, within its duration (until December 2023), will follow a 
Design Research approach (McKenney & Reeves 2019), with the following three research phases: 1) 
Exploratory study (context and needs analysis); 2) Lesson and Learning Progression design & 
Intervention; and 3) Enactment & re-design. Our main target group in phases 2 and 3 is pre-service 
mathematics teachers for grades 5-10 at each MaTeK institutions. Their understanding of the 
mathematical learning progressions and lesson plans design involves important aspects of 
pedagogical content knowledge (Carlson & Daehler, 2019).  

Proposal 
The poster will present in more detail the design of the study, including the planned research phases, 
as well as the theoretical frames used (e.g., design capacity (Pepin et al., 2017); learning progression 
(Fonger et al., 2018); different modes of reasoning (Stacey & Vincent, 2009) and expected outcomes. 
In addition, selected preliminary results related to the context and needs analysis will be presented, 
e.g., a framework for textbook analysis regarding R&P, and a survey on in-service mathematics 
teachers’ use of resources for designing and conducting lesson plans.  
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The paper presents a study of the development of TPACK of Preservice Mathematics Teachers 
(PMTs). Two interconnected components of TPACK, the use of digital tools (DT) as instruments for 
solving problems and for creating digital materials, are dealt with from the perspective of their role 
in teacher education and mutual relationships. The paper aims to provide examples of how different 
teaching approaches could develop the knowledge and skills of PMTs in such a way that PMTs will 
be able to use DT properly in their own teaching. 

Keywords: TPACK development, PMTs education, digital technology in PMTs preparation, 
searching and evaluation of existing materials.  

Introduction 
The use of DT in mathematics education at all levels has been a broadly studied topic already for 
several decades (see e.g. Ruthven, 2007). In 2011, Jančařík and Novotná see one of the reasons for a 
slow integration of DT into (not only) mathematics education in comparison with the robust 
development of technological tools for education and the low level of teachers’ experience with using 
it. The rate of this integration increases markedly slowly when compared with the speed of 
development of technology. Jančařík and Novotná (2011) named as one of the reasons for the 
situation insufficient teachers’ preparation for this integration. Successful use of DT in mathematics 
classrooms requires that the teacher is able to use it efficiently when solving problems. This is only 
one of the required competencies. Without additional pedagogical knowledge, e.g. designing lesson 
plans, selecting suitable materials available (e.g. on the internet), modifying and creating materials 
intended for the taught group of pupils, evaluating their quality and needed improvements, the use of 
DT in classrooms remains less efficient. 

The research presented in this article is based on a long-lasting collaboration of two groups of 
researchers/teacher educators at two faculties, the Faculty of Mathematics, Physics, and Informatics 
of Comenius University in Bratislava and the Faculty of Education of Charles University in Prague. 
The history of both countries, Slovakia and the Czech Republic, is connected in their past histories, 
even from the Great Moravia period. The educational systems in the current two independent 
countries develop separately, but they have many similarities and we found it interesting to look at 
differences and similarities after almost 30 years of separate history. One of the common topics is an 
integration of DT into (lower and upper) secondary teacher education. Needing to understand if 
"insufficient teachers’ preparation" is one of the reasons why we analyzed the integration of DT in 
different preservice secondary mathematics teachers’ courses. Teacher knowledge should not only 
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concern the ability to work with DT or solve mathematical tasks. The further important teacher’ 
abilities are proper implementation of DT into the educational process, which includes lesson plan 
preparation, design and re-design of teaching resources, choosing appropriate and available 
educational materials, and the design of appropriate assessment and evaluation tools. All these 
abilities are partial domains of model TPACK that are briefly addressed in the next part of the paper. 
The collaboration of the two research teams opened new perspectives to handling several questions 
dealt with by both groups individually. The perspectives stemming from this collaboration can be 
clustered into two major groups. 

The first group (represented here by Case 1) is concerned with the use of DT as a scaffolding and 
“technical” support when learning mathematics, especially when introducing a new concept and 
solving problems. This group is linked with improving future teachers’ skills in using DT. The second 
group (represented here by Case 2) is concerned with the use of ready-made digital resources 
available on the internet and their own production for use in classrooms. 

Current research also identified issues such as “limitations of trained staff and the need for 
practitioners to troubleshoot issues” (Buteau et al., 2010, pp. 58–59). The research question is: What 
components and forms of the implementation of DT into teacher education should be incorporated 
into PMTs training and what is the recommended order of their implementation? 

Theoretical framework 
The framework for TPACK was introduced by Mishra and Koehler (2006). This framework clarifies 
the kinds of knowledge required by a teacher in order to ensure the effective integration of technology 
into their teaching. It can be seen as an enlargement of Shulman’s (1986) PCK model with technology 
as an additional domain. 

There are three main competencies in the TPACK model defined by Mishra and Koehler (2006): 
Technological knowledge (TK), Content knowledge (CK), and Pedagogical knowledge (PK). 
Technological, pedagogical, and content knowledge (TPACK) is one of four competencies, 
Technological-content knowledge (TCK), Technological-pedagogical knowledge (TPK), 
Pedagogical-content knowledge (PCK), and Technological, pedagogical and content knowledge 
(TPACK), that address how these three main domains interact (see also Fig. 1). TPACK was proposed 
as the interconnection and intersection of TK, CK, and PK. 

 

Figure 1: TPACK framework (based on the image at tpack.org) 
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TPACK, according to Koehler et al. (2014, p. 102), “refers to knowledge about the complex relations 
among technology, pedagogy, and content that enable teachers to develop appropriate and context-
specific teaching strategies”. The development of TPACK could be done in three possible ways as 
identified by Koehler et al. (2014). The first is from PCK to TPACK, the second from TPK to 
TPACK, and the third, developing PCK and TPACK simultaneously. In our research, we also used 
the fourth way from TCK to TPACK, which is not mentioned in Koehler et al. (2014). We used it in 
our previous studies (a summary of those studies is in Slavíčková, 2021). The layering of theoretical 
frameworks can help us to better understand the studied phenomenon. We used such an approach in 
Slavíčková (2021) when layering Mishra and Koehler’s framework (Mishra & Koehler, 2006) with 
Ball’s “egg” framework (Ball et al., 2002). 

In this paper, we focus on two from seven components of teachers’ TPACK: the use of DT in 
mathematical courses (Case 1) and the development of the ability to critically evaluate and modify 
materials available on the internet (Case 2).  

Methodology 
The collaboration of the two teams is ongoing which is why we can present at this point only the 
results of research anchored in one course at each group level and methodological instruments linked 
to them. In both cases, a qualitative research design was used. 

The Bachelor level mathematics teacher education at both universities focuses on the CK. In Case 1, 
we focused on PMTs' willingness to use different types of DT in Calculus lessons. The participants 
were 26 PMTs in the second year of their bachelor study program. We offered them several digital 
tools like Graphic Calculus, Derive, GeoGebra; they had the freedom to use other devices as well. 
They were asked to use them not only at home preparation but also in the lessons. The situation in 
2020 (and 2021) was more manageable using DT due to the online form of classes.  

In the Master’s level mathematics teacher education at both universities, attention is paid to the 
PMTs’ ability to select and use appropriate digital materials available in a ready-made form and 
modify them for the conditions of their own teaching. On this level, choosing DT is not guided and 
it is up to the PMTs judgment to choose the proper one for their lesson preparation. They also learn 
to design their own original materials. For collecting data about PMTs’ coping with this important 
activity (Case 2), the course of CLIL (Content and Language Integrated Learning) was selected as 
representative in our study. 

PMT’s worked outside the CLIL course contact lessons. They were asked to choose a material 
available on the Internet proposed for use in a mathematics CLIL lesson, evaluate it and propose 
improvements. and justify their proposals. In the research described in Case 2, we worked with 11 
students who were in the first year of the Master’s level study. They were used to use DT in the way 
described in Case 1. Their essays were analyzed and compared. We focused on the selected topics, 
the nature of criticized issues pointed out and proposed modifications. All analyzed materials were 
in English. The analyses of essays were accompanied by discussions of the authors of the essays with 
the researchers. 
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Case 1: Development of TCK 
As an example of TCK development in PMTs preparation, we choose a Calculus course with the 
integration of DT at Comenius University in Bratislava. The reason is that Calculus is one of the 
compulsory courses in PMTs preparation. There were two reasons for the implementation of DT into 
teaching CK. First, we wanted to demonstrate that DT could help PMTs visualize the situation and 
construct abstract knowledge. Second, we hypothesized that if students experience teaching new 
concepts by using DT, they will be more open to using it in their future teaching careers. 

Research description 

PMTs used digital environments for modeling different situations in mathematics or real-life 
connected tasks. We present two examples of such problems 

Problem 1: An account starts with 1 EUR and pays 100 % interest per year. If the interest is credited 
once, at the end of the year, the value of the account at year-end will be 2 EUR. What happens if the 
interest is computed and credited more frequently during the year? How can we make 3 EUR at the 
end of the year? 

 

 
Figure 2: Using Graphic Calculus for modeling the situation 

As can be observed in Figure 2, a comparison of compound interest calculated every quarter (bigger 
steps), and compound interest calculated every month (smaller steps) can bring small differences in 
the final amount of our money at the end of a year. Making these calculations more often does not 
change the output a lot, the changes are on the positions of thousands or lower. Not all PMTs noticed 
this phenomenon and the answer, it will never be 3 EUR, was surprising to them. This activity led to 
the definition of the Euler number in a limit form. 

Problem 2: Using a preferable DT, find out (a) properties of given sequences, (b) categorize them 
into several categories so every sequence in that category fulfill the condition characteristic for that 
category, (c) provide example of at least 2 sequences for each determined category. 

 

Will your categories work for other sequences as well? Justify your answer. 
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When working with this problem, we followed the spiral scheme Manipulating–Getting-a-sense-of–
Articulating–Manipulating–… described by Mason and De Geest (2010). We merged some types by 
articulating and further manipulating the original 7 categories of sequences (increasing, decreasing, 
lower bound, upper bound, bounded, no bounds, periodic). We started activities related to the intuitive 
understanding of a limit of a sequence. The role of DT was crucial here since the possibility of 
visualization, zoom, and change the interval for making observation and getting a sense of noticed 
phenomenon, helped students predict the situation for a “larger n”. 

Introductory problems or tasks were introduced also for the limit of a function, derivatives of a 
function, the definition of Riemann integral, etc. Different GeoGebra applets and software mentioned 
above were used during the lessons for the discussions and for home preparation. 

Results 

There are two main results we observed during the teaching period. Firstly, PMTs who actively used 
DT were having fruitful discussions during the lessons. We observed that mostly those who have a 
high level of TK were in that group of PMTs. Additionally, nowadays this group of PMTs in their 
Master’s level (2 years after the intervention) is more open to integrating DT into their lesson plans. 
Unfortunately, PMTs mostly focused on repeating existing knowledge, and most of the tasks they re-
design were strongly procedural. 

PMTs proved high flexibility in the 2nd semester. The guidance from the teacher was not as significant 
as in the 1st semester of Calculus. PMTs started looking for different types of software that would 
help them to manage the abstract concepts they had to learn. 

Discussion of Case 1 results 

In the curriculum, PMTs in their 2nd year of study at the university had only one subject focusing on 
the development of the three main domains identified by Mishra and Koehler (2006): TK, CK, PK. 
The course of calculus was the first in which TCK started to be developed. From the results, we can 
conclude that PMTs development of TCK was in general sufficient. Following our previous results 
(Slavíčková, 2021), PMTs with lover DT skills were less willing to use DT. This phenomenon 
changed in 2020 when the COVID-19 situation pushed us all to use them in everyday life.  

The reason for procedural-oriented outcomes of PMTs could be our colleagues' teaching when they 
stress procedures or algorithms for solving typical tasks. PMTs could conclude that mathematics aims 
to manage plenty of procedures. Single intervention is not sufficient here, and more collaborative 
work is needed. Therefore, cooperation with other colleagues preparing lessons focusing on using 
DT, in general, is crucial. 

Case 2: Further development of TPACK  
As an example of a suitable activity in a course, for future mathematics teachers aimed to develop 
their ability to choose and modify existing materials available on the internet, we choose the course 
of CLIL (Content and Language Integrated Learning) at the Faculty of Education of Charles 
University. 
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Coyle, Hood, and Marsh (2010, p. 3) characterize CLIL as follows: “CLIL is an educational approach 
in which varies language-supportive methodologies are used which lead to a dual-focused form of 
instruction where attention is given both to the language and the content.” CLIL teaching units have 
two educational goals of the same importance (language and content). Teaching and materials have 
to pay attention to both. Both educational goals are interconnected even if the teacher or students 
focus on one of them. The dual-focused nature of CLIL offers a rich resource of ready-made digital 
teaching materials. They can focus on the non-linguistic subject, language or, in the ideal case, on 
both at the same time. An example of such dual-focused material is presented e.g. in (Hofmannová 
& Novotná, 2007). 

Evaluations of materials 

Students focused on both, mathematics and language. From the language perspective, they paid 
attention mostly to the used vocabulary and mathematical terminology, and suitability of the used 
language level from the perspective of the target group of pupils. They proposed reformulations of 
parts where they considered the language too complicated (including the length of paragraphs etc.). 
In one case they evaluated the used language as outdated and recommended to change it to the 
contemporary forms. They recommended modifications of the problem settings aiming to have the 
texts more similar to the Czech environment.  

They also mentioned the differences in notation (e.g., in writing dates or mathematical notations). In 
this case, they did not propose to use the Czech way but to practice the English one continuously so 
that pupils get used to using it. 

They underlined the suitability of the use of problems with more than one correct result and solving 
procedure. As to the tasks, they evaluated dividing complex tasks into simpler ones as more suitable. 
They also paid attention to the quality and correctness of figures and the level of difficulty of tasks. 

They mentioned also the layout of the material, mainly the comprehensibility of the text and aims of 
the activities, and proposed improvements. In cases where the answers to the tasks were pre-prepared, 
the students proposed deleting it and letting pupils formulate the answers themselves. 

The students asked for complex materials where the teacher can find all information needed as help 
for the teacher. One student worked with a whole book and recommended it as an inspiration for the 
teacher’s preparation of lesson plans. 

Discussion of Case 2 results 

The students who participated in the CLIL course did not have the courses of didactics of mathematics 
completed. Nevertheless, the majority of them were able to choose materials suitable for use in their 
CLIL classrooms and propose meaningful modifications. They presented their pieces of work in CLIL 
course lessons and discussed deeply the quality and usefulness of materials. They used their 
experiences from the courses of Didactics of mathematics. Their experiences from the use of DT in 
mathematics courses helped them to overcome obstacles based on the implementation of DT.  
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The participating students were aware of the importance of similar activities. Let us cite from one 
student’s comment: “Given how much internet is infested by materials of bad quality, it was nearly 
impossible to find materials meeting my requirements …” 

Conclusion 
The two analyses allowed us to estimate the role of PMTs’ mastering the use of various DT as 
instruments for learning mathematics and solving problems themselves on the one hand and working 
with digital materials during their teaching at schools. 

Answering out our research question, what components and forms of the implementation of DT into 
teacher education should be incorporated into PMTs training and what is the recommended order of 
their implementation, we identified several aspects which should be considered. Firstly, PMTs should 
start with the development of TCK and TPK sooner than on the Master level. Secondly, using 
different topic areas and making connections between the main domains of TPACK can help PMTs 
gain better insight into the issues of implementation of DT into their teaching. Thirdly, closer 
communication among PMTs’ educators is needed, especially those focusing on three main domains 
of the TPACK model, in other words, educators responsible for mathematics preparation, technology 
preparation, and pedagogy preparation. All of them should communicate with each other and with a 
specialist in mathematics education to be concise and help develop TPACK. Fourthly, our 
observations and analyses of materials produced by PMTs indicate that PMTs’ level of TPACK is 
sufficient for their successful implementation of DT in their classrooms once they enter the practice. 
They are able to work with ready-made materials and modify them in a creative way. When doing 
so, they combine competencies gained in the use of DT in their own learning of mathematics and 
solving problems, as well as general and subject didactics. 

Based on our research, recommendations concerning implementing different activities connected to 
using DT in PMTs preparation can be drawn. It turns out that starting with TCK development is a 
good starting point (Slavíčková, 2021). Then we could continue with pedagogy-oriented activities 
(like in Case 2), re-designing the given (or found) materials to create an own material by using DT. 
When PCK is developed, it can be quite late to start with TPACK. As Mishra and Koehler (2006) 
identified, once the teachers are familiar with processes and lesson design without using DT, it is 
difficult to change their mindset.  

The number of participating PMTs and courses was small, and the presented results cannot be 
generalized. Still, they indicate the importance of both components of including DT in (not only) 
mathematics teacher education. This study opened new questions, e.g., how well-equipped are our 
PMTs for their real teaching? How can we measure that? What are the indicators of a well-prepared 
teacher? This will be the focus of our subsequent research. 

Cooperation between our universities continues. We are preparing further interventions and 
comparisons of our PMTs’ results e.g. when creating lesson plans or in their flexibility in adapting 
their teaching to different environments (mainly by using digital tools). 
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This paper examines the case of Ruby, a prospective mathematics teacher, and explores the 
transformation of her mathematical identity as she moved through her studies from grade school 
through university. I utilize the conceptual framework of multiple “I-positions” from Dialogical Self 
Theory to reflect on the changes in Ruby’s mathematical identity through analyzing her retrospective 
self-narrative. Based on this case study, I determine that the dynamics of I-positioning, involving 
emergent coalitions of I-positions or the emergence of a single I-position of greater authority, may 
play an important role in the formation of a positive or negative mathematical identity. I also find 
that significant events such as changing circumstances, new reflections, decisions, and actions may 
act to precipitate the reconfiguration of I-positions, and thereby bring about the transformation of 
one’s self-understanding as an (in)competent student of mathematics. 

Keywords: Mathematical identity, mathematics learners, prospective mathematics teachers, 
dialogical self theory.  

Introduction  
Identity has been explored through various theoretical frameworks, (Beauchamp & Thomas, 2009), 
several of which are featured in mathematics education research on the concept, e.g., Holland et al. 
(1998), Sfard and Prusak (2005), and Wenger (1998). Inspired by Lev Vygotsky, Mihkail Bakhtin 
and Pierre Bourdieu, Dorothy Holland et al. (1998) conceive of identities as resulting from processes 
in which people are both agents and subjects of simultaneously culturally constructed and socially 
imposed worlds. Following on such conceptualizations, Boaler and Selling (2017) consider 
mathematical identity to be informed by the “ways in which students think about themselves in 
relation to mathematics, and the extent to which they have developed a commitment to, are engaged 
in, and see value in mathematics and in themselves as learners of mathematics” (p. 82).  

Similarly, Wenger’s sees identity as developing through “negotiated experiences of self” through 
dialogue in communities of practice (1998, p. 150). He understands identity formation as a learning 
trajectory in which “the past and the future [are] in the very process of negotiating the present” (p. 
155)—a theoretical approach that emphasizes identity continuity and malleability. Following on this 
conception, Rø (2019) characterizes teacher identity development as a result of identification and 
negotiation in the process of participation in and at the boundaries of various communities of practice. 
Finally, a substantial number of identity studies in mathematics education have adopted, following 
on the work of Paul Ricoeur (1992), the conception of identity as based on narrative (e.g., Sfard and 
Prusak, 2005 (Kaasila, 2007; Lutovac, S., & Kaasila, 2014, 2018).  

Earlier studies that analyzed the identity narratives of mathematics learners and pre- and in-service 
teachers have described identity changes but have not provided sufficient information about the 
mechanisms that account for them. This study attempts to add this information through analyzing the 
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retrospective self-narrative of one pre-service mathematics teacher. The study does not focus on her 
current self-narrative as a pre-service teacher, but rather traces shifts in her mathematical identity as 
she moved through her studies from grade school through university and until she enrolled in a teacher 
education program. As such, I aim to analyze transformations in one pre-service teacher’s 
mathematical identity and the process of its realization, and to do so in the context of Dialogical Self 
Theory, which provides us with an epistemic and analytic lens through which to consider those 
processes. 

Theoretical Framework 
Dialogical Self Theory  

Hubert Herman’s and Els Hermans-Jansen’s notion of identity formation as a process of telling and 
retelling one’s self- narrative in dialogue with oneself or another person(s) is congruent with the 
conceptualizations mentioned earlier (1995). Dialogical Self Theory (DST) (Hermans & Hermans-
Konopka, 2010) begins with the assumption of selfhood as multi-voiced and intrinsically dialogical, 
composed of a dynamic multiplicity of varied internal narratives--“I-positions”—representing 
multiple perspectives of the self. Each I-position has a voice and is in dialogue with other I-positions, 
all of which reflect different relationships with independent others. The self is comprised of both 
internal and external I-positions. Internal positions reflect aspects of the individual’s identity (e.g. 
Korean, prospective mathematics teacher, immigrant, daughter, friend, etc.). In addition, any current 
set of I-positions includes, not only those existing in the present, but may incorporate past positions 
as well--for example “I- as once a struggling math student”—as well as external I-positions that 
represent the attitudes and example of people seen as significant in one’s life—a parent, teacher, good 
friend or boss, for example (Hermans & Hermans-Konopka, 2010). Past and present I-positions are 
likely to speak in voices that are in conflict, and to present ideas that contradict each other, which 
puts the self in a position of struggling to reconcile the different views in a coherent narrative.   

For DST, the self is both stable and dynamic, always undergoing reorganization of positionings, and 
making meaning of experiences old and new. In fact, in Herman’s and Hemans-Jansen’s words “the 
self is an organized process of meaning construction.” (1995, p.14). As part of this process, we 
construct our self-narratives, which we tell and retell. In these narratives, we give special significance 
to some events over others. Some special events might disrupt or challenge an established self-
narrative. These have been described by Carla Cunha et al. (2012) as Innovative Moments (IMs)—
which may be, for example, new actions, thoughts, feelings, intentions. The IMs are seen as voices 
that are potentially disruptive to the dominant self-narrative and represent a possibility for the 
emergence of new I-positions, and for a self-narrative reconstruction.  The transformation of self-
narratives involving IMs’s emergence and expansion has been used in DST-based psychotherapy 
(Gonçalves et al., 2009). 

According to Cunha et al. (2012), in successful cases of psychotherapy there is a noted emergence of 
three types of IMs: action(s) through which the person challenges the dominant self-narrative; new 
reflections that run counter to person’s previous ways of thinking, and protest; action or thought that 
refuses the current self-narrative. They “announce” a potential emergence of new positions, which 
may bring forth a different dynamic between I-positions, as well as new dominant I-position(s). The 
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appearance of these IMs is followed by emerging “reconceptualized IMs”—new actions, reflections 
and protests, and chances for reorganization.  

Narrative Inquiry 

Mathematical identity is here understood in terms of the narratives persons tell in order to situate 
themselves not only in relationship to mathematics and their mathematical lives (cf. Kaasila, 2007a; 
Connelly & Clandinin, 2000; Sfard & Prusak, 2005), but also in relation to significant persons, 
groups, or cultures (Hermans& Hermans-Konopka, 2010). I consider the notion of the “extended self” 
(Hermans & Hermans-Konopka, 2010), to be a further development of George Herbert Mead’s 
concept of the “generalized other” and Lev Vygotsky’s (1962) internalization of cultural and 
individual voices. All three approaches suggest that mathematical identity includes not only one’s 
view of oneself as a mathematics learner in the context of one’s classroom and the work with one’s 
peers, but also the internalized voices of one’s peers, teachers, parents, and other significant others. 
As such, in analyzing the following case study, I use a multi-voiced dialogical conception of 
mathematical identity, which acknowledges its extension to include real or imagined voices (views) 
of those others. Mathematical self-identity is plural and made up of multiple I-positions in continual 
dialogue (Hermans& Hermans-Konopka 2010). 

Here I examine the case of Ruby, a young Korean American undergraduate student completing her 
coursework in mathematics education and explore her shifting mathematical identity. I reflect on the 
changes in her retrospective self-narrative, tracing her trajectory as a mathematics learner as she 
moved through her studies from grade school through university. I use DST and the conception of 
IMs to identify changes in the relations of authority between internal and external I-positions, reflect 
on the emergence and dynamics of a coalition of positions, and their significance in the realization of 
the ongoing reconstruction of her mathematical identity.  

Methodology 
This study adopts a case study methodology in order to explore and report the details (Creswell, 2005; 
Stake, 1995) of one prospective teacher’s mathematical identity and its changes over a period of 
roughly six years.  The subject, Ruby (pseudonym), was a twenty-one-year-old Korean American 
full-time undergraduate mathematics education student in her third year of preparation as a 
prospective mathematics teacher in a public university in the northeast US. She was a student in an 
introductory mathematics education course that I was teaching at the time. She was an intelligent and 
diligent student; her assignments were always on time, and she was detailed-oriented and thorough. 
Ruby had finished 10th grade in Korea, after which she had relocated with her entire family to the 
US, and she finished the last two grades of high school in a large urban public school.  

Data collection occurred over the course of one academic year during Ruby’ completion of the 
introductory mathematics education course. Three semi-structured interviews were conducted 
throughout – two of them administered consecutively within a week, and the third roughly four months 
later. Each interview was introduced by an invitation to talk freely about her experiences as a 
mathematics learner in middle, high school, and university. The interviewer asked follow up and 
clarification questions. The interviews were transcribed and comprised the main data source for this 
study. Additional informal discussions helped me develop an in-depth understanding of issues 

Proceedings of CERME12 3710



 

 

(Creswell, 2012) related to the study of the changes in Ruby’s mathematical identity. I used open 
coding (Creswell, 2006; 2012) to identify and explore the themes that emerged from the data. 

Adopting methods from narrative analysis (Polkinghorne, 1995), I sought to identify coherent themes 
running through the interviews. First, I divided the interview transcripts into episodes reflecting four 
major narrative shifts related to Ruby’s middle and high school experiences in Korea, high school 
and university in the US. Each episode was further divided into segments, each of which was 
associated with a specific I-position—for example, I as trying hard in mathematics (internal I-
position), or I-as always failing math tests (internal I-position), and I as being encouraged and helped 
by my mother (an external I position representing the internalized voice of Ruby’s mother). Based on 
a comparison of the segments within and across interviews, I developed codes for the I-positions 
relevant to the episodes in the self-narrative. Furthermore, I reviewed all identified I-positions, 
selected the ones that involved self-reflection and observing one or more of the other I-positions, and 
coded them as meta-positions.  

The positions in each narrative episode were analyzed in terms of configurations: were there many 
different I-positions speaking in single “voices” or were they forming a coalition of voices that spoke 
as a “choir,” and how were these configurations related to Ruby’s self-narrative and her positive or 
negative self-identification as a mathematical learner? For each episode, I searched for evidence of 
relatedness between Ruby’s I-positions, and for the existence of power differences as reflected in the 
relative dominance of some. I also looked for significant events as identified in Ruby’s self-narrative, 
and for changes in her I-positions around the time of these events. Guided by Cunha et al.’s (2012) 
conception of Innovative Moments (IMs) I noted new reflections and actions on Ruby’s part, and 
examined them in relation to new I-positions that had emerged.    

Findings 
Ruby’s Self Narrative 

“I wasn’t good at math back then” 

When Ruby was in middle school, she liked math. She described herself as “being interested” and as 
“enjoying the math classes.” She liked all subjects and thought that she was good at them. Things 
changed when she moved to high school. Ruby said that there were lots of tests, and she was not 
performing well on them. There were always students who had better test scores. “I don’t know what 
I was doing, but I always had errors [on the tests].” Her high school math teacher was “very strict and 
stern.” Ruby thought he believed that she was not putting enough efforts and being “lazy”, although 
she said that she was trying hard. She felt he was “angry and disapproving of her.” He had told her 
that “she didn’t have the mathematical mind.” To my question whether her parents were helping her, 
she described her mother as encouraging and supportive and trying to help with homework. Ruby 
“dreaded” her math classes and was afraid of failure. When I asked her about this period, she started 
describing it with “I wasn’t good at math back then [in Korea]” 

“Not loving math, but OK” 

Things had changed somewhat when she moved to US. Her last two years of high school were not 
easy—she was trying to catch up with English--but she suddenly found that she was doing much 
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better in her math classes. She “knew lots of the math stuff” they studied, especially during her first 
year in the US. To my question whether she felt successful, she replied that she was doing much 
better than before [in Korea], but that she didn’t think at the time that she would study math in the 
future. She had A’s at the time, but at the interview she described herself as “not loving math, but 
OK”  

“I had decided that I can do it” 

When she finished high school, Ruby applied to a public university close to her hometown and started 
her first year as an undeclared major. She had to find out what she wanted to study, but at this point 
she knew “it wouldn’t be math.” However, Calculus was a mandatory course and she registered to 
take it, among other courses. She wasn’t sure about it and was afraid of failing it. Then she discovered 
that she liked the course. It seems like it was the instructor at first and the course structure. “The 
instructor was amazing,” Ruby told me, and she “liked everything about this class”—the instructor 
and students, the group work and the assignments. “I loved it [the course],” she told me with 
enthusiasm.  Ruby felt that she was doing very well, and she began to think that she might continue 
to study mathematics and look into related programs. In the following semester she decided to take 
the next Calculus course with the same instructor. She felt successful, and this is when she began 
thinking that she might want to become a math teacher. Her mother advised her that it would be a 
good profession for her. “By the end of this second semester,” Ruby said, “I had decided that I can 
do it [could be successful in becoming a math teacher] and applied to the mathematics teacher 
program.”  

The interviews with Ruby revealed the various I-positions she took while she was a middle and high 
school student in Korea, a student in high school in US, after she moved to the US, and as a university 
student. Table 1 below shows some of these, identified on the basis of the interviews conducted with 
her. 

Table 1. Ruby’s I-positions 

Periods Some of Ruby’s I-positions as a mathematics student 

Middle school I as … 
interested in mathematics (internal) 
enjoying mathematics (internal) 
good in all subjects (external, my teachers)  

High school, in 
Korea 

I as…  
trying hard in mathematics (internal) 
always failing math tests (internal) 
being encouraged and helped (external, my mother) 
being lazy and not studying mathematics hard enough (external, my math teacher) 
making my math teacher angry (external) 
not having the support/approval of my teacher (internal) 
dreading math (internal) 
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not having the mathematical mind (external, my math teacher) 
not being good at math (internal, metaposition)                                            

High School in 
US 

I as…  
knowing lots of [math] stuff (metaposition) 
not loving math, but ok (metaposition)  
having As in math (internal) 
doing much better than before [in Korea] (metaposition)                           
not planning to study further math (internal) 

University in 
US 

I as… 
a university student (internal) 
exploring possible study paths (internal) 
not sure about taking a Calculus class, and afraid [of failure] (internal) 
successful Calculus student (metaposition)                                               
loving math (metaposition)                                                                                
someone who might be successful in becoming a math teacher  (internal) 
a future math teacher (internal) 

These I-positions seem to have informed her mathematical self, and the way she understood herself 
as a mathematics learner and one (in)capable of learning mathematics. Table 1 shows a dynamic 
multiplicity of perspectives--I-positions--representing the multiple perspective of the self in the 
different contexts in which she found herself, e.g. middle school, high school in Korea, high school 
in the US, and university. These I-positions have informed her changing self-narrative (Hermans & 
Hermans-Jansen, 1995) and reflect different relationships with independent others or herself.  

In middle school, the I-positions identified in the interviews, “I as enjoying math”, “I as interested in 
mathematics,” and “I as being a good student in all subjects” supported each other in creating a 
coalition of I-positions, whose unified voices supported a self-narrative of a good and capable 
mathematics student. However, when Ruby transitioned to her Korean high school, her self-narrative 
dramatically changed.  Her high school math teacher became a powerful voice and a mirror through 
which she saw herself in the way she perceived her teacher saw her—not making enough effort, 
“lazy,” “not having a mathematical mind.” This powerful external I-position had become dominant, 
overpowering the voices of her other I-positions, including the supportive external I-position of her 
mother. It led to her shifting her self-narrative and repositioning to new I-positions as “failing math,” 
and “dreading math.” The voice of her math teacher had taken on special significance in the multi-
voiced self, and had challenged, overpowered, and overridden her previous self-narrative.  

However, yet another change in circumstances forced further repositioning. Ruby moved to the USA 
with her family. She found herself in a 10th grade math class, where she discovered that she knew 
quite a lot of the mathematics content under discussion. The situational change had in fact delivered 
her from the power of her Korean math teacher’s voice. A new coalition of voices—her mother’s 
supportive one, and her own metapositions--“I knew lots of the stuff they studied,” and ‘I was doing 
much better than before”-- helped her move away from some of her previous external I-positions, e.g. 
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“I- as not good at math.”  Ruby changed her self-narrative again and described herself at this time as 
someone who was “not loving math, but ok.” At this point, she was not seeing herself as someone 
who would study math further, and perhaps choose it as a career path.  

However, another reconfiguration of new and old I-positions seems to have precipitated yet another 
shift in her self-narrative when she went to the university.  She took a Calculus course with an 
instructor she liked, in a learning environment she found empowering. Both shifts in her self-narrative 
seem to have been instigated by innovative moments (IMs)— new reflections of herself as a math 
learner and her proactive step of registering for a Calculus class, which challenged previous self-
valuations (Cunha, et al., 2012). These led to her solidifying new I-positions as a successful Calculus 
student and as loving math. Table 2 below, identifies some IMs that seem to have contributed to 
shifting Ruby’s self-narrative and her mathematical identity. Her decision to explore a possible 
university study trajectory and her coping with her ambivalence about the Calculus course led to new 
reflections and new actions on her part. Her metapositions at this point seem to have been a powerful 
factor in helping her de-position the “I as not planning to study further math.” Over the course of 
fewer than two semesters, Ruby moved to a new I position as “someone who might be successful in 
becoming a math teacher,” which was, in fact a position of rebellion against the depositioned one.  

Table 2. Innovative moments (IMs) in Ruby’s positioning 

Period Ruby’s I-positions Emerging Innovative 
Moments (IMs)  

High 
School in 
US 

I as…  
knowing lots of [math] stuff (metaposition) 

not loving math, but ok (metaposition)  
having As in math (internal) 
doing much better than before [in Korea] (metaposition)                            
not planning to study further math (internal) 

 

IM reflection 
IM ambivalence  
IM action  
IM reflection  

University I as… 
a university student (internal) 
exploring possible study paths (internal) 
not sure about taking a Calculus class, and afraid [of failure] (internal) 
successful Calculus student (metaposition)                                                

loving math (metaposition)                                                                            

someone who might be successful in becoming a math teacher (internal)  
a future math teacher (internal) 

 
IM new action  
IM new action  
IM ambivalence  
IM new reflection 
IM new reflection 
IM rebellion/protest 
IM rebellion/protest 

Emerging circumstances, new reflections, proactive decisions, and confronting old I-positions led 
Ruby to challenge her previous self-narrative and, eventually, to re-write it. Ruby decided to become 
a math teacher. She applied and was accepted into her university’s mathematics education program, 
graduated successfully, and currently works as a math teacher.   

Conclusion 
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This paper has examined the case of Ruby, a young Korean American undergraduate mathematics 
education student, and explored her mathematical identity-transformation narrative as she moved 
through her studies from grade school through university. I have drawn on Dialogical Self Theory 
and the concept of Innovative Moments to reflect on the changes in Ruby’s mathematical identity 
through analyzing her retrospective self-narrative. I have determined that the dynamics of I-
positioning—emergent coalitions of I-positions or a single I-position of greater authority -- may play 
an important role in the formation of a positive or negative mathematical identity.  I also found that 
significant events such as changing circumstances, new reflections, decisions, and actions may act to 
precipitate the reconfiguration of I-positions and lead to identity transformation. As such, the study 
raises questions about the role of reflection in the reconstruction of self-narratives, as well as what 
classroom methodologies might best facilitate such reflection. In order to nurture students’ 
mathematical identities, new approaches need to be explored that help and encourage students to 
challenge established self-narratives in reference to their mathematical identity. Mathematics has 
become a forbidding gatekeeper for many economic, educational, and political opportunities for 
students, many of whom have developed self-narratives that act to prevent them from identifying 
themselves as capable math learners. As such, disrupting such self-narratives and working proactively 
to reconstruct negative mathematical identities represents an important educational task. 
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Introduction 
The concept of creation flows along the history of European culture starting from the biblical Genesis 
creation (“God said”), through the creator divine Word (Word = God) which is known from the 
Gospel of John. To the history of the artistic creation belongs the myth of Prometheus, or some works 
of Shakespeare. According to the conceptualisation of Sturm und Drang, in the Genieperiode, the 
creator is a genius, the self-contained artist is legalised to create a whole world with his own artistic 
power through breaking the rules. The same power appears in János Bolyai’s famous line in 
connection with mathematical creation, which goes like this: “from nothing I have created a new 
different world.” (Prékopa, 2006, 17) 

Research 
We use the method of cultural context analysis (Lehtonen 2000). In our research we examine the 
cultural-historical sources of creation in mathematics, and the cultural presence of this idea in the 
mathematics education in Hungary. We use the sentence of Bolyai to show, how developed the idea 
of creation from the 19th century to a core element of the Hungarian didactical tradition in the 20th 
century. 

We are convinced that this tradition contributed to the history of mathematics education in Hungary 
on the one hand, to the education of gifted pupils, and on the other hand, to the movement of complex 
mathematics education in the 20th century. T. Varga’s complex mathematics education experiment 
belongs to the guided discovery method in ME and partially also to the inquiry based ME. Creativity, 
happiness, autonomous thinking, the freedom of doing failure were the key-elements of Varga’s 
method, and belief, creation must be the part of mathematics also in the school. Of course, it does not 
mean the creation of a new mathematical world, but the understanding of it within the environment 
of school mathematics, mainly among the frames of conceptualisation taking place during games 
which were based on experience. (Halmos & Varga, 1978, 229).  

In Bolyai’s sentence – according to the concept of Romanticism – only the chosen ones and geniuses 
are blessed with the ability of creation who are separated from the public. By the 20th century, the 
concept of creation was deprived of this romantic genius-cult and one of the key points of Tamás 
Varga’s reform was that he did not think in elite education but he intended to make mathematics and 
the possibility of experiencing mathematical creation within the frames of public education available 
for everyone (C. Neményi, 2013). 
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Conclusions 
1) With philological methods we can proof, that Bolyai’s sentence was inspired by a Hungarian poem 
or by a poetical biography. 

2) This fact belongs to the history of the connection between creation and mathematics. With all its 
antecedents and effects it can be proof for the fact that the need for creation as a belief is a key part 
of the Hungarian tradition. This belief is worth being taken into consideration when a current 
phenomenon of the teaching of mathematics is to be interpreted. As the need for mathematical 
creation is not only present in the works of the quoted authors, but it is also present in those 
collaborations where primary and secondary school teacher training takes place. This way, primary 
and secondary school teachers encounter the need for creation in the context of school mathematics 
either indirectly or directly, but with high probability. 

3) The relation of arts and mathematics has a remarkable tradition in the Hungarian concept of 
mathematics. (See Rózsa Péter’s popular titled Playing with Infinity (Péter R., 1961), or István 
Lénárt’s work and the so called Lénárt Sphere, which is suitable for visualising and teaching spherical 
and hyperbolic geometry in the junior section of elementary school (Lénárt, 2003); or the Experience 
workshop global steam network by Kristóf Fenyvesi / https://experienceworkshop.org/?lang=en .) 
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This paper deals with the knowledge that teachers demonstrate when they interpret pupils' difficulties 
in the teaching and learning of whole numbers and decimals. This is part of a project aimed at 
investigating the link between standardized assessment in mathematics and the teaching-learning 
processes at the primary school level, in which data from a large sample of Italian primary school 
teachers were quantitively analyzed. In the current paper, we consider the first analysis together with 
a second questionnaire administered to a sample of 46 to enlarge the qualitative information about 
their perception of the difficulties. The answers from the second questionnaire were analyzed using 
the Mathematics Teachers' Specialized Knowledge model (MTSK) as a descriptive and interpretative 
tool. The results highlight the teachers' lack of awareness of the difficulties and reveal the need for 
specific training.  

Keywords: MTSK model, mathematics teacher educator, teaching-learning process, INVALSI 
national assessment. 

Introduction 
Our starting point is that standardized assessment data can be considered as a tool that teachers can 
use not only for the design and implementation of meaningful teaching and learning activities, but 
also for providing students with detailed information on their learning (Wiliam, 2010). This also 
applies to the Italian National Standardized Assessment (by the INVALSI Institute), through which 
teachers can thus build reflective and metacognitive paths, functional to a real teaching by skills. Our 
goal is to analyze teachers’ perception of difficulty and their beliefs about the INVALSI mathematics 
tests. In particular, in this study, we want to determine what specialized knowledge and beliefs can 
be inferred from teachers’ answers to a questionnaire about the difficulty of a specific INVALSI item. 

Theoretical framework 
The current research belongs to an interdisciplinary research project, which was initiated in 2017 by 
the "Gruppo INVALSI", composed of disciplinary experts and pedagogues, within the Observatory 
of Didactics and Disciplinary Knowledge established by SIRD (Italian Society for Educational 
Research). These researchers were interested in exploring, on the one hand, the proximity or distance 
between the functions and contents of the INVALSI items and, on the other hand, the beliefs and 
statements about teachers' teaching practices. To this end, they shared an interest in constructing a 
questionnaire for investigating the perceptions of primary school mathematics teachers with respect 
to the INVALSI tests.  
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The questionnaire concerned the teaching of mathematics (how teachers interpreted seven INVALSI 
items of grades 5 and 6, and their results, and how teachers perceived misconceptions, errors and 
levels of difficulty), aspects of general education (what beliefs and attitudes teachers have and how 
they pour them into teaching practices) and questions regarding teachers' opinions on the INVALSI 
assessment program, the didactic usefulness of INVALSI items didactic practices related to INVALSI 
items, and the attitude towards the ideology of natural gifts (Ciani & Vannini, 2017), together with 
professional training and personal data. This questionnaire was administered to N1=526 teachers 
(Faggiano et al., 2021). 

Among the various elements to be analyzed, there were undoubtedly factors related to teachers' 
perceptions and opinions that can facilitate or inhibit the didactic impact of the INVALSI assessment. 
Main research data showed that there was a metadidactic conflict (Arzarello & Ferretti, 2021) 
between what teachers believe and their classroom practices. Figure 1 shows the different research 
variables framing the main study. This framework has its roots in the INVALSI and OECD-PISA 
ones (INVALSI, 2018; OECD, 2019). 

 
Figure 1: Framework of the study 

As a part of this main study, in the current paper our goal is to analyze the knowledge, teaching 
experiences and beliefs of primary school teachers in reading and interpreting the INVALSI questions 
and data in the field of mathematics.  

Among the different models in the research literature characterizing mathematics teacher’s 
knowledge, we have chosen the MTSK model (Carrillo et al., 2012; Carrillo-Yáñez et al., 2018), due 
to the intimate relationship it establishes between the specialized knowledge and the beliefs. The 
MTSK model considers, following the line of Shulman (1986), two major domains of knowledge: 
Mathematical Knowledge (MK) and Pedagogical Content Knowledge (PCK). Within the MK 
domain, the Knowledge of Topics (KoT) refers to knowledge of mathematics as a discipline, and also 
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includes school mathematics. The MK also includes the Knowledge of the Structures of Mathematics 
(KSM) subdomain, which defines that the teacher can know how the subject matter relates to other 
mathematical topics or concepts, and, finally, the Knowledge of Practices in Mathematics (KPM), 
which defines that the teacher knows the mathematical task underlying the mathematical activity, or 
knows the forms of argumentation, validation, and proof. The PCK includes three subdomains: The 
Knowledge of Mathematics Teaching (KMT), that contemplates the teacher's knowledge about how 
to transform the mathematical content to make it understandable to others; the Knowledge of Features 
of Learning Mathematics (KFLM) is the teacher’s knowledge of how the mathematical content is 
learned, as well as the difficulties or strengths that students may encounter when learning a given 
content; and, finally, the Knowledge of Mathematics Learning Standards (KMLS), which is defined 
as the teacher's knowledge of what should be learned at each stage of schooling.  

Moreover, the MTSK model includes beliefs on mathematics, and its teaching and learning that are 
considered as elements that permeate the teacher's knowledge in the different subdomains, with that, 
we seek to construct increasingly accurate images that allow us to interpret the teacher's knowledge 
and the aspects that influence it. 

Instrument 
The analysis of these data from the main study prompted us to plan to carry out qualitative study. 
Therefore, we identified one of these INVALSI items from main questionnaire to use it as an anchor 
and we administered it to a small group of primary school teachers (N2= 46) by adding an open 
question that allowed teachers to provide a reason for choosing the difficulty items using. The data 
thus collected were analyzed using the MTSK model (Carrillo-Yáñez et al., 2018). Therefore, the 
instrument consisted of a first quantitative survey, followed by an open-ended question, and this 
quantitative-qualitative analysis conforms a sequential explanatory mixed method research design 
(Creswell & Plano Clark, 2017).  

Results 
Quantitative study 

We show the selected INVALSI item with its nationwide results in 2009 (see Figure 2), obtaining 
only 33% of correct answers. This means that it turned out to be a very difficult item for Italian 
students in the last year of primary school. 

 
Figure 2: Item 10, Grade 5 Mathematics INVALSI test (2009) with percentage of students’ answers (in 

red those relating to the wrong answers and in green the one relating to the correct answer). The 
translation of the original item is made by the authors 

44,5% 

33% 

18.6% 

3.3% 
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The purpose of this INVALSI item was to verify the ability to manage the conversion between 
different representative registers relating to the writing of numbers (Duval, 1993). As it can be seen 
in Figure 2, 44.5% of Italian 5th graders chose option ‘A’. Those who chose option A did not correctly 
transform the 12 tens but recognized the correct position of tenths and thousandths. 18.6% of students 
chose option ‘C’ where both conversion errors are present. 

In the main study, without informing the participants about the correct answer rate given by the 
students, the following question was posed to the teachers: “On a 1 (very easy) to 10 (very difficult) 
ranking, how difficult do you think the item is for 5th grade students?” 

Table 1: “How difficult do you think the question [in Figure 2] is for 5th grade students?” (N1=526) 

 Valid percentage Cumulative percentage 

1 (very easy) 14.5 14.5 

2 27.7 42.2 

3 16.7 58.9 

4 7.6 66.5 

5 13.0 79.5 

6 5.6 85.1 

7 7.2 92.2 

8 5.8 98.1 

9 1.4 99.4 

10 (very difficult) 0.6 100.0 

This item was considered by 86.2% of the teachers participating in the main survey as particularly 
suitable for evaluating students’ learning and, above all, 87.6% said they used similar items regularly 
in their assessment tests. This result confirmed what was found in an early work on this data 
(Arzarello & Ferretti, 2021): teachers’ perception of students’ difficulties does not correspond to the 
INVALSI national data. 

Qualitative study 

In order to better investigate the phenomenon, we administered the open-ended question about the 
difficulty of the item to N2=46 primary school teachers, by asking them to justify their answer on the 
perceived difficulty of the item. Results for this sample are aligned with the first one. In fact, 71.7% 
of teachers participating in the qualitative questionnaire considered the question to be easy. To 
analyze the justifications provided by teachers, we decided to use the classification of the MTSK 
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model, due to the relationship that the model establishes between knowledge and beliefs and 
conceptions. The teachers’ answers were often attributable to different categorizations present in the 
model; in the following table we try to provide an overview of the choices made and the most 
significant answers. 

Table 2: Example of match between the categories of the model and the answers of the teachers 

Teachers’ answer (translated by authors) 
Categories of the 

MTSK model 

At the end of the 5th grade the pupils are fully capable of composing and breaking down 
integers and decimals 

KMLS + KoT 

Because it is in the program and feasible KMLS + Belief 

I think it is quite difficult because, despite being within the reach of a fifth-grade boy or girl, 
it is necessary to reflect on the INVALSI context which puts pressure and often influences 

the pupils. 

Belief against 
external assessment 

Now let’s see what the percentages of the categories were with reference to the perceived difficulty. 

Table 3: Number of categories identified in our sample 

Perceived 
difficulty 

Categories of the 
MTSK model 

Number of 
responses that 
match with the 

category 

Some examples of teachers’ answer (translated by 
authors) 

From 1 to 5  

(33 out of 
46, that is 

71.7% of the 
respondents) 

Knowledge of features 
of learning 

mathematics (KFLM) 
6 

Most pupils don't make mistakes 

Knowledge of 
mathematics learning 

standards (KMLS) 
15 

At the end of the 5th grade, they should have a clear 
understanding of the concept of digit place value, so it 

should be easy to identify the correct answer. 

Knowledge of topics 
(KoT) 

15 
If you work on decomposition, it is not difficult 

Knowledge of practices 
in mathematics (KPM) 

1 
It is not very difficult some pupils are used to 

reasoning 

Knowledge of 
mathematics teaching 

(KMT) 
3 

In classroom activities I have always proposed 
exercises of this type. 
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Belief 7 

KMT = he/she talks about what he/she does  

Belief = repeating similar exercises as a learning 
method  

From 6 to 10  

(13 out of 
46, that is 

28.2% of the 
respondents) 

Knowledge of features 
of learning 

mathematics (KFLM) 
10 

12 tens are difficult for some to transform 

Knowledge of topics 
(KoT) 

3 

It is a difficult question on at least two points. The first 
concerns the non-canonical representation of the 

number 120, precisely 12 tens. Teachers do not always 
work enough on these aspects. The second point 

concerns the presence of 0 at the cents position and if 
the topic has not been acquired with certainty, students 

can easily fall into error. 

Knowledge of 
mathematics teaching 

(KMT) 
2 

When explained and visualized with structured 
material it shouldn't be difficult. 

Belief 1 

I think it is quite difficult because, despite being 
within the reach of a fifth-grade boy or girl, it is 

necessary to reflect on the INVALSI context which 
puts pressure and often influences the pupils. 

 

It is interesting to note that beliefs were present exclusively among those who perceived the question 
to be simple. In fact, the only belief present in the answers of those who perceived the question to be 
difficult was the one reported in Table 3, and we can see how in reality the teacher judges the question 
to be simple (“being within the reach of a fifth-grade boy or girl”) but he/she considered the 
complexity came from “the INVALSI context which puts pressure and often influences the pupils”. 

Discussion and conclusions 
The analysis of the answers evidenced that most of the teachers mastered the whole and decimal 
numbers, as well as their composition and decomposition (Table 3). Reading the answers with 
evidence of KoT, it can be stated that the knowledge of the positional value of the digits was 
considered by teachers to be essential for the knowledge of the decimal numbering system, since, in 
the canonical decomposition, the number 120 can be represented as 12 tens. 

In the answers evidencing KMLS there were interesting elements to be interpreted. For example, 
when a teacher stated that this topic must have been learned in the third year, and that, therefore, this 
topic must already be known well in advance. Another interesting answer about KMLS was given by 
a teacher who stated that this topic is processed in the fourth year, but is resumed in the fifth year, 
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thus, it is understood that he/she knew that it is a progressive content which requires several academic 
courses to ensure it. Other teachers said that, being part of the program, students need to know that 
content: this shows they knew that at the end of the fifth-grade students should be perfectly able of 
composing and decomposing whole and decimal numbers (this is relative to KoT). These differences 
may be related with the fact that teachers can handle at the same time different points of view about 
mathematics and its teaching and learning (Rodríguez-Muñiz et al., 2021). It seems necessary to 
underline that, in total, there were 24 answers related to KMLS, KoT, or both, among those who 
considered the question to be simple. We wonder if the way in which the question was asked pushed 
teachers to focus only on content and learning standards (KoT and KMLS). It seems to us that some 
teachers focused on content and standards due to a belief: they assumed the curriculum is well 
designed, and, so, if this is a standard it MUST be easy. 

On the other hand, some answers showed evidence of KFLM, that is, the focus on how students think 
and construct the mathematical knowledge about this content, rather than on the curricular design 
(where the topic is, what the standard is). Moreover, they knew those features in the process they 
went through to understand it, as well as some of the learners’ strategies when interacting with the 
content. They also knew some of the difficulties and obstacles associated with this content. It did not 
seem casual that most of these teachers perceived the question to be difficult.  

The results proved to be significant in understanding the effective impact of the INVALSI tests on 
classroom teaching and the real need for training accompaniment that should be designed to support 
teachers in their daily management of teaching-learning processes of mathematics in primary school. 
Therefore, the most significant result is that the questionnaire highlighted a discrepancy between 
teachers’ beliefs about the INVALSI tests and their statements relating to teaching practices. In 
addition, the use of the MTSK model to deepen our understanding of the mathematics teacher's 
specific knowledge has allowed us to understand in more detail the characteristics that teachers 
express when asked about the degree of perceived difficulty.  

The analysis of the results is still ongoing and intends to deepen, in particular, the links between how 
teachers perceive the difficulties of students in INVALSI questions; how teachers interpret students’ 
responses and errors; how much teachers find the INVALSI questions useful and how they use them 
in teaching practice. We believe that this information can be extremely useful in the design pre-
service training for primary school teachers. 
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Place value plays a pivotal role in understanding numbers and arithmetic operations that universally 
cut across the primary and secondary curriculum. This study investigates the nature of 40 qualified 
teachers' knowledge in the context of articulating the role of place value in understanding arithmetic 
operations. The participants have 3-45 years of teaching experience who currently teach grades 1-8 
(ages 6-14) in public or private schools in Turkey. The data consists of the videotapes of the semi-
structured interviews in which we asked the teachers to analyse five different scenarios consisting of 
alternative student solutions regarding arithmetic operations. Our initial findings suggest that 
teachers who operate with (partial) specialised content knowledge or without it analyse the given 
alternative solutions qualitatively differently. The analysis also reveals that the teachers rely mostly 
on common content knowledge that has little or no connections to a solid place value understanding.  

Keywords: Place value, specialised content knowledge, mathematics teacher knowledge, arithmetic 
operations  

 

Introduction 
Place value plays a pivotal role in understanding number structure and arithmetic operations (Nuerk 
et al., 2015) that universally cut across the primary and secondary curriculum. Arithmetic and 
symbolic calculations require a solid understanding of place value. However, numbers and arithmetic 
operations are mostly treated procedurally in schools and the teaching that fosters rote learning is a 
common practice among teachers (Pesek & Kirshner, 2000). As a result, we see students treating 
numbers as a combination of concatenated single digits (Fuson et al., 1997) or having difficulty 
understanding the meaning of each digit in a number (Kamii, 1986). Furthermore, understanding 
number requires one to form groups and think about groups (or groups of groups, etc.) as single 
entities or composite units (Hiebert & Wearne, 1996), which is also problematic among students 
(Thanheiser, 2015). Such difficulties affect students' understanding of the procedures in making sense 
of arithmetic operations (Verschaffel et al., 2007) and algorithms (Kamii & Dominic, 1998).  

Even teachers struggle to clarify their rationale for algorithms as they primarily operate from 
procedural aspects (Ma, 1999). They have difficulty articulating number concepts (Thanheiser et al., 
2013) and place value (Southwell & Penglase, 2005). Primary school teachers are not even aware of 
"the impact of place value understanding on the learning of mathematics" (Houdement & Tempier, 
2019, p.36). Such a crucial area requires teachers to have the necessary knowledge and understanding 
to teach conceptually. The research literature piles up in articulating student understandings or 
misunderstandings (e.g., McClain, Cobb, & Bowers, 1998), whereas it falls short in delineating 
teacher knowledge and the nature of that knowledge. Several studies focused on the understandings 
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of trainee teachers (e.g., Lo, Grant & Flowers, 2008; McClain, 2003), but our experience suggests 
that qualified teachers do not have a solid knowledge of concepts, as mentioned earlier. Knowing 
more about the source of teacher difficulties and the nature of their knowledge specific to teaching 
would inform educators in developing well-designed professional development programmes and give 
them opportunities to improve the quality of instruction in schools. As Thames and Ball (2010, p.228) 
pointed out, identifying the mathematical demands of mathematics teaching "allows us to identify the 
mathematical knowledge needed for teaching", which will help us improve the quality of instruction 
in schools. Therefore, the current study investigates the nature of qualified teachers' knowledge 
specific to teaching place value as it "should be at the core of teachers' education" (Houdement & 
Tempier, 2019, p.36). We pursue the following specific research question: 'What does it mean to 
operate with/without specialised content knowledge in the context of place value and arithmetic 
operations?'     

Theoretical Framework 
It is hard to argue against the criticality of teacher knowledge for effective teaching. Shulman (1987) 
characterised teacher knowledge as a combination of two major domains, subject matter knowledge 
(SMK) and pedagogical content knowledge (PCK). Researchers who followed the footsteps of 
Shulman (e.g., Grossman, 1990; Fennema & Franke, 1992; Ball, Thames & Phelps, 2008) have 
refined these domains over the last few decades. Recently, Deborah Ball and her colleagues (2008) 
defined SMK as a combination of three subcategories: common content knowledge (CCK), 
specialised content knowledge (SCK) and horizon knowledge. In this framework, they described 
CCK as "mathematical knowledge and skill used in settings other than teaching" (e.g., simple 
calculations, solving mathematical problems correctly) (Ball et al., 2008, 399). SCK is "the 
mathematical knowledge and skill unique to teaching" to respond to everyday tasks of teaching (e.g., 
mathematical knowledge required to analyse alternative student solutions, sizing up the nature of a 
nonfamiliar error), and horizon knowledge is "an awareness of how mathematical topics are related 
over the span of mathematics included in the curriculum" (Ball et al., 2008, p.403). The framework 
also considers pedagogical content knowledge as a combination of knowledge of content and students 
(KCS), knowledge of content and curriculum (KCC) and knowledge of content and teaching (KCT). 
KCS is the "knowledge that combines knowing about students and knowing about mathematics" (e.g., 
student thinking, common student errors), and KCT is an amalgam of knowing about teaching and 
knowing about mathematics (e.g., different instructional models of place value and their effective 
deployment) (Ball et al., 2008, p.401). Finally, KCC is about combining knowledge of content and 
the curriculum.  

To distinguish between these knowledge types, Ball et al. (2008, p.404) gave the following examples 
for the task of "selecting a numerical example to investigate students' understanding of decimal 
numbers". In this case, they consider "ordering a list of decimals" as CCK, "generating a list to be 
ordered that would reveal key mathematical issues" as SCK, "recognizing which decimals would 
cause students the most difficulty" as KCS, and "deciding what to do about their difficulties" as KCT 
(Ball et al., 2008, p.404). In this example, knowing what grade level is appropriate for teaching 
decimal ordering would be labelled as KCC. The development of decimals throughout the 
mathematics curriculum would be an example of horizon knowledge.       
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We adopted the Ball et al. (2008) framework to analyse teacher knowledge. We specifically zoomed 
in on how teachers operate with SCK or in the absence of SCK to pursue the aforementioned research 
question.           

Method 
Participants 

Participants were 40 teachers, 35 of whom worked as primary school teachers in public or private 
schools (teaching ages 6-11). Four worked as mathematics teachers in middle schools (teaching age 
11-15) by the time this study was conducted. These teachers got their degrees from 20 different 
institutions from different regions of Turkey. Their teaching experiences range in years: 6 of them 1-
5 years, 10 of them 6-10 years, 7 of them 11-15 years, 5 of them 16-20 years, 2 of them 21-25 years, 
2 of them 26-30 years, 8 of them more than 30 years.  

Data Collection Instrument 

The data comes from one-on-one semi-structured interviews. We recruited these teachers using 
convenience sampling on volunteers by considering their varying teaching experiences. We 
videotaped the interviews without revealing their identities. We gave the participants previously 
piloted scenarios consisting of alternative student solutions during the interviews and asked them to 
analyse these scenarios. Each scenario, applied in separate pages, focused on a single arithmetic 
operation requiring the teachers to draw on SCK regarding place value. Note that we did not train 
these teachers about SCK or any other knowledge component. SCK is the mathematical knowledge 
required to respond to everyday tasks of teaching mathematics. For example, the mathematical 
knowledge required to analyse students' alternative solutions falls under the umbrella of SCK. Each 
scenario provided teachers with an alternative student solution requiring them to draw on their 
mathematical knowledge of place value, and arithmetic operations to some extent. Last two of these 
scenarios are illustrated in Table 1.  

Table 1: Last two scenarios given to teachers during the interviews 

4. What would you say about the method used by Nazlı, who did the multiplication as illustrated on 
the left?  

If you were the teacher in this situation, how would you respond to this student's work once she 
made this explanation? 

5. Emre, who starts to do the following division (4002 5), objects using the following reasoning: 

"When solving such problems, we first ask 'how many 5's are in 4?' Here, there is no 5 within 4. 
Well, isn't 4 actually 4000? And isn't it the case that there are 800 fives within 4000? Why don't we w 

rite 800 in the quotient section then?" 

How would you respond to this student's work as his teacher?  

The scenarios allowed us to evaluate the degree of teachers' operating with SCK, the nature of SCK 
and the teacher knowledge in the context of place value and multidigit arithmetic. This paper will 
only provide a brief analysis of teacher responses for Scenario 4 and Scenario 5. A mathematical 
analysis of these scenarios is provided below. 
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Scenario 4 requires a solid mathematical knowledge of the multiplication algorithm as it is applied in 
four steps rather than two, making it an alternative solution. In the given solution, 23×15 is calculated 
using distributive law as follows (also see Figure 1): 

23×15 = (20+3)×(5+10) = (5×3)+(5×20)+(10×3)+(10×20) = 15+100+30+200 =345

Figure 1: Analysis of 23×15 using distributive law geometrically

The multiplication algorithm includes the calculation of '(5×3)+(5×20)' as a first step yielding 115 
and '(10×3)+(10×20)' as a second step resulting in 230 – in fact, procedurally, 230 is written as 23 by 
aligning 2 with 'Hundreds' column, 3 with 'Tens' column and ignoring 0 in the 'Ones' column. In 
contrast, the given alternative solution treats these two steps as a combination of four seemingly 
isolated steps, requiring teachers to analyse the reduction of four steps to two. Therefore, in 
responding to this alternative solution, teachers need to draw on the following mathematical 
knowledge: the role of place value in making sense of numbers (e.g., thinking about 23 as a 
combination of partitions 20 and 3), the connection between distributive law and multiplication 
algorithm (e.g., thinking about why and how to distribute 5 and 10 onto 20 and 3), and the relationship 
between four steps described above and two-step algorithm (e.g., how 15+100+30+200 is reduced to 
115 and 230 (or reduced to 23, one place shifted to the left)). 

Scenario 5 also provides an alternative solution for 4002÷5 by investigating whether the first question 
to ask in approaching such a problem is 'how many 5s are in 4' (quotative division) as usually taught 
in schools. Here, "4" within "4002" can mean its face value (4) and place value (4000). To respond 
to such an alternative solution, teachers need to know that "4 thousand" is to be shared among five 
parties (partitive division) as thousands, and since this is not possible, it needs to be converted to "40 
Hundreds" to be shared as hundreds among five parties. This distribution results in "8 Hundreds", 
giving the result of the division as 800 with a remainder of 2, or '800R2'. Because of these reasons, 
the question of 'how many 5's are in 4?' is not mathematically appropriate, and the long division 
algorithm is to be interpreted by teachers with partitive division meaning (an amount being equally 
shared among several groups and determining group size).

Data Analysis Procedure

Data analysis is carried out in the form of content analysis and is still ongoing. In analysing the data, 
we mainly focus on the kind of knowledge the teachers draw on (e.g., SCK, CCK) and its nature. 
First, we go through all the videotapes and identify instances in which teachers do (not) refer to SCK 

10
10 x 2010x3

5 x 205x3

203

5
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and the rationale behind their analyses. As we go through the data and as we gain more insight into 
how teachers operate, we begin to provide a fine-grained description of the nature of SCK for 
arithmetic operations and place value. After the initial run of the data, we check whether there are 
similarities among teacher interpretations and how they refer to different knowledge types. We will 
finally develop categories that characterise the nature of teacher knowledge regarding the place value 
concept and arithmetic operations. In this paper, we only share some preliminary findings. 

Results 
The data has given us certain clues about how weak and detached from the conceptual ties the teachers 
perceive the place value concept and how they drew on their knowledge. In addition, the data led us 
to believe that inquiring about the validity of the given alternative solution or even having a suspicion 
about the validity of the given solution help teachers operate more closely with SCK than other 
knowledge categories. Because of space limitations, we give two examples of this finding below. 

I. Evaluation of multiplication scenario: When working on Scenario #4, the teachers considered 
the alternative solution as a brand-new way of doing multiplication that they had not seen before and 
pursued one or more of the following methods or arguments: 

1. The teachers initially ignored the core of the given alternative solution and labelled it as 
"wrong" without a thorough analysis. They compared the alternative solution to the 
routine/procedural application of the multiplication algorithm they already knew (CCK) and used it 
in their practice. A typical teacher (out of those 12 teachers) reaction to this scenario was, "If the 
student comes to me with something like this, I will tell that it can't be done this way, and then I will 
delete this method". In this sense, teachers did not focus on the nature of the given solution as they 
operated with CCK. They were not even suspicious until they solved the given multiplication problem 
by referring to CCK and realised that their result matched the given result in the alternative solution.   

2. The teachers solved the problems in the given scenarios independently of the given alternative 
student analysis by operating from CCK in a very procedural way – a typical teacher reaction (out of 
14 teachers) was, "Now, I need to find the result of this calculation first". For example, in multiplying 
two two-digit numbers (23×15), their initial reaction was to follow the standard multiplication 
algorithm: applying the 'Ones' column of the multiplier to both 'Ones' and then 'Tens' column of the 
multiplicand (5×3 and 5×2 without considering 2 as 20), and then doing the same for 'Tens' column 
of the multiplier and multiplicand (1×3 and 1×2 without considering 1 as 10 and 2 as 20). This way 
of operating is about the use of CCK others also use in settings other than teaching (mathematics). 
This way of operating might be convenient to teachers, and therefore they did not feel the need to 
start with an analysis of the given alternative solution. Finding the matching results fed a suspicion 
for teachers about the validity of the given alternative solution. Once they became suspicious, they 
began to analyse the given solution superficially by analysing each given step, which also led them 
to pursue the question, "would it be right?" rather than sticking to their initial rigid observation, "it is 
wrong". What seemed to help teachers move away from operating with CCK and getting close to the 
use of SCK was the change of perspective (Ball & Bass, 2009) from the "it is wrong" argument to 
"would it be right?" argument.     

3. Twenty-one teachers referred to one of the other knowledge types (e.g., KCT, KCC, KCS) as 
if they wanted to fill the void of SCK with those components.  For example, teachers referring to 
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KCT did it by referring to what they would typically do in their teaching and the procedural aspects 
of the algorithm they would highlight. (e.g., always starting from 'Ones', moving to 'Tens').  

II. Evaluation of division scenario. When it comes to Scenario #5 (about division), all the teachers 
except very few could not sufficiently articulate the dilemma between "There is no 5 within 4" and 
"there are 800 fives within 4000" on a conceptual basis by associating the issue with place value. 
They all, except three, referred to the long division algorithm and ignored the dilemma mentioned 
earlier. More specifically, a typical teacher's (from among the 37 teachers) initial analysis was:  

Teacher:  I need to explain them that we need to work with the face value, we need to have 
them accept this. … I can take out 4 Turkish Liras [referring to 1TL coins] from my 
pocket and ask, can you give me 5 Turkish Liras from here, can you give or not?  

When further probed about the meaning of leftmost two digits, 40, within the number "4002", these 
teachers were not able to talk about the place value and its role either. Such an approach focused on 
the face value instead of place value resulting in dependency on CCK or KCT rather than on SCK.    

Only three teachers out of 40, when probed to mentally or physically use base-ten blocks, modelled 
the given division process with the help of base-ten blocks and explained this issue by mentioning 
that 4 thousand blocks cannot be shared fairly among 5 parties since there would not be enough 
thousands for each party. This is illustrated for one of those teachers in the below dialogue.  

Interviewer: When we think about the materials here [referring to base 10 blocks], what does it 
mean to say there are no 5 within 4? 

Teacher: Since these are 'Thousands' as wholes, I cannot divide them into 5 people. I need to 
convert them to 'Hundreds' to be distributed to everyone as 8 'Hundreds'. The 
remaining 2 would be mine.   

Interviewer: All right, here we say there are 8 fives within 40. Is there a connection between the 
division algorithm and the application you made with base-ten blocks?   

Teacher: […] Since I cannot distribute 'Thousands' as 'Thousands', I distribute them as 
'Hundreds' [circling 40 within 4002 on paper]. So, in a way, I convert this [referring 
to 4 thousand] into 'Hundreds'. 

Interviewer: What does that 40 represent?   
Teacher: Let that 40 represent 40 'Hundreds'. Then 5 times 8 makes 40 – 40 'Hundreds'. I 

mean, when we say algorithm, if we sift through it, it is 40 [groups of] 'Hundreds'.  
[…] 
Interviewer: What does that 8 represent [referring to the 8 in quotient]? 
Teacher: 8? It represents 8 'Hundreds' per person.  
Interviewer: What does it mean to put zero [next to 8] with base-ten blocks? 
Teacher: I do not have any 'Tens'. [adds 0 next to 80] I am distributing 'Tens', but I give you 

zero 'Tens'. I will also share 2, but since 2 is not enough for 5 people, I give you 
zero 'Ones'. In other words, we confirm that it is '8 Hundreds'.  

In this dialogue, the teacher used several components to analyse the given alternative student solution. 
We consider these components as part of his SCK. These are:  

 Investigation of the conditions for which the given alternative solution is correct,  
 Referring to place value and its role in division using base-ten blocks,  
 Operating from the sharing meaning of division.  

This teacher did make a sufficient analysis of the given alternative solution by using all these 
components together. However, such reasoning was not apparent in this teacher's explanations until 
the base-ten blocks were shown. In this sense, manipulatives played a particular role in triggering this 
participant's thinking to carefully evaluate the act of sharing '4 Thousand' units among 5 parties. Base-
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ten blocks allowed this teacher to question the validity of the given argument. The other 37 teachers, 
when probed, could not resolve this conundrum, and they continued to operate with CCK and/or KCT 
even with base-ten blocks. Therefore, the three SCK components need to be abstracted as a totality 
to sufficiently analyse a given alternative student solution.  

Conclusion 
Our initial findings suggest that teachers who operate with (partial) SCK or without SCK analyse the 
given alternative solutions qualitatively differently. The ones operating without SCK are the ones 
who are under the complete influence of CCK (e.g., procedural application of multiplication or 
division algorithms) and who analyse the given alternative solutions by purely comparing them to the 
algorithms. Teachers who operate with partial SCK try to fill the void by bringing in examples from 
other teacher knowledge types as excuses such as KCS (e.g., this will be quite difficult for students), 
KCT (e.g., I normally teach it this way) or KCC (e.g., this is not appropriate for lower grades). The 
teachers operating with SCK approach the given alternative solutions by thinking about the question, 
'what makes this solution valuable/reasonable?' and then refer to the role of place value as the core of 
the given arithmetic operations of multiplication and division. 
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Introduction 
CERME12 followed the COVID-19 pandemic that hit the world. During this time much of what we 
did within our classrooms and outside was re-thought to allow for social distancing and remote 
learning. This of course initiated important changes in the assessment of mathematics. In the CERME 
event held online in 2021, we drew six areas of interest for our group – some of which reflect the 
need for remote teaching and learning. These included the use of technology in the assessment of 
mathematics. For CERME12 we received 20 papers and four posters which covered four themes of 
the call: The assessment of specific mathematics competencies; Technology – computer aided 
(formative or summative) assessment; Teacher assessment with focus on teacher education; Teacher 
assessment in the light of transferring assessment methods to methods with technology.  

Thematic clusters  
Here we group the papers in the thematic clusters to reflect on their links and findings. We then 
conclude with some reflections for the coming CERME13. 

The assessment of specific mathematics competencies:  Ramo et al. investigate university students’ 
preferences when choosing between self-assessment and traditional exams. They found that many 
students selected self-assessment because of the possibility of self-regulation, for affective reasons 
and for practical reasons (e.g., time-malmanagement). The authors conclude by indicating this 
methodology as supporting agency and self-regulation. Ferrara and Pozio investigate routes into 
algebraic thinking by examining the responses to one item of the Italian national text concerning the 
area and the perimeter of an isosceles trapezoid. They found four distinct routes that students adopt 
and relate those to proficiency levels. The levels of proficiency increase as the routes become more 
advanced, which is consistent to the assessment model. Morselli and Robotti describe a learning 
sequence inspired by the principles of Universal Design for Learning (Rose & Meyer, 2006) on 
conjecturing and proving for grade 7 students. Promoting appropriate formative assessment 
strategies, they found that such a sequence can be effective in terms of proof understanding. Færch 
investigates the potential of tasks in a dynamic online environment for primary school students to 
foster symbol competency. Okamoto addresses the theme of creativity, proposing a new approach to 
evaluate the fluency component in Guilford's (1973) model for creativity by means of Fermi 
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problems. His quantitative study involved 291 Japanese junior high school students. Results show a 
strong correlation between fluency in general, creativity, and fluency measured by the richness of 
aspects in solving a Fermi problem. However, further research is needed to examine the validity and 
reliability of a test to measure creativity using Fermi problems. Rieu et al. investigate prospective 
teachers’ diagnosis of students’ misconceptions. More specifically, they investigate the presence of 
confirmation bias in teachers’ detection of misconceptions in decimal fractions. The study identifies 
normative-accurate and confirmatory-biased judgment processes. A follow-up study, investigating 
relevant information based on alternative hypotheses to obtain an accurate diagnosis, shows it to be 
an efficient judgment strategy and as such, it should be incorporated into teacher education. Winnberg 
studies high-stakes summative tests through the lens of connectivity. The framework of connectivity 
(Gueudet et al., 2018) was initially developed for the analysis of digital resources such as e-textbooks, 
and Winnberg proposes to adapt it to the analysis of digital tasks. In the paper, two tasks are analyzed 
and a final discussion on the viability of the use of the framework is presented. Giberti and Passarella 
address the issue of real tasks in standardized assessment. They propose a criterion to identify “real” 
tasks in standardized tests, which they employ to analyze items from the Italian national standardized 
assessment. Data analysis shows that such tasks are widespread in national assessment. A further 
analysis suggests that such tasks are not particularly difficult for students, but they are discriminative: 
students with higher ability pass these tasks easily, while students with lower ability struggle. 
Saccoletto aims to investigate teachers’ assessment in argumentation tasks. To this aim, she plans to 
propose to teachers a selection of students’ answers to be discussed.  

Technology – computer aided (formative or summative) assessment: Moons and Vandervieren 
investigate a semi-automated grading approach of handwritten questions which uses atomic feedback. 
Assessors using this approach appreciated being able to see the effects of their grading choices on the 
outcome of the assessment. This ongoing work will also shed light on the possibly added value of 
this semi-automated grading approach in comparison to traditional grading. Min Chia and Zhang 
describe secondary mathematics teachers’ views on online assessment during the first waves of the 
COVID-19 pandemic. Based on survey responses of 92 teachers and interviews with three teachers 
they found that teachers mainly used the same assessment methods during the pandemic, and online 
teaching, as they had done before the pandemic. Online assessment was for them mainly assessment 
for and of learning.  Brunstrom et al. reported on a pilot study focusing on the (re)design of a digitized 
task environment in which both a dynamic mathematics software and a computer-aided assessment 
system are implemented. They discuss their research with 256 first year engineering students in 
calculus and related the characteristics of the explanations and formulae students provided in their 
responses to the tasks. 

Teacher assessment with focus on teacher education: Kaplan-Can et al. investigate the 
characteristics of tasks produced by trainee teachers aimed at eliciting cognitive demanding algebra 
tasks. They found that trainee teachers - after suitable training - can generate such tasks but most of 
the tasks involved algebraic manipulation and few involved mathematical modelling. Andersson and 
Erixon present the results of an ongoing study that investigates four mathematics teachers’ use of 
formative assessment. They aim to identify aspects of formative assessment that are important for 
beginning mathematics teachers (BMTs) and the differences between participants’ use of formative 
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assessment in practice. Preliminary findings show that BMTs use different ways to present lesson 
goals and they refer to written tests to elicit evidence of learning. Moreover, students rarely function 
as agents in the formative assessment processes. Eichholz et al. present a study concerning the 
evaluation of the effectiveness and acceptance of the education concepts in the qualification program 
developed for the project. They aim to compare the implementation of two variations of formative 
assessment: teachers learn to develop diagnostical questions and support activities and curriculum 
embedded, or teachers use ready diagnostic and support tasks. They expect a positive effect in favour 
of the first approach and assume a moderator effect of the association between high pedagogical 
content knowledge and a positive self-efficacy of the teachers on the second approach. Kjensli et al. 
report on a project in a course for prospective teachers, where the teacher educator modelled feedback 
based on formative assessment principles. The study analyses prospective teachers’ responses when 
they are challenged to reflect from a teacher’s perspective on how to use different models to compare 
fractions in a primary classroom. The findings indicate that prospective teachers tend to use feedback 
to move forwards in their teacher perspective. Barana et al. aim to understand the evolution of 
participants’ knowledge and perception of automatic formative assessment throughout a STEM 
teacher education course. Analysing responses to a questionnaire they found that teachers became 
more aware of knowledgeable of this type of assessment, over the course, and that this appears to 
result in a more student-centered approach to formative assessment. Saksvik-Raanes and Solstad 
investigate digital items that were designed to measure arithmetic competence as a component of the 
foundational number sense framework for five- and six-year-old children. Using Rasch analysis of 
the performance of 302 Norwegian children they found that items’ difficulty levels were strongly 
influenced by the type of problems and the magnitude of the answer in it. Supplemented by a 
qualitative analysis of students’ strategies they conclude that there were more factors at play, but that 
this work could enable us to study in more detail how children model and use strategies to solve 
mathematical problems. 

Teacher assessment in the light of transferring assessment methods to methods with technology: 
Klothou et al. investigate how secondary school teachers assess students’ written texts in mathematics 
and the resources they draw on while assessing these texts. Findings show the complexity of the 
factors that influence the outcomes of assessment in mathematics. Teachers grade students’ written 
texts differently. Teachers’ beliefs about the nature of the subject and the nature of mathematics 
matter, either alone or in combination with expectations about ‘communicating’, emerged as the 
prevailing resources teachers draw on while assessing students’ written texts. Holm Gundersen and 
Kohanová present the results of a qualitative study focusing on characterisations of enactment of 
formative assessment during mathematical conversations by Norwegian primary school teachers. 
Two second-grade teachers were observed during mathematical conversations with their students in 
a teaching session regarding various strategies for addition. The paper suggests a model that 
characterises the formative assessment enacted during a mathematical conversation from a teacher’s 
perspective. Faggiano et al. present initial findings from a survey, administered to 421 Italian in-
service primary teachers, on the beliefs regarding the knowledge and skills investigated by the 
national standardized assessment tests, their proximity to didactic practices in mathematics and the 
role they assume within the school context. The paper discusses the way teachers interpret data 
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coming from standardized assessment and if/how they use them in their teaching practice. Findings 
show a meta-didactic conflict generated by teachers' difficulties in interpreting the standardised tests 
and in using them coherently with the framework on which the tests were designed. Kiss et al. analyse 
Hungarian students' oral explanations based on their written work, looking for additional information 
about students' thinking processes. Additionally, the study examines the quality of verbal 
communication. Findings indicate that the teacher obtains a more detailed picture of students' current 
level of development via oral explanations. Grapin and Sayac describe a comparison between two 
forms of assessment at the end of primary school: paper pencil and tablet-based assessment. They 
considered different approaches to digitalizing assessment, either using the opportunities a digital 
environment provides, or migrating the paper pencil assessment onto a screen. They opted for the 
former. Students appeared to perform better on the paper-pencil based assessment than on the tablet-
based assessment, although more of the possibilities the tablet provides could be used in further 
studies. Geszler describes the outlines of her PhD study, in which she investigates the opportunities 
for digitalization of the final examinations of mathematics in Hungary. To this aim she investigated 
at the practice in four other countries - Finland, Germany, Georgia, and Denmark - and compared 
them on several aspects. She concludes that in Hungary there is a will to work towards computer-
based adaptive testing, allowing for creativity, analyzing, and mathematical modelling can exist, 
which could have an active impact on education itself. 

Conclusions 
Our group again represented work engaging with a variety of methodologies and research questions 
– confirming that assessment is a big umbrella theme that encompasses a great number of approaches 
and foci such as the assessment of mathematical competencies and specific topics. However, from 
the summaries presented, there are two main issues that emerge clearly: the increased use of 
technology for assessment (both for formative as for summative purposes) which goes beyond the 
consequences of the pandemic, and the attention to the education of new teachers with respect to 
assessment practices. These two themes are not un-related: the way in which we assess mathematics 
is changing, new technology that was introduced during the pandemic out of necessity is now adopted 
widely, and teachers (at all levels) may be trained in how to use the technology appropriately and 
what are the affordances of technologies in assessment. Moreover – a productive use of technology 
must also be adopted – therefore we saw many studies addressing affordances and drawbacks of 
technology in assessment. We believe that the use of technology will be again a big theme in our next 
meeting in CERME13 in 2023 - Hungary. 
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Formative assessment is a key competence of professional teachers, yet complex and demanding to 
develop. Thus, beginning mathematics teachers (BMTs) cannot be expected to have fully developed 
this competence. In an ongoing study we examine and depict similarities and differences between 
four BMTs’ use of formative assessment in practice. We will use data from video-recorded 
observations to analyze to what extent and in what ways the BMTs use five key strategies in formative 
assessment practice and the main idea of this practice, that is, to use information about students’ 
learning to adjust teaching and learning to the students’ needs. The study will provide insight into 
crucial aspects of formative assessment that BMTs need to learn about and reflect on during and 
after teacher education. Implications for teacher education are discussed. 

Keywords: Formative assessment, teacher education, mathematics teachers, beginning teachers.  

Introduction 
In this paper we focus on mathematics teachers’ use of formative assessment in their early careers, 
and in particular on aspects of formative assessment especially important for these teachers to be 
vigilant about and reflect on during and after their teacher education (TE). Formative assessment (also 
called “assessment for learning”) refers to a classroom practice in which assessment is used to identify 
students’ learning needs so that teaching and learning can be adapted accordingly (Black & Wiliam, 
2009). The teacher as well as the students can be agents in the processes involved in this practice. 
The empirical evidence of increased student learning in all school years and subjects (e.g., Black & 
William, 1998; Hattie, 2009) – including mathematics (Palm et al., 2017) – has led to great attention 
to formative assessment in education research, policy, and practice (DeLuca et al., 2016). Additional 
theoretical argumentations further motivate the use of formative assessment in mathematics education 
(e.g., Schoenfeld, 2020).  

The increased interest of using assessment to increase the learning of the students has broadened the 
concept of assessment beyond using assessment for marking and grading (DeLuca & Bellara, 2013), 
and assessment competence has become a key competence of professional teachers (Xu & Brown, 
2016). Consequently, teachers need to learn about formative assessment in their teacher education 
(DeLuca & Johnson, 2017; Shepard et al., 2005). They need to learn about why using formative 
assessment and how to put it in practice. More specific, a use of high-quality formative assessment 
requires teachers to: understand the purposes of and principles on which this classroom practice is 
based; have ability to incorporate this classroom practice into their teaching; and to use a critical 
reflection on aspects of quality relating to their understanding of that practice (Xu & Brown, 2016; 
Young & Kim, 2010). Because the implementation of high-quality formative assessment is complex 
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and challenging (Black & Wiliam, 2009) beginning teachers cannot be expected to have reached full 
competence for such implementation. Rather, their formative assessment competence will develop 
under the right conditions (De Luca & Johnson, 2017). However, more studies are needed at different 
levels and with different foci in order gain knowledge about how to design the right conditions and 
effective support for teachers’ development of assessment competence (DeLuca & Johnson, 2017). 
In this paper we focus on qualitative aspects of formative assessment classroom practice. 

More specific, we use the framework by Wiliam and Thompson (2008) to characterize beginning 
mathematics teachers’ (BMTs) formative assessment practices and shed light on aspects that are 
important for those teachers to be aware of and reflect on during and after TE. With the involvement 
of the teacher as well as the students in various assessment and learning processes, this framework 
reflects the complexity of putting formative assessment into practice. The framework consists of the 
main idea of using information about students’ learning to make decisions about how to adjust 
teaching and learning to meet students’ needs, along with five key strategies (KS) guiding the 
implementation of this assessment in practice:  

KS 1. Clarifying, sharing, and understanding learning intentions and the criteria for success 

KS 2. Engineering effective classroom discussions, questions, and tasks that elicit evidence of 
learning 

KS 3. Providing feedback that moves learners forward 

KS 4. Activating students as instructional resources for one another  

KS 5. Activating students as the owners of their own learning 

A clear learning goal with specification of what is counted as criteria of success is crucial in all 
assessment. In formative assessment the sharing of learning goals and success criteria (KS1) is 
essential for the feedback processes between the agents (teacher and students) involved in the 
formative assessment processes. A clear learning goal facilitates eliciting the relevant information 
about students’ learning needs (KS2) and providing adapted instruction, that include teacher feedback 
(KS3), that move students’ learning forward. In addition, a clear learning goal and success criteria 
are decisive for peer assessment and peer feedback (KS4), and for self-assessment with subsequent 
adjustments (i.e. self-regulated learning, KS5). Thus, this framework can be used to analyze and 
characterize qualitative aspects for each KS, as well as the integrated use of them to fulfil the main 
idea of formative assessment.  

In a previous case study, we used the above-mentioned framework to characterize one mathematics 
teacher’s development of formative assessment competency during and after TE. We recognized that 
the teacher during this time made incremental changes, however crucial for the formative assessment 
processes in the classroom. That is, the changes enhanced the possibilities for the teacher to gain 
insight into students’ thinking, which is crucial for decisions-making about what feedback to provide 
the students and/or about adaptions of other learning conditions to meet the needs of the students. This 
insight about how a seemly small change makes a big difference in formative assessment processes 
made us interested in comparing BMTs’ formative assessment practices. An assumption is that 
comparing the way the BMTs use formative assessment will gain insight into aspects that are 
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important for BMTs to learn about concerning the purpose and complexity of the use of formative 
assessment. Such aspects will be significant for early career mathematics teachers to evaluate their 
understanding and need of development. The insights will also be useful in teacher education when 
preparing BMTs for the development of formative assessment competence. Moreover, researchers 
may be inspired to study what variables that affect putting these aspects into practice, circumstances 
that help mathematics teachers implement those formative assessment aspects, and obstacles the 
teachers need to overcome to be able to use high quality formative assessment. 

Aim and research questions 
In the study we examine and depict the similarities and differences in four BMTs’ use of formative 
assessment in their classrooms. The aim of the study is to identify aspects of formative assessment 
that are important for mathematics teachers to become aware of and reflect on. The study is guided 
by the following questions: To what extent and in what ways are the five key strategies used in the 
BMTs’ classroom practice?; What are the similarities and differences between the four classroom 
practices?; and What do those similarities and differences mean from the view of the purposes and 
principles of formative assessment? 

Method 
Informants and data 

The data used in the study comes from a project called TRACE1 in which student teachers in their 
last year of mathematics teacher education at two Swedish universities were asked to volunteer as 
participants. The informants received information about the study and ethical aspects, and written 
consent was obtained before data collection began. Due to the 2020 Covid19 pandemic restrictions 
the data collection was interrupted. In this study we use data (video-recorded classroom observations) 
from the four informants that were possible to trace more than one year after their graduation. These 
informants participated in the same teacher program at the same university in Sweden. They 
graduated with a teaching degree, grades 7-9, with mathematics as specialization. The teaching being 
observed is also from mathematics lessons in grades 7-9. Three lessons per informant are observed. 
Gry and Elvin (fictive names) graduated in January 2017. They were observed in October 2018. Tina 
and Anton (fictive names) graduated in February 2018. They were observed in September 2019.  

Analysis 

In the analysis we use the framework by Wiliam and Thompson (2008, see above), and draw on 
previous research experiences of developing and using an analytical tool based on this framework 
(Andersson et al., 2017; Andersson & Erixon, in press). This means that we use a previously 
developed tool at start, yet prepared to adapt or complement the coding manual whenever needed. 
The main codes are: transparency of the learning goals and success criteria (KS1); elicitation of 
information about student learning (KS2); teacher feedback (KS3); feedback between students (KS4); 
and students’ regulation of their own learning (KS5). For each main code a number of initial subcodes 

 
1 TRACE project founded by The Swedish Research Council, project/grant number [017-03614] 
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are set. During initial coding these subcodes are customized to the data so that all lesson activities 
related to formative assessment are identified and coded. A selection of subcodes is presented in 
Table 1. These are exemplified in the preliminary findings. We limited the presentation of the process 
of categorization due to the limited space in this paper. Our analysis is qualitative, but we count some 
frequencies in our data. This is not because we will try to generalize our result, rather the reason for 
examining the frequencies is to understand qualitative differences. For example, we compare the 
extent the informants use different feedback types, by counting numbers and calculating their use as 
if the lessons were equally long. 

 Table 1: Subcodes for each main code 

Main 
Code 

Subcodes Main 
Code 

Subcodes 

KS1 Explicit formulated learning goal KS3 Confirming the answer as correct or acceptable 

 Goal of doing  Repeating or reformulating what the student said 

KS2 Questions about how and why  Explaining (often by simplifying or deepening) 

 Questions that require a short answer, 
yes/no 

 Initiating mathematical reflection on the solution 
process 

 Assessment material   

KS4 Nothing has been found so far KS5 Nothing has been found so far 

As a last step of the analysis, we will examine the similarities and differences from the view of the 
purposes and principles of formative assessment. In this step we will consider both the purpose and 
principles for each KS and their integrated use. This step has not yet started systematically, but we 
provide one example in the preliminary findings below. Both authors are engaged in data analysis to 
ensure reliability. 

Preliminary findings 
Below we present some preliminary findings, with a focus on the similarities and differences in the 
BMTs’ use of the five key strategies. The findings will later be complemented with narratives to 
contextualize the formative assessment activities each teacher uses. Moreover, an overview of 
similarities and differences will be presented along with concrete examples. Finally, the findings from 
analyzing the similarities and differences from the purposes and principles of formative assessment 
will be presented (one example regarding teacher questions is now included below). 

The transparency of the learning goal (KS1) 

We have identified three ways of presenting the goal of the lesson: As a learning goal, what students 
are going to work with, and what pages or tasks to finish. Gry referred about twice as often to the 
learning goal as the other teachers. For example, she presented the goal as follows: 

Gry: Do you know what a polynomial is? We are going to talk about what a polynomial 
is. 
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Gry also referred to the mathematical content when she presented the goal of the lesson as something 
the students are going to work with: 

Gry: There are polynomials of degree one, and we have worked with first degree 
polynomials recently. We are soon going to work with second degree polynomials.  

Elvin, however, in most cases presents the goal of the lesson in terms of what tasks to complete, as a 
goal of doing: 

Elvin: Solve the tasks in chapter 1.6. 

Elicitation of evidence of learning (KS2) 

We were not able to confirm that the evidence of learning that the teachers elicit actually was used to 
adjust the teaching and/or learning in the classroom. Thus, we treat the KS2-activities as potentially 
being formative assessment activities. As example, all teachers referred to written tests. A difference 
was found regarding their use of questions, in terms of what types of questions they used. 

Anton and Tina asked a lot of questions that only required short answers. In comparison with Elvin 
they asked such questions about seven times as often as he did. Gry asked questions about the 
mathematical content about twice as often as Elvin. About 62% of questions Gry asked could be 
answered with a yes or a no: 

Gry: This became very theoretical, right? 

For Gry, the remaining questions (38%) were about what and how, and the students needed to explain 
to answer them: 

Gry: Why is this a polynomial of degree one? 

In addition to these activities we could identify that Elvin and Tina used “exit-tickets” to assess what 
the students have learned during the lesson. Tina introduced the exit-ticket to her students as follows: 

Tina:  Before you go just so I can see what I have done and what you have learned […] 
the question is What have you learned? What do you need to develop based on this 
lesson? 

Teacher feedback (KS3) 

Also regarding feedback there were differences between the teachers. Elvin used feedback much more 
often than Gry and Tina did. Four types of feedback dominated. Two of them regard the correctness 
of student response: feedback confirming the answer as correct or acceptable, and feedback repeating 
or reformulating what the students said. The other two were: feedback to explain, and feedback to 
initiate mathematical reflection on the solution process. Elvin and Tina used the last two types of 
feedback when elaborating on tasks and/or examples that the students found hard to understand. Gry 
stood out, she did not use the last type of feedback at all. Below quotes will exemplify the different 
types of feedback: 

Example of feedback to confirm the answer as correct: 
Student: Well, the square root of 2600. 
Elvin: Yes. 

Example of feedback to repeat or reformulate: 
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Student: Can you round to 51? 
Elvin: A question from [the name of the student], can you round to 51?                    

Example of feedback to explain:  
Elvin: She converts to centimeters and then she divided by the growth per month, the 

number of centimeters divided by how much it grows per month. 

Example of feedback to initiate mathematical reflection on the solution process: 
Elvin: Then we have factorized, can you factorize further? 

Moreover, Elvin stood out in another respect. He used a fifth type of feedback, that is, answering 
questions from the students. He used such feedback about six times as often as the other BMTs:  

Student: Can you show another one, so that you have to think a little differently. Like this 
327, or any number that you cannot factorize prime numbers? 

Erik:  Yes, some numbers cannot be factorized in prime numbers, for example 11. 

Feedback between students (KS4) 

Both Tina and Elvin encouraged the students to work in smaller groups or in pairs so that they could 
discuss and help each other with the tasks. Nevertheless, there were no examples of how the teachers 
actually supported their students to be able to assess and provide feedback to each other.  

Students’ regulation of their own learning (KS5)  

Nothing has been found so far. 

From the view of the purposes and principles of formative assessment – one example 

The questions the BMTs used during the lessons show qualitative difference from the perspective of 
providing the teacher with useful information to adjust learning activities and providing feedback. 
The questions that can be answered with a yes or a no are less useful than questions were the students 
need to explain their thinking. The BMTs used such question to different extent. 

Discussion 
In this study we aim at identifying aspects of formative assessment that are important for mathematics 
teachers to be vigilant of and reflect on during and after their TE. Compared to the previous study – 
where we focused on the development of formative assessment competence of mathematics teachers 
in early career – this study has a stronger focus on what it means and what it takes to implement high 
quality formative assessment (see Xu & Brown, 2016; Young & Kim, 2010). When all findings are 
in place, we will be able to make conclusions about what aspects of formative assessment that were 
identified as crucial for beginning mathematics teachers. We will then discuss how formative 
assessment was used by the BMTs; the similarities and differences; what those findings means from 
the perspective of the purposes and principles of formative assessment; and implications for teacher 
education. The discussion below is restricted to the preliminary findings. 

In all classrooms, the students rarely function as agents in formative assessment processes. This is 
true for their function as resources for each other (KS4), as well as, for regulating their own learning 
(KS5). This crucial aspect is also connected to clarifying and sharing learning intentions and criteria 
of success (KS1). For students to be involved in formative assessment processes, they need an idea 
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of the learning goal and what constitutes progress in that learning. Moreover, the goal of a lesson is 
often communicated in terms of what pages or tasks to finish. Thus, another crucial aspect is to not 
take for granted the students’ understanding of learning intentions and success-criteria, and maybe 
even to examine the students’ perception of those intentions and criteria.  

The differences between the informants reveal other crucial aspects. The teachers’ different ways of 
using questions have different potential for the teacher to receive sufficient information about student 
learning needs to adjust their teaching and their feedback. Elvin and Tina also stood out by using exit-
tickets at the end of their lesson. Regarding feedback, the use of feedback to inform whether the 
student’s thinking is right or wrong can be relevant, but the other types of feedback that were used 
have higher potential for helping the students to move forward in their learning. The informants’ use 
of feedback to initiate reflection on the solution process and Elvin’s feedback answering students’ 
questions, both reveal a crucial aspect about how to get the students involved in feedback interactions. 
This aspect also includes that the students can be involved in a high-quality way – exemplified by 
Elvin's student, who asks a specified question that both reveals his learning needs and gives the 
teacher the opportunity to give effective feedback.  

All together, we identified six crucial aspects: Do the students function as resources for each other (i) 
and themselves (ii)? Does the learning goal surpass the goal of doing and how do the students perceive 
the learning goal and criteria of success (iii)? Is the information about student learning sufficient (iv), 
what feedback did actually support students’ learning (v); and in what ways are the students involved 
in feedback interactions (vi)?. We expect to find additional crucial aspects, including aspects that 
concern the integrated use of the key strategies. 

Implications 
Implications for TE regard aspects are related to requirements to high-quality formative assessment 
practice. First, BMTs need to be aware of the importance of having information about students’ 
learning needs and consequences of not having such information, as well as what potential is inherent 
(or not) in different feedback types (i.e. understand the purposes of and principles on which this 
classroom practice is based). Second, they need to know what to do when they experience not having 
enough information and how to decide whether their feedback was helpful and what to do if their 
feedback was unsuccessful in helping the student (i.e. have ability to incorporate this classroom 
practice into their teaching). Furthermore, the BMTs need to use a critical reflection on these aspects 
of quality relating to their understanding of formative assessment practice. 

Limitation 
In this study the informants participated in the same program at the same university. Possibly, the 
differences in classroom practice would have been even larger if the informants came from different 
programs and universities. Another concern is that we will not be able to identify all kind of activities 
related to formative assessment when only using video-recordings of lessons. We will only be able 
to identify direct observable activities and phenomena. Regarding both limitations, we believe that –
building on the findings from the present study – future studies can find complementing crucial 
aspects that BMTs need to learn about and reflect on concerning their understanding and need of 
development. We argue that studying the classroom practice using “in practice data” is a good start. 
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Formative assessment is a practice that provides ongoing feedback that instructors can adopt to 
improve their teaching and students can benefit from to improve their learning. Teachers and 
instructors need training, otherwise formative assessment and immediate feedback could also 
produce negative results. This paper aims at understanding the evolution of participants’ knowledge 
and perception of Automatic Formative Assessment throughout a teacher training course. The course 
was open to STEM teachers of all grades. The analysis considers teachers’ responses to 
questionnaires with both close-ended and open-ended questions. Results show the empowerment and 
more awareness of teachers’ application of Automatic Formative Assessment; in particular, teachers 
developed a more student-centered approach to formative assessment. This experience helped us list 
a set of recommendations and advice for those who approach Automatic Formative Assessment. 

Keywords: Automatic assessment, formative assessment, mathematics teaching, teacher training. 

Introduction 
Several studies show that formative assessment (FA), when used following proper learning models, 
is correlated to higher students’ achievements (Black & Wiliam, 1998). Surprisingly, it has been 
shown that FA and feedback practice could also produce negative results, especially when they are 
not used appropriately (Kluger & DeNisi, 1996). Many studies point out that a high number of 
Mathematics teachers lack pedagogical and content knowledge about FA, so they have difficulties in 
implementing it successfully (Herman et al., 2015; McGatha et al., 2009). Therefore, teacher training 
is a key element for an effective use of FA in teachers’ daily practice, even more when integrating 
technologies into assessment. The recent health emergency has required a digitalization of the 
assessment practices, and this has been one of the most critical aspects of distance education (OECD, 
2020). The urgency of re-skilling has been felt by many teachers in the last two years.  

This paper deals with an in-service teacher training course on Automatic Formative Assessment 
(AFA) for STEM teachers, which was held online in Spring 2021. The course was aimed at 
developing competences in the use of an Automatic Assessment System (AAS) particularly suitable 
for STEM, and in the design of questions for the FA according to a particular pedagogical model. 
The goal of this paper is to understand how the teachers’ knowledge and perception of AFA evolved 
throughout the course. We investigate this issue through a qualitative and quantitative analysis of 
teachers’ answers to two questionnaires. In the following paragraphs, we will discuss the theoretical 
framework on AFA and teacher training in Mathematics; then, we will illustrate the structure of the 
course and the analysis methodology; afterwards, we will present and discuss the results gained and 
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interpret them in light of the theoretical framework; in conclusion, we will provide some hints for the 
creation and management of activities with AFA, collected through the teachers’ experiences. 

Theoretical framework 
Automatic Formative Assessment in Mathematics 

For this study, we accept Black and Wiliam’s definition and conceptualization of FA: 

Practice in a classroom is formative to the extent that evidence about student achievement is 
elicited, interpreted, and used by teachers, learners, or their peers, to make decisions about the next 
steps in instruction that are likely to be better, or better founded, than the decisions they would 
have taken in the absence of the evidence that was elicited. (Black & Wiliam, 2009, p.5)  

This definition entails the collection of data about students’ understanding, and the use of such data 
to change the learning path. Their conceptual framework includes five key strategies through which 
formative practices can be enacted by three agents (students, peers and teachers):  

(S1) clarifying and sharing learning intentions and criteria for success; (S2) engineering effective 
classroom discussions and other learning tasks that elicit evidence of student understanding; (S3) 
providing feedback that moves learners forward; (S4) activating students as instructional 
resources; (S5) activating students as the owners of their own learning. (Black & Wiliam, 2009, 
p.4). 

In previous work, we have defined AFA as the use of FA in a Digital Learning Environment through 
the automatic elaboration of students’ answers and provision of feedback, where FA is intended as in 
the Black and Wiliam’s definition (Barana et al., 2021). We have developed and experimented a 
model for the design of activities with AFA (Barana & Marchisio, 2019), relying on an AAS such as 
Möbius Assessment, whose engine is empowered by advanced mathematical capabilities. By 
exploiting programming languages or mathematical packages, similar AASs allow to build interactive 
tasks based on algorithms where answers, feedback and values are calculated over random parameters 
and can be shown with different representations. Thus, new solutions for computer-based items can 
be conceived, including dynamic explorations, animations, and symbolic manipulations, which offer 
students experiences of mathematical construction and conceptual understanding (Sangwin, 2015). 
According to our model, AFA activities should: (a) be always available in a Digital Learning 
Environment, without limitations in data, time and number of attempts; (b) be algorithm-based, so 
that random values, parameters, formulas and graphs make questions, and their answers change at 
every attempt; (c) be open-ended; the AAS’s mathematical engine assures that open mathematical 
answers are graded independently of the form in which they are provided; (d) provide students with 
immediate feedback while they are still focused on the task; (e) provide students with interactive 
feedback just after giving an incorrect answer. It has the form of a step-by-step guided resolution that 
interactively shows a possible solving process; (f) be contextualized in real-life, thus contributing to 
the creation of meanings through the association of abstract concepts to concrete experience. 
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Teacher Training on Automatic Formative Assessment 

In the literature, there are not many studies on teacher training on AFA. Roschelle et al. (2016) 
showed that combining the use of an AAS and teacher training on how to use assessment information 
to shape teaching helped improve learning results. The teacher training was mainly based on 
workshops and coaching. Haj-Yahya and Olsher (2020), in a study involving pre-service teachers, 
showed that training on FA and on the use of an AAS helped them improve their skills in observing, 
interpreting and responding to students’ work. According to Schütze and colleagues (2017), it is often 
hard for teachers to put into practice the knowledge gained in teacher development programs. When 
dealing with teacher training on the use of new technologies, it is common to refer to the TPACK 
model (Voogt & McKenney, 2017), which aims at integrating technology, pedagogy, and content 
knowledge for improving teaching skills. Several studies have pointed out that including active 
learning and job-embedded practices is more effective for improving teaching (McGatha et al., 2009). 
Moreover, embedding the course in a practice community where teachers can share knowledge and 
experiences helps them not to feel like isolated learners, empowers their active participation, and 
boosts the results (Lave, 1991). This aspect is particularly relevant in online courses, especially during 
pandemic times. Establishing solid AFA practices in the daily teaching is not easy; often, it implies 
a revolution of one’s habits. Supporting teachers in the application of what they have learnt during 
the course becomes crucial. We based the development of our training course on the following 
principles:  

 providing teachers with technological knowledge and skills about the use and management of 
an AAS for Science and Mathematics; 

 providing teachers with pedagogical knowledge and skills on formative assessment and on 
the design of tasks for AFA according to our previously cited model; 

 embedding the training course in a virtual practice community, where teachers could share 
materials, experiences, idea, difficulties and find support in their colleagues; 

 supporting teachers in the creation of their AFA activities and in their experimentation in the 
classroom, so that they can feel sustained in their first impact with the change of practices and 
encouraged to go on in the revolution of their teaching style; 

 including teachers, after the training course, in a continuous training program and in a practice 
community with other expert teachers, so that they can be supported in their future activities.   

Methods 
Our research about AFA is mainly focused on the training course “Automatic formative assessment 
in STEM disciplines”, delivered 15 hours in synchronous mode and 7 hours in asynchronous mode, 
where 15 school teachers, 11 of whom teaches Mathematics, learned how to use the AAS Möbius 
Assessment. Teachers also received methodological training for designing AFA activities according 
to the model we presented in the Theoretical Framework. In this course, participants had to carry out 
e-tivities to become confident with the digital environment and to actively enter the community, such 
as creating items and sharing them in a common database. At the beginning of the course, each teacher 
had to choose a topic on which to create activities and define learning objectives, and then they 
identified questions that made the achievement of the objectives stand out. Moreover, they designed 
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feedback that allowed students to bridge the gap between current performance and desired 
performance and began implementing it with interactive feedback. The last and most important step 
of the course was to administer the activities they prepared all over the course to their students. The 
teachers received training and support from tutors, who presented examples of questions and activities 
and described how to monitor student progress in order to guide, review and modify teaching 
activities. Tutors actively helped teachers in the delivery of the experimental activities with their 
students, too. During the course, teachers were encouraged to share their experiences and difficulties 
through a forum monitored by the tutors, and to share their materials in a common database. After 
the course, teachers had the chance to enter the wider community of practice of the national “Problem 
Posing and Solving” Project, which has been adopting similar methodologies since 2012 (Fissore et 
al., 2020). The course was open to STEM teachers of all grades, from primary to upper secondary 
education. Also some teachers of humanistic subjects enrolled and followed the course. In total, 24 
teachers enrolled in the course. However, we restricted the analyses only to the STEM teachers who 
reached completion in all the e-tivities and participated in at least 70% of the synchronous meetings.  

Teachers had to respond to an initial and a final questionnaire, which represent the main source of 
data for our analysis. The initial questionnaire asked teachers their previous idea, perception, and 
usage of AFA, the application of certain methodologies with their classes and their adoption of digital 
tools. All teachers who attended the first meeting submitted the initial questionnaire. On the other 
hand, only the teachers who completed the course submitted the final questionnaire. From the final 
questionnaire we could gather their perception of AFA after the first implementation in the classroom 
and cast a glance at their future proposal to adopt what they had learned during the course with their 
students. The questionnaires consist in a mix of close-ended questions (mainly Likert scales) and 
open-ended questions, thus data collected are both qualitative and quantitative. Concerning 
quantitative data, we considered the main descriptive statistics, while for qualitative responses we 
classified the wide range of responses into a smaller number of categories, identified on the basis of 
the theoretical framework, in order to analyze them: this categorization depends on the researcher's 
interpretation of the respondents’ responses, thus we compared two independent evaluations. 

Results 
In the initial questionnaire we asked teachers to give their own definition of FA. We granted them 
the possibility to answer in an open format, which resulted in a lot of different answers regarding 
various aspects. The reference to the five key strategies of (Black & Wiliam, 2009) triggered our 
classification of teachers’ answers in this framework, since we were able to refer them to one or more 
strategies. All the strategies but one were referenced. S1 was referred in two answers, here we provide 
an example: “an essential and necessary tool, for both teachers and students, to learn and to 
communicate”, which highlighted the sharing capabilities of the methodology, and its learning-
centered purpose, being communication central for making clear intentions and criteria. S2 was 
implied in 9 answers out of 15; here we report the most exemplifying: “to understand the learning of 
the students”, shedding light on the search for evidence of student understanding. S3 is related to two 
answers, one of them is: “the act of communicating to the student if, and how much, they have 
acquired the important competences in the context of the course, and how they can improve in the 
future”; this communication can be regarded by all means as feedback, which allows the learner to 
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move forward. Finally, S5 is mentioned in only one answer: “it has to allow students, in case of errors, 
to understand and remediate them”: they are invited to master their learning. No answer referenced 
S4, probably because to be an instructional resource for one another is a process between peers, and 
therefore probably not the first one a teacher thinks about, albeit the importance of peer instruction 
and evaluation mediated by teachers is undisputed. Note that some of the answers cannot be properly 
considered as definitions, regardless of being in accordance with the literature or not: for example, 
the answer we put in relation with S5 is indeed a feature rather than a true description of the 
methodology. In three very short answers we could not find any reference to the 5 strategies. The 
strategy that had been referred to more frequently was, with a large gap, S2: this outcome highlighted 
how most of the teachers before our course saw FA as a tool centered on themselves, rather than on 
the students. We also compared the teachers’ answers with the definition of FA (from Black and 
William, 2009), which considers data collection and their use to improve teaching and learning. Data 
collection was referred to 10 times, their use to improve teaching and learning 5 times. Teachers also 
considered the fact that assessment should occur during the course, 6 times explicitly, plus some other 
answers where it is implied (for example, where FA is described as “a method for detecting students’ 
knowledge and competences”). We also looked for references to the agents included in the teachers’ 
definitions (teachers, students, or peers). No answer referred to peers, consistently with the absence 
of S4; while two answers referenced both teachers and students, the former ones appeared 10 times, 
while the latter ones only 4. Note that teachers largely included considerations about students’ 
learning, but mostly without giving them an active role. This is in line with the absence of S4 and 
confirms a teacher-centric approach to FA before attending the course. 

Let us now consider the evolution of the answers relative to the actual use of FA by teachers. Before 
our course, several of them already made use of it, at least in some of its traits, but it was only after 
our course that most of them really became aware of its potential. Indeed, before the course, only 2 
teachers declared using automatic assessment for FA regularly (most of them, only seldom), while 7 
used it for summative purposes with regularity. For example, a teacher stated that she had used 
formative assessment by assigning students various activities, such as questionnaires, tests, exercises, 
with a successive discussion on aspects like the difficulties they had faced, the errors they committed, 
the solving processes. After the course, she recognized that she had acquired more cognizance 
relatively to the importance of FA, by specifically referring to real time interactive feedback as a tool 
for giving key support. Another teacher used grids with indicators. However, letting students become 
aware of how the assessment works or giving them parallels between the evaluation and the formative 
goals (essentially, S1), is only a first step towards a true obtainment of the strategies’ outcomes. 
Indeed, answering after our course, she specifically referred to the creation of interactive feedback, 
with hints also aimed at helping disadvantaged students, in order to let each of them focus on 
understanding the solving process, rather than on the mere result of the problem. In this context, the 
use of variable data, thanks to the algorithmic capabilities of the AAS, was recognized as further 
enhancing the formative scope of a question. A teacher proficiently used automatic means with 
gamification features, which could be useful to engage students and to foster their interest in using 
more specific tools for formative assessment, as he noted. Finally, it is noteworthy to take into account 
one answer before the course, which considered tests, homework checks, actively involving students 
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during lessons, and classroom simulations, in which they were allowed to help one another. The latter 
feature is important because it references S4, which had been excluded from the answers relative to 
the direct question about how to define formative assessment. Unfortunately, the teacher giving this 
answer followed our course only partially, and she did not respond to the final questionnaire, so we 
are not able to track possible progresses in that direction. These qualitative considerations can be 
integrated with some quantitative data. In the two questionnaires, we asked teachers some specific 
questions involving the strategies, in terms of attention devoted, perceived importance, and 
application capabilities with formative assessment. Specifically, before the course, we asked them 
how much, in their didactic activity, they paid attention to reaching the goals explicated by the 
strategies; note that the teachers were generally unaware, at the time, of the relation between the 
concept of FA and the strategies, as shown by several definitions they proposed. In a Likert scale 
from 1 to 5, where 1 means “nothing at all” and 5 means “very much”, the averages are depicted in 
row (b1) of Table 1.  

Table 1: Average scores of questions relative to strategies, before and after the course 

Before (b1, b2) and after (a1) S1 S2 S3 S4 S5 
(b1) Attention paid to strategies and goals 3.5 3.7 3.7 2.9 3.5 

(b2) Perceived importance of strategies 3.9 4.1 4.3 3.9 4.5 
(a1) Help in applying strategies from AFA 3.5 3.9 4.2 3.1 4.1 

It emerges again how, while the other strategies were generally present in the teachers’ practices, with 
an average considerably higher than the midpoint 3, S4 underwent a weaker trend. A similar question 
regarded again the strategies, but in terms of how much teachers perceived them as important for 
learning. Two aspects emerged from the row (b2) of Table 1: the first one is the higher marks, likely 
because it is easier to think about a strategy than actually apply it; the second one is how S4 is still 
the weak link, although the differences between the other ones are less marked. Finally, after the 
course, we asked teachers how much they thought AFA would be able to help them in applying the 
strategies. It can be noted that the averages of row (a1) in Table 1, in comparison with those relative 
to the attention paid before the course, namely row (b1), increased in the score for all strategies except 
S1 ranging from +0.2 to +0.6. It can mean, as a general remark from the scores, that teachers 
recognized the importance of these strategies and of their goals and outcomes throughout the course. 

We now give an example, in Figure 1, of a question designed by a teacher towards the end of our 
course. It has been proposed as an algorithmic question, which means that random parameters allow 
the exercise to be repeated with different values, and with interactive feedback in case of a wrong 
answer. The coefficients are random integers in a proper range, generated every time the question is 
accessed. If the correct answer to the first section is given at the first or at the second attempt, the 
exercise ends, and the student obtains a full score. If none of the two attempts results in the correct 
answer, as in Figure 1, subsequent sections open, guiding the student towards the solution by asking 
questions relative to intermediate steps, with the partial score that can be seen as an indicator of the 
student still needing help and refinement of their preparation (see the strategies). Note that in 
formative assessment scores are not as central as in summative assessment, but they can be of some 
help anyway along the other feedback, for example in moving students forward and letting them 
aware of their own learning, that are S3 and S5. 
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Figure 1: A question designed by a teacher (sections up to down, then left to right) 

Discussion and conclusions 
AFA is a relatively new area of research and there is a need for teacher professional development on 
the use of it, as well as of research about the impact of training on teachers’ practices with AFA. This 
study presents some limitations; first of all, the low number of teachers involved, which hinders 
generalization of the results. However, thanks to this study, we were able to observe the evolution of 
the teachers’ knowledge and perception of AFA during a training course. If at the beginning of the 
course teachers tended to use automatic assessment as distinct from FA, throughout the course they 
learned to integrate the two methodologies, taking advantage of the potential of the digital 
technologies to empower the formative practices. We also observed that teachers mostly had a 
teacher-centered perspective of FA at the beginning of the course. They were used to paying more 
attention to proposing task in order to collect evidence of students’ understanding rather than 
activating students in covering the gap between actual and desired performance. Their answers could 
suggest that the course may have given them the necessary tools to give students ownership of their 
learning during assessment. This resulted both from their answers to the final questionnaire, and from 
the increase in the scores given to the item relative to S5 after the course, which is not extremely 
strong (+0.6), but is the highest one. According to the teachers, the provision of feedback to move the 
learner forward is particularly enhanced by AFA, when implemented according to our model. The 
training modalities helped teachers to gain experience in the use of AFA, encouraging them to carry 
on this path. They perceived the usefulness of the course especially in a context of hybrid or face-to-
face teaching. Thus, they participated actively and enthusiastically, despite the online training 
modality, also because the trainers tried to stimulate confrontation and discussion during the 
synchronous meetings.  
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This paper reports on a pilot study with the focus on (re)design of a digitized task environment 
utilizing two types of technology – a dynamic mathematics software and a computer-aided assessment 
system. The data consist of responses from 256 first year engineering students, taking their first 
Calculus course, on two different types of task. The results are discussed in relation to (re)design of 
tasks as well as possible feedback design options to enable a formative assessment approach. 

Keywords: Asymptotes, dynamic mathematics software, computer-aided assessment, task design, 
feedback. 

Introduction 
Central in introductory Calculus courses – a critical course for first year engineering students – is the 
concept of functions. For example, Oehrtman et al. (2008) highlight a weak function understanding 
as one of the reasons why many students fail in their first undergraduate mathematics courses. 
Oehrtman et al. (2008), in discussing important features of students’ function understanding, advocate 
a focus on promoting “…rich conceptions and powerful reasoning abilities…” (p. 27), and not merely 
“…symbolic manipulations and procedural techniques…” (p.28).  

As one way to foster students’ conceptual understanding in mathematics, the literature suggest 
utilizing dynamic mathematics software (DMS) environments for student collaboration on inquiry-
based tasks, particularly in relation to functions (e.g. Brunström & Fahlgren, 2015; Jaworski & 
Matthews, 2011). Today many mathematics courses in higher education utilize computer-aided 
assessment (CAA) systems (e.g. Rønning, 2017), in which it is possible to embed DMS environments 
(Sangwin, 2013). However, there are few studies that have investigated the integration of these two 
types of technology (Luz & Yerushalmy, 2019). Indeed, designing tasks that utilize the affordances 
provided by a DMS environment and that also can be automatically assessed by a CAA system adds 
to the already established complexity of designing tasks for interactive learning environments that 
promote mathematical understanding (Joubert, 2017).  

This paper reports some results from a pilot study conducted during autumn 2020 with the aim of 
trialling different types of task designed for a combined use of DMS and CAA, and to get a deeper 
understanding of student strategies when performing these tasks. Findings from the pilot study will 
inform the (re)design of tasks as well as the development of possible types of automated feedback to 
increase first year engineering students’ engagement and conceptual understanding of functions. 

Theoretical framing 
Besides topic-specific theories, related to mathematical functions, the task design was guided by 
theories associated with student generated examples and theories on feedback.  
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Functions and graphs 

It is well established that for students to comprehend the concept of functions it is essential to be able 
to move flexibly between different representations, such as formula and graph (Leinhardt et al., 1990). 
Moreover, according to Duval (1999), representation and visualization are at the core of mathematical 
understanding. He distinguishes between two cognitive operations; processing and conversion, where 
the former concerns mathematical processes made within the same representation, such as algebraic 
manipulations, and the latter means changing between different representations. While many students 
can learn processing, it is the conversion, e.g. to translate a formula into a graph or vice versa, that 
many students find challenging (Duval, 1999). In particular, it is the translation from graph to formula 
that is the most challenging (Leinhardt et al., 1990). Furthermore, this kind of task, referred to as 
‘translation task’ in this paper, is suitable for a CAA system since it can recognize any correct form 
of the function formula.  

Student generated examples (SGEs) 

Prompting students to generate examples that fulfil certain conditions has been proposed as a way to 
engage students actively in their development of conceptual mathematical understanding (e.g. 
Watson & Mason, 2002). This idea has been adapted to CAA systems since it allows for automatic 
assessment of higher-order mathematical skills (Sangwin, 2003). In this paper we use the notion ‘SGE 
task’ when referring to tasks using this idea. To further challenge students’ thinking Yerushalmy et 
al. (2017) suggest asking students for several examples, which differ as much as possible. Moreover, 
Yerushalmy et al. emphasize the importance of designing feedback on students’ responses on such tasks 
to support their mathematical reasoning processes (2017). 

Feedback 

So far, CAA systems have mainly been used for assessing basic mathematical procedural skills. It is 
a challenge to design tasks for a CAA system that address higher-order skills in mathematics, and to 
design feedback that goes beyond categorizing a final answer as being right or wrong (Rønning, 
2017). In the wider literature, this type of feedback is referred to as ‘elaborated feedback’ (e.g. Shute, 
2008). In a meta study investigating the effects of computer-based feedback on students’ learning 
outcomes, van der Kleij et al. (2015) found that elaborated feedback was more effective than 
verificative types of feedback, especially for higher-order skills. In particular, the eight studies related 
to mathematics pointed in this direction. 

When interacting with a DMS environment, the other type of technology reported in this paper, 
students are provided instant feedback on their action. It is this feedback that makes it possible to use 
a DMS environment as an arena for exploration, conjecturing, verification, and reflection. However, 
this feedback does not provide explicit suggestions on how to proceed, and thus the benefit of the 
feedback depends on students themselves being able to interpret the results of their actions in the 
DMS environment (Olsson, 2018). By embedding DMS tasks in a CAA system and utilizing the 
affordances provided by the two types of technology, we endeavor to enhance the provision of 
feedback – the goal of our upcoming project. 
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Method 
Research context 

The pilot study took place at a Swedish university, involving 256 first year engineering students 
taking a first course in Calculus. The course assignment included small group activities, in the form 
of task sequences focusing on function understanding, designed for a combined use of a DMS 
environment (GeoGebra) and a CAA system (Möbius). However, there were also tasks with 
individual elements for each group member requiring an individual answer, to ensure active 
involvement by all students.  

This paper will examine patterns of student response to two related tasks concerning rational 
functions, and specifically the relationship between asymptotes and function formula. In the light of 
these patterns, we will offer thoughts on the types of elaborated feedback that could be beneficial, 
and also provided by an automated assessment system. 

The tasks 

Task 5 (see Figure 1) is an example of a ‘translation task’ intended to be solved in groups. Students 
are expected to realize that it must be a rational function with one horizontal and two vertical 
asymptotes. Then, they are supposed to utilize the vertical asymptotes to construct the (factorized) 
denominator, and the horizontal asymptote to conclude that the numerator should be of degree two 
with the coefficient 2 in front of the  term. However, there is a need for further information to 
arrive at a final formula, i.e. two points on the graph. The reason behind asking for an explanation 
(Task 5b) was twofold; both to promote student reasoning, and to provide insight into student 
strategies when solving the task. 

 
Figure 1: Task 5 as it is presented in Möbius 
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Task 7 (see Figure 2) is an example of a ‘SGE task’ in which students received different values of the 
asymptotes, and were supposed to provide individual answers. This task closely relates to Task 5 in 
that it involves two vertical asymptotes and one horizontal asymptote. In performing this task, 
students are supposed to consolidate the key ideas addressed in these tasks.  

 
Figure 2: Task 7 as it is presented in Möbius 

Data collection and analysis 

The data used to analyse student responses to these tasks consists of their answers submitted to the 
CAA system. The data analysis process involved several stages. To provide an overview of the data 
material, we made a preliminary analysis based on about a quarter of the submitted responses. This 
overview of students’ various responses to the tasks gave insights into interesting instances. For 
example, when students provided unexpected responses, i.e. not in line with the expected solution 
strategy, or when it was a wide range of student responses. In addition, this preliminary analysis 
generated initial codes to be further developed and used in the next stage of the analysis process. At 
this stage, all responses to the tasks were analysed and coded. Next, the initial codes were organized 
into categories to discern general patterns in the data material (Saldaña, 2013). The categories 
obtained for these tasks are introduced in the tables in the Result Section.  

Results 
Table 1 provides an overview of the group responses, in terms of function formulas, to Task 5a.  

Table 1: Overview of the responses provided in Task 5a1 

 

 
1 In some responses, the numerator and/or the denominator is/are not factorised. 
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Mainly three types of formula were observed. Almost half (47/101) of the groups used Formula 1. 
Notable is that as many as 39 of the groups gave a Formula 2 (17) or a Formula 3 (22) response. 
These types of formula have not been present either in the textbook or in lectures when treating 
asymptotes in the course. Examples presented at lectures concerning horizontal asymptotes has been 
in the form , where  and  are polynomial functions of the same degree (except when the 

horizontal asymptote is y = 0). Among the 9 responses not categorized, there are 4 incorrect answers. 

The group responses to Task 5b provide some information about students’ thinking behind their 
answer in Task 5a, since they were encouraged to explain how they arrived at a particular function 
formula. Group responses were inspected and compared to identify a set of elements of explanation 
which could be used to summarise the content of any response. This made it possible to code the 
responses in terms of explanation elements, i.e. descriptions of what students referred to. 

In Table 2, an overview of the explanation elements provided by the student groups is given. The 
rightmost column shows the total number of each explanation element among the group responses. 
Almost all groups (82/86) explicitly refer to the vertical asymptotes in their explanation. However, 
all the categorized formulas (1 to 3) indicate that all 86 groups, that provided a function formula, 
utilized the vertical asymptotes. Similarly, the constant term in Formula 2 ( ) and 
Formula 3 (  ) indicate that these groups have utilized the horizontal asymptote, 

even though eight of these (39) groups did not mention this in their explanation. 

Table 2: Overview of the explanation elements referred to in Task 5b 

 
A closer look at the Formula 1 responses reveals that the predominant (46/47) characteristic of the 
associated explanations was to refer to the vertical asymptotes (to form the denominator of a single 
quotient expression as the product of the corresponding linear factors). The predominant (44/47) 
approach was then to refer to the zeros of the function (to form a numerator for the quotient expression 
as the product of the corresponding linear factors). One further step is needed to complete the quotient 
expression. Only 16 groups (out of 47) used the approach that the task design hoped to elicit, i.e. to 
use the horizontal asymptote to establish a limiting value for the quotient expression as x→∞. Thus, 
the remaining 31 groups did not refer to the horizontal asymptote as an explanation (see Table 2) for 
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the factor 2 (of the numerator). Among these 31 groups, 22 refer to one further point, 5 to GeoGebra, 
and one group to a system of equations. Hence, we can conclude that at least 28 groups (out of 47) 
did not utilize the horizontal asymptote.  

In Task 7, each student response consists of two examples of function formulas. However, since few 
students (6/256) provided a different type of formula in their second example, only the first example 
is reported in this paper. Table 3 provides an overview of the types of formula discerned (based on 
the numerical values in the example in Figure 2) as well as the total number of responses belonging 
to each category (the rightmost column). Moreover, Table 3 shows the correspondence between these 
answers and the group answer on Task 5a. 

Table 3: Overview of each individual response to Task 7 in relation to their group answer in Task 5a2 

 
The predominant (149/256) type of formula used was a reduced quotient and the horizontal asymptote 
as a constant term ( ). Notably, quite a few students (37/256) expressed the formula 

as a single quotient, i.e. in the form .  

As there were no zeros given in Task 7, it is primarily the group answers Formula 2 and Formula 3 
in Task 5a that closely relate to the answers in Task 7; Formula 2 ( ) corresponds 
to the second type of formula (in the leftmost column) and Formula 3 ( ) 

corresponds to the third type of formula. Most of these students use the same type of formula in their 
individual response, 63,8% and 76,8% respectively, as in their group answer. However, Table 3 
shows that as many as 29,8% of the students who used Formula 2 in Task 5a switched to the third 
type of formula ( ) in Task 7. Moreover, few students that responded Formula 2 

(4,3%) or 3 (5,4%) in Task 5a provided an answer in the form  in Task 7. Overall, Task 7 worked 

 
2 In the student responses, different numerical values are used instead of a and b.  
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well in that most of the students seemed to realize how they could use all asymptotes to produce a 
function formula.  

Discussion 
As stated in the introduction, this pilot study will inform the (re)design of tasks as well as the 
development of possible types of automated feedback. In this section, we elaborate on this issue in 
relation to the findings.  

Since the intention with the ‘translation task’ (Task 5) was to encourage students to reflect on the 
relation between a function graph with asymptotes and its formula, the high number of Formula 1 
responses (to Task 5a) without reference to the horizontal asymptote in the explanation was 
unexpected and undesirable. One way to tackle this issue might be to use a graph without evident 
zeros. However, the possibility to use different approaches based on various graph features may 
promote instructive student discussions. Another way could be to indicate the asymptotes in the 
graph. However, since the identification of asymptotic behavior in a graph is central in understanding 
rational functions, this might simplify the task too much.  

Yet another way to tackle this issue is to develop automated and adapted feedback, which in turn 
require a redesign of Task 5b. Instead of asking for an explanation, ask students to declare the 
explanation elements used by choosing among various suggested options. Depending on their 
response, they will receive different elaborated feedback (Shute, 2008). For example, if they not have 
used the horizontal asymptote, they will be asked to solve a new task in which they are (explicitly) 
asked to utilize the horizontal asymptote.  

Also, when considering that almost 10% of the student groups failed to provide a correct answer to 
Task 5a, there is a need for developing formative instant feedback for these students. One suggestion 
is to offer the students a second chance to solve the task after they have been watching a short video 
introducing the key ideas addressed in the task.  

The ‘SGE task’ (Task 7) worked well, and revealed various student strategies. However, almost all 
students provided the same type of formula in both their examples. Since we think that it is instructive 
for students to realize that there are various ways of thinking, which results in different types of 
formula, it would have been great if the CAA system could recognize the type of formula used by a 
student. So, for example, if a student uses a formula of the following type:  (in both 

examples), the elaborated feedback (Shute, 2008) could be something like: “Great, the answers are 
correct. However, another correct answer could be: f  . How do you think a student who 

came up with this answer has been reasoning? Now, use this strategy to provide an example of a 
function with the following asymptotes…” 

The study is limited by the lack of information on how students utilized the DMS environment to 
check their conjectured function formulas before submitting them as answers to the tasks. To be able 
to further develop the task design, particularly the formative feedback from the CAA system, we need 
to better understand the reasoning behind students’ various responses. This requires empirical data in 
terms of screen recordings (including audio) from students ‘ongoing work. Consequently, we suggest 
this as a natural progression of this pilot study. 
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Assessment of/for/as online learning: Mathematics teachers’ views on 
online assessment during the COVID-19 pandemic 

Hui Min Chia and Qiaoping Zhang 

 The Education University of Hong Kong, Hong Kong SAR; s1131888@s.eduhk.hk 

Assessment is an important aspect of mathematics teaching and learning. This paper aims to explore 
Hong Kong mathematics teachers’ views on online assessment during the COVID-19 pandemic. The 
data analysed is part of a larger project comprising an online survey and semi-structured interviews. 
This paper presents data from the survey responses of ninety-two teachers and from interviews of 
three teachers. Thematic data analysis is conducted, focusing on teachers’ views on assessment 
during online learning. Findings show that the forms of assessment that Hong Kong mathematics 
teachers conducted during the pandemic were similar to those from before the pandemic. They view 
online assessment mainly as assessment for and of online learning. This paper also discusses 
suggestions for online mathematics assessment. 

Keywords: Online teaching, assessment, mathematics teachers’ views. 

Background 
Assessment plays a crucial role in supporting teaching and learning at school (Black & Wiliam, 1998, 
2011). Harlen (2007) denoted assessment as “the process of gathering, interpreting and using 
evidence to make judgments about students’ achievements in education” (p. 11). The students’ 
achievements include their knowledge, attitudes, or skills. This process may occur inside or outside 
the classroom. Assessments can be formal (e.g., an examination or test) or informal (e.g., a 
conversation between teacher and student), external or internal. Moreover, according to their different 
functions, assessments can be categorised as summative or formative. Summative assessments refer 
to those that measure what students have already learned. Teachers may design them for several 
purposes, such as grading and selecting students, or evaluating experiences regarding a teaching unit. 
In contrast, formative assessment primarily focuses on informing learning and teaching by providing 
feedback to students and teachers (Curriculum Development Council [CDC], 2017; Hodge & van den 
Heuvel-Panhuizen, 2014). Regardless of the forms of assessment, teachers play an important role in 
the process of assessment (Black & Wiliam, 2011). During the COVID-19 pandemic, all the learning 
activities are conducted by online mode, including the assessments. Teachers’ role became even more 
crucial during the pandemic. How to conduct online assessment may become challenges for many 
teachers.  

Although assessment is an integral part of curriculum planning, pedagogy, and assessment cycles, 
there often exists “a major gap between the nature of the planned and implemented curriculum” 
(Morris, 1995, p. 43). For example, in Hong Kong, the formal curriculum stresses the formative role 
of assessment by teachers; however, when the curriculum is implemented, internal assessments are 
frequently based on those used in public examinations (Morris, 1995). During the online teaching, it 
is necessary to know whether such gaps still exist and how they have been changed. Online 
assessment refers to any form of assessment conducted during or after online learning, for example, 
online quizzes, online submissions of homework, online question sessions, and other online 
interactions. Although some teachers have previously used e-learning tools (such as Kahoot!, 
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GeoGebra, and Google Forms) to teach in traditional classrooms, conducting online assessment is a 
new challenge for most. Teachers’ views on assessment can influence their teaching practices, 
especially in a new context, such as using online assessment during online teaching (Kaiser et al., 
2017; Mirian & Zulnaidi, 2020). By using e-learning methods, teachers can give rapid and accurate 
feedback to students, which contributes positively to students’ motivation for learning (Becta, 2003). 
However, many barriers and challenges also exist for teachers when conducting online teaching 
(Jones, 2004; Dhawan, 2020). For example, students in online courses may also feel isolated and 
disconnected from the instructor and other learners (Choy et al., 2002). The lack of student-teacher 
interaction in online classes is another primary concern (Mayes, 2011). 

Because of the COVID-19 pandemic, teaching online has become a new normal approach worldwide. 
Given the significance of online assessment in mathematics classrooms, there is a need to examine 
how technology influences the forms of assessment teachers conduct and their experiences during 
online teaching. Hence, this paper aims to explore mathematics teachers’ views on online assessment 
during the pandemic. Specifically, this paper investigates four research questions: 

1. What kinds of assessment did mathematics teachers use during online learning? 
2. What did teachers think of conducting online assessment during online learning? 
3. What types of constraints did teachers face in conducting assessment during online learning? 
4. How did teachers deal with the constraints on online assessment? 

Assessment of/for/as learning in mathematics  
Assessment in mathematics can be both summative and formative. Summative assessment focuses 
more on providing a comprehensive and summary description of students’ performance and progress 
in learning. On the other hand, formative assessment focuses more on diagnosing students’ strengths 
and weaknesses in learning, providing feedback, and reviewing learning and teaching strategies 
(CDC, 2017). In general, assessment can serve the following three purposes: assessment of learning, 
assessment for learning, and assessment as learning. 

Of these three purposes, assessment of learning aims to provide learners with results about what they 
have achieved in their learning within a certain period (Harlen, 2007). Assessment methods for this 
purpose include testing at the end of a class session, as well as formal examinations in the middle or 
at the end of the academic year. Assessment can sometimes also take the form of homework, whereby 
the teacher gives grades to learners. Next, according to Mok (2011) and Harlen (2007), assessment 
for learning uses assessment methods to provide learners with feedback to assist their future learning. 
Such methods focus on monitoring and providing feedback to learners during mathematics classes. 
They can take the form of question-and-answer (Q&A) sessions or classwork. Finally, assessment as 
learning uses assessment methods to develop self-monitoring (Earl, 2013) and self-directed learning 
(Mok, 2011) among learners. For such assessments, learners assume an active role in their learning 
process, unlike for the other two purposes, for which the teacher initiates the learning. 

In existing literatures, the above concepts mainly apply to how teachers conduct assessment in 
physical learning contexts (see Black & Wiliam, 2011; Earl, 2013; Harlen, 2007; Mok, 2011). 
Conceptual frameworks for analysing teachers’ views on assessment during online teaching and 
learning remain limited. Hence, we are proposing assessment of/for/as online learning as a framework 
to analyse teachers’ views on online assessment during the pandemic. In this paper, online 
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assessments are not limited to strictly online forms, such as live Q&A sessions or online quizzes 
during online learning, but also include forms that involve a physical component, such as answering 
questions from textbooks or workbooks to be submitted after online learning. 

Methodology 
This study examines data extracted from a large comparative study between Hong Kong and Italy, 
designed as an exploratory study to investigate mathematics teachers’ views on online teaching and 
learning. Data presented in this paper is original and not have been published previously. The study 
comprised an online survey and semi-structured interviews following the survey.  

Participants 

Participants were recruited by random sampling through emails and social media. A survey link was 
distributed online through social media. For this study, assessment-related responses from 92 Hong 
Kong mathematics teachers were selected, as shown in Table 1. Three interview cases in which 
“assessment” was mentioned were also selected to support the findings from the survey. 

Table 1: Background of selected teacher participants 

School level 
Teaching experience (years) 

Total 
<5 5–10 11–15 >15 

Primary 9 7 5 18 39 

Secondary 31 10 4 8 53 

Total 40 17 9 26 92 

Instrument 

A team of researchers from Hong Kong and Italy designed the online survey instrument, which 
comprised 13 items. Four items captured background information, while the other nine open-ended 
questions related to teachers’ views on online teaching and learning. For instance, item 9 read: 
“During distance teaching, do you think that your way of teaching mathematics somehow changed? 
Please explain.” Teacher participants were required to state whether any changes in their teaching 
practices occurred during the pandemic and to provide explanations for them. This paper presents the 
data extracted from the nine open-ended questions, comprising responses related to assessment during 
the pandemic. 

Data analysis 

Data were imported into the analytical software NVivo 12 Pro to conduct thematic analyses on both 
survey and interview data. For both sets of data, the original interview transcripts in Chinese were 
used to prevent important information from being lost during translation. Translations are only done 
for data presented in the results. 

Themes related to assessment, such as online assignments, classwork, homework, tests, and 
evaluations, were first identified from the survey data. Then, similar themes were combined and 
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merged into four major assessment methods: classwork or homework, live Q&A, tests or quizzes, 
and evaluations. Meanwhile, data related to constraints on and unsuccessful implementations of 
assessment were coded under the node constraints. Thereafter, based on the proposed framework 
regarding views on assessment, the data was further coded according to the purposes of “assessment 
for online learning”, “assessment of online learning”, and “assessment as online learning”. The 
numbers and percentages of teachers in each coding category were then recorded and calculated. For 
the interview data, themes that expressed positive and negative views were grouped separately to 
provide more information about teachers’ views. 

Results 
Online survey 

There were 92 teachers who mentioned “assessment” during distance learning in online survey. Table 
2 shows that teachers used four main types of assessment during distance learning and the constraints 
related to the forms of assessment used. 42.39% of teachers used classwork or homework to assess 
student’s learning. For example, one teacher mentioned, “[I] gave students assignments through 
Google Classroom, marked them and returned them to students.” About 6.52% of teachers mentioned 
they posed questions during online teaching sessions to assess students’ understanding. For example, 
another teacher responded that “[I] need to ask questions frequently to know their learning progress.” 
16.30% of teachers revealed they had conducted online tests or quizzes to assess their students’ 
understanding, using online platforms such as Kahoot! and Quizizz. A third teacher mentioned that 
they dealt with distance learning by using “some online interactive platforms, for example, Kahoot! 
and Nearpod are used to get feedback from students.” Lastly, 11.96% of teachers mentioned that they 
used assessment for general evaluation, without specifying in which form, such as “[I] used Google 
Meet to follow up student’s learning progress too.” 

Table 2: Forms of assessment used and constraints faced by Hong Kong mathematics teachers during 
the pandemic 

 Classwork/homework (%) Live Q&A (%) Test/quiz (%) General evaluation (%) 

Forms of assessment  42.39 6.52 16.30 11.96 

Constraints  23.91 7.61 10.87 44.57 

There was 44.57% of the 92 teachers disclosed their unsuccessfulness or difficulties in conducting 
assessment during distance learning for general evaluation (Table 2). As one teacher mentioned, “[it 
was] more difficult to assess student’s level of understanding and did not manage to conduct 
assessment for learning effectively.” 23.91% of teachers reported constraints in assigning, 
monitoring, marking, or collecting classwork or homework. For example, they were unsuccessful in 
“monitoring students’ progress in doing classwork”. Meanwhile, 10.87% of teachers said they 
struggled to conduct a test to assess their students’ learning progress. For example, another teacher 
said that “a test could not be held”. Lastly, 7.61% of teachers reported difficulties in conducting 
assessments during online live teaching; a teacher stated, “[I] did not manage to ask different types 
of questions to students to assess their learning progress”. 
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There were 61 teachers who provided explicit descriptions about their views on online assessment, 
as shown in Table 3. Of these 61 respondents, 39.34% viewed assessment as being for learning in 
general. Most of these respondents gave general answers about assessment purposes, such as 
monitoring students’ progress. 37.70% of teachers view assessment as being for online learning 
through classwork or homework. For example, one teacher mentioned, “[I] used Google Forms for 
homework” to deal with online teaching and learning during the pandemic, reflecting the purpose of 
assessment for online learning. Lastly, 24.59% of teachers viewed assessment as being of online 
learning through tests or quizzes. As reported in their survey responses, they manage to “[conduct] 
evaluation of learning progress [by using] Quizizz App”, reflecting the purpose of assessment of 
online learning. 

Table 3: Teachers’ views on online assessment during the pandemic 

Views on assessment Classwork/ homework (%) Live Q&A (%) Test /quiz (%) Evaluation (%) 

Assessment for online learning 37.70 16.39 9.84 39.34 

Assessment of online learning 6.56 0 24.59 4.92 

Assessment as online learning 11.48 1.64 1.64 1.64 

Online interviews 

Data analysis of the online teacher interviews revealed that overall, Hong Kong mathematics teachers 
had differing views about the conduct and outcome of assessment. This section describes three cases 
selected from the interview data to represent teachers with negative, positive, and mixed views, 
respectively. The negative views recorded such as assessment being difficult, problematic, and 
ineffective, positive views included technology tools have made the assessment easier and mixed 
views with both positive and negative aspects.  

Janet, a secondary mathematics teacher with less than five years of teaching experience, hold a 
negative view about online assessment. She thought online assessment was difficult to be conducted. 
She changed from grading students’ homework using Google Classroom to assigning homework and 
conducting live teaching through online platforms such as Zoom and Kahoot! to assess students’ 
learning. She commented: 

It was very difficult to assess [students’ learning]. This was because they may not complete 
their homework alone. [Then], last time in school, a short test could be conducted [during the 
lesson]. [But] now [the test] cannot be conducted because it [would be] unfair to [other 
students] if we conducted [the test] with them. 

Janet’s responses reflected her emphasis on assessment for online learning to assess students’ learning 
during live teaching and through assigning homework. However, constraints existed for the 
effectiveness of online assessment through homework, in the sense that certain students might not 
complete their homework independently (assessment as online learning). Besides, she had concerns 
about the validity and fairness of conducting tests (assessment of online learning). 

Conversely, Nick, a secondary mathematics teacher with less than five years of teaching experience, 
viewed using technology in assessment positively. He used Zoom for live Q&A to help students who 
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had problems with homework and Google Forms to assess students’ learning during distance learning 
(assessment for learning). 

In my opinion, since we have to use technology [now], [then] we have to fully utilise it: why 
use [the technology] just because we have to? … From the online teaching and learning 
perspective, objective questions are easier [for students to handle] … In my view, students’ 
self-discipline is very important in the online [teaching and learning] mode. 

Nick focused on live Q&A to assist students in their learning, whereby students had to take initiative 
to ask questions during live teaching sessions (assessment as online learning). He then used multiple-
choice questions instead of written questions to evaluate his students (assessment of online learning) 
during the pandemic. He changed his assessment methods to enable students to answer questions. 
Furthermore, he emphasised the importance of assessment as online learning during online teaching 
and learning. 

Lastly, Marry, a primary mathematics teacher with over 15 years of teaching experience, held mixed 
views on online assessment. During distance learning, she used the online platform Power Lesson to 
upload video recordings and assign exercises to students. She also assigned more multiple-choice 
questions to students online (assessment of learning). However, due to requests from parents, she 
started to incorporate live Q&A via Zoom (assessment for learning) into existing assessment 
methods: 

You will feel like you are talking alone. I do not know whether they learned something or not, 
whether they completed [their work], I do not know too. So, I feel the difficulty is I have to 
treat them as [if] they [had] never [learned it] before. 

For Marry, her initial approach to assessment reflected her view of assessment as online learning, 
whereby students completed assigned exercises by themselves after watching her video recordings. 
Her comments on not receiving responses from students during live teaching sessions reflected 
constraints in assessment for learning. During the interview, she further commented that it was 
problematic that students did not cooperate during group work (assessment as learning). Then, she 
could not request students to write their answer on the whiteboard (board work) and review their work 
during live teaching (assessment for learning). 

Discussion 
The present study aims to explore Hong Kong mathematics teachers’ views on online assessment 
during the COVID-19 pandemic. Findings show that the online assessments that teachers conducted 
during online learning were similar to the face-to-face assessments they conducted during in-person 
learning. These assessments would be conducted during class time, such as through classwork and 
Q&A sessions. Then, homework or tests were assigned or conducted at the end of class. Mok (2019) 
reported similar features in the data collected during 2016: normal face-to-face assessments in Hong 
Kong mathematics classes took the form of individual classwork, with the teacher walking between 
desks to monitor students’ learning progress. The finding shows most Hong Kong mathematics 
teachers viewed assessment as being for online learning and of online learning during the pandemic. 
Teachers paid more attention to what students learned from the class and valued their performance. 
This may be due to cultural influences, such as the Chinese culture and the culture of examinations 
(Wong et al., 2012). Teachers also acknowledged the importance of students’ autonomy in online 
assessments, which reflected the purpose of assessment as online learning. 
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The constraints that Hong Kong mathematics teachers reported primarily concerned the effectiveness 
of online assessment, as well as students’ autonomy in completing homework and participation in 
live teaching sessions. The constraints that were reported, especially regarding students’ autonomy 
were common challenges that teachers worldwide faced during online learning (Dhawan, 2020). To 
overcome these constraints, most teachers who viewed assessment as being for online learning tried 
to conduct live teaching and ask more questions during teaching. Teachers who viewed assessment 
as being of learning used more multiple-choice questions to assess students online instead of 
subjective or problem-solving questions. Nevertheless, teachers who viewed assessment as learning 
posted the answers to classwork or homework online for students to check their work by themselves, 
or hosted live teaching sessions for students to ask questions. 

Conclusion 
This study examined current mathematics teachers’ views on online assessment during the pandemic. 
It provided insights into how technology influences the forms of assessment that teachers use and 
their experiences during online teaching. First, the findings revealed that online assessments 
conducted during the pandemic were similar to in-person assessments conducted before the 
pandemic. This implies that mathematics teachers’ existing conceptions of teaching may be very 
strong and not easily changed, even when the teaching environment has changed. Second, teachers’ 
views on online assessment and its constraints in various forms revealed that effective strategies to 
shape students’ autonomy in online learning are needed. More teacher training must be given to 
teachers in terms of how to conduct online assessment. Information technology is no longer a 
supplement to teaching and learning, but has become the new norm in a post-pandemic era. The 
teaching modes that schoolteachers use therefore need to be more flexible to meet the changing times. 
In terms of our study, we acknowledge that our sample size is not large enough to generalise our 
findings. Future studies on this topic can be conducted by adopting different methods, such as large-
scale questionnaires. Data from students could also provide another perspective on the effects of 
online assessment. 
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Introduction 
Especially with regard to inclusive education, teachers must recognize the potentials and 
preconditions of students during the learning process to build on these for successful teaching (e.g. 
Moser Opitz & Nührenbörger, 2015). However, the formative use of diagnostic information to 
support decisions is an unfamiliar concept for many teachers (e.g. Zeuch et al., 2017). Studies on the 
implementation of formative assessment (e.g. van Geel et al., 2016) suggest that structured and 
curriculum-based measures have positive effects. However, meta-analyses show that there is 
considerable need for research to understand the conditions of successful implementation (e.g. 
Kingston & Nash, 2011).  

“Formative Assessment in Inclusive Early Mathematics Teaching” is a design-oriented research 
project in Germany. An in-service program was developed with the focus on diagnosis and individual 
support. The implementation of two variations of formative assessment – planned for interaction (PI) 
and curriculum embedded (CE) (e.g. Shavelson et al., 2008) – will be compared. In the approach 
“Födima-PI” the teachers learn to develop diagnostical questions and support activities, in “Födima-
CE”, they use prepared diagnostic and support tasks.  

Research design 
The project explores how teachers and multipliers can be effectively qualified for professional 
support-oriented diagnostics and how successful transfer processes into practice can be supported 
(e.g. Gräsel, 2010). In 2021/22 134 teachers from 37 schools will participate in the project. The 
research goals concern the evaluation of the acceptance and professional effectiveness of the training 
concepts and the qualification program. In the first year, the project focuses the following research 
questions: 

1 How do teachers evaluate the conceptual framework? 
2 What are the effects with regard to attitudes, pedagogical content knowledge and 

performance? 
3 How effective are the concepts with regard to the development of basic mathematical skills, 

motivational variables and the self-concept of students? 

A pre-post-follow-up-test design includes standardized questionnaires and interviews to gain 
information about the participants’ self-efficacies, pedagogical content knowledge and their attitudes 
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towards formative assessment before and after their participation, to evaluate the effectiveness of the 
program. Also, the acceptance of the developed in-service program will be surveyed. 

 
Figure 1: Födima year 1 

We expect a positive effect in favor of the Födima-CE approach due to its somewhat tighter 
structuring and we assume a moderator effect in the form that high pedagogical content knowledge 
and a positive self-efficacy of the teachers are associated with better effects for the Födima-PI 
approach. 

After evaluation, the two variations will be elaborated into a qualification program for facilitators. 
There will be further research related to this.  
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Mathematical competencies (Niss & Højgaard, 2019) have been developed and implemented in the 
Danish curriculum through the last two decades. At the same time, online assignment portals have 
gained considerable ground in the Danish elementary school. Denmark's largest portal alone, 
matematikfessor.dk, has 75% of the Danish primary and lower secondary schools as regular 
subscribers, and an average of DKK 1.5 million assignments are answered daily (EduLab, 2021). 
When Denmark was locked down on March 11, 2020, the number of daily completed tasks rose to 
approximately 6,000,000. During the lockdown, the number of unique daily logins rose from 
approximately 45,000 to 130,000 (Elkjær & Jankvist, 2021). Assignments in such portals, however, 
are mainly used for training students' basic skills. In the Danish context, a report from 2016 concludes 
that as many as 78% of the tasks that students in Danish primary and lower secondary schools 
encounter in mathematics teaching can be categorized as training tasks (Bremholm, Hansen & Slot, 
2016). 

The purpose of this ongoing project is to investigate to what extent it is possible to develop tasks for 
online assignment portals, so that students in the intermediate stage of primary school have the 
opportunity to develop mathematical representation competency as defined by Niss and Højgaard 
(2019). The tasks are to be designed in a way that supports the teachers’ formative assessment of their 
students’ mathematical representation competency. As the portal works now, the teachers receive 
information about the number of correct responses provided by each student. In addition to these 
information’s, the aim is to inform teachers of the level of competency for each of their students.  

The methodology of design-based research (Cobb, Jackson & Sharpe 2017) is used for both 
continuous development and adaptation of the competency-oriented tasks. The tasks are to be 
designed in clusters in a way that allows for student learning, while the student’s answers inform the 
assessment tool without the student taking an actual test. The assessment tool is formative (Black & 
William, 2009) as knowledge of the students' representation competency within fractions will both 
inform the further work in the online assignment portal and support the teacher's formative assessment 
through a description of the student’s competency level in terms of radius of action, degree of 
coverage and technical level (Niss & Jensen, 2019). A minimum of three design iterations are 
expected to be completed during the project.  

During the first iteration, development of competency-oriented tasks for online assignment portals 
will be based on findings from a systematic literature review regarding task design with a focus on 
online assignment portals and mathematical competencies, respectively. Existing knowledge of the 
interfaces of these areas must result in a framework for how competency-oriented tasks are to be 
designed for an online portal. 
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During the second iteration, coding categories for the assessment tool are identified based on three 
dimensions of possessing and developing a competency: degree of coverage; radius of action; and 
technical level (Niss & Højgaard, 2019). Degree of coverage regards the extent to which the various 
aspects are covered. A person who can both interpret and understand relations between different 
representations and has knowledge about information loss and gain when shifting between 
representations has a higher degree of coverage- than a person who can only do the first. 

Radius of action is the spectrum of contexts and situations in which the competency can be activated. 
The degree to which the student is possessing representation competency is to be measured by the 
extent to which the student can solve tasks in routine and/or new situations; in relation to internal 
mathematical situations and/or application-oriented situations; use fractions in different situations. 
The technical level deals with conceptually and technically advanced conditions and tools the person 
can activate the competence towards. The student’s responses are used to identify development 
opportunities so that the student’s next set of tasks can help further development the competencies 
radius of action. 

During the third iteration, both task design and the assessment tool will be tested on a larger number 
of students to further inform both the task design and the assessment tool. 

Matematikfessor.dk makes their online assignment portal available for testing of tasks and evaluation 
tool. 
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This paper presents the first findings from a survey, administered to 421 Italian in-service primary 
teachers, on their beliefs regarding the knowledge and skills investigated by the national standardized 
assessment (INVALSI) tests, their proximity to didactic practices in Mathematics and the role they 
assume within the school context. The case presented in this paper is discussed in order to investigate 
the way teachers interpret data coming from standardized assessment and if/how they use them in 
their teaching practice. Findings show an overspread meta-didactic conflict generated by teachers' 
difficulties in interpreting INVALSI tests and in using them coherently with the framework on which 
the tests have been designed. 
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Rationale and theoretical framework 
At international level, the strictly link between standardized assessment and mathematics education 
is increasingly emerging (De Lange, 2007). Standardized assessment has the main purpose of system 
evaluation and its repercussions within social, political and educational fields, is increasingly taking 
hold, both at the level of the school system, and at the level of impact on classroom practices (Looney, 
2011). There is a growing interest in broadening standardized assessment beyond the evaluation of 
school systems to mathematics education research as a new methodological tool (De Lange, 2007; 
Meinck, Neuschmidt, & Taneva, 2017). In Italy, the INVALSI national agency is responsible of the 
standardized mathematics assessment (INVALSI tests) that occurred, for the first and second cycle 
of education, since 2008. The INVALSI tests are administered at a census nationally and the results, 
elaborated on a valid statistical sample, are returned to the schools and publicly discussed every year. 
The theoretical framework of the INVALSI tests is in line with the main research results in 
mathematics education and with the National Curriculum Guidelines (INVALSI, 2018). This ensures 
that the macro-phenomena highlighted in the standardised assessment can be framed with the main 
research lenses and that they highlight new characterisations or phenomena (Bolondi, Ferretti, & 
Santi, 2019, Ferretti, & Bolondi, 2019, Ferretti, & Gambini, 2018). Several researches show how the 
results of the standardized assessment can be used in a formative perspective within didactic practices 
and as a tool within teachers' professional development paths (i.e., Doig, 2006; Di Martino, & 
Baccaglini-Frank, 2017; Ferretti, Gambini, & Santi, 2020). The research project within which this 
study moves, is in tune with these strengths of thought and aims to identify training needs of Italian 
teachers and to propose guidelines for the improvement of teaching practices, regarding the use of 
mathematics INVALSI tests.  In particular, we investigate the presence of any conflicts, in the sense 
of Sfard (2008), that might exist between the "language of standardised assessments" and 
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mathematics teachers' interpretation of it (Arzarello, & Ferretti, 2021). As we will explain in the 
following section, one of the main aims of this research is to understand the role and meanings that 
teachers attribute to the INVALSI tests, investigating how they interpret, consider and use the 
INVALSI tests and their results.  

The interdisciplinary research project and our research questions 
Herein, we analyse the first results of an interdisciplinary research project aimed at investigating the 
link between the INVALSI tests in Mathematics with the teaching and learning processes of 
Mathematics, in particular with teaching practices. The research project is conducted by the INVALSI 
Disciplinary Didactics Group of the Italian Society of Research in Didactic S.I.R.D., composed by 
mathematics education researchers and pedagogists. The interdisciplinary collaboration consisted in 
the design and in the administration of a tool for detecting teachers' attitudes towards INVALSI 
agency with its aims and working methods, as well as its tests in Mathematics and their repercussions 
on teaching practices. We are interested to understand what are the “tools” possessed and used by the 
teachers: to read and interpret INVALSI tests and their results; to identify possible effects of the 
INVALSI tests on their Mathematics teaching practices. The analysis of data coming from the results 
of the INVALSI standardized assessment is not enough to identify training needs in this direction at 
a national level within schools and to propose guidelines for the improvement of practices regarding 
the use of INVALSI tests. Rather, to reach these goals, we intend to develop a meta level analysis 
focusing on the way teachers interpret and use these data in their teaching practices. To do that, a 
survey was designed and administered to investigate primary teachers' beliefs regarding the 
knowledge and skills investigated by the INVALSI tests, their proximity to didactic practices in 
Mathematics and the role they assume within the school context.  

In this paper we analyse data concerning the Mathematics Education section of the survey. The 
section focuses on 7 tasks of the INVALSI tests, chosen because considered suitable to highlight 
different didactic macro phenomena. With respect to each of the 7 tasks, teachers are asked to answer 
questions aiming to investigate: their ability to read INVALSI data and identify the reasons of 
students' mistakes; how suitable an INVALSI task is considered for assessing students learning and 
how commonly it is used in assessment practices. The final part of the Mathematics Education section 
of the survey contains some transversal questions that aim at investigating how the mathematical 
contents and the skills detected with the INVALSI tests are more or less close to the daily personal 
didactic practices and perceived as consistent/inconsistent with the National Curricula Guidelines. 
All these variables represent the focus of the survey and are the object of the analysis proposed in this 
study. In what follows we will exemplify our study presenting and analysing teachers' responses to 
some of the questions of the survey. More specifically, we intend here to answer the following 
research questions:  

Q1: to what extent teachers' interpretation of the INVALSI tests and their results is coherent with the 
framework on which the tests have been designed?  

Q2: to what extent the mixed (qualitative and quantitative) investigation based on our survey results 
to be a tool to answer Q1? 
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The crochet placemats task 
This paper focuses on some questions of our survey, which refer to the INVALSI task of Figure 1. 

Figure 1: Task 11, Mathematics INVALSI test Grade 05, s.y. 2012-13 

Teachers were given a set of students' answers to the task, consisting in both the numerical result and 
the solution strategy. For each of the proposed student answers, teachers were asked to choose its 
degree of correctness (Completely Incorrect, Partially Incorrect, Mainly Correct, Completely 
Correct). These 4 possible options are given to the teachers without an explanation of the difference 
between Partially Incorrect and Mainly Correct: to the teacher’s choice of Partially Incorrect, we 
attributed the feeling that what is important for the teachers in that answer of the student is the fact 
that it is incorrect (even if only partially), rather Mainly Correct is the answer that we expected to be 
chosen by the teachers which consider the answer of the student to be correct (even if not completely). 

The proposed student answers are: 

1)  30,  I calculated 20+6+4 

2)  24,  I multiplied 6 balls by 4 placemats, and I got 24 

3)  120, I have multiplied 6 balls by 20 placemats  

4)  30,  Since for 4 placemats we need 6 balls of cotton (so 2 more), for 20 placemats we just 
need to do plus 10 

5)  30,  The grandmother uses a ball and a half to prepare a placemat, so I did this = 20 x 1.5 = 
30 

6) 30,  To do 20 placemats I have to do 5 times 4 placemats, so I need 30 balls 

7)  24,  I have multiplied 20 placemats by 1 ball and a half, and I got 24. 

As we can notice, option 1) reports a correct numerical answer supported by a wrong strategy; on the 
contrary, option 7) reports a correct strategy with a wrong numerical result. Only the options 4), 5) 
and 6) are correct. Despite the solution strategies reported in these three options are all correct, they 
are characterized by different approaches. Options 5) and 6) mainly follow a multiplicative model of 
reasonings, whereas option 4) makes use of a mixed additive-multiplicative model (Arzarello, 2018). 

Results 
The survey, that has been offered to be voluntarily filled on-line, involved 421 Italian in service 
primary teachers: most of them teach since more than ten years.  

Table 1 shows the valid percent of the teachers' responses inherent to the wrong student answers 
proposed in the survey. A first look at the responses given by the teachers shows that most of them 
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(more than 80%) recognised the first three options to be incorrect (Table 1). In particular, it seems to 
be reasonable that the correct numerical result (30) of the student answer, even in presence of a wrong 
strategy, can justify the fact that the number of teachers, who marked option 1) as Completely 
Incorrect is slightly lower with respect to those who considered Completely Incorrect options 2) and 
3). Conversely, student answer 7) was considered Incorrect (Completely or Partially) by the 68.9% 
of the teachers (Table 1), even in presence of a correct strategy. A deeper analysis of data reveals that 
the 90% of the teachers which evaluated option 1) to be Correct (Completely or Mainly), considered 
Completely Incorrect option 7), and at the same time, the 99% of those who evaluated option 7) to be 
Correct (Completely or Mainly), considered Incorrect (Completely or Partially) option 1). This 
inverse correlation between teachers' responses given to student answers 1) and 7) is also confirmed 
by the factorial analysis we will present below (see Table 2). 

Table 1: Valid percent of teachers' responses  

Solution 
Valid Percent 

Completely 
incorrect 

Partially 
incorrect 

Mainly 
correct 

Completely 
correct 

1) 30, I calculated 20+6+4 81.9 14.9 2.6 0.6 

2) 24, I multiplied 6 balls by 4 placemats, and I got 
24 

84.9 11.9 2 1.2 

3) 120, I have multiplied 6 balls by 20 placemats 85.5 12.5 1.2 0.8 

4) 30, Since for 4 placemats we need 6 balls of yarn 
(so 2 more), for 20 placemats we just need to 
do plus 10 

23 32 34.8 10.2 

5) 30, The grandmother uses a ball and a half to 
prepare a placemat, so I did this = 20 x 1.5 = 
30 

4.7 5.2 18.8 71.3 

6) 30, To do 20 placemats I have to do 5 times 4 
placemats, so I need 30 balls 

6.9 8.3 21.4 63.4 

7) 24, I have multiplied 20 placemats by 1 ball and 
a half, and I got 24 

46.3 22.6 29.7 1.4 

Concerning the other three given answers, number 5) is mostly considered Completely Correct. A 
high percentage of teachers also recognised solution strategy 6) to be Completely Correct, while the 
teachers' responses inherent to solution strategy 4) reveal to be much noisier than numbers 5) and 6). 

Also for the three correct student answers, some interesting results can be found observing data more 
in details. First of all, it seems worth of note that among the 192 teachers (45.6% of the total) which 
considered both the options 5) and 6) to be Completely Correct, only 29 also saw option 4) as 
Completely Correct. That is only the 6.9% of the teachers considered all the three student answers 4), 
5 and 6) to be Completely Correct. Among the teachers who considered Completely Correct both 
options 5) and 6), we have also found out the number of those who saw option 4) as at least Partially 
Incorrect: they are 82 (the 19.5% of the total). This means that the 42.7% of those teachers, who 
considered Completely Correct answers 5) and 6), judged Incorrect (Completely or Partially) the 
mixed solution strategy presented in answer 4). Conversely, focusing on the total number of teachers 
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(232), who considered Incorrect (Completely or Partially) option 4), we can observe that 82 of them 
(that is the 35.3%) judged Completely Correct student answers 5) and 6).  

The bivariate factor analysis (Suhr, 2006), using the Varimax method (SPSS software), allows the 
identification of two factors that saturate 44% of the total variance (Table 2). These results are 
interesting: in fact, option 1) and option 7) are in the same component with opposite signs; option 3) 
and option 2), both reporting wrong multiplicative model of reasoning, are in the same component; 
the first component also contains the two correct options 5) and 4) with opposite signs with respect 
to options 3) and 2); also the two most recognised correct strategies in options 5) and 6) belong to the 
the same component. However, some options reveal low factorial coefficients, so highlighting the 
presence of some critical aspects. These critical aspects are worthwhile of a further investigation, 
which we are now pursuing using qualitative methods of analysis. 

Table 2: Varimax Rotated Factor Matrix with Kaiser normalization applied to teachers' responses 

 Components 

3) 120, I have multiplied 6 balls by 20 placemats  .721  

2) 24, I multiplied 6 balls by 4 placemats, and I got 24 .715  

5) 30, The grandmother uses a ball and a half to prepare a placemat, so I 
did this = 20 x 1.5 = 30 - .567 .508 

4) 30, Since for 4 placemats we need 6 balls of yarn (so 2 more), for 20 
placemats we just need to do plus 10 - .424  

7) 24, I have multiplied 20 placemats by 1 ball and a half, and I got 24  .751 

1) 30, I calculated 20+6+4  - .490 

6) 30, To do 20 placemats I have to do 5 times 4 placemats, so I need 30 
balls  .449 

Teachers were also asked to answer two other questions about their awareness of the validity of the 
task in order to assess students' learning and the extent of the use they make of similar tasks in their 
assessment test. Diagrams in Figure 2 show the valid percent of teachers' answers to these questions. 

As those above, also these data show some unexpected correlation. We will discuss this issue in the 
next Section. 

Figure 2: Teachers' responses to the questions about the validity of the task to assess students' learning 
and the use of similar questions in their assessment test 
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Discussion 
We have already pointed out some contradictory aspects within teachers' answers to our survey. 
Figure 2 is emblematic for that. In fact, with respect to the two questions in it, we can see that, for the 
80.3% of the teachers, the crochet placemats task is (Very or Extremely) suitable for the students' 
learning assessment, while the 61.3% of the teachers declared to make use (Frequently or Regularly) 
of similar questions in their assessment test. A first possible interpretation of this discrepancy might 
be connected with the perception of a higher difficulty embedded in the assessment of argumentative 
and problem solving skills, especially using open questions: although teachers recognize that the 
crochet placemats task is suitable to assess students' learning, in their usual assessment tests they 
prefer to assign more procedural exercises. However, we believe that the discrepancy highlighted by 
our data can be also considered in the light of the mentioned teachers' difficulty in recognising the 
correctness of “unusual” solution strategies.  

We can interpret all these results basing on the concept of meta-didactical conflict, elaborated by 
Arzarello and Ferretti (2021). It exploits an analogy between the answers given by teachers in surveys 
like that illustrated here and the “incommensurable discourses” described by Sfard (2008). She shows 
how, in classroom interactions, interlocutors many times share the same words but with a different, 
incommensurable, meaning, of which they are not aware: a conflict is so generated. Something very 
similar we found when we analysed the answers to our questionnaire: here we found 
incommensurable languages. As the name we adopted suggests, this conflict consists of three 
components and is meta-didactic. We have defined it as meta-didactic because it is inherent in 
discourses about didactic processes such as assessment, students' skills and mistakes. 

In this study we have highlighted how a twofold conflict emerges in many teachers' answers, because 
they interpret: (i) the difficulties of students in the INVALSI tests in a way that is completely different 
from what unquestionably appears from the data of the survey; (ii) the rationale of the INVALSI tests 
in a contradictory way (e.g., in the way how they couple the dyads suitable/not suitable Vs most used/ 
not used in the examples with respect to what appears in the survey data).   

To summarize our findings, we can say that teachers' answers to our survey show an overspread meta-
didactic conflict. We consider worth of note, that even if teachers declare to consider the task highly 
suitable to assess students learning, they do not say to make an extensive use of this kind of task and, 
above all, in most of the cases, they are not always able to recognise all the suggested correct solution 
strategies. These observations can give a negative answer to our research question Q1. Furthermore, 
the case of the crochet placemats task is an example of how our survey resulted to be a useful tool in 
order to investigate teachers' interpretation of INVALSI data and their use in the teaching practices. 
In this sense, our result can give an answer also to research question Q2. 

Conclusion 
In the paper we have presented the first findings from a survey aimed at investigating the way primary 
school mathematics teachers read, interpret and use INVALSI Italian standardized assessment. 
According to the INVALSI theoretical framework (INVALSI, 2018), the crochet placemats task has 
been designed with the aim to evaluate if fifth grade students were able to solve a given problem of 
direct proportionality and to describe their solution strategies. At a meta level, in order to evaluate 
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the correctness of the solution to the task, teachers have been requested also to recognise the 
correctness of the strategies employed by the students. This needs a deep understanding of the 
underlying conceptual field of the multiplicative structures. Analysing teachers' responses to the 
survey, we have observed a basic meta-didactical conflict. The necessity of overcoming this conflict 
can suggest suitable designs for professional development programs for in-service teachers in order 
that they develop a correct culture of assessment and base their teaching practices on a correct 
interpretation of the data in national surveys. If we want to overcome the risk that standardised 
assessment is limited to classifying students, schools and nations, we need to develop the dialogue 
between standardised assessment and mathematics education. To fully recognise the potential and 
educational goals of standardised assessment, there is a need to develop and disseminate effective 
theoretical tools for interpreting the quantitative data and the macro phenomena emerged.   

Moreover, our data provide several elements to be further analysed, both quantitatively and 
qualitatively, to shed light to critical aspects connected with teachers' perception of the usefulness of 
standardized assessment in their professional activities, that is the main general aim of our 
interdisciplinary research project. 
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Incorrect responses to the national assessment of mathematics: 
Gaining insights into mathematical proficiency at middle school 
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In this paper, we analyse the incorrect responses of grade 8 students to mathematical items of the 
national assessment of mathematics. We frame our study starting from an item which requires to 
write the perimeter formula for an isosceles trapezoid as a function of one variable. Focus is put on 
common features of groups of incorrect responses, which we look at as routes to algebraic thinking 
in this context and which reveal partially correct responses. Studying the mutual relationships 
between the routes and the students’ proficiency levels reported via the assessment scores, we gain 
insights into the students’ mathematical proficiency and the nature of their errors. Expansion of our 
route-based investigation to other items still highlights the inclusion of partially correct answers, 
which might entail a wider range of acceptable responses and more complex marking involving 
partial credit scoring. 

Keywords: Assessment of mathematics, error, route, proficiency level, partial credit. 

Introduction 
In this paper, we first investigate the incorrect responses to a mathematical item by grade 8 students 
in a national assessment of mathematics. The item asks to write the formula for the perimeter of a 
simple figure as a function of one variable and had a very high percentage of incorrect responses. It 
has to do with the algebraic understanding of formulas, as part of the mathematical literacy required 
at the end of middle school. Specific focus on writing a formula is crucial, since formulas evoke 
problematic pairs of mathematical thinking, such as conceptual and procedural, relational and 
operational, and general and particular (e.g. Sfard, 1991; Arcavi, 1994). Each pair emphasises a 
tension between the semantic and the syntax of formulas, which usually remain bounded to applying 
static calculation instead of being conceived as versatile means to establish relationships, despite their 
role in transitioning from arithmetic to algebra and in mathematical modelling. A formula further 
requires the usage of letters as variables, of which students often reveal static images, as unknown 
values, or labels, with difficulties to conceptualise quantities in a problem context, how they can be 
related, how they vary together (Bush & Karp, 2013; Carlson et al., 2015).  

We know that, despite their role in reasoning algebraically or functionally, formulas did not receive 
extensive attention in mathematics education research, especially in relation to student literacy. In 
considering the specific item mentioned above, we aim to investigate how formulas are (or can be) 
interpreted by middle school students and the corresponding difficulties in seeing them as algebraic 
relations or functions. To address this concern, we take a sampled group of grade 8 students, who 
took part in a national standardized assessment test, and we focus on their incorrect responses to the 
item to better interpret their approaches to the solution. We further an initial analysis of these answers, 
which showed types of emerging errors, related to known misconceptions or procedural forms of 
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mathematical thinking (Pozio & Bolondi, 2019), to better see them in terms of conceptualisation 
processes about the mathematical task rather than as reasoning products.  

We then briefly expand our considerations to other items, based again on central but different aspects 
of mathematics thinking and learning at middle school in our country. We overall frame this study 
with reference to the content of the initial item (algebraic knowledge) to introduce the reader to the 
idea of route as a methodologically relevant means to study the ways students can face mathematical 
items and produce incorrect responses, and to focus on their mathematical literacy.   

Theoretical highlights 
Arcavi (1994) offers the idea of symbol sense to discuss the versatile nature of algebra and its use as 
a tool to understand, express, and communicate generalizations, to reveal structure, and to establish 
connections. Symbol sense is difficult to achieve, especially in the early grades as it involves letter 
usage and understanding of the roles and multiple meanings of variables (Bush & Karp, 2013; 
Küchemann, 1978; Philipp, 1992). Küchemann and Philipp analysed misconceptions related to letter 
usage and observed that variables can be treated as labels or objects, constants, unknowns, generalised 
numbers, varying quantities or variables, parameters, or abstract symbols. Philipp focused on the 
difficulties students have with variables as related to an inability to recognize the role of the variable, 
and Küchemann studied how certain ways of using letters were typically perceived as less demanding 
than others. Following Küchemann, students understand the meaning of the use of symbols in algebra 
only when they can work with letters as variables. Usiskin (1988) pointed out misconceptions about 
a view of variables as simple labels and reported failure to grasp variables as varying quantities rather 
than missing values. Kieran (2007) argued that the meaning of a variable varies depending on the 
context, an obstacle when learners face problems involving this notion. Discontinuities with 
arithmetic are also implicated in work with variables, which uses number from a more structural point 
of view (Stacey & MacGregor, 2000; Warren et al., 2016). According to Stacey and MacGregor, 
difficulties in formulating and solving algebra word problems have often to do with a compulsion to 
calculate, which rests with arithmetic problem solving and accounts for many misconceptions of 
algebraic thinking at the early grades. These authors identified different “routes” to a solution of 
simple problems on equations by grade 10 learners. They associated non-algebraic routes to students 
using arithmetic reasoning or trial and error; superficially algebraic routes to students writing 
equations to solve the problem as formulas describing sequences of calculations; algebraic routes to 
equation writing and solving. Capraro and Joffrion (2006) further claimed that writing equations from 
word problems is difficult for middle grade students, whether concerned with misconceptions or 
literal translation.  

These studies shed light on the fact that the inclination to misconceptions may be related to mainly 
procedural or operational approaches. Formulas, as algebraic statements that value the interplay of 
procedural and conceptual (relational), are instead a powerful means to mobilise symbol sense. 
Interestingly, the context of measurement teaching and learning shows confusion between area and 
perimeter, especially for rectangles, indicating weakness in grasping both formulas (Smith & Barrett, 
2017). Similarly, even middle school learners still struggle to distinguish area from the length of the 
region’s boundary (Chappell & Thompson, 1999).  
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In respect to this body of literature, our first aim in this paper is to gain insight into how formulas are 
conceived by middle school students and to better understand difficulties and misconceptions related 
to formulas in context. To this aim, we focus on types of errors as critical to meaning making, and 
we look at them as generative of specific approaches to the solution of a mathematical item, that is, 
of “routes” to the solution, borrowing from Stacey and MacGregor’s study. This helps us see ways 
that middle school students still struggle with seeing formulas as means to establish relationships. A 
second aim of the study is to shed light on the relevance of routes for the analysis of students’ incorrect 
responses and related mathematical literacy. In the end, attention is therefore shifted to other items of 
the national assessment in which high percentages of students performed incorrectly.  

Context and participants 
The context for this paper is the national standardized computer-based assessment of mathematics 
administered in 2018 to grade 8 Italian students at the end of the school year, as part of the evaluation 
of their middle school-based education. The assessment is administered by the National Institute for 
the Evaluation of the Education System (Istituto Nazionale per la Valutazione del Sistema di 
Istruzione e di Formazione–INVALSI, in Italian). While the participation in the national computer-
based test (CBT) is mandatory for all grade 8 students, a sample group is selected for the evaluation 
process. CBT uses a wide number of items (item bank) from which to extract clusters of items for 
creating multiple forms of the test. A peculiarity of the CBT is the development of empirically based 
proficiency levels to report student progress. Accordingly, students’ mathematics proficiency and 
item difficulty are located along a shared scale, which is divided into five levels, 1 to 5, lowest to 
highest (therefore, a level refers both to student proficiency and to item difficulty). This approach 
allows describing what students can do with mathematical tasks at different levels of difficulty.  

In this paper, we particularly draw on one mathematical item of the 2018 assessment of mathematics 
at grade 8. The item requires students to write the perimeter formula for a simple geometrical figure 
as described in the next section. Out of the 574506 students who completed the assessment test, 31300 
constituted the sampled group. Of these, 4543 students answered the item under consideration. Some 
2147 students out of our 4543 respondents gave an incorrect answer (47,2%), only 1561 students 
answered the task correctly (34,4%), and there were 835 missing answers (18,4%). Successful 
students were for the majority at a high proficiency level (4 and 5), while the 71% of students at low 
proficiency (levels 1 and 2) do not even attempt to answer.    

A mathematical item about algebraic knowledge 
The mathematical item, which is the initial point of this paper, is an open-constructed response item 
that involves an isosceles trapezoid given by a picture, as shown in Figure 1. Relational information 
for which the long base is twice the short base is presented in a textual stimulus at first (line 1). The 
picture additionally provides a number (5) and a letter (b) respectively for the leg’s length and the 
short base’s length. The task follows (line 2) asking the students to write a formula to express the 
trapezoid’s perimeter “as a function of b”. Apart from knowledge about simple calculation of the 
perimeter, the task therefore focuses on reasoning functionally on the formula, implying the use of 
the letter b to capture relationships beyond coordination among the different semiotic sets. 
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1. In the isosceles trapezoid in the figure, the long base is 
twice the short base. 

 

 

 
2. Write a formula that expresses the trapezoid’s 
perimeter p as a function of b. 

3. Type your answer to the question. 

Figure 1: A mathematical item about algebraic knowledge 

Data and method 
We are interested in investigating the incorrect responses given to the item to better understand its 
complexity and the ways in which middle school learners approach it. For the analysis, we consider 
those incorrect responses (1759) which concern the use of letters to write the requested formula, 
leaving out only numerical values or expressions, and word answers as single letters. The data we use 
are quantitative and qualitative. Quantitative data are percentages of correct, incorrect, and missing 
answers, the students’ proficiency levels and the item difficulty. Qualitative data are the written 
responses, which were accessible thanks to the expert correction that INVALSI uses for open 
constructed-response items.  

Data are finally combined to study the relationship between the routes and the proficiency levels of 
the students. Our method can be seen as a qualitative method in principle. The analysis was developed 
by first looking at the incorrect responses to search for common features, for example reference to a 
single semiotic set, like natural language or numbers, and attention to the relationships implicated in 
the item. We then grouped the answers according to the identified features into those that we interpret 
as routes and sub-routes to the solution. The same method was applied to study incorrect responses 
to other items centred on different but crucial aspects of mathematical literacy at middle school. These 
items also share with the original one high percentages of missing and incorrect answers.   

Findings 
We recognised three major approaches to the formula item, essentially: there have been students who 
have tried to write the formula making explicit reference to the relationship between the bases 
(Relational route); students who have only partially referred to the given elements to write the 
perimeter (Partial route); who, on the other hand, has written an area formula (Habitual route). We 
also found another widespread approach, that of students whose answers present letters but seem to 
escape decipherable orientations, while still relating to elements in the item (Murky route). The routes 
are captured by the examples in Tables 1 to 4 as follows (the number of responses of a certain kind 
is in parentheses at the top). 
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Table 1: Examples of answers in the Relational route and its five sub-groups (228) 

The students whose responses belong to the Relational route (Table 1) are essentially capable to orient 
themselves to the information presented across the different semiotic sets and the various degrees of 
relationship in the item. Beyond writing a relationship between the bases, in fact, these students know 
that they must find the perimeter of an isosceles trapezoid and consider all its elements, gaining 
information from the text and the picture. The route is made of 5 sub-routes (R1 to R5, Table 1).  

Table 2: Examples of answers in the Partial route and its four sub-groups (676) 

P1 (229) P2 (276) P3 (145) P4 (26) 

Using letter B for  
the long base 

Multiplying b by  
2 instead of 3 

Seeing the perimeter  
as sum of any 4 sides 

Writing the procedure  
in words 

B+b+5+5 (5+5)+b*2 B+b+l+l Long base + short base + 2*5 

The students who undertake the Partial route, which includes 4 sub-routes (P1 to P4, Table 2), are 
capable to understand the request of a formula even if they do not refer it to the entire context, which 
demands connection with various degrees of relationship. The responses in this route essentially share 
particular focus on writing a formula for the isosceles trapezoid’s perimeter, while forgetting some 
of the elements in the task, like the relationship between the bases (P1) and the specific length of the 
leg (P3). P1 and P3 exemplify how letters B and l respectively are used as labels (Usiskin, 1988).  

Table 3: Examples of answers in the Habitual route and its five sub-groups (293) 

H1 (112) H2 (35) H3 (31) H4 (28) H5 (87) 

Using letter  
B for the  
long base 

Taking the  
relationship  

between the bases 

Writing the  
area of a  
triangle 

Using words 
to write an  

area formula 

Using letter  
h in some  

way 

(b+B)xh/2 [b+(b*2)]*h/2 b*h/2 
b plus B  

times 5 all divided 
by 2 

[(B+b)*h] 

R1 (62) R2 (32) R3 (4) R4 (66) R5 (64) 

Using a letter in 
place of number 5 

Using only numbers 
for the formula 

Using mainly words 
for the formula 

Reversing  
the relationship 

Using wrong typing 
for operation signs 

bx3+2l [6+(6*2)]+(5*2) 
Short base plus 

short base times two 
plus ten 

B+1/2B+ (5*2) 5*2+b+b*b 
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The Habitual route contains the 5 sub-routes H1 to H5 (Table 3) and comprises answers that concern 
the writing of an area formula rather than a perimeter formula (the known confusion introduced 
above) and, therefore, are far from solving the item correctly. We can realise this by observing the 
use of letter h, which habitually labels the height of a geometric figure, multiplied–in most cases–by 
a base or by the sum of two bases. The students in this route seem to associate the trapezoid and the 
formula with the task of finding the area of the trapezoid as students learn to measure the area of 
specific figures, not the perimeter, by means of rote procedures. While some consider the relationship 
between the bases (H2), many show a vague awareness of an adequate area formula (H3, H5). 

Table 4: Examples of answers in the Murky route and its 3 sub-groups (562) 

M1 (202) M2 (180) M3 (180) 

Taking essentially    
b and 5 

Taking essentially    
b and 2 

Taking b or  
other letters 

5*2+2*b+B-b b*2+b*2+b+b l+l=b+B 

The Murky route, with its 3 sub-groups (M1 to M3, Table 4), basically shows attempts to examine 
information for producing an answer that still uses letters, revealing some reasoning albeit quite 
rough. Most of the answers are relatively oriented to partial elements of the item, in many cases they 
exclude the legs’ length or the relationship between the bases. We often assumed that these students 
have little if any clear idea of which elements to use for finding the perimeter of the trapezoid. It may 
also be that the request of writing the perimeter in function of b had implied specific reasoning on 
how to use letter b, and other letters, in a formula, or particular focus on one or the other base. 

Conclusive discussion 
For the sake of space, we cannot elaborate on the routes further. We shift attention to the relationship 
between the routes and the students’ proficiency levels, turning to graphical representations of the 
distribution of the routes across the five levels and of the levels across the four routes. Figure 2 shows 
how percentages of students in each route are divided into the five proficiency levels (the first graph). 

 
Figure 2: Distribution of routes across proficiency levels 

A general trend emerges in the routes. In particular, the 29% of students at level 1 of proficiency and 
the 37% of students at level 2 belong to the Murky route (M), while students with medium proficiency 
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(level 3) are present in both the Relational (R) and Partial (P) routes, with a percentage of about the 
35% (shortly, the 70% of students who show medium proficiency are in the first two routes). Turning 
to high proficiency, we see that level 4 and 5 students are present at most for the 27% and the 15% 
respectively in R. We essentially see an increase of percentages of students with low proficiency as 
we pass from routes R to M, and a decrease for students at medium-high proficiency level. This trend 
is consistent with the assessment model, for which the closer an answer is to a correct one, or the 
more it includes steps toward the solution (partially correct answer), like reference to the relationship 
between the bases, the higher is the probability that the answer is given by a high proficiency student.  

That less than 10% of students in P are at level 1 or 5, while the rest is at levels 2 to 4, also means 
that middle level students are basically capable to write a generic formula for the perimeter of a 
quadrilateral but may have troubles to write a more complex relationship between the given data. 
Most students in H are within the ranges of low proficiency, showing confusion between perimeter 
and area and, possibly, weakness in grasping both formulas, as outlined by Smith and Barrett (2017). 
Briefly speaking, the routes inform about the relative distance from solving the item correctly. The 
routes contain partially correct answers (especially R), which often satisfy the question intent and 
therefore might be considered for grading in the assessment. An additional aspect is the presence of 
all levels in all the routes. We can conclude that students make errors which reveal much about their 
algebraic proficiency in context, especially regarding the interpretation of formulas and the use of 
letters, which are still often conceived respectively as mere procedures or rules and labels or names.  

After this first analysis, we moved to use our route-based approach to look at how other items of the 
national assessment in grade 8 were incorrectly answered and gain more insights into mathematical 
proficiency at middle school. Proportional reasoning and the relationship between simple geometric 
figures’ area and perimeter are the core mathematical contents involved in these items. The incorrect 
responses are 1154 out of 2231 for the first item, and 6504 out of 8997 for the second item (300 and 
777 missing answers respectively). Examined through routes, the answers highlight a multiplicity of 
approaches to single solutions, the impossibility of unambiguous interpretations in certain cases, and 
the inclusion of responses that are partially correct while satisfying the question intent. Again, the 
routes inform us about students’ kinds of errors and misconceptions (and their mathematics literacy), 
which deserve specific attention from the educational point of view. The routes also help us reason 
about the importance of the question intent and the need for a wider range of acceptable responses 
and more complex marking by partial credit scoring, in line with the PISA and TIMSS assessment.  

A general, conclusive observation relates to the fact that the sample we analyse is representative of 
the entire population of middle school students in grade 8 in our country. These students come from 
different classes of different schools spread across the national territory. Therefore, studying their 
incorrect answers is meaningful to the extent to which it allows us to better understand ways that 
specific aspects of mathematics thinking and learning are practiced at middle school in our country 
and conceptions that learners develop from them. 

References 
Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning 

of Mathematics, 14(3), 24–35. 

Proceedings of CERME12 3799



 

 

Bush, S. B., & Karp, K. S. (2013). Prerequisite algebra skills and associated misconceptions of middle 
grade students: A review. The Journal of Mathematical Behavior, 32(3), 613–632. 
http://dx.doi.org/10.1016/j.jmathb.2013.07.002  

Capraro, M. M., & Joffrion, H. (2006). Algebraic equations: Can middle-school students 
meaningfully translate from words to mathematical symbols? Reading Psychology, 27(2-3), 147–
164. https://doi.org/10.1080/02702710600642467 

Carlson, M. P., Madison, B., & West, R. D. (2015). A study of students’ readiness to learn calculus. 
International Journal of Research in Undergraduate Mathematics Education, 1(2), 209–233. 
https://doi.org/10.1007/s40753-015-0013-y  

Chappell, M. F., & Thompson, D. R. (1999). Perimeter or area? Which measure is it? Mathematics 
Teaching in the Middle School, 5(1), 20–23. https://doi.org/10.5951/MTMS.5.1.0020 

Kieran, C. (2007). Learning and teaching of algebra at the middle school through college levels: 
Building meaning for symbols and their manipulation. In F. K. Lister (Ed.), Second handbook of 
research on mathematics teaching and learning (pp. 707–762). Information Age Publishing.  

Küchemann, D. (1978). Children’s understanding of numerical variables. Mathematics in School, 
7(4), 23–26. 

Philipp, R. A. (1992). The many uses of algebraic variables. Mathematics Teacher, 85(7), 557–561. 

Pozio S., & Bolondi, G. (2019). Difficulties in formulating a geometric situation algebraically: Hints 
from a large-scale assessment. In M. Graven, H. Venkat, A. A. Essien, & P. Vale (Eds.), Proc. of 
the 43rd conf. of the int. group for the psychology of mathematics education (Vol. 3, pp. 225–232). 
PME. 

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and 
objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36. 
https://doi.org/10.1007/BF00302715 

Smith, J. P., & Barrett, J. E. (2017). Learning and teaching measurement: Coordinating quantity and 
number. In Cai, J. (Ed.), Compendium for research in mathematics education (pp. 355–385). 
National Council of Teachers of Mathematics.  

Stacey, K., & MacGregor, M. (2000). Learning the algebraic method of solving problems. The 
Journal of Mathematical Behavior, 18(2), 149–167.  
https://doi.org/10.1016/S0732-3123(99)00026-7 

Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. In A. F. Coxford & A. P. 
Schulte (Eds.), The ideas of algebra, K-12 (pp. 8–19). National Council of Teachers of 
Mathematics.  

Warren, E., Trigueros, M., & Ursini, S. (2016). Research on the learning and teaching of algebra. In 
Á. Gutièrrez, G. C. Leder, & P. Boero (Eds.), The second handbook of research on the psychology 
of mathematics education (pp. 73–108). Sense Publisher. 

Proceedings of CERME12 3800



Proceedings of CERME12 3801



Proceedings of CERME12 3802



 

 

Real tasks in Italian mathematics standardized assessment 
Chiara Giberti1 and Simone Passarella2 

1University of Bergamo, Department of Human and Social Science, Bergamo, Italy; 
chiara.giberti@unibg.it 

2 University of Padova, Department of Mathematics, Padova, Italy; simone.passarella@unipd.it 

In this research we propose a criterion to classify real mathematics tasks in a standardized 
assessment. Specifically, we used this criterion to categorize the tasks of six, grade 5, standardized 
tests administered in Italian schools from 2009 to 2014 and we analyzed the psychometric features 
of these items. Results show a consistent presence of real tasks in Italian standardized assessment, 
indicating that one of the competences that these tests are intended to assess is the ability to develop 
and apply mathematical thinking to solve problems from everyday situations, as desired by the 
European Council and PISA.  Moreover, the items classified as real are not necessarily difficult for 
students, but they are discriminative. The analysis at an item level of this kind of tasks could provide 
further information about how students face real tasks in a standardized assessment 

Keywords: Standardized assessment, rasch model, real task, mathematical competence. 

Introduction 
In recent years, the growing attention given to national and international standardized assessment is 
promoting new reflections on how these tests are constructed and which information emerge from 
their results (Giberti & Maffia, 2020). The theoretical framework of each survey is fundamental to 
understand the aim following which the tasks are constructed and the mathematics that the test is 
going to assess. The most famous and discussed international survey is PISA, the Programme for 
International Student Assessment, promoted by the Organization for Economic Co-operation and 
Development (OECD). In PISA theoretical framework, Mathematical literacy is defined as “an 
individual’s capacity to reason mathematically and to formulate, employ, and interpret mathematics 
to solve problems in a variety of real-world contexts” (OECD, 2019); then all PISA mathematics 
problems are set in a context, which can be personal, occupational, societal, or scientific. 

This contribution reports first results of an ongoing research project whose overall aim consists in 
studying how tests of Italian standardized assessment (administered by the Italian National Institute 
for the Evaluation of Educational Systems – INVALSI - every year at grade 2, 5, 8, 10 and 13) are 
built and what mathematical competencies and types of reasoning are aimed to be assessed. 
Specifically, the aim of this paper is to analyze INVALSI tests, proposing a criterion based on Palm’s 
framework (Palm, 2006) to evaluate the presence and quality of real tasks. Furthermore, the 
psychometrical features of those tasks previously identified as real will be analyzed. 

Theoretical Framework 
In the Italian context, the National Indications for the First Cycle of Education (MIUR, 2012), 
emphasize how mathematical knowledge should offer skills for perceiving, interpreting, and linking 
artifacts and daily-life events. Students are required to analyze situations and to translate them into 
mathematical terms and choose the actions to be performed to produce a solution to the problem. 
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These indications are reflected also in the European context. Indeed, the European Council 
(Recommendations of the European Parliament for lifelong learning (2018/C189/01)) recently 
defined as mathematical competence the ability to develop and apply mathematical thinking and the 
ability to use different representations (formulas, constructs, models, …) to solve problems starting 
from everyday situations. Despite the importance of including real-life experiences in mathematics 
classrooms, there is a strong discontinuity between in- and out-of- school mathematical experiences 
(Passarella, 2021). One of the possible causes of this fracture is the stereotyped nature of the problems 
proposed by textbooks and teachers, which, rather than serving as an interface between mathematics 
and reality, promote in students an exclusion of realistic considerations (Verschaffel et al., 2020). 
Instead, real and less stereotyped problems must be inserted in the school practice, in order to create 
a bridge between mathematics classroom activities and everyday-life experiences (Passarella, 2021; 
NCTM, 2000). Given the importance of real problems for mathematics classrooms, the following 
question emerges: when a mathematical task might be defined as real? Several studies delt with the 
concordance between mathematical school tasks and the corresponding out-of-school situations: 
Wiggings (1993) with the introduction of the term authenticity; Niss (1992) and the mathematical 
literacy framework of the OECD’s Program for Student Assessment, PISA (OECD, 1999); Realistic 
Mathematics Education, that considers realistic and rich contexts as starting points for 
mathematization processes (Van den Heuvel-Panhuizen & Drijvers, 2014). In this contribution, we 
will consider the framework proposed by Palm (2006), that was developed to depict those aspects of 
real-life situations that should be considered important in their simulations (Figure 1). 

 
Figure 1: Palm’s framework for simulations of real-life situations 

A detailed description of these aspects can be found in Palm (2006). In Table 1 we describe those 
aspects that will be considered in the rest of the work, reporting for each of them a key question, in 
order to start reasoning on the concordance between mathematical school tasks and corresponding 
situations in real-life beyond the mathematics classroom. The framework proposed by Palm can 
enhance discussions amongst teachers and researchers on the characteristics of tasks that simulate 
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real-world situations, and for the design and analysis of real tasks for mathematics classroom 
activities (Palm, 2006). Starting from Palm’s framework, in this work we are proposing a criterion to 
evaluate the presence of real tasks in the Italian national tests in mathematics. Furthermore, using this 
criterion, we identify real task and analyze their psychometrical features to understand the behavior 
of the students facing these items. 

Table 1: Key questions for some aspects from Palm’s framework 

Event  Could the event described in the school task take place in real-life?  

Question Does the questions in the school task might be posed in a corresponding real-life 
event? 

Existence Do the information available in the school task exist in a corresponding real-life 
event? 

Realism Are the values given in the school task close to values in a corresponding real-life 
event? 

Specificity Can specifications of the school task context be compared to a reasonably extent to 
the corresponding out-of-school situation? 

Presentation 
Mode 

Is the problem communicated orally or in a written form? Are the information 
presented in diagrams, tables, graphs, …? 

Language Does the language used in the school task not negatively affect the possibilities for 
students to use the same mathematics as they would have used in a corresponding 

real-life event? 

Research Questions 
The first aim of this contribution is to evaluate the presence of real tasks in the Italian national tests 
in mathematics (INVALSI tests), in order to investigate if INVALSI tests are intended to assess 
students’ ability to develop and apply mathematical thinking to solve problems starting from 
everyday situations, as desired by the European Council and PISA. Consequently, our first research 
question is: 

RQ1: Are there real tasks in the standardized INVALSI tests? 

If the answer to the first research question is yes, considering that previous studies have highlighted 
that there is a strong discontinuity between in- and out-of- school mathematical experiences 
(Passarella, 2021), we would investigate the psychometrical features of the tasks classifies as real, in 
order to start understanding how students face these tasks.  

Accordingly, our second research question is: 

RQ2: If yes, which are the psychometrical features of these tasks? Are there some recurrent features 
that can be interpreted as a specific behavior of students facing a task of this type? 

Proceedings of CERME12 3805



 

 

In this paper we will answer to this second research question considering the general psychometrical 
features provided by the Rasch Model, considering the whole set of items and providing an example 
of analysis at an item level. 

Data and Methods 
INVALSI tests are national standardized assessment administered every year in different school 
grades from primary to upper secondary school. In all grades INVALSI tests investigate students’ 
competencies in mathematics and Italian language but, in upper grades, also an English test was 
included in the survey. In this work we decided to focus on grade 5 mathematics tests and compare 
the results in different years: from 2009 to 2014. INVALSI test are administered, for each grade, to 
the entire student’s population. In this research our analysis is based on the probabilistic national 
sample drown from the entire population which is also considered for all the statistical analysis of the 
INVALSI Institute. For each test the sample includes approximately 30 000 students1  and sample 
data are completely void of the effect of cheating because the test administration is conducted by an 
INVALSI inspector who guarantees the correctness and fairness of the process. All mathematics tests 
include different items in terms of typology (Multiple choice, Open-ended, Justification Open-ended, 
True/False), and mathematical content categories (Numbers, Data and Probability, Relationships and 
Functions, Space and Shape). 

To answer to our first research question, we propose a criterion (Figure 2), based on Palm’s 
framework, to classify mathematical tasks as to be real or not. In this direction, to evaluate the 
presence of real tasks in the INVALSI tests, we started categorizing each task of every INVALSI test 
in terms of its feasibility. Feasibility, in accordance with Palm (2006) is made by two aspects: event 
and question. Event refers to the possibility that the event described in the school task can take, or 
not, place in real-life. Question refers to the possibility that the posed question might be posed, or 
not, in a corresponding real-life event. Those tasks that positively reflected both the aspects of event 
and question had been categorized as real. Then, for those real tasks, their quality was evaluated. 
Quality refers to the degree by which a task is similar to a corresponding real-life event. Specifically, 
quality is defined considering five aspects from Palm’s framework, namely existence, realism, 
specificity, presentation, language. For each aspect a score was given: 0 if that aspect had no 
correspondence in a real-life event; 1 if that aspect had a partial correspondence in a real-life event; 
2 if that aspect had complete correspondence in a real-life event. In conclusion, to every real task was 
associated its level of quality by calculating the mean among the scoring (0, 1 or 2) given to its 
indicators (existence, realism, specificity, presentation, language).  

To answer to our second research question, we analyzed data from each test using the Rasch model 
(Rasch, 1960) which is the one adopted also by INVALSI statistical team. The Rasch model is a 
simple logistic model belonging to Item Response Theory and it provides a joint estimate of the 
difficulty of the items of a test and of the ability of each student by placing them on the same scale 
from −4 to +4. Specifically, in this study we considered a parameter measuring the difficulty for each 

 
1 More precisely the sample was composed by 43586 students in 2009, 35567 in 2010, 31564 in 2011, 30870 in 2012, 
24774 in 2013 and 25349 in 2014. 
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item (Delta) and a parameter measuring the fit of the item (Weighted). Other information could be 
identified observing specific graphs called Distractor Plots, output of the Rasch Model. The Distractor 
plot of an item allows the comparison between the Item Characteristic Curve (ICC, which expresses 
the probability of responding correctly to a specific item depending on the difficulty of the item itself 
and the ability of the respondent) and the empirical trend of each possible answer, as function of 
students’ ability. Moreover, the software used to implement the Rasch Model (ConQuest) gives a 
parameter, belonging to the Classical Test Theory, which highlights how much each item 
discriminates between students with high ability levels and students with lower ones. All the items 
classified as real were then classified on the bases of difficulty (Delta), fit of the item with the Rasch 
model (Weighted), and discrimination. This analysis from a psychometrical perspective is performed 
at an item level: a single mathematical task might be composed by 1 or more items, and each item is 
identified by a request. Furthermore, we also considered the Distractor plot of each of these items and 
started investigating possible features such as under-discrimination/over-discrimination, particular 
distractor trends (for example humped performance trend - Ferretti, Lemmo & Giberti, 2018) but also 
guessing effect2 (correct answers given regardless of being certain about its trueness). 

 
Figure 2: Classification of mathematical tasks 

Results 
In Table 2 results from the classification of tasks as real and in terms of their quality are reported. 
The distributions of real tasks vary between 24% and 45%. The quality of the real tasks was relatively 
high in every test. These results give some first suggestions concerning the theoretical framework on 
which the test is constructed and the type of mathematics that the test is going to assess. Indeed, the 
presence of a considerable number of real tasks, all of them of medium-high quality, shows how 
INVALSI tests stressed the importance to give students opportunities to face with real-life problems, 
in accordance with the definition of mathematical competence and the Italian National Guidelines. 

 
2 Indeed if we consider multiple choice tasks with 4 possible answers the probability for a student to answer correctly 
randomly is 25% but we have information regarding the intensity of this phenomenon considering the intersection 
between the Rasch model and the y axes of the distractor plot. 
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Table 2: Results from the classification of real tasks 

Year Distribution Total average of real tasks quality SD 

2008-09 24% (7/29) 1.4 0.3 

2009-10 28% (9/32) 1.5 0.5 

2010-11 33% (10/30) 1.7 0.3 

2011-12 33% (11/33) 1.6 0.4 

2012-13 31% (11/35) 1.7 0.3 

2013-14 45% (13/29) 1.5 0.5 

Then we classified on the bases of their psychometric features the 61 tasks (corresponding to 96 items 
in total) identified as real tasks. Considering items’ difficulty (Delta parameter) we found that realistic 
tasks seem not to be a source of difficulty for students: the 35% of the items are easy with a delta 
smaller than -1; the 33% of the items shows a medium-low level of difficulty (-1<delta<0); the 27% 
of the items shows a medium-high level of difficulty (0<delta<1); and finally, we found only 4 
difficult items (delta >1). The difficulty average is -0.61 highlighting that generally students are not 
particularly in trouble with real tasks. Furthermore, the item fit is considered good (values ranging 
from 0.8 and 1.2) for all the items except one, and the vast majority (84%) of the items identified 
have an optimal fit with values ranging between 0.9 and 1.1. Therefore, we can state that in the items 
identified the real context does not create a misfit with the model. The items identified as real are 
almost all discriminative items: the 81% have a good discrimination index (>0.3) and more than the 
50% of the items have an optimal capacity to discriminate between students with lower ability levels 
and students with higher ones.  

The items identified cover all item typology and all content domains but almost half of them belongs 
to the domain Data and Probability and only 5 items belong to the domain Space and Shapes, even if 
many real situations could become the stimulus for geometrical real problems. 

In this research we started also to consider distractor plots of the identified real tasks, to detect 
possible recurring students’ behavior facing a real task as function of their mathematical ability. This 
analysis will be the focus of further studies, but we report here an example of item analysis to explain 
its potentialities to investigate this issue. The task reported in table 3 was administered in the 
INVALSI grade 5 test in 2010. Accordingly to our proposed criterion, the task was classified as real 
with a quality of 1.2 (existence=1, realism=2, specificity=1, presentation=1, language=1). From a 
psychometrical perspective the item is medium-difficult with a difficulty index equal to 0.91 and the 
32% of correct answers. The weighted index (0.9) highlights a good fit of the item. However, the 
distractor plot shows a little underdiscrimination of the item: the model overestimates the percentage 
of correct answers for students with medium-low ability and it underestimates it for higher ones. This 
characteristic might be linked to the influence of the real context that could give more difficulties for 
students of medium low ability levels due to the fact that they are not used, in the Italian school 
routine, to face numerous real problems. Moreover, also the trend of the incorrect answers is 
particularly interesting: distractor A decreases with students ability, this option might be chosen by 
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students that find the correct answer “No” but they don’t link this answer to the correct argumentation; 
distractor B is constant for almost all ability levels; finally distractor D has an humped performance 
trend and is more attractive for students with medium-low ability levels. The guessing effect 
(probability for students of lower ability levels of choosing the correct answer randomly) is low as 
highlighted by the distractor plot. 

Table 3: Example of a real INVALSI task (Task D14 grade 5 INVALSI test administered in 2010) 

Task Statistical data 

Sandro has 20 dm of string to close four packages he 

needs to ship. For each package he needs 60 cm of 

string. Will he be able to close the four packages?  

A. No, because 60 is greater than 20 

B. Yes, because 20 dm are more than 6 dm 

C.  No, because 240 cm are more than 20 dm 

D. Yes, because decimeters are larger than 

centimeters 

Delta = 0.91     Weighted = 0.90     Discrimination = 0.51 

Our classification 

Real task 
Quality: 1.2 

Conclusions 
In this paper we reported the first results of an ongoing research project whose overall aim consists 
in studying what mathematical competencies and types of reasoning are intended to be assessed in 
the Italian standardized tests. Specifically, we focused on the presence of real tasks in INVALSI tests 
and on how students face with this kind of tasks. In order to find answers to our research questions, 
we firstly proposed a criterion, based on Palm’s framework (Palm, 2006) to classify real tasks. Results 
show that there is a consistent presence of real tasks in INVALSI tests. This fact suggests that one of 
the competences that these tests are intended to assess is the ability to develop and apply mathematical 
thinking to solve problems from everyday situations, as desired by the European Council and PISA. 
Concerning the psychometrical features, from a preliminary analysis of real task at an item level we 
can observe that, despite the limited use of real problems in didactical practices in Italy (Passarella, 
2021), students do not reveal difficulties in these items, and most of them have a low or medium low 
difficulty level (Delta). This lack of work on real problems does not also influence the fit of these 
items except in a few cases. Indeed, real items are coherent with the latent trait measured by the whole 
test. An interesting outcome is that most of the real tasks are discriminative: students with high ability 
pass brilliantly these tasks, while students with low ability struggle more. Finally, we observe that in 
INVALSI test there is only a limited number of real tasks in geometry (Space and Shape), while this 
content domain could be one of the main interesting to promote this kind of tasks.  

Future research is needed, particularly on: extending the analysis to tests up to 2019-20 and to the 
other grades of schooling, since in this study the focus was only on the fifth-grade; deepening the 
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analysis of students’ behaviors in facing real problems with some interviews to students and focus 
groups with teachers; investigating which other mathematical competencies are assessed in INVALSI 
tests; conducting a comparison with the PISA results in order to uncover and discuss differences or 
similarities between the two standardized tests. 
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Assessments are increasingly being designed on a digital artefact (computer or tablet), while in 
France the equipment rate in primary schools is still low. Some computer-based assessment tasks use 
specific software functionalities (the dynamic aspect of a geometric figure for example), while others 
"migrate" from paper and pencil (PP) to digital artefact without using specific functionalities of 
dedicated software. In this research, we are interested in the validity of assessment tasks designed on 
tablet (especially when students do not usually use a tablet in the classroom and/or in assessment 
situations) and in the effects of migration (from PP to tablet) on student performance and procedures 
from one medium to another. 

Keywords: Assessment, validity, comparative analysis, tablet-based assessment. 

Introduction  
Most standardized large-scale assessments like PISA or TIMSS have ever migrated (or are going to 
migrate) from paper-pencil (PP) to digital artefact (DA), like computer or tablet. Several reasons 
could be quoted for justifying such evolution and designing digital tests like increasing efficiency and 
consequently reducing costs or giving instant feedbacks, especially in the case of formative 
assessments (Threlfall, 2007). In France, since 2019, at the end of elementary school (Grade 5), a 
representative sample of students takes with tablets (and not with paper-pencil, as they did before), a 
national test, which aims to assess mathematics skills and knowledge and to observe their evolution 
at six-year intervals.  

All French elementary schools have been equipped with computers and Internet access, but students 
haven’t regular access to these digital environments: on average, there are 7.8 students per computer 
at elementary school (no data is produced about tablets) (Ministère de l’Education Nationale, 2018). 
These observations made us wonder about the validity of computer or tablet-based tests: if students 
are not used to doing mathematics with such artefacts, we can ask if the test assess really what it has 
to assess (mathematic skills and knowledge) or does it assess other competencies, like digital skills.  
More specially, is the test itself valid (especially when students do not usually use a tablet in the 
classroom and/or in assessment situations)? is longitudinal comparison performance (in the case of 
large-scale assessments) relevant? are mathematical processes to solve tasks the same when a similar 
problem is on PP or DA?     

Previous research and theoretical background 
In their review of assessment in mathematics education, Nortvedt and Buchholtz (2018) point to the 
development of digital assessments with parallel advances in psychometric models and the 
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development of adaptive assessments.  At the same time, they also highlight the limitations of such 
assessments, particularly because they often only assess knowledge on simple tasks (and do not allow 
for the assessment of students' problem-solving skills). The authors conclude that "technology can 
also limit what is assessed" (p. 560). In general, the design of digital assessments raises validity issues, 
and we will explain how we address them. We do not review in this text all the research about digital 
assessments, but we limit our subject to the comparison between paper-pencil and digital-based 
assessments. 

Comparative research between paper-pencil-based assessments and digital ones 

Numerous studies, especially the Anglo-Saxon ones, aim to compare success scores between PP and 
DA were carried out at different school levels and on various disciplines. First, we can observe that 
most of these studies are based on data analysis without considering students’ procedures (see, for 
example, Hamhuis & al., 2020). Second, their results are divergent, and they do not allow us to 
conclude, on the fact that a medium (DA or PP) would promote or not student success (Lemmo & 
Mariotti, 2017). For example, in France, from the results of two large-scale assessments, Bessoneau, 
Arzoumanian, and Pastor (2015) identified two variables that particularly influence the success in a 
mathematical item depending on the medium used: the structure of the item (length of texts, number 
of documents, etc.) and the type of tasks proposed. In particular, the items presenting a syntactic and 
linguistic complexity relative to the statement are better succeeded on PP whereas, in the case of an 
item requesting a direct taking of information (in a table or on a graph), success is better on a DA. In 
addition, problems requiring several steps of resolution are more successful on PP. 

About such performance comparisons, we share Lemmo and Mariotti’s (2017) point of view: “task 
comparability cannot be measured only in terms of students’ outcomes, but it is also established by 
the comparison between the solving strategies that they use” (p. 3541). 

About validity and legitimacy, Threlfall et al. (2007) explore in their research several aspects of  
”what may be lost and gained by undertaking mathematics assessment on the computer” (p. 336) and 
their conclusion, based on student’s performance is : 

It is not only that translating paper and pencil items into the computer format sometimes 
undermines their validity as assessments, it is also that some paper and pencil items are less valid 
as assessments than their computer equivalents would be. (p. 335) 

Let us now explain how we study the validity of a test from a didactic point of view while considering 
the modality of assessing (PP or DA). 

Validity and instrumental genesis 

For studying the validity of assessment tasks, we have developed in previous research a methodology 
with two complementary approaches (Grapin, 2016): one epistemological and didactical and another 
psycho-didactical. The first approach provides us with evidence of validity based on the a priori 
analysis: for each task, we list, among other things, the different solving procedures, the possible 
errors, and their origins, but also the complexity of the tasks (Sayac & Grapin, 2015). This analysis 
allows us to study whether the solving of the task mobilizes the mathematical knowledge that we 
want it to assess. The psycho-didactical approach is focused on student activity, i.e., that they develop 
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when carrying out the task; in our case, this includes their mathematical activity (their solving 
strategies), but it takes also into account the process of instrumental genesis (Rabardel, 1995). 
Moreover, “instrumental genesis is not the same for all students; it depends on their relationships with 
both mathematics and computer technologies” (Defouad 2000, as cited in Trouche (2005)). We 
hypothesize that students who use these artefacts routinely in the private sphere will have easier use 
of them in the school sphere; we also assume that students who have been able to use these artefacts 
in classroom situations will have a different instrumental genesis than others. So, to study the psycho-
didactic validity of assessment tasks with a DA, it is therefore essential to determine students’ use of 
the artefact (whether at school or home) and to observe how they solve the task with this artefact.  

For this comparative research, we also have to determine how and when two tasks could be considered 
equivalent. Riplay (2009) distinguishes migratory and transformative approaches to switch from PP 
assessment media to a digital one. The migratory approach consists of the transition of PP task to DA 
without any modification; in the transformative approach, the original PP-based tests are transformed 
with the integration of specific functionalities of the artefact. The migration of tasks also requires 
considering the functionalities of the software or the application used for the test.  

Research goals 

We have chosen to focus our research on the comparison between PP and tablet-based assessment 
because one of the national large-scale assessments in France at the end of primary school migrated 
from PP to tablet in 2019. This raised questions about the comparability of results from one year to 
the next, but above all for us, several questions about validity. In this paper, we focus on two aspects 
of our research: the way we designed the test and analyzed its validity (1) and the analysis of the first 
results considered instrumental genesis (2). 

(1) We have designed the test to compare the students’ strategies in the case of migratory and 
transformative approaches: even if only some knowledge related to general tablet functionalities 
(virtual keyboard, drag and drop, virtual eraser in the draft) are needed to write or to provide the 
answer, we have considered that there was a change to the task (we will give examples in the 
following sessions). Under these conditions, is, a priori, the student's mathematical activity the same 
when solving a problem on a tablet or with PP? what are the differences in terms of mathematical 
strategies? And finally, are the same knowledge assessed? 

(2) Since French schools are still poorly equipped digitally, we assume that students who regularly 
use tablets at home may have more advanced instrumental knowledge than others; since the time 
required must be short in an assessment’s context, it is therefore possible that tests on a DA generate 
academic inequalities linked to the artefact itself. Is that so? How can the use (regular or not) of tablets 
impact students' scores and procedures? What are the implications for task validity?  

The first question will be principally dealt with in the following part (methodology and design of the 
tests), and the second, in the part dedicated to results.   

Methodology and design of the tests 
To study more specifically the students’ activity in a tablet assessment situation and to be able to 
compare it with that on PP, we conducted in June 2021 a study at the end of Grade 5 with 80 French 
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pupils from priority education schools and from “ordinary” schools (choosing two types of schools 
will enable us to observe whether inequalities are generated by the artefact itself).  

Administration of tests and survey 

All the students took the same two tests (PP and tablet). Each test consists of solving 23 tasks whose 
required knowledge of whole numbers and decimals, arithmetic, and problem-solving. The paper-
pencil-based test took place during a regular classroom math session. The tablet-based test took place 
after PP one with the two researchers in the classroom. We observed how students were using the 
tablet and the difficulties they might encounter, depending on the tablet’s functionalities involved in 
certain items. During this observation phase, we focus on the student's instrumental genesis and study 
whether it interferes with the student's mathematical activity. We don't ask the students individually 
about their procedures because the a priori analysis of the tasks enables us to infer their strategies 
from the proposed answers. 

Moreover, we ask students if they have a tablet at home and how often they use it (at home and in the 
classroom). The answers to this short questionnaire will also make it possible to judge the validity of 
the tasks and to ensure that they do not generate inequalities between students (especially those who 
have a tablet at home and those who do not). 

Design of both tests  

The choice of the didactic variables’ values made it possible to design mathematical equivalent tasks; 
we describe, in this paragraph, with examples, how we have designed such tasks in migratory and 
transformative approaches.   

First, we have chosen, as equivalent tasks in a migratory approach, multiple-choice questions, as the 
example below (Table 1). 

PP task 

What is the result of 45,83 × 10 ? Tick the 
correct answer. 

□ 450,830    

□ 450,83    

□ 45,830    

□ 458,3 

Tablet task 

 

Table 1: Example of a QCM in PP and tablet environments  

We can observe, in this first example, that the two tasks (PP and tablet) involve the same mathematical 
knowledge with the same level of complexity; the wrong answers correspond to the same type of 
errors both on the PP task (PPT) and on the tablet task (TT).   

When the transition of an item from the PP to tablet involved the use of the virtual keyboard or drag 
and drop, for example, we considered these modifications to be in a transformative approach. 
Nevertheless, we were careful to design mathematically similar tasks by choosing appropriate values 
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for didactic variables, but let us explain, using the following example, how this type of transition can 
impact student answers. For assessing knowledge about writing numbers and units, we design the 
two following tasks (Table 2):  

PP task 

Connect each number on the left 
with its equal number on the right. 

 

Tablet task 

Move the left or right label so that the number on the left is 
equal to the number on the right 

 
 

Table 2: Example of a task using tablet functionalities 

In this example, in the case of the TT, students can forget numbers or make mistakes but he or they 
cannot rely on one label on the right with two others on the left (unlike with the PPT). The treatment 
of the answers, especially in this case, is also simplified with the tablet. 

We also want to study how students solve arithmetic problems, especially to observe how they use a 
draft on a tablet: on PP, they can easily make a diagram, write the operation, and use paper as a draft. 
With the tablet, we had provided a draft zone, but students need to understand pictograms (Fig. 1) for 
being able to draw, erase, organize their calculations. 

 
Figure 1: Pictograms for using draft zone 

Two types of problems were designed: a division problem (text of problem 1 - PPT: “9 students of 6 
years old must share 1,557 masks. How many masks will each student have?”) and a number problem 
(text of problem 2 - PPT: “Six 4-year-old students must share 6,000 sheets of paper. How many sheets 
of paper will each student have?”). Students cannot use a calculator either in PP or with the tablet. 
For solving problem 1, they have to use a draft for calculating 1557:9 but for problem 2 they can 
mentally answer. With problem 1, we’d like to study how students use the draft of the tablet, and with 
problem 2, we’d like particularly to observe whether the tablet promotes mental calculation 
procedures. 
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Results 
Results for all students 

For all 80 students, the average success score in PP is 16 correct answers (out of 23 tasks) and 14.5 
on the tablet. Now let's look at the difference in success question by question: we studied the number 
of correct answers per question, and we calculated the difference between the number of correct 
answers of PPT and the number of correct answers of TT (Figure 2). We observe for example that 4 
students out of 80 did better on question 21 (QCM – the task is given in table 1) on PP than on a 
tablet.  

On the whole test, only 2 tasks (Q1 and Q19) of 23 are better performed on a tablet than in PP, but 
only by 1 or 2 more students. 

 
Figure 2: Difference between the success score in PP and on the tablet per question 

It’s not surprising that the division problem (problem 1 – Q13, quoted before) is more successful on 
PP than on a tablet, but we must study exactly what are the errors and procedures in PP and on a 
tablet for better understanding this result. We have the same analysis to do with other questions, 
especially when the difference between performance on PP and with the tablet is important. We’ll 
then be able to determine the validity of such assessment tasks, whether PPT or TT. 

Per student, we observe also that the difference in success score on the 23 questions between PP and 
tablet can vary between -8 and +14. 16 students have the same score in the two tests but 7 students 
have a score difference of 4 points (Figure 3). 

 
Figure 3: Number of students by the difference in success scores between PP and tablet  
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Results for students according to their use of the tablet 

During the observation phase, we noticed that most students use the tablet by themselves, without 
help; only instructions on how to write the comma, use the “drag and drop” and erase in the draft 
have been given by the researchers. The answers of students confirm that 80% of the students 
regularly use a tablet at home (more than once a week) and only 17 students use a tablet less than 
once a month. 

For these 17 students, we observe that the average success score both on PP (16,5) and tablet (14,5) 
is better than the average score of all students. We are currently further studying the responses and 
procedures of these students. We can observe for example, that, for problem 1 (division problem), 
which requires a little more advanced use of the tablet and the draft area, 4 students who had correctly 
solved the problem in PP were mistaken on the tablet (either because they did not answer anything, 
or because they made a mistake in the division or did not finish it). We cannot give general 
conclusions from this example, but during the presentation, we’ll present the detailed results, and 
we’ll try to show the relationship between the regularity of tablet use, the students’ mathematical 
activity, and their performance.  

Conclusion 
To complete these first results, we will reproduce this experimentation on a larger sample of students, 
taking care to change the order of the two modalities (PP then tablet vs tablet then PP). We also wish 
to integrate tasks that use other functionalities of the tablet (such as the zoom to place a number on a 
graduated line or the integrated calculator to perform operations in problem-solving).   

The question of the validity of the assessment tasks is raised on the DA, as on PP. DA offers several 
possibilities for designing new types of tests especially diagnostic and formative ones with automatic 
feedbacks (for example, Sirejacob & al., 2019), but if the designers of these tests do not consider the 
specificities of the DA, the validity of the test is not guaranteed: students' mathematical knowledge 
is not correctly assessed and all the feedbacks are not suitable. Our research aims to identify points 
of vigilance about the validity of tablet-based assessment and the comparison between PP and tablet 
performance and strategy.  

This research also allows us to better study a priori the complexity of a task on a tablet (Sayac, 2018; 
Sayac and Grapin, 2015) by adding a specific dimension related to the instrumental genesis and the 
functionalities of the support involved in the resolution of the task.  
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This paper presents the results of a qualitative study focusing on characterisation of enactment of 
formative assessment during mathematical conversations by Norwegian primary school teachers. 
Two second-grade teachers working in a primary school in a large city in Norway were observed 
during mathematical conversations with their pupils in station teaching regarding various 
strategies for addition. We suggest a model that characterises the formative assessment enacted 
during a mathematical conversation from a teacher’s perspective.  

Keywords: Formative assessment, mathematical conversations, learning of mathematics. 

Introduction 
Assessment is vital to the education process and it has been on the political education agenda in 
many countries for several years, also in Norway. In 2010 the Norwegian Directory of Education 
and Training started a national programme The Assessment for Learning (AfL). The involved 
schools worked over a period of 16 months towards an overall goal, which was “to improve 
formative assessment practices in the classroom by developing distinct criteria to clarify how to 
reach curriculum goals” (Hopfenbeck et al., 2013, p. 28). This AfL initiative was a continuation of a 
previous programme (Improved Assessment Practice) and as Smith (2016) stated that “despite 
multiple initiatives, problems with implementation /of AfL/ have remained, and the changes in 
classroom practice have not gone as expected” (p. 182). Several Scandinavian researchers studied 
how teachers develop individual AfL literacy usually within an intervention (e.g., Engelsen & 
Smith, 2014; Andersson & Palm, 2017). However, little is known how Norwegian teachers from 
schools involved in AfL programme, are practicing formative assessment nowadays.   

Assessment plays an important role also in the new Norwegian curriculum (LK20), which was 
launched in August 2020. The competence goals in mathematics are built around six core elements 
and assessment is described in a special paragraph for each grade (Utdanningsdirektoratet, 2019). 
As stressed in LK20, assessment should help promote learning and to develop competence in 
mathematics. Teacher should ensure good conditions for students’ participation; provide guidance 
and adapt teaching so that students can use the guidance to enhance their learning. The role of both 
the teacher and the student in the assessment process is undoubtedly essential and although 
student’s peers are not mentioned, we see signs of formative assessment (FA) here (Cowie & Bell, 
1999), despite using the word “undervegsvurdering”, which literally translates as “assessment along 
the way”. In LK20 (Utdanningsdirektoratet, 2019) a particular emphasis is also given to oral skills 
when students should create meaning through conversation in and about mathematics. One way 
how to engage students into communication in mathematics is to lead mathematical conversations 
(MCs), which are “not only very good methods for teachers to elicit evidence of students’ 
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understanding and misunderstandings in order to inform the next steps in learning and teaching, 
they are in themselves powerful learning activities” (Swaffield, 2011, p. 443). The main purpose of 
a MC is to support and promote students’ learning through a discussion in which students can 
clarify their own thinking and learn from others (Chapin et al., 2009).  

In this context, and also in line with Bennet’s (2011) criticism of FA related to its lack of 
conceptual understanding and exemplification in specific subject areas, we consider pertinent to 
shed a light on MCs in terms of FA. Thus, we seek to answer the following research question: How 
can the enactment of formative assessment during a mathematical conversation be characterized 
for Norwegian primary school teachers who participated in the Assessment for Learning 
programme? The study presented here was part of the main study, in which we, in addition, also 
tried to understand how the teachers who participated in the AfL programme, perceive FA in 
mathematics. 

Theoretical framework 
In the research field of mathematics education, several theoretical frameworks and models are 
designed to explain FA (e.g., Cowie & Bell, 1999; Wiliam & Thompson, 2007). Although the term 
formative assessment does not represent a well-defined set of artefacts or practices (Bennet, 2011), 
the following conceptualization by Cowie and Bell (1999) captures the meaning of many definitions 
found in the literature: FA is “the process used by teachers and students to recognise and respond to 
student learning in order to enhance that learning, during the learning” (p.101).  

Wiliam and Thompson (2007) operationalized FA in a form where the three key processes of 
teaching and learning and the three agents in the classroom (teacher, peer and learner), are 
interconnected within the five key strategies. Cowie and Bell (1999) introduced a model (Figure 1) 
to describe and explain the nature of the formative assessment process in science education.  

  

Figure 1: Model of formative assessment (Cowie & Bell, 1999, p. 113) 
The model was developed from a consideration of the data collected through a research project 
investigating FA in science classrooms in New Zealand. It consists of two kinds of FA: planned and 
interactive (PFA/IFA). PFA involves eliciting assessment information using specific planned 
assessment activities, interpreting and acting on the information. The purpose for doing the 
assessment strongly influences the other three aspects of PFA process. IFA takes place in teacher-
student(s) interactions that arise from the learning activity and are thus not planned. IFA, besides 
the purpose, involves also three aspects, noticing in the context of the learning activities, 
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recognizing significance of what was noticed for the development of the student’s understandings 
and immediate responding. It is usually used with individual students or small groups. Teachers 
switch between PFA and IFA as the purpose changes. The purpose of the PFA is to obtain 
information from the whole class about progress in learning as specified in the curriculum to inform 
the teaching. The purpose of the IFA is to mediate in the learning of individual students with respect 
to science, personal and social learning.  

Although the second key strategy of Wiliam and Thompson (2007) mentions effective classroom 
discussions, the model of Cowie and Bell (1999) enables us to zoom into single episodes of MCs 
and study, how teachers support students’ learning during the learning.   

Methods 
Research Context, Data Collection and Data Analysis  

The data that constitutes the empirical base for this study is an observation of two second-grade 
teachers and their pupils during one mathematics lessons in late autumn 2018, as well as interviews 
with these teachers before and after the observed lesson. The interviews constitute the main source 
of data for other part of the earlier mentioned main study. For this study they play a supportive role, 
for example, regarding clarification of the learning goals of observed lessons, and additional 
information about typical way of performing FA, which helps us to answer our research question. 

The chosen primary school in a large city in Norway was selected based on its participation in the 
AfL programme, as well as on its accessibility to the first author. Following criteria were used to 
select two teachers to participate in this study: (i) has worked as a teacher in the school for the last 8 
years (participation in AfL); (ii) educated as a mathematics teacher (professional skills), (iii) teaches 
mathematics at the present time. Together with the headmaster of the school and the selection 
criteria, it was decided which teachers were asked to participate in the study. The names of pupils 
and teachers are altered; the teachers are called Jorunn and Hilde. In collaboration with Jorunn and 
Hilde and due to the purpose of the study, it was decided that station teaching was appropriate to 
observe. Station teaching is teaching divided into several learning activities. The teacher began the 
lesson by explaining the five learning activities and where in the classroom the assignments were 
located. Then the pupils were divided into five groups of 3-4 pupils, and the teacher decided which 
group to start with the different activities. The pupils worked on the same learning activity for 20 
minutes. Switching from one activity to another was performed and controlled by the teacher. The 
content of the different learning stations was independent of each other but selected based on the 
teacher's thoughts on the balance between work and play. The observed station is called teacher-
controlled station as the teacher participates in the pupils’ learning work at that station, and none of 
the remaining four stations.  

The learning activity the teachers chose for this station included a clue task (Figure 2), and it was 
for the first time Jorunn and Hilde used this type of task in a MC that focuses on addition strategies. 
The task consists of a text assignment and four clues. The teacher's guide to the clue task (Brataas, 
2018) specifies that the teacher's role is to introduce the task, guide pupils, and lead a summary with 
the intention of having pupils present their solution suggestions. In other words, the learning 
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activity is structured in a way that allows the teacher to gather information about the pupils' 
learning. 

The teddy bear tries to find out how many soft toys they are in Felix's room. Some are small, some are large, but all 
have a permanent position in the room. Can you help the teddy bear to find out how many soft toys there are? 

1a. On the shelf above the bed are four cute penguins and two lurking foxes. 

1b. On the bedside table, there is the teddy bear and four other soft toys waiting for Felix to come home. 

1c. In the windowsill, there are twice as many soft toys as it is on the shelf above the bed. 

1d. On the bookshelf, there are three times as many soft and scary dinosaurs as there are soft toys on the bedside table.  

Figure 2: Clue task (Brataas, 2018, p. 2) 
Both teachers used the same task in the teacher-controlled station, and both had the same structure 
during the lessons. The data in this study, therefore, consists of ten transcripts of MCs between the 
teachers and different pupils groups at the teacher-controlled station, five with Hilde (H1-H5) and 
five with Jorunn (J1-J5).  

The analysis of the data was driven by deductive thematic analysis (Braun & Clarke, 2006) by using 
the four aspects (purpose; elicit/notice; interpret/recognize; act/respond) of FA from the Cowie and 
Bell model (1999) as codes. In the analysis we have chosen to disregard connection with PFA or 
IFA because our aim is not to focus on the type of FA, but its characterization during a MC.  

Analysis 
In this paper we present three episodes, as examples of enactment of FA during a MC. The first 
episode J1 is a conversation between Jorunn and a first group consisting of three pupils. Jorunn 
presented goals for the activity and equipment that was available on the table and gave a general 
description of the learning activity. 

9 Jorunn: And I have sort of a goal here, about what we are going to look at, it is 
about – can you three cooperate, we will look at this. Also, we will look 
whether you manage to double [the pupils answer yes along the way, nod 
and pay attention] 

10 R:  What was double again? 
11 Jorunn:  Yes, what was double? 
12 pupils:  It's the same as plus. 
13 Jorunn:  Yes, but can you give an example? 
14 R:  Oh! Is it taking the same thing again? 
15 Jorunn:  To take the same again, you knew it yourself! Very good. Also, there is to 

check if you guys had a little fun when we are done [the goal]. That's what I 
want us to do. Are we ready? 

At the beginning of the activity, one of the pupils asked for an explanation of the term doubling 
(line 10). This episode may be an example of how Jorunn noticed and recognized the pupil’s input 
as a valuable contribution to the development of pupils’ understanding of the concept of doubling. 
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Her response was to give the pupil room to think, she repeated the question and also encouraged 
peers to help by asking for examples.  

Four pupils participated in episode J3. As the pupils began working on the clue 1c, Jorunn elicited 
information about their learning. Large proportions of the conversation contain exchanges of 
meaning related to the concept of doubling.  

150  Jorunn:  Yes, how many were there on the shelf above the bed then? 
151  Z:  six, [counts further] seven, eight, nine, ten, eleven, twelve 
152  Jorunn:  Yes, is anyone using a different strategy? 
  [short break, accepting that pupil Z is counting further and actually 

calculating the number of toys in the windowsill] 
153  Jorunn:  Do you think it was difficult and why did you write six plus five? 
154  C:  I should actually have written six there [point to five on the sheet, the pupil 

C wrote 6 + 5] 
155  Jorunn:  Okay, you can erase it. [pupil C erases it] 
  [short break] 
 
156  Jorunn:  But what strategy do you use to calculate six plus six then? 
157  X:  six plus six 
158  C:  ehm, I have a good one. Because .... eee sixes can be split into three 
159  Z:  six 
160  Jorunn: mmm it can 
161  C:  It can also be split into five, it can be split into five and five and two. 
162  Jorunn:  Five and five and two yes, it works. Mmm very good. 
163  Z:  six and six is 
164  X:  if we have one, two, three, four, 
165  Jorunn:  Was anyone using the doubling strategy then? 
166  X:  five, five, six 

In the episode J3, we see that Jorunn has deliberately tried to elicit information about the pupils’ 
learning, but she received little response from them. It is possible to interpret it as an example of 
Jorunn adhering to the plan to elicit information about the pupils’ doubling strategies (as expressed 
in the interview before the lesson), i.e. the planned formative assessment. But at the same time, it is 
necessary to be critical of what information Jorunn actually received and how she acted. 

In the episode H3, four boys participated in the learning activity, and the episode is taken from the 
last part of the conversation, which is linked to the last clue 1d (in the Figure 2).  

260 Hilde:  Then there's one clue left, boys, are we ready? [the boys nod] In the 
bookshelf there are three times as many soft and scary dinosaurs as there are 
soft toys on the bedside table. Wow… 

261 Q:  three like that 
262 Hilde:  if these are the soft toys [pointing to the pile they made with blocks to 

represent the soft toys] that are on the bedside table, and you should have 
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three times as much. [gasps a little] What does it mean when it's three times 
as much? 

263 Q:  three times as much 
Pupil Q repeated the term with wonder in his voice (line 263), and further in the conversation 
several pupils tried to explain what they thought.  

276 Q:  So then I take three again, one, two, three, then I've come to nine. 
277 Hilde:  It sounds very clever, but it's not three, it's five. And five three times. 
  [pupils think, and continue working for 2-3 minutes] 
 
278  Q:  five [holding up the hand] then to these I have ... I've done it two, ... fifteen! 
279  Hilde:  Fifteen! Oh, we have to make the last fifteen, you guys are ready? 

Hilde confirmed the pupils’ work before she told them that they had to start with the amount of five 
and not three (line 277). She praised the pupil's thinking and repeated the information about the 
amount with another wording ‘five three times’. The response from the teacher led the pupils to 
continue to work. After a few minutes of work, the pupil Q addressed Hilde and explained ‘five 
three times’ by showing the amount of five with his fingers on his hand. The teacher responded by 
repeating the number and urged the pupils to add fifteen blocks to the pile they had made for the 
number of soft toys in the room. This episode is an example of Hilde's response when pupils 
worked to explore the concept of three times as much. The teacher let the pupils work on the 
assignment without interfering with the work process. If the teacher made a conscious choice by 
allowing pupils to explore the concept with the wrong amount, the choice can be seen in the context 
of interpreting information about the pupils. It is possible to interpret the episode as an example of 
Hilde recognizing the thinking of the pupils and giving the pupils confirmation of thinking before 
correcting the amount. 

The interviews revealed that both teachers thought of MCs as a way of conducting formative 
assessment in their mathematics teaching, and especially with young students. It is their most 
typical and frequent way of conducting FA. They stressed the importance of getting feedback 
immediately:  

You have to do it /assess/ while they /pupils/ are in the process. ... we can always put a 
smiley face in the book or something like that, but it kind of does not become what is [pause 
for thoughts] … yes, in relation to pupils, because they are so much here and now. (Hilde) 

I would say that my practice has changed from being an “after-assessor” to being “along the 
way”. So that I do not spend a lot of time on corrections afterward anymore, because, in 
relation to primary school, I think it has no sense. They /pupils/ are done. And when they are 
done, they are done. They do not look at what they did, so I try to put as much weight as 
possible along the way so they get the feedback as soon as possible. (Jorunn) 

Discussion  
In this paper we focused on characterization of enactment of FA during MCs. Our findings revealed 
that both teachers were continuously collecting evidence of pupils’ learning by listening, asking 
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questions, revising the learning goal according to elicited information, interpreting pupils’ thoughts, 
rephrasing their questions, providing time for pupils to think, acting, etc. In other words, they 
modified teaching in relation to how pupils responded to the learning activity. FA enacted during a 
MC seems to be a dynamic process, in which its four aspects were interrelated, both in PFA and 
IFA. FA evolves like a spiral through these aspects, but at the same time back and forth through the
aspects. Moreover, there is not always a straight forward process with one action following another, 
as rendered in Figure 3, which shows the circular characteristics of FA enacted during a MC.

Figure 3: Our model suggestion of FA enacted during a MC, from a teacher’s perspective

In Bell and Cowie’s study (2002), science teachers indicated that eliciting and noticing were easier 
to do in the classroom than taking action and responding. Based on our observations, we concur
with this finding, as the FA is “a complex, skilled task and it relies on the teacher’s pedagogical 
knowledges” (Bell & Cowie, 2002, p. 92). Bell and Cowie (2002) suggest that “any future teacher 
development would need to focus on taking action and responding” (p. 94), as this determines 
whether the assessment is, in fact, formative or not. Bennett (2011) suggests that “to realize 
maximum benefit from formative assessment, new development should focus on conceptualizing 
well-specified approaches built around process and methodology rooted within specific content 
domains” (p. 5). Our study elucidates a MC as a specific way of conducting FA, which is in line 
with Ruiz-Primo (2011), who argues that assessment situations can occur in almost any learning 
activity if the teacher is aware of the student's learning. Faced with the new curriculum LK20, with 
an emphasis on speaking more mathematics, this study stands as an example of how two teachers 
assess “along the way” (“underveisvurderer”) and/or act out FA during MCs. MCs are not FA per 
se. Our study contributes to the existing knowledge on teachers’ FA practices when MC is the 
dominating teaching strategy.
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This study was conducted to investigate the characteristics of algebra tasks that middle school 
preservice mathematics teachers developed at the end of a three-week training related to examining 
and categorizing algebra items in the previous high school entrance examinations (2018-2020). 
Twenty-nine third-year middle school preservice mathematics teachers participated in the study. The 
data of the study included 12 algebra tasks generated by preservice teachers at the end of the training 
and their characteristics. Findings showed that preservice teachers were able to develop cognitively 
demanding algebra tasks. Most of the tasks aimed to assess students’ knowledge in geometry and 
measurement learning areas besides algebra. Lastly, most of the tasks were related to manipulating 
symbols, while four tasks focused on modeling problems using equations or algebraic expressions.  

Keywords: Task development, preservice teachers, cognitively demanding algebra tasks, high stakes 
assessment. 

Introduction 
Assessment can be categorized based on its purposes. Formative assessment or assessment for 
learning is used purposefully for learning (Laud & Patel, 2013). It provides students and the teacher 
with a rich stream of information that can be used to adjust instruction to meet students’ needs and 
enhance their learning (Wiliam, 2007). On the other hand, other potential actors such as universities, 
policymakers, and administrators need summative data since they cannot deal with the vast quantity 
of evidence collected through formative assessment (Burkhardt & Schoenfeld, 2018). Hence, 
summative assessment or assessment of learning is crucial to measure students’ level of 
accomplishment, especially in countries where the result of high-stake exams may cause a big change 
in students’ lives. 

The results of students’ performance in high stake exams directly impact teachers and students in 
some countries like the UK and the USA (Burkhardt & Schoenfeld, 2018), including Turkey. The 
types of tasks in the exams and the valued competencies influence teachers’ actions in the classroom 
(Barnes et al., 2000) and therefore students’ learning. In some cases, most classrooms’ learning 
activities were reformed and became parallel to the task structures covered in the exams (Burkhardt 
& Schoenfeld, 2018).  

In the case of Turkey, the High School Entrance Exam (HSE) system was changed in 2018. One of 
the fundamental changes made in the HSE was the structure of the items covered in the exam. Before 
the change, HSE measured basic skills at the level of knowledge, comprehension, and application. 
Now, high-level skills such as making interpretation and inference and analytical thinking are 
measured (Biber et al., 2018). Reports informing the results of the HSE exams held in 2018 and 2019 
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showed that mathematics tests had the lowest rate of correct response of all the subjects (Ministry of 
National Education [MoNE], 2018a; 2019). One of the reasons for this situation might be that 
mathematics teachers were unprepared for the cognitively demanding assessment tasks and could not 
find sufficient resources to use in their classrooms (Biber et al., 2018). Since tasks in the mathematics 
textbooks are not compatible with the HSE items and the resources teachers use in their lessons are 
insufficient, preservice mathematics teachers’ awareness about the cognitively demanding HSE items 
needs to be improved. In addition, whether preservice teachers can generate cognitively demanding 
tasks is worthy of investigation since these tasks can be used as teaching tools as well as assessment 
tools. 

This study aimed to investigate the characteristics of algebra tasks that middle school preservice 
mathematics teachers (PMTs) developed after participating in a three-week training related to 
examining and categorizing algebra questions in the previous HSE examinations (2018-2020). 

Algebra is a bridge between mathematics and other branches of science (Erbaş et al., 2009). Research 
points out the importance of developing students’ algebraic thinking starting from kindergarten 
(Stephens et al., 2017), and one of the ways this could be achieved is through professional 
development (Kieran et al., 2016). Although there are studies focused on investigating the questions 
that PMTs pose during diagnostic algebraic thinking interviews (e.g., van den Kieboom, 2014), 
limited research exists on examining PMTs’ generation of cognitively demanding algebra tasks. 

Kaput (2008) focusing on arithmetic and algebra problems proposed a framework that included two 
core aspects for algebraic thinking. The two core aspects of algebra were “(A): algebra as the 
systematic symbolizing of generalizations of regularities and constraints” and “(B): algebra as 
syntactically guided reasoning and actions on generalizations expressed in conventional symbol 
systems” (Kaput, 2008, p. 11). Kaput stressed that while both aspects of algebra are significant, school 
algebra generally focuses on Core Aspect B, more specifically reasoning and actions on 
generalizations. While in Core Aspect A, students are encouraged to notice regularities, generalize 
and represent those generalizations. In this study, Kaput’s (2008) framework was used to categorize 
PMTs’ algebra tasks with respect to the core aspects of algebra. 

Measuring students’ ability requires the classification of levels of thinking. Bloom’s revised 
taxonomy provides a measurement tool for thinking and classifies thinking into six cognitive levels 
of complexity: remembering, understanding, applying, analyzing, evaluating, and creating (Anderson 
et al., 2001). In a similar way, Smith and Stein (1998) proposed four categories of cognitive demand; 
(i) memorization; (ii) procedures without connection (PW/oC); (iii) procedures with connection 
(PWC); and (iv) doing mathematics in order to help teachers select and create cognitively demanding 
tasks to increase students’ ability to think and reason. They identified the first two categories as low-
level demands while the last two categories as high-level demands. We used Bloom’s revised 
taxonomy and Smith and Stein’s (1998) categorization to categorize the cognitive levels of PMTs’ 
algebra tasks in the study. 

Methods 
Basic qualitative research method (Merriam, 2009) was employed in this study in order to reveal the 
characteristics of algebra tasks generated by PMTs. 
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Participants and Study Context 

The study participants were 29 third-year middle school preservice mathematics teachers who were 
enrolled in a four-year middle grades (grades 5-8) mathematics teacher education program at a public 
university in Ankara, Turkey. The program mainly offers introductory education and mathematics 
courses in the first two years. The departmental courses mostly start in the third year of the program. 
They include courses that focus on developing pedagogical content knowledge, such as the Methods 
of Teaching Mathematics in Middle Schools I and II. In their fourth and last year in the program, 
PMTs take School Experience and Practice Teaching courses. Related to the context of this study, a 
semester before this study was conducted, PMTs were enrolled in the Assessment of Learning in 
Science and Mathematics course. Throughout this course, PMTs were introduced to the different 
types of assessment, including formative, summative, and diagnostic assessment types. They were 
also asked to develop different assessment instruments, including multiple-choice, short response, 
true-choice, and open-ended with their rubrics. 

Data Collection 

The study’s data were drawn from a study* that aimed to investigate middle school PMTs’ 
conceptions of algebra, their awareness of the characteristics of algebra items in HSE, and their 
improvement in generating algebra tasks at the end of the training. The training was carried out in the 
Methods of Teaching Mathematics in Middle Schools II course, which focused on teaching 
“proportional and algebraic thinking”, “statistics”, and “probability”, respectively.  The Methods 
course was offered in the Spring Semester of 2020-2021 academic year by the first and second 
authors, and the researchers implemented the training of this study. The PMTs attended the course 
through online education via Zoom. The training took place as part of the algebraic thinking weeks.  

The PMTs were asked to read the chapter on algebraic thinking by Van de Walle et al. (2013) and 
several other articles and a book chapter that were mainly intended for in-service and preservice 
teachers. These readings were discussed in class, and related activities were conducted in small 
groups. Usually, whole-class discussions took place after the small group discussions. At the 
beginning of the semester, two groups were assigned to design lesson plans focusing on algebraic 
thinking, choosing an objective from the curriculum. These plans were implemented through micro-
teaching, and the groups received oral feedback from the instructors and their classmates. Then the 
training for this study started, which lasted for three weeks (12 class hours). PMTs were asked to 
analyze 2018, 2019, and 2020 HSE algebra items first individually and note the characteristics of the 
questions (objectives/contents addressed by the problems, and cognitive levels according to Bloom’s 
revised taxonomy and Smith and Stein (1998), and their justifications). Then they discussed their 
analysis in the same groups of 4 or 5 each week. After small group discussions, whole-class 
discussions took place, and some sample items the researchers chose were discussed together. At the 
end of the training, groups were asked to generate two cognitively demanding open-ended algebra 
tasks in the same groups (6 groups and 12 tasks in total). They were also asked to write the related 

 
*The research is funded by the Middle East Technical University Research Fund GAP-501-2021-10644.  
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objectives/contents from the curriculum, expected student responses (both correct and incorrect), and 
cognitive levels according to Bloom's revised taxonomy and Smith and Stein’s (1998) categorization. 

Data Analysis 

For the scope of this paper, we focused on 12 algebra tasks generated by PMTs at the end of the 
training and their characteristics. The data were analyzed through content analysis. Cognitive levels 
of the tasks were categorized based on both Smith and Stein’s (1998) framework and Bloom’s revised 
taxonomy (Anderson et al., 2001).  We used Kaput’s (2008) framework to determine which core 
aspect (A or B) each task focused on. Kaput’s (2008) two core aspects and the cognitive levels of the 
tasks were determined separately by the researchers and later discussed to reach a consensus. 
Learning areas and contents were accessible from the national middle school mathematics curriculum 
(MoNE, 2018b). 

Findings 
Findings showed that all the tasks developed by PMTs were cognitively demanding algebra tasks 
according to Smith and Stein’s (1998) categorization and Bloom’s revised taxonomy. We classified 
all tasks developed by PMTs as PWC. Furthermore, according to Bloom's revised taxonomy, we 
classified PMTs’ tasks at two levels: nine tasks at the analyzing level, three tasks at the applying 
level. When we compared our and PMTs’ decisions about the levels, we found medium to a high 
inter-rater agreement. Specifically, out of 12 tasks, we found the level of the eight tasks the same 
using Blooms’ revised taxonomy (about 67% agreement); the disagreement was mostly between the 
levels of applying and analyzing. The agreement increased to about 92% for Smith and Stein’s 
categorization. 

Most of the algebra tasks generated by the PMTs aimed to assess students’ knowledge in geometry 
and measurement learning areas. PMTs used geometric shapes to assess students’ ability in doing 
operations with algebraic expressions in almost all these tasks. More specifically, in these tasks, 
students were expected to measure the area/perimeter/length of a single or complex shape by making 
addition, subtraction, or multiplication with algebraic expressions. On the other hand, the remaining 
tasks were prepared to assess students’ understanding in only the algebra learning area. (See Table 1 
for all 12 tasks)  

To exemplify, in Task 11 (T11, see Table 1) generated by Group 6, students were required to use a 
proportional relationship to find the price of 1 L of Brand A and Brand B juice as algebraic 
expressions and solve first order inequalities with one unknown to reach the answer. This task 
assesses students’ knowledge only in the algebra learning area. We classified the task’s level of 
cognitive demand as PWC.  Students need to engage with conceptual ideas, including using the 
information from the table provided, setting up an inequality to compare the prices of the juice brands 
for the same amount to complete the task and explain their reasoning. We also categorized it at the 
analyzing level considering Bloom’s revised taxonomy since it requires relating parts to one another 
and an overall structure (Anderson et al., 2001) and making connections between different contents, 
including integers, ratios, and inequalities. 
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Table 1: Characteristics of the tasks developed by PMTs 

Groups Ts Smith & 
Stein  

Bloom’s Revised 
Taxonomy  

A brief description of the contexts addressed by the tasks 

G1 T1* PWC  Analyzing This task asks students to calculate the basal metabolic rate to decide on the number of calories people need to take to not 
gain weight and to propose a diet to have less/more calories.  

T2 PWC Applying This task asks students to find the shortest distance, which a goat can use to climb the top of the mountain using a right 
triangle.  

G2 T3 PWC Analyzing This task asks students to divide a square field with one side into two equal parts to plant cotton to one part and 
corn to the other. Students are required to decide where two identical 360-degree rotatable fountains are set up to water the 
corn field’s maximum area and find the least area in an algebraic expression where water cannot reach. 

T4 PWC Analyzing In this task, students are expected to form a T shape by using all tangram pieces in the square-shaped tangram board with 
an area of  cm2 and write the algebraic expression for the height of the T shape.  

G3 T5 PWC Analyzing Given a scenario, students are asked to create an Atatürk corner using rectangular materials whose areas and short side 
lengths were given algebraically. They are also asked to express the area of Atatürk’s picture algebraically.  

 
T6* 

 
PWC 

 
Applying 

This task gives a situation where the discount is applied for the amount of the tickets purchased and asks students to write 
inequalities that express the given situations. It also asks students to find the profit if two groups of students buy the tickets 
together instead of separately. 

G4 T7 PWC Analyzing The task gives information that there are two gardens whose perimeters are equal. The area of one is  cm2, 
while the other’s area is 35 cm2 and asks the sum of the values x can take. (Each side is a natural number). 

T8 PWC Applying In this task, a bus route is given on a map, and two different ticket types (students and adults) are defined. Ticket prices are 
given as algebraic expressions. Students are expected to find the cost of an adult ticket to go to a city in the route, examining 
two traveling situations and solving it. 

G5 T9 PWC Analyzing This task asks students to create squares from cardboard with an area of  cm2 and regular triangles and 
pentagons whose one side is half of the length of one side of the square. Students are expected to place these geometric 
shapes 3 cm apart on a rope with  cm length and find how many geometric shapes are used. 

T10 PWC Analyzing This task gives a situation where the water pipes are laid in a square garden with a side of . The length of pipes to 
be laid adjacent to the garden walls is  m. Pipes narrow by half after 3 m. The narrowed water pipes pass over each 
other. Students are required to find the area in the garden where the water pipe is not laid. 

G6 T11 PWC Analyzing In this task, two types of juice brands (Brand A 200 ml and Brand B 500 ml) are defined, and the price of each is given as 
algebraic expressions,  and for Brands A and B, respectively. Students are expected to find how many 
Turkish Liras (TL) Ayşe paid for 1 L of juice at most if she bought Brand A juice and made a profit and to explain their 
reasoning. (The money she pays is an integer.) 

T12 PWC Applying In this task, students are given the information that the length of one side of a house with a square base is  m, the 
area of one side of the house is two times the floor area, and the area of one window of the house is one-eighth of the side 
area. They are expected to find the area of the exterior of the house to be painted. 

*Two groups developed questions that had multiple parts. For those questions, the highest level of cognitive demand or taxonomy level was noted as the levels of the questions.
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Task 7, (T7, see Table 1), created by Group 4, required to use algebra, geometry and measurement 
knowledge. Students were expected to factorize the algebraic expression to find the perimeter of the 
square and solve the resulting first-order equation with one unknown to find the sum of the unknown 
(x) values. We classified the task’s level of cognitive demand as PWC since the solution requires 
cognitive effort, including setting up an equation to find the values for x. Students cannot follow 
procedures mindlessly, and they need to make connections between different learning areas, algebra, 
geometry, and measurement. We also classified the task as analyzing according to Bloom’s revised 
taxonomy since the task requires analytical skills. Specifically, students were asked to find the 
possible values for x, using the information that the perimeters of the shapes were equal given the 
areas and factoring 35 to find the length of one side of the rectangle. 

When we examined the tasks developed by the groups according to the framework put forward by 
Kaput (2008), most of the tasks were closely related to Core Aspect B, which was explicitly about 
manipulating symbols. Specifically, while four out of 12 tasks were categorized closely related to 
Core Aspect A, the rest were found more closely related to Core Aspect B. This finding could be 
because, based on our analysis, PMTs aimed to assess students’ abilities to make operations with 
algebraic expressions in most of the algebra tasks generated. To exemplify, T11 was a task 
categorized more closely with Core Aspect A. Students are expected to use algebraic expressions to 
set up an inequality to model the problem context in the task. In comparison, we found T7 primarily 
concerned about solving equations to find the possible values for x. The other tasks related to Core 
Aspect A also involved modeling the problem context using equations or algebraic expressions. 

Discussion 
Mathematical tasks are at the center of students’ learning since tasks give messages to the learners 
about what mathematics is and what doing mathematics includes (National Council of Teachers of 
Mathematics [NCTM], 1991). The tasks that mathematics teachers select, adapt, or develop and 
implement with their students have paramount importance since they also influence the level of 
students’ learning. Hence mathematics teachers need to be aware of levels of demands to generate 
cognitively demanding tasks. On the other hand, some studies revealed that although higher-order 
thinking skills are crucial for education, what teachers understand from this and how they apply it in 
their instruction are unclear (Schulz & FitzPatrick, 2016). Turkish mathematics teachers can be an 
example of this situation since they had difficulty in finding resources for cognitively demanding 
tasks (Biber et al., 2018). This study showed that the algebra tasks PMTs developed were cognitively 
demanding. We classified all tasks generated as PWC. They were also at the analyzing (9 tasks) and 
applying (3 tasks) levels according to Bloom’s revised taxonomy. This finding might indicate that 
PMTs were able to generate cognitively demanding algebra tasks. Even if PMTs created these tasks 
as possible HSE items, they might also be selective in the tasks they bring to the class and give place 
to the cognitively demanding tasks in the classrooms. 

This study also showed that PMTs focused on geometry and measurement learning areas while 
generating cognitively demanding algebra tasks. They mainly preferred to assess students’ learning 
in making operations with algebraic expressions by using geometric shapes. The same trend was also 
seen in HSE items. When we investigated the past HSE items, we observed that if the items were 
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prepared to assess students’ algebra, geometry, and measurement knowledge, students were expected 
to do operations with algebraic expressions by using geometric shapes. Since PMTs investigated the 
HSE items of the last three years during the training, they might have been influenced by these items 
and tended to prepare similar items. 

Regarding the analysis of core aspects of algebra, the findings showed that most of the generated 
tasks focused on calculation and solving instead of relating and representing. Kieran (2004) suggested 
several things to develop students’ algebraic thinking. These include “a focus on both representing 
and solving a problem rather than on merely solving it” and “a focus on relations and not merely on 
the calculation of a numerical answer” (p. 141). Although these tasks were developed for HSE, what 
is being asked in the examinations influences what teachers and students value in their classrooms 
(Barnes et al., 2000). Therefore, it is essential that PMTs also try to generate tasks that focus on 
generalizing, relating, representing, and solving, and calculating.  We suspect that this finding might 
also be due to the tendency of the past HSE items that PMTs examined in the training. Although some 
tasks were related to Core Aspect A, we identified the majority associated with Core Aspect B. 

As part of this study, PMTs only examined 2018, 2019, and 2020 HSE algebra items. Examining only 
the past HSE items might be a limitation that influenced the characteristics of algebra tasks generated 
by PMTs. Hence using different task sources can be recommended for future studies. Investigating 
the HSE items holistically, without differentiating the learning area, can also be suggested to see the 
general characteristics of items that are not specific to the learning area. Furthermore, since 
demanding tasks used in the classrooms positively affect students' learning, encouraging PMTs to 
develop cognitively demanding tasks in algebra and different learning areas can also be suggested. 
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In Hungary, assessment in school mathematics has always relied heavily on students' written work. 
Ensuring that only the student's own knowledge is manifested during the exam is a real challenge in 
distance learning. We combined the written test with verbal explanation by students. After writing 
down the solutions and sending them to the teacher, students also recorded short audio of each task. 
In this paper, we analyze students' oral explanations based on their written work, looking for 
additional information about students' thinking processes, furthermore, examine the quality of verbal 
communication. 

Keywords: Curriculum based assessment, metacognition, online education, mathematical problem 
solving. 

Introduction 
During the pandemic, teachers experienced the differences between face-to-face and online 
instruction (Doucet et al., 2020). They realized worldwide that online schooling requires collecting 
and reviewing old teaching methods adaptable to the new situation or even searching for new 
approaches. It is true for the ways of assessment of students learning as well. In Hungary, assessment 
in school mathematics has always relied heavily on students' written work. Written responses to 
mathematical tasks are often the basis of summative and formative assessments. However, ensuring 
that only the student's own knowledge is manifested during the exam is a real challenge in distance 
learning. The written examination was not appropriate anymore, while the oral was too time-
consuming and unusual for senior high school students. It was our starting point when we combined 
the written test with verbal explanation by students. After writing down the solutions and sending 
them to the teacher, students also recorded short audio of each task. 

Taking not only aspects of teaching and learning but also researching into consideration, the so-called 
“loud test” seems to be a valuable tool to detect students' metacognitive activities as well. After the 
solution of the task is written down, the laud explanation forces the learner to deal with the looking 
back phase in problem-solving (Polya, 1945), which is the most neglected phase, as much research 
shows (Cai & Brook, 2006). 

In this paper, we analyse students' oral explanations based on their written solution, looking for 
additional information about students' thinking process, furthermore, examine the quality of verbal 
communication. Qualitative analysis is done on a per-pupil basis. We formulated the following 
research questions: 

1. Does the oral explanation contain more information about the learner's knowledge and thinking 
process than can be read from the written solution? 
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2. What types of metacognitive activities can be observed in the verbal explanations? 
3. What characterizes senior high school students' professional language communication? 

Theoretical background 
In the educational process, we can distinguish three types of assessments: (1) assessment before 
instruction (diagnostic), (2) assessment during instruction (formative), and (3) assessment after 
instruction (summative). Formative and summative assessments are often characterized as 
assessments for learning and assessment of learning (Chigonga, 2020). It's clear that there is a 
significant overlap between assessment for and of learning. We designed summative assessment tasks 
to measure students' expected standards; however, we also aimed to get information about students' 
thoughts and possible misconceptions. It means that the assessment process was summative and 
formative at the same time. 

The challenges to written assessments, especially that of problem-solving, are several. Most test 
situations require students to produce an extended written account explaining their problem-solving 
process and proposed solution. It is problematic because considerable skill is needed to make a clear 
and comprehensive description of the problem-solving process, a skill that students may or may not 
have (Monaghan et al., 2009). From this aspect, it seems that an oral explanation of the problem-
solving process may be easier for students, as they do not have to transform their thoughts into a 
mathematically correct written form. Morgan and Watson (2002) argued that all mathematics 
assessment is interpretive in nature, so it also shows subjective features. Regarding the assessment of 
students' problem-solving ability, Teledahl concluded that ”The fact that there are different ways to 
interpret what the students have written further strengthens the conclusion that using this writing, to 
assess other mathematical abilities, may be problematic. ” (2017, p. 3602) 

Huxham et al. (2012) note five main advantages to oral assessments: they (1) develop oral 
communication skills; (2) are authentic; (3) can be seen to be more inclusive; (4) can be a powerful 
way of evaluating understanding and (5) are more difficult to cheat in. Furthermore, in an oral exam, 
a small knowledge gap can be bridged with the teacher's help so that the student can solve a task that 
he/she would not be able to do in writing. Our “loud test” is similar to the oral exam in more aspects 
(see (1), (4), (5)), but the students have no opportunity to receive ongoing confirmation or help from 
the teacher. However, oral exams have not only advantages but also disadvantages. Anxiety and 
fairness are the most common concern (Iannone & Simpson, 2012). Since our “loud test” was not a 
typical face-to-face oral exam, we believe that anxiety did not significantly affect the results. As the 
evaluation did not coincide with the oral presentation, the teacher had the opportunity for a thoughtful 
assessment, so there was little harm to fairness. 

Professional language communication is an essential element of both written and oral exams. The 
professional language of mathematics comprises technical terms (like geometric sequences or 
logarithms) and specific, often very concise, sentence structures. “In mathematics classes, we face 
the challenge of developing individual language use from orality towards literacy, in the direction of 
learning to speak and write mathematically.” (Marei, 2019, p. 1657) 

Asking students to think aloud is naturally connected to metacognition because the situation itself 
contributes to rethinking the problem-solving process. According to Flavell et al. (2002), 
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metacognition refers to people's knowledge of their own information processing skills, knowledge 
about the nature of cognitive tasks, and strategies for coping with such tasks. Moreover, it also 
includes executive skills related to monitoring, self-regulation, and evaluating one's own cognitive 
activities. Metacognition happens when students analyze tasks, set goals, implement strategies and 
reflect on their own learning (Spencer, 2018). Metacognitive experiences refer to a person's 
awareness and feelings elicited in a problem-solving situation (Schneider & Artelt, 2010). Libet's 
(2002) research suggests that roughly half-second time units can be associated with conscious 
decisions. From a pedagogical point of view, this means that if we make a decision during learning, 
it becomes conscious only a little bit later. It also follows that the speed of procedural metacognitive 
processes may prevent the individual from reporting them orally simultaneously as the process. 
However, the possibility of later conscious access and verbal reporting remains (Csíkos, 2017). 
According to our research setting, the oral explanation of the students took place later in time than 
the description of their thoughts. 

Methodology 
The target class consists of 29 high school students (Grade 12), 27 of whom participated in the 
research. They have four lessons per week taught by one of the authors of this article. The research 
was done in the school year of 2020/2021 autumn in a small town in Hungary. The schools were open 
from September 1 to November 11 of 2020, then online education started. The summative assessment 
fell on November 16, so most of the material was taught face-to-face. The topic of the assessment 
was geometric series. The first task was considered a routine task. Two terms of a geometric series 
were given, the first term, the quotient, and the sum of the first ten terms had to be calculated. The 
answer was two different geometric series. The second and third tasks were real-world problems, and 
the second was similar to the third but simpler. In this paper, the third task is highlighted: 

The number of wild koalas in Australia is getting smaller and smaller. Surveys show that the 
number of koalas is decreasing by 9 % every year. In 2009, 43000 wild koalas were counted 
on the continent. Considering the same decrease, find the number of years after which the 
number of koalas in Australia falls under 60% of the 2009 data. 

Because of the school closure, the students responded to the written test at home. They also made 
audio recordings explaining how the tasks were solved (“Summarize and explain your proposed 
solution orally in 1-2 minutes.”). The time limit was 45 minutes to solve three tasks, scan the papers, 
record the oral explanations with mobile phones, and send them to the teacher. The students got scores 
for the written solution and the recording. 

The recordings were investigated in the same way: 

1. We identified the coding units; namely, we found those parts of the recordings which contain 
extra information, i.e., not just repeating or summarizing what is on the paper. (A recording may 
include more than one such unit.) 
2. Using the content analysis method, these units were coded first according to three criteria: The 
extra information refers to A) one step of the solution, B) the entire solving process, C) the 
interpretation of the result obtained. For example, we coded the unit as A, if the student justifies one 
of the steps in the solution, B, if he/she explains the chosen strategy or model, or C if he/she notes 
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that his/her result is consistent with the problem situation or modifies it accordingly. These codes are 
closely related to the following metacognitive activities: A) monitoring, self-regulation, B) strategy, 
C) reflection, evaluation. (Not all extra information counts as metacognitive activity, but it creates 
the possibility of it.) 

For each unit, a second code evaluates the quality of the oral explanation in terms of the mathematical 
language register: 1) Correct; 2) Sloppy (everyday language, but the mathematical content is clear); 
3) Incorrect+ (incorrect terminology, but the mathematical content is recognizable); 4) Incorrect  
(incorrect terminology, no recognizable mathematical content); 5) No (There is no mathematical 
content in the unit). 

The recordings were analyzed independently by the two authors. In case of disagreement, the authors' 
consensus fixed the units and their codes. Figure 1 illustrates our coding system. 

 

Figure 1: The written solution of Student S13 

The associated sound recording with the codes, where the numbered units are written in italics: 

"In the 3rd task, we only know the rate of interest, the percentage, and the total value. (S13-Unit 1, B, 
“Sloppy”) and from these items, I calculated the value of Tn with percentage calculating. Then I got 
the result which I immediately substituted into the formula. And here, in the parenthesis, there is a 
minus because there is a decrease. (S13-U2, B, “Sloppy”) I got the result 0,6 by dividing 25800 with 
43000. The 0,91n is the task in the parenthesis. We brought in the base 10 logarithm because, with 
the use of it, we can get the result of n. (S13-U3, A, “Sloppy”) Then I arranged the things and 
calculated. I would rather say that I arranged the equation so that I could get the value of n. I got a 
result of 5.42. Although the digit after the decimal point is less than 5, we have to lower the result 
because the task also includes a decrease. (S13-U4, C, “Incorrect+”) I also answered in a whole 
sentence because it was a word problem." (Student S13) 

Findings and discussion 
27 students wrote the test; each consisted of 3 tasks. Out of a total of 81 written solutions, 3 were not 
accompanied by audio recordings so that we could examine 78 audio recordings. There were 40 
recordings, which contained extra information. These belonged to 19 students out of the 27. In their 
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audio recordings, 4, 9, and 6 students provided additional information to one, two, and three tasks, 
respectively. The number of coded units associated with the first task is the lowest, 18 units, while 
for Task 2 and 3, these numbers are 30 and 31. This result confirms that Task 1 was indeed a routine 
task for our students, in which the way to solve it was conventional, so the students did not feel the 
need to explain their answers in more detail. Task 2 and Task 3 were real word problems in which 
finding and matching a model was part of the solution strategy. Obviously, these problems required 
more thinking, and they provided more opportunities to express background information in the 
recordings. The coding results for the types of extra information (Table 1) are also related to this idea. 
In the routine task, the students did not interpret the answer at all, while in the case of world problems, 
the number of units where students tried to explain their way of thinking or interpret the result 
obtained is higher. 

Table 1: The number of units according to what the extra information refers to 

 A B C Total 

Task 1 10 8 0 18 

Task 2 3 18 9 30 

Task 3 10 13 8 31 

The coded units were also examined according to the types of extra information and the number of 
students. Analysis of the audio recordings supports our hypothesis that students also perform 
metacognitive activities during the oral explanations. Table 2 shows some examples of this in 
connection with Task 3. 

Table 2: The types of extra information and the number of students 

Codes Number of Ss Examples in connection with Task 3 

A: explanation of a 
certain step of the 

solution 

14 “I brought in the logarithm because n was known. Because we can 
write the unknown n in front of the logarithm.” (S9) (self-regulation) 

“Then I got an exponential equation, but I don't have the same base, so 
I brought in the base 10 logarithm. This way, I got that lg1075 = 
n*lg1,09.” (S4) (self-regulation, monitoring) 

B: explanation 
regarding the entire 

solving process 

16 “In Task 3, I also calculated with geometric sequence.” (S27) 
(strategy) 

“The value of q is 0,91 because 9% can be replaced by 0,91.” (S25) 
(strategy) 

C: the interpretation of 
the result obtained 

11 “The answer is 6 years because I got 5,41641 and it is more than 5 
years, so 5 years are not enough, that's why the result is 6 years.” (S25) 
(evaluation) 

We can say that almost half of the class reached the goal of the recordings. Justifying certain steps, 
explaining the key elements of the solution process, and interpreting the result provides a great 
opportunity for some metacognitive activities. 
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Figure 2 presents the students' distribution regarding their scores on the written test and the number 
of coded units. The total score was 21; the red line in the figure shows the class average of 10.4. The 
blue points indicate the 19 students. The average score of the students who add extra information is 
10.6 (deviation: 4.4), while the average score of the rest of the students is 9.9 (deviation: 5.0). 

 

Figure 2: The scores and the number of coded units by students 

The willingness to explain in detail does not appear to be closely related to the points achieved. The 
students whose points were close to the average provided the most extra information. Students with 
higher scores typically did not supplement their written solution with additional oral information, 
even if it was quite sketchy. We also found a lot of interesting and instructive information in the 
recordings of the students with weaker performance. The example below shows how S3 realized that  
his solution was wrong. He tried to modify but also incorrectly. 

 
Figure 3: The written solution of Student S3 

The explanation of S3: “First, I did it with a minus, but it's sure didn’t turn out well.” (C - reflection) 
Then I made it with a positive and came up with 6 years, which I don't know … I don't think it is good 
either.” (C - reflection) 

The quality of the professional language of the examined coded units in all three tasks is summarized 
in Table 3. The verbal expression of the coded units was mainly mathematically correct; there were 
no "Incorrect " performances. It probably means that the students only dared to say things they were 
sure about to a certain extent. It is important because, in this way, they are reinforcing and deepening 
their right ideas, not their wrong ones. The laxity of the students encourages the teacher to further 
corrections, and some "Incorrect +" units bring the mistakes and misconceptions to the surface. These 
things remain unknown in the written tests, but they are considered mistakes in the oral explanation. 
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Table 3: The quality of the professional language 

 Correct Sloppy Incorrect+ Incorrect- No Total 

Number of units 26 28 15 0 10 79 

The first example highlights the inaccurate formulation of one of the identities of exponentiation. The 
other points out the incomplete knowledge regarding the concept of even root power and the term of 
absolute value: 

 Student S4 refers to one of the exponential identities as “q6/q4=q2 because when dividing, we 
subtract the exponential value [instead of subtracting the exponents]”. 

 Student S12 explained what he wrote (q4 = |16|, then q = 2 and q = 2) as follows: “The value of 
q is 4 [instead of the exponent of q is 4)], and it is an even root power, that's why we have two 
quotients. We had to use the absolute value of 16 [instead of the absolute value of 2], so we got 
2 and -2.” 

Conclusion 
We detected some positive impact of the “loud test”-method not only on learning but also on teaching. 
On the one hand, it was useful from the students’ point of view because students discovered errors in 
their written work during the recording that they modified, although not always correctly. On the 
other hand, at least half of the class prepared sound recordings that helped the teacher better 
understand their thought related to problem-solving and provided a more detailed error analysis, 
contributing to better future teaching (the effect of formative assessment). Furthermore, the “loud 
test” seemed to be a valuable tool to detect students' metacognitive activities. Loud explanations force 
learners to deal with the looking back phase in problem-solving, the most neglected step described 
by Polya (1945). However, the success was influenced by its quality and the student's content 
knowledge as well. The need to consciously apply the solution steps and use the appropriate 
professional language has also become apparent. In summary, we can state that the teacher gets a 
more detailed picture of students' current level of development, although the correction of students' 
works takes more time. 
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This paper reports on a project in a mathematics course for prospective teachers, where the teacher 
educator modelled feedback based on formative assessment principles. We analyse and discuss the 
prospective teachers’ responses when they are challenged to reflect from a teacher’s perspective on 
how to use different models to compare fractions in a primary classroom setting. We find that the 
prospective teachers tended to use the feedback to move forwards in their teacher perspective, while 
some of them reflected on their uncertainty of how to use the models in a classroom. We argue that 
the prospective teachers got the opportunity to reflect on their own learning process. 

Keywords: Formative assessment, teacher education, prospective teachers, feedback. 

Introduction 
Research on written feedback as formative assessment for mathematics teachers’ education is sparse, 
however there is some work emerging. For example, Buchholtz et al. (2018) examined what learning 
opportunities could be identified when combining formative and summative assessment of 
prospective teachers’ professional competence. Their findings showed that a significantly higher 
number of learning opportunities were perceived when these two forms of assessment were 
combined. In another study, Kastberg et al. (2020) found that mathematics teacher educators’ written 
feedback could be described as effective when it gave prospective teachers the opportunity to build 
on their own answers; however, Kastberg et al.  saw little evidence of feedback intended to help 
prospective teachers self-regulate their own learning.  

Mathematics courses in teacher education aim to prepare prospective teachers to teach mathematics 
and provide experiences on which they can base their later pedagogical practices. Research suggests 
that prospective teachers benefit from experiencing for themselves the didactics the teacher educator 
intends for them to learn, especially if they receive an explanation of why certain practices are of 
value in classrooms (Rojas et al. 2021). Summative assessment is still the prevalent assessment 
method for teacher education courses (Mumm et al. 2015), which means that prospective teachers 
receive little prompt individual feedback during their day-to-day teaching and learning. This is also 
the case at our university, where, in our mathematics courses, students have one exam at the end of 
each semester (for a total of three exams over 1.5 years) and two or three longer written assignments 
(mostly in groups) each semester, for which they receive feedback. One way of giving students more 
continuous feedback is through formative assessment, which combines participants’ awareness of 
learning goals, academic and process-oriented guidance such that it contributes to a community of 
learning (Black et al., 2003). Written feedback gives teacher educators and prospective teachers the 
opportunity to revisit the comments over time to reflect and discuss important points in their work 
(Kastberg et al., 2020). In this project we wanted to explore how short written feedback could be used 
in a mathematics education course. The research question discussed in this paper is: what 
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characterises prospective teachers’ answers to short written feedback intended to raise awareness of 
use of different fraction models for primary school teaching? 

Theory 
The concept of formative assessment is used in the literature with different interpretations (Mumm et 
al. 2015). In this study we use Black and Wiliam’s (2009) framework which emphasise five aspects 
of formative assessment: clarifying and understanding learning goals, effective classroom learning 
activities, giving feedback that points forwards, using students in peer learning and getting students 
to own their own learning process. An assessment is formative if used as a guide to what the 
participants should learn, what they already know and where to go next (Wiliam, 2007). Short-written 
feedback can contribute to this process of learning, and Swaffield (2011) highlights for assessment 
to be fruitful, it is important that it is directed towards learning that occurs in activities that are taking 
place there and then. Furthermore, feedback has greatest effect when aimed at a particular task and 
have concrete suggestions for improvements (Hattie & Timperley, 2007). In a classroom, formative 
assessment can occur in two different ways: spontaneously or planned (Dixson & Worrell, 2016). 
Spontaneous formative assessment is characterised, for example, by the teacher taking hold of 
academic moments that appear in the teaching and allowing the participants to contribute with 
academic justifications and examples on the spur of the moment. Planned formative assessments 
allow teachers to become aware of participants’ current competences, and such information can help 
facilitate and adapt further learning and teaching (Wylie et al., 2009).  

Lunenberg et al. (2007) argue that teacher educators can model teaching in four different ways: 
implicit modelling, explicit modelling, explicit modelling by facilitating to classroom practice and 
connecting their own teaching with theory on how to teach. Implicit modelling is when the teacher 
educator uses themselves as good examples of how to teach. However, without an explicit discussion 
of why their teaching is a model for good teaching practices, there is a risk of prospective teachers 
not recognising the transfer value because they do not recognise the connection to practice and theory. 
Prospective mathematics teachers need to know not only the right answers to questions but also how 
to teach mathematics in appropriate ways to pupils. This can be achieved by teacher educators 
modelling, for example, how to use different models for teaching fractions. Olanoff et al.’s (2014) 
research summary showed that while student teachers often knew how to procedurally calculate with 
fractions, they struggled with knowing why the procedures worked and how to use number sense to 
understand fractions. The work developed in this study draws from the outlined theory, emphasising 
how formative assessment, using short written feedback contribute to guiding prospective teachers in 
their learning of teaching mathematics. Based on Hattie and Timperley’s (2007) framework of 
effective feedback, which includes questions such as “where am I going”, “how am I going” and 
“where to next”, we see the goal of this study as an opportunity to identify prospective teachers use 
of such feedback.  

Research design and context 
Prospective teachers intending to teach in grades 1-7 (ages 6-12) in Norway have a mandatory 
mathematics course (equivalent to 30 ETCS), which is a blend of learning mathematics and learning 
how to teach mathematics. Pupils in Norwegian primary schools do not receive grades, so their own 
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future assessments will be mostly formative. In this semester they studied 10 ECTS in mathematics 
(in addition to 10 ECTS in Norwegian and 10 ECTS in pedagogy). The course theme in this period 
was fractions; with the use of different fraction models (i.e., area model, set model, and place on a 
number line) and how to use visualisations and representations for pupils’ understanding of fractions. 

Each lesson started with an introduction to the intended goal, and at the end of the lesson, the 
prospective teachers were asked planned question(s) based on the lesson’s teaching goal, in line with 
Swaffield’s (2011) point that the assessment should be directed towards the activities at that point in 
time. The prospective teachers got about 10 minutes to independently answer these questions in a 
notebook and handed it in before leaving. The teacher educator would afterwards write short written 
feedback to their answers, in the form of questions and reflection notes. The notebooks were given 
back at the start of the next lesson. The prospective teachers got the opportunity to reflect and make 
written changes according to the feedback. The idea was to encourage them to evaluate their own 
work, challenge and explore their choices and teacher knowledge so that the gap between what the 
prospective teachers understood and what the teacher educator wanted them to understand decreased.  

The teacher educator (one of the authors) was a teacher with more than 10 years teaching experience 
from both lower secondary school and teacher education. She was experienced in using formative 
feedback, primarily in lower secondary school, and familiar with Black and Wiliam’s (2009) 
framework. During the project the authors of the paper discussed how to give feedback to the answers. 
All the prospective teachers in the class agreed to participate in this study; however, not everybody 
was present for each lesson. Data were collected during a five-week period, within a weekly session 
of three hours. However, in this paper we only analyse one cycle of feedback and answers after one 
lesson, in which the teaching had focused on how to visualise and compare fractions using different 
models. The stated learning goal of this was: ‘‘you should be able to use different models for fractions 
and assess when the different models are suitable.’’ The questions the prospective teachers answered 
at the end of the lesson was ‘‘which of these fractions is larger,  or ? Answer with as many 

visualisations as you know’’ and the same question, with comparing the fractions  and  .  

Data analysis 

The data analysed in this paper come from 30 prospective teachers who had answered the questions 
after the lesson and responded to written feedback. The feedback from the teacher educator was in 
the form of short questions and comments and varied from short encouraging answers, such as 
‘‘good’’ to questions, such as, ‘‘could you show this with more visual models?’’ and ‘‘could you 
show this more accurately?’’ This included responses intended to encourage the prospective teachers 
to think about how to use their knowledge in a classroom setting, such as ‘‘how could you show this 
for a 5th grade?’’ and ‘‘how could you do this if the pupil did not know how to find a common 
denominator?’’ 

The coding and thematic analysis were done by all three authors. We read all feedback and answers 
individually. We discussed what we had seen and decided to code the feedback given by the teacher 
educator as ‘‘mathematical feedback’’, ‘‘reflective teacher questions’’, ‘‘encouraging comments’’ 
and ‘‘other’’. These categories were not mutually exclusive, some of the comments and questions 

Proceedings of CERME12 3845



 

 

were shared between content knowledge of fractions and how to teach fractions, while other questions 
and comments were focused on either content knowledge or teaching knowledge. The coding of the 
teacher feedback was afterwards done individually by the first and third author, and then compared 
and discussed until we reached consensus. In this paper we report on the analyses of the prospective 
teachers’ responses to the questions and comments that gave them the opportunity to reflect and 
comment on the use of their knowledge in a mathematics classroom. We focused our analysis on the 
notebooks of prospective teachers who had been given what we coded as a reflective teacher question 
(22) and had in some way answered this question (16). These answers were then individually divided 
by the authors according to the prospective teachers’ revisions and comments 1) with a focus on the 
mathematics content, 2) with a focus on how to teach, and 3) those that were either wrong or not in 
accordance with the feedback. Here we again compared and discussed for consensus in the grouping. 
These three categories enabled us to compare the prospective teachers’ responses. Here, we report on 
three characteristic examples of the prospective teachers’ answers.  

Results 
The analysis of the prospective teachers’ answers to questions about how the knowledge could be 
implemented in a classroom showed that they answered quite differently to similar questions. The 
answers showed that the prospective teachers were unsure of how to use their knowledge in a teacher 
context, and some, in their reflections, also showed this uncertainty.  

The first example is from a prospective teacher who answered the feedback ‘‘which model do you 
think is best suited for explaining to a 5th grade’’ which they had gotten in response to their answer 
to original question, ‘‘which of these fractions is larger  and ? Answer with as many visualisations 
as you know.’’ There was also a comment on a more mathematical issue, where the teacher educator 
had drawn an arrow between the number lines and asked, ‘‘what was important here?’’ 

 
Figure 1: Prospective teacher’s original answer, with feedback from teacher educator in red 
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In the prospective teacher’s original answer, they used an area model, a set model, and a number line 
to visually represent the fractions  and . There was no written answer to which fraction is larger, 
and it was not clear from the answer how the prospective teacher’s intended to use these to figure out 
which fraction is larger. They answered the feedback from the teacher educator and wrote 

To be best for a 5th grade it is important that the distance on the number line is the same for each 
value, and maybe it should have been marked [with] the numbers across…? Or maybe the most 
important [is] to show that 1 is  so that it does not get confusing that  is the value of one whole 
and not the value 7. 

In their answer, the prospective teacher incorporated both the mathematical issue about a number line 
with 7 or  and discussed what could be done when teaching pupils. They used the feedback to reflect 
on what could be important in a classroom, but they signalled uncertainty with their use of ‘‘…? Or’’. 

Similarly, another prospective teacher had written in their original answer that their own drawing was 
inaccurate. The teacher educator challenged the prospective teacher to again think about how to 
compare  and  for pupils. 

 
Figure 2: Prospective teacher’s original answer (left) and teacher educator’s comment (right) 

This example shows how the prospective teacher used the feedback (see Figure 2), ‘‘since it is 
inaccurate, what would you do to show a 5th grade?’’, to answer, ‘‘for explaining for a fifth grade I 
would focus on the explanation of parts and whole, and from there discuss these two magnitudes. I 
think. Difficult to answer this now.’’ The answer shows that the prospective teacher’s awareness that 
they could not fully answer the feedback and that they were still in a learning process.  

The third example is from a prospective teacher who had gotten feedback on their answer to the 
question, ‘‘which of these fractions is larger,  or  ? Answer with as many visualisations as you 
know.’’ As seen in Figure 3 (left-hand side), in their original answer that they show knowledge about 
the different representations (i.e., circular and rectangular area models and number lines), but they 
did not show how these models could be used to compare fractions. Here, the teacher educator gave 
the feedback. ‘‘Ok! How can you show this clearly for a 5th Grade which is larger?’’ 
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Figure 3: Prospective teacher’s original area models (left) and revised area models (right) 

The prospective teacher’s revised answer (Figure 3, right-hand side) shows the fractions sketched 
using a rectangular area model, but here, they chooses the same shape and size for a unit fraction. 
Although there are no notes to accompany the drawing, the drawing is precise. It shows  and , and 
the rectangles are drawn above each other, which makes a comparison easy. However, in this 
question, it may have been obvious to the prospective teacher that  was bigger than , since  is more 

than two wholes, and  is just above one whole.  Therefore, the shape of the area models may not 
have mattered to the prospective teacher in this case. 

Discussion and concluding remarks 
In this project, the teacher educator used implicit modelling for an assessment practice that the 
prospective teachers could use in their own classrooms. We saw that the teacher educator used 
different kinds of comments in the feedback, which ranged from encouraging remarks to 
mathematical comments, and comments directed at giving the prospective teachers a nudge towards 
thinking of their future classroom teaching. The three answers shown in this paper are examples of 
the prospective teachers’ reflections after they had revived short written feedback intended to point 
forwards and help them take a teacher perspective. The prospective teachers, by answering the 
questions and receiving tailored comments, got the opportunity to reflect on how the fraction models 
could be used in teaching mathematics and experienced an assessment practice, which they also could 
use in their own teaching. This is in line with Rojas et al.’s. (2021) suggestion on how to improve 
learning processes in mathematics teacher education.  

It seemed like that when first asked about comparing fractions in different ways, the prospective 
teachers answered with a focus on showing that they could draw different models. This may be a 
consequence of the question they were asked, which consist of two parts, both comparing the fractions 
and showing different visualisations. It may be that the prospective teachers focused on showing their 
knowledge of different fraction models and disregarded the point that they should compare the 
fractions. In the lesson the teacher educator had both showed how to visualise different fraction 
models and showed how to use them for comparison. With the original questions, the teacher 
educator’s intention was that the prospective teachers should model ways that could be used in a 
classroom, so the questions in this case had two functions. The teacher educator could use the 
questions and answers with feedback to help the prospective teachers turn their attention towards  1) 
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using the fraction models as teaching tools and 2) realise that there was a gap between the prospective 
teachers’ answers and the teacher educator’s intentions. For formative assessment it is important that 
learning goals are understood, and here the formative assessment gave both the teacher educator and 
prospective teachers the opportunity to adjust their understanding of the goal of the lesson. Such 
common understanding can contribute to a community of learning (Black et al., 2003). 

The feedback they received gave the prospective teachers opportunities to assess and reflect on their 
previous answers. They showed that they were aware they were still in a learning process, and some 
of their answers communicated to the teacher educator their own uncertainty about how to respond 
to the feedback. We argue that the prospective teachers were in a process towards owning their own 
learning, which is an important aspect of a formative assessment (Black & Wiliam, 2009). The 
prospective teachers get little individual feedback during their mathematics courses in our institution. 
With such short-written feedback, they got the opportunity to reflect on if they could answer the 
questions related to the lesson. The feedback can use in their learning both immediately when they 
received the feedback and later while revising the course content on their own. We also found that 
the prospective teachers used this feedback loop to establish a rapport with their teacher educator and 
indicate where they were unsure about something, which was useful for both. 

From a teacher educator’s perspective, the formative assessment gives the teacher educator an 
opportunity to identify where the prospective teachers are struggling and provide feedback to help 
promote learning. This can be done for individuals as comments and by lifting problematic areas into 
the teaching of the whole class. In retrospect, we recognise that more thorough feedback could have 
been given in the answers. For example, this could be to point out more misunderstandings and give 
more specific positive remarks. However, because the project was intended to be carried out with 
teacher educators’ busy schedule, it is important to reflect on which and how many comments are 
given.  
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Assessment plays a very important role in the educational process in the subject of mathematics. 
This study investigates the way 33 secondary school teachers who teach mathematics assessed 
students’ written texts in mathematics as well as the resources they draw on when they assess such 
texts. The research tool is a questionnaire based on three authentic students’ written texts, graded 
by the mathematicians and the grading justification that was given. Data analysis revealed strong 
differentiations in grading. The resources on which the mathematicians draw on to justify the 
grading relate mainly to their beliefs about the nature of mathematics and their expectations of 
‘communicating’ mathematical knowledge. 

Keywords: Assessment in mathematics, resources, grading. 

Introduction  
Assessment has been disputed for ages despite its importance in the educational process as it is 
considered to legitimize social inequalities reducing them to inequalities of individual abilities. 
Research in mathematics education distinguishes three types of assessment of students’ work: 
diagnostic, formative and summative assessment (van de Walle et al., 2017). Summative 
assessment has begun to be challenged at an institutional level while the usefulness of formative 
assessment has been highlighted. 

In recent years, research has focused on teacher’s pedagogical discourse regarding the assessment 
of students’ work, i.e. the set of knowledge he/she uses and the practices he/she adopts when 
participating in the assessment process, and offers a framework that allows the identification of the 
concepts attributed by the teacher (Tang et al., 2012). While assessing, the teacher draws on 
resources, that is, structures of accumulated knowledge, which include language, representations, 
values and beliefs, to produce or interpret texts. Morgan and Watson (2002), considering the 
purpose of assessment to be the evaluation of students’ achievements, highlight the complexity of 
the process, as teachers’ judgments are influenced by various factors that ‘force’ them to draw on 
different resources every time. In this sense, it is to be expected to observe variations in assessment, 
which are due, among other things, to the assumption that there is not necessarily a ‘relationship’ 
between the text produced by a student and the meanings that the teacher, as a reader of this text, 
creates (Morgan & Sfard, 2016).  
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Earl (2006) adds students’ perceptions of their capabilities. As a result, the feedback provided 
motivate the development of their self-image/self-concept. In addition the teacher’s expected 
cognitive skills for the students, sometimes positively or negatively at times, affect the objectivity 
that assessment in mathematics, needs to promote. Zhao et al. (2016), in their study, refer to the 
assessment criteria adopted in mathematics curricula as important. Finally, Buchholtz and Nortvedt 
(2018) include in their assessment resources the different expectations and beliefs of teachers about 
students’ ‘cognitive-learning achievements’ in relation to gender or the ‘categorization’ of students 
into ‘majority and minority students’. 

The focus of the present study is on the interpretative nature of the assessment of students’ written 
mathematical texts, as well as the resources linked with these interpretations. The aim of the study 
is to show these resources used by teachers when assessing students’ written mathematical texts. 

The assessment of students’ written texts in mathematics: theoretical framework 
Morgan (2000) investigated the relationship between the mathematical knowledge ‘shown’ in 
students’ texts and the mathematical text assessed by assessors. By identifying the features of the 
texts that were important for the teachers and the resources they used for assessing, Morgan (2000) 
categorized the resources and concluded that identical student’s texts receive different ratings from 
teachers and she has identified the resources that teachers used to understand and assess students’ 
written texts as follows: (a) a teacher’s personal knowledge (PK) of the subject of mathematics and 
the relevant curriculum, combined with the affective aspects that are evident as a teacher’s personal 
‘story’ in relation to mathematics is written out, (b) teachers’ beliefs about the nature of 
mathematics (NM) and the ways in which it is linked to assessment, (c) teachers’ expectations of 
the ways in which the individual involved in the educational process can ‘communicate’ 
mathematical knowledge (ECM), (d) teachers’ experience and expectations of their students and the 
classroom as a whole (EEC), (e) teachers’ experience and their impressions and expectations of 
students individually (EES), (f) teachers’ cultural background and language skills acquired (LC).  

In the study of Morgan and Watson (2002), informal assessments appeared to be influenced by a 
variety of factors that had little to do with students’ mathematical achievement, while the use of 
different resources, such as expectations about the nature of mathematics or personal mathematical 
understanding, including experiences, knowledge, beliefs and priorities can lead to very different 
judgments for individual students. Klothou and Sakonidis’ research (2011) attempted to study the 
pedagogical discourse that primary teachers develop about students’ mathematical achievement. 
The analysis revealed that different teachers can interpret the same or similar students’ texts in 
many different ways, either by considering different elements as important or by assigning different 
value to similar features. Teachers’ assessments are mainly fuelled by the resource about beliefs of 
the nature of mathematics and its connection to assessment, and tend to be informal in nature and 
clearly lack certain criteria. Assessment is perceived in different ways by teachers, with the main 
influencing factors being the curriculum, parents’ perceptions of students’ grades, cognitive criteria 
and personal relationships with students. Stagnation in the field of assessment was also evident, as 
grading is based on formal exercises and closed-ended questions. 
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The study   
Traditional forms of assessment are now challenged by (a) the belief that mathematical knowledge 
is complex, so traditional forms of assessment are almost impossible to ‘measure’ it successfully, 
(b) the strong sense that even the most objective tests contain and record cultural biases, (c) the 
recognition of the dominant influence of the assessment system on the curriculum (Klothou & 
Sakonidis, 2015).   

Given the importance of assessment in the cognitive, social and emotional development of the 
student, research findings point out that the same student’s text can be read and assessed very 
differently by different teachers or even by the same teacher in different circumstances and 
moments depending on the resources that each one uses, take on greater significance. The different 
experiences, expectations, personal ‘stories’ of each teacher, as well as the epistemological 
consistency of each teacher, makes the meaning he/she attributes to and extracts from each text 
different.  

In the Greek educational system, the importance attached to students’ written mathematical texts is 
undeniable, however there hasn’t been sufficient research in the field on secondary education. 
Focusing on secondary education and based on authentic written mathematical texts of students, we 
try to open a discussion by posing the following research questions. 

1st research question: Are there differences in the assessment of the same written mathematical 
texts of high school students by mathematicians in secondary education?  

2nd research question: What resources do mathematicians in secondary education draw on when 
grading an unknown student’s written mathematical text? 

The sample consisted of 33 mathematicians who taught mathematics in public schools and were 
selected by convenient sampling. Specifically, the sample consisted of 14 women and 19 men, from 
different places of Northern Greece. 16 of them have a postgraduate degree while 6 are in the 
process of obtaining one. Three of them have a doctoral degree and another 3 are in the process of 
obtaining it. 2 of them have 0-5 years of teaching experience, 4 have 6-10 years of teaching 
experience, 4 have 11-15 years of teaching experience, 11 have 16-20 years of teaching experience, 
5 have 21-25 years of teaching experience and 7 have more than 25 years of teaching experience. 

The research tool of the study was a questionnaire, which consisted of (a) 18 questions about their 
beliefs about the nature, learning, teaching and assessment of mathematics and (b) three authentic 
student’ texts, which were graded by the teachers as well as the reasons for the choice of grade that 
was given. The present study investigates the second part of the questionnaire in order to study the 
resources adopted by the teachers in their assessment process in mathematics. This questionnaire 
was also used in a relevant related study with primary school teachers in order to compare possible 
differences in assessment between primary and secondary teachers.  

This paper presents the results regarding the grading and the justification of the three authentic 
students’ mathematical texts that was given by the mathematicians of the sample.  
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Mathematicians were asked to grade three authentic students’ writing assignments in mathematics 
that involved: the first, solving a first-grade equation, the second, solving a problem and the third, 
solving a geometry exercise. The first of the three written texts was chosen because it is typical in 
written examinations in the Greek educational system for students in the second grade and it 
combines algebraic and arithmetic knowledge. The second one was chosen as a typical example of 
mathematization of a problem. The third one is a geometry problem including the drawing of a 
geometrical shape. All three written texts included parts that were answered wrongly as well as 
parts that were answered correctly because we wanted to see how teachers assess when they have 
dilemmas.  

The questions to the mathematicians and the students’ texts are presented below: 

Question to the mathematicians: “Study a 14 year-old student’s response to an exercise given on a 
written exam at the end of a school year. Score from 0 to 4 points and justify the mark given 
(decimal values are also acceptable)”. 

 
Figure 1: Student’s text 1 

Question to the mathematicians: “Below is the response of a 15 year-old student to a test. The 
problem was as follows: Demis,  Kostas and Maria have a total of 52 euros. Demis has three times 
as much money as Kostas and Maria has 1/3 of Kostas’ money. (a) If Kostas has x euros, then how 
can we symbolize the money that Demis and Maria have? (b) Find how much money has each. 
Mark from 0 to 3.5 points for this text and justify the grade you have given (decimal values are also 
acceptable)”. 

 
Figure 2: Student’s text 2 

Question to the mathematicians: “Below is a response to a test from a 15 year-old student. The 
exercise was as follows: Given an isosceles triangle ABΓ (AB = AΓ) and its bisectors ΒΔ and ΓE. 
After drawing the shape, prove that (a) triangles ΒΔΓ and ΓΕΒ are equal, (b) AΔ=AE. Grade this 
text from 0 to 4.5 points and give reasons for the grade you gave (decimal values are acceptable)”. 
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Figure 3: Student’s text 3 

Techniques of Grounded Theory combined with Morgan’s (2002) categorization of resources were 
used in order to analyze the data. Careful readings of the data were carried out to identify the 
resources to which the teachers referred when assessing students’ texts.  

The abbreviations used for the resources on which the mathematicians drew on are: NM: teachers’ 
beliefs about the nature of mathematics and the ways in which these are linked to assessment; 
ECM: teachers’ expectations of the ways in which students can ‘communicate’ mathematical 
knowledge; NM+ECM: a combination of NM and ECM. The resources ‘teachers’ personal 
knowledge of mathematics and curriculum combined with the affective aspects of their personal 
‘story’ in relation to mathematics (PK), ‘experience and expectations for pupils and classes in 
general’ (EEC), ‘experience, impressions and expectations for specific pupils’ (EES) and ‘language 
skills and cultural background’ (LC) appeared a few times, always in combination with the 
resources NM and/or ECM, were grouped under the name COMB. 

Results 
1st research question: The mathematicians’ grades were converted into the scale of 0 to 10. The 
average of the three scores per teacher was also calculated. The grades are shown in Table 1, 
grouped within a range of 2 points.  

Table 1: Descriptive statistics of teachers’ scores 

Grading 1st text  2nd text  3rd text  
Average of the 3 written 
texts per mathematician  

[0-2) 2 (6%) 4 (12.1%) 7 (21.2%) 3 (9.1%) 

[2-4) 9 (27.3%) 3 (9.1%) 16 (48.5%) 10 (30.3%) 

[4-6) 12 (36.4%) 14 (42.4%) 7 (21.2%) 14 (42.4%) 

[6-8) 9 (27.3%) 8 (24.3%) 3 (9.1%) 6 (18.2%) 

[8-10] 1 (3%) 4 (12.1%) 0 (0%) 0 (0%) 

Total  33 (100%) 33 (100%) 33 (100%) 33 (100%) 
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Average  4.54 5.32 3.3 4.39 

Standard Deviation  2 2.39 1.82 1.64 

From Table 1 it is clear that there were strong differences in all 3 texts. The 2nd text was graded the 
highest and the 3rd text was graded the lowest. In the 1st text more than 1/3 of the teachers (33.3%) 
graded below 4, while 1/3 of the teachers (30.3%) graded more than 6, in the 2nd text about 1/5 of 
the teachers (21.2%) graded below 4, while more than 1/3 (36.4%) graded above 6; in the 3rd text 
1/5 of the teachers (21.2%) graded below 2, while 1/3 of the teachers (30.3%) graded more than 4.  
In the average below 4, slightly less than half (39.4%) graded below 4, while less than 1/5 (18.2%) 
graded above 6.  

2nd research question: Teachers were asked to justify their grades and specifically to mention any 
necessary information regarding their thoughts, opinions so that we could understand how they 
graded each text. The analysis was carried out by carefully reading the justifications and placing 
them in one or more resource categories.  

Below there are some characteristic extracts from the discourse mathematicians used in the 
categorization. For the category NM: “most part of the equation is correct as well as the result”, 
“the student knows enough about the concepts, he can create an equation”, “the student did not 
understand that the answer is not ‘realistic’. For the ECM category: “the student does not state the 
criteria”, “the student does not justify the equations”, “the student does not use symbols”, “the 
student does not solve the problem questions”. For the categories NM and ECM the same 
mathematician stated: “the student does not write all the elements in the shape, ignores basic 
solving practices, has not understood the meaning, does not know basic things of geometry, does 
not adequately justify what he reports”, “the initial thought is correct, he did not clearly answer the 
questions and got the wrong result”. For the COMB category: “the student acquired the necessary 
procedures for solving”, “the steps for solving are correct, some misinterpretation in the operations, 
I could have given a slightly higher grade, if I judged that the student made a serious effort and I 
wanted to encourage him”. 

Table 2 presents the results of the analysis on the resources used by the mathematicians. 

Table 2: Frequency of mathematicians by resource 

Resources  1st text  2nd text  3rd text  

  N % N % N % 

NΜ 23 69.7 15 45.5 6 18.2 

ECM 0 0.0 2 6.1 2 6.1 

NM+ECM 1 3.0 14 42.4 19 57.6 

COMB 9 27.3 2 6.1 6 18.2 
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Table 2 shows that, for the first text, the majority of the mathematicians (69.7%) used resources 
related to the nature of mathematics, assessing understanding of the solution process and fluency in 
operations. Slightly less than one-third of the mathematicians (27.3%), in addition to beliefs about 
the nature of mathematics, drew on pedagogical-emotional resources, such as expectations for the 
classroom or for a particular student, either in the positive direction (“I give him/her a graceful 
grade for trying to get to the end of a process he/she does not understand”) or in the negative 
direction (“mistakes that may have been allowed in earlier grades, but not now”).  

For the second text, the results are different. Almost half of the mathematician (45.5%) focused on 
whether the student knew how to mathematise the verbal description and then solve the equation. 
The other half (42.4%) additionally assessed how the student ‘communicated’ this knowledge and 
considered the absence of an answer to question (a) to be significantly negative. In relation to the 
third text, more than half of the mathematicians (57.6%) drew on their beliefs about the nature of 
mathematics and also on their expectations about how mathematical knowledge was 
‘communicated’. Symbolism, having justification and using one question to solve the next were 
highlighted as desirable elements. For the last one, one mathematician even stated that he does not 
take the “trivial solution” into account at all. Less than 1/5 of the mathematicians (18.2%) drew 
only on their beliefs about the nature of mathematics and 6.2% only on the way the student 
‘communicated’ his knowledge. Almost 1/5 drew on other resources and one mathematician 
commented on the part of the answer that the student had erased. Finally, the mathematicians rated 
the construction of the shape from 0 to 1.5 when the perfect total grade was 4.5. 

Discussion and concluding remarks 
1st research question: Teachers graded the three students’ texts very differently, which is consistent 
with the findings of other studies (Morgan, 2002) that the same text can be graded very differently 
by teachers who teach mathematics because it depends on the resources they use and thus the 
meaning that each assessor gives to the written text is not unique. 

2st research question: Almost all mathematicians drew on resources relevant to their beliefs about 
the nature of the subject matter. In the two texts, 2 and 3, the mathematicians also referred very 
frequently to what they would like a mathematical text to include when the students communicate 
their knowledge. In a similar study concerning primary education (Klothou & Sakonidis, 2011), in 
all cases the teachers drew primarily on resources related to their expectations of how mathematical 
knowledge can be ‘communicated’ and then on resources related to their beliefs about the nature of 
mathematics. In this study, beliefs about the nature of mathematics, either alone or in combination 
with expectations about ‘communicating’, emerged as the dominant resources on which teachers 
primarily drew. Finally, the results of this study also show that the resource pattern used in primary 
schools, namely that of the expectation of ‘communication’, does not appear. The assessment of 
each text was recorded with its own characteristics, significantly different from the others.   

Despite its limitations, this study essentially aimed at investigating the assessment process in 
mathematics in secondary education. It highlighted the complexity of factors that influence the 
outcome of student’s assessment in mathematics and are equally related to the subject matter itself 
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as well as to socio-emotional aspects of those involved, leading them to use resources that are in 
fact unique to each individual.  

This interpretative nature of assessment, combined with the importance of its results for student’ 
development and the criticism regarding its contribution to the reproduction of social inequalities, 
create a field that needs further study in order to bring to the fore the weaknesses and strengths of 
existing assessment frameworks. Such knowledge being shared in the educational community is a 
step towards the search for and adoption of frameworks that value the learning achievements and 
potential of each individual student. 
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Digital exams often fail in assessing all required mathematical skills. Therefore, it is advised that 
large-scale exams still feature some handwritten open answer questions. However, assessing those 
handwritten questions with multiple assessors is often a daunting task in terms of grading reliability 
and feedback. This paper presents a grading approach using semi-automated assessment with atomic 
feedback. Exam designers preset atomic feedback items with partial grades; next, assessors should 
just tick the items relevant to a student’s answer, even allowing ‘blind grading’ where the underlying 
grades are not shown to the assessors. The approach might lead to a smoother and more reliable 
correction process in which feedback can be communicated to students and not solely grades. The 
experiment took place during a large-scale math exam organized by the Flemish Exam Commission, 
and this paper includes preliminary results of assessors’ and students’ impressions. 

Keywords: Assessment, computer-assisted assessment, state examinations, feedback, inter-rater 
reliability. 

Introduction 
Regardless of all the practical advantages digital exams offer, Hoogland and Tout (2018) warn that 
digital questions focus on lower-order goals (e.g., procedural skills). They argue that handwritten 
questions are better suited to assess vital higher-order goals (e.g., problem-solving skills). Lemmo 
(2020) highlights substantial differences in students’ thinking processes when the same question is 
asked digitally or paper-based. Bokhove & Drijvers (2010) point out that handwritten questions allow 
students to express themselves more freely. For all these reasons, Threlfall et al. (2007) advise 
deciding for each question individually whether the digital or handwritten mode is appropriate, 
leading to exams that are a mixture of both. 

One major issue with handwritten questions is to find ways to assess them efficiently and reliably. 
Indeed, when the correction work is distributed among several assessors, guaranteeing grading 
reliability (Billington & Meadows, 2005) and consistent feedback (Baird et al., 2004) is challenging. 
Most exam designers try to ensure reliability by pre-developing a solution key with grading 
instructions for assessors (Ahmed & Polit, 2011). 

General idea 

In this paper, we introduce a novel approach to assess handwritten students’ solutions with multiple 
assessors in a semi-automated1 (SA) way: students solve these questions the classical way by writing 
on a sheet of paper. Next, these sheets are scanned, and assessors use the SA-system to correct the 

 
1 In the rest of this paper, we use the abbreviation SA to refer to our semi-automated assessment approach with reusable 
feedback. 
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solutions on a computer. Exam designers provide a solution key for each question consisting of 
different feedback items, written in an atomic way (see below), anticipating the most common 
mistakes. These feedback items can be linked to partial points for grading. When correcting a 
student’s solution, the assessors have to select the appropriate feedback items, so the same feedback 
items are reused repeatedly. If a certain solution approach by a student is not covered in the available 
feedback items, an assessor can add a new feedback item. This new item is immediately available to 
all other assessors, leading to a dynamic solution key that expands as more and more corrections are 
made. When all assessors finish their job, the system produces individual reports for all students, 
including the grades and feedback.  

In the following subsections, we discuss atomic feedback, the link with adaptive grading, and the idea 
of ‘blind’ grading. 

Atomic feedback 
Classic written feedback has traditionally consisted of long pieces of written text (Winstone et al., 
2017). With its long sentences describing all of the errors in a student’s work, classic written feedback 
is intrinsically not very reusable, as it is too explicitly targeted toward specific students. To overcome 
this difficulty and maximize the reusability of feedback, one of the key ideas underlying the proposed 
SA system is that it allows exam designers and assessors to write atomic feedback (see Figure 1). To 
write atomic feedback, one has to (1) identify the possible independent errors occurring and (2) write 
separate feedback items for each error, independent of each other. These atomic feedback items form 
a point-by-point list covering all items that might be relevant to a student’s solution. The list can be 
hierarchical to cluster items that belong together (see Figure 1). 

We have intensively studied atomic feedback in the first study of this PhD-project in the context of 
individual math teachers giving feedback to their students (Moons et al., 2020). The results of this 
study (Moons et al., in press) indicated that atomic feedback is significantly more reused than non-
atomic feedback, so we found formal requirements to write feedback that can be reused. Teachers 
also tend to give more feedback when writing and reusing atomic feedback instead of saving time. 
However, since the atomic items are shared across multiple assessors in this second study, an 
additional criterium for atomicness is added: (3) a knowledgeable assessor must be able to determine 
unambiguously whether an item applies to a student’s answer or not. As such, each item implicitly 
represents a yes/no question. Related atomic feedback items and intermediate steps in a solution key 
can share the same color to visually clear their connection (see Figure 1). 

Adaptive grading 

To obtain grades, exam designers can associate atomic feedback items with partial points to be added 
(green items in Figure 1) or subtracted. It is also possible to associate items with a threshold (e.g., ‘if 
this feedback item is ticked, no points’, red items in Figure 1).  

The point-by-point list of atomic feedback items ultimately forms a series of implicit yes/no questions 
to determine the students’ grade. Dependencies between items can be set, so items can be shown, 
disabled, or changed whenever a previous item is ticked, implying that assessors must follow the 
point-by-point list from top to bottom. This adaptive grading approach resembles a flow chart that 
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automatically determines the grade, but – by ticking the items that are relevant to a student’s answer 
– might at the same lead to several other envisioned benefits: (1) a deep insight into how the grade 
was obtained for both the student (feedback) as well as the exam committee and (2) a straightforward 
way to do correction work with multiple assessors as personal interpretations are avoided as much as 
possible (inter-rater reliability). 

 
Figure 1: An example of adaptive SA grading with atomic feedback 

In Figure 1, an example of the SA approach is given. The students’ answer survives the ‘First check-
up’ items; checking one of them would otherwise disable all of the following items. As the item 
‘Correct complex conjugate 1-3i’ is unticked, the computer knows that a mistake happened; however, 

Proceedings of CERME12 3861



 

 

assessors should continue their assessment of the answer by taking into account that the students’ 
steps will now deviate from the solution key for some items; these items are indicated by ‘Check 
individually.’ All the orange content would have disappeared when the item ‘Correct complex 
conjugate 1-3i’ had been ticked. The item ‘Correct final answer in a + bi form’ only gets enabled 
when all previous green items are ticked. The two ticked items each add 0.5 points to the grade, 
leading to a total of 1 out of 2.5. 

Blind grading 

Imagine that all references to points/grades disappear in Figure 1. This leads to the experimental idea 
of ‘blind grading’ where the assessor chooses the appropriate feedback items without seeing the 
associated scores. The system still calculates the grades, but these are invisible to the assessors. The 
envisioned advantage of this grading approach is that assessors only need to focus on the content of 
a student’s answer; any emotional barrier to select a feedback item disappears, possibly leading to 
higher grading reliability. Indeed, Ahmed & Pollit (2011) already indicated that deviations from a 
traditional solution key often occur when assessors disagree with the obtained grade. A possible 
disadvantage is that assessors might be afraid of being too lenient or too harsh. They lose an important 
frame of reference since they cannot compare if the calculated grade matches their sense of fairness. 

The opposite mode of blind grading will be called ‘visible grading’ in the rest of the paper; this is the 
standard mode where assessors can see the associated points for every feedback item and the 
calculated total grade (see Figure 1). Note that blind grading should not be confused by anonymous 
grading (Hanna & Leigh, 2012); in anonymous grading, assessors do not see the student’s names to 
avoid certain biases (e.g., gender, ethnicity,...). 

Research questions 
After introducing the general idea and the key concepts, we present the first two research questions 
associated with preliminary investigations on assessors’ and students’ impressions of SA grading.  

(RQ1) How did assessors appreciate the SA system with blind/visible grading regarding perceived 
usefulness and ease of use? 

(RQ2) How did the students perceive their personal atomic feedback with grades? 

Methods & Materials 
The experiment is being executed in association with the Examination Commission of the Flemish 
government. Flanders is the Dutch-speaking part of Belgium. Flanders is a region without any central 
exams (Bolondi et al., 2019): every secondary school decides autonomously on the assessment of 
students. Consequently, the Examination Commission does not organize national exams for all 
Flemish students but organizes large-scale exams for everyone who cannot, for whatever reason, 
graduate in the regular school system. This way, students who successfully pass all their exams at the 
Examination Commission can still obtain a secondary education diploma. Students participating in 
these exams prepare autonomously or use a private tutor/school. The Examination Commission only 
provides clear guidelines for students on the content of the exams, carries out all the exams, and 
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awards diplomas, but does not provide any teaching activities to students. We received ethical 
clearance from the ethical committee of the faculty of social sciences from the University of Antwerp. 

Materials 

Development of the ‘group’ SA-system 

We developed an adaptation of the SA tool (described in Moons et al., in press) ready for handwritten 
assignments with a group of assessors. The tool is integrated as an advanced grading method in 
Moodle, an open-source e-learning platform. As Moodle is a framework offering many readily 
available components (such as a grade book, log in and uploading assignments,…), it guarantees 
rapid application development. The group assessment tool contains all the features explained in the 
introduction of this paper.  

Mathematics exam 

The mathematics exam for this experiment was developed by the exam designers of the Flemish 
Examination Commission in the way they always develop exams. Their solution key was turned to 
atomic feedback items for SA grading in close cooperation with us. The exam was one of the two 
math exams for the advanced mathematics track of Flemish secondary education and features 
complex numbers, matrices, space geometry, discrete mathematics, statistics, and probability. 
Interestingly, the exam is already a mixture of fully automated and handwritten questions: 46% of 
the exam grades are obtained with digital questions. Our experiment will only focus on the 54% part 
that consists of 10 paper-based questions with an open-answer format. 

Survey based on the TAM model for assessors 

We developed a short, validated survey based on the Technology Acceptance Model (Davis, 1989) 
to measure how assessors experienced the SA system’s usefulness and ease of use. The survey 
distinguished between the SA system using visible grading and the SA system using blind grading.  

Survey based on feedback perceptions for students 

We constructed a questionnaire loosely based on Weaver (2006) to measure how students perceive 
the personal atomic feedback they received. 

Participants 

60 students participated in the math exam linked to this study. The grading work was distributed 
among the 3 exam designers (employees responsible for the math exams of the Flemish Examination 
Commission) and 7 external assessors. These external assessors are mathematics teachers across 
Flanders who do this as a side job. 

Methods 

The Examination Commission designed the exam in August 2021. Next, their correction key was 
transformed to atomic feedback for SA grading in close cooperation with us. In October, all assessors 
received training with the SA system using a demo exam. The students took the exam on the 29th of 
October, 2021. All their answers were scanned and made available in the SA system. Every assessor 
had one month to correct the exams with the SA system. All student’s exams were distributed among 
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the assessors. Especially for this experiment, all assessors got 30 randomly selected exams on top that 
were corrected by all (assessors were not aware of this). Half of the assessors corrected the even 
question blind, the other half the odd questions. Correctors filled in the survey based on the TAM 
model when they finished their assessment work. At the end of November 2021, all exams were 
corrected, and a personalized survey was sent out to the students. In this survey, students got access 
to their solutions to the questions, together with the provided atomic feedback (see Figure 1). The 
survey probed students’ understanding of their feedback, how they liked the atomic form of the 
feedback, and the usability of getting feedback along with grades. After completing the survey, the 
students were invited for an in-depth interview on the same topic as the survey. 

In February 2022, all assessors will re-correct the 30 exams corrected by all, but this time in the 
traditional way of the Examination Commission. In this traditional way, they must just communicate 
a grade for each question based on a paper-based solution key. This re-assessment will give deep 
insights into the inter-rater reliability of (visible/blind) SA grading versus traditional grading. 

Results & Discussion 
The results of (RQ1) on the assessors’ views measured using the TAM model are shown in Table 1. 
The scales are measured on a 7-point Likert scale. 

Table 1: Results of the TAM model by the assessors for both visible as well as blind SA grading 

Scales 
Visible SA grading 

M±SD 
Blind SA grading 

M±SD 

1. Perceived Usefulness 5.7 ± 0.7 4.6 ± 1.5 

2. Perceived Ease of Use 5.4 ± 1.0 4.5 ± 1.4 

3. Anxiety 2.5 ± 1.1 3.6 ± 1.7 

4. Attitude Towards Using 6.1 ± 0.8 4.4 ± 1.7 

5. Behavioral Intention to Use 5.6 ± 1.2 4.4 ±1.7 

Table 1 shows that assessors have a strong attitude towards using visible SA grading, meaning that 
they like working with the visible SA grading system. Assessors rated their anxiety for visible SA 
grading as low and gave a high rating to the perceived usefulness, perceived ease of use, and the 
behavioral intention to use for visible SA grading. Blind SA grading was less appreciated on all 
scales. All assessors (100%) indicated they preferred visible over blind grading. Reasons given 
include the lack of control (71.4%), an alienated feeling (57.1%), and fear of missing items to be 
ticked (42.8%). 

For (RQ2) on the student’s perceptions of their received personal feedback (see Figure 1 for an 
example), the corresponding survey items are listed in Table 2. Of the 60 students who took the exam, 
36 students participated in this online survey (60%). Results are expressed on a 7-point Likert scale 
and indicate that they would greatly appreciate if the Examination Commission would adopt this 
approach. Students feel that they understand their atomic feedback, learn from it, and see the 
connection with the obtained grades. It is important to remember that these results are entirely based 
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on self-reporting, and other qualitative techniques (which are being carried out) are necessary to check 
if students indeed understand the given feedback. 

Table 2: Overview of the students’ survey items corresponding to their personal feedback 

Students’ survey item M±SD 

1. My feedback was too uninformative or brief to be helpful 3.6 ± 1.9 

2. My feedback encouraged me to improve 4.7 ± 1.7 

3. I will make even better exams based on my personal feedback 4.9 ± 1.6 

4. This personal feedback helps me to reflect on what I have learned 5.0 ± 1.3 

5. My feedback indicated clearly how my scores were calculated 5.5 ± 1.1 

6. I understand most of my feedback 5.3 ± 1.4 

7. It would be great if the Examination Commission always gave this type of feedback 6.3 ± 0.7 

8. I feel demoralized or angry after reading my feedback 2.8 ± 1.8 

9. The relationship between the feedback and the score is clear 5.2 ± 1.2 

Conclusion 
This paper introduced preliminary results of the second study of this PhD-project, investigating the 
possible added value of semi-automated assessment with atomic feedback when multiple assessors 
have to correct the same mathematics exam. The first results indicate that assessors rate visible SA 
grading highly but are less keen on using blind SA grading. On the other hand, students seem happy 
with the atomic feedback SA grading produces. Nevertheless, there are still many facets to this 
research study that have not been highlighted: the inter-rater reliability (comparison between blind 
SA, visible SA, and traditional grading), measurements for assessor reliability, the effect of the 
dynamic solution key,… are still uncultivated territory in the exciting universe of SA grading in 
mathematics education. 
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In this contribution we discuss a teaching and learning sequence on conjecturing and proving in 
grade 7. We rely on the Universal Design for Learning principles to design inclusive educational 
activities and we also promote the activation of formative assessment strategies, so as to create an 
educational path where the teacher monitors and, if necessary, refines the learning trajectory of each 
student of the class. Focusing on one formative assessment activity, we discuss the effectiveness of 
the sequence in terms of proof understanding and inclusion.  

Keywords: Conjecturing and proving, formative assessment, inclusion. 

Introduction and background 
In this contribution we discuss the design and implementation of a teaching and learning sequence 
aimed at fostering students’ first encounter with conjecturing and proving in lower secondary school 
(grade 7). The sequence is designed considering the principles of Universal Design for Learning, so 
as to realise an inclusive activity, and adopting formative assessment strategies.  

In order to frame our teaching and learning sequence, firstly we refer to the specific mathematical 
process at issue, that is conjecturing and proving. There is a wide body of research on the teaching 
and learning of proof, see the work of Stylianides et al. (2016) for an overview. Here we focus on the 
first approach to proof, encompassing both understanding what a proof is and in learning how to 
prove (Balacheff, 1987). As De Villiers (1990) points out, it is crucial to make students aware of the 
different functions that proof has in mathematical activity: verification/conviction, explanation, 
systematization, discovery, communication. Lin et al. (2012) present a series of principles for task 
design aimed at promoting conjecturing, proving, and the transition between conjecture and proof. In 
relation to conjecturing, it is important to provide students with an opportunity to engage in: C1) 
observing specific cases and generalizing; C2) constructing new knowledge based on prior 
knowledge; C3) transforming prior knowledge into a new statement; C4) reflecting on the 
conjecturing process and on the produced conjectures. Concerning the transition from conjecture to 
proof, the teacher should propose tasks that raise students’ need to prove. Moreover, the teacher 
should establish “social norms that guide the acceptance or rejection of participants’ mathematical 
arguments” (p. 317), emphasizing that the acceptance /rejection is based on the logical structure of 
the argument and not on the authority of the instructor. In relation to proving, it is important to guide 
students: P1) to express in different modes of argument representation (verbal arguments, symbolic 
notations, etc.); P2) to understand that “different modes of argumentation are appropriate for different 
types of statements” (p. 318); P3) to create and share their own proofs and to evaluate proofs produced 
by the teacher, thus “changing roles”; and P4) to become aware of the problem of sufficient and 
necessary proof.  
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In particular for algebraic proof, Boero (2001) describes the fundamental cycle of formalization, 
transformation and interpretation. Performing a proof by algebraic language encompasses the 
following crucial issues: the choice of the formalization, that must be correct but also goal-oriented; 
the validity and usefulness of the transformations; the correct and purposeful interpretation of 
algebraic expressions in a given context of use.  

As previously outlined, our aim is to design an inclusive teaching and learning sequence. Universal 
Design for Learning (UDL) is a multifaceted theoretical framework of learning that conceives 
teaching and learning as a dynamic system that must face the needs of all the learners (Rose & Meyer, 
2006). CAST (Center for Applied Special Technology), a non-profit education research and 
development organization, created the Universal Design for Learning framework and the UDL 
Guidelines (https://udlguidelines.cast.org/more/research-evidence), offering a set of concrete 
suggestions that can be applied to any discipline or domain to ensure that all learners can access and 
participate in meaningful, challenging learning opportunities. UDL principles are deeply rooted in 
the foundational works of Vygotsky or Bruner. For example, through Vygotsky's theory UDL 
emphasizes one of its key points of curricula—the importance of graduated “scaffolds”.  

The first UDL principle (UDL1) focuses on providing multiple means of engagement: indeed, 
besides recognizing the necessity of recruiting students’ interest, one must know that not all learners 
will find the same activities or information equally relevant or valuable. To reach this aim, the UDL 
framework suggests to: 

 UDL1.1 Vary activities and sources of information;  

 UDL1.2 Design activities so that learning outcomes are authentic, communicate to real 
audiences, and reflect a purpose that is clear to the participants; 

 UDL1.3 Provide tasks that allow for active participation, exploration and experimentation; 

 UDL1.4 Invite personal response, evaluation and self-reflection to content and activities; 

 UDL1.5 Include activities that foster the use of imagination to solve novel and relevant 
problems, or make sense of complex ideas in creative ways. 

The second UDL principle (UDL2) focuses on providing multiple means of representation. As far 
as representation of math objects is concerned, this principle suggests to provide options for 
perception in terms of alternative options of the registers of representation (algebraic language, for 
instance) through which the mathematical object can be represented. This allows students to improve 
comprehension about information at disposal, activating background knowledge, highlighting big 
ideas and new ideas to answer tasks and to guide information processing and design strategies of 
solution. We note that this is also in line with research in mathematics education, addressing the use 
of physical and digital artifacts for students with low achievement  in mathematics and students with 
Mathematical Learning Difficulties (Robotti et al., 2015). 

Providing multiple means of action and expression is the third UDL principle (UDL3). Physical 
action on some of these mathematical objects’ representations can support mathematics thinking. 
Similarly, the action supports communication (thus, not just writing but also gestures, or moving 
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objects).  This enhances the management of information, resources and ideas in order to develop 
mathematical thinking, supports the executive functions which are essential in guiding appropriate 
goal setting and progress monitoring. 

Such a focus on goal setting and progress monitoring establishes a natural link with formative 
assessment, conceived as a method of teaching in which “evidence about student achievement is 
elicited, interpreted, and used by teachers, learners, or their peers, to make decisions about the next 
steps in instruction that are likely to be better, or better founded, than the decisions they would have 
taken in the absence of the evidence that was elicited” (Black & Wiliam 2009, p. 7). A key element 
of formative assessment is feedback, that is any “information provided by an agent (e.g., teacher, 
peer, book, parent, self, experience) regarding aspects of one’s performance or understanding” (Hattie 
& Temperley, 2007, p.81).  Wiliam and Thompson (2007) provide a description of five 
main  formative assessment strategies: (FA1) clarifying and sharing learning intentions and criteria 
for success; (FA2) engineering effective classroom discussions and other learning tasks that elicit 
evidence of student understanding; (FA3) providing feedback that moves learners forward; (FA4) 
activating students as instructional resources for one another; (FA5) activating students as the owners 
of their own learning. Such strategies may be activated by the teacher, but also by the peers and by 
the student himself. Indeed, formative assessment should in principle lead to auto-regulation.  

Method 
From a methodological point of view, the sequence is the result of cycles of design, enactment, 
analysis and redesign, according to the design-based approach (DBCR, 2003). Following this 
approach, we take as a starting point specific theoretical claims concerning the teaching and learning 
process (guidelines for conjecturing and proving, UDL principles, formative assessment strategies) 
and we aim to understand “the relationships among theory, designed artifacts, and practice” (DBCR, 
2003, p. 6), also considering the design of the teaching and learning sequence as an outcome of the 
research in itself. Moreover, the research is characterized by a strong interaction and collaboration 
between researchers and teachers, who take part in the design, implementation and a posteriori 
analysis. The teaching and learning sequence we present is the result of cycles of design, enactment, 
analysis and redesign that started in 2012 and involved four teachers of a lower secondary school in 
the North of Italy. At present, five cycles were performed in grade 7 (pupils’ age: 12-13). During the 
implementation we collected teacher’s notes, observer’s notes, video recordings of the class 
discussions and written productions of the students.  In this contribution we mainly rely on students’ 
written productions. 

In the subsequent paragraphs we illustrate the design of the sequence, guided by our theoretical tools, 
and we focus on the last formative assessment activity (Step 6), with the aim of exploring two research 
questions. The first question concerns the efficacy of the designed sequence to promote a first 
encounter with conjecturing and proving. The second question concerns the efficiency of the 
sequence in terms of inclusion.  

The sequence 
The teaching and learning sequence concern isoperimetric rectangles. At the core of the sequence is 
the conjecture and explanation of the fact that, among all the rectangles with fixed perimeter, the 
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square has the maximum area. In the designed sequence the students, starting from the empirical 
evidence, grasp the idea of variation of the area according to the length of the sides. Students are 
asked to conjecture about the maximum area. Afterwards, they are guided by the teacher to feel the 
need for a general explanation and to appreciate the power of algebra in leading to a proof. The task 
sequence is organized in the following steps. 

Step 1: Students address individually an explorative task in paper and pencil: “Draw four rectangles 
with a perimeter of 20 cm”.  Afterwards, students are asked to work in small groups: “Compare the 
methods you used to draw the rectangles and synthesize”. 

Step 2: Students work in groups and cut cardboard to create a set of isoperimetric rectangles. 

Step 3: Students work in groups, aided by paper and pencil and cardboard, on the following questions: 
“Do you think all the rectangles have the same area? If not, what is the rectangle with the biggest 
area?”. After each of the steps 1, 2, 3 the teacher promotes mathematical discussions. 

Step 4: Once established that the square is the rectangle with the biggest area, the teacher guides the 
students to prove it. The proof, carried out in algebraic language, is presented at the blackboard, with 
the teacher involving the students via open questions. When presenting the proof, the teacher refers 
to the previous steps and highlights the crucial steps of the proving process. For instance, the teacher 
underlines that using algebra allows one to generalize from a specific rectangle to the generic 
rectangle, that is a rectangle with the same perimeter as the square.  

Step 5: Each student receives a sheet containing the written proof of the property, and is asked to fill 
some open sentences concerning the proving process (for instance: “I put the rectangle over the square 
in order to…” ; “I use letters because….”). After step 5, the teacher collects written answers from the 
students and promotes a discussion amongst them. 

Step 6: Each student is asked to answer to the following open question: “Looking back at the previous 
steps, you may note that we worked on the problem of isoperimetric rectangles by means of different 
approaches: we used paper and pencil, cardboard, we drew a rectangle over a square on the 
blackboard, we used letters. What does each approach tell you? Do they make you understand the 
same thing? Were they equally easy to follow and understand?”. 

The sequence is conceived according to the principles by Lin et al. (2012): students observe specific 
cases and generalize, so as to formulate a conjecture (C1); concerning the transition to proof, the 
teacher proposes different modes of argument representation (P1), paying special attention to the link 
between geometric and algebraic representations. During the guided proof and the subsequent 
individual reconstruction, students are led to reflect on the cycle of algebra, from the formalization 
(using letters to express relations) to the transformation and interpretation of algebraic expressions.  

The sequence is also conceived according to the UDL principles: the steps involve different registers 
of representation, hence many channels of access to information (UDL2). Throughout the sequence, 
each student may address the problem on the basis of the privileged channel. For instance, the student 
may do some conjecture on the biggest area on the basis of the drawing, or on the basis of the 
manipulation of cardboards. In line with the UDL principles, modes of representation alternate so as 
to scaffold the solving process of any student. Working on different modes of representation (UDL3) 
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is a support for reasoning, and also promotes motivation (UDL1). Each student can ground his/her 
reasoning on the mode of representation that is most suitable for him/her. This fact, giving the 
students autonomy in the choice of the way of tackling the problem, promotes sustaining effort and 
persistence and provides multiple means of engagement (UDL1).  

From the perspective of formative assessment, we may note that during the designed sequence many 
formative strategies are activated. In steps 1 and 3, the student is asked to explain respectively the 
procedure for drawing isoperimetric rectangles and the conjecture. Explaining makes the student 
responsible for his/her learning (FA5). During the group work and all the class discussions, students 
act as instructional resources for their classmates (FA4). During the guided proof of the statement 
(step 4), the teacher explains the learning objectives of the activity (FA1). During steps 5 and 6, 
students are encouraged by the task itself to become responsible for their own learning (FA5); the 
teacher may gather information on the learning process, and use it to provide individual feedback 
(FA3).  

Analysis 
We focus on Step 6, which is a veritable formative assessment activity, where students are asked to 
give meaning to all the sequence, and also to reflect on their understanding and possible difficulties. 
Besides being responsible for their own learning (FA5), students also prove to be aware of the 
learning intentions of the activity (FA1). Moreover, encouraging students to make a self-reflection 
on the experienced learning sequence is in line with UDL1.4. 

We selected some excerpts that provide evidence of the efficacy of the sequence in terms of first 
encounter to proof, and also in terms of inclusion. 

Camilla: In the first approach I understood well what is the meaning of isoperimetric rectangle. 
In the second approach I understood well which was the rectangle with the biggest area because 
overlapping the cardboards one group created a square which is a special rectangle. We understood 
that [the square] has the biggest area. In the third approach we specified better why the square has 
the biggest area. 

Camilla describes the journey from discovery to explanation. Moreover, Camilla ascribes to each 
approach a specific role in terms of construction of meaning: the first one (figural) makes the students 
understand the problem and the relations at issue, the second approach (kinesthetic) leads to the 
conjecture and its perceptive verification, the third approach (verbal, non-visual, symbolic) allows to 
generalize and reach an explanation. 

Erika: The first approach was not very useful to me because, since we used a particular measure, 
I did not know whether what I understood could be applied to any rectangle. Moreover, it was not 
very useful because just drawing you could not see anything special and if you noticed something, 
you could hardly see it. The second method was very useful because we all had the idea of 
overlapping them to see which was the one with the biggest area and we understood it was the 
square. And also thanks to a sort of “ladder” with the square as a starting point and each step was 
a rectangle with longer basis and shorter height in comparison with the side of the square. But in 
this way you don’t understand why the square is the rectangle with the biggest area. The third 
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method was the most important because it gave motivation to the fact that the square is the 
rectangle with the biggest area.  

Erika proposes meta-level reflections on the function of each approach towards meaning construction: 
for instance, she points out that the drawing is too specific and static and doesn’t allow seeing 
invariants. On the contrary, the dynamic actions on concrete figures in cardboards allowed her to see 
invariants and relations. Erika is aware of the fact that the cardboard figures give a perceptual 
evidence for the conjecture (“also thanks to a sort of “ladder” with the square as a starting point”) 
but do not provide a general explanation (“in this way you don’t understand why the square is the 
rectangle with the biggest area”). Erika also recognizes the value of the algebraic language as a 
generalizing tool (“The third method was the most important because it gave an explanation”). Erika 
also explicates a link between action on cardboard figures and algebraic transformation. We point out 
that Erika judges the approaches in terms of “usefulness”, thus expressing her personal preference 
and functionality in relation to the objective of conjecturing and proving. Erika seems to be fully 
aware of the learning intentions and criteria for success of the activity (FA1). 

Gaia: I had more difficulties understanding the last activity because with the cardboards and 
without letters it is easier… you can move figures, you cut the pieces that are left, you add to what 
is missing… but the concept is not as accurate as the one with the letters.  

Gaia points out that the concrete representation on cardboards allows action (thus promoting 
conjecture) and communication to the classmates. At the same time, the concrete representation does 
not hinder the necessity of moving to another representation (algebra) in order to generalize.  

Beatrice: we did many approaches, but the easiest was the one where we had to draw four 
rectangles with the same perimeter but drawn in different ways; the approach of cutting cardboards 
was not difficult, the only problem was to draw rectangles that were equal to those on the 
cardboard; the method on the blackboard seemed to me more difficult to understand. On the 
blackboard there were a square and a rectangle overlapped, they had the same perimeter and, by 
means of calculation, we had to explain why the area of the square is bigger than the area of the 
rectangle. They all say the same thing, but in different ways, for example they want to make 
understand that rectangles that are isoperimetric to the square are infinite, but with drawing and 
the cutting you understand less because you cannot draw infinite ones, whilst with the mind and 
numbers you can go on  to infinity. For me, a student in difficulty should try the first two methods, 
but a student not in difficulty should try the third one. With the third method I had difficulty 
because I could not understand well, while with the first two methods I understood the concept of 
area, but I could not immediately grasp the idea of infinity but it was not possible to do it. The first 
two approaches are also more amusing because you can compare your ideas with the ones of your 
classmates and if you don’t understand your classmates can help you, while if you are alone you 
have to understand by yourself, which is more difficult. […] Not everybody understands letters 
and figures and calculations, but with the drawing and easier explanations you understand more.  

Beatrice recognises that the sequence was organised in terms of evolution of generality. She is also 
aware at metacognitive level of the fact that the algebraic approach, although valuable in terms of 
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generality, is more demanding in terms of cognitive load. She adds considerations in terms of 
engagement and points out the different methods are suitable for different students.  

Ivan: They are all useful and each of us can use their own method but they all take the same result, 
so there is not a  wrong method among them. They all take to the result and each of us may use 
their own.  

Ivan, in a very synthetic way, seems to confirm that the designed sequence achieved its main goals: 
provide all students with multiple modes of representation, occasions of action and motivations to 
address the problem, and construct the meaning of algebraic proof.  

Discussion and conclusions 
The students’ reflections in step 6, conceived as a formative assessment occasion, prove to us that the 
designed sequence promoted an inclusive approach to conjecturing and proving. We observe that 
students were able to report the evolution from exploration, to conjecture, to proof. Moreover, they 
were generally aware of the need for a general explanation and appreciated the proving power of 
algebraic language.  

From the point of view of inclusion, we saw the effectiveness of the three principles of UDL “in 
action”. A crucial issue is that in the teaching and learning sequence each register has its own status 
(and students prove to be aware of this), but for each student a register may play a specific function 
with respect to the learning objective. Some students construct the meaning by means of the 
kinesthetic register, other students by means of the algebraic one. Some students are completely aware 
of the generalising power of algebra, other students appreciate the necessity of algebra after having 
dealt with the dynamism of cardboard figures. In general, cardboard figures are efficient  in activating 
the reasoning  that leads to the conjecture, because the dynamic work on the figures allows one to 
identify geometric invariants. Interestingly, students themselves are aware of the two dimensions of 
the registers (status in reference to the designed teaching sequence, function in relation to the personal 
learning experience throughout the sequence). This suggests that providing multiple registers of 
representation enriches and makes the teaching and learning sequence really inclusive, without losing 
the content-related objectives of the activity (approach to proof). Moreover, we observed that students 
link their appreciation of one register to the fact that working in that register fosters understanding. 

In the previous analysis we used the formative assessment activity (Step 6) to discuss the 
“inclusiveness” of the sequence. Conversely, we argue that the formative assessment activity 
performed in Step 6 was a way of fostering engagement and self-reflection. UDL principles suggest 
to promote also self-reflection on the performed activities (UDL1), and this clearly coherent with 
FA1 and FA5 that are activated in Step 6. Thus, we may argue that the formative assessment acted as 
a means of inclusion. 
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Can fluency as a factor of creativity be measured simply by means of a 
Fermi problem, and what influence does academic performance in 

mathematics have on this? 
 Hidemichi Okamoto 

Tarui Municipality Fuwa Junior High School, Japan; hidemichiokamoto@gmail.com 

The assessment of creativity has been studied much in the field of psychology. However, there is little 
research on easy-to-use assessment methods for schools in mathematics education. The goal of this 
study was to analyze the correlation between fluency measured by a Fermi problem and fluency in 
general creativity. Furthermore, it is to examine the possibility that Fermi problems can be used as 
a simpler way to measure fluency in mathematics education. As a result of surveying Japanese junior 
high school students (n = 291) and analyzing the results, a strong positive correlation was found. In 
addition, the results of the multiple regression analysis showed that fluency measured by a Fermi 
problem is a relatively strong factor when fluency in general creativity was the dependent variable, 
even when controlling for academic performance in mathematics and age. 

Keywords: Creativity, fluency, fermi problem, mathematical modelling. 

Introduction 
Fostering creativity is required around the world. In the United States, for example, the educational 
goal is to develop 21st century skills. One major skill is creative thinking (Piirto, 2011). In Europe, 
the goal is to develop key competencies. Creativity is said to be built into all key competencies. Other 
countries are also trying to develop skills and competencies like those listed above. Fostering 
creativity is also a goal of mathematics education in Japan. The Japanese National Curriculum 
Standards (2017) guidelines propose that creativity should be fostered in each subject, nevertheless, 
clear guidance does not exist. Moreover, it is also not explicitly stated how creativity would be 
assessed. Because of this situation, a method should be developed that can be handled in mathematics 
education and can be used in schools to assess creativity in a simple way. Previous studies have shown 
that Fermi problems require creative thinking, and they seem to be useful to utilize as teaching 
materials to foster creativity. Additionally, it is hypothesized that there is a strong relationship 
between creativity and the richness of aspects considered in a Fermi problem. It would be possible to 
measure creativity by means of Fermi problems. The present study has two purposes. The first is to 
investigate the correlation between fluency measured by the richness of aspects solving a Fermi 
problem and fluency in creativity in general. The second is to examine the possibility that Fermi 
problem can be used as a simpler way to measure creativity in mathematics education. 

Theoretical Frame 
Fermi Problem  

“Fermi Problems” were named after the Italian nuclear physicist Enrico Fermi. He had a special way 
of raising problems and probably the most famous of them is “How many piano tuners are there in 
the city of Chicago?”. Morrison described Fermi problems as “That is the estimation of rough but 
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quantitative answers to unexpected questions about many aspects of the natural world” (Morrison, 
1963, p. 627).  

Fermi problems have been used in many areas of mathematics learning such as mathematical 
modelling. For example, Ärlebäck (2009) used of Fermi problems in a study conducted with high 
school students and Andrea (2005) used Fermi problems with pupils at the primary stage of education.  

Fermi problems have also been found to be valuable as a learning material for mathematics. 
According to Silver:  

The development of students’ creative fluency is also likely to be encouraged through the 
classroom use of illstructured, open-ended problems that are stated in a manner that permits 
the generation of multiple specific goals and possibly multiple correct solutions, depending 
upon one’s interpretation. For example, consider the following “Fermi-style” problem […] 
(Silver, 1997, pp. 77). 

If the relationship between Fermi problems and creativity becomes more clear, the value of dealing 
with Fermi problems in mathematics education will also be explained. Furthermore, it is also 
hypothesized that it would be possible to measure creativity by means of Fermi problems. 

Creativity  

Previous studies have expressed various definitions of creativity. Treffinger (2011) reviewed the 
literature for definitions of creativity up to 2011 and collected more than 100 references which 
discusses creativity from different perspectives. The present study focuses on fluency, as one of the 
elements of creativity. Guilford is a pioneer in the study of creativity since the 1950s. Guilford (1954) 
hypothesized that creativity has the following factors: sensitivity to problem, fluency, flexibility, 
originality, penetration, analysis, synthesis and redefinition. In the course of his research, Guilford 
refined these creativity factors and defined the factors while testing his hypothesis. In Guilford’s 
study, fluency is defined as “The ability to think of many ideas; many possible solutions to a problem” 
(Guilford, 1973, pp. 2). Tests have also been developed to measure these factors. For example, based 
on research by Guilford, Torrance developed tests to measure the creativity factor. In Torrance’s 
study, the measure of fluency is “In all tasks, fluency is defined as the total number of relevant 
responses, relevancy being defined in terms of the task assigned” (Torrance, 1963, pp. 9). Even in the 
2000s, the research on creativity tests continued. Kim’s (2006) critical examination of the Torrance 
Creativity Test and his research on the effective use of the Torrance Creativity Test and showed that 
fluency is one of the elements of creativity. 

Fermi problems are seen as a form of mathematical modelling therefore the present study focuses on 
creativity in mathematical modelling. Mathematical modelling is the process of translation between 
the real world and mathematics in both directions (Blum & Borromeo Ferri, 2009) and some there 
some studies have investigated  the association between mathematical modelling and creativity. Dan 
and Xie state that “We evaluated 33 engineering students in a class and obtained the distributions of 
the students’ mathematical modelling skills and their creative thinking levels. The data from the 
experiments show that there is a strong positive correlation between these two kinds of competencies” 
(2011, pp. 457). Thus, it was assumed that mathematical modelling seems to have a positive impact 
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on creativity. Wessels’ (2014) study also discusses the relation between  creativity and mathematical 
modelling. Wessels identifies the following four elements as a measure of the association between 
mathematical modelling and creativity: 

• Fluency that refers to the generation of different solutions.  

• Flexibility that entails the change of shift that takes place in the emphasis, direction, or approach of 
creative problem solvers.  

• Novelty that refers to the level of originality in the development of new and unique solutions.  

• Usefulness that is grounded on the relevance, adaptability and reusability of solutions in other real-
world situations. 

Wessels states that “A framework with four criteria for the identification of creativity was 
successfully used to evaluate levels of creativity in the solutions to the MEAs (model-eliciting 
activities)” (2014, pp. 1). Lu and Kaiser (2021) also state the relationship between mathematical 
modelling and creativity. They defines the three elements of creativity in the modelling cycle as 
Usefulness, Fluency, and Originality. They suggest that when assessing modelling competency, it is 
better to include the perspective of Usefulness among the three elements in the assessment items. 

Thus, previous studies have discussed creativity and mathematical modelling. However, only a few 
studies have discussed the connection between fluency in general creativity, fluency measured by a 
Fermi problem and academic achievement in mathematics in detail. Additionally, previous studies 
have shown that assessing creativity in mathematics education is time-consuming. Therefore, a 
simpler way to measure creativity will need to be developed. 

The present Study 
In this paper, two research questions are considered.  

1. Is there a correlation between fluency in the Fermi problems and fluency in creativity in general? 
2. If there is a correlated, can the Fermi problem measure fluency in general creativity without being 
influenced by academic performance in mathematics, age, or gender?  

Therefore, the purpose of this study is to determine whether there is the relationship between fluency 
in general and fluency measured by the richness of aspects in solving a Fermi problem. Additionally, 
it is investigated whether the Fermi problem can be a simpler measure of fluency in general creativity, 
when controlling for factors such as academic performance in mathematics, age and gender. 

Participants and Procedure 

A total of 291 Tarui Municipality Fuwa Junior High School (public junior high school) students 
participated in the survey (100 seventh graders, 169 eighth graders, 22 ninth graders). The academic 
level at this school is slightly lower than the national average. First, students received a mathematical 
performance test with a time limit of 50 minutes. Then they took the test for creative thinking and the 
Fermi problem test, which were both 10 minutes. Mathematical performance tests such as the one 
used in this study are part of the school curriculum and take place at the end of every school year. 
The students took the test in a relaxed state, as it was explained to them that the results of the test for 
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creative thinking and the Fermi problem test would not affect their school grades in mathematics or 
any other subject at all. 

Mathematical Performance Test 

This is a test given regularly to measure the academic performance in mathematics and the author of 
the study was not involved in its design because the test was prepared by an educational publisher. In 
seventh grade students are tested on  positive and negative number, equation, proportional and 
inversely proportional, figure problems, such as surface area and volume. In eighth grade, in addition 
to the aforementioned items, they are also tested on polynomial calculation, linear functions and proof 
problems for congruent figures. In ninth grade simultaneous equations and proof problems of 
similarity are added. These problems are asked in approximately the same proportion. 

Test for Creative Thinking (TCT) 

The Takano’s TCT (1989) to measure fluency in general creativity was used in the present study. The 
TCT is based on Guilford’s TCT (1959) and was adapted by Takano for Japanese students. The 
questions are as follows. A picture of an empty can was shown, and the students were asked, “What 
are the possible uses for the objects in this picture? Please think of as many as you can.” The intention 
of this question is to figure out how many ideas the students can write. The number of possible uses 
of the empty can that the participants could think of was defined as fluency. For example, if a student 
gave two responses, “I use it as a vase” and “I use it as a tool for drawing circles”, the fluency is 2. If 
no answer is given, the score is 0. In the following there are some examples of students’ responses to 
the question: using it as a container, using it as a musical instrument, using the lid of the can as a 
cutter, using it to play bowling, using as a penholder, putting a stone in it, then using it as a weapon 
etc. 

Fermi Problem Test 

The Fermi problem used in the present study is “How many liters of water does one person use in a 
year?” In this Fermi problem, fluency is defined as “the richness of aspects solving a Fermi problem.” 
This definition is different from definition of Wessels (2014) or Lu and Kaiser (2021). For ease of 
the evaluation in school, the number of ideas that can be evaluated more clearly and simply was used 
as the definition. For example, if a student considered “the amount of drinking water” and “the 
amount of water used in the shower” as the elements needed to solve the problem, the fluency is 2. If 
a response  was “I use 10 liters in the morning, 20 liters in the afternoon, and 30 liters at night.” Then  
the day was divided into three parts in chronological order the score was three. If there was no number 
to assume or only the answer, it was determined to be 0. After considering many problems in my 
preliminary research and discussing them with some pedagogy professors, it this problem was 
adopted. 

Results  

The statistical analysis was conducted to investigate the first research question, “How much of a 
correlation is there between fluency in the Fermi problem and fluency in creativity in general?” The 
correlation between fluency measured by the richness of aspects solving a Fermi problem (fluency of 
a Fermi problem), fluency in general creativity by TCT (fluency by TCT) and academic performance 
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in mathematics was examined. Correlations with mathematical performance were also investigated, 
as previous research suggested that creativity and the Fermi problem have a strong relationship with 
mathematical performance. As can be seen (Table 1), there is a strong positive correlation between 
fluency of a Fermi problem and fluency by TCT. There is also a weak positive correlation between 
academic performance in mathematics and fluency by TCT. Similarly, there is a weak correlation 
between academic performance in mathematics and fluency of a Fermi problem.  

Table 1: Correlation between Fluency by TCT, Fluency of a Fermi problem, and Math-Performance 

 Fluency by TCT Fluency of a Fermi problem Math-Performance 

Fluency by TCT 1   

Fluency of a Fermi problem 0,614** 1  

Math-Performance 0,247** 0,278** 1 

*p<0,05;**p<0,01  Math-Performance (Mathematical performance test scores) 

A multiple regression analysis was then conducted to further investigate the connection between the 
fluency in general creativity and the fluency in a Fermi problem, which was investigated in the present 
study. Fluency in general creativity was used as the dependent variable to determine the extent to 
which fluency as measured by the Fermi problem is a construct of fluency in general creativity. As 
can be seen (Table 2) two models were created for analysis. No multicollinearity was found in the 
two models. Model 1 adds age and gender as well as math-performance as control variables. Model 
2 uses only math-performance as a control variable. Both models also show significant differences. 
In addition, there is a significant difference fluency of a Fermi problem and academic performance 
in mathematics in both models. 

Table 2: Results of multiple regression analysis with fluency by TCT as the dependent variable 

 Regression  

coefficient  

Standard error Standardized 
regression coefficient 

Model 1: Dependent variable is fluency by TCT and 4 variables (Adjusted R2= 0.297,F(4,286)= 31.58,p<0.001) 

Fluency of a Fermi problem 0.435*** 0.045 0.492 

Math-Performance 0.012* 0.005 0.124 

Age 0.383* 0.195 0.099 

gender -0.275 0.229 -0.061 

Model 2: Dependent variable is fluency by TCT and 2 variables (Adjusted R2= 0.290,F(2,288)= 60.29,p<0.001) 

Fluency of a Fermi problem 0.444*** 0.045 0.503 

Math-Performance 0.011* 0.005 0.115 

*p<0,05;**p<0,01; ***p<0,001 Math-Performance (Mathematical performance test scores)  
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Discussion and Conclusion 
Analysis of the data showed a strong correlation between fluency in general creativity and fluency 
measured by the richness of aspects in solving a Fermi problem. The result of the multiple regression 
analysis in Table 2 also show that fluency of a Fermi problem is a relatively strong factor when 
creativity in general creativity was the dependent variable, even when controlling for academic 
performance in mathematics and age. Thus, it is predicted that the Fermi problem can measure fluency 
in general creativity without much effect from factors of age and academic performance in 
mathematics. Previous studies of the relationship between mathematical modelling and creativity 
have defined fluency as the number of different solutions or the number of different models 
considered. In addition, the mathematical modelling problems used in these studies were modelling 
problems of relatively high challenging level (Wessels, 2014; Lu & Kaiser, 2021). If the problem is 
a mathematical modelling problem at a challenging level, it is possible that it may take longer time 
to solve the problem, or that students seem to be satisfied if they can find one solution or model for 
the problem. This makes it difficult to measure fluency appropriately. To avoid such difficulties, the 
present study assessed fluency from a different perspective. By defining fluency as “the richness of 
aspects of solving a Fermi problem”, it is possible to evaluate fluency more openly in terms of the 
items students have created and thought about in order to solve a problem, even if they cannot create 
a complete single solution or model. Additionally, Fermi Problems require to consider a large 
quantities of scenarios quickly (Ärlebäck, 2009). In fact, the Fermi problem used in this study showed 
that most of the students were able to answer or came up with ideas to solve the problem within 10 
minutes. Thus, the Fermi problem can be handled in a short time. Therefore, the assessment using the 
Fermi problem, as in the present study, is simpler than the assessment used in previous studies. Hence, 
this suggests that Fermi problems can be simply used as one of the fluency assessments in school.  

Focusing on the relationship between academic performance in mathematics and fluency, there is a 
weak correlation. There are two possible reasons for the weak correlation. First, Japanese junior high 
school students are not familiar to modelling problems like the Fermi problem. Therefore, it is 
predicted that even students who have a high academic performance in mathematics  were not able 
to achieve a high level of fluency. Second, the issue seems to be the nature of mathematics problems. 
Just presenting ideas is not enough to solve a mathematical problem. It is necessary not only to come 
up with ideas for solutions, but also to be able to change the solution method to a better one to handle 
them properly, and to calculate without making mistakes. These reasons are considered to be the 
cause of the low correlation. In the present study a low relationship between the fluency and academic 
performance in mathematics was found, but one cannot deny the possibility that there is a strong 
relationship when looking from another perspective.  

There are some limitations to the present study. First, in the present study, the reliability and validity 
of the test to measure fluency with the Fermi problem was not verified. Therefore, it is not possible 
to state that fluency in general creativity can be completely measured by means of this Fermi problem. 
Second, students dealt with “How many liters of water does one person use in a year?” In this case, 
results showed the relationship between fluency in general creativity and fluency measured by the 
richness of aspects solving a Fermi problem. However, it was not possible to shown whether there is 
the relationship between fluency in general creativity and all other Fermi Problems. It could be the 

Proceedings of CERME12 3880



 

 

case that there are some Fermi problems that limit fluency in the first place. Furthermore, the survey 
was only conducted with Japanese students in one school. It is possible that other countries will have 
different results. Moreover, the present study was only focused on fluency, which is one of the factors 
of creativity. It cannot be conclude from the results of the present study that Fermi problems is 
strongly related to all factors of creativity.  

Although there are some limitations, it was suggested that the existing definition of fluency in 
mathematical modelling could be reconsidered, and that Fermi problems could be used to measure 
fluency in a simpler way. In the future, it will be examined the validity and reliability of a test to 
measure creativity using the Fermi problem. Additionally,  the relationship between general creativity 
factors other than fluency and Fermi problems will be investigated to complement and extend the 
results of present study. 
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This study investigated students’ perceptions of different assessment methods in an undergraduate 
mathematics course. Each student could choose from two summative methods, exam and self-
assessment, for their course grade. Embracing this form of agency, most the students chose self-
assessment. A content-based analysis of the reasons students gave for their choice produced a variety 
of expressions of self-regulation. Many students recognised the value of self-assessment for their 
continuous learning and were motivated by it. Others acted from affective reasons, enjoying or 
agonising about one or the other method. Still others aimed to control their behaviour by challenging 
themselves or managing their workload. Choices were also made from purely practical reasons. The 
results give teachers valuable information on what students consider important in assessment. They 
also point to the usefulness of the study design for studying student agency and self-regulation. 

Keywords: Undergraduate mathematics, self-regulation, agency in assessment, students’ 
perceptions, self-assessment. 

Introduction 
There is a growing consensus among pedagogical researchers and policy-makers that university 
students should be involved in assessment processes as agents, not just passive assessees (e.g., 
Falchikov, 2004). This would improve students’ engagement with the learning goals and assessment 
criteria, as well as their self-regulation skills, including monitoring and reflecting on their own 
learning (e.g., Adie et al., 2018). In this study, we enhanced student agency in assessment by giving 
them the possibility to choose between a traditional and a novel, student-centred assessment method 
for their course grade. By analysing the reasons students give for their choice, we aim to obtain in-
depth information about students’ self-regulation, as well as their perceptions of novel summative 
assessment methods in mathematics. 

Student agency is usually restricted to formative assessment, which takes place during learning and 
usually does not involve high-stakes grading. Students may, for example, be involved in self-
assessment or peer review processes. On the other hand, Nieminen and Tuohilampi (2020) suggest 
that student agency in summative assessment may in some contexts offer benefits that are not 
accessible through formative assessment. They reason that some students may not see the benefit of 
formative assessment to themselves but consider it instead to be conducted for someone else.  
However, involving students in summative assessment presents many challenges, for example 
regarding validity and fairness. Also, summative assessment has traditionally been in control of the 
teachers, and students may end up resisting any change that they consider a risk for their grades. 
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Hence, it is important to study students’ reasoning around assessment choices in order to find ways 
to promote student agency also in summative assessment. 

Assessment in mathematics is very traditional through all levels of education. In the UK, the most 
common assessment method in university mathematics is the closed book exam, and there has been 
no significant change in this in the last 10 years (Iannone & Simpson, 2021). Also, in schools 
assessment in mathematics is often traditional. In Finnish schools, the most common assessment 
method in mathematics is the exam, and alternative assessment methods are not used as frequently as 
in other subjects (Atjonen et al., 2019). 

This study is the first step in a larger project concerning self-regulation and student agency in 
assessment. We let students in an undergraduate mathematics course choose the summative 
assessment method from two options: exam and self-assessment. The students made the choice in the 
beginning of the course but were able to change their choice before the assessment took place. The 
pedagogical motivation for this setting was to enhance students’ agency by giving them power over 
their own assessment. We also presumed that students’ perceptions of the assessment methods would 
be more authentic if they had to commit themselves to a particular method (as opposed to asking them 
about assessment that they were not engaged in). Our research questions are the following: 

Research question 1: How do mathematics students perceive a novel summative assessment method 
compared to a traditional one? 

Research question 2: What characteristics of self-regulation are expressed in the justifications 
students give for their choice of assessment method? 

Self-regulation and student agency in assessment 
Self-regulation refers to monitoring, controlling, directing and evaluating one’s own thoughts and 
behaviour in order to achieve desired outcomes (e.g., Zimmerman & Schunk, 2001). Self-regulation 
of learning is considered an important skill in higher education and life-long learning (e.g., 
Zimmerman, 1990; Heikkilä & Lonka, 2006). Pintrich (2000) introduced a model of self-regulation 
that identifies four areas of regulation: cognition/metacognition, motivation/affect, behaviour, and 
context. For example, regulation of motivation may include assessing the value of a task and one’s 
capacity of succeeding, and regulation of context may include changing the task or leaving it. 

In order to cultivate self-regulation skills, students must achieve agency, in other words they must be 
able to make decisions and act autonomically towards a desired goal. One way of increasing student 
agency is to involve students in assessment. Assessment has traditionally been in control of the 
teachers, but recently, student agency in assessment – in particular, formative assessment – has been 
emphasised in international policy (Adie et al., 2018). Adie et al. (2018) proposed a definition of 
student agency in assessment based on Emirbayer and Mische (1998): agentic students (1) make 
choices and take action in assessment (2) within the boundaries of different contexts, environments 
and timeframes (3) thereby reproducing or transforming traditional assessment structures.  

Self-assessment is a typical way of transferring control to students. Panadero et al. (2018) note that 
self-assessment has long been studied as a link between formative assessment and self-regulated 
learning. They point out that although self-assessment is theorised to support self-regulation, 
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empirical evidence is mixed. On the other hand, Nieminen and Tuohilampi (2020) compared student 
perceptions of their agency in formative and summative self-assessment contexts. They observed that 
only those students who were randomly selected to perform summative self-assessment for their 
course grades, perceived the self-assessment useful for their future studies or working life. Compared 
to students assessed with an exam, they also expressed a feeling of ‘studying for themselves’. 

Students’ perceptions of assessment 
It is essential to understand students’ perceptions of assessment in order to enact the positive impact 
of assessment on learning (Conlon, 2006; Guo & Yan, 2019). Past studies have shown that students 
tend to have mixed perceptions of assessment, and the purposes of assessment (formative vs. 
summative) might greatly influence their perceptions (Brown & Harris, 2016; McMillan, 2016). With 
regard to self-assessment, there is no consensus among students either. Some believe self-assessment 
to be useful, while others doubt its effectiveness in improving their learning (Hung, 2019; Lew et al., 
2010). The learning environment can have a significant influence on students’ perceptions of 
assessment (Gijbels et al., 2008) and self-assessment (Hill, 2016). Hill (2016) found that students 
seldom conducted self-assessment without explicit encouragement. However, once given the 
opportunity to practice, their attitude towards self-assessment became more positive and they were 
willing to continue to carry out self-assessment in their future learning. 
Undergraduate mathematics students’ perceptions of assessment have been found to be different from 
other fields. In their review, Struyven et al. (2005) found that higher education students find 
alternative assessment methods to be fairer and to lead to deeper learning than traditional methods. 
However, the review does not include any studies on mathematics students. Indeed, Iannone and 
Simpson (2015) found that in the UK, mathematics students prefer traditional assessment methods 
such as closed book exams. Iannone and Simpson (2017) have also compared mathematics and 
education students’ perceptions of assessment in two universities in the UK. Students in both groups 
preferred assessment methods that, in their view, discriminated with respect to academic ability. 
However, their perceptions concerning discrimination differed. Education students preferred projects 
and dissertations, and mathematics students preferred closed book exams. It can be concluded that 
disciplinary factors need to be considered when studying students’ perceptions of assessment.  

Context and method 
The context of this study was an undergraduate mathematics course taught at a research-intensive 
Finnish university. The topic of the course was linear algebra, and it was one of the first mathematics 
courses students take. The course lasted for 7 weeks and was worth 5 credits (ECTS). Typical major 
subjects among the students who took the course were mathematics (including teacher education), 
computer science, economics and statistics. 
The course was taught using an inquiry-based teaching method (see Rämö et al., 2020). During the 
course, all students took part in formative self-assessment exercises which followed the DISA self-
assessment model (Häsä et al., 2019). In the exercises, the students assessed their competencies using 
a detailed rubric written by the teacher and received automated feedback on their assessments. 

For the summative assessment that took place at the end of the course, students could choose from 
two options: exam and self-assessment. In the former case, the grade was determined by the exam 
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together with bonus points received from weekly tasks. In the latter case, the students self-graded 
their course according to the DISA model. In this model, a student’s self-assessment is checked 
against the tasks they had completed during the course. The teacher can step in if the self-assessment 
is not in line with the student’s weekly performance. 

In the beginning of the course, students were explained the teaching arrangements of the course. As 
self-assessment was assumed to be a new assessment method to many students, and all students had 
to complete formative self-assessment exercises during the course, the teacher explained what the 
benefits of self-assessment are considered to be. After this, the students had to choose the summative 
assessment method, but they were told that they could change the assessment method before the end 
of the course if they wanted to. The students were asked to give a reason for their choice. 

The participants in this study are 333 students who participated in the linear algebra course and gave 
consent to use their answers in the study. The data consists of two datasets. Firstly, it contains the 
reasons students gave for their choice of assessment method in the second week of the course (“On 
what basis did you make your choice?”). Secondly, it contains reasons students gave for changing 
their choice in the last week of the course (“Justify carefully why you wish to change your choice.”). 
Students’ answers were gathered via the Moodle platform that was used for teaching the course. In 
the beginning of the course, 83% (n=275) of the students chose self-assessment and 17% (n=58) 
examination. There were 18 participants who changed their choice: 14 from examination to self-
assessment and 4 from self-assessment to examination. 

The data was analysed using abductive content analysis, in which identified categories are related to 
theoretical concepts but not directly based on them (Timmermans & Tavory, 2012), and it was coded 
with an Atlas-ti programme for qualitative data analysis. The justifications varied in length from a 
few words to several sentences and each justification could include several reasons for the choice. 
For the students’ choices in the beginning of the course, altogether 16 codes were identified, forming 
five main categories: self-assessment enhancing learning; examination preventing learning; external 
reasons for self-assessment; negative aspects of self-assessment and examination enhancing learning. 

Results 
The most common reason to choose self-assessment was that self-assessment enhances learning. 
Half of the justifications endorsing self-assessment were related to this category. Participants for 
instance argued that they learned more by self-assessment: 

I feel that I invest in the tasks more when I know that the self-assessment is based on them. And 
when I do tasks with thought, I learn the course content better. 

They also stated that self-assessment was a more efficient and beneficial way of learning: 

In my view, self-assessment supports deeper learning to a greater extent, because often when you 
study for an exam, learning may remain superficial. 

I choose self-assessment, because I believe that it challenges me to study things properly during 
the course but also gives me information on how I have understood things and what is my level of 
mastery. 
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Self-assessment was seen to balance the workload during the course: 

Moreover, you can do the final assessment a bit earlier which makes it possible to focus earlier on 
other final assessments and Christmas holidays. 

In addition, self-assessment was reflected to be a more holistic and a long-term way of learning 
compared with examinations: 

I want to learn to better interpret my learning in practice and I believe I’ll get a more realistic 
outline of what I learned in the course by means of a long-term follow-up process than through an 
exam at the end of the course. 

Some participants also mentioned that self-assessment caused less stress than examination: “Self-
assessment is less stressful.” 

More than one quarter of the participants endorsing self-assessment as a first choice, considered that 
examination prevented their learning, not just because it can be stressful, but because it focused 
on only the limited aspects of what have been learned: 

In self-assessment I must really evaluate the work I’ve done, whereas the exam seems to be just 
one performance in which you can succeed (pass) even when you don’t completely comprehend 
things. 

Approximately 23% of the justifications for choosing self-assessment were related to external 
reasons, mostly referring to timing issues, and not taking a stand on effects on learning: “It is better 
for my timetable.” 

Participants endorsing examination for the first choice reasoned most often that examination 
enhances their learning by challenging and motivating them to learn. 

I choose the exam because I regard it as a more challenging alternative to myself. 

I feel the exam is a motivating and pleasant way of assessing mastery. 

Examination was also considered to accomplish long-lasting learning outcomes and to be a good way 
to validate what one has learned. 

The exam creates extra motivation to permanently learn the content. It is also, in my opinion, a 
good way to validate one's level of mastery. 

Negative aspects of self-assessment were also reasons to choose examination as the assessment 
method. Some participants had had negative experiences of self-assessment before and found it 
laborious and difficult: “Self-assessment is repulsive and difficult” or they were reluctant to try new 
experiences: “I’m not open to new experiences.” 

Those students who changed their initial choice from examination to self-assessment (n=14) did it 
often based on practical reasons, such as a more flexible timetable. Some students changed their mind 
because during the course they found that self-assessment was beneficial for them or they wanted to 
try something new. Those four students who changed their choice from self-assessment to 
examination argued for instance that they felt they could perform better in the examination than by 
doing self-assessment. 
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Discussion 
In our study, most students chose self-assessment instead of exam. This is in line with several 
previous studies in which students have been found to prefer novel assessment methods over 
traditional ones (Struyven et al., 2005). However, it contradicts previous studies in which 
mathematics students in the UK have been found to prefer exams (Iannone & Simpson, 2015, 2017). 
The cultural context of these studies may explain the different results to some extent. In Finland, 
assessment is not high-stakes: exams can be retaken easily and single course grades do not affect 
students’ studies or future careers. In the UK, assessment is often high-stakes, and this may lead 
students to view alternative assessment as risky. Finally, in the case of our study, the teacher informed 
the students about the benefits of self-assessment, which may have affected students’ choices. 

In previous studies, mathematics undergraduate students have been found to prefer assessment 
methods that they perceive to discriminate according to academic ability (Iannone & Simpson, 2017). 
We found similar perceptions in our study when students described how a certain assessment method 
enhances or prevents learning. What is notable is that some students linked the discriminating ability 
with exams but others with self-assessment. 

Our study design allowed students to achieve agency in assessment in several ways. Practising self-
assessment in a formative setting is itself a typical way to include students in assessment (Panadero 
et al., 2018). Also, some students opted for summative self-assessment, which has been reported to 
enhance future-driven agency and ownership of learning more than formative self-assessment 
(Nieminen & Tuohilampi, 2020). Thirdly, students were given power to choose the assessment 
method themselves. 

Students’ reasons for choosing the assessment method give information on how they regulate their 
learning in Pintrich’s model for self-regulation (2000). Students who chose the exam expressed 
regulation of affect or behaviour: they enjoyed exams or found self-assessment disagreeable, or they 
felt that exam would challenge them to study harder. Students who chose self-assessment expressed 
similar regulation: self-assessment was more flexible in terms of scheduling (behaviour) or less 
stressful (affect). However, they also mentioned aspects of motivation and cognition, stating that they 
would learn more or in a more holistic way, and even metacognition, claiming that self-assessment 
would enable them to monitor and learn about their own learning. 

From the teacher’s point of view, it is valuable to understand not only what kind of assessment 
students prefer, but also what they would consider important given the chance to choose a method 
themselves. This knowledge will help in designing new, student-centred assessment structures. 
Allowing students to make the choice also revealed detailed information about what they focus on 
when regulating their own learning in an authentic situation. However, since it was the teacher of the 
course who collected the students’ choices and justifications, some students may have embellished 
their reasoning, even though they knew that their answers would not affect their grades. This must be 
taken into account when drawing conclusions from the results. 

The current study design offers several possibilities for future research concerning student agency in 
assessment. We will continue by analysing students’ justifications further and by linking them to 
quantitative data on self-regulation and approaches to learning. As another direction that could be 
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based on a similar design, we recommend studying the effects of increased agency in assessment on 
students’ academic achievement or well-being. 
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A prerequisite for remediating student misconceptions is their accurate diagnosis by the teacher. 
However, studies on judgment accuracy show that teachers differ substantially regarding their 
judgments even though little is known about the reasons so far. The present study investigates whether 
teachers’ diagnosis of misconceptions with decimal fractions is subject to judgment biases. For this 
purpose, we propose a cognitive model for diagnosing misconceptions based on the process of 
hypothesis testing. The study results show that the formulation of alternative hypothesis and the 
processing of relevant information are predictors of high judgment accuracy when diagnosing 
misconceptions. Furthermore, normative and confirmatory biased judgment processes could be 
distinguished. Implications for teacher education are discussed. 

Keywords: Assessment, misconceptions, confirmation bias, cognitive processes. 

 
Judgment processes in diagnosing misconceptions 
The term misconception suggests that students commit a systematic error due to a naïve theory. From 
a student's point of view, it is rather a strategy based on a hitherto reasonable idea. In mathematics 
education, various student misconceptions are well researched (cf. Confrey & Kazak, 2006), such as 
the assumption that "multiplication makes bigger, division makes smaller" which is correct with 
natural numbers and is thus often overgeneralised to fractions. From a teachers’ perspective, 
misconceptions are constructs that emerged as a result of the learners’ experiences in different 
contexts but that no longer function correctly when transferred to another area of knowledge (Fujii, 
2014). In order to create adaptive learning opportunities, learner misconceptions must first be 
diagnosed. Then the teacher can trigger a cognitive conflict and resolve it by introducing  the actual 
mathematical concept (Corno, 2008). Thus, teachers’ judgment accuracy when diagnosing 
misconceptions – that is to determine it precisely - seems crucial for student learning. However, 
various studies have shown that teachers' judgment accuracy on student performance varies widely 
(mean effect size between teachers’ judgments of students’ academic achievement and students’ 
actual academic achievement of r = 0.63 in the meta-analysis by Südkamp, Kaiser, & Möller, 2012).  

In their framework, Loibl et al. (2020) conceptualise diagnostic judgments in pedagogical contexts 
as a teacher's inference about learners (e.g., their abilities) or materials (e.g., task difficulty) based on 
the information that is explicitly or implicitly present in a diagnostic situation. This definition locates 
diagnostic judgments within the larger field of social judgment and cognitive information processing 
and allows investigating the genesis of (correct and incorrect) diagnostic judgments. In this line of 
research, recent studies focus their research interest on the judgment processes and examine which 
information teachers actually gather and process to form their judgment (e.g., Rieu et al., 2022).  

The judgment process can be influenced by personal expectations (often leading to erroneous 
diagnoses), which have already been documented in the area of ethnicity, socioeconomic status, and 
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gender (McKown & Weinstein, 2003; Rubie-Davies, Hattie, & Hamilton, 2006; Südkamp et al., 
2012). Biases like the confirmation bias – the tendency to selectively choose and process information 
supporting the initial hypothesis – influence the judgment process when the diagnostic judgments are 
based on hypothesis testing (Herppich et al., 2018; Oswald & Grosjean, 2004; Westhoff & Kluck, 
2014). 

The current study
One diagnostic situation in which the teacher’s cognitive processes can be modelled as hypothesis 
testing (Trope & Liberman, 1996), is the detection of misconceptions in decimal fraction (e.g., 
longer-is-larger, shorter-is-larger, Stacey, 2005). In this process, an erroneously solved task often 
cannot be clearly assigned to one single misconception, but only the structured processing of several 
tasks and its solutions by the student allow the precise diagnosis of the misconception.

We assume that cognitive biases occur in this knowledge-based process and that these biases 
systematically favour the confirmation of a hypothesis and make its rejection unlikely (overestimation 
of the a priori probability of the hypothesis, selective gathering of hypothesis-confirming information, 
hypothesis-consistent interpretation of ambiguous information according to Schulz-Hardt & 
Köhnken, 2000, figure 1). 

Figure 1: Hypothesis testing process and confirmatory effects in the domain of diagnosis 
misconceptions

The present study defines diagnostic judgments as information processing and analyses the causes of 
diagnostic errors. The collection of external indicators such as the formulation of the initial hypothesis 
and the number and type of information processed allow conclusions to be drawn about the genesis 
of diagnostic judgments (Loibl et al., 2020).  

Specifically, it is assumed that in the ambiguous diagnostic situation of detecting misconceptions in 
decimal fraction comparison, confirmatory biases occur and prevent an accurate diagnosis. To this 
end, the following research question is investigated:  

Is the diagnostic process of misconceptions in decimal fractions subject to confirmation 
biases? 

Based on the modelled judgment process and the theoretical assumptions, it is assumed that 

Hypothesis generation

• confirmatory effect:
formulation of only one 
initial hypothesis

information gathering

• confirmatory effect:
selection of tasks that 
substantiate only one 
misconception

identification

• confirmatory effect:
adherence to initial 
hypothesis despite 
processing contradictory 
information

inference

• confirmatory effect: 
inference after 
processing only a few 
tasks
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 the generation of the initial hypothesis reveals if the (prospective) teachers recognise the 
ambiguous situation when diagnosing misconceptions in the area of decimal fractions based on one 
erroneously solved task and that  

 the amount and type of processed information indicate possible confirmatory biases when 
gathering and identifying information. The processed information influences the accuracy of 
judgments when diagnosing misconceptions in the area of decimal fractions.  

 

Method 
To test these assumptions, prospective mathematics teachers (N = 79, average age = 21,7 years, 85% 
were female) at the beginning of their studies were confronted with one erroneously solved task by a 
virtual student in the domain of decimal fraction comparison (cf. figure 2). The first task and its 
incorrect solution represent an ambiguous diagnostic situation, as several misconceptions can be 
responsible for the student error. The diagnostic goal for the participants was to clearly determine the 
existing misconception of the presented student who consistently solves tasks according to a precise 
misconception. For this purpose, the necessary specific PCK concerning the misconceptions was 
visible to the participants and in total, 7 standardised cases had to be diagnosed. 

 

 
Figure 2: erroneously solved task in the domain of decimal fraction comparison 

 

In an online survey, the prospective teachers first formulated an initial hypothesis about the 
misconception based on the erroneous student solution to one task. Afterwards they could choose 
further tasks which were solved by the student after their selection. That is, after clicking on it, 
teachers saw the solution to this task generated according to the misconception. Finally, the teachers 
submitted their final diagnosis.  

The tasks offered for selection were shown in groups of four. The tasks differed with to the relevance 
of their information for the diagnosis. Tasks with relevant information for diagnosis allowed to 
distinguish between two possible misconceptions in the ambiguous diagnostic situation (i.e., these 
tasks are typically solved correctly with one misconception, but not with the other). Tasks with 
irrelevant information for diagnosis are either solved correctly by all learners despite the presence of 
a misconception or do not provide any additional information to the incorrectly solved tasks presented 
at the beginning.  

A digital questionnaire was used to collect the initial hypothesis (single hypothesis or alternative 
hypotheses) and the number and type (diagnostically relevant or irrelevant) of information the 
participating persons used to get to their final diagnosis.  
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Results  
Due to floor effects, two case diagnoses were excluded from the calculation. The judgment accuracy 
for the diagnosis of 5 cases over all participants was 63.3% (SD = 0.48) which designs the ratio of 
correct diagnoses of the presented students’ misconception.  

In a first step, the predictors for high judgment accuracy for the diagnosis of misconceptions in the 
area of decimal fractions are to be determined. Based on the theoretical modelling of the diagnostic 
process as hypothesis testing, the formulation of the initial hypothesis, the amount of information 
processed and the proportion of relevant diagnostic tasks are examined. Table 1 gives an overview of 
the average values of the three predictors. 

Table 1: Representation of the average values of the assumed predictors for judgment accuracy 
according to accurate or incorrect diagnoses 

 accurate diagnoses  

(n = 250) 

incorrect diagnoses 

(n = 145) 

average number of alternative initial 
hypotheses (SD) 

 

0.26 (0.44) 0.15 (0.36) 

average number of processed further tasks (SD) 2.73 (2.28) 

 

2.94 (2.73) 

 

average proportion of processed further 
relevant diagnostic tasks (SD) 

0.68 (0.31) 

 

0.54 (0.36) 

 

 

The influence of the type of initial hypothesis (single hypothesis or alternative hypotheses) on the 
accuracy of the judgment was compared for accurate and incorrect diagnoses. The one-factor 
ANOVA indicates that significantly more accurate judgments are given after the formulation of an 
alternative hypotheses (F(394) = 6.333, p = .012, d = 0.263).  

In addition, it was hypothesised that the amount of information processed, i.e. the number of tasks 
selected to see further solutions of the student, would also have an impact on judgment accuracy. To 
calculate this influence, the average number of processed tasks was compared for accurate and 
incorrect diagnoses.  Group comparison using an ANOVA indicates no significant difference between 
accurate and incorrect judgments (F(394) = 0.647, p = .422, d = 0.084). 

As a final predictor of judgment accuracy, we examined whether the type of information selected had 
an impact on judgment accuracy. For this purpose, the proportion of processed tasks that provide 
relevant diagnostic information was examined. The one-factor ANOVA indicates that accurate 
judgments, compared to incorrect judgments, are obtained by processing a significantly higher 
proportion of diagnostic tasks (F(394) = 18.025, p ≤ .001, d = 0.444). 
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In a second step, the study aims to differentiate between different categories of information 
processing. Based on the finding that one of the predictors of high diagnostic accuracy is the 
formulation of an alternative hypothesis, different categories of judgment processes can be 
distinguished. First, after formulating an alternative hypothesis, a correct or incorrect diagnosis can 
be made. Secondly, a correct initial hypothesis can lead to correct or incorrect diagnoses. Thirdly, a 
correct or incorrect diagnosis can also be made after an incorrect initial hypothesis. Altogether, 6 
different categories of judgment can be distinguished. 

Out of the 6 possible judgment categories, two seems of special interest: On the one hand, the process 
that maps the ambiguity of the situation and subsequently leads to a correct result. Founded on the 
model assumptions, the ambiguous diagnostic situation should start with the formulation of 
alternative hypotheses and the given information (the tasks to select) must be processed as hints to 
correct diagnoses (normative judgment process). On the other hand, and taking into account the 
research interest, the process that starts from a single confirmatory misguided hypothesis and despite 
contrary information leads to an incorrect diagnosis (confirmatory-biased judgment process). Table 
2 provides the descriptive overview on these two judgment categories concerning the number of 
processed information and the proportion of relevant diagnostic information. 

 

Table 2: Descriptive overview of the information processing of the two judgment categories correct 
diagnoses based on alternative initial hypothesis and incorrect confirmatory diagnoses 

 N average number of 
processed information (SD) 

average proportion of relevant 
diagnostic information (SD) 

Normative judgment process: correct 
diagnoses based on alternative initial 
hypothesis 

65 2.51 (2.02) 0.72 (0.28) 

Confirmatory-biased judgment process: 
incorrect confirmatory diagnoses  

 

84 2.48 (2.05) 0.47 (0.36) 

 

The comparison using a one-factor ANOVA shows that the two judgment processes do not differ in 
the amount of information processed (F(148) = 0.009, p = .926, d = 0.016). Significant differences 
are shown, however, in the proportion of relevant diagnostic information processed and in the 
certainty of the final diagnosis: correct judgments based on an alternative hypothesis are made using 
a greater proportion of relevant information (F(148) = 1.734, p ≤ .001, d = 0.219).  
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Discussion 
Accurate diagnosis of student misconceptions by the teacher is crucial for building resilient 
conceptions in learners (Bradshaw & Templin, 2014). The research interest of the present study 
focuses on the emergence of such judgments via the investigation of the underlying cognitive 
processes (Loibl et al., 2020; Rieu et al., 2020). For such a complex judgment situation, it is assumed 
that biases take place and have a negative impact on judgment accuracy (Oswald & Grosjean, 2004).  

The present study defines diagnostic judgments of misconceptions in decimal fractions as information 
processing in form of hypothesis testing and examines the impact of the created initial hypothesis, 
the number and type of processed information on the final diagnosis. It is expected that the 
information processing of the participating persons indicates the presence of confirmatory biased 
diagnoses.   

In a first step, the formulation of alternative hypothesis and the processing of relevant information 
could be identified as predictors for the accuracy of judgments in the assessment of misconceptions 
in the area of decimal fractions. Due to the fact that all participating students had the necessary 
specific PCK about the misconceptions, these results show that the ambiguity of the diagnostic 
situation must be perceived and subsequently appropriate strategies must be used to cope with it. 
These findings complement previous studies on knowledge-guided information processing in 
diagnostic situations (Ostermann et al., 2018; Rieu et al., 2022) and person-dependent diagnostic 
sensitivity as a disposition (Kron, Sommerhoff, Achtner, & Ufer, 2021). 

In a second step, categorising and contrasting the normative process with the confirmatory process 
highlights the differences between the two approaches concerning the type of information processed 
to obtain accurate judgments. These results indicate that an information-integrating strategy leads 
more often to a correct diagnosis (Böhmer, Hörstermann, Gräsel, Krolak-Schwerdt, & Glock, 2015; 
Fiske & Neuberg, 1990). 

Despite several limitations, the results of the present study allow first insights into the judgment 
processes of prospective teachers when diagnosing misconceptions in the area of decimal fractions. 
The categorisation carried out on the basis of the type of initial hypothesis and further information 
processing permits an initial distinction between normative-accurate and confirmatory-biased 
judgment processes. The normative procedure, which processes relevant information based on 
alternative hypotheses in order to obtain an accurate diagnosis, should be incorporated into teacher 
training as a judgment strategy in complex situations to achieve a higher diagnostic accuracy and thus 
increase the adaptivity of teaching.  
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Introduction and Theoretical framework 
This poster presents the first phase of an on-going study. The aim is to investigate features that are 
considered by Italian secondary school teachers when assessing the answers to tasks that require a 
justification. A small group of about ten teachers with different years of experience will be involved 
and asked to assess some students’ responses during in-depth interviews. In this work, we focus 
specifically on a reflection about students’ answers selection. We assume that the students’ text that 
will be considered by teachers could highly influence the characteristics that will emerge and 
consequently impact on the whole study. Our aim is not to select correct answers, but to highlight 
texts differences that could help us to point out some specific aspects of teachers' points of view. To 
this aim we consider two theoretical constructs. Drawing from Habermas’ concept of rationality 
(Habermas, 2003/1999), as adapted in Morselli and Boero (2009), we mainly consider three aspects. 
The epistemic aspect, which regards statements validation in respect to accepted premises and ways 
of reasoning; the teleological aspect, related to the problem-solving strategies and choices; and the 
communicative aspect, concerning both the expression of the reasoning and the adhesion to 
mathematical culture standards. In addition, we consider the three assessment criteria of 
argumentation conceived during a European Project focused on Formative Assessment by the Italian 
research group (Cusi et al. 2019). These are: correctness, related to the absence or presence of 
mistakes in the result, in the resolution process, or in the theoretical recalls; completeness, inherent 
to the presence of sufficient information leading to the conclusion; and clearness, concerning the way 
of expression and the reader’s ease of understanding. To better characterize the data, we expand the 
criteria of correctness including the idea of pertinence of the mathematical knowledge used in the 
task resolution. These three criteria have not been used as an analysis instrument, rather as a tool to 
trigger classroom discussion about argumentation. We tried to include these three criteria with the 
idea that they could be more easily shared and discussed during teachers’ interviews. 

Methodology and Results Discussion 
Figure 1 represents the chosen task. It was administered during the 2018- Italian Standard National 
Test (SNV) to 10th grade Italian students, and it is related with the process “Arguing and Proving” in 
the SNV framework. We refer to the work of Garuti and Martignone (2019) for more details about 
content and influences of SNV framework. We selected this task as it offers the opportunity of 
working with a great variety of answers proposed by the Italian students. The qualitative analysis is 
conducted on 500 responses randomly selected from all the 15 233 answers. Answers are coded in 
relation to the three aspects of Habermas’ concept, each of them being characterised with respect to 
different components emerging from the study of students’ productions. 
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Figure 1: Task from SNV 2018, grade 10 (translation by the author)

Analysis led to the characterisation and selection of different responses. In respect to the teleological 
aspect, answers are characterised by the strategies used by students, as for example the choice to use 
a protractor, computational strategies, or to base on visual perception; the ways of implementing the 
chosen strategies (considering, when possible, the correctness) and the way of representing the steps 
of the procedures or strategies used (clearness and completeness). The epistemic aspect is shaped by 
the presence of specific theoretical justification (also referring to the completeness of the answers), 
and the correctness of the explicit theoretical references (taking into account also wrong premises 
that lead to the correct answer, as in the case of students considering the sum of the measures of the 
interior angles of a triangle being equal to 120°). As far as the communicative aspect is concerned,
the different answers show different awareness of the mathematical culture standard, and attention to 
audience comprehension (considering clearness and completeness). To sum up, using these two 
theoretical concepts allows us to characterise the different answers, the selection of which could be a 
good starting point to discuss with teacher about possible evidence for acceptable answers. 
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Digital technologies enable new possibilities for the assessment of mathematical competence. When 
designing an assessment, it is essential to know how different design elements affect both the item 
difficulty and the strategies used by the children. In this paper, we investigate digital items that were 
designed to measure arithmetic competence as a component of the Foundational Number Sense 
(FoNS) framework for five- and six-year-old children. A Rasch analysis of the performance of 302 
Norwegian children showed that the type of arithmetic problem and the magnitude of the answer 
strongly affected an item’s difficulty level. Our qualitative observations indicated that certain 
additional design elements of the items might have influenced both the items’ difficulty and the 
children’s solution strategies. From a mixed methods perspective, we discuss the potential of different 
design elements to better assess children’s understanding of numbers. 

Keywords: Assessment, digital technology, numbers sense, arithmetic competence, primary school. 

Introduction 
Digital technologies bring both constraints and affordances to assessment in mathematics education 
(Threlfall et al., 2007). When assessing young children’s mathematical competence, using a digital 
medium can alleviate the effect of irrelevant demands, such as reading or writing skills. At the same 
time, we might add elements in the design process of a digital item that could affect the assessment 
in unintended ways. Carefully designing digital assessment items might enable us to improve 
assessments and tell us more about the children’s solution processes (Saksvik-Raanes & Solstad, 
2021). To realise the full potential of digital assessments, we need to know more about how children 
perceive the different design elements of digital items and what strategies they use to solve them. 

In this paper, we investigate digital arithmetic items for five- and six-year-olds from a mixed methods 
perspective and pose the following research question: Which design elements influence the level of 
difficulty of digital arithmetic assessment items, and how do the design elements influence the 
strategies that first-grade children use to solve these items?  

Frameworks 
Arithmetic competence as a part of the FoNS model 

The Foundational Number Sense (FoNS) model describes the number-related skills that require 
instruction (Andrews & Sayers, 2015). In FoNS, the number sense concept is defined as multi-
layered, flexible and relational. The FoNS model divides the number-related skills into eight 
interrelated categories: number identification, systematic counting, number–quantity relationships, 
quantity discrimination, representing numbers, estimation, simple arithmetic competence, and 
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awareness of number patterns. In this paper, we focus on simple arithmetic competence, which is 
described as a child’s ability to manipulate small sets through addition or subtraction. 

Item design 

The arithmetic items presented in this paper were designed based on four main categories: change 
and combine (sum items) as well as compare and equalise (difference items) (Carpenter & Moser, 
1984). Previous studies have shown that children in kindergarten are highly capable of solving such 
items through modelling the situations in the problem (Carpenter et al., 1993). Sum items are 
composed in two ways. Either with one initial quantity and an action that causes a change (join), or 
with two initial quantities that may be considered separately or as a part of a whole. Difference items 
involve comparing two quantities to determine the difference between them. Equalise problems 
include an additional action that is to be performed to make the two sets equal. 

In addition to problem type, the difficulty of the items was expected to depend on three further design 
elements. Some items used pictorial representations of numbers, and other items used symbolic 
representations of numbers. The items involved different numerical values between one and twenty. 
We balanced the number of items involving small (< 10) and large (≥ 10) numbers and items having 
ordered and unordered response buttons (see Figure 3). 

Methods 
Participants and procedure 
Fifteen arithmetic items were solved by 302 first-grade children who were a part of a larger study that 
investigated 368 children’s number sense using digital assessment tools. To select participants for the 
project, we invited about 50 elementary schools in and around Trondheim municipality in Norway to 
participate in the project. Eight of the interested schools were chosen to participate and all the 1st 
grade children in these schools carried out the assessment. The children were five and six years old. 

A researcher visited the schools over a period of two months at the beginning of the school year. 
Groups of six to eight children carried out the assessment on separate tablet computers. The 
participants were seated in such a manner that they would not be disturbed by each other’s screens or 
sounds. All children were given the same instructions before they started the assessment and were 
free to finish it at any time. Pre-recorded voice instructions were given for each item. The arithmetic 
items appeared at the end of the full assessment. There was no time limit for the items, but the time 
taken for each item was recorded. The children typically spent between 15 and 25 minutes on the full 
assessment, of which about one-fifth comprised arithmetic items. 

Qualitative data from individual interviews conducted with 19 first- grade children solving the 
arithmetic items, were collected independently as a part of a master’s degree project (Schjølberg, 
2021). The goal of the interviews included in the master’s project was to get an overview of the 
children’s strategies. One of the strategies applied by one of the students who participated in the 
master’s project is included in this paper. The interviews were carried out at about the same time as 
the main data collection. 

All the described studies have been approved by the Norwegian Centre for Research Data, and the 
necessary guidelines related to depersonalisation and parental consent have been followed. 
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Items 

The 15 arithmetic items were designed to investigate the different aspects of the children’s arithmetic 
competence that could influence item difficulty. Four items involved the difference between two 
numbers. Two of these ‘difference items’ were compare problems, and two were equalise problems 
(Carpenter & Moser, 1984). The compare items involved small numbers (< 10), while the equalise 
problems involved large numbers (≥ 10). 

Eleven items asked for the sum of two numbers. Eight of these ‘sum items’ included the systematic 
variation of three design elements: (i) small (< 10) or large (≥ 10) answer, (ii) symbolic or pictorial 
representation of the problem and (iii) ordered or unordered response buttons (see Figure 3). 

A priori, we expected the difference items to be more difficult than the sum items, the items with 
large numbers to be more difficult than those with small numbers, the items with symbolic 
representations of numbers to be more difficult than those with pictorial representations and the items 
with unordered response buttons to be more difficult than those with ordered response buttons. 

Analysis 

All items were scored dichotomously, meaning that the children received one point for a correct 
answer and zero points for a wrong answer. Rasch measurement was used for the quantitative analysis 
of the children’s responses using the Winsteps software (Linacre, 2017). The Rasch model is a 
probabilistic measurement model that provides interval-scale measures of item difficulty and person 
skill on the same measurement scale in units of logits (Wright, 1977). The probability that person v 
scores 1 point on item  depends on the difference between the skill of person v, v and the difficulty 
of item ,  according to 

 

Winsteps implements the joint maximum likelihood estimation (JMLE) algorithm to estimate the 
parameters of this model. 

The excerpt from the individual interviews demonstrates how some children used the available 
resources on the screen to find the right answer to the problems. The qualitative data was analysed 
using a thematic analysis (Bryman, 2016). 

Results and discussion 
Task type 

From Figure 1, we see that the type of task strongly influenced the difficulty of the items. As expected, 
the four difference items were also the four most difficult arithmetic items (Figure 1, orange markers). 
An independent samples t-test between the four difference items and four comparable summation 
items (symbolic representations involving large and small numbers and ordered and unordered 
response buttons) showed that this difference was significant (p = 0.026; df = 6). 
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Surprisingly, within the difference category, both compare items had higher difficulty than the two 
equalise items. The compare items were more difficult despite involving small numbers, while the 
equalise items involved large numbers and came with more complex voice instructions. 

 

 

Figure 1: Item difficulty ordered by the highest number involved in the item 

The items are categorised as (i) sum item (blue markers) and difference item (orange markers), (ii) pictorial 
representation (circular markers) and symbolic representation (square markers), and (iii) ordered response buttons (open 

markers), unordered response buttons (filled markers) and no response buttons (plus markers) 

 

The compare and equalise items were visually identical (Figure 2), and three design elements 
differentiated them: the magnitude of the answer, the order of the response buttons and the voice 
instruction given. The answer was less than 10 for both compare items, while the answer was greater 
than 10 for both equalise items. The following voice instruction was given for the compare items: 
“How many more marbles are there in the blue box?”. For the equalise problems, the following voice 
instruction was given: “There should be an equal number of marbles in each box. How many more 
should the red box have?”.  

In the design process, the difference items were challenging to create in a way that would enable all 
children to understand the given voice instructions. We wanted to keep the instructions as simple as 
possible to adapt to the attention span of the target group. At the same time, the compare and equalise 
problems represent two semantically different problems. The equalise problems involve one more 
step than the compare problems, as an action is performed on one of the two groups when comparing 
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the quantities. We therefore expected that the equalise items would be more difficult. However, 
Figure 1 shows that the compare items were the most difficult. 

 

 

 

 

 

 

 

 
Figure 2: Two difference items  

Left: item 13 (compare). Right: item 15 (equalise) 

One reason why the compare items appear to be more difficult could be that the added action in the 
instructions for the equalise items make them more concrete, and this might have aided the children’s 
comprehension of the items. Carpenter et al. (1993) found the kindergarteners in their study to be 
highly competent in solving compare problems through modelling. It is also possible that some 
children ignored the “more” word in the instructions for the compare tasks and interpreted it to mean 
“how many marbles are there in the blue box?”. These results indicate that simplified instructions in 
word problems may lead to more misunderstandings and reduce the child’s possibilities for modelling 
the situation. 

The level of abstraction in the illustrations of these four items might also have contributed to their 
relatively high difficulty compared to the sum items. The children’s previous experiences could also 
have played a role in determining the level of difficulty, as it seems that they were more familiar with 
the language-related problems that involved addition than subtraction. 

Taken together, these results underline the importance of carefully investigating the various design 
elements when developing digital assessment items. 

Magnitude of the answer 

For the sum items, we found that difficulty was strongly correlated with the magnitude of the answer 
of an item. The Pearson correlation between difficulty and answer magnitude was r = 0.88 (p < 0.001) 
for all 11 sum items and r = 0.96 (p < 0.001) for the eight sum items that had a shared problem 
structure (Figure 1). In particular, the four sum items with a large answer were 2.1 logits more difficult 
than the corresponding four sum items with a small answer on average. An independent samples t-
test showed that this difference was significant (p < 0.001; df = 6). 

Number representations 

A pictorial representation of a number is often thought to be easier to understand than its more 
abstract, symbolic representation. However, in the group of the eight sum items that shared a problem 
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structure, we found no significant difference in the difficulty between the four items with symbolic 
representations (blue squares in Figure 1) and the four corresponding items with pictorial 
representations (blue circles in Figure 1) (p = 0.65; df = 6; independent samples t-test). One reason 
for this might be that the response buttons were written in the symbolic representation. Thus, knowing 
the correct answer only verbally would not be sufficient to provide a correct response. Indeed, from 
the qualitative data, we observed that some children knew how to verbally count to 20 without 
recognising the corresponding written numerals (see the next section).

Order of the response buttons

Based on pilot studies, we had the a priori expectation that unordered response buttons would increase 
the difficulty of the items because they do not easily allow children to rely on verbal counting
strategies. However, at least at first glance, the structure of the response buttons did not seem to 
strongly influence the difficulty of the items (Figure 1; open vs filled markers). An independent 
samples t-test between the four sum items with ordered response buttons and the four sum items with 
unordered response buttons was not significant (p = 0.88; df = 6).

On closer inspection, the four sum items with large answers were found to be of similar difficulty 
(Figure 1) even though the two items with ordered response buttons had larger answers than the two 
items with unordered response buttons. It is therefore possible that the ordered response buttons 
made the two tasks with the largest answers easier to solve. The latter interpretation is substantiated 
by qualitative analyses of the children’s solution strategies. One example is item 10, which involved
numbers that some children were not very familiar with. After the voice instruction “What is 
sixteen and two altogether?”, the child was to choose the correct answer from the response buttons
at the bottom of the screen. The qualitative observations gathered during the data collection led us 
to carry out a small qualitative interview study on the children’s solution strategies.

Qualitative observations of Agnes’s strategies

Figure 3: Sum items with systematic variation in the design elements 

Left: item 10 with large answer, symbolic representations and ordered response buttons. Right: item 5 with small 
answer, pictorial representations, and unordered response buttons
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In item 10, one of the children, Agnes, used the number alternatives on the screen to find the right 
answer, but she did not know what numeral she ended up with: 

Researcher: What is 16 and 2 altogether? 
(..) 
Agnes: It is... 16 and 2… 
(..) 
Agnes: Wait… and then we go 1-2. 
(Agnes points to 16 and makes two jumps with her finger on the numerals to the right) 
(..) 
Researcher: What are you thinking? 
Agnes: That one. 
(Points to 18) 
Researcher: Do you know what number that is?  
Agnes: 1-2-3-4-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18. Eighteen! 
(Counting to 14 and then pointing to the numerals on the screen) 

 
Agnes used the buttons to find the numeral that displayed the answer when she was unable to recollect 
the numerals after 14. In the design process, we did not expect the children to use the number 
alternatives in this way. These observations also emphasise the importance of investigating the 
available resources and how these could affect children’s solution strategies. 

To obtain a more fine-grained analysis of the role of ordered and unordered response numerals, we 
need to investigate an instrument in which items with ordered and unordered response buttons are 
designed with identical arithmetic problems. 

Conclusions 
To investigate the factors that influence the level of difficulty in digital assessment items for 
arithmetic, we have looked at the role of problem type, representations, numerical values and 
differently ordered response buttons. We have also considered how children may use the ordered 
response buttons to find the correct answer for an item. 

The strongest determinant of item difficulty was the type of problem: difference items were more 
difficult than sum items, and compare items were more difficult than equalise items. The second 
strongest determinant of item difficulty was the numerical value of the item’s answer. Whether the 
problem was presented in a symbolic or pictorial form did not affect item difficulty. Finally, although 
we could not conclusively determine the influence of ordered or unordered response buttons, our data 
indicates that ordered response buttons allow children who have not yet acquired mastery over large 
numerals to use these buttons as a number sequence that helps them solve the problem. Including 
both kinds of response buttons might help distinguish between the children’s knowledge of large 
numerals and their reasoning regarding the number sequence or with a number line. 

While digital technologies continue to influence the assessment of students’ mathematical 
competence with its new possibilities, it is also important to consider the technical and 
methodological challenges involved in this development (Nortvedt & Buchholtz, 2018). There are 
many aspects to consider when investigating the various elements that affect children’s solution 
processes when interacting with digital technologies. To ensure the validity of such assessments, it is 
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important that future research looks more into how the various possibilities that digital technologies 
enable can both improve and hinder students’ performance. One way forward could be to compare 
items that have different design elements but similar answers. Looking more directly at a greater 
variety of both word problems and symbolic items can allow us to determine how the different 
contents affects the difficulty of the items. With the use of digital technology, we could also look 
more closely into young children’s competence for solving digital word problems. For instance, one 
could record the children’s solution process while they are introduced to a variety of word problems 
with more elaborate instructions and pictorial representations. The use of different digital aids, with 
a larger degree of interactivity, could enable us to study in more detail how the children model and 
use different strategies to solve the problems. 
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The focus of this paper is to investigate the framework of connectivity in relation to analyses of 
summative digital assessment in mathematics. As an example, two digital items in mathematics are 
analyzed according to the framework of connectivity. The results imply that the framework, along 
with some instrumental adaptations, can be used to guide item analysis. In future, the framework 
could likely guide analyses of digital national tests in mathematics. A suggestion is to broaden the 
scope of this research to a macro level, which might focus on assessment platforms, and possible 
connections to other digital resources.  

Keywords: Assessment, mathematics, connectivity, item analysis, technology.  

Introduction 
The growing use of technology in society and accordingly in schools (e.g. the use of e-textbooks1) 
can motivate digital assessment because technology is already present in students’ learning processes 
and arguably assessment needs to keep up with this development (Beller, 2013; Bennett, 2002). Other 
arguments for digital assessment is the possibility to reduce teacher assessment related work-load and 
improve accessibility for students with special educational needs (Skolverket, 2021). Many 
researchers (see for example Beller, 2013; DePascale et al., 2016; Sireci & Zenisky, 2006) have 
motivated for digital assessment due to new opportunities for construct broadening which makes it 
possible to assess aspects which are not assessable in paper-based tests. For example, a spreadsheet 
program can be connected to a digital test item and thus assess knowledge and understanding in a 
more realistic way.  

However, there are several issues regarding digital assessment, especially in mathematics. These 
challenges can be related to practical problems such as the transfer of information from screen to 
paper and vice versa, not having access to digital scribbling spaces and not being able to naturally 
navigate between items in a digital test (Russell et al., 2003). Problems can also be related to 
limitations in automatic assessment systems which may lead to artificial and non-authentic items in 
mathematics (Drijvers, 2018). Challenges of digital assessment can furthermore be related to validity 
and construct-irrelevant variance (Messick, 1989). In the context of mathematics and assessment this 
can refer to the risk of assessing computer skills instead of mathematics. These questions are 
especially relevant for high-stakes summative tests. 

Background 
In Sweden, such high-stakes summative tests are known as the national tests, because they are 
administered nationwide to specific year groups on an annual basis. The national tests are to be digital, 

 
1 Pepin et al. (2016) define an e-textbook as “an evolving structured set of digital resources, dedicated to teaching, initially 
designed by different types of authors, but open for re-design by teachers, both individually and collectively. (p.644) 
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or partly digital, in a few years’ time. A decision has not yet been made as to whether the national 
tests in mathematics will be completely digital or performed as a combination of both computer and 
paper-based tests (Skolverket, 2021). Research is ongoing and during forthcoming field trials will 
study student responses to different digital item formats and digital items in an online assessment 
platform will be investigated. The PRIM2 group at Stockholm University researches and develops the 
national tests in mathematics for primary school (grade 3, 6 and 9) and the first mathematics course 
at upper secondary school (grade 10) in Sweden. At the end of school year 9 the students sit a national 
test in mathematics, comprised of written parts (with multiple choice, shorter constructed response, 
and longer constructed response questions) and an oral part. The national test is assessed based upon 
scoring guidelines, and the results on the parts are aggregated to produce a score which corresponds 
to a grade. The students’ result on the national test must then be given a special consideration, together 
with all other available results, in teacher’s grading.  

For the national tests in Sweden a systematic framework exists (Skolverket, 2017), the purpose of 
which is to ensure high quality national tests and high reliability regarding the use and consequences 
of the test results in relation to the purpose of the test, which is fair and equal grading. Importantly, 
the framework applies to the current paper-based national tests, and emphasizes that if relevant factors 
are changed, e.g. the mode of administration or the technology used to administer and assess items, 
evidence of validity must be reconsidered (Skolverket, 2017).  

Consequently, in order to develop digital national tests of high quality, new analytical frameworks 
are needed. It is also reasonable that these frameworks should account for the increasing use of digital 
resources in education. The framework of connectivity developed by Gueudet et al. (2018) could 
meet such requirements. This framework has been developed for analysis of digital resources and is 
gaining recognition in the mathematics education research community. The concept of connectivity 
has been used  to study how students use digital resources, such as online exercises and teaching 
materials (Sabra, 2019). With regards to assessment, I have not been able to find research applying 
the theoretical lens of connectivity. Despite this possible shortcoming, I argue that it is a suitable 
candidate for guiding analyses of digital assessments in mathematics, due to the incorporation of new 
learning theories that recognize modifications of learning processes in times of digitalization. 
However, the framework is developed for e-textbook analysis and in order to apply this framework 
to the context of digital assessment, some adaptations might be required. Therefore, the idea framing 
this paper is to investigate whether the framework of connectivity can be used in order to analyze 
digital items in mathematics. The ultimate goal, but beyond the scope of this paper, is to develop the 
framework to guide holistic examinations of digital national tests in mathematics. Thus, the paper is 
framed by the following research question:  

How can the framework of connectivity be adapted in order to guide analyses of digital assessment 
in mathematics?  

This question is highly relevant because digital assessment in mathematics (at least beyond the scope 
of multiple choice questions) is a relatively new phenomenon in educational systems. This new mode 

 
2 PRIM-group is a research and test developing unit, within the Department of Mathematics and Science Education at 
Stockholm University, where the author of this paper is affiliated.  
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of assessment calls for innovative analytical tools in order to develop and analyze the forthcoming 
digital national tests. The next section introduces the theoretical concept of connectivity by grounding 
the concept in modern theories about learning and understanding.  

Theoretical framework 
Since teaching, learning and assessment in many school systems is happening with and through  
digital resources (Drijvers, 2018), an analysis of these digital resources calls for new analytical frames 
(Gueudet et al., 2018). A traditional way of performing textbook analysis is to use quantitative 
measures. Researchers in mathematics education have also performed textbook analyses categorizing 
the content at macro and micro level3. An analysis at macro level may suggest a horizontal/holistic 
analysis with attention to general features of the textbook, whereas an analysis at micro level may 
propose a vertical analysis where specific mathematical content or competencies are considered. 

Upon introducing the concept of connectivity Gueudet et al. (2018) ground the concept in Hiebert 
and Carpenters (1992) framework about understanding; that is, in order to understand and develop 
mathematical knowledge it is key to be able to make connections between structures of mental 
representations. The number and the strength of these connections is assumed to determine the level 
of understanding. This theory about understanding is thereafter connected to the epistemological 
position connectivism, introduced by Siemens (2005) as a new learning theory in which learning is 
not just seen as an internal activity, but also as actionable external knowledge, for example within a 
database or an organization. One argument presented in connectivism is that some learning theories 
(e.g. cognitivism, behaviorism, and constructivism) were developed at a time when learning was not 
affected by technology, and as such are unable to fully explain how learning takes place in a modern 
digital world. Within connectivism, learning is essentially about the connections which enable 
learning to take place. These connections can be understood practically as connections between 
people, as well cognitively as connections opened up by a digital resource.  

This paradigm shift in how learning processes are viewed in a digital age is therefore motivating 
Gueudet et al. (2018) to study e-books looking 

for connections in, between, and across individuals’ cognitive/learning tasks and activities, and 
how e-textbooks may support those (micro level)  

for “connected” learning between and across groups of individuals, teachers, or students (macro 
level) (p. 543)  

The different ways of making connections within a digital resource is referred to as connectivity at 
micro level (internal) and the different ways of making connections from/to a digital resource is 
referred to as connectivity at macro level (external). The concept of connectivity of a digital 
mathematics resource is defined as the “connecting potential for a given user (student or teacher) both 
practically as well as cognitively.” (Gueudet et al., 2018, p. 545)  

 
3 In Gueudet et al. (2018) the notion of textbook analysis at macro and micro level is explained in detail with examples 
of studies, and research questions when investigating textbook analysis at macro and micro level.  
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Relevant for this paper is the view that digital mathematics items presented in an assessment platform 
are digital resources for students. The framework of connectivity is developed for analysis of digital 
resources such as e-textbooks, and since an e-textbook in mathematics contains several items this 
view seems reasonable. Another reason for this is the possibility to integrate digital resources into an 
item (e.g. the spreadsheet in the item presented in Figure 1) which might offer students a connection 
between a software and a mathematical problem. Since this paper is focused on mathematics items 
presented in an assessment platform, only connectivity at the micro level is considered in the analysis.  

The next section introduces two digital items in mathematics that were developed based upon 
curriculum descriptions of digital technology. The two items are thereafter analyzed through the 
theoretical lens of connectivity, at micro level. The adaptions needed in the framework of connectivity 
are subsequently presented in the results section. 

Methodology 
The items in this paper were developed in spring 2021 together with a year 9 test developer. The 
focus was content related to digital technology and the use of digital tools, according to the 
mathematics curriculum for years 7–9. For example, the curriculum states that “All pupils should be 
given the opportunity to develop their ability to use digital technology.” (Skolverket4, 2018, p. 8)  

 
Figure 1: Money raised at a charity gala 

The first item, Money raised at a charity gala (see Figure 1), has been translated from Swedish and 
presented in Figure 1 as it appears in the assessment platform used in Sweden. This item contains a 
spreadsheet showing donations at a charity gala. In the spreadsheet the students can interact with the 
spreadsheet, e.g. highlight cells; calculate the sum and mean. Students submit their responses by 
filling in the two boxes on the left of the screen. 

 
4 Skolverket is the Swedish National Agency for Education 
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Figure 2: Construction of triangles 

The second item, Construction of triangles (see Figure 2), contains a GeoGebra (Hohenwarter, 2021) 
component where the students can draw lines or line segments between points in a coordinate system, 
and calculate the area of a polygon. This item was developed based upon specifications in the 
curriculum about geometry and digital tools. Skolverket specifies in the core content for mathematics, 
years 7–9 that as part of teaching for geometry “Depiction and construction of geometrical objects, 
both with and without digital tools…” must be carried out in class, as well as “…Scales for reducing 
and increasing two and three dimensional objects.” (2018, p. 59) 

These two items were analyzed through the theoretical lens of connectivity at a micro level (Gueudet 
et al., 2018). The analysis was performed by examining the items using the micro level analysis grid 
presented in Gueudet et al. (2018, p. 548), see Table 1. The examination was carried out by searching 
for connections according to each of the aspects in the analysis grid. Since only two items were 
analyzed, a specific concept was not considered in the analysis, unlike how the analysis was 
performed in Gueudet et al. (2018).   

Table 1: Micro level grid (for a given set of concepts) 
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Results 
The analysis revealed that the following categories of connections in the micro level grid cannot be 
used: Previous knowledge, future knowledge, different moments of appropriation of the same 
concept, different topic areas within mathematics, variations of the same exercise, and assessment 
procedures and storage of results. These categories are not applicable due to differences in design and 
purpose of an e-textbook as opposed to a digital assessment in mathematics. 

The item Money raised at a charity gala offers connections to different concepts, and to a real-life 
situation where software is used for a specific task. There are also connections between different 
methods to solve the item. The student can use a calculator tool to calculate the sum and the mean. 
Moreover, the integrated spreadsheet program will offer the possibility to highlight cells and read the 
sum and mean, or calculate the sum and mean with integrated functions in the calculating program.  

The item Construction of triangles offers connections to a dynamic geometric representation. With 
the dynamic geometry program students are able to construct polygons and measure the area with the 
area tool, or calculate the area with the integrated calculator. The item also allows students to work 
with different methods, e.g. the area of a scaled object is equal to the squared scale factor.   

The analysis further reveals that both these items are missing connections to the needs of different 
students. For instance it is not possible to listen to the text of the items, and there is no accompanying 
instruction video about how to use the digital tools included in the items. Thus the framework of 
connectivity helps by focusing on connecting potential, or the absence of connecting potential, when 
reviewing and developing items.  

Discussion 
These results illustrate that the framework of connectivity at micro level can be used in order to find 
connections. However, when analyzing the two items some adaptations of the framework were 
needed. Thus the lens of connectivity was not adapted in a theoretical way, rather the adaptations are 
related to the number of categories in the analytical tool (see results), and also to the method of 
analysis. Relating to method of analysis, when Gueudet et al. (2018) describe the analysis at micro 
level, they are searching for connections for a given mathematical concept (e.g. functions) between 
different parts of the e-textbook. These connections can also be related to how the concept is presented 
differently in different parts of the e-textbook, and can also be related to the progression of a concept. 
When analyzing isolated digital items in mathematics such comparisons are more limited due to the 
summative nature of testing, and in this case due to the fact that only two items (dealing with different 
mathematical concepts) were analyzed. In order to analyze the two presented items it was thus not 
possible to consider a single mathematical concept, and therefore some of the categories in the 
analytical tool were not applicable. Not being able to use the full range of the micro level tool is a 
limitation of the presented study and a recommendation for future research is to start with a large 
item-pool and choose items for a given concept or a mathematical theme, e.g. functions. In this way, 
it will likely be possible to look for connections to different moments of appropriation of the same 
concept, and also for variations of similar items connected to a specific concept. Another limitation 
of the presented study is the inability to contrast the results with other studies using the theoretical 
framework of connectivity within the scope of assessment.   
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A question for future consideration is how the framework could be used generally to analyze 
assessment in mathematics, and more specifically to guide analyses of digital national tests in 
mathematics. Such studies could also investigate the potential to consider a mathematical theme in 
the analysis, and furthermore to explore new categories that might be included in the analytical tool. 
A suggestion is to explore whether mathematical competencies (e.g. mathematical reasoning, 
problem solving) could guide these analyses along with a given mathematical theme. Another 
implication for future research is to analyze a digital resource (e.g. an assessment platform) through 
the lens of connectivity, at a macro level. Such an analysis may focus the potential of linking to and 
between users and resources/tools outside an assessment platform. This may include the potential to 
connect users with users (teachers, students), as well as users with designers (teachers, assessors, test 
developers, test designers) and the platform’s interaction with other external resources, e.g. programs 
and teacher digital resource systems. 

In the analytical framework of connectivity the possibility to make connections is seen as a critical 
feature of a digital resource, and important for learning and understanding (Gueudet et al., 2018). The 
importance to connect concepts is articulated in the syllabus (Skolverket, 2018) for the compulsory 
school, in the general aim for mathematics: “Teaching in mathematics should essentially give pupils 
the opportunities to develop their ability to: […] use and analyse mathematical concepts and their 
interrelationships” (p.56). The opportunities to develop mathematical abilities might be achieved 
through digital resources and the relationship between concepts might be described in terms of 
connectivity.  

In an era of digitalization, connectivity also extends beyond digital resources and can be viewed as a 
critical feature of a teacher’s working environment (Gueudet et al., 2018). Furthermore, this also 
relates to assessment. Since technology already is a part of learning processes in a digital age (Beller, 
2013), it is fair that this technology, with its potential to make connections, also becomes a part of 
assessment. When digital resources play an even more important role in assessing knowledge and 
understanding, theoretical perspectives such as connectivism and theoretical frameworks such as 
connectivity can bring new insights and may offer novel possibilities to explore assessment beyond 
the narrow scope of this paper.  

References 
Beller, M. (2013). Technologies in large-scale assessments: New directions, challenges, and 

opportunities. In M. von Davier, E. Gonzalez, I. Kirsch, & K. Yamamoto (Eds.), The role of 
international large-scale assessments: Perspectives from technology, economy, and educational 
research (pp. 25–45). Springer Netherlands. https://doi.org/10.1007/978-94-007-4629-9_3 

Bennett, R. E. (2002). Inexorable and inevitable: The continuing story of technology and assessment. 
Journal of Technology, Learning, and Assessment, 1(1), 1–24. 
https://doi.org/10.1002/9780470712993.ch11 

DePascale, C., Dadey, N., & Lyons, S. (2016). Score comparability across computerized assessment 
delivery devices: Defining comparability, reviewing the literature, and providing 
recommendations for states when submitting to Title 1 Peer Review. Washington, DC: Council of 
Chief State School Officers. https://www.nciea.org/sites/default/files/pubs-
tmp/CCSSO%20TILSA%20Score%20Comparability%20Across%20Devices.pdf 

Proceedings of CERME12 3915



Drijvers, P. (2018). Digital assessment of mathematics: Opportunities, issues and criteria. Mesure et 
Évaluation En Éducation, 41(1), 41–66. https://doi.org/10.7202/1055896ar 

Gueudet, G., Pepin, B., Restrepo, A., Sabra, H., & Trouche, L. (2018). E-textbooks and connectivity: 
Proposing an analytical framework. International Journal of Science and Mathematics Education, 
16(3), 539–558. https://doi.org/10.1007/s10763-016-9782-2 

Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws 
(Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 65–97). NY: 
Macmillan. 

Hohenwarter, M. (2021). GeoGebra. International GeoGebra Institute (IGI). 
https://www.geogebra.org/ 

Messick, S. A. (1989). Validity. In R. L. Linn (Ed.), Educational Measurement (3rd ed., pp. 13–103). 
American Council on Education/Macmillan. 

Pepin, B., Gueudet, G., Yerushalmy, M., Trouche, L., & Chazan, D. I. (2016). E-textbooks in/for 
teaching and learning mathematics: A potentially transformative educational technology. In L. 
English & D. Kirshner (Eds.), Handbook of International Research in Mathematics Education 
(3rd ed., pp. 636–661). Routledge/Taylor & Francis Group. 

Russell, M., Goldberg, A., & O’connor, K. (2003). Computer-based testing and validity: A look back 
into the future. Assessment in Education: Principles, Policy & Practice, 10(3), 279–293. 
https://doi.org/10.1080/0969594032000148145 

Sabra, H. (2019). The connectivity in resources for student-engineers: The case of resources for 
teaching sequences. In U. T. Jankvist, M. van der Heuvel-Panhuizen, & M. Veldhuis (Eds.), 
Proceedings  of  the  Eleventh  Congress  of  the  European Society for Research in Mathematics 
Education (p. 10). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME. 
https://hal.archives-ouvertes.fr/hal-02422678/ 

Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of 
Instructional Technology and Distance Learning, 2(1), 1–9. 

Sireci, S. G., & Zenisky, A. L. (2006). Innovative item formats in computer-based testing: In pursuit 
of improved construct representation. In S. M. Downing & T. M. Haladyna (Eds.), Handbook of 
test development (First edition, pp. 329–347). NY: Routledge. 

Skolverket. (2017). Skolverkets systemramverk för nationella prov [National agency for education: 
Systematic framework for the national tests]. https://www.skolverket.se/getFile?file=3890 

Skolverket. (2018). Curriculum for the compulsory school, preschool class and  school-age educare. 
https://www.skolverket.se/publikationsserier/styrdokument/2018/curriculum-for-the-
compulsory-school-preschool-class-and-school-age-educare-revised-2018 

Skolverket. (2021). Digitalisering av de nationella proven [Digitalization of the national tests]. 
https://www.skolverket.se/om-oss/var-verksamhet/skolverkets-prioriterade-
omraden/digitalisering/digitala-nationella-prov/digitalisering-av-de-nationella-proven 

 

Proceedings of CERME12 3916



TWG22: Curricular resources and 
task design in mathematics 

education

Proceedings of CERME12 3917



Introduction to the papers of TWG 22:
curricular resources and task design in mathematics education

Shai Olsher1, Annalisa Cusi2, Nataly Essonnier3 and Sebastian Rezat4

1University of Haifa, Israel; olshers@edu.haifa.ac.il,
2Sapienza University of Rome, Italy; annalisa.cusi@uniroma1.it

3Centre de Formation d’Apprentis de l’Industrie de Savoie, France; n.essonnier@formation-
industries-savoie.fr

4 Paderborn University, Germany; srezat@math.uni-paderborn.de  

Keywords: curricular resources, task design, textbooks, curriculum implementation 

Scope and focus of the working group
At the macro-level, teachers and students work with mathematics curriculum resources, both digital 
and traditional, inside and outside the classroom. Individually or collectively, teachers select, 
(re)design, modify, and interact with such resources for lesson preparation, student assessment, and 
the planning of their courses. These resources (e.g., educative curriculum materials) are the focus of 
professional development sessions, where mathematics teachers, often with educational researchers, 
design and transform curriculum resources, including blended materials, and in the process develop 
design capacity and valuable knowledge for teaching. 

At the micro-level, curriculum resources contain mostly tasks derived from textbooks or other 
sources. The representation of these tasks in resources, their sequencing, and the teachers’ actions
during their enactment can limit or broaden the cognitive demand the tasks impose and affect 
students’ views of the subject matter. Thus, they can influence the opportunities afforded to students 
to make mathematical connections, and to develop mathematical concepts, skills, or habits of mind. 
The literature indicates that tasks play a key role in effective teaching. There has been an upsurge in 
publications on various aspects of task design (e.g., task features that can help generate certain forms 
of mathematical activity); methods of task analysis (e.g., analyses of the learning affordances of 
certain kinds of tasks); and principles for task implementation in conventional and digital learning 
environments (e.g., factors affecting the fidelity of implementation of tasks in the classroom). 
Students can also be involved in task design activities to foster their reflections about what they know, 
understand, and do. 

We summarize the papers presented at the conference according to the following predefined themes:

• Empirical research on teachers’ and students’ interactions with curriculum materials,
resources, and tasks, related competencies (e.g., pedagogic design capacity), and influences
on this interaction;

• Theoretical foundations and methodologies of task analysis helpful for task design and the
design of curriculum resources;
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• Studies on the use of carefully designed curriculum materials, resources, and tasks to support
the implementation of particular learning goals and to enhance mathematical competence;

• Collaboration between teachers, between teachers and researchers, and possibly also students
for designing tasks and resources and for analyzing their implementation;

• Affordances and constraints of digital and conventional tasks and resources.

Issues addressed during the sessions
An important issue in TWG22 was empirical research on teachers’ and students’ interactions with 
curriculum materials, resources, and tasks, related competencies (e.g., pedagogic design capacity), 
and a better understanding of how tasks and resources influence practice. At CERME12, three papers 
focused on students and their interactions with (digital) curriculum resources: 

• Annalisa Cusi and Agnese Ilaria Telloni: Engaging students as designers of digital curriculum
resources: Focus on their praxeologies and new awareness.

• Amal Kadan-Tabaja and Michal Yerushalmy: Online feedback designed to support self-
-eliciting tasks.

• Carlos Quiroz, Saba Gerami, and Vilma Mesa: Student utilization schemes of questioning
devices in undergraduate mathematics dynamic textbooks.

In these three papers, students assumed the roles of designers and users of digital curriculum resources
in addition to those of learners. The papers reflected a combined focus on students with digital rather 
than traditional curriculum resources, mainly investigating the affordances of the former and how 
they are used or how they influence the learning process. All three papers related to attempts to foster 
students’ reflection about the study content and learning process, which is regarded as an important 
aspect in learning. 

Quiroz et al. investigated students’ use of questioning devices — a new special feature of interactive 
textbooks, which seeks to engage students in thinking about the content and allows them to type 
responses to the questions in the textbooks. These answers are immediately shared with the teachers, 
who can use the information to adjust their teaching. Quiroz et al. identified three classes of situations, 
in which these questioning devices were used, and one utilization scheme for each situation. The 
findings reveal that students used the questioning devices for their intended purpose, but also for other 
purposes, exerting their agency in using curriculum resources for their needs. The term “questioning 
device” reflects the authors’ and teachers’ perspective and does not account for the students’ 
perspective on this feature. For students, it is an answering rather than a questioning device. This 
leads to the question of how students’ needs are considered in the design of digital curriculum 
resources. In an additional poster, Kanwar and Mesa introduced viewing patterns that were mapped 
to students’ use of questioning devices.

Insight into how students think about the affordances of digital curriculum resources in mediating 
mathematical content was provided in the paper by Cusi and Telloni. Students were asked to design 
GeoGebra applets related to the content they had learned in a course supporting the transition from 
secondary school to university. Although students did not intend to become teachers or acquire
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pedagogical or didactic knowledge about the subject matter, they showed ability to reflect on the 
design principles they implemented in the design process and how this influenced their learning. 
Involving students in the design process of digital curriculum resources is a novel didactic approach 
afforded by digital resources. On the one hand, it has the potential to provide further insight into 
students’ learning of mathematics. On the other, it seems to be a promising approach to deepening 
students’ understanding of mathematical content. However, open questions remain regarding the 
timing and the framing of the design activities: Should students design while learning the content or after 
they have learned it? What happens with the designed resources? What is the goal of designing that is 
presented to the students? Should students design for other students, for themselves, or for the instructor? 

Kadan-Tabaja and Yerushalmy presented an example of an interactive task with related feedback 
aimed at fostering students’ self-reflection and meta-cognitive skills. The special design of the 
feedback, which combines automated evaluation of students’ solutions with opportunities to reflect 
on the solutions, seems to be a promising approach for future feedback design. 

Two papers theorized student interactions that could manifest through concrete design features of 
mathematical tasks, problem posing, and working backwards, and suggested finer definitions and 
characterizations for given student interactions: 

• Ling Zhang, Andreas Stylianides, and Gabriel Stylianides: Problematizing the notion of
problem posing expertise.

• Daniela Assmus and Torsten Fritzlar: Working backwards revisited: Some theoretical
considerations.

Zhang et al. compared problem posing of master’s and sixth grade students to demonstrate the 
challenge of characterizing expertise. Using a data-driven approach, they identified expert problem 
posers based on participants’ problem posing characteristics, such as the number of problems posed, 
their complexity, and clarity. They found that performance was not aligned with the participants’ 
previous mathematical experience or backgrounds. Their results suggest that defining an expert 
should be specific to the expertise assessed, considering additional aspects beyond mere mathematical 
background. 

Assmus and Fritzlar demonstrated a range of tasks designed to promote the working backwards 
heuristic. Although this seems to be a single problem-solving strategy, the tasks analyzed revealed 
differences stemming from the design of the tasks. Focusing on characteristics such as operations and 
order, careful analysis shows that task design that incorporates different subsets of these 
characteristics requires distinct solving processes. These differences can considerably influence 
problem demands and students’ problem-solving processes. In a related poster, Assmus and Forster 
demonstrated different designs of working backwards problems, showing that distinct solving processes 
were related to different proportions of elementary school students who had solved them correctly.

Two papers addressed contextual and cultural influences on teachers’ and students’ interactions with 
curriculum resources, and urged rethinking the conceptualizations of resources and textbooks: 
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•
earthquakes: What is important for (mathematics) education?

• Hendrik Van Steenbrugge: Rethinking the notion of textbooks as mediators between the

. Van 
Steenbrugge sought to identify how culture becomes apparent in curriculum resources beyond the 
influence of the curriculum, analyzing textbooks and teacher guides from different countries. 
Although different in their research object and methods: c
Gracin) vs. document analysis of textbooks and teacher guides (Van Steenbrugge), both studies 
showed the interrelatedness of curriculum resources with the social and cultural context in which they 
are developed and used. This raises the issue of how to read and interpret studies about curriculum 
resources from different social and cultural contexts, and suggests that results from one context 
cannot easily be transferred to another. 

An additional perspective on resources was apparent in papers that studied the affordances and 
constraints of digital vs. conventional tasks and resources. Three papers at CERME 12 revealed 
different research perspectives. 

• Lisnet Mwadzaangati and Mercy Kazima: An examination of mathematical affordances
available in grade 2 teachers’ guide and learners’ textbook on addition of whole numbers.

• Ayla Carvalho and Rúbia Amaral-Schio: Characterizing the presence of activities using
GeoGebra in Brazil’s mathematics textbooks.

• Malin Norberg: Students’ expressions about working successfully with mathematics
textbooks: Multimodality and socio-mathematical norms in early years.

Mwadzaangati and Kazima examined the learning affordances provided for a given learning goal.
They analyzed the learning affordances of a teachers’ guide for teachers in relation to the addition of 
whole numbers for grade two students relying on variation theory. The study examined the teacher 
guides used by teachers in Malawi to choose tasks for implementation in their classrooms. The paper 
adopted two perspectives, discursive and cognitive, by connecting mathematics discourse in 
instructional aspects with the cognitive ones of what is said and presented. The tasks in the textbooks 
were analyzed from a cognitive point of view, based on the additive structure of the tasks and their 
possible variations (Marton &  Pang, 2006). The findings point to the low quality of Malawian 
mathematics textbooks on the addition of whole numbers suggesting that this might be one of the 
causes of persistent low performance of learners in mathematics (simple strategy). A general question 
is: How can the results presented influence textbook design or the classroom? 

Carvalho and Amaral-Schio reviewed four printed collections of textbooks (16 textbooks from sixth 
to ninth grade) used in Brazil to characterize and count the textbook activities using GeoGebra, the
main dynamic geometry system tool used in Brazil, and to bring to the fore their potential for 
exploration to engage students in mathematical discovery. The study shows that GeoGebra was used 
only for geometry activities in all textbooks. Few activities have been found, and even fewer with the 
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potential of exploration. Yet the results do not represent the actual use of GeoGebra in classrooms,
raising the question of the distance between the learning affordances of a task and effective learning.

Norberg reported on an ongoing study what was considered successful for 18 7-8-year-old students 
working with mathematics textbooks. The paper raised the question of socio-mathematical norms 
related to students’ work, and what counts as mathematically sophisticated, accepted, different, 
efficient, given that norms regulate students’ learning. The findings show a tension between using 
aids and being considered successful in mathematics, which could affect students’ possibilities for 
mathematical learning. They raise questions about what is accepted vs. what is desirable. For instance, 
using mathematical symbols has been shown to be a way of appearing successful in math, whereas 
other modes of communication (fingers, gestures, images, diagrams, etc.) are not considered as 
successful, even if they are efficient. It may be important to consider learning goals in this study as 
well. And how is it possible to infer mathematical norms from observations? How is it possible to 
separate the effect of the didactic contract from norms when observing students? Methodologically,
what was the influence of the researcher during data collection? In an additional poster, Tutuncu and
Hodgen offered a method to analyze the potential of educative materials to offer productive formative 
assessment by combining analysis of formative assessment practices with the guidance provided to 
enact these techniques.

Two other issues of TWG22 concern the theoretical foundations and methodologies of task analysis 
for task and curriculum resource design, and collaboration between teachers, between teachers and 
researchers, and possibly also students for designing tasks and resources, and for analyzing their 
implementation. At CERME12, two papers focused on analysis of the selection and characterization 
of tasks by prospective teachers and teacher collaborative decision-making in task characterization.  

• Cengiz Alacaci: Prospective elementary teachers’ selection of mathematical tasks.
• Andreas Bergwall, Elisabet Mellroth, Torbjörn, and Johan Nordin: Teachers’

characterizations of challenging introductory and enrichment tasks.

Alacaci’s exploratory paper viewed mathematical tasks as powerful tools to develop mathematical 
ideas in the classroom and useful in teacher education. One assumption was that understanding task 
perceptions of prospective elementary teachers could help predict their eventual modification and
appropriation for classroom use, which can affect teachers’ practice. It also raised the issue of “good” 
mathematical tasks — good for what purpose? One of the consequences of the experiment was that 
prospective teachers were encouraged to think critically about tasks. Bergwall et al. investigated the 
collaborative characterization by eight teachers of tasks suitable for introduction or enrichment, and 
presented several dilemmas. Among the results was the observation that introductory tasks should 
have an easy entry level and not require pre-knowledge of the upcoming concept, while an enrichment 
task should require relatively deep conceptual pre-knowledge. Teachers’ verbalization of task 
characteristics was one outcome, but not all tasks met all criteria. The teachers were involved in the 
writing of this paper.

Both papers raise some theoretical and some methodological issues about the choice of the theoretical 
framework, as well as the selection, characterization, and classification of tasks by teachers with
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regards to context, teachers’ goals, and implicit characteristics, such as teachers’ tacit knowledge 
(Herbst et al., 2011; Herbst & Chazan, 2011). This highlights the challenge in future attempts to 
generalize from these studies. In an additional poster, Gustafsson, van Bommel, and Liljekvist 
suggested pursuing the analysis of teachers’ discussions in communities of practice to explore the 
various facets of mathematical knowledge for teaching that guide these discussions.

A central issue for TWG22 is the use of carefully designed curriculum materials, resources, and tasks 
to support the implementation of particular learning goals and to enhance mathematical competences. 
Thus, it is important to investigate how to design tasks and items to provide students with 
opportunities to make mathematical connections and develop mathematical concepts, skills, and
habits of mind. The characteristics of task design can influence the processes that characterize 
students’ interaction with the tasks or items themselves. Among these, reading processes can play an 
important role because they can direct and determine students’ problem-solving processes. At 
CERME12, two papers focused on how the design of specific tasks and resources influences students’ 
reading processes:

• Valentin Böswald and Stanislaw Schukajlow: Reading comprehension and modelling
problems: Does it matter where the question is placed?

• Anneli Dyrvold and Ida Bergvall: The role of dynamic elements in digital teaching platforms:
An investigation of students’ reading behaviour

Both papers investigate the role played by specific factors in influencing students’ reading processes. 
Böswald and Schukajlow presented a theoretical paper aimed at reflecting on the ways in which the 
position of the question within the text of a modeling problem can determine students’ reading 
processes. They suggested that placing the question before the text in modelling problems can make 
the goal clearer for readers, supporting them in distinguishing between relevant and irrelevant 
information. Dyrvold and Bergvall investigated the influence of the choice of dynamic elements in 
digital items on students’ reading behavior in a digital multimodal environment. Their analysis 
identified various types of challenges that students may face in working with dynamic elements. In 
particular, they stressed the potential of dynamic elements to evoke deep engagement in interaction 
and the risk of misunderstandings or omissions in relation to these elements. 

The discussion of these two papers highlighted important aspects in the choice of a task design aimed 
at supporting students’ reading processes. The two main aspects under discussion were: (a) the 
interrelation between enhancing efficient reading and enhancing students’ comprehension and 
reasoning; (b) the role played by metacognitive processes in guiding students’ reading processes 
when interacting with tasks with certain characteristics; and (c) the effect of students’ age and of the 
focus on different mathematical contents on how the design of tasks and resources influence students’ 
reading processes. Another common issue addressed by both papers was methodological: the use of 
eye-tracking technology to investigate students’ reading processes when interacting with the designed 
tasks and resources. Some of the questions that arose concerned distinguishing the effects of task 
design on students’ reading behaviors from the effects of other contextual or external factors, and the 
possible use of artificial intelligence in developing a categorization of reading behaviors. 
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In two additional posters, other design principles were suggested to achieve specific aims: Vytautas 
argued that problems that do not explicitly state the concepts needed to solve the problem can be 
defined as epistemologically potent. These tasks can still be approached by students, because the 
unknown concepts are not mentioned in the wording of the problem, leading to a meaningful learning 
process. Stenberg, Haavold, and Sriraman suggested employing pathologies to create uncertainty in 
order to catalyze creativity for mathematics students.

Another important issue for TWG22 was the design of various types of materials, tasks, and 
resources to be used in given learning environments. The choice of materials, the sequencing of tasks, 
and the actions performed by the teacher can affect students’ learning processes. The role of the 
design of resources, materials, and learning environments was a common theme of the following 
papers:

• Henrik Stigberg: Digital Fabrication for Mathematics Education: A Critical Review of the
Field

• Johanna Zöchbauer, Markus Hohenwarter, and Zsolt Lavicza: Improving the GeoGebra
classroom tool to better accommodate online educational resource development based on the
SAMR model

• Sofía Paz-Rodríguez, Armando Cuevas-Vallejo, and José Orozco-Santiago: A hypothetical
learning trajectory for linear combination of vectors in R2

Stigberg proposed a critical review of digital fabrication for creating manipulatives in mathematics 
education research, stressing the role played by these technologies in enabling teachers to create 
context-sensitive manipulatives for teaching activities. Zöchbauer et al. investigated how the 
GeoGebra classroom tool can be improved to better accommodate a set of online educational 
resources to be used in combination with tangible tools. They used the case study approach to examine 
the implementation of these resources, highlighting the need for improvements, for example, making 
the sharing of resources with students easier and faster or enabling the teacher to have an overview 
of the number of students who answered the questions posed to them. The investigation presented by 
Paz-Rodríguez et al. enabled them to stress some limitations in the approach they adopted, which focused 
on the design of technology-mediated tasks, following a hypothetical learning trajectory aimed at 
supporting university students’ conceptualization of linear combination. The analysis of the results of a 
teaching experiment in an online linear algebra class enabled the authors to identify elements that could 
support a redesign of this hypothetical learning trajectory.

Among the issues the discussion in these three papers raised, we mention the role played by 
frameworks and theoretical models to support both the design process (as in the papers by Zöchbauer
et al. and Paz-Rodríguez et al.) and the research on this design (as documented in the paper by 
Stigberg). In particular, reference to the models guiding the design process is a common aspect in 
both the research presented by Zöchbauer et al., where the SAMR model (Puentedura, 2006) 
supported the design of an environment aimed at fostering the integration of digital media into the 
classroom, and the research presented by Paz-Rodríguez et al., where the C&P principles (Cuevas & 
Pluvinage, 2003) provided a set of criteria aimed at supporting the task design process. 
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The discussion on these papers also raised some reflections about another fundamental issue related 
to the design of learning environments, in particular when the focus of the design is also on the role 
of tangible tools or physical objects, considered as products of digital design (like in the paper by 
Stigberg) or as tools to be combined with digital ones (like in the paper by Zöchbauer). The paper by 
Stigberg raised the issue of teachers’ learning when they make, share, and use manipulatives, 
suggesting the need to adopt communities of practice as a framework for understanding teachers’ 
learning of digital fabrication for mathematics education. The paper by Zöchbauer et al. introduced
initial reflections on the role played by the teacher’s orchestration in combining the use of digital and 
tangible tools. They noted that teachers should make the connection between digital and tangible tools 
clearer if they want students to work effectively with a combination of these tools.  

Possible directions for future research
TWG22 topics at CERME12 shared many research themes with CERME11 (e. g. different theoretical 
perspectives leading task design and analysis) and and also added novel themse as mentioned above. 
When discussing these studies TWG22 discussions often took the opportunity to discuss possible 
ways to enhance and deepen the topics studied in TWG22. The following directions for future 
research emerged from the discussions: 

(a) Developments of means to communicate over curriculum materials and the wide perspective that
takes into consideration different agents, open new opportunities to focus on the role of students in
all stages stemming from task and curriculum design and implementation;

(b) The different theories employed in various studies underline the neeed for finer definitions and
moving toward more precise and fine-grained analysis of processes and practices, which are theorized
only in general forms;

(c) There is place for reports focusing on issues of scalability: many reports focused on a micro-
process of design or implementation; large-scale studies or design considerations for scaling-up could
contribute to a wider research perspective;

(d) While many conference research reports focus on short processes, long-term and longitudinal
studies are needed for broader perspective. We acknowledge that  long-term and longitudinal studies
are probably challenging in the format of a conference research report; therefore intermediate stage
reports are also welcome;

(e) More Research reports are needed to deepen the investigation of the teachers’ role in their design
and co-design interaction with resources and environments, in the context of professional
development programs or research projects.
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Working backwards is an essential problem-solving strategy that can be applied already at primary 
school age. For this, very specific tasks are often used with a missing initial value, given operations 
that are applied in a fixed order to this initial value, and a given final value in which the described 
process culminates (see P1 and P2 in figure 1).  

 

 

Figure 1: Used problems 

To solve problems like this by working backwards, it is necessary to reverse the operations described 
and to execute them in reverse order starting from the final value. Thus, reversible thinking skills are 
required. According to Krutetskii (1978), these are developed in germinal form at primary school age 
(in mathematically gifted children), but many children still show difficulties in processing such tasks. 
In particular, reversing the order of operations proves challenging, as has been shown in various 
studies with children in grades 2 to 6 with similar problems to P1 (Rott 2013, Aßmus 2010). It can 
be assumed that children at this age are not (yet) aware of the effects of different orders when linking 
additive and multiplicative operations.  

However, another or further cause could lie in the textual design of problems like P1. Buying half 
and one (or two) additional card(s) is possibly interpreted as one action, especially because the 
operations in the text are related to the same recipient. Thus, the two sub-operations are not considered 
separately, making their order irrelevant to the students. 

This aspect is investigated in the study of working backwards described here considering the 
following research questions: To what extent do third and fourth graders' solution rates differ when 
solving a problem with operations performed by different people (e.g. problem 2) versus a problem 
with linked operations performed by the same person (e.g. problem 1)? To what extent do the results 
differ with respect to consideration of the order of operations?  

The study 
Design: As part of a written entrance test for a university project for mathematically gifted primary 
school children, Problem 1 was used in 2013/14 and Problem 2 in 2015-18 (see figure 1). The test 
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was administered under standardized conditions (individual work, comparable instructions, identical 
working time). Problem 1 was given to 156 children (grade 3: 120, grade 4: 36), Problem 2 to 283 
children (grade 3: 200, grade 4: 83). 

The mathematical model is identical for both problems: ((6 + 2)  2) + 1)  2 = 34. In P1, however, 
two operations each are tied to one actor, whereas in P2 they are performed by different children and 
thus described as separate actions. As a further difference, in P2 each action is noted in a new line as 
well as the course of the process is made clear by supporting temporal adverbs. 

The differences in the solution rates as well as the noted calculation steps are examined with a special 
focus on the correct use of the operation order. Based on qualitative content analysis, the answers 
were independently categorized several times and coded using MAXQDA. 

Results: P2 was solved by a larger proportion than P1 (grade 3: P1: 5.8%, P2: 25.5%, grade 4: P1: 
11.1%, P2: 34.9%). Furthermore, there were differences in procedures with correct reversal of 
operations but incorrect order (grade 3: P1: 14.2%, P2: 6.0%, grade 4: P1: 16.7%, P2: 9.6%). Here, 
problem 1 in grade 3 was usually handled by the calculation (6  2 + 2)   2 + 1 = 29. This did not 
occur at all for problem 2. Also paired with other errors, the proportion of processes with incorrectly 
reversed order was reduced in grade 4 (grade 3: P1: 10.8%; P2: 9.0%, grade 4: P1: 13.9%, P2: 3.6%). 

Overall, it can be stated: The text problem with an unknown initial state remains very challenging for 
the students of both grades. Basically, however, the study showed that the linguistic presentation of 
the task text and its modification has a clear influence on the problem-solving process and the 
children's success in solving the task. In particular, errors based on the use of an incorrect order of 
operations occurred in lower proportions. 

Further studies: To narrow down which variables where causal for the higher solution rates, a third 
version was tested (Grade 3: N = 66, Grade 4: N = 39) in which two operations were presented in one 
line and one sentence, as in P1. Otherwise, the task corresponded to P2. Solution rates decreased only 
slightly in grade 3 (P3: 22,7%) compared to P2, and actually increased in grade 4 (P3: 43,6%). We 
therefore suspect that separating the operations was more important for the success i than consistently 
noting the individual actions line by line and sentence by sentence. 

We are not interested in simplifying problems mathematically to the point of making a problem 
accessible to as many students as possible, since this often involves trivializing the problem. 
However, purely linguistic difficulties should be overcome with a formulation that allows as many 
as possible to adequately understand the problem in the first place. Qualitativ research will follow. 
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Developing tasks for use in mixed-ability classrooms presents teachers with several dilemmas. By 
making one such dilemma an explicit object of inquiry, this study aims to capture characteristics for 
challenging tasks suitable for introduction or enrichment. It is based on eight teachers’ collaborative 
and retrospective analysis of challenging tasks developed in a combined research and school 
development project. Among the results are the observation that introductory tasks should have an 
easy entry level and not require pre-knowledge of the upcoming concept, while an enrichment task 
should require relatively deep conceptual pre-knowledge. It is suggested that attention to seemingly 
contradictory features of introductory and enrichment tasks can fuel collaborative learning processes 
so that they include several important aspects of tasks aimed at challenging all students. Teachers’ 
verbalization of task characteristics is one outcome of such a process. 

Keywords: Task design, mathematical enrichment, mathematical introduction, upper secondary 
school.  

Introduction 

Mathematics tasks serve many purposes in mathematics classrooms. A suitably designed task has the 
potential to provide all students in a mixed-ability classroom – those with learning difficulties as well 
as those with high abilities – with opportunities to develop their conceptual knowledge. To do this, 
the task should challenge all students. It should offer them opportunities to struggle with important 
mathematical ideas (Hiebert & Grouws, 2007), require them to put effort into their work, and involve 
some level of confusion (Bobis et al., 2021). In the mixed-ability classroom, tasks with a “low floor” 
(i.e., an easy entry level), or with enabling prompts, can help engage students who otherwise have 
difficulties with challenging tasks. When the same task also has a “high ceiling”, an open end, or 
extending prompts, students with high ability in mathematics can also be challenged (Bobis et al., 
2021). However, the guidance included in the task formulation must not turn into funneling – that is, 
leading the student around the difficulties and avoiding the struggle (Bauersfeld, 1998) – as this would 
place effective learning at risk. Tasks designed to let students create their own solutions lead to better 
conceptual learning, compared to when a task instructs students to apply ready-made methods (Russo 
et al., 2020; Sullivan et al., 2015). 

In the professional development project that we report on in this paper, teachers have repeatedly 
decided whether a task is suitable for introduction or enrichment, whether it offers sufficient guidance 
without funneling, or whether it is specific enough while also offering opportunities for general 
reasoning (Mellroth et al., 2021). In this particular paper, we focus on the distinction between 
introductory and enrichment tasks. We argue that this distinction is beneficial when designing tasks 
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for a mixed-ability classroom, and aim to capture some useful characteristics for these types of tasks 
and elaborate on teachers’ notions of introductory and enrichment tasks. More precisely, we aim to 
answer the following research question: What characteristics do experienced upper secondary 
teachers attribute to challenging mathematics tasks suitable for introduction and enrichment, 
respectively? 

Literature review and theoretical considerations 

Teachers themselves emphasize that they need challenging tasks, especially when introducing a new 
concept and when they want to help students deepen their knowledge (Mellroth et al., 2021). 
However, textbooks tend to offer few such tasks (Jäder et al., 2020). Finding tasks that are appropriate 
is difficult and time-consuming (Mellroth, 2018) and involves a wide range of didactic considerations 
(Bergwall & Mellroth, 2021), as tasks often needs to be selected and (re)designed to fit discrepancies 
to learning goals (Jäder, 2019). But teachers who participate in long-term professional development 
on developing challenging tasks for all students become competent in differentiating tasks in order to 
provide each student with appropriate challenges (Mellroth, 2018; Mellroth et al., 2021) 

Teachers’ collaborative efforts to find, develop, or adapt challenging tasks for use in their classrooms 
can be conceptualized as a collaborative learning process (Mellroth et al., 2021) situated in an activity 
system (Engeström, 1987). In this perspective, tensions and contradictions within and between 
different elements of the activity system are what drive the learning processes. One way such 
contradictions can manifest is as dilemmas (Engeström & Sannino, 2011). In the context of 
differentiating mathematics instruction for a mixed-ability classroom, teachers are faced with the 
dilemma that, on the one hand, all students must be able to participate in joint classroom activities, 
and on the other that they need to be offered support and challenges tuned to their individual needs. 
This dilemma can take many different forms.  

The classification of tasks as introductory or enrichment tasks was introduced by the project’s 
teachers in response to such a dilemma. However, the teachers’ criteria for those two task categories 
were not a priori made explicit, and it was not clear if they represented opposing ends on a continuous 
scale, a dichotomy, or just two properties that a task can have in any combination. 

Method 

We will answer the research question by reporting on findings from a combined research and school 
development project in which eight Swedish upper secondary mathematics teachers develop 
challenging tasks and two researchers study their collaborative learning processes. The focus will be 
on the teachers’ retrospective analysis of tasks they have classified as either introductory or 
enrichment tasks. The paper has been co-written by the researchers and two of the teachers in the 
project. 

The context and the school development project 

Swedish upper secondary school encompasses Grades 10 to 12 (students aged 16–19 years). Students 
choose from a variety of theoretical and vocational programs. The project’s teachers teach 
mathematics within a technology program, a theoretical program with a high density of mathematics, 
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science, and technology, aimed to prepare students for tertiary education in STEM subjects. Five 
mathematics courses, building on each other, are offered within the program. For practical reasons, 
the teachers in the project formed two subgroups, one for those currently teaching the first two courses 
(here referred to as Group A) and one for those teaching the other three (Group B). 

The school development project is a 2.5-year (Aug. 2019–Dec. 2021) project on collaborative 
learning in mathematics teaching. For collaborative learning to be successful, it is important that 
participants focus on developing some aspect of their practice that they themselves perceive as 
problematic. Early in the project the teachers decided to develop a collection of tasks, a problem bank. 
They felt that mathematics textbooks lacked tasks that can offer challenges to both students with 
difficulties and those who are highly able in mathematics (cf. Jäder et al., 2020). Their mutually 
agreed-upon aim for the problem bank was that it should include challenging tasks suitable for 
introducing new mathematical concepts (introductory tasks), and tasks that could be used to help 
students develop in-depth knowledge about one or several mathematical concepts (enrichment tasks). 
Thus, the decision was made early on to distinguish between introductory and enrichment tasks. 

During the first two years of the project, the researchers and teachers read and discussed research-
based literature on task design (e.g., Sheffield, 2003), differentiated instruction (e.g., Tomlinson, 
2016), and high ability in mathematics (e.g., Szabo, 2017). Collaboratively, the teachers merged 
research findings with their own teaching experiences and developed (or adapted) 13 tasks for use in 
their own mixed-ability classrooms. The teachers adjusted the tasks to fulfil criteria of rich learning 
tasks (Sheffield, 2003), for example that (1) everyone should be able to start working with the task, 
(2) it should be possible to solve the task in several ways, (3) the task should be engaging, and (4) the 
task should offer an open end. They also tested a majority of the tasks (the COVID pandemic made 
classroom testing difficult), and then re-analyzed and revised some of them. Therefore, the teachers 
can be considered competent and experienced in task design as well as collaborative forms of 
educational development. 

During the development and testing phase, the researchers took on the passive role of observers. To 
project meetings, the teachers brought tasks they found promising to develop to be challenging for 
all students. In the continued development process, the promising tasks were analyzed using a task 
analysis guide developed within the project. The criteria for rich learning tasks mentioned above 
formed part of the guide. Information was collected digitally, and was intended to be included in the 
problem bank as support for its future users. One item in the guide concerned whether a task was 
suitable for introduction or enrichment. Of the 13 developed tasks, one was classified as a pure 
introductory task, six as pure enrichment tasks, and three as both introductory and enrichment tasks. 
Three tasks were classified as neither introductory nor enrichment tasks, and are therefore out of the 
scope of this paper.   

Data selection and analytic procedure 

The results presented in this paper are based on the teachers’ retrospective analysis of a subset of the 
tasks they classified as introductory or enrichment tasks (or both). This new task analysis was 
conducted during the last meeting of the project’s second year. Prior to the meeting, the teachers 
voted on which tasks they found to be of most interest to analyze according to their suitability for 
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introduction and enrichment, respectively. At the meeting, and based on the votes, the two groups 
singled out one task each from each category. Group A chose Colored Cube for introduction and The 
Ant’s Walk for enrichment, while Group B chose Ferris Wheel for introduction and Disease Spread 
for enrichment. Of these four tasks, Ferris Wheel was the only one which had been classified as 
suitable for both introduction and enrichment. In the next step of the analysis the teachers focused on 
its use as an introductory task only. English translations of the four tasks are presented in Figures 1–
3. Due to space limitations, the descriptions have been somewhat shortened. 

 
Figure 1: The two tasks chosen for retrospective analysis by Group A 

 
Figure 2: The introductory task chosen for retrospective analysis by Group B  
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Figure 3: The enrichment task chosen for retrospective analysis by Group B 

All eight teachers, four from each group, participated in the analysis. We agreed on the following 
procedure: Each group would analyze their introductory task and enrichment task in parallel and 
answer two questions for each task. For the introductory task: a) What, above all, makes the task 
suitable as an introductory task? b) What, above all, makes it less suitable as an enrichment task? For 
the enrichment task: a) What, above all, makes the task suitable as an enrichment task? b) What, 
above all, makes it less suitable as an introductory task? 

The time for analysis amounted to 45 minutes, approximately split as follows: 10 minutes for 
individual reflection, 20 minutes to compare and discuss individual reflections within the group and 
come to an agreement, 15 minutes to write a summary of the group’s analysis. The discussions were 
audio-recorded for future reference, but the results presented below are based on the written 
summaries only. 

From our perspective, those summaries are the results of the task analysis. However, for the 
presentation in the Results section, they have been translated to English and rearranged to have similar 
dispositions. This means that to some extent a content analysis has been conducted. All participating 
teachers have had opportunities to contribute to and influence the final formulations.  

Results 

First, as some tasks were categorized as neither introductory nor enrichment tasks, this categorization 
is not exhaustive. Neither is it a dichotomy, as some tasks were classified as suitable for both 
introduction and enrichment. Therefore, we conclude that from the teachers’ point of view, a task can 
have both these properties in varying degree and in any combination. To cast further light on this, we 
now present the summaries of what it is that makes the four tasks suitable/not suitable as introductory 
and enrichment tasks, respectively. We start with Group A’s analysis of Colored Cube and The Ant’s 
Walk, and then Group B’s analysis of Ferris Wheel and Disease Spread.  Comparisons, similarities, 
and recurring themes are touched on in the Discussion section. 
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Group A considered Colored Cube to be primarily an introductory task. They found it suitable for 
this use because it is visual, has an easy start, and has a step-by-step increase in difficulty. It also 
offers opportunities for review later, and has a cliffhanger. Colored Cube satisfies the criteria for a 
rich learning task, and offers opportunities for the use of different solution strategies (here the group 
referred to Frank Lester). Group A found the task less suitable as an enrichment task because its first 
subtasks are too easy. They suggested that, for use as an enrichment task, the first four or five subtasks 
should be omitted, and the students should be asked to head directly for the general case. 

The Ant’s Walk was categorized as an enrichment task. Group A’s main reason for this was that the 
task requires the student to produce a general, algebraic solution. The reason why they considered the 
task less suitable as an introductory task was that the step between providing a numerical solution 
and a general solution is too big. 

Group B found Ferris Wheel to be a good introductory task because it refers to an everyday situation 
that students are familiar with, which helps turn the abstract theory into something concrete and 
tangible. Students can handle the problem even though they are unfamiliar with the underlying 
mathematical concepts/theory. In addition, they get a taste of what will be treated later within the 
trigonometry topic. The reason why Group B found this task less suitable as an enrichment task was 
that it would be too easy for someone who has understood the concepts/theory of trigonometry. Also, 
the second (and more difficult) part of the task is too similar to its first part. 

Finally, Disease Spread was considered a suitable enrichment task because it requires considerable 
pre-knowledge about differential equations. Students need to understand that they cannot solve the 
system of nonlinear differential equations analytically but instead need to invoke digital tools. The 
task is relevant (in light of the COVID pandemic) and interesting, and lets the students see 
mathematics in a complex context. The results offer opportunities for interesting discussions, and the 
task can easily be modified and extended. The high demand on pre-knowledge, the inclusion of 
differential equations on a (for upper secondary school) high level, and the use of digital tools were 
also reasons why Group B found Disease Spread to be less suitable as an introductory task. 

Discussion 

In this paper we have asked what characterizes a challenging task that is suitable for introduction and 
enrichment, respectively. We have answered this question from the viewpoint of an experienced 
group of upper secondary teachers who have participated in a school development project and 
designed, analyzed, tested, and revised challenging tasks for use in mixed-ability mathematics 
classrooms. During their work, the teachers have in various ways encountered the dilemma that, on 
the one hand, every student must be able to work with the same task and, on the other, the task must 
offer challenges for all students. This dilemma can be conceptualized as a manifestation of a 
contradiction between agreed-upon aims of the tasks (Engeström & Sannino, 2011). As contradictions 
in an activity system fuel collaborative learning processes (Engeström & Sannino, 2011), such 
dilemmas should not be avoided but rather made visible and an explicit object of inquiry. The analysis 
of the four tasks presented in this paper is the result of such inquiry. The teachers’ verbalization of 
the respective characteristics of introductory and enrichment tasks can be seen as an outcome of a 
collaborative learning process. 
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We therefore believe that our study and its results can contribute to mathematics teaching practice 
and educational research in different ways. Here, we highlight three. The first is that the results 
highlight characteristics for introductory and enrichment tasks that can guide teachers in designing, 
assessing, or selecting material for classroom enactment. Even though the results are hardly 
surprising, they point to important dimensions along which a task needs to be assessed in order to 
determine whether it is suitable for introduction or enrichment, with the two kinds of tasks often 
representing opposite ends of the scale. An introductory task should have an easy start and be visual 
and concrete, while an enrichment task should not have too easy a start and should aim for general 
solutions. In introductory tasks, the gap between subtasks must not be too big, and in enrichment 
tasks not too small. In introductory tasks one should not head for general, algebraic solutions too 
quickly, while in enrichment tasks one can go directly to general solutions. Introductory tasks must 
not require pre-knowledge, while enrichment tasks should do just that. One can be tempted to 
conclude that introductory tasks are those with a “low floor” or with enabling prompts, while 
enrichment tasks are those with a “high ceiling” or with extending prompts. However, for effective 
learning, all students should be offered opportunities to struggle with mathematical ideas (Hiebert & 
Grouws, 2007). To offer appropriate challenges to students with difficulties as well as those with high 
abilities in mathematics, both introductory and enrichment tasks should be designed to have both a 
“low floor” and a “high ceiling” (Bobis et al., 2021). We therefore suggest another interpretation: 
Introductory and enrichment tasks offer different kinds of learning challenges. These differences 
require that, when designing introductory tasks, extra focus should be placed on ensuring a “low 
floor”, while the design of enrichment tasks requires greater focus on providing a “high ceiling”. 

A second contribution is that our results show how attending to the question of whether a task is an 
introductory or an enrichment task also can serve as a catalyst for discussions of other important 
aspects of task design for differentiated mathematics instruction. The act of designing tasks suitable 
for introduction and enrichment will present teachers with other dilemmas, such as whether a task 
provides enough guidance without funneling (Bauersfeld, 1998), and whether it is specific enough 
without depriving students of opportunities for general reasoning. Thus, for the collaborative learning 
process, attending to the question of whether a task is an introductory or an enrichment task might be 
more important than deciding on absolute criteria for such tasks. 

A third, and methodological, contribution to the research community is the method used to clarify an 
outcome of a collaborative learning process: by conducting a retrospective analysis related to a 
previously discovered dilemma – in this case, the dilemma of designing introductory and enrichment 
tasks that are challenging for all students in the mixed-ability classroom. 
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Text comprehension is a key aspect to consider when designing modelling problems. One important 
feature of mathematical problems is where the question is placed in the text. We present a theoretical 
background on text comprehension and modelling problems, and we discuss the pros and cons of 
placing the question before the text rather than placing it after the text. A review of the research 
revealed that placing the question before the text is more likely to result in improved comprehension. 
Further, we propose consequences for task design and future research.  
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Introduction  
Prior research has indicated that mathematical problems are very important for learning mathematics. 
For example, in the TIMSS study, 80% of the time spent in mathematics classes was spent working 
on mathematical problems (Hiebert et al., 2003). Thus, in order to appropriately foster students’ 
learning, thorough research must be conducted on task design. Niss et al. (2007) distinguished 
mathematical problems on the basis of their connection to reality, resulting in three different types of 
mathematical problems: modelling problems, word problems, and intramathematical problems. 
Whereas the third type have no connection to reality at all and can therefore be solved by applying 
heuristics and mathematical procedures, word problems are moderately connected to reality, meaning 
that the intended use of mathematics is embedded in an extramathematical context. Word problems 
differ from modelling problems in the strength of their connection to reality and in the cognitive 
processes necessary to solve the problem (Niss et al., 2007). Modelling problems require the problem 
solver to make assumptions about missing data and to structure and simplify the given context, 
whereas word problems are already prestructured and simplified. Usually, modelling problems are 
presented as texts. Thus, reading comprehension and the construction of an adequate mental 
representation of the real-world situation are essential for solving modelling problems. Based on this 
mental representation, the solution plan can be developed and carried out. As Leiss et al. (2019) 
showed, text comprehension was a significant predictor of students’ performance in solving 
modelling problems. Thus, there is a need for research on text comprehension and task design in 
modelling. Initial attempts to conduct research on the design of modelling problems were carried out 
in the past by posing open modelling problems with missing information (e.g., Fermi problems) or 
by asking students to develop multiple solutions to the problem or to draw a picture that represents 
the situation (for an overview, see Schukajlow, Kaiser, and Stillman, 2021). However, to date, not 
much is known about how task design affects the reading comprehension and solving of modelling 
problems. One variation in task design involves so-called question-placement effects (Thevenot et al., 
2007). The theory of question-placement effects suggests that comprehension should benefit from 
reading the question before reading the text of the mathematical problem. The aims of this theoretical 
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paper are (1) to summarize and link theoretical and empirical findings from research in the areas of 
reading comprehension and modelling, (2) to ground the influence of questions and their placement 
on comprehension in mathematical modelling problems, and (3) to present consequences for research 
and task design. 

Theoretical background  
Text comprehension 

Van Dijk and Kintsch (1983) distinguished between three levels of text comprehension that are built 
on each other but differ primarily in their complexity: the surface code, the text base, and the situation 
model. The surface code of a text consists of the exact wording and syntax of what is read, and thus, 
it is a pure representation of what has been read. In most cases, readers retain only the text surface of 
the last sentence or part of a sentence they read. Comprehension based on the surface code alone 
would be indicated through verbatim reproduction of the given text.  

The text base reduces the text surface to the semantic content of the text – the wording and syntax are 
therefore no longer exactly the same as the surface code. However, the meaning of the text remains, 
represented in so-called propositions (van Dijk & Kintsch, 1983). This level illustrates a mental 
representation of the semantic content of the text via the process of building coherence locally, that 
is, the relationships between the subjects, objects, and so forth, and the predicates (e.g., traits or 
actions) given in the surface code in a sentence or between adjacent sentences. Successful 
comprehension on the level of the text base means the text base leads to an understanding of the basic 
features of the text, but deeper comprehension of the content of the text is not sufficient.  

The highest level of comprehension is the situation model (van Dijk & Kintsch, 1983). It contains the 
content or context of the text and therefore no longer represents the explicit text but rather what the 
text is about. This mental model is constructed from the text base by drawing inferences and is 
augmented by prior knowledge and even external sources, such as the content of other texts or 
pictures. Building coherence across the entire text (i.e., global coherence) is crucial for constructing 
this mental model. The situation model may then be used to detect inconsistencies presented in 
external information and to evaluate the memory contents (Radvansky & Copeland, 2004). In the 
past, research on reading comprehension has been carried out by using different research approaches, 
including analyses of eye movements. 

Eye movements during reading 

The comprehension process is based on eye movements. Eye movements during reading can be 
classified into two different types: fixations and saccades. The former is “the state when the eye 
remains still over a period of time” (Holmqvist et al., 2011, p. 21). During reading, fixations occur 
when the eye temporarily stops moving on a specific word in order to process its meaning. Between 
two fixations (e.g., while switching from one word two another during reading), rapid eye movements 
occur, the so-called saccades. In reading research, a saccade that opposes the typical reading direction 
(e.g., left to right in Latin typeface) is called regression. Clifton et al. (2016) observed that the 
processes of word recognition and text comprehension (i.e., the construction of a situation model) are 
especially likely to have a strong influence on eye movements during reading. 
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Text comprehension in mathematical modelling 

According to research by Reusser (1990) and Leiss et al. (2010), a situation model must be 
constructed to solve complex word problems and modelling problems. The real-world situation is 
represented in the so-called situation model, and it serves as the foundation for further steps in the 
solution processes. Blum and Leiß (2007) acknowledged this necessity and included the situation 
model in their modelling cycle, which has often been used to describe the process of solving 
modelling problems in the past. By comprehending the text, students construct an idiosyncratic 
mental representation of the real-world situation. This process can be described as a task-oriented 
structuring of individual knowledge. Importantly, the situation model contains more than just 
extramathematical knowledge (i.e., prior knowledge and prior experience). Rather, over the course 
of constructing a viable situation model of the problem, the student must identify a mathematically 
significant gap in the real-world situation in order to be able to complete the remaining steps in the 
modelling cycle on the basis of this situation model (Reusser, 1990). While constructing a situation 
model, the mathematically relevant information related to the question needs to be represented, and 
relevant information needs to be distinguished from irrelevant information regarding the modelling 
problem’s question. On average, students spend around 40% of the time necessary to solve modelling 
problems on the comprehension process (Leiss et al., 2019). Therefore, there is a need to investigate 
how different task designs affect students’ efficiency during this process. The process of 
comprehending the modelling problem is then followed by the process of structuring and simplifying 
the given information and thus constructing the so-called real model. Based on this deliberately 
structured mental model, mathematization is subsequently used to construct a mathematical model, 
which will allow the student to work mathematically within the mathematical model in order to 
generate mathematical results. These results then have to be interpreted on the basis of the real-world 
situation, followed by the deliberate validation of these results.  

Hegarty et al. (1995) proposed two approaches used by successful and less successful word problem 
solvers: the direct-translation strategy and the problem model strategy. Problem solvers who utilize 
this first approach tend to base their solution plan on the selection of keywords and numbers given in 
the text of a problem. This rather superficial approach (for an overview, see Verschaffel et al., 2020) 
then leads to an incorrect solution more often when compared with the second approach the authors 
identified: the problem model strategy. Problem solvers who utilize this second approach deliberately 
construct a situation model of the situation described in the text and are therefore able to detect 
inconsistencies between their situation model and the given information by applying their solution 
process, a practice that is necessary for correctly validating the solution. In line with these results, 
Strohmaier et al. (2020) identified eye movements corresponding with these two approaches, plus a 
third approach that characterized readers who struggled while solving word problems. According to 
Strohmaier et al., utilizing the direct-translation strategy manifested in “a very linear and intense 
reading pattern with long mean fixation durations, short saccades and few regressions”(p. 10). On the 
other hand, the problem model strategy manifested in a shorter mean fixation duration and a high 
frequency of regressions. The third pattern Strohmaier et al. (2020) identified, which was linked to 
struggling readers, consisted of shorter saccades, higher fixation counts, as well as a higher regression 
count, resulting in overall longer reading times.  
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Effects of the placement of the question on comprehension in mathematical 
modelling problems 
The reading goal is important for comprehension processes. In complex word problem solving, the 
reading goal is set by the question that accompanies the text of the task. While solving mathematical 
problems with relationships with the real world, the reading goal is to generate an accurate and deep 
understanding of the situation in order to answer the question. Usually, the question points to a 
mathematically relevant gap in the situation, which can be closed by using mathematics as a tool 
(Reusser, 1990), that is, by constructing a mathematical model and applying mathematical 
procedures. Because of the importance of questions for reading comprehension processes and for 
solving problems, the placement of the question needs to be evaluated critically with respect to task 
design. Depending on whether the question is placed before or after the text describing the real-world 
situation, comprehension processes can differ significantly. Placing the question before the text (i.e., 
reading the question first) should enhance the comprehension process because the reading goal is 
made more specific. Additionally, the question may serve as a tool for organizing and structuring the 
reading material, thus helping a student focus their attention on the relevant information. Therefore, 
decisions about the relevance of information given in the text should be made more precisely and 
quickly and, in conclusion, more efficiently. Furthermore, constructing coherence between the title 
and the question may enable initial inferences to be drawn and may therefore generate initial 
comprehension. The question and the title should facilitate the comprehension process, which should 
help a student solve a modelling problem similar to the ways a title facilitates a reader’s understanding 
of a narrative text. This hypothesis was derived from numerous studies that have shown the effect of 
placing questions before the text on the retrieval of goal-relevant information (cf. Carpenter et al., 
2018). As a result, the situation model should be more adequate (i.e., goal-related comprehension 
should be improved). The question could also be placed after the descriptive text. By placing the 
question after the descriptive text, the automated comprehension process would usually result in 
reading the text first and the question afterwards. Therefore, readers would have to construct 
hypotheses about the relevance of information for the superordinate reading goal, that is, solving the 
(at this point still unknown) problem. Placing the question after the text would result in the problem 
solver having to revisit the text after reading the question or adapting their situation model 
accordingly by shifting the relevance attributed to the information, ultimately leading the problem 
solver to learn from the text.  

When discussing question-placement effects, some considerations have to be kept in mind. First, a 
question-placement effect on comprehension might only occur if the question cannot be inferred 
immediately and unambiguously from reading the text at hand. This is because, if the question is 
already clear to the reader, although they have not read it yet, the reading goal can be adjusted 
accordingly, thus organizing the process of distinguishing between goal-relevant and goal-irrelevant 
information. Second, the benefits of placing the question before the text are assumed to be specific to 
goal-relevant information (Carpenter et al., 2018). Therefore, the use of questions placed before the 
text might impair a student’s ability to learn from the text. Third, the beneficial effects of the 
placement of the question in mathematical modelling problems should depend on the problem 
solver’s mathematical competence. This is the case because the mathematically significant gap in the 

Proceedings of CERME12 3955



real-world situation needs to be identified, that is, the problem solver needs to construct a basic 
mathematical model that is based on the question in order to distinguish relevant from irrelevant 
information. The construction of the mathematical model requires adequate mathematical 
competence, and it was found to be affected by mathematical performance in the past (Schukajlow, 
Blomberg, et al., 2021). 

Research on question-placement effects in mathematics education is scarce. Thevenot et al. (2007)
showed that performance in solving arithmetic word problems was significantly better if the question 
was placed before the text. Their results opposed the results found by Arter and Clinton (1974), who 
did not find significant effects of placing the question before the text on error counts in a study on 
irrelevant information in arithmetic word problems. However, effects on the time needed to solve the 
problems were found, thus influencing the efficiency (the ratio of accuracy and time). 

We would like to propose two prototypical comprehension processes regarding the two possible 
question placements in modelling problems by illustrating these induced effects with the sample 
problem called “Buddenturm” (Figure 1). We suggest that problems used for research in the field of 
question-placement effects should contain a title, a question, and a brief text that describes the 
situation. According to Thevenot et al. (2007), the descriptive text needs to be constructed in such a 
way that the problem’s actual question cannot be inferred immediately and unambiguously. 
Otherwise, effects of question placement might be impaired as stated above. To do so, from our point 
of view, each problem should contain additional numerical information that is not relevant to 
answering the question. In the “Buddenturm” problem, the annual data, the length of the city wall, 
and the tower’s former height are examples of irrelevant information. 

Figure 1: “Buddenturm” modelling problem with the question placed before the descriptive text

Assuming a linear reading pattern, the title of the problem is read first and does not depend on the 
placement of the question. By recognizing the name of the tower or by decoding the word Turm (in 
English: tower), readers can activate prior knowledge and integrate it into their initial situation model. 
After that, if the question is placed before the text (as is the case in Figure 1), readers will then read 
the question. By integrating the question and its content into the situation model, the reader may be 
able to draw inferences from it, such as that the tower is antique or at least in need of refurbishment. 
In conjunction with the information that the size of an area should be calculated to solve the problem, 
readers can enrich their situation model even further. After that, while reading the descriptive text, 
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relevant and irrelevant information can be identified as such, simplifying the process of structuring 
the situation model for mathematization later on. In summary, the comprehension process initiated 
by placing the question before the text can be processed on a deeper level from the very beginning, 
rather than the problem solver focusing on generating a rough understanding of the situation. In turn, 
if the question is placed after the text, all information from the descriptive text needs to be integrated 
into the situation model initially, resulting in an understanding of the overall situation. To some 
extent, this is the result of the descriptive text being structured in such a way that the question (and 
thus, the reading goal) cannot be inferred unambiguously while solving modelling problems. 
Therefore, the ability to distinguish between relevant and irrelevant information during reading might 
be impaired. Although readers might anticipate a particular question, they cannot evaluate the 
relevance of information with certainty. This is because the actual question has not yet been integrated 
into the situation model. After reading the question and integrating it into the situation model, the 
situation model can be (re)structured and simplified for mathematization later on. Rereading the 
descriptive text might be necessary during this phase so that the problem solver can adequately 
represent all the relevant information.  

These two prototypical comprehension processes might differ across the range of novices to experts 
as well as interindividually, as the processes depend strongly on prior knowledge. Experts in 
understanding modelling problems might structure their comprehension process in a specific way so 
that they read the title of the problem first but then immediately read the question, effectively 
simulating the question being placed before the text and thus possibly benefitting from the early 
integration of the question in their situation model. 

Consequences for task design and future research 
There are two possible conditions for the placement of the question, both already being used by 
teachers and textbooks: before the text and after the text. As described above, both conditions may 
have a positive influence on parts of students’ cognition while also impairing other parts. The latter 
may challenge the problem solver by making it harder to initially comprehend the modelling problem, 
especially if prior knowledge is poor. But the reader will ultimately learn from the text, that is, the 
reader’s ability to learn about the content of the text by solving the problem might be improved (e.g., 
learning that the tower’s height in Figure 1 has changed across the centuries). The former may impair 
long-term learning about the content of the text but may in turn improve text comprehension, 
ultimately leading to an improved solution process, which in turn may result in improved modelling 
competence. However, both possible conditions and the extent of their influence have yet to be 
studied thoroughly. Thevenot et al. (2007) examined question-placement effects for arithmetic word 
problems, which were designed for fourth-graders. For modelling problems, research needs to be 
done on the influence of the placement of the question on text comprehension and the efficiency of 
text comprehension. Eye-tracking technology can be utilized productively to identify how the 
placement of the question influences students’ comprehension of mathematical modelling problems 
and how students attempt to comprehend them. If a question-placement effect can be demonstrated 
through carefully designed studies, research on possible effects on modelling performance through 
effects on text comprehension may be conducted. However, the question-placement effect and its 
extent should furthermore depend on students’ cognitive characteristics, such as working memory 
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capacity, mathematical competence, and reading competence and on the problems’ characteristics 
(e.g., the difficulty) (Thevenot et al., 2007) or the type of problem (e.g., “dressed up” word problems 
or intramathematical problems). As prior research was conducted on word problems, we can mostly 
speculate about how question placement might affect how students solve modelling problems.  

Conclusion 
In this theoretical paper, we discussed the theoretical background for question-placement effects in 
the reading comprehension of mathematical modelling problems and derived why placing the 
question before the text that describes the real-world situation should be beneficial for learners’ 
comprehension processes, ultimately benefitting the solution processes. In short, placing the question 
before the text should help the reader better distinguish between relevant and irrelevant information 
by having a specified reading goal and constructing an adequate initial situation model just from the 
title and the question about the modelling problem.  
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The Brazilian normative presents the obligation of using dynamic geometry software in the textbooks. 
However, each methodological approach allows many different applications. This paper aims to 
characterize the presence of activities using GeoGebra in Brazil’s mathematics textbooks. To 
assemble these activities is essential to construct and explore visual aspects associated with 
experiments, as found in the literature. Analyzing four textbook collections of math for middle school, 
this paper found 36 activities. Through a methodological procedure created from the theoretical 
framework, the activities’ characteristics show that textbooks must offer enhancing activities, not 
borderlines, and not use technologies as a pretext to be approved. So, there’s space to change their 
approach in textbooks. Besides that, the proposed procedure altered perceiving an activity in a 
textbook, allowing future analyses. 

Keywords: Dynamic geometry software, visualization, mathematical discovery. 

Introduction 
The textbook is one of the most used resources by teachers, which means it can influence an educator 
directly in a classroom, consequently, teaching and learning process. The importance of this resource 
is viewed through a Brazilian government program named National Textbook and Didactic Material 
Program – PNLD (Programa Nacional do Livro e do Material Didático), recognized as one of the 
most extensive national distribution textbooks programs in the world (Brasil, 2020a).  

This program aims to offer didactic materials, including textbooks, for free, to every student studying 
in a public school. It is also important to highlight that the books are reused to assist the students for 
four years. In this period, it can only demand repositions or complementation (Brasil, 2020a). Only 
in 2020, more than 170 million textbooks were distributed, with an estimated total investment of BRL 
1,4 billion, equivalent to approximately EUR 280 million, using the quotation in the given period 
(Brasil, 2020b). 

All this process involving PNLD includes many stages, among which can be highlighted the writing 
of textbooks by the authors, the choosing of approved textbooks by the schools, the acquisition by 
the government of these books, the later production, and the distribution of the material having its 
final use inside the classroom. Thus, analyzing some of these PNLD textbooks allows us to 
understand Brazilian education, a relevant research field. 

In this process, a crucial stage is the writing of textbooks by authors. Once, in this way, it is possible 
to observe the adopted approach of an object of knowledge by each one and the decision about how 
digital technologies will be used in their process. That’s why textbooks are ingrained with the authors’ 
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conception about mathematics and the teaching and learning of math, explicitly or not (Borba & 
Villarreal, 2005).  

As long as the contribution of the technology towards the changes in the social configuration is 
undeniable, which is also reflected in the learning space, it is necessary to think about integrating 
textbooks and digital technologies. For that reason, since 2014, the PNLD’s public notice, dedicated 
to middle schools’ textbooks1, was the first of the Program that contemplated the inclusion of digital 
technologies.  

Furthermore, PNLD 2020, bringing middle schools’ textbooks written and published in 2018, was 
the first that had the main goal to contemplate the National Common Basic Curriculum – BNCC 
(Base Nacional Comum Curricular) (Brasil, 2018). It presents 11 of 121 math skills2 addressing 
digital technologies, in which eight of them denote dynamic geometry software. Therefore, it is 
considered that it is clear the obligatoriness of the digital technologies’ presence in textbooks 
available in Brazil currently.  

However, these digital technologies in textbooks do not ensure that the authors present proposals 
using their potentialities or technologies just with a pretext to the same suggestions. So, an essential 
part is to think about this presence and these activities. 

In light of the previous, this research considers it essential to reflect on: how the presence of activities 
using GeoGebra can be characterized in Brazil’s mathematics textbooks? It opts here for this 
particular software, GeoGebra, because it is mentioned by three of four collections analyzed in this 
paper. All these collections present specific pages dedicated to a pedagogical task to be realized by 
students using this dynamic geometry software. Such studies will be called activities in this paper. 

Theoretical framework  
There is an essential differentiation between drawing and construction in the dynamic geometry 
paradigm, where movement is intrinsic to its processes. The first one is related to the non-resistance 
to the dragging proof; if a picture is dragged and doesn’t keep its fundamental properties, the image 
is just a drawing (Laborde, 1998), as a picture of a geometrical object. The construction creates 
illustrations that permanently preserve its fundamental properties, even when one of its moving 
elements is dragged. Thus, the geometric figure resists the dragging proof (Borba et al., 2020). 

Assuming this paradigm, it is understandable that the construction is essential to activities using 
GeoGebra to make scenarios that can enable mathematical investigation (Borba et al., 2020). Besides 
that, it may encourage the student to comprehend the properties that the geometric figures present 

                                                 
1 Each year, this process occurs with a specific stage of school education: childhood education, primary school, middle 
school and high school. So, these textbooks are used during four years (before 2020, the period of use was three years). 

2 BNCC is a normative document that defines the set of essential learning that all students must develop throughout the 
stages of basic education. In Mathematics, there are 121 skills in total for the four years of middle school and every 
textbook has to follow it. If do not, they are not approved. 
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and the relations between the parties through visual feedback that the software provides (Laborde, 
1998). 

This idea of movement can be explored with the visualization since, based on the dynamism explored 
from the construction of geometric pictures, the possibility of manipulation opens up along with the 
visualization of objects. This means elaborating on a mathematics activity based in GeoGebra should 
explore the visual aspect once the software offers quick feedback. This feedback requires an 
interpretation by the students, and because of it, the visualization has a crucial role in dynamic 
geometry (Laborde, 1998). 

Zimmermann and Cunningham (1991, p. 3) define mathematical visualization as “the process of 
forming images (mentally, or with pencil and paper, or with the aid of technology) and using such 
images effectively for mathematical discovery and understanding.” Therefore, visualization is 
associated with understanding a problem as well as discovering something, as seen by the authors. 
At the same time, it requires an active role by whom is visualizing. 

In this point of view, after constructing some geometric object, the activity must have a goal to 
visualize this construction. It can be raising a hypothesis, getting convinced of some conjecture, or 
confirming previously emerged ideas. This interaction with the constructed object is necessary, and 
this is possible because of the manipulation that GeoGebra offers.   

Associated with the idea of visualization with discovery, it is the experiment. According to Borba 
and Villarreal (2005), an experiment is executed to discover something unknown, check the truth of 
a hypothesis with the view to accept or reject it or afford examples of known fact. These authors point 
out that the first idea of the experiment goal is discovering something new, which means it is related 
to mathematical discovery. 

This idea is primordial on the production of mathematical senses, as Borba et al. (2020) point out. 
They express that discovering patterns or singularities between the representation of math objects (or 
components of these representations) propels the production of mathematical senses (Borba et al., 
2020). Thus, there is an “empirical” dimension that involves both thinking and learning mathematics. 
In this process to the occurrence of mathematic learning, Borba et al. (2020) argue that the 
technological resources became leading figures for that predominant experimental and visual feature. 
Therefore, it can perceive the importance of experimental dimension gains in GeoGebra and the visual 
dimension already approached. 

Therefore, it is relevant to note that Borba and Villarreal (2005) point out that an experimental 
approach in mathematics education, using technologies, provides: 

“The possibility of testing a conjecture using a significant number of examples and the chance of 
repeating the experiments, due to quick feedback given by computers; the chance of getting different 
types of representations of a given situation more easily; a way of learning mathematics that is 
resonant with modeling as a pedagogical approach.” (Borba & Villarreal, 2005, pp. 75–76) 

So, it’s relevant to seek comprehension for integrating visualization, exploration, and mathematics 
learning in activities using GeoGebra in textbooks. Whence, it is essential to characterize the activities 
through these approaches that could potentialize learning math. 
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Methodology 
Four middle school math textbook collections were analyzed out of 11 approved in PNLD 2020 to 
perform this qualitative research. The collections will be named Collection A to D in this paper. Each 
of them consists of four books, from sixth to ninth grade (students here are between 11 and 15 years 
old), totalizing 16 textbooks analyzed. Of the more than 10 million math textbooks distributed in 
2020 to Brazilian public schools, approximately 70% are from these four collections, highlighting 
them as representative collections for the analysis, as shown in Table 1. All these 16 books that were 
analyzed are teacher’s books3. 

After choosing the collections, the most distributed books from different publishers, the researcher 
searched for activities using GeoGebra and identified the chapters where they were. These chapters 
were analyzed, purposing to identify how the activities using GeoGebra were distributed through the 
textbooks, according to grades and contents of geometry. 

The theoretical framework’s reading developed a methodological procedure to characterize the 
presence of activities using GeoGebra in mathematics textbooks, following Figure 1. Every task 
found was classified by it. 

 
Figure 1: Methodological procedure developed by the researcher 

To classify the activities by the methodological procedure, it was observed the following: 1) if the 
content worked in the activity was approached previously in the same textbook, or it is the first time 
that the author presented the content to students through GeoGebra; 2) after constructing a geometric 
object, if there is an invitation to drag something with a goal, it means, an exploration through 
visualization and movement or there is not this invitation and, so, the student construct a geometric 
object and does not have an exploration with it. 

From two questions in Figure 1, therefore, it can be classifying the activities in four groups: activities 
that: 1) work concepts already approached in the textbooks and have an invitation to an exploration; 
2) work concepts already approached in the textbooks and without an invitation to an exploration; 3) 

                                                 
3 In Brazil, every public-school teacher receives a textbook containing student textbook and also some tips, instructions 
and answers for all activities of it (in another color, to do this differentiation, as Figure 2 shows in red).  
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work concepts are not approached in the textbooks previously and have an invitation to an 
exploration; 4) work concepts are not approached in the textbooks previously and without an 
invitation to exploration. 

Giving attention to the third group, it is possible to see that activities from that have an approach 
promoting mathematical discovery. This assumption is based on the fact that in this case, the 
experimenters can discover something new that they did not know before, and test and visualize this 
result with quick feedback, following the theoretical framework. 

Discussion of results 
Analyzing the Collections A, B, C, and D, the results are shown in Table 1. Collection A, which 
represents almost half of textbooks coverage in Brazil, has just one activity using Geogebra per year, 
totalizing four activities. 

Table 1: Data of 4 collections analyzed  

Collection Coverage in Brazil 
in 2020 

Quantity of activities using 
GeoGebra 

A 49,8% 4 
B 10,1% 8 
C 6,1% 15 
D 3,4% 9 

Total 69,4% 36 

Focusing on those two questions presented in Figure 1, the results are shown in Table 2. It is possible 
to see that most activities have an invitation to exploration (first column); at the same time, works 
concepts are already approached (first line). Seven activities do not invite the student to explore, 
which shows they do not exploit the potentialities of GeoGebra of manipulation.  

Table 2: 36 activities classified in four groups  

 THERE IS AN 
INVITATION  

TO AN EXPLORATION 

THERE IS NOT AN INVITATION  
TO AN EXPLORATION 

CONCEPTS PRESENTED HAVE 
ALREADY BEEN APPROACHED 

Collection A: 3 
Collection B: 6 
Collection C: 2 
Collection D: 5 

Total: 16 (44,4%) 

Collection A: 0 
Collection B: 1 
Collection C: 1 
Collection D: 3 
Total: 5 (13,9%) 

CONCEPTS PRESENTED HAVE NOT 
BEEN APPROACHED PREVIOUSLY 

Collection A: 1 
Collection B: 0 

Collection C: 12 
Collection D: 0 

Total: 13 (36,1%). 

Collection A: 0 
Collection B: 1 
Collection C: 0 
Collection D: 1 
Total: 2 (5,6%) 

Also, there are five activities working concepts already approached in the textbook and having not an 
invitation to explore, as Figure 2 shows an example.  

Previously, the chapter where this activity is localized has already approached the relations between 
angles in two parallel lines cut by a transversal. There is an activity on the same page with the same 
goal. The only difference is this first is to be done with pencil, paper, and a protractor. Furthermore, 
students are not invited to drag any constructed points to help convince them about corresponding or 
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supplementary angles. So, this activity doesn’t bring a potential use of GeoGebra, and a student could 
do this same task without any digital technology.  

 
Figure 2: Activity using GeoGebra from Collection C – seventh grade 

After this example of a borderline activity, backing to Table 2, in the third group, it is seen that 
Collections B and D do not present any activity promoting mathematical discovery. Otherwise, 
Collection C shows 12 out of 15 activities promoting mathematical discovery. For that reason, an 
example from this collection, in particular, will be explored.  

The first activity from the sixth-grade textbook uses GeoGebra to represent parallel, concurrent, and 
perpendicular lines. It begins by requesting for the experimenter to construct parallel and 
perpendicular lines to be compared subsequently. For such, the student shall use three non-colinear 
points, constructing a ray and two segments, as Figure 3 shows. By measuring the angles and 
segments that appear in the image, the “investigate” part in the textbook shows up, as can be seen in 
the exact figure. This activity occurs at the end of the chapter so that the theory of all these points 
mentioned has already been approached. However, what is proposed is an investigation that has not 
been approached yet, that is, the conjecture that the shortest distance between a point and a straight 
line is the segment that unites them, forming 90°. 

After the request to construct the parallel and concurrent lines in this activity, the student is requested 
to move the point E to equal AE to the measure of CD (letter b). For this, point E will have to be 
moved until CEA forms 90º. When continuing the activity (letter c), the student, from visualization 
and movement, using experimental procedures, is invited to elaborate the mathematical conjecture 
that the shortest distance between a point and a line corresponds to the measure of the segment that 
joins this point to the straight line forming a right angle (letter d). 
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Figure 3: Final part of 1st activity from collection C promoting mathematical discovery – sixth grade 

This way, it can define that the activity has a mathematical discovery approach (Borba & Villarreal, 
2005). It happens because experimental procedures are used to generate a conjecture; there is the 
discovery of mathematical results previously unknown to the student and the possibility of several 
tests by dragging point E. It occurs while the students verify the measurement of the segment AE and 
the angle CEA compared to the DCE angle, which means they are invited to visualize and movement. 
This kind of activity can enhance students' mathematical learning once that it gives depth and 
meaning to understanding, as Hohenwarter et al. (2008) point out 

“Instead of giving students an answer to a problem they didn’t have in the first place, such 
explorations allow a more meaningful introduction of the abstract concept […] as a solution to a 
problem students experienced themselves.” (Hohenwarter et al., 2008, p. 3)  

Conclusion 
Half of the Brazilian students, who use Collection A, can see one activity per year using this software, 
which is low. Giving focus on Collection C, which brings a more relevant number of activities using 
GeoGebra, it is the author’s choices for an approach that has a goal to promote mathematical 
discovery, as can be seen from the methodological procedure (12 out of 15), what does not happen 
on Collection B and D once. This emphasizes the gap in the use of activities with dynamic geometry 
software in Brazil, making clear that there is space to introduce more activities using GeoGebra in 
the textbook and change their approach. 

This paper was aimed to characterize the presence of activities using GeoGebra in Brazil’s 
mathematics textbooks through two questions from the methodological procedure. From this, we 
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could see how some activities (7 out of 36) don’t invite students to explore and hence don’t utilize 
the potentialities from GeoGebra and its dynamism. It’s necessary that textbooks offer enhancing 
activities, not borderlines, and not use technologies as a pretext just to be approved by PNLD, for 
example. 

We sustain that it is possible to potentialize the mathematics learning process through mathematical 
discovery once the students are invited to explore and search for their own results without a ready 
answer. That means they don’t know where to arrive in the beginning. A textbook mustn’t supply 
some answers before these activities using GeoGebra. In this way, students are more involved, as 
Borba and Villarreal (2005) observe, challenging them to discover something new by visualizing a 
problem and testing with quick feedback. And there is space to appropriate this approach better for 
making activities using GeoGebra in mathematics textbooks from Brazil, looking for promoting more 
meaningful math learning for students. 

It is also noted that methodological procedure created from theoretical framework contributed to 
verify if an activity has an approach based on visualization and exploration and if it promotes 
mathematical discovery, changing to perceive an activity in a textbook, which shows us a fruitful 
field of development to future analyses. 
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In this paper we present the results of a pilot study focused on an educational programme aimed at 
involving upper secondary students in the design of digital curriculum resources (DCR) using the 
GeoGebra software. We analyse the reflections proposed by the students-designers during semi-
structured interviews developed at the end of the educational programme. As a result of this analysis, 
we propose a characterization of students-designers’ praxeologies in relation to the task of DCR-
design. This characterization highlights their awareness both on the characteristics of the DCR that 
supports students’ learning and on the role of the design process in fostering the designers’ learning. 

Keywords: Digital curriculum resources, students-designers, praxeologies, awareness. 

Introduction 
In the last decade an increasing interest in studying the role played by digital tools in supporting the 
process of task-design has emerged (see, for instance, Leung & Baccaglini-Frank, 2017). Here, we 
focus on digital curriculum resource-design to broaden the set of possible products of the design-
process: not only tasks, but also revision guides for specific topics, digital materials to introduce new 
mathematical topics, interactive e-books. We refer to Pepin et al.’s (2017) definition of digital 
curriculum resources (DCR) as “organised systems of digital resources in electronic formats that 
articulate a scope and sequence of curricular content” (p.3). 

Many studies in mathematics education have been focused on the effects of involving teachers in the 
process of task/resource-design on both their professional development and the effectiveness of the 
designed instructional materials (Jones & Pepin, 2016). Few studies have, instead, focused on 
students as co-designers (Diamantidis, Kynigos & Papadopoulos, 2019) or designers of digital 
tasks/resources (Alessio et al., 2021). Our research is set in this mainstream of studies. In this paper, 
we present the results from a pilot study aimed at involving upper secondary school students as 
designers of DCR.  

Theoretical framework 
The first component of our theoretical framework, the tetrahedron model (Albano, Faggiano & Rossi, 
2018), is considered to interpret the dynamics that characterize the process of DCR-design. This 
model takes into account the relationships between the Teacher (T), the Student (S), the Mathematics 
(M) and the Designer (D) of digital materials, and considers technology as a mediatory sphere 
embedded in the tetrahedron with vertices T, S, M and D.  

The second component of our theoretical framework is introduced to analyse how the process of 
DCR-design affect students’ development of specific competencies and awareness about their 
learning. The design of DCR could be conceived, in fact, as a specific task for students. For this 
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reason, a product of the process of DCR-design is the students’ development of specific praxeologies 
associated to this task. The notion of praxeology has been introduced by Chevallard (1991). It could 
be structured in two main levels (García et al., 2006): the know-how level, which includes the task, 
or a family of tasks, and the techniques used to face the task; the knowledge level, which includes the 
“discourses” developed to justify or frame the techniques for the task. The discourses on the 
techniques, as stressed by Artigue (2002), could focus on both their pragmatic value, connected to 
their productive potential in terms of efficiency, costs, validity, and on their epistemic value, more 
difficult to be grasped, connected to the way in which the techniques could contribute to the 
understanding of the objects they involve. 

Context of the study 
The students involved in our study (7 upper secondary school students, grade 12) participated to an 
educational programme set up by the Department of Industrial Engineering and Mathematics of the 
University of Ancona. The programme, aimed at supporting the transition from secondary school to 
university, was articulated in 10 meetings (50 hours in total) during which participants have been 
guided in deepening their knowledge of specific mathematical topics through the use of GeoGebra as 
a tool for DCR-design. The first 2 meetings were devoted to introducing mathematical topics that 
participants had not faced at school, namely complex numbers and limits. The introduction of these 
topics was supported through the use and analysis of specific applets aiming at different goals 
(explanation, exploration, visualization, remediation, self-assessment). In this way, students 
experienced specific functionalities of the GeoGebra software, such as check boxes, input fields, 
sliders, drag and drop. In this initial phase, in order to make participants become familiar with the 
software, they were also guided in the creation of their first GeoGebra applet concerning the 
exploration of the function y=sin(x).  

In the second phase (8 meetings), participants (in the following, SDs, acronym for students-designers) 
were asked to design and implement DCR through the creation of GeoGebra applets, choosing the 
mathematical topic on which they preferred to focus. SDs, who worked in small groups, were 
suggested to consider the difficulties students could face and to exploit the potentialities of the 
software to create DCR aimed at supporting them in overcoming these difficulties. This activity, 
which was the central one in the educational programme, was carried out in presence of tutors 
(university researchers), available to provide SDs with technical hints concerning software aspects, 
if necessary. Specific criteria for the DCR-design were not shared with SDs in order to enable them 
to identify their own criteria. 

If we refer to the tetrahedron model to interpret SDs’ activity within our educational programme, we 
can highlight specific new dynamics. In fact, while, usually, students are located in the S vertex of 
the tetrahedron and are mainly involved in the dynamics that characterize the S-M-T or S-M-D faces, 
in our programme students are located at the D vertex (as SDs) and the focus is on the D-M-T face. 
T represents the tutors, who has assigned to D the task of designing DCR, using digital tools to support 
the learning of the mathematical content M. Since the resource produced at the end of DCR-design 
will be, in turn, a task for other students, the meta-reflections developed by the students-designers 
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enable them to become strongly involved also in the interactions that characterize the S-M-D face of 
the same tetrahedron (where S represents the hypothetical students for whom the DCR are designed).  

Research aims and methodology 
The main aims of this research are: (1) to characterize the praxeologies, developed by the SDs 
involved in our study, in relation to the task of DCR-design using the GeoGebra software; (2) to 
investigate how SDs interpret their experience of being both students and designers. 

The data collected were: (a) the digital resources designed by SDs, (b) SDs’ answers to a final written 
questionnaire on the process of DCR-design, and (c) a final audio-recorded semi-structured interview.  

In this paper, we focus on the analysis of SDs’ interviews. To characterize their praxeologies (first 
research aim), during the interviews, SDs were asked to describe the process of DCR-design (know-
how level) and to justify the choices they made during this process (know-why level). In particular, 
they were asked to justify their choices by focusing on: the didactical objectives of their DCR (to 
review a topic, to assess students, to support recovering…); the potentialities and constraints of the 
GeoGebra software as a tool to support the design of their DCR (pragmatic value of the adopted 
techniques); the difficulties related to the mathematical content on which the DCR is focused and the 
ways in which the DCR-design could support the students’ learning of this content (epistemic value 
of the adopted techniques). To investigate SDs’ interpretation of their experience of being both 
students and designers, at the end of the interviews, they were also asked to assess their experience, 
by reflecting on its usefulness (or not). 

The transcripts from the interviews were coded independently by the two authors, who identified 
specific excerpts useful to characterize both the know-how and know-why levels of SDs’ 
praxeologies (research aim 1) and the ways in which SDs interpret their experience (research aim 2). 
Afterwards, codes were discussed in order to come to agreement. 

Data Analysis 
Characterization of students-designers’ praxeologies related to DCR-design 

Because of space limitations, we will focus on two SDs – Marco and Anna – and on their discourses 
about their design of a specific kind of DCR: a revision guide for a mathematical topic. We chose to 
compare the praxeologies of these two SDs because of their different previous experiences with 
GeoGebra and the different choices they made in relation to the mathematical topic on which to focus 
in the DCR-design. Anna had never used GeoGebra previously at school, while Marco attends to a 
school focused on digital technologies’ use. Moreover, while Anna chose to focus on a mathematical 
content she already studied at school (goniometric inequalities), Marco chose a topic he studied for 
the first time within the educational programme (the comparison of infinities). During the interviews, 
Anna and Marco effectively re-construct their design, enabling us to characterize their praxeologies, 
related to the common task of designing DCR to support students in the revision of specific 
mathematical contents. Here we focus on common elements of these praxeologies.  

In the excerpt of Anna’s interview on which we focus here, she reconstructs the design of a DCR 
aimed at supporting students’ revision of goniometric inequalities. In particular, the applet she created 
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(Figures 1A and 1B) is aimed at making students reflect on different possible representations of the 
solutions of the inequalities >  and < . 

 

Figure 1A: The DCR on which Anna’s interview is focused; the solutions of a goniometric inequality 
are represented as abscissas of points on the graph of the goniometric function =   

 

Figure 1B: The DCR on which Anna’s interview is focused; the solutions of a goniometric inequality 
are represented as points on the goniometric circle corresponding to specific angles 

In his interview, Marco focuses on his design of a DCR to support students’ revision of the 
comparison of infinities in the study of limits. He created an applet (Figure 2) aimed at making 
students graphically compare the “ways” in which the functions = log , = , =  and =

 tend to infinity when the  variable tend to + infinity.  
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Figure 2: The DCR on which Marco’s interview is focused 

Even if they focused on different mathematical topics, the two students adopted similar techniques 
(know-how level) to face the task of creating revision guides. In their reflections, in fact, they stress 
on the importance of creating digital resources that enable students to: (a) choose the objects to 
display on their screens (different kinds of representations, graphs of specific functions, symbolic 
formulas…) and the order in which these objects are displayed; (b) see multiple representations at the 
same time and interact with them; (c) observe the effects of the variation and covarion of specific 
parameters using the sliders.  

The use of these techniques is evident in both the DCR designed by Anna and Marco. Both students 
explicitly refer to these techniques in their interviews. For example, referring to techniques (a) and 
(b), Anna declares that she has designed her DCR to enable students to choose the representation of 
the solutions of a goniometric inequality and also whether visualizing these solutions only in a range 
or across the whole set of real numbers (as in the Figures 1A and 1B). Marco refers to the same 
techniques when he stresses that, thanks to the design of his DCR, students can display different 
graphs at the same time and choose if visualizing the graphs of the functions = log , = , =  and =  or the graphs of their ratios, that is of the functions = , =  , =  . 

Both Anna and Marco inserted sliders in their DCR (technique c). Anna inserted a slider to enable 
students to explore different possible situations, according to the value of a within >  and < . Marco inserted two different sliders to enable students to visualize how the graphs of the 
functions dynamically vary according to the values of the parameters a and p. 

When they justify these techniques (knowledge level), Anna and Marco focus both on the description 
of practical aspects connected to the DCR-design process (pragmatic aspects) and to the reflection 
on how these techniques could contribute in creating DCR that really support students in the learning 
process (epistemic aspects).  
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Both Anna and Marco stress that making students choose what to display (technique a) enables them 
to manage the information on which to focus. Anna, for example, focuses on pragmatic aspects when 
she declares: 

“[this applet] enables students to make graphs appear and disappear when they want, instead of 
visualizing them all together. In this way, there are not too many information, but only the 
information I require, so I can manage them”.  

In relation to the possibility of deciding the order in which to display information, she adds a 
reflection that shifts the focus on epistemic aspects, connecting the chosen technique to difficulties 
she experienced when studying goniometric inequalities: 

“It seems better to focus first on [the solutions in] an interval, so as to gradually introduce the 
periodicity. In the classroom, also, one of the main difficulties is to write the solutions with 
periodicity”. 

Marco also reflects on the epistemic value of technique a, when he explains how the teacher could 
use the DCR he created: 

“This exploits the potentialities of the software; [the DCR] has been designed for didactic 
purposes: [the teacher] shows the file and can show, for example, the cosine function first, then 
the parabola and this allows to give a further meaning to the concept of limit; the software allows 
you to show these things in the order you prefer and then allows you to explain”.  

Anna and Marco focus also on the potentialities related to making students work with multiple 
representations (technique b). Anna, for example, declares that her choice to adopt technique b in the 
design of her DCR was aimed “to give, to the users, the possibility to display all the representations 
of the solutions of goniometric inequalities”. While Anna’s reflection mainly refers to the pragmatic 
value of technique b, Marco focuses on the epistemic value of the same technique, by stressing that 
making students work with different representations enable them to give different meanings to 
mathematical concepts: “Give a new meaning, seeing limits, truly see them! It is something that this 
software enables to do.” 

When reflecting on technique c, Marco focuses on the role played by sliders as tools that support 
students’ understanding, by enabling them to work with dynamical figures (pragmatic level) that 
represent classes of mathematical objects (epistemic level): 

“There are [in my DCR] classes of functions depending on sliders. This applet has been conceived 
with a didactical aim, so that a student who faces this topic for the first time, playing with sliders, 
can see how limits and classes of infinities change. It seems to me that it is like ‘putting your hands 
in it’, something more than seeing it in a ‘sterile’ way, within a textbook. This [technique] enables 
[students] to better understand what they see”. 

Anna justifies her choice of inserting a slider in her DCR by focusing on both pragmatic and epistemic 
aspects, since she observes that using sliders, differently from working with paper and pencil, enables 
students explore a wide range of possible situations (pragmatic level), interacting, at the same time, 
with different problems belonging to the same class of problems (epistemic level): 
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“For the user, the sliders offer the opportunity to visualize and try different possibilities also in 
various points of the circumference and of the graph; if I had done it on a sheet [paper and pencil], 
I would have assigned a unique value to a [the parameter in the inequality > ], so there 
would have been less chance of comparison.” 

SDs’ interpretation of their experience as both students and designers 

When Anna and Marco are asked to assess their experience as designers of DCR, they both interpret 
the DCR-design as a particular problem-solving activity that enables the designer to reflect on aspects 
that usually are taken for granted. In this way, they highlight to be aware that the meta-reflections on 
the interactions that characterize the S-M-D face of the tetrahedron, which they developed thanks to 
the experience of DCR-design, have influenced their relationship, as students, with the mathematical 
content at stake. According to them, these meta-reflections gave to the designer the opportunity to 
autonomously discover, while facing the difficulties connected to the design process, key-aspects of 
knowledge construction. Marco, for example, declares: 

“It has been instructive, for me, to create tasks on these topics. In creating tasks, I learnt these 
topics. It has been a sort of problem solving where the problem is to create a problem. … At a 
didactical level, this work [the DCR-design] was very useful: putting your hands inside it, having 
to think about tasks … it seems to me that it is one of the best ways of learning a topic.” 

Thanks to their reflections on the dynamics characterizing the S-M-D face of the tetrahedron, Anna 
and Marco also have the opportunity to compare their experience as SDs with previous experiences 
as students. In particular, they contrast their learning through DCR-design, described as a “learning 
by discovery”, with the learning realized through textbooks, described as a “pre-packaged learning”, 
as testified by this reflection, proposed by Anna: 

“Creating resources from scratch was a completely new experience for me; I was used to 
textbooks, where exercises, and also theory, were ready-made. I found myself ‘at the opposite 
side’ with respect to those who study. It represented for me a new and more complete form of 
revising [contents]”. 

Final discussion 
In this paper we have analysed the process of DCR-design in which a group of secondary school 
students have been involved during an educational programme carried out within a university context. 
The analysis we have performed, focusing on the reflections developed by SDs during the semi-
structured interviews we carried out, has enabled us to reflect on the effects of DCR-design at two 
levels: (1) the level of students as designers; (2) the level of students as learners.  

As regards level (1), the investigation of SDs’ praxeologies has highlighted their capability of 
justifying their choice of adopting specific techniques in their DCR-design by clearly referring to 
both the efficiency of these techniques with respect to those adopted within a paper and pencil 
environment (pragmatic value) and the learning that each technique could support (epistemic value).  

As regards level (2), the semi-structured interviews we have conducted have boosted SDs’ reflections 
on the ways in which acting as designers could support the designers’ learning itself, showing the 
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effectiveness of activities aimed at fostering students’ reflections on the dynamics that characterize 
the S-M-D face of the tetrahedron. 

As a further development of this research, we are deepening our investigation of SDs’ praxeologies 
related to DCR-design by combining the analysis of a-posteriori interviews with the audio and video-
recording of the DCR-design process. We are also working on the re-design of the teaching 
methodology that characterized the educational programme to promote opportunities for SDs to share 
their reflections about their double role of designers and learners with their school mates, involving 
also their teachers in this process.  
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The use of digital teaching materials in mathematics education has gained ground since the first 
introductions of various hard- and software. A distinguishing feature for digital teaching materials 
is the possibility to offer interactive and dynamic elements. In this study, eye-tracking is used to 
explore students’ reading behaviour when working with mathematics items in a digital environment. 
In particular, the focus is laid on how students read depending on the extent to which the items offer 
dynamic elements. Analysis of data from the eye-tracking in combination with students’ responses in 
the interviews provide a broad picture of different types of challenges that students may face in 
working with dynamic elements. The results also reveal that commonly used dynamic elements as 
films or feedback on given answers are valuable because users emphasize them as useful and 
informative. 

Keywords: Mathematics, eye tracking, feedback, stimulated recall. 

Introduction 
New ways to visualise and opportunities to interact with mathematics provide learning opportunities 
that have proven valuable, for example in digital books that incorporate dynamic geometry applets 
(Radović et al., 2020) and in tasks with the ability to give feedback (Stevenson, 2017). In this study 
we use eye tracking to analyse students’ reading behaviour when working with mathematics items 
with five types of dynamic functions. Increased knowledge about what dynamic functions means for 
a student working with mathematics is valuable in relation to not only digital teaching platforms, but 
also other types of digital teaching materials. 

Background 
Dynamic functions in digital teaching material provide opportunities for learning not possible when 
printed materials are used. For example, Pohl and Schacht (2019) stresses the need for further research 
about new digital textbook elements. They contribute an empirical study of student use of textbook 
elements for the learning of mathematics, highlighting that these elements provoke new types of 
activities indicating that mathematical hypotheses may also be generated in new ways. In the 
contemporary rush to digitize there is also a need for awareness of potential shortcomings of digital 
materials. For example, writing mathematical equations may be harder than on paper and there is a 
risk of extended use of multiple-choice questions, something that can limit the readers opportunities 
to actively construct their understanding. Analyses of students’ interaction with digital teaching 
materials have revealed that digital materials contribute in determining how students engage in 
problem solving by reinforcing iterative strategies such as trial and error behaviours (Lantz-
Andersson et al., 2009). Such strategies may impede learning if used instead of problem solving based 
on analyses of the task, which means that the manner in which students interact with digital materials 
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is important. Digital teaching materials are for example argued for based on an intention to let students 
experience dynamic functions and to benefit from automatic feedback from the material. The 
possibilities to interact with dynamic media, enables an enhanced expressivity and the possibility that 
the technology functions as a collaborator rather than merely a tool or mediator, which means the 
mathematical activities become more participatory (Moreno-Armella et al., 2008). The expanded 
space of interaction in digital resources in contrast to printed (Pepin et al., 2017) implies a potential 
to play an important role in students’ learning. Research also reveals increased learning when digital 
materials are used to achieve knowledge acquisition through active learning, for example in an 
interactive response system (Wang, 2020) or using a computerized training method to learn 
mathematics (Taleb & Hassanzadeh, 2015). An investigation of the effect of various types of 
feedback offered in digital textbooks revealed a low effectivity of the feedback regarding whether a 
correct solution was given after receiving the feedback (Rezat, 2019). The feedback did not lead to 
the desired results even if it was given stepwise in relation to further trials, and the author suggests 
further development of feedback in digital textbooks.  

These previous studies give rise to the question about how students experience work with dynamic 
mathematics items and receive different types of feedback. In this study we make a contribution by 
using eye tracking to investigate students’ encounters with digital items offering different types of 
feedback. 

Eye tracking, theory and practice 

A fundamental assumption when using eye tracking methodology is the eye-mind hypothesis; what 
you pay attention to and think about is associated with where you place your gaze (see Hoffman, 
1998). This assumption has been questioned, and results also reveal that the gaze and the attentional 
focus sometimes diverge (Schindler et al., 2016). There are however convincing results about the 
correlation between the gaze and thought (Andrá et al., 2015). What is possible to measure is the 
students’ gaze and how much, how often and for how long the gaze lingers on different elements in 
the text. Because a prerequisite for decoding and comprehension, the two components of reading 
according to Gough and Tunmer (1986), is to place the gaze on the text, the data is considered to 
reflect parts of the reading process. Based on the eye-mind hypothesis, the gaze is here interpreted as 
reading the multimodal and dynamic text elements in the analysed items. 

In mathematics education research, eye tracking has proved to be particularly beneficial for studying 
processes, not outcome, and for research including aspects of visualisation and mental representation 
(Strohmaier et al., 2020) and because these descriptions hold for the current study the method choice 
is reasonable. The current study takes its starting point from a previous study revealing a limited use 
of dynamic and interactive elements in digital teaching platforms in mathe-matics (Dyrvold, 
submitted) which raised a question whether such elements should be used more. In the current study, 
eye tracking enables a comparison of reading behaviour depending on the offered dynamic and 
interactivity in mathematics items. Heat maps (visualising fixations) offers snapshots of students’ 
reading that are easy to interpret, and therefore valuable in stimulated recall interviews.  
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Aim 

The aim of the study is to achieve an in-depth understanding of reading behaviour in a digital multi-
modal environment: teaching platforms in mathematics. To enable analyses of which role variations 
in interactivity and dynamics plays for reading behaviour, mathematics items with elements that differ 
in those aspects were designed. These different element types are described in the Method section. 
Two research questions are posed; i) what do different element types mean for how a text is read?, 
and ii) how do students experience reading digital materials with different element types?. 

Method 
Three grade nine students (15 years old) with much gaming experience have participated in this study. 
The students were selected using a convenience sampling and were familiar with the interviewer. The 
students’ previous mathematical achievements were unknown. Each student worked with five items 
in a digital environment, each containing one mathematics task, and their work was monitored using 
eye-tracking equipment. The items were designed to touch on areas of mathematics that are new to 
the students. The apt difficulty of the items was outlined based on a review of Swedish grade nine 
textbooks. At a later stage tentative items were further discussed and adjusted in cooperation with 
two teachers who are also experienced textbooks authors. All items had the same structure, consisting 
of three parts, an introductory text, a question and some essential theoretical content (hereafter called 
Theory), each part constituting an area of interest (AOI). The eye-tracking analysis was built on how 
the student's gaze moved between these AOIs (visualised as the four grey areas in Figure 1).  

 
Figure 1: Basic design of the items and visualization of areas of interest (AOIs) 

The intention was that the task should not be able to solve based only on the introduction; rather the 
Theory would be needed. The Theory is essential in the analysis because the type of elements (i.e. 
how dynamic and interactive) utilized in this section is altered between the items. With access to the 
information in the Theory, the intention was that the tasks could be solved without using paper and 
pencil. The Theory in each item was designed with a dynamic function, from one of five element 
types (ET) (Dyrvold, submitted). The element types with their characteristics are as follows: ET1, 
static presence: static content, e.g. similar to typed text in print; ET2, opted presence: static content 
opened by a click, e.g. a definition; ET3, dynamic presence: continuously dynamic but not interactive, 
e.g. film; ET4, dynamic feedback: dynamic and (instantly) interactive, e.g. to choose in a list and 
receive feedback; ET5, continuous dynamic feedback: continuously dynamic and interactive, e.g. by 
providing feedback when dragging. 
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The students were interviewed with stimulated recall directly after working with the items following 
a semi structured and pre-formulated interview guide, based on three main themes. The first theme 
took its point of departure in the question “What did you think about the items in general?” in order 
to capture the students’ general impression of the items and the various dynamic functions. The 
second theme concerned the question “Is there anything special that you thought of when you worked 
with the different types of Theory?” (Interviewer exemplifies if needed). After that, heat maps from 
the students’ work were shown to the students (visualizing main fixation points) and they were asked 
questions on their reading of the items and the five element types for example: “How did you think 
when you worked with this item”, “You looked at X for a long time/several times, do you remember 
how you thought or why you looked at just that?”, “When you see how you read the Theory, do you 
remember anything special?”, and finally “What are your thoughts about the various dynamic 
functions in the items?”. The interview leader was well known to the students, the interviews were 
recorded and transcribed verbatim, and then summarized using short notes. Analysing these two kinds 
of data together contribute to fulfil the aim of the study because the different data nuance and enrich 
each other.  

Eye tracking analysis 

The students’ readings were analysed based on the following analysis questions: (1) How appealing 
do the students perceive the different element types? (TFF – time to first fixation on the ET); (2) How 
do the students use the different element types? (Fixation duration (FD) on ET and total number of 
fixations (TNF) on the ET); (3) How do the students read the explanations in the Theory due to 
element types? (Fixation duration on introduction and on task in relation to ET ((I+T)/ET) 

Time data from the eye tracking and short notes from the interviews with each of the three students 
were compiled and qualitatively analysed to gain insight into the relation between reading behaviour 
and experience of reading the text. The current study is to be followed by a larger quantitative study 
and results in relation to the current study will also be used to refine the method in the larger study.  

Result 
The results reveal both differences and similarities in how students perceive and read mathematics 
offered using different element types. There are not very distinct differences between how students 
interact with the five element types but if the element types are clustered according to level of 
interactivity and dynamics, some patterns occur. The results reveal both differences and similarities 
in how students perceive and read mathematics offered using different element types. There are not 
very distinct differences between how students interact with the five element types but if the element 
types are clustered according to level of interactivity and dynamics, some patterns occur. 

Table 1: Overview of collected data about the element types for each participant 

  
Item 1:ET1 Item 2:ET 2 Item 3:ET 3 Item 4:ET 4 Item 5:ET 5 

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 
TFF: ET  0.6 1.6 0.3 89.6 0.1 37.8 1.2 1 6.4 11.3 21.1 19 20.1 20.7 4.3 
TNF: ET  29 52 59 107 81 69 158 205 122 49 56 31 145 100 156 
AFD: ET 8.1 21.7 19 33.3 29.5 19.64 63.5 91.2 47.7 22.2 29.3 10.5 66.5 50.6 61.1 
AFD: I 34 13.6 20.3 48.7 26.9 34.1 8.7 20.7 12.7 15 19.7 15.6 10.7 11.1 8.5 
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AFD: T 7.7 7.9 8.6 33.3 47.5 22 37.5 44.1 57.1 54.7 124.8 32.5 23 20 14.1 
[AFD]: 

(I+T)/ET 5.17 0.99 1.52 2.46 2.52 2.85 0.73 0.71 1.46 3.14 4.94 4.56 0.51 0.61 0.37 

Measures are given in seconds except TNF, which is given in number of counts 

Results in relation to the two research questions about how the items are read and how students 
experience the reading are presented in themes, where each theme relates to both research questions. 

Theme 1. There is a pronounced difference in how the students read an item with only static 
content (ET1) in contrast to items with dynamic and interactive content (ET2-5). 

Less fixations and less time is spent on the Theory that is purely static. One student (S1) refers to the 
heat maps with ET1 saying “I read it [Theory] several times” and “The concepts were difficult and 
therefore I looked at the image [introduction] several times” indicating an experience of having 
engaged deeply with the text. Eye tracking data reveal that items with ET2-5 do generally reveal more 
fixations and totally longer summarized fixation time on the AOIs. The students’ experience from 
reading these items and reflections on the heat maps reveal several explanations to this pattern. Most 
prominent is utterances about joy and usefulness: “I liked the opportunity to drag” (S2) (see Figure 
2), ”I thought it [receiving feedback] was good … because it shows that you understand” (S3). 

 
Figure 2: Heat map showing S2 dragging in ET5 and translated Theory part. 

In the dynamic element (Figure 2) the green values on both sides on the rectangle changes dy-
namically when the level is dragged upwards. The translation of the introduction and task reads as 
follows: Per cent means hundredth 1%=1/100. Percentage points is used to describe differences 
between different numbers of per centage. Task: The VAT on cinema tickets increased from 6% to 
25%. Tick all correct alternatives (19%; more than 50%; 19 percentage points; less than 25%). 

Theme 2. Dynamic elements have a potential to evoke deep engagement in interaction, but there 
is also a risk of misunderstandings or omission in relation to the elements. 

The eye tracking data reveal that the students fixate their gaze on Theory as a static page (ET1) or 
film (ET3) immediately (almost in every case within two seconds). In the Swedish context, these 
element types are something the students are familiar with. In the item with ET2, on the other hand, 
one student (S1) left the Theory unread for quite a time because the student did not realize that more 
content was offered behind a click. Another student (S2) referred to the same content as clearly 
presented and “fun” to be able to open. In the item with ET5 the invitation to interact with the material 
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is by one student perceived as part of the task to solve, not Theory, “Because it was possible to drag, 
it made me think that it was part of the task” (S1), something that made the student a bit confused. 

Theme 3. Some element types demand investment in time from the reader, but time spent on 
the element does not assure that the reader is engaged in a learning situation.  

The eye-tracking data do rather clearly show that the students engage the most with the Theory 
presented as a film (ET3) or a continuously dynamic activity (ET5). If the reader does what is 
requested these elements have an inherent demand of persistence. A film may not make sense if not 
watched to the end, and a dynamic activity may leave questions lingering if not completed. In this 
study the participants invested the required time, and when that is the case, the content offered has a 
large potential to provide a fruitful learning situation. On the other hand, if for example a film is 
omitted, this learning situation is lost. The student with most fixations on the film (S2) watched the 
film twice and explained clearly the benefits with a film “It is easier to understand when someone is 
reading. Then you get help with symbols that are read”. 

In addition to these results there were some differences between the participants’ reading and 
reflections about the items that call for attention because they highlight that there is no such thing as 
the best teaching material. The usefulness is to a large extent dependent on who the reader is and if a 
sound base material is offered, it provides a good fundament for a learning situation. The teacher is 
essential and discussions and other activities can contribute further to the individual use of digital 
teaching platforms. For example, one student (S3) explains that he missed the information “drag” 
when he read the item with ET5. He experienced the item as too difficult and did mainly struggle to 
get a grip on what was requested in the item. In this particular case, a discussion with a peer or a 
teacher could have clarified the intention with the item.  

Discussion 
This study is designed as a response to the current development of digital teaching materials. The 
current study contributes to this issue with insights about how dynamic and interactive elements can 
be used to boost students’ gain from interaction with digital materials. The results highlight students’ 
engagement with items that are dynamic and interactive but also some potential challenges. The 
analysis reveals both enthusiasm and engagement in the dynamic ETs, also for a minor addition of 
questions which return ‘correct/false’ directly, in the Theory (ET4). The positive result in relation to 
ET4 was not expected, since it is such a trivial addition to a static text. However, the same element 
type caused some quandaries because the questions signal to the students that this is the task to solve, 
not a part of an explanation. 

Previous studies highlight that what students choose to engage with and how, in digital materials, is 
a factor worth taking into account when evaluating such materials (Lantz-Andersson et al., 2009; 
Bartelet et al., 2016), and the attraction to element types that offer interaction is notably on this issue. 
The students in the current study invested in the dynamic element types, also when the student “didn’t 
understand anything”, and such engagement must enhance the chance of learning. The persistence 
with which the students engaged with ET3 and ET5 was also surprising. The participating students 
are used to rapid activities in a digital milieu, which may cause restlessness, something that did not 
seem to affect the reading negatively. A lingering hypothesis is that previous rich digital experience 
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may have fostered an ability to skim and to use split vision in a fruitful way. Such an ability could 
explain that students with many fixations and a high fixation duration on the ET also had high values 
for the AOI on introduction and on the task. The question remains to investigate further. 

In this study the combination of eye tracking data and students’ reflections on their reading behaviour 
constitute rich data useful for in-depth analyses. The number of quantitative measures may falsely 
signal an intention to generalise about relations between reading behaviour and particular element 
types, which is not our aim. These measures are, in the current study, meaningful in relation to the 
interview data, because reading behaviour differs between readers and also depending on the intention 
with the reading. It is also important to be aware of the difference between the five items, both 
regarding representations and mathematical complexity. This means the reading experience may 
differ more regarding other aspects than the ETs between the items, and accordingly comparisons 
between the reading of ET1-5 must here be done very carefully. A limitation in the current study is 
also that the items are designed to suit the set up with quantitative analyses using eye tracking 
equipment and therefore the dynamics and interactivity is only found in the Theory. 

Visualisations such as heat maps are often criticised for being just ‘eye candy’ but when used to 
replace read aloud protocols this kind of data is very useful because it aids the students in recalling 
their solution process. The interviewed students were, aided by the heat maps, able to give rich 
descriptions of how they experienced the items depending on element type in the Theory. A 
refinement of the interview guide will however be made in relation to the heat maps because the 
students were very prone to describe what they saw, not their thoughts when they read or reasons 
behind the reading pattern. The results are applicable not only in relation to digital teaching platforms 
but for all types of digital teaching materials in relation to the extent they incorporate dynamic and 
interactive elements and functions. 
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The research topic 
This poster reports on the design of a study that will be conducted in the fall of 2021, with the aim to 
create more knowledge on in-service mathematics teachers’ use of curriculum resources. Our 
research questions are: what types of resources are used, in what way, and for what reasons? The data 
in the study consist of audio-recorded collaborative teacher planning discussions in Sweden where, 
just like in other countries, new teaching resources (digital and analogue) have made their way into 
practice the last decade. It is of interest to explore how these resources are used together with existing 
resources, particularly as the Swedish curriculum offers and leaves teachers with large freedom in 
choosing their teaching resources. 

The Design Capacity for Enactment (DCE) framework (Brown, 2009) describing resources use and 
Mathematics Knowledge for Teaching (MKT) (Ball et al., 2008) will tentatively be the frameworks 
used for analyzing these discussions. 

Theoretical background 
Teachers participate in several different communities of practice (Lave & Wenger, 1991). One such 
community can be collaborative planning, where teachers together discuss matters of teaching in-
between enacting lessons, either casually or more organized with specific common goals. 

While planning lessons (individually or collaboratively) teachers draw upon different curriculum 
resources as well as their experience. When it comes to teachers’ use of these resources in the practice 
of planning for and enacting teaching, Brown (2009) has proposed the DCE framework that connects 
curriculum and teacher resources, as well as different types of use, such as offloading, adapting, or 
improvising. 

Brown’s model emphasizes different types of resources. Each resource can incorporate different 
aspects relevant for teaching mathematics. These aspects can be labeled using the teacher knowledge 
domains in the MKT framework (Ball et al., 2008):  Common Content Knowledge (CCK), Specialized 
Content Knowledge (SCK), Horizon Knowledge (HK), Knowledge of Content and Students (KCS), 
Knowledge of Content and Teaching (KCT) and Knowledge of Content and Curriculum (KCC). 

In short, CCK can be described as the mathematical knowledge needed to teach, for example correct 
mathematical concepts and language, or to know if a calculation or statement is correct or not. SCK 
helps to connect, deepen and analyze different mathematical concepts, used in teaching. KCS relates 
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to students through, for example, knowledge on common mistakes or thinking in relation to a 
mathematical content. KCS can help identify student thinking from spotting a mistake, and KCT in 
its turn, helps in choosing a suitable response to the student, or to guide the teaching of that content 
in general. HK is about knowledge on how mathematical concepts are related and connected. Parts 
of HK are closely intertwined with KCC, which corresponds to knowledge about the conditions for 
teaching mathematics in school, such as how the curriculum defines the mathematical progression 
through its sequencing, or the subjects’ connections to other subjects. 

Method 
A previous project examining mathematics teachers’ communities of practice, has generated recorded 
data from upper-secondary school mathematics teacher discussions. Around ten of these discussions 
from three different teacher groups with about five teachers in each, ranging upwards 60 minutes in 
length each, concern the planning of lessons covering a variance of upper-secondary school 
mathematical content. These planning discussions will be transcribed and analyzed through content 
analysis, with a deductive approach. The analysis of the discussions aims to describe the practice of 
teachers in terms of types of knowledge used within this planning context, using the domains of the 
MKT framework (Ball et al., 2008) for the description of types of knowledge and aspects of Browns’ 
DCE framework (Brown, 2009) for the types of resource used. 

Possible results and implications 
Based on a preliminary analysis, an asymmetry regarding what domains of the MKT framework that 
are being visited during these planning discussions, is expected to be found. Further, an asymmetry 
is expected to be found in the types of curriculum resources that are being used. There is also a 
possibility to investigate whether certain types of resources associates with certain domains of MKT. 
This can help to create new knowledge on what kind of support teachers need from curriculum 
resources, both in content and style. The poster will set out the design for the study and following the 
analysis conducted during the fall 2021, some of the results will be possible to include at the 
CERME12 conference. 
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Feedback as a personal metacognitive tool can be effective only if learners respond to it by self-
reflection on their learning process. A central challenge of the online assessment platforms is to 
develop ways that guide students to self-reflection. We report on a study involving a dedicated design 
pattern of a pair of complementary example-eliciting tasks designed based on the logic-of-yes and 
the logic-of-not principles. Each task, presented as an interactive diagram, requires constructing 
examples of fractions and classifying them using a given set of characteristics. The set was given to 
students in a personalized report and used to automatically analyze their work. We explored whether 
and how the design supports 5th-grade students’ learning the topic of fractions using online 
resources. We analyzed task-based protocols of one pair of tasks, aiming to identify connections 
between the design patterns and students’ self-reflection, performance, and metacognitive skills.  

Keywords: Feedback, self-reflection, example-eliciting tasks, metacognitive, task design.   

Introduction and theoretical background 
Feedback is considered as one of the most powerful ways of supporting learning processes (Hattie & 
Timperley, 2007) and developing metacognitive skills, but it should not an effective tool if students 
fail to consider it or do not engage with the information they receive. Shute (2008) pointed out that 
elaborated feedback, which addresses the topic, response, particular errors, and examples, and 
provides guidance toward a correct answer, appears to enhance students' learning more than other 
types of feedback. Shute’s review indicated that presenting too much information may result in 
superficial learning and invoke cognitive overload. Even a comprehensive design of assessment and 
how it is being reported cannot support the learner or lead to self-assessment unless metacognitive 
reflection skills of planning, monitoring, and evaluating follow (Ruchniewicz & Barzel, 2019). In 
this study, we distinguish between two meanings of feedback. Feedback as an object, which refers to 
the contents of feedback itself (the information), and the feedback process, which describes the 
student's interactions with the task and the feedback information. 

Ruchniewicz and Barzel (2019) investigated feedback as part of autonomous learning and explained 
how it turns into a process, in which learners make sense of information about their work to improve 
learning strategies, metacognitive skills, and future performance. Following their study, we designed 
tasks that require constructing examples with an interactive diagram and characterizing the 
construction using a given set of statements that the student is asked to reflect upon as part of solving 
the task with feedback. In our study, the feedback was automatic, and the set of statements used to 
automatically analyze the submitted constructions appeared in the personalized reports given to 
students. Arzarello and Sabena (2011) proposed two types of inquiry logics to be considered when 
designing tasks to help students in inquiry-based knowledge acquisition: the “logic of yes” (LoY), 
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which leads students to empirically test their examples, and the “logic of not” (LoN), guiding students 
to an indirect validation of an example by attempting to argue the impossibility to find a 
counterexample. These designs should lead students to explore, observe facts, and ask and answer 
questions to discover connections between them (Arzarello & Sabena, 2011). Following these inquiry 
logics, students in our study were requested to reflect on their examples before submitting them.  

Fractions are a central topic in the mathematical curriculum. Learning the concept of fractions poses 
a significant challenge to students and has been for a long time a focus of research of the mathematics 
education community. Arnon, Nesher, and Nirenburg (2001) studied and reported on fifth graders 
who learned with the Shemesh software, which was designed to promote conceptual learning of 
equivalent fractions, offering concrete representations of the fraction and the operations performed 
on it. The current study, based on a similar representation, uses the Seeing the Entire Picture (STEP) 
platform. STEP is a formative assessment environment that involves the student with automatic 
information analysis of rich example-eliciting tasks (EETs). EETs require students to formulate an 
example and present it by submitting one or several constructions based on an interactive diagram. 

Recently, online platforms have been offering ways to obtain rich and varied evidence that enriches 
learning assessment. Traditionally, automatic assessment provided judgmental reaction, verified the 
correctness of information, and often suggested tasks for students to perform to achieve better results 
(Scalise & Gifford, 2006). With STEP, the automatic analysis generates information about the 
correctness of the task, but its main objective is to analyze the work according to other mathematical 
and pedagogical characteristics, which were defined when the task was designed and were 
individualized to report back to the student. These include methods of work, misconceptions or 
common mistakes, and the diversity of the example space (Olsher, Yerushalmy, & Chazan, 2016). 
The platform automatically points out whether or not the characteristics are present in the student’s 
submissions. We refer to the interactions of the student with the activity – the task requirements and 
the automatic report – as the “online personalized feedback” process. The novelty of this study lies 
in the interaction of the online personalized feedback process with the task design to lead students to 
self-reflection and examine their performance in three areas: (a) the correctness of the answer, 
indicating whether the example meets task requirements and conditions; (b) the metacognitive skills: 
planning problem-solving goals, strategies, and allocating resources; monitoring what has been 
achieved to set goals of comprehension and performance; and evaluating the assessment of given 
problems or understanding of mathematical concepts, for example, through self-reflection 
(Ruchniewicz & Barzel, 2019); and (c) the richness of the personal example space, as the collection 
of examples to which an individual has access at any moment (Liz, Dreyfus, Mason, Tsamir, Watson, 
& Zaslavsky, 2006, p. 133).  

We ask whether the interaction of the online personalized feedback process with the task design 
results in self-reflection and better performance on the part of the students. We studied the potential 
of task design that explicitly requires students to conduct a reflection on their work. This reflection 
should be made explicit by analyzing (a) student`s checking and marking all the useful listed 
characteristics that they have encountered already in the previous automatic report; and (b) student`s 
submitting of answers that meet as many (logic-of-yes) or as few (logic-of-not) possible 
characteristics while working on two consecutive EETs on the topic of fractions. Our research 
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question was: Is the special design of a complementary pair of EETs reflected in the students’ self-
reflection, performance, and metacognitive skills, and if yes how?

Methodology
Research setting. To explore the effect of task design on student performance, we designed tasks for 
which the feedback process is part of student self-reflection, and conducted an empirical study of the 
way students engage with such tasks. Two students, aged 12 years, participated in this study. They
shared one computer while solving the tasks. In the instructions we provided to student before they 
start working on the tasks, we encouraged conversation and a think-aloud process. We transcribed 
the students’ segments of discussion and analyzed them qualitatively to find evidence of connection 
between the engagement with the task design principles and the students’ self-reflection, 
performance, and metacognitive skills. The students had learned fractions according to the national
curriculum in a regular classroom. They were presented with a sequence activity of four tasks and 
given 45 minutes to complete these tasks delivered on STEP. Following each task, five sets of 
mathematical characteristics were used to automatically analyze the work, and the feedback was 
given to the students as automatic report. For the second and third tasks, students were asked to 
characterize their example using this set of characteristics. 

Construction part Automatic report
The requirement of the task

1.The fractions that you chose are equivalent    X  

The characteristics of the submission       

2.The visual representation line crosses all points at the same time       

3.You chose a fraction that is less than one     

4.One fraction is an expansion or reduction of the green fraction

5. The numerator and the denominator of one fraction are larger 
additively by the same number than the numerator and the 
denominator of the other fractions

Figure 1: Diagram for the first task Figure 2: Automatic report for the example on the left 

Diagnostic and summative tasks. The interactive diagram (Figure 1) that the student used to solve 
each task displayed points in the coordinate system representing a fraction. The numerator was 
represented by the number that appears on the vertical axis, and the denominator by the number that 
appears on the horizontal axis. Students were asked to choose a fraction by dragging first the green 
point, then the other three points to represent equivalent fractions to the one chosen. The requirement 
was to construct three examples as different as possible of equivalent fractions. The criteria of 
difference between the submissions were based on a comparison of the characteristics of each. When 
all fractions were equivalent to the fraction that the student chose, a line demonstrating the "equivalent 
fractions" appeared automatically. The diagnostic task (Task 1) and the summative task (Task 4) were
identical and were assigned to evaluate the effect of the personal report and the work on Tasks 2 and 
3. Both were intended to assess the characteristics of the students’ submissions when they created
equivalent fractions. The criteria for assessing changes between the diagnostic and summative tasks 
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were based on a comparison of the automatically assessed characteristics, assuming that the change 
in the example space indicates changes in the students’ concept of equivalent fractions.  

Online personal feedback process refers to the interactions of the student with the task requirements 
and the automatic report. The report was automatically generated in response to submissions. It 
included five characteristics (Figure 2), one corrective characteristic (characteristic 1) and four 
characteristics of the submission labeled 2-5: characteristic 2 had the potential to explain the visual 
representation of the examples; characteristic 3 had the potential to explain the mathematical 
characteristic of the example; characteristic 4 had the potential to explain the method for finding 
equivalent fractions; and characteristic 5 had the potential to explain misconceptions or common 
mistakes in the course of finding equivalent fractions. Figure 2 shows the analysis of a correct 
submission (characteristic 1) which indicated whether the student’s submission was answering the 
requirement of the task (green checkmark) or not (red X sign), three mathematical characteristics that 
were identified by STEP in the students’ submission, these were automatically highlighted in yellow 
(characteristic 2, 3, 4) and one that was not present in the example (characteristic 5). These 
characteristics were designed to reflect the curricular foci of the task and the basis for the student's 
engagement and self-reflection process in the LoY and the LoN tasks.  

LoY and LoN intermediate tasks (Figure 3). To help students self-assess their performance while 
reflecting on and regulating their learning, the task was designed to include a construction and a 
reflection part. The construction part required students to choose two equivalent fractions by dragging 
two points. The reflection part required students to characterize the construction using a given set of 
characteristics. This set had been used to automatically analyze the work and was given to the student 
as a personalized report. STEP enables students to compare their self-reflection with the automatic 
report. Each task placed different constraints on the statements that should be reflected in the 
construction, indicating either a LoY or a LoN. The LoY  (Task 2) was formulated as follows: “Choose 
two equivalent fractions by dragging the red and the green points. To the right of the interactive 
diagram, five statements can help you characterize the two fractions you have created. Check each 
characteristic that is present in your example before submitting it. Try to submit two fractions in a 
way that your submission should comply with as many statements as possible. Submit three such 
examples, as different as possible from each other.” The maximum number of characteristics that the 
students could check was four because characteristics 3 and 5 were mutually exclusive. In the LoN 
task (Task 3), the students were asked to submit examples that comply with as few statements as 
possible, the minimum number of characteristics being two (characteristics 1 and 2). In these tasks 
the representation line did not appear automatically. It was a tool that students could choose to use or 
not, when the fractions were not equivalent there would appear two distinct lines- green and red, the 
lines were united when the fractions were equivalent. The using of the representation line could help 
students connected it with the correctness of their answers.  

Data sources and analysis. The data needed to answer the research question were based on the 
automatic information analysis by STEP, observations of students working together on the tasks, their 
initial submission, the processing of the automatic feedback, and their final submission. Their 
discussion was video recorded. We analyzed the students’ interactions while working on the tasks 
and their response to the online personalized feedback process. After the discussion was transcribed, 
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we analyzed the segments and correlated the analysis with the STEP data to find an indication of the 
principles of task design being reflected in their work and meta-cognitive skills.

Results and preliminary remarks
Construction part Reflection part Automatic report

The requirement of the task

1. The fractions that you chose are 
equivalent  

1.The fractions that you chose are 
equivalent        

The characteristics of the submission   

2. The visual representation line 
crosses all points at the same time         

2.The visual representation line crosses 
all points at the same time

3. You chose a fraction that is less 
than one

3.You chose a fraction that is less than 
one     

4. One fraction is an expansion or 
reduction of the green fraction

4.One fraction is an expansion or 
reduction of the green fraction 

5. The numerator and the denominator 
of one fraction are larger additively by 
the same number than the numerator and 
the denominator of the other fraction

5. The numerator and the denominator 
of one fraction are larger additively by 
the same number than the numerator 
and the denominator of the other 
fraction

Figure 3: Construction, reflection and report for the example 4/4=6/6

Below we present empirical evidence of the students’ self-reflection process as they were working 
on the tasks. Limar and Sana worked on the first task. Limar chose fractions that are equal to one 
(2/2=3/3=4/4=5/5), (9/9=8/8=7/7=6/6), (6/6=8/8=9/9=10/10). Limar noticed that the presentation 
line that appeared indicated that their answers were correct. For each example, the STEP automatic 
report indicated characteristics 1, 2, and 5. The students were interested only in the correctness of 
their submissions (especially Limar, who led the working on this task. The pair quickly moved to the 
LoY task. Limar chose the fractions: (2/2=4/4), (4/4=8/8), (4/4=6/6), and checkmarked statements 1, 
2, 4, and 5 for the first submission (2/2=4/4) after reading every statement. The students chose the 
same characteristics for the second and the third submissions, without reading the statements. They 
evidently thought that having chosen fractions that were all equal to one, the submissions should have 
the same characteristics. After receiving the report, they examined the statements they had 
checkmarked.

26 Sana: We chose all fractions equal to one. Why in this submission (means 
4/4=6/6, Figure 3) statement 4 [which they had checkmarked] is not 
highlighted [by the online feedback]? [Reading statement 4] OK, fractions 
should be an expansion or reduction of one of the other; in this submission 
there is no integer that we multiply by 4 and we get 6. We shouldn’t have
checked this statement.

The students compared their checkmarked statements in the reflection part of the LoY task with the 
highlighted statements in the online feedback because they noticed that the online feedback did not 
match their self-reflection, which made them check their answer again and changed their mind about 
the answers. Because they were interested only in the correctness as indicated in the feedback and 
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skipped the other characteristics, they did not notice that the statements in the online feedback were 
the same statements that they had received for the LoY task, otherwise they may have been more 
specific while checking their statements. Figure 3 shows an example of the students vs. submission 
and the corresponding online feedback.  

When the students started to work on the LoN task, Limar chose the fraction (3/3=6/6). Segment 29-
34 shows their working on the LoN task. 

29    Sana:  But if we do as we did in the previous task [she drags the points to 
10/10=7/7], this will give us three characteristics, and we want as few 
statements as possible. Here, there is no expansion or reduction, there is no 
integer that we multiply by 7 and we get 10. [Checkmarks statements 1, 2, 
and 5 and submits]. The question is, can we choose an example that has 
fewer than three? [Meaning checkmarked statements]. [Drags the green 
point and chooses 1/2] This is half, this is less than one [points to statement 
3], it's not good. 

30     Limar:  Yes, it’s not good. Try to do 2/1 [dragging the green point]. This is equal to 
the number 2. But how can we find a fraction that is not an expansion or 
reduction to this fraction? Usually, when the fraction is not equal to one, I 
do expansion to find the equivalent fraction. 

31     Sana:  Wait [writes in the notebook] 2/1 expanding by 2 is equal to 4/2, if we 
expand again by 2, we get 8/4. No, it’ll always be an expansion because 
when we expand by 2 we get an even number. Maybe we should expand by 
an odd number, 3 or 5 for example?  

32 Limar:  [Writes in her notebook (2x3)/(1x3)=6/3 and (2x5)/(1x5)=10/5)]. 
33 Sana:  [Points at the fraction that she wrote in the notebook and the fractions that 

Limar wrote] Yes, here are two fractions 6/3=4/2. There is no integer 
number that we multiply by 4 and get 6. The same with 4 and 10. 

34  Limar: Let’s take 6/3=4/2 [They check the presentation line that the two points are 
there]. Great! We have only two checkmarked characteristics. 

The students tried to have as few characteristics as possible, the fewest being two, characteristics 1 
and 2. They had to check the statements and to find examples that met the requirements of the LoN 
task. It was clear to them that they should not choose a fraction that was less than one. They used the 
expansion to find equivalent fractions, and used even and odd numbers to find fractions that are not 
expansions or reductions. They succeed in finding such fractions, although their explanation was not 
entirely correct. For every example the students used the representation line to check whether it 
crossed the points because it indicated for them the correctness of the answer. The students then went 
on to the last task, and Limar chose (12/12=13/13=16/16=19/19) (segment 36-37).  

36  Sana:  Let’s choose also fractions that are not equal to one. [Drags the green point 
to 1/2, expanding by 2, 3, and 4 in her notebook and dragging the points to 
1/2=2/4=3/6=4/8, then she submits]. 

37  Limar:  [Laughing] I want to choose easy fractions. Here we shouldn’t checkmark 
any statements, for me, the main thing is the correctness of the answer 
[drags and chooses 20/20=21/21=23/23=25/25 and submits].  

Sana tried to create a new type of fraction that they did not have in previous submissions. This fraction 
related to statement 3, which they were sure not to checkmark in the LoN task. Despite Sana’s 
suggestion to choose fractions that are not equal to one, Limar chose to submit fractions that equal 
precisely one, as she did in the first and second tasks. She justified her choice by having to meet the 
demands of the task. She decided to choose easy correct answers, especially given that the task did 
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not require checkmarking any statements, as she stated. Thus, the statements in the LoY and the LoN 
tasks served as a tool for self-reflection, otherwise the mathematical discourse about the tasks 
concerned only the correctness of the submissions. For Limar, 20/20=21/21=23/23=25/25 and 
12/12=13/13=16/16=19/19 were correct answers, and she may have seen them as different examples 
although both are equal to one. 

Discussion 
In this study, we designed a pair of complementary example-eliciting tasks following the LoY and 
LoN principles. Each task was given as an interactive diagram and required constructing examples of 
fractions and characterizing the construction using a given set of characteristics. The set was used to 
automatically analyze the work and was given to the student as a personalized feedback. We explored 
whether and how the tasks design elicited the students’ metacognitive skills and led to learning the 
topic of fractions.  

The empirical results show aspects of work on these specially designed tasks and suggest that self-
reflection has occurred in response to these designed features. Three skills of metacognition were 
apparent in the work on the tasks and on the online feedback: planning, monitoring, and evaluating. 
Planning. The students planned their chosen type of fraction in response to the requirements of the 
LoY and LoN tasks, which motivated the student think not only about the correctness (as they did in 
the first task), but also about other mathematical characteristics in their examples, or to identify 
characteristics that should not be present in their submissions. The students chose fractions that were 
"not easy" for them to choose, and generated more varied examples in their submissions than they 
did in the first task (unlike in the last task where they paid little attention to the feedback because they 
were sure that they could answer correctly). Thus, task design helped students enrich their example 
space. To solve the LoN task, the students discovered a new strategy for finding two fractions that 
were not expansions and shared their previous knowledge about the concept of even and odd numbers 
regarding statement 5 in the task. Monitoring. The students used the online feedback of the platform 
to compare their self-reflection in the LoY and the LoN tasks. The option of making comparison part 
of the task design enabled students to identify features that characterized their answers, and they tried 
to understand the meaning of every characteristic and the relation between them. One of the relations 
was the connection between the correctness and the representation line; the students chose their 
examples, then checked their correctness based on the representation line. All this led them to 
evaluate their learning process, rethink their choices and concept image, and change them. The task 
design also led the students to modify and adjust their learning process.  

The findings are consistent with the literature that found a large potential for task design that 
combines feedback with the students’ metacognitive reflection and self-assessment in advancing their 
performance and metacognitive skills (Ruchniewicz & Barzel, 2019, p. 55; Carless, Bridges, Chan, 
& Glofcheski, 2017). This is especially true for designs based on LoY and LoN principles (Arzarello 
& Sabena, 2011): LoY activates the students’ inductive approach by finding an example that supports 
the statements, whereas LoN energizes students’ thoughts as they seek a counterexample to the 
statements (Soldano, 2017). We combined the two logic principles with statements from an automatic 
feedback that students received in response to their submissions. This task design developed students’ 
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metacognitive skills, and enabled them to engage with the online personalized feedback process and 
compare their self-reflection with automatic feedback, leading to a change in their 
performance. These findings may serve as a basis for further research in the field of task design and 
self-reflection. The study was limited by the small number of participants and should be reproduced 
with larger groups.  
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We seek to map real-time viewing data of dynamic textbooks with student utilization schemes of 
questioning devices, an interactive feature that collects student responses to questions that promote 
reflection. An instrumental approach (Rabardel, 2021) suggests that knowledge of students’ 
utilization schemes can provide useful information to textbook designers and authors (Quiroz et al., 
2021). This information supports instructors’ reflection on how students utilize textbook features 
designed to engage them with the content, so that they can adapt instruction. However, identifying 
utilization schemes requires intensive qualitative analysis of data collected via observations, 
interviews, or students’ self-reports. As these analyses are time consuming, finding alternative ways 
of reliably identifying utilization schemes in a short period of time when many students are using a 
particular feature is beneficial. We present exploratory work that uses real-time viewing data of 
features in dynamic textbooks to identify viewing patterns that could be reliably mapped to student 
utilization schemes, possibly automatically. The textbooks we study are written in PreTeXt 
(https://pretextbook.org/) a markup language that precisely identifies every element in a textbook; 
when opened in a browser, it is possible to collect student responses to questioning devices and 
information about when individual users view specific textbook elements and for how long. These 
textbooks allowed us to gather large amounts of data from many students (over 400) who used the 
same textbooks across many states. The textbooks are used in calculus, linear algebra, or abstract 
algebra courses. 

We provide here only a brief description of how we used knowledge graphs (Hamilton, et al., 2017) 
with tracking data (date and time of viewing, the sections that were viewed, and the total time in 
minutes spent viewing the section) to map viewing patterns of questioning devices to their utilization 
schemes using about 4,000 viewings of questioning devices collected over five semesters from 492 
consenting students from 27 teachers in the U.S. Knowledge graphs are graphical representations of 
information that capture interactions between individuals and entities. The viewing data are 
represented in a network of nodes and edges to establish the occurrence of consistent and repetitive 
viewing behavior across the same student or several unique students. Each node contains the name 
of the section viewed and the amount of time spent in minutes viewing that section. Directed edges 
denote a jump to the next section, undirected edges denote possible concurrent viewing sections 
within a minute of viewing during the viewing period. Each knowledge graph is unique to each day 
of viewing for a particular student. An algorithm created to automate this process generates 
combinations of nodes and edges to create unique knowledge graphs facilitating the identification of 
common patterns that occur while viewing the textbook. The evidence needed to support our study is 
hypothesized to be of three types (1) Knowledge graphs for different students following the same 
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utilization scheme should be consistent; (2) Knowledge graphs for the same student following the 
same utilization scheme should be consistent; and (3) Each utilization scheme should lead to a 
network of knowledge graphs representative of a community of unique students with similar viewing 
patterns. We used the three utilization schemes identified by Quiroz et al. (2022): Familiarizing with 
Content Before Class (US1), Studying by Practicing and Doing Homework (US2), and Self-
Evaluating and Understanding of Content (US3). With this technique we were able to identify three 
types of knowledge graphs with unique features that map them to each utilization scheme. We show 
a case, the first network of knowledge graphs represented in Figure 1, which always follows a linear 
viewing trajectory. The student views the sections in the textbook in the order they appear. This type 
of knowledge graph was mapped to the first utilization scheme, familiarizing with content. The other 
two networks of knowledge graphs were mapped to the other two utilization schemes (not shown for 
space reasons). The accuracy of the algorithm is high, 91%,86%, and 89% for US1, US2 and US3 
respectively. 

 

Figure 1: Representative knowledge graphs for viewing data mapped to US1: Calculus student 50 
(Teacher 35); 29% of students, 91% accuracy 

We will study the nature of the networks for the 18% of unmapped viewings, to see what they 
reveal about use of questioning devices. This problem mostly occurs when students view the 
textbook multiple times on the same day, deploying different utilization schemes each time, and 
thus the algorithm has difficulty making the classification. 
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Research topic 
Instructional coherence has been identified as a significant factor that can improve students’ 
conceptual understanding of mathematics (Hiebert et al., 2003; Chen and Li, 2010). It allows students 
to make connections among the ideas that are presented, see causal and logical linksbetween them 
and sustain interest and engagement in a topic (Chen and Li, 2010; Richman et al., 2019; Dietiker et 
al., 2020).The concept of instructional coherence has been linked to literary stories by noting that 
good lessons of mathematics should possess features of good stories (Chen and Li, 2010). Dietiker 
and her colleagues have identified that if mathematics teaching is interpreted as a literary story, 
coherence of the story does contribute to the perceived interestingness of it and engagement with it 
(Richman et al., 2019; Dietiker et al., 2020). 

However, little is known about how to purposefully construct coherent stories of mathematics. Hence 
the research question of this poster is: given a set of mathematical concepts, what are the first steps 
one can take in order to create a coherent mathematical story that would introduce the chosen 
concepts? 

Theoretical framework 
Dietiker (2015) has developed a theoretical framework to view a mathematical text as a story. In the 
framework, the notion of mathematical plot plays a central role. In order to study mathematical plot, 
one has to consider what questions are present in the reader’s mind at a given point in a story. Some 
questions are quickly answered by the story, while others may be open for a long time. Having 
questions that are kept open for a long time is a key property for a story to be coherent (Richman et 
al., 2019). 

The coherence of the story is defined as “the extent to which the events and mathematical ideas of 
the mathematical story (...) are connected to each other for a reader” (Richman et al., 2019, p. 4) and 
a way to test if a mathematical story is coherent is to look for overarching questions that are engaged 
throughout the length of the story and frequent progress on these questions is being made. If such a 
question exists and the rest of the questions considered in the story allow for progress to be made on 
the main question, then one can expect that the mathematical story is coherent. 

Epistemologically potent problems: a backbone for a coherent mathematical 
story 
Consider the following problem: “Alice has 2/3 of a baguette. If she eats 3/5 of that, how much of the 
whole baguette would that be?” Notice that in the wording of the problem, the concept of fraction 
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multiplication is not mentioned, yet the conventional way to solve such a problem is to multiply 2/3 
by 3/5. So this problem has an interesting property – it does not mention fraction multiplication, yet 
it requires this concept to be solved. 

Problems with this property have the potential to show to students why mathematical concepts 
(fraction multiplication in this case) are needed, from what problems they arise. Hence I call such 
problems epistemologically potent (Harel, 2013). Such problems cannot be easily solved by students 
as they have not been exposed to the concepts that are needed to solve the problem, yet can be 
approached by them, because the unknown concepts are not mentioned in the problem’s wording. 

If a teacher were to construct a lesson or a series of lessons built on the analysis of an 
epistemologically potent problem, then due to the fact that the solution to the problem requires a 
mathematical concept that is currently not known to the students, many questions will need to be 
considered and answered before solving the initial problem. Since all the questions would arise from 
considering the same initial problem, they would all be related. Hence the instruction based on the 
analysis and consideration of an epistemologically potent problem is likely to be coherent. 

Implications 
Epistemologically potent problems can serve as a good starting point when considering how to 
construct a coherent mathematical story, since such problems are, by definition, accessible to 
students, yet require the use of concepts that are yet to be discovered by the same students, hence 
allowing for a continued exploration and progression on the problem. 
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This paper present findings from a textbook analysis which examined the structure and patterns of 
variation of addition examples presented in a grade 2 mathematics teachers’ guide (TG) and
learners’ textbook (LT). Classification scheme for addition problems was used to analyse the 
structure of the examples, and Mathematics Discourse in Instruction framework for Textbooks was 
used to analyse their patterns of variation. The findings revealed that the example sets in the TG and 
LT afford development of additive reasoning as they contain different patterns of variation that might 
lead to higher levels of generality if teachers focus learners’ attention to these. The examples however 
constrain development of additive reasoning as they comprise of only one structure with both addends 
given and require calculating the result. To decide a better professional development for teachers, it 
is necessary to study how teachers use these resources to plan and deliver mathematics lessons.

Keywords: Examples, mathematics teachers’ guide, mathematics leaners’ textbook.

Background
Malawian learners, on average, have been performing poorly in mathematics in both national and 
regional assessments (Ravishankar et. al., 2016). Despite Malawi’s overall improvement on national 
primary school examination pass rates, performance in mathematics is still very low (Ministry of 
Education Science and Technology [MoEST], 2020). At international level, the Southern African 
Consortium for Monitoring Education Quality (SACMEQ) results show that Malawian learners 
perform extremely low on number and operation in mathematics (Milner et al., 2011). This is very 
worrisome considering that number concept and operations define numeracy, which is an indicator 
of educational quality (Ravishankar et al., 2016). The problem of learners’ low performance in 
mathematics in Malawi has persisted even after government’s implementation of several educational 
reforms to improve education quality. Some of these reforms include revising of primary education 
curriculum and curriculum materials such as teacher guides (TG) and learners’ textbooks (LT) for all 
subjects. Despite the crucial role that mathematics TGs and LTs play in the planning, teaching and 
learning of mathematics in developing countries (Leshota, 2020), little research has been conducted 
to examine how the content of the revised TGs and LTs afford or constrain learners understanding of 
mathematics. In mathematics education, “mathematics textbooks play a particularly prominent role 
in guiding teachers on specific materials to teach (Chang & Salalahi, 2017, p. 236). Thus many 
mathematics teachers use textbooks such as TGs and LTs to decide the type of tasks to implement in 
their classrooms and how to engage students in such tasks (Leshota, 2020; Stylianides, 2014).

The findings presented in this paper are part of an ongoing study which aims at examining the 
mathematical affordances presented in Malawian primary mathematics textbooks. In this paper, we 
pursue the following research question; what mathematical opportunities are made available in
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addition of whole number examples presented in mathematics grade 2 TG and LT? For every primary
education subject in each grade in Malawi, there in one TG and one LT. The TG contain instructions
for teachers in terms of the tasks, examples, and resources to be used for teaching while the LT
contains learners worked and exercise examples. In most cases, these two books are the only 
curriculum resources used by Malawian primary school teachers to plan and teach their lessons.
Therefore this study is useful in informing policy during revision of the books as well as informing 
educators on necessary professional development needs for primary school mathematics teachers not 
only in Malawi but also in other countries. As noted in literature, mathematics textbooks such as TGs 
are the mostly used resource in mathematics teaching and learning not only in developing countries 
but in developed countries (Stylianides, 2014). We specifically focus on the quality of addition
examples by examining their structure as we agree with Olteanu (2018) that mathematics teaching 
and learning is mainly done using examples. Suggesting that the quality of mathematical examples 
presented in textbooks determine the quality of mathematics teaching in the classroom (Leshota, 
2020; Ronda & Adler, 2016).

Analytical frameworks
Two frameworks were used to analyse the examples in the TG and LT: the classification scheme for 
addition problems developed by Carpenter, Fennema, Franke, Levi and Empson (2015), and the 
Mathematics Discourse in Instructional framework for Textbook analysis (MDITx) developed by 
Ronda and Adler (2016). Carpenter et al. (2015) describe 2 classes of addition problems (which are 
called examples in MDITx) according to the kinds of action or relationships described in the 
problems; join and part-part-whole problems. “Join problems involve a direct or implied action in 
which a set is increased by a particular amount and part-part-whole problems involve adding or 
subtracting 2 disjoint subsets” (Carpenter et al., 2015, p. 8).  These two types of addition problems 
can contain different structures in which either the result/whole is unknown but the start or 
change/parts are known, or one start/change/part is unknown, but the result/whole is known. When 
children engage with addition problems that require them to find the result/whole, they use a joining 
all basic counting strategies. In joining all (counting all) strategy, children use objects to first count 
each addend separately (numbers of object being added), put the objects together and counting them 
all again to find the sum (Carpenter et al., 2015). For children to use complicated counting strategies 
like joining to and trial and error, they need to be given either a join problem in which the start or 
change is unknown or a part-part-whole addition problems in which either the first or second part is 
unknown (Carpenter, et al., 2015). In joining to counting strategy, children do not count each 
start/change/part, but they start counting on from a predetermined number like either the given 
start/change/part (Carpenter, et al., 2015). As such joining to counting strategy is complex counting 
strategy and it enhances conceptual understanding and additive reasoning. Carpenter et al. (2015) 
therefore suggest that to increase number sense when learning addition of numbers, children should 
be given a variety of addition problems that offer them opportunities to use both simple and 
complicated counting strategies. We therefore used this classification scheme to examine the addition 
examples in the TG and LT to find out if they are varied in a way that promote learners’ number
sense.
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The MDITx framework describes the quality of mathematics made available to learn in a textbook 
(Ronda & Adler, 2016). MDITx comprises of five key elements aimed and achieving generality and 
structure; object of learning, examples, tasks, naming/word use and legitimations. The object of 
learning is what learners need to know and be able to do at the end of the lesson, as such, it is the goal 
of the lesson. Opportunities for learning mathematics are either afforded or constrained by the way 
author(s) use examples, tasks, words and legitimations (Ronda & Adler, 2016). Due to space 
limitations, we only give a brief description of what examples entail in MDITx as these are in focus 
in this paper. Examples are a particular case of a larger class used for drawing reasoning and 
generalisations (Ronda & Adler, 2016). They are what teachers and learners mainly work on during
mathematics instruction. Carpenter et al. (2015) refer to examples as problems. MDITx draws from 
key principles of Variation Theory which emphasize on paying attention to variation amidst 
invariance when selecting examples (Marton & Pang, 2006). This means that textbooks must contain 
examples which are deliberately sequenced to enable learners to understand a particular object of 
learning in a coherent manner through noticing aspects that remain the same and those that change.
Ronda and Adler (2016) therefore suggests that to analyse and determine variation in an example set,
three categories of variation must be used. These are; contrast (C) (when differences are noticed), 
generalization (G) when similarity is noticed and fusion (F) (when at least 2 different objects of 
learning are in focus). Thus they describe a set of three progressive indicators for analysing and 
coding example spaces in a textbook lesson as follows: Level 1, if only one pattern of variation is 
used throughout the textbook lesson, Level 2, if two different patterns of variation are used in the 
textbook lesson, and Level 3, if all three patterns of variation are used. A fourth code called NONE 
is used to code example spaces in which no pattern of variation is detected. We used these descriptions 
to code the example sets during data analysis. 

Methodology

Analysis of the structure of addition problems in grade 2 mathematics TG and LT (Kachisa, Mphando, 
Mwale, Soko, & Toto, 2012a; 2012b) involved examining what is given and what is required to be 
calculated in each problem using Carpenter et al.’s (2015) classification scheme. Thus, we examined 
whether a problem contained both addend and required calculating the sum, or whether it contained 
the sum and one addend and required calculating the other addend. To examine the variation in the 
examples, we regarded examples under each activity in both the TG and the LT as an example space
and examined the type of variation available using MDITx framework by Ronda and Adler (2016). 
Where one type of variation was used throughout, we coded the example space as level 1. If two types 
of variation were used, we coded the example space as Level 2, and Level 3 if all three types of 
variation were used.

Results
The findings show that Unit 2 of both the TG and LT contain three main activities with specific object 
of learning for each activity. In the TG, each activity has several tasks and each task is accompanied 
with a set of examples. We begin by presenting findings on the nature of the structure of addition 
examples/problems, followed by findings on the nature of variation afforded by the examples using 
Figures 1, 2 and 3.
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The structure of the addition problems

As it can be seen in Figures 1, 2 and 3, both the TG and LT have provided addition problems 
containing both addends and requiring finding of sums. Only activity 1 of the TG contain word 
problems as well as non-word problems, but the other activities only contain word problems. All LT 
activities do not contain word problems. The word problems in activity 1 of the TG belong to two 
types of addition problems. Problem 2a Chifundo has 2 mangoes and Paul gives her 3 mangoes, how 
many mangoes does Chifundo have altogether? is a join problem because as it implies action of giving 
mangoes, hence causing an increase in Chifundo’s total number of mangoes. The problem has initial 
number of mangoes that Chifundo had (2 mangoes) and then the change or increase she is given by 
Paul (3 mangoes), and the requirement is to find resulting amount (altogether). This problem can be 
represented as 2 + 3 = . Addition problems 2b and 4 are part-part-whole problems because they do 
not imply action but require finding the sum of two disjoint sets of objects like sweets, sticks and 
stones. For example, problem 2b Mphatso has 9 sweets and Tamanda has 4 sweets, how many sweets 
do they have altogether? The structure of this part-part-whole problem is similar to that of problem 
2a and can also be presented as 9 + 4 = . As such learners might count the two sets of sweets 
separately and then count the total by starting from first set and continuing with the other set. The 
same structure of providing two addends that require finding sum is also observed in problem 4 and 
the other non-word problems in activity in all activities in both the TG and LT. This implies that both 
the TG and the LT do not contain addition problems with a structure that contains the sum but require 
finding of one of the addends like 9 + =13 or + 4 =13. 

Variation afforded by the examples

The examples under each task were regarded as an example set while all examples under each activity 
were regarded as an example space for a particular object of learning. Each activity in the LT mainly 
contains one task with several examples under each activity and these were also regarded as an 
example space. Table 1 presents a summary of the findings on the nature of variation afforded by the 
example set under each task.   

Table 1: Nature of variation of examples

Activity 1 : Adding numbers 
horizontally

Activity 2: Adding numbers 
vertically

Activity 3:Mastering addition 
facts

Example set 1 (TG): Level 1 
(C).

Example Set 1 (TG): Level 0 Example set 1 (TG):Level 3 (G, C, 
F)

Example set 2 (TG): Level 1 
(C)

Example Set 2 (TG): Level 2 (C) Example space from LT: Level 3 
(G, C, F)

Example Set 3 (TG): Level 0 Example space from LT: Level 3 
(G, C, F)

Proceedings of CERME12 4009



Example Set 4 (TG): Level 1 
(C)

Example Set 5 (TG): Level 1 
(C)

Example space from LT: Level 
3 (G, C, F)

As Table 1 shows, in Activities 1 and 2 in the TG, one example set is in level 0 because it only had 
one example so it was not possible to generate pattern of variation.  The other example sets in Activity 
1 and 2 of the TG are in level 1 as they only enhance contrasting pattern of variation. Only examples 
of activity 3 in the TG enhance all patterns of variation. The LT examples for all activities enhance 
all patterns of variation. I clarify these findings using Figures 1 and 2.

Figure 1: Activity 1 from TG
(Kachisa et al., 2012a, 13)

Figure 2: Activity 1 from LT 
(Kachisa et al., 2012b, 23)

As it can be noticed in Figures 1, 2, the number of addends and the position of the = sign remain the 
same (invariant) in all examples, what changes are the values of the addends.  As shown in Figure 1,
the examples from each example set contain different addends that generate different sums. We
therefore coded each example set as contrast (C) as at it might enable generalising that different sets
of addends generate different sums, hence level 1 of generalisation. In the LT, the example space 
under activity 1 is in Level 3 of generalisation because it contains examples which enhance all 
patterns of variation as shown in Figure 2. Several examples can be combined from the example space 
in Figure 2 to form example sets that might enhance generalisation through noticing different patterns 
of variation. Examples 1-2, 2-4, and 16-18 can be used to generalise that different sets of addends 
can generate similar sums. As such we coded these example sets as G. Since these examples also 
enhance development of number facts, we also coded them as F. Similar patterns of variation and 
fusion can also be drawn through combination of examples 9, 11 and 14, as well as examples 10, 12 
and 15. However, if the learners solve the examples in a manner that is presented in the LT, then 
examples 6-15 would enhance generalisation through contrast (C) pattern of variation as they addends 
and sums are different. As such we coded this part of example space as C. Since the example space 
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contain examples which might help understanding of two objects of learning such as adding numbers 
and number bases, then we also coded it F.

Discussion of the results
In this paper, we examined the mathematical opportunities made available in grade 2 TG and LT by 
analysing the structure and nature of variation of examples/problems on addition. As the findings 
have revealed, the TG has provided more Level 1 example sets that enhance noticing of only one 
pattern of variation than Level 2 and Level 3 example sets that enhance noticing more than one pattern 
of variation. All level 1 example sets in the TG are enhanced contrast pattern of variation, meaning 
that the TG has provided more opportunities for only noticing how different set of addends can 
generate different sums, but not to notice how the different sets of addends can generate similar sums. 
Contrast is a first step or low level type of generalisation and is supposed to be followed by similarity 
to enable children to move into deeper levels of generalization and understanding through 
identification of more patterns and justifications (Watson & Mason, 2006).  This suggests that to 
enhance development of additive reasoning, the TG is supposed to deliberately contain examples that 
afford them opportunities to recognise aspects that change within aspects that do not change (Ronda 
& Adler, 2016; Watson & Mason, 2006). Provision of example sets that help learners to see not only 
contrast but also similarity signals a move to higher level of generality (Ronda & Adler, 2016) and it 
can engage learners with understanding of mathematical structure (Watson & Mason, 2006). The 
findings however show that the examples in the TG activity of number bases might enhance learners’
understanding of the commutative property that the change in the order of the addends does not lead 
to change in the sum of the addends (Carpenter et al., 2015; Hunter, 2010). Understanding of the 
commutative principle helps learners to develop generalisations that help develop algebraic reasoning 
which is the difficult part of later mathematics (Hunter, 2010). Activity 3 of the TG and other example 
sets in the LT might also enhance learners’ development of additive reasoning through enhancing 
understanding of number facts (Carpenter et al., 2015). Although the LT contains example sets that 
enhance noticing of both similarity and contrast patterns of generalisation, the instructions from the 
TG only require the teacher to ask the learners to do the tasks but not to focus on noticing any pattern 
of variation. This implies that depending on their knowledge, some teachers may help the learners to 
pay attention to these patterns of variation while others may not. As Brown (2009) noted, teacher 
knowledge greatly influences how teachers adapt textbook content.

As the findings reveal, the TG and LT have only provided joint and part-part-whole addition problems 
which contain two addends and require leaners to find the sum, but they do not provide problems 
requiring finding an addend. According to Carpenter et al. (2015), when children are given join 
problems to find the result, and part-part-whole problems to find the whole, they only use simple 
counting strategies like joining all modelling strategy and counting on modelling strategy. Thus 
children need to be given problems whose either start, change, or part are unknown in order for them 
to use more sophisticated modelling and counting strategies like joining to, separating from, 
separating to, counting on to and counting (Carpenter et al., 2015). Providing different unknowns in 
addition problems enable children enhance their additive reasoning through promotion of use of 
different counting strategies (Carpenter et al., (2015). The findings imply that both the TG and LT 
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place more demand on the teacher especially during planning of lessons for delivering the curriculum 
(Brown, 2009). Thus implying that learners’ full development of additive reasoning relies on 
teachers’ ability to notice the shortfalls of the examples in both the TG and LT and deciding how to 
adapt them to increase their level of generalization and enhancement of development of additive 
reasoning. One of the factors that influence teachers’ ability to recognise what the textbook affords 
and constraints is teacher knowledge (Brown, 2009; Leshota, 2020). Considering that like most Sub-
Saharan countries, teacher knowledge is one of the challenges constraining Malawi from achieving 
the SDG 4 of improving education quality (MoEST, 2020), then it is unlikely that most Malawian 
teachers might notice the gaps in these mathematics textbooks. These findings confirm Milner et 
al.’s (2011) suggestion that the low quality of Malawian mathematics textbook content might be one 
of the causes of persistence of learners’ low performance in mathematics. We concur with Leshota 
(2020) that countries with high textbook compliance policies need to ensure that they develop high 
quality textbooks and train their teachers on how to use these materials when planning lessons for 
delivering curriculum.

Conclusion
This study investigated mathematical opportunities available in addition examples/problems for 
addition topic in Malawian TG and LT of grade 2. The findings revealed that both the TG and LT 
contain addition examples comprising of only one structure whereby both addends are given and a 
sum is to be calculated, hence limiting learners’ development of additive reasoning through use of 
complex counting strategies that develop when learners practice calculating an addend when given 
sum and one of the addends. Regarding variation of examples, the findings revealed that the TG has 
more example sets that can enhance achieving low levels of generality and few example sets that can 
enable achieving higher levels of generality. The LT contains more example sets that can enhance 
noticing of more than one pattern of variation, hence capable of enabling learners to move to higher 
level of generality of addition. However, the teacher might not focus learners’ attention to notice the 
different variations because the TG which is the main resource that the teacher uses to plan lessons 
does not contain any instruction about noticing similarity or difference. Thus the structure and 
patterns of variation of the addition examples available in the TG and LT place much demand on the 
teacher as they require much adaptation to enhance additive reasoning through changing of structure 
and variation. This might be possible if teachers have adequate content knowledge to adapt these 
materials. These findings suggest that there is a need for professional development of teachers on 
how they can use these resources as suggested by other researchers. However, for an effective 
professional development of teachers, it is necessary to investigate how teachers use these resources 
to plan and teach mathematics lessons to find out if they do notice the gaps in the examples and make 
necessary adaptations. 
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We describe how students utilize questioning devices, an interactive feature designed into university 
textbooks to invite them to read the textbook before the class in which the content will be discussed. 
This feature has been added to three open-source and open-access dynamic textbooks intended for 
calculus, linear algebra, and abstract algebra. Using self-reports from 392 students in 23 courses 
and an instrumental approach, we identified three classes of situations in which the feature was used 
and three corresponding utilization schemes: Familiarizing with Content Before Class, Studying by 
Practicing and Doing Homework, and Self-Evaluating Understanding of Content. We suggest further 
areas of inquiry. 

Keywords: Questioning devices in textbooks, instrumental approach, undergraduate students, 
mathematics textbooks, utilization scheme. 

Mathematics digital textbooks offer opportunities for students to engage with mathematics in ways 
that go beyond the mere act of reading the textbook. In this paper, we focus on what we refer to as 
dynamic textbooks—a special type of digital textbooks that are open-source and open-access and 
have embedded interactive features. Because textbook features shape students’ opportunities to 
engage with mathematics, how they are designed to engage students matters (e.g., level of 
interactivity, presentation, and order of features). In writing these textbooks, authors need to make 
many design decisions with students in mind as the main textbook users; as such they may not fully 
anticipate all the ways in which students will use textbooks features or the conditions that motivate 
their use. In the absence of this understanding, author-designers may add features that in the end 
might not be as useful for the students. In this study, we contribute by investigating student use of 
questioning devices that were added to three undergraduate dynamic mathematics textbooks in linear 
algebra, abstract algebra, and calculus. Specifically, we answer the following research question: What 
are the students’ utilization schemes of these questioning devices? 

We build on prior work (Mesa et al., 2021) in which we defined questioning devices as a form of 
questioning embedded in textbooks that seek to engage students in thinking about the content on their 
own before class. Differently from questions used in classrooms or asked in exercises, this other form 
of questioning in textbooks seeks to establish a personal relationship between the reader, the author, 
and the mathematics (Weinberg & Wiesner, 2011). In the textbooks used in this study readers can 
type responses to those questions directly into their textbooks, immediately sharing their thoughts 
with their teacher prior to a lesson. Teachers then become aware of how students might be thinking 
about the material and adjust their lessons accordingly. In Mesa et al. (2021), we found instructors’ 
utilization schemes of these questioning devices. Because instructors’ schemes can be related to 
students’ utilization schemes, in this paper we complement our investigation by turning our attention 
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to students. Because we have reviewed the literature on questioning devices in detail in Mesa et al. 
(2021), in this paper we provide an overview of the literature that focuses on students’ use of digital 
and interactive textbooks. 

Literature Review 
Instructors indicate that reading the textbook is a very important skill relevant not only for 
mathematics majors (Mesa & Griffiths, 2012) but for all students because it supports mathematics 
learning. Judging from the extant research on student reading practices in university mathematics 
(e.g., Wiesner et al., 2020), knowing whether and how students read their textbooks is a key question 
for teachers and researchers. Research on university student use of digital textbooks are typically case 
studies at single universities or classrooms and describe use of interactive components (e.g., Johnston 
& Ferguson, 2020); relation between student grades and time spent reading (e.g., Allred & Murphy, 
2019); skills, emotion, and participation and interaction (e.g., Bikowski & Casal, 2018); differences 
in student motivation and perceptions of learning when using interactive textbooks (Kondratieva, 
2018); or use of digital resources in connection to rules of didactical contract (Gueudet & Pepin, 
2018). These researchers indicate that undergraduate students see digital textbooks as resources that 
motivate and facilitate learning and have documented different levels of reading, different uses of 
features, and different expectations regarding the utility of interactive features. The differences seem 
to be related to students’ prior knowledge and to personal goals regarding their courses (e.g., passing 
a course). While these studies suggest that students might not use their textbooks as intended, they 
do not indicate how students interact with specific interactive features.  

Theoretical Framing 
In Rabardel’s instrumental approach (Rabardel, 2002) an instrument is “a whole incorporating an 
artifact (a human-made or a physical object) and one or more utilization schemes” (p. 65). A 
utilization scheme encompasses stable and structured manners that a user has for operating an artifact 
that includes observable behaviors and non-observable goals and rationales. Following Vergnaud 
(1998) we define schemes as the “invariant organization of behavior for a certain class of situations” 
(p. 229). This organization includes goals and expectations; rules of action (which can be seen as the 
“generative part of the schemes”); operational invariants (propositions that are held to be true by the 
subject when they act, that are used “to infer, from the available and relevant information, appropriate 
goals and rules); and possibilities of inferences (p. 229). Vergnaud views “situations and schemes 
[as] essential in the development of knowledge” (p. 237). Instrumental genesis s the process through 
which a user transforms an artifact into an instrument by creating utilization schemes associated with 
that artifact. Because pre-existing artifacts are instrumentalized by a user, different subjects can 
produce different instruments for the same artifact. Instrument production, carried out by the subject, 
encompasses two subprocesses, instrumentalization (the “emergence and evolution” of the artifact 
component of the instrument) and instrumentation (“the emergence and evolution of utilization 
schemes and instrument-mediated action: their constitution, their functioning, their evolution by 
adaptation, combination coordination, inclusion and reciprocal assimilation, the assimilation of new 
artifacts to already constituted schemes, etc.” Rabardel, 2002, p. 103). The notion of utilization 
schemes is central to instrumentation. To document student instrumentation of an artifact—
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questioning devices in dynamic textbooks—we identified the utilization schemes students reported 
when using questioning devices available in three textbooks designed to increase their interaction 
with the content. 

Methods 
This research is part of a larger mixed-method study that seeks to understand how teachers and 
students in undergraduate levels utilize three open-access open-source dynamic textbooks: Active 
Calculus (hereafter AC, Boelkins, 2019), First Course in Linear Algebra (hereafter FCLA, Beezer, 
2019), and Abstract Algebra: Theory and Applications (hereafter AATA, Judson, 2019). The three 
textbooks are written in PreTeXt (https://pretextbook.org/), a markup language that allows the 
textbooks to be rendered in various formats (e.g., HTML, PDF, Braille, bounded). With PreTeXt, 
authors can infuse the textbook with interactive features, such as live computation cells with Python 
(Sage cells), immediate solution feedback, and collection of student responses to questioning devices 
for instructor use. The three textbooks were chosen to represent different student audiences. In the 
United States, calculus is a course that is taken by most students seeking an undergraduate degree in 
science, technology, engineering, mathematics, business, economics, and health. Linear algebra is a 
gateway course for mathematics and computing related majors, and in some cases for biology. 
Abstract algebra is a course usually taken only by mathematics majors (which include future 
secondary teachers). The questioning devices are called Preview Activities in the calculus textbook 
and Reading Questions in the linear algebra and abstract algebra textbooks. For this study, we 
analyzed data from 392 consenting students from 23 teachers across the United States who 
participated for a semester from Spring 2019 to Spring 2021 (187 used AC, 145 used FCLA, and 60 
used AATA). Students (147 female, 142 male, 3 non-binary or trans, 100 no information) had an 
average age of 20 years, an average GPA of 3.43, and obtained an average grade of 82.58 in their 
respective courses.  

We used data from five student logs (biweekly surveys with 8 to 19 closed- and open-ended questions 
about student textbook use). We used responses to two questions (see Table 1) intended to identify 
why and how students used the questioning devices (Q9, and Q5 are open-ended)1. 

Table 1: Log questions used in this study and number of responses by textbook 

Question FCLA AATA AC Total 

Log 1 Q9: Your textbooks include Reading Questions/Preview Activities in 
some sections. How have you used these? 130 41 145 316 

Log 2 Q5: What are your priorities (objectives, goals) while using Preview 
Activities/Reading Questions? Explain how you use them. 86 32 125 243 

Analysis 

We used a constant comparative analysis with the answers to the two open-ended questions (Q9 and 
Q5) to identify classes of situations, goals, and rules of actions. The analysis proceeded in four steps. 

 
1 Across all the textbooks less than 10% of the students stated that they never used these features, indicating high use 
across the sample. 
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First, we identified three classes of situations in which students reported using questioning devices: 
Before Class Preparation, Study, and Self-Evaluation. Before Class Preparation included situations 
in which students expressed, they used questioning devices to get ready for an incoming class. Study 
included situations in which the students expressed using questioning devices for practicing, doing 
homework, and studying for exams. Self-Evaluation included situations in which students said they 
used the questioning devices for testing their own understanding of the content. Using these 
categories, we classified each of the 559 responses (316, Log 1 Q9 + 243, Log 2 Q5) under one of 
these situations or as “No Class” if the response did not convey enough information to identify a 
situation (e.g., “yes”). In the second step, we inspected responses within each class to identify goals. 
We identified and coded eight goals that students associated with the classes of situations: three 
related to Before Class Preparation, four with Study, and one with Self-Evaluation. In the third step, 
with the responses organized by class of situation, we identified 10 rules of action. In the fourth step, 
the first and second author identified the operational invariants, looking for explanations for why 
students were using the questioning devices. The most frequent reason was that students used the 
questioning devices because they were required by their teacher (61 out of 511). Other operational 
invariants appeared but were less frequent.  

The first authors coded all the responses; the other two authors independently coded classes of 
situations, goals, and rules of actions for 10% of the responses. The average Cohen’s Kappa for 
coding for situation, goals, and actions were 0.78, 0.71, and 0.63. These three values are within the 
range of [0.61 - 0.80], which correspond with a substantial agreement. 

Findings: Students’ Instrumentation of Questioning Devices 
We identified three utilization schemes of the questioning devices, one per class of situations, 
Familiarizing with Content Before Class, Studying by Practicing and Doing Homework, and Self-
Evaluating Understanding of Content (see Figure 1). While we characterized the utilization schemes 
separately to make sense of students’ use of the questions devices, students often mentioned multiple 
goals, rules of actions, and operational invariants. Moreover, although we identified all three 
utilization schemes across students using the three textbooks in calculus, abstract algebra, and linear 
algebra, not all goals were mentioned across these groups of students.  

In the first utilization scheme, familiarizing with content before class, students said they use 
questioning devices to get acquainted with the upcoming material in the course: 

They have been assigned to us before classes. I look over (rule of action: skimming) the 
preview questions [questioning device], try to solve the activity (rule of action: answering) 
and it gives me an idea of what we will be working on in class that day (goal). (30.07, 
Spring19, AC)2  

In this excerpt, a clear goal is stated: to get “an idea” of what will be taught in class. We identified 
two more goals under this class of situations in the corpus: to better prepare for class and to connect 

 
2 We identify quotes of a student using the convention “XX.YY, term, textbook” where XX refers to the instructor and 
YY to the student of that instructor. 

Proceedings of CERME12 4033



 

 

previous material with new content. To accomplish these goals, four actions were mentioned: 
skimming and answering the questioning devices, reading the chapter associated with the questioning 
devices, and writing down questions they could ask in class. To justify these actions, students 
collectively offered four reasons: the questioning devices were assigned (e.g., “My professor has it 
mandatory to answer the reading questions for each section,” 36.20, Fall20, FCLA), the questioning 
devices addressed important content (e.g., “I usually remember the material in a reading question as 
what is most important for me to know,” 46.05, Spring21, FCLA), the questioning devices helped 
them with understanding the new material (e.g., “These are very helpful in introducing the concepts 
of the section,” 35.70, Fall20, AC), or because their instructors used the questioning devices to teach 
in class (e.g., “We have used these in our class to give our initial answers to the reading, and then our 
professor gives us feedback on our responses,” 23.20, Fall20, AATA). 

Utilization scheme 1: Familiarizing with content before class 
Goals Rules of Action Operational Invariants (rationale) 

1. To prepare for 
class  

2. To connect 
previous 
materials with 
new ones 

3. To find out what 
will be taught 

- Skimming questioning devices 
- Answering questioning devices 
- Reading the chapter associated to 

questioning devices 
- Preparing questions for the class 

- I answer the questioning devices 
because my teacher told me to  

- I noticed that the questioning 
devices address important content  

- I noticed that the questioning 
devices help me understand the new 
material 

- My teacher uses them in class to 
teach 

Utilization scheme 2: Studying 
4. To practice 
5. To do 

homework 
6. To prepare for 

assessments 
7. To find out what 

is important in 
the 
chapter/section 

-  Skimming questioning devices 
-  Answering questioning devices 
-  Checking their answers to the 

questioning devices 
-  Taking notes of parts of the 

questioning devices and their 
solutions 

- I answer the questioning devices 
because my teacher told me to  

- The questions devices help me learn  
- I noticed that the assessments have 

very similar problems and questions 
as in the questioning devices 

- I noticed that the questioning 
devices address important content 

Utilization scheme 3: Self-evaluating 
8. To check own 

understanding of 
the content 

- Attempting the questioning devices 
before reading the chapter  

- Attempting the questioning devices 
after reading the chapter 

- Re-reading the chapter if unable to 
answer the questioning devices 

- Comparing answers to the 
questioning devices with answers 
provided by textbook, classmates, 
teacher, or other resources 

- It is important to me to make sure 
that what I know is correct 

Figure 1: Students’ utilization schemes of questioning devices  
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In the second utilization scheme, students said they use questioning devices to study after the material 
was introduced in class: 

When I have a similar homework problem to work out, I will use the Reading Questions (rule 
of action: answering) for extra practice and to gain better understand[ing] (goal: practice; 
operation invariant: because I learn by answering questioning devices). (45.15, Spring21, 
FCLA) 

This student indicates using the questioning devices as “extra practice” when doing homework 
because doing so will help gain a “better understanding” of the material. We identified four goals 
associated with this scheme: to practice (when questioning devices are not assigned as homework), 
to do homework (when questioning devices are assigned as homework), to prepare for assessments 
(e.g., “Used them as reference to how class questions on exams and quizzes will look like,” 45.53, 
Spring21, FCLA), and to find out what is important to study in the chapter or section associated with 
the questioning devices (e.g., “If these are not assigned as homework, I use these questions as 
reinforcement of the main/big ideas from the chapter,” 33.13, Spring20, AATA). We identified four 
student actions: skimming and answering questioning devices, checking answers to the questioning 
devices, and taking notes on the questioning devices and their solutions. We identified four 
operational invariants that students reported as justifying these actions: Students were required by 
their instructors to work on the questioning devices during class or at home (e.g., “We use them in 
class and as homework,” 30.23, Spring20, AC); using the questioning devices benefited their own 
learning of the material (e.g., “I take advantage of this completely in order to be successful. i [sic] 
enjoy how you can reflect and absorb the material this way,” 44.03, Spring21, FCLA), problems on 
their examinations were similar to those in the questioning devices (e.g., “I complete the preview 
activities for a grade but I think that they help a lot in the initial learning process because it lets 
students know what questions on a test might look like,” 35.57, Fall20, AC), and ideas showcased in 
the questioning devices were important ideas in the chapter or section (e.g., “I find them [reading 
questions] helpful because they make sure I understand important parts of the section,” 44.06, 
Spring21, FCLA). 

In the third utilization scheme students said they use the questioning devices for self-evaluation of 
their understanding of the material: 

I mostly use this to check for my understanding of the chapter. If i [sic] get to the reading 
questions and do not understand them I know I have to reread the chapter again. (37.08, 
Fall19, FCLA) 

This quote represents the essence of the scheme, that students take the questioning devices as a kind 
of arbiter of the content of the chapter; not knowing the answers triggers a process of reading other 
parts of the textbook. Three rules of action were associated with this scheme: attempting the 
questioning devices to evaluate their understanding before reading a chapter (e.g., “Do them to see 
where my baseline is for this chapter,” 35.65, Fall20, AC); attempting the questioning devices after 
reading the chapter to check ability to answer them; when unable, students re-read the chapter; and 
compare their answers to the questioning devices to other resources, such as the solutions provided 
by their textbook, their classmates, or their instructors (e.g., “Do them and then go over them with 

Proceedings of CERME12 4035



 

 

classmates,” 35.81, Fall20, AC). The operational invariant is inferred as the need to know that their 
knowledge is correct; this is done either by contrasting responses with the content of the reading 
questions or with external resources, such as peers or the instructor. 

Discussion and Conclusion 
These findings are important for textbook designers, as well as instructors using the textbooks, 
because they confirm that the questioning devices are being used for their intended purpose and more. 
The three utilization schemes help us understand what motivates students to use questioning devices 
and how they use them. For two schemes, (Familiarizing with Content Before Class, Studying by 
Practicing and Doing Homework) one main motivator was that teachers assigned the questioning 
devices to the students. This highlights the important role that teachers have in influencing student 
use of textbooks, supporting prior findings that indicate that when asked, students will use the 
textbooks as teachers suggest (Mali & Mesa, 2018). However, that was not the only motivator for 
students to use the questioning devices; students, by motu proprio used the questioning devices for 
familiarizing themselves with the content, studying by practicing, and more interestingly for 
evaluating their own understanding of the material. Because the third scheme does not seem to be 
motivated by the teacher assigning the questioning devices, we wonder whether this particular scheme 
would emerge without exposure to the questioning devices initiated by the teachers. 

The findings show that although designer-authors and instructors may have specific ideas of how a 
feature should be used, students find ways to exert their agency and decide how to use them. In the 
case of questioning devices, these features were designed to be completed before a lesson; therefore, 
they may not be the best fit for students when it comes to studying and self-assessment. Although we 
encourage students to use their textbooks for their needs, we believe that by learning about the 
intended purposes and embedded opportunities of textbooks’ features students can make better use 
of their textbooks tailored for specific situations. For example, the WeBWorK exercises embedded 
within the AC textbook provide immediate feedback to students while questioning devices do not; 
thus, we expect that these features are better suited for self-assessment than questioning devices.  

This study was done to complement our prior work on teacher utilization schemes of questioning 
devices identified in Mesa et al. (2021), namely (1) Instructors complete the questioning devices for 
lesson pre-planning, (2) Instructors require students to do the questioning devices for the purpose of 
lesson planning, (3) Instructors use the questioning devices for the purpose of instruction, and (4) 
Instructors require students to complete the questioning devices for the purpose of assessment.  We 
anticipate that the four teacher utilization schemes are related to the student utilization schemes of 
the questioning devices we found here. As a next phase in our work, we will determine the connection 
between these utilization schemes and investigate differences by textbook. 
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The role of creativity in mathematical competence and problem-solving 
Among the fundamentals of mathematical competence is problem-solving abilities, which in the 
context of school mathematics often is related to mathematical creativity. Sriraman (2005) defines 
mathematical creativity as novel or insightful solutions to a problem, as well as the formulation of 
new questions which allows “old” problems being viewed differently, where the use of imagination 
is a key element. A certain level of mathematical ability is necessary for creative mathematical 
thinking to manifest, but mathematical ability can also lead to fixations and hinder creativity 
(Sriraman & Haavold, 2017). Contrasting fixations, cognitive flexibility is often viewed as essential 
for gaining creative insight (Haavold & Sriraman, 2021). Thus, creativity seems to play an essential 
role in mathematical competence and problem-solving, and therefore an important question to be 
answered is how creativity can be catalysed in mathematics education. The focus of this research 
proposal is to give an outline to an investigation of whether and how uncertainty can catalyse 
creativity in mathematics students’ problem-solving process. 

Uncertainty and its relation to creativity in mathematical problem-solving 
Sriraman (2021) defines uncertainty as a state of ambiguity and curiosity, as well as the sense of being 
in doubt, also labeled “creative doubt”. Sriraman (2005) argues that creativity requires exposure to 
uncertainty and experience with the struggle of creating mathematics and solving problems. Creative 
problem-solving is further associated with cognitive flexibility, which involves the ability to switch 
between mental sets and strategies when dealing with uncertainty (Haavold & Sriraman, 2021). 
Sriraman (2021) found that uncertainty plays an important role as a catalyst for mathematical 
creativity in the work of professional mathematicians, but uncertainty is otherwise a little researched 
concept in the field of mathematics. Therefore, an interesting perspective would be to investigate 
whether the relation between uncertainty and creativity which Sriraman (2021) suggests, also exists 
in the work of students of mathematics. In the following paragraphs, pathologies as a potential task 
design for the purpose of catalysation is explained. 

Mathematical pathologies as a facilitator of uncertainty and creativity 
Sriraman and Dickman (2017) argues that mathematical pathologies can foster creativity through 
addressing misconceptions and false beliefs. The authors define pathologies as “[…] examples that 
are specifically designed to violate properties that are perceived as valid. The term ‘pathological’ is 
also specifically used in mathematics to refer to objects “cooked up” to provide interesting examples 
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of counterintuitive behavior” (Sriraman & Dickman, 2017, p. 137). Examples that are directed at 
violating valid properties create a space where domain limiting barriers must be overcome and this is 
where creativity plays an important role. A pathology can take form as a counterexample, but it’s not 
a necessity. Further, a pathology is not the same as a misconception because the intention of 
pathologies is not to point out the wrong- or rightness of a mathematical concept. The intention is to 
foster creativity in the face of uncertainty. Lastly, a pathology is a task-design, while a misconception 
is something within the mind of a student (Sriraman & Dickman, 2017). In the following 
methodology of the research proposal, pathologies are proposed as generators of uncertainty in the 
process of catalysing creativity in students’ mathematical problem-solving. 

Methodology 
To investigate whether and how uncertainty can catalyse creativity for mathematics students, we tend 
to employ pathologies in task-based interviews with students. An example of a task that can be given 
is presented in Figure 1. This task addresses incorrect fraction cancelation which by chance still leads 
to the correct answer. Students can be asked to investigate if there exist other fractions with this 
property. While solving the tasks, the students should think aloud so that insight to their problem-
solving process can be accessed and analyzed. The focus of the analyzes will be mapping of how 
fixations occur and what leads to creative, flexible ways of viewing the problem when dealing with 
uncertainty generated by pathologies. Both video and sound, in addition to collecting their written 
answers, are useful data collection tools. The results can indicate whether and how uncertainty 
provided by mathematical pathologies can catalyse creative solutions to a problem in the work of 
mathematics students. The hypothesis is that pathologies as task design can catalyse creativity by 
generating uncertainty, also for students of mathematics.  

 

Figure 1: Two- digit anomalous fractions (Sriraman & Dickman, 2017, p. 140) 
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This article presents a critical review on digital fabrication for creating manipulatives in 
mathematics education research. It provides an overview of the research field from two perspectives: 
1) explored digital fabrication technologies and reified mathematical concepts, and 2) applied 
pedagogical theories and research methodologies. Results show that 3D printing is the most common 
technology for creating manipulatives reifying mathematical concepts within geometry, algebra, and 
functions, as well as fractions. In the typical research project, a qualitative paradigm is chosen, and 
learning is investigated from a constructionistic perspective. The review reveals a small but trending 
research community and concludes with two specific opportunities for consolidating research on 
digital fabrication for mathematics education. 

Keywords: Critical review, digital fabrication, manipulatives, mathematics education.  

Introduction 
This article presents a critical review of previous research on digital fabrication for mathematics 
education. Digital fabrication (DF) is “the process of translating a digital design developed on a 
computer into a physical object” (Berry et al., 2010, p. 168). DF technologies such as 3D-printers, 
laser cutters or vinyl cutters, have become affordable and can be found at Makerspaces and FabLabs1 
around the world. These tools enable people to create professionally looking items rapidly and at a 
relatively low cost. Blickstein (2013) argues that DF and making can play a major role in education, 
“bringing powerful ideas, literacies, and expressive tools to children” (p. 2). DF technologies might 
support mathematics teachers through the creation of manipulatives. Manipulatives or concrete 
material are physical objects that are used to reify abstract concepts in mathematics education. 
Previous research highlights, that students benefit from long-term use of manipulatives in 
mathematics education. Both students’ achievements in and motivation for mathematics increase 
when manipulatives are used (Pires et al., 2019). However, manipulatives are not self-explanatory 
and to draw maximum benefit from students’ use of manipulatives, teachers must continuously situate 
their activities and the physical objects based on students’ previous experiences, as well as their 
teaching context (Thompson, 1992). Stylianou (2010) has found that teachers have knowledge gaps 
of how different representations, such as manipulatives, are translated into mathematical concepts. 
DF technologies could enable teachers to create context-sensitive manipulatives for teaching 
activities, situated in the classroom and enhance teachers’ knowledge on manipulatives to improve 
their teaching. There is prior research (Ford & Minshall, 2019; Hielscher & Smith, 2014; 
Papavlasopoulou et al., 2017) reviewing DF education in general. To my knowledge, there does not 
exist a review focusing on mathematics education and how DF can be used to create manipulatives, 

 
1 https://fabfoundation.org/global-community/ 
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which is the objective in this article. I performed a critical review of previous research in the field to 
answer the following research question: What characterizes research on digital fabrication for 
creating manipulatives in mathematics education? 

Method 
The aim of this review is to explore how DF has been used in mathematics education research so far, 
focusing on DF technologies as well as mathematical concepts and manipulatives on one hand and 
used theories and research methodologies on the other. I applied a three-step iterative critical analysis 
(Çorlu et al., 2017; Stigberg, 2017): finding appropriate papers including selection of databases and 
search terms; eliminating irrelevant papers based on a set of exclusion criteria; analyzing appropriate 
papers based on key terms answering the research questions. Grant and Booth (2009) describe that 
“a critical review goes beyond mere description of identified articles and includes a degree of analysis 
and conceptual innovation” (p. 93). In this review, I will analyze identified articles, highlight research 
gaps and provide opportunities for further research in DF for mathematics education. 

Step 1: Retrieving Publications 
The database used as primary source for finding literature is Ebsco, including Education Source, 
Education Research Complete, Academic Search Primier, ERIC, CINAHL, MathSCINet via 
EBSCOhost and MEDLINE. To broaden the search and ensure to include as many relevant 
publications as possible, I chose to perform a search on Google Scholar as well.  

From the research topic and research questions, I derived the following keywords: “digital 
fabrication”, “3D-printing” or “laser-cutting”, in combination with “mathematics education” and 
“manipulatives” or “concrete materials”. 3D-printing and laser-cutting are popular DF technologies 
and often used as representatives or synonyms of DF and therefore highly relevant as keywords. A 
search for vinyl-cutter, another DF technologies gave no hits and was excluded from the final search 
query. In mathematics curricula, both terms manipulatives and concrete material are used to describe 
physical objects that reify a mathematical concept and were included in the search. Finally, I used ‘*’ 
special character in the search query to allow different forms of all keywords. I did not define a 
timeframe since I was interested in finding all relevant literature. The final queries used in the search 
can be found at: shorturl.at/eqxP4. The search queries were used for a full text search in both Ebsco 
and Google Scholar. The literature search resulted in 73 hits from Ebsco and 277 hits from Google 
Scholar. After removing duplicates, the total number of found articles is 254. 

Step 2: Appropriate papers 
In this step, the papers that were not appropriate for the review were eliminated based on the following 
exclusion criteria: not peer-reviewed (36), non-English work (10), not empirical (purely theoretical 
papers or review articles) (66), do not concern mathematics education or manipulatives not 
investigated (159), studies on STEM projects not specifically highlight mathematics education or 
creating manipulatives (81), or 3D-pen as technology (5). Several publications corresponded to more 
than one exclusion criteria. For a complete list of inclusion/exclusion criteria, see link: 
shorturl.at/aioyU. The elimination process resulted in a final list of 17 papers to be included in the 
analysis. The included literature can be found in Table 1. 
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Table 1: Overview of included articles 

Code  Article 

A Paul, S. (2018). 3D Printed Manipulatives in a Multivariable Calculus Classroom. Primus: Problems, Resources & 
Issues in Mathematics Undergraduate Studies, 28(9), 821–834. 
https://doi.org/10.1080/10511970.2018.1445675 

B Wan, Anna and Jessica Ivy. "Adding a New Dimension to Teaching Mathematics Educators." Handbook of 
Research on TPACK in the Digital Age, edited by Margaret L. Niess, et al., IGI Global, 2019, pp. 390-412. 
https://doi.org/10.4018/978-1-5225-7001-1.ch018 

C Ulbrich, E., Lieban, D., Lavicza, Z., Vagova, R., Handl, J., & Andjic, and B. (2020). Come to STEAM. We have 
cookies! 297–304. 

Fernández, E., Davidson, J., & Pomponio, E. (2021). Dare to Care: The Impacts of a Caring Pedagogy on 
Mathematical Making, Teaching, and Learning.  

D 

E Junthong, N., Netpradit, S., & Boonlue, S. (2018). Design and Development of Teaching Tools in Dimensional 
Geometry for Visually Impaired Students Using Object Models from 3D Printing. 7. 
https://doi.org/10.17758/HEAIG2.H0418464 

F Greenstein et al. (2020). Exploring the interwoven discourses associated with learning to teach mathematics in 
a making context Greenstein, S., Jeannotte, D., Fernández, E., Davidson, J., Pomponio, E., & Akuom, D. (2020). 
Exploring the interwoven discourses associated with learning to teach mathematics in a making context. 
Conference Papers Psychology of Mathematics & Education of North America, 840–844. 
https:/doi.org/10.51272/pmena.42.2020. 

G Corum, K., & Garofalo, J. (2016). Learning about Surface Area through a Digital Fabrication-Augmented Unit. 
Journal of Computers in Mathematics and Science Teaching, 35(1), 33–59.  

H Greenstein, S., & Seventko, J. (2017). Mathematical Making in Teacher Preparation: What Knowledge Is 
Brought to Bear? North American Chapter of the International Group for the Psychology of Mathematics 
Education. 

I Akuom, D., & Greenstein, S. (2021). Prospective Teachers’ Design Decisions, Rationales, and Resources: 
Re/claiming Teacher Agency Through Mathematical Making. 

J Greenstein, S., & Olmanson, J. (2017). Reconceptualizing Pedagogical and Curricular Knowledge Development 
Through Making. Design Journal, 4, 10. 

K Greenstein, S., Fernández, E., & Davidson, J. (2019). Revealing teacher knowledge through making: A case 
study of two prospective mathematics teachers. Conference Papers -- Psychology of Mathematics & Education 
of North America, 1151–1156. 

L Hallowell, D. A. (2020). Spatial Reasoning in Elementary School Children’s Geometry Insight: A Neo-Piagetian 
Developmental Proposal.  

M Mohamed, M. M., Paoletti, T., Vishnubhotla, M., Greenstein, S., & Lim, S. S. (2020). Supporting students’ 
meanings for quadratics: Integrating RME, quantitative reasoning and designing for abstraction. Mathematics 
Education Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the International 
Group for the Psychology of Mathematics Education, 193–201. https:/doi.org/10.51272/pmena.42.2020 
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N Ceragioli, F., & Spreafico, M. L. (2020). Tangible Tools in Mathematics for Engineering Students: Experimental 
Activity at Politecnico di Torino. Digital Experiences in Mathematics Education, 6(2), 244–256. 
https://doi.org/10.1007/s40751-020-00063-7 

O Davidson, J., Fernández, E., & Greenstein, S. (2019). Teachers making manipulatives to promote pedagogical 
change. Conference Papers -- Psychology of Mathematics & Education of North America, 1359–1360. eue. 

P Dilling, F., & Witzke, I. (2020). The Use of 3D-Printing Technology in Calculus Education: Concept Formation 
Processes of the Concept of Derivative with Printed Graphs of Functions. Digital Experiences in Mathematics 
Education, 6(3), 320–339. https://doi.org/10.1007/s40751-020-00062-8 

Q Corum, K., & Garofalo, J. (2016). Learning about Surface Area through a Digital Fabrication-Augmented Unit. 
Journal of Computers in Mathematics and Science Teaching, 35(1), 33–59.  

Step 3: Analyzing the papers 

Quantitative and qualitative data was extracted from the articles and gathered in a database. The 
analysis of each paper included general bibliographic information, as well as type of DF technologies, 
reified mathematical concepts, applied theories, research design and methodology.  

Results 
There is limited research on DF technologies for creating manipulatives in mathematics education 
(17). Most of the initially found publications (254) present research on STEM (81) or do not focus 
mathematical content or manipulatives (159). Often research presents interdisciplinary projects to 
facilitate students design thinking and innovation skills. Furthermore, searching on Google Scholar 
gave several articles that were not peer reviewed (36) such as teaching material or blog entries. 
Research on 3D pens was excluded based on the definition of DF as computer-controlled tools 
(Gershenfeld, 2012). Most of the research on DF technologies included in this review is published 
2018 or later (14) indicating a growing interest in DF technologies for education. Furthermore, the 
research community around DF in mathematics education is limited to a small number of research 
groups. For example, Greenstein published 7 out of the 17 articles (F, H, I, J, K, M, O). A major 
research project on DF technologies in mathematics education is a project concerning pre-service 
teachers called: Prospective Teachers Making for Mathematical Learning (F, I, K). In the following, 
I have analysed the 17 articles from two perspectives: Firstly, focusing on DF technologies and 
created artefacts reifying mathematical concepts. Secondly, focusing on applied theories, research 
design and methodologies.  

Digital fabrication technologies 

3D printers are the most used DF technology for creating manipulatives (15). Two articles, based on 
the same project, explore the use of a die cutter as DF technology (G, Q). Four articles provide a 
rationale for their choice of DF technology. 3D printers are starting to become cheap and accessible 
(A, B), enable teachers and students to create artifacts with little effort and in reasonable time (C, P) 
and the possibility to reproduce existing artefacts (P). The reviewed articles present different software 
choices for modelling 3D objects: TinkerCad (C, J, N), OpenScad (C, P), SketchUp (E) and AutoDesk 
123D Design (L). FabLab Model Maker was used to design 3D models for the die cutter technology 
(G, Q). Nine articles do not provide information about a specific 3D modelling software. Wan and 
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Ivy (2019) mention Thingiverse2, an online platform where makers can share their work, as one 
possible resource for finding 3D models for mathematics education. 

Artifacts reifying mathematical concepts 

The reviewed articles present three core mathematical concepts: geometry, algebra and functions, and 
fractions. Geometrical objects such as rectangular prisms and cubes (C, D, G, Q), cones (J, N), prisms 
representing triangles (M), tessellation with pattern blocks (D), general geometric properties (L) and 
3D printed geoboards for representing area and volume (E). Created objects reifying concepts of 
algebra and functions such as: coordinate system (J), 3D printed representations of graphs of 
functions with one variable (P) and two variables where students investigate  contours, partial 
derivates, gradient vector field, and restrictions to the curve (A), and models of the integral as area 
under a graph (J). Mohamed et al. (2020) presents different 3D printed triangular prism to investigate 
students’ reasoning about quadratic changes. 3D printed objects reifying fraction as value (F, I) and 
fraction of time using circle segments (K, O).  

Opportunity 1: Exploring alternative technologies, added mathematical concepts, and 
resources for creating and sharing manipulatives  

The results expose that previous research on DF in mathematics education is sparse. There is a need 
to explore different DF technologies, alternative manipulatives reifying more mathematical concepts, 
and investigating the use of available online resources. Most of the research has been done using 3D 
printers, limiting the type of manipulatives that can be created through additive manufacturing. Laser 
cutter or vinyl cutter enable subtractive manufacturing and open a new design space for 
manipulatives. So far, laser cutter technologies are expensive, but one could argue that they will 
become more commonplace in schools like 3D printers today. Manipulatives are created for 
geometry, algebra, and functions, as well as fractions. One interesting research path is investigating 
how manipulatives can reify other concepts such as arithmetic, decimal system, combinatorics, or 
probability, all are part of the mathematics curriculum. Research has focused on how students and 
teachers can use software to create 3D models that can be printed. There are plenty of online resources 
available for teachers to choose from e.g., Thingiverse. Understanding how manipulatives can be 
shared by teachers, taking part in the maker culture is missing. From prior professional development 
projects, I often met teachers requested pre-made material or lesson plans they can adopt to their own 
teaching. They express a lack of time to develop their own material on the one hand, but they prefer 
to be creative and develop their own teaching materials on the other hand. 

Applied theories 
Three theoretical characteristics have emerged: 1) constructivism and constructionism as theoretical 
underpinnings, 2) design theories for creating a learning context, and 3) theories for analysing 
teachers’ and students’ knowledge. Firstly, many of the reviewed articles refer to constructivism and 
constructionism as rationale when creating manipulatives (9). Papert's constructionism (Papert & 
Harel, 1991) is based on Piaget's constructivism (Piaget, 2013), but emphasizes that learning is 

 
2 https://thingiverse.com 
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happening when we create sharable things (Ackermann, 2001). Secondly, the research group around 
Greenstein frames the process of creating manipulatives as learning by design (H,I,K). The approach 
presented by Koehler and Mishra (2005) provides an “opportunity to consider the interplay between 
the evolving artifact and the application of teacher knowledge domains in the artifact’s development” 
(Greenstein et al., 2019, p. 1152). Thirdly, teachers’ technological, pedagogical, and content 
knowledge (TPACK) is explored in three articles (B,H,K). Dilling and Witzke (2020) apply theory 
of subjective domain of experience when analysing students’ knowledge. According to this 
theoretical framework, students experience is linked to the specific learning context and their 
knowledge needs to be described according to their situational link, including previous experiences. 
Greenstein et al. (2020) is an article that investigates learning from a sociocultural perspective, using 
theory of commognition (Sfard, 2007) to analyse students’ changes in discourses. In their article, they 
specifically analyse, students’ narratives about; mathematical objects, participants of the discourse, 
learning about mathematics, and design decisions. An overview can be found at: shorturl.at/mnsN3. 

Research methodologies 

The included articles present different cases how DF was used in a teaching context. Most commonly, 
researchers report on their own teaching experiences in higher education (10), on interventions 
applying manipulatives in a classroom setting for K-12 students (5), or from a workshop or course 
for in-service teachers (2). Most articles (14) use purely qualitative methods in their research design 
based on observation, video recordings, interviews, and hand-ins. Three articles (B,H,L) use mixed 
methods to collect data including surveys, and pre- and post-tests. Research on teaching experiences 
in higher education analyse cases based on selected students and their work (D,F,I,J,K,M,O), data 
from students' self-reports (B,H), or description of the course and used manipulatives (A,N).  
Research projects involving K-12 students investigate interventions with manipulatives developed by 
researchers in a classroom setting (E,L), and students’ learning outcomes when creating 
manipulatives (G,P,Q). Ulbrich et al. (2020) report on their experiences from a workshop series with 
200 in-service teachers. They conclude that it is essential to learn more “about a teacher’s needs and 
expectations using technologies” (Ulbrich et al. 2020, p. 303). Greenstein & Olmanson, (2017) 
provide a case of a DF course for in-service teachers including examples of created artefacts. Seven 
articles did not use a framework for analysing their results.  

Opportunity 2: Adopting communities of practice as a framework for understanding in-service 
teachers learning of digital fabrication for mathematics education 
The typical research project investigates DF for pre-service teachers applying constructionism (Papert 
& Harel, 1991) as theoretically underpinning describing learning from an individual perspective. 
Constructionism provides an acknowledged framework for understanding learning when creating and 
sharing manipulatives. However, for professional development projects with in-service teachers,  a 
sociocultural perspective on learning is preferable, because it offers a “more effective means to, 
understand and implement an educational partnership for work-place learning” (Spouse, 2001, p. 
512). The review found two research projects exploring how in-service teachers could use DF to 
create their own manipulatives and only one research project applies a sociocultural perspective. To 
consolidate research on DF for mathematics education both perspectives (individual and 
sociocultural) need to be investigated appropriately for both pre-and in-service teachers. 
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Communities of practice (CoP) deploys a situated learning perspective with sociocultural elements 
and is widely accepted in education research and work-place learning (Hammersley, 2005). CoP 
could provide a theoretical lens on how learning emerges when pre- and in-service teachers engage 
in authentic learning experiences, such as making, sharing, and using available manipulatives to 
develop their professional identity in their community (Wenger, 1999). CoP has been proposed as a 
suitable research paradigm for the mixed methods approach, which has been found in three articles 
included in this review (Denscombe, 2008). 

Conclusion 
This paper presents a critical review of 17 research articles on DF for creating manipulatives in 
mathematics education. Previous research is concentrated at stray research clusters. The typical DF 
research project explores manipulatives for reified mathematical concepts in geometry, algebra and 
functions, and fractions, using 3D printing and is published 2018 or later. Qualitative methods or 
mixed methods are predominant for data collection. The review reveals three main theoretical 
perspectives. Firstly, constructionism, with roots in constructivism (Papert & Harel, 1991), as 
underpinning theories. Secondly, design theories, such as Learning by Design (Koehler & Mishra, 
2005), and thirdly, theories for analysing teachers’ and students’ knowledge. Finally, the paper 
provides two specific opportunities for consolidating research on DF for mathematics education: 1) 
Exploring alternative technologies, added mathematical concepts, and resources for creating and 
sharing manipulatives, and 2) Adopting communities of practice as a framework for understanding 
in-service teachers learning of DF for mathematics education. 
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Background 
Black and Wiliam’s comprehensive review (1998) that includes more than 250 studies worldwide 
suggests the close relationship between achieving learning outcomes and teaching practices 
associated with formative assessment. However, despite considerable research and development 
work, the implementation of formative assessment remains a problem. A key issue is that variety has 
been observed among the definitions and exemplars of formative assessment. Although these 
definitions and exemplars do not contradict each other, they highlight different elements. Formative 
assessment includes the elements such as identifying learning intentions, monitoring students’ 
learning, regulating learning, identifying the actors of learning, and using appropriate teaching 
strategies and tools. All these elements should be considered holistically for productive practices. 
Moreover, it should be noted that the features of these elements can vary from discipline to discipline 
(and sometimes even between topics within the same discipline). Teachers need exemplars in order 
to understand the principles of  formative assessment authentically and enact them in practice. Well-
designed educative curriculum materials can be used to communicate these principles to teachers. 
That is to say, educative curriculum materials aim to improve teachers’ learning alongside students' 
learning (Davis & Krajcik, 2005). In this research, the aims are to identify educative exemplars that 
can communicate the aspects of formative assessment to teachers and suggest principles that can 
guide future design. Using multiplicative reasoning as a critical case, the existing curriculum 
materials are analysed to achieve these research aims. 

Theoretical Framework 
Two frameworks guide the material analysis. First, formative assessment strategies suggested by 
Wiliam and Thompson (2007) are used in order to identify formative assessment techniques. These 
strategies include five aspects: understanding and sharing learning intentions, eliciting students’ 
learning, feedback, using students for each others’ learning and self-regulation. This framework is 
grounded in the idea that the function of formative assessment is to regulate learning. This regulation 
is examined in three ways: proactive regulation (before the lesson), interactive regulation (during the 
lesson) and retroactive regulation (making the decision for the next lessons or different contexts). 
Second, the educative features of the materials are analysed in terms of including the guidance to 
enact these techniques and the rationale of these techniques (Quebec-Fuentes & Ma, 2018).  

Methods 
The materials to be analysed were selected purposively from curriculum materials designed for early 
secondary mathematics teaching. First, these materials are chosen based on whether they include 
topics relevant to multiplicative reasoning such as ratio, proportion and geometric similarity. Second, 
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the materials that include a separate teacher guide are chosen. Third, the materials that include 
formative assessment features explicitly or implicitly are chosen. When sampling the materials, 
whether the materials include formative assessment explicitly or implicitly has been decided 
according to how the designers advertise these materials. As a result, five groups of multiplicative 
reasoning lessons are chosen from the projects Mathematics Assessment Project (MAP), Increasing 
Competence and Confidence in Algebra and Multiplicative Structures (ICCAMS), CornerStone 
Maths, Mathematics Formative Assessment Systems (MFAS) and from a commercial resource 
widely used by teachers in England, White Rose Maths. While MAP, ICCAMS and MFAS lessons 
are advertised as formative assessment resources, CornerStone Maths and White Rose Maths involve 
formative assessment as one element of teaching. The main reason to choose a variety of resources 
is to access rich formative assessment techniques and educative features. It is not aimed to compare 
the materials from different resources and rank their overall quality. Instead, the educative features 
in the data will be analysed to inform future design. In order to achieve research aims, reflexive 
thematic analysis is conducted (Braun and Clarke, 2006).  

Progress after CERME 12 conference 
At the CERME 12 conference, the poster that outlines the methodological decisions of this research 
was presented. Following the discussions at the conference, the data was revisited and the suggested 
initial themes in the poster were revised. As a result, in terms of educative support, five themes are 
identified: learning goals, students’ thinking and misconceptions, students’ participation, 
differentiation and assessment norms. These five themes are found as a result of a largely semantic 
coding that mainly explored explicit educative support in the materials. In the next step of the data 
analysis, we prefer a more latent coding orientation in order to reveal implicit educative support 
hidden in the materials regarding these five themes.  
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Rethinking the notion of textbooks as mediators between the official 
curriculum and classroom practice 

Hendrik Van Steenbrugge  

Stockholm University, Department of Teaching and Learning, Sweden;  
hendrik.van-steenbrugge@su.se  

Textbooks are frequently understood to mediate between the official curriculum and the classroom 
from an alignment perspective. Such an understanding of textbooks has advanced our knowledge of 
the multifaced nature of curriculum implementation, though it runs short on explaining the origins of 
aspects in textbooks that aren’t typically covered in the official curriculum. As an alternative, I 
propose to understand textbooks as a locally constituted hybrid. Such a position does not a priori 
approach textbooks from their alignment with the official curriculum and classroom practice, but 
might take a network of social practices in relation to textbooks into consideration. I believe that this 
helps to inquire about the origins of the social aspects of teaching and learning mathematics typically 
covered in textbooks, but usually not covered in great detail in official curricula. I also believe that 
such an understanding helps to foreground textbook studies as a full-fledged research field. 

Keywords: Mathematics textbooks, culture, social relations. 

Introduction 
Mathematics textbooks are commonly situated in between the official curriculum and the actual 
classroom practice, often with an assumption that content and values travel from the official 
curriculum through the textbook into the classroom (e.g., Pepin, Gueudet, & Trouche, 2013; 
Valverde, Bianchi, Wolfe, Schmidt, & Houang, 2002). Although the specific labeling differs between 
studies and frameworks, our field of study differentiates between the official curriculum (standards, 
national or regional frameworks, and sometimes even high-stake tests), written curriculum (the 
textbooks), teacher-intended curriculum (teachers’ ideas for instruction), enacted curriculum (as 
instruction unfolds in the classroom), and attained curriculum (students’ outcomes) (e.g., Remillard 
& Heck, 2014; Valverde et al., 2002). Underlying this conceptualization is an idea of alignment: an 
alignment between the official curriculum and the textbooks, the textbooks and the teachers’ ideas, 
the teacher ideas for instruction and the actual instruction, and the actual instruction and students’ 
outcomes. Such an understanding of curriculum and of textbooks has helped to advance the field’s 
understanding of how curriculum possibly impacts student learning, and of the multifaced nature of 
curriculum implementation.  

The curriculum implementation process is primarily framed from a content-related perspective. Yet, 
as much as teaching and learning mathematics is about mathematical content, it is a social activity, 
making it relevant to also inquire about the nature of the social relations between the teacher, students, 
resources, and mathematical content (Love & Pimm, 1996; Pepin & Haggarty, 2001; Rezat & Sträßer, 
2012). Whereas official curricula typically don’t contain much detail about the configuration of these 
social relations (Boesen et al., 2014; Valverde et al., 2002), mathematics textbooks do. Thus, the idea 
of alignment between the official and written curriculum runs short in understanding where the 
configurations of social relations in textbooks come from. To advance the field’s related 
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understanding, I propose to change a predominant understanding of how textbooks are culture. In this 
paper’s remainder, I will first exemplify the predominant view of alignment in influential curriculum 
studies. I will then describe two views of culture in mathematics education, arguing that one particular 
view has dominated the field, and to understand textbooks as a locally constituted hybrid. Next, I will 
apply such an understanding to interpret an example textbook study of configured social relations and 
present a network alternative to the predominant alignment view.  

An alignment view in influential curriculum frameworks and studies 
In this section, I attempt to illustrate how an alignment view in thinking about curriculum has 
dominated the field. I do so in relation to the highly influential framework adopted in the TIMSS 
textbook studies and in relation to a group of cross-contextual studies that explicitly aimed to uncover 
part of the cultural dimension of teaching and learning mathematics.  

The TIMSS textbook studies 

The TIMSS studies center on a model of educational opportunities in which textbooks play a 
mediating role between systemic intentions and classroom instruction. The grounding of the model 
of educational opportunities, Valverde and colleagues (2002) describe, is a tripartite model of 
curriculum: the intended curriculum (the curriculum as system goals), the implemented curriculum 
(the curriculum as instruction), and the attained curriculum (the curriculum as student achievement). 
Stressing the mediating role of textbooks, Valverde and colleagues (2002) position the textbook as 
the potentially implemented curriculum between the intended and implemented curriculum. The 
language underlying the TIMSS textbook studies reflects a view that understands content and values 
to travel from the intended (or official) curriculum, through the textbook, into the classroom: 

The model envisions content standards, frameworks, programs of study and the like as primary 
defining elements of potential educational experiences. […] Even so, another characterization is 
essential for the model. This is a portrayal of the most important instruments intended to translate 
these goals into prescriptions or suggestions for specific opportunities to be created in classrooms. 
Thus, an additional important component of the TIMSS measurement strategy included a look at 
how textbooks provide templates for student actions in the classroom. […] How textbooks are 
related to the intended curriculum and the particular vision that they promote regarding what 
students are expected to learn are among the fundamental features of educational systems. […] 
The ability to link these features to other outcomes – such as instructional practices and student 
achievement is another strength of this approach. (Valverde et al., 2002, pp. 8–9) 

The abovementioned description stresses the primary role of the intended or official curriculum, the 
role of textbooks as translators of the official curriculum, and the linking of textbooks to classroom 
practice and student achievement. In fact, the title of this study “According to the book. Using TIMSS 
to investigate the translation of policy into practice through the world of textbooks” (Valverde et al., 
2002) stresses exactly this idea of linearity. 

Other TIMSS textbook studies (Schmidt et al., 2001; Schmidt, McKnight, Valverde, Houang, & 
Wiley, 1997) have added empirical grounds to such a linear notion of alignment. Reflecting the 
textbook research field’s focus on mathematical content (Fan, Zhu, & Miao, 2013; Herbel-
Eisenmann, 2007), these two studies prioritized the content over the social dimension of teaching and 
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learning mathematics. Also, building further on the TIMSS framework, Remillard and Heck (2014) 
have further specified the official curriculum. Underlying their model is also the notion of alignment 
from the official to the operational curriculum, partially mediated by textbooks. Remillard and Heck 
also draw an arrow from the operational to the official curriculum, yet this is one of the few arrows 
that don’t get concretized or explained in great detail.  

Cross-cultural textbook studies 

Pepin and colleagues have studied French, German, English, and Norwegian textbooks in terms of 
their cultural underpinnings (Pepin et al., 2013; Pepin & Haggarty, 2001). This influential body of 
cross-cultural work found that the textbooks differed in terms of the particular mathematical focus 
and the sequencing of activities. French textbooks, for instance, were clearly sequenced according to 
a learning trajectory consisting of small investigations, essential content, and practice whereas 
Norwegian textbooks contained a mix of practical activities followed by exercises. These scholars 
understood the observed differences in terms of underlying beliefs about rationality (as part of 
encyclopaedism) in France and doing math in Norway. Traces of these underlying beliefs were also 
observed in official curriculum documents and teachers’ actual teaching, which led Pepin et al. (2013) 
to conclude that these underlying ideas travel from the official curriculum, through the textbooks, to 
the classroom practice. Interestingly, Pepin et al. (2013) also mention that the French and Norwegian 
textbooks under study were designed by teachers and teacher educators, which calls to complicate 
the idea that underlying ideas travel from the official curriculum, through the textbooks, to the 
classroom practice. Teachers and teacher educators represent classroom and teacher education 
practice, each bringing in their particular interest (e.g., Apple, 1992). The design of textbooks by 
teachers and teacher educators is a frequent practice in multiple educational systems across the globe. 
It seems that multiple paths toward the textbook, or even a network is at stake. Therefore, I propose 
to reconsider textbooks as culture. That is at focus in the following section. 

Two views of culture 
Reflecting on research on instructional practices to support equitable learning opportunities in 
mathematics classrooms, Hodge and Cobb (2016) come to identify two views of culture in relation 
to teaching and learning mathematics. The vast majority of studies, Hodge and Cobb argue, is to be 
situated in the Cultural Alignment Orientation. Related studies understand culture as a network of 
relatively stable practices of a bounded community. Research then departs in students’ out of school 
practices to work toward aligned classroom practices that offer meaningful opportunities to learn. 
The Classroom Participation Orientation, on the other hand, considers culture as a network of local 
hybrid practices that people jointly constitute. In this orientation, research tends to originate in 
classroom practices that offer meaningful opportunities and considers adjustments and supports to 
ensure participation of all groups of students. Hodge and Cobb argue that the latter orientation 
considers cultural alignment as one of the several resources for more equitable learning opportunities, 
but not as the default option as is the case for the first orientation, and hence as more promising in 
terms of providing instructional guidance. 

Relating Hodge and Cobb’s identified views of culture to textbook analysis, I believe it is fair to say 
that most of the (cross-cultural) textbook studies are to be situated in a cultural alignment orientation. 
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As illustrated in the previous section, influential studies point to the alignment of textbooks with the 
official curriculum and with classroom practices (Pepin et al., 2013; Pepin & Haggarty, 2001; 
Schmidt et al., 2001; Schmidt et al., 1997; Valverde et al., 2002). Instead, I propose to understand 
textbooks and the culture in textbooks as a locally constituted hybrid. Such a perspective does not a 
priori focus on textbooks in terms of their alignment toward the classroom and the official curriculum, 
but tries to better understand how textbooks embody culture and how actors representing multiple 
social practices – hence the hybrid – are engaged in jointly constituting – hence the local – textbooks 
as cultural artefacts. As Apple wrote about textbooks about 30 years ago, “[Textbooks] are the 
simultaneous results of political, economic, and cultural activities, battles, and compromises. They 
are conceived, designed, and authored by real people with real interests” (Apple, 1992, p. 4). In the 
following section, I will describe an example textbook study that focuses on the social dimension of 
teaching and learning mathematics – for which the cultural alignment orientation falls short in 
explaining where the observed configurations of social relations come from. I will then try to illustrate 
how the notion of textbooks as a locally constituted hybrid one might help to inquire in a more 
powerful way about the origins of these configurations.  

The textbook as a locally constituted hybrid 
Intended configurations of social relations in textbooks from Sweden, USA, and Flanders 

In a related study, I have analyzed textbooks from Sweden, the USA, and Flanders (Van Steenbrugge 
& Remillard, in preparation). We focused on lesson guides, or the section where textbook authors 
explicitly communicate with teachers about the author-intended lessons. Bezemer and Kress (2015) 
describe that writing is no longer the main mode of communication to facilitate students’ engagement 
with textbooks, and we soon experienced that the same applies to the sections that talk explicitly to 
teachers. The selected textbooks from all three educational contexts appeared to communicate 
consistently through written text, layout, and images, which helped to identify particular 
configurations of social relations between the teacher, students, the central artefacts at stake, and the 
mathematical content (See Table 1). 

We started from Rezat and Sträßer’s (2012) tetrahedron model to visualize the social relations 
between teacher, students, and artefact, and their position relative to the mathematical content, but 
further specified the model in three ways. We differentiated between the social relations during lesson 
enactment (blue lines) and lesson preparation (green lines) because lesson guides both communicate 
about the intended lessons and are usually read by teachers during lesson preparation. We also 
specified the central artefacts at stake: student textbook and/or chalkboard during lesson enactment, 
and lesson guide during lesson preparation. Finally, we characterized the relations in terms of agency, 
intimacy, and prominence. Arrows signal who has agency over whom. In some cases, agency was 
shared between two nodes, which we indicated by means of a double-sided arrow. In other cases, 
none of the nodes seemed to have authority over one another, which we indicated by means of a line 
without arrows. Variations of distance between nodes is used to indicate that some social relations 
between nodes were more intimate compared to other nodes. We marked more prominent relations 
from less prominent ones by means of thicker lines. The figures appear to be quite consistent within 
each context, but differ considerably across the three contexts. 
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Table 1: Configured social relations in elementary mathematics textbooks from Flanders, USA, and 
Sweden (from Van Steenbrugge & Remillard, in preparation)

Flanders USA Sweden

Kompas (KP) Math in Focus (MiF) Matte Direkt (MD)

Nieuwe Tal-rijk (NT) Everyday Mathematics (EM) Matte Eldorado (ME)

These representations of the particular privileging of configured social relations relate to particular 
ideas about what it means to be a student learning and a teacher teaching mathematics. These ideas 
seem to differ primarily from context to context, with some more within-context variation in the USA, 
where multiple groups advocate for certain views in relation to teaching and learning mathematics. 
In Flanders, for instance, student access to mathematics seems to be mediated by the teacher and the 
chalkboard. During class, the teacher, ultimately, is the authority of what counts as mathematical 
correctness. This stands in sharp contrast to the particular configuration of social relations in EM, 
from which it seems that mathematical authority is a shared responsibility. One of the aspects that 
differentiates the Swedish textbooks from the others is their configuration of the teacher-related 
relations. The blue lines without arrows between teacher and student, and teacher and textbook 
indicate that the teacher has a responsive, rather than an active role during the lesson. The important 
message here is that the configurations of social relations in textbooks, and the underlying particular 
ideas of what it means to be a mathematics student and teacher, seem to differ across contexts. This 
points at context-specific culturally valued norms as to what it means to teach and learn mathematics. 
That is the starting point for the next section.

Where does the configuration of social relations come from?

The previous section suggests that textbooks from different educational contexts privilige particular 
configurations of social relations, which have roots in underlying meanings of being a student and 
teacher. These differences call to nuance a linear conception as to how culture finds it ways into the 
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classroom and the assumed transmissive role of textbooks in this matter (e.g., Pepin et al., 2013; 
Valverde et al., 2002). Official curricula do not contain such detailed descriptions of social relations 
as the ones represented in Table 1 (Boesen et al., 2014; Valverde et al., 2002). So where do these 
configurations of social relations in textbooks come from? Even if it is likely that the enacted lessons 
differ from the pictures that come out of our analysis (Stein, Remillard, & Smith, 2007), it is worth 
thinking about where the observed cross-cultural differences come from. In discussing that particular 
question, I propose to consider textbooks as a locally constituted practice. Thus, rather than primarily 
understanding textbooks in function of the official curriculum and classroom practice, it is worth 
focusing on the social practice of textbook design in trying to better understand how cultures of 
mathematics teaching and learning are constituted in textbooks.  

From a locally constituted hybrid perspective on textbooks, the observed privileging of configurations 
of social relations represent mathematics education culture amongst the actors involved in textbook 
production. In many cases, textbook authoring includes participation among teachers, teacher 
educators, researchers, and other stakeholders such as the inspectorates. Each brings in a specific 
interest, even if not explicitly named. The textbooks under study are published by commercial 
publishers, which also brings an economic aspect into the picture. Also, families or other influential 
communities such as the labor market practices influence textbook production and adoption (e.g., 
Apple, 1992). The view of textbooks as a locally constituted hybrid helps to uncover potential sources 
other than the official curriculum. Explicitly studying this hybrid and locally constituted nature of 
textbooks therefore seems to have the potential of adding to our understanding of the cultural and 
political significance of textbooks.  

How could an alternative to the predominant view of alignment look like? 
I think that Valero’s (2010) conceptualization of mathematics education as a network of social 
practices is helpful in this regard. Such a conceptualization stresses that the social practices outside 
of the classroom, such as the textbook design practice, are as significant practices of mathematics 
education as the actual classroom practices. Figure 1 is an attempt to capture some of the relevant 
social practices in relation to textbooks and textbook design. There are connections with the official 
curriculum and classroom, but this is not the main flow. There are also connections to other social 
practices such as teacher education, teaching, high stakes testing, mathematics education research, 
and digitalization. These social practices are also connected to one another. High stakes testing, for 
instance, has connections to the official curriculum and the classroom. Digitalization has connections 
to the mathematics education research field, the classroom, and families. As indicated by the dark 
blue lines in Figure 1, the configurations of the social relations, then, can come from a negotiation 
(locally constituted) between teacher educators, teachers, and researchers involved in the design of 
textbooks, where each draws on her/his particular background (the hybrid). Nowadays, and especially 
with the COVID-19 pandemic as a catalysator, digital textbooks and platforms are increasingly 
present in the learning and teaching of mathematics, which also potentially impacts the configurations 
of social relations (e.g., Ruthven, 2018). Furthermore, the constitution of the network and the 
prominence of social practices and connections between these practices can accommodate to the 
particular educational context. In Sweden and the USA, for instance, significant curriculum 
interpretation resides at the individual teacher level and in high stakes testing, respectively (Van 
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Steenbrugge et al., 2019). This makes the official curriculum – teachers – classroom connections 
particular prominent in the Swedish network compared to the official curriculum – high stakes testing 
– classroom connections in the USA (See the orange and red lines in Figure 1). 

 
Figure 1: Textbooks in a network of social practices 

As one can see in Figure 1, the network allows to take distance from one primary form of alignment. 
Rather than considering other factors as potentially influencing alignment, it understands these factors 
as constitutive elements of the network of social practices that relate to textbook design. It also points 
towards understanding textbook studies as a research field on its own, not just as auxiliary to studying 
classroom practices and student performance. 

References 
Apple, M. W. (1992). The text and cultural politics. Educational Researcher, 21(7), 4–19. 

https://doi.org/10.3102/0013189X021007004 

Bezemer, J., & Kress, G. (2015). Multimodality, learning and communication: A social semiotic 
frame. Routledge. 

Boesen, J., Helenius, O., Bergqvist, E., Bergqvist, T., Lithner, J., Palm, T., & Palmberg, B. (2014). 
Developing mathematical competence: From the intended to the enacted curriculum. The Journal 
of Mathematical Behavior, 33, 72–87. https://doi.org/10.1016/j.jmathb.2013.10.001 

Fan, L., Zhu, Y., & Miao, Z. (2013). Textbook research in mathematics education: Development 
status and directions. ZDM–The International Journal on Mathematics Education, 45(5), 633–
646. https://doi.org/10.1007/s11858-013-0539-x 

Herbel-Eisenmann, B. A. (2007). From intended curriculum to written curriculum: Examining the" 
voice" of a mathematics textbook. Journal for Research in Mathematics Education, 344–369. 
https://doi.org/10.2307/30034878 

Hodge, L. L., & Cobb, P. (2016). Two views of culture and their implications for mathematics 
teaching and learning. Urban Education, 54(6), 860–884. 
https://doi.org/10.1177/0042085916641173 

Textbooks
& design

Classroom

Official
curriculum

Teachers

Teacher
education

Policy 
making
system

Math ed 
research

Digitalization

Families

Schools

Labor 
market

Publishers

High
stakes 
testing

Proceedings of CERME12 4056



 

 

Love, E., & Pimm, D. (1996). 'This is so': a text on texts. In A. J. Bishop, K. Clements, C. Keitel, J. 
Kilpatrick, & C. Laborde (Eds.), International Handbook of Mathematics Education. Vol. 1 (pp. 
371–409). Kluwer.  

Pepin, B., Gueudet, G., & Trouche, L. (2013). Investigating textbooks as crucial interfaces between 
culture, policy and teacher curricular practice: Two contrasted case studies in France and Norway. 
ZDM–The International Journal on Mathematics Education, 45(5), 685–698. 
https://doi.org/10.1007/s11858-013-0526-2 

Pepin, B., & Haggarty, L. (2001). Mathematics textbooks and their use in English, French, and 
German classrooms: a way to understand teaching and learning cultures. ZDM–The International 
Journal on Mathematics Education, 33(5), 158–175. https://doi.org/10.1007/BF02656616 

Remillard, J. T., & Heck, D. J. (2014). Conceptualizing the curriculum enactment process in 
mathematics education. ZDM–The International Journal on Mathematics Education, 46(5), 705–
718. https://doi.org/10.1007/s11858-014-0600-4 

Rezat, S., & Sträßer, R. (2012). From the didactical triangle to the socio-didactical tetrahedron: 
artifacts as fundamental constituents of the didactical situation. ZDM–The International Journal 
on Mathematics Education, 44(5), 641–651. https://doi.org/10.1007/s11858-012-0448-4 

Ruthven, K. (2018). Instructional activity and student interaction with digital resources. In L. Fan, L. 
Trouche, S. Qi, S. Rezat, & J. Visnovska (Eds.), Research on mathematics textbooks and teachers’ 
resources: Advances and issues (pp. 261–275). Springer. 

Schmidt, W. H., McKnight, C. C., Houang, R. T., Wang, H. C., Wiley, D. E., Cogan, L., & Wolfe, 
R. (2001). Why schools matter: Using TIMSS to investigate curriculum and learning. Jossey-Bass. 

Schmidt, W. H., McKnight, C. C., Valverde, G. A., Houang, R. T., & Wiley, D. E. (1997). Many 
visions, many aims – Volume 1. Kluwer Academic Publishers. 

Valero, P. (2010). Mathematics education as a network of social practices. In V. Durand-Guerrier, S. 
Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the sixth Congress Of The European 
Society for Research in Mathematics Education (pp. LIV–LXXX). Institut National de Recherche 
Pédagogique. 

Valverde, G. A., Bianchi, L. J., Wolfe, R. G., Schmidt, W. H., & Houang, R. T. (2002). According to 
the book: Using TIMSS to investigate the translation of policy into practice through the world of 
textbooks. Kluwer. 

Van Steenbrugge, H., Krzywacki, H., Remillard, J. T., Koljonen, T., Machalow, R., & Hemmi, K. 
(2019). A cross-cultural study of curriculum systems: Mathematics curriculum reform in the U.S., 
Finland, Sweden, and Flanders. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis 
(Eds.), The Eleventh Congress of the European Society for Research in Mathematics Education 
(pp. 2062–2072). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME 

 

Proceedings of CERME12 4057



 

 

Problematizing the notion of problem posing expertise 
Ling Zhang1, 2, Andreas J. Stylianides2 and Gabriel J. Stylianides3 

1Southwest University, China; lz442@cam.ac.uk 
2University of Cambridge, United Kingdom; as899@cam.ac.uk 

3University of Oxford, United Kingdom; gabriel.stylianides@education.ox.ac.uk 
Problem posing, which we view as a form of task design performed by the learner, is an important 
mathematical activity. Several studies have investigated differences between expert and novice 
problem posers, but no clear definition of problem posing expertise has generally been agreed upon. 
In a study involving 66 masters and 60 sixth-grade students we identified expert problem posers based 
on their performance on problem posing tasks (with or without numbers/context) rather than as in 
prior research presupposing who expert problem posers were based on their mathematical 
experience or backgrounds. The results showed that masters students had a significantly lower 
proportion of the Top-level (expert) problem posers and a significantly higher proportion of the 
Bottom-level (novice) problem posers than sixth graders, demonstrating that presupposing problem 
posing expertise based on mathematical experience or backgrounds would have been misleading.  

Keywords: Mathematical problem posing, experts, novices, task design. 

Introduction 
Problem posing has recently attracted much attention among researchers and educators, including 
curriculum standards (e.g., NCTM, 2000). As a form of a curricular opportunity (embedded in 
curriculum resources) in which teachers and students can engage, problem posing is an important 
mathematical activity like the well-known problem solving. Several types of problem posing tasks 
have been used in research and teaching practice (Lee, 2021). The aim of having problem posing 
tasks in curriculum resources could be not only for assessing students’ mathematical understanding 
or mathematical learning, but also for supporting students to become competent problem posers and 
problem solvers (Cai et al., 2015). One research strand in this area views problem posing as a goal of 
mathematics instruction and focuses on how one develops problem posing capacity (Cai & Leikin, 
2020), showing that students and teachers are capable to pose problems (Cai et al., 2015) and that 
training to problem pose is feasible (Cai et al., 2015; Koichu & Kontorovich, 2013). However, little 
attention has been paid thus far to the meaning of problem posing expertise. This is problematic 
because without a good understanding of what constitutes an expert problem poser, efforts to develop 
problem posing capacity among students and teachers are lacking important conceptual foundation. 

In this study, we aimed to identify expert problem posers by examining our participants’ performance 
on problem posing tasks rather than as in prior research presupposing who expert and novice problem 
posers were based on their mathematical experience or backgrounds. Specifically, we addressed the 
following research question: How can we distinguish between expert and novice problem posers 
based on their performance on problem posing tasks, and how do the resulting groups of expert and 
novice problem posers compare with how these groups would normally be defined based on 
participants’ mathematical experience or backgrounds? 
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Theoretical Considerations 
Experts in Mathematical Problem Posing 

Several researchers explored differences between expert and novice problem posers by assuming that 
problem posing expertise was connected to a particular attribute of participants’ mathematical 
experience or backgrounds – such as their problem solving experience (Pelczer & Gamboa, 2009), 
teaching experience (Voica & Pelczer, 2009), or mathematical maturity (Zhang et al, under review) 
– but the results showed that their “expert” problem posers were not always performing better than 
the “novices.” For example, Voica and Pelczer (2009) compared problems posed by pre-service and 
in-service teachers, considering the former group to be novices in problem posing and the latter group 
to be experts. They found that their perceived expert group did not perform better than their perceived 
novice group, presumably because in-service teachers’ pedagogical knowledge and classroom 
experience constrained their views of the problems that could be posed. Also, our prior research 
(Zhang et al, under review) had examined problem posing by comparing mathematically more mature 
students (masters students majoring in pure mathematics or mathematics education) and 
mathematically less mature students (sixth-grade students). The surprising finding that the more 
mature participants did not outperform the less mature participants in problem posing further 
prompted us to problematize the notion of problem posing expertise and its presumed association 
with participants’ prior mathematical experience or backgrounds. 

Kontorovich and his colleagues conducted a series of studies to explore the possible characteristics 
of the problem posers for mathematical competitions, arguing that those who systematically create 
problems for high-level mathematical competitions may be considered as expert problem posers 
(Kontorovich, 2020). While this notion of expertise is still linked to participants’ mathematical 
backgrounds, problem posers for mathematical competitions may be less controversial as an expert 
group than in-service teachers or masters students due to mathematical competitions often being 
reputed as treasures of “elegant,” “intriguing,” and “surprising” problems that reach the students after 
thorough committee discussions (Koichu & Andzans, 2019).  

To conclude, no clear definition has generally been agreed upon for who problem-posing experts are 
though prior studies have provided some useful insights into possible characteristics of these experts. 
The participants of those studies identified as expert problem posers were presupposed to be experts 
based on their prior mathematical experience or backgrounds. Yet this approach to identifying experts 
yielded some surprising findings such as novice problem posers outperforming presumed experts.  

Criteria for Identifying Expert Problem Posers 

Most of the research on problem posing has involved the assessment of the types, quality, and quantity 
of the posed problems, often inferring from these the participants’ problem posing ability. Silver and 
Cai (2005) proposed three criteria that might be selectively applied to most problem-posing tasks 
when used in assessment settings: quantity, originality, and complexity. Several researchers have 
adapted these criteria to assess participants’ problem posing ability (Cai et al., 2020). In what follows, 
we discuss four common criteria used in prior studies for assessing the problems been posed. In the 
study we report herein, we used these criteria to operationally measure problem posing performance 
and thus as criteria for identifying expert problem posers.  
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The first criterion is the number of mathematical problems posed (Leung & Silver, 1997; Silver & 
Cai, 2005). Silver and Cai (1996) found that nearly 30% of the problems posed by middle school 
students were either nonmathematical problems or simply nonproblem statements (even though the 
directions clearly asked for mathematical problems). Crespo and Sinclair (2008) hypothesized that 
students’ difficulties generating mathematical problems might relate to a lack of opportunity to 
explore a problem situation adequately before and during the posing process. Therefore, the number 
of mathematical problems been posed might reflect how adequately the posers explore the problem 
situation. The number of problems posed was also used as a measure of fluency in studies that 
assessed creativity using problem-posing as a test tool (Bicer et al., 2020). The more mathematical 
problems being posed, the more adequately posers might have explored the problem situation and the 
higher their anticipated level of mathematical fluency.  

The second criterion is the number of posed problems that are solvable (Cai et al., 2015; Leung & 
Silver, 1997; Zhang et al., under review). Even though students and teachers were found to be able 
to pose mathematical problems, the posed problems were not always solvable or relevant (Silver & 
Cai, 1996), which suggests that the participants might not have selected enough elements or organized 
adaptive relations to construct the problems. The more solvable mathematical problems being posed, 
the more adaptive elements and relationships posers might have selected to formulate the problems 
or the better their understanding of the problem-posing tasks.  

The third criterion is the complexity of the posed problems. Some research measured this criterion by 
the number of steps for solving the posed problem (Cai et al., 2020; Leung & Silver, 1997). According 
to the concept of problem space proposed by Milinkovic (2015), any problem can be described in 
terms of its context, elements, and the relationships between elements. Zhang et al. (under review) 
considered the sum of relationships and elements in the constructed problem space to reflect the 
complexity of the posed problems. The larger the sum of relationships and elements constructed in 
the problem, the more complicated a problem space has been formulated by the poser.  

The fourth criterion is the clarity of the posed problems. According to NCTM (2000), using 
mathematical vocabulary, notation, and structure to clearly represent ideas, describe relationships, 
and model situations are important for students’ ability to communicate mathematically. Zhang et al. 
(under review) found that nearly a third of the problems posed by students were expressed unclearly 
or partially clearly. The greater the clarity of the posed problem, the better the ability of the poser to 
communicate in problem posing. 

Methodology 
Participants 
The participants were 66 masters students and 60 sixth-graders from 11 classes of a primary school, 
all in China. The masters students were recruited via an advertisement that we posed to call for 
volunteers among masters students majoring in pure mathematics or mathematics education in a 
university among the top 100 Chinese universities. Regarding the sixth-graders, 5 or 6 students from 
each class of the selected school, which was affiliated with the aforementioned university (ranked in 
the top 10 of the local city), volunteered to participate in this study. Each participant signed an 
informed agreement letter prior to the study. The sample was appropriate for our study because, 
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according to the conventional way of defining problem posing expertise based on participants’ 
experience or backgrounds, the former group would be the experts and the latter the novices. Whether 
these expert/novice groups would be confirmed empirically was the subject of the research.  

Data Collection 
The study was conducted in a soundproof and uniform light laboratory with a voice recording. The 
participants were given a description of the research procedure along with brief instructions that they 
were expected to think aloud while completing the Problem-Posing Tasks (PPTs). Then they 
underwent a training phase to get familiar with problem posing via two simple tasks. Two kinds of 
test combination (1A-2B-3A-4B and 1B-2A-3B-4A) were provided on a daily rotating cycle. The 
participants chose their available time to get one of the test combinations, described in Table 1, and 
were tested individually. We considered two types of tasks (with/without number; with/without 
context) since several researchers (English, 1998; Leung & Silver,1997) have predicted that task 
format affects subjects’ problem posing performance. The target tasks were chosen from the PPT-
number test comprising translated versions of tasks used by Leung and Silver (1997), which included 
the task situations of House Purchase and Pool Maintenance, and the PPT-context test comprising 
modified versions of tasks used by Cai et al. (2020), which included the task situations of Driving 
Home and Sporting Goods. No time limits were set on participants’ work with the tasks. 

Table 1: Test items and distribution of participants 

 PPT-number PPT-context 

House Purchase Pool Maintenance Driving Home Sporting Goods 

1A1 1B 2A 2B 3A 3B 4A 4B 

Masters 
Students 

P1=30 P   P P   P 

P2=36  P P   P P  

Sixth 
Graders 

N1=30 P   P P   P 

N2=30  P P   P P  

1Format A in the PPT-number test is the task with numbers, Format B in the PPT-number test is the task without numbers; 
Format A in the PPT-context test is the task with context, Format B in the PPT-context is the task without context. 

Data Analysis 

We re-analyzed the data in our prior research (Zhang et al., under review), guided by our new research 
question. The responses of the 126 participants who completed the PPTs were recorded and coded 
with respect to six criteria as shown in Table 3. These included the four main criteria for identifying 
expert problem posers that we discussed earlier and two further sub-criteria in which “the complexity 
of the posed problems” was divided into “the largest sum of relations” and “the largest sum of 
elements.” 

Principal Components Analysis (PCA) was conducted according to the four main criteria to select 
the Top 15% (19 participants, experts) and the Bottom 15% (19 participants, novices) from the overall 
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sample of 126. We chose 15% so as to be selective but also to have enough students in each group to 
conduct meaningful statistical analyses. For the correlation assumption test, the correlation between 
each index (criterion) ranged from 0.507 to 0.975 (>0.30), which meant that there was a linear 
correlation between each index; the KMO (Kaiser- Meyer- Olkin) value of 0.773 indicated that the 
sampling was adequate (a value between 0.7 and 0.8 was taken to be “middling”); the Bartlett’s test 
of sphericity with an associated p value of <.001 indicated that we could proceed to use PCA to 
analyze our data. The result of total variance explained showed that only the first component had 
eigenvalues over 1.00 (that is, 3.267) and that together they explained 81.669% of the total variability 
in the data. This led us to the conclusion that one factor solution was adequate.  

Results 
Top 15% and Bottom 15% participants’ distribution 

We sorted the participants according to the main factor extracted by PCA, and we selected the top 
15% (19/126) participants and the bottom 15% participants (19/126). The general information of both 
groups is shown in Table 2. Surprisingly, in the Top 15% group nearly 80% of the participants (N=15) 
were sixth graders; only 4 participants were masters students. A Z-Test showed that there is a 
significant difference (at 95% confidence interval) between masters students and sixth graders in the 
Top 15% group. In the Bottom 15% group, nearly 70% of the participants (N=13) were masters 
students; only 6 participants were sixth graders. There is a significant difference (at 80% confidence 
interval) between masters students and sixth graders in the Bottom 15% group. Table 2 also shows 
the distribution of participants in the two categories of tests.  

Table 2: Top 15% and Bottom 15% participants’ distribution 

 Categories of students Categories of tests2  

Master students Six graders Z-Test 1 1A-2B-3A-4B 1B-2A-3B-4A 

Top 15% (total=19) 4 15 2.234(95%) 9 10 

Bottom 15% (total=19) 13 6 1.492(80%) 13 6 
195% (80%) refers to significant difference at 95% (80%) confidence interval (2-tailed). 2Specific information about the 
categories of tests was shown in Table 1. 

Top 15% and Bottom 15% participants’ performance in each of the problem posing criteria 

We selected the top-level and bottom-level students by ranking the combined score on the main 
factor, which was extracted by PCA. However, the top-level students’ performance in each criterion 
was not necessarily better than the bottom-level students’ performance. This made meaningful the 
comparison of the two groups across each criterion separately, which we present in Table 3.  

Regardless of the task format (with or without context/numbers), the results of a multi-factor analysis 
of variance indicated that the mean performance of the Top 15% participants was higher than that of 
the Bottom 15% participants on all criteria. In Table 3 we present the findings for the two PPT-context 
tasks; the findings for the two PPT-number tasks were similar but are not reported here due to space 
constraints. Specifically, for the Driving Home task, the Top 15% participants posed more 
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mathematical problems (F=83.97***, =.712), posed more solvable problems (F=102.4***, =.751), 
posed problems with a larger sum of relationships and elements (more complicated problems) 
(F=63.36***, =.651), and posed more clearly-expressed problems (F=90.28***, =.726).  

Table 3: Top 15% and Bottom 15% participants’ performance on the PPT format with/without context 

Criteria Driving Home Sporting Goods 

With 
context 

Without 
context 

Group 

effect 
With 

context 
Without 
context 

Group 

effect 

Number of math 
problems posed 

Top 15% 7.67(2.9) 5.30(1.7) F=83.97*** 7.70(4.9) 3.11(1.1) F=23.74*** 

Bottom 15% 1.77(0.7) 0.50(0.5) =.712 2.00(0.9) 0.31(0.5) =.411 

Task format effect F=9.70**; =.222  F=12.95**; =.276  

Number of solvable
problems posed 

Top 15% 7.33(2.4) 5.20(1.8) F=102.4*** 5.30(2.3) 3.11(1.1) F=55.97*** 

Bottom 15% 1.69(0.8) 0.17(0.4) =.751 1.33(0.8) 0.23(0.4) =.622 

Task format effect F=12.03**; =.261  F=12.93**; =.276  

Complexity of the 
posed problems 

Top 15% 10.33(1.3) 7.00(0.0) F=63.36*** 10.00(2.4) 7.00(0.0) F=37.18*** 

Bottom 15% 5.23(2.7) 1.17(2.9) =.651 4.83(3.4) 1.62(3.1) =.522 

Task format effect F=28.99***; =.460  F=12.91**; =.275  

 - The largest sum 
of relationships 

Top 15% 3.78(0.4) 2.00(0.0) F=52.53*** 3.00(0.8) 2.00(0.0) F=37.35*** 

Bottom 15% 2.00(1.0) 0.33(0.8) =.607 1.33(1.0) 0.46(0.9) =.524 

Task format effect F=52.53***; =.607  F=12.74**; =.273  

- The largest sum 
of elements 

Top 15% 6.56(0.9) 5.00(0.0) F=62.78*** 7.00(1.6) 5.00(0.0) F=36.96*** 

Bottom 15% 3.38(1.8) 0.83(2.0) =.649 3.50(2.3) 1.15(2.2) =.521 

Task format effect F=19.67***; =.366  F=12.94**; =.276  

Clarity of the 
posed problems 

Top 15% 7.56(2.8) 5.20(1.8) F=90.28*** 7.50(4.6) 3.11(1.1) F=26.45*** 

Bottom 15% 1.77(0.7) 0.17(0.4) =.726 1.83(1.0) 0.23(0.4) =.438 

Task format effect F=12.08**; =.262  F=13.00**; =.277  
1 According to Cohen (1988)’s partial eta squared, 0.01 is considered a small effect, 0.06 is considered a medium effect, 
and 0.14 is considered a large effect. 2 ***p < .001, **p < .01, *p < .05. 

Discussion 
Prior research tended to presuppose problem posing expertise based on participants’ mathematical 
experience or backgrounds (Koichu & Kontorovich, 2013; Kontorovich, 2020; Pelczer & Gamboa, 
2009; Voica & Pelczer, 2000). In this paper, we problematized whether this way of identifying expert 
problem posers is indeed valid. Specifically, we followed a data driven approach to identify expert 
problem posers based on participants’ problem posing performance rather than presupposing who the 
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expert problem posers were based on participants’ prior mathematical experience or backgrounds. 
Had we followed prior practice, we would have considered the masters students to be the experts and 
the sixth graders to be the novices in problem posing. However, our PCA showed that the masters 
students had a significantly lower proportion of Top-level problem posers and a significantly higher 
proportion of Bottom-level problem posers than the sixth graders. This result indicated that it was 
reasonable to identify expert problem posers by their problem posing performance rather than by their 
mathematical experience or backgrounds. Also, we compared the Top-level and Bottom-level groups 
across each of the four criteria used in prior studies for assessing problem posing performance; in 
PCA the 126 participants were ranked by an extracted main factor with a combined score. The fact 
that experts outperformed novices in each theory-driven criterion complements the PCA findings in 
suggesting that the identification of problem posing expertise by the data driven approach as used in 
this study was indeed appropriate.  

From interviews with masters students in our prior study (Zhang et al., under review), we can get 
some insights as to why the masters students as a group did not do as well as one might have expected 
in the problem posing tasks. When asked about what their biggest challenge was when posing the 
problems, the masters students indicated that the cues motivating them to construct new problems 
were those they had seen in their primary school textbook or relevant reading materials. They did not 
attempt to use higher level mathematical knowledge. Also, the masters students were more used to 
working on problem solving tasks rather than problem posing tasks. Conversely, over the last decades 
primary school students have had increasing opportunities to pose problems in their classes. This is 
supported by Cai et al.’s (2017) investigation of the problem posing tasks in Chinese textbooks from 
the 1990s to the 2010s, which found that the number of problem posing tasks significantly increased 
over the years. The aforementioned indicates that participants’ problem posing performance is 
influenced by many factors, and so it is not reasonable to assume in advance that one group of 
participants will be the expert group simply from their level of mathematical knowledge/backgrounds. 
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This paper describes an exploratory case study within a project aiming to develop a novel connected 
classroom technology (CCT) for offering new possibilities for teaching with technologies. It outlines 
a lesson in which three-dimensional coordinates were taught through an online resource created 
based on the SAMR (Substitution, Augmentation, Modification, Redefinition) model and the 
GeoGebra Classroom tool. Moreover, this paper presents findings of our study focusing on the 
interconnections of tangible and digital tools as well as on tasks that offer whole-class activities and 
student interactions. Findings of our study indicate that creating online resources based on the SAMR 
model, collaborative work between developers of tools and task designers could be valuable. In 
addition, when creating online resources offering advanced teaching possibilities, developers of these 
tools and task designers must collaborate and interact with teachers who are using them. 

Keywords: Class Activities, connected classroom technology, digital tools, tangible tools, 
educational resources. 

Introduction 
This research project aims to develop a new, mathematically suited, tool offering novel opportunities 
for mathematics teaching to support teachers as well as to assist students’ learning. Our objective is 
to develop a tool that allows a variety of possible applications in teaching and supporting learning. 
The idea is to use powerful mathematics software and further develop an existing online tool into a 
connected classroom technology (CCT) by implementing new features and functionalities (see 
Zöchbauer & Hohenwarter, 2020; Zöchbauer et al., 2021). The technology, in this case, is GeoGebra 
Classroom, an online tool for teachers’ and students’ devices that are connected online and can be 
used for teachers and students to interact with each other. GeoGebra Classroom can be used for 
interactive teaching approaches in various settings and can be applied to all levels of education. 
Moreover, we have great opportunities to work with developers to adapt this tool based on our 
research findings.  

“Connected classroom technology refers to a networked system of personal computers or handheld 
devices specifically designed to be used in a classroom for interactive teaching and learning” (Irving, 
2006, p. 16). This technology offers a broad range of innovative features such as facilitating 
communication between teachers and students, displaying student responses in real-time, and 
allowing rapid aggregation of student work by teachers (Irving, 2006; Shirley et al., 2011; Wright et 
al., 2018). Furthermore, CCT enables most students to contribute directly to interactive activities and 
to play a more active role in classroom discussions (Shirley et al., 2011; Wright et al., 2018). 
GeoGebra Classroom could be also used in the classroom for formative assessment enabling teachers 
to utilize a wide variety of teaching methods. According to the Organisation for Economic Co-
operation and Development OECD (2005), “formative assessment refers to frequent, interactive 
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assessments of student progress and understanding. Teachers are then able to adjust teaching 
approaches to better meet identified learning needs” (OECD, 2005, p. 13). 

Within this project, we conduct studies in various STEM lessons for evaluating potential uses of 
GeoGebra Classroom for mathematics teaching and learning. This paper describes our most recent 
research, where the first author was using tangible and digital tools in a lesson by conducting an 
exploratory case study with a mixed-methods approach. Moreover, the first author created online 
resources that offer a unique experience thanks to new technology. For creating such online resources 
the SAMR (Substitution, Augmentation, Modification, Redefinition) model of Puentedura (2006) 
was used.  

Regarding the combination of tangible and digital tools for the learning and teaching of mathematics, 
there has been a growing interest, which is also due to a slow evolution of teachers’ practices in 
integrating digital tools in mathematics teaching (Soury-Lavergne, 2021). Nemirovsky and Sinclair 
(2020) “distinguish digital tools as being computer-screen centred and tangible tools as being for 
holding, grabbing, and manual transport” (Nemirovsky & Sinclair, 2020, p. 107). By using digital 
tools as well as tangible tools there is a high potential for bodily engagement (Nemirovsky & Sinclair, 
2020).  

In this case study, the first author used online resources with GeoGebra Classroom as the digital tool 
(see Figure 2) and some Dick System Maths Cubes together with a handmade 3D coordinate system 
(see Figure 1) as tangible tools. For working with the digital resource, all students used an iPad.  

This case study is part of a larger project, where the GeoGebra Classroom tool is evaluated with 
mixed methods, where we utilized the combination of educational research with usability and user 
experience methodologies. In this case study, we focus on the usage of the online resource, which is 
adapted according to the SAMR model. Moreover, we explore the potential of GeoGebra Classroom 
for whole-class activities and collaboration as well as for group discussions. This case study shows 
an intermediate step in the development of the online tool and how to improve it. Consequently, the 
research question for this case study is: How can the GeoGebra Classroom tool be improved to better 
accommodate online educational resources developed based on the SAMR model? 

Theoretical Framework 
For creating online resources, we looked at different models and chose Puentedura's SAMR model 
(Puentedura, 2006). This model provides a tool for integrating digital media into the classroom. 
Moreover, it describes how teaching and learning are transformed using technology and explains how 
the design and processing of tasks in the classroom can be improved (bildung.digital, 2021). The four 
technological levels of use of the SAMR model are Substitution, Augmentation, Modification, and 
Redefinition. 

At the lowest level, Substitution, there is only a transfer of analog worksheets to digital worksheets 
happening without functional improvement. An enhancement or a simple functional improvement of 
the tasks happens in the second level, Augmentation. The first two levels are considered Enhancement 
steps, whereas a Transformation takes place in the last two levels. In level Modification, the tasks 
will be rephrased in a way, so that digital support is essential for solving the tasks and where the 
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advantages of the technology will be made explicit. In the top-level Redefinition, the tasks will be 
created in a way that solving them without technology is not possible (bildung.digital, 2021; 
Puentedura, 2006).  

Setting and Task Design 
The case study involved a class of 7th-grade secondary school students (age 12-13), learning about 
the coordinates in a 3D cartesian coordinate system. We have chosen this group of students as they 
used GeoGebra Classroom and GeoGebra resources before and therefore we do not have to focus on 
learning the system but could focus on the usage. In a classroom setting, all students received the 
Dick System Maths Cubes together with a handmade 3D coordinate system (see Figure 1) as tangible 
tools and an iPad for working with the digital resource (see Figure 2). The students received the 
devices at the beginning of the lesson from the school equipment. In the class, 21 students participated 
in the lesson, but only two-thirds of them filled in the questionnaires afterward. 

 

Figure 1: Dick System Maths Cubes 

 

Figure 2: Online Resource

The resource was created by the first author, and the tasks were formulated according to the SAMR 
model. When creating the tasks, we tried to follow the steps of the SAMR model until we reached 
the top-level Redefinition. For the students, the resource was created in German, a translation can be 
found here: https://www.geogebra.org/m/tuzwbwez.  

Firstly, texts were inserted into the online resource as they would have been on a paper and pencil 
worksheet (level Substitution). Secondly, questions were inserted in the online resource as multiple-
choice questions (MCQ) or open questions (level Augmentation). Then, the 3D object was not 
inserted as an image, but as an object in the GeoGebra 3D applet, where additional features are 
possible. Students can move or rotate the object so that they can observe it from different perspectives. 
Moreover, some sliders are added, where students can move them to show and move a point in the 
coordinate system (level Modification).  

As Redefinition, a whole-class activity was inserted as the last activity in the online resource. For this 
activity, the teacher collected all responses of students reasonably quickly and used them for further 
questions. As a first task, students entered coordinates of a point that was located a) inside the object, 
b) outside the object, or c) on the surface of the object. Afterward, the teacher selects one of the 
answers, reads it aloud and the other students had to choose where this point was located by selecting 
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the correct answer of the MCQ. Before the teacher was choosing another example, all students 
selected “New”. This activity is considered a redefinition because, within seconds, the teacher can 
select random students’ examples and observe students' responses to these new tasks by using the 
MCQ feature. This way the teacher generates a lot of new tasks and can assess students’ 
understanding quickly and conveniently. 

Methods 
To answer the research question, we have selected an exploratory case study. In a case study, a 
temporary phenomenon is being investigated in-depth and in a specific real-world context (Yin, 
2014). In this research, the first author used the current version of the GeoGebra Classroom tool 
together with some tangible tools in a lesson sequence and collected different kinds of data. A mixed-
methods approach was used, and qualitative and quantitative data were analyzed with different 
instruments.  

The whole lesson sequence was video- and audio-recorded with cameras and the teacher’s device was 
screen recorded. Moreover, we automatically collected student products in GeoGebra Classroom and 
additionally the teacher’s reflective notes that were made after the lesson. After the lesson sequence, 
students received an online questionnaire, which consisted of some information about the students, a 
German translation of the System Usability Scale (SUS) by Brooke (1996), some open questions 
about their experience with GeoGebra Classroom, and the German version of the User Experience 
Questionnaire (UEQ) by Laugwitz et al. (2008). The SUS is a simple usability scale giving a global 
view of subjective assessments of usability (Brooke, 1996), whereas the main goal of the UEQ is a 
fast and direct measurement of user experience (Laugwitz et al., 2008). 

In this case study, the Content Structuring Analysis (Mayring, 2014, 2020) was used, where, as a first 
step, the categories were defined. According to Mayring (2020), the qualitative content analysis 
approach is category-based, where the categories refer to aspects within the text and the content 
analysis procedure is research question oriented. Therefore, concerning the research question, we 
defined the categories regarding the four technological levels of use: Substitution, Augmentation, 
Modification, and Redefinition. Content structuring in particular means to “filter out from the material 
specific content dimensions and to summarize this material for each content dimension” (Mayring, 
2014, p. 104), and this was accomplished in the next step. Then, we extracted all coded material for 
each category and summarized it according to Mayring (2014). In each category, all issues are 
considered, where the usage of GeoGebra Classroom with the resource did not work as expected or 
where obstacles or interruptions happened during the lesson. Moreover, we collected all issues, where 
an improvement, either from the teacher or the online resource could be made. 

Results 
In the first category (1) Substitution, all issues are summarized that are referring to the transfer of 
analog worksheets to online resources only. In the beginning, students needed some minutes to access 
the online resource and asked three times in total for the link, although it was presented with the QR 
code on the projector screen above the board in the classroom. Even if the teacher saves time for 
printing and copying the worksheets in advance, during the lesson, it took nearly five minutes of the 
30 minutes lesson sequence to hand out all the other things like iPad, cubes, and coordinate systems. 
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One thing that was mentioned by students in the questionnaire three times and also seven times during 
the lesson, was that there were some lags during the lesson caused by the usage of the GeoGebra 
Classroom tool. Additionally, in the recorded video and teachers’ reflective notes, it was shown that 
not all students used tangible tools for solving the given tasks. Some of them only worked with digital 
tools and not with tangible ones. 

Category (2) Augmentation summarizes all issues, where a functional improvement was visible. The 
teacher could observe in real-time all responses of the students and check several times on the 
dashboard if the students finished the task on the online resource before discussing it. But during the 
work with the MCQ, some issues occurred. When discussing the results of the MCQ, the teacher 
never knew if all students answered this question when opening the chart with all students’ responses. 
Although the teacher could observe in real-time all changes of the selected answers, and see which 
one has selected which option, there was no information if every student had already answered the 
question. In the first attempt, the teacher counts all numbers that were shown, but if one student 
selected two possible solutions, then this method did not work. One thing that worked well was that 
the teacher showed the different notations of the coordinates (see Figure 3) and explained to them the 
correct mathematical notation of coordinates. 

 

Figure 3: Example of Student Responses regarding Coordinates Notation 

All issues regarding the inserted GeoGebra 3D applet (tasks with a significant redesign) are collected 
in the category (3) Modification. The online resource that was used in this lesson, was initially created 
to be used on a computer with the mouse, but, during the lesson, the students worked with iPads. 
Therefore, additional hints of using the GeoGebra 3D applet without a mouse would have been 
helpful. For example, in some cases, the object rotated all the time and students did not know how to 
stop it. The teacher was interrupted several times to help the kids with this problem. Another issue 
that occurred was that students could accidentally drag some of the cubes’ edges in the 3D applet and 
therefore change the object dramatically. It was not possible to reset the object to the original one, as 
the reset button was not available for the 3D view, and refreshing the page did not help either. In this 
case, these students had to leave GeoGebra Classroom and the online resource and rejoin as new 
users. Although their work was saved on the teacher dashboard, the students could not access their 
previous work anymore.  

The last category (4) Redefinition shows all issues regarding the whole-class activity, a previously 
inconceivable task. Nevertheless, for the work with the whole-class activity, where several rounds 
were played, the teacher requested in the reflective notes to just reset all the MCQ solutions instead 
of choosing the fourth answer “NEW” and to get a notification, when or if all students answered the 
MCQ. Because during this short whole-class activity it always took some time, until all students 
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switched from their answer to “NEW” to start with the new example. Moreover, during orchestrating 
the discussion, the teacher was interrupted two times to help students with technical issues.  

The results of the SUS and UEQ will be compared within this project and evaluated in the next phase 
of the project. Furthermore, the analysis of the relation between the SUS and UEQ data, and the 
qualitative lesson observation is still in progress and will be presented later. 

Discussion 
Sinclair and Robutti (2020) describe that the use of digital technology has the two main functions 
supporting organizing students' work and supporting new ways of doing and representing 
mathematics. In our study, it was shown that the GeoGebra Classroom tool has the potential to be 
seen as supporting both functions, whereas in both cases an improvement is necessary.  

This case study aimed at investigating how the GeoGebra Classroom tool can be used for online 
education resources based on the SAMR model of Puentedura (2006). As it was presented in the 
results section, there are currently several issues that need to be addressed. To answer the research 
question, we came up with ample amounts of suggestions on how the GeoGebra Classroom tool can 
be improved to better accommodate online educational resources developed with the SAMR model.  

First, sharing the resource with the students should be made easier and faster. The lags which were 
also mentioned in the questionnaire by the students should be fixed. Nevertheless, it is not clear 
whether this problem is caused by the GeoGebra Classroom tool itself, the WI-FI connection in the 
school, or the devices that the students used. 

As it was mentioned by Shirley et al. (2011) and Wright et al. (2018), students play a more active 
role in classroom discussions and the technology enables most students to contribute directly to these 
interactive activities, such phenomena were also shown during the lesson. Students worked with the 
online resource and participated actively in the last activity, the whole-class activity. However, when 
working with the MCQ, it would be great to have an overview of how many students just answered 
an MCQ instead of always going back to the overview page or counting them. If this was made 
possible, the teacher could foster students to play even a more active role in the whole-class activity 
and could easily assess students’ understanding quickly. Moreover, a reset button for the MCQ would 
be helpful when asking a lot of similar questions with the same answer options. Furthermore, in some 
cases, the option to only allow one possible choice of the MCQ would be helpful. 

Besides, there occurred even more issues during the lesson sequence, that are not due to the new tool, 
but to the creation of the online resource. Thus, before further evaluating the tool, the online resource 
needs to be enhanced as well. Regarding the 3D applet, editors must always ascertain that all objects 
are fixed and cannot be dragged by students accidentally. Moreover, a reset button for every view in 
the GeoGebra applet should be inserted or activated. Furthermore, teachers need to tell students in 
advance how various features work, such as the rotating feature, and how the students can stop the 
rotation. Therefore, maybe some additional hints of using the 3D applet would have been helpful for 
the students and to avoid interruptions. Hence, it was shown that the Transformation levels 
Modification and Redefinition were not completely fulfilled in this online resource. Some students 
could not benefit from the 3D object, as there occurred several problems and therefore the 3D applet 
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with the sliders was useless and the resource did not reach the Modification level. To have an online 
resource, where all stages of the SAMR model are fulfilled, the resource and the system need to be 
further developed. Moreover, teachers as well need some guidance to work with similar classroom 
activity tasks.  

Additionally, if teachers want students to work with a combination of digital and tangible tools, they 
should make that connection clearer. Only handing out tangible tools and just giving oral tasks is not 
enough. Teachers could present this assignment as the first task on the online resources to advise 
them to build the given object by themselves or verbally repeat this several times and check again if 
really all students use these tangible tools. Another idea could be to use the Pause button of GeoGebra 
Classroom to interrupt the work of students. When activating the Pause feature, students cannot 
continue working on their tasks and the teacher can get the students’ attention and give them 
important information or additional explanations. 

This case study is part of a bigger project and the results of the SUS and UEQ will be compared 
within this project and evaluated. Once the tool is further developed, the research will be repeated 
with another case study in a similar setting, but with an enhanced tool and online resource. As the 
preliminary findings already show, the user experience of the tool is also dependent on the creation 
and the design of the tasks in online resources.  

To sum up, tasks designers, developers, and teachers should be aware of several issues related to 
educational online resources that are in the Transformation level as well as in the Enhancement level 
of the SAMR model of Puentedura (2006). As we can learn from this case study, when creating online 
resources according to the SAMR model, there are more collaborators than the teacher involved. To 
have online resources that could offer new possibilities of teaching, developers of new tools and task 
designers need to work together and with the help of teachers, who are in the classrooms every day 
and can observe and confirm if the developments are successful.  
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This introduction offers an overview of the eighteen contributions (15 papers and three posters) to 
the TWG23 at CERME12. The three thematic discussions that took place in this Thematic Working 
Group are addressed, namely: the role of change, matters of scaling, and the conception of 
stakeholders.
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Introduction
The 12th Congress of the European Society for Research in Mathematics Education (CERME12) was
first postponed and then held virtually, in February 2-5 2022, due to the COVID-19 pandemic. Before 
the conference, a virtual pre-conference event was organized in February 2021. This event included 
two discussion sessions dedicated to Thematic Working Group activities, and particularly to planning 
the activity of the Thematic Working Group 23 (TWG23) “Implementation of research findings in 
mathematics education”. This introductory report gives an overview of the TWG23 at CERME12.

Contributions to the TWG23 at CERME12
The TWG23 at CERME12 was led by Mario Sánchez Aguilar, Boris Koichu and Morten Misfeldt, 
along with Rikke Maagaard Gregersen (until August 2021) and Linda Marie Ahl (from September 
2021). The TWG23 received 18 contributions consisting of 15 papers and three posters. The authors 
of the contributions came from Austria, Denmark, Finland, Greece, Israel, Italy, Luxembourg, 
Mexico, Norway, Sweden, and the UK. The contributions were organized into thematic categories:

Implementation of problem-solving and problem-posing approaches
Implementation of teaching models and teachers’ perspectives on implementation
Conditions for sustainable implementations
Diagnostics tasks, instructional sequences, and curriculum design
Implementation of programming, computational thinking, and other digital technologies

Due to the overarching nature of the poster by Konrad Krainer, it was selected to be the first 
contribution to be presented in the TWG23. This poster presentation served to set the scene in the 
group by means of providing the TWG23 participants with conceptual categories (technical 
rationality, reflective rationality, and societal rationality) that were then often referred to during the 
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conference for identifying and contrasting different approaches to the implementation of innovations 
and implementability of research.

The first thematic category “Implementation of problem-solving and problem-posing approaches” 
included contributions providing methodological and theoretical tools for the implementation of
mathematical problem-solving and problem-posing approaches. The paper by Nafsika Patsiala and 
Ioannis Papadopoulos presented an instrument to record and examine whether students develop —
through their experiences with problem-posing — the habit of mind named “seeking and using 
structure”. The paper by Jason Cooper and Boris Koichu introduced the notion of “problem-solving 
implementation chain” for analyzing the evolution of a problem-solving activity as it passes from the 
proponents to teachers and finally to students.

The second thematic category grouped two types of contributions. One type of contribution consisted 
of the studies that addressed the implementation of specific teaching approaches. This was the case 
of the research by Morten Blomhøj and collaborators, who introduced a three-phased didactical model 
to facilitate the implementation of an inquiry-based approach to mathematics teaching. Another 
research in this group of contributions was presented by Ola Helenius, who offered a theoretical
discussion on large-scale implementation of a research-based teaching model for elementary school 
arithmetic. The other type of contributions within this category included studies focusing on teachers’ 
actions and perspectives on implementation processes. This focus was evident in the study by Maria 
Kirstine Østergaard and Uffe Thomas Jankvist, who used theoretical constructs from implementation 
research (IR) to identify elements of a mathematics teacher’s practice and thereby identified factors 
that seemed to influence the implementation of teaching units aimed at fostering students’ reflections 
on the nature of mathematics as a discipline. Other papers included in this category were by Åsmund 
Lillevik Gjære, who examined one Norwegian teacher’s enactment of an innovative system for 
mathematics teaching called developmental education in mathematics; and by Alessandra Boscolo,
who reported the perspective of teachers about the implementation of active, bodily experienced 
mathematics learning activities.

The contributions grouped in the third thematic category brought to the fore the discussion of the 
sustainability of the implementation of innovations. The paper by Johan Prytz and colleagues paid 
particular attention to the issue of sustainability of an innovation in mathematics education, and the 
potential role of textbooks in sustaining the innovation. Another contribution within this category was 
the work presented by Mario Sánchez Aguilar and Apolo Castaneda, who pointed out the importance 
of distinguishing between politics of enactment and implementation as the first step in integrating the 
analysis of political sustainability into IR.

In the fourth category, a group of contributions addressed issues of the implementation of diagnostics 
tasks, instructional sequences, and curriculum design. One contribution included in this category was 
the work presented by Morten Elkjær and Jeremy Hodgen. These scholars formulated an 
implementation process model for designing and implementing tasks for formative feedback in an 
online learning environment. Another contribution in this category was the literature review 
developed by Linda Marie Ahl and colleagues. This review dealt with the implementation of 
instructional sequences aimed to enhance students’ learning of mathematical concepts or 
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competencies. The review identified which competencies are targeted in the chosen sample of studies 
and what characterizes the implementation of the instructional sequences. Also included in this 
category was the contribution of Ellen Jameson and collaborators, who pointed out challenges to 
implementing mathematics education research through the processes and products of curriculum 
design. The work reported by Tuula Koljonen and colleagues examined the feasibility of using the 
Documentational Approach to Didactics to gauge the fidelity and characteristics of teachers’ 
implementation of scripted teaching sequences for the teaching of arithmetic in primary school.

The fifth category included contributions focused on the implementation of digital technologies, 
mainly those related to computer programming. One case is the work by Raimundo Elicer and 
collaborators, who addressed the role of educational task design in implementation research. In 
collaboration with a 4th grade school teacher, the authors designed a geometric task from a 
hypothetical learning trajectory that required students to draw on their knowledge of mathematics 
and Programming and Computational Thinking (PCT). Another presentation was based on the paper 
by Andreas Lindenskov Tamborg and colleagues, who reported on the development of a survey tool 
to investigate how PCT is implemented in Denmark, Sweden, and England. Within this category was
also the poster called “Comparing the implementation of programming and computational thinking 
in Denmark, Sweden and England” by Morten Misfeldt and collaborators (this poster was one of 
three winners of the first ever ERME Poster Award). Finally, another poster included in this category 
was by Ben Pierre Haas and collaborators, where they gave an overview of how technologies such as 
augmented reality, 3D printing, and tutoring systems could be employed by different users for 
teaching and learning STEAM-based educational ecosystems.

Thematic discussions
The TWG23 program included three thematic discussions. The themes were selected on the basis of 
previous discussions that had emerged as central for IR. Namely, they had been identified based on 
the papers published in the special issue on IR of ZDM – Mathematics Education (Koichu et al., 
2021) as well as based on the papers published in the first two issues of Implementation and 
Replication Studies in Mathematics Education (IRME).

The role of change

The first theme was “intended change”. The background for this theme was that it has proved difficult 
to measure the success of implementing innovations. For instance, are we reaching the intended 
change in a given implementation? And how can this question be addressed? The question for the 
first thematic discussion was:

How can we work with articulating and evaluating intended change? What are the pros and cons 
in relation to constructions such as program theory (theory of change) and realistic evaluation?

Matters of scaling

Large-scale implementations are complex endeavors, often intending to reach a large number of 
classrooms. If an idea is proven to work well in a certain setting, we are interested in disseminating 
it into other settings. As phrased by Artigue (2021, p. 22): “...implementation research, even if it can 
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take advantage of studies of limited scope, must be able to meet, as a genre, the scaling-up challenge”. 
The question guiding the second thematic discussion was:

What are the possible roles of small-scale vs. large-scale studies in implementation research? For 
example, in relation to different phases such as planning, testing, enacting, and evaluating.

The conception of stakeholders

No large-scale implementation can be successful without the scaffolding of stakeholders at different 
levels. Krainer (2021, p. 1175) asked: “Who are the relevant stakeholders whose voices should be 
heard when discussing implementation? What is the role of policymakers, administration experts, 
researchers, and practitioners with regard to defining and solving problems that occur in practice?” 
With insight into the absolute necessity of having a strategy for working with stakeholders, the theme 
for the third thematic discussion was:

How do we work with stakeholders? This includes conceptualizing their roles, designing/framing 
their participation, and evaluating the impact of their involvement in relation to three levels: 
administration/policymakers, researchers, and practitioners.

Concluding remarks
Concerning “change”, the TWG23 participants agreed that the tension between intended change and 
achieved change in an implementation project is a delicate question of interest for our research field. 
As for “scale” and scaling, the participants agreed on the need for both small-scale and large-scale 
studies in mathematics education IR. Moreover, it was clear that there is a need for further discussions 
on the conception and definition of “stakeholders”. The overall outcome of the TWG23 thematic 
discussions was that none of the three themes addressed can be fully explored in isolation from the 
others.

Future research directions emerging from the TWG23 discussions at CERME12 are the following: 
we need to discuss how a theory of change can be used to design, understand and evaluate 
implementations. It is necessary to further explore how small-scale and large-scale studies can 
provide the relevant information for different parts of an implementation process. There is a need for 
progressing our knowledge on how the concept of stakeholders can be used to refine different types 
of analysis of implementation projects. These discussions will continue at CERME13 in Budapest in 
2023, and also on the pages of IRME.

References
Artigue, M. (2021). Implementation studies in mathematics education: What theoretical resources? 

Implementation and Replication Studies in Mathematics Education, 1(1), 21–52. 
https://doi.org/10.1163/26670127-01010002

Koichu, B., Aguilar, M. S., & Misfeldt, M. (Eds.). (2021). Implementation and implementability of 
mathematics education research [Special issue]. ZDM – Mathematics Education, 53(5).

Krainer, K. (2021). Implementation as interaction of research, practice, and policy. Considerations 
from the Austrian initiative IMST. ZDM – Mathematics Education, 53(5), 1175–1187. 
https://doi.org/10.1007/s11858-021-01300-y

Proceedings of CERME12 4078



 

 

Political challenges for the implementation of research knowledge as 
part of educational reforms and mathematics textbooks 

Mario Sánchez Aguilar and Apolo Castaneda 

Instituto Politécnico Nacional, CICATA Legaria, Mexico; mosanchez@ipn.mx; acastane@ipn.mx 

 

This paper reports an exploratory study of political factors that may influence the implementation of 
research knowledge in the formulation of educational reforms and mathematics textbooks in Mexico. 
The study is based on the analysis of an in-depth interview with a key informant, who has extensive 
experience as a textbook author and as an advisor in the Ministry of Education of Mexico. Two 
instances are identified in which there is an effort to implement research knowledge from the field of 
mathematics education in the study programs or the mathematics textbooks. The factors that appear 
to have hindered the implementation of such research knowledge are also identified. 
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Introduction 

The implementation of any educational innovation is shaped by political factors. There are studies in 
the field of mathematics education that illustrate aspects of the interaction between policy and the 
implementation of innovations in mathematics instruction (Krainer, 2021; Prytz, 2021). These studies 
highlight the importance of having a better understanding of the political factors that influence the 
implementation of innovations in mathematics education. Lester (2018) notes that politics is centrally 
important to implementation for at least two reasons: First, it creates the legal authority, funding, and 
other capacities that are needed to implement a program effectively. Second, politics does not stop 
when a law has been enacted. It continues throughout the implementation process.  

The importance of recognizing the political in implementation research has been pointed out by some 
educational researchers. McDonnell and Weatherford (2016) mention that there is little evidence in 
educational research about the political dynamics of implementation. However, it is also 
acknowledged that a problem with this empirical focus is that much of the political action takes place 
far from the public eye, making its analysis complicated. Thus, the study of the political factors that 
may shape the implementation of educational innovations tends to be elusive. 

This paper reports on an exploratory study that focuses on identifying political factors that have the 
potential to shape the content of educational reforms, in particular the content of mathematics 
textbooks that are officially authorized for use in the lower secondary education system in Mexico. 
This study is based on the analysis of an interview with an experienced mathematics education 
researcher, who has extensive experience as a mathematics textbook author but also has an academic 
advisor to the Ministry of Education of Mexico (in the following called the ministry). 

Proceedings of CERME12 4079



 

 

Background and study aim 

One of the main concerns of the TWG23 has been: how can we bring into practice the accumulated 
research knowledge produced within the field of mathematics education? (Jankvist et al., 2017). 
Addressing this concern implies acknowledging the existence of factors that influence the enactment 
of any educational innovation, but it also entails recognizing that some of these factors may be 
political in nature. The studies by Krainer (2021) and Prytz (2021) illustrate aspects of the intricate 
interrelationship between the implementation of innovations and policy.  

Krainer (2021) refers to the IMST (Innovations in Mathematics and Science Teaching), which is a 
project triggered by Austria’s modest performance in the TIMSS advanced mathematics and physics 
achievement test of 1995, and with the aim of fostering innovations and improving teaching and 
learning at secondary schools in Austria. Through the analysis of this project Krainer asserts that in 
the implementation of large initiatives such as the IMST project “policy, research, and practice need 
to be regarded as influential and closely interrelated communities regarding implementation.” (2021, 
p. 1185, emphasis in the original). In turn, Prytz’s (2021) historical investigation provides evidence 
on how the role of researchers and the procedures that they followed for preparing three Swedish 
major development projects in mathematics education—the New Math project (1960–1975), the 
PUMP project (1970–1980), and the Boost for Mathematics project in (2012–2016)—, co-varied with 
the shift from centralization to decentralization that happened gradually in school governance policy 
from the mid-1970s to the 2010s. 

The study reported in this paper addresses TWG23’s expressed concern: ‘how can we bring into 
practice the accumulated research knowledge produced within the field of mathematics education?’, 
but placing special emphasis on the political factors that may influence the implementation of such 
research knowledge. Thus, the aim of this research study is to identify possible political factors that 
influence the implementation of research knowledge produced within the field of mathematics 
education, as manifested in educational reforms and mathematics textbooks in Mexico. 

The empirical data for this study consists of an in-depth interview with a mathematics education 
researcher with a history of collaboration with the ministry as a textbook author and advisor. To make 
sense of the information contained in the informant’s narration, some notions related to the politics 
of implementation were used. These notions are introduced in the following section. 

Conceptual framework 

The Oxford Advanced Learner’s Dictionary define politics as “the activities involved in getting and 
using power in public life, and being able to influence decisions that affect a country or a society”. 
This definition conforms to the conception of ‘politics’ used in this study. However, we are aware of 
the existence of early efforts to formulate a notion of ‘implementation politics’: 

Implementation politics is, I believe, a special kind of politics. It is a form of politics in which the 
very existence of an already defined policy mandate, legally and legitimately authorized in some 
prior political process, affects the strategy and tactics of the struggle. (Bardach, 1977, p. 37) 

Political scientists such as the previously cited Eugene Bardach (1977) and Pressman and Wildavsky 
(1973) are pioneers in the study of implementation as part of policy processes. In the field of 
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educational research, McDonnell and Weatherford (2016) take these early works as a reference to 
argue that politics permeates the implementation process, but they also warn about the importance of 
distinguishing between the politics of enactment and the politics of implementation, as a first step in 
integrating the analysis of political sustainability into implementation research.

The politics of enactment refer to politics that come into play during the process in which a policy or 
reform is configured and becomes official. The politics of implementation refer to the process of 
translating a policy or reform into educational practice. McDonnell and Weatherford (2016) pinpoint
three cross-sectional characteristics to identify political factors “that influence whether a policy 
option gets on decision makers’ agendas and is eventually enacted” (p. 235), namely: (1) the time 
frames and (2) the decision venues for policy design and enactment as compared with those for 
implementation; and (3) the interest-based coalitions active during each phase. Table 1 shows a 
comparison of how these three characteristics can be manifested in the politics of enactment and in 
the politics of implementation.

Table 1: Comparison of how the time frame, decision venues and interest-based coalitions can be 

manifested in the politics of enactment and in the politics of implementation. Taken from McDonnell 

and Weatherford (2016, p. 235)

The notions contained in this section were used to give meaning and structure to the narration 
provided by the key informant who participated in this exploratory study. The characteristics of this 
key informant and other components of the research method are discussed in more detail in the next 
section.

Method

The exploratory research reported in this manuscript uses as source of information an in-depth 
interview with a key informant with extensive experience as an author of mathematics textbooks and 
as an educational advisor. In the following sections we provide details about this key informant and 
the interview conducted.
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The key informant 

Key informant refers to the person with whom an interview about a particular organization, social 
program, problem, or interest group is conducted. According to Fetterman (2008), key informants 
“are individuals who are articulate and knowledgeable about their community. They are often cultural 
brokers straddling two cultures” (p. 477). The importance of brokers in the development of national 
mathematics curricula has been acknowledged, as they are individuals who “act as conduits for 
introducing elements of one practice [research] into another [mathematics teaching]” (Potari et al., 
2019). They are insiders that typically provide information through in-depth interviews and informal 
conversation, and their experience is important to assess their quality as a source of information. 

The key informant participating in this study is a broker. He is an experienced mathematics education 
researcher who has 20 years of experience as a mathematics textbook author. He has also been part 
of disciplinary commissions invited by the ministry, which provide advice on the disciplinary content 
that should be included in the national educational reforms and the study programs. For 36 years he 
has held a researcher position in a mathematics education research department in Mexico City. The 
key informant was emphatic in clarifying that he knows first-hand most of the information provided 
in the interview, however, he also acknowledges that there is part of the information that he knows 
second-hand through third parties directly involved in the process. 

The interview and its analysis 

As mentioned before, an in-depth interview was used as a research instrument for this study. It was 
carried out on September 3, 2021 via Zoom, and lasted 1 hour and 10 minutes. The two authors of 
this paper participated in the interview. There was no script for the interview, but rather an informal 
chat between the three people involved. Before starting the interview, an attempt was made to 
communicate to the informant the purpose and meaning of the research study. The interview was 
recorded for later analysis. 

A tape-based analysis (Onwuegbuzie et al., 2009) was applied to the interview recording. Here the 
researchers first became familiar with the data—by listening to the interview repeatedly—in order to 
identify the parts of the interview that provide information about the political factors that may 
influence the implementation of research knowledge produced within the field of mathematics 
education in mathematics textbooks. This procedure was applied independently by each of the authors 
of the study. Subsequently, a meeting was organized between the researchers to exchange their views 
on which moments of the interview provided relevant information for the study. These key moments 
of the interview were identified and agreed upon through a discussion among the researchers. The 
results of this analysis are presented in the next section. 

Results 

The interview with the key informant was rich in information. Through the analysis of his account, it 
was possible to identify a structure that interrelates different political actors involved in the design of 
the study programs for primary and lower secondary education in Mexico, which are official 
documents from which the mathematics textbooks are derived. The analysis of the interview also 
allowed us to identify two instances in which there is an effort to implement research knowledge from 
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the field of mathematics education in the study programs or the mathematics textbooks. The factors 
that appear to have hindered the implementation of such research knowledge were also identified. 

Next, the structure that interrelates different political actors involved in the design of the study 
programs for secondary education in Mexico is presented, which will be used as a reference to 
illustrate the two instances in which there is an unsuccessful effort to implement research knowledge 
from the field of mathematics education. 

The political structure underlying the development and establishment of study programs 

When planning an educational reform, the ministry is in charge of producing the study programs for 
secondary education. Study programs are guiding documents aimed mainly at teachers from all over 
Mexico, which contain the topics that must be covered for each discipline—including mathematics—
, as well as the teaching approaches that must be used to communicate them. These study programs 
are the foundation for developing the textbooks. For the ministry to approve the national use of a 
mathematics textbook, it must adhere to the contents and procedures expressed in the mathematics 
study program. 

According to the key informant, there are different groups of stakeholders involved in the 
configuration of the study programs. There are disciplinary commissions, which are groups of 
specialists from different areas of knowledge who act as counselors to the ministry about the contents 
and approaches that should be reflected in the study programs. There are also the teachers’ 
associations, who through workshops and consultation forums obtain previews of the potential 
contents of the study programs, and express their opinions to the ministry about them. In turn, the 
ministry considers these opinions to define the study programs. 

When the study programs are approved they are published and made available to the public1. It is then 
that textbook writers—sponsored by publishing houses—can read, interpret and translate the ideas of 
the study programs into their textbooks. These textbooks must be evaluated and approved by expert 
evaluators, which are scholars hired by the ministry to verify that the textbooks adhere to the 
authorized study programs.  

Unsuccessful efforts to implement research knowledge—and hindering factors 

The analysis of the interview led to the identification of two instances where there are unsuccessful 
efforts to implement research knowledge from the field of mathematics education. These instances 
are named: (1) it is important to include probability as part of the mathematics education of primary 
school students, and (2) it is necessary to distinguish between a ‘problem’ and an ‘exercise’ when 
adopting a problem-solving approach. The following sections illustrate what each of these instances 
consisted of, and what are the factors that seem to hinder their materialization. 

(1) It is important to include probability as part of the mathematical education of primary school 
students. The informant recalls an educational reform in 2009, in which the ministry decided to 
remove the teaching of probability from the study program for primary education—indeed, the 2009 

                                                

1 The current study programs are available at https://www.planyprogramasdestudio.sep.gob.mx (information in Spanish). 
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study program for primary education in Mexico does not include the teaching of probability (see 
Secretaría de Educación Publica, 2009). However, research suggest an intuitive approach to the 
teaching of probability where children start from their intuitive ideas related to chance and 
probability. There are also recommendations related to understanding and applying basic concepts of 
probability for children in Grades 3–5 (see Batanero et al., 2016). Our key informant—at that time a 
member of the disciplinary commission for mathematics—was part of the opposition to this measure. 
He considered it inappropriate and in opposition to world trends in probability teaching. 

Informant: When I was participating [in the disciplinary commission] I said that this could not 
be, that this was an issue that did not correspond to what all countries did. Rather, 
all countries incorporate probability from the beginning of primary school, and we 
did not have probability throughout primary school! […] In fact, I invited Carmen 
Batanero to give some talks there at the ministry and I had discussed this issue with 
her. And she mentioned that it did not seem like a good idea that probability was 
not in elementary school. 

Despite the opposition, the teaching of probability was not included into the study programs. The 
informant identifies teacher associations as a possible obstacle in the incorporation of probability 
teaching in primary school. According to the informant, the teaching of probability was postponed to 
the middle school level on the argument that primary school teachers have many difficulties in 
understanding probability and therefore were not well prepared to teach the topic. 

Informant: What was the justification for this? X told me [he mentions a ministry official] that 
it is because the teachers did not understand probability. They had complained that 
they did not know what to do, and that is why it was removed. I think that was a 
very strong decision that it was due to the teachers’ complaints in the different 
workshops. 

Instance (1) serves as an illustration of the politics of enactment that can take place during the 
configuration of a study program or curriculum. It illustrates how decision venues are reduced—only 
some selected individuals have access to the configuration of the study program—, but it also shows 
the existence of interest-based coalitions (such as mathematics teachers and their associations) that 
can hinder the enactment and implementation of research knowledge due to various reasons, such as 
the lack of adequate mathematical knowledge for the teaching of certain topics. 

(2) It is necessary to distinguish between a ‘problem’ and an ‘exercise’ when adopting a problem-
solving approach. In the educational reform of 2011, the study program for lower secondary 
education indicated a problem-solving approach to the teaching of mathematics. The analysis of the 
interview suggests that the lack of clear guidelines on what it means to adopt a problem-solving 
approach in a mathematics textbook, is a factor that seems to minimize the fidelity and homogeneity 
of implementation of a problem-solving approach to mathematics textbooks.  

According to the informant, the study program contains only general guidelines on how instruction 
should be, and these guidelines are primarily aimed at teachers. The lack of clear and specific 
guidelines for the preparation of textbooks opens a space for different interpretations of the study 
program. Writers should interpret the study program and translate it into a textbook, hoping that their 
interpretation matches that of the expert evaluators (for their book to be approved by the ministry) 
and that of the mathematics teachers (for them to purchase the book). 
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An illustration of this is our informant’s interest in having his textbooks clearly distinguish between 
an ‘exercise’ and a ‘problem’, as suggested by the fundamentals of problem-solving in mathematics 
education (e.g., Schoenfeld, 1985). However, implementing this distinction in his textbooks may have 
negative consequences. For instance, the informant thinks that his textbooks are not popular among 
mathematics teachers, precisely because they include actual problems and not exercises, which makes 
his textbooks more difficult for teachers and students to use. 

Informant: I, for example, think that my textbooks are difficult for students and teachers […] 
Because I try to pass on mathematical messages like the ones that are promoted... 
For instance problem solving. I try to make the problems actual problems in the 
sense that research says, that is, they are situations that the student will not know 
how to solve from the start, and that they may have to make an effort to solve it. 
Well, just that idea makes the textbook that I write different from other textbooks 
where for them [the other authors] a problem is an exercise. 

Interviewer: It is easier for the teacher to use this second kind of book than yours. 
Informant: Exactly, exactly. 

Instance (2) illustrates aspects of the politics of implementation as experienced by a textbook author 
when trying to implement research ideas as part of the contents of a mathematics textbook. The 
textbook author who participated in this study claimed to receive diffuse and non-explicit information 
about the specific contents of the textbooks, which requires interpretation. However, the author's 
interpretation of the specific contents may be in opposition to the interpretation of the expert 
evaluators who have an influential opinion on which books are authorized by the ministry. 

Conclusion 

We have tried to illustrate the potential of the concepts of “politics of enactment” and “politics of 
implementation” to illuminate the intricate relationships between the implementation of innovations 
in mathematics education and politics. These theoretical notions bring to the fore the issue of political 
sustainability into implementation research. In particular, this theoretical framework allowed 
identifying and situating two political factors that may influence the implementation of research 
knowledge from mathematics education: (1) interest-based coalitions —such as mathematics teachers 
and their associations, and (2) issues of (mis)communication within decision venues. It would be 
necessary to analyze other implementation experiences to corroborate the potential of this conceptual 
framework for the uncovering of the intricate relationships between implementation initiatives and 
politics. 

We are aware that the empirical method used in this study—which is based on an in-depth interview 
of a single key informant—may have some reliability issues. However, it is possible to enhance the 
rigor and reliability of this method. One way to do this is by increasing the number of key informants, 
and trying to corroborate and triangulate the consistency of their testimonies and interpretations. 
Another possible strategy is to use the “respondent validation” technique where the interviewee is 
asked to assess whether the researchers are accurately interpreting their experiences that were the 
focus of the study. 

Our intention is to continue and expand the study reported here, interviewing more key informants 
(brokers) and implementing strategies to enhance the rigor and reliability of the research method. 
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During the latest decades, inquiry-based teaching (IBMT) has become one of the top issues at the 
agenda for educational politics. IBMT is seen as having a potential for enhancing the students’ 
motivation for and appreciation of mathematics as a field of activity and as a tool for understanding 
the world. IBMT can be conceptualized and operationalized in different ways. In this paper, we focus 
on a three-phased didactical model for IBMT, which can frame the students’ inquiry in and with 
mathematics, and support the teachers’ planning and implementation of an inquiry based activity. 
More specifically, we present a case study of how the use of the didactical model can facilitate the 
implementation of IBMT, and what are the challenges that remain and need to be addressed. 

Keywords: Inquiry based learning, professional development, case studies. 

Introduction 
During the latest decades, inquiry-based teaching has migrated from science education into 
mathematics education, and inquiry-based mathematics teaching (IBMT) has become one of the top 
issues at the agenda for educational politics (Artigue & Blomhøj, 2013). Inquiry-based approaches 
have also found their way into mathematics curricula documents in Norway as well as in other 
countries. IBMT is seen as having a potential for enhancing the students’ motivation for and 
appreciation of mathematics as a field of activity and as a tool for investigating the world. In this 
context, at The Arctic University of Norway in Tromsø (UiT), researchers designed a four-year 
research and development project SUM (Sammenheng gjennom Undersøkende Matematikk- 
undervisning) funded by The Norwegian Research Council (FINNUT) for  2017- 2021. SUM is a 
four-year research and developmental project, in which researchers and mathematics teachers 
collaborate with the overall aim of contributing to coherence in children’s and students’ motivation 
for, activities in, and learning of mathematics throughout the entire educational system. The objective 
of SUM is the implementation of research findings related to IBMT as a means for better coherence 
across transitions in the educational system. In a previous CERME paper, we reported on some 
preliminary findings related to how the design of the project itself affected the implementation of 
IBMT in educational settings (Haavold & Blomhøj, 2019). One of the main findings was that the use 
of a three-phased didactical model used in the project was highlighted as an important enabler for 
implementing IBMT in the classroom. Most teachers participating in the project had stated that the 
model provided them with a more structured approach for designing IBMT for their practice. The 
model reduced a large and complex task to several smaller less complex steps of planning. 
Furthermore, the teachers said that the model helped them to be aware of and maintaining their own 
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and their students’ different roles at each phase of the model. However, the teachers also found it 
quite uncomfortable to give up control, and allow the students to investigate and explore more freely. 

In this paper, we focus on one particular case and present and analyze an IBMT lesson with regard to 
how this model provides a frame for the students’ work and for the teachers’ planning and 
implementation of IBMT. More specifically, we attempt to answer the following research questions: 
How can the use of a particular three-phased didactical model facilitate the implementation of IBMT, 
and what challenges regarding the students’ learning through IBMT can be identified? 

The keywords facilitate and challenges can be reframed within determinant frameworks of 
implementation theory, as enablers and barriers, or more generally as influential factors, that have an 
impact on implementation outcomes (Nilsen, 2015). 

Inquiry based mathematics teaching 
In SUM, IBMT is conceptualized with reference to Artigue and Blomhøj (2013). Here the historical 
threads are retracted back to John Dewey (1859-1952), who developed an educational theory with 
inquiry as the main driver for humans’ development of knowledge. Learning by doing has become 
parole for this theory, focusing on students’ research-like activities. An essential point in Dewey’s 
theory is, however, that knowledge is produced in an interplay between inquiry in problem situations 
and related reflections – denoted reflective inquiry (Dewey, 1938). Therefore, IBMT should engage 
students in relevant inquiry activities and challenge them to reflect on their experiences in order to 
support their learning of key mathematical concepts and methods. Artigue and Blomhøj (2013) discus 
how IBMT can be understood and characterized in relation some theoretical frameworks such as 
problem-based learning, problem-solving, modelling, realistic mathematics education and the theory 
of didactical situations. Seen from the perspective of practice, IBMT has considerable overlaps with 
all these frameworks, and to some extent, IBMT can be seen as an overarching umbrella. From a 
theoretical point of view, however, the foundation of IBMT in Dewey’s philosophy emphasizes the 
importance of anchoring the students’ learning in memorable experiences and related reflections.  

At seminars in the SUM project with the teachers, common factors in how IBMT can be 
operationalized across the different educational levels have been discussed and illustrated with 
concrete examples of different types of inquiry activities. Moreover, as common starting point the 
teachers were introduced to a three-phased didactical model for IBMT (Blomhøj, 2016, chap. 6). This 
model is summarized in figure 1. In the first phase, the scene should be set for the students’ inquiry 
activities. Multiple approaches is possible, essentially the students should be motivated to 
investigating a phenomenon or a problem, which make sense for them. In the second phase, the focus 
is on the students’ investigative work. Here the students should have sufficient time, freedom and 
support for their inquiry activities. The crucial challenge for the teacher is here to help and support 
just as much as needed without depriving the students the essential mathematical challenges and the 
related learning opportunities. In the third phase, students’ experiences, results and reflections are 
systematized and shared in the class. The teacher can draw on the students’ presentations or products 
and pinpoint essential elements for the class. Alternatively, the teacher can organize the results from 
the students’ work in dialogue with the class, providing explicit and concrete anchoring to the 
students’ work. Combinations of these formats are of course also possible. The shared experiences  
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and results can serve as a basis for reflections in class. It is the task of the teachers to identify key 
points in the students’ work and to link them to content and learning objectives in the curriculum. 

  

Figure 1: Three-phased didactic model for IBMT 

Methods 
In this paper, we focus our analyses on an IBMT-lesson implemented in upper secondary school by 
one of the teachers (Ann) participating in the project. Ann has three years of experience teaching 
upper secondary and a masters’ degree in mathematics education with a particular focus on secondary 
mathematics education. The lesson took place in a first-year upper secondary class consisting of 25 
students aged 15-16 in a small to medium-sized school outside of a city in Northern Norway. Based 
on a survey directed at the students in the SUM project at the beginning of the school year, it seemed 
like the students in this class had mostly little to some experience with IBMT from their previous 
teaching. During interviews and in a questionnaire handed out early in the project, Ann had expressed 
interest for and curiosity about IBMT, but she had also said that it was difficult to find the time and 
the resources for designing and implementing IBMT in her classes. Furthermore, she was unsure that 
students’ learned “what they were supposed to learn” in IBMT lessons. Ann had therefore decided, 
sometime during the third year of the project, that she wanted to use a so-called taxicab-geometry as 
a starting point for a 90 minute IBMT lesson, as it offered some “structure and clear learning targets 
related to proportionality and linear growth” as she put it. Prior to the lesson, Ann had been exposed 
to the three-phased model during the first two years of the SUM project, and had recently began using 
it as a tool for planning IBMT lessons in her regular practice.  

Taxicab geometry is a form of non-Euclidian geometry, which can be thought of as taxicabs roaming 
a city with streets forming a lattice of unit-square blocks. The taxicabs can only move horizontally 
and vertically and U-turns are not allowed. The difference between the taxicab system and Euclidian 
geometry is that the usual distance function is replaced by a new metric in which the distance between 
two points is the sum of the absolute differences of their Cartesian coordinates, hence the distance 
between points in the lattice can be counted, see figure 2. 

A three-phased model for inquiry based mathematics teaching 
1. Setting the scene for the students activities 
- creation of questions, amazement or challenges 
- establishing the didactic environment for the work 
- dissemination of the temporal and practical framework 
- clarification of product requirements and success criteria / form of assessment 

2. Students' independent inquiry oriented activities 
- sufficient time, freedom and support for students' work 
- support and challenge through dialogue, cf. the principle of minimal guidance 
- preparation through construction of possible dialogues 

3. Shared reflections and learning  
- experiences, results, and reflections  from the activity are systematized and shared 
- mathematical points are drawn from the shared results and reflections 
- points and results are linked to institutionalized knowledge, e.g. the curriculum  
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 Before the lesson, Ann had prepared the following system of tasks: 

1. Can you draw roundtrips that start and end at point A 
with lengths 8, 9, 12, and 17? 

2.  Can you mark all points, which have the same distance 
to point A and B? 

3.  Can you mark all points that have distance three to point 
A? How many points like this are there? Can you name 
this pattern of points? 

4.  Make a formula for the number of points with distance r 
to a specific point.  

5.  Make a formula for the number of points with distance 
less than r to a specific point.    Figure 2: Points A and B with distance 5 

In line with best practice regarding case studies, we used multiple data sources (Yin, 2014). We 
collected data from semi-structured observations of the lessons, short interviews with the teacher 
before and after the lesson, sound recordings of the teacher and groups of students during the lesson, 
and focus group interviews with students after the lesson. The main purpose of the analysis was to 
identify how the three-phased model provides a framework for the teachers’ work in the classroom. 
Although there are no routine procedures for analyzing case studies, the analysis must logically piece 
together the available data into broader themes that capture essential aspects (Yin, 2014). Here, we 
attempted to identify and explain important episodes during the lesson that could help us understand 
both the challenges and opportunities the teacher experienced during each of the three phases of 
IBMT. First, we identified interesting episodes from the case based on our observational notes and 
sound recordings. We then cross-checked these episodes with data from our interviews before and 
after the lesson, in order to better understand why these episodes occurred. Finally, we discuss the 
potential for the students’ learning, and possibly missed opportunities during these episodes. 

Results 
The lesson began with Ann handing out the tasks and an explanation of the rules of the taxicab 
geometry to the students and telling them to sit in groups of 2-3. She then explained to the class that 
“this lesson is about thinking, exploring and conjecturing” and that the students had to “investigate 
and come up with solutions themselves”. After letting the students look at the tasks and rules for a 
minute, she explained the rules of taxicab geometry to the whole class and she demonstrated an 
example of finding the distance between two points in taxicab geometry. She then told the students 
that they could start working on the handed out tasks. For the next five minutes, the classroom was 
quiet and the students did not write anything down in their own notebooks. Ann then asked the whole 
class to pay attention. She showed the students an example of a roundtrip of distance 8 from point A, 
before challenging them to find other roundtrips with distance 8, and then 9, 12, and 17. 

Observations in phase 1 thus show that the students’ did not immediately go to work on the tasks 
after Ann’s short introduction and explanation. This indicates that phase 1 was not without its 
challenges for the teacher and students. Observation alone cannot tell us why the students sat quietly 
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at their desks, seemingly unwilling or unable to work on the tasks. However, interviews with the 
teacher and groups of students after the lesson point to at least some factors.  

First, the students said that the tasks were difficult, and they were unsure of what to do. Asked why 
they thought the tasks were difficult, they explained that the tasks were new and unusual. One student, 
for instance said that; “the tasks were difficult…to understand. I did not know what to do. They were 
new and I have not seen this before.” The students also mentioned that the tasks lacked clear 
instructions, and they had to read the tasks several times before realizing that they had to solve them 
on their own. Second, the teacher said she expected the students to begin working on the tasks after 
her short introduction, and that she was surprised they sat quietly at their desks. After seeing this, 
Ann told us she thought the students needed a specific example to show the students how to get 
started. Third, we also noticed from our interviews an apparent disparity between the teacher and 
students regarding the purpose of the lesson. In the interviews, Ann mentioned that the lesson was 
built around the concepts of linear and quadratic functions and direct proportionality, as those were 
the key subjects in the curriculum “they were working on right now”. For instance, task 4 according 
to Ann, should “build a better understanding of direct proportionality and linear functions”, and in 
task 5 the students are challenged to develop a quadratic function. In the interviews, the students, on 
the other hand, expressed confusion about what the lesson was really about. As one student said, “I 
do not know what this has to do with the other stuff we have been working on lately”.  

Based on these observations, it would seem as the students did not lack motivation or interest, but 
rather that their expectations caused some miscommunication at the beginning of the lesson. From 
the teacher’s perspective, both the purpose and intention of the tasks were clear. However, from the 
students’ perspective, the tasks were difficult; as they did not knew how to get started on them and 
because they did not fully understood the learning purpose of the tasks. The issues mentioned here 
are not specific to this particular lesson. They are relevant for IBMT in more general. Dissemination 
of the temporal and practical framework and clarification of product requirements, success criteria 
and forms of assessment are general key issues in the first phase of IBMT. In other words, students 
and the teacher need to have a similar understanding of the task; what are the students expected to 
do, and what types of intellectual products should they produce. Brousseau and Warfield (2020) refer 
to this as a situation of devolution, where the students accept the challenge of an engaging and 
instructive mathematical situation. Similarly, Stein et al. (2008) have highlighted the importance of 
anticipating how students might interpret and attempt to tackle mathematical problems when 
implementing cognitively challenging tasks. 

In the second phase, the focus is on the students’ investigative work. We observed several episodes 
that indicate challenges for both the teacher and the students during this phase. One issue we 
repeatedly noticed was that groups of students would often sit quietly, raise their hands and wait for 
the teacher to help them. For instance, at one point, only about five minutes into the second phase, 
students in seven groups raised their hands and asked the teacher for help. Only after the teacher had 
provided some form of guidance did the students proceed with their work. The following sequence 
illustrate this. Two boys raise their hands, and Ann approaches them: 
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Ann: How are things going? Did you get an answer to task 4? 

Boy1: No, we did not understand it. 

Boy2: We gave up. 

Ann: No, tell me. What is it you do not understand? 

The boys then show the teacher what they have done so far, and the teacher notices that they have 
marked points outside the intersections between the horizontal and vertical lines in the grid. The 
teacher asks the boys if it is possible to mark points outside the intersections. 

Boy2: Aha, now I get it. The points have to be here (points to an intersection). Then it is easy. 
We have 4, 8, 12 points. 

Boy1: I get it. We just multiply 1 by 4, then 2 by 4, then 3 by 4 and so on.  

Boy2: This is brilliant! What a genius way of doing it.  

Boy1: Very clever! 

During the interview after the lesson, the teacher mentioned this episode with an explanation for why 
it occurred. According to Ann, this was an example of something she had noticed almost every time 
she had tried out IBMT lessons. The students are often passive during the investigative phase, and 
they quickly give up and ask for help from the teacher – even though they have not tried any strategies 
or approaches themselves. According to Ann, this is something that applies to almost all students in 
her class; “The students enjoy these IBMT lessons, but they give up quickly. They do not seem to 
want to think for themselves. They want me to tell them what to do”.  

Another point worth mentioning about this episode is that the students’ solved the task by 
generalizing the empirical pattern of the number of points when the distance increased by one. Neither 
the teacher nor the students ever asked themselves why this pattern occurred. A key activity in both 
IBMT and mathematics in general (e.g. Barbeau & Hanna, 2008) is proving and reasoning 
deductively, and this was an excellent opportunity for the teacher to ask the students why this pattern 
appeared or if this pattern would continue when the distance became larger. The reason we bring up 
this point is that this was something we have noticed in several other IBMT lessons as well. Both 
teachers and students often seem to be satisfied with empirically based solutions. However, 
challenging the students’ schemas of reasoning and proof from empirical to more deductive schemas 
as defined by Harrel & Sowder (2007) could be seen as one of the potentials of IBMT.     

In the third phase, at the end of the lesson, and after a short break, Ann told the class that they would 
now look at the tasks together. She asked the students if they have found any answers to the tasks, 
and then worked her way through each of the five tasks. For each task, she asked the students if they 
have an answer for her. The incorrect answers from the students were mostly sidestepped, and instead, 
she wrote down the correct answers from the students on the board. During this phase, Ann was very 
focused on connecting the students’ work to the topic of proportional growth and linear functions, as 
that was the topic they were currently working on. For instance, when she asked the students for 
solutions to task four, she stressed the importance of connecting the answers to concepts like 
proportionality, linear functions, and straight lines. After the lesson, Ann said in the interview, that 
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one of the main goals of the lesson was that the students would get a better understanding of “the 
relationship between tables, graphs and equations of linear functions”. Ann went on to explain that 
“ideally, the students’ would have been more active and more responsible for the third phase”. 
However, because she thought the students were a bit passive and quiet, she felt the need to make 
sure that the lesson ended with clear solutions to the tasks and a clear connection to the curriculum.  

The interviews with the students after the lesson help us explain why the students were “passive and 
quiet”. As one student said, “this is just how we do it. At the end of the lesson, the teacher goes 
through the tasks and explain the solutions”. Another student added; “I did not quite understand the 
purpose of the lesson, so I prefer that teacher explain it to us”. Here we notice two things. First, it 
seems as if there are an expectation and habit of the lessons ending with the teacher explaining 
solutions and the resuming purpose of the lesson to the students. Second, it seems that the students 
were unsure of the purpose of the lesson in terms of the intended learning, even after the activity, and 
therefore they wanted the teacher to explain it to them. This observation shows that for the students, 
the activity constitutes a break of the didactic contract (Brousseau & Warfield, 2020).    

Conclusion 
In this paper, we analyzed a case of IBMT with particular emphasis on the role and function of the 
three-phased model as a framework for the activities in the classroom. Although there are 
idiosyncrasies tied to the taxicab case, it illustrates several characteristics observed across many 
IBMT lessons in the SUM project. Thus, the points made concerning the role and function of the 
model in the case are to a large degree concretizations of general trends observed across many 
teachers, grade levels, and subjects in the SUM-project.  

The taxicab lesson adhered clearly to the three-phased model. As noted by (Haavold & Blomhøj, 2019), 
a general observation from the SUM project is that the teachers have adopted the model as a didactical 
tool for planning, conducting and reflecting on their IBMT lessons. The teachers carefully separate 
their lessons into an introduction, an investigative phase, and a plenary summary. This might seem 
like an obvious and minor effect. However, in data collected at the start of the project, teachers 
expressed reluctance to let students investigate on their own without much guidance from the teacher 
(Haavold & Blomhøj, 2019). Thus, the careful use of the model is an important change of practice for 
many teachers. The taxicab lesson also illustrates certain challenges teachers face developing their 
IBMT practices. The students appeared relatively passive during the investigative phase, and 
according to Ann, this was something she frequently noticed when trying out IBMT lessons. In part, 
this may be due to the students being relatively unfamiliar with inquiry activities. Implementing 
IBMT lessons may necessitate renegotiating the classroom didactical contract (Brousseau & 
Warfield, 2020), and the teachers in the SUM project have indeed expressed views that the students 
need to be gradually accustomed to inquiry activities. The taxicab case illustrates this, as Ann 
specifically implemented a very structured IBMT lesson closely tied to the goals in the curriculum 
they were currently working on. Nevertheless, students’ independent work during phase two was still 
somewhat of a challenge. Concerning the three-phased model, it is clear that merely allocating some 
time for students’ independent inquiry (phase two) is not sufficient. Teachers also need to prepare for 
supporting students during their independent work, for example through anticipating how students 
may interpret the task and how they might approach solving it (cf. Stein et al., 2008).  
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Additionally, the taxicab lesson illustrates that phase three can be somewhat of a challenge for the 
teachers. Although the teacher linked the lesson and work to the curriculum, i.e. institutionalized 
mathematical knowledge, it is clear that the third phase lacked a systematization of and reflection on 
the students’ solutions, as well as student engagement and active participation. Instead, the teacher 
mostly highlighted correct solutions without contrasting them with other solutions. The teacher 
mentioned in the interview that the students were passive, so she felt the need to take control and link 
the lesson to the curriculum. However, her aspiration to link the taxicab activity to specifically linear 
functions and proportionality may have contributed to hinder a productive discussion of the taxicab 
activity in itself and other key mathematical ideas.  

To summarize, our analysis of the taxicab case illustrates how the three-phased model provides a 
frame for the teachers’ planning and implementation of inquiry activities. In addition, it highlights 
the need for finding ways of supporting the teachers in planning and executing phase two and three 
of IBMT lessons. This plays directly into the dual nature of SUM: On the one hand, SUM as a research 
project aims to elucidate the extent to which teachers develop their competence for using investigative 
approaches in their teaching. On the other hand, SUM as a development project aims to support the 
teachers in developing a practice for IBMT. In that respect, the insights we gain from observing the 
teachers’ implementation of IBMT in their practice in turn shapes how we as researchers collaborate 
with teachers in SUM.  Hereby, SUM explores both the potentials and the limitations in developing 
practices of IBMT in collaboration between teachers and researchers.  
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Despite both the research in cognitive psychology and neuroscience, and in mathematics education 
has increasingly highlighted the relevance of active, bodily experience in mathematics learning, often 
school teaching seems to be far removed from these perspectives, still largely transmissive. The 
research presented in the paper is part of an ongoing study, carried out in two different cultural 
contexts (Italy and Australia), aims to explore the reasons for that distance, by investigating the 
perspective of primary and secondary school teachers on these teaching proposals and their 
implementation in the classroom. In addition to the direct involvement of teachers, the designed 
research includes interviews with experts in the field of mathematics education. After presenting the 
investigative perspective on the implementation of active, bodily experience learning activities 
proposed in the research project, an explanatory example will illustrate how the analysis of experts 
interviews could contribute to identifying determinants of implementation. 

Keywords: Mathematics activities, enactive pedagogy, embodied cognition, manipulatives-based 
learning, teachers’ beliefs. 

Introduction  
The role of the body and movement in the exploration and construction of mathematical concepts is 
a central topic in much of the relevant literature in mathematics education. The roots of this tradition 
can be found as far back as the early 1900s, in the well-known Italian contributions of Maria 
Montessori and Emma Castelnuovo, as well as in Jean Piaget, John Dewey, and Jerome S. Bruner’s 
theoretical works. More recently, cognitive psychology and neuroscience have highlighted the 
profound interrelationship of perception-action and conceptualization in learning processes. This 
research has been key to the development of the embodied cognition theory (Lakoff & Nunez, 2000; 
Varela et al., 1991). In recent decades, the role of students' active, bodily experience in the exploration 
and construction of mathematical concepts has assumed increasing relevance in the research in 
mathematics education. As pointed out by Drijvers in the ERME-11 plenary (2019), the growing 
interest in research from this perspective is evidenced, for example, by the fact that two special issues 
of Educational Studies in Mathematics, have been devoted to the embodiment in mathematics 
education. Furthermore, several theories that focus on perceptual-motor involvement in the teaching-
learning process of mathematics have been proposed. Although conceptualized differently, examples 
include enactivist pedagogy (Abrahamnson et al., 2022), inclusive materialism (de Freitas & Sinclair, 
2014), and multimodal approaches (Radford et al., 2017). On the other hand, the European tradition 
of the so-called experimental approach, and the important recent contributions from these 
perspectives in research in mathematics education, have found a foothold in most national policies, 
which encourage teaching strategies in which students are actively involved through the use of 
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manipulatives and tools (e.g. Bartolini Bussi et al., 2010). In Italian national policies, for instance, 
we could find it in the references to the Mathematical Laboratory, elaborated in the intended 
curriculum, both in the programmatic document Materiali UMI-CIIM Mathematica 2003, and in the 
institutional documents National Guidelines (MIUR, 2012) and National Guidelines and New 
Scenarios (MIUR, 2018). However, this growing interest in research and developments at a 
theoretical level has not been matched by an equally wide resonance in classroom practice, which is 
often far removed from this perspective. Indeed, everyday teaching practice is often inconsistent with 
this, still largely based on a purely transmissive approach (OECD, 2009, pag.98; OECD, 2016, 
pag.65) and tend to focus on the implementation of clarity-of-instruction (e.g., procedural) rather than 
cognitive activation practices (OECD, 2019). 

This gap between research findings and indications and the uneven proposal of these activities in 
classrooms warrants a research interest in active, bodily experience learning activities 
implementation. In our research, we are particularly interested in exploring what is the current 
implementation of these activities at school, since, as highlighted by Century and Cassata (2016):  

Documenting implementation as conducted enables researchers to understand the ways that 
innovations are operationalized in practice, the influential factors that affect the practice (…), 
the different patterns of practice, or “configurations” (…), and in some studies, the 
relationship between these patterns and outcomes. (p. 190) 

This paper will present an investigative perspective that looks at active, bodily experience learning 
activities, that we identify, somewhat improperly, as an innovation or research finding, investigating 
teachers' perceptions in this regard. We also aim to show how we want to use the analysis of 
interviews with selected experts in mathematics education to create a conceptual framework that, 
along with insights from a literature review, will allow us to interpret teachers' survey findings. These 
interviews are designed to investigate the experts' views on what the core elements and expected 
outcomes of these activities are, and to identify the factors believed determinant in and for their 
implementation. In the following lines, we will provide a brief justification of the proposed 
perspective of inquiry, illustrating the main conceptual statements assumed in the study. 

The object of implementation: an all-embracing construct  
The variety of theories mentioned in the paragraph before, develop theoretical constructs that are the 
result of the specific philosophical, psychological and pedagogical perspectives that determine them. 
Looking at the implementation with an exploratory study aimed to understand teachers’ perspectives, 
the research cannot move within a specific theoretical framework but needs to be based on a 
negotiation of meanings. Due to this fact, we need to individualize a comprehensive construct as the 
object of our research on implementation, which acts as an umbrella for the multitude of theoretical 
proposals developed, and which should be clear and easy-accessible for teachers.  

We will use the terminology active, bodily experience mathematics learning activities to refer to 
activities designed in the perspective of enactive-embodied learning or, more generally, to activities 
in which students are actively engaged in exploring mathematical concepts using manipulatives, tools 
(virtual or physical), or the whole-body movement. Descriptions and appropriate commonly known 
examples will introduce the definition. We are attempting to clarify the characteristics of the construct 
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under analysis, with an explorative study conducted with experts in the field of Mathematics 
Education, selected both for their experience as theoretical developers in this research field or in 
professional development courses with teachers. 

An old matter, a current issue  

Although the proposal of active, bodily experience learning activities in schools has such a long and 
widely debated tradition, the presence of this perspective in teaching practice is uneven. Furthermore, 
these theoretical perspectives, encouraged by experimental findings, are recently developing a wide 
range of innovative educational artifacts and proposals. Through a new point of view with which to 
look at the implementation of these approaches in schools, this study is shaped as research on the 
implementation of research findings (Century & Cassata, 2016).  

In the research, we look at implementation from the perspective of teachers, assuming that they can 
give us precious insights on the current implementation as conducted in classrooms. These include, 
for instance, the teacher's beliefs and experience which plays a central role in educational change 
(Coburn & Talbert, 2006; Peterson, 2013), and the perception of the activities studied, that has a 
drastic impact on their implementation (Domitrovich et al., 2008; Ruiz-Primo, 2006), as highlighted 
in the case of the introduction of manipulatives by Golafshani (2013) and Vizzi (2013).  

Research Aims  
As briefly outlined in the introduction, many research findings and theoretical results have been 
developed over years concerning the importance of actively engaging students in hands-on activities 
and the role played by perceptions and movements in mathematics teaching and learning processes. 
Nevertheless, in our study, we want to go beyond the different theoretical perspectives, with the 
intention of investigating teachers' perspectives regarding the proposal and implementation of active, 
bodily experience learning activities, “to describe the extent and nature of innovation use in practice, 
including adaptations and omission of core components, and explore the contextual factors that 
support or inhibit innovation use” (Century & Cassata, 2016, p. 190). The research presented in this 
article first aims to present the perspective adopted to explore the implementation of learning 
activities of this type in the study. Secondly, it aims to illustrate how the analysis of interviews with 
experts in mathematics education, on these research findings and their implementation, can be used 
to identify the core elements and outcomes considered essential parts of this innovation and the key 
characteristics that determine their implementation. 

Research framework and state of the art 
The presented research is part of an ongoing doctoral research project investigating the proposal and 
implementation of active, bodily experience learning activities in classrooms. The research project 
aims, firstly, to offer an overview of the literature on theoretical perspectives and empirical research 
focused on the involvement of the body and movement in learning mathematics activities consistent 
with an experimental, hands-on approach; secondly, to highlight the presence/absence of official 
national and international guidelines, educational policies and curricular documents in this direction. 
As a third goal, the research aims to investigate the perspective of mathematics teachers, both primary 
and secondary, with respect to the implementation in the classroom of active learning strategies, 
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which involve the body and movement of students and to identify possible hindering and facilitating 
factors, such as teachers' beliefs.   

The research project is an exploratory mixed-method study, that includes desk research, designed to 
achieve the first two goals. To reach the third goal, we have designed an explorative study that aims 
to investigate primary and secondary mathematics school teachers’ perspectives regarding the 
proposal and implementation of these activities. This stage of the research includes: 

- semi-structured online interviews with experts in Mathematics Education aimed at documenting 
experts' views on active, bodily experience activities to identify a conceptual framework on the 
main issues outlined in the teachers' survey.  

- an online questionnaire to reach a convenience sample of primary and secondary mathematics 
teachers, working in diverse schools or localities, using a web-based instrument combining rating 
items, multiple-choice items, two vignette-items, and a few short open-ended questions.  

- individual or focus group semi-structured online interviews with a smaller number of teachers, 
grouped according to school levels, complementing the survey. This phase aims at deepening some 
topics for which the questionnaire might not yield sufficient information. 

The explorative study is being carried out in two very different cultural contexts, Italy and Australia. 
The involvement of such different contexts may offer the opportunity to observe some latent and 
implicit variables that may not emerge by conducting the investigation immersed in a single 
educational and cultural system. 

Research design and methodology 
The instrument 
To collect experts’ opinions on the implementation of active, bodily experience learning activities in 
classrooms, we are carrying out individual semi-structured interviews via Zoom, approximately one 
hour-long, with a small number of experts in mathematics education, both in Italy and in Australia. 
The interview prompts are designed to get the experts’ views on key aspects of implementing active, 
bodily experience mathematics learning activities at school, especially in relation to teaching practice. 
The first goal of the interviews is to collect the experts’ opinions on the proper terminology to define 
the activities under investigation in a clear and easily accessible way for teachers. This exploratory 
phase should also provide a set of examples that might be commonly known and recognized by 
teachers, at different school levels. Furthermore, with the interviews we aim to shape a conceptual 
framework of experts’ views around the main questions underpinned the survey on teachers’ 
perspectives: 

I. Whether and why is it important to implement active, bodily experience mathematics 
learning activities at school? 

II. What are the beliefs that should guide teachers in proposing these activities? 
III. Which levels of awareness and knowledge should accompany teaching when 

implementing these activities? (e.g., in terms of teaching strategies, assessment, etc.)  
IV. Which characteristics concerning the implementation of these activities at school 

determine their teaching effectiveness? 
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V. What are the main limitations of the use of these activities in daily teaching practice? What 

are factors that hinder/favour the implementation of these activities at school? 

Interviews are transcribed and analysed according to the thematic content analysis method, using 
open, inductive coding in the first instance and then refining the results with a focused, axial coding 
that will lead to the construction of concept maps. A tool to represent narrative material will be used 
to analyse these qualitative data and to compare and contrast individual responses to each question. 
Analysis of the narrative material will produce a conceptual framework that highlights the overall 
and variety of experts’ opinions on core elements and expected outcomes of these activities are, and 
that identify the factors believed determinant in and for their implementation. 

Participants  

In Italy, we have selected and interviewed 8 experts in mathematics education. The experts were 
contacted via email, and their participation in the study is voluntary. They are 7 accomplished 
academics and a teacher-researcher, who have a wide range of different research interests: 
mathematics difficulties and the use of representations, teachers’ beliefs and problem-solving, teacher 
education, semiotic mediation, proof and argumentation, cultural transposition, multimodal 
approaches and gestures, Montessori method education. Overall, all of them have long experience in 
teachers’ professional development courses and empirical research in classrooms and they are 
familiar with the topic. 
The scheduled interviews in Australia are 6 and we are currently conducting them. The experts, 
contacted via email and voluntarily involved, are all academics, in some cases former teachers, and 
they were selected on the basis of their research interests and experience in the field of teachers’ 
professional development. 

A preview of how the analysis of Italian interviews is being carried out is presented below. The 
interim analysis is partial and has not yet been subjected to triangulation.  

An illustrative example of Data Analysis: Question 1 

In this paragraph, a brief presentation of the conceptual framework identified by the experts around 
question 1 of the previous list will be provided, showing the main themes that emerged in their 
answers. The map shown in Figure 1 is a simplification for illustrative purposes of this conceptual 
framework. The construction of the map started with the analysis of a first interview. The themes that 
emerged analyzing the transcript of the interview were categorized with an inductive analysis, and a 
first concept map referring to the individual interview is created starting from these categories. 
Around the key concept, consisting of the topic of the question, we positioned the themes that 
emerged in the expert’s answer as nodes in a graph, and, using directional arrows, we represented the 
network of internal relations between the various themes. Next to the arrows, labels were juxtaposed 
in order to specify the nature of the links identified between the emerged themes. A similar analysis 
was carried out for the other interviews; the opinions, that emerged from these, added new thematic 
nodes or strengthened the links already identified. The analysis process was not linear and evolved 
through the renegotiation of the emerging categories, depending on continuous re-readings of the 
narrative material. The map, in Figure 1, presents the set of themes that emerged and the totality of 
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the links identified by the analysis of all the interviews conducted. The themes and relations referred 
to each single contribution are identifiable, due to the assignment of an identifying colour for the 
arrows which indicate the links narrowed by the same expert. In this way, we were also able to 
represent the recurrence with which a theme emerges in the various contributions analysed.

Figure 1: Interim concept map of experts’ framework around the question: “Do you think it is 
important to implement such activities in school? Why?”

Briefly discussing the partial and provisional results analysed so far, some strong and shared themes 
clearly emerge. First, the activities under consideration are considered to be more inclusive, as they 
use more channels for accessing and producing information than the traditional verbal one. While the 
focus is mainly on the difficulties developed in mathematics, it is also stressed that such inclusion is 
to be considered in a broader sense, also with regard to high achievers. References to experimental 
cognitive studies are also frequent, testifying to the validity of these proposals for the construction of 
mathematical meanings, insofar as they offer cognitive roots, for instance in motor schemes, on which 
to anchor the manipulation of mental and abstract concepts. Moreover, these activities are considered 
capable of promoting situations of well-being, centred on involvement and satisfaction, both for
students and for teachers. Furthermore, two experts have highlighted that in the proposal of these 
activities, which take into account the profound interweaving of perceptual-motor and conceptual 
aspects that occur in learning processes, more complete interpretations of the teaching-learning 
process of the discipline emerge. From a more disciplinary point of view, there is a broad agreement 
that these activities are able to put students in direct contact with the origin of mathematical concepts, 
which find their basis in the human experience of exploring the world. Experimenting with 
mathematics, constantly moving from the concrete to the abstract, leads to the achievement of a 
meaningful understanding of formal knowledge. In addition, the intuition that passes through the 
body is hypothesized by two experts as generating new possibilities and perspectives for the discipline 
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itself, in the creation of new knowledge. It is also emphasized that even professional mathematicians 
often use bodily artifacts and intuition to think about mathematics. Therefore, by proposing these 
activities, we enable students to develop a more epistemologically correct view of mathematics as a 
dynamic discipline that proceeds in an exploratory and creative way, advancing by trial and error, 
employing all available cognitive resources to solve meaningful problems, and only then becomes 
formally structured. 

Conclusion: Limitations and further directions 

In this paper, we have presented the state of the art of research project. Structured analyses will be 
conducted on the collected narrative materials, of which we have presented only an exemplar preview. 
However, even from such a cursory presentation of preliminary analysis of the interviews, in the 
provided example emerged insights about, for instance, the overall and variety of outcomes that the 
researchers believe can be achieved by implementing this type of activity. 

From the analysis of the Australian interviews that we are currently conducting, we will see if, overall, 
the two groups of experts, referring to a different cultural context, identify similar or different core 
elements of the object under study and key variables that play a central role in the implementation of 
these activities. Furthermore, from the data collected with the questionnaire addressed to teachers, 
and subsequent follow-up interviews, a comparison will be made to see whether and to what extent 
teachers’ perspectives are aligned with the directions that emerged from the analysis of the experts' 
interviews, also considering the differences emerging from the two contexts involved. 

The research presented is part of a doctoral study aimed to contribute to a hoped-for narrowing of the 
gap between research findings and their implementation in schools by highlighting specific needs 
emerging from the survey of teacher perspectives. The research findings could inform the design and 
development of innovation, indicating directions that could be taken to address these emerging needs, 
and providing support in practice settings.  

References 
Abrahamson, D. Dutton, E., & Bakker, A (2022). Towards an enactivist mathematics pedagogy. In 

S. A. Stolz (Ed.), The body, embodiment, and education: An interdisciplinary approach (pp. 156–
182). Routledge.  

Bartolini Bussi, M. G., Taimina, D., & Isoda, M. (2010). Concrete models and dynamic instruments 
as early technology tools in classrooms at the dawn of ICMI: from Felix Klein to present 
applications in mathematics classrooms in different parts of the world. ZDM Mathematics 
Education, 42(1), 19–31. https://doi.org/10.1007/s11858-009-0220-6 

Carbonneau, K. J., & Marley, S. C. (2015). Instructional guidance and realism of manipulatives 
influence preschool children's mathematics learning. The Journal of Experimental 
Education, 83(4), 495–513. https://doi.org/10.1080/00220973.2014.989306 

Century, J., & Cassata. A. (2016). Implementation research: Finding common ground on what, how, 
why, where, and who. Review of Research in Education, 40(1), 169–215. 
https://doi.org/10.3102/0091732X16665332 

Proceedings of CERME12 4109



 

 

Coburn, C. E., & Talbert, J. E. (2006). Conceptions of evidence use in school districts: Mapping the 
terrain. American Journal of Education, 112, 469–495. https://doi.org/10.1086/505056 

Domitrovich, C. E., Bradshaw, C. P., Poduska, J. M., Hoagwood, K., Buckley, J. A., Olin, S., 
Romanelli, L. H., Leaf, P. J.,  Greenberg, M. T., & Ialongo, N. S. (2008). Maximizing the 
implementation quality of evidence-based preventive interventions in schools: A conceptual 
framework. Advances in School Mental Health Promotion, 1(3), 6–28. 
https://doi.org/10.1080/1754730x.2008.9715730

Drijvers, P. (2019). Embodied instrumentation: Combining different views on using digital 
technology in mathematics education. In U. T. Jankvist, M. Van den Heuvel-Panhuizen, & M. 
Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in 
Mathematics Education (pp. 8–28). Freudenthal Group & Freudenthal Institute; Utrecht 
University; ERME 

de Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglement in the 
classroom. Cambridge University Press. https://doi.org/10.1017/CBO9781139600378 

Lakoff, G., & Núñez, R. (2000). Where mathematics comes from. Basic Books. 

Golafshani, N. (2013). Teachers' beliefs and teaching mathematics with manipulatives. Canadian 
Journal of Education, 36(3), 137–159.  

MIUR (2012). Indicazioni nazionali per il curricolo della scuola dell’infanzia e del primo ciclo 
d’istruzione [National Guidelines for the curriculum of Pre-primary school and First cycle of 
education]. Annali della Pubblica Istruzione, 88. 

OECD (2009). Creating effective teaching and learning environments. First Results from TALIS. 
OECD Publications. 

OECD (2016). PISA 2015 Results (Volume II): Policies and Practices for Successful Schools. OECD 
Publishing. 

OECD (2019). TALIS 2018 Results (Volume I): Teachers and School Leaders as Lifelong Learners. 
OECD Publishing.  

Radford, L. Arzarello F. Edwards, L., & Sabena, C. (2017). The multimodal material mind: 
embodiment in mathematics education. In J. Cai (Ed.), Compendium for research in mathematics 
education (pp. 700–721). NCTM. 

Ruiz-Primo, M. A. (2006). A multi-method and multi-source approach for studying fidelity of 
implementation. The Regents of the University of California. 

Varela, F. J. Thompson, E. & Rosch, E. (1991). The embodied mind: Cognitive science and human 
experience. MIT Press. 

Vizzi, A. (2016). Teachers' perceptions of manipulatives during middle school math 
instruction [Doctoral dissertation, Walden University]. Proquest.  

Proceedings of CERME12 4110



 

 

 

Problem-solving implementation chain: from intended to experienced  
Jason Cooper1 and Boris Koichu1 

1Weizmann Institute of Science, Department of Science Teaching, Rehovot, Israel; 
jason.cooper@weizmann.ac.il; boris.koichu@weizmann.ac.il 

The importance of mathematical problem solving (PS) has long been recognized, yet its 
implementation in classrooms remains a challenge. In this theoretical essay we put forth the notion 
of problem-solving implementation chain as a sequence of intended, planned/enacted and 
experienced activity, shaped by researchers, teachers and students respectively, where the nature of 
the activity and its aims may change at the links of the chain. We propose this notion as an analytical 
framework for investigating implementation of PS resources, and illustrate this framework in a case 
of middle-school teachers enacting a particular problem they encountered in professional 
development. We show how adaptation along the implementation chain can be viewed not merely as 
loss of fidelity, but rather as an opportunity for researchers, teachers and students to refine their 
perspectives on PS activity, and to learn through the implementation process. 

Keywords: Implementation, fidelity, adaptation, boundary-crossing, documentational approach to 
didactics. 

  

Introduction 
Problem solving (PS) was put on the mathematics education agenda decades ago (Pólya, 1945/1973; 
NCTM, 2000; Schoenfeld, 1985), and remains one of the spotlights of mathematics education 
research to this day (Felmer et al., 2019; Lester & Cai, 2016; Schoenfeld, 2013). It is considered both 
as a self-contained goal and as the means of accomplishing other significant objectives of 
mathematics education (Schroeder & Lester, 1989). In addition, PS is considered one of the central 
activities in mathematics as a living science, and thus it has been hoped that it would also become a 
central activity in mathematics education (Mamona-Downs & Downs, 2005; Lester & Cai, 2016). 
However, implementation of PS in the school reality is relatively rare, and even when implemented, 
activities that designers of instructional resources intend as PS are liable to be enacted as drill and 
practice, a kind of activity that still tends to be dominant in mathematics classrooms (Lester & Cai, 
2016; Felmer et al., 2019). Lester (2013) attributes “this unfortunate state of affairs” (p. 251) to the 
fact that research on mathematical problem solving remains largely a-theoretical. Schoenfeld (2013) 
suggests that the current challenge is to specify the theoretical architecture of PS activity, in order to 
explain “how decision making [on PS implementation] occurs within that architecture” (ibid., p. 17) 
and to theorize on “how ideas grow and can be shared in interaction” (ibid., p. 20). The conceptual 
framework of problem solving implementation chain (PS-IC) aims to address these lacunas. Briefly, 
we consider PS-IC as a sequence of actions and interactions beginning with the development of a 
problem-solving resource by researchers, which teachers then engage with in professional 
development (PD), and finally teachers and students make use of in classrooms. 
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Problem-solving implementation chain – a conceptual framework 
Current research (e.g., Aguilar et al., 2019, Koichu et al., 2021) conceptualizes implementation of 
innovation, such as incorporation of PS resources in a classroom that normally features drill and 
practice, as a change-oriented process that takes place between proponents of an innovation (often 
education researchers) and its adapters (often mathematics teachers) who adapt the resource while 
taking agency over it. Taking inspiration from Stein et al. (2007), who distinguished between 
intended, enacted and experienced curriculum, we propose the term intended PS to denote the 
proponent’s vision of enactment for a particular problem, planned PS to denote the vision of the 
teacher, enacted PS to denote what actually takes place in the classroom from the perspective of the 
enacting teachers, and experienced PS to denote what takes place from the perspective of students. 
Thus, PS-IC can be operationalized as a dynamic sequence of intended–planned–enacted– 
experienced PS perspectives that are shaped by interactions between the stakeholders involved. 

From the perspective of the resource proponent, the intended PS is implicit in the problem, and may 
also be communicated orally or in writing, for example in a teacher guide. There is a duality in 
teachers’ interactions with resources that is conceptualized in the documentational approach to 
didactics (DAD, Trouche et al., 2020) as instrumental genesis. An instrument is taken to be an artifact 
(e.g. a problem) along with schemes for its use. On the one hand, teachers are invited to appropriate 
the intentions of the designer in a process called instrumentation. On the other hand, “the conceptions 
and preferences of the user change the ways in which he or she uses the artifact, and may even lead 
to changing or customizing it” (Drijvers & Trouche, 2008, p. 368) in a process called 
instrumentalization.  We consider intended and planned PS as documents (Trouche et al., 2020), in 
the sense of a particular resource (problem) along with an elaborated scheme of usage, which includes 
the aim of the activity (e.g., to engage students with particular mathematical competencies), rules of 
action (e.g., orchestrating a classroom discussion based on students’ ideas), operational invariants 
for PS activity in general (e.g., students should first “get stuck” and then attempt to invent a solution 
over a period of 20-30 minutes), and possibilities of adaptation (e.g., what to do if some students do 
not make any progress on their own). The process in which teachers develop such documents is called 
documentational genesis (Trouche et al., 2020). 

The use of a new resource is not dictated by its proponent, but neither is it completely in the hands of 
the adapters (as is often tacitly assumed in DAD). In PD, researchers and teachers may engage in a 
kind of co-documentation, which may give rise to a new hybridized scheme of usage. A similar 
process may take place through interactions between teachers and students. Thus, to understand why 
and how PS documents evolve, we propose to study the “links” in the chain – interactions between 
researchers and teachers at the link between intended and planned, and between teachers and students 
at the link between enacted and experienced. Cooper et al. (2020) have conceptualized the kind of 
expansive learning that can take place between researchers and teachers in PD as boundary crossing 
(Akkerman & Bakker, 2011), and have demonstrated various learning mechanisms that may take 
place when these communities interact, such as coordinating perspectives in attempting to translate 
the discourse of others (e.g. what do you mean by problem?), reflecting on each other’s practice (e.g. 
researchers considering the practical rationality of teachers’ actions), and transforming practice 
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through hybridization. Robutti et al. (2020) have investigated the role of mathematical tasks in such 
learning as boundary objects. 

Thus, the notion of implementation chain provides a conceptual framework to address two classes of 
research questions: 1. What are the differences between PS at various phases of implementation, from 
intended to experienced? 2. How and why do these differences develop through interaction between 
researchers, teachers and students?

Illustrative analysis of a PS implementation chain
We now illustrate how the notion of PS-IC can support research. For this we rely on a particular 
problem, drawing both on empirical data (what took place) and on thought experiment (what could 
have taken place). The context of this example is a PD program that aims to encourage and support 
PS in 

Figure 1: The problem

Proceedings of CERME12 4113



middle-school mathematics classes. Challenging problems were designed and piloted by a 
development team comprising researchers, teachers and teacher educators. Then, in a 30-hour PD 
program, teachers solved problems, discussed and planned classroom enactments, enacted problems 
in their classrooms, submitted reflective reports on the activity, and discussed their enactments. Both 
authors observed the PD meetings, and we rely on our observations and on the reflective reports. We 
elaborate on a particular problem (Figure 1), which was enacted in 6 classrooms. Our analysis has 
five focal points: The intended, enacted and experienced schemes of enactment, and interactions 
between researchers and teachers and between teachers and students. 

Intended enactment scheme
The scheme of enactment as intended by the proponent – the didactic aims of PS activity, rules and 
principles of its enactment, and its potential adaptation – are captured across a collection of 
documents, including teacher guides for each of the developed problems. We lay out some of the 
main aims and principles, and demonstrate them in the context of the problem under consideration.

Aims: Mathematical problem solving is both a goal in its own right and a means toward deepening 
mathematical understanding. As a goal, students should learn to solve problems in authentic contexts, 
applying a variety of generic and mathematical competencies. Seeking a fair rule for factoring grades 
is challenging due to the need to explicate a mathematical model of fairness, translate data between 
4 different representations of functions (verbal, symbolic, numeric, graphic) and to come up with an 
innovative strategy. As a means, it can contribute to students’ flexible translation between 
representations of functions, and foster an appreciation of the importance of this competency.

Rules of action (local and invariant): Teachers should allow students to struggle in their attempts to
make sense of the problem and to find a solution strategy. Telling students what to do (e.g. “calculate 
the result of factoring the grades 50, 75, 100 in each of the proposals”) can demote PS to mere drilling 
of procedures. The PS environment should be choice-affluent (Koichu, 2018), in the sense that 
students can choose whether to try to solve the problem individually, critique or contribute to a peer’s 
solution, make sense of or explain a proposed solution, etc.

Adaptation: Teachers’ enactment of PS should not be prescribed. There 
are many different valid rules of action, and teachers should be aware of 
many of them, and have the agency to make informed decisions on such 
factors as class organization (individual, pairs or small groups, whole 
class), time allocation, etc., adapting the activity to their local context. 
Accordingly, the teacher guide avoids prescription of rules of action, and 
instead highlight affordances of different possible modes of enactment. 
When students get “stuck”, teachers should provide guidance that alleviates 
frustration without eliminating the challenge. For example, the teacher 
guide suggests that students might be provided all 4 functions in a single 
representation (Figure 2), possibly without specifying which graph corresponds to which proposal, 
and without specifying how this hint might prove to be helpful.

Figure 2: A possible hint
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Scheme as planned and enacted 
Teachers’ planned schemes were inferred through their participation in the PD, where PS activities 
were discussed, and their enactment schemes were inferred through analysis of a structured 4-page 
detailed, semi-structured report that they submitted following classroom enactment of the problem.  

Aims: Teachers’ discourse on PS was dominated by two main concerns: what are their students 
capable of (e.g. “it’s too difficult”), and what is institutionally possible (e.g. “I have no time for 
lengthy activities that are not aligned with the curriculum”). As a result, some of the teachers did not 
have the patience to engage with problems deeply enough to appreciate their didactic potential. Yet 
in the particular problem under consideration, three teachers noted curricular aims – to summarize 
and assess the topic of functions, or to practice the topic after formal instruction was completed, 
noting that it provided opportunities for students to deepen their understanding. Some teachers 
mentioned aims that were not directly related to the curriculum, including practicing collaboration in 
group work and encouraging mathematical reasoning.  

Adaptation: Three teachers modified the problem. One merely omitted the last section to leave time 
for a significant discussion of sections 1 and 2, having decided not dedicate more than a single 45-
minute lesson to the problem. Two others attempted to make the problem more relevant for their 
students. One did this by rephrasing section 3 in the first person (“which proposal should I 
consider”?). Another teacher took this idea of relevance one step further. She enacted the problem 
after returning a graded test, and instructed each student to calculate the result of each proposal on 
their own grade and to submit the results on a google form that she had prepared. The authentic data 
that was collected – the result of applying 4 different factors to 27 distinct grades (in total 108 
calculations) – was then made available to all students as a resource for working on the problem. 
While this denied students the initial struggle, it added an element of personal relevance. 

Rules of action: There was much variation in the way the six teachers enacted the problem. The total 
time that students worked on the problem ranged between 30 and 90 minutes. Two teachers began 
the activity with a whole class introduction, while the others immediately launched students’ work 
on the problem. All teachers held a whole-class discussion at the end of the activity. Work that led 
up to the discussion was in two cases individual, and in 4 cases was in pairs or small-groups. All of 
these schemes fall within the range of the intended scheme. Yet all the teachers appeared to be rather 
quick to defuse students’ frustration by providing hints or guidance as soon as they began to struggle. 

Emerging invariants of PS enactment: Teachers’ reflection on the activity provided a glimpse on 
their emerging invariants for PS activity (i.e. how they are likely to enact their next PS activity). One 
teacher valued the fact that her students were challenged, though she reported that she helped them 
during their individual work on the problem. It remains to be seen how she will come to balance 
challenge with her tendency not to let students remain “stuck”. Two other teachers stressed the need 
to provide ample time for students to work and reason individually, suggesting that selecting short 
problems (or shortening longer one) may become a PS invariant for them. Two teachers were coming 
to adopt an invariant of small-group work, affording quiet students an opportunity to be heard.  

Proceedings of CERME12 4115



 

 

 

Experienced PS 
Based on the PS as enacted, it seems unlikely that students would have the opportunity to experience 
PS as intended, mainly because teachers were quick to assist struggling students. Nevertheless, one 
teacher indicated that here students were successful “after many attempts”, suggesting that they were 
allowed to struggle, and some teachers were surprised by their students’ capabilities (e.g. to represent 
functions on Desmos), suggesting that they may in future pose problems that they consider difficult. 

Intended-planned link (teacher-researcher interactions) 
Both the problem and the reports can be considered boundary objects in the following sense: Teachers 
planned lessons around problems designed by researchers, seeking pedagogical affordances they were 
not previously aware of, and reflecting on the activity attending to aspects that researchers considered 
significant. Researchers attempted to make sense of teachers’ actions in PD discussion and through 
their reports. Beyond the obvious opportunities for learning through coordination and reflection on 
each other’s perspectives, we bring some examples of learning through transformation of practice: 
One teacher’s omission of the final, most challenging section of the problem may appear at first to 
“cripple” it by lowering the challenge. Yet making explicit the practical constraint of fitting the 
activity into a single 45-minute lesson has encouraged us to rethink how this can be reconciled with 
our views on PS, and has given birth to a kind of hybrid activity – a principle for designing 
“condensed” problems that fit into a single lesson without compromising crucial aspects of the PS 
activity. We are also coming to appreciate the role of teachers in motivating their students’ PS activity 
by creating local relevance. This relevance is multi-faceted, and includes curricular relevance 
(carefully timing the enactment to serve a didactical purpose at a well-defined point in the 
curriculum), personal relevance (improving one’s grade on a test) and social relevance (co-generating 
data to solve a problem, engaging in group work).  

Enacted-experienced link (teacher-student interactions) 
We are encouraging teachers to elicit feedback from their students to gain access to their experiences. 
We do not yet have data on this practice, yet can hypothesize on its potential to negotiate shared 
meanings and aims for PS activity (e.g. “it’s not about getting the right answer”) and to develop 
practices that will provide all students with opportunities to engage in mathematical reasoning. 

Discussion 
This paper proposes the analytical framework of PS implementation chain (PS-IC) for analyzing the 
evolution of problem solving activity as it passes from the proponent (intended), to teachers 
(planned/enacted), and finally to students (experienced). In combining DAD (Trouche et al., 2020), 
and the notion of boundary-crossing (Akkerman & Bakker, 2011) we propose a framework that can 
describe aspects of PS evolution, along with mechanisms and rationalities for this evolution.  

Some might consider divergence from the intended activity as loss of fidelity (e.g., Brown et al., 
2009), and as such undesirable. In contrast, we hold that local adaptation of the activity and its aims 
is desirable and even necessary. While the proponent of an educational resource can attempt to convey 
the rationale for some proposed scheme of enactment, it is ultimately the teacher who is the expert 
on the contextual parameters of local implementation (students, curriculum, institutional norms and 
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expectations, etc.) and who should decide on the aims and rules of enactment that are appropriate for 
a particular setting. Nevertheless, we can easily imagine how PS can diverge from the activity as 
intended beyond recognition as what we would consider PS, particularly if resources migrate between 
very different educational systems. Our analysis suggests how this fidelity-adaptation dichotomy can 
be reconciled. Interactions at the IC links around the enactment of PS, conceived as learning through 
boundary-crossing, may instigate researchers to generalize their intended scheme to accommodate a 
broader set of educational contexts, or even revise their schemes – recognizing new aims and 
affordances of new rules of action, and modifying invariants of the intended PS. Thus, fidelity may 
be maintained not by keeping the enacted scheme close to the intended, but by continually realigning 
the intended with the enacted.   

We briefly note the implications of our theoretical perspective for upscaling. One may hope, through 
the accumulation of data and experience, to provide an “ultimate” set of problems and teacher-guides. 
However, the theoretical perspective we have put forth denies the existence of such a set. Rather, it 
is the very notion of PS-IC that needs to be made visible to teachers at scale. A community of teachers, 
sharing their documentational genesis (resources, practices and insights) can achieve this.  
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The paper addresses the role of educational task design in implementation research. Its point of 
departure is the first revision of a task developed for 4th grade in collaboration with a Danish school 
teacher. The authors informed the task from a hypothetical learning trajectory that requires students 
to draw on their knowledge both of mathematics and programming and computational thinking. From 
a task-design standpoint, the teacher’s experience proves necessary to adapt the task to local reality. 
The collaborative process illustrates broader implementation issues, such as problems and roles of 
different stakeholders, innovation adaptation and capacity building. The lessons are consistent with 
the emergence of design-based implementation research as a more comprehensive model. 

Keywords: Computational thinking, design-based implementation research, hypothetical learning 
trajectories, programming, task design. 

Introduction 
The mathematics education community has recently gained a renewed interest in programming and 
computational thinking (PCT) as related subject matter areas. Although there is consensus on the 
potential synergies between mathematics and PCT, exploiting them has proven to be a difficult task 
(Misfeldt, Szabo & Helenius, 2019). Research in mathematics education has taken several approaches 
to address this difficulty. For example, by considering how to train and prepare mathematics teachers 
to teach PCT (e.g., Kilhamn & Bråting, 2019), coming up with ways to conceptualise its relation with 
mathematics (e.g., Benton et al., 2017; Weintrop et al., 2016), and trying to understand better 
students’ learning processes and dispositions in computational thinking-driven mathematics 
classrooms (Pérez, 2018).  

More locally, Denmark is planning to implement technology comprehension as a new subject in K-9 
education comprising four competency areas: digital empowerment, digital design and design 
processes, computational thinking, and technological knowledge and skills—including programming 
(Smith et al., 2020). The Danish Ministry of Education is conducting a pilot project at 46 schools is 
seeking to gain experience with implementing it (1) as a subject in its own right and (2) as an element 
integrated into existing subjects, here among mathematics. In both cases, the ministry has published 
a tentative curriculum with added technology comprehension learning goals and prototypes of 
teaching resources.  
This paper takes an implementation perspective on the challenges of intertwining PCT with 
mathematics teaching, anchored in the Danish school context. The broader aim of the research project 
is to support mathematics teachers in connecting PCT and mathematics in their everyday practice 
through the development of carefully designed tasks. By engaging in an educational design process, 
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we draw on this approach to iteratively design, implement, and refine activities developed to fit the 
mathematics teachers’ needs and support students’ learning.  

We anchor the content of this paper at a school that is part of the aforementioned pilot project, where 
we collaborate with a mathematics supervisor to refine a task developed to integrate PCT and 
mathematics in grade 4. In this context, matters of implementing a new subject and of task design 
interweave. 

Design-based implementation research 
Implementation research in mathematics education seeks to close the gap between research and 
practice (Jankvist et al., 2021), including the characterisation of a particular innovation and the factors 
conditioning its implementation (Century & Cassata, 2016). We aim to illuminate the characteristics 
of the new subject as embedded in the mathematics curriculum as a factor. In particular, we narrow 
down the innovation to a particular task. 
One emergent model acknowledging the role of educational design in the context of implementation 
is design-based implementation research (DBIR). As noted by Fishman et al. (2013), DBIR is 
different from conventional design research, which only focuses on student learning, in that it points 
out “how the deployment of new tools (e.g., curricula, technologies) can bring to light new needs for 
coordination across different system levels and for capacity building” (p. 144). DBIR is then 
characterised by four principles “(1) a focus on persistent problems of practice from multiple 
stakeholders’ perspectives; (2) a commitment to iterative, collaborative design; (3) concern with 
developing theory and knowledge related to both classroom learning and implementation through 
systematic inquiry; and (4) a concern with developing capacity for sustaining change in systems.” 
(Fishman et al., 2013, pp. 136–137). Based on this framing, we ask the following research question:  
What can we learn about the implementation of PCT in mathematics education by designing a single 
task with a teacher from a DBIR perspective? The second and third principles pertain to standard 
design research (Bakker & van Eerde, 2015). In this paper, we focus on the first and fourth principles 
to organise our discussion, which is anchored in the early stages of designing a programming and 
geometrical task. 

An essential conceptual tool for developing the design and learning from iterations is that of a 
Hypothetical Learning Trajectory (HLT). In the context of one or two lessons, an HLT is “the 
consideration of the learning goal, the learning activities, and the thinking and learning in which 
students might engage” (Simon, 1995, p. 133). Artigue (2021) highlights HLTs as a critical theoretical 
resource from design-based research to connect research and practice. An HLT seeks to make explicit 
what will happen when the design is brought into the hands of the practitioners concerning the real-
world problem it aims to address. It describes the process that ought to take place during the 
intervention with the design. An HLT is informed by theory and should be sufficiently exhaustive so 
that its assumptions can be challenged by a real-world enactment of the design (Cobb & Gravemeijer, 
2008). The HLT enables one to expose unforeseen interplays between intention, design, and reality, 
thereby challenging and qualifying our theoretical assumptions. After an intervention, one is thus able 
to consider whether it led to the desired outcome or not and point expressly to where our 
understanding of the design was confirmed or challenged—and what needs to be modified (Doorman 
et al., 2013). In the following, we describe the HLT informing our task design. 
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Designing a programming and geometrical task 
Before the interaction with the expert mathematics teacher, the authors developed an a priori HLT 
addressing what we anticipated to be the main challenges in implementing PCT in mathematics. We 
envisioned that to ensure that students engaged in learning processes involving both mathematics and 
PCT, it was necessary to develop a task that required them to activate knowledge from the domains 
of both geometry and programming. Moreover, we believed that creating such a task would have a 
positive side effect for mathematics teachers in that the relevance of integrating PCT in mathematics 
would be clear. The learning goal is to deduce and test a general expression for the internal angle of 
any regular polygon. To solve the programming task, students should do the mathematical action of 
conjecturing a general expression for the internal angle of an n-gon. In turn, to test out such an 
expression, they must find a way of programming it in Scratch. A sample solution is depicted in 
scratch.mit.edu/projects/541978601. 

The learning activities, depicted in Table 1, scaffold students’ work by drawing on the use-modify-
create principle from programming education (Lee et al., 2011), which states that it is easier for 
students to start with a pre-made script and adapt it to solve variations of a problem before elaborating 
new code. We also envisioned a progression in the task based on increasing difficulty by starting 
from a square, then a triangle, hexagon, pentagon and finally generalised polygons. 

Table 1: Original hypothetical learning trajectory 

Learning activities Hypothetical learning process 
Use a Scratch code that draws one segment. 

a Scratch code that turns the pen 90°. 
Explore what happens when run repeatedly. 

Become familiarised with basic pen up, down, move blocks. 
Become familiarised with turn(degrees) block. Realise that 
four repetitions suffice to draw a square. 

Modify the code to draw a square with one run using 
a repeat loop. 
the code so that it draws an equilateral 
triangle. 
the code so that it draws a regular hexagon. 
 
the code so that it draws a regular pentagon. 

Intuitive inclusion of a repeat(4)-block. 
 
Modify to repeat(3) and turn(60°), revising to turn (120°) 
distinguishing between internal and external angles. 
Modify to repeat(6) and turn(60°), after previous 
experience or trial and error. 
A trial-and-error strategy will be slow or unsuccessful, 
prompting to find the 72° external angle with pen and paper. 

Create a code that draws any regular n-sided 
polygon. Teacher introduces variable block. 

After registering previous cases, students find collectively a 
pattern that can be generalised for internal/external angles. 

The design decisions and hypothetical learning processes were rooted in the literature on embedding 
PCT in mathematics classrooms. One of the mathematical courses from technology comprehension 
available in tekforsøget.dk/forlob involves programming BeeBots1 to draw polygons in first grade. 
The robots, however, can only turn 90°, limiting the tasks to squares and rectangles. Drawing 

                                                 
1 BeeBot is a robot designed for use by young children, which can be used for teaching sequencing, estimation, problem-
solving and more. 
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polygons is also part of the ScratchMath project’s “Beetle geometry” module (see, e.g., Benton et al., 
2017). Their design proposes exploring four increasingly difficult polygons, figuring the turning 
angle: square, rectangle, equilateral triangle, and regular hexagon. 

Furthermore, Herheim and Johnsen-Haines (2020) explored two seventh-grade students’ productive 
struggles while drawing a pentagon. From here, some of the expected obstacles are mistaking internal 
by external angles and a trial-and-error strategy that will not suffice to reach a solution, thus calling 
for reasoning and calculating the exact 72° angle. Accordingly, students should overcome sequential 
challenges. First, students would use a loop to draw a square in one run. Secondly, they will sort out 
the internal angle for a triangle and hexagon and adapt their code. Next, they will require a pen-and-
paper solution for the pentagon, as opposed to trial-and-error. Finally, they would generalise the latter 
case, introducing a variable for the number of sides. 

Upon designing the task described above, the two first authors interviewed an expert mathematics 
teacher who acted as a supervisor at the school on which the task is to be implemented. The purpose 
of the interview was two-fold: (1) to test and reach a mutual understanding of the core implementation 
challenges to address and (2) to refine the task according to these challenges. The interview was semi-
structured and 60 minutes long. The teacher agreed to have the meeting recorded for research 
purposes. Below, we describe the insights regarding our initial HLT that this interview brought. 

Revisions of the task based on teacher interview 
The teacher agreed on the learning goal, but the sequence of activities and hypothetical learning 
processes are revised in Table 2. Based on her input, three changes are worth mentioning: starting 
with a blank script, as opposed to using a working code, further use of pen-and-paper, and sequential 
order of polygons according to the number of sides. 

Table 2: Revised HLT based on teacher’s input 

Learning activities Hypothetical learning processes 
What are polygons? Write your findings in Book Creator. Students collectively activate their previous knowledge 

on polygons and their elements (sides, angles, vertices). 
Create a Scratch code that draws an equilateral triangle. 
Create a Scratch code that draws a square. 
Create a Scratch code that draws a regular pentagon. 
Create a Scratch code that draws a hexagon. 

Students engage in a trial-and-error strategy, registering 
in Book Creator the parameters used for repeat and turn 
blocks in increasing order. These are tools for the next 
activity. 

Create a code that draws a figure of your choice: a flag, a 
labyrinth, a logo, or your own artwork. 

This motivation is set up in the introduction but executed 
in the end. It gives students purpose to explore polygons’ 
properties and how to depict them in Scratch. 

The teacher challenged the pedagogy of use-modify-create by proposing that students should start 
creating their own code. The idea of starting with a given script is that it avoids frustration and makes 
the first step easy. 

Teacher: It’s easy to do it. But … instead of giving the code from the start, the first thing is 
to let the children make it themselves. Maybe they can do it; maybe they can’t. But 
they need to understand what are we doing now. Instead of just having the code, 
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“how can we do this?” “What is the problem?” “What do we need to know?” 
“Which kind of code do we need to do to code a triangle?” 

Overall, her take is that more relevant than a smooth start in terms of difficulty, the students ought to 
perceive the posed problem as their own. Moreover, enabling struggle (Pérez, 2018; Herheim & 
Johnsen-Haines, 2020) and debugging (Weintrop et al., 2016) is consistent with the literature on 
computational thinking in mathematics classrooms. 

Since an essential part of our HLT was requiring students to activate both mathematical and 
programming knowledge, all mathematical operations in our task were conducted in Scratch. We 
envisioned that the students would occasionally enter a flawed code, which the Scratch drawing 
would make clear (a flawed figure), and that the students iteratively would correct the code to draw 
the desired one. While the teacher acknowledged and agreed with the importance of this iterative 
approach, she anticipated that the students would not by themselves engage systematically in a new 
iteration if they were not encouraged to document their working process. Therefore, she suggested 
supplementing the task with pen and paper for students to log their attempts and use these logs 
actively in the next iteration.  

Teacher: I call it [to] scribble. They have to take notes of what they did. After all, the idea is 
not that they randomly should enter numbers from 1–200. What they enter should 
be based on their thinking. They have to learn to be systematic, you know. 

In the original design, pen-and-paper was reduced to a minimum and based on the idea of 
computational thinking as a thought process that becomes concretised by programming in a 
programming environment. In technology comprehension, programming is considered a 
technological skill detached from computational thinking (Smith et al., 2020). However, the teacher 
had a different approach: 

Teacher: I think the children start, and then we need to engage [them] in the thinking along 
the way. They are not sitting and planning.  

The task ultimately aims at educating students to draw an n-sided polygon, for which they require to 
find a general expression for its internal angle. Though the literature supports the scaffolding in our 
initial design (e.g., Benton et al., 2017), the teacher suggests arranging the sequence in increasing 
order. She draws on the Swedish researcher Olof Magne’s juxtaposition of arithmetic operations in 
teaching: 

Teacher: And I have worked with that. Instead of just starting with addition, then I took it all 
[i.e. all arithmetical operations], and the children didn’t have the same problems as 
they usually have. They learnt to make divisions in the first grade because we learnt 
it all. That’s part of my mindset. 

Overall, these proposed changes to the task respond to letting students own the problem and explore 
possible solutions systematically instead of solving a fixed sequence of exercises and offering 
scaffolded solutions. 

Discussion 
As described previously, DBIR consists of four main principles, namely persistent problems from 
multiple stakeholders, iterative and collaborative design, theory development, and building capacity 
for sustainable change. Although we believe the study reported in this paper has accommodated all 
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of these principles, the teacher interview led to refinements of the task that we anchor in the first and 
fourth. 

Discussing the task gave perspective towards different stakeholders and their presumed roles. In 
particular, the new version of the task will be more open, thus engaging students to solve a problem 
perceived as their own. Moreover, we envision tackling the issue of teacher training in programming 
by seeing students coding themselves: 

Teacher: They (…) think that [the] responsibility for teaching Scratch in on their shoulders; 
they don’t take it. But then they see that the children can manage Scratch and they 
have (…) seen what the children can do, and have seen the children’s eyes, and they 
have felt the good spirit about working with math and Scratch, then they are 
convinced. 

Tasks supporting PCT and mathematics integration should accommodate both aims of ensuring 
students’ mathematical learning processes and anticipated or perceived challenges from teachers’ 
perspectives. The design process reported in this study corroborates that these ends are compatible 
by meaningfully relating the two subject matters and acknowledging that teachers do not feel 
sufficiently proficient in PCT to teach it. On the same line, it is worth mentioning that the teacher did 
not question the HLT’s learning goal, as it addresses one of the main issues of technology 
comprehension tasks, namely their connection to the mathematics subject matter: 

Teacher: The teachers know math, and they know the didactics around that. But they don’t 
know the didactics around technology comprehension. (…) Suddenly it was 
something they had to work with (…) and then, they saw the math and they thought 
the math wasn’t... eh... very good. 

The case of this first design iteration illustrates how one can anticipate adaptation and reduce the 
distance between what is supposed to be and actually being implemented. For example, the initial 
design included a working code assuming that students had not been introduced to the pen 
environment on Scratch. However, the teacher challenged this claim. 

Although previous research has found use-modify-create to be an appropriate approach to scaffold 
students who are not accustomed to coding, the teacher had experience and knowledge of the 
importance of showing students that they are able to develop code on their own from very early on. 
Besides informing refinement of the task, this insight indicates that while theory on the didactics of 
PCT can inspire initial task design, it does not necessarily align with what is likely to work in a 
specific context. That is not to say that one particular teacher’s opinion must be generalised at face 
value. In turn, these conflicts can be tried out as hypotheses for theory development, in its humble 
sense (diSessa & Cobb, 2004). Furthermore, from a DBIR perspective, the quest for designing 
resources that build capacity over time must account for the diversity of pedagogical choices. 

Conclusion 
In this paper, we have investigated what we can learn about the implementation of PCT in 
mathematics education by designing a single task with a teacher from a DBIR 
perspective.  Revisions to the task were made by interviewing a teacher involved in the future process 
of implementing such a sequence. The new version promotes further ownership on behalf of the 
teacher by making her take part in the design process and revise implicit and explicit 
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assumptions. Further, working on a particular HLT goes beyond local task design. Fidelity is a 
recurrent theme in implementation research (Century & Cassata, 2016), likely because the design of 
innovations may conflict with teachers’ established and preferred practices. Involving the teacher 
in the initial design phase allowed us to anticipate such conflicts and to alter the innovation design in 
accordance with her reality. Our future collaborative endeavour with the teacher will teach us 
more about whether it leads to high or low degrees and innovation enactment adaptation. 

The openness to practitioners’ needs can make theory development more grounded (Bakker & 
van Eerde, 2015), but it leaves at least three options to move forward. In a humble sense, the 
educational design enables developing a local theory of how a task could successfully implement 
innovations that integrate mathematics and PCT at a specific school. A second alternative is to inform 
the conjecturing of hypotheses to try out at a larger scale. For example, one may validate or dismiss 
the pedagogical choice for use-modify-create. DBIR, however, offers a broader 
perspective. For capacity building’s sake, a variety of possible approaches can be provided to 
practitioners, who may pick and adapt tasks according to their priorities. In that sense, 
theory development ought to be at a higher level than a particular HLT. Instead, resources that 
sustain change for embedding PCT in mathematics may refer to general domain-
crossing themes or scenarios, such as drawing geometrical figures with programming. 
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This paper formulates an implementation process model for designing and implementing tasks for 
formative feedback in an online learning environment for mathematics classrooms using Vergnaud’s 
notion of scheme. In Denmark, the online environment matematikfessor.dk is used by more than 70% 
of Danish k-9 students. Using variations on one task, we illustrate how Vergnaud’s notion of scheme 
can be used to aid teachers in assessing students’ understanding of problems involving linear 
equations. Specifically, we focus on the intentional, computational and generative aspects of 
students’ schemes. 

Keywords: Implementation, diagnostic tasks, task design, online environment, linear equations. 

Introduction 
There is a great deal of evidence that formative assessment can have a positive impact on learning 
(Black & Wiliam, 1998). Attempts to promote formative assessment have often resulted in teachers 
having substantial difficulties implementing these ideas (Bennett, 2011). A key issue is that teachers 
face challenges inferring students’ learning needs based on those students performance on tasks 
(Thompson & Thompson, 1994). Several programs have been launched historically in the attempt to 
document specific difficulties in learning mathematics. These projects have contributed to the 
understanding of many misconceptions and other obstacles to learning mathematics (Rhine et al., 
2018). Tasks of a diagnostic character have in many cases been a part of these projects. There is an 
extensive literature on how the tasks performed, why they were chosen and why the tasks are believed 
to be sensible choices for exploring certain areas of difficulty in learning mathematics (Küchemann, 
1981). However, few papers systematically address the considerations or design principles underlying 
the construction of these tasks in order to provide relevant feedback to teachers. 

In this paper, our focus is on formulating an implementation process model to guide the process of 
translating research into practice (Nilsen, 2015). In this case, the model is directed at the design of 
formative tasks within online learning environments (OLEs) that implement Vergnaud’s (2009) 
notion of scheme to enable teachers to better interpret, and respond to, learners’ errors. We do this in 
the specific learning contexts of the concepts of linear equations and the equals sign, and draw on 
research on learners’ errors and difficulties with these concepts (Rhine et al., 2018). OLEs can play 
a significant role when implementing research-based knowledge into the classroom, since OLEs can 
provide feedback directly to the end users, namely the teachers (Dyssegaard et al., 2017). In addition, 
these environments can produce substantial assessment data almost immediately with relatively little 
effort from teachers. However, a key restriction, and challenge to the implementation of Vergnaud’s 
scheme, is that learners’ responses to tasks are restricted due to input and marking constraints and 
thus cannot be fully open-ended.   
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In this paper, we propose the following research question: How can the notion of scheme guide the 
design of diagnostic tasks for implementation in OLEs about known difficulties with the concept of 
linear equations and the equals sign, in order to enable teachers to better interpret learners’ 
difficulties? 

The context: matematikfessor.dk, an OLE for mathematics 
In Denmark, as in many other systems, OLEs are increasingly used by teachers and students. 
Matematikfessor.dk, the environment discussed in this paper, has been running for over 10 years. 
More than 500,000 students in primary and lower secondary schools have access to the environment 
and, on a typical day, 45,000 unique students use the variety of tasks offered by the site, and 
collectively answer 1,500,000 tasks. OLEs like matematikfessor.dk therefore have access to a large 
amount of data and can potentially provide valuable feedback to teachers about the difficulties that 
students encounter in learning mathematics. As such OLEs become more ubiquitous, it is crucial to 
develop an explicit understanding of the process of designing tasks for implementation in online 
environments in order to enable teachers in preparing better teaching. 

Theoretical constructs 
Difficulties in learning mathematics related to linear equations 

We adopt the view of Jankvist and Niss (2015) that identifies genuine difficulties in learning 
mathematics as, “those seemingly unsurmountable obstacles and impediments – stumbling blocks – 
which some students encounter in their attempt to learn the subject.”(Jankvist & Niss, 2015, p. 260). 
One kind of stumbling block that many students experience in the beginning of lower secondary 
school or when attempting to learn the solving of more ‘abstract’ (Vlassis, 2002) linear equations is 
the role and interpretation of the equals sign (Kieran, 1981). Jones et al. (2012) argues that in order 
to achieve a better understanding of the role of the equals sign, one must learn to substitute one 
representation for another equal representation. Many strategies for solving equations exist and are 
all sensible tied to different tasks and/or situations. However, at some point even linear equations can 
become abstract or complicated to an extent where only one strategy truly remains. Many of the 
strategies such as ‘guess-and-check’ or ‘working backwards’ do not necessarily require a deep 
understanding of the role or interpretation of the equals sign (Linsell, 2009). However, in order to 
apply more advanced equations solving strategies students must become more flexible in their 
understanding of the equals sign (Kieran, 1981). 

The notion of scheme and its role in activity 

In Vergnaud’s (2009) work, we become familiar with how the scheme as a concept works as an 
organizer of action or activity when faced with a situation or a class of situations: 

[Schemes] describe ordinary ways of doing, for situations already mastered, and give hints on how 
to tackle new situations. Schemes are adaptable resources: they assimilate new situations by 
accommodating to them. Therefore, the definition of schemes must contain ready-made rules, 
tricks and procedures that have been shaped by already mastered situations (p.88)  
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Such a situation or class of situations could be exemplified as working with algebraic expressions or 
engaging in solving linear equations. If we accept that schemes are organizers of the activity of an 
individual, we can create assumptions about students’ schemes by observing their action and activity 
in desired situations. Ahl and Helenius (2018) claim that this is why schemes are both didactically as 
well as analytically more interesting than the idea of conceptual understanding.  

Vergnaud (2009) defines a scheme as having four aspects:  

The intentional aspect involves a goal or several goals that can be developed in subgoals and 
anticipations. The generative aspect involves rules to generate activity, namely the sequences of 
actions, information gathering, and controls. The epistemic aspect involves operational invariants, 
namely concepts-in-action and theorems-in-action. Their main function is to pick up and select the 
relevant information and infer from it goals and rules. The computational aspect involves 
possibilities of inference. They are essential to understand that thinking is made up of an intense 
activity of computation, even in apparently simple situations; even more in new situations. We 
need to generate goals, subgoals and rules, also properties and relationships that are not observable.  

The main points I needed to stress in this definition are the generative property of schemes, and 
the fact that they contain conceptual components, without which they would be unable to adapt 
activity to the variety of cases a subject usually meets. (p. 88) 

Essential to the schemes from Vergnaud’s perspective are the operational invariants (the epistemic 
aspect of schemes), consisting of concepts-in-action and theorems-in-action. A concept-in-action 
Vergnaud describes as “an object, a predicate, or a category that is held to be relevant.”(Vergnaud, 
1988, p. 168). In every mathematical action, we choose certain objects, predicates or categories of 
such that are believed to be relevant in the current situation or setting. A theorem-in-action as a 
proposition held to be true. When we engage in a mathematical situation, we believe certain 
“theorems” to be true or false, about the objects relevant to the situation. Vergnaud states that there 
is a dialectic connection between theorems and concepts, and this emerges from the fact that more 
advanced mathematical concepts originate from theorems and vice versa. Nonetheless, is it important 
to distinguish the cognitive function of the operational invariants in this very specific manner. 
Concepts-in-action are individually available concepts in a for the enactor relevant representation to 
the situation. Vergnaud’s (1988) interpretation of the representation is similar to what others call a 
conception or a concept image (Tall & Vinner, 1981). Concepts-in-action bear no value of logical 
truth, just relevance to the situation. Theorems-in-action are by nature true or false. These entities are 
sentences (or propositions) that provide the concepts with the possibility of inferences to take place. 
The rules of action are not to be confused with the theorems-in-action. The function of the rules of 
action (the generative aspect of the scheme) is to be appropriate and efficient, but they rely implicit 
on theorems-in-action (Vergnaud, 1997). Vergnaud (2009) emphasizes that schemes are efficient 
organizers of activity by nature, and, should they also become effective, the scheme can be considered 
an algorithm. He further clarifies that schemes do not have all the characteristics of algorithms. The 
effectiveness of algorithms lets them find a solution to a task in a finite number of steps (if a solution 
is possible). 
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Task design and implementation considerations 
In this section, we present the task design and the reasoning behind it. The design will focus on the 
role and interpretation of the equals sign as presented in Jones et al. (2012). The formulation is guided 
by the four components of the scheme (Vergnaud, 2009). An added discussion of the considerations 
of the implementation in an online environment precedes each task formulation. The overarching 
design principle idea comes from Ahl and Helenius (2018) who present a situation where a student is 
asked to calculate the average speed. The student invokes a scheme seemingly capable of handling 
average speed to some extent but ends up invoking and working with a scheme that incorrectly 
interprets average speed using an alternative (and incorrect) scheme involving a different average, 
namely arithmetic mean. Inspired by this, we formulate a set of tasks that invoke two potential paths 
to solution. The aim is to setup situations where two different schemes might be in play at the same 
time but the answer to the task should reflect which of the schemes that got the upper hand. We also 
reformulate the task in different ways to attempt to address the different aspects of the scheme. 

In matematikfessor.dk, the tasks must meet certain criteria regarding structure and user input types. 
The input types are restricted to inputting either a number or a multiple-choice selection. Each task 
must have a unique ‘right answer’ and must be presented in such a way to make immediate feedback 
possible. Our task design is intended to disrupt the ‘typical’ didactical contract (Brousseau, 2006) in 
that that ‘right’ answer highlights aspects of the student’s scheme.  

In the following, we demonstrate the task design in examples focused on the intentional, generative 
and computational aspects of the scheme. We do not focus explicitly on the epistemic aspect of the 
scheme, because this aspect, focused on the operational invariants, is such an essential part of the 
scheme that this aspect and its elements inform or are present in the other three components. For 
example, one would simply not be able establish goals without having at least partial access to a 
concept relevant to the situation, a concept-in-action. The focus will be on evaluating whether 
students invoke schemes capable of handling substitution based on equality or rather a scheme 
suitable for solving equations in order to solve the task and thus provide teachers with information 
on their students’ schemes. 

For the task design, we have chosen the following setup, in order to attempt to possibly invoke two 
schemes at the same time. We have chosen the following sequence of tasks to illustrate this design 
principle. Given the special constraints, we have chosen to only provide a single sequence of tasks, 
all adaptations of one item.  Using a scheme for handling and exchanging equal terms should be the 
‘easier’ path to the goal of solving the following task that serves as an outset for the variations in the 
following sections. An expert equation solver would choose the most efficient scheme to solve the 
task - “I know x has a specific value and I could easily calculate it, but I don’t need to for this task’. 

What number should go in the empty space? 3          =   11 3 + 4 =   ___ 

If students are able to insert 11 instead of the term 3x in the second equation (swap 3x and 11), our 
assumption is that the task is then easily solved by a secondary school student. However, if students 

Proceedings of CERME12 4130



 

 

are more inclined to determine the value of x, because that is what is ‘expected’ when faced with 
linear equations, then they might have a difficult experience, because the numbers are chosen in such 
a way that 3 is not a divisor of 11 (and x has a rational value).  

Setting ‘Goals and anticipations’ (the intentional part of the scheme) 

In this category, we present the task in a formulation where setting a goal for, or an anticipation of 
the task form of the solution. In many cases, one expects that, when confronted with a task containing 
a linear equation. finding the unknown value is crucial. We propose that when focusing on the goals 
and anticipation part of the scheme, the task could be formulated like the following; 

Is it necessary to know the value of x in order to fill in the empty space? 3          =   11 3 + 4 =   ___ 

Goals and rules are set and established based on the concepts-in-action and the theorems-in-action. 
Whether a student regards the equality between 3  and 11, and the fact that the term 3  is present in 
both equations as relevant information (concepts-in-action), could provide about whether s/he is 
capable of swapping the terms 11 and 3  in the two equations. Should a student not choose the 
substitutional link between the two equations to be relevant we expect that s/he would argue that they 
would like to know the value of x in order to fill in the empty space. One might argue that the goal of 
the task is blurred by the new formulation, since there is an empty line ‘begging’ for a number to be 
put on it, but the task is answered by a simple yes or no. However, for the purpose of assessment for 
learning, teachers might learn about their students’ schemes, with this formulation as opposed to just 
receiving a correct or incorrect answer from students filling in the empty space.  

Establishing ‘Rules of action’ (the generative part of the scheme) 

In this category, we attempt to uncover the rule, or strategy, for solving the task the student’s would 
apply. As mentioned in the above category, the operational invariants help set the goal or apply rules. 
When forming a strategy for solving a task, theorems-in-action might be more in focus. Therefore, 
we formulate the task not in terms of concepts relevance but rather in theorems that lead to rules. 
Now we confirm that the equation 3 = 11 is in fact important in order to achieve filling in the empty 
space. We propose a task where the formulation hints at what ‘path to the goal’ a student chooses, an 
equation solving strategy or a substitution of equal terms strategy. 

How is 3 = 11 important in order to fill in the empty space? 3          =   11 3 + 4 =   ___ 

1. Because 3  and 11 can be swapped in both lines 
2. Because I can calculate the value of x  
3. It is not important  

In this formulation, the teacher will get a slightly different view on what path a student is willing to 
choose. A further formulation of the task focusing on rules to generate action could look like; 
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How would you attempt to find out that number go in the empty space? 

1. I would find the value of  
2. I would swap 3  for 11 
3. I don’t know 

If the scheme(s) the student is drawing upon are only able to apply the rule of action to determine the 
value of the unknown, the teacher is provided with valuable information. In this way, a teacher gets 
a different perspective on basically the same task but in a different formulation and with a different 
focus or aim. 

Generating space for ‘Possible inferences’ (the computational aspect of the scheme) 

In this last example, we attempt to address the computational part of the scheme with another 
formulation of the initial task. In order to address whether a student make inferences about the element 3  when they compare it to a similar looking task, but where the scheme for solving equations should 
be rendered useless, because 3  has been replaced by a blue box.   

Is it the same number that go in the empty space in both tasks? 3          =   11 3 + 4 =   ___ 

          =   11  + 4  =   ___ 

If a student does in fact not see the similarities between the two tasks, but uses a scheme for solving 
equations working with the left most task and however is able to swap the blue box and the number 
11 in the right most task, the student might become suspicious. One might expect the student to 
wonder why this is the case or why the tasks performs differently yet so similarly. A different 
formulation could therefore be; 

Is it surprising the same number go in the empty space in both tasks? 

Is it for the same reasons that the same number go in the empty space in both tasks? 

The reason for wording the task this way is establish a cognitive conflict with students that are in fact 
surprised that 15 is the correct solution for both empty spaces. We attempt to create a link to a scheme 
we consider similar to the scheme capable of swapping mathematical equal terms by introducing the 
task with the blue box. 

Concluding remarks 
For this paper, we have explored considerations and the reasoning behind an implementation process 
model to guide the diagnostic task design in an OLE. This exercise was to implement Vergnaud’s 
scheme in order to enable or improve teachers’ opportunities to interpret learners’ errors within the 
constraints of the OLE. We based the task around different formulations or variations of an item using 
the components of the scheme. We have shown such slight reformulations of a task, guided by the 
components of the scheme, have the potential to reveal different aspects of students’ understanding 
related to linear equations and the equals sign. The tasks could be presented to the students in the 
order presented in this paper or they could be presented each to one third of the class for a subsequent 
discussion. The strength of the online environment is that teachers, as well as students, can get easy 
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access to feedback. We believe that because the tasks call for two specific schemes as generators in 
the situation, students would get a unique opportunity to be shown why it is in fact not necessary to 
know the value of the unknown. 

We have used Vergnaud’s intentional, generative and computational aspects of the scheme to 
demonstrate how an ‘exemplar’ item can be designed to distinguish between the different schemes 
that students use to tackle a task. The intentional aspect relates to what needs to be done to solve the 
task or what is expected of the student in this situation. The generative aspect relates to how the 
expectation are met or how progression is to be made in the situation. Finally, the computational 
aspect relates to why the desired goal is achieved or why new connections to other schemes or 
concepts make sense or might be established. We have touched briefly on omission of the epistemic 
part of the scheme and will leave a deeper explanation for further work.  The what, how and why 
might potentially contribute to shared or agreed upon theory of change (Jankvist et al., 2021) and 
thereby strengthening the implementability of the tasks by sharing the idea of respecting the what, 
how and why with teachers using matematikfessor.dk (Jankvist et al., 2021).  

Teachers can be provided clear feedback on what different scheme their students are most willing to 
invoke when solving these tasks. In the implementation of these items, teachers are not provided a 
guide to interpret the answer their students provided to the items. Teachers become aware of a 
possible need to teach substitution of equal terms. We have selected a task that illustrates the approach 
of the design frame for varying the task respecting the what, how and why. The next step in the process 
is to implement this framework with a range of tasks for relevant online feedback to teachers using 
matematikfessor.dk. Knowledge sharing and feedback from teachers using the tasks in their classroom 
will pave the way for a sensible implementation of a range of sequences of tasks.   
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Depth as a key issue for implementing DEM: The case of a teacher 
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This case study examines one Norwegian teacher’s enactment of an innovative system for 
mathematics teaching called developmental education in mathematics (DEM). The findings show that 
despite appropriate textbooks, high motivation, a belief that its principles are effective for 
mathematics teaching and learning, and indications of a shift of ownership of DEM, the teacher did 
not follow the fundamental principle of appropriate mathematical challenges for the students. Based 
on the findings, this paper identifies challenges regarding qualitative aspects, such as depth, of the 
implementation of the DEM project, while suggesting a path forward for a type of scaling-up process 
that does not necessarily include spreading to the largest possible number of schools. 

Keywords: Developmental education in mathematics, Zankov, Vygotsky, scale of implementation, 
depth of implementation 

Introduction and aim 
In Norway, some teachers have had success using a system for teaching elementary mathematics 
called developmental education in mathematics (DEM). DEM consists of mathematics textbooks 
adapted from Russia and a didactical theory developed by Russian psychologist Leonid V. Zankov 
(1901–1977), who was a student of Lev S. Vygotsky. Inspired by the excellent results of the pilot 
class (Melhus, 2015), around 100 schools across Norway have now adopted DEM.  

However, a recurring issue in mathematics education is turning small-scale successes into 
improvements of practice on a larger scale (e.g., Jankvist et al., 2021). A main problem of the DEM 
project is a lack of systematic knowledge about the teaching practices of the various schools since 
much of the effort so far has focused on curriculum development and dissemination. In addition, some 
schools simply use the textbooks without consulting DEM facilitators, leading to an even wider 
knowledge gap. In this sense, DEM remains an innovation at an early stage despite the history of the 
first teacher going as far back as 2009 (Gjære & Blank, 2019). To begin to address this knowledge 
gap, a PhD project seeks to characterize both the potential for DEM to support students’ mathematical 
development and the challenges that some teachers face along the way.  

The aim of this paper is to analyze one teacher’s enactment of DEM to answer the following research 
question: How is the main principle of teaching at an optimal level of difficulty realized in a 4th Grade 
mathematics classroom? The findings will form a basis for discussing more general challenges 
pertaining to scale, specifically the depth of implementation (Coburn, 2003) of the DEM system. 
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A short introduction to DEM 
DEM builds on the didactical theory developed by L. V. Zankov. Its use in mathematics education in 
Norway depends on a series of textbooks written in the 1990s under the guidance of Iren Arginskaya, 
a mathematician and member of Zankov’s research group. These books follow Zankov’s principles 
and have been translated and adapted for Norwegian schools. The main goal of DEM is not only to 
increase the mathematical abilities of the students, but more so to stimulate their general development 
(Melhus, 2015; Zankov, 1977). The didactical principles of DEM are as follows (Zankov, 1977): 

1. Teaching at a high (optimal) level of difficulty

2. The leading role of theoretical knowledge

3. Proceeding at a rapid pace

4. Promoting students’ awareness of the learning process

5. Systematic development of each student in the classroom

The five principles form a whole; they are interconnected and augment each other (Zankov, 1977). 
Nevertheless, this paper focuses on the first principle. Zankov’s system has been called 
“implementing the zone of proximal development” (Guseva & Solomonovich, 2017), since this 
concept lies at its core and its realization is fundamental and necessary to promote students’ 
development. Zankov (1977) built on Vygotsky when he wrote that the ZPD 

is identified by noting the kinds of problems that the child is unable to cope with himself, but can 
solve with the aid of grownups, in collaborative activity, or through imitation. But what a child 
can do in cooperation with someone else today, he will be able to do alone tomorrow (p. 18). 

This can be contrasted with problems students can do by themselves, in their actual zone of 
development. Zankov (1977) underlined the importance of the students’ emotional engagement 
needed to spend the intellectual effort to cooperate with others and overcome difficult problems. 
DEM teachers said that they saw “challenge-as-fun” as a central characteristic of DEM and something 
that had changed their views about teaching and learning mathematics (Gjære & Blank, 2019).  

Framing the study within a discussion of scale in implementation research 
An increasing number of schools now use the DEM textbooks. However, a discussion of the scale of 
an implementation cannot rely on numbers alone. Addressing this issue, Coburn (2003) suggested 
four major dimensions for assessing both quantitative and qualitative aspects of scale of educational 
implementations: Depth, sustainability, spread, and a shift in ownership of the innovation (Figure 
1).  
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Figure 1: A conceptualization of scale of implementation, adapted from Coburn (2003) by the author of this paper. 

The explicit goal of the DEM project is not to spread to as many schools as possible but to offer an 
alternative for teachers who are interested and find the system to suit their students’ needs (Gjære & 
Blank, 2019). Thus, attention shifts to the other aspects of scale, namely, depth, sustainability, and a 
shift in ownership of the DEM system. These will form the foundation of the discussion in this paper. 

Case description and method 
This case study draws its data from a wider set of classroom videos, where four experienced DEM 
teachers participated. They were all “early movers”, meaning that they were among the first to use 
the DEM textbooks in Norway. The 4th Grade teacher in this study works at a school that functions 
as a “model school” for DEM, where those who are interested can come and observe DEM lessons 
and talk with the teachers there. She has also participated in dissemination activities, such as writing 
about DEM in a journal for mathematics teachers and giving presentations about the positive 
experiences at her school. The same teachers also participated in focus group interviews before and 
after classroom videos were recorded. These interviews were analyzed separately and indicated that 
implementing DEM had changed their views on teaching and learning mathematics (Gjære & Blank, 
2019), including the teacher in this case study. The teacher was asked to plan her lessons as usual and 
not think about the video cameras. 

According to Eun (2019), the concept of the ZPD encapsulates Vygotsky’s theory of learning and 
development and can profitably be used as a lens to analyze various aspects of teaching-learning 
situations.  In this paper, the concept of the ZPD serves as an analytical frame to interpret the way the 
teacher engaged with the students to challenge them mathematically. While all three of this teacher’s 
lessons were analyzed in whole in the preparation for this paper, the data presentation has been 
shortened to include only one task from each lesson due to space limitations.  
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Findings
Episode from Lesson 1: Solving an equation 

The equation to be solved was (3n + 10) : 8 = 35.  A possible solution method, introduced in the 4th

Grade textbook, is based on doing opposite operations: If a : b = c and a is unknown, then you can 
find a by multiplying c by b. Here, (3n +10) takes the role of a and you can find its value by 
multiplying 35 by 8. However, the teacher introduced the activity by reminding the students that they
had to do the same operations on both sides of the equal sign, a slightly different and more general 
approach. Student 17 suggested beginning by multiplying 8 by 35, which corresponds to the textbook 
method, but had difficulties explaining further. Student 8 was asked to elaborate on Student 17’s 
response: 

206 S8 (comes up to the board) Well, you could say that one (points at the left-hand side of the 
equation) equals that one (points at the right-hand side).

207 Teacher: Aha! Let me see if I understand you two correctly. It is divided by eight, times eight, really, 
on both sides (she transforms the equation, see the second line in Figure 2). 

208 S8: Um, yeah.

209 Teacher: Is that your thinking, Student 17?

210 S17: Yeah

211 Teacher: That you multiply by eight on both sides. Yes!

S8 addressed the main concept of equality (utterance 206) but did not explicitly connect it to solving 
the equation. The teacher, however, went directly to the conclusion and wrote the transformation of 
the equation herself (207). The students’ responses (208 and 210) were not convincing. This pattern 
persisted during the whole solution process, with the teacher leading and writing, and students only 
supplying short answers along the way (see Figure 2).

Figure 2: Student 8 watches as the teacher helps him write the solution of the equation.

This activity did not follow the DEM principle of teaching at an optimal level of difficulty. Zankov 
(1977) was clear that the students themselves must make the effort to solve challenging problems to
develop their abilities. The beginning of this episode suggests that the task could suit the students’ 
ZPD nicely since S17 and S8 both contribute with mathematically productive statements about the
equation although their reasoning is incomplete. In utterance 207, however, the teacher completed a 
reasoning step for them, based on her own solution method and not the textbook method. This took  
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away the challenge for the students to solve the equation themselves, resulting in a lack of 
mathematical activity. 

Episode from Lesson 2: Finding the volumes of right rectangular prisms 

This activity was mostly a whole-class discussion about how to find the volumes of right rectangular 
prisms. During the discussion, some students expressed frustration by moving about on their chairs, 
sighing audibly, or answering in odd voices. Two prisms, 1 and 2, were pictured on the board, along 
with a table to fill out with length, width, height, and volume of each prism. 

277 Teacher: OK! Let’s use the formula to fill out this table and calculate the volume of these two figures. 
What then, can we say about the length of figure 1? (She pauses. The students are unrestful 
and only a few have their hands up) The length of figure 1? The length of figure 1, people. 
S11.  

278 S11: Um, it’s five, I think. Yeah.  

279 Teacher: Yes, five (writes “5” under Length, figure 1, in the table) 

280 S11: But I found out what the whole was, too. 

281 Teacher: The length is five. What about the width? (pause) S17? 

282 S17: Two. 

283: Teacher: Two. (writes “2” in the table) and the height? S6? 

284: S6 THREE! (answers in an odd voice) 

285: Teacher: And then the volume is? 

286 Students Twenty-four / thirty (both numbers are heard) 

287: Teacher: Five…? Five time two is…? (speaks very slowly and clearly) 

288: Students: Ten! 

290 Teacher: Ten times three? 

291 Students THIRTY! (shouting) 

Note that S11 was ready to provide an answer in utterance 280. This, along with some signs of unrest, 
suggests that the students found the progression too slow. When given a worksheet on the same topic, 
some students expressed a lack of challenge: 

307 Teacher: You are to find the volume of these prisms. But you see, they aren’t quite filled up with cubic 
centimeters. Can you still find the length, the width, and the height of these prisms? 

308 A student: Um, yeah. 

309 Another: °That’s easy° (heard whispering to his desk mate) 

The whole activity, with different examples of prisms, took around 17 minutes, 10 of which were 
whole-class discussion. This activity also lacked the kind of challenge that characterizes a “Zankov’s 
lesson”: The students found calculating the volumes of these prisms easy and they could do it by 
themselves, meaning that the activity was within their actual zone of development, and the extended 
whole-class discussion reduced the pace of progression.  
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Episode from Lesson 3: A numerical pattern 

The task was: “Find the pattern of the sequence and write the next number: 2, 5, 11, 23, 47, 95, …”. 
The students first discussed in pairs for a couple of minutes before presenting their results, and three 
different ways of describing the pattern were presented (Figure 3). 

Figure 3: Students describing the number pattern. 

The students’ three ways to describe the pattern were: To get from a number to the next, multiply by 
3); that the “add on”-numbers double for each step (+3, +6, +12, 

…); and finally, to get from a number to the next, add one more than the number itself (e.g., to get 
from 5 to 11, you add 6, which is 5 + 1). The whole task was quickly done; from thinking time in 
pairs to students having presented three different pattern descriptions it took about 6 minutes. The 
teacher did not interfere with the students’ thinking. She took the role as a discussion moderator while 
checking if the other students understood or agreed (they used hand signs to indicate this). 

Notably, the teacher allowed her students a lot more room to discuss and present ideas in Lesson 3 
than in the other two lessons. This can be gleaned from the description of the pattern activity above. 
However, she also refrained from interfering and did not push the students further, e.g., by directing 
their attention toward relationships between the three pattern descriptions. The students did the task 
on their own and presented their results without further explorations, and the activity therefore 
remained within their actual zone of development. While they were successful in solving the task, the 
teacher did not seize the opportunity to challenge them further. However, both this and the other two 
lessons demonstrated another important aspect of DEM, namely, cultivating a sympathetic and 
respectful community of learners (Zankov, 1977). For instance, the teacher called for an appreciative 
applause for the presenting students after this episode, which she also did several times during the 
three lessons. 

Discussion 
In general, the analysis showed that the teacher did not follow the didactical principle of optimal 
difficulty in the three observed lessons. In one sense, this finding could be interpreted as a lack of 
fidelity in the sense of “the extent to which an innovation in enacted according to its intended model” 
(Century & Cassata, 2016, p. 171). However, the word “fidelity” usually has meanings associated 
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with loyalty or faithfulness (Cambridge Dictionary, 2022), so in this sense, a lack of fidelity could 
imply a lack of loyalty to DEM, which is clearly not the case here. On the contrary, this teacher spoke 
highly of DEM and showed indications of having given it a central place in her teaching practice. 

According to Coburn (2003), a shift of ownership of the innovation is necessary to achieve a lasting 
impact on teaching practice at scale. At the school of this teacher, the staff have formed a local DEM 
community, they have decided to let DEM take a central place in the school system and influence 
other school subjects, and they (including the teacher in this case) have taken part in dissemination 
activities; all of this across an extended period of time with only limited support from university 
facilitators. These are indicators not only of taking ownership of DEM, but also of sustainability and 
spread within the school (see Figure 1, p. 3). This means that the school is well positioned to continue 
using DEM independently from university facilitators. However, as the findings above show, there 
are still challenges to work out. 

Realizing pedagogical principles of the system in practice relates to what Coburn (2003) refers to as 
depth of implementation scale. In her conceptualization of scale, depth is both a key dimension in its 
own right and an underpinning of the other dimension. In this case, there were in fact indicators of 
depth of the implementation for this teacher since she reported to have changed her beliefs about 
mathematics education (Gjære & Blank, 2019). Also, the norms of social interaction in her 
mathematics classroom corresponded with the sympathetic community of learners suggested by 
Zankov (1977), although it is not clear how much this has changed in her practice as she was not 
observed prior to DEM. However, the main goal of DEM is to stimulate students’ development (both 
general and mathematical) by engaging them in solving challenging problems and encouraging them 
to be persistent, analytical, investigative, self-reflecting, critical and creative. There is also the 
question of whether whole-class problem-solving discussions are suited for realizing the principle of 
optimal difficulty, since one must expect diversity among students within a class. Considering these 
issues, it becomes clear that depth, and in particular the realization of the principles of the system, 
must take center stage in any discussion of scale of the DEM project. 

Concluding remarks 
The discussion of this case study demonstrates the usefulness of Coburn’s (2003) conceptualization 
of scale to bring an alternative and more varied perspective on scaling-up processes for innovation 
projects that do not aim for the greatest possible spread. Scale in educational innovations often implies 
spreading to many schools. The DEM project, however, is concerned with providing an alternative 
system for teaching elementary mathematics that could possibly improve the practice of those 
teachers who are interested and motivated. For assessing the scale of such projects, qualitative 
dimensions such as depth, sustainability and a shift in ownership becomes even more important. This 
could also raise the general question of whether spreading to many schools should always be implicit 
in scaling-up processes of innovations in mathematics education. 

Challenges ahead for the DEM project include supporting a greater depth for the various DEM 
schools as well as sustainability and a shift in ownership of the project for the involved schools. 
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Addressing issues of depth requires a more nuanced understanding of the difficulties with realizing 
the didactical principles like those that the teacher of the case study experienced. Such research efforts 
could be combined with either initiating the formation of “satellite communities” in the various 
municipalities where DEM is used or reaching out to contact already existing communities, with the 
purpose of improving the scale of the DEM project across all four dimensions of Coburn’s (2003) 
conceptualization. 
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During the past 5 years, we have been experimenting with a wide range of educational technologies 
in elementary schools and higher education with a focus on STEAM (Science-Technology-
Engineering-Arts-Mathematics) integration and exploring role of mathematics within STEAM. These 
projects included STEAM integrated approaches for teacher training, special needs education with 
Augmented Reality and 3D Printing, remote teaching and automated tutoring systems. Over this 
period we observed a shift towards technology-based teaching and learning in education, and we 
aimed to identify how educational ecosystems with a variety of technologies such as Augmented 
Reality, 3D Printing, or tutoring systems could provide increased accessibility and opportunities for 
STEAM-based educational approaches.  In this poster, we will give an overview of how the above-
mentioned technologies could be employed by different users for teaching and learning STEAM-
based educational ecosystem. Thus, in our research, we evaluated effects on students’ learning in our 
educational projects. These projects involved automated tutoring systems, mathematical modelling 
of real-world objects with CAD Software, Dynamic Mathematics Software and 3D Printing devices, 
and outdoor mathematical trails with GPS-supported software and a number of  Erasmus+ projects 
contributed to our studies  Each study originate from the projects mentioned above was embedded 
within a joint research framework, nurtured by the results and participants’ feedback from our studies. 
Building on this framework we focused on identifying how students, teachers, pre-service teachers 
and parents could access learning tasks and settings with different educational technologies and 
experience new opportunities in STEAM learning. From complementary findings of these studies we 
identified the importance of an interconnection of the different tasks and technologies, which can 
contribute to a creative, learning ecology (Szabó et al., 2021) of mathematics learning. Each kind of 
technology supports different approaches to learning and teaching, and in the combination of various 
technologies offers a wider accessibility to skills and knowledge for both teachers and students. 
Hence, in this poster, we present how the different educational technologies utilizing our findings 
could be used in an educational ecosystem, supporting with technology-based creative approaches.  

Methods 

Tasks and uses of technologies were based on the interplay of Blums and Leiß modelling theory 
(Blum & Leiß, 2007), problem-solving approaches (Liljedahl et al., 2016), Dienes’ principles on 
learning (Dienes, 1960) and STEAM pedagogical frameworks (Haas, 2021). The tasks we elaborated 
in these projects are linked to school curricula and based on reliable methodologies implemented in 
schools and higher education training (e.g.: active discoveries, peer learning, student-centered 
learning). We followed recent studies on creative ecologies of everyday learning to identify structures 
for a system implementation (e.g.: Szabó et al., 2021). In every study, we followed a design-based 
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research methodology (Lee & Hannafin, 2016). However, we adapted the methodology slightly for 
the different studies, due to the used technologies, environment, or possibilities and the restrictions 
imposed by the COVID-19 pandemic. Moreover, we used quantitative, qualitative and mixed-
methods triangulation in the different studies. We will present methods separately for each study in 
the poster. We obtained results indicating that those educational technologies with real-world 
connections are likely to engage students, parents and teachers in new motivating and creative ways. 

Discussion 

Through addressing open-ended problems using guided support with decreasing feedback and 
scaffolding, our learners and teachers were able to develop their process skills and content skills in 
STEAM disciplines at their own pace. These task designs can be implemented in creating new 
learning settings and each technology supports students in their learning and teachers or parents in 
their teachings. Students could use the automated tutoring system in class or at home to train process 
skills with scaffoldings and learn to apply these skills in active mathematical modelling approaches 
with real-world information, situations, objects, or places.  Thus, over time it could be a valuable 
asset to support students individually or in groups or even the entire class with the automated tutoring 
system within traditional courses. With the dynamic geometry software, CAD software and 3D 
printing, students learned new strategies and skills. The solving behaviour in geometric tasks gained 
in structure and the visual-spatial ability was developed (Haas, 2021).  Further, students gained 
confidence and experience through a play-based approach to tasks with enjoyment. Finally, with 
GPS-supported software, we were able to transfer learning directly into students' real world in 
combination with Augmented Reality, 3D printing, and Dynamic Geometry Software.  
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Barriers to educational designers’ engagement with research, including barriers to access, 
interpretation of implications, implementation, and interpretation of outcomes, can limit the 
translation of research into practice through educational design. Our aim in this paper is to define 
four challenges to implementing research through the processes and products of curriculum design 
and to explore theoretically-grounded principles for addressing these challenges through an example 
of a design tool, the Cambridge Mathematics Framework. To illustrate the principles underlying  this 
tool, we give a brief concrete example of its use in a curriculum design implementation.  

Keywords: Curriculum, concept mapping, design, evaluation 

Introduction 
The benefits of engaging with research in educational design have long been recognised in a range of 
approaches which place value on developing explicit, well-supported reasoning to inform design 
decisions, and on iterative refinement using data from implementation in authentic contexts 
(McKenney & Reeves, 2012).  Lowering barriers to implementing research through educational 
design may allow these benefits to be realised more often and more fully. In this paper, we aim to 
characterise four challenges to implementing research through the processes and products of design 
and explore the question of how these challenges might be addressed. Using the example of a design 
tool, the Cambridge Mathematics Framework (CMF), we present principles and underlying 
theoretical influences for addressing these challenges with respect to research implementation and 
evaluation methods, and briefly illustrate its use in a curriculum design implementation. In the 
following section, we begin by describing research implementation challenges. 

Challenges to research implementation through processes and products of design 
In our examination of factors which might potentially affect educational designers’ ability or 
opportunity to implement research in design, we have identified four challenges. 

1. There are factors which limit engagement with research. The resource-intensive nature of research
implementation presents a challenge to engagement with educational research (van Schaik et al.,
2018). Even in national-level curriculum design, time and resource constraints have been noted which
can limit the amount and depth of engagement with research (Jameson et al., 2021). Smaller-scale
design efforts may be more narrowly focused but may bring proportionally fewer resources to bear
on research integration, or on evaluating the influences of research-informed features when designs
are implemented.

2. Design is an intermediary construct. We hold that any designed resource or experience is an artifact
which serves as an intermediary between the theories and intentions of the designer and those of
teachers and students, because designers typically do not enter classrooms to directly implement and
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explain the resources they have created. The distance in time, space and perspectives between 
researchers, designers, teachers and students often leads to differences between what is stated by 
researchers, intended by designers, enacted by teachers and experienced by students (Barab, 2014). 
Koichu and Pinto (2019) call implementation a “multiparty enterprise” and the CERME11 TWG23 
adapted a definition of implementation to include the notion of distance between communities of 
resource proponents and communities of resource adapters (Artigue, 2021).  With respect to 
curriculum design, Remillard and Heck (2014) describe this distance within their curriculum model, 
an update to Stein et al.’s (2007) model of curriculum phases, which the participants of TWG23 in 
CERME11 adapted in a model of research implementation (Aguilar et al., 2019). The new research 
implementation model highlights the transformations that research implications undergo as they are 
first used to structure objectives (intended implications), are translated into classroom experiences 
(enacted implications), and result finally in particular outcomes (attained implications).  

3. Research is one influence among many on outcomes. There is a dilution of research implications 
which is not made explicit in the CERME11 model (Aguilar et al., 2019). Design itself (the “attributes 
of the innovation”) is only one of many factors which may contribute to the final impact of 
innovations on learning (Century & Cassata, 2016, p. 186).That is, the further down the chain from 
published research, the more room there is for other factors to influence what happens and the less 
research influences may be contributing to observed outcomes, even taking differences in intentions, 
background and interpretation between researchers, teachers and students out of the picture. 
Therefore, the enacted and attained implications may be impossible to separate from the individual 
instances of enactment and subsequent learning outcomes as a whole, which may take their specific 
forms for a variety of reasons. A third challenge, then, is one for implementation research: How can 
we analyse the contributions of research influences, particularly when research is being translated 
into practices which occur at some distance from the classroom (as with some forms of educational 
design practice including curriculum design)? 

4. Research implications are not always straightforward. The final challenge we will highlight here 
is that research in mathematics education does not inherently add up to a coherent whole. It is a 
heterogeneous body of work reflecting a wide range of perspectives, assumptions, goals and practices, 
serving numerous wider agendas shaped by research communities rather than by the requests of 
teachers or administrators (Burkhardt & Schoenfeld, 2003). Knowledge from research likewise 
differs in nature and focus from pedagogical knowledge (McIntyre, 2005). Implications for teaching 
and design are therefore seldom straightforward. Moreover, while there are strong reasons for 
researchers and educators alike to consider implications from very different sources together as a 
coherent set, the diversity of the field can make this a complex undertaking involving detailed 
understanding of a wide range of relevant theories and experimental designs (Prediger et al., 2008). 
Despite this, it is important for designers to be able to access research influences at this level of detail, 
to navigate a variety of theoretical frames appropriate to different aspects of design problems, and to 
use available data accordingly (Kieran et al., 2015).  

There is no one-size-fits-all solution; however, next we present one approach developed to help 
designers overcome these challenges when developing mathematics curricula. 

Proceedings of CERME12 4154



 

 

An approach to addressing challenges of implementing research through design 
In this section we provide as much detail of the components, use, and theoretical basis of the CMF as 
space permits. The CMF is a conceptual mapping tool which designers can use to explore, analyse 
and accommodate research implications for the interdependence of mathematical ideas when 
discussing and justifying the writing and ordering of curriculum content. It consists of the following 
key components: (1) a dynamic network of selected mathematical ideas in the domain of school 
mathematics and connections between them, which we have developed based on thematic review, 
synthesis and interpretation of the mathematics education research literature, along with connections 
to research sources; (2) tools for exploring, analysing and visualising the network and the research 
base; (3) Research Summary documents which explain the research justification for specific groups 
of mathematical ideas and relationships and which undergo external review; (4) descriptions of how 
students engage with these ideas in practice, in a form designed for teachers and designers to relate 
to their own experience; and (5) external content such as curriculum statements or mathematical tasks 
which can be mapped on to the network of mathematical ideas and analysed in terms of content and 
ordering. Ideas in the network are not ordered in an absolute sense, by year or age, but by how ideas 
contribute to one another. This ordering is not linear but allows for many paths from one idea to 
another which a designer may find useful to consider. Importantly, it is a conceptual ordering and not 
meant to imply teaching order or student trajectories, as students often need to go back and forth as 
they develop experiences working with a set of ideas. Finally, (6) the CMF can be used to produce 
concrete artifacts for analysis and discussion in the form of maps in which designers have gathered 
relevant collections of waypoints and linked them to their own content. 

In a typical curriculum development scenario, a designer using the CMF might start by searching for 
mathematical ideas relevant to the section of the curriculum they’re working with and display them 
in the order they depend on one another, from left to right, together with curriculum content on the 
screen as a map. Then curriculum content can be linked, or “mapped onto” to the mathematical ideas, 
which helps designers to explore possibilities within the map as a whole for reordering, adding, 
subtracting or changing curriculum content. When changes are made to the curriculum content on the 
basis of the CMF, the research justification provided in the CMF for the mathematical ideas and 
connections can serve as a reference for designers in documenting and communicating their 
justifications to stakeholders. 

We structure the theoretical underpinnings of the CMF around several key design assumptions; in 
this paper we describe three which are most relevant to research implementation. We have drawn on 
literature in multiple areas: domain coherence in mathematics, conceptual mapping, and shared 
representations as boundary objects. Our first design assumption is that support for research-informed 
perspectives on domain coherence in the design of curricula or resources can contribute to their value 
for teaching and learning by allowing designers to consider a wider range of implications and develop 
curricula and resources with greater domain coherence as a result. This assumption is related to 
challenges 1 and 4, since it involves providing support (i.e. making it more straightforward, thorough 
or feasible) for using research perspectives in design decisions and provides aid to designers in 
synthesizing research from multiple sources and perspectives. It is based on strands of research 
involving the conceptual structure of mathematics learning and notions of coherence. Thurston (1990) 

Proceedings of CERME12 4155



 

 

describes this structure as being “like a scaffolding, with many interconnected supports”; he 
conceives of it as tall, because concepts build on one another, broad because of the multitude of 
interconnections necessary to provide foundations for building, and connected, with the connections 
helping students and mathematicians to compress sets of ideas to make use of them more efficiently 
(Thurston, 1990, p. 2). Tall (2013) suggests that this structure is built through categorization (the 
“recognition of essential properties”), encapsulation (“repeating actions” that “can be manipulated as 
mental objects”) and definition, using “language to formulate specific concepts as a basis for 
reasoning and proof” (Tall, 2013, p. 51). Research on learning in different topic areas of mathematics 
often has implications for the particular mathematical ideas and connections of importance, and we 
have applied Tall’s principles for learners to our expression of conceptual structures implied by 
research for designers. On this basis we view designs with high domain coherence as those which 
aim to leverage conceptual dependencies that are well-aligned with those reported in research. This 
definition is in agreement with the idea of “learner-centered curricular coherence as…an 
organizational means to promote a high likelihood that each learner traverses one of many possible 
paths to understand target disciplinary ideas […] by building on and continuously broadening and 
modifying their ideas and experiences.” (Confrey et al., 2017, p. 719) and has also been informed by 
perspectives emphasizing the logic underlying sequences of ideas (Schmidt et al., 2005; Stark, 1986).  

The second design assumption is that our goals from the first assumption can be aided by a mapping 
approach. This assumption is related to challenges 1 and 2, as mapping can make detailed 
relationships explicit and easier both to work with and to discuss. The affordances of conceptual 
mapping for analysing and communicating relationships between mathematical ideas have been 
demonstrated in research on learning trajectories and related constructs (Confrey, 2019). These 
affordances are also well characterised more generally in studies of knowledge management (Eppler, 
2004).  

The third design assumption is that the maps and mediating documents of the CMF can serve as 
shared artifacts which may facilitate discussions about design both within and between communities 
of practice, and that doing so may help design intents to be realised more fully by teachers or adapted 
for them more effectively by eliciting feedback. This assumption is again related to the need for 
communication in challenge 2.  For this we draw on Remillard and Heck’s (2014) characterization of 
curriculum and resource implementation as taking place in a system of communities between which 
designs are translated and possibly transformed as they are documented by designers, enacted by 
teachers and received by students. This has led us to shape aspects of the CMF according to the 
properties of shared knowledge representations, especially boundary objects as proposed by Star & 
Griesemer (1989); in particular the qualities of being adaptable yet structurally consistent and of 
allowing members of different communities to recognise information from their own perspectives 
and connect this to others’ through a common space or artifact.  

Taken together, these design assumptions are intended to address challenges 1, 2 and 4 by helping 
designers to deal with issues of coherence and the complexity of the research base and by providing 
a shared frame of reference for design discussions and support within and between communities. 
Challenge 3, however, is the issue of how research influences in design contribute to design process 
and teaching and learning outcomes. Much of this challenge involves implementation research rather 
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than the design of the CMF itself.  

The CMF is currently being implemented in a number of different curriculum and resource design 
contexts at different scales. In all cases so far, the CMF as a design tool is being implemented with 
designers, whose designs are subsequently implemented in learning contexts. The contributions of 
the CMF are therefore directly related to design outcomes and somewhat indirectly related to teaching 
and learning outcomes, as any design influences would be. We are developing a preliminary 
evaluation framework to helps us to analyse the direct and indirect contributions of our research 
interpretations in the CMF across a variety of authentic implementation contexts. Such contexts can 
be expected to have uncontrolled external factors (Barab, 2014) and multiple influences determining 
outcomes (Stern et al., 2012), making contribution analysis a useful approach for evaluating impact 
and gaining insight into specifically how our approach might be improved.  

This framework helps us to characterise implementations according to several factors. First, we have 
identified four categories into which our evaluation goals might fall (adapted from Stern et al., 2012): 
Attribution: how much influence did the CMF have on the outcomes?; Contribution: Did the desired 
outcomes occur?; Mechanism: By what means did the CMF contribute?; and Translation: What 
circumstances are conducive to achieving intended outcomes using the CMF? The first two categories 
involve the value and relevance of the CMF; the last two may help us to learn about broader contexts 
in which use of the CMF is more likely to be successful. In addition to goals, this framework will 
help us to position an implementation according to meaningful duration, conceptual range, systemic 
scope, and distance of the CMF from measured outcomes, and will help us to frame outcome 
indicators and measures accordingly. Below, we briefly discuss some design outcomes from a recent 
implementation of the CMF which further illustrate this approach. 

A brief description of some illustrative implementation outcomes  

Our most recent case study took place as we were beginning to develop the evaluation framework.  
In the summer of 2020, the CMF was used in work on Statistics and Probability strands of the 
Australian Curriculum as part of the review currently being carried out by the Australian Curriculum, 
Assessment and Reporting Authority (ACARA). The ACARA team worked with the CMF and the 
Cambridge Mathematics (CM) team and described design outcomes from this work through face-to-
face meetings and semi-structured diaries. Below we give a very brief description of the context and 
summarise the outcomes we have synthesized from meetings and diaries with respect to the four 
research implementation challenges; this synthesis contributed to identifying these challenges. 

1. There are factors which limit engagement with research; 4. Research implications are not always 
straightforward. The ACARA team reported that while they spent just as much time thinking about 
research, using the CMF they were able to use this time to bring much more research from sources 
which were new to them into their discussions. They felt in some ways that there would always be 
some research that they would not have time to fully engage with, but that the way it was presented 
in particular topic areas in the CMF helped them to address specific questions and introduce new 
ones. They made use of a variety of CMF features in order to access research; they began with 
Research Summaries and CMF content curated for them according to their existing curriculum 
statements, and branched out by using search features and following connections to look for other 
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aspects of topics to consider. In the course of this, they reported being unable to find some things; we 
realised that while some of what they were looking for was implicit in some CMF content, it was not 
explicit enough for the ACARA designers to recognise, and they had to spend more time looking for 
it than we intended. This helped us to revise not only the presentation of that content but to examine 
other areas of the CMF for similar issues. 

The ACARA team also reported engaging with research implications in a mix of forms. They looked 
back and forth from research summary text to maps to descriptions of map elements. They were able 
to find some useful ideas through their own queries. The flexibility of the multi-representational 
approach in the CMF meant that to the extent required the ACARA team was able to develop and 
follow their own lines of inquiry beyond the starting points curated by CMF writers, with a few 
exceptions mentioned in 1. Moreover, the Research Summary starting points contributed 
substantively to several of the discussions we observed. 

2. Design is an intermediary construct. We observed the ACARA team using CMF maps and 
Research Summaries in discussions with us, and they felt the information they found helped them to 
provide useful research justifications for their decisions to ACARA colleagues and teachers, who 
reviewed initial changes in reference groups, by illustrating (in a different form) some of the 
connections highlighted in the CMF. These justifications were positively received and the ACARA 
team felt they had been effective. The ACARA team also was able to highlight specific changes to 
the wording of curriculum statements which they made to bring in influences they found in the CMF 
and make them more explicit for teachers. See 3. for examples.  

3. Research is one influence among many on outcomes. The ACARA team was able to clearly identify 
specific changes in their internal discussions due to use of the CMF, some of which led to curriculum 
changes. Two examples are provided below:  

 In one set of statements about data, they changed language to explicitly reference the shape 
of distributions. Distribution and shape were major themes in the research they engaged with 
through the CMF, and they wanted teachers and students to be aware of the shape of 
distributions when interpreting data. Across Years 4 and 5, for example, the words describe 
and interpret have been expanded to acquiring, validating and representing types of data. 

 They referred to research encountered in the CMF to develop a progression in statistical 
investigation through Years 3–10. This progression moves from guided statistical 
investigation involving categorical or discrete data to planning and carrying out statistical 
investigations, analysing data, communicating findings, developing questions, incorporating 
summary statistics, sampling, and working with multiple data sets and with bivariate data. 

Conclusions 
In our illustration, when using the CMF designers were able to engage productively with a larger 
number of research implications than they had before in a similar amount of time, and encountered 
ideas that led to specific adjustments in their approach, as well as ideas which validated many of the 
directions they had been going in the review. However, while they felt this enhanced their work, it 
did not save them time as there is always more research available than time to engage with it; the 
CMF simply created a higher limit to engagement. They were able to build and communicate research 
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justifications including themes from the CMF, and they were able to directly attribute some of their 
design decisions to the CMF. In many cases the research synthesis aided the ACARA designers as 
the CM writers intended, but some cases in which this did not take place were identified for further 
work. These outcomes from our work in progress on evaluation suggest that the CMF might be a 
reasonable example of one approach to addressing the research implementation challenges we have 
described.  
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This paper discusses influential factors in an implementation of a longitudinal innovation based on 
results from research on beliefs, especially reflection, in mathematics education. As part of this 
innovation, the researcher constantly found herself to be “talking past” the involved expert teacher, 
who was responsible for implementing the innovation in the classroom. In particular, three influential 
factors appeared to play a central role in the case presented in the paper: characteristics of the 
particular end-user; attributes of the innovation; and not least implementation support strategies.  

Keywords: Implementation research; influential factors; reflection; beliefs; probability. 

Introduction 
In a longitudinal study aiming to develop middle school students’ beliefs about mathematics, the first 
author experienced that despite good intentions, long preparations, careful planning, and coaching of 
the involved teacher, the “reality” of what was implemented in class was far from the agreed-upon 
initially designed activities. We hypothesize that constructs from IR may shed light on this. Hence, 
our research question may be phrased as: Can theoretical constructs from IR provide explanations as 
to why the researcher and teacher of our longitudinal study managed to talk past each other for a 
period of two years on the topic of ‘reflections’? And if so, then in which respects, and to what extent? 
With our answer, we hope to provide some illustration that IR may have something to offer the 
explanation of phenomena present in qualitative studies in mathematics education research. This 
paper thus addresses influential factors in relation to the implementation of designed teaching units 
to foster reflections with students concerning the nature of mathematics as a discipline. 

IR theoretical constructs 
When attempting, as in our longitudinal study, to change educational practices, the complexity of the 
setting fosters a variety of factors influencing the process, depending on both the characteristics of 
the innovation and the level of change (e.g. individual or organizational level). On an individual 
level—as in the case in this paper—a change in practice, e.g. for a teacher, can be both challenging 
and psychologically threatening, as well as cause doubts and uncertainties (Century & Cassata, 2016), 
even when the intended change might not seem difficult to its promoter. Other influential aspects 
might be the character of the innovation, environmental factors, support strategies, or time. Century 
and Cassata (2016) present a list of factors that might influence the implementation of an innovation. 
Here, we address and connect three of these in the analysis of the implementation in our selected 
case: characteristics of end-users; attributes of innovation; and implementation of support strategies. 

The characteristics of individual end-users of an innovation (who in this case are the teachers, as we 
investigate the process of implementation of teaching principles) can potentially play a crucial role 
in an implementation process, not least in innovations that give room for the users’ interpretations 
and adaptations. Prior knowledge, individual competency, professional identity, and feeling of 
agency are all examples of factors that might influence the implementation. In this regard, Rogers 
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(2003) mentions different types of knowledge connected to the implementation process, e.g. how-to 
knowledge, (practical knowledge about how to apply the innovation) and principles-knowledge 
(understanding the thoughts behind the innovation). Century and Cassata divide the characteristics of 
the end-users in two: (a) those related to the innovation, “e.g. level of understanding, expertise, prior 
experience, beliefs, values, attitudes, motivation, or self-efficacy” (p. 185); and (b) those existing 
independently of the innovation, “e.g. willingness to try new things, organizational skills, classroom 
management style, or views about teaching and learning in general” (p. 185).  

Attributes of the innovation include both objective characteristics of the innovation (e.g. number of 
components or design features) and subjective user perceptions (e.g. relevance or ease of use). Some 
innovations are rather explicit, specifying the innovation in detail, which does not leave room for the 
users’ adaptations. Others are more ambiguous and thereby more dependent on the interpretation and 
realization of the users.  

Support strategies can be essential in an implementation process, and should according to Century 
and Cassata (2016) ideally be included in an innovation, based on underlying theories. Support to the 
users in their process of change can appear in various formats, e.g. professional development, 
strategic planning, or evaluative processes. 

Setting the scene—the overall project and the central element of ‘reflection’ 
Our two-year longitudinal study began in 2019 in two Danish 6th grade classes. The study used a 
Design-Based Research approach, involving two mathematics teachers in designing certain teaching 
principles, as well as in the implementation, evaluation, and adjustment of these principles in iterative 
cycles. The hypothesis behind the study was that a longitudinal change of focus in the teaching of 
mathematics can contribute to a change in the students’ beliefs about mathematics—specifically that 
an increased focus on (1) the application of mathematics; (2) the historical development of 
mathematics; and (3) the nature of mathematics as a subject (Niss & Højgaard, 2019), can influence 
their beliefs about mathematics as a discipline. Hence, the main focus of the overall study is the 
development of students’ beliefs, and not as such the teachers’ professional development. However, 
as the present study addresses issues related to the implementation process within the overall study, 
the teachers thus become the focus here. 

Philipp (2007) defines beliefs as “lenses through which one looks when interpreting the world” (p. 
258). Because of the stability and psychological importance of beliefs, changing students’ beliefs can 
be both difficult and time-consuming (Green, 1971). A central element in this process is reflection. 
Beliefs that are developed based on experiences or reason can be said to be evidentially held. In 
contrast, non-evidentially held beliefs are either transferred from others (e.g. teachers, parents, 
stereotypes, etc.) or derived from already existing beliefs, and these tend to be more difficult to change 
with reason. Non-evidentially held beliefs can often be illustrated as convictions of the sort that are 
impossible to argue against. Hence, when educating students, attention must be paid to providing 
examples and opportunities for experiences on which they can base and develop their beliefs to ensure 
that these are evidentially held. However, if such beliefs are to last, the provided evidence must 
necessarily be followed by reflection. Relations between beliefs are established when reflections are 
considered and assessed (Green, 1971), and these relations are what include and maintain beliefs in 
a cluster, hence making them more stable. “Reflection” thus played a central part in the study. 
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Even though the designed teaching principles were adjusted along the way, four main principles were 
consistent during the two years of intervention. That is, all teaching modules included: (1) concrete 
examples of the application and/or the historical development of mathematics; (2) mathematical 
problems and methods; (3) dialogue about the application, the development, and/or the nature of 
mathematics; and (4) individual and/or shared reflection. As Gregersen et al. (2019) point out, 
teachers’ principles-knowledge can increase their experience of an innovation’s relevance. The 
participating teachers were thus introduced to the importance of reflection in the initial phase of the 
study. The connection between changing beliefs and students’ reflection was communicated in two 
ways: First, in a document stating the purpose of the intervention and the role of reflection when 
aiming to change or develop students’ beliefs. The word “reflection” was highlighted and mentioned 
five times in the document to illustrate its centrality. Second, the document was discussed in a 
subsequent meeting between teachers and researcher, where the importance of reflection was further 
emphasized. In the following, we present an illustrative case of how one teacher attempts to realize 
the intended teaching principles, with a special focus on reflection. The case revolves around a lesson 
concerning probability that was planned in collaboration between researcher and teacher. We 
investigate three phases of the implementation process: planning, implementation, and evaluation. 
Thereby, we are able to compare the intention, the realization, and the teacher’s considerations behind 
any deviations from the intention. The data include sound recordings of planning and debriefing 
sessions, as well as video recordings and field notes from the lesson.  Furthermore, we include 
excerpts from a meeting six months prior to the lesson to illustrate the teacher’s general considerations 
about students’ reflections. In our analysis of the data, we apply the above-mentioned theoretical 
constructs from IR, thus seeking an explanation to the apparent miscommunication between 
researcher and teacher regarding the concept of reflection within the overall study.  

An illustrative case of one teacher 
Six months into the intervention, the teacher in our case explained how the teaching principle related 
to reflection had caused her to be “more systematic about individual and shared reflection, and what 
it can be used for”. Although she had 20 years of teaching experience and was the school’s 
mathematics counselor, she still felt that the principles, in general, made her more aware of her 
teaching choices. When the other participating teacher described her difficulties with implementing 
reflection, the teacher of this case even argued why reflection is important, and how she motivated 
her students to reflect: 

I have spent time in the class talking about short-term memory and remembering to bring it [the 
learned content] back to the working memory—you need to think about it and bring it back. And 
if you don’t do that several times, the brain will toss it. (…) So there is a reason that we do it 
[reflect]. 

Hence, the teacher appeared to be conscious of the importance of reflection and its role in the project. 
However, she also gave a small hint of doubt, expressing that she was not sure that she was always 
able to transfer her intentions “all the way into the classroom”. The following case, which confirms 
this doubt, took place six months later (a year into the intervention).  

Planning: To ensure that the purpose of the intervention was met, the researcher participated in the 
planning of at least one lesson within every teaching sequence. In a sequence about probability, the 
topic of a 90-minute lesson was chosen to be the historical development of the field, exemplified in 
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Pascal and Fermat’s approaches to solving the question of distributing stakes in an unfinished game 
of chance, as presented in a simplified version by Berlinghoff and Gouvea (2004). The problem 
concerns a game of flipping a coin for two players. Each player stakes €10 and tosses the coin in turn. 
If heads, the player tossing the coin gets a point; if tails, the other player receives a point. The winner 
is the first to reach three points. However, the game is interrupted, when the score is 2-1 in favor of 
the player about to toss the coin, and the distribution of the €20 stakes is to be decided. The planning 
of the lesson was based on Chapter 21 of Berlinghoff and Gouvea (2004, p. 207-214): “What’s in a 
Game? The Start of Probability Theory”. This chapter describes the story and the mathematical theory 
behind the problem as well as the methods used for solving it. Since both teachers had expressed 
some doubts about how they could implement the teaching principle concerning reflection, it was 
agreed that the students’ considerations, suggestions, reflections, and discussions should be the focus 
of the lesson. Space for reflection would be given in the students’ discussions of each other’s 
solutions, and the relation to the solutions of Pascal and Fermat. Our teacher expressed her intention 
to “let the students consider a solution themselves”, with the purpose of allowing them to “experience 
frustration and give their contributions”. She also suggested that part of the students’ reflections could 
regard the validity of the methods presented by Pascal and Fermat. She wanted to engage the students 
in the role of experts to act as mathematicians by showing them that some of their considerations and 
conjunctions could be compared to those of Pascal and Fermat. After an exchange of ideas, the lesson 
was planned to include five activities, which are listed below. Each of these activities was thoroughly 
discussed, both in regards to the content and the purpose in relation to the goals of the lesson. Several 
activities relied on the mentioned book chapter, and thus the teachers should make themselves 
familiar with its main points, especially regarding the mathematical methods involved.  

Implementation: Below, the five activities of the 90-minute lesson are described in terms of the 
content of each activity, the intention decided by the teachers and the researcher in the planning 
process (purpose), and the actual realized implementation (reality). 

Activity 1: Presentation of game, the distribution problem, and Pascal and Fermat. Told as a story.  
Purpose: Engaging the students by telling a story, and inviting them to “play along”. Introducing the 
historical persons involved, and inviting the students to consider a distribution of the stakes. 
Reality: The teacher told a story about a rich, French, 17th-century nobleman, who liked to gamble. 
Concept of ‘stakes’ and rules of the game was explained. Pascal and Fermat were never mentioned. 

Activity 2: In pairs, the students play the game and consider the distribution of stakes. Coins are 
available. The pairs present their suggestions. Subsequently, pairs with deviating solutions are put 
together in groups of four, who discuss their suggestions and try to agree on a shared solution.  
Purpose: Becoming familiar with the game and the problem. Expressing immediate suggestions for a 
solution, which might involve discussion and argumentation. Considering possible scenarios of the 
outcome of the game, leading to mathematical considerations. Making the students reason and argue 
by pairing groups with different solutions.  
Reality: Handed a wooden coin and eight pieces of paper (money bills working as stakes) on which 
they could write the number 10, the nine pairs of students played the game four times. After a while, 
the teacher stopped the games and asked the class if they believed this game to be fair. Several 
students complained that their coin always landed on the same side. However, the teacher neither 
engaged in a dialogue about the concept of fairness, nor what such a bias would mean in regards to 

Proceedings of CERME12 4176



the game. Instead, the students were asked to play again and stop when one player had 2 points and 
the other 1—and then discuss how the stakes should be distributed if the game could not be 
completed. The students did, and the teacher circled between them asking guiding questions: “How 
is your distribution fair?”; “Would you both be satisfied with that solution?”. She noticed that most 
pairs either assigned all the stakes to the player with 2 points, or shared the stakes evenly, and she 
stopped the students. When asking each pair for their solution, this tendency was affirmed. Even 
though the teacher asked questions that might make the students reflect on probability (e.g. “Who has 
the largest chance of winning?”), they never engaged in any mathematical consideration. The teacher 
asked them to play again, this time stopping when the points were even. Expectedly, they found the 
distribution easier now that the probability of winning was equal for both players, which was pointed 
out by the teacher. She now encouraged the students to have a “serious discussion” about the 
distribution in the case of 2 points versus 1, making them aware of the possibility to exchange the 
€10 bills. The pairs were sent on a 2-minute “walk-and-talk”, which should result in an agreed 
solution to put on the whiteboard. Thereby, the original intention of putting pairs together with 
different solutions was never realized. Neither was the intention of having the students prepare a 
mathematical argument for their solution. 

Activity 3: Presentation of solutions, the arguments behind them, and the strategies to reach them.  
Purpose: Having the students explain their suggestion for a certain solution, and the method for 
reaching it. Comparing different solutions and different methods and arguments. Including arguments 
and strategies behind the solutions to emphasize that reasoning and methods are important aspects of 
mathematics, which are needed to make well-informed and accurate decisions. 
Reality: The students put their solutions on the whiteboard. Out of nine pairs, four suggested that the 
€20 were distributed evenly, four suggested a 15-5 distribution, of the 
money would go to the player with 2 points. The teacher merged the last suggestion with the 15-5 
solution and asked the class to explain why this solution was fair. One student answered: “Because 
the player with the most points should have the most money.” The teacher asked for an argument 
behind the 10-10 solution, and another student answered: “Because they have equal chances of 
winning”. The teacher questioned this by drawing the students’ attention to the minimum number of 
tosses needed for each player to win. Another student exclaimed: “The chances are not equal, because 
one player has a 75% chance of winning, and the other has 25%”. Unfortunately, the teacher did not 
elaborate on this rather clever observation, although it appeared an excellent opportunity to engage 
in mathematical considerations. Neither the mathematical argumentation nor the strategies to reach a 
solution were discussed. 

Activity 4: Shared classroom reflection: can we all agree on a solution? Which methods did we use? 
Were some solutions, methods, or arguments better than others? Which methods did Pascal and 
Fermat use? Did they resemble our methods?  
Purpose: Comparing and discussing the solutions and arguments from the presentation. Offering the 
students an opportunity to reflect on their process and the mathematical ideas behind the different 
solutions as well as the validity of a mathematical argument. Placing the problem and their ideas in 
both a historical and a mathematical perspective by comparing the methods used by Pascal and 
Fermat. Illustrating the character of mathematical methods, and that the students too can engage in 
problems that mathematicians struggled with. 
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Reality: This activity was not realized in any way. 

Activity 5: Follow-up on the historical development of probability theory.  
Purpose: The work of Pascal and Fermat is considered one of the initiators of probability theory, soon 
followed by theories about e.g. the Law of Large Numbers, expected outcome, and analytical theory 
of probabilities. All of which are now applied in many fields such as medicine, insurance, business, 
law, etc. Making the students aware of this development and the importance of the field that sprung 
from the problem that they had just worked on, inserts mathematics in a context that exceeds school 
and illustrates its role in the world. 
Reality: The teacher returned to the story of the French nobleman, who actually met this exact 
problem and asked “some mathematicians”. Pascal and Fermat were still not mentioned by name. 
Their methods and solutions were only mentioned as follows:  

What they came up with was actually some of what you suggested. Their solution is 15-5. Because 
there is a difference in the players’ chances of winning. They reached their solutions in a slightly 
different way as you reached yours differently. And they were great mathematicians (...). And you 
were also able to do this. And this was the beginning of the kind of mathematics that deals with 
probability. 

Hence, the intentions of comparing the solutions and methods of both each other and of Pascal and 
Fermat were never realized, despite being the main goal of the lesson. The mathematical content was 
neither presented nor discussed, and the historical significance was only mentioned in bypassing. 
Most unfortunate was that the students were not offered the intended opportunities for reflection. 

Evaluation: After the lesson, the teacher expressed that the class was not used to working in such an 
“unstructured manner”, and neither was she (not specified any further, though). She also admitted 
that she did not thoroughly read the chapter on probability. This may be the reason for the lack of 
mathematical content in the lesson. However, after a suggestion from the researcher, the teacher 
presented a mathematical argument for the 15-5 solution in a lesson four days later, by studying the 
possible scenarios if the game had been continued. In the subsequent debriefing, the teacher described 
her criteria for success in the lesson: “that the students are able to say ‘we have conducted an 
investigation, and it seems that…’”. Even though all the pairs did reach a conclusion during the 
lesson, the teacher appeared somewhat unsatisfied. She appreciated having a story to start from but 
felt that it was difficult to get the students to use mathematical argumentation. Furthermore, she 
regretted not making the students aware of the possibility of exchanging the bills earlier: “It was not 
until I told them that the bills could be exchanged that they started thinking about it. If they had 
received ten €1 coins instead, I wonder what might have happened.” She never addressed the skipped 
activities of reflection, nor the lack of the historical dimension. Her considerations—and the 
researcher’s observations—formed the basis for a discussion on how the students could be supported 
in their argumentation so that it could be more mathematically founded.  

Analysis and discussion of case in terms of IR 
Characteristics of end-user: There appeared to be a discrepancy between the teacher’s characteristics 
in relation to the innovation and those existing independently of the innovation. The teacher was an 
expert teacher, with a strong professional identity. She often advised her colleagues on mathematics 
teaching and learning. Concerning the innovation, she was highly motivated and perceived the 
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innovation as relevant, both for her teaching and in her professional development. Her statements in 
the planning phase indicated that she was very aware of the innovation’s intention and that she had a 
clear idea of how this intention was to be implemented. Our case, however, reveals that even though 
she possessed this principles-knowledge of the innovation, she might not have had adequate prior 
experience with the intended teaching approach, and thus her how-to knowledge was insufficient. 
Furthermore, her comments during the evaluation phase may be a sign that her identity as an expert 
teacher was threatened by the uncertainties and doubts that she experienced during the lesson. The 
fact that she did not mention the skipped activities of the lesson plan, which primarily involved 
reflection, seemed to indicate that she was not as aware of this purpose, contrary to what she expressed 
during the planning. Yet, it could also be a sign of denial of a feeling of failure or inadequacy. 

Attributes of the innovation: As the innovation was based on a small number of somewhat general 
principles (cf. above), the level of explicitness was quite low. Hence, the implementation of the 
principles was highly dependent on the interpretation and realization of the teacher, requiring a high 
level of how-to knowledge. This meant that the final and determining decisions in the classroom were 
in the hands of the teacher, and thus became the realized innovation. Despite the shared planning of 
the presented lesson (supporting the teacher’s how-to knowledge), and the regular discussions 
regarding the centrality of reflection for the development of beliefs (principles-knowledge), the 
teacher still decided to leave out the activities offering possibilities for the students to actually reflect. 
Furthermore, to promote the teacher’s feeling of agency in the innovation, the allocation of 
contributions was that the researcher would primarily function as a theoretical expert and the teacher 
as an expert on practice. Consequently, the teacher was responsible for the detailed planning and 
preparation of lessons. On the one hand, this enabled her to adapt the teaching to her individual 
approach and to the students. On the other hand, the researcher had even less control of the actual 
implementation of the innovation, and the risk of non-intended realization increased (significantly). 

Implementation support strategies: As suggested by Century and Cassata (2016), several theoretically 
based formats of support were included to assist the teacher in the implementation process. For 
example, the ‘whys and hows’ related to the concept of reflection were thoroughly discussed to 
enhance the teacher’s principles-knowledge—a strategy that seemed to benefit their experience of 
relevance, as seen in Gregersen et al. (2019). These support strategies were further developed during 
the study. Central to the cooperation between researcher and teacher was the shared planning and 
evaluation sessions. In our case, the planning not only included discussions and clarification of focus 
and main purpose of the lesson (principles-knowledge), but also a description of the lesson’s activities 
and their individual purpose (how-to knowledge). This kind of detailed planning had not previously 
been conducted in cooperation with the researcher, but an increased awareness of the challenges 
connected to the implementation had led to this initiative from the researcher, which was welcomed 
by the teacher. Likewise, the described case became the cause of further adjustments of the support 
strategy, eventually including shared preparation and considerations of potential student responses 
and appropriate teacher reactions. 

When these three influential factors are compared and connected, interesting issues related to the 
implementation process are revealed. Firstly, the attributes of the innovation define the teacher as an 
expert on practice, thus making her responsible for the realization of the intention. However, the 
characteristics of this specific teacher make this realization unpredictable. In addition, the support 
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strategies intended to account for this problem are complicated by the allocation of expertise between 
the teacher and the researcher. A possible dilemma occurs when deviations from the intention that 
are observed in the teaching are to be addressed in the evaluation. It is, on the one hand, essential to 
the success of the innovation that the intention be realized. On the other hand, the communication 
between researcher and teacher must remain respectful of their respective areas of expertise while at 
the same time supporting and benefiting future cooperation and innovation. Addressing problematic 
issues related to practice thus becomes a difficult act of balance. In this case, the evaluation session 
led to adjustments in the support strategy that increased the explicitness of the innovation, thereby 
changing its attributes and affecting the level of the users’ autonomy. Studying the influential factors 
of this case clearly illustrates that the attributes and overall goal of this innovation may to some extent 
be incompatible. The goal of developing the students’ beliefs through teaching principles may 
demand a change that is too ambitious in terms of the culture of practice—the influence of which 
was at first hand underestimated by the researcher. For example, this case shows how the 
implementation of opportunities for reflection is hindered by a gap between the intentions of the 
researcher, the apparent intentions of the teacher, and what is practically possible within the context 
of the culture of practice and the teacher’s how-to knowledge. Returning to the research question, it 
is clear that IR constructs do have something to offer our qualitative case study in terms of explanatory 
power to the lack of mutual understanding between researcher and teacher. The IR analysis made it 
clear that when the innovation is not specific or explicit enough, then the implementation of it is 
proportionally dependent on the characteristics of the end-users. This should be dealt with both in the 
innovation design and in the support strategy.  
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Successful problem posing is heavily based on the ability to see and use the structure of the given 
problem. Therefore, the students must develop the mathematical habit of mind of ‘seeking and using 
structure’. Up to now, these two areas of problem posing and mathematical habits of mind are 
examined separately in the relevant research literature. In this paper, we present an instrument that 
attempts to bridge these two areas. The instrument monitors the student’s problem-posing strategies 
and assigns a numerical weight in the solver’s choices according to how powerful they can be 
considered from the mathematical point of view. Finally, some suggestions for the instrument’s 
implementability in the research, mathematics teachers’ education, and classroom settings are made.  

Keywords: Problem posing, habits of mind, structure 

Introduction 
Problem posing is gradually gaining more attention in both the research community and in school 
daily practice in mathematics. Since one can find more than one definition in problem posing 
(Papadopoulos et al., in press) we choose in this paper to align with Silver’s (1994, pp. 19) definition 
who sees problem posing as “both the generation of new problems and the re-formulation of given 
problems”. Cai et al. (2015, pp. 4) mentioned that “despite the interest in integrating mathematical 
problem posing into classroom practice, our knowledge remains relatively limited about the cognitive 
processes involved when solvers generate their own problems, the instructional strategies that can 
effectively promote productive problem posing, and the effectiveness of engaging students in 
problem-posing activities”. So, to go deeper into how students generate their own problems, we shift 
our attention to the mathematical habit of mind (HoM) called Seeking and Using Structure 
(Goldenberg et al., 2015) since the essence of the successful problem posing is the ability to recognize 
and use the structure of the given problem. Despite Silver’s (2013) acknowledgment that it is worth 
measuring the development of certain mathematical dispositions or habits of mind, these two areas 
of mathematics (e.g., problem posing and habits of mind) have not been connected yet. To meet this 
challenge, we attempt (as a part of a broader study) to develop an instrument to monitor the students’ 
development of the habit of mind called seeking and using the structure through their effort to pose 
new problems. We aim to show its future implementability in the research, teachers’ education, and 
classroom settings.  

Literature review 
The theoretical underpinning of the design of this instrument lies in the realms of both the notions of 
structure and mathematical habits of mind. Understanding the structure of mathematical problems is 
considered critical in problem solving and posing. According to Mamona-Downs & Downs (2005) 
“structure can be thought of as a unity […] but it also offers access to its ‘parts’[…]. Hence, a structure 

Proceedings of CERME12 4181



 

 

has simultaneously a global aspect and an analytic one” (p. 390). Schoenfeld & Herrmann (1982) 
claim that problems can be perceived by the solvers on the basis of surface structure which refers to 
the items described in the problems themselves or of deep structure which refers to the mathematical 
principles necessary for a solution. A correct perception might lead to a straightforward solution 
whereas an incorrect one may send the solver on a “wild goose chase”. Moreover, it is supposed that 
the solver does not have easy access to a procedure for solving the problem but does have an adequate 
background to make progress on it. 

Problem posing activities are cognitively demanding tasks (Cai & Hwang, 2002) requiring students 
to think differently than in problem-solving to improve their understanding by reflecting on the deeper 
structure and goal of the task. In relation to the structure of the problem-posing situations, Stoyanova 
and Ellerton (1996) describe three problem situations: free, semi-structured, and structured. 
Moreover, Ellerton (2013) in her Active Learning Framework (ALF) aiming to incorporate problem 
posing in primary school mathematics, claims that students are actively involved in posing problems 
with similar structure to given ones but in a different context. Kwek (2015) tried to identify patterns 
in students’ mathematical learning and thinking during classroom-based problem-posing tasks. The 
findings gave evidence that the students’ ability to identify the mathematical structure of the problem 
was a vital cognitive factor. 

In our work, we define mathematical habits of mind as considering mathematical problems in very 
specific ways that look like the ways mathematicians use. It is about a way of thinking -almost a way 
of seeing a particular situation- that comes so readily to mind that one does not have to rummage in 
the mental toolbox to find it (Goldenberg et al., 2015). One habit particularly important for problem 
posing is the habit of seeking and using structure. In the context of solving and generating problems 
in early mathematics, the notion of mathematical structure concerns relationships between quantities, 
group properties of operations (e.g., associative and/or commutative operation), relationships 
between the operations (e.g., distributive property of one operation over another), relationships across 
the quantities (e.g., transitivity of equality) (Warren, 2005).  Therefore, the development of the habit 
of seeking and using structure helps the students to see the logic and coherence in every new situation 
they encounter. Both, the identification of the information in a given problem that would be suitable 
to generate a new problem and posing questions that fit a particular situation are strong signs that 
students can see and use the problem’s structure.  The seeking and using structure habit has been 
recently investigated in other settings. Papadopoulos (2019) examined the potential contribution of 
puzzle-like activities in exhibiting this habit in the context of early algebraic thinking in primary 
school students. 

Given that this habit is considered vital for successful problem posing and is developed through an 
accumulated experience with problem-posing activities we attempted to develop an instrument that 
would capture the relevant students’ ability. 

An implementable research instrument 
According to our knowledge, the only instrument related to habits of mind is the one developed by 
Matsuura and his colleagues (2011) to measure secondary teachers’ mathematical habits of mind in 
problem solving. It contains items rooted in familiar secondary mathematics and is for use for 
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research purposes only. Inspired by this tool, we tried to think and design an instrument related to 
problem posing that would be based on the different problem-posing strategies used by the students. 
The application of such strategies is considered an indication of seeking and using the structure of a 
given problem since problem-posing strategies are heavily based on the use of the structure of the 
given problem. The whole effort of designing this instrument followed a series of certain steps.  

Step A – Collecting strategies from the existing literature 

The first step was to follow the literature to collect the suggested problem-posing strategies. This step 
resulted in the following collection:  

Reversing known and unknown information: This strategy (also known as the ‘symmetry’ strategy) 
is one of the most common and frequently met strategies in mathematics textbooks. The answer to 
the original problem would now be part of the given data and some of the given information would 
be the unknown (Grundmeier, 2015). 

Change the context: The structure of the original problem is kept but the original context is changed. 
Ellerton (2013) said that the process of designing a different context for a problem that has a similar 
structure to the given problem proved to be challenging for most students. 

Change numbers: The students change the numerical data of the original problem to create a new one 
keeping the structure unaltered. Depending on the nature of the change, the new problem could be 
either similar or interestingly different from the original one. 

Change the question: The data of the original problem remain the same, but the question is removed 
and replaced with a different question that could fit the given data (also known as the ‘goal 
manipulation’ strategy). 

The answer is a method: The original question remains the same, but the numerical data are left off. 
The potential solvers will have to find how they’d solve the problem if the numbers were known, 
which means to find the method to solve the problem (Goldenberg et al., 2015). 

“Frontless” problems: Only the question is retained. In that way, these questions are in many senses 
as close to real-life as we can get. So, the question comes first, and then we have to figure out the 
information and the method we need (Goldenberg et al., 2015). 

Missing middle problems: The original question is kept but some numbers are left off and the solvers 
are asked to find what additional information would be required to answer the question (Goldenberg 
et al., 2015). 

“Tailless” problems: In this case, the question at the tail end is omitted. The goal is for the students 
to derive what they can from the given information. It looks similar to the Change the question 
strategy. However, in the former, the question of the initial problem has already been substituted and 
the aim for the student is to solve the new problem. In the latter, the problem is left open and the aim 
for the solver is to think: what information is here and what can I do with it? (Goldenberg et al., 
2015). 

What-if-not: This is the most known strategy in problem posing (Brown & Walters, 1983). According 
to this, we form a list with all the problem’s attributes and then we start negating each one of them 
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using the what-if-not questions which means to ask what would happen if these attributes were 
different. Each negation results in a new problem. This strategy allows students to discuss a wide 
range of ideas and dive into the structure of the problem. 

What-if-yes: A variation of the “What-if-not” strategy is put forward by Leikin and Grossman (2013) 
and Grundmeier (2015) based on adding attributes and/or properties to the given problem instead of 
removing or negating them. 

Step B – Forming the instrument 

In the second step, we contacted experts in the area to evaluate these strategies in relation to how 
powerful from the mathematical point of view can be considered. There were three options for each 
strategy (A, B, and C, from the most powerful to the less one). Eight experts from the USA (2), 
Germany (2), Hungary (2), France (1), and Greece (1) participated, and their answers were combined 
to form the final categorization in Table 1. Each problem posed by students can now be labeled as A, 
B, and C according to the strategy used. In case no strategy evidence is present at the students’ answer 
the proposed problems is labeled in category D. 

Measuring the seeking and using structure HoM Category 

The answer is a method 

A 
What-if-not 

What-if-yes 

Change the context 

“Frontless” problems 

B 

Missing middle problems 

“Tailless” word problems 

Change the question 

Change numbers 

Reversing known and unknown information 
C 

Change numbers 

No evidence D 

Table 1: Problem posing strategies 

The Change numbers strategy is included in two groups according to whether this change results in 
a similar problem or another open or more mathematically interesting problem.  

Step C – Instrument’s exemplification 

The third step of the process was to exemplify the instrument using a specific given problem. The 
following problem will be used to generate new problems using the above-mentioned strategies: 
Every day I save 50 c. to buy a book which costs 8.50 €. How many days would it take to save that 
amount of money? 
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Below we present how this problem could be reformulated or a new problem could be generated 
using the above-mentioned strategies. 

Reversing known and unknown information: The answer to the initial problem is 17 days (8.50 ÷0.5 = 17). This information will be part of the given data so that the given and the goal will be 
swapped. The new problem is: For the next 17 days I will save 50 c. per day to buy a book. How 
much does the book cost? (Type C).  

Change numbers: Depending on the way this strategy is applied it might be possible to have different 
problems of different weight. The new problem could be a simple one, in which the student simply 
mimics the original one by changing numbers (example a). But there are cases (example b), in which 
the new problem still resembles the initial one, but the new numbers may lead to interesting situations. 

a. Every day I save 20 c. to buy a book which costs 6.20€. How many days would it take to save 
that amount of money? (Type C) 

b. Every day I save 1€ to buy a book which costs 8.5€. How many days would it take to save that 
amount of money? (Type B) 

This second example leads to an interesting situation. How long does it take me? 8.5 days? Or 9 days?  

Change the question: The challenge here is to find another question that fits the already given data. 
Example: Every day I save 50c. to buy a book that cost 8.5€. What is the smallest number of coins I 
need to buy the book? (Type B) 

“Tailless” word problems: The question at the tail end is omitted and the problem is open for 
statements or questions. For example: Every day I save 50 c. to buy a book which costs 8.50€. What 
can you figure out from this information? The absence of the question also helps kids notice that more 
than one sensible question could be asked. For example: “Will I have enough money in two weeks?” 
(Type B) 

Missing middle problems: The original question will be the same, but some numbers will be left off. 
The missing number is part of the required information that is not given. This number is not the 
answer to the question the problem poses but it is necessary to solve the problem. Example: Every 
day I save some money to buy a book which costs 8.50€. How many days would it take to save the 
amount of money I need? (Type B) 

“Frontless” problems: Only the question is retained. Clearly, the question can’t be answered without 
information, and we must then figure out what information we need and what method we must use to 
answer. An example: There’s a book I want to buy. How many days will it take me to save up the 
money I need? What information do I need to know in order to figure this out? (Type B) 

Change the context: This strategy is indicative of a deep understanding of the problem’s structure. 
The core idea remains the same, but it is transferred in another setting (e.g., from coins and their 
relations to numbers and halves): How many halves do I need to get 8.5? (Type A) 

The answer is a method: The required answer is a description of how the problem would be solved if 
there weren’t numbers. Example: Every day I save the same amount of money to buy a book. How 
can I figure out how many days it will take me to get the amount of money I need? (Type) 
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What-if-not: One attribute of the given problem is that a certain amount of money per day is saved. 
So, what if that amount was not saved per day but, for example, every three days? The new problem 
becomes: Every three days I save 50 c. to buy a book which costs 8.50€. How many days would it 
take to save that amount of money? (Type A) 

What-if-yes: An additional information is added which has an impact on the solution process. For 
example: Every day I save 50c and I share this amount fairly with my brother. How many days would 
it take me to buy a book which costs 8.50€? (Type A) 

Step D – Use in a real case study 

The final step for the instrument is to use it in a real case study. There is a pilot study running this 
year. The aim is to gradually familiarize the students with this range of strategies in problem posing 
to see later whether they can use some or all of them in different problem-posing situations. The 
sessions start with problem-solving activities and then the students are asked to generate new ones 
inspired by the solved problem. To be successful they need to see the structure of the problem and 
apply those of the problem-posing strategies that fit the given data. Their problems will be collected 
and categorized according to the strategy they used. A score will be assigned to each student 
according to the produced problems and the type of strategies used. This score assigned does not 
determine the extent to which the habit of seeking and using structure has been developed by the 
specific student. It rather serves as a way to monitor the efforts done by the student to notice whether 
advanced problem-posing strategies are used over time.  

Concluding remarks 
This paper aimed to present an instrument we developed to record and examine whether students 
develop over time and through an accumulated experience on problem posing the habit of mind 
named seeking and using structure. The instrument works on the basis of the problem-posing 
strategies the students use. The more they use advanced problem-posing strategies (e.g., types A and 
B), the more they seem to have developed the seeking and using structure HoM. We see the potential 
implementation of this instrument in the sense of ‘if and how the innovation achieves desired 
outcomes for the target population’ (Koichu et al., 2021, p. 978). This problem-posing intervention 
is the innovation that constitutes the object of implementation (Century & Cassata, 2016) aiming to 
develop structure-sense to students. The instrument will help to determine whether the expected 
results are produced in the target population. So, from this point of view, researchers’ understanding 
of the issue of problem-posing strategies that effectively promote students’ structure-sense which 
finally result in productive problem posing (Cai et al., 2015) will be deepened. Further insights into 
the relationship between problem posing and the habit of seeking and using the structure of the given 
problems will be gained. The instrument can also be useful in the context of educating future 
mathematics teachers. They need to be familiar with problem-posing strategies, recognize the 
structure of a problem, and use it to formulate new problems. This starts from the fact that future 
mathematics teachers very often-and in relation to problem posing- emphasize the result instead of 
the process (Klinshtern et al., 2015). However, it is the latter that is closely related to the notion of 
structure. So, it is important to shift their attention from the result to the process. The instrument will 
be useful to monitor the potential development of the seeking and using the structure HoM. Finally, 
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the instrument might also be useful for in-service teachers. Following the whole classroom or each 
one of their students across the school year using this instrument, they will have the chance to identify 
any progress in the development of the habit of seeking and using structure. The variation in scores 
over time will facilitate the understanding of the students’ crucial ability to see and use the structure 
of a given problem situation.  

What is the most important however is that this instrument is bridging two areas, problem posing and 
mathematical habits of mind, that are still unconnected. Our long-term aim is to use this instrument 
to follow a primary school classroom in a year-long intervention in the context of a problem-posing 
intervention. 
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This paper concerns what a successful implementation of an innovation in mathematics education 
can be and how that can be achieved. Focus is on sustainability of an innovation and the role of 
textbooks. We use two historical Swedish development projects in mathematics education for the 
discussion. The material is official reports and governmental documents concerning the projects. 
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Introduction
This paper is part of the project Implementation research as an emerging field of mathematics 
education. The project’s aim is to create a theoretical framework for implementation research (IR) 
in the field of mathematics education research (MER), in particular for research on large-scale 
development projects. The overall project examines which existing IR theories and which parts of 
these are applicable to implementation and development projects related to mathematics. To verify 
this, we test the theories and related concepts that we find relevant through comparisons of five 
development projects.

This paper concerns two of those projects—New Math and PUMP1—and the aim is to understand 
how the concept of sustainability, a key IR concept, is applicable in MER. This concept is essential 
for how to conceive what a successful implementation of an innovation is. The analysis is focused 
on textbooks, since that is a characteristic of school subjects. Textbooks also involve a type of 
stakeholders—publishing companies— that we do not find in many other subfields of IR. Our
research question concerning the New Math and PUMP projects is: What was the role of textbooks 
in the implementation process, and how were textbooks related to efforts of sustaining or 
maintaining an innovation?

Previous research
In their overview of IR on large-scale innovation, Century & Cassata (2016) identify a number of 
factors that influence whether an implementation of an educational innovation is a success or a 
failure. In what respects an implementation is a success can be understood in different ways. One 
way is to consider outcomes in terms of student results or changed behaviours of teachers or 
students. However, there are two other aspects of success, which the outcome perspective is 

1 PUMP = Processanalyser av Undervisning i Matematik/Psykolingvistik (Process analyzes of Teaching in 
Mathematics/Psycholinguistics)
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depending on. One aspect is fidelity to the innovation or the reform program. That is, to succeed in 
getting a great number of teachers to use the innovation as planned. The rationale is that teachers 
need to apply the innovation as planned, if it is to make sense to talk about positive or negative 
effects on outcomes. The second aspect is to succeed in getting the teachers to apply the innovation 
for a long time, or at best, forever. In that perspective a successful innovation endures. The rationale 
here is that positive effects are pointless if the innovation does not endure.

These two other aspects or perspectives on success can to some degree be conflicting. One way to 
obtain endurance is to have innovations that allow for adaptions to local and changing 
circumstances over time. Such innovations are then considered sustainable. However, adaption is in 
conflict with fidelity. In a fidelity perspective, endurance is then a matter of maintenance in order to 
preserve the innovation. The weakness of that perspective is that the context of an innovation can 
and do change, which means that adaptions may be necessary.

This paper concerns factors and conditions that may contribute to innovations in mathematics 
education (ME) becoming sustainable or maintainable for longer periods of time.

The overview of Century & Cassata (2016) is efficient as it guides us to essential issues in IR, for 
instance the ideas concerning sustainability. However, it is not possible to discern if there are 
certain factors or conditions that are more or less relevant to achieve sustainable or maintainable 
innovations in different areas. Neither is it clear in what respect textbooks and publishing 
companies constitute factors or conditions that facilitate or inhibit successful implementation of an 
innovation. A similar problem we find also in the publications Century & Cassata (2016) refer to. 
Regardless of field—for instance mathematics education (Clements el al., 2015), kindergarten 
(Lieber et al., 2009), positive behaviour support (McIntosh et al., 2013), sex education (Rijsdijk et 
al., 2014), and science education (Century & Levy, 2002)—the researchers apply concepts and 
theories from IR as if they were applicable in all fields. Some of them do address the role of 
textbooks or other teaching materials to obtain sustainability (Century & Levy, 2002; Lieber et al., 
2009; Rijsdijk et al. 2014), but others do not.

In some cases, such as positive behaviour support (McIntosh et al., 2013), it seems natural not to 
include textbooks and other teaching materials as a factor for obtaining sustainability; the teachers
in the McIntosh et al.’s (2013) study were supposed to follow a certain program for positive 
behaviour support and it did not concern the teaching of school subjects. In the other extreme, we 
find mathematics education and science education. These are contexts where textbooks have existed 
for a very long time and should not be considered non-essential parts of the teaching practices. 
However, only Century & Levy (2002) address the role of textbooks, in science education, not 
Clements el al. (2015) in their paper on mathematics education.

Our contribution to previous research is about deepening the understanding of how textbooks can 
be managed in different ways in development projects to sustain or maintain innovations. In 
particular, we are interested in how project managers or reformers tackled the publishing 
companies. These companies must be considered stakeholders in educational reform processes as 
their existence rests on teachers and schools buying their products. Moreover, we should not 
assume that the purpose of an innovation coincides with the interests of publishing companies.
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Theory and method
Our analysis of strategies for obtaining sustainable or maintainable innovations is based on 
Coburn’s (2003) theory of scaling up an educational reform, which in our view also includes 
implementation of innovations. According to Coburn (2003), scale comprises four interrelated 
dimensions: depth, sustainability, spread, and reform ownership.

Depth concerns in what respect teachers change beliefs, norms of social interaction, and 
pedagogical principles. This is in contrast to so-called superficial changes such as changes in 
materials, classroom organization, or the addition of specific activities.

Sustainability concerns time and schools’ ability to make innovative changes to remain in the 
teaching practice. This often means allocating tools and resources (e.g., financial, staff, and 
administration) for that end. In our analysis, we also use the concept maintenance in order to 
capture different ways to make an innovation endure, see previous section.

Spread is what traditionally is associated with scaling up. The implementation of an innovation is 
scaled up when an increasing number of classrooms and schools get involved.

Reform ownership is a matter of external reformer handing over control to districts, schools, and 
teachers. Or more precisely “creating conditions to shift authority and knowledge of the reform 
from external actors to teachers, schools, and districts”.

By our study, we want to supplement Coburn’s (2003) theory by relating textbooks and other 
teaching materials to the four dimensions just mentioned. We argue, from a theoretical point of 
view, that textbook and teaching material can be involved in the four dimensions in a substantial 
way. As to depth, textbooks and teaching material are designed according to some pedagogical 
principle; explanations and exercises are not developed and organised at random. Thus, using a 
textbook is then a matter of applying that principle. Innovations brought by textbooks are then 
sustained or maintained by publishing companies, not just school authorities. As to spread, that is 
the raison d'être for commercial publishing companies. Nobody has to remind them of that. And a 
textbook can give more or less ownership to teachers.

An important point is that school authorities, which often initiate and drive reforms, and publishing 
companies, can have different interests. And those interests may be in conflict with each other. Our 
assumption is that if you try to scale up the implementation of an innovation and make it 
sustainable, the chance of success is affected by the extent to which you work with or against 
publishing companies. And if you are not working with them, it can be a good idea to have a 
strategy of managing potential conflicts and fending of companies.

In our analysis, two development projects are compared. For each project we identify a strategy for 
managing textbooks and publishing companies and each strategy is tied to an aim of sustaining or 
maintaining innovations. The analysis includes Coburn’s (2003) other three dimensions of depth, 
spread, and ownership. The materials are official reports and governmental documents concerning 
the development projects and to minor extent communication with people involved in the projects. 
The material has been treated as narrative sources concerning what intentions people had and what 
happened during the development and implementation of innovations. None of the sources contain 
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an explicit strategy for managing textbooks and potential conflicts with publishing companies. But 
some sources do concern textbooks, quite a lot and very explicitly in fact, and we have then sought 
to identify how the treatment of textbooks gave the reformers an advantage over publishing
companies. As to the New Math project, we rely on findings presented in already published studies. 
But the studies are also based on official reports and governmental documents.

New Math project (1960–1975) and the role of textbooks 
If we consider the plans for the New Math reform in Sweden, it contained a lot of innovations that 
altogether were deep. By far, it was not a matter of adding sections of set theory in some school 
years. On the contrary, it was a matter of providing new principles for structuring and teaching all 
school courses in mathematics (1–12). Set theory was supposed to constitute a foundation on which 
the other school topics should rest. In teaching, concepts should be introduced and explained by 
means of concepts, expressions, and illustrations related to set theory. In this way, coherence 
between all topics should be created. This would also facilitate a teaching focused on understanding 
rather than just procedures, which was in line with the theory of cognition, learning and 
mathematics that guided the reform. But, apart from set theory, New Math also brought other 
innovative concepts, for instance from vector geometry, trigonometry, and functions (Prytz, 2018).

The spread was supposed to be total in the sense that the innovations concerned all school years 1 
through 12 and all Swedish schools. The way to achieve this was to implement the innovations in 
connection with the national curriculum reform of 1969, which then brought a radically new course 
program for mathematics. 

To maintain the innovations, textbooks were an essential component. Much of the development 
phase (1961–1968) concerned textbook development, which was financed and driven by central 
school authorities. The overarching aim was to develop textbooks that could fit the radically new 
curriculum. The idea seems to have been to provide the publishing companies with an extensive 
example of what a new type of textbook should look like. In practice, many publishing companies 
managed the conversion by hiring people involved in the New Math project. However, compliance 
with the new curriculum was secured by a mandatory textbook review. And if we consider the 
content of the textbooks published in connection with the curriculum reform of 1969, the 
compliance with the new course program in mathematics was indeed good. Since the textbooks 
review was a matter of controlling the fidelity with the innovations, we find it relevant to talk about 
maintaining rather sustaining innovations when it comes to New Math (Prytz, 2018).

As to transfer of ownership, teachers were given in-service training concerning the New Math, 
which is a clear example of providing teachers knowledge of the innovation. However, the focus 
was on mathematical content rather than teaching methods. And in comparison, e.g. to the Boost for 
Mathematics project, it was brief. And do not forget the national textbook review that limited the 
possibilities to deviate from the curriculum. Thus, the central school authorities will and ability to 
transfer ownership do not appear to have been great (Prytz, 2018).

Regarding textbooks and the strategy to maintain the innovations, the New Math project’s attitude 
versus publishing companies was of a brutal kind. In the devolvement phase during the 1960s, all 
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people involved authoring the experimental textbooks, except one, had a background as textbook 
author for school years 1 to 12. So, there were no ties to publishing companies in that respect. The 
trials and testing were done in a scientific context with researchers in charge and almost without 
involvement of publishing companies. Thus, the companies had little influence on the process that 
led to the example they had to follow. On top of that, there was the textbook review (Prytz, 2018).

If we then consider the demise of New Math in Sweden, this brutish attitude towards the publishing 
companies appears to have been functional. A few years after the 1969 curriculum reform, the 
central school authorities decided not to drive important components of New Math, not least the
parts concerning teaching principles. However, the mathematical course program did not change. 
And in 1974, the textbook review became optional. After that, publishing companies began to issue
more traditional textbooks, in parallel with New Math textbooks (Prytz, 2018).

This shows how willing and able the publishing companies were to act quickly and produce 
textbooks that were in conflict with the innovative components of New Math. Most likely they 
aimed at making a profit of teachers’ dissatisfaction with New Math. To what extent teachers were 
dissatisfied is hard to estimate, but critique was aired well before the reform. This indicates how 
important the mandatory textbook review was to prevent publishing companies from interfering 
with the original plans for the implementation.

PUMP project (1970–1985) and the role of textbooks 
In comparison to the innovations of the New Math project, the PUMP innovations can appear to 
have had little depth. They concerned just arithmetic in school years 1 through 6 and the central 
innovative component was an assessment material. Moreover, no particular pedagogical principle 
for teaching was prescribed. On the other hand, the assessment material and its underpinnings were
very carefully crafted, tried, and tested. And they prescribed a detailed sequence in which exercises 
in arithmetic should appear in teaching. There were also good arguments for this sequence since the 
material had been tried and tested empirically. In addition, there was a cognitive theory about 
working memory to further support the sequencing of the content (Kilborn, 1979). Our point here is 
that this type of sequencing concerns the very basics of teaching. How and what a teacher 
communicate with the students is depending on how the content, for instance exercises, are 
sequenced (cf. Bernstein, 1974). So, in that respect the PUMP material had depth, but it was another 
type of depth than in the New Math material. In brief one could say that the New Math gave 
principles and examples for the sequencing of the content and principles for teaching; PUMP gave 
the sequence for the content. 

The spread of the PUMP material was very modest in comparison to the New Math reform. There 
was no policy demanding all teachers to use the material (Kilborn, 1979). But the fact that a 
developed version of the PUMP material is still in use today indicates that the material had spread.

This endurance suggests that the efforts to sustain the material were successful. Different aspects of 
how that was done will be studied in our project. In this paper, we consider more closely how the 
PUMP people could avoid threats to their sequencing of the content from publishing companies. 
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Here it is important to notice that textbooks in essence constitute a sequencing of the content. So, 
there is a potential conflict.

For the PUMP people, the fight had two fronts: on the one hand the publishing companies, on the 
other, the New Math curriculum. And they launched massive critique in both directions. It was 
massive in the sense that they had a solid and detailed assessment material; this material was used 
in classroom studies to detect what type of difficulties students had in arithmetic, many of the 
difficulties appeared to be connected to textbooks and the curriculum; and the material was finally 
used to study the structure of textbooks. The analysis of the textbooks was thorough. The PUMP 
people mapped the amount of exercises the student encountered each week for a whole school year. 
And the level of difficulty of each exercise was estimated by means of the assessment material. In 
this way, they could estimate in what respect the progression was too steep or too flat. Often the
textbooks raised the level of difficulty very fast. The PUMP people tied these problems to the New 
Math curriculum which they considered too unclear in terms of progression. They also found some 
directives misleading (Kilborn et al., 1977).

According to one of the leading persons in PUMP (personal communication), their textbook
critique had great impact on the publishing companies. There was even an expression for it: 
textbooks were “pumped” before they went to the market. However, this claim needs further studies 
of the textbooks to be corroborated.

As to transfer of ownership, the PUMP assessment material was a readymade tool for the teachers 
to use. It was not something a teacher could own in the sense that they could gain knowledge about 
it and modify it. That was not the intention. However, the PUMP people argued that the material 
would make teachers less dependent of publishing companies and their textbooks. The idea was that 
teachers could use the PUMP material to plan their teaching and choose textbooks that fitted their 
plans. For that end, the material could also be used by teachers to evaluate textbooks (Kilborn et al. 
1977). So, here we see another type of ownership. This is also the reason why we find it relevant to 
talk about sustaining rather maintaining innovations when it comes to PUMP.

Conclusions
We have applied Coburn’s (2003) theory of scaling up an educational reform to characterize the 
implementation of innovations in two historical Swedish development projects in mathematics 
education: the New Math project (1960–1975) and the PUMP project (1970–1985). This theory 
comprises four dimensions: depth, sustainability, spread, and reform ownership. In addition, we
have made a distinction between maintaining and sustaining an innovation. We have also analysed 
the role of textbooks in strategies for sustaining or maintaining innovations in the projects. Our 
characterisation of the projects is summarised in Table 1 below.

Our analysis of strategies for sustaining or maintaining innovation has also involved the reformers 
attempts to manage publishing companies—the producers of textbooks—and potential conflicts of 
interest. In both projects, this management was done in a purposeful manner. In the case of New 
Math, textbook development was the centre piece in the development phase. A process publishing 
companies had very little influence over. And in the implementation phase, the companies were 
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forced—through a national curriculum and a mandatory textbook review—to follow the examples 
set by the textbooks that were the results of the development phase. In the PUMP project, we can 
observe another strategy. Textbook development was not part of the PUMP project, but it included
a comprehensive textbook review, based on the detailed assessment material (a key innovation) that 
had been developed and empirically tested. This material laid out a very detailed sequence in which 
exercises should appear in teaching. The review resulted in harsh critique of the textbooks. We have 
indications that this criticism had a great impact on the publishers. But further research is needed.

Table 1. Characterization of the New Math and PUMP projects

Project Maintain or Sustain Spread Depth Ownership to teachers

New 
Math

Maintaining innovations, 
mainly through formal 
curriculum and textbook 
control

Whole country through 
curriculum and textbook 
control. Concerned all 
schoolyears and all 
mathematical topics.

Through general 
principles and 
examples that
sequenced the 
content

Limited in-service 
training of teachers.

PUMP Sustaining innovations by 
giving a tool (an assessment 
material) for developing 
teaching methods and 
evaluating textbooks

Modest due to voluntary 
use of assessment 
material. And it 
concerned school years 
1–6 and arithmetic.

Through a 
concrete and 
detailed 
sequencing of the 
content

Teachers should use 
assessment material for 
pedagogical develop-
ment. Not possible to 
modify the material

We also have evidence of these strategies being necessary in the sense that publishing companies 
pursued aims other than those of the reformers. This became visible later on in the implementation 
phase of New Math, when the central school authorities made the textbook review optional in 1974 
and refrained from driving key innovative elements of the New Math reform, even though the New 
Math curriculum was still in effect. The companies reacted quickly and were able to start 
production of more traditional textbooks. This is an example of how publishing companies respond 
to market force and how it can undermine the maintenance of an innovation. If there is a demand 
for a certain type of textbooks, the publishers tries to meet demand without losing the market share 
that rests on product recognition. Consequently, publishers balance on a fragile thread between the 
diametrical poles of change and tradition, when considering which path yields the most profit.

Regarding contribution to previous research, in particular Century & Cassata (2016) and Coburn 
(2003) which concern IR in general, we stress the theoretical relevance of our findings. In a 
previous section we have explained that existing IR models does not in greater detail concern the 
role of textbooks and publishing companies in processes of sustaining or maintaining innovations.
We argue that this is something to consider when developing IR models specific to mathematics 
education and large scale implementation projects. Our findings indicate that the characteristics of 
the process of implementing innovations on a larger scale (sustainability/maintainability, spread, 
depth, and ownership) can be related to strategies for managing textbooks and publishing 
companies in the implementation process. Our findings also indicate that success in 
sustaining/maintaining innovation and achieving spread may be depending on such strategies.
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These indications point at more general issues of innovation, education, and market forces. Issues 
we find extra relevant for mathematics education research since not only textbook companies but 
also technology companies have influenced school mathematics for a very long time.
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This paper reports on the development of a survey tool to investigate how programming and 
computational thinking (PCT) is implemented in Denmark, Sweden, and England. The survey is 
targeted at mathematics teachers and aims to understand their enactment of PCT in their field and 
their perceived attributes of the innovation. Developing this kind of survey is difficult as 
implementation strategies differ significantly. This paper argues that one way to build a foundation 
for comparison is to inform its focus by utilizing 1) implementation theory and 2) innovation-specific 
theory.   

Keywords: Computational thinking, design-based implementation research, implementing PCT in 
mathematics. 

Introduction 

During the last decade, an increasing number of countries have implemented curriculum revisions to 
include elements of programming and/or computational thinking (CT) in K-9 schools. These 
countries have adopted different approaches to this implementation process (Bocconi et al., 2016), 
which involve variations in the nature of the implemented innovation, the offered support strategies, 
the characteristics of the end-user, and the organizational and environmental factors surrounding the 
implementation process. While PCT as a compulsory school subject is not always explicitly linked 
to the mathematics curriculum, both researchers and practitioners in mathematics education 
acknowledge that there are potential synergies when integrating PCT within the subject. Despite this, 
previous research indicates that the establishment of meaningful synergies is far from a trivial 
endeavor (Misfeldt et al., 2019). At this point in time, mathematics teachers from many countries are 
likely to have encountered elements of PCT in their teaching; more than 50% of all math teachers in 
The International Computer and Information Literacy Studies’ (ICIL) measurement of computational 
thinking reported an emphasis on computational-thinking-related tasks in their subject (Fraillon et al., 
2020). ICIL’s framework investigated information and communication technologies in schools across 
the subjects, including both explicit and implicit aspects, and it found similarities in the content, 
resources, methods to support learning, and priorities, despite rather different formulations of plans 
and curricula (Fraillon et al., 2020). Each of the nations did however focus more on computer and 
information literacy than on computational thinking. From an implementation perspective, this leaves 
us in a situation where it is still unclear how and to what extent experiences of teaching PCT and 
mathematics differ when situated in divergent contexts This would be valuable in gaining an 
understanding of the implications of various implementation strategies for mathematics teachers’ 
practices. Still, the differences that make comparisons interesting represent a challenge when 
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developing a research design. Although many nations have implemented an innovation, which can be 
labeled under the broad umbrella term of CT, there are substantial divergences in what aspects of the 
concept are emphasized. Moreover, national implementation strategies regarding PCT are often 
comprehensive and organized differently. These differences make it difficult to develop a design that 
is both broad enough to build a foundation for comparison and still sufficiently sensitive towards 
country-specific contexts. Previous research has studied teachers’ conceptions of PCT in national 
contexts (Misfeldt et al. 2019) and across countries (Manila et al. 2014). However, this research 
mainly focused on mathematics teachers’ ideas about PCT, while Manila et al. (2014) studied 
educators in all subjects. Additionally, none of these studies explicitly concentrated on 
implementation. This paper reports on our work of developing a questionnaire that enables us to find 
variations in how PCT and mathematics are enacted and experienced by teachers in three broadly 
different contexts. We chose Denmark, England, and Sweden for comparison as they have adopted 
distinct strategies for implementing PCT. Here, we will discuss how to design an implementation 
study that is sensitive to country-specific variations, creates meaningful survey items for educators in 
all nations to ensure reliability and validity (Wikman, 2006), and can thus provide a meaningful 
foundation for comparison. In this paper, we intend to spark a discussion about what properties we 
should expect from comparative implementation studies in relation to mathematics education. To 
engage in this debate, our starting point will have its basis in our reflections relating to developing a 
survey for mathematics teachers in Denmark, Sweden, and England on how they 1) teach 
mathematics and PCT and 2) what they see as the main difficulties and potentials of doing so. From 
an implementation perspective, our survey thereby specifically concentrates on what Century and 
Cassata (2016) refer to as the end-users' innovation enactments and their perceived attributes of the 
innovation itself. The overall aim is to address the following research question: How can we develop 
a survey to compare mathematics teachers’ enactments of PCT in mathematics education and their 
perceived attributes of the innovation in different national contexts?  

We begin the paper by outlining the situation in the three countries. Next, we describe the issues we 
encountered when developing a survey that can be both applied to the different situations in the 
countries and provide a meaningful foundation for comparison and the theoretical sources that we 
drew on to address these difficulties. Finally, we present how this was translated into a survey design 
and the limitations and strengths of this approach in terms of reliability and validity. 

The situation in the three countries 

As described in the introduction, Denmark, Sweden, and England have adopted different approaches 
to implementing curriculum revisions regarding PCT. In this section, we describe the nature of the 
approaches in the three countries and summarize their main differences from the point of view of 
implementation as well as investigate the relationship between PCT and mathematics. 

Sweden 

In 2018, the Swedish K-9 curriculum was revised as part of a national strategy to build students’ 
digital competency. The rationale for this strategy was dual. First, the Swedish government 
highlighted that being digitally competent in the sense of understanding and mastering technology 
has become a prerequisite for being an active part of a democratic society, making it imperative. 
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Second, reports from the Statens Medieråd identified substantial differences in the digital habits and 
competencies of young Swedish people based on variations in gender, ethnicity, and 
demographic/socio-economic backgrounds. The national government referred to the increased focus 
on digital competency in compulsory schools as an approach to address this issue (Skolverket, 2018). 
This increased concentration on digital competency was cemented by revising the curriculum for 
several subjects in compulsory schools and by adding certain elements to legal documents, which re-
establish the purpose of schooling in Sweden. Both initiatives aimed to make the responsibilities of 
Swedish schools clearer (Skolverket, 2018). This strategy led to revisions of all major subjects in 
schools (including mathematics, technology, civics, biology, chemistry, physics, Swedish/Swedish 
as a second language, and handicrafts), which were altered to include digital competency. In the 
context of mathematics education, this led to an innovation consisting of a revision of the curriculum, 
meaning programming was introduced as part of problem solving and algebra. The new programming 
component was thus embedded in the curriculum by rephrasing existing descriptions of the subject 
to integrate the skill. For example, in the case of algebra levels one to three, the curriculum specifies 
that students should learn “how unambiguous step-by-step instructions can be constructed, described 
and followed as a basis for programming” and that they should have knowledge of the “use of symbols 
in step-by-step instructions”. Meanwhile, in problem solving for grade levels seven to nine, the 
curriculum specifies that students should acquire knowledge of “how algorithms can be created, 
tested and improved in programming for mathematical problem solving”.1  

Denmark 

Denmark is yet to implement computational thinking in the Danish K-9 curriculum. Nevertheless, 
mathematics does include many aspects of CT-related teaching, especially with regard to problem 
solving, modelling, and tools/aids. The related goals incorporate the following: “The student can plan 
and undertake problem-solving-processes” (problem solving), “The student can undertake modelling 
processes, including with the use of digital simulation” (modelling), and “The student has knowledge 
of different concrete materials and digital tools” (remedies)2. However, these desired competencies 
have not been formulated as items specifically relating to PCT in the curriculum. From 2018–2021, 
a new subject entitled technology comprehension (TC) was implemented at 46 schools across the 
country as an experimental pilot project (Smith et al., 2020). The project included two implementation 
strategies, namely 1) implementing TC as a subject in its own right and 2) integrating it into other 
subjects (into mathematics in this instance). In both cases, TC was comprised of four areas of 
competency: digital empowerment, digital design and design processes, computational thinking, and 
technological knowledge and skills—including programming (Smith et al., 2020). The Danish 
Ministry of Education (UVM) also published a tentative curriculum with added TC learning goals 
(UVM, 2019). Although the new subject might forecast that an actual PCT-oriented subject is on its 
way into Danish schools, it has not yet been settled on as to how or when it will be fully implemented. 

                                                

1https://www.skolverket.se/publikationsserier/styrdokument/2018/laroplan-for-grundskolan-forskoleklassen-och-

fritidshemmet-reviderad-2018 

2 https://emu.dk/sites/default/files/2020-09/GSK_F%C3%A6llesM%C3%A5l_Matematik.pdf 
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England 

England was among the first countries in Europe to absorb programming into the curriculum in 
2013/2014 as a mandatory subject in its own right called computing. A key attribute of this innovation 
is its emphasis on technical and computer science-related content. The curriculum thus states that the 
aim is to ensure that all pupils, among other things, can understand and apply fundamental 
principles/concepts of computer science, analyze problems in computational terms, evaluate and 
apply information technology (including in relation to new or unfamiliar technologies), and 
analytically solve problems. In this respect, the computing subject in England can be considered a 
simplified version of what is taught in computer science at a university level. These attributes of the 
innovation reflect that the computing subject in England is intended to address a challenge that is 
phrased differently compared to the Danish context. In the former nation, one of the main aims of 
implementing the new computing subject was to lay the stepping stones for creating a workforce with 
adequate competencies to teach the next generation of programmers.  In England, teachers of the now 
defunct ICT subject were assigned the responsibility of teaching its new computing counterpart. 
These educators received no formal training on how to disseminate the new subject to students, and 
there were no central initiatives to develop teaching materials. According to Larke (2019), the 
rationale behind not developing such initiatives was to ensure teacher-based autonomy when using 
and developing the materials they found were adequate to meet the needs of the curriculum. Although 
the computing subject in England is not related to mathematics, there are several ongoing research 
projects that explore the potential synergies of integrating programming into it. One of these projects 
is Scratch Math3 which has developed a number of teaching materials that integrate mathematics and 
programming that are accessible to all teachers. 

Theoretical background 

As evident above, the implementation scenarios in the three countries differ in several ways, making 
it challenging to design a comparative research design that can adequately examine the three contexts. 
One particular challenge is that the implementation processes are comprehensive and organized very 
differently across the countries. To provide a solid foundation for comparison, it is thus important to 
ensure there is a theoretically delineated focus on the implementation process in which teachers are 
the appropriate respondents to answer the questions in the survey. To guarantee this, we informed the 
survey’s implementation focus by drawing on research by Century and Cassata (2016) who developed 
an influential characterization of implementation research in education; they described it as both an 
inquiry into the innovation itself but also of factors that influence how it is enacted, the relationship 
between multiple innovations, and the outcomes of it. They outlined five key aspects of major 
importance for implementation in education, namely the characteristic of the individual user, 
organizational and environmental factors, implementation over time, implementation support 
strategies, and attributes of the innovation. Using Century and Cassata’s (2016) wording, we were 
able to define our primary interest in the survey as trying to gain insights into 1) how mathematics 
teachers enact the innovation and 2) their perceived attributes of the innovation they enact. While 

                                                

3 https://www.ucl.ac.uk/ioe/research/projects/ucl-scratchmaths 
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Century and Cassata (2016) argue for the importance of studying the innovation, they distinguish 
between its actual (or objective) characteristics and the perceived attributes by the end-users. In the 
survey, we focused on the latter. Although the innovation (PCT) is described in somewhat loose terms 
in the three countries concerned, the relationship between PCT in mathematics and PCT is relatively 
clear. We therefore believe that available policy documents provide sufficient information about the 
actual characteristics of the innovation. Moreover, the existence of loosely described curriculum 
innovations makes understanding teachers’ enactments of them even more important. We will return 
to the implications of this choice in the discussion. 

A second challenge relates to the fact that the innovation being implemented is similar in that it 
focuses on CT, yet it is outlined in significantly different manners within the curricula and policy 
papers across the three countries. Although the innovation in all three nations addresses what could 
be labeled as aspects of PCT, there are differences in terms of which parts of the broad concept of 
PCT are emphasized. This is problematic as we intend to quiz mathematics teachers from the three 
countries on what aspects of PCT and mathematics they combine by providing a number of pre-
determined content areas of PCT and mathematics for the respondents to choose from. These content 
areas are thus at risk of either being too comprehensive (if they were to include all elements of CT 
from each country) or biased towards the context of only one of the nations. To address this, we 
informed our questionnaire by employing Weintrop et al.’s (2016) framework for computational-
thinking practices in mathematics education, which was developed to provide teachers with 
guidelines on how they can assimilate CT into their mathematics teaching; it also specifies four main 
areas of CT: data practices, modelling and simulation practices, computational problem-handling 
practices, and systems-thinking practices. With regard to which content areas of mathematics teachers 
combine with PCT, we utilized the 10 subject areas described in the KOM framework that was 
developed by Niss and Højgaard (2002). They are numbers, arithmetic, algebra, geometry, functions, 
infinitesimal calculus, probability, statistics, discrete mathematics, and optimization (Niss & 
Højgaard, 2002). Drawing on these models, we developed questions that ask teachers which 
PCT/mathematics subject areas they combine in their teaching; at the same time, we were careful not 
to bias what we asked towards the situation in one of the countries. More generally, by informing our 
survey with these theoretical frameworks, we aimed to ensure alignment between the survey 
questions and variations in the innovation across the three contexts and saw to it that the survey 
includes questions for teachers to answer that provide insights into their enactment of the innovation 
and their perceived attributes of it. Below, we describe how we operationalized these guiding 
theoretical principles within concrete survey questions. 

Designing a comparative implementation survey 

The survey is organized into three main sections: a background section, a section on teachers’ 
enactments of the innovation, and finally a section on their perceived attributes of it. In this paper, 
we have especially focused on the last two sections, which we describe below.  

Items in innovation enactment and perceived attributes of the innovation 

The first obstacle when developing survey items is adhering to the need to concentrate on specific 
aspects of the implementation process, which mathematics teachers can provide comparable answers 
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to (Wikman, 2006). As described, we define this focus as innovation enactment and perceived 
attributes of the innovation by drawing on Century and Cassata’s (2016) research. Even though this 
provided a focal point for the differing innovations, to ensure the reliability of our survey items and 
thus the validity of our survey, we still needed to provide a foundation for comparison without being 
biased towards the context in one of the countries. As previously mentioned, we chose to employ a 
relevant framework by Weintrop et al. (2016) to ensure that the examined elements of PCT were 
based on generally accepted models. With regard to the areas of math content, we relied on the 10 
subjects from the KOM framework (Niss & Højgaard, 2002). 

The issue of potentially biasing the questions towards one of the countries’ modes of implementation 
stems from the major differences in relation to the focus of the innovation. With the Swedish 
implementation, we would expect a high number of teachers working extensively with computational 
problem-handling practices due to the heavy emphasis on this in their curricula. On the other hand, 
with regard to Danish schools, we expect there to be a preoccupation with computational problem-
handling practices but also with modelling and simulation practices as it is an explicit learning goal 
in mathematics (see the section on Denmark). As England has implemented programming as its own 
subject, it is still rather unclear to what extent teachers recognize their practices as computational 
thinking and what math-related subjects are connected to this. This is where the practices of Weintrop 
et al. (2016) become useful. As this CT definition has been developed for science and mathematics, 
we anticipate that teachers in all three countries will be able to recognize the four practices. When 
employing the country comparison by ICIL (Fraillon et al., 2020), we also expect there to be some 
similarities between the practices and context areas, even though the innovations are rather different. 
Using the more fine-grained sample of 10 math subjects, we are also equipped to enable a comparison 
of how mathematics teachers enact PCT in their educational activities and to ascertain to what extent 
the different practices highlighted by Weintrop et al. (2016) are signified. This construction of items 
not only allows us to look at what CT-related practices educators employ in their teaching but also to 
investigate what subjects in the math field they are coupled with. This facilitated our investigation 
into the different practices that are utilized across countries and made it easier to look into the 
relationship between the innovation and the practices themselves. In the questionnaire, we thus asked 
teachers if they include programming and computational thinking via each of the four practices 
described by Weintrop et al. (2016): “One can work with programming and computational thinking 
in different ways. To what extent is working with data practices part of your teaching?” If teachers 
reply that they include it to some or a large extent, we then ask which of the ten outlined content areas 
from the KOM framework that they are coupling the PCT practices with. 

After forming the item construction of PCT practices and math subjects, we created a framework for 
comparing innovation enactments instead of the innovation itself. As an add-on to that, we aimed to 
compare teachers’ perceived attributes of the innovation, both across country-specific innovations 
and the enactments by teachers. With regard to the perceived attributes of the innovation, we drew 
on a survey made for Swedish teachers (Misfeldt et al., 2019), yet we excluded questions that were 
too strongly influenced by the Swedish implementation of PCT into the math subject. The survey 
addresses teachers’ perceived attributes of the innovation by including relevant questions, such as 
those relating to educators’ experiences of the integration of PCT and math (e.g., “To what extent do 
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you agree with the following statement: Teaching programming supplements math teaching to a large 
extent”), how teachers experience programming as it relates to the enactment of the praxis (e.g., “My 
students are using their math capabilities when they are programming”), and finally the relationship 
they perceive between math and programming. In sum, the survey described above allows us to 
inquire about what aspects of PCT and mathematics educators in the three countries combine in their 
teaching and their experiences of doing so. We expect that the survey will enable the gathering of 
valuable insights into the different ways teachers navigate and experience teaching PCT and 
mathematics in the three contexts.   

Discussion and conclusion: Comparative implementation studies in mathematics 
education 

There are variances in how Danish, Swedish and English mathematics educators combine their 
subject and PCT within their teaching; their experiences of doing so are also contextualized by 
significantly different implementation strategies. This is exactly why a comparative investigation is 
interesting. Although our development of the survey tool described here is still at an early stage, we 
believe that our approach could provide inspiration for how to conduct comparative implementation 
studies within mathematics education. Our survey design is informed by two main types of theoretical 
frameworks: one is a theory that is specific to the innovations that are being implemented and the 
other relates to implementation research. We chose to inform our survey in line with these theoretical 
resources to address the concrete challenges we encountered. This relates to the need for a delineated 
focus on certain aspects of the implementation process (as opposed to the entire thing) and finding 
ways of developing questions for the teachers that were not biased towards one of the three countries; 
this would ensure the reliability of the survey items and thus the validity of our questionnaire. 
Furthermore, adhering to these models enabled us to compare similar enactments across contexts and 
their correlation to perceived attributes of the innovations. By focusing on innovation enactment and 
the perceived attributes of the innovation, we have to assume to some extent assume that we have an 
understanding of said innovation and the related implementation strategies in the three countries. This 
assumption is based on the fact that both the curriculum revisions and the relationship between PCT 
and mathematics are well-described in policy documents in all three nations. However, the delineated 
focus on enactment and the perceived attributes of the innovation come at the cost of gaining insight 
into other, potentially equally important aspects of the implementation processes. This choice mirrors 
our primary interest in understanding the daily practices of mathematics teachers with regard to what 
they do and how they experience their practices of combining PCT and mathematics. Fully addressing 
all aspects of the implementation in detail would require other respondents to partake in the survey 
(managers, supervisors, municipal staff, etc.) and a much larger population to gain significant results 
into national variations and stabilities. Since policy documents provide rich descriptions of the 
implementation processes that are sufficient to pinpoint substantial differences, we believe that 
understanding mathematics teachers’ enactments and perceived attributes of the innovation across 
these countries can provide important indications as to how such strategies are received by the end-
users. Although our survey has not yet been tested, we believe that this work deals with an issue that 
has not been addressed explicitly in implementation research within mathematics education, 
specifically comparative implementation research in relation to mathematics education. We hope that 
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the work reported here can spark interest, which will then lead to further engagement in more 
systematic discussions about this matter. 
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Introduction
When TWG24, Representations in Mathematics Teaching and Learning, was initially opened at 
CERME10 (Robotti et al., 2017) it included 24 participants from 13 countries with 16 accepted papers 
and 2 posters; at CERME11 (Baccaglini-Frank et al, 2019) it grew to welcome 31 participants from 
16 countries, with 18 accepted papers and 4 accepted posters; and at CERME12 TWG24 enjoyed the 
online participation of 28 researchers from 10 different countries with 19 papers and 2 posters 
presented. At CERME12 the structure of the working sessions allocated for discussion of each paper 
or poster was designed to stimulate interaction and collaboration among participants, even though the 
conference was held entirely online. Each paper or poster was allocated to one of six working 
sessions, which typically included three or four papers with theoretical, methodological or thematic 
similarities. All papers were shared with the participants in advance of the conference, and each 
presenting author was asked to concentrate especially on providing feedback or questions on the 
papers presented within his/her session. Presenting authors were asked to prepare a short presentation 
of their paper, including one slide explicitly addressing the theoretical perspective taken on 
“representations”. The allocated time (20 minutes for papers and 10 minutes for posters) was split 
equally between author presentation and working group discussion. There was also a workshop 
session dedicated entirely to working in smaller rotating subgroups on questions designed by the co-
leaders, which had emerged from the previous four days’ discussions. The final session was devoted 
to a conclusive discussion chaired by TWG co-leaders with contributions from each of the morning’s 
subgroups.

In this short report of the main themes that were discussed, we divide the themes between more
practice-based ones and more theoretical ones.

Practice-based emerging themes
In thinking about representations in practice, important themes emerged related to sharing 
representational practices in three overlapping zones: 1) across educational systems, 2) within 
interpersonal learning activities and 3) inside encounters with various mathematical technologies and 
tools. At the largest scale, we found ourselves asking: What can we observe about how 
representations are used across different educational systems? What issues arise when we ‘import’ 
something from one education system to another? This macro-level question was inspired in large 
part by Palop del Río and Santaengracia’s paper exploring the introduction of a concrete approach to 
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the bar-model imported from Singapore educational system into a fifth-grade classroom in Spain. 
Interested in the bar-model's flexibility in a wide variety of problem scenarios, Palop del Río and 
Santaengracia sought to test the implicit assumption in Spanish curricula that this representation must 
be introduced to students in their earliest years of schooling to be an effective tool for thinking. 

Although the potentials of (and contested approaches to) the “Singapore bar” remain a paradigmatic 
example of “importation”, the theme of working across educational systems also surfaced in papers 
which sought to better understand a variety of under-studied educational activities, asking to what 
extent these activities can be understood as “systems” in their own right. Angeloni, Wille and Hausch, 
for example, explicitly challenged the concept of “importation”, arguing that the invention and 
development of mathematical representations in Austrian Sign Language was a much more 
complicated affair than “importation” or “translation” might imply. While papers like this one did 
not directly address the complex politics of national educational systems, their ideas were expanded 
in the subsequent discussion, highlighting and exploring the emergence of representations in minority 
or marginalized linguistic, pedagogical, and digital spaces (some more of which are noted below). 
Challenging views of learning about or with mathematical representations as being static, normative 
or universalizable experiences, pratice-based evidence inspires us to find new ways of drawing on 
marginalized mathematical experiences as sources of broader pedagogical insight in their own right. 

Several papers focusing on students working collaboratively on mathematical tasks (either with peers 
or a teacher/researcher) also led our group to focus on the development of interpersonal/interactional 
representational strategies, thinking about the generation and sharing of representational systems 
within both individual learning support and whole class contexts. These papers led us to discuss: How 
much and in which ways should learner-generated representational strategies be encouraged and 
incorporated into educational discourse by the teacher (in her classroom or beyond)? Finesilver, for 
example, provided a vivid case study of one student, struggling with division problems, personalizing 
and modifying pictorial representations and metaphors as ways to engage with multiplicative 
structure, including eventually more abstract tasks. This case demonstrated how idiosyncratic 
representations can be harnessed to combat exclusion of marginalized learners, in this case 
neurodiverse experiences. Lisarelli and Poli also reported on a teaching sequence in a class which 
aimed at developing responsive representational strategies drawing on student-generated imagery as 
a tool to think with while problem solving. While on the first activity students used a collection of 
representations, the subsequent whole class discussion helped the teacher navigate towards a 
consensual representation in the class. Meanwhile Velez, Serrazina and da Ponte aimed to understand 
exactly how a teacher managed his pupils’ use and interpretation of representations during whole 
class discussion. Hence their focus was predominantly on the verbal interactions, such as the ways 
the teacher changed the question type as students’ representations varied. 

In thinking about the empirical evidence presented within our group, we also sought to engage with 
the fundamental question: What representational practices are demonstrably effective (and less 
effective) in promoting meaningful mathematical learning? How might this vary in different 
educational environments? In our general discussion of the questions highlighted above, many 
participants talked about expanding from or avoiding overreliance on conventional and ubiquitous 
representations. They discussed encouraging a mix of speech, gesture, and tool-use as powerful 
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multimodal representational activities in the classroom and beyond. In encouraging and incorporating 
learner-generated representations, the group discussed balancing freedom and creativity with learning 
the necessary conventions for participating in the wider mathematical community. The power 
dynamics of classrooms were also addressed in our efforts to differentiate between representations 
that are an integral part of thinking and problem solving, as opposed to those produced on request 
just for pleasing the teacher, or retroactively after having already solved the problem without 
observable external representational strategy.

Theory-based emerging themes
As for the representations in theory, various themes emerged. We decided to focus the group 
discussions around the three questions, introduced below:

a) Of the theoretical and analytical frameworks presented, which have synergy? Where are 
conflicts? What might be fruitful combinations?

b) What hidden assumptions might we have about representations that will be made by or offered 
to different kinds of learners? How does this affect our choices regarding research 
participants, methods, and theory? What assumptions need to be uncovered and changed, and 
how to do this?

c) What are the links between representations in our research data and how we (re)present it to 
others? What representations serve us well in our professional practices as researchers and 
how can we develop them further?

Regarding question a), identifying synergy in representational frameworks proved quite challenging, 
and is deserving of more sustained consideration. However, the variety of analytical systems 
presented gave rise to many lively discussions considering how complementary aspects might be 
adapted, combined or developed for research in other contexts or with different types of datasets. 
Conflicts included some based on familiar divisions, such as between more platonic perspectives, 
according to which mathematical objects are pure and abstract, accessible only via representations, 
as opposed to others, in which mathematical objects do not reside in some hyper-reality, but in the 
discourse itself; there were also competing systems of terminology and classification to navigate. 
Nevertheless, we consider this diverse and multifaceted – yet interconnected – form of ‘rhizomatic’ 
theory-building to be a strength of the field (Deleuze & Guattari, 1980/1987).

In thinking through question b), we recognised that researchers in our group have worked with a wide 
variety of participants in terms of age, stage of education and level of expertise – from primary 
education up to PhD students – but also diverse learner groups, not only in terms of the different 
national educational systems from which we hail, but including e.g. sign language users, one-to-one 
intervention work with struggling students, and mathematics clubs or communities outside of formal 
schooling. One example of an assumption that came up was that students perceived as high achieving 
can easily work with multiple representations, together with the assumption that those perceived as 
low achieving have trouble transitioning between one representation and another. The result of such 
thinking is that in many educational settings, the latter students are offered narrower representational 
experiences, which limits learning opportunities and so disadvantages them even further. This was 
noted by many of our participants. 
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An interesting consideration, which emerged from discussion of question c), was about the difficulty 
of selecting and pairing appropriate and creative analytical tools with representations for 
communicating data interpretation and results. Choices and decisions about analytical tools, 
frameworks and procedures may highlight certain aspects of the data, but result in the loss of other 
aspects, particularly when we then communicate these to others. It was proposed to look to other 
fields for representational inspiration (e.g. computer science, media studies, dance); however, our 
group’s papers already included interesting examples. Ott and Wille explored patterns of 
communication in one-on-one teacher-student support, seeking to understand individual learning 
support through the analysis of how and when communications between students and their instructors 
moved between two diagrammatic representations of number: the natural numbers and the field of 
twenty. To do this, the authors developed a visual system for coding the flow of diagrammatic 
conversation, which allowed them to make general observations about pedagogical patterns in their 
empirical study. Miragliotta and Lisarelli drew on Sfard’s (2008) realisation trees in their research. 
This allowed them to make predictions about the ways in which classroom discourse might take hold 
of the geometric concept of “the height of a triangle”. After analysing the lesson, the realisation tree 
helped them to map missing strategies and connections, as well as highlight novel ways of thinking 
about a triangle’s height that occurred inside the classroom discussion. 

Looking forward
As these questions and examples highlight, issues related to representations – both at the practical 
and theoretical levels, and in the relationships between practice and theory – seem to be of continued 
(or perhaps increasing) interest to the educational research community. This includes exploring 
underlying tensions between the multiple theoretical lenses through which representations can be 
conceived and studied (Baccaglini-Frank et al., 2022), a theme that was also addressed in the plenary 
panel at CERME12. Hopefully, both an exciting new fusion of theoretical and practice-based 
observations will be further discussed in the near future. We welcome more researchers to join our 
group over the next CERME in Budapest!
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How can I make use of students’ metaphors to look into their understandings of mathematical 
concepts? This study is aimed at exploring a new use of lesson play scripting as a novel way to 
investigate written metaphors used by students. Metaphor is a powerful linguistic approach, and I 
examine students’ personal mathematical understanding of fraction concepts through their 
metaphors. Lesson play refers to scripting for an imagined lesson scenario, and I extend the common 
use of lesson play for teacher education to a research method applying to students. I implement 
scripting tasks with 28 Korean primary through eight times scripting classes. The process from 
preparation to results is described with an example of a student’s script, and I discuss the 
applicability of scripting as a research method. 

Keywords: Students’ understanding, metaphor, lesson play, scripting, fraction.  

Understanding in mathematics. 
‘Understanding’ is regarded as the main goal of mathematics learning, a pre-requisite for further 
learning, or a way of mathematics teaching (Sierpinska, 1990), and its importance in learning and 
teaching mathematics has been emphasised. Many types of understanding have been discussed, e.g., 
conceptual and procedural understanding (Rittle-Johnon & Alibali, 1999), but my fundamental 
question here is what it means for students to understand mathematical concepts rather than which 
types of understanding students have. Students actively construct their own knowledge based on their 
subjective experiences rather than passively accepting information (von Glasersfeld, 1995). Pirie and 
Kiren (1994) proposed individual understanding as a recursive dynamic process that can be developed 
and be observed. Tall (2011) regarded understanding as a development process from emerging to 
forgetting, and to remembering. In line with these perspectives, I am taking understanding 
mathematical concepts as a constructing process of relationships among concepts in an individual’s 
mental network. Mathematical understanding might be influenced by a particular environment around 
a student, but the focus of this study is on the manifestation of these influences within an individual. 

In terms of the construction of mathematical concepts in embodied minds, De Freitas and Sinclair 
(2017) pointed out the limitation of the binary approach of abstract and concrete (or mind and body) 
and proposed the need for rethinking mobility and flexibility in learning mathematical concepts. I 
regard mathematical concepts as not fixed nor absolute ideas for any individual. Rather, mathematical 
concepts constitute a network through the constructive progression of an individual’s mental network 
(Olive & Steffe, 2002), and there is no determined end in the network. Our embodied mind creates 
our language, and we communicate in a consensual domain which refers to a “shared physical context 
in which interactions occur” (Kravchenko, 2012, p.3). In a consensual domain, human beings interact 
with environments endlessly and (re)generate networks of interactions in a recursive way. These 
interactional actions are the basis of linguistic behaviours. Language is not just a tool for transferring 
individuals’ thoughts but a way of living, described as ‘languaging’ by Maturana (2002, p. 28). 
Knowledge is generated in language through consensual co-ordinations, and thus languaging is part 
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of how we express our understanding of concepts. As a way of investigating students’ understanding 
of mathematical concepts, I look into metaphors as a powerful linguistic approach for creating, 
representing, and extending the meanings of concepts. This study focuses on a methodology which 
gives insight into student metaphors. Davis (2020) presented a summary of the potential different 
number metaphors used by students, based on teachers’ experiences and textbooks; my longer-term 
aim is to provide a similar list of the range of metaphors students using in dealing with fractions. 

Metaphor. 
Metaphors naturally exist in our language (Lakoff & Johnson, 2003). Traditional metaphor theory 
considers metaphors as a role in enriching language. According to the conceptual metaphor theory, 
however, metaphors are fundamentally regarded as human thoughts. Metaphors are the 
conceptualisation of one concept in terms of another concept, based on the similarities between the 
concepts. Abstract concepts are understood via metaphor in terms of more concrete concepts. The 
conceptualisation is called ‘cross-domain mapping’ and cross-domain mapping consists of two 
domains, a target domain and a source domain. The concepts that we want to understand are the target 
domain (which is a relatively abstract concept), and the concepts in the source domain conceptualise 
target concepts. For example, arithmetic (target domain) is understood from collecting, constructing, 
and moving objects (source domain) (Lakoff & Núñez, 2000).  

Metaphorical mappings as conceptual structures represent one’s mental network between concepts. 
Lakoff and Núñez (2000) proposed embodied metaphors that are based on mathematical ideas from 
one’s everyday experience and from different mathematical areas, called ‘grounding metaphor’ and 
‘linking metaphor’. These metaphors are elaborated not from a single mapping but from integrating 
many mappings between concepts, and the elaborated mappings develop an emergent structure of an 
integrated mental network (Fauconnier & Turner, 2008). In this regard, metaphor represents a mental 
structure in which we live and think and thus can allow exploring students’ understandings that 
underlie their written language.  

Fraction. 
In this study, I chose a fraction concept for the investigation, inspired by my teaching experience in 
which I witnessed students struggling with fractions. Fraction is considered the most complex concept 
addressed before the secondary school. One of the factors contributing to the difficulty of the concept 
is that a fraction consists of two numbers. For fractional knowledge, students need to consider 
relations between a numerator and a denominator, rather than the two numbers separately. The two 
numbers can be regarded as parts and the whole, respectively; in this case the student is using what 
is referred to as the part-whole scheme. According to the part-whole scheme, a fraction indicates 
some parts out of a whole. The numerator is regarded as the parts or pieces to consider and the 
denominator is regarded as the whole. An equipartitioning scheme involves dividing actions that 
partition a continuous unit into equal-sized segments (Steffe & Olive, 2010). Whereas the partitioning 
scheme refers to breaking a unit, the iterating scheme refers to duplicating a segment several times to 
constitute a unit. The iterating scheme suggests that the fraction is freed from parts of the whole and 
can be often related to understanding the concept of “improper fraction”. For 5/4, for example, 
students iterate 1/4 (a unit fraction) three times to constitute 5/4.  
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This study is aimed at investigating students’ metaphors to understand their understandings of a 
fraction. Here, I need to engage in the question of how to explore students’ uses of metaphors: how 
can I learn about students’ metaphors, to look into their understandings of fraction?  

Methodology. 
Scripting, lesson play. 

I suggest a new way of using lesson play as a research method for investigating each learner’s 
conceptions. Lesson play refers to scriptwriting for an imagined lesson scenario with a dialogue 
format between a teacher-character and student-characters, which is originally designed for teacher 
education (Zazkis et al., 2013). Scripting is based on “virtual duoethnography” (Zazkis & Koichu, 
2015, p. 166) which is narrative research producing a dialogue with multiple voices of fictional 
characters, from one person (who can be a researcher or a student), and it is inspired by the dialogue 
of Lakatos (1976). For scripting, prompts that include mathematical situations are provided, and 
teachers are asked to write a dialogue script for the ensuing situation of the provided prompts. 

Here, however, I implemented scriptwriting to primary students as creating an imagined role-playing 
scenario. Wille (2017) has conducted imagined dialogues with students to discuss their mathematical 
thinking processes. Similarly, I provided prompts for mathematical situations to students, and they 
created a dialogue script for the given prompt. I intended to provide a certain mathematical classroom 
situation to students in order to understand the mathematical language that they naturally use. Role-
play encourages students to participate in a specific situation as a specific person, so that students are 
able to deeply engage in learning and teachers are able to see their perspectives on the topic (Alkin 
& Christie, 2002). Scripting is an individual task that can be done by many students simultaneously, 
and it is less constrained by time and participation than real role-plays. Mathematical writing is 
encouraged for students to develop their mathematical understanding (Sierpinska, 1990), and the 
Korean National curriculum emphasises writing under a strong calligraphy culture. In fact, in follow-
up interviews with student participants, many students mentioned math writing was easier than math 
speaking because they have enough time to think instead of having to answer immediately. When 
making scripts, students might use of their knowledge of mathematical concepts related to the 
situations of the prompts. Moreover, through the written contexts, a student’s view on mathematical 
concepts can be examined.  

Data Collection. 

The participants are six grade (11-12-year-olds) Korean students from the same classroom and the 
number of students is 28. I had eight scripting classes with the students in a primary school. For script 
writings, I designed eight prompts, based on previous research and my teaching experiences about 
students’ common errors, misconceptions, and difficulties in dealing with the concept of a fraction. 
If students had similar misconceptions with prompts, I would be able to track the root of their 
misconceptions. If students had a different understanding of the erroneous situations in prompts, they 
would describe their thinking to correct the misconceptions.  

The fraction concepts dealt with in prompts are neither complicated situations nor beyond the scope 
of sixth-grade students learning according to the Korean national curriculum so as not to interfere 
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with students writing. The prompts are related to many aspects of a fraction, such as fraction 
representation, fraction calculation, and fraction comparisons. The following is one of the prompts I 
used.  

A teacher shows two fractions 5/6 and 7/8. Tom suddenly raises his hand.  
Tom: Teacher, I have a question. 
Teacher: Yes, Tom. 
Tom: 5/6 and 7/8 are equal? 
Teacher: Why do you think that? 

The prompt above implies ‘gap thinking’, with regards to equivalent fractions. Gap thinking, as one 
of whole number thinking, is considering the gap between a numerator and a denominator by dealing 
with them separately, rather than considering the ratio between them (Pearn & Stephens, 2004). Gap 
thinking can lead students to draw either an incorrect answer or a correct answer with erroneous 
reasonings. Specifically, students can regard fractions having the same gap (e.g., 5/6 and 7/8) as 
equivalent. In scripts, students may or may not agree with Tom (or both), but my focus is on how the 
students describe their understanding of the two fractions. While creating the prompt, I anticipated 
students discussing their understanding or meanings of a fraction. Students work on writing in Korean 
(their first language), and I analyse the writings in Korean so that I can grasp the meaning and nuance 
of the contexts more appropriately.  

Instruction. 

In the first class, I introduced scriptwriting by presenting an example of a prompt and a script and 
then I asked students to practice writing a script for a prompt that was not related to a fraction. This 
practice is not only meaningful for students as a practice, but it was also important to me, because 
through it I could check whether my explanation was enough for students to carry out scripting. In 
writing, I encouraged students (1) to focus on the dialogue format rather than the contexts of the 
example script I showed them, (2) to approach the prompt situation with various perspectives (with 
various characters) so that I could explore their metaphors related to the concept in-depth, and (3) to 
use visual images such as diagrams, tables, and drawings to support their writing if needed. After the 
first class, I read students’ first scripts, and on what seemed to be unsuitable (e.g., texts are completely 
not related to the prompt), I left comments to help students carry out writings.  

In the second class, I started with a five-minute ice-breaking time, a five-minute explanation for 
today’s prompt, and a 20-minute script writing. After scripting, I read the students' writing and left 
comments. The comments were to encourage their participation, for example, ‘you explained your 
idea logically’, ‘thank you for your detailed explanation’. Also, I left question comments on sentences 
where I was not able to understand them well, so that students would write additional explanations 
for the sentences. Then in the next class, before writing a new script, students read my comments and 
added answers to my questions.   

Findings. 
Translating students’ scripts from English to Korean is based on ‘interlinear morphemic gloss’ which 
is the way of translating in each morpheme or meaning, in order to show grammatical structures and 
the detailed, direct meanings of the original language (Lehmann, 2004). The translation uses three 
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steps: 1) word by word (or phrase by phrase) translation, 2) direct translation, 3) natural English 
translation. For example,  

                                                                                                      ? 

Step 1   Teacher     how many pieces of a whole    out of       how many pieces    eat           trying to 
Step 2   How many pieces is a teacher trying to eat out of how many pieces of a whole? 
Step 3   How many pieces am I trying to eat out of the whole? 

The utterance is what a teacher-character said in a student’s writing. The teacher-character herself is 
described as ‘teacher’, not I, comparing that student-characters themselves are described as ‘I’. In 
Korean classes, it is common for teachers to refer to themselves as teachers instead of ‘I’, and this 
student perhaps may have seen many teachers referring to them as a teacher. Or in Korean culture, it 
is considered rude behaviour for students to call a teacher (adult) ‘you’ or name, so she might try to 
avoid it even in scripts. Thus, although the subject is a teacher in the original Korean sentence, it 
refers to the teacher-character herself, so the subject is translated as I in step 3 translation. The step 2 
translation ‘how many pieces of a whole’ explicitly shows the student’s countable numerical 
understanding of a whole. Though step 2 translation can have ungrammatical parts, it is effective to 
covey what words the student chose and how s/he describes concepts in Korean. Thus, also due to 
space limitation, I describe student scripts with only direct translation instead of all the three steps. 

I illustrate some parts of Aiden’s (the pseudonym of a student) scripts as examples of students’ 
outcomes (scripts) and analysis, with the aim to explore nuances. In Aiden’s scripts, I found two 
grounding metaphors that are related to each other. According to the utterances of the teacher-
character Aiden created, she uses an equipartitioning and a part-whole scheme for fractions.  

Teacher: How many pieces are there now? 
Teacher:  But a teacher tries to eat 2 pieces. Then, how many pieces is a teacher 

trying to eat out of how many pieces of a whole?  
Teacher: Thus, a denominator is a total number of something, and a numerator 

is the number included out of the whole.  

While explaining the meaning of a fraction to student-characters, the teacher-character assumes a 
situation in which she eats pizza with a pizza drawing. By partitioning, pizza as a continuous unit is 
separated into equal-sized segments. The teacher chooses two pizza slices by shading them and 
represents a fraction 2/6 as two pizza slices out of the whole pizza divided into six slices, which is a 
part-whole scheme. At the part-whole representation, I focus on that the parts and the whole are 
described with countable ‘pieces’. She does not compare the size or number of pieces for a fraction 
but considers the number of pieces (how many) of a numerator and denominator. In her conception, 
a fraction consists of a numerator out of a denominator, and a numerator refers to the number of 
pieces as parts and a denominator refers to the number of total pieces in a whole. Aiden’s metaphor 
of a fraction seems to be pieces as a grounding metaphor. In other words, she regards a fraction as 
pieces out of pieces. A denominator is regarded as the number of pieces that partition a unit, and a 
numerator is the number of pieces chosen. Figure 1 summarises this metaphor. 

In addition to the pieces metaphor, through the used word ‘something’ in the last utterance of the 
teacher, I can see that she thinks of a fraction with objects. A numerator and denominator are objects, 
which is countable as a cardinal concept. 
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Source Domain 

Pieces 
 Target domain 

Fraction 
Pieces out of pieces → Fraction  

The number of equal-sized pieces that partition a unit → Denominator 

The number of pieces taken → Numerator 

Figure 1: Fraction metaphor as pieces 

Her countable conception of a numerator and denominator seems to link to her understanding of 
fraction addition. In her other script, a student-character Jack who reflects her thinking explains the 
fraction addition 3/5 + 3/5. For the explanation, Jack uses metaphors for a numerator and denominator 
as a toy and a toy container, respectively.  

Jack:  Imagine there is a big cylinder container and toys! 
 
 
 
 

When overlapping the same container here, the containers can be overlapped. But 
toys are the same but do not overlap each other! Thus, the containers are the same, 
but the number of toys does not overlap each other, so [numerators] become 
different.  

With the toys and container metaphor, Jack describes the principles that denominators are not added 
to each other but only numerators are added, in the addition of fractions with the same denominator. 
Jack looks at a numerator and denominator as countable objects (pieces). In her conception, a 
numerator is the number of objects, and a denominator is the container of the objects. It can be seen 
as the pieces metaphor, but the difference is that the denominator 5 does not refer to five pieces but 
one container named 5 itself.  Thus, 3/5 means there are three toys in a container named 5, and 3/5 + 
3/5 means putting a total of six toys and two containers named 5 together. Since the toy containers as 
denominators can be completely overlapped, denominators in the fraction addition do not need to be 
added. On the other hand, the number of toys as a numerator should be added because toys cannot be 
overlapped. Therefore, fraction addition is combining objects, and Figure 2 summarises this metaphor. 

Source Domain 
Combining objects 

 Target domain 
Addition of fractions 

Put objects together in the same container → Addition of fractions with the same denominator  

Container of objects → Denominator 

The number of objects → Numerator 

Figure 2: Fraction addition metaphor as combining objects 

This understanding of a fraction is freed from partitioning. Character-Jack does not split a container 
into equal-sized parts and does not consider the ratio between a numerator and a denominator. The 
fraction addition metaphor of Aiden, especially a numerator metaphor, is similar to an arithmetic 
metaphor of Lakoff and Núñez (2000). They proposed an ‘Arithmetic is object collection’ metaphor: 
Numbers are collections of objects and arithmetic addition is putting collections together. Similarly, 
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Aiden thinks of a fraction as objects and the fraction addition as putting objects together. The 
difference between the metaphors of Lakoff and Núñez and Aiden is that their view of numbers is 
based on a set or collection, while her metaphor of numbers is based on a numerical counting scheme.   

Her fraction addition metaphor seems to be related to the multiplication of a fraction and a natural 
number. In her drawing, the toys in each container are the same, which means that there are two 3/5s, 
instead of that there are "three toys" and another "three toys". She can use this metaphor for 3/5 × 2. 
Her conception, however, can have limitations in understanding the addition of fractions having 
different denominators. When making denominators equal, she can represent denominators as using 
different containers, but it is unclear how the change of numerators can be described.  

Implications. 
This study proposes a new use of lesson play as a research method. Through this study, I explored 
the applicability of lesson play scripting to students. All students in this study finished one 
scriptwriting in 20 minutes and successfully created their scripts. This enabled me to attain students’ 
data referring to mathematical concepts at a certain mathematical situation and to examine students’ 
conceptual schemes of a fraction. I was able to conduct scripting tasks with many students 
simultaneously. Through the length of their script over time, I could see that students had participated 
more actively rather than losing interest in scripting. Although the length of writing is not directly 
related to the quality of the data, more active participation is more likely to obtain high-quality data 
through which I can understand students’ thoughts. As the class progressed, students became 
accustomed to mathematical writing by creating various characters.  

I am exploring student scripts to find fractional metaphors and will be analysing the work of the other 
students in my study, as well as Aiden's. I have found more metaphors: e.g., fraction is 
equipartitioning amount, fraction is iterating, fraction is division, and fraction is a number form. In 
the future, more findings about fraction metaphors and an in-depth analysis of these metaphors will 
have to be conducted, and then I would be able to provide a metaphor model that can be used to 
understand fraction concepts and a framework of metaphor analysis. Lastly, as scripting can be 
extended as a teaching activity such as writing a scenario for the real performance of mathematics 
role-plays, I hope to pursue further studies on the use of scripting in mathematics classrooms.  
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Signing about elementary algebra in Austrian Sign Language: What 
signs of the notion of variable can represent 
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Languages have a significant impact on mathematics learning, with visual languages and spoken 
languages in particular differing. The study presented here investigates how one can sign about 
notions in elementary algebra in different ways in Austrian Sign Language. In particular, the focus 
is on the question of what sign language signs of the notion of variable can represent and thus how 
they may impact on the understanding of variables. Distinctions from spoken language are identified. 
The study is part of a larger investigation into communicating about elementary algebra in sign 
languages. 

Keywords: Language, learning mathematics in sign language, classifiers, elementary algebra.  

Introduction   
Sign languages are full-fledged natural languages with their own grammars. They are in no way 
inferior to spoken languages (Beecken et al., 2014) and can express concrete as well as abstract things 
just as those. Therefore, communication about mathematics is just as possible as in spoken language. 
There is not only one sign language used around the world but many different ones (Braem, 1995). 
Their development does not necessarily coincide with that of the respective national spoken 
languages. Sign languages organize ideas and convey content, meaning and significance in a different 
way than spoken languages. That means a person who thinks in sign language thinks differently than 
one who is thinking in spoken language (Grote, 2010). Therefore, the conceptual understanding that 
is typically oriented toward hearing contexts – i.e., based on the characteristics and features of spoken 
languages – often does not match the conceptual understanding of students who use sign languages, 
and thus may not be appropriate for this audience (Krause, 2016, 2019; Krause & Wille, 2021; Wille 
& Schreiber, 2019). The study presented here is part of a longer series of investigations on the topic 
“sign language and mathematics education”. The specifics of sign languages will be considered with 
the aim of developing and evaluating approaches and concepts for teaching mathematics in sign 
language. Language plays an essential role in both teaching and learning mathematics (Fleming, 
2007; Thürmann & Vollmer, 2017). Therefore, the research focuses first on sign language, especially 
on its lexemes and classifiers, two important components of sign languages. The first multiphase 
investigation concerns specifically talking about mathematical activities in elementary algebra. The 
mathematical focus is on different aspects of variables (see below): object aspect, substitution aspect 
and calculus aspect (Malle, 1993). The linguistic focus is on the Austrian Sign Language (ÖGS). The 
general interest of the study is to investigate how these aspects occur in ÖGS and how mathematical 
notions and their aspects are represented in this sign language. Knowledge of these two points about 
sign language is necessary to teach mathematics in this language. In the following, the general 
question is specified in terms of the object aspect of variables: Which lexemes (signs) are used for 
the object aspect of variables in ÖGS? In what way are classifiers used for this? What are the 

Proceedings of CERME12 4218



 

 

differences between sign language and spoken language in this regard? High knowledge of these 
topics about language is on the one hand necessary for the translation between spoken language and 
ÖGS regarding mathematical teaching and learning. On the other hand, it provides the basis for the 
next investigations in mathematics education regarding sign language.  

Aspects of variables 
The word “variable” corresponds to its etymology: It can appear in different forms, denote different 
things and it can have different aspects. For example, there are “word variables”. These are single 
words or groups of words that are representative of something else – e.g. of numbers (Akinwunmi, 
2012; Küchemann, 1978; Malle, 1993). The “usual” variables used in mathematics are the “letter 
variables”. According to Malle (1993) at least three aspects can be identified for variables: object 
aspect (the variable is an unknown or unspecified object of thought), substitution aspect (the variable 
is a placeholder into which numbers may be inserted) and calculus aspect (the variable is a sign 
without meaning, but which may be operated with according to certain rules) (Malle, 1993; 
Schoenfeld & Arcavi, 1988; Wille, 2008). If a variable is considered under the object aspect, then the 
object of thought itself can be different: a figure, a number, a number as a quantity of something etc. 
Thus, with a single word in spoken language such as “number”, one can refer to various things. 
Therefore, “variable” can denote many different things. When such terms are translated into other 
languages, phenomena such as diversification may well occur. In translation studies the term 
“diversification” means the phenomenon in which for one word in the original language there are 
several words in the target language (Koller, 2011). Vice versa there is a “gap”, if for one word there 
exists no translation. Thus, the first question that arises at this point is:  

 Which sign language’s sign or signs are used for the manifold term “variable” (from the point 
of view of the object aspect)? 

Classifiers in the sign languages  
Classifiers have an important function in sign languages. Classifiers (CL) or depicting handshapes 
are a complex and a highly discussed topic in sign language research. Definitions often diverge. In 
the presented research a classifier is an element whose meaning is related to the context. It represents 
“entities” based on their characteristic features and is involved in a morphologically complex 
structure. With a classifier objects or processes are classified based on common features (e.g. the 
index finger represents a “person”) (Zwitserlood, 2012). Classifiers can be used to refer to the 
property, position and movement of the signified (Beecken et al., 2014). They follow certain rules of 
sign language grammar. For instance, if they refer to a noun, they are signed after the sign for that 
noun. If classifiers refer to a verb, they are signed before the sign for that verb. For the classification 
of classifiers there are several possibilities concerning semantics or linguistic context. Regarding the 
mathematical background of the study, first of all, the following classification is made: semantic 
classifiers (representing a “stylized” shape of the object: e.g., flat hand for cars or tables, claw hand 
shape for a clock or picture frame, etc.), instrumental classifiers (which denote objects according to 
how they are handled) and size and shape classifiers (representing size, extent, etc. of an object). The 
last group of classifiers – if it is considered to be a part of classifiers – can be further divided into 
static classifiers (to represent the size and shape of the object) and tracing classifiers (by moving one 
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or both hands they outline the shape or size of that object) (Beecken et al., 2014; Zwitserlood, 2012). 
The use of classifiers for real objects (including humans and animals) is quietly clear. However, when 
signing about mathematical notions – as about variables – the second question arises: 

 Which classifiers are used when signing about variables with regard to the object aspect?  

The formation of new groups of classifiers related to the mathematical nature of the represented 
objects is not excluded here. Since mathematical notions in the school context mostly originated from 
spoken languages the third question investigated is:  

 What differences exist between spoken language (German) and ÖGS regarding the object 
aspect of variables?  

Learning environment 
In each session of the learning environment the students get tasks1 concerning two persons that have 
to distribute brochures. In the beginning they have one thousand brochures to distribute, but it is 
unknown how many the one person and how many the other person is going to distribute. Then one 
person gives a stack with two hundred brochures to the other person. The students are now asked to 
answer two questions about the amount of the brochures that each person has – before and after the 
stack of two hundred brochures was moved from one person to the other person.  

The students have to perform those tasks in the given order according to the dialogic principle “me-
you-we” (Green & Green, 2018; Ruf & Gallin, 1995, 1999). This principle provides for three phases. 
In the “me-phase” each student deals with the problem alone. The student does not necessarily have 
to come up with a solution in this phase. Notes or sketches of a solution idea are sufficient – that 
means: “this is how I do it”. In the “you-phase” the students exchange ideas with each other (in pairs 
of two or in small groups): “how do you do it?”. Results and open questions are to be recorded here. 
In the “we-phase” the results of the “you-phase” are presented, discussed and compared in the plenum 
in order to arrive at a joint solution and find a convention: “this is how we will do it”. The phases 
“this is how I do it”, “how do you do it?” and “this is how we will do it” can be rephrased from the 
point of view of sign languages as follows: “this is how I sign it”, “how do you sign it?” and “this is 
how we will sign it”. However, the last phase cannot always take place in this form, because there 
are rarely conventions for mathematical terms in ÖGS. The basic idea of the learning environment 
presented here is that the students become as active as possible – not only mathematically, but first 
of all in their language, the Austrian Sign Language. The influence of spoken language should be 
reduced as much as possible, on the one hand with the aim to not disturb the natural communication 
in ÖGS, on the other hand to not distort the observations of sign language communication. Spoken 
language could transport elements into ÖGS that are not compatible with the specifics of a sign 
language and specifically of the ÖGS. Therefore, from the beginning the material was developed in 
a sign language perspective and not as a translation of a material that was developed in a spoken 
language. The material contains no text, but only pictures (comics) and QR codes linking to videos 

 
1 Task card no. 1 at https://me.aau.at/~awille/mathe_in_oegs_variablen_01.html; task card no. 2 at 
https://me.aau.at/~awille/mathe_in_oegs_variablen_02.html; task card no. 3 at 
https://me.aau.at/~awille/mathe_in_oegs_variablen_03.html 
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in ÖGS with explanations and tasks. The students are able to watch these videos as often as they want 
to on their own smart phones. All videos are signed by a deaf person who also has ÖGS as basic 
language. A script for the videos is not used in order to avoid any interference errors (that are typical 
expressions of spoken language but not of ÖGS). Mathematical terms (e.g. variable), for which no 
signs (in ÖGS) are known, are not mentioned in the videos and in the sessions. These terms are not 
even finger spelled.  

Methods 
The research took place in form of two 60 minutes sessions in July and August 2021– with three 
people in the first and four people in the second session. The participants were deaf adults (age range 
30 to 65) and their basic language was ÖGS. Basic language means the language in which a person 
thinks – his or her “inner” language. Adults were selected for this first part of the study because they 
were the most competent in ÖGS of those available. They were no more familiar with variables from 
their school background. Two teachers moderated the sessions. They announced which tasks had to 
be solved and answered technical questions. The order of the tasks is given as a structured interview. 
After the “you”-phase, the teachers led the “we”-discussion as an unstructured interview: getting the 
participants in the discussion and asking further questions (e.g. why is it like you say?). Both sessions 
were recorded by video and the participants were aware of that. So that is a direct observation with 
continuous monitoring. The videos were glossed (transcribed with glosses) according to the notation 
system of (Prillwitz & Wudtke, 1988), but simplified for the aim of the investigation. Glossing means 
the practice of writing down a sign language text sign-by-sign. Afterwards, the classifiers and signs 
of the notion of variable were determined. The data were then analyzed according to the principle of 
content analysis (Kuckartz, 2018). 

Findings 
With regard to the core of the tasks – the number, i.e., the quantity of brochures that are stacked – 
five different classifiers occur (Fig. 1). Since the meaning of the classifiers can only be deduced from 
the context this was also considered. Here are transcribed examples of each that the participants used:  

P1: WIEVIEL CL1-STAPEL FLAVIO WIEVIEL CL1-STAPEL SANDRA 
How many pieces does Flavio have? How many pieces does Sandra have?  

P2: ZUSAMMEN EIN-TAUSEND IX CL2-STAPEL CL2-STAPEL  
In total there are one thousand [stacked brochures].  

P1:  SANDRA DA EIN-TAUSEND CL3-STAPEL  
Sandra has one thousand [pieces].  

P3:  ERSTENS DREI CL4-STAPEL CL4-STAPEL CL4-STAPEL  
At the beginning there are three stacks.  

P1:  ZWEI-HUNDERT CL5-GEBEN  
[Flavio] gives 200 [brochures] to [Sandra].  

P6:  HAUFEN GEBEN WEISS-NICHT CL1-STAPEL WIEVIEL WEISS-NICHT  
From the pile [Flavio gives her] some. But you don’t know how many there are in the pile. 
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For statements about the unknown or unspecified number of brochures on a stack the first classifier 
was used (Fig. 1a). It is introduced by the “question sign” WIEVIEL (how many). In the recordings 
this classifier occurs when unknown quantity is concerned. The execution of the classifier, moreover, 
reveals what exactly it refers to: The splayed dominant hand (“sh” hand shape) moves upwards. It 
represents every single brochure on the stack. Since those brochures are a lot the movement of the 
hand is smooth. So, the sign was used to denote the unknown or unspecified number of brochures. In 
particular, the information that the brochures are stacked are by the sign transmitted as well.  

                         

Fig. 1a. CL1-STAPEL (stack)                       Fig. 1b. CL2-STAPEL (stack)                   Fig. 1c. CL3-STAPEL (stack) 

                                      

Fig. 1d. CL4-STAPEL (stack)              Fig. 1e. CL4-STAPEL (stack)         Fig. 1f.CL5-STAPEL-GEBEN (to give a stack)                       

Figure 1. Classifiers and a “simple” sign for the representation of a known or unknown quantity of stacked brochures  

However, with this classifier one additional information is given simultaneously to the information 
about the unknown quantity. The dominant hand moves upwards, then downwards and once again a 
little upwards. This can be a representation of the possible height of the stack depending on what 
height the signing person imagines. This means that the classifier additionally conveys how large the 
range of the variable is. Summing up, ÖGS can express with a single sign the following: there are 
many brochures, they form stacks, we don’t know their height, it can be zero to something, that 
however will not be “too much”. The other classifiers occur in relation to a known quantity: the 
classifiers CL2 and CL3 in Figs. 1b and 1c represent the one thousand stacked brochures. The 
difference between the two classifiers is the repetition. So it is with CL3 clearly represented that there 
are multiple stacks. With the fourth and the fifth classifier the stacks have the same height as if they 
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would have been divided into three stacks of the same height. The sixth classifier (Fig. 1f) is an 
instrumental one that together with the verb “to give”. It represents how the stack (of 200 brochures) 
is given to the other person.  

Out of the topic “classifiers”, at the lexical level the sign NOCH-NICHT (not yet, see Fig. 2) occurs. 
It refers many times to a missing (piece of) information. A few examples (from study unit 1 and 2):  

P6: NORMAL STÜCK MUSS ERST HAUFEN [pfff]. WIEVIEL STÜCK NOCH-NICHT 
GEBÄRDEN NOCH-NICHT NOCH-NICHT       
Usually, it should be given at first how many pieces there are. However, this has not been said.  

P6: WO GEBÄRDEN EIN-TAUSEND WO. NOCH-NICHT GEBÄRDEN NOCH-NICHT       
Where has it been said that it was one thousand? Where has it been said? This has not been said? 

 

Figure 2. the sign NOCH-NICHT (not yet) 

Discussion  
Regarding the first question of which sign(s) exist(s) for “variable” under the object aspect in this 
context, the sign for the first classifier CL1-STAPEL (stack) can be identified (Fig. 1a). This sign can 
be interpreted as a “sign variable” for the word variable “number” from the spoken language and as 
a variable itself in terms of the object aspect. Moreover, the sign NOCH-NICHT (not yet, Fig. 2) was 
used to express that an information is unknown.  

Regarding the second question of which classifiers are used and how, it can be stated that the classifier 
CL1-STAPEL (stack) is used to express the indeterminacy of the number of stacked prospects. This 
classifier differs from the others (for a known quantity) especially in the movement of the dominant 
hand, which moves once upwards, once downwards and once again upwards, but not the same height 
as before. This could be related to the fact, that the height (the quantity) is unknown. If the quantity 
is known, other classifiers are used – and each of them expresses a different detail about the signified: 
size, how stacks look, if all stacks have the same size etc. However, since a classifier is very closely 
related to the signified, a strong diversification can be assumed for other contexts as well: Depending 
on what a variable refers to different signs could be used to define that variable. One reason for this 
phenomenon could be the nature of the sign languages themselves: they are complex languages that 
have many slides also on the side of the “factual information” (Schulz von Thun, 2011). Thus, the 
need for a single equivalent sign for the word variable “quantity” does not seem to exist. Rather, for 
teaching mathematics in ÖGS, it should be necessary to know how and under which aspect a variable 
is used in order to render this variable according to the peculiarities and characteristics of sign 
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language. Due to the difference in the movement of the dominant hand, the definition of a new group 
of classifiers could be possible and meaningful. 

In this first part of the study, it was possible to state, on the one hand, possibilities with which signs 
and with which type of classifiers the object aspect of a variable in ÖGS can be represented. On the 
other hand, regarding the third question about the differences between spoken language (German) 
and Austrian Sign Language, it was found that in the sign language communication about the object 
aspect of the variable a lot of information was given simultaneously: In a single sign such as CL1-
STAPEL (stack, Fig. 1a) it is expressed whether the quantity is large or small, what shape or 
arrangement is meant and in which domain the quantity is located. In contrast, the word “quantity” is 
not enough to convey all this information in the spoken language. In the ÖGS this is possible in a 
natural way and can thus describe and represent variables very accurately. This indicates that a 
translation of (written or spoken) texts – e.g. of teaching material or of teacher explanations – from 
spoken language into ÖGS should be clearly detached from the source text. It is not only about 
transferring the texts or the grammar of ÖGS, but also about which information is transferred and 
how. Typically, for example, in mathematics teaching one could speak about the “quantity of stacks” 
in this context. In this phrase it is explicitly given that there is a stack and we talk about its quantity. 
It remains implicit that we do not know the quantity at the moment or in which range this quantity is. 
With signs, in contrast, more of the implicit information is expressed explicitly. This does not mean 
that ÖGS is “underrated” compared to spoken language and therefore needs more information and 
explanations to express complex and abstract content in a meaningful way. Rather, that one must take 
into account and can use the representational power of sign language. The next step in the study will 
be to investigate the other aspects of variable and to vary the context. 
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Various approaches have already been developed and studied to support students in mathematical 
problem-solving processes. Most of them aim at supporting students by indirectly or explicitly 
addressing strategies that are typically helpful for a problem solver (Pólya, 1945) - so-called heuristic 
strategies. These appear in situationally different forms and types (e.g. Schoenfeld, 1985). 

Pre-structured learning formats are formats that predominantly initiate learning activities with little 
(or no) guidance from the teacher. Heuristic worked-out examples (HWEs) (Reiss & Renkl, 2002) are 
one possible pre-structured learning format for supporting secondary school students’ problem-
solving processes in mathematics classrooms. Bachmann and Müller-Hill (2021) have theoretically 
analysed the potential of different design elements of HWEs, focusing on promoting learners’ 
development of heuristic strategies as a component of successful problem solving. This analysis 
underpins the thesis that so-called post-reflection tasks can generally initiate learning activities that 
support the acquisition of heuristic strategies (Bachmann & Müller-Hill, 2021). In this context, the 
poster contribution addresses the following specific research question: Which types of post-reflection 
tasks in heuristic worked-out examples with the potential to acquire an individual heuristic strategy 
can be identified? 

Sketch of the theoretical framework. 
Following general action-oriented learning theories (e.g. Aebli, 1994) and research on mathematical 
problem solving (e.g. Pólya, 1945), having a heuristic strategy at one’s disposal develops out of an 
individual’s concrete problem-solving actions, starting from actions in suitable situations within 
concrete problem-solving processes to achieve specific (sub-)targets that can be assigned to a 
heuristic strategy. This development occurs primarily in the form of two complementary processes: 
internalising and classifying, mediated by language. Based on such a conceptualisation of an 
individual heuristic strategy, a two-dimensional learning field to acquire heuristic strategies 
(Figure 1) is developed in Bachmann and Müller-Hill (2021), which refers to four types of learning 
activities: performing an action, describing an action in one’s own words, verbalising the target and 
situation of an action, and verbalising the target and situation of an action more generally. 

Applying the theoretical framework to the case of post-reflection tasks. 
In Figure 1, we see three types of learning activities that aim to compare actions within and across 
problem categories and relate actions across similar situations and similar (sub-)targets. These 
activities enable individuals to communicate about problem-solving actions (at a more concrete level) 
and about heuristic strategies (at a more general and abstract level). Thus, they support the individual 
construction of an appropriate language and the gathering of experience about concrete problem-
solving actions. 
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Figure 1: Learning field to acquire an individual heuristic strategy (Bachmann & Müller-Hill, 2021) 

Post-reflection tasks focus on such descriptive and verbalisation activities. They are the final task at 
the end of an HWE. Therefore, it is possible to refer back to the entire solution process presented 
when working on these tasks. By setting suitable post-reflection tasks, a guided reflection on the 
solution process and individual actions within it can be initiated for the overall process. Different 
formulations and presentations of post-reflection tasks can initiate different learning activities of 
describing and verbalising (Bachmann & Müller-Hill, 2021).  

The poster proposes a theoretically based characterisation of types of post-reflection tasks and 
illustrates concrete examples for each type using different formulations and representations. The 
possible strengths and weaknesses of the different types and representations derived from the theory 
form the starting point for future empirical work. 
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Second-order covariation is a quite recent theoretical construct in the field of Mathematics 
Education: it differs from the already existing construct of covariation in placing greater emphasis 
on the role of parameters, with respect to the other variables, as characteristic of a certain family of 
functions and as relevant in modelling classes of real phenomena. In this contribution, we address 
the novelty and importance of this type of reasoning based on a teaching experiment concerning 
modelling of a thermodynamic situation. Starting from the analysis of three episodes, we highlight 
some features of this construct, and the emerging interpretation as a change in standpoint that results 
in different graphical representations suitable to interpret globally the specific mathematical 
situation.  

Keywords: Covariation, variables, parameters, graphs.  

Introduction to the research problem. 
Covariational reasoning is an essential skill necessary to enter deeply into the processes of 
mathematical modelling (Thompson, 2011): it can help to model “the change and the relationships 
with appropriate functions and equations, as well as creating, interpreting and translating among 
symbolic and graphical representations of relationships” (OECD, 2022). Italian mathematics 
curricula for secondary schools also address the importance of “represent[ing] the same class of 
phenomena through different approaches” (MIUR, 2010, p. 337). To pursue this goal, using multiple 
representations (Ainsworth, 2008) turns out to be of great importance for students in order to fully 
embrace all the aspects of the mathematical situation under investigation. An example of meaningful 
graphical representation which lends itself to multiple educational purposes consists of the 
“psychrometric chart” or Carrier diagram. It describes the thermodynamic parameters of moist air at 
constant air pressure, so it is a graphical representation of an equation of state. This type of 
representation requires sophisticated forms of covariational reasoning to grasp how magnitudes are 
varying and to identify their mutual relationships. To better introduce this chart, we comment on a 
real chart displayed in Figure 1a and/or on a slightly simplified simulation1 of it created with Wolfram 
software, shown in Figure 1b. The dry bulb temperature is shown on the horizontal axis while the 
vertical axis is the absolute humidity. The chart in its complete form contains many parameters: wet 
bulb temperature, dew point temperature (the temperature at which the air becomes saturated with 
water vapor), relative humidity, specific enthalpy, and specific volume; indeed, reading a 
psychrometric chart is very challenging, but if we just focus on temperature (abscissa), absolute 
humidity (ordinate), and relative humidity (the parameter), the relation between temperature and 
absolute humidity is given by an exponential-like function (green curve) and a different curve 
corresponds to each value of the percentage of relative humidity. Indeed, the Carrier diagram shows 
the mutual relations between the three variables involved crushed onto a two-dimensional 

 
1 This simulation is available online at this link: https://demonstrations.wolfram.com/ReadingAPsychrometricChart/. 

Proceedings of CERME12 4228



 

 

representation: this flattening makes the reading and the interpretation more complicated than a three-
dimensional representation in which the three magnitudes assume the same ontological status of 
variable. Again: why choose relative humidity as the parameter instead of absolute humidity? How 
would this choice affect the bidimensional representation? 

Figure 1: a) An example of psychrometric chart; b) Simulation of a psychrometric chart created with 
Wolfram software 

To answer these questions, the theoretical construct of second-order covariation is introduced. While 
the construct of covariation focuses on the relation between two or more variables, second-order 
covariation focuses on the role of characteristic parameters as specific of a certain family of functions. 
What is defined as being “of second order” depends on the way a specific variable is extrapolated 
from the assigned scenario and interpreted as a parameter: this determines the standpoint from which 
the mathematical situation can be represented.  
The main purpose of this contribution is to enter the complexity of second-order covariational 
reasoning required to fully understand the relations between the above magnitudes. Consequently, 
our research question can be formulated as follows: how can second-order covariational reasoning 
be characterized when interpreting representations, like the psychrometric chart, where at least three 
magnitudes are involved and one of these can be mathematically interpreted as a parameter?  
In this paper, we are going to initially provide a characterization of the construct of second-order 
covariation referring also to other theoretical contributions in the literature. Then, thanks to the 
analysis of a few episodes from a teaching experiment involving an Italian secondary school 
classroom, and based on the interpretation of the psychrometric chart, we are going to explore the 
covariation emerging in students' reasoning. Finally, we propose a refinement of the construct of 
second-order covariation which could be interpreted as a change of standpoint suitable to interpret 
different mathematical representations.  

Theoretical framework. 
The use of multiple representations strongly supports the learning of mathematical concepts, and 
among their various functions they provide information that complement each other and/or foster the 
development of deeper understanding when they support additional information (Ainsworth, 1999). 
Although multiple representations are beneficial to the learners, they are non-trivial for students to 
use to relate and identify connections (Ainsworth, 2008). Beyond this, single representations 
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themselves can be challenging: for instance, reading, interpreting, and reasoning about graphs 
requires grasping the relationship between the values of the magnitudes involved, and so it demands 
good covariational skills.  
Being able to reason covariationally means being able to envision two or more magnitudes that vary 
simultaneously, as presented in Thompson and Carlson (2017). The last version of this theoretical 
construct, presented in the same work, and that we are going to refer to as first-order covariation 
(COV 1), consists of six levels of covariational reasoning ranking from absence of covariational 
reasoning to smooth continuous covariation. These levels can be interpreted as classes of behaviors 
or descriptors of a person's ability to engage in covariational reasoning. In this contribution, we 
consider covariation in a broader epistemological sense, i.e., as the ability to grasp relations of 
invariance that are more complex than the simple covariation between two magnitudes. Specifically, 
the construct of second-order covariation (COV 2), recently introduced by Arzarello (2019), is a form 
of reasoning that consists in suitably envisioning the relationships in which not only variables but 
also parameters are involved mathematically. In particular, the latter allow to represent classes of real 
phenomena as families of relations between variables, which are mathematically represented by 
specific parameters. These determine the peculiarities of the mathematical model. Furthermore, the 
label “second-order covariation” seems particularly suitable to underline the role played by 
parameters: indeed, Bloedy-Vinner (2001) already used the expression “second order function” to 
address those functions whose argument is a parameter and whose output is a function or an equation 
depending on a specific parameter value.  
The necessity of introducing this new order of covariation emerges predominantly from the need of 
better describing students’ reasoning when dealing with situations of mathematical modelling, such 
as the law of the inclined plane as presented in Arzarello (2019). However, it also emerges in other 
studies in literature. For example, Hoofkamp (2011) introduced the term “metavariation” to refer to 
a variation of the mathematical situation itself and the function as a whole: it is related to the object 
view of the function and to a qualitative view of the functional dependency and its local and global 
characteristics. While our approach to second-order covariation mainly focuses on the mathematical 
and cognitive characterization of this form of covariational reasoning, metavariation emphasizes the 
instrumentation of second-order covariational processes adopting suitable activities mostly designed 
with Interactive Geometry Software. This way of reasoning covariationally seems to be more 
cognitively demanding than the one presented in the already existing taxonomy. Hence, this 
contribution supports and contributes to the perspective of an enlargement of the theoretical 
framework that aims at coherently including more complex forms of covariational reasoning and 
opens up to the possibility that other orders of covariation may exist. 

Method. 
Participants and task design. The episodes presented and analyzed in this paper are part of a teaching 
experiment that was held in a 11th grade classroom of 21 students in a scientific-oriented school in 
Italy. It was conducted at the beginning of the school year 2020/2021 in a mixed modality due to 
Covid pandemic. Ever since the first year of secondary school the students involved were accustomed 
to working with different mathematical representations (algebraic, graphical, numerical) and to using 
Dynamic Geometry Softwares such as GeoGebra. Moreover, in the academic year 2019/2020 the 
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students had already been involved in a teaching experiment concerning the law of the inclined plane, 
the so-called Galileo experiment (Bagossi, 2021), so they had already experienced covariational 
reasoning in a context of mathematical modelling. This experimentation had the main purpose of 
elaborating mathematically on the relationship between temperature and humidity adopting multiple 
representations and various digital supports. The first task consisted of analyzing the mathematical 
and physical relationship existing between temperature and humidity through a household experiment 
during which for an entire day, at regular intervals, students collected the values of temperature and 
humidity in their rooms with the request to eventually elaborate some hypotheses on a possible 
relationship between the collected data. In a subsequent lesson, students’ hypotheses were discussed, 
and the teacher commented on a GeoGebra graph displaying some of the data collected. The students, 
together with their teacher, concluded that the two magnitudes could be related in some way, namely 
whilst the temperature increases, the humidity decreases, and vice versa. The activity continued with 
an experiment in class: in a metal pot with some water at room temperature, ice was gradually added 
until droplets of water appeared on the outside of the pot. At regular intervals of time the students 
recorded the time spent and the temperature of the water in the pot itself and took note of the 
temperature when the dew drops appeared (that is the dew point). After a working group session 
devoted to the understanding of a real psychrometric chart, through a classroom discussion 
(Discussion 1) led by the teacher, the students investigated the relationships between time, water 
temperature, room temperature and the reason for the creation of dew drops on the outside of the pot. 
At the end of the discussion, the teacher provided students with a slightly simplified psychrometric 
diagram created with GeoGebra (Figure 2a) and a worksheet with a real chart (Figure 1a).  

Figure 2: a) GeoGebra applet simulating the psychrometric chart; b) GeoGebra applet describing the 
relation between relative humidity (y-axis) and temperature (x-axis) 

Working in small groups on some guide questions, the students were able to read relative humidity 
values from the graph representing absolute humidity as a function of temperature and, conversely, 
to read the values of absolute humidity from a new graph, provided in a second moment, representing 
relative humidity as a function of temperature (Figure 2b). At the end of the group work, the students 
discussed with the teacher (Discussion 2) the roles of the magnitudes at stake in the mathematical 
representations (independent variable, dependent variable, or parameter). We note that the multiple 
representations involved, such as the real psychrometric chart and the two applets have a 

P  Q 

Proceedings of CERME12 4231



 

 

complementary function, while the pot experiment with respect to these provides extra information 
but it will reveal crucial for students to disentangle the meaning of the graphical representations.  

Methods of data analysis. The analytic method used in our qualitative study was that of a descriptive 
coding of the emergent forms of covariational reasoning (Saldana, 2015). A preliminary phase 
consisted of watching the videos of all the lessons repeatedly in order to identify episodes revealing 
covariation. During the first cycle of coding, we classified the orders and levels of emerging 
covariational reasoning describing their features and the quantities involved; then we transcribed the 
most significant episodes. During the second cycle of coding, we deepened the qualitative description, 
focusing on the identification of the representations that most influenced the students’ reasoning, i.e., 
the pot experiment or the graphical representations, the use of a qualitative or quantitative narrative, 
and terms denoting change and movement. Eventually, we revised the coding in light of the 
qualitative descriptions of the episodes we had elaborated.  

Data analysis. 
The first episode analyzed here is an excerpt from the 1-hour discussion in presence (Discussion 1) 
led by the teacher after the working group session on the psychrometric chart. During this episode, 
students, guided by the teacher, tried to retrace what happened during the experiment with the pot on 
the psychrometric diagram. The applet reproducing the psychrometric chart was shown on the 
interactive whiteboard and students had already identified point P representing the point on the 
saturation line in which the temperature coincides with the temperature of the dew point. Point Q 
instead has the same ordinate as P and the ambient temperature as abscissa (Figure 2a). 

1 Teacher On the graph, how can I read these passages? We said this is the starting 
point because we said we do not go from P to Q, but we start from Q. 
Starting from Q, where did we go? 

2 Giorgia We decreased the temperature hence we moved to the left. 
3 Teacher We decreased the temperature hence we moved to the left. In which way? 

Did you just decrease the temperature or not? We are during the moment in 
which you continued to pour and pour [the ice]. 

4 Emanuele Only the temperature decreases.  
5 Teacher Only the temperature decreases. And so, on the graph, how do you move? 
6 Emanuele Horizontally.  
7 Teacher Horizontally. We have point Q and we move horizontally to decrease the 

temperature. Until when do we move horizontally? 
8 Emanuele Until the dew point. 
9 Teacher Until the dew point that is until when we find on which of these green 

curves? 
10 Emanuele Until that of 100%. 

All the episode is centered around a game of displacement between the graphical representation and 
the experiment facilitated by the mediation of the teacher that constantly asks the students how they 
would move on the graph, inviting them to relate to the experiment with the GeoGebra applet. This 
game of displacement results in the interlacing of two different narratives: a qualitative one, used to 
describe what happened during the experiment that manifests with the use of personal pronouns (e.g., 
“we decreased the temperature” [2]); a quantitative one used to describe how the magnitudes involved 
are changing (e.g., “Only the temperature decreases” [4]). The students already possess the 
psychrometric diagram representing the covariation of magnitudes involved and they are moving on 
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this representation: we can recognize the enhancement of a global approach supported by the involved 
representations. 
Discussion 2 was mainly focused on reconstructing the cycle of the pot experiment on the new chart, 
the one describing the relationship between absolute humidity on the y-axis and temperature on the 
x-axis. In this second episode, one of the graphs made by the students as homework is shown on the 
interactive whiteboard (Figure 3). The teacher is commenting on the second step of the experiment 
the one during which students continued to decrease the temperature in the pot by adding ice cubes 
and then some drops of water formed on the wall, represented by a horizontal segment, colored in 
yellow.  

 
Figure 3: Relative humidity – temperature graph made by one of the students 

11 Teacher What is happening instead on the horizontal trait [of the graph]?  
12 Arianna The relative humidity maintains constant. 
13 Teacher The relative humidity maintains constant. 
14 Arianna And the temperature decreases. 
15 Teacher The temperature decreases. The absolute humidity? Does it decrease or 

remain constant? 
16 Adele Decreases. 
17 Teacher Decreases. Why? 
18 Emanuele You have the condensation. 
19 Teacher Ok, you have the condensation, and this is what happens practically. But on 

the graph why? […] 
20 Adele The curve changes. 

As in the previous episode, students’ linguistic expressions “The relative humidity maintains 
constant” [12] and “You have the condensation” [18] suggest that the combined and synergic use of 
the two representations, the chart and the experiment, helped students in reflecting on which 
magnitudes change and how they change during the different steps of the experiment and the 
corresponding traits of the chart. Even in this case we can observe the enhancement of a global 
approach supported by the involved representations. 
Finally, this third episode below, coming also from Discussion 2, shows the approach used by the 
teacher to reflect on the similarities and differences between the two psychrometric charts and it can 
be intended as a form of conceptualization of the different roles of variables and parameters. 

21 Teacher Are they two different situations/scenarios? 
22 Matteo  No.  
23 Teacher No. Why do the two graphs are different if they are not two different 

situations? 
24 Matteo The value represented on the y-axis is different. 
25 Teacher The value represented on the y-axis is different. If you should make a 

comparison with something that is not mathematical but concerns real life… 
We have the same situation/scenario, but the value represented on the y-axis 
is different… If you should make an analogy…? 
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26 Giorgia From the physical point of view, they represent the same thing but from the 

graphical point of view no… because they are two different values. 
27 Teacher Oh! From the physical point of view, they represent the same thing but from 

the graphical point of view no because they are two different values. […] 
Two different situations depending on what? 

28 Matteo A different point of view. 
At this point of the discussion, the teacher projects on the interactive whiteboard a new applet showing 
simultaneously the relationship of absolute humidity versus temperature (Figure 2a) and of relative 
humidity versus temperature (Figure 2b). The teacher asks to the classroom if the graphs are two 
different situations or scenarios [21]. Matteo obviously replies no [22], so the teacher asks why the 
graphs are different if they are not representing different things [23]. When Matteo states that the 
value represented on the y-axis is different [24], the teacher invites the students to provide a holistic 
interpretation, an analogy with something non-strictly mathematical [25]. Giorgia suggests that from 
the physical standpoint the situation is the same: what differs is the graphical representation [26]. 
Answering a teacher’s question [27], Matteo adds that the difference between the two situations 
depends on “a different point of view” [28]. This interpretation suggests that the different role 
assumed by variables and parameters does not determine a different situation but a change of 
standpoint resulting in a different graphical representation. 

Discussion. 
After a first overall reading of the three episodes presented in the previous section, the question arising 
spontaneously is: where is covariation? If we think of some typical examples of covariational 
reasoning such as “A increases, while B decreases”, they are surely absent in the excerpts described 
before. The psychrometric chart at disposal of the students synthetizes in a unique diagram and 
flattens in two dimensions the relations between three different magnitudes (temperature, absolute 
humidity, and relative humidity). The students implement forms of reasoning revealing a global 
approach supported by the adopted representations. In particular, in the physical interpretation of the 
relations described in the chart, students are deeply supported by the classroom experiment with the 
pot: all the classroom discussion develops through an interpretation of the diagram with respect to 
the various steps of the experiment. What the students observe in the last episode is that considering 
relative humidity as a variable or a parameter does not change the situation, but the perspective with 
which you look at the situation: the students claim that the relationship is always the same, only 
expressed in different terms. Second-order covariation is the construct that enables one to read the 
same mathematical situation from two different standpoints and to recognize a correspondence 
between the representations: in the real psychrometric chart the parameter is the relative humidity, 
and this magnitude is the one of second order; in the blue graph (Figure 2b) absolute humidity 
becomes the parameter and so it is the second order variable determining a different standpoint.  
As it is for COV 1, second-order covariation is a cognitive act that cannot be reduced to the reading 
of a formula choosing to interpret one of the variables involved as a parameter. It is a form of 
reasoning that consists of envisioning the invariant relationships in a family of functions and this 
study sheds light on one of its facets that manifests when dealing with graphical representations.  
Finally, even if it is not the focus of this paper, we cannot fail to observe the essential role of the 
teacher in mediating between the multiple representations helping students in relating them. 
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Moreover, the teacher supports students in better expressing their thoughts and enhances the transition 
from COV 1 to COV 2, and also from COV 2 to COV 1.  

Conclusion. 
Second-order covariation requires a complex cognitive engagement: it is a form of covariational 
reasoning that in activities of mathematical modelling involving multiple representations can be 
theorized as the ability to read the same mathematical situation from different points of view choosing 
each time which of the involved variables should be mathematically interpreted as a parameter. The 
characterization and relevance of second-order covariation still deserve to be deepened through 
further research.  
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Domestication of the geometrical eye: unpacking geometry with the 
GGbot drawing robot 
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In this paper, using Radford’s Theory of Objectification, we analyze 2 students’ learning activity that 
show how the features of the drawing robot (GGbot) affect student's sensuous cognition, forging their 
theoretical perception for the learning of geometry. 

Keywords: Eye as a theoretician, GGbot, geometry, theory of objectification, sensuous cognition. 

Introduction 
Digital technologies open new possibilities in the teaching and learning of mathematics. In line with 
the theory of objectification (TO), we conceive learning as the student’s sensuous encounter with 
systems of thinking and action that have been historically and culturally constituted (Radford, 2021). 
In this paper, we analyze the role of the drawing robot GGBot (abbreviation of GREATGeometryBot) 
in the learning of geometry in primary school. We report an exploratory study carried out with grade 
3 students performing an activity that involved the use of the GGBot in the solution of geometrical 
tasks. The aim of the contribution is to understand the impact of the GGBot in transforming the 
individual’s perception (which here we intend being visual, tactile, kinesthetic, and imaginative) in 
the learning of geometry. 

Conceptual framework 
The TO, embedded in sociocultural perspectives, stems from a profound intertwining between culture 
and the individuals’ activity. Culture is an intrinsic component of mathematical thinking and learning, 
and activity is the ontological category of the TO as it realizes the consubstantiality between 
individuals and their culture. In the stance of the TO, mathematical thinking and learning are not 
processes confined in the mind but they are intertwined with individuals’ social activity. Signs and 
artefacts play an important role, beyond the role of something that stands for something else or as 
mediators of activity. In the TO, they are considered an integral part of human thinking and human 
activity (Radford, 2021). The issue of learning is rooted in the dialectics between the individual and 
their culture. Learning is a movement pushed by the intrinsic differential between the individual and 
cultural knowledge. In fact, in attending to knowledge the student has to cope with something that in 
the beginning is different from him, an alterity that challenges, resists and opposes him. Learning is 
the process that erases such a difference to make sense of cultural knowledge and transform it into 
something familiar that allows new forms of action, thinking, imagination and feeling. In order to 
reduce the distance between the individual and cultural knowledge, activity as a specific human 
endeavor is required on the part of the student. Radford (2021) conceives learning as a social process 
of becoming aware of cultural-historical systems of thinking and doing, through our bodily, sensory, 
and artefactual semiotic activity. We remark that, according to the TO, signs and artifacts are 
constitutive of the activity that leads students to notice mathematical knowledge. They are bearers of 
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an embodied intelligence and culturally endowed with specific patterns of activity that individuals 
use in their meaning-making processes and to carry out their actions (Radford, 2021). The outcome 
of the learning process is the encounter with mathematical (cultural) objects and their transformation 
into objects of consciousness. From this standpoint, learning has a strong phenomenological nature 
where noticing occurs in an enlarged notion of mind and consciousness, termed by the TO sensuous 
cognition, that includes not only ideal and mental features but also embodied ones such as perception, 
feelings, and kinesthetic activity. In light of the dialectic-materialist approach underpinning the TO, 
the basic tenet behind the notion of sensuous cognition is that the body, the senses, and the objects of 
sensation are not a priori entities but mutually transformed by cultural-historical activity entangled 
with the use of signs and artefacts. The relations of mind and body to the world are historical 
intertwines with material and ideational culture, and our senses change and develop along with the 
changes of the cultural-historical dimension (Radford, 2021). From the standpoint of sensuous 
cognition, human perception is, in the words of Wartofsky (1984, p. 865), “a cultural artefact shaped 
by our own historically changing practices”. In this regard, perception deploys cultural forms of 
seeing, touching, hearing etc. that characterize our relation with the world. Within sensuous cognition, 
the issue of learning is identified with the manner in which perception is transformed into a theoretical 
cultural form of perception, in progressively noticing and endowing with meaning cultural-historical 
systems of thinking and doing. How do students change their perception from “spontaneous” forms 
of attending to objects to a mathematical and theoretical one? To answer this question, we must 
consider learning as a “domestication of the eye” (Radford, 2021), a long process that allows students, 
in cultural-historical activity intertwined with the use of signs and artifacts, to transform the eye (and 
other senses) into sophisticated theoretical organs able to notice and make sense of certain things in 
mathematical manners - for example recognizing numerosity, algebraic structures, geometric 
invariants etc. We remark the co-variational nature of sensuous cognition in that learning processes 
entail a transformation of perception along with the transformation of the perceived cultural object 
into an object of consciousness. We underline the multimodality entailed with the “domestication of 
the eye”, both in the various sensorial channels and the richness of signs and artefacts interwoven 
with cultural-historical activity involved in the transformation of perception (Radford, 2021).  

In this framework, we aim to analyze the impact of the GGBot, with its artifactual and semiotic 
features, which combine the well-known strengths and opportunities offered by the modern visual 
programming language with those of Papert’s original robotic drawing-turtle (Papert, 1980). The 
GGBot is composed of two wheels, a marker-holder at each end, where one can insert markers to let 
GGBot draw (Figure 1a), and SNAP!, the visual programming language used to provide commands 
to the GGBot. We show some of the available commands in Figure 1b, and we refer to Baccaglini-
Frank and colleagues (2020) for more details on how the GGBot works. 

a)  b)  

Figure 1: a) view of the GGbot; b) SNAP! Commands list 
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This contribution focuses on the dialectical movement between primary school students, geometrical 
knowledge and cultural-historical activity that pivots around the use of GGBot as they learn 
geometry. More precisely, the present study aims at answering the following research question: how 
does the GGBot with its related multimodal artifactual and semiotic features (the physical robot, the 
SNAP! commands, movement, drawing, gesturing, natural language) affect students’ sensuous 
cognition? That is, how does the GGBot “domesticate the eye” (seeing, touching, kinesthetic activity, 
imagination) for the learning of geometrical figures in primary school? 

Methodology, data and analysis 
We consider data collected during one session of a sequence of three that was conducted by Anna 
Baccaglini-Frank (Baccaglini-Frank & Mariotti, in press). Each session lasted a fixed time-frame and 
involved one class of grade 3 students, the classroom teacher, and the researcher. The students were 
asked to carry out various types of tasks. First, a technical exploration of the GGBot guided by 
questions is conducted. Then, students continued working in pairs and they were asked to use SNAP! 
to code the movement of the GGBot that would lead it to draw with the marker a certain given figure 
(figure-to-code tasks). The students were involved in another type of task as well, a collective task 
where they could answer in turn. Starting with a given SNAP! code, they were asked to predict the 
GGBot’s movement and, consequently, foresee the trace that the marker would have left on the paper 
(code-to-figure tasks). Given the potentialities of predictive tasks in providing insight into the 
learning process in geometry (Miragliotta, 2020), in this paper, we focus on the code-to-figure tasks. 
We consider some video recorded sequences where a group of students are predicting the GGBot’s 
drawing outcome of a given code displayed on the projector (Figure 2a). For the reader’s convenience, 
we show in Figure 2b the commands explanation and the expected figure drawn by the GGBot 
according to the code alongside (what is shown in Figure 2b was not projected nor shared with 
students during the experiment). 

a)  b)  

Figure 2: a) SNAP! Commands list (projected); b) Commands explanations and the expected figure  

We remark that with the code-to-figure predictive task, students are asked to manage three separate, 
but connected, passages that entail theoretical forms of seeing, touching, movement and imagination. 
The first goes from the given code to the prediction of the GGBot movement in their imaginary 
dimension; the second, from the imagined movement to the prediction of the figure that such 
movement would trace on the paper; the third, from the imagined trace to its external outcome shared 
with the use of words, gestures, and drawings. The analysis of the nodes of such a chain of passages 
allow us to understand how the students’ sensuous cognition evolves in the interplays with GGBot 
features. Our analysis focus is on the mutual transformation of perception and mathematical objects 
in activities whose outcome is the “domestication of the eye”. We consider variables, specific to the 
task at stake, concerning perception, signs and artifacts, and geometric knowledge: in regard to 
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perception, seeing, touching, movement and imagination; with respect to signs and artifacts, gestures, 
drawings, natural language and SNAP! commands; in regards to knowledge we focus on the 
egocentric and allocentric system of references (SoR) – whose involvement in similar activities is 
well documented in the literature (e.g. Baccaglini-Frank et el., 2014) - the notion of angle and the 
(mis)matching between the drawing of the figure resulting from the GGBot movement and the one 
primary school students would have performed using paper, pencil and possibly a ruler. We remark 
that in the code-to-figure task the GGBot is not physically present as in the figure-to-code ones. 
Nevertheless, the GGBot, in relation to the previous activities, is present in the imaginative perception 
as students coordinate gestures, natural language, drawings, and SNAP! commands. 

Data and their analysis. The students, the researcher and the teacher are arranged in a circle around 
a big piece of paper on the floor where there are some drawings of previous activities (familiarization 
with the robot's functionality and figure-to-code task to draw a square). We focus on 2 students 
(Angela and Vanessa) and the following tables contain excerpts of the transcription of the video 
recording significant of the three passages described above (code to imagined movement, imagined 
movement to imagined figure and imagined figure to external shared the figure). In order to be faithful 
to the synchronicity in the use of signs and artifacts, we present the data in three columns: one for the 
gestures and non-verbal signs, the second for the utterances, and the third for the drawings (in Table 
1, the drawings are just for the reader’s convenience since Angela traced the figure with a finger on 
the paper). In the transcription: R stands for the researcher, and we numbered the lines using the same 
number to indicate simultaneity. In the analysis we enumerate both the transcript line (TL) and the 
SNAP! command line (SL, see Figure 2b). 

Angela, who traces the figure with her finger on the paper 

Gestures and non-verbal signs    Utterances Drawings 
[1] Angela points her index finger on a white area of the paper and then 
she traces a first segment in the horizontal direction (according to her 

egocentric SoR) towards her right  

[1] R: like that 
 

[1] 

 
[2] Angela goes on with a second segment in the vertical direction 
(according to her egocentric SoR) moving away from herself and 

articulating the movement in two steps 

 [2] 

 
 [3] Angela: ehm  

[4] Angela traces a third segment in the horizontal direction (according to 
her egocentric SoR) towards her left. This segment is shorter than the 

first two. 
[5] Angela traces a fourth segment in the horizontal direction (according 
to her egocentric SoR) towards her right. This segment is shorter than the 

first two as well. 
[6] Angela traces a fifth segment in the vertical direction (according to 

her egocentric SoR) moving away from herself. Then, she stops moving 
and gazes at R. 

[7] Angela gazes at her finger on the paper 

 [4] 

 
[5] 

 
[6] 
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 [8] Angela moves horizontally her finger right and left various times [8] Angela: and like… [8-9] 

 

 [9] Angela: and like so 
and so… 

 [10] R points her finger towards Angela [10] R: So it is an 
excellent idea. It is a sort 

of stair, did you see?  

 

Table 1: Angela 

Analysis. Angela traces correctly with her finger the first three segments of the figure (TL 1-4 that 
correspond to her interpretation of the SL from 1 to 5). When reaching the 6 SL, she is not able to 
correctly handle the change of direction in the rotation. Therefore, she interprets the change in the 
direction of the rotation as a reverse direction along the same segment (TL 5). At the 7SL, Angela 
traces with her finger the vertical segment (TL 6). Then, the last command puzzles her even more 
and she goes back and forth with her finger (TL 8-9). In her activity, Angela resorts only to gestures 
and the SNAP! commands. She is able to notice in her imaginative perception the corresponding 
movement of the GGBot related to the first 3 segments of the figure. Nevertheless, when it comes to 
the third rotation, her perception is not able to grasp the angle of the figure as it is conveyed by the 
movement of the GGBot. The coordination of gestures and the SNAP! icons requires a transformation 
of imaginative perception to notice the angle of the figure in terms of step and rotation of the GGBot 
and not as the portion of the plane delimited by the two half-lines (i.e. the two sides of the figure). 
Furthermore, it requires a transformation of imaginative perception able to consider also the 
connection between egocentric (Angela’s) and allocentric (GGBot’s) SoR that does not emerge in the 
use of pencil and paper. Her perception does not encompass the change of direction in the rotation 
due to both the new way of encountering the angle of the figure as a rotation of the GGBot and the 
conflict between the egocentric and allocentric SoR. The back-and-forth gesturing along the side of 
the figure (TL 8-9) and the global absence of structured natural language are tokens of Angela’s 
blurred perception and her struggle in “domesticating the eye” to transform her perception of the 
angle with respect to the one she learnt before. The process of “domestication of the eye” does not 
make the necessary leap to handle both the angle of the figure and the SoR, thus missing in the 
imaginative perception the expected figure drawn by the GGBot corresponding to the SNAP! 
commands. 

Vanessa, who draws the figure on the paper with the marker 

Gestures and non-verbal signs Utterances Drawings 
 [61] Vanessa: So before she (Vanessa 

is referring to a classmate’s answer in 
a previous figure-to-code task) did a 

square, ok? 
[62] R: ok 

 

[63] Vanessa draws on the paper a line in the vertical direction 
(according to her egocentric SoR) moving away from herself.  

[63] Vanessa: So, he took a step 
forward, no? 

[63]  
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[64] Vanessa draws on the paper a line in the horizontal 
direction (according to her egocentric SoR) towards her right  

[64] Vanessa: a rotation 
[64]  

[65] Vanessa separates the marker from the paper and starts to 
oscillate over the second segment 

[65] Vanessa: then another, a 
...another step forward, so the 

rotation… 

 

[66] Vanessa continues to oscillate repeatedly over the second 
segment  

[66] Vanessa: yes well, the, the step 
forward 

 

[67] Vanessa draws a third short segment in the vertical 
direction (according to her egocentric SoR) towards herself  

[67] Vanessa: a rotation 
[67]  

[68] Vanessa draws out the line towards herself  [68] Vanessa: and then after the 
rotation again a step forward  

[68]  

[69] Vanessa draws on the paper a line in the horizontal 
direction (according to her egocentric SoR) towards her right  

[69] Vanessa: then he put the rotation 
the opposite way, and so like this [69]  

[70] Vanessa draws quickly another two lines  [70] Vanessa: and like this 
[70]  

Table 2: Vanessa 

Analysis. For Vanessa the conflict starts since the beginning, when she is managing the second SL 
(TL 64). After she has drawn the first segment, she explicitly links the word rotation with the drawing 
of the second perpendicular segment. After that, in TL 65, Vanessa should go a step forward with the 
marker but she is puzzled about where to go due to the previous interpretation of the rotation. Indeed, 
drawing another step forward in her situation would have resulted in a drawing with a “side doubled” 
,i.e., two strokes of the marker (instead of a step, a rotation and then another step). Vanessa’s 
confusion is highlighted by her oscillating the marker over the second segment and uttering “then 
another, a ...another step forward, so the rotation…” and “yes well, the, the step forward” (TL 65-
66). Vanessa is confused because she lives in a conflict between the two ways in which the notion of 
angle co-emerges with her sensuous act: the angle as the part of the plane between two half-lines and 
the angle as the rotation of the GGBot. The gesturing with the marker and the utterances described 
above, testify such a conflict; she is able to draw the consecutive segments, but, when trying to relate 
them with the SNAP! commands, she is at odds with what she is doing. In TL 67, Vanessa is 
managing the second rotation of the 4th SL: she avoids the conflict linking the word rotation with a 
little portion of a perpendicular segment that she extends synchronously with the words “then after 
the rotation again a step forward” (TL 68). Vanessa’s use of natural language is always assertive and 
explicit: she uses words to scan the imagined movement and the resulting trace. Her coordinated use 
of natural language and the drawing with the marker (TL 67-68) shows in an evident and interesting 
way the “domestication of the eye” related to the angle and her struggle to erase the differential 
between her previous form of noticing and the new (GGBot’s) one that is challenging, resisting, and 
opposing her. We observe Vanessa’s difficulty in fully accomplishing the domestication of her 
sensuous cognition to “see” angles with the “eyes” of the GGBot. Vanessa handles the coordination 
of the egocentric and allocentric SoR in the direction of the steps, in fact she always says “forward” 
as if she were in the SoR of the GGBot. However, she is not able to coordinate the two SoR when it 
comes to the rotations. She systematically shifts the left with the right and vice versa. Notwithstanding 
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the difficulties in coping with the angle and the two SoR, Vanessa arrives at a drawing consistent, 
apart from the inversions of left and right rotations, with the SNAP! commands and the ensuing 
movement of the GGBot. This testifies a first transformation of her geometrical perception to 
conceive of figures both as theoretically perceived in drawings with pencil and paper and in the 
entanglement between the SNAP! commands and the ensuing movement of the GGBot in terms of 
steps and rotations. The coordinated use of the marker to draw and as a pointer, natural language and 
the SNAP! commands allows a transformation of Vanessa’s multimodal perception made of seeing, 
touching, movement and imagination to encompass new ways of noticing the SoR (egocentric and 
allocentric), the angle of the figure (resulting from steps and rotations), and the geometric figure (in 
the interplay between SNAP! commands and the imagined movement of the GGBot). Despite her 
struggle in coping with new ways of attending to the angle and the SoR, Vanessa’s “domestication 
of the eye” allowed her to connect the two meanings of the figure, the one conveyed via the GGbot 
and SNAP! and the previous one conveyed via drawings and paper and pencil. Thus, Vanessa testifies 
in her learning process the mutual transformation of perception and the mathematical object. 

Discussion and conclusion 
Data show how the encounter of geometrical objects using the GGBot involves a complex 
intertwining of signs and artifacts (icons, gesturing, natural language, material objects), perception, 
and geometric knowledge. The analysis of Angela and Vanessa, exposed to code-to-figure tasks, 
allows us to delineate how the use of GGBot resists and opposes our two students in their process of 
“domestication of the eye”. In previous activities without the GGBot, students' sensuous cognition 
had been carried out with material objects, rulers, gestures, natural language etc., on which they had 
direct perceptual and sensorimotor control. Furthermore, perception took place in their egocentric 
SoR. The introduction of the GGBot strongly transforms students’ perception in new cultural and 
theoretical modes of attending to geometrical objects. Metaphorically speaking, students have to 
think, perceive, move and “feel” as if they were the GGBot. In the code-to-figure task, pupils do not 
have direct control on the robot, and they have to establish, in sensuous cognition, a relation between 
the SNAP! code, the resulting movement of the robot and the geometrical figure that it would have 
traced. Since the code-to-figure is a predictive task, this happens in their imaginative perception 
without the physical presence of the robot but forged by the use of gestures, natural language and the 
sensorimotor activity, inherited by the previous tasks with it. The code-to-figure task suggests to what 
extent the students’ perception has been theoretically domesticated according to the ideal and material 
characteristics pivoting around the use of the GGBot, to embrace new and richer encounters with 
geometric knowledge.  

Answer to the research question. From a geometrical point of view, above all, students have to 
handle different SoR (egocentric and allocentric) and angles conceived as a rotation. The predictive 
code-to-figure task shows that the introduction of the GGBot, with its correlates of signs and artifacts, 
requires a “domestication of the eye”. The transformation of perception is hindered by the conflict 
between an already theoretically domesticated eye - which encounters a geometric figure in a single 
SoR, in terms of segments and angles perceived as portions of a plane between two half-lines - and 
the new GGBot’s theoretical eye - which encounters a geometric figure as something constructed in 
terms of steps and rotations, and the intertwining of the egocentric (student) and allocentric (GGBot) 
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SoR. In regard to the features of sensuous cognition, on the one hand the introduction of GGBot 
requires the students to “see” theoretically the figure as a recomposition of the SNAP! commands 
and the corresponding steps and rotations of the robot perceived visually and kinesthetically. On the 
other hand, in previous activities with paper and pencil, the students theoretically “see” the geometric 
figure as successive segments with different orientations perceived visually and kinesthetically as 
they trace on the paper. Concerning the task under scrutiny, we highlighted, in connection to the 
deepest conflicts lived by the students, that their “domestication of the eye” does not flow smoothly. 
The mutual transformation of perception and the geometric objects emerging from the activity with 
the GGBot establishes a distance between the individual and knowledge, which is perceived as an 
alterity. The “domestication of the eye” is the long process of learning that allows the student to erase 
such a distance, and further studies are needed to deepen the process of domestication of the eye in 
activity involving the GGBot. We hope that our work can suggest possible future research directions. 
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Grouping passengers: A microgenetic case study of a struggling 
student’s representational strategies for quotitive division 

Carla Finesilver 

King’s College London, UK; carla.finesilver@kcl.ac.uk 

This paper focuses on the arithmetical understandings and behaviours of one fourteen-year old 
student with a history of very low attainment in mathematics, as she worked on a sequence of 
scenario-based quotitive division (grouping) tasks with individually-tailored verbal and visuospatial 
support. The student’s independent and co-created visuospatial representations of arithmetical 
structures, along with verbal comments, were analysed qualitatively using a multimodal microgenetic 
approach. This paper uses selected illustrative examples to discuss certain arithmetical-
representational changes (e.g. employment of pictorial, iconic and symbolic elements), some of the 
particular difficulties that may be experienced by students with impaired memory for arithmetical 
relationships and procedures, and potential compensatory strategies. It is intended to stand as a 
companion piece to the case study presented at the previous CERME TWG24 (Finesilver, 2019). 

Keywords: Visuospatial representation, multiplicative thinking, numeracy, low attainment, special 
education. 

Introduction 
I encountered Wendy during a larger project investigating low-attaining students’ representational 
strategies for multiplicative structures. Attending a typical inner London secondary school, she turned 
fourteen during the study; however, her capacities for and approaches to quantitative reasoning were 
atypical for her age group. Her particular stage of arithmetical thinking (struggling with the move 
from additive to multiplicative reasoning) has been of particular interest to researchers, and both her 
strong aversion to division (at least, when presented in traditional symbolic notation) and over-
reliance on counting-based strategies, are well-known phenomena. She was very positively disposed 
to the problem-solving interviews, maintaining excellent focus, and was keen to try new things and 
experiment with diverse strategies. Furthermore, as she demonstrated good verbal comprehension 
and would say when she did not understand, I took the opportunity to engage her in some detailed 
discussions about the tasks she worked on, including how and why her arithmetical strategies worked, 
which she enjoyed and welcomed. These several factors provided an excellent opportunity for 
microanalytic case study: to examine this individual’s arithmetical-representational strategies in fine 
detail, and note any changes taking place. Thus, I focused on an arithmetical concept with which the 
participant was insecure (division), building from activity in which she was comfortable (counting 
and addition), within scenario tasks that she could work on without peer pressure or artificial time 
limits. This paper presents and discusses some brief but illuminative excerpts from my work with her. 

Theoretical background 
There is a strong tradition of research into various aspects of early numeracy, such as counting-based 
arithmetical strategies, taking place in naturalistic teaching/learning environments. Those which 
focus on children’s own representations of number are often quasi-ethnographic in nature, where 
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(usually very young) children are observed in their mark-making (e.g. Atkinson, 1992), and their 
representations analysed for ‘emergent’ mathematics. Key to this body of work is that it focuses on 
children’s own, often non-standard, representational strategies; this is in the pedagogical tradition of 
“de-centring” (Donaldson, 1978), i.e. to shift from an adult perspective and imagine what a scenario, 
phrase or object might mean to a child.  

While the details and exact terminology can vary, in psychological research paradigms some kind of 
representational progression is also generally assumed, moving from the most intuitive models of 
arithmetical relationships with one-to-one correspondence, through pictorial and/or iconic forms that 
may include one mark standing for a number ≠1 and/or starting to incorporate abstract symbols, to 
eventual full formal symbolic notation (e.g. in the Enactive-Iconic-Symbolic modes of Bruner 
(1973)). The development of mathematical concepts has also been linked to increasing awareness of 
pattern and structure (Mulligan, 2011). The capability to make connections between multiple 
mathematical representations is important for a learner’s developing conceptual thinking (e.g. 
Ainsworth, 2006), and in particular representational flexibility for problem solving (Acevedo Nistal 
et al., 2009). 

Nunes and Bryant (1996), among many others stretching all the way back to Piaget, suggest that to 
understand multiplication/division represents a significant qualitative change in children's thinking 
(compared to addition/subtraction) – and so is deserving of particular attention. Regarding the 
increased complexity, Anghileri (1997) points out that a counting strategy in a multiplication or 
division task requires three distinct counts: the number in each set, the number of sets, and the total 
number of items. The second of these – enumerating sets rather than units – may be particularly 
unintuitive for some. Notwithstanding, Carpenter et al.'s (1993) study of kindergarten students (i.e. 
age 5-6, with <1 year of formal schooling) demonstrated that they could carry out a wider range of 
division tasks, with greater success, than had formerly been realised – provided the tasks were 
presented in the form of scenarios which could be directly modelled. Furthermore, they argued that 
many older students abandon their fundamentally sound problem-solving approaches for the 
mechanical application of formal arithmetic procedures, and would make fewer errors if they applied 
some of the intuitive modelling skills of their younger counterparts. 

Given this, it is appropriate to combine a subject focus of early division with an analytical focus on 
informal, nonstandard representational strategies that grow out of intuitive models. Although tasks 
involving grouping passengers in vehicles are not as common in division research as the sharing tasks 
featured in the companion paper, Finesilver (2019), they are a highly imaginable scenario for learners, 
and rely on the fundamental schema of one enclosure with multiple items inside (Nutbrown, 2011).  

Much prior research has analysed visuospatial representations via simple taxonomies, organising 
them into broad categories. Here an alternative approach is used: comparing and contrasting students’ 
changing representations via a multi-aspect qualitative analytical framework (Finesilver, 2022). 

Research questions 

1. What arithmetical-representational strategies does the student use in division tasks? 
2. What do the strategies tell us about their particular weaknesses and capabilities? 
3. How do the arithmetical-representational strategies change over time and interaction? 
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Methods 
The dataset for this study is taken from three (of five) 1:1 problem-solving interviews, each lasting 
45 minutes, carried out by the author. Sessions 1-2 focused on other types of multiplication- and 
division-based activity (e.g. Finesilver, 2019); a significant proportion of this student’s time in 
Sessions 3-5 was spent on the ‘grouping’ tasks described here. It employs microgenetic methods, 
which were developed for the study of the transition processes of cognitive development (Siegler & 
Crowley, 1991). They have been widely used in studies of children's arithmetical strategies and 
particularly in case studies of individuals with difficulties in mathematics (e.g. Fletcher et al., 1998).  

Wendy had been described in a past Educational Psychologist’s report as having dyslexia, leading to 
significant difficulties with numeracy, memory, organisation, and sequencing skills. These 
descriptions seemed fair at the time I was working with her. However, the report also contained the 
judgement that she "lacks the ability to retain and process academic subjects that require logical 
thinking, analysis, sequencing, rationalising and accuracy"; this is an example of the kind of 
dismissive labelling of certain atypically-progressing students as predetermined future, as well as 
past, academic failures, which I have criticised (e.g. in Finesilver et al., in press). Her Wechsler 
Individual Achievement Test (WIAT-II) scores at age 11 had been in the 2nd percentile for numerical 
operations, and the 0.5th percentile for mathematical reasoning. Like the quote above, these 
standardised test scores do not at all predict or encompass the nonstandard mathematical reasoning I 
describe below. Wendy was well aware of the importance placed by the education system on the 
memorisation of 'times tables', and of her own long-term failure to do so ("even with constant review 
and revision", according to records), which had left her, unsurprisingly, with a very low opinion of 
her own mathematical abilities, but she did not radiate overall low self-esteem. 

Unlike some other students in the larger study, Wendy’s counting and addition were secure and 
reliable, and due to her growing enthusiasm I had to devise increasingly challenging tasks in situ to 
adapt to her progress. In each session, Wendy was set a series of quotitive divisions expressed via the 
scenario of a given number of passengers to be allocated to a given type of vehicle, with the required 
number of vehicles to be calculated. The quantities used were two- or three-digit dividends and one- 
or two-digit divisors, chosen in situ, depending on her arithmetical-representational functioning that 
day and in previous sessions. As Wendy was barely ever able to recall more than a few number 
relationships either from long-term memory or from previous tasks, I selected the divisors for their 
ease of repeated addition or step-counting, and re-used certain more familiar number patterns. 

All sessions were audio recorded and all markings on paper collated. All markings in purple ink are 
by the researcher. Each task attempt was qualitatively analysed using a framework for visuospatial 
arithmetical-representational strategies across multiple semi-independent aspects of display, 
calculation and interaction. These were used for systematic description of representational elements 
and forms (media, mode(s), resemblance, spatial structuring, motion, unitcountability, enumeration, 
consistency, completeness), evaluation (strategic soundness, execution errors), and noting teacher-
student interactions (verbal and visuospatial prompts) – see Finesilver (2022). Particular attention 
was paid to any attempts where change in one or more of the aspects was observed; these were 
considered microgenetic ‘snapshots’.  
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Selected data 
Due to restrictions of space, only a small sample of data may be reproduced in these proceedings; 
more are included (with verbal transcripts and fuller commentary) in the accompanying presentation. 
These three subsets of images are selected and grouped to illustrate particular points of interest with 
respect to arithmetical-representational strategies for quotitive division. 

Subset 1: Working with array-structured unitcountable representations 

When we first started work on quotitive division, Wendy struggled to calculate the number of 4-seater 
taxis required for 20 people (Figure 4a). She drew 20 dots, as always, arrayed neatly in rows, but was 
then unsure whether rows or columns represented taxis. I demonstrated the option of using containing 
rings as an additional structuring element. Figures 1b-d show various ways she experimented with 
spatial structuring in arrays and array-container blends (Finesilver, 2017) in subsequent tasks. These 
are all unitcountable in the sense that each represented unit (cube, tally mark, etc.) = 1, and 
enumeration of the total could be achieved by direct unitary counting (i.e. counting them in ones). 

Subset 2: Working with number containers for scenario tasks, some with decorative elements 

    
a. 20 people in 4-seater 
taxis 

b. 32 people in 4-seater 
taxis 

c. 45 people in 7-seater 
taxis 

d. 36 people in 4-
seater taxis 

Figure 1a-d: Selection of unit arrays and array-container blends used in passenger tasks  

 

 

a. 45 then 96 people in 25-
seater coaches 

b. 343 people in 50-seater coaches c. 612 people in 200-seater 
planes 

Figure 2a-c: Selection of number containers used in more challenging passenger tasks 
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When we started working with larger numbers, Wendy was keen to try representational strategies that 
made sense to her within the scenario but did not involve drawing hundreds of unit marks. I 
demonstrated the option of building additively to the required total, which she adopted and used 
successfully in several subsequent tasks, spatially structuring the addends in number containers 
(Finesilver, 2017). The task represented in Figure 2c led to a conversation about the ‘left over’ 12 
people. There was some tension between Wendy’s awareness of the conventions of school maths 
tasks, and concern with the practicalities of the numbers in this scenario and, amused by the thought 
of a mostly empty plane, insisted the fourth should be “a smaller one” (which she did not draw). 

Subset 3: Working with number containers for bare tasks, 
introducing narrative elements 

In my final meeting with Wendy, encouraged by her success with 
various scenario tasks, I tried setting her a bare division (i.e. no 
scenario). Her first comment was “Something tells me it’s going to 
have two zeros on the end of it” (indicating a misremembered rote 
‘trick’ for multiplication) followed by blankness. I suggested we 
might imagine them as 180 people being put in 20-seater coaches: 
once the task had been ‘made real’ via a minimal bit of narrative, and 
again using number containers, she was able to complete this and 
similar tasks. She would picture a line of parked vehicles and a crowd 
of tourists grouping themselves tidily to fill them, and was 
particularly pleased by the option to take some unfriendly symbols 
of calculation and turn them into a scenario that could be imagined 
and represented in a way that she could comfortably work with. 

Discussion 
What representational and arithmetical strategies does the student use? 

Wendy showed a strong continuous preference for working with pen and paper over the concrete 
materials which were also available. She employed two main representational-arithmetical strategies, 
one unitcountable (all units individually represented, arranged in spatially-structured patterns, 
enumerated by group-counting) and one non-unitcountable (a written number representing each 
group, organised spatially in one dimension, enumerated by step-counting or addition). The first, 
which she introduced independently, was used for smaller quantities and the second, which I initially 
introduced but she readily adopted, for larger – although there would likely be an overlap of 
magnitudes where either might be chosen. 

What do the strategies tell us about their particular weaknesses and capabilities? 

Wendy wished to obtain answers she was confident were correct, with what she considered a 
reasonable expenditure of time and effort, and the strategies she used reflect this. In general her 
representations were highly mathematically functional, drawing and/or writing the minimum content 
which enabled task success. I see this as evidence of logical and meta-strategic ability, and a very 

 
Figure 3: Number 
containers in a bare task 
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sensible attempt to work around, and make the most of, her limited computational skills, minimal 
recall of number facts and relationships, and tendency to lose her place in multi-stage calculations.  

Wendy produced 2D array representations quickly, confidently, and accurately. While this initial 
heavy reliance on unitcountable representations was a weakness, her use of this representation type 
also highlighted important and useful strengths in creating, recognising, and utilising structured visual 
patterns. Observation of her interactions with dot arrays demonstrated informal, non-declarative 
awareness of multiplicative structures, enhanced by the rhythmic nature of her counting. Wendy’s 
flexibility in terms of willingness to experiment with and vary arithmetical-representational aspects 
can be considered itself a valuable component of metarepresentational competence. 

Of particular note is Wendy’s continued strong preference for scenario tasks over bare ones, even 
when they were obviously unrealistic. While her sensible comments about the comparative expense 
of different sizes of taxi and aeroplane demonstrate a real-world awareness of money and pricing that 
is often considered an important part of being ‘numerate’, this tendency to cling to the scenario aspect 
of the calculations could also indicate an unwillingness to engage in abstraction, and demonstrates a 
profound need for something extra-mathematical to grasp and cling on to. Numerical relationships, 
by themselves meaningless, were given meaning when they became numbers of people (etc.). This 
finding would be no surprise to a teacher of very young children, who has heard many exasperated 
students ask “Three? But three what?” (for example), but this strength of attachment to imagining 
numbers of things may be surprising in a secondary school student.  

How do the arithmetical-representational strategies change over time and interaction? 

The main observed progression was Wendy's capacity for tackling divisions involving increasingly 
large quantities. Repeated successes and gradual increases maintained the momentum of her 
confidence, allowing her to forget for a time her dislike/fear of division and negative self-beliefs 
about her ability to work with larger numbers.  

Wendy had started these interviews secure in her purely iconic dot array representations for partitive 
division (having used them in the previous Sessions 1-2). Although it took some time for her to see 
that it could be equally useful for quotitive division (and multiplication), once grasped, this was added 
to her strategic toolkit. Although not addressed directly here, the triple function of unitcountable 
arrays has implications for deepening the understanding of the relationship between multiplication 
and division, and the commutative principle. Array-container blends provided a significant bridge 
between quantities engaged with as iconic units in spatial arrangements, and as numeric symbols. 
Enclosing equal groups of dots in rings visually transformed the groups so the most salient ‘building 
blocks’ were now a set of contained equal groups rather than individual units; visually, these 
containers became the new ‘units’. This was vital for the significant cognitive leap of replacing a 
container with a number of dots inside it by a container with a number symbol inside it.  

Wendy learned to use a building-up, additive strategy for quotitive divisions represented with non-
unitcountable number containers. She sometimes chose to continue using drawings alongside 
symbolic calculation, but inconsistently – this makes their continuing purpose cause for speculation. 
Wendy did not doodle, and otherwise showed little inclination for decorational drawing, so I suggest 
that in longer, multi-stage tasks, when she was struggling to focus or experiencing doubt, the drawn 
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element served as reminder and/or for affective support. The tactic of taking an offputting bare task 
and making it comprehensible (or, perhaps, ‘realising’ or ‘concretising’ it) through a familiar scenario 
was both helpful (in that she was successful in more arithmetically challenging tasks) and appealing. 

Concluding comments 

A microgenetic level of analysis of this student’s arithmetical struggles illuminates certain specific 
ways of conceptualising and carrying out division-based tasks which may be unexpected and go 
unrecognised in classrooms. It also demonstrates the possibility of significant improvement which is 
unlikely to be picked up in standardised diagnostic testing, and has pedagogical implications. Is there 
evidence that Wendy was not just adopting and developing alternative representational strategies that 
were more amenable to her than those she had previously encountered, but also moving towards more 
successful symbolic thinking in arithmetic? Yes. Her mathematical journey was a slow and 
complicated one, with end point unknown, but this short section of it shows substantive changes.  

While there may have been some progress since psychological assessment, Wendy was still 
performing poorly in her regular school mathematics classroom, and there was a huge discrepancy 
between these formal judgements made on Wendy’s abilities and potential, and her clever 
maximisation of cognitive resources as captured in microgenetic observation. With the traditional 
strategies that rely on memorisation of facts and procedures unworkable for her individual pattern of 
neurodivergent characteristics, she analysed tasks to work out alternative strategies relying instead 
on sequence, pattern, visualisation, and a realistic self-assessment of the level of arithmetic she could 
reliably manage (counting and addition). She showed great interest in the numerical structures 
underlying arithmetical processes, and in suggestions for their use in solving different types of tasks. 
These self- or co-created strategies of which she had ‘ownership’ must stand a chance of being 
remembered better than those which had for most of her school life been ineffectively rote-taught. 
While Wendy is a single case with an individual pattern of mathematical strengths, weaknesses and 
strategies, other struggling students will share many of these experiences and traits, although each in 
their own individual pattern; certainly there are many who are labelled too easily by both teachers 
and researchers as ‘low attaining’. And likewise, their self-belief will likely be low, and their strategic 
arithmetical-representational creativity dormant, undervalued and unencouraged.  

Wendy’s actions were not of a child who "lacks the ability to retain and process academic subjects 
that require logical thinking, analysis, sequencing, rationalising and accuracy". However, it took 
focused individual investigation and a flexible mixture of informal assessment, tuition elements, and 
discussion to gain a fair picture of the nature of her mathematical thinking (and this in one small area 
of the syllabus). If one accepted the statements in her diagnostic report at face value, to expend this 
time and effort on her would seem irrational. That kind of utilitarian philosophy is one of the factors 
leading to neurodivergent and learning disabled students being limited from reaching their potential 
in mathematics. Instead of dismissing learners like Wendy for their failure to perform in the expected 
ways, their unexpected ways of working mathematically should be valued – they have much to teach 
us. 
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representation transfer processes  
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With digital media, the possibilities of representation have developed fast: in terms of temporal and 
local availability and in terms of manipulation, dynamization, representation-networking and -
synchronicity. They open up an expanded new spectrum of representation-transfer, in which 
representations, levels of representation and associated processes of representation-transfer must be 
identified, analyzed as well as researched and evaluated from a mathematic educational perspective. 
Which cognitive demands are thus placed on learners and which are supported or replaced by media? 
The goal for research and teaching is a “specific sensitivity for media (use) in (mathematics) 
education”, so that analogue and digital media are analyzed in a potential-oriented way in order to 
orchestrate them for better teaching and learning. 

Keywords: Mathematical concepts, learning with analogue and digital representations, transfer of 
representations, cognitive demands. 

Theoretical Framework. 
The learners’ own transfer of representation is an essential indicator to develop understanding in the 
process of learning mathematics (Wittmann, 1981). Representation transfer processes are always 
required when at least two representations are given. They have to be compared on one or between 
different levels of representation – the levels acting, iconic, symbolic (see Bruner, 1971). A 
representation transfer is also required when a new representation has to be constructed based on a 
given representation. In both cases, given elements of one representation have to be related to given 
or to be constructed elements of another representation. In these transfer processes, a self-acting, 
active-discovering engagement with mathematics is central (Krauthausen, 2018; Kühnel, 1954; 
Winter, 1989, 2016; Wittmann, 1981). A purposeful use of different representations can create 
learning opportunities to explore relationships between representations and to recognize basic 
structures (Kuhnke, 2013). The significance of representing, representations, and representation 
transfer processes is emphasized in national and international curricula and standards as one of the 
main “general” process-related competencies to be developed in mathematics education (DIPF, 2021; 
KMK, 2005; Midgett & Eddins, 2021; NCTM, 2000). Representing and representations pursue two 
basic intentions. In representing the focus is on doing, on externalizing one’s own thinking for 
communication with oneself and with others. Representing for oneself takes place in order to relieve 
and support one’s own thinking processes through what is (visually) represented, in order to orient 
oneself in one’s own thinking and to shape the further thinking process. Between one’s own thinking 
and representing, processes of exploration and analysis are carried out in the context of mathematical 
discovery and reasoning through processes of ordering, sorting, and structuring (Aebli, 1980; 
Freudenthal, 1973). Representing for others is done to communicate one’s own thoughts through 
what is (visually) represented. It also helps to explain where words are missing for oneself and for 
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others. The (visual) information can support to get into exchange with others, to communicate about 
one’s own thoughts and to justify findings about relationships and regularities with the help of what 
is represented (Duval, 2006). Representations serve for the process of representing as a tool to present 
one’s own perceptions and ideas externally. So, the intention of representations is to document 
information which is volatile (Huhmann, 2013; Wollring, 2006). According to Bruner (1971), 
knowledge and thus also representations through which knowledge is expressed can be assigned to 
the three levels – acting, iconic, symbolic. In summary, these areas, representing, representations, and 
representation transfer processes lead to comprehension-oriented learning and are an indicator of 
understanding. In the following we will use the term TripleR for these three areas.  

With digital media, possibilities of TripleR evolved enormously. Thereby we see a development in 
terms of temporal and local availabilities as well as in terms of manipulation, dynamization, 
representation-networking and synchronicity. These new possibilities open up new possibilities of 
interaction in learning mathematics with media and how teaching-learning processes can be designed 
(KMK, 2012). Therefore potentials of digital media must first be identified, as well as whether and 
how these potentials of digital media unfold in the reality of teaching as an added value for learning. 
Thereby, the question arises, which cognitive demands are supported or replaced by digital media or 
are still placed on learners by learning mathematics?  

Research Desideratum. 
Based on the models of knowledge acquisition and representation (Bruner, 1971; Piaget, 1972), 
further models can be found for identifying and analyzing representation possibilities and 
representation transfer processes. Lesh et al. (1987) focus in their model on different analogue 
representation forms and associated representation transfers. The model is extended by a 
technological form of representation by Johnson (2018), with which digital media, which appeared 
in many forms e.g., manipulable and moveable pictures, are basically covered. Further distinctions 
and specific features of representations with digital media as well as learning with these digital 
representations remain out of consideration. The model of multiple external representations according 
to Ladel (2009) is based on Bruner’s (1971) model and levels of representation - enactive, iconic, 
symbolic. It focuses on elaborated representation possibilities with digital and analogue media. 
However, it does not focus on the identification and analysis of representation transfer processes.  
Overall, the models listed here do not take into account which (cognitive) demands are placed on 
learners by analogue and digital media during representing, learning with representations, and 
representation transfer processes, or which are replaced by media. In summary, we see a research 
desideratum in the model-theoretical identification and analysis of TripleR in learning with analogue 
and digital media. For teaching and learning we ask – how different media with their different 
cognitive demands and with possibly different analogue-digital components can be brought into 
connection with each other with regard to TripleR – and how this can be identified and made visible?  

The Representation-Transfer-Spectrum. 

Based on the models of Piaget (1972) and Bruner (1971) as well as on the extended new 
representation possibilities offered by digital media, we have developed an extended model as a 
representation transfer spectrum as you can see in Figure 1. With this model we want to identify, 
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analyze, and evaluate from a mathematics educational point of view learning in terms of perceiving 
and acting with analogue and digital media:  

1. Identify: In which levels are representing, the representations and the representation transfer 
processes located? 

2. Analyze: Which cognitive demands are associated with representing, the representations and 
the representation transfer processes? Which cognitive demands are placed on learners and 
which are supported or replaced by media? 

3. Evaluate: Which representing, representations and representation transfer processes are suited 
from a mathematic educational perspective?  

 
Figure 1: Representation-Transfer-Spectrum (Huhmann & Müller, in press) 

Learning objects and associated activities can be located in their representations in the analogue area, 
digital area or analogue-digital area. Within these areas, a further assignment to the different levels 
of representation takes place. Between these levels we see no hierarchic arrangement. The focus in 
this paper is on the reciprocal transfer processes of representations within and between these levels 
of representation. Build on the levels of representation according to Bruner (1971), the intersections 
of the levels of representation are new elements of the model. We include these intersections under 
the term levels of representation because representations cannot always be assigned to just one level. 
If representations contain elements from different levels e.g., iconic elements (depictions) and at the 
same time symbolic elements (descriptions) (Schnotz & Bannert, 2003), they are to be placed in the 
corresponding intersection. 

Analogue area: The characteristics of the three levels – acting, iconic, symbolic correspond to the 
known levels from Bruner. If actions are verbally accompanied, verbal expressions are supported by 
gestures, or symbolic representations are used to act, we identify these as representations of the 
acting-symbolic level. Representations that contain both depictions and descriptions (e.g. tables, 
diagrams, function graphs) belong to the iconic-symbolic level. Actions with inherently 
unchangeable depictions are located in the acting-iconic intersection. These can be ordering, sorting 
and comparing processes of images. Actions such as ordering, sorting and comparing processes with 
iconic-symbolic images are assigned to the acting-iconic-symbolic intersection. 

Digital area: The model extension by the digital area is identical to the analogue area in its structure, 
but it differs in specific characteristics. On the acting level, there is the fundamental characteristic of 
the manipulability of objects of action. However, these are no longer haptically tangible and movable. 
Objects are manipulated and moved merely by wiping and tapping movements. Objects that are 
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digitally represented as inherently unchangeable images are assigned to the iconic level. Objects that 
are represented as audio or written text in a symbolic way in the digital area are assigned to the 
symbolic level. The acting-iconic intersection covers both the user’s own digital actions with 
inherently unchangeable images and representations of digital actions in the form of animations and 
movies based on images. The acting-symbolic intersection covers the user’s own creating, 
manipulating, and acting with symbolic representations. This involves audio texts and written texts 
that can be accessed, duplicated, and combined with digital media. The iconic-symbolic intersection 
covers inherently unchangeable representations that include both depictions and descriptions. The 
acting-iconic-symbolic intersection covers the user’s own actions with manipulable representations 
as well as representations of digital actions in the form of animations and videos that contain both 
depictions and descriptions. 

Analogue-Digital area: The analogue-digital area forms a spectrum between the analogue and the 
digital area. This area is to be explored with regard to the representations of learning objects and 
activities in terms of their characteristics and possibilities. This involves the identification and 
analysis of analogue-digital variabilities - in the sense of variable portions closer to the analogue or 
digital areas as well as with variable focal points in or between the three diameters of the respective 
areas. In this area, augmented reality and virtual reality applications, among others, are to be 
considered in a future-oriented manner. 

With regard to the digital and analogue-digital area, there is an urgent need for research into these 
areas, the possible representations of the learning objects, and the suitability of the representation-
transfer-spectrum to identify, analyze and evaluate from a mathematic educational perspective. 

Representation transfer processes become visible in this model by connecting the activities located 
on the representation levels with arrows, so that the transfer from an initial representation, which is 
given to learners, to a final representation, which learners are supposed to construct independently or 
relate both given ones, is recognizable. Representations become visible by dots in the levels. 

Example. 

The activity Architect and Bricklayer (Thöne & Spiegel, 2003) is an example to demonstrate the use 
of the representation-transfer-spectrum: Learner 1 builds a cube building with cubes and describes it 
verbally to learner 2. Without seeing the cube building, learner 2 must build a cube building based 
on the description from learner 1. Afterwards, both cube buildings are compared with each other. The 
following description of this learning activity includes the implementation of the complementary use 
of the app Cubes (Klötzchen) (Etzold, 2015). 

 

The task Build a cube building with 8 cubes is presented to 
learners by the teacher on a symbolic level verbally or in writing. 
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Based on this task, learners build a cube building as a 3D model 
using the app Cubes. From the originally symbolic presented task, 

the learners have to perform a transfer of representation to the 
action level in the digital area. 

 

The cube building build in 3D by using the app is now used by 
the learners to describe it verbally. At this point, the learners 
perform a representation transfer from the action level in the 

digital area to the symbolic level in the analogue area. 

 

This verbal description now serves other learners as a starting 
point for rebuilding the cube building on their own tablet using 
the app. Here, too, the learners transfer the representation from 
the symbolic level in the analogue area to the action level in the 

digital area. 

 

 

 
 

 

 

 

The two cube buildings of the learners need to be compared with 
each other. There are different ways to do this. 

Both cube buildings are displayed in the 3D view on both tablets 
and compared with each other. Since both cube buildings can be 
manipulated in this representation, i.e. single virtual cubes could 
change places, the process of checking the results takes place at 

the acting level in the digital area. 

It would also be conceivable for the learners to use the 
construction plan, which is created automatically and 
synchronously by the app Cubes, to check the results. 

For example, both construction plans can be compared with each 
other. The result verification is now in the intersection acting-
iconic-symbolic, in the digital area. However, the following 

aspect should be emphasized here: The intermodal transfer from 
the 3D view to the construction plan, from the digital-acting to the 

digital-acting-iconic-symbolic level, does not have to be 
performed by the learners themselves, it is taken over by the 

digital medium. 

Table 1: Transfer of Representation in the Representation-Transfer-Spectrum (Huhmann & Müller, 
in press) 
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Findings and perspectives. 
The Representation-Transfer-Spectrum is a theoretical model that is in a developmental state and 
needs further research. According to the example above, we consider it to be suited to identify 
representations and representation (transfer) processes. The activity Architect and Bricklayer served 
here as an example to demonstrate the use of the Representation-Transfer-Spectrum. First, we 
identified the TripleRs related to this activity in the model to make visible which forms of 
representation exist at which levels of representation and which representation transfer processes are 
demanded. Through this, possibilities of action and affordances, (Gibson, 1977) that means 
possibilities of action implicit in the medium, become visible. Second, we analyzed which 
representation transfer processes are performed by the learners and which are taken over by the digital 
medium. Third, we now would have to evaluate the representations and representation transfer 
processes from a mathematics educational perspective so that different media for this learning object 
can be orchestrated for lesson planning.   

For lesson planning, it may thus serve as a model of thinking and analysis to make design decisions. 
The overall goal for teaching is a purposeful use and orchestration of different media for learning. 
From a research perspective, the representation transfer spectrum may serve as a model of thinking 
and analysis for characterizing applications: For applications that have been developed and are in the 
process of being developed. For exploring applications in terms of how learners use and proceed with 
them. All in all, it may serve for further development of analogue and digital representation 
possibilities and design decisions for applications. A main question is which manipulation 
possibilities are implemented in the application and which manipulation realities can be identified 
during individual task processes with the application? With the help of the model, possibilities and 
realities of use are to be identified and made visible. Therefore, the goal of this model is to 
characterize learning objects and their use in the context of digital media with regard to (new) forms 
of representation, (new) levels of representation and (new) representation transfer processes as well 
as (new) combination possibilities of representation.  

The associated goal for research and teaching is a "specific sensitivity for media (use) in mathematics 
education", so that analogue and digital media are analyzed in a potential-oriented manner in order 
to orchestrate them for better teaching and learning. Last but not least, the future-oriented question is 
which significance the representation-transfer-spectrum can have as a model of thinking and analysis 
in connection with learning with analogue and digital media, also in other educational disciplines. 
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Solving arithmetic word problems: representation as a tool for 
thinking 
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In this paper we report on two tasks that are part of a didactic sequence on arithmetic word problems 
and we discuss some episodes that happened in one experimental grade 7 class. Our main goals are 
to gain insights into the role of representation for students in problem solving and to investigate 
whether a specific task design can contribute to making representation become a tool for thinking. 
Preliminary results show that students tend to use representation for communicating their answer, 
but they can be guided in the process of transition towards the use of representation for reasoning 
about the problem and its resolution.  

Keywords: Word problems, mathematical discussion, psychological tool, representation, task design.  

Introduction 
In this study, we address the question that is at the heart of the ongoing debate and research in 
Mathematics Education: “How can teachers support learners’ representational and meta-
representational competences?” and, in order to do so, we focus in particular on representations in 
the context of word problem solving. The use of representations in problem solving processes has 
been highlighted as an important issue in the mathematics education literature (e.g., Arcavi, 2003). 
Representations can take on different roles in problem solving: tools used for finding a solution to 
the problem; means of validating and convincing of the result obtained; narrative tools used to 
communicate and present findings to other people. Van Essen and Hamaker (1990) claim that by 
translating a word problem into a picture, students are brought to pay attention to the relationships in 
the problem. This is particularly important in our case because we consider the class of word 
problems, in which the relationships between the quantities involved are known, but not the numerical 
values of those quantities that have to be found. 

There is a huge body of research documenting students’ difficulties with arithmetic word problems 
(e.g., Verschaffel et al., 2000) and algebra word problems (e.g., Clement, 1982). To understand these 
problems, students have to interpret the semantic context, using their prior knowledge, and construct 
a representation that allows them to figure out how to search for a solution. For this reason, different 
forms of representation come into play and the graphic scheme produced by students to visualize and 
simplify the problem plays a central role in the resolution process, also activating their meta-
representational competences (Ott, 2020). There are some contexts and studies where a representation 
is provided explicitly by the teacher. For example, Singapore has adopted a unique approach to 
support students in word problem solving: the model method (Ng & Lee, 2009). Students in 
Singapore are taught to represent known and unknown quantities using rectangular bars that specify 
quantitative relationships amongst data in word problems. In contrast, we asked ourselves how 
teachers could support students in becoming aware of the importance of making a representation, so 
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that it is the product of their own cognitive processes, and not something provided explicitly by the 
teacher. In this paper we present two tasks that are part of a didactic sequence on arithmetic word 
problem solving through representations and we discuss the methodological and design choices made 
to promote students’ use of representations for thinking. 

Theoretical framework 
In line with the Vygotskian socio-cultural perspective (Vygotskij, 1978), we believe that social 
interactions and the use of artifacts and signs are of central importance in teaching-learning processes. 
Social interactions, specific teacher’s interventions as in the orchestration of Mathematical 
Discussion (Bartolini Bussi, 1996), and an accurate task design with proper principles (Gravemeijer 
& Cobb, 2013), can promote the production of collective signs, the awareness of the meanings of 
different signs and their evolution towards mathematical meanings. Moreover, thanks to the cultural 
mediation conducted by the teacher, students acquire the technical tools developed by previous 
generations and, through the complex process of internalisation, a tool can become a psychological 
tool that will shape new meanings (Vygotskij, 1978). 

For this study we are interested in the central role that representation can play in problem solving, 
participating in the construction of mathematical meanings and in the development of cognitive 
processes. In order for this to happen, however, the semiotic mediation carried out by the teacher is 
important because it supports the transition from signs (i.e., representation) with a communicative 
function to signs as psychological tools that are, therefore, generators of intellectual functions 
(Bartolini Bussi & Mariotti, 2008). 

Research questions 

The investigation presented in this paper is guided by two closely related research questions: What is 
the role of representation for students in arithmetic word problem solving processes? How can task 
design contribute to making representation become a psychological tool for students? 

Methods and participants  
The activities we report on in this paper are part of a didactic sequence on problem solving, developed 
within a larger research project in which the authors of the paper were involved. The general aim of 
this project is designing and experimenting inclusive mathematical activities for middle school, 
following a design-based approach (Gravemeijer & Cobb, 2013). Specifically, a group of teachers 
and researchers worked closely together in the design of a didactic sequence that has been 
implemented in several grade 7 classes in Italy (students aged 11-12), during the school year 2020/21. 
We considered arithmetic word problems in which the relationships between the given quantities are 
known but not the numerical values of these quantities, that are sought for. The sequence is divided 
into 4 phases characterized by the type of relationship existing between data (Table 1). 

All the experimentations of the didactic sequence have been conducted by the regular teacher, without 
the presence of researchers or other teachers in the classroom. The collected data consists of excerpts 
taken from the students’ workbooks and transcripts of short interventions by students during the 
whole class discussion, which the teacher took note of or, when possible, recorded with a microphone, 
and then translated into English. Therefore, the discussions were orchestrated by the teacher, who left 
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room for the students by asking a few stimulating questions, according to the task’s objectives. These 
objectives were previously identified with the researchers and teachers involved in the project. 

Table 1: Overview of the didactic sequence on arithmetic word problems 

Phase Type of relationship between data in the problems Example 

1. “Integer multiple” and sum known The sum of two numbers is 96. One number is three 
times the other. Find the two numbers. 

2. “Integer multiple” and difference known A number is five times another number and their 
difference is 528. Find the two numbers. 

3. “Exceeds by” and sum/difference known The sum of two numbers is 174. One number is 3 
more than twice the other. Find the two numbers. 

4. “Fractional multiple” and sum/difference known The sum of three numbers is 180. The first is 4/9 of 
the second and the third is 7/9 of the second. Find 
the three numbers. 

 

In this paper we focus on the first two tasks in phase 1 of the didactic sequence, that are shown in 
Figures 1 and 2.  

First task 

The first task consists of students working individually on the resolution of the problem (Figure 1), 
and then they are asked to engage in a mathematical discussion orchestrated by the teacher.  

Solve the problem and explain your reasoning with the help  

of a representation (e.g., drawing, diagram, scheme, ...). 

“The sum of two numbers is 96. One number is three times the other. Find the two numbers.” 

Figure 1: First task 

Second task 

The task consists of students working individually on the attempt to interpret Bernardo’s reasoning 
and apply it to solve the problem (Figure 2). Then, they are asked to engage in a mathematical 
discussion orchestrated by the teacher. 

“The sum of two numbers is 4710. One number is five times the other. Find the two numbers.” 

This is a picture of the workbook of a student, Bernardo, who tried to solve the problem but 
stopped. Help Bernardo to move forward! 
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Figure 2: Second task 

In the following section we report on the task design made by the group of teachers and researchers 
involved in the project, both a priori and during the implementation of the didactic sequence, between 
one lesson and the next, based on students’ reactions. Moreover, we discuss some preliminary results, 
showing data from one of the experimental classes that has been chosen as a representative example. 
That class was considered to be representative because it allows us to show the general dynamics of 
what happened in all the experimental classes, in a quite short time span to be reported on in this 
paper. Overall, very similar mathematical discussions and students’ reactions came up in the different 
classes during the didactic sequence.  

The class had not previously dealt with this type of arithmetic word problems, not even in geometry, 
and they had not yet approached equations. Additionally, the teacher had never discussed with the 
students what the different roles of representation in problem solving might be. Students in this class 
are used to taking part in mathematical discussions, explaining their reasoning and argumentation. 
The observation and analysis of signs produced by the students, in their workbook and during 
mathematical discussions, make it possible to gain insights into the role of representation in their 
resolution processes of the proposed problems. For answering the second research question, we 
investigate whether something changes in students’ use of representation in problem solving, in 
relation to a specific task design. 

Discussion of the tasks and preliminary results 
The first task (Figure 1) is designed with the aim of observing the different solutions proposed by 
students, the type of representations they suggest and how they use them. In the task some possible 
representations are given in brackets because, having never done similar work before, the teacher 
expected that the term “representation” might not be completely understood by the students and so 
planned with the researchers to give them some examples of possible signs. After the time for 
individual work, about 20-30 minutes, students are asked to explain their reasoning to the classmates. 
In this way, during the discussion the teacher can gather information about the role of representation, 
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whether for students it is a tool for communicating to the teacher the problem answer, that has been 
found only with calculation, or a tool for thinking about the problem itself. 

In the experimental class, we observed that most students made the representation a posteriori (after 
finding a numerical solution to the problem), following the teacher’s request to explain their 
reasoning or, more explicitly, to use a representation themselves. Indeed, as can be seen in Figure 3, 
the numerical values of the involved quantities, that is the solution, already appear in the proposed 
representations. Many students’ strategy for solving the problem was to proceed by trial and error, 
starting with two numbers that partially satisfy the given conditions (e.g., whose sum was 96) and 
then modifying them so that they also satisfy the other conditions (e.g., one was also three times the 
other). A few students drew 96 circles, while most calculated the half of 96 but then failed to explain 
why this strategy worked. These representations are almost never generalized, because they refer to 
the specific problem and do not represent in general the two given relationships, i.e., “sum” and “three 
times”. Therefore, most of them could not be used for representing a similar arithmetic word problem 
having the same relationship between data but different numbers. A possible exception is the last 
screenshot in Figure 3, in which the student used four circles, each accompanied by the letter n. 

 
Figure 3: Examples of representations proposed by the students in the first task 

In light of what emerged from the discussion of the first task in the experimental class, the group of 
teachers and researchers realized that these signs were used by students merely as tools for 
communicating the procedure followed or, simply, for pleasing the teacher’s request of making a 
representation and accomplishing the task. As a result of the teacher becoming aware of this signs’ 
utilization, the second task (Figure 2) is designed to support a transition in the role of representation 
towards possible tool for supporting students’ reasoning in arithmetic word problem solving. 

The main idea behind the second task design is to create a dialectic in which the representation is 
partly created by the students and partly provided by the teacher. Specifically, it is based on a ploy 
that consists of showing the workbook of a (imaginary) student, Bernardo, who makes a 
representation using circles for solving an arithmetic word problem that is very similar to that given 
in the first task. We note that in this class the choice of circles, rather than squares or rectangles or 
other, came from a student’s idea (Figure 3) accepted by the students as the most functional because 
circles are easy and quick to draw; upon which the teacher worked in continuity. 
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In this task, to prevent students from trying to solve the arithmetic word problem without paying 
attention to Bernardo’s solution, they are asked to help him (and to do that they need to figure out his 
reasoning). Indeed, in this type of tasks, the teacher must take care of the devolution of the problem 
(Zan, 2007): what is the problem that students must solve? The possible options are: 

1. Solve the arithmetic word problem, then find the two numbers; 
2. Try to understand how Bernardo reasoned; 
3. Help Bernardo to complete the solution to the problem, based on the reasoning followed up 

to that point. 

In order for students to put themselves in Bernardo’s shoes and enter into his reasoning, which is 
based on the use of small circles, it is important that they try to exploit this representation. Therefore, 
in this task students are asked to solve the problem in the third formulation, i.e., to help Bernardo 
complete the solution. After the time for individual work, about 20-30 minutes, the teacher 
orchestrates the mathematical discussion, prompting it through questions like: What is this student 
reasoning? Do you think that the representation with small circles drawn by Bernardo can be useful 
for finding a solution to the problem? If yes, in what way and if not, why? 

In the experimental class, this problem proved to be quite difficult because many students thought 
they had to divide 4710 by 5 instead of 6. For example, this is an excerpt from a student’s workbook:  

First of all I found this to be quite a difficult problem, but with Bernardo’s scheme it was much easier 
to solve. When his reasoning stopped the last thing that was on the paper was the diagram with the 6 
circles and the curly bracket, which I saw as an addition because the first circle, alone, was the 
normal number and the other five circles were five times the number so all the six circles with the 
curly bracket below (which puts them together, i.e. adds them up), and under the curly bracket there 
will be the number 4710 because it is the result of the sum, as the problem says. 

As this student wrote, Bernardo’s representation has been helpful to understand why the sum 4710 
should be divided by 6, a number not explicitly available in the text of the problem. This was not the 
only case, for example another student matched each part of the representation with a part of the text 
of the problem and then completed the solution by exploiting Bernardo’s reasoning (Figure 4): 

In my opinion, what Bernardo did is very useful for finding the solution to the problem. This is 
because he translated the sentence “one number is five times the other” by drawing the circles. He 
represented “a number” with a circle and since the other number is “five times the other” he said 
that five times the circle is the other number. I wrote the rest of what Bernardo did like this: 

 

Figure 4: How a student exploited the representation with small circles in the second task 

Therefore, students’ attempt to follow Bernardo’s reasoning, based on the use of circles, to complete 
the solution to the problem, helped them give meaning to the problem itself. At the end of the whole 
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classroom discussion, they seemed to have grasped the usefulness of the representation proposed by 
Bernardo that can be used to find out what calculations to do. For example, a student participated in 
the discussion observing that for them the time for representation usually came after the time for 
calculation, whereas Bernardo seems to have swapped this order: 

In my opinion Bernardo’s reasoning was to reason first and then to do the calculation, even though 
I usually do the calculation first and then the reasoning to explain how I came to solve it. 

The teacher highlighted this observation, repeating it aloud, believing that it could be a key element 
to promote for all students the a priori construction of representations for thinking about the problem. 

Conclusion and implications 
In this paper we reported on two tasks taken from a didactic sequence on arithmetic word problems 
and discussed some episodes that happened in one of the experimental classes. The first task is aimed 
at eliciting different proposals for possible representations from students and their preliminary 
considerations and ideas on the use of a representation in problem solving processes. In line with the 
literature on arithmetic word problems, students found some difficulties in solving the problem 
proposed. We also observed that the representation did not prove to be a useful tool for them to find 
a solution strategy, but it was used for showing and communicating their answer to the teacher and 
classmates. Having this in mind, the second task is designed to mediate the process of internalisation 
that may transform the representation into a psychological tool. In our experience, this task has been 
crucial in changing the role of representation for students, because it made them gain awareness of 
the effectiveness of representation as a possible tool for thinking in problem solving. To achieve this 
shift towards the representation as a psychological tool for students, the teacher's role in designing 
the task, within the group of researchers and teachers, and in orchestrating the whole class discussions 
was fundamental. Indeed, after the second task, in the later phases of the didactic sequence, most of 
the students started to use the representation with small circles to solve this type of problems, and we 
think that a number of factors contributed to this success. First of all, the representation with small 
circles was not provided explicitly by the teacher, but it was the result of a dialectic process. In 
addition, students were asked to help Bernardo to complete the solution, based on his reasoning that 
was not centered on calculations. Finally, during the mathematical discussions the teacher repeatedly 
drew students’ attention to the fact that a “good” representation is generalized, i.e., it allows them to 
solve different problems of the same type. For instance, in our case it could be always possible to use 
a small circle to represent an unknown quantity, regardless of context, and then representing the other 
data of the problem through a set of small circles, whose number depends on the relationship given 
in the text. 

A relevant didactical implication of this study is that, in our opinion, it is possible to support learners’ 
representational and meta-representational competences through careful design and methodological 
choices made by the teacher. The presented didactic sequence on arithmetic word problems is an 
example of task design in which students acquire the technical tools that, through a process of 
internalisation, become psychological tools for them. This is an exploratory study and the results are 
still at a preliminary and local level, however, we hope that the conclusions we arrived at can inspire 
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the work of teachers and researchers who share with us the assumption that using a representation as 
a tool for thinking when solving arithmetical problems is of fundamental importance. 
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Introduction 
A lot of questions which are at the core of optimization problems are already asked by both primary 
(age 6 – 15)  and secondary (age 15 – 19) school pupils. Nevertheless, it is only quite late (if at all) 
that the answers to these questions are provided. This is because in the Czech curriculum 
optimization is taught mainly after derivatives. This sudden appearance of new type of problem 
causes many obstacles in pupils’ understanding. To avoid this, a series of optimization problems 
and methods, usable at either primary or secondary school, was collected from the history of 
optimization. One of the methods identified is based around using physical representations. 

A series of semi-structured interviews based around this visual method was conducted. The main 
focus of interviews was to analyze the way pupils react to uncommon and novel methods of 
problem solving. I sought to find out if physical representations could be suitable for classrooms 
and to find what advantages and disadvantages such demonstrations might bring for both pupil and 
teacher. 

Theoretical background 
Many problems from the field of optimization were solved using parallels with the physical world. 
For instance, Heron’s problem was solved by observing the way light beams travel (Rojo & Bloch, 
2018) or Snell’s law, from physics, was used to solve the brachistochrone problem by Bernoulli 
(Tikhomirov, 1986). This approach is not as common today, as it lacks rigor and generality (Polya, 
1954). Levi (2009) states that mathematics and physics are so intertwined that one without the other 
is deprived. Levi (2009) also considers mechanics to be geometry focused on touch and movement. 
These two elements add extra benefits which geometry otherwise lacks. Using physical experiments 
allows pupils to perceive the problem with other senses, which leads to multisensory learning. 

Methods 
For the research, a series of interviews was conducted. Interviews were in form of a dialog between 
participant and researcher (myself), as I wanted to observe the way the pupil worked with 
manipulatives. The length of interviews varied from 30 minutes to one hour depending on the 
pupil’s ideas, focus, and will to go on. The research sample consisted of 8 primary and 9 secondary 
school pupils. Pupils from primary school were selected based upon their positive attitude towards 
the subject and their skills in mathematics and physics. Pupils from secondary school were 
volunteers willing to participate in the research. Tasks selected for the interviews were picked based 
upon two criteria. First, the problems had to be clear enough for both primary and secondary school 
pupils to understand, and second, the experiments via which the problems were solved had to be 
real-life performable (not merely thought experiments). The first problem discussed was Steiner’s 
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problem. Pupils were to use the soap films to find the Toricelli point and its properties (Courant & 
Robbins, 1996). A special contraption consisting of two transparent rectangular plates connected to 
each other by three columns was used. This contraption was submerged into soap water and taken 
out. Between the plates and the columns, soap films were formed. When looked at from above, we 
saw a perfect 2D representation of the shortest path with the Toricelli point as an intersection of 
three soap films. The second approach used three weights of the same weight and three pieces of 
string of arbitrary length. The strings were tied together and the other end was attached to the 
weights. Three pulleys were needed as well. After we hung the contraption on the system of the 
pulleys (which formed a triangle) the weights would eventually find a state of equilibrium and 
would not move anymore. The position of the knot which tied all three strings together represented 
the Toricelli point (Levi, 2009). 

Results 
It was difficult for pupils to work with manipulatives on their own. They often gave up quickly and 
had to be guided through the experiment. Their guesses were based solely on visual impressions 
that the point (intersection of strings/films) is a center of gravity, inscribed or circumscribed circle 
etc. Pupils mostly abstracted from the physical world and looked at the results as if they were only 
2D representations on paper. They saw films and strings as lines and ignored weights, gravity or 
energy necessary for understanding. After pupils understood the meaning behind the experiments, 
they were fascinated by the fact that it works. That was an important moment, as the pupils 
themselves were motivated to look for explanation. Both experiments awoke curiosity in pupils as 
they asked “why” and “how”. After initial struggle, pupils considered the explanations to be easy 
and playful. From that I assume this kind of experimentation could be powerful in the classroom as 
it makes the problems accessible for younger children and motivates them to learn. Several 
misconceptions in the children’s understanding were revealed as well that might otherwise remain 
hidden. This suggests the experiments could serve as a diagnostic tool for teachers.  
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Using a multimodal semiotic perspective, I investigate the production and use of signs in expert 
(doctoral) students involved in processes of constructing argumentations and proof by mathematical 
induction. Focusing on their speech, written inscriptions, and gestures, different categories of signs, 
related to mathematical induction, are identified and analysed. In this paper I show some 
paradigmatic examples of these signs.  
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Introduction 
Semiotic offers an interesting perspective for research in mathematics education, providing a window 
through which to observe and investigate several teaching-learning processes. Recently the analysis 
of signs has been enriched including the study of gestures. This has involved different areas of 
research, as well as the studies on argumentation and proof. Arzarello and Sabena, for instance, bring 
empirical evidence that “gestures may also play specific roles in providing a logical structure to 
argumentation” (2014, p. 99). Similarly, Krause observes that the gestures’ production “may support 
the collective act of reasoning […]. It makes traceable how the argument was organized as logical 
inference” (2015, p.1432). Along the same line, Sabena, registers that the use of gestures “support[s] 
the students in structuring the entire argumentation at a global level” (2018, p. 556). The study 
presented in this paper is part of wider research, conducted with a semiotic perspective, on proving 
by mathematical induction processes of post-graduate, undergraduate and secondary school students.  

The proving scheme of Mathematical Induction (MI) is, at the same time, important and useful for a 
mathematician, interesting from a logical point of view, but also extremely problematic from a 
didactic perspective. The difficulties involved can be observed across different levels of education, 
from secondary school students (Fischbein & Engels, 1989), to master’s students in mathematics 
(Carotenuto et al., 2018). A problematic aspect for students is related to its justification, i.e. why, 
given a predicate P on the natural numbers, we can conclude that n ℕ, P(n), by proving the base 
case P(0) and the inductive step n ℕ, P(n)→P(n+1). Ernest (1984) affirms:  

Many students encountering the method of proof by induction wonder why this rather complex 
and seemingly arbitrary principle is adopted […] [It] is neither self evident nor a generalisation of 
previous more elementary experience. (p. 183). 

Generally, a non-formal justification is that MI works as a “cascade” of infinite syllogisms (Poincaré, 
1906, p. 9): from P(0) and P(0)→P(1) it follows P(1); from P(1) and P(1)→P(2) it follows P(2), and 
so on. Often, to provide an intuitive explanation for MI, teachers and textbooks describe it by using 
some images (for some examples, see Ernest, 1984). Perhaps one of the most known is the falling 
dominos analogy: given an infinite line of dominos (i.e. the whole set ℕ), by the fact that the first one 
is knocked over (i.e. the base case) and the fact that each couple of consecutive dominos is at the right 

Proceedings of CERME12 4304



 

 

distance so that if one domino falls, it will knock over the consecutive one (i.e. the inductive step), 
we can conclude that every domino after the first one in the line will fall (i.e. n ℕ, P(n)). 

Images (or, more generally, signs) like the cascade of syllogisms or the falling dominos, are often 
used by teachers and textbooks to introduce and describe MI to students. On the other side, similar 
signs might also be produced and used by subjects involved in proving by induction activities. In this 
paper, I focus on this second aspect, analysing the signs produced and used by students with 
experience of proving by induction during the resolution of problems which potentially involve MI.  

Theoretical framework 
A multimodal semiotic perspective 

In order to take into consideration a wide spectrum of signs, in this study I adopt a multimodal 
semiotic perspective. Arzarello (2006) considers all the different kinds of sings involved in teaching 
and learning processes (verbal language, mathematical symbols, diagrams, sketches, gazes, gestures, 
etc.) as an inseparable unit. He defines a semiotic bundle as a dynamic structure composed by 
different semiotic sets together with the relationships between them. Within this perspective, a sign 
may have different components depending on the semiotic sets involved in it. For instance, a subject’s 
spoken utterance with a simultaneous gesture, referring to a certain written inscription, can be seen 
as a unique sign made by three components (speech, gesture, and inscription). 

Linking and iteration signs 

Using this multimodal perspective, in a previous study (Antonini & Nannini, 2021), we analysed the 
semiotic bundle consisting of three semiotic sets (speech, written inscriptions and gestures) in some 
post-graduate students’ processes involved in the generation of a conjecture and of a proof by MI. As 
a result, we identified two particular categories of signs which seem to play an important role in these 
processes: 

 Linking signs: Signs produced or used to refer to two or more entities (objects, mathematical 
objects, problems, situations, etc.) and to their relationships, where these entities are seen in 
connection with two consecutive natural numbers. 

 Iteration signs: Signs that refer to iteration, or that are composed by a repetition (in time or in 
space) of linking signs, or that refer to a repetition of them. 

To give an example of linking and iterations signs we can interpret from a semiotic point of view the 
above-described image of the falling dominos. The whole image (either pictured or verbally 
described) is a rather complex sign composed by several other signs. Of those, one is the image of 
two dominos, one of each falling, potentially falling, or already fallen onto the other one. Out of the 
analogy this sign represents two propositions, P(n*) and P(n*+1), for which the truth of the first one 
implies the truth of the second one (i.e., an instance of the inductive step). This is an example of 
linking sign. Moreover, the whole line of dominos (fallen, falling, or standing), representing the 
infinite syllogisms obtained by base case and inductive step, is a repetition of linking signs and, 
globally, can be interpreted as an iteration sign. 
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In this paper I report on an explorative and qualitative study focusing on linking and iteration signs 
in post-graduate students’ processes involved in problem solving activities. The study investigates 
the different characteristics that linking and iteration signs can have during the problem resolution 
process, aiming at a possible classification of them.  

Methods 
The study is based on interviews in which expert students were asked to solve some problems and 
then to speak about mathematical induction. Participants were 4 doctoral students in Mathematics. 
They were interviewed individually for approximately 80 minutes each. They were not aware of the 
focus of the study. Collected data consist of audio-video recordings and of the written inscriptions 
produced by the students. In this paper I will refer to the following two problems. 

The chessboard problem: “Consider a 2nx2n chessboard. What is the maximum number of squares 
which can be tiled with L-shaped pieces composed of 3 squares each?”. The solution, which can be 
proved by MI on n, is that it is possible to tile the entire 2nx2n chessboard except for one square. 

The false coin problem: “N identical coins are given. One of these, however, is false and it weighs 
less than the others. There is a traditional weighing scale at our disposition. What is, in function of 
N, the minimum number of weighings necessary to determine the false coin?”. A partial solution for 
the problem is that, if N=3m, then with m weightings it is possible to determine the false coin. Again, 
this can be proved by MI.  

Preliminary findings 
A classification for linking and iteration signs 

With the analysis of the semiotic bundle produced and used by the students during the interviews, it 
was possible to identify three different categories of linking and iteration signs: 

 Linking and iteration signs produced or used to refer to the (mathematical or not) objects 
described in the problem’s text (functions, variables, chessboards, tiles, coins, etc.), to their 
properties, or to their mutual relationships. For these, I use the term Ground-level signs. 

 Linking and iteration signs produced or used to refer to the proving scheme of mathematical 
induction itself, to its logical structure or to the justification of its validity. For these, I use the 
term Meta-level signs. 

 Linking and iteration signs that could be seen simultaneously as ground and meta-level signs. 
This happens when a single component or different components of the same sign refer both 
to some objects of the problem and to mathematical induction itself. For this intermediate 
category, I use the term Hybrid-level signs. 

In the following pages I will present some paradigmatic examples of these categories of signs. The 
students’ names are pseudonyms. In the transcripts, with (italics) I describe gestures or inscriptions 
in the moment when they are made. 
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Ground-level signs

Lorenzo, in this part of the interview, is dealing with the false coin problem. After reading the text he 
claims to remember the solution of a similar problem in which nine weights are given, all identical 
except for one which is lighter. Lorenzo describes the solution of this second problem:

1 Lorenzo: In this case the game was: you split in three groups, then three coins, first 
group, three coins, second group, three coins, third group (he writes ‘9’ on
the sheet, then he draws three arrows starting from it and pointing to the 
right, he then writes ‘3’ at the end of each arrow and, finally, ‘1st’, ‘2nd’, 
and ‘3rd’, Figure 1a). Then you say: we take two groups, we weigh them 
and since there are three possible results, that are one is lighter, the other is 
lighter, or even, I can determine in which group the lighter one is. Then I 
iterate the procedure on the others.

Later on, Lorenzo tries to generalise the just described solution for a group of n coins:
2 Lorenzo: So, the reasoning would be… n coins, I split in three groups (he draws a 

point and three lines starting from it and pointing down on the sheet), I 
select one of them with one weighing, I split in other three groups, (he 
draws a second point at the end of a line and then three other lines starting 
from this new point), I select one of them with another weighing (again, he 
draws a third point at the end of a new line and then three other lines from 
this. At this point he has drawn a mathematical tree, Figure 1b).

In the first part of the excerpt (line 1), when describing the solution of the problem for a group of nine 
coins, Lorenzo produces a sign (the inscription in Figure 1a, together with his speech) which 
represents how the group of 9 coins is linked to three groups of 3 coins each, namely a linking sign. 
With this sign, Lorenzo represents the first step of the solution of the problem (to divide the group in 
three subgroups and to determine which one contains the false coins). Afterwards (line 2), Lorenzo 
describes a possible strategy to solve the general problem, and to do this he draws an inscription 
which is composed by the repetition of the previous linking sign, this time without any indication to 
the number of coins (Figure 1b). This is an iteration sign and allows him to describe the iterative 
solution of the problem. 

Figure 1: Lorenzo’s inscriptions in line 1, Figure a, and in line 2, Figure b

In the remaining part of the interview related to this problem, Lorenzo explores the mathematical tree 
that he drew in order to find, in function of n, its height (which corresponds to the number of 
weightings necessary to determine the false coin). Both the just presented linking and iteration signs
are ground-level signs because they refer to different groups of coins and the relationships between 
them.
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Meta-level signs

Guido, at the end of the interview, says to be convinced of the validity of MI as a proving scheme. 
Then he justifies his answer. 

1 Guido: You do the base case, which is true, and you verify it (he puts the right hand
in front of him at the level of the table, touching his leg with the four fingers, 
Figure 2a).

2 Guido: Then (he makes two consecutive arc-shaped gestures rotating the right hand 
in the air keeping thumb and pointing finger at a constant distance and 
moving the hand from left to right, Figures 2b/c) the inductive step (he 
repeats the previous gestures a second time) guarantees that it is always true 
(he moves rapidly the right hand starting from his leg to an up-right 
direction in the air, Figures 2d/e).

Guido’s speech alone does not seem to provide a justification for the validity of MI. He only says that 
after the case base is proved true (line 1), the inductive step assures the truth of the proposition for 
every natural number (line 2). However, if we look at his gestures, we notice that his discourse is 
enriched by other semantic elements. The base case is represented by a point on Guido’s leg, which 
he touches with his right hand (Figure 2a). Before saying “the inductive step”, Guido makes a rather 
complex gesture: he moves his right hand in the air from left to right and simultaneously he rotates it 
twice, keeping thumb and pointing finger at a constant distance, forming two arcs (Figures 2b/c). He 
then repeats the same gesture while saying “the inductive step”. 

Figure 2: Guido’s gestures. In Figure a, it is showed the “case base gesture”, in Figures b/c the 
“inductive step gesture”, and in Figures d/e the final gesture of line 2. The white arrows summarise the 

gestures’ trajectories

These gestures are interesting because with them Guido seems to represent the inductive step itself 
as a series of arcs in the air. Each arc-gesture could indicate, metaphorically, the link between two 
cases of the proposition to be proved by induction (the implication P(n)→P(n+1)). These are 
examples of meta-level linking signs. Finally, while saying “it is always true”, Guido performs a new 
gesture which is a composition of the previous ones, but now more rapid and contracted: He starts 
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touching his leg (as when he was referring to the base case), and then he moves fast to an up-right 
direction in the air. This time the hand moves in a straight line without shaping any arcs (Figures
2d/e). With this gesture he seems to describe the whole iteration which, starting from the base case 
and by successively applying the inductive step, allows to conclude the truth of P(n) for all the natural 
numbers greater than the base. This is an example of a meta-level iteration sign.

Hybrid-level signs

Silvio, in this part of the interview, is dealing with the chessboard problem. Until this moment he has 
explored the problem, finding that for the chessboards corresponding to n=0, n=1, and n=2, it is 
possible to create a tessellation which leaves out only one little square and he has conjectured that the 
same thing is possible for every 2nx2n chessboard. Then he has observed that a 2nx2n chessboard is 
composed by four 2n-1x2n-1 chessboards. This seems to suggest to him a possible solving strategy:

1 Silvio: I think that one could do something like by induction (keeping the pen in his 
right hand, he rapidly draws some circles in the air, Figures 3a/b).

2 Silvio: Because, since in the case zero I have only one little square and it remains 
out (with the pen he touches the sheet where he previously wrote
‘n=0→0 tiles’, Figure 3c), 

3 Silvio: then, let’s say, in a sequential way this little square will always remain out 
(with the pointing finger of his right hand, he draws some circles in the air 
whilst moving up his hand, Figures 3d/e).

In the remaining part of the interview related to this problem, Silvio tries to construct a proof by MI
for his conjecture. 

Figure 3: Silvio’s gestures. In Figures a/b it is showed the gesture of line 1, in Figure c the gesture of 
line 2, and in Figures d/e the gesture of line 3. The white arrows summarise the gestures’ trajectories

The analysis of this excerpt reveals the presence of a hybrid-level sign. Firstly, Silvio claims that a 
possible solution could be obtained doing “something like by induction” (line 1). Whilst saying this, 
he makes a gesture which seems to refer to the iterative structure of induction itself (Figures 3a/b). 
Considering the bundle (his utterance together with the gesture) we can interpret this as a meta-level 
iteration sign. In lines 2-3, Silvio clarifies what he meant with “something like induction”. He says 
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that the chessboard corresponding to n=0 is composed only by one little square which thus cannot be 
tiled. Then he says that from this, “in a sequential way”, it could be possible to show that the little 
square will remain out of the tessellation for all the bigger chessboards as well. In describing this 
strategy, Silvio is apparently using his previous observation of the fact that it is possible to construct 
a 2nx2n chessboard with four 2n-1x2n-1 chessboards. Silvio’s discourse contains elements which refer 
to some objects of the problem (“this little square will always remain out”), showing that with his 
speech he is referring to chessboards and tessellations. However, observing the whole semiotic 
bundle, we can see that he is also referring to the structure of the solving strategy itself. He firstly 
touches the sheet where the inscription for the 1x1 chessboard is, which he calls the “case zero” 
(Figure 3c). Then, while saying “in a sequential way”, he draws several circles in the air whilst 
moving up the hand (Figures 3d/e). Note that now there is not any reference to chessboards or 
tessellations. This gesture, in fact, seems to repeat the “something like by induction” gesture 
previously made in line 1, but now it is longer (both in time and space). If we consider the whole 
movement of his right hand (Figures 3c/d/e), we can see it starting from the sheet, concretely touching 
with the pen the inscriptions which refer to the chessboards, and then moving up, drawing a sort of 
helix in the air, as representing the iterative structure of the reasoning by induction itself. This is an 
iteration signs which starts as a ground-level sign and then becomes a meta-level sign. This is 
therefore an example of a hybrid-level sign.  

Concluding remarks 
In the first two excerpts, I showed some examples of linking and iteration signs, both ground and 
meta-level. These two categories of signs apparently involve different aspects of the problem solving 
and proving processes. The ground-level signs seem to have an important role in the resolution of the 
problem, allowing the subject to recognise that it could be solved with an iterative procedure. The 
meta-level signs, instead, are related to the description of the logical structure of a generic proof by 
MI. We can in fact observe that the first two excerpts were taken from two very different moments 
of the interviews. Lorenzo’s example, through which some ground-level signs were shown, is part of 
his initial exploration of the false coin problem. On the other side, Guido’s excerpt, containing some 
examples of meta-level signs, refers to the final part of his interview in which, after having solved 
some problems (some of those by induction), he is explaining why he is convinced of the validity of 
MI. However, as the third excerpt has shown, it was also possible to observe some meta-level signs 
in other phases of the interviews, in particular during the exploration of a problem as well. When 
Silvio produces the meta-level iteration sign, in fact, he is still exploring the chessboard problem, and 
he has not found a way to tessellate a chessboard using the tessellation of the previous chessboard (a 
sort of inductive step). Nevertheless, he recognises a parallelism between his possible iterative 
solution to the problem and the proving scheme of MI. When this happens, he produces a hybrid-
level sign: an iteration sign referring both to some problem’s proper elements (ground-level), and to 
the structure of MI itself (meta-level). The production of these signs highlights a crucial moment in 
Silvio’s problem solving process. In this moment, in fact, Silvio seems to see in his own 
argumentation the structure of a proof by MI (he says “something like by induction”). Subsequently, 
in fact, he decides to prove by MI his conjecture. In other terms, the presence of these signs seems to 
reveal a continuity between the process of generation of the conjecture and the subsequent 
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construction of a proof for it. It could be interesting to further investigate this last aspect within the 
framework of the Cognitive Unity (Boero et al.,1996), focusing on the role of hybrid-level and meta-
level signs in the transition between the argumentation supporting a conjecture and a subsequent 
proof by MI. Further research is also necessary to investigate the production and use of linking and 
iteration signs (either ground, meta, or hybrid-level) in less expert students. 
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Solving geometric problems: Squaring in motion using manipulatives, 
measurement of long-term effects 
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Neurophysiological studies have shown that our motor system plays a fundamental role in the 
scaffolding of our cognitive system. Taking these findings into account, we have designed and 
produced manipulatives that reproduce geometric figures. Through them, we can amplify our 
perception of the relationships between different elements. We believe that repeated interactions 
with the manipulatives generate the ability to imagine similar movements on drawn figures. An 
example is “squaring in motion”, through which a given figure is transformed into an equivalent 
rectangle. We verified, through a quantitative study involving preadolescents (12-14 years old), the 
long-term effectiveness of the use of manipulatives on problem solving. 

Keywords: Perception, movement, insight, productive thinking, Leonardo da Vinci. 

Introduction 
Problem solving is a very important aspect of mathematics education. This is already underlined by 
the NCTM since 2000 and, specifically in Italy, by the 2012 Italian National Guidelines for 
Instruction concerning the curriculum for pre-school and “first cycle”, i.e. 6-14 education. Taking 
into account the distinction between exercise and problem (Duncker & Lees, 1945), “l'impressione 
che, proprio in matematica, si chieda ai nostri studenti di attivare essenzialmente processi 
riproduttivi, risolvendo esercizi, piuttosto che processi produttivi, risolvendo problemi” (“the 
impression is that, precisely in mathematics, our students are asked essentially to activate 
reproductive processes, solving exercises, rather than productive processes, solving problems”, Di 
Martino, 2017, p.24 translation by the author). Furthermore, the identification of automated 
algorithmic processes to solve problems, especially if introduced too early, can clog original 
sources of insight (Freudenthal, 1983).  

In this context we refer to the search for effective strategies to solve problems concerning the 
equivalence between surfaces. We want to concentrate exclusively on the study of the figures 
related to them. This is why every problem always has a figure: according to Duval (1995), “the 
usefulness of geometrical figures in the resolution of a problem of geometry is beyond doubt. They 
provide an intuitive presentation of all constituent relations of a geometrical situation” (p.143). 
Therefore, we would like to emphasize how important it is to be able to extract as much information 
as possible from a geometric figure and, through this, elaborate a solution strategy. In accordance 
with Kanizsa (1973), we believe that this depends mainly on an appropriate development of 
geometric perception. 

In this paper we propose an innovative way of amplifying geometric perception that has produced 
immediate results in solving geometric problems and whose effects also appear to be long-lasting.   
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Theoretical background 
Our study is supported by some neurophysiological aspects. One of these concerns the neuronal 
activations that occur during the observation of an object or picture. There are currently no specific 
studies on the encoding of geometric figures. However, we can assume that their encoding at a 
neuronal level is similar to that of words, for which many studies have been conducted. A 
hypothesized model (Dehaene et al., 2005) verified experimentally by Vinckier et al. (2007) allows 
us to understand that during word reading, neuronal activation takes place starting from the 
occipital cortex for the encoding of the most elementary components of the letters, up to the inferior 
temporal cortex for the encoding of more complex forms like letters and whole words. From studies 
on macaques (Tamura & Tanaka, 2001), whose brains are very similar to those of humans, we 
know that at the top of this hierarchy is a single neuron that encodes an entire word. The process 
does not essentially change if, instead of reading, we are looking at an object. The power of these 
activations depends on the frequency with which that image is seen and the way it is habitually 
viewed, i.e., orientation, angle of view, etc. The organization of our perception is undoubtedly 
influenced by these activations. Frequently seen shapes are more easily recognized than less 
frequently seen ones. We realize that when we study a complex figure, the shapes we have seen 
most often are recognized most quickly. As for the others, we must make an extra effort to be able 
to see beyond what immediately appeared to us. This reorganization of the elements of a figure can 
lead to sudden insight: this is precisely the term coined by Köhler (1921/2018). In this way, 
productive thinking is manifested, using Wertheimer's term (1959), which is necessary to 
effectively understand the relations contained in a figure of any kind of problem. 

To support our study, we wanted to consider another neurophysiological aspect concerning the 
neuronal activations that occur during interaction with objects such as artificial manipulatives, as 
defined by Bartolini Bussi and Martignone (2020). These are concrete artifacts specifically 
designed for educational activities. It is well known that the way we grasp an object depends on the 
series of attempts that we have previously made. The most effective was chosen for our purpose. 
Through studies on primates (Rizzolatti, Luppino & Matelli, 1998) and humans (Culham et al., 
2003), we know that every time we grasp a specific object, first the neurons in the parietal cortex 
and then those in the premotor cortex are activated to perform a visuomotor transformation. The 
observed physical properties of an object (shape, orientation, size, etc.) are transformed into the 
correct hand configuration for grasping it. Moreover, and this is really remarkable, these neurons 
are not only activated when the individual's hand interacts with the object, but also when s/he 
simply observes the object (Chao & Martin, 2000) or even remembers the interaction with it 
(Jeannerod & Decety, 1995). 

Finally, two very important complementary studies allow us to highlight the direct interaction 
between the motor system and perception. The first argues that the previous perception of a bar 
influences the way we grasp it later (Craighero, 1996). At the same time, grasping a bar actually 
amplifies its perception (Craighero, 1999). It is as if to say: perception influences action, which in 
turn influences perception.  
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Aims of our research and methodology 
In this study we have been concerned with finding strategies for solving geometric problems whose 
text is accompanied by a related figure. We have focused on the concept of equivalence between 
polygons and curvilinear figures that can be deduced from an appropriate movement that transforms 
one figure into another. This, as will be shown later, is not a very simple task for students. To 
overcome this difficulty, we have reproduced geometric figures by means of manipulatives so that, 
through interaction with them, these transformations can actually be realized. 

We know that repeated interactions with objects such as manipulatives stimulate the 
communication of different neuronal circuits. If we assume that these circuits are also reactivated 
when studying a geometric figure of the same type as the one simulated by the materials, we hope 
that the same movements previously performed on the manipulatives will be imagined on the 
figure. We believe that this amplification of geometric perceptual abilities will motivate students to 
rely on them more and more when studying a figure. Furthermore, the cortical areas activated using 
the manipulatives are in addition to those typically involved during the study of geometry. This 
involvement of a greater number of neuronal circuits should foster the retrieval of mathematical 
facts and therefore it is also hoped that what is learned through these motor activities will persist 
much longer than traditional learning. 

We wanted to test the validity of these hypotheses by involving lower secondary school students 
(grade 7, age 12-14) in a quantitative study. Our research aims were: 

a) to measure the effectiveness of manipulatives that simulate geometric figures. That is, we 
aimed to test whether they are able to generate the ability to imagine the same 
movements when studying a drawn geometric figure. In this research we dealt with 
geometric problems already provided with the figure. The object of these problems was 
the calculation of the area of polygonal and curved figures and the verification of 
equivalences between different figures, 

b) to verify whether the effects of using manipulatives persist over time. 

The research design used presents some peculiarities both for the type of variables that were to be 
measured and because the psychometric survey was carried out in schools during curricular hours 
(see Pasquazi, 2020 for more details). The study was divided into 6 phases: design of the Pre-test 
(Phase 1), validation of the Pre-test (Phase 2), administration of the Pre-test (Phase 3), the 
treatments (Phase 4), administration of the second test called Post-test 1 (Phase 5), and the 
administration of the third test called Post-test 2 (Phase 6).  

Initially (Phase 1), we designed a new test consisting of 16 items to be completed in one hour (the 
time of a lesson) because, given the aims of our research, there was no suitable one. Of course, it 
was considered that the topics covered in the test items were already known to the students before 
our study. We show, as an example, a test item planned for this study dedicated to a type of polygon 
that differs slightly from a known figure (Wertheimer, 1959): calculate the area of the surface Q 
(Figure 1a). The students had to provide two open-ended answers: in sub-answers A they had to 
describe the solving strategy they used to arrive at the solution. The answers were assessed 
according to the following criteria. A value of 1 was assigned if dynamic aspects resulting from the 
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study of the figure were used to determine a solution strategy. These answers called dynamic 
answers. In the example shown, the solution strategy that exploits the dynamic aspects is provided 
when equality is established between the projection and the hole, which leads us to imagine moving 
the projection until it occupies the entire hole. The equality between the protrusion and the hole is 
undoubtedly evoked by the shape of Q which resembles that of a rectangle, a figure well known to 
students and therefore "recognized" by our visual system. Otherwise a value of 0 (zero) is assigned 
if the answer is missing or is present but is not a dynamic answer. In general, for designed items, 
when the answer is not dynamic, a lot of calculation is required. In the example considered, if we 
did not recognize the proximity of Q to a rectangle, we would be forced to calculate the areas of the 
various polygons into which the figure is divided and then add them up. The answers to the 
questions in the respective items were to be reported in sub-answers B: 0 (zero) was given if the 
answer was wrong or missing, 1 if the answer was correct. For example, sub-answers A in Figures 
1b and 1c will be given a value of 1 because it has been recognized that Q is equivalent to a 
rectangle (at least that is what it looks like in Figure 1b); the score given to sub-answer B, on the 
other hand, is 0 in the first case (because the calculation of the area of the rectangle is wrong) and 1 
in the second.    

Subsequently (Phase 2), the designed test was validated by seventy-four students of an institute. By 
calculating the point-biserial correlation coefficient of each item, the Cronbach alpha coefficient 
(α) was obtained (Pelosi & Sandifer, 2003). The latter was used to measure the reliability and 
coherence of the test. Conventionally, tests with an α > 0.70 are considered acceptable.  

Once the validation of the test was completed, the experimental phase began, involving eighty-
seven students of the same age from two further institutions (different from the one involved in the 
validation). The students were divided into two homogeneous groups called experimental group and 
control group. The experimental phase started with the administration of the validated test, called 
Pre-test, to the students of both groups (Phase 3). The aim of this test was to find out whether or not 
the students manifested dynamic aspects in their solving approach and what effect this approach 
had on the correctness of their answers. We emphasize that the administrators, after giving the 
appropriate instructions, no longer interacted with the students during the test. 

 
  

Figure 1: (a) figure associated to an item, (b) and (c) item responses examples 

Phase 4 presents a special feature of the research design. Effective treatments were carried out in 
both the experimental and control group (one meeting per week for a total of three meetings of two 
hours each). Since there was already an idea of what the results of the Pre-test might be, the 
treatments aimed at stimulating the perception of dynamic aspects deduced from the observation of 
the figures. This should have improved the students' performance in answering the test items. 
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I will show an example of a treatment performed to produce effective resolution strategies related to 
the test item shown above. Treatment is inspired by the figures of Leonardo da Vinci found in the 
Codex Atlanticus. He performed a lot of squaring of parts of circles and curvilinear figures like the 
one shown in Figure 2a. His intuitive approach emerges from the captions of the figures, which 
provide real didactic indications such as the following: "la cosa che si muove acquista tanto di 
spazio, quanto ella ne lascia” (“what moves acquires as much space as it leaves", folio 505 recto, 
translation by the author). 

  
 

Figure 2: (a) detail of folio 505 recto, Codex Atlanticus, (b) figure to an associated problem,            
(c) manipulatives inspired by the figure of Leonardo 

Students in both groups are given the same problem. In the example we want to describe, the task 
was to measure the area of surface b (Figure 2b). Students mostly work in pairs, free to speculate on 
what they observe, to check, correct themselves if necessary, and then to try a different strategy. 
Teachers intervened and made suggestions only when students asked for help. Students in both 
groups were stimulated to formulate and, at the same time, test the validity of their hypotheses. 
However, the students in the experimental group could use appropriate manipulatives, whereas 
those in the control group could only draw on their notebooks.  

We would now like to briefly describe the manipulatives used by the students in the experimental 
group. These consist of two elements: a base and a mobile figure (Figure 2c). By reading the task 
and looking at the drawing (Figure 2b), students understand how to use the manipulatives 
appropriately. It is interesting to observe, from the students' actions and statements, the influence of 
the use of the manipulatives on the perception of geometric properties and how the progressive 
discovery of these properties guides, in turn, the use of the manipulatives. Initially, the students 
move the mobile figure at random. Then, as a result of these movements, they understand that all 
figures obtained from the difference between the base and the moving figure are equivalent. It is 
evident that the students’ eyes light up when mobile figure reaches the opposite position to the 
starting one. The insight came in: they realize that the difference between the base and the moving 
figure is now a known surface, i.e. a rectangle. The association between the initial and final 
difference surface makes the solution obvious. We call equivalence in motion this kind of 
equivalence obtained by movement. Since it is always possible to square a rectangle (Proposition 
II.14 of Euclid's Elements), it is legitimate to speak of squaring in motion.  

The answer shown in Figure 1c given by a student in Post-test 2 shows a solution strategy based on 
squaring in motion that leads to a correct answer. Considering the two right angles on the left in the 
polygon shown in the Figure 1, we can see that their sides would join if we imagine extending 
them. This observation contributes to Q evoking a rectangle. The presence of the arrow shows that 
the student has imagined the movement of the triangle-shaped protrusion in the identical hole. In 
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the Pre-test (Phase 3), the same student had given an unclear and incorrect answer (Figure 1b). The 
dynamic aspects, if they were present in his mind, had not been effectively exposed.  

To test the effectiveness of the treatments, a new test (Phase 5) called Post-test 1 was immediately 
administered to the students in both groups. The structure of the Post-test 1 was identical to the 
previous one, while the questions asked were similar (but not the same). For a separate comparison 
of the data obtained on Pre-test and Post-test 1 the Paired Samples t-Test was used. 

In the following six months there was no further interaction with the students involved in the 
experiment. In order to check whether the effectiveness of the treatments was still detectable at the 
end of this period, the students were administered Post-test 2 (Phase 6), the same as the Pre-test. 
The administration of a new test long after the previous one is another peculiarity of the research 
design used in this quantitative study. The data from Post-test 2 were also compared with those 
from Post-test 1 by means of the Paired Samples t-Test. 

Results 
In this section we would like to briefly report the main results obtained in the individual phases of 
the quantitative study. In the validation (Phase 2) of the designed test, for sub-responses A we 
obtained α = 0.81 while, for sub-responses B, α = 0.88, thus indicating, in both cases, a very high 
reliability of the test which motivated us to use it in the next experimental phase. 

The analysis of the results of the Pre-test administered in Phase 3 shows, as expected, that there are 
no substantial differences between the groups. The experimental group obtained an average score of 
7.50 (SD 3.76) for sub-answers A and a average score of 7.2 (SD 4.15) for sub-answers B, while 
control group obtained an average score of 6.12 (SD 4.48) for sub- answers A and an average score 
of 7.98 (SD 4.50) for sub-answers B. The analysis of the results obtained leads us to conclude that 
the majority of students in both groups do not prefer to give dynamic answers. Furthermore, the 
performance concerning the correctness of the answers is also quite unsatisfactory.  

In order to verify the effect of the treatments carried out in Phase 4, Post-test 1 was administered a 
few days later to the students of both groups (Phase 5). The Paired Samples t-Test indicates that the 
difference between the two averages obtained in Post-test 1 and Pre-test for sub-answers A (ΔM = 
2.405, SD = 3.357) and for sub-answers B (ΔM = 1.595, SD = 2.905), found in the experimental 
group, are both statistically significant with t = 4.642 and t = 3.558 respectively and, again for both, 
p(2-tailed) < .001. Similarly, for the control group, the same differences for sub-answers A (ΔM = 
3.186, SD = 3,561) and for sub-answers B (ΔM = 1.209, SD = 2.739) were also statistically 
significant with t = 5.867 and t = 2.895 respectively and, again for both, p(2 tails) < .001. The 
results therefore indicate that the treatments motivated more students in both groups to provide 
dynamic answers to the items. As a result, the number of correct answers increased.  

After the administration of Post-test 2 (Phase 6), we compared the data obtained between Post-test 2 
and Post-test 1 using the Paired Samples t-Test again. In the experimental group alone, the 
difference between the two averages obtained in Post-test 2 and Post-test 1 for both sub-answers A 
(ΔM = 1.381, SD = 4.066) and sub-answers B (ΔM = 1.357, SD = 4.119) were statistically 
significant with t = 2.201 and p(2code) = .033 and with t = 2.135, and p(2code) = .039, respectively. 
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Thus, the number of students in the experimental group who solve the items by means of dynamic 
answers increases further. An increase can also be seen in the number of correct answers. In the 
control group, on the other side, the difference between the two averages obtained in Post-test 2 and 
Post-test 1 for both sub-answers A (ΔM = -0.558, SD = 2.914) and sub-answers B (ΔM = 0.116, SD 
= 2.480) with t = -1.256 and p(2code) = .22 and with t = 0.307, and p(2code) = .76, respectively, 
were not statistically significant. This means that there is no substantial difference between sub-
answers A and sub-answers B in the two tests for the control group.  

Conclusions 
In this paper, we have described how to find strategies for solving geometric problems concerning 
the equivalence of surfaces. We have focused on the ability to provide dynamic answers 
characterized by the ability to imagine appropriate movements that allow us to transform an 
irregular figure into an equivalent rectangle. We called this type of transformation “squaring in 
motion”. This strategy has been developed through the use of manipulatives that simulate geometric 
figures. These allow us to concretely perform continuous movements and visualize equivalences 
between figures of different shapes.  

The effectiveness of the manipulatives presented in this article was verified in a quantitative study 
involving preadolescents. The latter initially showed that they were unable to imagine movements 
on the figures of the geometric problems. This had a negative effect on the correctness of the 
answers. After treatments based on the use of appropriate manipulatives, the students immediately 
showed an increased ability to solve the problems by providing dynamic answers. Moreover, these 
abilities were still found six months after the end of the activities. We verified that all these results 
are statistically significant, telling us that the use of manipulatives can make very important 
contributions to mathematical learning. However, further investigations on the effectiveness of 
manipulatives are needed. In particular, we would like to understand why the use of manipulatives 
did not contribute to the solution strategies for some test items.    
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It is well known that multiple representations can enhance students’ conceptual understanding, but 
only if (potentially superficial) translation activities are deepened by making the connections explicit. 
But what exactly does that mean? In our qualitative analysis of a design experiment with two twelfth 
graders from vocational school on conditional probabilities, we show that explicating connections 
between multiple representations requires processes of unfolding a highly compacted concept into its 
concept elements (in our case, part, whole and part-whole-relationship) and articulating them in a 
decontextualized meaning-related language. By this, we intend to contribute to the research identi-
fying conditions of success for working with multiple representations also for high school students. 

Keywords: Connecting multiple representations, explicating connections, unfolding.   

Introduction. 
It is generally acknowledged that multiple representations can enhance students’ conceptual under-
standing of abstract mathematical concepts (Duval, 2006; Lesh, 1979), but access to multiple repre-
sentations can be challenging for some students (Ainsworth, 2006; Goldin & Shteingold, 2001). That 
is why empirical research tried to identify conditions of success under which the use of multiple 
representations can really contribute to developing conceptual understanding. One identified condi-
tion is that representations are not only juxtaposed, but really connected by making the connections 
explicit (Marshall et al., 2010; Renkl et al., 2013). So far, limited research explored what exactly that 
means, and how it applies beyond arithmetic and functions, also for probabilities. 

Multiple representations have been shown to be relevant also for high school mathematics topics such 
as conditional probabilities, for which many studies report that visual representations can enhance 
performance (Böcherer-Linder & Eichler, 2017), e.g. for the conceptual challenge to distinguish con-
ditional probabilities P(A/B) from joint probabilities P(A  B) (Binder et al., 2020):  

(I) What is the probability that a boy does not play game A? 
(II) What is the probability that a teenager is a boy and does not play game A?  

An expert can directly assign the correct probability type: conditional and joint probability and trans-
late the questions into a symbolic expression or a visual model. But what do students need to develop 
this conceptual understanding of situation types while connecting the statements into visual models 
or symbolic representations? In this paper, this research question is pursued within a conceptual 
framework that combines semiotic processes with epistemic processes, as we present in the first sec-
tion. The design experiments are conducted in design research methodology and analyzed qualita-
tively with methods introduced in the second section before the analysis is presented and discussed.  
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Theoretical background: Semiotic and epistemic processes for developing un-
derstanding for conditional probability. 
Semiotic processes between multiple representations. 

According to the translation models (Lesh, 1979; Duval, 2006), students can develop conceptual un-
derstanding by translating between different representations (e.g., symbolic representation, visual 
models, technical language, contextual language). For the case of conditional probabilities, the area 
model has proven as accessible visual model (Böcherer-Linder & Eichler, 2017) to capture the un-
derlying part-of-part-structure (Leuders & Loibl, submitted), yet most research refers to information 
processing from given texts, not to students’ processes of developing conceptual understanding. 

In order to overcome well-documented challenges while dealing with multiple representations 
(Goldin & Shteingold, 2001; Ainsworth, 2006), researchers pointed out that beyond unconsciously 
switching between representations, conscious translating activities are crucial (Lesh, 1979, called 
conversion by Duval, 2006) as well as explicitly explaining the connections (Duval, 2006; Marshall 
et al., 2010). Thus, translating and explaining are connecting processes with a high degree of con-
sciousness about the connection whereas switching involves often low awareness about the change.  
For clearly explicating how multiple representations are connected, a meaning-related language is 
required to talk about the mathematical structures involved (Pöhler & Prediger, 2015) and how the 
concept elements occur on the other representation (Renkl et al., 2013). We distinguish contextual 
language (which can also convey meanings) from a more specific meaning-related language that is 
decontextualized and suited to explicate the more general structure behind the part-whole-relation-
ships. In Figure 1, we list the involved representations and distinguish four semiotic processes ac-
cording to the increasing degree of integration of representations (Post & Prediger, submitted).  

 
Figure 1: Multiple representations and semiotic processes between representations  
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Epistemic processes for understanding concepts by unfolding into concept elements. 

To characterize students’ development of conceptual understanding, we will draw upon a second 
perspective, namely an epistemic perspective from cognitive psychology focusing the epistemic pro-
cesses of students’ mental constructions of new conceptual entities (Aebli, 1981; Drollinger-Vetter, 
2011). In this epistemic perspective, learning of concepts is characterized by working with refined 
concept elements that students have to construct, relate to each other and then to compact them into 
new conceptual entities (ibid.). Characteristic for deep understanding of these new conceptual entities 
is that they can be unfolded back into the contained concept elements.  

 
Figure 2: Unfolding and compacting processes for topic-specific concept elements  

(vertical structure turned into horizontal structure for saving space, here) 

Relevant concept elements for our topic-specific conceptual framework were theoretically and em-
pirically identified and are presented in Figure 2. With a focus on statistical ratios, the conditional 
probability (Question I from above) can be verbalized as “The share of boys who don´t play the game 
among all boys.”.  To differentiate from Question II (joint probability interpreted as “The share of all 
boys who don´t play the game among all”) these ratios can be conceptualized abstractly as part of 
different wholes, what we refer to as situation types. Question I is a part of a part, whereas Question 
II corresponds to a part of a whole. Ratio or rather situation types can be unfolded into underlying 
concept elements, namely the parts, the wholes and the part-whole-relationships. For unfolding the 
ratio, grasping the underlying part-of-part- structure (Leuders & Loibl, submitted) is crucial.  

Conceptual framework.  

For exploring our research question, we locally integrate the epistemic perspective into our concep-
tual framework of semiotic processes in Figure 3. 

 
Figure 3: Conceptual framework: Navigation space for semiotic and epistemic processes 
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This allows us to refine the research question: What concept elements do students address in their 
pathways of explaining connections between multiple representations for highly compacted condi-
tional probability concepts? The conceptual framework allows us to trace students’ pathways and 
show how connecting representations requires the unfolding into concept elements. 

Method.  
Methods of data collection. This case study is part of a larger design research project with two goals, 
(1) to design learning arrangements and (2) qualitatively investigate learnings processes with the aim 
of developing local theories on teaching and learning processes (Gravemeijer & Cobb, 2006). In the 
larger project, design experiments were conducted in seven whole classes (in total n = 150 students) 
with their regular mathematics teachers. Between the whole class lessons, the first author conducted 
design experiments with pairs of students to deeply capture their thinking processes. Design experi-
ments were video-recorded and partly transcribed. In this paper, we analyze the transcript of a design 
experiment with Katja and Justyna from Grade 12 (selected because their intense discussion reveals 
insights into typical processes found in several cases), restricted to the research question above.  

Methods for qualitative data analysis. In order to investigate how semiotic and unfolding/compacting 
processes interplay, a three-step procedure was conducted: In Step 1, teacher’s and student’s utter-
ances were coded according to the concept elements and representations addressed and located in the 
navigation space of our analytic framework (Figure 3). For analytical clarity and reliability, represen-
tations were only coded when references were articulated (e.g., naming the area, quotation from the 
statement) or gestured, or if the teacher or task demanded it. In Step 2, the semiotic processes of 
relating representations were coded according to their degrees of integrations. In Step 3, the vertical 
movements up and down were characterized as conceptual compacting and unfolding processes and 
marked in the navigation space by vertical arrows.  

Empirical insights into Katja’s and Justyna’s processes. 
In the whole class design experiment sessions, the two girls had already dealt with complex statistical 
information on parts of different wholes and the area model to visualize part-whole-relationships: For 
highly compacted statements, students discussed the underlying mathematical structure by explicat-
ing the unfolded concept elements whole, part and part-whole-relationship and connecting relevant 
representations (similar to Post & Prediger, submitted). The teacher had already guided the process 
of compacting the typical situations into three situation types according to the underlying structure of 
the statements, called part-of-part-statement, joint statement and simple statement.  

 
Figure 4: Students’ solution for translating compacted situation types to visual model and given text 

In the intermediate design experiment in laboratory setting, the design experiment leader went back 
to the critical step in the learning pathway, connecting highly compacted situation types to visual 
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models and typical given texts. Figure 4 shows their worksheet (translated from German original, 
blue type marks handwriting, underlining and shaded areas as in original). The students already dis-
cussed the given texts by correcting numbers, completing the missing text and coloring in the state-
ments and the area model. The transcript starts when the design experiment (DE) leader pushes them 
to progress from the successful translating process from texts to visual model to giving titles (Turn 
1/2) and explaining these compacted concepts by their explicit comparison (from Turn 3 on).  

1 DE leader: You have got to know these three types of statements. What 
is this? And this? And this? [points at the 3 given texts]   

 

2 Katja: That is the simple statement [falsely points at part-to-part-
statement in Text A]. No, not true, that is the simple [points at 
simple statement in Text C], that is part-of-part [points at Text 
A] and then, that is the combined [points at Text B; DE writes 
down titles]. 

2 Situation type 
Translate: ML  GT 

3 DE leader: […] Why? […] What is the difference?  
4 Katja: Do you want to start?  
5 Justyna: Um, I cannot explain. Ok, joint is just?  
…  [hesitates and stumbles, teacher encourages her]  
12a 
 
 

Justyna: Ok, well, here, it is only about the boys who do not play [un-
clear on what text she points] and for the joint, there is one 
more thing, namely [2 sec. break] 

12a Part (Text AB) 
Translate: GT  CL 

12b  Um, yeah, the boys also take part. But this, there the boys be-
come even more relevant? Thus, these, all persons asked. 

12b Whole (Texts B) 
Translate: GT  CL 

13 DE leader: Um, and when you look at the picture again. These are those, 
aren’t they? [points at the shaded area models] 

 

14 Justyna: Yeah.  
15 DE leader: This would be part-of-part, this is the joint [notes titles]. What 

exactly, what is the big difference that comes to your eye? 
 

16 Justyna: That the persons asked have changed.  16 Whole (AB) 
Switch: CL - - VMA/B 

…    
25 DE leader: [to Katja] Do you have an idea how to explain it differently?  
26a 
26b 

Katja: Um, part-of-part 
refers to the subgroup of the whole.  
And thereof, the other part is the subgroup of the subgroup. 

26a Situation type  
No connection:  ML 
26b P-W-Relation  
No connection: ML 27 DE leader: Show us, where you are 

28 Justyna: Oh my god!  
29a Katja: Ok, for part-of-part, it refers, it is here, 

the subgroup, ok, this here,  

 

29a Situation type 
No connection: ML 

29b  the whole [circles around the left half of 
the area model] 
is the subgroup of the complete, out of 
the complete persons asked  
[circles around the whole area]. 

29b Whole 
Translate: VM ML  

 ML  CL  

29c  And the subgroup is then, um, actually, a 
part of the part [circles around the lower 
left part, then the whole left part],  
hence, of the part of the complete.  

 

29c P-W-Relation  
Explain connection: 
ML  VM 

30 Justyna: Yes, but said quite complicatedly, no?  
31 Katja: Yes, though, I understand it [laughs].  
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Figure 5: Justyna’s and Katja’s pathways in the navigation space  

In Turn 1, the DE leader asks the girls to assign the given texts (GT) to the situation types (expressed 
in structural meaning-related language, ML), Katja immediately translates the highly compacted 
meaning-related notions to the given texts (Turn 2; Translating: ML  GT), yet without explaining 
her decisions. When the DE leader elicits further explanations (Turn 3), Justyna stumbles (Turn 5-
11). Repeatedly encouraged, she starts explaining the connection by unfolding the texts into the part 
and the whole, and translates both elements into contextual language (Turn 12 ab, Translating: GT  
CL), but without explicitly articulating the structure of part and whole. Even when the teachers guides 
her to comparing the wholes in area model A and B, she unconsciously switches to contextual lan-
guage (“the persons asked”, Turn 16), without explicitly articulating that this is the whole. She keeps 
on feeling uncomfortable with her explanation and does not even pick up the structural meaning-
related language offered by the DE leader in the non-printed Turns 17-24, so the clarification stocks. 

In Turn 26, Katja starts her explanation of the meaning of the highly compacted concept “part-of-part 
statement” and verbalizes the underlying part-whole-relationship in a perfect decontextualized mean-
ing-related language (Turn 26a,b; No connection: ML). In order to strengthen the accessibility of her 
explanation (for Justyna), DE leader invites Katja to refer to the visual model when continuing the 
explanation. Katja again starts from the highly compacted concept and addresses the whole (unfold-
ing) by translating between the area model (encircling left half of the area model) and the decontex-
tualized meaning-related language. Moreover, she translates within the meaning-related language for 
expressing the specific character of the whole, before translating to contextual language (“the whole 
is the subgroup of the complete, out of the complete persons asked”, Turn 29b: VM  ML  ML  
CL). In Turn 29c, she does not refer separately to the part, but addresses the part-whole-relationship 
in decontextualized meaning-related language and encircles simultaneously first the lower left rec-
tangle then the left half of the area model. In this way, she explains the connection between the mean-
ing-related language and the area model for the part-whole-relationship (Turn 29c: ML  VM).  

For comparing Justyna’s and Katja’s pathways in the navigation space in Figure 5, the graphical 
summary makes visible typical phenomena that we could identify also in other cases: 

 Both girls do not only switch unconsciously between representations, they connect representa-
tions by translating or explaining with high degree of consciousness.  
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 Both try to explain the compacted concepts such as “part-of-part-statement” by unfolding some 

inherent concept elements, part, whole, and part-whole-relationship, and connecting further rep-
resentations as the visual model or meaning-related language. Whereas a translation can be con-
ducted on each level of compaction, the explanation of connections between these representations 
always requires the unfolding into more refined concept elements (Renkl et al., 2013).  

 Although Justyna works with part and whole separately, she does not have the language to artic-
ulate the mathematical structure behind it, so her explanations get stuck. The translations into 
contextual language alone is not sufficient for her to explain the connection.  

 In contrast, Katja successfully unfolds the highly compacts situation types in the texts to the 
whole, the part, but also to the part-whole-relationship. When she explains the connection be-
tween representations, she uses structural decontextualized meaning-related language that allows 
her to explicitly articulate the structures and the part-whole-relationship that Justyna felt unable 
to express.  

In this way, Katja masters better than Justyna to explicate the connection between these representa-
tions in more depth, and to go the way back upwards to the compacted concepts.  

Discussion and Outlook. 
In this paper, we brought together two theoretical perspectives formerly treated as separate, semiotic 
processes for dealing with multiple representations (Lesh, 1979; Ainsworth, 2006; Renkl. et al., 2013) 
and epistemic processes of compacting concepts in conceptual development (Aebli, 1981) or unfold-
ing them back into its constituent concept elements. This act of networking perspectives allowed us 
to study how two girls deal with multiple representations for complicated concepts such as situation 
types of conditional or joint probability. When the students’ semiotic processes are disentangled with 
respect to the concept elements they refer to, we understand better how dealing with representations 
is connected to epistemic processes of compacting and unfolding concepts.  

The qualitative analysis reveals that at the level of compacted concepts, it seems not possible to ex-
plain the connection in more depth beyond stating the correspondence of the compacted concepts. 
For being able to explain the connection more explicitly, the compacted concept must be unfolded 
into its concept elements, and multiple connections need to be explained, for the part, for the whole 
and the part-whole-relationship. In this way, the conceptual framework of the navigation space can 
provide an insightful tool to disentangle what exactly it means that the complex meanings of multiple 
representations must be negotiated in classrooms (Marshall et al., 2010). Although the vague idea of 
connecting representations is often mentioned in practical contexts, we will need much more investi-
gations within our conceptual framework to disentangle the complexities of what this entails exactly 
(Post & Prediger, submitted).  

So far, these first empirical findings have to be interpreted with respect to their methodological limi-
tations. Specific limitations are (1) the small sample size, and (2) the restriction to one specific topic 
and one particular task. In future research, the investigations need to be extended to other tasks and 
topics to investigate in how far the identified intertwinement of semiotic and epistemic processes cuts 
across different mathematical topics.  
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Changes and dependencies of two different quantities are characteristics of functional relationships, 
which are often visualized in graphs. Hence, for graph interpretation it is necessary to perceive and 
interpret change. This paper focuses on how students perceive change in graphs. Since eye tracking 
is a promising research tool to approach thinking processes, we conducted an exploratory case study 
with two participants: We used eye tracking and stimulated recall interviews to examine this method’s 
potential for studying individual processes in perceiving change in graphs. From the observed eye 
movements and given interpretations, we were able to illustrate that students’ individual approaches 
in perceiving change in graphs can be related to different levels of covariational reasoning. 

Keywords: Eye tracking, eye movements, functions, graphs, covariational reasoning. 

Introduction. 
Graphs, which are one of the external representations of functions, are pervasive in our lives and 
therefore also an important topic for mathematics education since they represent functional contexts 
(Friel et al., 2001). However, the meaning of a graph is not immediately apparent (e.g., Freedman & 
Shah, 2002). To understand data, represented in graphs, it is important to be able to interpret graphs 
and especially to perceive the relationship between the values of two quantities.  

Some studies have already been conducted on how students reason when working with two different 
quantities, focusing on how they change in relation to one another. Research focuses, for instance, on 
different kinds of covariational reasoning (Johnson, 2015). Yet, how students proceed when 
interpreting empirical graphs and their change is investigated only to a limited extent. Knowledge on 
this can help to improve the learning and teaching of graph interpretation and in particular of 
covariational reasoning. To shed light on graph interpretation processes, eye tracking (ET) appears 
to be a promising research tool. Since ET has—to the best of our knowledge—not yet been used to 
study students’ empirical graph interpretation, we first want to investigate the method’s potential 
itself: whether it is possible to draw conclusions from eye movements of students interpreting graphs 
and to infer students’ approaches of perceiving change in graphs. We first ask a methodological 
research question RQ1: Is it possible to infer students’ perception of change in graphs from their eye 
movements and given interpretations? If it turns out that such inferences are possible, it is of interest 
to approach the empirical research question RQ2: What approaches do the participants use when 
perceiving change in graphs and what levels of covariational reasoning does this reveal?  
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Theoretical Framework. 
Graph interpretation and covariational thinking in mathematics education. 

Graphs play an important role in everyday life, as they are used, for example, in order to visualize the 
development of stock market prices, temperature curves, or training processes. Due to this high 
applicability for real-world phenomena, and because graphs represent also inner-mathematical 
functional relationships suitably, graphs are central contents in mathematics education. Graphs do not 
reveal their meaning immediately, which is a general characteristic of mathematical objects, as Duval 
(2006) describes:  

Mathematical objects, in contrast to phenomena of astronomy, physics, chemistry, biology, etc., 
are never accessible by perception or by instruments (microscopes, telescopes, measurement 
apparatus). The only way to have access to them and deal with them is using signs and semiotic 
representations. (p. 107) 

Data visualized in graphs must be understood by inferring their interrelationships, their background, 
and meaning. To meet these demands, it is crucial for pupils “to identify certain types of changes and 
dependencies, which are part of common events in the real world, as well as to become familiar with 
their representations” (Eisenmann, 2009, pp. 73–74). Numerous studies revealed that students may 
have difficulties dealing with representations of functions and that certain types of errors are common 
due to a lack of covariation understanding (e.g., iconic interpretations, interval/point confusion, 
slope/height confusion) (Leinhardt et al., 1990). Working with functions requires dealing with two 
different quantities, focusing on how these quantities change in relation to one another. Thompson 
and Carlson (2017) emphasize that students’ need to develop an appropriate idea of the relationship 
between values of two quantities in their work with functions. They argue that “variational and 
covariational reasoning are fundamental to students’ mathematical development” (p. 423). Since the 
graphs used in our study always consider changes in two quantities (time/distance covered and 
velocity, or time and filling level), we restrict ourselves to covariational reasoning in this paper. 
Thompson and Carlson (2017) distinguish six major levels of covariational reasoning, which show a 
continuum of students’ conceptions of covariation: no coordination, precoordination of values, gross 
coordination of values, coordination of values, chunky continuous covariation, smooth continuous 
covariation (p. 441). The first four levels can be considered as preliminary stages of conceptualizing 
covariation. Students whose covariational reasoning can be classified in the two highest levels 
perceive actual covariation, as only then the change in one quantity affects changes in the other 
quantity. Therefore, our study focuses on chunky and smooth continuous covariation, since we intend 
to describe students’ covariational reasoning when describing change in empirical graphs. In general, 
continuous covariation involves the perception of change in one variable simultaneously with 
changes in another variable. More specifically, in a chunky continuous covariation, the changes are 
perceived in intervals with a fixed, but not necessarily the same, size. The focus is on the values at 
the end of each interval and how they change as compared to the end of the following interval. In 
contrast, in a smooth continuous covariation the change is perceived as increasing or decreasing. The 
focus is on how the values change within an interval. 
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Some studies have already investigated how changes and covariation in functions are identified and 
understood (e.g., Johnson, 2015). Yet, it has hardly been explored how change is perceived in the 
interpretation of graphs and in how far covariational reasoning is involved. These processes of 
interpreting graphs and perceiving change within them are complex and may differ between 
individuals, so that ET appears to be a promising method to investigate these processes on a micro-
level. We believe that with the help of eye movements, cognitive processes in the interpretation of 
graphs and in particular the perception of change in graphs as well as students’ approaches and use 
of covariational reasoning may be inferred: This is why we investigate the use of ET and its potential 
for this purpose in this paper. 

Eye tracking in mathematics education research. 

ET describes the capturing of person’s eye movements, which can be visualized in a video of 
participants’ field of view, with a wandering dot indicating the gaze. Studies on eye movements have 
considerably increased over the last years (König et al., 2016). In a mental-oriented view of ET, which 
we also adopt for our study, ET studies are used to infer cognitive processes from eye movements, 
i.e., “to use eye movements as a window to cognition” (König et al., 2016, p. 2). The prerequisite for 
this is the eye mind hypothesis (EMH). The EMH presumes a close relationship between what persons 
fixate on and what they process (Schindler & Lilienthal, 2019). However, it has been revealed that 
this assumption cannot easily be taken for granted in mathematics education. For example, Schindler 
and Lilienthal (2019) found that there are instances in which eye movements cannot easily be mapped 
to cognitive processes and that even if this is possible, the interpretation of eye movements is often 
ambiguous. Therefore, they call for domain-specific theories for the interpretation of eye movements. 
One domain in which ET has rarely been used is graph interpretation. Nevertheless, ET seems to be 
beneficial for studying students’ graph interpretation: Strohmaier et al. (2020) emphasize that ET 
lends itself to the use of visualizations of mathematical objects since the work with visualizations 
requires persons to process visualized information with multiple gazes. To investigate the potential 
of ET for the analysis of graph interpretation processes, we conducted the study that is presented in 
this paper: It explores the potential of ET for analyzing graph interpretation and perception of change 
in particular. In addition, we will empirically focus on how change in graphs is perceived by students 
and on if and how eye movements can be used to infer students’ covariational reasoning.  

Method. 
Sample, task design, and setting. 

In our exploratory study, we analyzed eye movements of two university students during graph 
interpretation tasks, who volunteered to be participants for our study. They were told that they will 
participate in a study on functions at secondary level. The participants, Gerrit (age 21; engineering 
and management student with a focus on production engineering; high affinity for mathematics) and 
Elias (age 28; a teacher student for German and history; low affinity for mathematics) were selected 
because they have different profiles in terms of their professional background and mathematics 
affinity. Further, they were not familiar with empirical graphs so that they might show interesting 
approaches to interpret them. In addition, being university students, they could probably express rich 
information about their cognitive processes in the interviews. 
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This paper presents an excerpt from a larger study that examined participants’ eye movements while 
interpreting graphs in different situational contexts (see Figure 1 for two examples) as inspired by the 
Shell Centre for Mathematical Education (1985)). Each unit consisted of five analogous tasks with 
different demands. The focus in this paper is on the first task, which asked the students to describe 
the change in the graph (see Figure 1). The tasks were presented on a screen. There was no time 
restriction for working on the tasks. The study took place in a quiet room with the participant and the 
first author of the paper administrating the tasks. The participants sat on a firm chair in front of a table 
where the monitor was located. Before the questions and the graph were presented, the students were 
familiarized with the situational context and the graph by presenting them with a digital task sheet on 
the monitor showing the graph and an introductory text about the situational context.  

 
Figure 1: Examples of Task 1 (translated to English)  

Eye tracker and ET data. 

For data collection we used a wearable eye tracker: Tobii Pro Glasses 2 (50 Hz, binocular, infrared, 
45 g, built-in microphone). The tasks were presented on a 24” screen (60 Hz, viewing distance: 60 
cm). First, a single-point calibration procedure was performed. Under ideal conditions, gaze 
estimation is 0.62° (Tobii Pro, 2017). In our study, the accuracy was 1.1° on average, which 
corresponds to 1.15 cm in the screen. This inaccuracy was taken into account in the task design and 
data interpretation. Before solving the tasks, Gerrit and Elias passed an additional 9-point calibration 
verification so that we could later check the measurement’s accuracy. Since we wanted to study 
students’ interpretation process and especially their perception of the change in graphs, we considered 
all eye movements relevant and decided to analyze raw data (Holmqvist & Andersson, 2017), i.e., 
eye movements as displayed in gaze-overlaid videos. 

Stimulated recall interview based on gaze-overlaid video. 

In our study, we combined ET with stimulated recall interviews (SRIs) using gaze-overlaid videos, 
similar to Schindler and Lilienthal (2019) since ET has not been used so far to investigate student’s 
perception of change and therefore it is still unclear how to interpret the eye movements in this 
context. Stimulated recall is a technique that “gives participants a chance to view themselves in action 
as a means to help them recall their thoughts of events as they occurred” (Nguyen et al., 2013, p. 2). 
We used gaze-overlaid videos as stimulus in our study, in which the participants can watch their eye 
movements as a wandering dot. They were supplemented with students’ utterances during task 
processing. Gaze-overlaid videos represent a strong stimulus because they make eye movements 
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visible, which are usually not conscious (Stickler & Shi, 2017). Thus, it is particularly important to 
keep the time span between the ET recordings and the SRI short. We therefore conducted the 
interviews directly, after only a short break for data transfer, so we can assume that they were still 
very much aware of their thoughts, which were then additionally recalled by the strong stimulus of 
visible eye movements as trigger. The participants had the possibility to stop the video themselves to 
explain their thoughts. In addition, the interviewer was able to pause the video and to invite the 
participants to express their thoughts. The participants wore ET glasses even during the SRI. Here we 
made use of the scene camera and the built-in microphone of the eye tracker to record the verbal 
utterances and gestures. This procedure was explained to the participants before data collection. 

Data analysis. 

To prepare the data analysis, the students’ utterances while working on and answering the tasks were 
transcribed together with a description of the eye movements taking place during this process. In 
addition, the utterances of the interviewer and the interviewees in the SRI were transcribed. These 
elements were arranged in one document in neighboring columns to make visible what happened 
simultaneously and what the SRI refers to. Data analysis followed Schindler and Lilienthal (2019) 
since this approach is particularly suitable for domains in which ET has rarely been used before and 
where it is not yet clear how eye movements can be interpreted: The steps of qualitative content 
analysis (Mayring, 2014) were applied and—due to the explorative and descriptive nature of the 
research questions—categories were developed inductively. We distinguished between gaze 
categories that describe gaze patterns and interpretation categories that describe the cognitive 
processes associated with the respective gazes. Eye movements and cognitive processes, as described 
by the students in the SRIs, were then mapped for all data. 

Results and Discussion. 
Research Question 1: Feasibility of inferring students’ perception of change in graphs. 

Our methodological research question (RQ1) asked whether it is possible to infer students’ perception 
of change in graphs from their eye movements. Results indicate that the participants were able to 
explain their eye movements in the SRI. Their utterances gave information about their cognitive 
processes while interpreting graphs and perceiving the change within them. This is the prerequisite, 
since we have as a basis only utterances and interpretations of the participants’ eye movements. We 
cannot observe the cognitive processes directly, but can only get closer with the help of the 
participants’ eye movements and interpretations. However, like Schindler and Lilienthal (2019) we 
found that a certain eye movement pattern could not always be clearly assigned to one cognitive 
process (see Table 1). 

Nevertheless, conclusions about approaches can be drawn based on the eye movements that the 
participants used when perceiving change and interpreted in the SRI. For instance, we were able to 
observe certain eye movement patterns, consisting of different gazes, that were interpreted by the 
participants (e.g., following the course of the graph, jumping between a point on one axis and a point 
on the graph, looking on several different points on the graph in succession). These eye movements 
were used to perceive the change in the graphs to eventually be able to describe it in order to answer 
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the task. The participants referred to these gaze sequences, which differed between them, in the SRI. 
Using this information, we were able to infer approaches when perceiving change in graphs. 

Eye movement pattern 
(identified in the gaze-overlaid video) 

Cognitive process 
(described by the student in the SRI) 

The gaze follows the course of the graph Grasp the graph (e.g., the course or properties) 

Grasp the situational context (e.g., thinking about driving curves with a 
racing car) 

Fixations on turning points of graphs Focus on prominent parts of the graph (e.g., turning points) 

Grasp the graph (e.g., the course or properties) 

Table 1: Exemplary eye movements from task 1 and students’ interpretation 

Research Question 2: Students’ perception of change and covariational reasoning 

Our empirical research question (RQ2) addressed the approaches the participants use when perceiving 
change in graphs and whether levels of covariational reasoning can be revealed from this. As 
mentioned above, we were able to observe differences regarding the occurring eye movements 
between the two participants. Elias followed the course of the graph or a graph section with his gaze 
particularly often. Afterwards, he interpreted this mostly as trying to grasp the situational context and 
sometimes the graph (e.g., course or properties). Moreover, he often looked at several different points 
on the graph in succession. He explained that this eye movement pattern served the same intention 
(grasping the situational context or graph). Also, Elias used gestures to support his gaze, for example 
by following a section of the graph with his finger. This was never the case for Gerrit, who also used 
other eye movements particularly frequently. His gaze often jumped between a point on one of the 
axes and a point on the graph. He explained that he was reading a particular point or value from the 
graph. Sometimes he added that he used this to grasp the graph. In addition, he often looked at turning 
points of the graph. He interpreted this in the SRI as focusing on prominent parts of the graphs. These 
results indicate that Elias perceived the change in the graphs by looking at the graph and following it 
with his gaze and, in some instances, his fingers, or by making sense of it by looking at several 
different points. He explained the change of velocity of a racing car in a car race as follows.  

Elias: The car starts. Probably, most likely enters a curve, therefore drives slower here, 
then comes out of the curve, drives faster again, drives a straight stretch, then drives 
a steep curve, so narrow, must brake very hard in any case. Then drives relatively 
quickly out of the curve again, then again a long stretch and then again a small 
curve. [utterance translated from German to English by first author] 

It is clear from the utterance that he focuses on the change of velocity within the intervals, i.e. 
increasing or decreasing. This is characteristic for smooth continuous covariational reasoning.  

Gerrit’s perception of change was apparently different. He also said several times that he focused on 
prominent parts and read values there: 
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Gerrit: Ehm, so first the velocity decreases to 0.35 km. Then it increases again to the 

original 160 km/h from 600 m to 1 km. Then it drops again to about 60 km/h. And 
then increases again to 160 km/h after 1.3 kilometers. From 1.8 km to 2.3 km keeps 
that, eh the car its velocity. And then drops again to 105 km/h approximately at 2.5 
km/h and then rises again to its original 160 km/h until 2.8 km and then keeps that 
until 3 km. [utterance translated from German to English by first author] 

In this utterance, Gerrit defined intervals and read off a value for each endpoint of an interval in order 
to describe the change of velocity, what is typical for chunky continuous covariational reasoning. 
Yet, he did not disregard the change of the graph between two of such points: He described whether 
the graph increased, decreased, or was constant in the respective interval. This hints—at least to a 
certain extent—also at smooth covariational reasoning. 

Discussion and outlook. 
In this paper, we have illustrated that it is possible to interpret students’ eye movements when 
interpreting graphs in order to obtain information about their perception of change in graphs. Our 
tentative results indicate that ET in combination with SRI seems to be a suitable method for studying 
the perception of graphs. In addition, we were able to infer different approaches regarding the 
perception of change and different levels of covariational reasoning for Elias and Gerrit. Our results 
provide evidence that certain eye movement patterns are typical of certain levels of covariational 
reasoning. For future research, it would be of interest, for instance, whether the relations found 
between Elias and Gerrit’s gaze patterns and approaches can also be found for other individuals. 
Moreover, we only focused on smooth and chunky covariational reasoning, i.e. the two highest levels 
of covariational reasoning according to Thompson and Carlson (2017). Thus, it might be valuable to 
test and further sharpen the insights from this exploratory paper on a larger data set, and with middle 
school students to maybe find different approaches in interpreting the change in graphs and related 
levels of covariational reasoning and its preliminary stages. Besides, it should be examined what 
implications arise from our initial result. Elias, whose approach can be related to smooth covariational 
reasoning, for example, often referred to the situational contexts and related the change of velocity 
directly to the circumstances of the situational context (by saying that the car is driving a curve and 
therefore brakes, etc.). Whether there is a direct connection between the kind of covariational 
reasoning and the extent to which the situational context is referred to and how this affects the further 
interpretation of the graph remains to be studied. Even though our case study provided only a glimpse 
on these aspects, we think that it may be a first step towards investigating students’ interpretation of 
graphs and in particular their perception of change in graphs using eye tracking.  
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In this paper we analyze a grade 3 teacher’s practice and how it relates with his pupils’ 
representations. We focus on teacher-pupils interaction in the classroom while pupils are solving a 
problem. We aim to understand how the teacher manages his pupils’ use and interpretation of 
representations. Data were collected through video and audio recording of lessons and later analyzed 
through content analysis. The results show that the teacher’s representations, actions and questioning 
types change according to the pupils’ activity and difficulties and that the whole class discussion is 
the teacher’s preferable moment for a more dynamic change of actions and questioning. That way, 
to promote his pupils’ use and understanding of representations, the teacher adapts his 
representations, actions and questioning types. 

Keywords: Representations, elementary school teachers, teaching practices, teachers’ actions, 
questioning. 

Introduction 
A representation is a mental or physical construct that describes the characteristics of a concept and 
its relationships with other concepts (Tripathi, 2008). The way teachers deal with representations in 
their practice has a great influence in how pupils use and understand them (Stylianou, 2010). It is 
widely acknowledged that teachers must use different kinds of mathematical representation to 
promote pupils’ understanding of representations (NCTM, 2007; Tripathi, 2008). However, 
representations are connected to each other in different ways and that can promote several difficulties 
in the process of pupils’ understanding and learning of representations (Goldin, 2008). Knowing how 
teachers may use different representations is important to know if that is the source of pupils’ 
difficulties. Our aim in this study is to understand how a grade 3 teacher explores a task with his class, 
focusing our analysis on the way he manages to promote the use and interpretation of representations. 

Teachers’ practice and representations 
Pupils’ activity on a task is determined by the way that teachers explore it in the classroom, 
specifically the role that teachers assume, their actions and the questions that they ask (Swan, 2007). 
For Boaler (2003), the process of describing and analysing the practices of teachers is very complex 
considering that they result from the influence of different aspects like teachers’ knowledge, beliefs 
and prior experiences. She also states that besides describing teacher practices it is important to know 
how they are doing these practices, what decisions are they taking and what influences them. Thus, 
in the classroom, it is important to analyse teachers’ actions and how they are questioning their pupils. 
In their perspective, McDonough and Clarke (2003) suggest that in the classroom teachers should: (i) 
talk clearly to their pupils; (ii) explore adequate and challenging tasks with more than one possible 
solution; (iii) promote the establishment of connections with pupils’ previous knowledge; and (iv) 
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explore learning opportunities that emerge in the classroom. These authors also refer to the 
importance of using different teaching approaches, materials and representations. Blosser (1975) 
identifies four question types: (i) managerial, to give operating instructions; (ii) rhetorical, to 
emphasize an idea; (iii) closed, when there is a limited number of right answers; and (iv) open, when 
there are several possible answers. In a similar way, for Mason (2000), there are three different main 
aims in teachers’ questioning: (i) focusing, when the teacher questions seek to help pupils focus in 
detail, using a funneling effect; (ii) testing, in which the teacher analyses the pupils’ activity, namely 
their comprehension, how they articulate ideas and make connections among them; and (iii) inquiring, 
when the teacher questions the pupils to understand what they are thinking. 

Vergnaud (1987) refers to representations as crucial elements for teaching and learning mathematics. 
Accordingly, NCTM (2007) refers to representations as essential elements in upholding pupils’ 
understanding of mathematical concepts, in mathematical communication, in argumentation and in 
suiting mathematics into realistic problems situations. Simultaneously, many authors have been 
categorizing representations in different types. For example, Bruner (1999) indicates that 
representations may be active, iconic or symbolic, Thomas et al. (2002) refer to pictorial, iconic and 
notational, and, more recently, Loc and Phuong (2019) indicate visual, symbolic, verbal, contextual 
and physical representations. It is important to acknowledge that understanding representations is a 
complex process because a representation may have several meanings and a meaning may have 
different representations (Goldin, 2008). Concurrently, Duval (2006) refers that for understanding the 
features of a mathematical object, we need to know how to make changes within a representation 
(treatment) or to convert it into another representation (conversion). 

In the classroom, the role of teacher is crucial in helping pupils to understand and to use this intricate 
web of representations. In the past years some researchers have been studying teachers’ practice 
regarding mathematical representations. For example, Webb et al. (2008) not only categorize 
representations as formal, informal and preformal but they also provide suggestions to teachers 
regarding how to help their pupils in interpreting and using representations. In the pupils’ learning 
process, teacher’s representations also have their own role. Bishop and Goffree (1986) indicate that 
teachers must encourage the establishment of connections among representations while promoting 
their interpretation. Stylianou (2010) develops these ideas indicating that representations play a 
crucial part of teachers’ explanations as they provide new concepts, drawings regarding problem-
solving processes, and create connections among concepts. She also states that a teacher may bring 
in new representations, connecting them to pupils’ previous knowledge and, by doing this, the teacher 
supports pupils’ learning of concepts, procedures and problem solving processes. 

Methods 
This paper is drawn from larger research about elementary school teachers’ practices regarding 
mathematical representations. During the study, a working group composed of four grade 3 teachers 
got together in pre and post lesson sessions to analyze their practices and their pupils’ work. In this 
paper, we will only present and analyze the interaction of one of these teachers, Ricardo (teacher and 
pupil names are pseudonyms), with his pupils, during one lesson. He is a young grade 3 teacher, from 
a school in the surroundings of Lisbon (where he has been for the past 2 years, since he started to 
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teach). He has twenty pupils (8 to 10 years old) and they have been working together since grade 2. The 
pupils are used to solving problems as the one reported in this paper. However, the teachers thought 
that the problem would be interesting to explore with their classes, given their pupils’ needs and 
difficulties in problem solving and in working with whole numbers. That way, we will analyze 
Ricardo’s practices while exploring the following task in his classroom: “The third graders are 
planning a field trip. They rent four buses that are fully booked. Each bus has 24 pupils. Knowing that 
for each group of 10 pupils there must be one teacher, how many children and adults are going in this 
field trip?”. 

Data was gathered by video and audio recording during class observations. Pupils’ written work was 
also collected. Data was analyzed through content analysis (Fiorentini e Lorenzato, 2006), according to 
the three moments of the lesson indicated by Ponte (2005): (i) introduction of the task, where 
negotiation of meaning may take place (Bishop & Goffree, 1986); (ii) pupils’ autonomous work, 
individually, in pairs or groups); and (iii) whole class discussion. From the categorizations of Bruner 
(1999) and Thomas, Mulligan and Goldin (2002) we categorized representations as: active (handling 
objects or materials), pictorial (drawings really close to context); (iii) iconic (informal symbols – like 
dots and arrows – diagrams or schemes using different types of representations); verbal (words); and 
symbolic (mathematical symbols). Based on the framework of Ponte and Quaresma (2016), we defined 
a new table of analysis (Table 1). Here, we categorize teachers’ actions regarding how they promote 
the understanding of representations, and we relate their actions with their pupils’ activity. We assume 
that it is underlined the mutual influence between the pupils’ activity and the teacher’s actions. That is, 
pupils’ activity affects teachers’ actions and, in turn, teachers’ actions promote pupils’ activity.  

Pupils’ activity regarding 
representations Teachers’ actions 

Choosing/Designing 

Promoting the free choice of a representation 
Challenging to choose a different representation 
Guiding about an adequate representation 
Providing explicit suggestions or examples 

Using 

Challenging to use a representation 
Asking to interpret a representation 
Guiding about the use or interpretation of a representation 
Informing pupils about how to interpret or how to use a representation 
(In)validating a representation chosen by pupils 

Transforming 

Challenging to establish treatments, conversions and connections 
Guiding to establish connections 
Guiding to identify possible treatments and conversions  
Inform about treatments and conversions 

Reflecting 
Challenging to systematizations  
Leading to systematizations  
Informing about systematizations  
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Table 1: Teachers’ actions in different moments of the pupils’ activity 

In table 1 there are four categories for pupils’ activity, related to teachers’ actions: (i) support the 
pupils’ design or selection of a representation; (ii) promote the use or/and interpretation of a 
representation; (iii) promote the transformation of representations; and (iv) promote pupils’ reflection 
about representations.  

Regarding teachers’ questioning, based on the general frameworks indicated by Blosser (1975) and 
Mason (2000) we considered three different types of questions, with some subtypes (table 2).  

Type Subtype Examples 

Focusing 

Rhetorical We saw this already, didn't we? 

Processual 
Could you open your books on page 58? 

What if we look back into the task? 

Orienting 
What if you sum it all? 
  

Confirmation 
Closed How many will we have if you add 10? 
Open Can we solve it in another way? 

Inquiring Open Do you agree with your colleagues' answer? 
Why? 

Table 2: Different types of teachers’ questions 

As we move from Focusing to Inquiring, questioning the questions’ subtypes become more 
demanding for pupils and teachers as they enable the possibility of having different answers, 
strategies and representations. 

Results 
Introduction of the task 

Ricardo reads the statement of the task and his pupils begin a whole group discussion as they try to 
solve it by using verbal representations. As the discussion gets really confusing, the teacher chooses 
to help them by informing the class how to interpret the statement of the task. He focuses on data that 
he finds most relevant (“You must find two different things. How many pupils and how many teachers 
are there?”). 

Pupils’ autonomous work 

While the class is working individually and autonomously, Ricardo notices that some pupils do not 
understand the statement of the task and he chooses to discuss it again with his class. One of the 
pupils, Mateus, states that there are 96 pupils. The teacher questions him through closed confirmation 
questions (How do you know that there are 96 pupils?” and the pupil answers correctly (“That’s 
because it’s 24 times 4!”). Additionally, Ricardo brings another representation to the discussion as he 
converts Mateus’ verbal representations into an active representation, by using his own fingers 
(Twenty-four in one [finger/bus], plus twenty-four in another, and another one, and another! It’s 96, 
isn’t it?”). Although Mateus can explain his answer, he is struggling to find the number of adults. 
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That seems to happen because he’s referring to a real-world situation, as they’re field trip usually has 
one adult per bus (“There are four adults because each bus takes one adult!”). However, Vanessa 
opposes him by recalling the statement of the problem (“No! Each group of TEN must have one 
responsible adult!”). 

While the pupils keep trying to solve the problem by using oral verbal representation, Ricardo 
pressures them to use written representations. When Ana, another pupil, answers “I am solving it! I 
am thinking about it!”, Ricardo tells her “You are thinking (…) but I want you to explain it here [in 
your notebook]! I don’t want you to tell me… I want you to show me!”. In saying this, he is not being 
critical or restrictive about using a specific representation. Much on the contrary, he is trying to 
promote the use of different types of representation and, at the same time, he seeks that the pupils 
convert mental representations into written ones. As some pupils are still trying to understand the 
statement of the problem, Ricardo uses an iconic representation to inform them about its interpretation 
(Figure 1).  

 
Figure 1: Iconic Representation (with pictorial and symbolic representations) used by the teacher 

Whole group discussion 

Ricardo transcribes to the board the iconic representation used by Jonas, another pupil, and he asks 
the pupil to explain it to his colleagues (Figure 2). 

 
Figure 2: Iconic Representation (table with verbal and symbolic representations) used by Jonas and 

transcribed by the teacher 

The teacher questions Jonas with rhetorical questions (“You did this, didn’t you?”, “For each group 
of ten pupils there is an adult, right?”), confirmation questions (“One adult… For how many pupils?”, 
“How did you fill this table?”). In this way, Ricardo almost completes the iconic representation, 
reaching the 90 pupils square. At this moment, there are six remaining pupils. At first, Ricardo decides 
to challenge his pupils to interpret Jonas’ representation, questioning them through inquiring 
questions (“Can I add one more adult?”, “Can we have ten adults?”). When he does this, he triggers 
a big discussion with two different opinions and several arguments. Most pupils agree that the right 
answer is nine adults while a few (like Jonas) argue that the right answer is ten adults. However, none 
of the pupils can give a proper explanation and Ricardo changes his actions and questioning type. 
This time, he gives some suggestions to interpret Jonas’ table through open confirmation questions 
(“What about the remaining six pupils? Are they staying at school?”) as he tries to relate to a real-
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world situation. Now, although pupils seem to notice that leaving behind six pupils it is not a fair 
thing to do, they still cannot justify the tenth adult. Once again, the teacher changes his actions and 
questioning type to help the pupils. On a third attempt, Ricardo informs the class about how they can 
interpret Jonas’s table and he questions the pupils with rhetorical questions (“There must be one more 
adult, doesn’t it?”, “These six pupils are not going all by themselves, right?”, “We need one more 
adult to go with them, OK?”). Despite Jonas’s and Ricardo’s explanations, some pupils are confused 
and they do not accept this solution because they have solved it in a different way. For those pupils 
the right answer is 96 pupils and 12 adults. Previously, during the teachers’ working group session, 
teachers acknowledged that there could appear two different possible solutions (96 adults with 10 or 
12 adults, depending on the assumption made about the requirement for adults accompanying 
children: is it in the buses or is it for the global group of children). As this task might have two 
different solutions, they thought that it would be the perfect opportunity to work this type of tasks 
with their classes. That way, Ricardo knows what is happening and he asks Mauro to present his 
solution to his colleagues (Figure 3). 

 
Figure 3: Iconic Representation (with verbal and symbolic representations) used by Mauro. 

Mauro explains how he interpreted and used his representation (“There are 24 pupils in each bus… 
So… Ten pupils go with one teacher, another ten with another teacher and the four children left are 
going with another one!”). Ricardo informs the class about Mauro’s explanation, focusing on the data 
that he found more relevant (he compares Jonas’ and Mario’s representations and strategies). For that, 
he questions the pupils through rhetorical questions (“Before, we add all the pupils to find the number 
of adults, wasn’t it?”). After this, he asks again Mauro to explain his representation as he guides his 
pupils to establish connections between the two different iconic representations. He questions his 
class through closed confirmation questions (“How many adults here?”). Ricardo ends the whole 
group discussion by informing the pupils about the aspects that he found more relevant. That way, he 
talks about the differences and similarities of the two representations, reinforcing that both 
representations, strategies and solutions are correct.  

Discussion 
During the introduction of the task, Ricardo informs his class about the statement of the task, focusing 
on the information that he finds more relevant. For that purpose, he uses closed confirmation 
questions as he supervises the whole group discussion that occurs among pupils. Afterwards, during 
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the pupils’ autonomous work, the teacher asks the pupils to use and to interpret their own 
representations, guiding them to convert mental representations into written ones. Although he uses 
active and pictorial representations (included in the scheme of the buses – figure 1) to help the pupils 
to interpret the statement of the task, while they are working by themselves he promotes a free choice 
of representations. By doing this, Ricardo promotes his pupils’ awareness of the importance of 
choosing an adequate representation (Thomas et al., 2002). The whole group discussion is the 
moment where Ricardo asks the pupils to explain to the class their own representations. For that 
purpose, he uses rhetorical and closed confirmation questions. Depending on the pupils’ answers and 
difficulties, the teacher: (i) challenges the pupils to interpret a representation, questioning them with 
inquiring questions; (ii) suggests how to interpret a representation by using open confirmation 
questions; and (iii) informs the class about how to interpret a representation through closed 
confirming questions and/or rhetorical questions.  

In the three moments of working on the task, Ricardo’s actions tend to change according to the pupils’ 
answers and difficulties. When pupils have less difficulties, Ricardo prioritizes actions with a higher 
level of cognitive demand (Figure 4). When and if pupils start having more difficulties, Ricardo 
changes his actions and questioning, decreasing its level of cognitive demand. That way, the more 
difficulties the pupils face, the lower level of cognitive demand his actions have.  

 
Figure 4: Interrelation teacher’s actions and teacher’s question  

Conclusion 
As Duval (2006) states, to understand the features of a mathematical object we need to know how to 
make treatments or conversions. Ricardo is aware of this as he, at the introduction of the task, informs 
the pupils about the conversion of the verbal representations (from the statement of the problem) into 
pictorial and active representations so they can understand it and choose an adequate representation 
to solve the problem. Additionally, during pupils’ autonomous work, the teacher looks up for different 
representations. Later, during the whole class discussion those representations can be discussed, as 
the pupils present to their colleagues the two possible solutions for this task. By doing this, Ricardo 
provides the pupils the opportunity of establishing connections between the two different iconic 
representations (Bishop & Goffree, 1986). In this way, by using different types of actions, questioning 
and representations (not only from pupils but also his own), Ricardo strives to promote the pupils’ 
understanding and the use of different representations. From here, in the future, it would be interesting 
to explore how the teacher’s actions influence pupils’ representations. 
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Introduction
The Thematic Working Group 25 “Inclusive Mathematics Education – Challenges for Students with 
Special Needs”, established for CERME11 in 2019, was running for the second time at CERME12.
The scope and focus of TWG25 covers research about special educational needs (SEN) and inclusion, 
in the intersection of mathematics education research and special education research. Since this scope 
is broad, the TWG-papers comprised grades 1-12, teacher professionalization and teacher education 
programs, types of inclusive settings in mathematics, concepts and models for instruction and subject 
matter didactics, special educational needs and child characteristics, and content related decisions for 
inclusive mathematics education. 

During CERME12, TWG25 had 34 participants from 12 countries (Europe, also Brazil, Canada and 
the US) who presented 17 papers and 7 posters. The first session was spent on aims and objectives of 
this TWG and an exchange of overarching issues of the situation of SEN mathematics education in 
the different represented countries. In the following TWG-sessions, two up to four papers were 
presented each time, under an overarching theme. The three main fields were:

General papers, conceptual models, research review

Focus on teacher education, pre-service and in-service teachers

Focus on classroom, teaching and learning situations, different school levels

Moreover, poster authors were asked to identify the connection to papers in the initial session in order 
to include all participants. Posters were about inclusive education and collaborative instruction 
focusing on pre-service, general and special educators (Dibbs & Boyle) and their different roles 
(Scherer & Rolka). They also covered specific interventions for supporting students with difficulties 
in learning mathematics (Larmann & Ludwig), proposed a structure that should facilitate 
development of teaching materials for inclusive classrooms (Novotná & Moraová), presented ways 
of supporting special-needs children in the context of probability (Jaschke) and discussed diversity 
in relation to digitalization (Ludes-Adamy & Viermann), as well as affective and mediational 
suitability (Blanco et al.) in relation to a specific inclusive program.  
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In detail, the sessions were arranged according to the following thematic focal points:

Session 2: General papers, conceptual models, research review

This theme includes discussions of prior research regarding conceptual models as well as inclusive 
models for special educational needs in mathematics.

Helena Roos & Anette Bagger: Explicit instruction and special educational needs in mathematics 
in early school years

Marzia Garzetti, George Santi, Heidrun Demo & Giulia Tarini: The interplay between theory and 
practice in the development of a model for inclusive mathematics education

Karine Millon-Fauré, Patricia Marchand, Claire Guille-Biel Winder, Teresa Assude, 
Jeanne Koudogbo, Laurent Theis & Mathieu Thibault: Preventive support scheme for 
mathematics learning: possible ways to provide aid before and after the class session

Session 3: Focus on teacher education, pre-service and in-service teachers

This theme includes discussions of how framework conditions such as teacher education, specific 
teaching, cooperation between professions and steering documents influence inclusive mathematics 
teaching.

Tabea Knobbe, Christof Schreiber & Michaela Timberlake: Cooperation of mathematics teaching 
and special education – seminar concept and experiences

Jennifer Bertram & Petra Scherer: Pre-service teachers’ beliefs and attitudes about teaching in 
inclusive mathematics settings

Michael Gaidoschik: “Individual Educational Plans” for “dyscalculic” students in primary schools 
of South Tyrol: A questionable law, poorly implied

May Ron Ezra & Esther S. Levenson: Perceptions of mathematical creativity among math teachers 
in special education classrooms

Session 4: Focus on classroom, teaching and learning situations, primary level

This theme includes discussions of specific interventions in the inclusive mathematics classroom to 
enhance learning of every student. The focus of research could be the learning environments, the 
students’ learning processes, or teachers’ acting. 

Yola Koch: Working with objects of representation in practical contexts on length in inclusive 
classrooms

Uta Häsel-Weide & Marcus Nührenbörger: Inclusive math practices in primary school

Marie-Line Gardes, Céline Hugli, Jasinta Dewi, Ludivine Hanssen & Michel Deruaz: Evaluation 
of a computer-based learning program for students with mathematical learning difficulties

Carina Gander: “Counting with all children from the very beginning”: One attempt to promote 
early arithmetical skills based on part-whole thinking
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Session 5: Focus on classroom, teaching and learning situations, primary and lower secondary level

Also in this session, the papers and discussions focused on specific interventions in inclusive 
mathematics classrooms, with a special view on more advanced content such as problem solving or
early algebra.

Raja Herold-Blasius & Benjamin Rott: Low-achieving secondary students learn mathematical 
problem solving – A longitudinal, qualitative video study

Ángeles Chico, Inmaculada Gómez & Nuria Climent: Problem-solving by students with 
Asperger’s Syndrome

Ann-Kristin Tewes & Marcus Schütte: The mathematical support format reproduction

Francesca Gregorio: The role of examples in early algebra for students with mathematical 
learning difficulties

Session 6: Focus on classroom, teaching and learning situations

This theme includes discussions of how to create engagement in inclusive mathematics classrooms
to enhance learning and participation of every student.

Amanda Queiroz Moura: Inclusive landscapes of investigation in mathematics classrooms with 
deaf and hearing students

Silvia Baccaro & Annalisa Cusi: A teaching methodology focused on the use of a videogame: 
analysis of the engagement of students with special educational needs

Introductory discussion – overarching issues of inclusion
Mathematics education needs to embrace the diversity that exists in mathematics classrooms to be 
able to meet every student. This implies that heterogeneity with respect to language, culture and 
abilities needs to be acknowledged (Bishop et al., 2015). This requires an accommodation in the 
mathematics classroom to enhance every student’s learning. To be able to embrace the diversity and 
to meet the needs in a democratic education for all, where students with different languages, cultures, 
abilities and skills are educated together, inclusion is used as an overarching notion for support 
(Bishop et al., 2015). Though, often the notion of inclusion has been connected to special education 
rather than to a democratic education overall (Allan, 2012).

If we define the concept of inclusion in a mathematics education context, it implies to look for ways
enabling us to meet the diversity in the teaching of mathematics. In Europe (and also around the 
globe) the way “inclusion in mathematics education” is defined and used is very different (Roos, 
2019). Some countries and cultures connect inclusion very tightly to special education and 
disabilities, while others have moved towards meeting diversity on a more overarching level, 
connected to a democratic and equitable education. This also depends on the national governing 
documents. Even so, there are many challenges for inclusive education in school and research 
(Kollosche et al., 2019).

Mathematics education at every school is expected to create inclusive classrooms, with lessons where 
every student receives appropriate support and challenge. Here, the teachers’ competences and those 
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of other professionals are crucial. In turn, this puts pressure on the teacher education to be able to 
equip teachers for their mission regarding inclusive mathematics teaching (Krainer, 2015; Scherer, 
2019). Although there exist big differences in different countries, the need of preparing both pre-
service and in-service teachers for inclusive mathematics education is recognized in all countries. The 
discussions in TWG25 showed the need to recognize different strategies to support pre-service and 
in-service teachers’ processes of inclusive mathematics teaching. If teachers are better prepared for 
teaching in inclusive classrooms and have models and methods to make it work, education can be 
able to meet and value diversity (Askew, 2015).

During many sessions in TWG25, both 2019 and 2022, the question of how we understand inclusive 
education in mathematics was discussed. What does “inclusive education” mean in different 
countries? What is the role of stakeholders in different countries? How do we apply inclusive 
education to different cultural and national settings, and what are sufficient strategies on organization, 
classroom and individual level? These questions are reflected upon in the overarching themes that 
emerged from the discussions of TWG25, and described below.

Overarching themes of TWG25
Research in the field of inclusive mathematics covers a wide range, and several trends in mathematics
education were presented in the papers of TWG25. All papers focus on some aspects of mathematics 
teaching and learning in relation to SEN and deserve due attention. During the sessions, the following 
points were discussed, especially how they are linked with each other. 

What do we understand as „inclusive maths education“, which theoretical perspective do we 
have/propose?

Within TWG25, it was agreed that it is important to have a broader discussion about inclusion, also 
from a theoretical point of view. In addition to bringing solutions, it is important to ask questions
about what inclusion means, about the (no) need of labels for students, about the characteristics of 
students with special needs and other aspects of research not intended to directly provide something 
applicable in the classroom, but with consequences on classroom practices. Without a focus on 
theory, it is not possible to have deep enough discussions and propose good enough solutions.

Inclusive mathematics education is a very complex field with manifold perspectives: Student 
perspective, teacher perspective, teacher training, etc. The question we should ask is who is it in the 
system that has special needs – the student, the teacher, the system of education?

It follows from the discussions in the TWG that truly “inclusive mathematics education” is such 
practice in which every pupil in the classroom is welcome regardless of knowledge, skills and 
background. One way of achieving it is by paying enough attention to the learning environment, to 
let pupils work together, collaborate, be active. Participation and inclusion are strictly connected. A 
way of achieving this is making suitable learning offers and preparing lessons allowing each pupil to 
be successful and experience the pleasure of achieving. We should look for ways of engaging all 
students in standards-based, inquiry-based instruction, but provide structures and support so that all 
pupils will be successful, without diminishing the cognitive demand of the tasks. No doubt that this 
is not easy to achieve, but it is what we should be aspiring to.
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The challenge takes on additional facets when deafness and the lack of a common (sign) language 
make communication between hearing and deaf children as well as between deaf children and 
(mathematics) teachers who are not trained in sign language difficult or at times even impossible. In 
her contribution, Amanda Queiroz Moura pleads for the establishment of “inclusive landscapes of 
investigations” with the permanent engagement of sign language interpreters, who have the explicit 
task of facilitating communication also between hearing and deaf children while they work together 
on challenging problems. In the discussion, however, it was also questioned whether the “dogma” of 
joint learning of hearing and non-hearing children might not, under certain conditions, lead to a 
reduction of learning opportunities for the non-hearing, so that in this case social participation might 
happen at the expense of the content-related participation of deaf children. 

Genuine inclusion always means both (Roos, 2014; Jung & Schütte, 2017) – and obviously requires 
a great deal of ressources in terms of competent teachers, time, but also technical aids, material, 
spatial requirements and the like. One important task for future research in inclusive mathematics
education might be to provide a more solid empirical basis than we have at the moment for assessing 
the way in which those inclusive settings, which have been enacted in different nations based on 
pedagogical convictions and, in the end, political decisions, actually prove their worth for the content-
related participation of children with different learning backgrounds.

What do we understand as „special-needs student“, what (if any) use is it to have „labels“ like 
„dyscalculic", how helpful/harmful are national laws/policies in that respect, (how) do we/can we 
have influence on such laws/policies?

Another subject of discussion was the issue of labelling. In many countries, diagnosing a special-
needs child is a process that schools have to perform in order to be allowed to adapt the child’s 
program and start interventions. As a rule, such diagnoses follow a medical-psychological approach, 
with deficit-oriented definitions of “disorders” and clear cut-off criteria within standardized testing 
procedures. This seems to be particularly problematic in the case of “dyscalculia”, given the empirical 
evidence from mathematics education research that learning difficulties in mathematics may at least 
to some extent be explained by inadequate instruction (Gaidoschik, 2019), and in many other cases 
be traced back to insufficient fit between the teaching and the learning requirements of a single child.
In such cases, it is not the child that suffers from a learning disability, but rather the school system 
from disability to offer the child a proper learning environment. Attributing “dyscalculia” may 
therefore result, on the one side, in maintaining such classroom practices that do no good to any child, 
and on the other side, in single children's learning difficulties being labelled as consequence of their 
individual dispositions (Gaidoschik et al., 2021).

Of course, under the given circumstances, only such a diagnosis may mean the possibility to have 
fewer pupils in classroom, a special teacher to cooperate, to give the pupil extra time in exams, to 
have an assistant for the child. Yet, if the label does not lead to additional pedagogical resources that 
could help to overcome the learning difficulties, it rather has the function to formalize the further 
treatment of a child defined as presumably permanently not able to learn mathematics at a “normal”
level. In the following, this labelling may be very unpleasant for the child as they get an official stamp 
of not being ordinary, of being different from the others. In some cases, it may result in resignation, 
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low aspirations, low self-confidence and low level of motivation. The discussion among the TWG 
participants showed that there is no simple answer to whether such labelling is the right step in 
inclusive education. While some argued that the label helps the teacher understand the pupil’s needs 
but also may help the pupil gain self-confidence seeing that they do not perform badly because they 
would be “stupid”, but because of a diagnosis that is not their fault, others argue that a truly inclusive 
classroom with truly inclusive practices is ready to support every learner whatever their special needs 
are. 

Do we have best practices or proposals for such practices or open questions about how to get to best 
practices in teacher education for inclusive maths education with a view to collaboration of maths 
and special education teachers?

A lot of the discussions focused on good as well as bad practices in mathematics classrooms, existing 
and used in different countries. As Michael Gaidoschik pointed out in his paper, inclusive practices 
in many countries tend to be tied by demands of the authorities. The school has to create a formal 
document (which may have different forms in different countries) that defines the methods of work, 
the objectives, the needs, but all this is rigid and quite formal. In some countries this kind of document 
or plan is subject to work of the inspection more than what is actually happening in the classroom. 
This in no way supports good practices at schools. And, as follows from the discussion, research has
a responsibility to not just accept what politicians do and how they act and define things, but to always 
be critical, especially when researching inclusive and special education.

The discussions also focused on collaboration between ordinary mathematics teachers and special 
teachers, which does not happen in all countries, and special teachers are still very rare in some of 
the countries. To put it shortly, mathematics teachers tend not to get sufficient training in care for 
special-needs children and special teachers, in general, do not seem to have sufficient training to 
understand problems in mathematics. Hence, special teachers need more training in mathematics and 
mathematics teacher more training in special education. Also the need of close collaboration between 
special and regular mathematics teachers was part of the discussions and is regarded as one of the 
topics that should be inquired in more detail in research and on the next CERME. 

Following the discussions in TWG25, collaboration is at the base of inclusion. This does not refer 
only to pupil-teacher but also to teacher-teacher and also researcher-researcher as well as teacher-
researcher collaboration, where mutual projects of special education and mathematics education will 
definitely bear fruit. Collaboration and knowledge-sharing between disciplines is what is needed. 
Effective co-teaching requires sustained professional development in which both (special and 
mathematics teacher) develop a shared understanding of mathematical development, curricular 
design and both the challenges and strengths of pupils with special needs. It also requires that teachers 
have adequate time to plan together. Teacher education programs need to foster collaboration between 
special education and mathematics education. In turn, research on the mathematical learning of 
students with disabilities must integrate neurodiversity into research design and implementation.

In the discussions it turned out that a lot of current research focuses on the pupil and his/her activity. 
However, it is the teacher whose everyday reality is teaching heterogeneous classes with pupils of 
very different skills and levels. They need to be paid a lot of research attention, looking for ways of 

Proceedings of CERME12 4374



helping them grow more self-confident and less anxious in classrooms. The question the research 
community should ask is “What training and support does the mathematics teacher need?”

Conclusion and further directions of TWG25
Reflecting on the research presented in TWG25 and on the discussions, diverse issues concerning 
inclusion in mathematics education and challenges for students with special needs in mathematics 
exist, and further research is needed. One major question is how to cope with the diversity of research 
directions and cultural as well as national and international differences. Still, it is interesting to see 
that even if there are very diverse issues concerning inclusion in mathematics education, there are 
similarities too, and this could be a chance for national and international exchange and cooperations. 
In our view, research topics should be better connected and, if possible, transferred. Research findings 
for specific mathematical topics in the sense of best practices should be reviewed for other topics or 
for similar topics on different school levels or grades. What are the relevant factors or design elements 
that work in inclusive classrooms? In what way can we consider both students’ perspective and 
teachers’ perspective? Also on the teacher education level, apart from specific studies with a detailed 
focus, the different phases of teacher education programs could be considered in a more general way: 
Understanding professional development of teachers as a life-long-learning process (e. g. Cedefop, 
2015), findings with respect to pre-service teacher education programs should be reviewed for in-
service teachers, and should be connected to programs for teacher educators. Mathematics programs 
for special education and programs for regular teacher education should be reviewed in more detail 
and checked for common objectives. Only in this way will the necessary cooperation in so called 
multiprofessional teams be ensured.

In summary, there seem to be opportunities to build a common ground regarding inclusive 
mathematics teaching and challenges for students with special needs. Looking forward to CERME13 
the community has a challenge to build further on the work at CERME12 and build a common ground
to address issues within the scope of TWG25.
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In this paper we reflect on the effects of a methodology based on the use of a videogame in terms of 
engagement of students with special educational needs. By referring to theoretical lenses useful to 
characterize students’ in-the-moment engagement, we analyse data collected within a teaching 
experiment conducted within mixed-abilities lower secondary school classes. The results of our 
analysis show a general positive trend in the evolution of students’ engagement structures. 

Keywords: Special educational needs, videogames, inclusion, structures of engagement. 

Introduction 
The research documented in this paper is part of a wider study on the use of videogames in fostering 
inclusion in the teaching-learning of mathematics at primary and lower secondary school level. 
Different studies highlighted the potentialities of the use of videogames in fostering inclusive 
processes for students with special needs (Durkin et al., 2013), highlighting the key-role of 
fundamental dynamics that these methodologies trigger, such as identification, gradualness and non-
public failure (Gee, 2003). In the case in which the use of videogames supports mathematics teaching, 
fostering inclusion requires a careful design of the teaching methodologies with the aim of giving to 
all the students the opportunity to “experience mathematics in ways which make sense to them” 
(Scherer et al., 2016, p. 641). Research has shown, in particular, the key-role of fostering students’ 
reflections on: (a) the mathematics embedded within the videogame (Jorgensen (Zevenbergen), 
2015); (b) the skills they develop when they play (Gros, 2007); (c) their own difficulties and the 
possible ways to overcome them (Van Eck, 2015).  

In tune with these ideas, we designed a teaching methodology which combines the use of a videogame 
with the activation of reflective practices developed by students at both individual, peer and collective 
level. In this paper, we reflect on the effects of this methodology in terms of students with special 
educational needs engagement, by focusing on data from a teaching experiment carried out with 
mixed-abilities classes of lower secondary school. 

Context of the study and teaching methodology 
The teaching experiment on which this paper is focused involved 93 students of 5 mixed-abilities 
lower secondary school classes (grades 6 and 7) and their mathematics teachers. Here, we analyse the 
case of 25 pupils with special educational needs (in the following, SEN) belonging to these classes. 

Before presenting these students, it is important to share some information about the Italian tradition 
in terms of inclusion. In Italy, differential classes were abolished during the 1970s. The issue of SEN 
has become central since 2012, when the Ministry of Education introduced a specific regulation that 
identifies three main categories of students with SEN: (A) students with certified disabilities (sensory, 
motor or psychic); (B) students with specific developmental disorders (dyslexia, dyscalculia, 
dysgraphia, dysorthography, attention deficit hyperactivity disorder and limiting or borderline 
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cognitive functioning); and (C) students within a condition of socio-economic, linguistic or cultural 
disadvantage. The regulation introduces, in particular, a series of benefits for students belonging to 
these categories, such as the creation of personalized didactical plans that include didactic strategies 
based on the students’ needs and a list of didactic tools to be used to support the students. 

21 students, among the 25 on which the study is focused, belong to these three categories: 2 students 
belong to category (A), 15 students belong to category (B), and 4 students belong to category (C). 
Other 4 students not belonging to these categories were included within this study, due to their poor 
performance and the difficulty faced by the teacher in involving them during mathematics lessons. 

Table 1: An example of activity that students face within Matematica Superpiatta 

Description of the activity “Prime numbers” Tools provided to students within the activity 
The activity is divided into 6 tasks of increasing 

difficulty. The goal of each task is to complete a sequence 
of integer numbers by inserting the missing numbers. 
Each number in the sandbox game is represented as a 
block that can be searched and picked up, placed, or 

created (crafted) according to some rules.  
Students can find only prime numbers in the game field. 

Not prime numbers have to be crafted as products of 
prime numbers through the tools provided in the game. 

“Inventory”: a place when the user can collect objects 
gathered in the game field. 

"Crafting table": a table where prime numbers can be 
inserted to craft other numbers as products of prime 

numbers.  
“Pick”: when used on a block containing a number, the 
block disappears from the world, appearing in the user 
inventory. In case the picked block does not contain a 

prime number, it is “broken” into blocks containing the 
prime factors, which appear in the inventory. 

As stated above, during the teaching experiment we implemented a teaching methodology that 
combines the use of a sandbox videogame, Matematica Superpiatta (www.matematicasuperpiatta.it) 
with the activation of students’ reflective practices. Matematica Superpiatta (in the following, MS) 
was designed with the aim of realizing a learning environment within which students could face 
challenging mathematical activities by interacting with the different tools at disposal. Table 1 
summarizes one of the activities that students face within MS (“Prime numbers”), which is aimed at 
making them reflect on the decomposition of numbers in prime factors. The teaching methodology 
combines individual interactions with the MS and collective metacognitive reflections on the 
strategies implemented during this interaction and on the mathematical knowledge on which these 
strategies are based.  

Table 2: Questions from the reflective worksheet related to the activity “Prime numbers” 

Questions from the worksheet Aims of the questions 
(a) Which of these numbers can you find in the field? 
Why? (list of numbers written under the question: 11, 

14, 27, 31, 59, 75) 
(b) How do you find the useful numbers to be put in 

the crafting table?  
(c) Does the game become easier or harder when you 

progress through the levels? Why? 
(d) What did you learn through this activity?  

Questions (a) and (b) are aimed at making students reflect 
on the mathematical knowledge on which the activity is 

focused and on the strategies that they adopted during the 
game. 

 
Questions (c) and (d) are aimed at making students reflect 
on their own experience of learning through the use of the 

videogame. 
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The teaching methodology is characterized by this sequence of phases: individual interaction with 
MS (phase 1); individual (phase 2) and small groups’ (phase 3) reflections on the activities faced 
within MS; and collective discussions aimed at sharing and comparing ideas, enhancing the 
contribution of each student in the collective construction of meanings (phase 4). Specific reflecting 
worksheets have been designed to support students’ metacognitive reflections during phases 2 and 3. 
Examples of questions from the reflecting worksheet proposed after students’ individual interaction 
with the activity “Prime numbers” are presented in Table 2. 

Research framework and research questions 
Motivation plays a fundamental role, especially in the case of students with special needs and learning 
disabilities (Sideridis, 2009), since it has the potential to direct students’ choice of taking part (or not) 
in mathematics activity. In the last years, research studies on the issue of motivation in mathematics 
suggested to shift the focus of the research on motivation in mathematics from the study of longer-
term attitudes and beliefs toward the study of in-the-moment engagement (Middleton et al., 2017). 
Engagement is a multidimensional construct, which combines three interrelated components 
(Fredricks et al., 2004): behavioral engagement, which draws on the idea of participation; emotional 
engagement, which refers to students’ affective reactions in the classroom; cognitive engagement, 
which incorporates “thoughtfulness and willingness to exert the effort necessary to comprehend 
complex ideas and master difficult skills” (Fredricks et al., 2004, p. 60).  

To study and understand the specific nature of mathematical engagement, Goldin et al. (2011) 
introduce the term engagement structure, defined as: 

an idealization involving a characteristic motivating desire or goal, actions including social 
behaviors toward fulfilling the desire, supporting beliefs, self-talk, sequences of emotional states, 
meta-affect, strategies, and possible outcomes – a kind of behavioral/affective/social constellation 
situated in the person, becoming active in social contexts (Goldin et al., 2011, p. 548). 

The key-role played by the design of teaching methodologies in structuring students’ engagement 
have been stressed by Jansen (2019), who states that engagement is structured by the opportunities to 
do mathematics given to students and by students’ way of taking up these opportunities to interact 
with the teachers and peers about mathematics. Goldin et al. (2011) identified 9 main categories of 
engagement structures: (1) Get the job done, related to students’ desire of completing an assigned 
mathematical task correctly following given instructions; (2) Look how smart I am, related to the 
desire of impressing others or him/herself with his/her mathematical ability; (3) Check this out, 
related to the desire of obtaining a reward; (4) I’m really into this, related to the desire of experiencing 
the very activity of addressing a mathematical task with the need of understanding; (5) Don’t 
disrespect me, related to the desire of meeting a perceived challenge to the student’s dignity, status, 
or sense of self-respect; (6) Stay out of trouble, related to the desire of avoiding interactions that may 
lead to conflict or distress; (7) It’s not fair, related to the desire of redressing a perceived inequity; 
(8) Let me teach you, related to the desire of helping another student; and (9) Pseudo-engagement, 
related to the desire of seeming to be engaged while avoiding genuine participation. 

The aim of this paper is to reflect on the potentialities of the teaching methodology implemented 
during our teaching experiment in structuring students’ with SEN engagement by providing them 
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with opportunities to both do mathematics and reflect, with the teacher and their classmates, on their 
experience. The research questions related to this aim are: (1) How could the students’ with SEN 
engagement, during the teaching experiment, be characterized at the behavioural, social, cognitive 
and affective level? (2) What are the main characteristics of the teaching methodology that structured 
this kind of engagement? 

Research methodology 
Middleton et al. (2017) stress on the importance of focusing on multiple methods to investigate 
students’ engagement, combining different techniques, such as, for example, researcher’s 
observations, students’ self-reports and teachers’ reports. 

In tune with this idea, we collected different kind of data: students’ written answers to the questions 
in the reflecting worksheets; videos of classroom discussions; data about students’ individual 
interactions with the videogame (levels of the game that were faced, number of mistakes, number of 
attempts, …); students’ answers to a questionnaire about their experience within the whole teaching 
experiment; teachers’ answers to two different questionnaires proposed at the middle and at the end 
of the project; teachers’ final interview aimed at making them reflect on their students’ experiences. 

In order to answer our research questions, we developed a qualitative analysis of the collected data 
that refer to the students who participated in the teaching experiment. For each student, the results of 
the analysis of each kind of data have been intertwined with the aim of highlighting clues of his/her 
engagement. Table 3 summarizes the data analysed to characterize each level of engagement. 

Table 3: Data analysed to characterise each level of engagement  

Level of 
engagement Data that have been analysed 

Behavioural 
engagement 

- students’ interventions during the classroom discussions that highlight their ways of taking 
part to the collective work that is developed; 

- students’ ways of interacting with others (tone of their voice, kind of gestures they used…); 
- students’ answers to the final questionnaire, in which they share how they perceive their 

participation within the classroom activity. 
Affective 

engagement 
- students’ interventions during the collective discussions, answers to the reflecting worksheets 
and to the final questionnaire, through which they share their emotions toward mathematics and 

manifest their perceived competence in doing mathematics. 
Cognitive 

engagement 
- students’ interventions during the classroom discussions that highlight their willingness of 
understanding and of contributing to the reflective practice developed at a collective level; 

- students’ answers to the reflecting worksheets, in which they make explicit the mathematical 
reasons subtended to the strategies adopted during their interaction with the videogame. 

The data collected through the questionnaires proposed to the teachers and their final interviews were 
analysed with the aim of confirming (or not) our interpretation of the other data. In particular, during 
the final interviews, teachers were explicitly asked to reflect about their students’ engagement and 
about the role played by the methodology adopted during the teaching experiment in structuring 
students’ engagement. 
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Data Analysis 
In this section we present two examples of the analysis we performed. We chose to focus on two 
opposite cases: the case of Antonia, which testifies a positive evolution of the student’s engagement 
throughout the teaching experiment; and the case of Giorgio, which highlights the role played by the 
student’s difficulties in inhibiting his fruitful participation 

Example 1: The case of Antonia 

Antonia is a female student diagnosed with severe specific learning disorders (dyslexia and 
dyscalculia; category (B)). She has a problematic relationship with a very close and competing 
classmate, Elisabetta, who tends to impose herself on Antonia, blocking her attempts to participate in 
classroom activities and heightening her sense of insecurity. During the different phases of the 
educational project, Antonia’s participation becomes active lesson by lesson.  

This evolution of her engagement has been clearly highlighted at the behavioral level. In fact, during 
the pair activities and the classroom discussions, the tone of her voice and the gestures used to show 
her involvement in these activities highlight Antonia’s ongoing overcoming of her sense of insecurity 
in interacting with others. Moreover, in different moments during the classroom discussions, Antonia 
intervenes without the need of the teacher’s solicitation, differently from what usually happened in 
the past. In the final questionnaire, she declares that she was stimulated to participate in an active way 
when excerpts from her reflecting worksheets were displayed on the interactive whiteboard. This 
testifies the role played by the design of the classroom discussion (phase 4) in fostering Antonia’s 
positive attitude toward her participation within the discussion itself. The analysis of classroom 
discussions has also shown that Antonia has become able to overcome the difficulties due to 
Elisabetta’s presence, since she reacts with confidence to her interferences when she intervenes 
during the discussions. We hypothesize that playing alone with the videogame (phase 1) contributed 
to strengthen Antonia’s self-esteem and the sense of self-efficacy, thanks to the gradualness of the 
tasks and to the possibility of managing time in an autonomous way.  

It was possible to highlight a positive evolution even at the level of cognitive engagement, since 
Antonia’s interventions during the classroom discussions are productive also in relation to the 
mathematical content, highlighting that she is able to effectively direct her attention at the issues on 
which the discussion is focused. Moreover, Antonia is able to autonomously complete all the levels 
of the videogame that the students were asked to face. In the individual reflection sheets (phase 2) 
and in the final collective discussion (phase 4) Antonia often refers to the videogame as a real concrete 
experience talking about “numbers that cannot be multiplied”, referring to the crafting table. This 
testifies that: on one side, individually interacting with the videogame (phase 1) contributed to make 
Antonia’s experience with mathematics less abstract; one the other side, working on the reflecting 
worksheets enabled Antonia to make the mathematics behind the game more explicit and to reflect 
on the reasons subtended to the effectiveness of the adopted strategies. These factors allowed Antonia 
to speak more confidently about mathematics during the classroom discussion. 

At the level of affective engagement, Antonia’s answers to the questions within the reflecting 
worksheets display her increased perceived competence, as it is testified by this excerpt, which 
highlights her self-confidence about the competencies she has developed in facing the different levels 
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of the videogame: “The videogame becomes more difficult (level by level), starting from the easiest 
(levels) to enable us to learn. Since you get better, the game gets harder''. 

Our analysis highlights different structures characterizing Antonia’s engagement during the project. 
Although some of her answers show an engagement in tune with the structure “look how smart I am” 
(testified by Antonia’s declaration that she was proud that her answers were displayed on the IWB, 
making her protagonist of classroom discussions), we think that the prevailing structure is “I’m really 
into this”, since Antonia explicitly addresses the idea of learning in her reflections, displaying 
satisfaction about her increased mathematical understanding through the different levels of the 
videogame. Our interpretation of Antonia’s engagement has been confirmed by her teacher, who, 
during the interview, declares that she was positively impressed by the desire to interact that Antonia, 
usually very shy and insecure, displayed during classroom activities.  

Example 2: The case of Giorgio 

Giorgio is a male student diagnosed with severe specific learning disorders (dyslexia and dyscalculia; 
category (B)). He presents serious short-term working memory problems, logical-cognitive 
difficulties and a strong sense of frustration that often leads to conflicting relationships with peers, 
teachers and parents. During the different phases of the teaching experiment, Giorgio’s difficulties 
are so great that they prevent him from deeply and truly participating in the activity at different levels. 
At the level of behavioral engagement, Giorgio does not participate in the collective discussions, even 
when one of his classmates solicits his intervention to share some reflections about the phase of small 
group work. The inconsistency and lack of meaning that characterize Giorgio’s answers to the 
reflecting worksheet highlight also the difficulties faced by Giorgio in being engaged at the cognitive 
level. Moreover, the student declares, in his reflecting worksheet, that he felt lost during the activities, 
testifying the problems related to his engagement also at the affective level. A little evolution of his 
engagement could be observed only in the last part of the teaching experiment, when, after a collective 
discussion, Giorgio shows a better sense of perceived competence when answering to the final 
questionnaire, declaring that he has understood a little better and that he has overcome, albeit with 
great difficulty, the problems encountered when interacting with the videogame, displaying a more 
positive attitude towards the activity performed. 

Our analysis highlights a main structure characterizing Giorgio's engagement during the teaching 
experiment, that is “Pseudo-engagement”. In fact, although Giorgio seemed busy when he 
individually worked on the reflecting worksheet, a sentence within his answers to the final 
questionnaire testifies that his aim was to pretend to be actively involved in the activities, rather than 
really reflecting on the mathematics problems he faced and on the possible strategies to face them: 
“In the worksheet I had no problems because it was enough to write something”. Our interpretation 
about Giorgio’s engagement has been confirmed by his teacher who, in both the first and second 
questionnaires and during the final interview declared to be worried about Giorgio’s situation. 

Conclusion 
In the previous section, we presented two examples of analysis of the data collected during our 
teaching experiment. The first example, the case of Antonia, testifies the effectiveness of our 
methodology in fostering the positive evolution of students’ engagement structures toward a structure 
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characterized by students’ desire of being involved in the collective construction of mathematical 
knowledge and of learning, which Goldin et al. (2011) indicate with “I’m really into this”. The 
analysis of the data collected for most of the 25 students with SEN who participated in our teaching 
experiment has confirmed the positive trend highlighted in Antonia's case. In particular, we observed 
that most of the students showed a positive evolution of their engagement structures, even at the level 
of cognitive engagement. 20 of them, in fact, were able to autonomously complete all the activities 
within the videogame. Among them, 14 students proposed fruitful interventions during the classroom 
discussions in relation to the mathematical content under scrutiny and 11 students showed awareness 
of their progress by explicitly reflecting on the improvement of their cognitive engagement. These 
interpretations were confirmed by the teachers in the intermediate and final questionnaires and in the 
interview. In particular, teachers stressed on the greater participation that they observed in the case 
of the students with SEN involved in the study, declaring that they observed a widespread students’ 
desire to interact positively and a sense of gratification, trust and security manifested by most of these 
students, together with a reduction of fear of making mistakes and a general fun in doing mathematics. 

These results allow us to propose some reflections on the characteristics of the teaching methodology 
implemented during our teaching experiment that played a key-role in structuring students’ 
engagement. In tune with other studies, the phase of individual interaction with MS (phase 1) favors 
a positive development of students’ sense of self-efficacy. Working (individually and in small groups) 
on the reflecting worksheets (phases 2 and 3) supports students in making the mathematics behind 
the videogame explicit and in developing argumentative competences, enabling them to effectively 
contribute to the classroom discussion. Phase 4, in turns, contribute to the refinement of the reflections 
developed during phases 2 and 3, supporting students’ development of awareness about the teaching-
learning processes in which they are involved. 

The structure “I’m really into this”, the one displayed through the analysis of Antonia’s data, emerged 
only in 4 cases. We think that this result shows that it is necessary to devote more time to the 
implementation of this kind of methodology (in particular, the phases devoted to the activation of 
reflective practices) in order to foster an engagement characterized by students’ will to address the 
activities guided by a real need of understanding. Our analysis has also highlighted that in some cases 
(Giorgio and two other students), students tended to strive not to be noticed, adopting an avoidance 
behavior, or pretended to be involved even if they did not really address the mathematical content 
under scrutiny. In these cases, students’ experience within the teaching experiment was not effective 
in fostering a positive evolution of the structures of their engagement. Our hypothesis is that, in the 
case of students like these, it is necessary to plan a targeted intervention to help them overcome the 
difficulties that prevent them from becoming deeply engaged in the activities. In the case of Giorgio, 
a first targeted intervention has been carried out, involving him in meetings with his teacher aimed at 
triggering and supporting his explicit reflections about his experience with the videogame and the 
other activities around which our teaching methodology is designed. This approach seems to be 
promising but further experimentation is needed. As a further step of our study, we will also collect 
further data, throughout a longer time span, with the aim of investigating if the positive trend 
highlighted by our analysis could be confirmed. 
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Introduction 
One of the main objectives of the current education is to create inclusive teaching-learning processes 
that guarantee equal opportunities for all students. In recent years, several studies and reports (Renta 
et al., 2019; Save the Children, 2020) have revealed a worrying increase in adolescents at risk of 
social exclusion. The term social exclusion encompasses those sectors of society that are in a 
vulnerable social situation, which causes them to be outside certain rights relating to work, education 
and culture (Artuch-Garde et al., 2017). The fact of not receiving an adequate education prevents 
these sectors of society from being formed as citizens capable of functioning within the world that 
surrounds them, which does not help them to get out of the circle of exclusion. 

In this work, we follow the Didactical Suitability Theory (DST) (Godino, 2013) in order to evaluate 
the didactical suitability of a socio-educational program promoting the mathematical stimulus to 
adolescents at risk of social exclusion. The DST analyses the didactical suitability of an instructional 
process through the study of six partial suitabilities: epistemic, cognitive, interactional, mediational, 
affective and ecological. Concretely, in this study, we focus on the study of both affective and 
mediational suitability of the program. Affective suitability refers to the degree of the students’ 
involvement (interest, emotions, motivation, attitudes, and beliefs) in the study process; mediational 
suitability depends on the availability and adequacy of material and temporal resources in the 
teaching.  

Methodology 
The program is developed in 14 one-hour sessions addressing the mathematical stimulus by means 
of integrating the STEAM methodology (Blanco et al., 2018). These sessions were carried out 
fortnightly outside of school hours in three different secondary schools. The design of the activities 
carried out in each session contemplates diverse mathematical content from a variety of 
interdisciplinary contexts. In the “A mix that blows up?” activity, the students have to search through 
an experiment what is the proportion of vinegar and bicarbonate that establishes the chemical reaction 
to inflate a balloon as much as possible. The sample was made up of a total of 68 from the first level 
of the Spanish secondary education and from three different schools. The schools are located in semi-
urban areas in which a large proportion of the population consists of families at risk of social 
exclusion. The students participating in the programme were selected in a joint meeting by the 
researchers, the mathematics teachers, and the orientation staff of the school, responsible for assessing 
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and attending the educational and family needs of each pupil in his/her learning process. The 
instruments used for data-collection were the video recordings of the sessions, the researchers' 
notebook – as a record of participant observation – and semi-structured interviews with the secondary 
schools' mathematics teachers and orientation staff.  In addition, a satisfaction questionnaire was 
applied for each activity carried out at the end of each session. In order to assess the mediational 
suitability, the following indicators given by the DST were analysed: the material resources, the 
number of students, the schedule and classroom conditions, and the duration of the sessions. For the 
affective suitability, students’ interests and needs, their attitudes and emotions are some of the 
indicators studied. 

Results 
The results show a high degree of affective and mediational suitability due to the presence of at least 
87 % of the indicators in all activities. The use of different materials, individualized work and varied 
workspaces favour that these students actively participate in the sessions (mediational suitability). 
The presence of a greater interest in activities leads to a positive attitude towards academic tasks 
(affective suitability), which has been evidenced, in fact, in better academic results. In conclusion, 
the role played by mediational suitability in this context is highlighted, with a direct influence on 
affective suitability, especially in terms of attitude towards the subject. 
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STEM education provides students with 21st century skills considered critical to correspond to the 
increasing challenges of the real world, and to face an increasing demand for specialized STEM 
labor. However, there are several issues related to skills shortages in STEM fields, namely related to 
mathematics. In this regard, it is crucial to highlight the role of the M in STEM in order to innovate 
and improve the teaching of mathematics. This paper presents an integrated approach of STEM 
education highlighting the role of mathematics to understand a real-world problem in the context of 
COVID -19 pandemic. With a qualitative methodology and based on a case study, this research shows 
mathematical tasks to raise awareness of students of how the virus spreads and to understand the 
need for isolation measures, among others. Based on this research it is recommended to resort to 
mathematical tasks based on real world scenarios to promote meaningful learning in students. 

Keywords: STEM education, mathematics education, hands-on, COVID-19 pandemic. 

Introduction 
To face an increasing demand for specialized STEM (Science, Technology, Engineering and 
Mathematics) labor, it is recommended to implement STEM education to provide students with 21st 
century skills considered critical to correspond to the challenges of the real world (e.g., Baker & 
Galanti, 2017). However, there are issues related to skills shortages in STEM fields, namely related 
to mathematics. For example, it is referred that mathematics contributes to the problem of insufficient 
STEM graduates (e.g., Beswick & Fraser, 2019). Therefore, there is a need to highlight the role of M 
in STEM in order to innovate and improve mathematics teaching (Stohlmann, 2018). In particular, a 
context that integrates M with Science, Technology and Engineering (STE) can provide meaningful 
connections between mathematics and STE subjects in students (Becker & Park, 2011). 

This paper presents an integrated approach of STEM education highlighting the role of mathematics 
to understand a real-world problem. COVID-19 pandemic has invaded our world and conditioned our 
way of living (Padmanabhan et al., 2021). For example, students had to be isolated in their homes 
without going to face-to-face classes for several months. In addition, every day the news reveal the 
number deaths, of newly infected, and the total number of people infected, among other information 
related to the disease. The main research question is “How can mathematics be used to make students 
understand a real-life pandemic scenario?” To answer the research question, a case study of a 6th 
grade teacher, who participated in a Professional Development Programme (PDP) will be presented. 
Her example shows the implementation of integrated STEM tasks in class with focus on mathematics.  

Literature Review 
To face a fast-changing world and the complexity of modern societies, the literature advocates the 
need for motivating students to learn and gain skills related to STEM subjects (Kelley & Knowles, 
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2016; Roehrig et al., 2021). In addition, STEM education should make the transition from traditional 
lecture-based teaching strategies to more inquiry and project-based approaches (Breiner et al., 2012), 
with the aim of providing students with skills to solve real life challenges and improve their 
achievement (Beswick & Fraser, 2019; Geiger, 2019). In this regard, the introduction of STEM 
education, based on real life scenarios, motivates students to learn and promotes the development of 
21st century skills (English, 2017; European Schoolnet, 2018; Maass et al., 2019). In Portugal, there 
are also increasing calls for innovative approaches, having recently emerged several guidelines, 
namely on Essential Learning (MEC, 2018) in conjunction with the Profile of Students When 
Completing Mandatory Schooling (ME/DGE, 2017). The last document mentions the need for 
educational systems that contribute for the development of skills that allow students to respond to the 
complex challenges of the 21st century, taking into account the evolution of knowledge and 
technology. In this sense, the curriculum must be interpreted by teachers to explore different themes 
that must be framed in everyday problems of both the students and the socio-cultural environment 
where they are inserted in (ME/DGE, 2017). In this regard, meaningful learning should be provided 
by relating the most important contents of the subject to be taught with relevant aspects of the student's 
cognitive structure including the environment where the student is inserted in (Ausubel, 2012). 

An integrated approach of STEM education should include real-world scenarios with the aim of 
engaging students and providing them with meaningful learning (Kelley & Knowles, 2016; Maass et 
al., 2019). In fact, modern world face complex problems that involve interdisciplinary knowledge 
and skills to solve them, which requires for curricular integration in schools (Roehrig et al., 2021). In 
addition, mathematics should be more emphasized in STEM integration (Stohlmann, 2018). 
Moreover, STEM education can be a form of innovation for teaching mathematics (Fitzallen, 2015) 
and to increase mathematical performance (Stohlmann, 2018). Furthermore, there is a need to develop 
research to understand how STEM integration can promote mathematics education (Baker & Galanti, 
2017). However, the role of mathematics is understated within the STEM field. Therefore, it is 
necessary to develop more research to make mathematics more meaningful across disciplines, and 
also to support teachers in this direction (Maass et al., 2019).  In fact, teachers have a crucial role on 
adapting their practices to provide students with the contexts and strategies recommended to provide 
an effective STEM education in schools (Kelley & Knowles, 2016; Stohlmann et al., 2012). In 
addition, an increasing number of authors argue about the importance of integrating the four 
disciplines included in the STEM acronym (Costa et al., 2020; Kennedy & Odell, 2014).  

In 2020, COVID -19 pandemic, caused by coronavirus SARS-COV-2, seriously affected all life in 
the world (Meehan et al., 2020). The pandemic reminded us that the future is uncertain and 
consequently there is a need for preparing citizens and education systems for what may come, which 
can include changes that we are not expecting (OECD, 2020). Therefore, virulent communicable 
diseases are one of the global challenges that must be addressed in the context of STEM education 
(Maass et al., 2019). More information about modelling COVID-19 pandemic can be provided by 
Meehan et al. (2019) and Padmanabhan et al. (2021). 

Methodology 
In this paper, we use a qualitative research methodology and an interpretative approach by resorting 
to a case study (Cohen, Lawrence, & Keith, 2007). A case study is an empirical research that observes 
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a phenomenon within its real-life context, allowing a generalization of the results obtained, and 
requiring skills and expertise from the researchers (Yin, 2014). 

First authors of this paper designed a PDP that includes several workshops with the aim of providing 
teachers with knowledge and skills to develop and implement STEM hands-on practices in class. In 
the school year 2020/2021 the programme occurred exclusively online because of the COVID-19 
pandemic. Despite being online, the educators tried to preserve the hands-on practices by 
exemplifying them through videos and interactive sessions through the Zoom platform. Teacher Elisa 
(fictitious name) case study was chosen to exemplify how to develop an integrated approach of STEM 
education based on real life scenarios such as COVID-19 pandemic. She is a Mathematics and Natural 
Sciences teacher who participated in the referred PDP, aged 55 years old, 30 years of in-service 
experience and in charge of two 6th grade classes (10 to 11 years old). At the end of the PDP (2021 
January), Elisa (like all the other teachers) presented a final report that includes a critical account and 
her perceptions about the programme, and also proposals of tasks to implement, as well as evidence 
of the activities developed in class. Data collected include participant observation that occurred 
during the workshops of the PDP (first author was present in all the workshops, where focus group 
was promoted) and content analysis of Elisa’s final report. In addition, five interviews were conducted 
with the teacher by phone to better interpret the case. 

Data analysis, results and discussion 

In this section, it is analyzed Elisa’s case study that shows the development and implementation of 
mathematical tasks within the context of COVID-19 pandemic. Elisa was very participative in the 
workshops. In addition, in the interviews she mentioned that she wanted to develop activities that 
were within the curricula she was lecturing and that had meaning for her students. It was not easy to 
choose a theme that was appropriate for her students and included in the curricula of their grade level. 
However, after several discussions with the educators, she finally opted by an interdisciplinary theme 
in the context of COVID-19 pandemic, in order to use mathematics to help interpret and predict the 
evolution of the pandemic according to various possible contagion scenarios Inspired on Providência 
(2020) paper, Elisa planned and developed several tasks to be implemented in class. 

Table 1: Tasks implemented in the mathematics class 

Tasks Scenario of infection 
1 Each student infects two colleagues 
2 Each student infects three colleagues 
3 Each student only infects one colleague 
4 Probability to infect someone is less than one 
5 80% of students are vaccinated 

In a first stage, she introduced COVID-19 thematic in the Natural Sciences class because the virus 
context is part of the curricular contents of this discipline, in the field of Environmental Aggressions 
and Integrity of the Organism. In a second stage, she developed several tasks to be implemented in 
the mathematics’ class. Table 1 describes some possible scenario of infection proposed to the students 
to help them understand the need for isolation or vaccination measures. It is important to notice that 
in the 6th grade level it is not possible to resort to advanced mathematics to model the pandemic. 
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In task 1, Elisa explained the scenario where “Each student infects two colleagues” and that “Sick 
students are isolated at home and no longer infect colleagues”. She also constructed a grid with 12 
lines and 12 columns, where each square represents one student from a school (Figure 1). In addition, 
a table with the “Day” in the first column, the “Number of students who gets sick” in the second 
column and the “Total number of sick students” in the third column was constructed (Table 2). After, 
she asked the students to paint the number of sick students on the grid. 

Teacher: Imagine that each square on a grid (Figure 1) represents a student from a school. 
One day, which we will call day 1, one of the students becomes sick with COVID-
19. Represent him, painting a red square on the grid. 

 
Figure 1: Grid where each square represents one student in a school with 144 students 

She also asked students to fill in Table 2 with this information. Next, she gives information about 
how the sick student infects the others. 

Teacher: Let’s now assume that each sick student infects two students on average. To say 
that it is on average means that it may be that only one person infects one colleague, 
but there is another that infects three. Therefore, on average, each person infects 
two colleagues. So, the next day, day 2, there are 2 more students with COVID-19 
who were infected by the first student with this disease; in all, there are already 3 
sick students. Therefore, paint two more squares on the grid, and fill in the table 
with this information: on day two, 2 in column two and 3 in column three. 

Teacher: Again, sick students are isolated at home and no longer infect colleagues. Now, 
each of these two students is going to infect two other colleagues, and on the third 
day there are four more sick students. Therefore, paint four more squares on the 
grid, and fill in the table with this information. 

Table 2: Each student infects two colleagues 

Day Number of students who gets sick Total number of sick students 

1 1 1 
2 2 3 
3 4 7 
4 8 15 
5 16 31 
6 32 63 
7 64 127 
8 128 255 

Next, she asks several questions: 
a) How many new students will be infected on the 4th day?  
b) And what is the total number of sick students?  
c) In what day is everyone sick?  
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d) What if the school had 1000 students, after how many days would all students be sick?  
e) Can you write the numbers of column 2 in powers of two?  

Table 2 is filled with the numbers until the day where all the squares on the grid (Figure 1) are red, 
which means that all 144 students are sick. As can be seen, on the 8th day all students are sick, in a 
school with a number of students bigger than 127 and smaller or equal to 255 students. Almost all 
students from two classes of Elisa presented the results as stated on Table 2. 

Only two students, one from each class, considered that the school only had 144 students, and for this 
reason, in the 8th day only 17 students get sick and consequently the total number of sick students is 
144 (Figure 2, table on the left). Below follows the answer of one of these two students. 

Student: On the 8th day, only 17 students get sick because in total there are only 144 students 
in the school and 127 students are already infected, so only 17 students are missing. 

The same student also presented the table on the right of Figure 2 to answer that at the 10th day all 
students from a school with 1000 students would be sick. 

  
Figure 2: Each student infects two colleagues 

  
Figure 3: Writing the numbers in column 2 in powers of two 

In addition, Elisa asked students to write the numbers in column 2 in powers of two. A power of 
two is a number of the form 2n where n is an integer, that is, the result of exponentiation with 
number two as the base and integer n as the exponent. Based on this question, she explained to the 
students that “the growth of students sick with COVID-19 was exponential”. Figure 3 gives examples 
of answers given by students. On the left, the result given by most of the students and on the right 
one of the students who considered the total number of students on the school as 144. 
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After ending task 1, teacher Elisa introduced the following tasks as stated on table 1. During the task 
2, where “Each student infects three colleagues” teacher Elisa observed excitement in her students: 

At this stage, a high point of motivation of the students was visible in solving the task. They were 
excited because they understood the situation they are experiencing in their real life (Final report). 

She continues, exemplifying students' discourse: 
"Now I understand, now I understand everything, this is so fast, contagion, ... and we are not 
counting everyone, families are missing and other people who have contact with them!"  

Based on the tasks performed in class, reflection and discussion about them, Elisa recognizes 
motivation in her students who finally understood “frightening spread of the virus”. Although she 
already introduced this theme previously, she reinforces that it was with these tasks that students 
finally understood the need for measures to prevent propagation of the disease: 

I had already taught the content of “Microorganisms” and obviously had contextualized and 
integrated the whole problem of the pandemic, but it was with this activity that students finally 
understood the reason for measures to prevent the spread of the disease. (Final report) 

This conclusion is in line with her goals, which was to raise awareness and understanding about the 
need for measures in the context of COVID-19 pandemic, such as social isolation or vaccination. In 
addition, Table 3 shows STEM contents included in the tasks developed and implemented by Elisa.  

Table 3: STEM contents of the tasks implemented by teacher Elisa  

Science Technology Engineering Mathematics 

Natural sciences 
Microorganisms 
Disease spread 
Pandemic 
 

Computer 
Internet 
Wikipedia 
Power Point 
Excel. 

Planning, designing and 
performing the activities. 

Powers, Exponential growth 
Mathematical model 
Variable, Iteration 
Functions, Graphics 
Organization of tables 
and data visualization. 

Also, she highlights the interdisciplinary approach provided in the tasks: 
On the other hand, the interdisciplinary aspect of the task allowed the articulation of the disciplines 
of Natural Sciences, Mathematics and Information and Communication Technologies and, thus, 
to participate in the Domain of Curricular Autonomy and Flexibility, as well as in the School 
Educational Project. 

Finally, Elisa identifies the importance of implementing this approach to better prepare students to 
the real-world challenges. Moreover, she intends to keep participating in this type of PDP: 

In today's world, full of complex challenges, the development and integration of multiple 
literacies, inspired by real situations, will certainly allow for more meaningful learning in which 
talent, individual qualification, the scientific system and democratic citizenship are strengthened. 
We are grateful for the opportunity and we await other formative moments of undeniable value. 

In summary, teacher Elisa case study exemplifies the implementation of interdisciplinary tasks related 
to STEM (Table 3), in particular highlighting the role of mathematics to understand real world 
problems such as the need for isolation measures or vaccination due to COVID-19 pandemic. As can 
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be seen in Table 3, mathematical contents include Powers, Exponential growth, Mathematical model, 
Functions, Graphics, Organization of tables and data visualization, amongst others. 

Conclusions 

It was verified that Elisa did develop STEM practices within an authentic context for the purpose of 
connecting these subjects to enhance students’ meaningful learning (Ausubel, 2012; Kelley & 
Knowles, 2016). In fact, she used the real scenario of COVID_19 pandemic with the aim of 
introducing tasks with meaning for her students and related to the curricula of Natural Sciences, 
Mathematics, and Information and Communication Technologies. Moreover, she achieved one of her 
main objectives, which was to make students understand various virus propagation scenarios and be 
aware for the need of isolation or vaccination measures to face the COVID_19 pandemic (Table 1). 
In addition, her example shows the development and implementation of integrated STEM tasks in the 
class with an important focus on Mathematics (Table 3). Furthermore, Elisa recognized that it was 
based on this approach that students finally understood the problematic of exponential grow of 
infection and its impact on real life. Also, she identified critical thinking skills and meaningfull 
learning as a consequence of this initiative. Her conclusion is in line with Stohlmann et al. (2012), 
who states that a strategic approach of STEM education provides students with higher levels of critical 
thinking skills, improves problem solving skills, and also increases learning retention. Moreover, 
relevant interdisciplinary learning environments were provided as recommended by some authors 
(Beswick, & Fraser, 2019; Geiger, 2019). In fact, Elisa highlights the interdisciplinary approach 
provided in the tasks she implemented in class and also the importance of implementing this approach 
that provides students with meaningful learning and better prepares them to the real-world challenges. 
Indeed, she promoted mathematics teaching with real life scenarios in the context of COVID-19 
pandemic. Based on this research, it is recommended to resort to mathematical tasks based on real 
world scenarios to promote meaning learning in students. 
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Introduction 
A common reason for secondary teachers leaving is challenges with including students with 
disabilities into general education classrooms (Talmor et al., 2005). Pre-service general education 
teachers may not receive any instruction about how to effectively adapt their math instruction for 
students with disabilities (Dibbs et al., 2020). In addition, pre-service special and general education 
teachers may not be provided with opportunities to practice collaborating on designing lesson plans 
on math topics for students with disabilities (Trent et al., 2003). This lack of practice can lead to 
students with disabilities not receiving effective mathematical instruction, potentially leading to 
lower participation in school, community, and employment (Othman, 2020).  

The purpose of this mixed methods study was to investigate how collaborating on lesson plan 
designs builds awareness of pedagogical content knowledge (PCK) for teaching students with 
disabilities, guided by the following questions: (1) Does writing collaborative lesson plans 
throughout the methods course significantly increase preservice teachers’ PCK for inclusive 
mathematics? (2) What is the nature of the knowledge that pre-service mathematics teachers 
construct about teaching students with disabilities through collaborative lesson plan writing? 

Theoretical framework 
This study was conducted using situated learning as the lens for inquiry (Lave & Wenger, 1991). 
The pre-service mathematics teachers were introduced to special education through collaboration 
with their pre-service special education peers. There were two communities of practice that will 
occur, one among the pre-service teachers in their content areas, and the other with the pre-service 
teachers together. By purposefully placing them together, learning will be reinforced theoretically 
and practically. This study encompasses legitimate peripheral participation by creating a 
community of pre-service teachers who are familiar with best practices for special education in the 
general education classroom (Lave & Wenger, 1991).  

Methods 
A methods course for pre-service secondary teachers course and an upper-level course for pre-
service special education teachers were chosen for this study. The pre-service mathematics teachers 
wrote two student-centered secondary lesson plans. Next, the lesson plans were given to the pre-
service special education teachers who adapted each lesson for students with disabilities. Both sets 

Proceedings of CERME12 4411



 

 

of teachers completed reflection papers, which were coded separately by the authors, and then 
reconciled. The pre-service mathematics teachers also took a special education PCK instrument 
(Dibbs, 2021) as a pre- and post-test to measure their knowledge gains on inclusive teaching. 

Findings 
Three themes emerged from all of the pre-service mathematics teachers following the collaborative 
lesson plan writing. First, participants noted that the activity helped them to realize how little they 
knew about special education with respect to inclusive classrooms. 

Maria: “I have no experience with special education and I have very little knowledge of special 
education. It honestly opened my eyes on how a special education lesson plan is written and 
how I can adapt my lessons for students with disabilities. I am glad we did this lab because they 
gave good examples of resources to use for students with auditory, visual, and vocal 
disabilities.”  

Second, participants realized that their lesson plans were not as clear as they hoped they were, and 
much more thought was needed to keep all students engaged in classroom activities. 

Lucinda: “I learned [in the viewing tubes lesson] that students need more instruction, visual 
organizers, and help with technology than I think they do.  It’s also important to assign group 
roles so that all students are actively engaged.” 

Third, participants noted that the techniques used to support students with disabilities in the 
classroom could often be applied to all learners to improve the lesson. “Most of the adaptations to 
the lesson I wrote would actually help all of my students with the activity” Deanna noted in class. 
Implications of the results, the PCK pre- and post-test, as well as themes from the special education 
teachers will be discussed further on the poster. 
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Italian law obliges teachers to draw up Individual Educational Plans (IEPs) for students diagnosed 
with "dyscalculia". The author analyzed both law and 23 IEPs regarding their compliance with 
recommendations as stated in current mathematics education literature about how to deal with 
mathematical learning difficulties (MLDs). Whilst the law clearly mirrors the medical paradigm and 
largely ignores mathematics education research on MLDs, the IEPs rarely take into account the three 
content areas that are indicated as crucial for MLDs by educational research. Instead, they tend to 
lower expectations in terms of reduced number range, continuous granting of compensation 
measures, and concentration on standard algorithms. The paper outlines key results of a content 
analysis of the IEPs and discusses their shortcomings with a view to possible consequences on the 
level of teacher training as well as of desirable changes of the legal and organizational framework. 
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Focus of the paper 
Drawing on mathematics education research on mathematical learning difficulties (MLDs), the paper 
firstly scrutinizes the reasonableness of the legal and organizational framework for dealing with 
"dyscalculia" in Italy at present. Italian law foresees that for students with a diagnosed dyscalculia, a 
council of teachers (including the math teacher of the student) elaborate an "Individual Education 
Plan" (IEP) to be put into action, evaluated and renewed year after year. By analyzing 23 such IEPs 
from German speaking primary schools of the Italian province of Bolzano/South Tyrol, the paper 
secondly aims to gather indications about how adequately the framework is currently put into action 
in this very province. Finally, against the backdrop of this analysis, alternative and presumably more 
sensible ways to handle with MLDs are shortly discussed, taking into account the restricted diagnostic 
and thereto related didactical competences of South Tyrolean primary teachers that emerge from the 
analysis of the IEPs and maybe comparable to those that can be found in other countries. 

Theoretical and empirical framework 
MLDs have gained increasing interest from more than one scientific discipline in the last decades (for 
a current overview, see e.g. Fritz et al., 2019). Psychological and medical research, typically, follow 
a paradigm in which at least some forms of such learning difficulties are labelled as (symptoms of) a 
"disorder", nowadays usually termed "dyscalculia". Research in that field is centered on presumed 
organic, maybe genetic causes of this disorder. As a means for sorting out children afflicted by this 
disorder (and in order to differentiate them from children with MLDs supposed to be caused 
otherwise), various tests have been developed and standardized for different countries and age groups 
(see Kaufmann & von Aster, 2012, for an overview).  

From a didactical point of view, as expressed in the recent position paper of the German "Gesellschaft 
für Didaktik der Mathematik – GDM" (Society for Didactics of Mathematics) (Gaidoschik et al., 
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2021), the labelling of a subgroup of children with a severe, long lasting MLD as "dyscalculic" is not 
helpful for pedagogical and didactical purposes and might even turn out to be detrimental. It is not 
helpful, as for planning remedial measures, we have to understand the concerned child's current stage 
of mathematical thinking, his or her competences, misunderstandings and shortcomings about 
fundamentals of arithmetic, in a much more detailed way than standardized tests point at. In addition, 
with a view to support a single child's mathematical learning, it is irrelevant whether this child belongs 
to the weakest (or strongest) 5 or 10 or whatever percent of his or her peers (Gaidoschik et al., 2021).  

On the downside, being labelled as dyscalculic may have negative effects on the child's self-efficacy 
expectations and thereby aggravate the MLD (Bishara & Kaplan, 2021). It might also have 
counterproductive impact on teachers (who could react by just reducing their expectations, thus 
risking self-fulfilling prophecies, or might think of not being responsible and/or qualified for such 
"special cases") as well as parents (who could tend to be more interested in compensations for 
disadvantages than in supporting measures to overcome them) (see e.g. Algraygray & Boyle, 2017, 
for a broader discussion about possible negative effects of labelling in special education).  

As indicated, the above-mentioned position paper of the GDM underlines the importance of process 
oriented, qualitative assessment of a child's current mathematical thinking. First and foremost, such 
assessment should focus on those content areas that have been identified by mathematics education 
research as being crucial for the development of MLDs, namely (cf. Gaidoschik et al., 2021): 

Basic number concepts: Severe MLDs characteristically stem from a restricted understanding of 
natural numbers in that concerned students predominantly conceptualize them as positions within a 
sequence rather than as "numbers as compositions of other numbers" (Resnick, 1983, p. 114). On that 
insufficient basis, they struggle to conceive relations between numbers and operations that go beyond 
their ideas of "forward/backward" within the sequence of numbers, hence tend to stick to counting 
strategies as their prevailing way to add and subtract (Gaidoschik, 2019).  

Place value understanding: Typically, MLDs go with what Fuson et al. (1997) characterized as a 
"concatenated single-digit conception" of multi-digit numbers. On that basis, children might well 
learn to perform some calculation algorithms and acquire a certain routine in diverse procedures, yet, 
lacking conceptual understanding of core principles of the decimal system (bundling and unbundling, 
multiplicative properties), they will hardly achieve flexibility in computing nor develop sufficient 
competences in estimating, proportional reasoning, and relational thinking (Gaidoschik et al., 2021).    

Conceptual understanding of operations: Children with MLDs, generally, command a limited 
conceptual understanding of arithmetic operations, in particular of multiplication and division 
(Gaidoschik et al., 2021), and thus have difficulties to connect them to real-world contexts (Scherer 
et al., 2016). Subsequently, they often see no chance to solve word problems, if not by deliberately 
choosing an operation or trying to find a clue by remembering key words, or the like.  

As a consequence of the cumulative character of arithmetic learning, if the shortcomings outlined 
above are not overcome by (remedial) instruction within the first years of schooling, they will nearly 
inevitably result in even greater difficulties for the concerned students to cope with the curricular 
content of the following years. Therefore, it is not surprising that we still find the very same problem 
areas and very similar deficits and misunderstandings as typical also for MLDs in secondary schools, 
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of course amplified by additional deficits and misunderstandings of further content that could not be 
digested due to the lack of fundamental understanding (Gaidoschik et al., 2021). 

From a mathematics education point of view, the high occurrence of such MLDs calls, in the first 
place, for increased efforts to prepare and enable primary (and already kindergarten) teachers so that 
they better exploit the considerable potential of preventing MLDs by research-guided instruction 
(Gaidoschik 2019; Gaidoschik et al. 2021). Then, of course, children who already have developed an 
MLD, need additional measures. The above mentioned position paper of the GDM (Gaidoschik et 
al., 2021) pleas for a combination of two approaches: On the one hand, teacher resources should be 
allocated as far as possible to allow for team teaching of mathematics by two well informed teachers. 
This team should strive to organize themselves so that, while all the students of the class are working 
on what Scherer et al. (2016, p. 641) describe as "substantial and rich learning environments", 
individual support can be given where needed to those students who otherwise would not be able to 
participate meaningfully in such mathematical activities, due to missing or deficient prerequisites. On 
the other hand, for students with MLDs, individualized remedial instruction should be secured to give 
them a chance to cope with those fundamentals they have not yet been able to acquire. However, this 
does not have to (and should not) lead to exclusion if class work comprises phases of individualized 
work for all pupils as a matter of course (Gaidoschik et al., 2021). 

The cultural context: An Italian law and its shortcomings from the perspective of 
mathematics didactics 
Of course, the current reality of how MLDs are handled in primary schools seems to be quite different 
from the recommendations stated above, at least in the Italian province of South Tyrol, to which the 
present study refers. In fact, though, empirical data about what actually happens in the classrooms 
are scarce. What can be analyzed and, as a first step, shall be elucidated in the following, is the legal 
and organizational framework set up in Italy for dealing with "dyscalculia", which is recognized by 
Italian law as one of several "specific school-related learning disorders" (Gazetta ufficiale, 2010; here 
and in the following translated by the author). 

More accurately, national law 170 determines (article 3) that students diagnosed with "dyscalculia" 
have the right to receive "individual didactics, tailored to the person" as well as "means to compensate 
for". The law as a whole declares to aim to "ensure an adequate formation" and foster the "full use of 
the personal potential" of the student concerned (article 2) (Gazetta ufficiale, 2010). The thereto-
related implementation rules of the province of South Tyrol state that the process of diagnosing 
"dyscalculia" may not be started before "the end of the first semester of year three" of primary school 
(age 8–9). In case of a diagnosis, to be in accord with law 170, the "team of teachers" of the respective 
student has to formulate an "Individual Educational Plan" (IEP). This plan has to be drawn up after 
the first weeks of a school year and is valid until the end of that year. It should consider the report 
and recommendations of the psychologist who did the diagnosis, and should comprise inter alia "the 
detailed description of the current level of performance and development" of the student as well as 
the "planning of the individual objectives" for the student (Brugger-Paggi, 2019; my translation).   

Unlike with students diagnosed as "disabled" according to law 104, having a student with dyscalculia 
does not lead to the assignment of additional teacher's hours to this class. Thus, the mathematics 
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teacher will not receive any support in form of a second teacher, not even at times, nor does the 
diagnosis entitle the child to receive remedial teaching in or outside the classroom, neither as an 
individual nor in a group setting (Ianes et al., 2020). Whereas the IEP has to be updated each year, 
the diagnosis, if made at the end of year 3, is usually reviewed only at the middle of year 5, with a 
view to the transition from primary to middle school, which in Italy is foreseen after year 5.  

Law 170 claims to "consider newest scientific research" (Gazetta ufficiale, 2010). As outlined above, 
however, at least mathematics education research is hardly suitable as an appellate authority for 
linking any special measures for children with MLDs to a diagnosis of "dyscalculia". Secondly, 
mathematics education research clearly indicates that effective support for children with MLDs 
should include additional personal resources, which are not foreseen by law 170.  

Thirdly, educational as well as psychological research shows that MLDs develop on the basis of 
misconceptions which, often enough, might already be detected in kindergarten and should in any 
case be in the attention of first grade teachers, so that also counter measures are initiated as soon as 
possible (Gaidoschik et al., 2021). Of course, law 170 also emphasizes the "duty" of schools and even 
kindergartens to "take appropriate measures to identify children suspected of having specific learning 
disorders" (Gazetta ufficiale, 2010). Nevertheless, the law and thereto related regulations link 
additional measures such as drawing up an IEP to the diagnosis of "dyscalculia", and at the same 
time dispose that such a diagnosis may not be made before year 3 – against psychologists who have 
developed standardized tests for "dyscalculia" already for the end of year 1, and tests that claim to 
detect "children at risk" already in kindergarten (Kaufmann & von Aster, 2012). If the diagnosis of 
"dyscalculia" were at all sensible, which is disputed by mathematics education, it would still require 
explanation (which the legal sources do not provide) why initiating such a diagnosis should be waited 
for until a child has proven for at least two and a half school years to have severe difficulties in 
mathematics. 

Research questions 
As an interim summary of the analysis given above, it has to be stated that the presumably only part 
of law 170 that may be approved also from a mathematics education point of view is the obligation 
to draw up an IEP for students diagnosed with dyscalculia. Once again, targeted considerations about 
how to support students with MLDs should not wait until year 3 or even later, and should not depend 
on whether the child has received a specific diagnosis. However, an IEP drawn up in a proper way, 
based on a process-oriented assessment of the current mathematical competences and shortcomings 
of the child, of course could form a precious guideline for teaching. At the same time, though, it has 
to be stated that even the best plan has to be readjusted continuously. Then, the additional 
"administrative load" (Scherer et al., 2019, p. 4622) connected with law 170 might also be seen as 
deduction of time resources that might better be invested in directly working with the concerned child. 

Against this backdrop, the second part of this paper seeks answers to the following research questions: 

(1) When South Tyrolean teachers have to state within an IEP the current stage of mathematical 
competences and shortcomings of the respective student, do they (and if, how do they) refer to the 
content areas that are held crucial for mathematical learning difficulties in mathematics education 
research and have been elucidated above, i.e. deficient number concepts and thereto linked 
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predominant use of counting strategies for addition and subtraction, fundamental deficits in 
understanding the decimal place value system, and lack of conceptual understanding of operations? 

(2) Are the learning goals and remedial measures formulated in the IEPs in line with what 
mathematics education research advices for responding to severe mathematical learning difficulties? 

If both questions could be answered with "yes", then, at least, it could be assumed that South Tyrolean 
schools have found sensible ways to deal with the legal requirements related to "dyscalculia". Of 
course, in this case it should further be checked what actually happens in the classrooms on the basis 
of the IEPs. The latter gains even more urgency if already the IEPs should prove to lack 
appropriateness. However, the present study is limited to the analysis of the IEPs themselves. 

Methodology 
According to statistical data provided by the educational authority of the province, in 2017/2018 a 
total of 46 students (or 0.2 %) of all students attending German speaking primary schools of South 
Tyrol were officially registered as "dyscalculic" and thus addressee of an IEP. As the IEPs underlie 
strict privacy rules, to analyze them for research purposes, the author had to ask the headmasters of 
the school districts to transmit anonymized versions of the IEPs. This was done for 23 students. It 
was not possible to identify the reasons why the other IEPs were not made available but may be 
assumed that this was due to the fact that anonymizing the IEPs by blackening sensitive data meant 
some work, and having free choice to participate, some schools might have preferred to avoid this 
work. Of course, it cannot be excluded that this contributed to a bias of the sample. 

All 23 IEPs were submitted to a "qualitatively orientated category-based content analysis" (Mayring, 
2020). The main categories were assigned deductively from educational research literature as 
summarized above, and complemented inductively based on recurring features of the IEPs. In the 
following, due to the limited space, only the results for those (all deductively formed) categories that 
are most important in view to the research questions are shortly elucidated. The categories are 
underlined. Quotes from the IEPs have been translated from German into English by the author. 

Results 
Overall characteristics of the IEPs, range of elaborateness: The 23 IEPs differ considerably in extent 
and detail (between 1 and 9 pages; mean: 3.8, median: 3). As explained, the regulations call for a 
detailed description of the student's current level followed by an individualized plan of goals and 
thereto related measures. Yet, if we take into account only those parts of the IEPs that actually refer 
to mathematics, we find that 10 out of 23 IEPs dedicate less than one page to both current level and 
goals/measures. 5 of them, in fact, refer to mathematics only with 2 or 3 lines, typically within a table 
with tick boxes for briefly formulated measures, such as "use of a calculator". In 7 IEPs the math part 
takes about one page, in 4 IEPs about 2, and in the two most comprehensive IEPs about 4 pages. 

As for the level of detail in which the current mathematical status of the student is described, 3 types 
of IEPs can be identified, as follows: In 10 IEPs, the authors give a relatively comprehensive list of 
curricular contents (see below for more detail) that the student either has or has not yet mastered. In 
6 other cases, only very few content-related competences are named, but at least these clearly refer 
to mathematics, such as "Masters the standard algorithms of addition and subtraction". 7 other IEPs 
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practically do not provide any information about the mathematical competences of a child. One 
typical example: In one IEP, the child's description with regard to the "mathematical-logical area" is 
restricted to the following: "Needs much time to comprehend new content. Needs additional 
explanations and prompts and extended practice. Hardly grasps logical connections."  

As for the level of detail with which goals and related measures are formulated, we find the analogous 
3 types. As a rule, extent and detailedness of the description of current competences correspond to 
the attention given to goals/measures. In two cases, yet, a rather detailed status-quo-description is 
followed by very scarce, mainly general goals/measures, such as: "use of tables and collections of 
formula, use of specific didactic material, granting of additional working time, personal dedication".  

Reference to the crucial content areas: As outlined, only 10 IEPs go into some detail about the 
concerned child's current mathematical competences and shortcomings. However, the fundamental 
question whether the child is still dependent from counting strategies for adding and subtracting, is 
explicitly addressed and answered in only 3 out of 23 IEPs (positively, as has to be expected according 
to research on MLDs). What's more, not a single IEP explicitly states that the elaboration of non-
counting calculation strategies will be a goal of remedial instruction. One IEP, though, foresees 
"automatizing" basic facts of addition. On the other hand, 5 IEPs explicitly envisage that the child 
should constantly use material as a help to solve additions and subtractions, arousing the suspicion 
that the authors regard arithmetic material not as a means to elaborate non-counting strategies, but 
rather as a device to facilitate computing by counting.  

As for the child's understanding of the decimal system, the second crucial area according to research, 
only 2 IEPs explicitly state problems with bundling/unbundling, in one case in a contradictory manner 
(the child would understand bundling but not be able to apply it). 6 other IEPs do explicitly indicate 
difficulties with multi-digit numbers, yet in the unspecified way of "problems to orientate herself with 
numbers". Accordingly, the related remedial measures stated in these IEPs remain in the vague, such 
as "consolidate numbers up to 1000". 6 IEPs state as a goal "identify tens, hundreds, thousands", but 
without explicitly indicating that this should include the elaboration of bundling/unbundling or 
trading, respectively, as the core principles underlying the place value system.  

Finally, as for the child's conceptual understanding of arithmetic operations, only one IEP indicates 
difficulties with the basic concept of multiplication. Another states problems to connect operations 
with actions and situations. However, 8 IEPs record severe difficulties with word problems, but 
without any reference to operation sense as a fundamental prerequisite for solving such problems. 

As an interim conclusion, it has to be stated that even those IEPs that, when describing the current 
learning status of a child, refer to mathematical content in some detail, hardly refer to those 
fundamental content areas that have been identified by research as being crucial for MLDs. Instead, 
if difficulties are specified on concrete mathematical content level, they mostly refer to curricular 
content of year 3 and upwards; content that can only be learned in a sustainable manner if a child has 
already acquired the basics which are more or less ignored in almost all IEPs.  

As for the individual goals that are set up for the student in the IEP, a common feature of all 23 IEPs 
is a reduction of expectations as compared to the grade level. Only in 8 cases, though, this is combined 
with explicitly naming goals also in the area of basic competences such as single digit multiplication 
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or working on place value in the way characterized above. 7 IEPs stipulate a concentration on 
numbers up to 1000, whereas the grade expectation would go beyond that number range. 12 IEPs 
explicitly state that the difficulty and/or complexity of word problems should be reduced, often in 
addition with the allowance of "individualized help". 6 other IEPs advocate a "reduction of demands" 
without specifications. The two explicit goals that are set up most frequently are mastering the 
standard algorithms (12 cases) and automatizing single digit multiplication (11 cases). On the other 
hand, 8 IEPs envisage the use of tables to look up single digit multiplications, often linked to the 
otherwise unrealistic expectation that the child, without having yet mastered basic multiplication, 
should nonetheless solve multi-digit multiplication using the standard algorithm. 

Discussion and final remarks 
Of course, as the only information we have got about the children is what we can read in the IEPs, 
the appropriateness of these plans can be judged only indirectly and tentatively, by comparing them 
to what kind of information they should comprise, according to mathematics education research, if 
the concerned child actually does have developed an MLD. Then, we can assess their internal 
coherence and their compliance with recommendations given by current mathematics didactics.  

In this context, the high weight that many IEPs give to standard algorithms, whereas current literature 
clearly stresses the importance of mental strategies based on conceptual understanding, further 
contributes to the overall impression raised by the analysis of the 23 IEPs that may be summarized 
as follows: On the one hand, with a few selective exemptions, the authors seem to lack the extended 
didactical competences needed to assess, in a meaningful qualitative way, the mathematical status of 
a child with an MLD, as well as to decide upon appropriate learning goals that could and should be 
reached for in the next step. On the other hand, they tend to settle for a general reduction of the level 
that should be attained by the child, by limiting the number range, by allowing for permanent 
compensation measures, and by concentrating on the training of standard algorithms, notwithstanding 
the fact that such measures contribute to perpetuating the difficulties rather than overcoming them.  

As stated, the present study is narrowly limited, based solely on a sample of 23 IEPs drawn up by 
teacher teams of South Tyrolean primary schools. Due to space restrictions, only parts of the analysis 
and very few examples of these plans could be presented. The aim is, of course, not to blame teachers 
for what they do to the best of their ability. As analysed in the first section of this paper, a law that is 
questionable in more than one respect obliges teachers to work out IEPs. The qualitative analysis 
presented in this paper indicates that, as a rule, South Tyrolean teachers are currently overstrained 
with this obligation. As a consequence, responsible school policies should strive to give support, such 
as targeted teacher training and the possibility to consult expert teachers specialized on MLDs. Of 
course, such efforts to extend the didactical and thereby diagnostic competences in primary education 
are likely to benefit children to an even greater extent if they could be implemented within a legal 
and organizational framework that allows for additional support of children with MLDs, also in terms 
of team teaching, starting from the first signs that a child is in danger of developing such difficulties. 
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A study was conducted in 2021 in Switzerland (Canton of Vaud) to evaluate two computer-based 
learning programs Calcularis1 and Matheros2 to help students improve their performance in 
calculation. Calcularis was especially designed to support students with mathematical learning 
difficulties. Then, our study focuses on the evaluation of the effect of Calcularis on the mathematical 
learning skills for students with mathematical learning difficulties in ordinary school context. We 
observed that Calcularis could allow a better progression compared to Matheros in calculation, 
number-line estimation task for students with mathematical learning difficulties.

Keywords: Mathematical learning difficulties, computer-based education, primary school, 
calculation.

Context of the study
Following the results of the PISA and TIMSS, some governments place the teaching of mathematics 
at the heart of their educational policy. This is for example the case of the canton of Vaud in 
Switzerland, which has set up a “mathematical mission” in 2018-2019 in order to improve the 
knowledge and skills in mathematics of elementary school students. One of the recommendations of
this mission (Dias, 2019) is to propose a computer-based learning program to improve the 
performance of elementary school students in calculation. In order to choose this computer-based 
program, a study, leaded by the DGEO1, was conducted to specifically compare two programs: 
Calcularis2 and Matheros3. These programs were chosen by the DGEO because already used in some 
schools in the canton during the Covid-19 pandemic. One difference between these two programs is 
that Calcularis was designed for students with mathematical learning difficulties (MLD). This paper 
is focused on evaluating this computer-based program for students with and without MLD.

State of art
Mathematical learning difficulties

For several years, research on mathematical learning difficulties has been developing both in 
cognitive neuroscience and in mathematics education. Two recent literature reviews (Deruaz et al., 
2020; Lewis & Fisher, 2016) report on the following issues in this fields of research: heterogeneity 

1 DGEO (Direction Générale de l’Enseignement Obligatoire) General management of compulsory school. 
2 https://dybuster.com/fr/calcularis/
3 https://matheros.fr/
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of definitions and characterizations (e.g., mathematical learning disabilities, dyscalculia, 
mathematical learning difficulties), a diversity of explanatory models, a variety of identification and 
support tools, a non-consideration from a didactical point of view. 

Within the research group “Riteam” (http://riteam.ch/fr/), we are specifically interested in examining 
the mathematical learning difficulties in the school context and through didactical filters. That seems 
necessary and complementary to current studies, rather conducted out of class and within cognitive 
psychology. The aim is to take a more focused look at the teaching and learning processes.  

According to Scherer and colleagues (2016), our prior research highlighted the need, for research in 
mathematics education, to broaden the definition of mathematical learning difficulties used most 
widely in cognitive sciences. However, in the school context, it is necessary to also consider students 
with difficulties that are not identified by a medical diagnosis. Thus, in mathematics education, 
research focuses on students with clinically diagnosed disorders, but also on students with severe 
difficulties in mathematics, identified by teachers (Deruaz et al., 2020). We also noted that research 
in mathematics education focuses more on interventions with students with mathematical learning 
difficulties. These are mostly case studies, outside the school context, evaluating the impact of a 
remediation intervention on a specific mathematical content. These interventions focus more on
teaching strategies than on students' cognitive abilities. Among these teaching strategies, some are 
mediated by digital technology. 

Computer-based intervention for students with mathematical learning difficulties 

In 2006, Wilson and colleagues proposed a pioneering study in the design and evaluation of a digital 
tool for remediation (Wilson et al., 2006). They evaluated the impact of an adaptive digital game 
(Number Race) on the mathematical learning of students with dyscalculia. Their results show positive 
effects on student performance in basic mathematical tasks such as subitizing, non-symbolic 
comparison, number comparison, and subtraction (of two one-digit numbers). However, these effects 
do not generalize to counting or other arithmetic tasks (two-digit addition or subtraction). Regarding 
the Calcularis program, several studies have evaluated its impact on the mathematical performance 
of students with or without mathematical learning difficulties (Käser et al., 2013; Kucian et al., 2011; 
Rauscher et al., 2016). Kucian and colleagues (2011) conducted an initial evaluation of the Calcularis
program for a group of students with mathematical learning difficulties. The results indicate that 
training with Calcularis leads to improved spatial representation of numbers and modulation of 
neuronal activation, both of which facilitate the processing of numerical tasks. More recently, 
Rauscher and colleagues (2016) conducted a study with control groups. Their results show significant 
progress of the Calcularis group compared to the control group, especially with regard to subtractions 
and spatial representation of numbers. In addition, five months after the end of the use of the 
application, their level of performance was stable. The authors conclude that Calcularis not only leads 
to short-term improvement, but also allows students to use these improvements to succeed in the long 
term.  

To conclude, current research on mathematical learning difficulties in mathematics education focuses 
mainly on case studies evaluating the impact of a remediation intervention on specific mathematical 
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content with students with mathematical learning difficulties. These interventions are often based on 
digital tools. Several meta-analyses have examined the effects of these interventions with digital tools 
and reveal positive effects (Kulik, 1994; Li & Ma, 2010). In particular, Li and Ma (2010) highlight 
their contributions to students with special educational needs in primary school. With regard to the 
Calcularis program, current studies highlight its impact on improving the spatial representation of 
numbers and solving simple subtractions in primary school students, with or without mathematical 
learning difficulties.

The current study

The current study aims to contribute to the evaluation of Calcularis on the performance of elementary 
school students with and without mathematical learning difficulties. Indeed, the aim is to evaluate 
Calcularis as a computer-based learning program for students with difficulties, in ordinary 
classrooms in the Vaud school context. The research question focuses on the impact of Calcularis on
the learning progress of students with or without difficulties. For that, we compare the use of 
Calcularis to another computer-based program (Matheros).

Materials and Method
Compter-based learning program: Calcularis and Matheros

Calcularis 2.0 is a highly adaptative computer-based training program (von Aster et al., 2016). 
Calcularis is based on theoretical neurocognitive foundations of numerical cognition, such as the 
triple-code model (Dehaene,1992), the four-step developmental model (von Aster and Shavel, 2007) 
and further theoretical advancements (Kucian and Kaufmann, 2009). Calcularis has been designed 
according to insights on the typical and atypical development of mathematical abilities (Käser, 2013). 
The program aims to automatize the different number representations, to supports the formation and 
access to mental number line and to train arithmetic operations as well as arithmetic fact knowledge 
in expanding number ranges from 0-10 until 0-1,000 (Kohn et al., 2020). Matheros is one of the 
digital tools offered by the Monecole.fr site created in 2011 by L.Walter, a teacher and digital trainer 
in France. Matheros allows students to progress in mental calculation according to the principle of 
belts (as in martial arts) of skills (Monecole, 2021).

Sample

Our sample is composed of seven classes of third grade and eight classes of fourth grade (aged 8-9
years) in the canton of Vaud. This comprised 15 teachers and 260 students. The classes have been 
choice by the DGEO. There are 143 students in the Calcularis group (classes using the Calcularis
program) and 117 students in the control group (classes using Matheros program). Students with 
MLD were defined as those whose score in two out of three tasks (see below) was situated in the 
bottom 20% for a given grade. This resulted in 18 students (10 in Calcularis group and 8 in Matheros
group) in the third grade and 12 students (8 in Calcularis group and 4 in Matheros group) in the 
fourth grade. 
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Measures

We used three tasks to assess students' performance in mathematics.

Numeracy Fluency: we assessed the numeracy fluency with the subtest 6 of the Woodcock-Johnson 
Test III (Woodcock, McGrew, & Mather, 2001).

Number line estimation: we assessed the spatial representation of numbers with a number line 
estimation task, adapted to the subtest of the Zareki (Dellatolas & Von Aster, 2006).

Calculation: we assessed the calculations (with multi-digit numbers) with a task designed by our team 
to evaluate the expectations of the curriculum in the third and fourth grades. This task aligned with 
the swiss curriculum has four categories: addition, subtraction, multiplication and half/double. For 
example, in third grade: 87+9=; 4x3=; 140-52=; double of 55; and in fourth grade: 254+2005+17=; 
1060-69=; half of 120. Each category is declined according to the different variables (e.g., for the 
addition: number of terms of the addition, size of the numbers at stake; presence of retention or not; 
possibility of complement to the top ten/hundred; associativity; commutativity; special procedure 
(+9)). Students can put the operation on the sheet if they want. 

Procedure

The procedure was carried out in four stages. The first step refers to the pre-tests: teachers 
administered the three mathematical tasks to all their students in their own classrooms. The second 
step concerns the use of computer-based learning programs: for six weeks, teachers proposed to their 
students to use Calcularis (in Calcularis group) or Matheros (in control group) at least two times 20 
minutes per week, individually, in class or at home. The logbooks kept by the teachers during the 
study attest to the achievement of this weekly time by the students. The third step is related to the 
post-tests: teachers administered the (same) mathematical tasks one week after the computer-based 
learning programs were completed. The fourth step refers to the delayed post-tests: teachers 
administered the (same) mathematical tasks again, 4.5 months after the computer-based learning 
programs were discontinued.

Results
Results for all students

In this part, the effect of using Calcularis on the three tasks (numeracy fluency, number-line 
estimation, and calculation) will be evaluated and compared to the effect of using Matheros, and the 
evaluation will be carried out for all students. 
Pre-tests
In order to examine whether there was a group difference in the pre-tests, we carried out a one-way 
ANOVA4 on the pre-test score for the three tasks and the two grades separately. The results showed 
that in the third grade, compared to Matheros group, Calcularis group had significantly higher score 
in calculation test (18.0 vs 16.0, F(1, 120) = 4.82, η2p = .04, p = .03) and marginally lower score in 

4 Analysis of variance (ANOVA) is an analysis tool. 
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fluency (37.8 vs 42.4, F(1, 120) = 3.74, η2p = .03, p = .06) test. In the fourth grade, Calcularis group 
had significantly lower score than Matheros group in fluency test (53.6 vs 58.5, F(1, 134) = 4.03, 
η2p = .03, p = .047). For the other tasks (number line tasks in third grade and fourth grade and 
calculation task in fourth grade), there are not significant differences between the two groups.
Post-tests and delayed post-tests
In order to examine the effect of group and pre-test score on the scores of post-tests and delayed post-
tests, we ran a multiple linear regression for the three tasks and the two grades separately. Our 
analysis, that are presented in Table 1, revealed that in general, there was a significant effect of pre-
test score on post-test and delayed post-test scores. The exceptions were found for number-line task 
during post-test for Calcularis group in the third grade and for Matheros group in the fourth grade.
Furthermore, in the post-test, Calcularis had an advantage over Matheros in the third grade for 
calculation task (t(114) = 2.88, p = .005) but a disadvantage for number-line task (t(102) = –2.44, p =
.02). In the delayed post-test, in the fouth grade, there was a difference to the disadvantage of 
Calcularis for fluency task (t(126) = –3.06, p = .003).

Table 1. The slopes of post-test and delayed post-test as a function of pre-test

Grade Task Group Post-test Delayed post-test
Slope p Slope p

3rd Calculation Calcularis 0.80 < .001 0.60 < .001
Matheros 0.48 < .001 0.55 < .001

Number line Calcularis 0.05 ns 0.18 .06
Matheros 0.42 < .001 0.21 .051

Fluency Calcularis 0.85 < .001 0.89 < .001
Matheros 0.65 < .001 0.75 < .001

4th Calculation Calcularis 0.70 < .001 0.53 < .001
Matheros 0.75 < .001 0.29 .03

Number line Calcularis 0.09 .003 0.22 .03
Matheros 0.19 ns 0.43 .002

Fluency Calcularis 0.84 < .001 0.78 < .001
Matheros 0.92 < .001 1.19 < .001

Note. ns: non-significant differences

Analyses for students with mathematical learning difficulties

In this part, the effect of using Calcularis on the three tasks (fluency, number-line estimation, and 
calculation) will be evaluated and compared to the effect of using Matheros, but the evaluation will 
be carried out only for students with MLD. The performance of students with MLD was evaluated in 
the term of predicted and real observed scores of both post-test and delayed post-test. To obtain the 
predicted scores, we ran a multiple linear regression based on the scores of the students who were not 
categorized as students with MLD. The obtained slopes for a given tasks and a given grade were then 
used to calculate the predicted scores of students with MLD. These predicted scores were then 
compared to the observed scores of these students by means of a one-sample t-test.

The results for students with MLD are presented in Table 2. In the phase of post-test, there was no 
difference between the observed and predicted scores, except for calculation task in Matheros group 
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of the third grade, in which the observed score was significantly lower than the predicted score. In 
fact, the gap obtained in this group was significantly larger than in Calcularis group (t(16) = 2.11, 
p = .051). In the phase of delayed post-test, the observed score in the Matheros group of the third 
grade was significantly lower than the predicted score for calculation and number-line tasks. Again, 
these gaps were significantly larger than in Calcularis group (t(16) = 2.93, p = .01 for calculation and 
t(15) = 3.22, p = .006 for number-line task).

Table 2. The difference between observed and predicted scores of post-test and delayed post-test for 
students with MLD

Grade Task Group Post-test Delayed post-test
Difference p Difference p

3rd Calculation Calcularis –0.72 ns 0.66 ns
Matheros –3.82 .03 –6.16 .02

Number line Calcularis –0.24 ns 0.95 ns
Matheros –1.43 ns –1.41 .02

Fluency Calcularis –0.54 ns 0.47 ns
Matheros 7.33 ns 7.99 ns

4th Calculation Calcularis 1.16 ns –0.47 ns
Matheros –1.94 ns –0.25 ns

Number line Calcularis –0.22 ns –1.56 ns
Matheros 1.41 Ns 0.30 ns

Fluency Calcularis 0.77 Ns –3.67 ns
Matheros –7.87 Ns –4.86 ns

Note. Positive differences imply higher observed score than predicted score. ns: non-significant differences.

Discussion
Concerning the impact of Calcularis on the learning progress of student with and without difficulties, 
our results show that Calcularis allows all students to progress in calculation and numeracy fluency 
significantly after a 6-week use (post-test) and at a deadline of 4.5 months (delayed post-test). For 
the spatial number representation, the results are more nuanced. Calcularis allows fourth grade 
students to progress significantly but not for third grade students. Concerning the comparison between 
Calcularis and the other computer-based program, Calcularis is more efficient than the other 
computer-based learning program (Matheros) for third grade calculation. On the other hand, the other 
computer-based learning program (Matheros) seems more efficient in third grade. Concerning the 
students with MLD in the Calcularis group, they progress more than students with MLD in the 
Control group for the calculation in third grade. We also see better efficiency for third grade students 
on the number line estimation task.

These results obtained for students with MLD can be explained by two reasons. First, the specific 
design of Calcularis is based on theoretical neurocognitive foundations of numerical cognition (Kohn 
et al., 2020). Initially, the aim and conception of Calcularis is to support students with MLD. In 
Calcularis, the use of machine learning make takes more progressive being slightly challenging and 
thus may foster the development of new skills (Kohn et al., 2020). This technology is another major 
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difference with the other computer-based learning program Matheros. In contrary, Matheros offers a 
linear path, without the possibility of playing on the difficulty of the proposed calculations. It is 
possible to change the time given to perform the calculations but the teachers in our control group 
did not use it. Secondly, the finding that Calcularis allows third graders to make more progress in 
numeracy, especially for students with MLD, is consistent with our didactical analysis of the content 
of this computer-based learning program. Indeed, by comparing the contents of this program with the 
curriculum, we have highlighted a more appropriate calibration of Calcularis for third grade students, 
in particular due to machine learning. 

The results obtained for students with MLD confirm the results of previous studies in numeracy 
fluency and number line test (Käser et al., 2013, Kohn et al., 2020, Rauscher, 2016). Rauscher (2016) 
demonstrates that Calcularis can be used effectively to support children in their numerical 
development and to enhance subtraction and spatial number representation. Käser (2013) found 
significant results in subtraction for students who used Calcularis for 6-8 weeks. This involved 
subtraction of two single-digit numbers, to be performed mentally. As far as we know, studies 
concerning posed calculations (with multi-digit numbers) are not very frequent. Therefore, our study 
provides new results on the effectiveness of Calcularis in improving numerical skills in students with 
MLD in the school context.

In sum, our findings are in line with previous research however they provide a complement because 
the study was conducted in ordinary classes. Calcularis seems particularly interesting as a computer-
based learning programs to help students with MLD. In future research, we will analyze the data 
collected in the application (game duration, skills acquired, number of exercises performed correctly, 
etc.) to see if the application could be used as a tool for identifying students with MLD by teachers.

Acknowledgment
We thank the school principals, the teachers, the students of the classes involved.

References
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1), 1–42.

Deruaz, M., Dias, T., Gardes, M.-L., Gregorio, F., Ouvrier-Buffet, C., Peteers, F., & Robotti, E. 
(2020). Exploring MLD in mathematics education: Ten years of research. The Journal of 
Mathematical Behavior, 60, https://doi.org/10.1016/j.jmathb.2020.100807

Département de la jeunesse et de la culture du canton de VAUD (DFJC). (2019) Evaluation de 
l’enseignement des mathématiques dans le canton de Vaud., 
http://www.hepl.ch/files/live/sites/file-site/files/uer-
ms/BROCHURE%20mission%math_interactif.pdf

Käser, T., Baschera, G.-M., Kohn, J., Kucian, K., Richtmann, V., Grond, U., Gross, M., & von Aster, 
M. (2013).Design and evaluation of the computer-based training program Calcularis for enhancing
numerical cognition. Frontiers in Psychology, 4 ,489. https://doi.org/10.3389/fpsyg.2013.00489

Proceedings of CERME12 4435



Kaufmann, L., Mazzocco, M. M., Dowker, A., von Aster, M., Göbel, S. M., Grabner, R. H., Henik, 
A., Jordan, N. C., Karmiloff-Smith, A. D., Kucian, K., Rubinsten, O., Szucs, D., Shalev, R., & 
Nuerk, H.-C. (2013). Dyscalculia from a developmental and differential perspective. Frontiers in 
Psychology, 4, 516. https://doi.org/10.3389/fpsyg.2013.00516

Kohn, J., Rauscher, L., Kucian, K., Käser, T., Wyschkon, A., Esser, G., & von Aster, M. 
(2020). Efficacy of a Computer-Based Learning Program in Children With Developmental 
Dyscalculia. What Influences Individual Responsiveness? Frontiers in Psychology, 11, 1115.

Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., Gälli, M., Martin, E., & 
von Aster, M. (2011). Mental number line training in children with developmental 
dyscalculia. NeuroImage, 57(3), 782–795.

Kulik, J. A. (1994). Meta-analytic studies of findings on computer-based instruction.

Lewis, K. E., & Fisher, M. B. (2016). Taking Stock of 40 Years of Research on Mathematical 
Learning Disability: Methodological Issues and Future Directions. Journal for Research in 
Mathematics Education, 47(4), 338–371.

Li, Q., & Ma, X. (2010). A Meta-analysis of the Effects of Computer Technology on School Students’ 
Mathematics Learning. Educational Psychology Review, 22(3), 215–243.

Rauscher, L., Kohn, J., Käser, T., Mayer, V., Kucian, K., McCaskey, U., Esser, G., & von Aster, M. 
(2016). Evaluation of a Computer-Based Training Program for Enhancing Arithmetic Skills and 
Spatial Number Representation in Primary School Children. Frontiers in Psychology, 7. 913

Scherer, P., Beswick, K., DeBlois, L., Healy, L., & Opitz, E. M. (2016). Assistance of students with 
mathematical learning difficulties: how can research support practice? ZDM, 48(5), 633–649.

Von Aster, M. (2005). ZAREKI-R: Batterie pour l’évaluation du traitement des nombres et du calcul 
chez l’enfant. ECPA, les Éditions du centre de psychologie appliquée

Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental 
dyscalculia. Developmental medicine & child neurology,49(11), 868-873.

Von Aster, M., Käser, T., Kohn, J., Kucian, K., Rauscher, L., & Vögeli, C. (2016). Calcularis – Eine 
adaptive Lernsoftware zur Matheförderung. In M. Hasselhorn, W. Schneider. Förderprogramme 
für Vor- und Grundschule, Tests und Trends – Jahrbuch der pädagogisch-psychologischen 
Diagnostik (p. 225-248). Hogrefe Verlag

Wilson, A. J., Dehaene, S., Pinel, P., Revkin, S. K., Cohen, L., & Cohen, D. (2006). Principles 
underlying the design of “The Number Race”, an adaptive computer game for remediation of 
dyscalculia. Behavioral and Brain Functions, 2(1), 19. https://doi.org/10.1186/1744-9081-2-19

Woodcock, R., McGrew, K. S., & Mather, N. (2001). Woodcock-Johnson tests of 
achievement. Itasca, IL.

Proceedings of CERME12 4436



Proceedings of CERME12 4437



Proceedings of CERME12 4438



Proceedings of CERME12 4439



Proceedings of CERME12 4440



Proceedings of CERME12 4441



Proceedings of CERME12 4442



Proceedings of CERME12 4443



•

•

•

•

•

Proceedings of CERME12 4444



 

 

The role of examples in early algebra for students with Mathematical 
Learning Difficulties 

Francesca Gregorio 

University of Paris, Univ Paris Est Creteil, CY Cergy Paris Université, Univ. Lille, UNIROUEN, 
LDAR, F-75013 Paris, France and HEP Vaud, Switzerland; francesca.gregorio@hepl.ch  

Recent years have been marked by a growing research interest in students with Mathematical 
Learning Difficulties (MLD, acronym which denotes specific and/or severe difficulties in 
mathematics). Most research on MLD has focused almost exclusively on the arithmetic domain, but 
in recent years, research has begun to taking into consideration other mathematical domains, for 
example algebra. The present research aims at answering the following research question: What is 
the role of examples in algebraic thinking for students with MLD? Using Balacheff’s typology of 
proofs, different types of examples are identified: naïve empiricism, crucial experiment, example to 
spot the regularity and generic example. These examples can be used as tools for observing algebraic 
thinking in students with MLD and they support the occurrence of algebraic thinking in this 
population. 

Keywords: MLD, mathematical learning difficulties, mathematical learning disabilities, early 
algebra, role of examples. 

Introduction and literature review 
Recent years have been marked by a growing research interest in Mathematical Learning Difficulties 
(MLD). This interest, which until a few years ago belonged mainly to the psychological domain, now 
also concerns mathematics education. An example of this growing interest is the recent creation of 
TGW25 Inclusive Mathematics Education – Challenges for Students with Special Needs for 
CERME11 in 2019. 

The relative youth of this field is reflected in a lack of unanimity on the meaning of the acronym 
MLD. Some researchers speak of Mathematical Learning Difficulties, others of Disabilities and 
others of Disorders (Baccaglini et al., 2020). The acronym is therefore used in mathematics education 
in a polysemic way and to identify different populations (Deruaz et al., 2020; Lewis & Fisher, 2016; 
Scherer et al., 2016). According to Deruaz et al. (2020), it can refer to students who have been 
diagnosed with a learning disorder specific to mathematics through a standardised test, usually 
psychological, and through defined criteria (such as cutoff, etc.). The same acronym can be found to 
refer to students who have been diagnosed with another learning disorder, not specific to 
mathematics, but which may have an impact on their learning (e.g., dyslexia or dyspraxia). The term 
MLD is also used to refer to students who have severe difficulties in mathematics without ever having 
been diagnosed. The latter category is designated through non-standardised tests, or through teacher 
assessment. 

Despite the wide variety of definitions, they have in common the focus on students with specific 
and/or severe difficulties in mathematics (Deruaz et al. 2020). This “inclusive” vision of MLD which 
is not necessarily linked to a medical certificate attesting the difficulties of the students seems to be 
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the most appropriate for mathematics education. Indeed, this research field aims to take charge of all 
students and their difficulties, regardless of whether or not a diagnosis has been obtained. 

Most research on MLD has focused almost exclusively on the arithmetic domain, on number sense 
and basic arithmetic calculations (Deruaz. et al., 2020; Lewis & Fisher, 2016). In recent years, 
research has begun to broaden its scope, taking into consideration other mathematical domains, for 
example equations are included by Karagiannakis et al. (2016) in a battery of tasks designed to detect 
the causes of difficulties for students with MLD. Furthermore, recent studies in cognitive science 
have shown that learning difficulties in mathematics are heterogeneous (Fias et al., 2013) and affect 
several aspects of mathematical skills (Kaufmann et al., 2013). Although there are early signs of 
interest in other areas of mathematics, these are very rare. This finding shows the need for further 
research concerning students with MLD, that considers other areas of mathematics. And, as Lewis 
and Fisher (2016, p.365) say, “in particular, it is critically important that researchers begin to explore 
MLD in algebra, given its role as an educational gatekeeper”. 

The last decades of research in mathematics education on algebra have been marked by an interest in 
early algebra, a specific area of teaching identified as a bridge between arithmetic and algebra 
(Malara and Navarra, 2018). It is a meta-discipline that links arithmetic and algebra and can use 
mathematical tasks and problems traditionally presented in the arithmetic domain to highlight 
algebraic processes and algebraic reasoning necessary for a good understanding of algebra (in the 
traditional sense, Malara and Navarra, 2018). This approach favours the development of a certain 
way of thinking, algebraic thinking, which does not necessarily need the standard algebraic 
symbolism to be addressed and which is necessary for a proper learning of traditional algebra (Kieran 
et al., 2016). Malara and Navarra (2018) identify some main language constructs that are fundamental 
in order to generate new ways to see arithmetic and thus algebraic thinking. One of them is 
argumentation. Argumentation and its verbalisation are crucial in the approach to generalisation and 
early algebra. In fact, it fosters students to explicit ideas and procedures of which they were not fully 
aware before trying to express them. Argumentation and justification make it possible to make 
explicit an algebraic reasoning that would otherwise remain implicit.  

Early algebra therefore seems to be a mathematical domain that is particularly well suited to research 
about students with MLD because it allows the research to be taken up where it has been left off, at 
arithmetic, and to bridge the gap with the new mathematical discipline, algebra. Furthermore, it is 
ideal with students with MLD because it allows algebraic concepts to be tackled without standard 
algebraic symbolism (which not all students with MLD encounter in their schooling). Although this 
topic is of great scientific interest, we are currently unaware of any research publications concerning 
students with MLD in early algebra. 

Theoretical framework and research question 
The literature review described above led us to become interested in the behaviour of students with 
MLD in early algebra, wanting to tackle the problem of how we can describe the algebraic thinking 
of students with MLD. In particular, as we see in the previous section, argumentation and justification 
are fundamental for algebraic thinking. This consideration leads us to the research question: What is 
the role of examples in algebraic thinking for students with MLD? Our hypothesis is that examples 
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are an opportunity for producing argumentation and justifications and thus showing algebraic 
thinking of students with MLD. Focusing on examples, we can observe students with MLD using 
algebraic thinking. On the one hand, therefore, examples serve to study the algebraic reasoning of 
students with MLD. On the other hand, students with MLD are a good population to study the role of 
examples in mathematical reasoning since they use examples often. It is important to note that the 
present research focuses on studying the reasoning of students with MLD, without having the 
ambition to propose a teaching intervention. This could be an idea for future research that would build 
on the results of current research to construct the intervention. 

To answer the research question, we relied on the theoretical framework of Balacheff's (1987), who 
created a typology for proofs. The typology offers a classification on the basis of the knowledge 
involved and the nature of the underlying rationality. From this perspective, the proof is understood 
as an explanation accepted at a certain point in time by a certain community. There are two main 
types of proof: pragmatic proofs and intellectual proofs. Pragmatic proofs are action-related and 
carried out by the students themselves to establish the truth of a certain proposition. If access to this 
realisation is not possible and the action must be abandoned, we speak of intellectual proofs. 

1. Naïve empiricism is the first stage of pragmatic proofs. It occurs when the validity of a 
statement is proved from one or a small number of cases. 

2. The crucial experiment proves a statement by presenting an example that the student 
recognises as being as non-specific as possible. If the proposition is true in this case, then it 
must necessarily be always true. Crucial experiment, which remains a pragmatic proof, differs 
from naïve empiricism in that the generality of the proposition is taken into account and made 
explicit. 

3. A generic example lies on the borderline between pragmatic and intellectual proofs. A 
proposition can be proved by means of the generic example when a specific case is not treated 
in its particularity but as representative of a certain family of objects with an argument that 
can be extended to a whole class of objects. This type of proof consists of proving the validity 
of an assertion by performing operations or transformations on a particular case, but at the 
same time use is made of the properties and structure that characterise the class that this 
particular case represents.  

4. The thought experiment allows proving by internalising the action and detaching it from its 
concretisation on a particular representative. By remaining linked to anecdotal temporality, it 
abandons the treatment of a particular case, as was the case for the generic example. 

This typology should not be understood as a tool to assign each student a possible level of knowledge 
or to identify the cognitive level they are at. It is not a set of successive stages that students must 
reach in a given order, it is simply a tool for describing students' actions in a certain context in a given 
mathematical task. 
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Method 
Context and participants 

The data presented in this paper has been selected from more extensive research in which more 
students (19 in total) and more mathematical problems (8 in total) were taken into account. 

Data were collected in the canton of Vaud, in the French-speaking part of Switzerland. In this region, 
interest in school inclusion has grown in recent years. This is evident for example from the creation 
of the Concept 360° (DFJC, 2019), a project which aims to establish the principles of a school that 
responds to the specific needs of all students. In spite of this growing interest, school organisation is 
divided into different types of schools (ordinary schools and specialised schools) or school levels 
depending on pupils' abilities and grades.  

The participants were selected based on their severe and/or persistent difficulties in mathematics, as 
defined by Deruaz. et al. (2020) and described in the previous paragraphs. 

In particular, for the research presented in these pages, the students belonged to different classes of 
lower secondary school (7th-9th grade in Switzerland, 12-14 years old) and have different profiles. 

1. Student A (9th grade) is enrolled in an ordinary school, in the level for students with the best 
grades. Student A has good results in all subjects except mathematics, in which she is 
considered to be in severe difficulty by her teacher. 

2. Student B (8th grade) is schooled in a special teaching class. Student B has a diagnosis of 
dysphasia and dyslexia and has severe difficulties in all subjects, including mathematics. 

3. Student C (8th grade) is enrolled in an ordinary school, in the level for students with low 
grades. Student C has a diagnosis of dyscalculia and dyspraxia. 

Procedure 

Data were collected through clinical interviews. This is a semi-directive, open-ended interview 
between a researcher and a student, whose aim is to encourage the manifestation and observation of 
mathematical thinking (Ginsburg, 1981). The student interviewed had the task of solving the assigned 
problem by explaining their procedure. The researcher intervened to ask questions requesting 
clarification of the procedure used or to unblock the situation in case of difficulty. The aim of the 
interview was to get the students to show a large number of examples and to progress in their 
mathematical reasoning. The researcher therefore tried to create the ideal contextual conditions for 
this objective, by relaying the students' statements to allow them to show their full potential, but 
without replacing them in finding the answer. 

The interviews are filmed and the audio transcribed. The unit of analysis consisted of students' oral 
and written contributions. These have been analysed on the basis of the typology of proofs (Balacheff, 
1987) with a particular focus on the use of examples in algebraic thinking: each sentence said by the 
students and each written production produced were read and, when relevant, categorised according 
to a category of the typology.  
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Mathematical problem 

The interview was about solving the following mathematical problem: If I add two odd numbers, do 
I always get an even number?1 

The chosen problem develops algebraic thinking as it allows us to work on a property of numbers 
(being odd or even) and on the structure of  (there is a regular alternation of odd and even numbers) 
by providing evidence for the reasoning carried out. The chosen problem is particularly well suited 
to answering the research question because the understanding of the statement and the result are 
facilitated by the mediation of the examples, and examples are not provided directly from the 
statement but must be created independently by the student, according to his needs. 

Results 
The analysis through Balacheff’s (1987) framework of the clinical interviews allowed us to identify 
different types of examples created by the students and used to solve the problem.  

The first type of example, the naïve empiricism, is what the student produces right after starting to 
work on the problem, it is the first example which lets her begin tacking the problem. For instance, 
student B starts the problem in the following way: 

Researcher: Yes, it requires taking... 
Student B: Multiples of two. 
Researcher: Two odd numbers. If I take two odd numbers and add them together, do we get an 

even or an odd number? 
Student B: Yes… even… we can… if you do 3+3, it gives 6. 

The examples enable the students to start reasoning and to approach the problem that otherwise would 
remain unreachable. 

After the first example, students give other examples, and then other examples, until generality is 
taken into account and explicitly evoked. For example, student B continues his reasoning: 

Researcher: What do you think, if I add an even number plus another even number, how will 
the result be? 

Student B: Even. 
Researcher: How do you know? 
Student B: Well, if you add 12 plus 12 that's 24 and if you add 14 plus 14 that's 28 and it's 

always even, otherwise 4 plus 4 is 8, 6 plus 6 is 12, 8 plus 8 is 16, it's always even. 

This list of examples ensures the generality of the statement. There are so many examples that, for 
the student, this is enough to support the generality of the statement. We call this the crucial 
experiment. The crucial experiment may also be given by a single example which in the view of the 
students is so unspecific that if the statement is true in that case, then it is always true. What is 
important for the crucial experiment is that the generality of the situation is evoked, in this aspect the 
crucial experiment is different form the naïve empiricism.  

 
1 The mathematical problem and transcriptions were translated into English by the author of the text from the original 
French version. 
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This iteration of examples leads the student to spot the regularity of the situation and to understand 
that this regularity has a motivation. The student evokes the fact that the regularity can be identified, 
understood and generalised. Student A says: 

Researcher: We want to understand whether if we add two odd numbers, we always get an even 
number. Do you remember what an even number is, and an odd number? 

Student A: Yes, of course I do.  Well... by giving examples. For example, 3 plus 3 is 6. 3 plus 
7 is 10. 3 plus 11 is 14. So yes, I think it will always be like that, because there is 
something logical behind it. In any case, I don't have an example that comes to mind 
where it wouldn't be possible. 

Here the students take into consideration the generality of the situation and she does something more: 
the example let her see that the regularity has motivations and can be understood and explained. It is 
“logical”, as the student says. The example generates in the student the need for regularity. With 
respect to Balacheff’s (1987) typology, his example, example to spot the regularity, is not a new 
category but it is between the crucial experiment and the generic example. It has some characteristics 
of the pragmatic proofs (it is linked to the action on a limited number of particular cases) and some 
other characteristics of the intellectual proofs (not only is regularity evoked as in the crucial 
experiment, but the existence of a logical structure behind this regularity is also evoked). 

Examples can also be used to generalise the regularity through a generic example. In this case, the 
example is not treated in its particularity, but as representative of a certain family of objects. The 
generic example uses the characteristic properties and structures of a certain class of objects by 
relying on one of its representatives for the implementation of the reasoning. For instance, student C 
writes  (Figure 1) and says: 

Researcher: Okay, so the question here is... When you add two numbers that are odd, is the 
result even or odd? 

Student C: Yes, okay. 
Researcher: Do you have any ideas? 
Student C: Well, I could take, for example, 3 which is odd plus 3. That's 6, which is even 

because if you do 6 divided by 2, it's 3. Then if I take 5 plus 5 which is odd, it's 10. 
Which is also divided by 2. 7 plus 7, 14, which is also divided by 2. Well, yes, 
because each time you make an odd number plus another odd number, the same one 
(indicating 7 on his example), it gives this number (indicating 14) and this number 
is even because each time, you can divide it by 2 to give 7... well, to give the 
(indicating 7)… 

Here the student is proving that every time that we add two times the same odd number, the result 
can be divided by 2, so it is even. He solves a particular case of the given problem. He uses the 
example “7 plus 7”, to support a general reasoning and this particular example is necessary to produce 
a reasoning that otherwise he couldn’t have had. 

 
Figure 1: Generic example given by student C 

It is interesting to note that this example falls into the generic example category because in the words 
used by student C we can find references to the particular case (“it gives this number”). And also, the 
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gestures (e.g. “indicating 14”) show that the reasoning is based on the particular case reported in 
Figure 1. A less thorough analysis could have suggested a thought experiment. 

Discussion 

The results provide some first answers to the research question: What is the role of examples in 
algebraic thinking for students with MLD?  

First of all, the results show that different examples can be used for different purposes (Table 1). They 
can be used for the student herself, with an internal purpose. Examples are essential for the 
exploration phase: understanding the statement and getting an idea of the results, taking ownership 
of the problem, entering in reasoning (naïve empiricism), conjecturing (crucial experiment), to spot 
the regularity of the situation. Examples are also used for solving and proving the conjecture (generic 
example). 

Table 1: The typology of examples in algebraic proofs 

Naïve empiricism Crucial experiment Example to spot the 
regularity 

Generic example 

The first example which 
lets the students in the 

problem and in reasoning 

The generality of the 
situation is evoked 

The situation is 
recognised as regular 

The example is used as 
representative of a family 

of objects 

 

In addition to the internal purposes, examples can also be used in interaction with others, to 
communicate the results obtained. 

Table 1 shows how the examples generated by the argumentation promote the generalisation of the 
mathematical problem by inducing a tendency for students to think algebraically. 

Examples can have different status and different roles in algebraic thinking and proving; they can be 
used as tools for reasoning and for producing algebraic thinking. Examples are particularly important 
for students with severe difficulties as students with MLD because in this case they support students’ 
thinking, algebraic thinking, which would not be possible without them. 

The results show that students with MLD showed traces of algebraic thinking, despite their severe 
difficulties in mathematics. This is particularly interesting taking in consideration that our sample is 
also composed by a student who attends a special class, where students rarely encounter certain 
advanced mathematical topics as algebra. 

With students with severe difficulties, pushing towards simplification and meaninglessness in favour 
of technique is not indispensable, nor is it always fruitful. The results of this research show that 
proposing problems that make use of algebraic thinking is possible. 

The study presented here is part of an ongoing research project which macro-objective is to 
understand if and how students with MLD manifest algebraic thinking. We will carry out further 
analyses in order to describe the algebraic thinking of these students in more detail. 
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In the last 10 years inclusive settings in mathematics have increased in German primary schools. In 
essence, inclusive mathematics education means giving all students equal opportunities for 
mathematical education, regardless of their subjective learning requirements and learning potential. 
In our research project we reflect on the one hand central design principles for developing substantial 
teaching units for inclusive classes. On the other hand, we analyze the emergence and development 
of practices focusing on the teaching processes of thematizing and negotiating mathematical 
contents. For this purpose, 22 class discussions from lessons were examined with regard to the 
reconstructable practices. 

Keywords: Inclusion, practices, natural differentiation, multiplication, discourse. 

Introduction 
“Inclusive schools aim to involve all learners in quality learning experiences which empower them 
to become active participants in a more equitable system” (Scherer, et al., 2016, 640). Inclusive 
education in math classes aims at breaking down barriers and creating universal approaches to math 
learning. Regarding mathematics education, the main aim is to enable all children developing basic 
mathematical competences in interaction with others. 

Even though the primary school in Germany traditionally sees itself as a school for all, the teachers 
(children, parents, …) are shaped by a system that is traditionally and currently geared towards 
segregation and is changing very slowly to an inclusive school. In subject didactics, an understanding 
of inclusion seems to be established in everyday teaching that is based on a one-sided deficit 
conceptualisation of the concept of inclusion and reduces inclusion to “compensatory support 
measures” for precisely those children who seem to have deficits. But inclusive education does not 
mean that only few children need special support. Rather, inclusion means paying attention to each 
individual person with his or her individual prerequisites and potentials. Different children cannot 
and do not have to achieve the same goals. Inclusive education demands from all children exactly 
what they can achieve. Inclusive teaching engages children to bring in their own needs and interests. 
They are also allowed to set their own priorities within a certain framework and develop a personal 
educational profile through their chosen topics and subjects. The diversity of children is also reflected 
in the fact that they learn differently — at different speeds, in different ways and with different 
prerequisites. Therefore, inclusive mathematics teaching aims to offer learning opportunities that are 
individually adaptable and enable mathematics learning in community with others, regardless of 
competences, learning requirements, interests, and development potentials (Scherer et al., 2019).  
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In our paper we focus on the ongoing practices in inclusive math education with respect to the 
research question addressed: “Which practices characterise the plenary in introduction and reflection 
and how far do they correspond to the normative aims?”  

Theoretical framework  
In many cases of everyday math teaching in inclusive classes, however, teachers cope with the 
heterogeneity of the children mainly by using individualised working materials organized in station 
work or plan work. This organisation at first glance promises differentiated learning progress for each 
child, as well as optimal development of potential: each child works on a prescribed (sometimes also 
designed by the child) learning plan at different places and with different levels of support. The 
children's learning activities only take place side by side. This poses the risk that the learning quality 
of the lessons is reduced and that the children cannot optimally develop their potential. But 
mathematical learning processes are particularly dependent on content-related social negotiation 
processes. Therefore, children need to share mathematical discoveries and to present one´s own 
reflections as well as to communicate and explain them to others (Steinbring, 1997). This is not 
possible, if children have to learn more or less on their own.  

Consequently, there is a need for the design of substantial teaching materials and for the research of 
practices of math teaching and collaborative math learning processes in inclusive settings. 

Principles and learning situations of inclusive math education 

The intertwine dimensions of personhood, sociality, and complexity link subject-specific and social 
participation. In recent years, different guiding principles have emerged for the design of inclusive 
mathematics teaching (Häsel-Weide & Nührenbörger, 2021). We refer to four design principles that 
aim to consider the different potentials of the learners and to connect to them in a targeted way:  

(1) accessibility to the common subject matter for all children,  

(2) subject learning at different levels,  

(3) active exploration of content connections and finally  

(4) initiation of common learning phases for all children with social negotiation processes of 
communicating, representing, and arguing. 

Reflecting these four principles substantial learning environments and the task formats on which they 
are based (Wittmann, 1995) are a basis for the design of mathematical learning situations in primary 
schools. The environments consider the idea of differential sensitivity, i. e. reflective perception of 
the heterogeneous competencies of children in a concrete learning situation. The influence of 
academic and content language for the understanding of mathematical concepts is highlighted as well 
as the use of appropriate material. 

But fundamental for successfully initiated joint learning processes are not only substantial task 
formats, which focus on the basis staff. The support of teachers seems to play a special role for the 
learning processes. Especially children with difficulties in learning mathematics seem to be 
dependent on impulses that support the solution process (Korten, 2020). These challenge them to 
think about mathematical patterns and structures as well as their own and others' thought and solution 
processes. But not all impulses do this in the same way. Pfister et al. (2015) investigate the scaffolding 
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processes of teacher in inclusive classes. They see differences in the way teachers stimulate the 
interaction and active the children regarding to the mathematical subject. The video study of 
Krähenmann et al. (2019) shows, that teachers have difficulties in creating common and at the same 
time differentiating learning situations. Teachers either provide common but not differentiating 
learning opportunities for a very heterogeneous learning group or differentiating learning 
opportunities where joint learning did not take place.  

Social and subject-matter practices 

Practices are established as a “theoretical construct that allows us to talk explicitly about collective 
mathematical development” (Cobb, 1998, p. 34). Characterising inclusive practices, a distinction can 
be made between normative pedagogical practices and the practices that can actually be reconstructed 
in the observation of teaching. Normativ inclusive practices are e.g. formulated in the Index for 
Inclusion and describe how practices should be. The dimension of “developing inclusive practices” 
contains the following three aspects: (1) “Lessons are planned with the diversity of students in mind”, 
(2) “Lessons strengthen the participation of all students” or even (3) “Students learn together” (Booth 
& Ainscow, 2002). “Mathematical practices include problem solving, sense making, reasoning, 
modeling, abstracting, generalizing, and looking for patterns, structure, or regularity” (Moschkovich, 
2015, p. 1068).  

These practices can be distinguished from concrete teaching practices, which Hirschauer (2016) 
describes as “ways of doing”. He defines 'practice' as a physical consummation of social phenomena 
such as “types of activities, ways of acting, patterns of behavior, forms of interaction” (Hirschauer, 
2016, S. 46; transl. by the authors). Practices are analytical units and describe structures, customs, or 
things themselves which influence teaching and shape learning.  

Design of the Study  
In our project IGEL M (Inclusive practices in shared learning opportunities in mathematics) we 
develop existing learning environments further by conducting didactic teaching-learning experiments 
for inclusive learning settings and by analyzing mathematical learning processes from a qualitative 
perspective (Häsel-Weide & Nührenbörger, 2021). We focus on the mathematical practices in 
inclusive lessons. The analysis follows an interactionist perspective, focusing on the classroom 
microculture and mathematical practices.  

We accompany classes during their time in primary school and visit them 4-5 times a school year. In 
cooperation between the teacher of the class and the authors of the paper we plan learning 
environments, select material and develop further. The lessons, carried out by the teacher, are 
videographed and used to a) answer the research questions as well as b) to reflect jointly the quality 
of the learning. Actually 22 lessons are videographed, each subject was realized in two consecutive 
lessons. In detail, we tackle three research questions in the project, but in the following, we focus on 
the first question: 

RQ1) Which practices characterise the plenary in introduction and reflection? 

RQ2) Which practices characterise the collaborative work of children? 

RQ2) Which mathematical understanding can be reconstructed? How far differences the 
understanding? 
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The reconstruction of the practices bases on the videographed teaching and learning situations. 
Corresponding transcripts were interpreted by a group of researchers finding different typifications. 
The interpretation of the negotiation processes follows four analytical steps: (1) Video scenes are 
transcribed. (2) In discursive analyses of the researchers involved, these are paraphrased and 
interpreted by means of turn-by-turn analysis. (3) In discourse, plausible typifications of practices are 
elaborated by categorising patterns of interaction or activities. (4) The practices are compared 
comparatively with other analyses of other scenes and examined in a generalised way (Voigt, 1994).

Analysis of an episode
Learning environment 

This paper is about a common task to explore the distributive relationships between so-called easy 
and more difficult tasks. In essence, the students first must recognise the doubling tasks (multiplier
2) and solve the neighboring task (the multiplier 2 is increased by 1) with the help of this (see Figure
Fig. 1). 

Fig 1: Neighboring tasks. Deriving a solution for a simple task for calculating a difficult task 
(Nührenbörger et. al., 2017; Illustration by K. Mosen, PIKAS)

The basic material for all students is therefore not limited to recognising simple multiplication tables, 
but to exploring the structural relationships. Children with mathematical learning difficulties have 
great issues in seeing the structure, understanding the operation, and deriving results. According to 
the idea of sensitivity of different competences, this must be considered in inclusive classes. For this 
purpose, both representation-sensitive and language-sensitive supports are offered to enable access 
to the common learning object. For example, students can show the simple painting angle task on the 
100 field and then move the angle down one line. Moving the painting angle down represents 
increasing the multiplier by 1, so that the product increases by the multiplicand once. 

This multiplication relationship can be supported linguistically by picking up on speaking in groups 
(see example of students) and by verbalising the move of the angle. If not all students in an inclusive 
class are already working in the number range up to 100 or if, for example, the whole multiplication 
table still seems too complex, the distributive relationships can also be explored in qualitatively 
differentiated tasks with a structurally reduced field (the 25 field, consisting of 5 times 5 points, see 
Figure 2). 
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Fig 2: Neighboring tasks at the 100 field and 25 field

In an inclusive class, these tasks can be worked on individually. On the other hand, the students can 
also work cooperatively in pairs on such a task: For example, one child looks for and shows the easy 
task, the other notes it down. Then the more difficult task is derived from it by shifting the painting 
angle and noting and calculating the task in relation to the previous one. 

Plenary practices

At the beginning of the lesson, the teacher 
highlights the aim of the lesson and links it to 
previous related topics (see transcript). She 
reminds the students that simple tasks have 
already been used in addition. The teacher also 
points out that the result should be found with the 
help of simple tasks, not by counting.

Teacher: Today we calculate difficult multiplication tasks. You may remember from the plus 
tasks, we did that too. If you can do a simple multiplication task and you know it 
well, it will help you to solve a difficult task. Then you don't have to start counting 
or calculating all over again. Yes? And today, I want to show you how this simple 
task can be a help. Ok? (goes to the blackboard and points to the tasks 2 - 7 and 
3 - 7). If you have two tasks, think for yourself which of the two tasks is a simple 
task. Josie.

Josie: Two times seven
Teacher: Why? (she marks the task 2 · 7 with an x)
Josie: Because it is a task by two 
Teacher: Ok. Good. 
Josie: Shall I tell the result?
Teacher: I will mark first and then you can tell me the result, ok? (she takes 

the multiplication-angle and a pen). How many are in a row? 
Frederic

Frederic: Seven
Teacher: (puts the multiplication-angle on the dot field) Josie, now.
Josie: Fourteen.
Teacher: So, now we have to think. The next task is called what? The 

difficult multiplication task. Lea.
Lea: Three times seven
Teacher: What do I have to do to get three times seven?
Lea: One to the right
Teacher: (moves the angle; a couple of children raise both arms)
Lea: (names a child)
Child: Now the tasks are called two times eight. You have to move one 

to the left and one down.
Teacher: So you mean I should go back first and then down. I'll use a 

different colour, I think you can see it a bit better then. What has 
been added? (points on the third row of the field). Doreen.

Doreen: Seven once again

Fig 3: Blackboard picture for the 
neighboring task
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The teacher always switches between different the symbolic and verbal form of task presentation and 
the iconic dot field. Josie must wait before she is allowed to give the answer, because the task should 
first be presented in dot field. Even after the difficult tasks has been solved, she asks the children to 
look again to the added quantity on the dot field. In doing so, the teacher highlights the connection 
between the representation. This explicit connection important especially for children with 
difficulties. The teacher asks the children how the angle must be shifted, too. Leading the 
conversation, the teacher picks the children. Most of them put up their hands. With this practice she 
decides which children in participate in the classroom conversation. But the practice “veto” differs 
from this routine. If the children do not agree with an answer, they rise both hands. Then the student 
(Lea), who gave the disputed answer chooses someone, to put forward their argument. Similarly, the 
practice “help” works, which can be reconstructed if children could not solve the tasks or answer 
questions. Asking for help they pick up a classmate who answers for them (Jonas): 

After both tasks are solved and both results are called, the teacher initiates a discussion how to 
calculate 14 + 7 without counting. Jonas probably remembers the solution already given but had 
difficulty formulating his way of calculating. 

Teacher:  Ok. How do you calculate? You want to tell me the 
solution right away, don´t you? How much is that? 
Do you know, Jonas? 

Jonas:  Twenty-one 
Teacher: Can you tell me how you can calculate this cleverly 

without counting. (..)? How far do you calculate 
first? (..). How did you calculate it? (...) Do you 
know? Would you like to get some help? 

Jonas: Ahmad. 
Ahmad: First I calculated fourteen and then I added seven. 

The teacher seems to be aware that there may be a difficulty in adding the multiplicand to the product 
of the simple task. So, she asks for a clever, non-counting strategy to solve the addition. She picks up 
Jonas, who mentioned the result, but did not explain the process. Probably he remembers the solution, 
which has already been mentioned in the interaction. Jonas asks Ahmad for help, who himself 
mentions the task without explaining a clever strategy for calculating. Bruno explains later: “You take 
fourteen plus six, then it's twenty. Then you have to add one more because there was one left and then 
it's twenty-one”. 

In summary, the plenary is characterised by the teacher's effort to connect easy and difficult tasks in 
an understanding-oriented way. The teacher also addresses skillful calculation strategies in addition. 
The new subject is connected with past subject. These practices address children with difficulties and 
allow them to participate without making the address explicit. But, the teacher uses (only) an example 
for the class discourse with fits to the regular stuff and probably overtaxes children, who work in the 
reduced field. However, the simple task chosen is one with 2, which should already be familiar to all 
children as a doubling task. 

Results 
The practices that are evident in this selected scene are typical of inclusive math practices that could 
be reconstructed in plenaries at the beginning of inclusive class (Häsel-Weide & Nührenbörger, 
2021). Those discourses are characterized by the following practices:  
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Presentation of the subject 

- Explication of the subject: The subject and the aims of the lesson are explicated and, in many 
times, classified as simple, basic or elaborated. This may give orientation for all children in an 
inclusive class, but could also categorise different children regarding to the used material.   

- Presentation of the subject in different forms: The didactic-normative inclusive practice of 
presenting a mathematical object on different levels of representation is established as a basic 
practice for all pupils and all subjects. 

Initiation and moderation of subject-related discourses 

- Initiation and decision of participation by the teacher: The participation of different children is 
initiated and controlled by the teacher, picking up students in connection with explicitly 
formulated questions and impulses. 

- Self-responsible participation practices: The practices of “veto” and “help” were agreed upon in 
the class between teacher and children as conversation practices and now moderated by the 
children themselves. So, they take responsibility for the joint learning process. These practices 
include the opportunity to make alternative interpretations or to pick up and explain mistakes. 
Children with good mathematical understanding thus remain involved in the conversation and 
children with difficulties have the opportunity to decide for themselves when to ask for help. All 
learners in the inclusive class are involved, empowered and supported. 

- Creating subject-related discourses: The conversation is condensed and directed towards 
mathematical aspects that the teacher considers important for all learners. Nevertheless, the 
children are asked to argue and to verbalise freely.  

The reconstructed inclusive mathematical practices move in the field of tension between multi-
layered-structural explorations and discursive discussions on the one hand, and condensed, focussed 
treatments on other. In the analysed scene, no obvious assignments of level are made, nevertheless, a 
closer analysis shows corresponding to other studies (e.g. Straeler-Pohl, et. al. 2014) that higher-
performing children are asked for explanations and help by the teacher, but also by their classmates. 
Lower-performing children are just only asked to help with routine tasks or tasks to secure the basic 
material. In this sense, the aim that “all students are empowered to engage meaningfully in 
mathematical practices, for such engagement is the source of agency and identity” (Schoenfeld, 2020, 
p. 1173), has not yet been fully achieved. 
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Motivation 
The inclusion of students with learning disabilities into the general educational system has 
substantially grown in the last decades (Häsel-Weide & Nührenbörger, 2021). One central challenge 
for this inclusion is to realize participation in classroom interactions (Jung & Schütte, 2017). With 
respect to mathematics education, participation comprises social and content-related aspects. 
Precisely because both, social and content-related participation, are necessary for learning 
mathematics. Understanding successful conditions for allowing students with learning disabilities to 
participate in heterogeneous classes is necessary for the factual inclusion of these students. 
Participation can also be understood as the option for everyone to engage in society (Jung & Schütte, 
2017, p. 1500). Participation in society includes to practice basic rights, which also requires a 
sustainable understanding of mathematics, particularly chance and probability. Therefore, inclusive 
mathematics education and instruction should also focus on these fields. 

The aim of my PhD project is to investigate social and content-related participation of students with 
learning disabilities in courses on chance and probability. My focus is on negotiations among students 
who use and develop different conceptions of probability. Guiding questions are (1) how every 
student can participate in emerging negotiations in inclusive classes and (2) how they can develop 
their individual ideas while interacting with other students.  

This study provides both empirical and theoretical evidence that a content-related participation of 
students with learning disabilities is possible in negotiations of the concept of probability in inclusive 
classes towards the end of lower secondary school. 

Theoretical framework 
Jung and Schütte (2017) distinguish three types of participation in inclusive classes: (1) spatial, (2) 
social, and (3) content-related participation. Content-related participation refers to students’ 
engagement in content-related negotiations, their interaction with supplied material and delivered 
content by the teacher (Jung & Schütte, 2017, p. 1502), for example, contributing the Laplacian 
probability to roll a five with a regular dice is equal to one sixth into the collective negotiation. From 
an interactionist perspective of learning, both spatial and social participation are necessary for 
content-related participation.  

Using social negotiations to support individual learning processes is a key approach in inclusive 
mathematics education (Häsel-Weide & Nührenbörger, 2021, p. 50). Content-related participation in 
those negotiations requires that all students can contribute relevant content and extend their individual 
conceptions. In heterogenous groups, this might require an extra effort in collective argumentations 
when sharing different ideas and perceptions for students with learning disabilities.  
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Research project and methodology 
In my research project a learning environment on probability was designed for grade nine classes 
with the above goals in mind. The students were meant to work in groups of three to four students so 
that exchange and negotiations of meaning could emerge. Each group had students of different levels 
in their mathematical competences. While every group was recorded both auditory and visual, groups 
with students with learning disabilities are the main focus. From those transcripts, the content-related 
participation, the use of visualizations and development of conceptions of probability are 
reconstructed. The following research questions guide this study: 

• What fosters negotiations in class that allow all students to participate in negotiations?  
• What are typical characteristics of negotiations in inclusive settings? How do contributions 

on different levels support a development of shared meanings of probability?  

The tasks and the learning environment 
Each task was designed with the intent to allow every student to grasp a concept of probability. 
Further, the learning environment was designed to engage students at different levels to interact with 
each other. Every student was supposed to participate both in group and class discourses. To support 
this, (1) different representations, (2) empirical and theoretical approaches and (3) subjective and 
objective perspectives for the concept of probability are provided. The design allows different 
approaches so that negotiation processes would be initiated and individuals could add their point of 
view. For example, one task engages dyadic groups to examine the repeated drawing of three 
distinguishable balls. After the groups collected empirical data, interpreted the data qualitatively and 
constructed different diagrams, every student has to deduce probabilities and reason those 
independently. Afterwards, the students negotiate both a probability and an associated reasoning 
collectively, providing every student the opportunity for content-related participation.  

So far, my data show that students with learning disabilities can participate in negotiations about 
chance and probability, even if different perspectives emerge. Students with learning disabilities are 
generally able to either contribute their own ideas or adopt other students’ meanings and reason from 
these points of view. Addressing on group differences, there are significant deviations. Some groups 
are able to construct fertile circumstances while others are not. The poster demonstrates the 
connection between the task, anticipated negotiation processes and the preliminary results.  
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In cooperation with the Institute for Special Education and Inclusive Learning and the Institute 
for Mathematical Education, different seminars were conceptualized in which students studying 
elementary and special needs education examined the use of digital media in an inclusive 
classroom setting.  We will now introduce the starting situation for such seminars and describe 
one of the seminar concepts in more detail. To conclude, we will consider impressions from 
students.  

Keywords: Inclusive settings, multi-professional teams, teacher education, digital media. 

Starting Situation 
Nationally and internationally, political actors place demands on teacher training in the areas of 
inclusion and digital media: 

- In the UN Convention on the Rights of Persons with Disabilities (2006), in addition to the right 
to education for all people (ibid., Article 24), access to information, etc. (ibid., Article 4) is required 
in order to enable full and effective participation in society. 

- The “Equity Principle” of NCTM Standards (2003) demands that teachers must be 
professionalized in order to be able to deal with the heterogeneous starting positions of the students 
(ibid., p. 13f.). Learning mathematics with electronic technology is presented there as essential. It 
also offers many opportunities to support learning, especially for students with physical challenges 
(ibid., p. 25) and other handicaps.  

- The conclusions on inclusion in diversity with the aim of high-quality education for all call for 
the basic and advanced training of teachers, “and foster their motivation and competences [...] to 
deal with diversity” (European Union, 2017, C 62/5). This also includes “systematic incentives 
and training to allow teachers to experiment with digital pedagogies” (ibid.). 

- The Conference of Ministers of Education and Cultural Affairs (KMK) for Germany calls on the 
universities in particular to anchor media education in teacher training. The aim is to address the 
media experiences of the learners in the classroom. In addition, they should be able to analyze 
available media and use them as required for teaching and fostering (KMK, 2012). Work in multi-
professional teams in teacher training should also be intensified in order to enable a multi-
perspective view of the child and the interaction between teacher and child (KMK, 2015).  

At the Justus Liebig University in Giessen there are no joint events for students studying 
elementary and special education due to the study regulations. A collegial cooperation with the 
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aim of joint planning of lessons, however, requires knowledge to be acquired about the other 
profession, and this as early as possible (Hattermann et al., 2014). 

Building on existing experience with interdisciplinary activities (Rudinger et al., 2018), new 
seminars were designed that address the use of digital media in inclusive settings and enable 
students studying primary and special education to learn together. These students are usually in 
their penultimate semester. The elementary teacher students study mathematics as a subject, while 
the special education students usually do not, moreover, their prior knowledge of mathematics 
didactics usually relates to only one compulsory module.  

Digital media is seen as a special aid for differentiation and support in cooperative, inclusive 
teaching (Bonow et al., 2019). Digital media seems to have particular potential here, since, for 
example, direct control via input gestures on the screen of tablets eliminates the need for the 
computer to coordinate hand, eye and mouse (Walter, 2017). However, digital media also offers 
new possibilities for representing mathematics, e.g., by focusing on written and graphic 
communication in projects for chatting about mathematics (Schreiber, 2013) or on the oral 
presentation of mathematics when creating audio podcasts (Schreiber & Klose, 2017). In 
mathematics didactics, the possibility of creating or using videos is currently seen as a way of 
learning mathematics (e.g., Leinigen, 2020). In particular, the potential of synchronously linked 
representations (Schulz & Walter, 2019) can be used in the creation and use of videos in terms of 
mathematics didactics. Since the individual requirements of the learner can be addressed, there is 
potential here for use in an inclusive setting (Fehrmann, 2019). 

Seminar Concept 
The seminar “Explain! Videos in inclusive math lessons” is attended in equal parts by students 
studying to become teachers in primary and special education. The course has been offered since 
the winter semester 2020/21, and 42 students participated in the first two course offerings. The 
seminar program is divided into three different phases. First, basic theory is worked out, then work 
is done on a specific (Hirt & Wälti, 2012) substantial learning environment (SLE) (Scherer, 2019). 
Third, video sequences are created for this SLE. Working together in mixed teaching groups plays 
a central role in order to give the students their first experience of multi-professional cooperation.  

In the first phase, important theoretical basics for the use of videos in mathematics lessons are 
developed. Particularly addressed is the point that explanation should not be given exclusively in 
the sense of transferring knowledge (Kiel, 1999) through the video, but rather the students should 
be encouraged by the video to negotiate or develop knowledge (ibid.) by explaining something 
themselves. The concepts of an SLE and natural differentiation (e.g., Scherer, 2019) are used as 
the theoretical groundwork for inclusive math lessons, and form an important basis for further 
work in the seminar. 

Natural differentiation is characterized by having the same learning opportunity for all students. 
This learning offer is mathematically rich and complex, so that the processing can take place at 
different, naturally resulting complexity levels. Different learning requirements can also be catered 

Proceedings of CERME12 4472



for by giving the pupils the greatest possible freedom in the way they work on and solve problems 
or in the way they present them, and in the notation they use. This also enables social learning 
from and with each other in a natural way (Scherer, 2019). 

A substantial learning environment (SLE) uses the principles of natural differentiation to teach 
slow and fast learners together. SLE is guided by core content, goals, and principles of mathematics 
instruction that have mathematical substance. Tasks should have a high cognitive activation 
potential that allows accessibility and independent activity by all learners (Hirt & Wälti, 2012). 

In the next phase, the students work on an SLE for primary school students as described in Hirt 
and Wälti (2012). The SLEs address different mathematical topics: arithmetic, measurement and 
modelling, and geometry. The students should first analyze the SLE in terms of content and 
mathematics by working on the tasks themselves and making a well-founded decision as to which 
video formats can be used to support the subtasks. 

A method developed by Schreiber and Schulz (2017) is used to create the film (see Figure 1). This 
is a method that, in addition to being used in teacher training, can also be used in schools to create 
films on mathematical content together with students (Schreiber & Schulz, 2017; Leinigen, 2020; 
Fehrmann, 2019). In addition to the products created, the seminar should also provide students 
with suggestions for using the method in school. 

 

Figure 1: Process of film creation (Schreiber & Schulz 2017) 

The video creation phase takes up most of the semester. Individual steps of the method can already 
be worked on in the theoretical phase of the seminar. (1) Determine the Content: The students 
decide on one of the proposed learning environments when they are divided into groups.  
(2) Factual Analysis: The students first work on the learning environment themselves in order to 
grasp the depth of the mathematical subject. The mathematical richness of a learning environment 
allows the students to make interesting discoveries beyond the content and learning objectives of 
the primary level. Dealing with the learning environment should also lead to considerations as to 
which subtasks could be supported by individual video sequences and what a meaningful, 
cognitively stimulating video application could look like. (3) Script I: Video sequences are 
planned in the form of scripts. (4) Peer Review: These scripts are discussed in groups in the 
seminar and students edit their scripts based on feedback from fellow students and instructors. (5) 
Script II: Only completely revised scripts are approved for video production. (6) Film Creation: 
The type of technical implementation of the video sequences is up to the students. For example, 
videos may be created using the laying technique, stop-motion technique, screencasts, etc. 

The learning environment should be supported by at least two video sequences between 30 seconds 
and 2 minutes in length. Additional materials, such as worksheets, haptic material, etc., are also 
necessary for the implementation of the learning environment. Due to the corona virus pandemic, 
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the students were not able to try out all the videos themselves in classes. However, the video 
sequences were occasionally used by teachers in alternating or online lessons, so the students 
received useful feedback from the teachers on their products. For a time after the pandemic it is 
planned that the students can also try out the videos themselves. 

Seminar Focus and Goals 
The goal of the seminar is for participants to get ideas for designing videos for inclusive 
mathematics classes. The guiding principle for this is the assumption that inclusive teaching can 
only succeed together – in multi-professional collaboration. 

One focus of the seminar is to work in multi-professional teams. This is promoted by the mixed 
teaching groups in which the students work together during the entire seminar. There is a social 
exchange about experiences and competencies, which leads to different perspectives and roles in 
the classroom becoming clear. Particularly when creating the videos, different expertise and 
competencies become clear. The primary education students bring expertise in mathematics 
didactics, the special education students can accompany the planning from the perspective of 
special education. In this way, differentiation levels are built in, or special education needs are 
explicitly considered in order to make the videos accessible to the target group. Thus, the primary 
education students can achieve more understanding of individual support needs. In the peer review 
of the video scripts, the students benefit again from the different perspectives and previous 
experiences of fellow students, so that a wide range of feedback can be given. This intensive 
exchange about the scripts serves to build up knowledge about the qualifications and areas of 
responsibility of future colleagues and is intended to facilitate later cooperation (e.g., Rudinger et 
al., 2018; Bonow et al., 2019). 

The second focus of the seminar is to work with digital media. The media skills of the students 
are first strengthened (KMK, 2012) by creating videos themselves using different techniques. 
Promoting media literacy also includes providing a meaningful rationale for the video sequences 
in terms of subject didactics (ibid.). Possible uses of videos in (inclusive) education are also 
reflected upon. For school practice, there is also a focus on the media competence of the students. 
The video creation method carried out in the seminar is also suitable for school practice (Schreiber 
& Schulz, 2017; Leinigen, 2020). Through the guided assignment, students can acquire media 
skills. 

Results of the Seminar 
To use videos within a naturally differentiated learning environment, care is taken that the videos 
are not only intended for passive consumption, but also cognitively stimulate the students. In the 
end, there should be an opening through a follow-up task or something similar. This can be 
implemented using different video formats. There are also many possible uses within a learning 
environment. The video can give a general introduction, it can provide additional, differentiated 
help, explain a task or a task format, or provide an impulse to discover a mathematical structure 
(e.g., Kristinsdóttir et al., 2018). 
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In the following, videos on the learning environment “rolling the die” for grade 4 are discussed as 
an example. This learning environment (Hirt & Wälti, 2012, p. 240ff.) is about recognizing and 
using symmetries and patterns by rolling a die with a colored side on a playing surface with square 
divisions (like a chessboard), until the marked surface is facing up again. In the middle of the game 
board is the starting square. The number of rolling movements is noted on the target square. If care 
is taken to reach the squares with as few rolling movements as possible, a symmetrical pattern 
results. The learning environment is enacted with the help of the videos. Since it naturally contains 
differentiating tasks, it should also be applicable in inclusive settings. All pupils in a class should 
be able to use the videos, as these videos should enable discoveries at different levels. Potentials 
for special education needs are also considered in the videos. The students use a mixture of 
discussed and animated PowerPoint slides with symbolic representations of the playing field and 
self-made video sequences in which they can be seen rolling a large cube on a playing field. The 
students start with a video sequence in which the “rules of the game” are explained.  

This video has great potential in many ways. For example, the video is suitable for beginners. The 
basic rules of the game and the task format are explained here. Students can watch the video several 
times to internalize all the rules. This is a cognitive relief, as the children do not have to read the 
rules for themselves. In addition, the combination of image and sound enables several levels of 
representation to be combined (Schulz & Walter 2019). In this example, understanding can be 
ensured by explicitly pointing to the edge. The fact that the die rolling is demonstrated directly on 
the real model reduces the cognitive burden, as there is no change to the symbolic level here. 

The following video explains that the number of rolling movements of the die is considered. Two 
examples are used to determine squares that can be reached in 4 moves. The two protagonists take 
turns rolling the die. The main rule is to always begin on the starting square, with one student 
improving upon the other. The two squares reached are marked with the number 4 and colored in 
blue. The number 7 is given to the square directly below the start square. The other student protests 
that 3 is the correct answer. The video ends with the task: “Which girl is right? Check it. Try to 
find out the number of rolling movements for as many fields as possible.” 

The video, created by students for the fourth grade, shows that mathematical learning videos can 
also be an explicit stimulus for learning through discovery: here a problem is posed, which the 
students should solve independently and in an action-oriented manner. Occasions for mathematical 
discussions may also arise and communication about mathematical phenomena becomes possible. 
Explanations need not necessarily be given exclusively through the video, but can also be 
developed and negotiated by the students amongst themselves based on the impulses of the video. 

Coming back to the above posed question: Both persons are right. The square can be reached with 
3 and 7 movements. An unambiguous answer is only possibly if the condition of using as few 
movements as possible is included. Furthermore, there are different possibilities to reach the square 
with 3 or 7 movements. This can also be discovered and become an occasion for discussion for the 
students. The further expansion of the task of finding out the number of rolling movements for as 
many squares as possible also allows processing on different mathematical levels. In this way, 
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"simple" squares can be reached first, or the criterion of minimal movements can be ignored. The 
task is also solved if the playing field is not completely labeled. It is also possible for high-
performing children to find different paths for other squares. The videos address the idea of natural 
differentiation and thus enable learning on the same subject. Both videos are designed in the sense 
of natural differentiation and are therefore intended for all children. Further differentiation is not 
necessary here, but the videos are only one part of the learning environment. In the implementation 
of the learning environment in class, there are further tasks or social learning opportunities, which 
must also be adapted to the inclusive setting. 

Voices from the Seminar 
The evaluation of the seminar refers to results of a pre-post questionnaire and to informal, oral 
statements by the students on seminar reflection. Using questionnaires, the students were asked 
about attitudes, experiences, and self-efficacy regarding inclusive teaching with digital media. The 
results from two course offerings are available from the beginning and the end of the semester. 
They show that the students mostly trust themselves to work in a team with teachers from other 
professions. This positive self-assessment of the students increased again at the end of the 
semester. While 3 people stated at the beginning of the semester that they did not trust themselves 
to work with teachers from other professions, after one semester all 42 students questioned agreed 
or completely agreed that they could. The students commented on this, for example, that working 
together in mixed teaching groups was “an enrichment because you could think outside the box”. 
It was noted that the group often did not know each other, but it was precisely this what enabled 
other perspectives to be taken throughout the intensive exchange. 

The detailed feedback regarding the scripts, which was given during the peer review, was also 
rated positively. It could be observed that the different fields of expertise ensured that the scripts 
were dealt with in great detail and intensively, and that there were helpful tips on how to design 
the video sequences. 

Regarding the use of digital media, the students report learning successes in terms of video creation 
and the beneficial use of videos in the classroom. For example, one student said, “I believe that 
using videos can lead to more motivation because it is rather unusual. In any case, this shows that 
math does not have to be taught in such a dry way!” It was also noted that the videos are “very 
suitable for natural differentiation” and thus offer opportunities for inclusive teaching. 

In addition to successes, the students also report challenges on the technical level: the process of 
video creation was more complex than initially thought, and lighting conditions, camera position, 
speed, etc. must be considered when the video is produced. Moreover, time required to create the 
videos was also critically reflected upon. Therefore, this task was reduced for the second run. This 
feedback underpins the claim that the teachers themselves should acquire certain media-technical 
skills (cf. KMK, 2012). 

Overall, the seminar not only enabled students to feel more confident when using and creating 
videos, but the results of the evaluation also show that the self-efficacy assessed by the students 
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themselves in relation to the general use of different digital media in the classroom during the 
semester increased. The proportion of students who feel (rather) unsafe about using digital media 
was reduced from 10 to 4 people over the course of the semester, while the proportion of students 
who (rather) trust themselves to use digital media increased from 33 to 38 people. These positive 
results indicate that students benefit from their experiences using and producing digital media.  
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Exceptional difficulties in learning mathematics 
The term “exceptional difficulties in learning mathematics” is used to describe serious and persistent 
difficulties in learning mathematics (Gaidoschik et al., 2021). It therefore follows the more widely 
known terminology of “mathematical learning difficulties” (Mazzocco, 2008). This circumscription, 
which captures both diagnosed (e.g., dyscalculia) and undiagnosed problems on the learners' side, is 
used for two central reasons. First, to avoid a one-sided view that attributes the causes of difficulties 
only to individual factors. Second, the plural “difficulties” is intended to indicate that a wide range 
of problems can manifest themselves in a variety of forms in an individual learner (Gaidoschik et al., 
2021). Typically, exceptional difficulties are found in the three central mathematical basic skills: 
understanding natural numbers, understanding the decimal place-value system, and understanding 
arithmetic operations. If those deficits are too serious, subsequent topics (e.g., decimals, algebra, etc.) 
can hardly be understood and, in the best case, can only be learnt by rote (Prediger et al., 2019). 

MathCityMap – theoretical background and concept 
The idea of mathematical learning trails already emerged in the 1980s. A math trail is a walk on which 
mathematical tasks are implemented at various interesting objects along the way in order to make 
mathematics directly experienceable in the real world (Shoaf et al., 2004). The EIS principle 
according to Bruner, which has already proven itself in special and regular schools alike (Ozdem-
Yilmaz & Bilican, 2020), can be mentioned as the basic theoretical idea of this concept. On the trails, 
learners gain important mathematical experiences at different levels of representation of mathematics. 
They work enactively on real objects (e.g., measuring objects with tools), iconically (e.g., drawing, 
modelling the objects), and symbolically (e.g., calculations). Especially lower-performing learners 
benefit from this type of outdoor learning and can better understand content and procedures based on 
the concretely experienced examples (Buchholtz & Armbrust, 2018). The MathCityMap project has 
succeeded in developing this original concept further and bringing it into the digital age as well as 
embedding it in school contexts. Tasks are now found via GPS data in an app, which already provides 
specific and graded help. On the tasks themselves, the learners work in small groups, whereby they 
can stay in contact with the teacher via a chat function. The solutions found can already be checked 
on site in the app, where a detailed sample solution can be retrieved (Gurjanow et al., 2017). 

Research question 
From the theoretical background on which the concept of MathCityMap is based and its potential for 
exceptional difficulties, the following research question arises: How can MathCityMap be used to 
support students with exceptional difficulties in learning mathematics? This question is supported by 
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criteria of successful support, which MathCityMap seems to fulfil. For example, learning on 
MathCityMap tasks always happens in discourse with other learners, and on learning objects that 
make natural differentiation possible (Gaidoschik et al., 2021, p. 12). An examination of the 
suitability is to be carried out with this investigation for the first time. 

Outlook 
In order to answer this question, a qualitative study will be conducted within the framework of the 
support project Mathe.Kind, which will be implemented at Goethe University Frankfurt in 2022 and 
is founded by the researchers that are also working on MathCityMap. Here, students with exceptional 
difficulties in learning mathematics will be individually supported in reducing their deficits and 
building up their competencies. MathCityMap will be used as a learning environment in different 
support sessions. Afterwards, it will be checked if certain difficulties could be reduced. For this 
purpose, task-supported interviews will be conducted with the students before and after the support 
sessions. To increase the accessibility of MathCityMap, the app will be equipped with a read-aloud 
function and an “easy language” setting option before the study is conducted. 
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Introduction 
Digitization and inclusive education are two of the most complex challenges that contemporary 
teaching practice must deal with. In our view, inclusive education is more than just disabled and non-
disabled pupils learning together, but mirrors the complexity of inclusion in society as a whole. 
(Ainscow 2007, p. 3). The two challenges are often dealt with separately or they are put into a charged 
relationship. The complexity and diffuseness of both discourses can be seen as the reasons for this 
(Lücke, 2021). In academic research only a few theoretical and empirical efforts can be found that 
try to think these two domains together (Viermann & Meyer, 2022). Our research efforts try to 
combine digitization and diversity in the mathematics classroom into one interwoven concept to 
design subject teaching with both challenges in mind. Furthermore, we try to specify opportunities 
and challenges of digitized subject teaching in mathematics to realize dealing with diversity.  

Learning in a digitized environment 
When dealing with digitization in the context of schools and especially in primary schools, people 
often act cautiously because the common idea of a digitized learning environment is, that children sit 
alone in front of a computer. Digitized learning settings are much more than solving problems with 
the help of a computer. Brandhofer et al. (2018) describe four different perspectives on learning in a 
digitized environment: 1. Education with digital media, which describes using digital media to shape 
learning. 2. Education about digital media, which describe learning about e.g., the functionality of 
different media. 3. Education in spite of digital media, which thinks of the possible distractions digital 
media offer. 4. Education through digital media, which describes digital media as the enabler of 
education. To overcome the dualism of inclusive education and digitization, digitization has to be 
seen as a chance to realize inclusive education and an inclusive education-oriented perspective has to 
be understood as a standpoint for discourse on digitization. The questions that arise from these 
thoughts are How can digitization help to extend and improve inclusive mathematical education? and 
How can education about digital media connected to mathematics be designed? Firstly, we want to 
expand the model introduced above with the dimension of diversity. Therefore, we try to see 
mathematics learning in an inclusive education environment as 1. Inclusive education with digital 
media. 2. Inclusive education about digital media. 3. Inclusive education despite digital media. 4. 
Inclusive education through digital media.  
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Challenges 
One of the challenges in the conception and design of inclusive digitized mathematics education is 
the development of appropriate learning methods. Learning environments with mathematics tasks 
that a multitude of students with different abilities and needs can work on have to be designed with 
this diverse audience in mind. The concept of natural differentiation (Krauthausen & Scherer, 2014) 
is a fundamental tool to address different abilities with one task. Natural differentiation follows five 
characteristics: same task for all students, free choice of aids and means of presentation, social 
learning, educational framing, and certain amount of complexity. Especially the last characteristic is 
important as the task has to offer students the opportunity to develop different types of answers with 
their different approaches on the task itself. For digitized inclusive mathematics teaching, we try to 
adapt these five characteristics of natural differentiation regarding the conditions of digitality. 

Examples 
The example presented in this poster is a further development of the learning environment Muster im 
Kreis (Patterns in a circle) from Hirt & Wälti (2010). We use the app GeoGebra to realize the digital 
enhancement of the task. The students have different representations of a circle (geoboard, on paper, 
digital). They will have access to an interactive digital worksheet that can be manipulated on different 
levels. Task 1 and 2 are mainly a digital version of the original tasks. Task 3 introduces a possible 
addition that cannot be realized with a geoboard or the paper worksheet used in the original task. The 
seamless scaling of the circle provides the opportunity to change complexity to the student’s abilities. 
The main idea is not to replace the haptic materials from the original task but to introduce the digital 
version as a possible enhancement and one further way to make the task accessible. 
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Since 2013, we have studied a support scheme for students who have difficulties solving 
mathematical problems. We call this a "preventive support scheme" and are interested in modelling 
its functions. These interventions take place before and after a specific classroom session, in order 
to facilitate the students' introduction to the planned learning situation, their involvement in the 
work required and their appropriation of the target knowledge. The work proposed in this scheme 
can take various forms and the aim of this communication is to illustrate this point by presenting, 
for a given situation, different tasks which can be proposed either before or after the classroom 
session. This study will allow us to highlight the precautions to be taken to design such devices. 

Keywords: Didactic system, preventive support scheme, students in difficulty, fractions.  

Introduction 
Our research focuses on students who have difficulties solving mathematical problems (they fail to 
engage the situation, hesitate, do not know how to start, wait for their peers to find the solution…). 
Since 2013, we have studied the effects of a support scheme for them which we call "preventive 
support schemes" (Millon-Fauré et al., 2021). Unlike other support initiatives implemented after 
classroom sessions as part of remedial strategies, the proposed preventive strategy is implemented 
both before and after mathematical problem-solving sessions involving all students: a supervisor 
(teacher, remedial education specialist, etc.) works, before and after the classroom session, with a 
small group of students deemed (by the teacher) to have difficulties in problem solving. The 
"preventive" aspect of this scheme is linked, not to the learning difficulties that these students may 
encounter in a problem-solving context, but rather to the difficulties they demonstrate in taking their 
place as learners in such a context (Assude & Millon-Fauré, 2021; Tambone, 2014).  

The choice of tasks which can be proposed within the framework of this scheme is sometimes not a 
clear one since it is necessary to facilitate the students' participation in class while not overly 
advancing in the actual problem-solving. It is for this reason that we want to present in this paper, 
for a specific classroom session on fractions, different options which could be proposed in the 
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preventive support scheme, either before or after the classroom session. To do this, we will first 
quickly describe the different functions of the preventive support scheme.

Theoretical framework: the preventive support scheme
To model this preventive support scheme, we draw on the notion of the didactic system and the 
(structure; functions) coupling. The didactic system comprises three elements (knowledge, student 
and teacher/supervisor) and all interrelationships between these. Chevallard (1999) distinguishes 
between two types of didactical systems: the principal didactical system (PDS), essentially the 
classroom, and the auxiliary didactical systems (ADS), which include some, but not all students of 
the PDS and are peripheral to the class. The ADS follows the same objectives as the class but does 
not have its own program. Thus, the class, which guides the study of the target knowledge, consists 
of the PDS, for which two ADS are provided: one before (pre-ADS) and one after (post-ADS) the 
classroom session. Supervising a small group of students, the pre-ADS aims to create favorable 
conditions so that students who are deemed to be "in difficulty" can better integrate the study during
the PDS (therefore this device is part of an inclusive perspective). The post-ADS, held after the 
classroom session, is a further work session with the same group of students, with the purpose of
revisiting the knowledge presented in the PDS. The aim of this scheme is to enable students in 
difficulty to catch up with their classmates and it is therefore not relevant for all the students in the 
class. These two ADSs depend on the PDS, which determines what the student is supposed to know 
and do. In summary, we have the following structure:

Figure 1: Structure of the preventive support scheme

The pre-ADS

Through our analyses of different potential iterations of preventive support schemes we were able 
to identify several functions associated with the pre-ADS (Assude, Koudogbo et al., 2016; Assude 
& Millon-Fauré, 2021; Theis et al., 2014).

The mesogenetic function relates to the introduction, during the pre-ADS, of different objects which 
will make up the PDS milieu. These objects may vary, as they depend on the nature of the situation 
studied in the PDS. Certain pre-ADSs present the instructions for the problem which will be worked 
on later in the PDS. In others, objects of formerly acquired knowledge, useful for the work to be 
done in the PDS, are introduced. Generally speaking, this mesogenetic function enables struggling 
students participating in the ADS to become familiar with certain objects of the PDS milieu before 
the other students in the class.

The chronogenetic function plays out on two levels: not only do the students involved in the pre-
ADS have more time to become familiar with certain objects of the milieu but above all this 
additional work is set up before the session so that they have a little bit of advance on their 
classmates. It is nevertheless important to note that, the didactic time (Chevallard & Mercier, 1987)
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does not progress. In practice, the aim of the pre-ADS is to prepare students to fully engage in 
solving the problem set out in the PDS, but not to solve it before the other students. 

The topogenetic function has been demonstrated through numerous observations made during the 
various experiments conducted within the preventive support scheme, since the students in 
difficulty have been shown to be capable of fully assuming their role as students in the PDS. We 
were able to observe that they are very often able to engage as fully as the other students in the PDS 
situation, and even to contribute to the progress of didactic time, despite having been deemed to 
have difficulties. Moreover, the teachers were able to confirm that this level of involvement of these 
students in difficulty was unusual.  

The post-ADS 

This auxiliary didactic system presents three functions (Assude & Millon-Fauré, 2021; Morin et al., 
2019; Theis et al., 2016). 

First of all, it presents a memory function, since the aim is to have the students recall the session and 
revisit the essential steps of the lesson. This work seems particularly formative insofar as the 
description of the various events and their chronology make it possible for students to better 
understand the articulations between the various concepts approached and the path which led to the 
construction of the new knowledge. Assude and Paquelier (2005) similarly emphasize the benefits 
of this recollection and highlight three of its effects: the expression of a personal time in the 
classroom, the reconfiguration of the student's lived experience and a time recalled as a shared time. 
The researchers nevertheless specify that this exercise can prove delicate for most of the students to 
perform and requires specific guidance by the supervisor, which underlines the value of this 
memory function in the post-ADS. 

This ADS also presents a renewal of the institutionalization, wherein the supervisor asks the 
students what should be remembered following the PDS session. This question will lead students to 
explain the knowledge involved in different ways. These successive reformulations are intended to 
help students in difficulties to better understand the processes of decontextualization and 
depersonalization involved in the taught knowledge, which can enable them to make up for the 
delay they often experience at this point. Indeed, we observed that some students needed more time 
than their peers to access the targeted knowledge: implementing these post-ADSs sometimes 
enables certain students to complete a process of learning that had only begun in the classroom 
(Assude & Millon-Fauré, 2021). This time of recalling the lesson can also lead the students present 
to ask questions about certain aspects they had not dared to raise in class. These reformulations can 
furthermore facilitate knowledge. 

We also observe a reinvestment function, as the post-ADS helps the students to transfer the 
knowledge discovered in a given situation, to use it in another context. Indeed, it is not only a 
matter of the student having understood and memorized the problem taught during the PDS: they 
must also be able to contextualize this knowledge and use it in a new situation, which may 
sometimes require the support of the supervisor. In order to facilitate the implementation of this 
articulation between taught knowledge and operational knowledge in different contexts, the 
supervisor will propose, during the post-ADS, to solve similar tasks or a reflection on the types of 
tasks in which the targeted techniques could prove useful. However, care should be taken to ensure 
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that the tasks proposed are not too different from those worked on during the PDS, otherwise the 
student may not be able to build on the knowledge acquired in the PDS. 

With these theoretical underpinnings, the purpose of this paper is to consider different pre- and 
post-ADS actions which can be implemented for a given class session.  

Methodological aspects 
Our work contributes to the recent current of collaborative research (Bednarz, 2013). The data 
collected during this project consisted of all ADSs and PDS plans, video recordings of pre- and 
post-ADS sessions, PDS sessions, student productions, and recordings of interviews with teachers 
and supervisors before and after each preventive support scheme session. We conducted an a priori 
analysis of the sessions and then viewed the sessions, annotating the verbatim with respect to the 
potential functions of pre- and post-ADS of the scheme and their effects. We were particularly 
interested in the students who had participated in the two ADS sessions: we observed the 
manifestations of the functions, the way that these students engage the situation, and analyzed the 
proposed techniques and their possible difficulties in order to study their evolution during the 
sessions. Examples of analyses are presented in our previous articles (Assude, Koudogbo et al., 
2016; Assude & Millon-Fauré, 2021; Theis et al., 2014). 

To present the potential actions to be implemented before (pre-ADS) and after (post-ADS) the 
classroom session, which emerged during the implementation of this scheme and the reflections of 
the team, the focus of this communication is on a specific class session targeting the concept of 
fractions. The main task of the PDS was to find the whole from one or several parts (Van de Walle 
& Lovin, 2005). 

A priori analysis 
The first targeted task is to reconstitute the whole from its quarter, represented by a small cardboard 
square. The main technique here is to draw the outline of the square four times on the paper to form 
a whole. The main potential erroneous techniques are the following: performing the reverse of the 
task or drawing the original square and reproduce it four more times to have a total of five parts 
instead of four. In the second task, students can reconstitute the whole from its third, represented by 
a small Cuisenaire© rod. The techniques required for this task are similar to the first, but here are 
aided by the use of rods. The final targeted task is to reconstruct the whole from its three-fifths, 
represented by a cardboard rectangle. Examples of incorrect techniques associated with 
understanding the role of the denominator or numerator of the fraction would be to reproduce the 
cardboard five times since it is one-fifth, or to reproduce it three times since there are three. 

To illustrate the nature of the work proposed in the preventive support scheme, we will now 
describe different pre- and post-ADS which could be implemented for this particular session. These 
proposals are based on analyses of the experiments we have conducted, several of which have been 
effectively implemented. 

Propositions for potential pre- and post-ADS 
From these three tasks proposed in the PDS, several pre- and post- ADS can be outlined. These are 
presented hereafter by analyzing them in terms of their potential functions, always with the aim of 
making problem solving accessible to these students and enhancing their participation in class. 

Proceedings of CERME12 4494



 
 
Potential pre-ADS 

A first action could be to reactivate certain objects of formerly acquired knowledge which are 
required during the PDS session to ensure that the students will be able to use them (mesogenetic 
function). In the particular case of the classroom session observed here, the supervisor could for 
instance decide to ask the students questions about the concept of fractions: what do they remember 
about fractions? Could they give examples of fractions? How can a given fraction be represented? It 
is also possible here to return to the lexicon linked to this mathematical concept, such as the terms 
'numerator' or 'denominator'. It should be noted that this vocabulary is not really essential for 
understanding the PDS instructions or for solving the proposed problem, but it can facilitate the 
description of the techniques that will be used in the class. 

A second possibility consists of presenting to the students the instructions of the problem 
subsequently worked on and to focus the questioning on the understanding of the task, while 
taking care not to make the students actually perform the task (mesogenetic and chronogenetic 
functions). The instructions of the problem chosen being quite limited, this choice can prove 
difficult or even irrelevant for the supervisor to implement. 

Along the same lines, it could also be useful to have the students work on a similar type of task 
to that of the PDS but with different numbers, for example, more simple fractions such as a half or 
third (mesogenetic and chronogenetic functions). However, the supervisor must be mindful not to 
advance on the didactic time by working on techniques which are too similar to those required in 
the PDS. 

Another option is to work on techniques which are relevant to the PDS tasks by asking students 
to identify a part of a whole using a material support (mesogenetic function): for example, find the 
quarter from a whole represented by a rectangular piece of paper. The corresponding technique 
consists of sharing the whole into four equal parts (by folding, cutting or marking), then identifying 
the unit fraction one quarter of the whole (by hatching, coloring or superimposing). By isolating the 
quarter of the whole, it is possible to observe that the parts are all the same size and that what 
remains (three quarters) is the complement to constitute the whole (four quarters). This technique 
helps to convey the "part of a whole" meaning of a fraction as well as the relationships between the 
parts and the whole. This will be useful in solving the PDS tasks (reconstructing the whole from a 
part of the whole). 

Regarding techniques involving the Cuisenaire© rods, it could also be useful to take a moment to 
discuss the material with regards to fractions (mesogenetic function). Indeed, it is very likely that 
the students had already used this material in the context of counting and the first operations on 
integers. They therefore know that each colored rod has, in the context of natural numbers, a 
specific length and represents that number (for example, the red rod has a length of 2 cm and 
represents the number 2). However, when used in the context of fractions, the measurement of the 
rods differs depending on the unit chosen. Thus, it is necessary for students to choose the rod that 
represents the whole (or the unit) and this rod can be different to the situations illustrated. These 
differences can then be pointed out during the pre-ADS, either in the context of a more open 
discussion based on a simple task of representing a fraction from a whole, or in a more direct way 
by the supervisor. 
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Potential post-ADS 

The supervisor can first of all ask the class to recount what happened in the PDS session 
(memory function). The supervisor's questions will encourage the students to enrich certain 
passages of their narration by expanding on points that were perhaps covered too quickly. It is also 
possible to use elements from the PDS to facilitate this recollection: for example, the supervisor can 
present photos of the board taken during the classroom session or certain student productions. It is 
also possible to make a video recording of the session and then to extract some key segments which 
the students must then comment on. It should be noted that, for this type of preventive support 
scheme, the fact that the post-ADS supervisor is not the class teacher can be an advantage. Indeed, 
in the students' eyes, questions about the session will seem much more justified than if they are 
asked by someone who attended the session. 

A second type of post-ADS consists of questioning the students on what they should retain 
from the session. It is then a question of activating the didactic memory of the class in order to 
make the pupils reiterate the knowledge stated in class, possibly after certain reformulations guided 
by the teacher (memory and recollection of the lesson functions). 

The supervisor can propose a similar type of task to that proposed in the PDS and which can be 
solved in the same way, while being mindful not to propose a more complex task (at the risk of 
losing the benefit of the confidence acquired by the students during the pre-ADS/PDS). This 
enables the student to apply the technique acquired during the PDS (reinvestment function). One 
variant consists of asking students to propose a similar type of task to that given during the PDS, 
being nevertheless mindful that the task should not be too different to the original task (the 
supervisor no longer controls the didactic variables in this case). 

A fourth type of post-ADS could take the form of revisiting a difficulty observed during the PDS 
(memory and recollection of the lesson functions). For example, the final task related to 
reconstituting the whole from its three fifths represents an obstacle for students who struggle. It 
might therefore be interesting to return specifically to this task and ask students to comment on the 
strategies, correct or otherwise, which may have been employed by their peers.  

Conclusion 
The purpose of this communication is to consider what preventive measures can be put in place to 
support students identified as having learning difficulties before and after a class session on 
mathematical problem solving. It is true that the students are taken apart before and after the class 
session, but this measure allows them to become more involved in the mathematical task and to 
contribute to it like all the other students. This is a device that gives them back their power to learn 
in synchrony with the other students in the class.  

Thus, after having specified the functions of the scheme, we have, from an experimentation based 
on the concept of fractions, presented the tasks proposed in the PDS and suggested other possible 
interventions. Below is a schematic summary of the pre- and post-ADS associated with the chosen 
classroom session (PDS) (Table 1). Such analyses can be made for other mathematical topics as 
measure of length (Theis et al., 2014), notion of area (Assude, Millon-Fauré et al., 2016), volume 
(Marchand et al., 2021) or construction programs (Millon-Fauré et al., 2021). 
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Table 1: Overview of potential actions for the pre- and post-ADS 

The result is a range of possible tasks available to supervisors involved in the system. The choice of 
one of these tasks depends on the students, their difficulties, the PDS teacher, the ADS supervisor 
and the situation itself.  
This study thus illustrates the richness of the preventive support scheme, which can be adapted by 
the teachers/supervisors in various ways. However, these choices directly influence the effects of 
the pre-ADS on the PDS and in turn the PDS on the post-ADS and can sometimes call into question 
the possible gains in terms of student engagement. This is particularly true when tasks that are too 
similar to those of the PDS are dealt with in the pre-ADS, or when tasks that are too complex are 
introduced in the post-ADS, which shifts away from the aims of the classroom session and 
generates certain effects related to the topogenetic function. For this reason, we believe it is 
essential to inform teachers/supervisors of the different options available, so that they can then 
choose the one which will prove most beneficial for their students. 
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Introduction
Education of pupils with special needs (PSN) has been studied for several decades (see e.g. Farrell, 
2001). In many countries, it is an exception to find a homogeneous classroom where PSN are not 
present, which increases the demands on the teacher. At present, the traditional understanding of PSN 
is challenged by the presence of pupils with different mother tongues and low level of understanding 
the language of instruction, which is in most cases the mother tongue of the majority of pupils in the 
classroom. These children are in some countries considered as PSN while other countries do not 
classify them as such, despite the fact that they require similar support. 

The poster presents results of a study of implementing CLIL1 in classrooms with PSN. Attention is 
paid to the rules for creating suitable CLIL materials for this environment. Three pillars originally 
developed for materials in linguistically and socio-culturally heterogeneous classes are considered as 
the basis; the reported study suggests that they are appropriate if principles for teaching pupils with 
special needs are added.

Theoretical background
In the Czech Republic, there is an increasing demand for using non-traditional teaching strategies that 
develop pupils’ language skills and thus their preparedness for future career, like e.g. CLIL. There 
are studies about the pros and cons of using CLIL, the majority of which present CLIL as a useful 
teaching strategy. However, taking into account the introduction, there are very few studies about 
using CLIL with PSN. We found only one work focusing on this issue (Karlíková, 2020). Karlíková 
studies CLIL teaching at primary school with a focus on PSN, specifically on pupils with learning 
disabilities and pupils from socially disadvantaged backgrounds. Her research shows that CLIL has 
no negative impact on the sample of pupils from socially disadvantaged backgrounds. At the same 
time her research neither confirms nor refutes the potential of teaching CLIL to pupils with learning 
disabilities. There are many questions that still need to be paid attention to and validated.

In Novotná, Moraová and Ulovec (2021) and Novotná, Ulovec and Moraová (2020), three pillars for 
a successful creation of materials for teaching in culturally and socio-culturally heterogeneous 
primary and secondary classrooms are presented and discussed: Topics of interest for all pupils, Using 

1 CLIL – Content and Language Integrated Learning refers to the teaching of a non-linguistic subject through a foreign 
language. CLIL works with an equilibrium between content and language learning.
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cultural differences as funds of knowledge, and How (seemingly) simple things can be very different 
(and difficult) in other places and cultures.

Research question
The pillars were developed for the work in linguistically and socio-culturally heterogeneous 
classrooms, not for teaching PSN in inclusive classrooms. Although we see a lot of similarities when 
working with PSN in an inclusive classroom, it is not clear if the three pillars are sufficient for 
preparing materials for CLIL lessons in classrooms where PSN are integrated. Our study presented 
on the poster focuses exactly on this question.

Results and discussion
In cooperation with practising teachers we observed CLIL lessons in inclusive classrooms and 
analysed materials prepared by teachers for PSN in their classes. In accordance with Karlíková’s 
results (2020) we found that using CLIL with them based on appropriately designed materials is not 
an obstacle for majority of PSN that participated in our study. However, the three above mentioned 
pillars are not sufficient for creating a good CLIL material for PSN. It is not surprising that the fourth 
pillar, Respecting PSN’s individual differences, must be added. For example for pupils with dyslexia 
it is good to shorten all texts, add colours and illustrative pictures. Considering the presence of 
different types of learners, a matching exercise may be text – text as well as text – picture. The 
materials should give enough opportunities for pair work and group work allowing each pupil use 
their strengths in collaborative activities.
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Encouraging mathematical creativity is one of the aims of mathematics education. The present study 
examined teachers’ perceptions of encouraging mathematical creativity in special education 
classrooms (SEC). Three teachers of mathematics in SEC were interviewed regarding their 
perceptions of mathematical creativity and their role in encouraging mathematical creativity in SEC. 
Findings indicated that the teachers believe in the importance of fostering mathematical creativity 
among their students. In general, they indicated that their role was to create a supportive environment 
that encouraged students to think on their own. Professional development is needed specifically to 
introduce teachers to tasks that can promote mathematical creativity.  

Keywords: Mathematical creativity, teachers’ perceptions, special educational needs.    

Introduction 
Encouraging mathematical creativity is an important objective of mathematics education (Levenson, 
2013). Research suggests that promoting mathematical creativity can strengthen the connections 
between different topics both within and outside of mathematics, and extend prior knowledge (Leikin, 
2009). Alongside increased awareness of classroom mathematical creativity, there is growing 
awareness of the importance of offering equal learning opportunities for all students (DeSimone & 
Parmar, 2006). Teaching that exposes students with special education needs (SEN) to a range of 
strategies can encourage flexibility and creativity, along with a deeper understanding of mathematics, 
leading to improved accuracy and foster performance among students with SEN (Peters et al., 2014).  

The teacher has a significant role in fostering mathematical creativity in both, general and special 
education classrooms (SEC). Previous studies have shown that mathematics teachers’ beliefs and 
perceptions can affect their teaching methods as well as decisions made in the classroom (Schoenfeld, 
2011). Likewise, beliefs teachers hold about creativity can influence what they do in class. Some 
mathematics teachers regard creativity as an acquired skill which students can develop (Lev Zamir & 
Leikin, 2012), while others believe that only some students have the ability for creativity (Shirki & 
Lavy, 2012). The current study examines the perceptions of three mathematics teachers who teach in 
SEC within general education schools, regarding encouraging mathematical creativity among 
students with SEN. SEC have a small number of students, where each student learns according to an 
individual learning plan, and yet may be mainstreamed in certain subjects according to ability.  

Theoretical background 
Our theoretical perspective of mathematical creativity is in line with Silver (1997), who viewed 
mathematical creativity as “an orientation or disposition toward mathematical activity that can be 
fostered broadly in the general school population” (p. 75). Mathematical creativity is commonly 
assessed according to three criteria: fluency, the number of distinct solutions, possibilities, or ways 
of solving a given problem (Leikin & Lev, 2013); flexibility, breaking away from familiar and fixed 
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patterns, posing ideas from different fields of mathematics, examining a problem from different 
angles, expressing solutions by means of different representations (Leikin, 2009; Levenson, 2013); 
and originality, finding a new or unusual way to interpret an idea or solution (Silver, 1997). 

Promoting mathematical creativity in the classroom is the teacher’s responsibility, beginning with 
choosing appropriate tasks. Many researchers recommend engaging students with open tasks that 
have many answers (e.g., Levenson, 2013). Leiken (2009) recommends engaging students with 
multiple-solution tasks that have one final answer but many ways to teach that answer. Another type 
of task is problem posing, often associated with promoting flexibility (Silver, 1997). Another 
responsibility of the teacher is creating an environment where mathematical creativity can thrive. For 
example, when a teacher relinquishes some authority as the primary source of knowledge, that teacher 
creates fertile ground for experimentation and investigation, encouraging students to pose questions 
and draw conclusions. By creating a climate that makes the classroom a safe environment for posing 
new and original ideas, and navigating the mathematical discourse, the teacher can encourage the 
development of mathematical creativity among students (Levenson, 2013). 

Previous studies investigated teachers’ perceptions of creativity in general education classrooms. For 
example, elementary mathematics teachers in general education were found to perceive mathematics 
as a subject with limited opportunities for creativity (Bolden et al., 2010). Although they believed 
that creativity is important in general, they regarded mathematics as a subject characterized more by 
logic than by creativity, unlike subjects such as art, music, and language (Panaoura & Panaoura, 
2014). Thus, in practice, they failed to create a climate that fostered mathematical creativity in the 
classroom. Bolden et al. (2010) indicated that teachers believe mathematical creativity manifests itself 
in teaching that utilizes a range of resources (e.g., technology) and examples from daily life. Other 
studies found that some mathematics teachers associate mathematical creativity with tasks that are 
different or unusual, and tasks that have multiple answers (Levenson, 2013). At times, although 
teachers choose appropriate tasks that have the potential to occasion mathematical creativity in the 
classroom, there is a gap between the potential of the chosen task, and the way it is implemented in 
the classroom (Lev-Zamir & Leikin, 2013).  

In contrast to the abundance of studies on teachers’ perceptions of mathematical creativity in general 
education, few studies have investigated the encouragement of mathematical creativity among 
students with SEN. However, studies have examined teachers’ views on teaching mathematics for 
these students, revealing a dispute regarding appropriate teaching methods. Some argue that for 
students with SEN, mathematics education should focus only on a handful of problem-solving 
strategies and on achieving an optimal level of proficiency in just a few calculation procedures 
(Geary, 2003). Others maintain that teaching procedural knowledge based on memorization and 
retrieving facts is difficult for some students with SEN, and therefore, those students should be 
exposed to a variety of strategies and encouraged to develop flexibility and creativity (Peters et al., 
2014). Creating learning opportunities that encourage students to tackle mathematical challenges and 
find different ways to solve problems can help even cognitively less proficient students develop 
mathematical competence (Jonsson et al., 2014). Regarding the issue of equal opportunities in 
mathematics classrooms, some educators argue that just exposing students with SEN to the same 
content and topics as those in general classes is insufficient, and that it is necessary to provide teachers 
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with appropriate training and support, so that they can make adjustments for their students by, for 
example, extending the time of learning and practice (DeSimone & Parmar, 2006). 

The purpose of this study was to examine the perceptions of teachers who teach mathematics in SEC 
within general schools, towards promoting mathematical creativity among students with SEN. The 
research questions are: How do teachers of students with SEN perceive mathematical creativity? How 
do teachers of students with SEN perceive their role in encouraging mathematical creativity in a 
special education classroom? 

Methodology 
The study included three teachers from three different schools in Israel, who teach mathematics in 
SEC within general mainstream schools. As can be seen in Table 1, their training background and 
teaching experience were quite different, representing the reality in Israel. Some teacher colleges 
offer additional mathematical content training for prospective special education teachers. Ravit had 
such training, while Irit did not. Rachel had no formal training to teach students with SEN, but instead 
had a stronger mathematical content and mathematical pedagogical knowledge than Ravit and Irit.  

Table 1: Background of the research participants 

 

Teacher 

 

Pre-service 
education 

Years of experience teaching … 

School, students Mathematics 
(non SEC) 

Special education 
(not math) 

Mathematics 
in a SEC 

Ravit Special 
education + 
mathematics 

Primary students with 
learning disorders 

– 12 years 4 years 

Irit Special 
education  

Primary students with 
autism spectrum disorder  

– – 12 years 

Rachel Computer 
science + 

mathematics 

Middle school students 
with learning disorders 

19 years – 6 years 

The study was conducted using a semi-structured interview. The main interview questions were: (1) 
Is mathematics a creative discipline? (2) Should mathematical creativity be encouraged in SEC? 
Why? (3) How can mathematical creativity be encouraged among students with SEN? (4) Can tasks 
that has been shown to encourage mathematical creativity be used for teaching mathematics to 
students with SEN? (5) Do you implement such tasks in your classroom and if so, how? 

Each interview with the researcher lasted between 25 and 45 minutes. The teachers were asked to 
answer the questions based on their teaching experience, both in mathematics and in special 
education. For interview question (4), teachers were presented two multiple-solution tasks, a type of 
task that has been shown to encourage mathematical creativity (Leikin, 2009; Silver, 1997). For 
example, the first task showed a diagram of 25 circles organized in the form of a diamond, where the 

Proceedings of CERME12 4511



 

 

learner is required to identify how many circles are in the diagram and then find as many ways as 
possible to count them. The interviews, which were conducted via Zoom in the afternoon hours after 
the end of the school day, were recorded and transcribed by the researcher.  

Findings and Discussion 
Inductive analysis of the data led to three main themes: what is mathematical creativity; the teacher’s 
role in encouraging mathematical creativity; and tasks that occasion mathematical creativity.  

Mathematical creativity from the perspective of teachers who teach mathematics in SEC 

To the question, “Is mathematics a creative discipline?” only Rachel responded in the affirmative, 
although she found it difficult to explain why. The other two teachers did not respond at all. Instead, 
Irit and Ravit, and later also Rachel, responded by relating how they themselves teach mathematics. 
For example, Irit defined mathematical creativity in the following way: “Creativity (pause) [means] 
bringing something different, illustrating [the mathematics] in a concrete way, and making it come 
alive.” For Irit and the other teachers, mathematical creativity had more to do with the way they teach, 
than the way the students learn. Specifically, they all mentioned the use of manipulatives, as related 
to mathematical creativity. This finding is consistent with Bolden et al.’s (2010) study of general 
elementary school teachers’ who believed that using a variety of methods and examples from daily 
life is an expression of mathematical creativity.  

To understand why the teachers in this current study associated mathematical creativity with the use 
of manipulatives, we consider their pedagogical knowledge in the realm of special education. 
Students with SEN often struggle to draw connections based on previously acquired knowledge, and 
need mediation and curriculum adjustments in order to properly establish new knowledge (Hunt et 
al., 2016). In the interviews, the teachers frequently expressed those students with SEN need a lot of 
“manipulatives,” “visualization”, and “repetitiveness”. The teachers' reference to manipulatives may 
have stemmed from their need and desire to make the mathematical content more interesting, or from 
wanting to illustrate the content in a way that students would be able to understand. For example, Irit 
stated: “[Mathematics] can be either very dull or [by using concrete manipulatives] very interesting”. 
Rachel, who was not trained as a special education teacher, illustrates the second viewpoint: “Their 
(students with SEN) ability to read (understanding underlying meanings), to teach them mathematics 
… one has to understand that the pace is different … to encourage them to learn in a different way.” 

Nevertheless, when the researcher delved deeper and the teachers were asked directly whether 
students with SEN ever exhibit mathematical creativity, they did refer to flexibility and originality, 
although not necessarily using those terms. For example, Rachel related to flexibility and originality 
thus: “Some students solve questions in such a creative way that I’m simply stunned … in motion 
problems, [they] don’t use the familiar formula (velocity × time = distance); they solve it in an entirely 
different way.” Rachel is hinting at original thinking. She added, “creative students are students with 
a different, not rigid way of thinking”. This refers to flexible thinking. Rachel also referred to unique 
representations of solutions, which is another characteristic of flexibility (Leikin & Lev, 2013). She 
said: “In geometry there is room for creativity … using building blocks, folded paper. We do a lot of 
creating.” Ravit also related to flexibility, in the sense of breaking away from a familiar and fixed 
pattern and combining ideas from different fields (Levenson, 2013). She attempted to define what 
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creativity is, saying: “using what was learned in one mathematics topic, when solving a problem in 
another mathematics topic.” 

Interestingly, the teachers also believed that creativity in mathematics can emerge through students’ 
mistakes. For example, Irit said: “Even if someone (a student) says something that is incorrect but 
explains his reasoning and says why he thinks it’s right, in my opinion it’s even more creative.” 
Rachel also referred to learning from mistakes as part of the process of mathematical creativity: “If a 
student does something and makes a mistake, I allow these mistakes. I let them express mistakes. I 
think mistakes are part of the learning process, and I give a lot of credit (in the positive sense) to 
mistakes.” Analysing these comments from the standpoint of mathematical creativity shows that the 
teachers create a safe environment for their students and encourage them to raise new and original 
ideas (Levenson, 2013), without fear of failing. 

Throughout the interview, teachers also referred to difficulties in teaching mathematics to their 
students. For example, Ravit said that “the students are largely set in their patterns”. The phrase “set 
in their patterns” was used by the two other teachers as well, hinting that the teachers believe it is 
difficult for their students to adopt a variety of methods for solving problems. This is in contrast to 
educators’ suggestions of having students solve problems using different strategies and methods, 
promoting fluency and flexibility (Levenson, 2013).  

The teacher’s role in encouraging mathematical creativity 

When the three teachers were asked if and how mathematical creativity can be encouraged in their 
classes, all three teachers mentioned the types of questions they ask during mathematics lessons. For 
example, Irit said that she asks: “How did you reach this [solution]? What did you do and how did 
you know to do it that way?” Ravit asked more general questions which by their generality may be 
said to encourage fluency and flexibility: “I ask them, ‘How can this be solved? In which ways can 
this be solved?’” This type of discourse encourages students to think of more than one solution 
method, which promotes mathematical creativity, and assists in constructing knowledge. By asking 
open and guiding questions, the teacher raises the level of thinking, opens new channels of thought 
for the students, and encourages mathematical creativity. On the other hand, none of the teachers 
stated that they ask individual students to solve a problem in more than one way (Levenson, 2013). 

Teachers also mentioned their role as mediators in the learning process, which they believe leads to 
the encouragement of mathematical creativity. Rachel described what happens in class after she gives 
students a task to work on individually: “First of all, the student thinks, he constructs some 
knowledge. I give him the feeling that he’s not alone. I guide him. It’s a learning process.” Rachel 
continued to describe how the lesson develops and how different students describe different solutions 
to their classmates: “The students explain … sometimes their classmates manage to understand it 
better [than the teacher’s explanation].” It appears that the teachers believe that mediation and 
working together with the students, is an important aspect of promoting expressions of mathematical 
creativity, as well as constructing the subject matter. 

Teachers also believed that their role is to motivate students and that mathematical creativity can be 
a means to increase motivation. Phrases such as “fear”, “passiveness”, “(low) self-confidence”, 
“challenge”, “emotional aspect” were very common among the teachers’ description of the climate 
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in mathematics classes. Rachel suggested that the added value of encouraging mathematical creativity
is a way to boost motivation: “You give students the feeling that they are doing it on their own … a 
sensation of learning. Rather than acquiring and ‘regurgitating’ the material … [that way] they
explain how they arrived at the solution …”. This is in line with Peters et al. (2014) who suggested 
that encouraging mathematical creativity creates a challenge for the students and thus students are 
more active and involved.

As seen above, the teachers appreciate their roles in encouraging mathematical creativity in special 
education classrooms. They encourage students to solve problems in different ways and avoid 
dictating only one correct right way, thereby allowing expressions of flexibility and originality. 

Incorporating tasks that occasion mathematical creativity among students with SEN

Unlike when teachers were asked about their roles in encouraging mathematical creativity, and they 
were immediately able to offer several responses, when asked about incorporating tasks that could 
promote mathematical creativity, there was quiet. Specifically, Ravit and Irit struggled to give 
examples of tasks that have the potential to occasion mathematical creativity. When they were shown 
the open tasks, they thought for quite some time if such tasks could be implemented in their 
classrooms and for which students, making it seem that they were unfamiliar with such tasks. That 
being said, they were interested to find out how their students with SEN would respond to those tasks. 
In contrast, Rachel gave an example of a multiple-solution task in geometry (see Figure 1) that she 
had implemented in her class, in which students are asked to present different ways of finding the 
area and circumference of a certain polygon. 

What is the area of the shape? In how many 
ways can you find the area?

Figure 1: Rachel’s example of a multiple-solution task in geometry

There are several possible explanations for the differences between the teachers. First, Irit and Ravit 
were trained as special education teachers and gained most of their professional experience in that
field, rather than specializing in mathematics. Rachel, on the other hand, had many years of 
experience as a mathematics teacher, and had only been teaching in special education classes in recent 
years. Second, the teachers had experience with different age groups. Irit and Ravit taught primary 
school. Irit attempted to explain why she thought it would be difficult to incorporate such tasks with 
young students: “Because of the gaps [in knowledge] that are created, I feel that something is always
missed somehow … we are in a rush to close those gaps … we are always ‘in a war’ to make it 
meaningful and truly develop [students’] thinking, and on the other hand, to complete the
curriculum.” Irit’s thoughts may reflect primary school teachers’ perception that primary school 
mathematics is about acquiring and perfecting basic mathematical skills rather than encouraging
mathematical creativity. By contrast, Rachel teaches middle school, where students have more
mathematical knowledge, insight, and personal experience, which – alongside the challenge of 
solving a problem – can encourage mathematical creativity (Silver, 1997). The differences between 
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the teachers can also be explained as a manifestation of the different approaches to teaching 
mathematics to students with SEN: the notion that focusing on a handful of calculation procedures 
and perfecting them is the optimal method of teaching mathematics to students with SEN (Geary, 
2003), compared to the approach which states that encouraging students to deal with mathematical 
challenges and find multiple solution strategies can help even cognitively less proficient students to 
develop mathematical competence (Jonsson et al., 2014).  

Summary and Conclusions 
This study investigated the perceptions of three teachers who teach mathematics in SEC regarding 
mathematical creativity and their roles in fostering mathematical creativity in the classroom. All three 
teachers expressed the importance of incorporating creativity in SECs. In line with mathematics 
educators (e.g., Levenson, 2013), they expressed the need to foster an environment which encourages 
discussion and questioning, and allows students to solve problems in their own ways (Leikin & Lev, 
2013). Their responses hinted at their recognition of flexibility and originality.  

Like general primary school teachers (Bolden et al., 2010), during the interviews it became apparent 
that the teachers connected mathematical creativity to students’ mathematics comprehension and the 
way they themselves teach mathematics. Building on this perception, we recommend professional 
development that would introduce mathematics teachers of students with SEN to various types of 
tasks that have the potential to occasion mathematical creativity. Teachers can then work together, 
using their pedagogical knowledge and experience, to integrate such tasks during mathematics 
lessons. For example, teachers described the importance of using manipulatives to enhance learning. 
Students with SEN can be encouraged to solve a problem using more than one type of manipulative 
or even the same manipulative but in different ways, fostering both flexibility and a deeper 
conceptualization of the topic being learned. 

While we acknowledge that this study cannot be generalized, we see our findings as a window into 
the possibility of fostering mathematical creativity in SEC, offering students with SEN equal 
opportunities to experience mathematics as a creative domain. Further research might investigate how 
mathematics teachers in SEC would implement creativity promoting tasks in their classes and how 
students engage in such tasks, enabling teachers to understand how such tasks can be made accessible 
to students with different needs.  
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Facilitator educators’ professional development and professional roles
Within the complex field of teacher education, facilitators and their professional development (PD) 
are of great importance. Facilitators as such are an extremely heterogeneous group: They have dif-
ferent backgrounds, tasks and functions in different working contexts, teach different subjects and 
types of learners (Dengerink et al., 2015). We focus here on persons responsible for providing PD 
courses for teachers (facilitators), and providing PD courses for facilitators (facilitator educators).

For qualifying facilitators, the Three-Tetrahedron Model (3T-Model, see Figure 1, Prediger et al., 
2019) is of major importance. For the professionalization process, all three levels of the 3T-Model 
are relevant (Prediger et al., 2021): The tetrahedron on the classroom level – comprising students, 
teachers, classroom mathematical content, and classroom resources – will be transposed to the teacher 
PD level as well as to the facilitator PD level. On the facilitator PD level, facilitators are learners, the 
facilitator PD content comprises the whole tetrahedron on the teacher PD level which, again, com-
prises as teacher PD content the complete tetrahedron on the classroom level. The main level of acting 
concerns the facilitator PD level, but teacher PD level as well as classroom level are also touched.

Figure 1: Three-Tetrahedron Model for content-related PD research (Prediger et al., 2019, p. 410)

Subject specific PD course ‘Coping with heterogeneity in inclusive settings’
Within the German Centre for Mathematics Teacher Education (DZLM) in cooperation with a 
statewide agency for teacher education, a subject specific PD course ‘Coping with heterogeneity in 
inclusive settings’ has been developed, aiming at qualifying a group of 15 facilitators (working in 
primary and lower secondary mathematics and special education). Exchange and cooperation of the 
different professions was intended for the whole course. Planned as a scaling up process, the qualified 
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facilitators should function as facilitator educators and offer the course to other facilitators or teachers 
for qualifying them as facilitators. The research-based course design was grounded on various eval-
uated course concepts, done by the authors before. The mathematics modules were embedded in a 
broader concept, starting with a module, focusing on the general role of facilitators and adult learning, 
and followed by a module, given by the statewide agency, representing their general objectives and 
strategies with respect to subject specific PD. The four mathematics modules included a basic module 
as well as three thematic modules for inclusive mathematics, each module lasting 2.5 days. In partic-
ular: ‘Basic module for deepening didactics of mathematics in the context of inclusion’, ‘Learning 
difficulties/learning disabilities/learning potentials in mathematics’, ‘Diagnosis and support in math-
ematics instruction’, and ‘Learning mathematics in inclusive settings’. Beyond the meaningful con-
tent selection and consideration of design principles (cf. Prediger et al., 2019), the course concept put 
the main stress on addressing the role as facilitator educator, for example by integrating reflections 
as well as simulations and at the same time connecting facilitator PD level, teacher PD level, and 
classroom level (Prediger et al., 2019). Connecting the levels was also realized with different forms 
for evaluating the course quality and acceptance. One of these evaluations asked for addressing the 
different roles on the different levels: At the end of the mathematics modules, the facilitators had to 
rate the relevance of each module on a six-point likert scale, differentiated according to their role as 
teacher, facilitator, and facilitator educator (1 indicated ‘not at all relevant’ and 6 ‘very relevant’). 

Exemplary evaluation results  
The overall evaluation showed that all mathematics modules mainly were assessed as very relevant 
or relevant for their various roles (teacher, facilitator, facilitator educator), and that the three levels 
(classroom, teacher PD, facilitator PD) were thus addressed (cf. Prediger et al., 2019). The primary 
course goal was the qualification as facilitator educator. Hence, it was expected that this level would 
be addressed in particular. However, all levels were addressed throughout the course: Exemplary for 
the module ‘Learning mathematics in inclusive settings’, the participants assigned greater relevance 
to their role as facilitator educator and as facilitator (12 out of 13) than to their role as teacher. This 
is plausible and also desirable insofar as their qualification as facilitator educator and their subsequent 
activity as facilitator educator was intended. Nevertheless, for 9 out of 13, this module was also rel-
evant or very relevant with regard to their role as teacher. Among other things, facilitator educators’ 
ratings could be attributed to their individual prerequisites and acquaintance of a specific content. 
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TWG26 met for the third time, this time virtually, at CERME12 and we continued the work started 
at CERME11 and the virtual Pre-CERME12 Event. At CERME12, 14 papers and 4 posters coming 
from 10 countries were presented and discussed in order to make STEM (Science, Technology, 
Engineering, Mathematics) subjects more relevant to students and teachers. The papers and posters 
were grouped under four themes: (1) M in STEM/STEAM, (2) designing for students learning, (3) 
processes in STEM/STEAM, and (4) STEM/STEAM professional development. Since the themes 
are intertwined, each paper could be assigned to multiple themes. Therefore, the assignment of 
papers to themes was guided by a “best fit” approach as well as practical considerations. As some 
of our headings below suggest, we sought research on the broader category of STEAM with little 
success. Thus, the headings represent the thematic areas of our conference call but with very little 
representation of the Arts in each category. The ideas and issues in the papers and posters will be 
presented under these four themes in the upcoming parts.

Thematic areas
M in STEM/STEAM

Within this theme three papers were presented. The first paper by Larsen, Kristensen, Seidelin and 
Svabo examined the role of mathematics in 19 developed STEM activities within the context of 
the framework developed by Kristensen et al. (2021). The framework based on Kristensen et al.’s 
review of 37 papers indicates that mathematics can be applied as a tool or can be regarded as a 
goal in STEM activities in different ways. The investigation of the activities reveals that the role 
of mathematics as a tool in these activities is to help the students develop an understanding of 
science or technology or help them in engineering and design processes. The role of mathematics 
as a goal in these activities is about the development of students’ mathematical skills and 
knowledge. Actually, both need to be considered together as they work together in some way. 
They cannot be separated from each other. Mathematics sometimes can be a tool or a goal 
depending on the complexity and the aim of the task, a teacher’s (and/or researcher’s) goal, and so 
forth.  Mainly, it is important to understand what happens in each moment in a complex task. The 
discussion of the papers raised several questions moving toward CERME13:
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What are the roles that mathematics plays in STEM activities?
How can we make learning mathematics as a goal besides using mathematics as a tool in 
STEM activities?
What can STEM activities do for the subject of mathematics?
What can mathematics do for STEM teaching?

The second paper by Bennett and Ruchti analyzed students’ interactions in one classroom in which 
they watched and discussed a video report from the National Oceanic and Atmospheric 
Administration on the winter outlook for the region. They also analyzed field notes from lesson 
planning meetings and notes from post-lesson discussions on the base of three of the nine 
commonly accepted perspectives for defining STEM outlined by Bybee (2013). These three 
perspectives are 1) simultaneous infusion, 2) temporary shift in discipline, and 3) lateral concept 
connection.  Simultaneous infusion uses mathematical and scientific habits of mind and practices, 
such as the importance of using data and communicating ideas (e.g., seeing connections between 
the ways behavior scientists and mathematicians engage as they investigate and attempt to make 
sense of real-world phenomena). A temporary shift in discipline is a shift from one discipline (e.g.,
science) to conceptually explore a skill in another discipline (e.g., mathematics), and then a shift 
back to the original discipline (science) to bring new understandings to the primary science focus.
Lateral concept connection is a purposeful movement between two seemingly unrelated core ideas 
of the same discipline (e.g., the earth science study of weather and the biological science study of 
birds). The discussion addressed several important questions moving toward CERME13:

Where is the place for appropriate STEM integration? (curriculum, assessment, 
instruction)?
What are the frameworks for appropriate STEM integration?
How best to link and leverage cross-curricular learning for authentic STEM integration?
What are the factors contributing to teachers’ STEM integration? (e.g., shifting from 
teacher-directed pedagogy to the more student-directed nature of an integrated curriculum, 
the structures of school schedules, finances, strict-level or course-level curriculum, school 
and teacher’s knowledge about what STEM is, conception of STEM education, state of 
anxiety and insecurity, etc.)?

The last paper by Costa and Domingos aimed to examine an experienced Mathematics and Natural 
Sciences teacher development and implementation of mathematical tasks (e.g., each student infects 
two colleagues, each student infects three colleagues, etc.) in a mathematics classroom within the 
context of the COVID-19 pandemic in order to highlight the role of mathematics to understand 
them. These tasks raised awareness and understanding about the need for measures in the context 
of the COVID-19 pandemic, such as social isolation or vaccination. Regarding mathematics, 
powers, exponential growth, variables, iteration, functions, graphics, organization of tables, and 
data visualization needed to be used and understood. The discussion of this paper in the TWG 
raised several important issues moving toward CERME13:
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Where should we leave the STEM integration? Are we going to force this "integration" 
into the mathematics classroom? Into the science classroom? Into the disciplinary course?
What are the nuances, challenges, and affordances for teachers in 
developing/implementing STEM tasks for/in their classroom?
Was there anything that was more difficult?
What is the role of M in STEM in order to innovate and improve mathematics teaching?

Designing for students learning

The second theme of the submissions involved research related to designing STEM learning 
environments for students. Two papers focused on the meaning of mathematical models in 
supporting students’ learning while the third investigated students’ understanding of already-
created models: graphs of linear functions. Regarding the modelling theme, Haier, Siller, and 
Vorhölter presented a framework of criteria to guide curriculum design involving Education for 
Sustainable Development. They introduced the notion of socio-critical modeling which refers to 
the activity of reflecting on one’s world critically, organizing social problems mathmatically, and 
recognizing the role of mathematics in making the world a better place. By merging the criteria of 
two similar modeling design traditions and paying particular attention to socio-critical aspects, 
they suggested a set of eight modeling design criteria.

For their part, Just and Siller used literature on models as black boxes in mathematics, science and 
the work place to develop meaning for black boxes in mathematics. The term black box generally 
refers to a system of relationships, say mathematical, that is often unseen or unknown by the user. 
Using their carefully crafted definition, they explored ways to integrate modeling with black boxes 
in mathematics education using a chemistry context. They argued that designing activities to 
support the opening of black boxes in mathematics education is integral to the modeling process.

Finally, Knippertz, Becker, Kuhn, and Ruzika explored the ways in which students make sense of
graphical models and the implications this has for designing instruction on linear function. They 
used eye-tracking technology to investigate what characteristics of kinematic and mathematical 
graphs students pay attention to and if their gaze is drawn to different areas depending on the graph 
type. Their findings confirmed other studies that conclude interpreting kinematic graphs is more 
difficult than those that are more mathematical in display. 

These three papers left us with important questions moving toward CERME13.

What are design principles specific to supporting students’ modeling and socio-critical 
modeling more specifically?
How do we leverage real world situations that span the S-T-E- and M disciplines to design 
students’ STEM learning?

Processes in STEM/STEAM

The third theme of the submissions involved research related to understanding the learning
processes of students in STEM/STEAM environments. Two papers and one poster explored a 
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variety of ideas within geometrical and spatial sense making. One paper presented a theoretical 
argument for an extended definition of spatial thinking within STEM, and a final paper challenged 
current research that suggests reading and mathematical understandings are related.

The first three research projects within the geometry domain shared findings from work with 
students situated within classroom teaching environments involving geometrical and spatial 
reasoning. Eckert and Sjödahl, for example, described the tension between providing elementary 
students simple coding with too much structure (i.e., pre-made codes) and not enough structure, in 
geometry tasks, with the aim of promoting computational reasoning. Those students who arrived 
at a solution fairly quickly did not engage in the process of formulating problems whose solutions 
could be manifested in code. Students who got stuck in their unhindered exploration did not have 
the supports they needed to decompose the problem situation into more manageable subproblems. 
Eckert and Sjödahl’s findings suggest that tasks need more built-in supports to promote breaking 
problems into smaller, more manageable pieces.

students’ development of geometrical reasoning as the students engaged in the engineering design 
process. They presented the results of a study in which 13–14 years old students re-designed a 
local neighborhood by first defining the engineering problem, exploring solutions by interviewing 
family and community members, selecting solutions and creating scaled drawings of the buildings, 

-dimensional scale 
plan of a neighborhood through PBL can strengthen students’ knowledge of the engineering design 
processes while also developing their spatial reasoning. Furthermore, throughout designing a 
neighborhood plan, they learned how to design a place, the different types of professions and their 
duties, how to use a protractor to draw geometrical shapes, how to solve the challenges and 
difficulties as a group, the importance and value of geometry in real life, how the elements of a 
neighborhood are placed in it, and the importance of every detail such as accuracy and precision 
in drawings.

Lasa et al. presented a poster that documented a STEM project in which 13–14 years old students 
must build and calibrate an electronic weighing machine to contextualize the concept of linear 
functions. They found that the use of a dynamic, geometry software program was a powerful 
instrument for supporting students’ modelling in STEM contexts because students have the 
opportunity to test any number of attempts before they move to a definitive physical construction. 
They concluded that it is not only possible, but powerful to use technology to engage students in 
mathematical reasoning as a primary activity rather than simply as a tool to do the work of the 
other disciplines (science, technology and engineering).  

Zöggeler presented a more theoretical paper exploring the meaning of spatial reasoning and its 
location within the STEM curriculum. Critiquing current conceptualization of spatial research, 
they argued that most research has explored students’ spatial sense in purely psychometric terms 
with little attention to problem solving contexts. They introduced an extended model of spatial 
thinking in STEM that includes two overarching facets, spatial problem solving and spatial 
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memory, with six more elaborate characteristics within those. They argued for the promotion of 
extended spatial thinking through mathematical, physical and technical contents as well as the 
promotion of spatial thinking in STEM subjects.

Finally, Cascella shared the results of a study that delved deeper into the relationship between 
students’ reading and mathematics ability. While research has shown that there is a strong 
relationship between students’ reading and mathematical reasoning, studies rarely account for the 
possible intersectionality between such a relationship and other contextual variables and/or 
students’ personal characteristics. Cascella’s research results confirmed that an integrated, 
interdisciplinary teaching approach is necessary and can be instrumental and powerful to fight 
educational inequalities across gender, socio-economic status, and citizenship. 

These papers left us with important questions moving toward CERME13.

If there is something called STEM-thinking, what would it encompass?
What are the possibilities and challenges in talking about STEM-abilities and which 
abilities are addressed?

STEM/STEAM professional development 

The fourth theme of the submissions involved research focused on STEM/STEAM Professional 
Development. The four papers and the three posters leading to this theme explored a number of 
intertwined aspects of STEM/STEAM Professional Development, including (1) providing a
critical overview on the characteristics of STEM professionalism (Møller), (2) exploring the 

, Ulbrich, 
Dana-Picard & Laviza), (3) analysing teachers’ views on innovative learning activities (Erbasan 

(4) documenting mathematics teachers’ experience in teaching STEM (den Braber, 
Mazereeuw, Krüger & Kuiper), (5) developing a STEAM professional development program for 
training in-service teachers and exploiting the role of mathematics within a secondary STEAM 
context (Diego-Mantecón, Laso, Diamantidis, Kynigos), (6) detailing the relationship between 
STEM practices and the development of 21st century skills (Amado & Carreira), and (7) 
understanding what knowledge promotes the development and implementation of mathematical 
interdisciplinary practices within the context of STEM education (Costa & Domingos).

In particular, Møller pointed out that in Denmark, curriculum descriptions of STEM competencies 
do not exist. To fill this gap, Møller developed a ‘concept map’, based on the review of both 
academic and grey literature (see Monash University, 2022). So far, Møller identified three main 
categories to describe STEM competences: (1) computing and visualizing 'everyday' data with 
computers, (2) finding and solving STEM-related problems, and (3) innovative STEM thinking. 

et al. discussed the usability of modern tools, such as 3D printers, by reporting on STEAM 
teachers’ opinions and attitudes about 3D modelling and printing. Results suggested, on the one 
hand, that teachers from different subjects can understand differently the usability of these tools 
and, on the other hand, that 3D printers require a high level of computer knowledge in order to be 
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used effectively. These results call for a reflection about the potentials and limitations of modern 
tools in integrated teaching approaches, and for specific training.

In line with this, Diego-Mantecón et al. described an Erasmus+ project aimed to examine and 
overcome the main issues obstructing the implementation of STEAM education in secondary 
education, by involving teachers and scholars from Spain, Austria, Finland, Greece, and Hungary.

Research reporting on teachers’ experience from other countries confirmed the need to focus on 

reported on teachers’ experience in teaching mathematics within an integrated (STEM) approach: 
even though subjects integration is explicitly mentioned in the national curriculum, teachers do 
not consider the integrated approach as the ordinary one, and, as with other papers presented in the 
same section, teachers complain about a number of obstacles (such as time constraints, lack of 
teamwork experiences, lack of knowledge and experience, lack of equipment for activities, and so 
on) hindering the success of integrated teaching. 

Similarly, from Netherlands, Der Braber et al. reported on mathematics teachers’ experience in 
teaching STEM. They discussed the appropriateness of mathematics teachers’ training to teach 
Nature, Life and Technology (NLT). According to Der Braber et al., (teaching/teachers’) freedom 
is, at the same time, the keyword to teach NLT successfully but also a risk if/when mathematics 
teachers are not aware of the learning goals of such courses, or when their background and work 
experience causes sharp differences (between teachers) in dealing with interdisciplinary 
objectives. Those who plan and develop professional training should thus be aware of this, in order 
to better support teachers in dealing with interdisciplinarity and exploiting the role of mathematics 
in such an interdisciplinary context.

Finally, Amado and Carreira presented and critically discussed the effect on a group of 
Mathematics teachers’ attitudes and perceptions about the integrated approach after attending a 
professional development program committed to the innovation of teaching practices. Results 
showed that offering teachers practical tools, ideas, and guidelines to develop an integrated 
approach positively affects teachers’ attitudes towards integrated teaching approaches and their 
willingness to engage their students in solving a real-world problem, thus confirming the 
importance, actually the need, to focus on professional development.

These papers left us with important questions moving toward CERME13.

What are the key competencies for future STEM teachers?

How do we prepare teachers to teach STEM in ways that are not isolated S, T, E and M?

How do we help teachers discuss the role of mathematics in STEM?

Conclusion
Each of the papers and posters in the TWG26 were critically discussed in small and whole groups 
and captured specific aspects of “STEM” from a mathematics education perspective. 
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From both the small groups and the plenary discussions, STE(A)M seems to be defined as both a 
stand-alone subject (broader than just the sum of S+T+E and M) and as a “learning environment” 
within which teachers (and students) can work at the intersection of different (but sharply 
intertwined) subjects to construct a new learning environment within which actors can develop 
new, innovative, and critical thinking.

Results from the research presented seem to suggest that working with real problems is the way to 
combine S, T, E and M. To think about STEM as a unique subject, given by the combination -
rather than just the sum - of its components, we should move from an interdisciplinary to a 
transdisciplinary approach. In this sense, a transdisciplinary approach can help students to develop 
both knowledge and competence (both theoretical and empirical/practical) not just in S, T, E and 
M, but in STEM, conceived as a unique subject. 

Teachers in different countries employ very different teaching approaches, but the perception of 
STEM as an integrated subject is rare everywhere. Obstacles hindering a transdisciplinary teaching 
approach have been reported in some of the research presented, but also emerged in the TWG26 
discussions. Among these ‘hindering factors’, in addition to the lack of time, experience, 
equipment and appropriate teachers’ training, scholars from different countries (such as Portugal, 
Spain and Italy) also mentioned the absence of enough knowledge, in the public opinion, about 
STEM conceived as an integrated discipline, thus raising concerns among students’ 
relatives/parents. All these reflections confirm that teachers from different countries experience 
similar difficulties and call for a prompt answer/intervention from educational policy-makers, 
possibly in an international, common perspective. 

Research about STEM, from a mathematics education perspective, should thus focus on these 
criticalities in the attempt to understand, for example, what STEM education is (if there is such a 
thing), with emphasis on the M; what the characteristics of instructional materials, teaching 
practices, STEM programs (e.g., classroom implementation and/or school-wide approach) are, and 
thus what STEM preparation is and how it can support teachers in developing a proper and 
effective transdisciplinary approach.
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The 21st Century Skills and Competences for New Millennium Learners have been shaping 
curriculum reforms and educational trends around the world, including in Portugal. In this article 
we discuss a theoretical perspective on integrated STEM education in which practices have a central 
place. We consider the current importance of developing professional development programs for 
teachers, including mathematics, based on a conceptual framework for promoting scientific, 
technical, and technological knowledge and practices. Our aim is to know how mathematics teachers 
experience STEM activities and how they evaluate the results of their implementation in the 
classroom. The study uses a qualitative methodology, in the context of a professional development 
program. The results show that teachers performed STEM practices in a proposed task and positively 
evaluated the effects of their students’ work on the task, namely in promoting 21st century skills. 

Keywords: STEM education, teachers, practices, competences. 

Introduction  
The 21st Century Skills and Competences for New Millennium Learners in OECD Countries 
(Ananiadou & Claro, 2009) have had a strong influence in Portugal and were decisive in shaping the 
overall curricular design of the so-called student’s profile at the end of compulsory school (Ministério 
da Educação, 2017). STEM education is seen as a challenging opportunity to promote the 
development of such skills and competences. To the public and to most of the educational community, 
STEM education is seen as something that is new or not yet completely known, especially regarding 
the ways of putting it into action. On the one hand, STEM education entails connecting science and 
mathematics knowledge, and their teaching in an integrated way. On the other hand, it includes 
scientific and engineering practices. Despite the many open questions and unknown terrain, STEM 
teaching and learning seems to represent a great motivational opportunity to both teachers and 
students. In particular, the perspective of crafting solutions to real-world problems tends to boost 
students’ interest and curiosity.  

There is no more important single factor influencing the quality of a student’s educational experience 
in the classroom than the quality of the teaching and learning practices. Integrated STEM education 
is particularly relevant to the development of students’ skills and competences as it involves solving 
real-world problems and dealing with complexity.  

Teachers make a difference. The success of any plan for improving educational outcomes depends 
on teachers who carry it out and thus on the abilities of those attracted to the field and their 
preparation (National Research Council, 2010, p.1). 
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Professional development programs must offer opportunities for mathematics teachers to engage in 
meaningful dialogues about integrated STEM education and to develop learning environments for 
engaging students in STEM activities (Uttendorfer, 2014). Studies have already shown that the STEM 
initiative is being generally well received by the teachers (e.g., Kang, 2019). In terms of increasing 
teacher capacity to teach integrated STEM lessons, studies found that teacher professional 
development courses increased teachers’ recognition of the STEM approach and confidence in 
teaching STEM. Kang (2019) has found that there is a lack of research on the connections between 
teachers’ perceptions of STEM and their classroom practices. In this paper, we focus on mathematics 
teachers’ views and experiences concerning the development of a STEM activity in their mathematics 
classes, within the context of a professional development program.  

Theoretical Framework 
Moore et al. (2014) defined integrated STEM education as “an effort to combine some or all of the 
four disciplines of science, technology, engineering, and mathematics into one class, unit, or lesson 
that is based on connections between the subjects and real-world problems” (p. 38). We propose a 
close idea, by assuming integrated STEM education as the approach to teaching the STEM content 
of two or more STEM domains, bound by STEM practices within an authentic context, for the 
purpose of connecting these subjects to enhance students’ learning. 

Kelley and Knowles (2016) advocate that most content in STEM education can be grounded within 
the situated cognition theory (Lave & Wenger, 1991). Foundational to this theory is the concept that 
understanding how knowledge and skills can be applied is as important as learning the knowledge 
and skills itself. Situated cognition theory recognizes that the contexts, which means both the physical 
and social elements of a learning activity, are critical to the learning process. When a student develops 
a knowledge and a skill base around an activity, the context of that activity is essential to the learning 
process (Putnam & Borko, 2000). Often when learning is grounded within a situated context, learning 
is authentic and relevant, therefore representative of an experience found in actual STEM practices. 
When considering integrating STEM content, engineering design can become the situated context 
and the platform for STEM learning.  

Engineering design can be an ideal entry point to work in STEM activities or projects. An engineering 
design approach creates an opportunity to apply science knowledge and inquiry as well as it provides 
an authentic context for learning mathematical reasoning for informed decisions during the design 
process (English, 2019). The analytical element of the engineering design process allows students to 
use mathematics and science inquiry to create and conduct experiments that will inform the learner 
about the function and performance of potential design solutions before a final prototype is 
constructed. Both engineering design and scientific inquiry accentuate learning by doing.  

Scientific inquiry prepares students to think and act like real scientists, ask questions, hypothesize, 
and conduct investigations using standard science practices. Engineering and technology are closely 
related, and if taught in articulation with technology education can promote technological literacy. In 
fact, engineering and science are closely related to the way in which the technology is used. 

STEM education offers students the opportunity to think through technology as a vehicle for change 
in culture, society, politics, economics, and environment. Studies show that students are more 
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motivated and perform better on mathematics when teachers use a STEM integrated approach by 
engaging them in learning activities that include engineering design and prototyping.  Incorporating 
STEM practices that include mathematical analysis necessary for evaluating design solutions 
provides a powerful basis for students to learn mathematics and to see the connections between what 
is learned in school and what is required in STEM careers. In this way, students develop their 
mathematical thinking (Kelley & Knowles, 2016). 

According to Kelley and Knowles (2016), the efforts to integrate mathematics and science should be 
founded, in part, on the idea that knowledge is organized around big ideas, concepts, or themes, and 
that knowledge is advanced through social discourse. When engaging students into a community of 
practice, the learning outcomes can be a result of a common and shared practice. A community of 
practice can provide an opportunity to engage local community experts as STEM partners such as 
practicing scientists, engineers, and technologists who may help focus the learning. 

Leung (2019) argues that teachers need to integrate the correlated STEM disciplines in ways that 
prevent losing the disciplines’ unique characteristics, depth, and rigor. Some STEM models give 
mathematics and science central roles while others put engineering as the major component of STEM. 

Kelley and Knowles (2016) suggest that the key to preparing STEM educators is to first begin by 
grounding their conceptual understanding of integrated STEM education by sharing key learning 
theories, pedagogical approaches, and building awareness of research results of current STEM 
educational initiatives. Furthermore, professional development experiences for in-service teachers 
may also contribute to a strong conceptual framework of an integrated STEM approach and build 
their confidence in teaching from an integrated STEM perspective. Kennedy and Odell (2014) 
claimed that STEM education programs of high quality should include (a) integration of technology 
and engineering into science and math curriculum at a minimum; (b) promote scientific inquiry and 
engineering design, include rigorous mathematics and science instruction; (c) develop collaborative 
approaches to learning, connect students and educators with STEM fields and professionals; (d) 
provide global and multi perspective viewpoints; (e) incorporate strategies such as project-based 
learning, provide formal and informal learning experiences; and (f) incorporate appropriate 
technologies to enhance learning. 

Context and method   
In the following, we describe and analyse mathematics teachers’ experiences concerning the 
development of a STEM activity in their classes, within the context of a professional development 
program, and their views about a STEM task. The program was developed over three academic years 
and involved 243 middle-school (grades 7 to 9) mathematics teachers. All the participants had a 
professional teaching experience of more than 5 years. The aim of the program was to promote 
innovative classroom practices and was proposed by the regional educational authorities with the aim 
of reducing the rate of school failure in mathematics. It was designed according to the 
recommendations presented in the previous section, namely by integrating STEM practices. 

In Figure 1, we present the task proposed: Customizing paint colour. The task was solved in small 
groups, where materials were made available to allow all participants performing experiments related 
to the re-creation of customized paint colours. The task involves some central ideas/concepts, such 
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as: colour, mixture, ratio, volume, measurement, formulae, computation, experimentation, 
technological system, customer, and customizing.  

 
Figure 1. The task: Customizing paint colour 

In Figure 2, we present some of the questions raised to steer discussion and reflection among the 
teachers, after solving the task. The reflection was intended to include the recommendations by Leung 
(2019) about how to pedagogically integrate the four STEM disciplines. 

Figure 2. Questions to guide reflection 

The data collection was based on observation and documental analysis. The observation took place 
in some of the program sessions, in which the teachers solved the STEM task and where discussion 
periods with the whole group took place. After the program sessions, the teachers were challenged to 
propose the task to their students, in the class. The teachers were also invited to share their teaching 
experiences in the following sessions and to present some written reflections. Some excerpts from 
the teachers’ reports shared in a program session will be presented in highlighting some of the results.  

MEMO 
From: Sales / Orders 
To: Laboratory 
Subject: Recreating custom colour 
We received an order of custom colour acrylic paint. It is asked to recreate the colour of the curtain sample to paint 
a wall of a room. The manufacturing section needs to know the composition and quantities of pigments to be used 
for programming the system to produce various amounts of paint. The quantity of the order is not known (1, 5, 10 
liters?). 
From the experience ... 
You will have to find the colour as close as possible to the sample provided by the customer and obtain its 
composition. White base and two liquid pigments, measuring syringes and cups to make mixture trials are available. 
.… to the model 
From the closest possible colour obtained, find out how to manufacture any desired amount of paint, using the white 
base and the two primary pigments. (Consider the automated paint production system named tintometric system, in 
which a dispensing machine releases exactly the amounts of base and pastes needed to make the client’s desired 
amount of paint). 
… and to the final product… 
Prepare a report of the work performed, explaining all the processes carried out, the reasoning and the conclusions 
obtained. You may use the proposed report template. 

1. How does the task involve mathematics and the mathematical modelling process? 
2. How do you see the student’s learning in carrying out the task? Which ideas, contents, practices, competences are 
aimed? 
3. Which key elements of the Educated Student’s Profile do you identify in developing the task? 
4. How would you integrate this task in your mathematics classes, namely what would you do before proposing the 
task and how would you foster subsequent learning after the task is completed? 
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Results
The sessions dedicated to STEM education started with an overview and discussion of theoretical and 
conceptual perspectives and proposals, as suggested by the literature. Although STEM was a novel 
idea and concept for the participating teachers and they were not used to performing this type of tasks
in their classes, the teachers showed a clear enthusiasm and interest in solving such tasks.

While working on the problem of customizing paint colour and performing experimentation with the 
materials provided (Figure 3), some teachers verbalized their concerns with the implementation of 
the task in the classroom. They were especially worried about the practical work involving the use of 
several materials to produce the desired colour. 

Figure 3. Images of the groups’ work using materials and resources

As shown in Figure 3, one consistent finding is that the teachers systematically resorted to the digital 
technologies they had available. The cell phone calculator and the graphic calculator were always in 
use in their worktable. Some teachers also used a laptop to do some work with EXCEL. We could 
observe how the engineering and science practices were closely related to the way in which the 
technology was used. By challenging the teachers to create a possible simulation of the tintometric
system, they mainly decided to do it with the spreadsheet (Figure 4).

Figure 4. Example of the use of Excel in a mathematical representation of the problem 

Effective STEM teachers need more than just expertise in their subject matter, but they also need to 
be able to use instructional strategies for integrating science, technology, engineering, and 
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mathematics into their lessons in a way that is both efficient and effective. The teachers showed great 
enthusiasm and dedication in solving the task, as well as they acknowledged features of the task that 
they found relevant to an integrated STEM activity. The idea of implementing the task in the 
classroom was also appealing to most of the participants. Indeed, some time later, several of the 
teachers used the task in their own classes. Therefore, in a subsequent session, it was possible to 
organize moments for sharing and discussing the results of that teaching experience.  

We selected extracts of two of the teachers’ statements regarding their experience with the task 
proposed to the students in their actual classes. 

Teacher 1:          Interestingly and to my surprise, the PROFIJ [vocational course] was the class that got the best 
results in recreating the colour and in the desired accuracy of the amounts of pigments obtained from 
calculations. I was surprised by the students with more learning difficulties, as they were able to 
overcome their difficulties with the practical activity of the recreation of the colour. 

Teacher 1 proposed the task to students attending a vocational course, where students are aiming to 
get qualified to perform a job in the workplace. Very often, those students are characterised as highly 
distracted, usually chatting too much with each other, and often leaving their work unfinished. This 
is one of the reasons why some teachers refrain from proposing open tasks that require 
experimentation, collaborative work and using materials. Those students also show little interest on 
mathematics, have a past of school failure, and may even reject and avoid mathematics. Contrary to 
what this teacher expected, students’ work on the task and the results achieved were unexpectedly 
positive and the teacher was surprised by the interest, commitment, and enthusiasm of the class in 
solving the problem.  

Teacher 2:           The task allowed the development of competencies and skills in reasoning and problem solving, 
as the students had to come up with appropriate strategies to answer the initial questions, generalize 
conclusions, and create models to respond to real life situations. This task has developed critical 
thinking and creative thinking. The students observed, analysed, and discussed ideas and 
processes by drawing on evidence. In groups, the students evaluated the impact of the decisions 
they made. The collaborative work promoted the interpersonal relationship in which the students 
learned to consider different perspectives and to create consensus. The activity carried out allowed 
for personal development and autonomy. The students autonomously designed, implemented, and 
evaluated strategies to achieve goals and challenges that they set themselves. The skills associated 
with scientific, technical, and technological knowledge were involved when students had to work 
with resources and materials, instruments, and tools, relating technical and scientific 
knowledge and identifying the technical requirements, the constraints, and resources for the 
realization of projects. 

The comments from the Teacher 2, namely the aspects highlighted in bold, clearly illustrate the 
recognition of the task’s potential to engage students in a STEM project and the teacher’s pride on 
the work developed. Some of the main positive aspects that she and others highlighted after having 
implemented the task are here summarised: the development of a sense of responsibility, a 
reinforcement of collaborative work and team spirit, an increase in student’s motivation, the 
development of students’ critical thinking, promoting students’ persistence in the search for 
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strategies, and the development of problem-solving skills, mathematical communication, and 
creativity. Moreover, the teachers considered the work developed on the task as having facilitated 
and encouraged formative assessment practices aiming at developing students’ skills and 
competences. They asked their students to produce a written report, while encouraging them to search 
for relevant information on the tintometric system. Finally, they were convinced that the work done 
was important to the students’ appreciation of the importance of mathematics in the context of a real 
professional activity. 

The overall results on this activity within the professional development program were quite positive 
in two aspects. On the one hand, it became evident that teachers formed a positive and attractive idea 
about the possibility of integrating STEM activities into their teaching practice. On the other hand, 
when putting the task into practice, many of the teachers were surprised by the way their students got 
involved, especially the students from vocational courses who are usually little motivated to engage 
in mathematical activity. In general, to all the participants, the possibilities of the task for the 
development of 21st century competences and skills have become salient. 

Final Remarks 
Our study focused on a group of mathematics teachers who attended a professional development 
program committed to the innovation of teaching practices. Our research methodology assumed a 
qualitative nature and aimed, above all, to collect evidence about the way they experienced and 
understood the effect of developing a STEM activity in their mathematics classes. 

Regarding their involvement and interaction with the task on the creation of customized colour paint 
in the course sessions, we have observed that the teachers effectively assumed the scientific, technical, 
and technological practices involved in the solution to the problem. They have identified and worked 
on key concepts, namely, mathematical ones, including ratio and proportion. Moreover, they were 
able to integrate technological resources in their work, including the use of the graphic calculator or 
the spreadsheet to simulate the various trials they were performing with mixing pigments and the 
white base, using the materials given. Technical skills involved the need to measure the coloured 
liquids and to make decisions on the best ways to create the mixture. They have also engaged in 
discussing ideas about how colour is produced. This indicates that teachers need to be aware of the 
resources available, both real-world materials and digital tools, to assist them with effective 
instructional strategies. Using techniques such as project-based and problem-based learning show to 
be effective methods in STEM approaches. 

In what concerns their views on the impact of the STEM activity on the students’ learning, we may 
conclude that the teachers were not only motivated to do practical work in their classes but also to 
engage their students in solving a real-world problem. Their reflections reveal that after implementing 
the task the teachers corroborated the positive impact of the activity in their students’ development 
of several skills and competences that are strongly connected with STEM practices. They also 
reported on the motivational effect observed in lower achievers, namely in mathematics, and on their 
engagement in finding accurate and sound solutions to the problem.   

Our results, although on a limited scale, are relevant and reinforce the conclusions from other studies 
(Kelley & Knowles, 2016; Kennedy & Odell, 2014; Leung, 2019) in that it is possible to develop 
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consistent frameworks for integrated STEM teacher education. Emphasising the development of 21st 
century skills and competences along with STEM practices in addressing the design of solutions to 
real-world problems appears to be a promising way of promoting integrated STEM education in our 
schools, at different teaching levels and with diverse students. 
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Students benefit from the intentional integration of science, technology, engineering and mathematics 
(STEM) in ways that support deep conceptual learning in all disciplines.  Elaborating on Bybee’s 
(2013) nine perspectives of STEM, the article describes three specific and intentional methods in 
which integration, specifically in mathematics and science, can be effectively implemented and 
integrated. Each of the methods of integration has its purpose based on the context of the 
investigation, the intended learning outcomes, and the students’ learning needs during the 
investigation.  These methods of integration are discussed within the context of one lesson from a 
broader investigation on weather as it relates to the interaction of earth’s major systems. 
Keywords: STEM, Integration, Primary Grades, Project-Based Learning. 

Introduction 
Supporting science, technology, engineering, and mathematics (STEM) in the classroom has gained 
much momentum over the last two decades.  Unfortunately, there is still no clear definition of what 
STEM is or means, and more importantly, what it actually looks like in the classroom (Bybee, 2013; 
Ring-Whalen et al., 2018). In fact, Bybee (2013) and Brown (2012) posit that a clear understanding 
is required because the acronym has been used in many ambiguous ways and because these 
ambiguities do not help educators within the reality of their practice. This means there is a need to 
develop methods for appropriate STEM integration, which would include such areas as curriculum, 
assessment or instruction so that educators can appropriately implement and integrate meaningful 
STEM experiences.  

Review of Literature  
The acronym STEM is frequently used in place of science, but how the other three content areas (e.g. 
engineering, technology and mathematics) are integrated varies, is inconsistent, and are often not 
even evident in experiences that are labelled STEM (Bybee, 2013).  Mathematics, in particular, plays 
a fundamental and structural role in authentic science learning as seen by the description of 
behaviours that scientists engage in as they investigate the natural world and thus should be integrated 
(Michaels et al., 2008; National Research Council, 2012).  Furthermore, there is an obvious overlap 
of the Science and Engineering Practices within the Next Generation Science Standards [NGSS] 
(NGSS Lead States, 2013) and the Standards of Mathematical Practice (National Governors 
Association, Center for Best Practices, & Council of Chief State School Officers, 2010) to promote 
technical ways of thinking. This overlap and alignment to technical habits of mind and interactions 
suggest a natural area for integration (Bennett & Ruchti, 2014).   

In addition to practices, science provides multiple opportunities for students to simultaneously learn 
important mathematics content, especially as it relates to data analysis.  However, science curricular 
resources rarely highlight these connections or leverage them in grade-level appropriate ways (Morris 

Proceedings of CERME12 4553



 

 

et al., 2015).  Even so, educators can be well positioned to determine how best to link and leverage 
cross-curricular learning for authentic STEM integration.  For some situations, this may mean 
understanding how to integrate STEM practices and habits of mind but in others it can mean 
purposefully injecting other STEM disciplines so that the learning can become more meaningful and 
applicable.  This means that teachers and teacher leaders need to be aware of the specific nature of 
integration and how it purposefully builds students’ understandings across STEM disciplines (Kelley 
& Knowles, 2016). However, while technical habits of mind is a good place to start integrating STEM 
content, the deliberate integration of STEM content at the classroom level can be more challenging.  

When integrated, and when it involves a more contextual application, STEM experiences can have 
greater meaning and thus allow for deeper connections and more authentic learning for students 
(Sandall et al., 2018). Several variables in the school context can contribute to unsuccessful STEM 
integration.  For example, many teachers struggle shifting from teacher-directed pedagogy to the 
more student-directed nature of an integrated curriculum. In addition, district-level or course-level 
curriculum alignment is often inflexible as are the structures of school schedules and finances (Margot 
& Kettler, 2019). Schools and teachers often do not know what STEM looks like, especially when it 
comes to modifying and integrating their current curriculum (Portz, 2015). This confusion leads to 
very different conceptions of STEM education which can cause a “state of anxiety and insecurity and, 
in some cases, to reject the implementation” of STEM in the classroom (Aguilera et al., 2021, p. 597).  

In order to create such learning experiences, teachers often want to understand the nature of 
integration of the STEM disciplines. Or rather, to understand what qualifies as quality STEM 
learning; the knowing when and how to integrate disciplines to support greater learning. Thus, the 
purpose of this study is to understand how an elaboration of Bybee’s (2013) integration is actualized 
within a primary classroom.   

Theoretical Framework 

Bybee (2013) outlines nine commonly accepted perspectives for defining STEM, but only six of these 
nine are applicable at the classroom-level. Of these six, the research team examined only those STEM 
perspectives that best supported a more complex integration at the classroom level; specifically, 
STEM means coordination across disciplines and STEM means complementary overlapping across 
disciplines numbers four and six above. Then, the team elaborated on these two definitions and 
created three specific methods for STEM integration which are referred to as: 1) Simultaneous 
Infusion, 2) Temporary Shift in Discipline, and 3) Lateral Concept Connections. In this project, 
Simultaneous Infusion uses mathematical and scientific habits of mind and practices, such as the 
importance of using data and communicating ideas and understandings in STEM, and are considered 
simultaneously during the science lesson.  When using Temporary Shift in Discipline, is a shift from 
one discipline (e.g. science) to conceptually explore a skill in another discipline (e.g. mathematics), 
and then a shift back to the original discipline (science) to bring new understandings to the primary 
science focus. And lastly, with Lateral Concept Connections the focus of the learning moves from a 
primary science concept to a new science concept. The purpose of this shift is to give students new 
content to reinforce a mathematical concept. 
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In order to provide clarity and consistency, the research team established a working definition of 
STEM. For this project, STEM learning is understood to be opportunities, within technical content 
areas, to understand, create, and discuss ideas and concepts that supports students’ critical thinking, 
analysis skills, and connections to larger concepts across and within STEM disciplines (Li et al., 
2019). This focus also follows the National Council of Supervisors of Mathematics and the National 
Council of Teachers of Mathematics joint position paper on STEM learning (2018). Namely, that 
students have a strong mathematics foundation and that any STEM program or curriculum should 
enrich the mathematics program and also address mathematics with integrity. 

Methods 
The purpose of this qualitative exploratory case study (Løkke & Sørensen, 2014) was to understand 
how an elaboration of Bybee’s (2013) integration is actualized within a primary classroom. 
Examining specific cases is important as it allows for the testing of theory by using multiple data 
collection methods in varied, yet similar, contexts to provide a more accurate and rich description 
of the unique, dynamic, and complex nature of classroom learning environments. With a purposeful 
focus for integration in mind, the research team and classroom teachers examined how the strategic 
integration of scientific and mathematical experiences, using the three aforementioned elaborations, 
allowed for a more dynamic and purposeful ebb and flow of STEM learning. That is, by using these 
three elaborations, the research team wanted to better understand how this elaborated framework 
supports the teaching and learning of integrated STEM in an upper primary classroom; this includes 
both challenges and affordances with respect to planning and implementation. 

Participants 
The primary participant in this case study was one second-year grade five teacher in their classroom, 
which included 23 students, from a school located in the Intermountain-west of the United States. 
This school serves a population with substantial social needs and financial insecurities and thus many 
students also often receive additional behavioural and/or social-emotional support and services. There 
are approximately 500 students across all grades and most teachers have between 20 and 28 students 
in each class and are responsible for teaching all subjects except for physical education and music, 
both of which are offered on a limited rotational basis. It is common to have students several years 
behind in reading and/or mathematics and annual test scores show that, while slightly higher than 
average scores across the state, only about 45% of students score at proficiency levels in mathematics. 

Instructional Setting 
The interdisciplinary activities described herein were developed as part of a larger, upper primary 
science project examining ways the geosphere, biosphere, hydrosphere and the atmosphere interact. 
These lessons were co-created with classroom teachers along with science education and 
mathematics education researchers around the intended elaborations. In the activities described 
below, which is a subset of the larger project on integrating STEM learning through project-based 
learning, the lesson objectives were to analyse and interpret weather data in order to develop 
understandings between weather and climate in different regions of the world.   
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Data Collection & Analysis 
Data collected included classroom observations of students’ interactions and comments, field notes 
from lesson planning meetings, and notes from post-lesson discussions with the teacher.  Emphasis 
was placed on the interpretations and meaning that the researcher and the teachers had towards 
integrating STEM. Data were independently read and analysed to identify common themes (Paton, 
2002) and were then re-categorized as needed to appropriately capture the emergent patterns.   

 Limitations 
A primary limitation in this study revolves around the fact that it includes only one classroom, within 
one school. Another limitation centres on the fact that data comes from the first and only iteration of 
the elaborated integrations with teachers. As such, this greatly reduces the richness of the data and 
thus the interpretations that can be made despite promising findings for future research are limited. 

Project Implementation & Findings 
At the start of the lesson, students watched a video report from the National Oceanic and Atmospheric 
Administration on the winter outlook for the region. This was to help students contextualize how 
weather data can be used in their geographical area.  This video report included various types of 
graphical data, numerical data, and a verbal discussion of the current snowpack, projected snowpack, 
and what this data means in terms of spring flooding forecasts.  Students spent some time discussing 
what they heard, and what they believed were the implications of the data in their daily lives. Students 
were also asked to consider what knowledge and information they needed to interpret the data, based 
on what the meteorologist was telling them.  Lastly, students were asked to consider the ways in 
which scientists and mathematicians think and behave in a similar fashion as they watched the video.  

Next, students explored data from their own weather station.  This raw data showed the daily mean 
temperature (F°), high and low temperatures (F°), heat and cool degree days (days when buildings 
needed to be heated or cooled), time, rain and average wind speed (mph) with data reported to one 
decimal place. Students were asked to describe what the weather was like for a week, using the raw 
data from one week.  In small groups, students were allowed to choose any variable they wished to 
consider (i.e. High Temperatures, Heat Degree Days, or Average Wind Speed) and then they 
discussed what they noticed, wondered about, and questions they had about the data with their group 
to decide the “story” this data was telling. Next, they were asked to develop a statement about what 
their variable was “generally like for the week” and then to find a way to support the accuracy of their 
statement; this led to the first elaborated method of integration. 

Simultaneous Infusion 

Simultaneous Infusion is when the learning goals and outcomes of both content areas are well aligned 
and sometimes identical. This is often the case when supporting students’ STEM habits of mind and 
is why this kind of integration was used initially to help set the context for learning. For the first 
lesson, the intent was for students to see the connections between the behaviours scientists and 
mathematicians engage in as they investigate and attempt to make sense of real-world phenomena.  
Thus, the local National Oceanic and Atmospheric Administration report for snowfall and the 
discussion on the ways in which scientists and mathematicians think and behave in a similar fashion. 
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Again, getting students to recognize how scientists and mathematicians use data and statistical 
thinking (Lane-Getaz, 2006) in similar ways is important in helping them make connections to the 
importance of mathematics within science.  

One student indicated “All those numbers come from somewhere and they have to know what they 
mean before they can give a report,” highlighting the importance of keeping the context in mind when 
analysing and interpreting data.  Another student commented, “Mathematicians make graphs and 
other ways to share what they know. It looks like scientists do this, too,” which further highlights 
similarities in how mathematicians and scientists communicate their understandings. This prompted 
a discussion about the relationship between science and mathematical practices. 

During the whole class discussion that followed, students often described the data in more general 
and relative terms. Such as for High Temperature, students said that the week was warm. This created 
a great opportunity to discuss objectivity with the statements as the word warm alone actually cannot 
be used to describe the data as it is both relative and imprecise. After further discussion about how to 
make precise and objective statements, one student eventually recognized that they should “first try 
to be exact with the numbers and then figure out what those numbers mean.” This statement was 
agreed upon by the class and allowed the teacher to focus their attention on how mathematics can 
strengthen STEM learning and how both scientists and mathematicians need precision in their work. 
This led to the second elaboration of STEM integration. 

Temporary Shift in Discipline 

The Temporary Shift in Discipline pauses the learning from one discipline (e.g. science) to focus on 
learning a specific skill or concept in another discipline (e.g. mathematics), which will be necessary 
for further exploring the concepts in the initial discipline. This shift in focus allows for “just in time” 
learning to occur rather than teaching larger and discrete lessons on content that may seem unrelated 
or irrelevant to students if taught in isolation. 

This part of the lesson shifted to a reasoning talk (Bennett, 2018), a process by which students reason 
about mathematical relationships and structures, in order to focus on key mathematical concepts that 
were important in exploring the science concepts. Namely, how compensation strategies can aid them 
in multiplying and dividing decimals. That is, by shifting to a mathematical concept, in this case the 
relationship between whole number operations and operations on decimals, students were able to 
quickly shift back to exploring the science using the mathematics in purposeful and relevant ways.  

Because the intent was to help students recognize strategies for making sense of the data within a 
science exploration, we did not move into a formal mathematics lesson about operating on decimals 
but highlighted how understandings of place value used to transform the decimals into whole numbers 
in order to work with the data in an easier manner. Temporary Shifts in Discipline is about accessing 
or learning concepts from another discipline, in this case mathematics, at the right moment to make 
the learning in the intended discipline more meaningful, in this case the science. At this point, the 
final elaboration for STEM integration was used to help the students examine the weather data.  
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Lateral Concept Connections 

Lateral Concept Connections is a purposeful movement between two seemingly unrelated core ideas 
of the same discipline (e.g. the earth science study of weather and the biological science study of 
birds). While this may seem like a Temporary Shifts in Discipline, it does not shift disciplines in a 
major way and the secondary discipline is also not a major focus. Rather, Lateral Concept 
Connections help students understand a concept within a discipline because of tangential 
relationships, skills, or concepts within the larger discipline that require a secondary discipline. In the 
weather study, numbers were presented as a mean, and students had not yet worked on measures of 
central tendency, there were gaps in their understanding of how to interpret the data. 

For example, to help students consider how to describe the general nature of the weather for the week 
with their chosen variable, students were asked to consider an alternate data set on a given number of 
birds observed in the morning over a four-day period. This prompt was: 

“Mr. Lopez counted the number of birds he saw on his bird feeder each morning. 
During the 4 days he counted 8 birds the first morning, 7 birds the second morning, 
9 birds the third morning and 8 birds on the last morning. About how many birds 
came each day? Create a model to show your thinking.” 

Students discussed what “about how many” meant and described it in two distinct ways. Some 
students used a sharing approach and talked about how “evening out” of all the birds for all of the 
days would tell the average while others pointed out that “we are kind of looking for the tipping point. 
The place where the number of birds on one side is the same as the other.” For the first way of thinking 
about the mean (sharing), students wanted to find how to “share the birds” for the whole week.  
Through a purposefully orchestrated discussion, students agreed that “putting all of the birds together 
is liking adding them all up,” which then lead another student to say that “sharing them all is kind of 
like dividing.” All of which ultimately allowed the students to understand the process needed to 
describe their weather data. Students agreed that, in order to “share the weather data correctly,” they 
needed to add up the values for their variable and then divide it by seven, as there were seven days in 
the week, in order to “share the data” evenly.   

At this point, students moved back into the science portion of the lesson to further analyse, interpret, 
and report on their weather variable for the week. Note that in this case, the lesson content deviated 
significantly from the primary science activities in order to support a deeper understanding of the 
concept of mean and measures of central tendency. Again, these concepts were fundamental to their 
success in describing the weather for the week. 

Discussion of Results & Implications  
This project found that by deliberately integrating mathematics and science content through the use 
of Simultaneous Infusion, Temporary Shift in Discipline, and Lateral Concept Connections students 
were better able to develop deep conceptual knowledge in both disciplines. Attention to these 
elaborations, and how they appropriately scaffold learning, explicitly attend to understandings in both 
content areas at strategic times, and create opportunities to apply these understanding to authentic 
real-world problems are the heart of natural and purposeful STEM integration.   
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However, the initial planning was substantial and the primary teacher often relied on the other 
research team members to understand the nuances in the integration. This suggests that the initial 
planning process was not necessarily easy for the teacher, which leads to other complications with 
respect to implementation. Namely, if the planning is too challenging for teachers, then the 
elaborations may not actually help with mathematics integration in STEM learning as intended. On 
the other hand, and is the case with many new pedagogical approaches when initially adopted, it may 
be that more experience and time thinking within this framework is needed. This indicates the 
elaborated integration process needs to be further studied to understand the specific challenges 
teachers may face when implementing this elaborated integrated approach and the extent to which 
these challenges are a result of the conceptualization, design, or newness of the framework when 
implementing in classrooms. 

With respect to the student learning, the data indicates that students were able to move fluidly between 
the different transitions to make the deliberate connections intended during the planning phase. This 
was even the case for shifts between disciplines (i.e. Temporary Shift in Discipline). Such results are 
encouraging as it suggests, from a learning perspective, the elaborated integrations support STEM 
learning outcomes and do so in an organic, natural manner. What is not clear at this point is the extent 
to which this occurs. That is, given the limitations of this case study, it is unclear if these elaborated 
integration experiences would be evident in other areas of mathematics and science. This is especially 
true given the easily accessible nature of statistics and working with data in science. It may be that 
other mathematical content does not lend itself to the elaborated integrations in a meaningful way. 

In a time dominated by talk of STEM, and where students’ ability to do STEM is critical for their 
success in a tech-driven globally competitive society (National Research Council, 2012), a 
deliberately integrated approach can provide opportunities for “more relevant, less fragmented and 
more stimulating experiences for learners” (Furner & Kumar, 2007, p. 186).  It is time for STEM to 
be more than just any isolated discipline or an arbitrary accumulation or tangentially related 
experiences. It is time for STEM to be a transformational process to explore learning in a manner that 
may not otherwise be realized; a dynamic process that intentionally builds connections for students 
across and within disciplines through a more organic process.  
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Improving students’ reading skills to improve their performance in 
math: empirical evidence from Italy towards the development of

integrated approach to math education 
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Understanding the role of Math in STEM and designing an approach to teach math in a STEM context 
is a timely topic. Nonetheless, research has to understand what STEM means before planning any 
teaching approach and identifying any prerequisite students need to have/develop to avail themselves 
of such an integrated approach. In the present paper, I focused on the latter aspect. Starting from 
previous studies claiming that the higher the students’ reading skills the better their performance in 
S, T, E, and M, I analysed Italian data to explore the relationship between students’ reading skills 
and math performance, and how such a relationship interplays with students’ characteristics. Results 
showed that reading skills predicts math performance and mediate the negative effects of some 
students’ sociodemographic characteristics, thus calling for the development of integrated teaching 
approach that also focuses on the improvement of students’ reading skills. 

Keywords: STEM integration, Math, Reading and Text Comprehension. 

Introduction
Studying STEM (Science, Technology, Engineering, and Mathematics) from a mathematics 
education perspective has received an increasing attention from both scholars and teachers. Some of 
the most frequently asked questions are about the definition of STEM and about the role of math in 
STEM. For example, is STEM a unique subject that is somehow “more” than just the sum of its 
components, to be taught as a stand-alone topic? Or is it a “learning context” within which math can 
be used as a tool to teach S, T and/or E, or is it a “learning context” within which math can be find 
new perspectives and stimulate new lines of reasoning by interacting with real (scientific, 
technological, engineering) problems? Moreover, what kind of abilities/skills students need to have 
or to develop to benefit from such an interdisciplinary or transdisciplinary teaching approach? 

Answering these (research) questions is not easy at all and calls for more research, also aimed to 
understand the possible interaction effects between students’ performance in math and their 
characteristics, such as their reading skills, their personal characteristics and the characteristics of the 
context students inhabit (here included peers’ characteristics). Nonetheless, little research has been 
carried out to date to understand if (and, if yes, to what extent) the relationship between students’ 
performance in math and their characteristics and skills can interplay with, and thus being (positively 
or negatively) affected by the characteristics of the school and the classroom attended by students. 
The current paper aims to fill this gap.  

The relationship between students’ characteristics and their performance in math

There are several factors affecting students’ performance in math, such as schools’ characteristics 
(facilities, didactical protocols, etc.) (e.g., Fowler & Walberg, 1991) that can enhance or 
hindering
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learning, or students’ background characteristics, such as their sex (e.g., Cascella, 2020), citizenship,
(Cascella & Giberti, 2020), and socioeconomic status (SES) (Coleman et al., 1966), or other skills,
such as reading skills (e.g., Cascella, 2021) that can predict their performance in math. In the 
educational literature, there is a full agreement that students’ socioeconomic status (SES) can
significantly affect their performance and, in particular, that low-SES students develop performance 
more slowly compared with higher-SES students, across countries (e.g., Organization for Economic 
Cooperation and Development, 2019; Reardon et al., 2006).  

Another background factor significantly associated with students’ performance (both in math and 
reading) is sex: girls outperform boys in reading and text comprehension, in all the countries around 
the world. Such a superiority in reading counterbalances female relative underachievement in math 
(Ajello et al., 2018), that is sharper in some countries (such as Italy, Spain, etc.) (Guiso et al., 2008).
Similarly, foreign students’ performance is different (often, but not always, lower) compared with 
native students and, according to results from the Programme for International Students Assessment 
(PISA), their relative disadvantage in math compared with native students is primary due to their 
disadvantage in reading (Organisation for Economic Co-operation & Development, 2016). 

In addition, recent research has shown that all the relations described here above interplay with the 
characteristics of the learning contexts (schools and classrooms) students live in. Peers’
characteristics affect individual academic performance, sometime even more than individual 
characteristics. Such a phenomenon is more frequent in secondary education (Kessels, 2005).
Previous studies have shown for example that, in secondary schools, “the social composition of the 
student body is more highly related to performance, independent of the student’s own social 
background, than is any school factor” (Coleman et al., 1966) and, more precisely, that students’ 
individual performance is more strongly associated with classroom and/or school SES than with 
student’s individual SES.  

Research aims and questions

Even though previous studies have identified some factors affecting students’ performance in math, 
it seems that these associations can dramatically change depending on the characteristics of the 
(learning) context students attend. In absence of research aimed at quantifying the effect of external 
factors, designing innovative teaching approach is taught and may lead to unexpected results.  

In the current paper, I investigated the mediating role of students’ reading skills on the relationship 
between students’ SES and students’ performance in math, and used students’ sex, citizenship status, 
regularity throughout the academic pathway as control variables. Census data collected in Italy at 
Grade 10 in 2017 have been used to answer the following research question:  Does the relationship 
between students’ performance in math and their background factors and skills interplay with the 
characteristics of the school and the classroom students attend? And, if yes, to what extent?

Proceedings of CERME12 4562



3

Methodology
Data

In 2017, the Italian national institute for the evaluation of educational system (Tr. Istituto nazionale 
per la valutazione del Sistema di istruzione e formazione - INVALSI hereafter) administered two
achievement tests to the Italian students’ population to measure their competence in (i) reading and 
text comprehension, and in (ii) math.

In this paper, I analyzed data collected at Grade 10 (on average, 15 years old students), at census level 
(427,465 students in 24,870 classrooms, in 3,986 schools). Italian data are particularly suitable for 
the purposes of the present study because, at Grade 10, there are three school types (i.e., Lice, Tecnici, 
and Professionali1): all of them are embedded in the same educational system and have the same math 
curriculum, but they are usually attended by students with very different characteristics in terms of 
socioeconomic status, gender, citizenship, and regularity of academic pathway. (For a description of 
the sample analysed, please see the ‘Data description’ section).  

The differences between different school types allowed for the investigation of the possible 
interaction between personal and contextual factors. Results based on such a sample are thus of help 
to answer my research questions and can be used as an example - of interest for the international 
reader - of how the mediating role of reading skills on the relationship between students’ performance
and students’ characteristics change depending on contextual factors.

Analytical strategy 

A multilevel model (MLM) of students’ performance in math (estimated via the Rasch model - Rasch, 
1960) against students’ characteristics (i.e., sex, socioeconomic status, citizenship, regularity 
throughout the scholastic pathway, reading skills) and contextual factors (peers’ socioeconomic status 
aggregated at classroom and school level), has been estimated by using MLwiN, a software for 
multilevel analysis (Rasbash et al., 2017), used to account for data hierarchy (i.e., students nested in 
classrooms and schools).  

Multilevel modeling is very adequate for the purposes of the current study as it models the 
interdependency within levels under the theoretical assumption that students from the same context 
share something more as compared to students from other contexts (Hox, 2010). 

In the present study, multilevel models have been estimated with random intercepts and fixed slopes 
(Hox, 2010). School type has been added as a predictor to verify that the difference between school 
types was statistically significant. In order to observe how the relationship between students’ 
characteristics and reading skills and students’ performance in math varies by school type, I

1 Although all school types allow access to university, Tecnici and Professionali offer a specific education/training and a direct access to the job market 
in a variety of sectors that do not require an academic degree (but that are more focused, for example, on technological competences or on the 
development of manual abilities), whereas Licei offer a broader education preparatory for university.

3
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performed three separate analyses2: one for Licei (224,791 students), one for Tecnici (132,954 
students), and one for Professionali (65,120 students).  

Such a decision is statistically robust as the INVALSI national sample is statistically representative 
of the Italian students’ population at regional level and by school type. Moreover, each school type 
shows unique characteristics: each of them thus represents a unique learning environment (See ‘Data 
description’), and the differences between school type worth a separate analysis.

Results
Before performing the multilevel analysis, in the next sub-section, I presented a description of the 
data analysed in the present study. Tables and figures have been saved in a separate file, available 
online3.

Data description

Students’ characteristics sharply vary by ‘school type’ thus characterizing Licei, Tecnici and 
Professionali as different, highly segregated learning contexts.  

Schools’ composition varies in terms of the proportion of enrolled boys and girls, the proportion of 
enrolled native compared with foreign students, in terms of students’ socioeconomic status and 
performance levels, both in reading and in math, and in terms of the proportion of ‘regular’ students 
(i.e., those attending the expected grade) compared with ‘retained’ and ‘in advance’ students. 

In 2017, at Grade 10, 51.3% of students attending Licei is female. Such a percentage decreases in 
Tecnici (30.3%), and in Professionali (15%). Moreover, around 85% of students attending Licei are 
Italian citizens. Such a percentage is slightly lower in Tecnici but drops down to less than 80% in 
Professionali. In addition, the proportion of retained students over the total is less than 10% in Licei, 
around 20% in Tecnici and more than 35% in Professionali.  

Students’ socioeconomic status and students’ performance (both in reading and in math) sharply vary 
by school type. Students’ SES is higher in Licei (mean = 0.31, SD = 0.97) than in Tecnici (mean = -
0.19, SD = 0.95) and in Professionali (mean = 0.54, SD = 0.96). Students’ performance in math is 
above the national mean in Licei, in line with the national mean in Tecnici, and sharply below the 
national mean in Professionali. As with it, students’ reading skills are above the national mean in 
Licei, in line with the national mean in Tecnici, and below the national mean in Professionali (Figure 
1, in the Supplementary File) (INVALSI, 2017). 

2 In each model, all continuous variables (i.e., 1. students’ reading skills, 2. individual, 3. classroom, and 4. school SES) were centered on the grand 
mean (Hox, 2010). For categorical variables (i.e, sex, citizenship, regularity, and school type), ‘Boy’, ‘Second generation student’, ‘In advance’ and 
‘Tecnici’ have been used as reference category.
3 To view the Supplementary File, please use the following link:

https://www.dropbox.com/scl/fi/ds8ysg6tj9qchmbatf0oc/Supplementary-file-CERME-
12.docx?dl=0&rlkey=wtz0h0hdv83akomac17th1g87
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Multilevel analysis

Before performing the multilevel analysis, I estimated the null-model, i.e. a model without predictors 
used to calculate the variance of students’ performance in math (the dependent variable) at different 
levels of the data hierarchy. The variance calculated at each hierarchical level is also used to calculate 
the variance partition coefficient (VPC - Hox, 2010) (Table 1, in the Supplementary File). 

The model intercept expresses the overall mean of math performance (measured by using the Rasch 
model (Rasch, 1960) in Licei, Tecnici, and Professionali, and thus serves as a benchmark with which 
other models are compared with4.

The proportion of variance in math performance explained by individual factors sharply changes by 
school type, and it is higher in more disadvantaged contexts (more than 40% in Licei and 50% in 
Tecnici, and around 60% in Professionali) (Table 2, in the Supplementary File). 

To better understand if and, if yes, how the relationship between reading skills and math performance
changed depending on the learning context, I analyzed data collected in Licei, Tecnici and 
Professionali separately, as reported in the next three sections. 

Licei

Consistently with previous literature (Ding & Homer, 2020), the regression analysis indicates that 
boys outperform girls in math, and that female disadvantage increases after having accounted for 
reading skills, thus confirming the hypothesis that reading skills mediate the relationship between 
gender and math performance. As with this, regular students are slightly advantaged compared to ‘in 
advance’ students whereas retained students are sharply disadvantaged. Nonetheless, these 
differences decrease after accounting for reading skills.  

Reading skills also mediate the relationship between citizenship and math performance. More 
precisely, higher reading skills are associated with higher performance in math and, after having 
accounted for reading skills, the retained students’ disadvantage significantly decreases. Such results 
are stable across hierarchical levels but different in magnitude because the proportion of variance 
explained by individual factors decreases when the hierarchical data structure is accounted for: at 
classroom and school level, the magnitude of effects related to individual variables is smaller than 
that at individual level. Such a result is not surprising as the individual level model does not account 
for data hierarchy, and thus wrongly attributes to the individual level the variance actually explained 
by factors at the higher hierarchical levels (Hox, 2010).  

4 The difference in the -2*loglikelihood between models, in each school type, is statistically significant - as assessed via 
a Chi-Square test -, thus confirming that the model accounting for data hierarchy fits better than that does not (i.e., the 1-
level model): 1-level model captured the variance actually explained by variables at the higher hierarchical level (i.e., at 
classroom (models 2) and at school (models 3) levels), and thus wrongly attribute such a variance to individual students’ 
characteristics (Table 1, in the Supplementary File), biasing results interpretability.

5
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In addition, the effect of individual SES decreases when peers’ SES (aggregated at classroom and 
school level) is added to the model. Reading skills also mediate the effect of peers’ SES on individual 
math performance. In particular, the effect of individual SES is statistically significant but very low,
thus confirming that peers’ SES affects individual performance in math even more than individual 
SES (Cascella, 2020; Coleman, 1966), and showing that reading skills mediates the effect of both 
individual and aggregated SES on math text score.  

Tecnici

In Tecnici, where students’ ability both in text comprehension and in math is lower than in Licei,
reading skills explain most of the variance in students’ performance in math, thus suggesting that 
even small increases in reading skills can help students to perform better in math. Moreover, reading 
skills mediate the effect of all students’ background factors and aggregated SES. In contrast with 
Licei, aggregated SES (and, in particular, classroom SES) explains a low proportion of variance in 
the dependent variable as shown by its regression coefficient that is statistically significant but low. 

Professionali 

Reading skills mediates both individual and aggregated SES. Moreover, individual SES effect drops 
down when aggregated SES is added into the model thus suggesting that peers’ SES (aggregated at 
classroom level) is more strongly associated with individual math performance than individual SES. 
Such an association is statistically significant but less strong than in Licei. Such a result may suggest 
that the association between contextual factors is stronger in higher-SES contexts (i.e., Licei) than in 
low-SES contexts (Professionali). 

Conclusion
In the present paper, I presented an empirical study based on Italian data and aimed at investigating 
how the mediating role of reading skills on the relationship between students’ characteristics and their 
performance in math changes depending on the characteristics of the “learning context” students 
attend. Therefore, even though I showed that students’ reading skills have to be taken as a prerequisite 
to learn and perform well in math, the results presented in the current paper also suggest that the 
effect of reading skills on students’ performance in math does not work for all students exactly in the 
same way: the association between contextual factors and individual performance in math is stronger 
in higher-SES contexts than in low-SES contexts.  

So, if by a side the results presented here suggest that teachers and/or researchers, in developing an
integrated teaching approach, should not ignore the importance of reading skills but rather should 
include the improvement of students’ reading skills as part of such an integrated approach, on the 
other side, they should (i) be aware of how the relationship between students’ reading skills and their 
performance in math interplays with the external context, and (ii) work to tailor their teaching 
approach to their own students.

The study presented in the current paper shows some important limitations. First, I used students’ 
performance in math as measured via INVALSI achievement tests as a proxy of students’ attainment 
in math. As with this, reading skills as measured by INVALSI tests can capture just a part of 
students’
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reading skills. More investigation about how and why reading skills can affect students’ performance 
in math is necessary to advance the existing knowledge. 

Nonetheless, results based on INVALSI data allowed for a comparative analysis between different 
school types that represent very different learning environments, suitable to understand how the 
mediating role of reading skills on the relationship between students’ characteristics and their 
performance in math changes by context.  

The current paper can thus contribute to the ongoing debate about the construction of an integrated 
teaching approach by providing an empirical investigation of the possible intersectionality between 
the relationship between reading skills and math performan with students’, classrooms’, and schools’ 
characteristics (Aikens & Barbarin, 2008; Caldas & Bankston, 1997; Marks et al., 2006; Perry & 
McConney, 2013). Understanding how the effect of factors affecting students’ performance change 
depending on the context students inhabit is necessary in order to design an effective teaching 
approach. 
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Despite increasing recommendations for implementing STEM (Science, Technology, Engineering 
and Mathematics) education, the literature identifies difficulties about its implementation by teachers 
(English, 2017; European Schoolnet, 2018). Appointed reasons are related to the need for teachers to 
acquire a robust Content Knowledge about the subject matters to be integrated (English, 2017).
Therefore, it is necessary to offer them with a Professional Development Programme (PDP) that 
provides them with knowledge and skills to implement this approach in class. Recently, several 
authors refer the need for highlighting the role of the M in STEM, which also brings added challenges 
to teachers (Beswick & Fraser, 2019; Stohlmann, 2018). Therefore, it is crucial to understand what 
knowledge promotes the development and implementation of mathematical interdisciplinary 
practices within the context of STEM education. Concerning teachers’ professional knowledge, the 
literature presents several studies such as Shulman (1986) that distinguishes three categories of 
Content Knowledge (CK): Subject Matter Content Knowledge (SMCK), Pedagogical Content 
Knowledge (PCK) and Curricular Knowledge (CuK). Other authors refer to the subject matters to
teach such as mathematics (Ball, Thames and Phelps, 2008), science (Park & Oliver, 2008) and 
technology (Mishra & Koehler, 2006). However, there is a lack of research about the necessary 
knowledge for promoting STEM education, in particular by highlighting the role of the M. Therefore, 
our research question is: what knowledge is necessary for teachers to develop an integrated approach 
of STEM education with a focus on mathematics? Because the characterization of this knowledge is 
missing in the literature, this study is crucial for teachers, researchers, and also teacher educators who 
need to design PDP related to this approach.

This research is inserted in a broader project that includes a PDP, targeted to primary and middle 
school teachers, with the aim of providing them with knowledge and skills to develop and implement 
hands-on practices in class that promote an integrated approach of STEM education (Costa et al., 
2020). To answer the research question, an empirical study was developed in the framework of the 
referred PDP for three school years. This training context brings added challenges for teachers to 
innovate their practices in class, namely mathematical practices related to STEM. With a qualitative 
methodology and an interpretative approach (Cohen, Lawrence, & Keith, 2007), data collected for 
three school years include participant observation during PDP and teachers’ portfolios developed 
during the programme. Based on this data and teachers case study, it is concluded that there exists 
specialized knowledge dimensions that are crucial for teachers to be able to develop and implement 
the required approach. First, there is theoretical knowledge for example associated with some science 
themes such as electricity, sound or astronomy: TheoCK_S (Theoretical Content Knowledge to teach 
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Science). But to be able to implement hands-on experiments related to Science, teachers also need to 
know how to handle the equipment and materials to implement the hands-on tasks, which requires 
TechCK_S (Technical Content Knowledge to implement Science experiments). In addition, teachers 
need to have PCK to transform the specialized theoretical and technical knowledge in order to make 
them understandable to students, which leads to new dimensions: TheoPCK_S and TechPCK_S. 
Extending these new dimensions to tasks that integrate all the STEM subjects we propose the 
following dimensions of knowledge as presented in Table 1. 

Table 1: Knowledge necessary to implement hands-on STEM experiments in class 

SMCK PCK  
TheoCK_STEM TechCK_ STEM TheoPCK_ STEM TechPCK_ STEM  

Based on our research, it is concluded that to effectively implement hands-on STEM integrated tasks 
in class, teachers need to acquire specialized knowledge as stated in Table 1. Finally, we suspect that 
the same knowledge is necessary for other grade levels such as secondary school, but more research 
needs to be developed in this matter. 
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In the Netherlands, it is common that teacher training courses for upper secondary education educate  
for a single school discipline, such as mathematics. At the same time, teachers with a mathematics 
qualification are also formally competent to teach an interdisciplinary school course called Nature, 
Life and Technology (NLT), regardless whether it has been addressed in the teacher training 
programmes. However, teaching NLT is substantially different from teaching mathematics with 
respect to, for instance, pedagogy and objectives. In this paper we report on a study on experiences 
of mathematics teachers who, in addition to teaching  mathematics, teach NLT. The experiential 
knowledge is meant to inform mathematics teacher educators who prepare students for 
interdisciplinary courses such as NLT.  

Keywords: mathematics teachers in STEM, secondary education, teacher education, 
interdisciplinary 

Introduction. 
In the Netherlands, most teachers in secondary education are trained to teach a specific school 
discipline, such as mathematics. Although cooperation between and integrating of school courses are 
frequently encouraged in the Netherlands (Folmer, Koopmans-van Noorel & Kuiper, 2017), teachers 
collaborate mainly with colleagues of their own discipline, unless there is a need for cross-curricular 
collaboration within a school, due to thematic project work or a specific course. One course in which 
this is different is the interdisciplinary STEM course Nature, Life and Technology (NLT). 

Nature, life and Technology is an elective course in upper secondary education. The objectives of the 
course are to strengthen the cohesion between science and mathematics and to increase the 
attractiveness of science education (Stuurgroep NLT, 2007). In this course, students work on complex 
real-life problems for which they need knowledge from mathematics, physics, chemistry, biology and 
physical geography to solve these. The course has a modular structure. With each module, students 
are working on new problems around a topical issue using teaching materials developed through 
collaboration between teachers and universities or organizations specialised in the topic. Teachers 
work within a team of teachers with different competences and backgrounds, mainly mathematics, 
physics, chemistry, biology and geography. Such team of teachers is called an NLT-team. 

Teachers who participate in these kinds of activities are confronted with other learning and teaching 
situations as in their disciplinary course and as a consequence will have to relate to these experienced 
differences. For example, NLT requires attention for overarching ideas such as the interplay between 
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the natural sciences and technology, and not merely attention for specific disciplinary concepts, such 
as finding an exponential formula given two points. The usual pedagogical approaches in NLT are 
also different from those in mathematics school courses, since a lot of coaching of group work is done 
in NLT. In addition, NLT often uses different assessment formats than the exercises that are 
customary in mathematics (Den Braber, 2020). Knowing that there are such differences between the 
courses, it can be argued that mathematics teacher training should prepare future teachers for teaching 
NLT and for dealing with these differences. Especially, when these differences should indeed be dealt 
with according to mathematics teachers that teach NLT and knowing that it is considered important 
that mathematic teachers participate (Stuurgroep NLT, 2007). 

However, it has become clear that preparation for NLT is marginal in most mathematics teacher 
training programmes. Consequently, dealing with the differences will in most cases have to be learned 
after the teacher training course, during working life, if a teacher chooses to participate in NLT. 
However, opting for teaching NLT requires some lived experiences in NLT and experiencing the 
differences with teaching mathematics. However, it is known that mathematics teachers do not  seek 
such experiences in working life easily. Mathematics teachers participate less in NLT than teachers 
of the other related disciplines such as physics or biology (Den Braber et al. 2020). Mathematics 
teachers indicate that they do not always see a role for themselves in NLT. Teachers who are 
unfamiliar with NLT may find it difficult to envision what is required to teach NLT and compare 
teacher requirements to their own knowledge, skills and attitude to determine whether participation 
is even feasible, let alone appealing. Teachers who have taught NLT will have formed an image of 
what is required to teach a course such as NLT and will have found ways to act accordingly.  

Despite the fact that mathematics teachers currently participate less in NLT than teacher of sciences, 
there are some mathematics teachers who are successfully part of an NLT-team. The fact that it is 
possible and can be successful raises the question whether we can learn from the experiences of these 
mathematics teachers to help prepare future mathematics teachers. It is this question that led to a 
study with the underlying research question: How do qualified mathematics teachers shape their role 
within a NLT- team and deal with mathematics in NLT? 

In this paper we will describe results regarding to what the experiences teach us about the possibilities 
for mathematics teacher training programmes to enable lived experiences in teaching NLT for future 
mathematics teachers. 

Conceptual framework 
Analysing the experiences of a teacher within NLT requires a framework that describes a learning 
process of a teacher in his or her work in the broadest sense. It is not only about the knowledge of the 
teacher but also about the actions, feelings, motives and foresight within the context of a person’s 
working environment. Roth & Lee (2007) indicate that cultural-historical activity theory (CHAT), 
because of its focus on processes and individual and collective agency, can be the analytical lens for 
learning processes in lifelong learning, both in formal and informal (work) situations as well as in 
educational settings.  

It is for this reason that we make use of a CHAT-based analytical perspective on learning processes 
while engaged in work processes (Mazereeuw, 2020). This perspective depicts a process in which 
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experiences at the workplace are internalised (Zittoun & Gillespie, 2015) and, depending on the 
interpersonal dialogue are stimuli for envisaging new action possibilities and actions within the work 
process. Acting on these new perspectives and action possibilities through experimenting can also 
create new experiences. Hence, experiential learning processes are not linear. Because of the 
reciprocal nature of the interpersonal process and the social and material consequences in context it 
is much more dynamic. To emphasize the reciprocal nature of the process we included insights of the 
Dialogical Self Theory (Hermans, 2001).  

The idea of the dialogical self is that a person mirrors experiences with ones knowledge, perspectives, 
norms and values in an internal dialogue and that these experiences can be re-lived and re-framed 
beyond the actual experience itself. So, the internal dialogue is an interpersonal process -within the 
mind- in which a person relates to the lived and re-lived experience. CHAT emphasizes that an 
internal dialogue can result in the desire to act, especially when frictions are experienced. For 
instance, a person perceives that contributing to the work calls for knowledge and skills that the 
person does not feel confident about.  When that person wants to continue to participate in the 
workplace, new action possibilities will be sought out. Therefore, frictions, or the commonly used 
term contradictions, are often a source of change and development as described by Engeström (2011). 
We tried to capture the internal dialogical process in four compact questions someone asks aware or 
unaware. The first question is ‘How do I understand what is going on (with me, others in the 
environment)?’. Understanding includes ones own perceptions of knowledge of the workplace, 
division of labour and workplace goals, norms, emotions and values. The second question is ‘How 
do I value this?’. Here a person mirrors this conception of the experience with what matters to the 
person, what the person finds important. The third question is ‘Should I do something about this or 
not?’. This question refers to the motive to become an actor and to contribute to the workplace. The 
fourth and final question reads ‘What can I do to contribute and/or to engage the friction?’. This 
question refers to the way a person depicts his or her own role in the situation and how that person 
envisages action possibilities that might help to contribute to a solution or to engage the friction.  

The questions above show that this process may well be influenced by previous work and teaching 
experiences. That is probably also the case for NLT teachers who have experiences in another school 
course or have worked in different fields before entering the educational system. Figure 1 
schematically represents the dialogical processes when interpreted for teaching NLT.  

In order to provide insight in the possible frictions that initiate internal dialogue in teachers we 
conceive teaching of NLT as an activity within an activity system. To portray the activities we make 
use of the commonly used model of Engeström (1987), which builds on the ideas of Vygotsky and 
Leont'ev. The model shows that human action can be seen as an interaction between a person 
(subject), a certain goal (outcome) and cultural artefacts that support and shape this action 
(mediation). Furthermore, the goal-directed actions of an individual cannot be separated from its 
social and material context. An activity system consists of relevant others (community), with values 
and norms (rules) and with a division of labour.  
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Figure 1: Processes of learning through experiences, based on Mazereeuw (2020) exemplified for 
teaching NLT

Unlike Engeström, we use the model as a means for portraying a teachers’ thinking about the activities 
in which they participate, shown in figure 2. As indicated above, a person ones social and material 
work environment and places oneself within it. In this study Engeström's model is used to guide the 
data collection and analysis and find out how teachers think about their own discipline and NLT and 
the frictions therein. Teaching NLT in a secondary school can be conceived as a goal-oriented activity 
in an activity system in secondary education. This is done by using certain teaching materials and 
supportive (digital) resources (instruments) which are in accordance with a national examination 
program and a plan for assessment, etc. (rules). Teachers are part of a professional group of teachers. 
They have to deal with parents, colleagues within the school who all want NLT to be taught 
(community). Mathematics teachers can be part of an NLT-team which is another community with 
another set of (informal) rules, and another division of labour compared to the activity of teaching 
mathematics. 

The outcome of the activity deserves a closer look because the outcome of the activity system NLT 
is still ambiguous. Even though there is an examination programme, it leaves a lot of room for 
teachers and NLT-teams to formulate their own objectives, objectives that they feel are fitting for 
NLT. Moreover, Braber et al. (2019) made clear that the general aims of NLT are still debated on and 
when it comes to mathematics in NLT are not clear to both mathematics teachers and students. So, 
looking at the way teachers view NLT we can assume that the outcomes pursued are diverse. It is 
therefore of interest to find out what mathematics teachers view as the outcome of teaching NLT 
especially with regards to the role of mathematics. In school mathematics learning mathematical skills 
is seen as the outcome of the activity system. Within NLT mathematics can be described as an 
instrument, a means to an end. William and Roth (2019) claim that the more disciplinary courses are 
a goal by itself, the more difficult it becomes to work interdisciplinary. 
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Figure 2: The envisaged activity system by the NLT teacher of the activity in which the teacher 
participates.

We started with the idea that through an internal dialogue a person mirrors experiences with ones
knowledge, perspectives, norms and values. We portrait the envisaged activity using the model of an 
activity system where the teacher is the subject. 

Data collection and analysis
In order to find out how qualified mathematics teachers shape their role within a NLT- team and deal 
with mathematics in NLT six male and four female qualified mathematics teachers all teaching NLT 
were interviewed. The teachers varied in age, work and teaching experience and work in different 
schools around the country. Following the first interview, an additional interview was conducted with 
a second member of the same NLT-team to triangulate the data of the first interview and evaluate the 
interview set-up. This led to small changes in the preferred order of the interview questions.

The interviews were meant to provide insight into how mathematics teachers conceive their role 
within NLT and what thoughts existed about the role of mathematics within NLT. Questions were 
asked about frictions that teachers experience when teaching NLT, and whether or not these were due 
to possible differences with the teaching of mathematics. We also asked how they have dealt with 
these frictions.

The interviews had the character of a conversation about NLT in which the interviewer also provided
information about NLT and gave background information when needed. For example, sometimes the 
teachers asked questions about the organisation of NLT in other schools. The interview can best be 
characterized as a semi-structured interview. The interview set-up contained a number of topics and 
questions related to the conceptual framework. The order in which the questions were asked depended
on the course of the interview. However, it always started with a few practical questions about
background, teaching experiences, current teaching tasks and past work experiences. This was
followed by questions about the experience with NLT, their role in the NLT-team and the possible 
differences between activities when teaching mathematics and NLT. For example, they were asked 
whether they experience differences in the use of teaching materials or teaching methods 
(instruments), collaboration with colleagues (division of labour) and which agreements concerning 
NLT have been made within the school (rules). When frictions were put forward by the teachers,
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questions were asked about the teachers’ views of knowledge, skills and attitude towards 
interdisciplinary teaching and NLT. The role in the NLT-team and the connection between curricula 
of mathematics and NLT were also addressed. The interview ended with questions that invited the 
teachers to talk about their thoughts on the role of mathematics in NLT.  

The recorded interviews were transcribed. Semantic units (Aviv, 2001) were categorised using 
elements of the activity system, and the labels (personal) beliefs, knowledge and skills and attitude 
towards NLT based on a division by Ernest (1989). For instance, a teacher stating which teaching 
materials are used in the classroom is labelled under instruments. Frictions experienced by teachers 
were noted as well as previous experiences when stated by a teacher. For instance, the following 
semantic unit illustrates an experienced friction concerning the subjects knowledge for teaching NLT 
compared to teaching mathematics.  

Teacher: Mathematics, you can just ask me about that, I know it, but with NLT I sometimes 
doubt my answers are completely correct. […] makes me less comfortable. 

Data analysis further focused on the role of each mathematics teacher within NLT. First, we looked 
at their view on the role within the NLT- team to see if there are similarities or differences. Then we 
looked at the relationships between how teachers describe their own teaching in NLT and what they 
see as objectives for NLT. i.e. the subject-instruments-object/outcome relationship. A third analysis 
focussed on each teacher's orientation towards the objectives of NLT. The emphasis was the teachers’ 
views on intended objectives of mathematics within NLT and views on the overall objectives of 
teaching NLT. A fourth analysis concerned the frictions each teacher experienced. All frictions 
mentioned by the teachers were gathered and positioned in an activity system to see if there were 
similarities or differences in the experienced frictions. Peer-debriefing was used in the process of 
coding and interpretation. 

Results 
When we look at division of labour in the NLT-teams, the role of the mathematics teachers vary from 
teaching a statistical module by themselves, to teaching a science module with a physics teacher. 
Some are teaching modules with a strong biological component involving the brain or navigation of 
birds which they had to make their own. With the exception of one, the teachers seem comfortable 
with what they do because of earlier experiences in which they have acquired knowledge or skills 
before teaching NLT. The one teacher that was not comfortable assisted teachers from other 
disciplines only for a few lessons. She was asked to help students with differential equations and 
modelling with in a spreadsheet. This teacher felt a friction due to her view of her own knowledge of 
science and the lack of overview of the teaching module. 

NLT is seen as a course where mathematics is applied and where mathematics can be useful, 
especially with regard to mathematical modelling to help solve the problem at hand. So the view of 
most teachers seems to be consistent with the objectives of NLT. However, often the teachers 
thoughts of these objectives themselves and their personally desired outcomes do not always 
correspond with the intended curriculum of NLT. Teachers seem to formulate their own objectives 
as the formal objectives of NLT are not really known. The latter is specifically the case when it comes 
to the use of mathematics or the reflection on the role of mathematics in the examination program. 
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Most teachers are not familiar with objectives in NLT that focus on the importance of mathematics. 
The ones that do report difficulties translating this for students.  
The frictions teachers experience also seem to vary. Much of these frictions have to do with 
conditionalities. In some schools it is hard to have meetings with the NLT-team because disciplinary 
faculty meetings are held at the same time and require a teachers attention. Nevertheless, working 
with other colleagues is viewed as worthwhile and desirable even though it can take some getting 
used to. Working with and preparing the teaching materials of lessons in NLT generally takes more 
time than preparing mathematics lessons. On the other hand, teachers also seem to appreciate the 
freedom they get as they are free to adjust materials, add or skip parts of the content and assignments. 
Some experience difficulties with the motivation of students because students seem to give priority 
to the disciplinary courses for which they also take exams. Some teachers indicated that seeing that 
they only teach one or two modules a year, building a relationship with students can be more difficult 
than in mathematics lessons.  

What stands out in the analyses is that teachers with previous experiences in actual interdisciplinary 
work environments or with mathematical modelling experience less frictions teaching NLT. In fact, 
two of those teachers commented that they experience frictions with the way they have to teach 
mathematics instead of with teaching NLT as it is so different to what they are used to. 

Discussion 
The freedom to find ways to teach NLT that align with a teacher’s personal point of departure has 
been important for teachers. Especially, since this freedom has been a way for teachers to deal with 
frictions they experience while teaching NLT. This may indicate that teacher training should focus 
on the flexibility of working with teaching materials and to encourage experimenting with their 
pedagogical choices. Even though this is also encouraged in mathematics teacher training, research 
shows that mathematics teachers are still mainly focused on the textbook (Woldhuis et al., 2018). 
This is not possible within NLT if a teacher wants to feel comfortable teaching. NLT offers a lot of 
freedom to make pedagogical choices and many different roles are possible as a teacher, but a teacher 
has to be aware of the objectives of NLT. Specifically, when it comes to the role of mathematics and 
the idea of interdisciplinary work. This may have consequences for teacher training programmes, 
knowing that we saw differences between teachers in dealing with interdisciplinary objectives 
depending on their background and work experience. This could mean taking into account the 
different personas in teacher training and take advantage of the lived experience with applied 
mathematics when present. Teacher training should also support reflection on the role of disciplinary 
mathematical knowledge when working on an interdisciplinary problem. Seeing mathematics more 
as an instrument than a ‘product’. Something that the some interviewed teachers found difficult to 
do. Training programs could therefore pay attention to beliefs on mathematics in relation to the 
sciences. Starting, for instance, with one discipline that is closely connected to mathematics, like 
physics  (Nguyen & Krause, 2020), but perhaps ending with letting students experience mathematics 
or mathematical modelling in corporate life or interdisciplinary working environments. This could 
support teachers in letting their students experience how mathematics can help with real-life 
interdisciplinary questions and discuss the contributions mathematics can make in solving real-life 
problems. 
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Introduction 
Following European Union recommendations, many countries have incorporated the competence-
based learning approach in their curriculum. This approach aims to prepare citizens for current and 
future challenges in Science, Technology, Engineering, and Mathematics (STEM, Diego-Mantecón 
et al., 2021a). To provide citizens with the necessary competences, there exists an increasing interest 
to integrate Arts into STEM, in the so-called STEAM Education. 

STEAM education entails teachers crossing boundary disciplines to adequately integrate content. In 
countries like Spain and Greece, secondary education teachers are usually qualified to teach a single 
discipline. In an integrated context, it means that teachers must design and implement activities 
involving content from disciplines in which they did not receive specific training. In STEAM 
activities science and engineering disciplines often take a dominant role (Martín-Páez et al., 2019), 
whereas mathematics appears in a basic and utilitarian manner (Lasa et al., 2020). Recently, Diego-
Mantecón et al. (2021b) found disparities in the characteristics of the STEAM activities implemented 
by in-field and out-of-field mathematics teachers as well as in the manner they exploit mathematics. 
In-field mathematics teachers, unlike the out-of-field ones, seem to avoid transdisciplinary projects 
(based on real experiences) because of the difficulty in addressing school mathematics. Even when 
implementing interdisciplinary projects (contextualized based experiences), mathematics teachers 
encounter problems to meaningfully exploit mathematics and promote high cognitive demands. As 
consequence, Diego-Mantecón et al. (2021b) suggest developing training programs focused on 
reproducing experiences in collaborative environments, where both in-field and out-of-field 
mathematics teachers cooperate to construct and deliver knowledge. 

The study 
Following Diego-Mantecón et al.’s (2021b) suggestion, we attempt the so-called STEAMTeach 
project (https://www.steamteach.unican.es/), which is a Teaching Professionalism European-funded 
initiative based on the Erasmus+ Programme. The objective is to design a cross-cultural STEAM 
professional development (PD) program for training in-service teachers to exploit mathematics within 
a STEAM context at middle and high schools. To design this PD program, we firstly interviewed 25 
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STEAM trainers in five countries: Spain, Austria, Finland, Greece, and Hungary. The interviews 
helped to identify issues obstructing the implementation of STEAM activities in school classrooms. 
In the next, we report a preliminary framework emerging from the Greek and Spanish data. 

Results 
The analysis revealed that trainers agreed on the importance of introducing teachers to theoretical 
aspects of the integrated STEAM education approach and to the following four active methodologies: 
(1) collaborative learning, (2) design-, (3) inquiry- and (4) problem-based learning. Based on these 
outcomes, we devised a preliminary PD framework comprising three blocks: a theoretical block in 
which, through different sessions, teachers are introduced to STEAM education and the 
methodologies listed above; an experimental block where teachers, grouped in teams, have to attack 
a series of STEAM activities in the same way that their students would do it; and an implementation 
block where teachers are requested to design and implement activities in their classroom with the 
trainers’ support. After executing the first round of training courses, we observed that this preliminary 
PD framework allows teachers to gain insights into the meaning of STEAM education and its 
application in the classroom, as they were forced to experience the difficulties that arise in different 
STEAM contexts. This in turn increases teachers’ confidence to implement their STEAM activities 
and exploit school mathematics. Importantly, this preliminary PD framework is under an iterative 
process of implementation and evaluation, and hopefully subsequent training courses will provide us 
with extra data to refine the initial framework into a more consistent and reliable instrument. 
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This paper describes a phenomenological study exploring middle school mathematics teachers’ 
views, enablers, and barriers regarding innovative mathematics learning activities by investigating 
their experiences. The study also aims to determine their suggestions that may lead educational 
stakeholders to increase the quality of instruction and student learning. Data collected from the 
interviews and qualitatively analyzed reveal that the enablers mainly were related to receiving 
support and positive feedback from others. The barriers were associated with time, students’ learning 
habits and classroom learning culture, work environment, and preparing activities. There is a need 
for providing training and resources for teachers for better mathematics education. Integrating such 
activities into the curriculum, developing effective training programs, and supporting teachers for 
successful implementation are the implications based on the findings. 

Keywords: Innovative mathematics learning activities, STEM education, mathematical modeling, 
middle school, teaching practices 

Introduction 
Today’s societies are expecting qualified individuals equipped with 21st-century skills to keep up 
with the era since technology and information are rapidly produced, developed, changed, and 
consumed. One of the most crucial factors in achieving the goal of developing individuals with 21st-
century skills, identified by educators and economists, is education. However, formal education 
institutions that mostly use teacher-centered instruction which promotes rote learning and 
memorization, may negatively affect the need for a qualified workforce and inevitably become 
insufficient to integrate real-life into the instruction (Akgündüz et al., 2015). In other words, 
traditional educational practices are insufficient and ineffective to raise individuals as required by the 
21st-century (Borich, 2017). As a result of the rapid changes in the globalizing world based on 
technology, business, and industry, countries have been forced to implement innovative policies in 
their educational systems as an inevitable result of the change.  

There are many approaches in which 21st-century skills can be targetted, including inquiry-based 
learning, discovery learning, problem-based learning, project-based learning, technology-assisted 
learning (Westwood, 2008), and STEM education (Barakos, Lujan & Strang, 2012) in the educational 
literature. The theoretical and practical background of problem-based learning (Hung, Jonassen & 
Liu, 2008), project-based learning (Condliffe et al., 2017), and STEM education (National Research 
Council [NRC], 2010) may help students to become skillful at critical thinking, collaboration, 
communication, creativity, productivity and problem-solving for being up-to-date, having scientific 
and technological literacy and living in 21st-century. 
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There is a need for research studies that examine the applicability, strengths, and disadvantages of 
the activities related to STEM education or mathematical modeling in schools. Approaches that aim 
to enhance 21-st century skills of students have been implemented by some Turkish middle school 
teachers. In this regard, exploring their experiences and perspectives by focusing on the enablers and 
barriers they faced while implementing such activities may provide insights for designing future 
professional development efforts in many other contexts. Therefore, the current research was 
designed to investigate the views and experiences of middle school mathematics teachers who have 
some degree of experience in implementing innovative mathematics activities, such as STEM 
education or mathematical modeling, in their classrooms. 

The current study used the term “innovative mathematics activities” as an umbrella term based on 
literature review and preliminary informal communications with middle school mathematics teachers 
about their STEM or mathematical modeling activities. Many of the teachers did not name their 
implementations as STEM or mathematical modeling as given in the literature and there are blurring 
boundaries between such relatively new approaches in the Turkish context. In this study, this term 
referred to non-routine educational activities that emphasize the real-life connections of mathematics 
and integrate mathematics and other disciplines such as science, technology, and engineering to 
maximize student learning, help them gain positive attitudes towards mathematics, and develop their 
21st-century skills. These integrated activities require planning, implementing, and evaluating 
student-centered innovative mathematics instruction. We used the term “innovative” to refer to 
relatively new methods in mathematics learning activities rather than teachers discovering “new” 
educational methods. In summary, we use this term to refer to middle school mathematics teachers’ 
all “relatively new” mathematics learning activity implementations related to non-traditional and non-
routine educational approaches. In some educational contexts, the term evolved into including only 
STEM education and mathematical modeling activities since the participants of the study made a 
connection between innovative mathematics learning activities and them. 

The specific research questions of the study were: 
 What views do middle school mathematics teachers have for innovative mathematics learning 

activities they implement? 
 What are the enablers and barriers for the innovative mathematics learning activities 

implemented by middle school mathematics teachers? 
 What are the middle school mathematics teachers’ suggestions for implementing innovative 

mathematics learning activities to other educational stakeholders? 

Method 
We use a phenomenological research design. The thirteen participants of the study were selected 
through a snowball approach among middle school mathematics teachers who had knowledge and 
experience about innovative mathematics activities. Three of them were working in public schools, 
and ten of them were in private schools. All of them -except one- were female. All of them had 
teaching experience at all grade levels of middle school, including their internships. Their teaching 
experiences ranged from 2 years to 20 years. 
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Data were collected through semi-structured interviews. The interview protocol included 19 questions 
and follow-up questions for some of them. The interviews included questions related to the participant 
teachers’ thoughts about (i) the nature of their mathematics teaching in general, (ii) their 
implementation processes, including enablers and barriers to their work, and (iii) reflective 
interpretations about the activities and recommendations for other teachers.  

Data were collected in face-to-face and online environments on a volunteer basis. We followed six 
steps recommended by Lodico and her colleagues (2010) to analyze data. The interviews were 
transcribed, redacted, and studied. Then they were analyzed utilizing the content analysis method. The 
similar views, experiences, enablers, barriers, and suggestions about innovative mathematics learning 
activities under the codes formed by the researchers. The data analysis process was guided by the research 
questions. 

Examples of innovative mathematics learning activities implemented by the 
participant teachers 
The activity implemented by P2 can be given as a representative example of innovative mathematics 
learning activities. She formed Caretta Caretta Nest Activity for 6th-graders. The activity included 
designing a nest for caretta caretta to prevent their egg loss by designing a nest for them after 
searching their sizes and living conditions. The students needed to use their knowledge related to 
ratio-proportion, area of polygons, and volume of prisms in the design process. The process required 
considering using the given whole area effectively, creating nests properly, and placing them 
productively.    

Another example is Oil Spill City Activity formed and implemented by P10 in 6th-grades. She asked 
her students to design barriers to prevent oil spills after an environmental disaster by using their ratio-
proportion and area of polygons-related knowledge. She stated that they used saltwater, olive oil, and 
bottles filled with to represent seawater, oil, and barriers to experiment with the process. She 
mentioned that her students connect their knowledge on density and ratio-proportion by changing the 
amount in these materials to stop oil spills by holding barriers at a certain level. 

Findings  
Teachers’ perceptions regarding innovative mathematics education 

In the interviews, the participating teachers were asked what they understood of the term “innovative 
mathematics education.” Their descriptions were mostly based on non-traditional educational 
approaches. They linked it with student-centered instruction, having real-life connections, 
emphasizing learning by doing and active participation, involving technology use, and being activity-
based and interdisciplinary.   

Attributes of implemented innovative learning activities 

The participants were asked to explain the characteristic features of the innovative mathematics 
activities they implemented with their students. The teachers mentioned the grade levels they 
targeted, the mathematics concepts covered, the physical setting, concepts covered from other 
disciplines, the average duration, how their students work on the activities, their assessment 
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techniques, and their resources while preparing for the activity. The following table summarizes an 
overview of the participant teachers’ responses to the characteristics of innovative mathematics 
learning activities. 

Table 1: Attributes of innovative mathematics learning activities the teachers implemented 

Main Category Sub-category Frequency 
Grades implemented 5 7 

6 6 
7 4 

In-class & out-of-class In mathematics lesson 8 
In student club 4 
In the “Applications of Mathematics” lesson 1 

Mathematics content area Numbers and operations 9 
Geometry and measurement 7 

Related 
subjects/objectives from 
other disciplines 

Designing a model & modelling 8 
Being able to use educational technology (i.e., 
Arduino, GeoGebra, Sketchpad, Tinkercad) 

8 

Raising (social & environmental) awareness 8 
Optimizing the criteria 6 
Other subjects related to science 4 

The average duration of 
activities  

3 class hours 5 
4 class hours 6 
5 class hours 1 
6 class hours 1 

Group work - 13 
Means of assessment Observation 13 

Discussion and questioning 13 
(Student products in response to) Performance task  8 
Peer rating 7 
Teacher-created paper-and-pencil test 5 
Exit card 4 

Information sources for 
teachers 

The Internet 12 
Professional development seminars 8 
Books and articles 5 

Note. The number of total responses is greater than the number of the participants since they mentioned more than one innovative 
mathematics learning activity implemented by them, and some teachers’ responses include more than one category. So, the frequency 
represents the number of teachers who point out the given categories. This is valid for the rest of the tables.  

Emotion perceptions during innovative mathematics learning activities  

Many of the teachers asserted that they have positive emotions such as being satisfied, having fun, 
motivated, and excited while implementing innovative mathematics learning activities. Almost all of 
these emotions were related to students’ reactions and emotions that were commented as positive by 
the participants. More explicitly, the participants feel satisfied when their students learn the topics 
they covered in the activities, and correspondingly when their students feel happy. They felt 
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themselves as enjoyable teachers and did not get bored during the lessons in which such activities 
were implemented because of their active role and high interaction with their students compared with 
their traditional lessons. They are motivated more in the lessons they use such activities because of 
their students’ positive reactions such as excitement, happiness, and active participation. Similarly, -
but changing roles with their students- they feel excited when their students are motivated to make 
an effort to learn and participate during the implementations.   

Some participants describe their experiences as exhausting, which depends on their role in these 
activities. According to interview data, this was not a complaint but more of a description of the 
nature of the workload these activities had. More specifically, they found that planning and 
implementing such activities requires more effort than their traditional lessons.  

Perceived effects of innovative mathematics learning activities  

The teachers explained how they perceive the effects of their activities on students based on their 
observations and experiences. They interpreted these effects as having positive contributions to 
change students’ attitudes and enhancing their 21st-century skills, affective skills, learning of 
concepts, and psychomotor skills.  

All of the participant teachers argued that the students became more aware of their future professional 
options, social and environmental issues, and gender issues. The participants believed that their 
students’ attitudes towards participating in mathematics lessons and learning mathematics changed 
positively. Also, they believed in a positive contribution of innovative mathematics learning activities 
to their students’ 21st-century skills. The specific skills they mentioned include collaboration, 
communication, problem-solving, critical thinking, researching, creative thinking, and curiosity. The 
positive effects of these activities were stated as motivation, attention, self-confidence, and a sense 
of achievement. Almost all of the teachers highlighted the improvement in student learning of the 
concepts and an increase in students’ achievement in mathematics due to the interdisciplinary nature 
and real-life connection of such activities. Lastly, since the teachers implemented mostly modeling 
or designing activities, they observed the development of their students’ psychomotor skills. 

Enablers of providing innovative mathematics learning activities  

The teachers explained their enablers by connecting to themselves and other people involved in the 
educational process. Students, colleagues, school managers, parents, and other people contribute to 
planning their lessons. The following table presents an overview of the enablers of providing 
innovative mathematics learning activities. 

Table 2: Enablers in the process of innovative mathematics learning activities 

Enablers Frequency 
Collaborating with colleagues  10 
Receiving support from school management  8 
Receiving positive feedback from parents  5 
Thinking students’ possible questions 5 
Receiving positive feedback and reactions from students 4 
Talking with an expert from a different profession 3 

Proceedings of CERME12 4593



 

 

Barriers in the process of innovative mathematics learning activities  

The difficulties or barriers the teachers encountered in the process of innovative mathematics learning 
activities were grouped under four categories: (i) time, (ii) students’ learning habits and classroom 
learning culture, (iii) work environment, and (iv) preparing activities. The following table 
summarizes these categories and their sub-categories with the frequencies of the difficulties 
mentioned. 

Table 3: Barriers in the process of innovative mathematics learning activities 

Main Category Sub-category Frequency 
Time Time constraints for covering the curriculum 10 

Need for teaching to test 6 
Students’ learning habits and 
classroom learning culture 

Being familiar with teacher-centered instruction 7 
Lack of teamwork experiences 6 
Difficulty in classroom management 5 

Work environment Teachers having too much workload 5 
Lack of equipment for activities 4 
Destructive criticism of colleagues 3 

Activity preparation Difficulty in integrating other disciplines into 
mathematics 

5 

Teachers’ lack of knowledge and experience 4 
Difficulty in simplifying complex concepts for 
students 

3 

Teachers’ suggestions about innovative mathematics learning activities  

The participants expressed their suggestions about innovative mathematics learning activities by 
considering their supporting factors and difficulties. When they were asked what would their 
recommendations to other teachers be, they mentioned keeping themselves up-to-date, knowing 
students’ characteristics and interests, observing and leading students during the activities, becoming 
persistent in implementing such activities, implementing the well-known basic activities, getting 
opinions of others, and learning a foreign language. They suggested that the ministry authorities 
should simplify the mathematics curriculum, provide training and resources for teachers, and put 
sample activities in the curriculum. They also mentioned that mathematics teacher educators need to 
contribute by providing teachers resources and professional development opportunities. 

Discussion and implications  
The participants stated that student-centered instruction, the real-life connection of mathematics 
concepts, learning by doing strategies, active participation of students, integration of other disciplines 
(especially science, technology, engineering, and design) with mathematics, and activity-based 
learning make their mathematics lessons innovative. Usually, the Turkish middle school mathematics 
curriculum covers and recommends these approaches in Turkish schools (Ministry of National 
Education [MoNE], 2018). So, these approaches should not be called innovative. However, the 
teachers perceived themselves as teaching mathematics out of the ordinary when they implemented 
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activities related to such approaches. Although these activities are given a place in the curriculum as 
regular practices at the policy level, they are seen as non-routine and innovative practices by the 
teachers. Teachers have restricted educational practices in accordance with policies even though these 
policies include innovative suggestions. So, policymakers should be careful about how national 
educational policies are perceived and implemented among teachers. 

Although the teachers did not explicitly mention any theoretical point of view, their descriptions and 
implementations can be interpreted in line with the constructivist and constructionist learning 
theories, related to STEM and mathematical modeling approaches. It can also be argued that most of 
the teachers’ perceptions of innovative learning activities were in line with the recent rhetoric of 
STEM education, mathematical modeling, project-based learning, problem-based learning, 
cooperative learning, or technology-integrated instruction. This indicates that the teachers were up-
to-date on the relatively current educational theories and were willing to implement the ideas and 
approaches in these theories into their classroom practices. It may be because most of the teachers 
attended professional development seminars and in-service training programs.  

The teachers stated one of the most critical factors in maximizing the quality of their activity 
implementation was their interaction with other people –namely students, colleagues, school 
managers, parents, and domain experts– who get involved in the activities from beginning to the end 
by sharing their views, comments, knowledge, and experiences. Therefore, teachers need a 
collaborative mindset for learning to implement such activities. Regarding the barriers to 
implementing the innovative activities, the findings of the study confirm the other previous studies 
on STEM and mathematical modeling (Herro & Quigley, 2017; McMullin & Reeve, 2014; 
Stohlmann, Moore & Roehrig, 2012). 

Since the STEM and mathematical modeling integration into mathematics lessons are relatively new 
for many teachers, it is considered that there is a need for informing educational stakeholders about 
the integration for better implementation.  The findings of the study demonstrated that some enablers 
such as collaborating with colleagues and professionals from other disciplines, being supported by 
colleagues and school management, and receiving positive feedback from students and parents make 
the process of innovative mathematics learning activities easier. These factors enable teachers to 
implement well-planned STEM and mathematical modeling activities. Correspondingly, teachers 
should be encouraged to implement their activities by creating a collaborative working environment 
and taking moral and material supplies. So, professional development opportunities can be designed 
to increase communication and collaboration between mathematics teachers and others. On the other 
hand, the current study put forward that teachers get into several barriers while implementing their 
activities. They primarily focused on the lack of time for planning and implementing the activities 
due to their workload and requirement of covering the curriculum in regular classes, the lack of 
students’ familiarity with these types of activities, the lack of equipment required in the 
implementation of these activities, and the lack of knowledge that teachers experienced in STEM and 
mathematical modeling activities. The authorities can develop strategies to overcome these barriers 
for better mathematics education by developing policies about teachers’ workload, mathematics class 
hours, and mathematics curriculum by revising them in accordance with STEM and mathematical 
modeling activities.  
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There is a broad consensus that Education for Sustainable Development (ESD) should be 
integrated into all core subjects to enable learners to acquire the necessary knowledge and 
competencies for a SD in a comprehensive way. How ESD can be integrated in mathematical 
modeling has not been clearly defined yet. Sociocritical modeling can be one possible way for 
implementing SD in mathematics lessons. In this paper, we develop criteria for sociocritical 
modeling tasks based on previous empirical findings and theoretical considerations. To 
conclude, the task textile consumption, that was designed based on these criteria, is presented 
here. 

Keywords: sociocritical modeling, sustainable development, task design 

Introduction 
In an era of globalization, digitalization, climate change and crises, a growing number of 
educators and employers are united around the idea, that students need to learn special skills to 
deal with these kinds of global issues1. These issues require a shift in our lifestyles and a 
transformation towards a more sustainable way we think and act (UNESCO, 2014). According 
to Bakker et al. (2021) “the big question is what role mathematics education can play in meeting 
these challenges” (p. 7). 

Education for Sustainable Development (ESD) is increasingly demanded from many sides 
(Nationale Plattform BNE, 2017). This requirement applies to all areas of education and to all 
subjects, including mathematics education. In terms of educational theory, the relevance of ESD 
in mathematics education can be justified, among other things, by Winter's basic experiences 
(Winter, 1995). The first states that "Erscheinungen der Welt um uns, die uns alle angehen oder 
angehen sollten, aus Natur, Gesellschaft und Kultur, in einer spezifischen Art wahrzunehmen 
und zu verstehen" [phenomena of the world around us, which concern or should concern us all, 
from nature, society and culture, are to be perceived and understood in a specific way] (p.17). 
One goal of ESD is to empower learners with the knowledge, skills, values, and attitudes to 
address the above-mentioned challenges and take informed decisions and make responsible 
actions. Therefore, students need to gain competencies such as critical thinking and reflection, 
both for ESD and in math education (Gutstein, 2006; Skovsmose, 2021). 

A great deal has been assumed and researched about modeling in math education to include 
real-world contexts in teaching mathematics. What has been little studied is the extent to which 
students are also able to acquire competences that will help them become responsible citizens 
via working on modeling tasks. This includes, among other things, the competence to make 

 
1 https://www.unesco.de/sites/default/files/2018-08/unesco_education_for_sustainable_development_goals.pdf 
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decisions that promote SD (also called decision-making for SD). Bakker et al. (2021) published 
answers from all over the world to the question: “On what themes should research in 
mathematics education should focus in the coming decade” (p. 2). Many of the responses, 
especially after the pandemic outbreak, strongly emphasized the importance of teaching 
mathematics in the context of these global challenges (Skovsmose, 2021). Increased 
interdisciplinary teaching or problem-based learning to learn competencies such as critical 
thinking or decision making can be mentioned here as an example. It can be claimed that the 
demand for a socio-critical orientation of mathematics education is constantly increasing the 
more crises society has to cope with (Skovsmose, 2021).  

This leads to our research question: What might be useful didactical criteria for designing tasks 
to establish reference to SD contexts in mathematics lessons? 

Theoretical Framework 
The idea of integrating ESD into mathematics education is a more or less young one (UNESCO, 
2014). Therefore, it is necessary to briefly address different theoretical aspects from both sides, 
mathematics education and ESD, to be able to compare and combine later.  

Understanding, questioning, and critically reflecting on global issues using sociocritical 
modeling in mathematics education can be seen as a way to initiate a critical orientation within 
mathematical modeling. “Modelling is a powerful vehicle for bringing features of twenty-first 
century problems into the mathematics classroom” (English, 2016, p.10). From this it can be 
deduced that there is a need for tasks in mathematics education that are oriented towards socio-
scientific issues and, in addition to modeling competencies, also offer the opportunity to critical 
reflect on the context and develop decision making for SD. Because all relevant contexts and 
issues are composed of content from STEM subjects, this goal cannot be achieved without 
including STEM (Maass, Geiger, et al., 2019). Furthermore, including SD contexts in 
mathematical modeling is an important opportunity “to integrate science, technology and 
engineering in meaningful ways as students tackle problems involving mathematics in relevant 
settings” (National Council of Supervisors of Mathematics & National Council of Teachers of 
Mathematics, 2018). 

What exactly is meant by socio-critical modeling, how modeling tasks can be designed, and 
what is understood by contexts of sustainable development is explained in the following 
sections. 

Mathematical Modeling 

The goals of modeling in math education can be considered in different ways. A distinction can 
be made between content-oriented, process-oriented, and general goals. The content-oriented 
goals include the development of the environment with the help of mathematical means.  
Process-related goals include general mathematical competencies (e.g., problem-solving skills) 
and the heuristic strategies. Finally, the general goals include culture-related arguments. Here, 
the focus is on the image of mathematics as a science and on conveying the importance of 
mathematics for active participation in society (Greefrath & Vorhölter, 2016). 

In addition to the goals of modeling presented here, various theory-based perspectives have 
emerged over time in the national and international discussion on modeling (Kaiser & Sriraman, 
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2006). The goals pursued can differ greatly in each case, depending on the aspect under which 
modeling tasks are developed, selected, and used. The perspective of socio-critical modeling, 
as one of seven, pursues the intention to promote discourses that are stimulated by mathematics 
and come from the learners' lifeworld. Barbosa (2006) describes this modeling perspective as a 
way of critically reflecting on the role of mathematics in society. Here, the goal of modeling is 
primarily to generate interdisciplinary thinking (special relation to STEM education) and 
critical discourse among learners. The crucial role, the context of the task can have, is 
particularly evident in this form of modeling.  

Socio-critical modeling can deal, among other things, with socio-scientific issues (e.g., cloning 
or stem cells) and social issues (e.g., gender-pay-gap).  Real problems like these often include 
ethical, moral, social, or cultural dimensions and thus challenge us to become aware of the 
subjectivity of modeling processes. This is done by critically reflecting on all steps of a 
modeling process. However, the outcome of such modeling can lead students to critically reflect 
on their own behavior and make recommendations based on their own modeling.  

Sustainable Development Contexts  

The difference between an issue and its context is that the context can be far more complex and 
considers more perspectives and information (Sadler, 2004). One important question when it 
comes to realistic contextualized tasks is the amount of reality on the one hand and mathematics 
on the other hand. So, with SD contexts in modeling, it is rather important to address both. It 
has been noticed that “it can be difficult to identify and address the mathematics involved in 
the contexts” (Maass, Doorman, et al., 2019, p.1001). We entirely agree that this difficulty 
points out the necessity to include such issues and the inherent mathematics. As an example for 
SD contexts that should be more present in mathematics education, a discourse from science, 
politics and society led to the identification of central problem areas for the design of SD. 
According to them, the socioscientific core problems of the 21st century include: climate 
change, world food supply, soil degradation, drinking water and biodiversity (Reid et al., 2010; 
UNESCO, 2014). Of course, there will be many more challenges, especially of a social nature, 
such as racism or migration, which will not be discussed further here for the time being. 

The Guide for embedding ESD in textbooks presents a first orientation to place SD contexts at 
the core of school subjects through the implementation in textbooks. The authors outlined 15 
guidelines for creating mathematics curriculum resources that support ESD which include 
among others: real contexts, current issues, complexity, values, access to data, 
interdisciplinarity, opening dialogue, collaboration and courage (MGIEP & UNESCO, 2017). 

Modeling task design 

To encourage students to engage in mathematical modeling, suitable problems and tasks are 
required. Several theoretical approaches for the design of modeling tasks exist but will not be 
further outlined here (Blomhøj & Kjeldsen, 2006; Maaß, 2010). 

Another possibility for the conception of good modeling tasks is the orientation at criteria, based 
on which their quality can be classified. At this point it should be emphasized that there are no 
"the" criteria of modeling tasks. The goal, which is followed with the processing, is in the focus. 
Even a good modeling task does not have to fulfill all criteria equally. The criteria according to 
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Maaß (2007) will be considered here, which she names as "typical" for modeling tasks are 1. 
open, 2. complex, 3. realistic, 4. authentic, 5. problematic and 6. solvable by carrying out a 
modeling process. 

For the design of modeling tasks that support decision making for SD, one needs real contexts 
and current issues. SD is thus considered a new context generator for mathematics education. 
Therefore, it must be ensured that the SD context is accessible using mathematical methods. As 
already stated above, scholarly studies and societal experiences have been able to identify some 
core problem areas in the discourse that are of particular importance for the design of a SD. 
These core problems now serve as a thematic orientation framework for the task design. 
Accordingly, the issues to be addressed should be 1. central to SD processes, 2. locally or 
globally, 3. have potential for action, 4. have long-term significance and 6. can be dealt with in 
an interdisciplinary manner. 

Based on these theoretical thoughts we here report our approach for the design of SD context 
modeling tasks. For this purpose, the process of the criteria merging is shown first. 
Subsequently, the exemplary task based on these results is presented. 

Merging Criteria  
Comparing both sets of criteria, some overlap can be found in what seem to be characteristics 
of good modeling tasks. The design of the tasks should succeed in such a way that modeling 
competencies are promoted and at the same time interest in the concerns of SD is aroused in 
the students. Additionally, they should be stimulated to reflect critically or argue concerning 
SD issues. For this purpose, criteria from the two different domains were compared (see Figure 
1). In addition to the criteria for modeling tasks (Maaß, 2007) (green box), the guidelines for 
embedding ESD in textbooks (MGIEP & UNESCO, 2017) (orange box), were considered. In 
the process of merging, similarities and differences of both guidelines were worked out. An 
attempt was made to create a catalog of eight criteria that would include both guidelines in 
equal parts (see arrows Figure 1). The result of the comparison of the criteria are eight 
characteristics for modeling tasks in the context of ESD (yellow box). 
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Figure 1: Process of merging of criteria 

SD context modeling task design – an example 
In the following, we show how these criteria can be applied to a selected current issue for the 
design of a modeling task. Starting with a current issue like “Fast Fashion” and embedding the 
problem in a real context of global development like climate change is one possible way to 
begin with the task design. Based on the problem and context chosen, the corresponding values 
should be named, and open and realistic question should be formulated, that is solvable by 
modeling activities and in some way suitable for a critical reflection. If possible, a longer-term 
potential for action should be able to be defined from the task. 

Table 1: Exemplary application of the criteria 

current issue Fast Fashion 

real context Climate Change 

open individual assumptions and solutions  

complex interdisciplinary nature of the problem 

realistic use of real data 

solvable by modeling activities understand/simplify, mathematize, interpret, validate 

suitable for critical reflection and dialogue reflection on one's own consumption behavior  

courage leaves judgment to the students based on their mathematical 
investigation and knowledge of the relevant context 

For the context of the modeling task presented in this paper, the issue “Fast Fashion” has been 
chosen (see Table 1) which, on the one hand, has a strong connection to the youth reality and, 
on the other hand, is related to the core issues of SD. Since, in addition to modeling 
competencies, it is primarily that critical reflection and arguing are to be promoted, the potential 
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for personal action must be apparent to the students. Therefore, the guiding theme consumer 
behavior has been chosen, as it effects every student, has multiple effects on socio-scientific 
and social issues and provides mathematical content to work with (see Table 2). 

Table 2: Textile consumption as an exemplary SD context modeling task 

Task Textile Consumption 

Question 
How big would your closet have to be in 10 years if you don't sort out or 

dispose of anything in between and continue to shop the way you have been? 

Mathematical 
Content 

Convert units, rule of three, rounding, estimating, calculate with volume 

Learning target Trigger AHA effect about own consumption behavior and effects 

 

Preliminary experience with the modeling task "Textile Consumption" (see Table 2) was gained 
with 50 grade 10 students. They worked in small groups of 3-5 people, and after completing 
the tasks, group interviews were conducted for qualitative data collection. The use in a 10th 
grade mathematics class has shown that the students were able to reach a result with the task 
through modeling activities (understand/simplify, mathematize, work mathematically, 
interpret, and validate). In addition, the results of the interviews showed that a critical reflection 
of the given issue took place at several points. It should be mentioned here that the way the 
interviews were conducted, and the limited time frame did not allow for further discussion and 
reflection of the results. Nevertheless, all groups critically reflected on the problem of Fast 
Fashion and their own consumption. At this point, we would like to provide two quotes from 
the interviews as examples.2  

In any case, the task has made it clear to me that I should perhaps reduce my consumption a bit. 
My clothes are really a lot, and I might also look in the next few years that I sort things out and 
give them away...it's always difficult to separate, but that you then get rid of clothes and give 
them to people who need them. (Diana) 

Through this quotation it becomes clear that the student has recognized for herself, due to the 
work on the task, that she should limit her clothing consumption. However, it can be noted that 
she does not necessarily aim to buy less new clothing, but rather to pass on existing clothing. 
Nevertheless, it can be stated that the processing of the task has led to a critical reflection on 
and examination of the context. This connection becomes even more apparent in the following 
second quote. In this quote, the student himself makes a direct connection between calculating 
the amount of clothing and initiating reflection on his own clothing consumption:  

Because you have calculated how many clothes you buy and how big your closet should be, you 
start thinking that you buy a lot of clothes that you might not even need...not that much. (Enya) 

 
2 The quotes are translated by the authors and the names of the students have been changed. 
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These two quotes show that mathematics can certainly be used for critically reflecting on a 
context in a meaningful way. They show two different kinds of a critical reflection based on 
the students’ experiences while working on the modeling task textile consumption. The students 
interpret their mathematical solution in the given context and start to substantiate their 
arguments for reduced textile consumption with their mathematical results.  

Summary & Outlook 
Based on the question, what role mathematics education can play in meeting global challenges 
like crises, globalization, and the urgent need of a sustainable development, we started with SD 
contexts in socio-critical modeling creating content for mathematics classrooms. The research 
question to be answered here related to possible criteria for the design and implementation of 
tasks that support arguing for decision making for sustainable development. 

The literature research has shown that so far, no criteria for tasks in general as well modelling 
tasks in particular have been formulated, which are to promote explicitly competencies such as 
decision making for SD. Thus, the set of criteria elaborated in this work could be usefully 
applied in further research for the design of SD context modeling tasks. Designing and 
evaluating further teaching materials based on these criteria is a worthwhile task for future 
research.  

The quotations of students presented make it clear that by working on the task, the students 
have begun to question their own textile consumption, even though the intentions for action 
expressed by both are subjective and different. This shows that tasks with an SD context have 
the potential to stimulate critical reflection and promote arguing even outside of mathematics. 
Future research is needed to determine how, why, and to what extent this approach can work in 
general. 
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This article explores the concept of black boxes within mathematical modeling. First, we perform a 
literature-based clarification of the term black box, the use of a black box, and explore the use of this 
construct in science, and workplace. A black box is characterized by the following issues: (a) being 
believed to be distinct, (b) having observable (and relatable) inputs and outputs, (c) being black (that 
is, opaque to the observer). Afterwards, we demonstrate the uses of black boxes within mathematical 
modeling. We generalize these uses to a model of how black boxes can be implemented in mathematics 
education. Based on this model, we derive educationally relevant activities for using and opening 
such a black box. The application of these activities is illustrated in more details using an example of 
physical chemistry: the Arrhenius Equation. 

Keywords: Black box, mathematical modeling, STEM 

Introduction 
Mathematical modeling is an important part of mathematics education (Kaiser, 2020). English (2016) 
described modeling as a powerful tool to implement 21st century skills in mathematic classrooms. 
This is because real-world problems connect mathematics with aspects of the world, and are often 
linked with mathematical modeling and mathematical models (s.f. Artigue et al., 2007; Kaiser & 
Stender, 2013; Lingefjärd, 2006). 

In practice, many models use black boxes.  For example, they serve as simplifications of phenomena 
or approximations in modeling tasks (e.g. Bissell, 2004; Buchberger, 1990; Hoijnen et al., 1992; 
Straesser, 2007; Williams & Wake, 2007). Black boxes are often used, especially in work places and 
science models (Straesser, 2007; Williams & Wake, 2007). In order to understand how the term black 
box is used and whether or how it can be utilized for mathematics, we have used an epistemological 
approach and analyzed tasks of science. Because of these findings, we argue that we should include 
teaching about black boxes in mathematics education. However, there is no consensus (yet) on how 
exactly we should do that.  Hence, the aim of this paper is to give an overview of possible approaches, 
to present our own concept, and to deepen existing approaches in the process. 

Theoretical background: Black Boxes 
Kaiser and Stender (2013) proposed two different directions for mathematical modeling: 
“mathematics for applications, models and modeling” (p. 278), and “applications, models and 
modeling for the learning of mathematics” (p. 278). The second headline emphasizes the goal of 
learning mathematics. In this paper, we want to implement black boxes into mathematical modeling 
in the context of STEM. Therefore, we will refer to the first headline. The realistic or applied approach 
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of mathematics puts the solution of the real-world problem in the center. To describe the processes 
while working out the solution different modeling cycles have been developed (e.g.Blum & Leiß, 
2007; Kaiser & Stender, 2013). In the following, we will refer to the modeling cycle proposed by 
Kaiser and Stender (2013). This corresponds the mathematical modeling cycle in physics education 
of Redish and Bing (2009) excluding the real-world situations and fits the later presented problem. 

Modeling with Black Boxes 

As described above assumptions are obligatory during modeling. These can be interpreted as black 
boxes. In addition, well-accepted mathematical models can work as a starting point of further real-
world problems. Therefore the problem solver must not have fully understood the origin model or its 
emergence, but its input and output behavior. Accordingly, this mathematical model is used as a black 
box. In our contribution, we give an overview of black boxes in general and in particular in the context 
of mathematical modeling. We will present a way to open black boxes, but without giving an answer 
to the question if and when one should open a black box. 

The term black box is usually used without a precise definition, but in a kind of intuitive 
understanding (e.g. Bissell, 2004; Buchberger, 1990; Fojo et al., 2017; Hoijnen et al., 1992; Straesser, 
2007; Williams & Wake, 2007). We use the definition of black box provided by Glanville (1982). 
Following a philosophical approach he characterizes a black box as: “[…] (a) being believed to be 
distinct, (b) having observable (and relatable) inputs and outputs, (c) being black (that is, opaque to 
the observer)” (Glanville, 1982, p. 1). We want to emphasize how we understand this definition and 
give an example. One aspect that we want to enhance is that even though the definition claims 
observable inputs and outputs, it does not mean that the researcher is already fully aware of its input-
output behaviour. Notably, the fact that a black box is both observable and relatable does not 
necessarily imply that it is also deterministic. Indeed, statistical systems can also be understood as a 
black box.  

State of the art: Black Boxes in Mathematics Education 

In mathematics education, black boxes are associated with Computer-Algebra-Systems or other 
technical systems (Buchberger, 1990; Peschek, 1999; Williams & Wake, 2007). For this usage of 
black boxes, Peschek (1999) defines a black box as something “[…] in denen operatives Wissen so 
materialisiert ist, dass es als Ganzes aufrufbar und einsetzbar wird, ohne dass ihre innere Funktions-
weise verstanden werden oder auch nur bekannt sein muss” [in which operational knowledge is 
materialized in such a way that it can be called up and used as a whole without its internal functioning 
being understood or even having to be known] (p. 1). This mathematical perspective on black boxes 
is not sufficient. On this account, the focus in the following is not on trivialized mathematics that is 
taken over by computer systems, but on the usage of black boxes in modeling and STEM education 
(e.g. Krell & Hergert, 2019; Krell & Krüger, 2017; Upmeier zu Belzen, Krüger, & van Driel, 2019). 

Modeling with Black Boxes 

In later approaches in science education, a model-based approach is often chosen and the terms model 
of and model for are mention in this discussion (Gouvea & Passmore, 2017). The aspect model for 
something means using the model to gain more information about the real world or to make 
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predictions. Therefore they turn into epistemic tools (Gouvea & Passmore, 2017). In this application, 
it can be useful or even necessary to use a model as a black Box. The idea of black box might 
emphasize the fact, that a model is a useful thinking tool, but not a precise description of reality. This 
misconception can otherwise lead to difficulties understanding more complex systems that cannot be 
explained with the origin model or even prevent scientists to gain new epistemological knowledge 
(Taber, 2017). But a black box in science education can not only be used to emphasize the model as 
a tool but is also an approach for modeling itself, by using a black box activity (e.g. Ruebush et al., 
2009; Warren, 2001). 

Opening a Black Box 
The metaphor of opening a black box represents the precise exploration and questioning the inner 
functioning for which the black box stands for. There are two reasons for opening a black box. The 
first reason is to gain scientific knowledge about the black box itself. The motivation to gain scientific 
knowledge about the black box can be research or education. In the context of research, the scientist 
wants to gain knowledge about the unknown. In science or mathematic education, the incentive to 
open a black box can be versatile. By opening a black box students can learn something about the 
model itself, the modeling process and lead to a deeper understanding about the black box, for 
example, a model that serves as a tool. This can and should prevent application errors. The second 
reason is that the black box cannot be distinguished.  

Black Box Concept 

In this section, we explain how we should include black boxes into mathematics education. Therefore, 
we want to distinguish between a black box that evolved from a white box and a black box that should 
only represent the unknown. The first, for example, involves mathematical models whose modeling 
is not apparent to the user, but the user knows about their validity. The second one implies for example 
phenomena in nature that have not yet been explored in detail. The later criterion of Glanville’s 
definition mentions the user’s point of view, and brings both kinds of black boxes together. This view 
of using a black box is illustrated in Figure 1.  

 
Figure 1: Extended Approach: illustration of the black box, refined from Glanville (1982, p. 1) 

We justify this distinction due to their vocational use. By studying unknown phenomena, researchers 
are trying to unbox the unknown (1) (Glanville, 1982). After unboxing the unknown, it might be 
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useful to turn the white box into a black box (3). Williams and Wake (2007) point out two reasons 
for black boxes: time and space. However, for mathematics, only time is relevant. 

Time represents the black boxes that changed models and/or mathematical work into instruments, 
and tools (Williams & Wake, 2007). This leads to efficient use of those models but goes along with 
the leakage of knowledge. For example, the model designer knows the simplifications they made, but 
the user does not. This is a typical situation at work (Straesser, 2007). CAS-Systems are self-
constructed by the designer who is fully aware of the underlying algorithm, the technic, and 
mathematical knowledge, but it is opaque to its observer/user. The command for differentiation or 
integration serves as an example. In this application, the software is taking over the mathematical 
work (Williams & Wake, 2007).  

In contrast to opening the black box, it might be useful, not to unbox the black box (2). This may 
seem to contravene the aim to study the unknown, but “[…] our ability to overcome and cope with 
ignorance and thus is a primitive of learning and, hence, of  science” (Glanville, 1982, p. 1). This can  
be for example a simplification and is therefore essential in the work of modeling (Bissell, 2004; e.g. 
Hoijnen et al., 1992). Hoijnen et al. (1992) depict an application for the black box as an approximation 
in mathematical modeling in a scientific context. He describes the use of a black box to estimate the 
energy that is gained out of biomass. This enables to calculate auto-and heterotrophic biomass yield 
the without studying the microorganisms that are not relevant for the modeling  (Hoijnen et al., 1992).  

One reason for those simplifications is the fact, that exact scientific research is determined by the 
limits of the measurable aspects (Ortlieb, 2008). Another reason is the intricacy of parts of phenomena 
that turn out irrelevant compared to the phenomena. Bissell (2004) gives an example in the context 
of communication and control engineering and points out that:  

In this approach, a complex linear electrical network is represented by its input-output behavior; 
at this level of abstraction, the precise nature of the interconnections of components inside the 
black box becomes irrelevant (p. 312). 

This leads to the conclusion, that in the scientific context it is necessary to leave some phenomena 
opaque as a black box to achieve epistemic aims. Therefore, this way of working with models and 
modeling has to be part of the scientific and mathematic curriculum. 

Activities to open a Black Box in Education 

The result of an opening process for example by modeling is a more specific model, which still leaves 
a part of the real word opaque. Latour (1994) describes this endless process as follows: “Each of the 
parts inside the black box is a black box full of parts” (p. 37).  An endless process is incompatible to 
gain results, efficiency, and education. Therefore, the necessity of a temporary ending is essential. In 
the following, we want to picture relevant activities to work with black boxes, and an option to bring 
the endless process of opening with a temporary ending together. We try to identify boxes in boxes. 
This leads to a new modeling cycle, which is illustrated in Figure 2.  

The first level represents the black box itself, for example, an equation that is used as a tool. The 
reasons for this usage have been explained in previous sections. The target itself defines the different 
underlying levels and can appear in different ways. By opening a black box students can learn 
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something about the model itself, this might be by the interpretation of the model or learning about 
the modeling process itself. While doing so, assumptions or underlying models appear in this process, 
which are represented by the smaller boxes below, and defined as new black boxes. Due to this 
definition, there is a point, where the opening process is finished due to its target, even though not 
everything is visible to the observer. The most difficult part of this is to know the point of whether to 
stop the process, or to go further to fulfill the target. This topic needs further research. 

 
Figure 2: How to open and generate a Black Box. 

Another activity to open the black box is that the students interfere it, and make assumptions from 
the input-output performance. This modeling access is called a black box activity in science education 
(Krell et al., 2019). This activity can be applied in a different way. It can be linked to a real-world 
model or applied on a black box for educational reason.1 The usage of this black box is only to foster 
students’ understanding of models and modeling in science showed positive effects (Krell & Hergert, 
2019). Here, modeling serves as a tool for opening a black box. 

The described modeling tasks retrieve in the atomistic approach of mathematical modeling, that is 
besides the holistic approach consensus on the teaching and learning of mathematical modeling 
(Kaiser, 2020). In the following section, we illustrate the benefit of our model by applying it 
theoretically to the Arrhenius equation. 

Application: The Arrhenius Equation 

The Arrhenius Equation (1) is one example in science (education), how a model is used as a black 
box. The equation is one of the most important equations in physical chemistry (Logan, 1982). For 
example, it is used in material research for battery technology (Breuer et al., 2015; Ren et al., 2015).  

 
(1) 

A common application in science education is the ascertainment of the activation energy of the 
sucrose inversion. To do so the students only need the scientific model as a tool. In this process, the 

                                                 
1 e.g. Freie Universität Berlin. Modelle der Biologie. https://tetfolio.fu-berlin.de/web/440484 29.08.2021 
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model is embedded as a black box and will not be opened, which is an example for the first level of 
Figure 2. The modeling steps for the ascertainment are described in Figure 3 based on the modeling 
cycle of Kaiser and Stender (2013), in which the real situation is replaced with the black box. In this 
example the Arrhenius Equation is the black box.  

 
Figure 3: modeling cycle to ascertain the activation energy of the sucrose inversion according to 

Kaiser and Stender (2013, p. 279)  

The modeling task is the ascertainment of the reaction of acid and sugar that cannot be measured 
directly. The students need to consider, how they can ascertain the activation energy only with 
measurable data. The Arrhenius Equation is a tool to determine the wanted quantity. To do so the 
reaction rate is necessary. This one is ascertainable with the changing turning angle of the liquid 
during the reaction. These results are the base of the following usage of the Arrhenius Equation to 
determine the activation energy. In the next step, the data is transferred to fit into the mathematical 
model. This data set is mapped to a coordinate system and the line of best fit is plotted. This leads to 
the so-called Arrhenius slope (Figure 4). The students have to read off the y-intercept of the slope 
that corresponds to the activation energy. After this, the results are validated (2) by approximating 
possible mistakes during the measurement and its analysis. Therefore, every step of the modeling is 
revised. Following the steps of the modeling cycle can help to structure the propagation of 
uncertainty. After that the results are compared with the literature value (validate (1)).  

 
Figure 4: Arrhenius slope 
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In this described usage, the equation is used as a black box. In the context of education, a reason to 
unbox the equation is to gain knowledge about the model. This takes us from knowing 'how' to 
knowing 'why'. The interpretation reveals the connection between the different variables but does not 
explain the different parameters themselves. This leads to an underlying level. For example, the 
activation energy and its factors can be interpreted as another black box.  

Summary 
In this paper, we focused on how we can apply black box techniques in mathematical modeling. By 
using literature-based normative approach, we developed a model to implement black boxes in 
mathematical modeling, and argued for its benefits in mathematical education. These benefits show 
themselves in the necessity for application in science and workplaces, and within the modeling of 
real-world situations. However, the critical reflection of this process is an open question for future 
research. This, most importantly, includes deciding when and where to apply these techniques 
("critical opening"), both in an educational setting and in the real-world.  
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Graphs are an important interdisciplinary and everyday tool for visualizing and interpreting 
information and communication processes and, thus, an essential part of 21st Century Skills. In 
particular, linear functions are a fundamental component of school and university education, but 
students often have difficulties interpreting this type of function, in mathematics as well as in physics 
– especially in kinematics. This paper presents first results of an eye-tracking study, which compares 
learners’ visual attention during the interpretation of linear graphs in mathematical and physical 
contexts. 

Keywords: Eye tracking, graphs, context, problem solving.  

Introduction 
Graphs are a typical representation to show the dependencies between different quantities and 
therefore play an essential role in conveying information in the natural sciences. They are typically 
introduced in mathematics in secondary school and are part of both the school and university 
curriculum in different STEM contexts (Glazer, 2011; Leinhardt et al., 1990). Beyond the purely 
mathematical understanding of the functional relationship, graphs are an important tool, e.g., for 
visualizing trends in measurement data and are thus an interdisciplinary tool for interpreting 
quantitative information in the context of 21st Century Skills (National Research Council, 2012).  

In recent decades, however, research has shown that many students have difficulties interpreting 
graphs (Glazer, 2011). This is especially true for kinematic graphs (Beichner, 1993; Ivanjek et al. 
2016; McDermott et al., 1987). Since the cognitive processes involved in graph interpretation are 
closely linked to visual perceptual processes, e.g., extracting relevant information from graphs, eye 
tracking opens up the possibility of gaining insights into learning or problem solving processes 
involving graphs (Klein et al., 2021; Susac et al., 2017). 

In this work, we use eye tracking to investigate visual strategies of students while solving line graph 
problems in a mathematical and kinematical context. To this end, we recorded their gaze data to 
investigate their visual attention while solving item pairs of a test instrument validated by Ceuppens 
et al. (2019) that require the same mathematical solution procedure. On a selected item pair, we show 
that gaze behavior differs significantly between the mathematical and kinematical contexts.  
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State of Research 
Students’ learning difficulties concerning graphs in the contexts of mathematics and physics can be 
grouped into three main aspects: First, although mathematics and physics are deeply connected 
(Redish & Kuo, 2015), students have difficulties linking both disciplines adequately (Ivanjek et al., 
2016). Reasons for this are a domain-specific learning (Pollock et al., 2007) and a lack of the ability 
to transfer knowledge from mathematics to physics (Christensen & Thompson, 2012). Second, 
students have problems using multiple external representations competently (e.g., Ainsworth, 2006), 
especially when switching between different representations back and forth (Even, 1998). Third, in 
particular the high degree of abstraction of graphs poses difficulties since learners need to relate 
mathematical entities to real world processes (McDermott et al., 1987).  

Eye tracking is a method to investigate visual attention by recording eye movements. The eye 
movement can be described as a sequence of fixations (eye stop points) and saccades (jumps between 
fixations). Predefined areas in the field of view, so-called areas of interest (AOI), are used to define 
eye-tracking metrics such as the total visit duration (TVD, cumulated times between first fixation in 
and first fixation outside an AOI) and transitions (saccades between AOIs). To get an adequate 
understanding of line graphs, learners have to extract information from the graph and combine this 
with prior knowledge. Such processes of information extraction and constructing meaning with 
graphs are described by the Cognitive Theory of Multimedia Learning (CTML, e.g., Mayer, 2009). 
CTML describes three main processes concerning problem solving and learning: selection (extraction 
of sensory information from graphs), organization (building a coherent internal representation 
through information structuring) and integration (combining internal representations such as axis 
values or axis intervals in graphs with the long-term memory). 

The following connection between CTML and eye tracking allows a theory-based interpretation of 
the eye-tracking data: Gaze durations (TVD, fixation durations) are associated with processes of the 
selection and organization of information extracted from the processed material, gaze shifts 
(transitions) are related to integration processes (e.g., Alemdag & Cagiltay, 2018). In summary, eye 
tracking is a non-intrusive method to obtain information about visual attention and cognitive 
processing in problem solving processes. So far, to our knowledge, there is no eye-tracking study of 
the comparison of visual attention processes on linear graphs in the context of mathematics with other 
contexts, especially with physics in high-school. In general, there is a gap in analyzing mathematical 
problem-solving processes and representations using eye tracking in secondary school (Strohmaier et 
al., 2020). This study aims to fill this gap. 

Research Questions 
For our eye-tracking study, we used the validated test instrument of Ceuppens et al. (2019) because 
it contains items in both kinematical and mathematical contexts. While Ceuppens et al. (2019) 
examined 9th grader, we used the test instrument with students in the entry phase of upper secondary 
school. The aim was to check whether the difficulties in interpreting linear graphs are still present in 
the upper grades. The background is that the competent handling of graphs in general and of linear 
graphs in particular is assumed in the upper school and can be seen as a basis for the development of  
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Figure 1: Isomorphic item pair no. 8 from the test instrument used; on the left: mathematical context 
M8), on the right: kinematical context (K8). The diagram-area of each item is divided into AOIs 1-10. 

AOIs with significantly longer TVDs than in the isomorphic item are marked in blue. Red arrows 
indicate transitions between AOIs that appear significantly more often than in the isomorphic 

counterpart 

many new learning contents in the STEM context. The research questions of the study were as 
follows. 

RQ1: Do the difficulties of 9th grader, particularly in solving kinematic items, also occur with students 
in upper secondary classes? 

RQ2: Do selection and organization processes analyzed by gaze behavior in solving isomorphic items 
differ between mathematics and kinematics contexts? 

Methodology 
The test instrument consists of 24 items taken from a validated test by Ceuppens et al. (2019) and 
translated literally into xxx (details redacted for review). The instrument consists of pairs of items in 
mathematics and kinematics contexts that are isomorphic to each other, i.e., have the same surface 
features and require the same mathematical solution procedure. In order to avoid sequence effects, 
all items were presented to the students in arbitrary order and an alternating start either with physics 
items or mathematics items. In the context of this paper, we focus the eye-tracking based analysis on 
item pair number 8 (cf. Figure 1). Here, students evaluated the negative slope of a linear graph once 
for a mathematical function and once for a time-position function. 

A total of 35 upper secondary students (14 male, 21 female, all with normal or corrected-to-normal 
vision) from a secondary school in xxx (details redacted for review) participated in the study. The 
students voluntarily took part in data collection either in free periods or in regular classes (with 
teacher permission). At the time the study was conducted, kinematics had already been covered in 
the courses of all participants. The students were rewarded with a 5 €-voucher for participation. Item 
pair no. 8 was completed by 24 students only. In the context of this paper, we are interested in why 
students with mathematical knowledge exhibit problems in the physics context. Therefore, we only 
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consider students who answered the mathematics item correctly and failed solving the physics item 
(N = 14, 8 female, 6 male).  

The study took place in the school’s library where two identical eye-tracking systems (Tobii X3-120) 
were set up. First, the participants answered a short questionnaire about their demographics. After 
that, a 9-point calibration was performed to obtain a full-customized and accurate gaze point 
calculation. Subsequently, the 24 items were shown on the computer screen (1920 x 1080 px; refresh 
rate 75 Hz). If students were ready to give an answer, they pressed a key to move to the next slide. 
After they had answered, they were asked how confident they were about the correctness of their 
answer (4-point Likert-type rating scale, ranging from very high confidence to no confidence). The 
students could take as much time as needed to answer a question. They did not receive feedback after 
completing a task and could not return to previous tasks. 

Performance data: The answers were coded dichotomously (0 for wrong solution, 1 for correct 
solution) following Ceuppens et al. (2019). Answers for which the participants stated that they had 
guessed were marked as incorrect. To compare the difficulty of the items, the item difficulty P 
(proportion of participants who answered the item correctly) was calculated. 

Gaze data: The data collection and the definition of AOIs was done with the software Tobii Studio. 
For the assignment of the eye-movement types, the default I-VT (Identification by Velocity 
Threshold) algorithm of the software was used (threshold: 30°/s for the velocity; Salvucci & 
Goldberg, 2000). One participant’s results were excluded due to poor quality eye-tracking data. For 
the gaze data analysis, the items were restricted to the diagram area. The AOIs were chosen such that 
graph relevant structures are covered by one AOI each (cf. Figure 1). For example, areas of the axis 
intersection points or areas below and above the linear function are summarized in AOIs. The eye-
tracking metrics TVD (selection/organization) and transitions (integration) were considered. A non-
parametric Wilcoxon signed rank test was used to test whether the central tendencies of the TVD / 
number of transitions of the participants in the dependent samples (M8 correct, K8 incorrect) were 
different. The analyzed datasets met the assumptions required to perform the Wilcoxon test. A 
threshold of p = 0.05 was used to determine the effect significance level within all tests performed. 
To control the false discovery rate due to multiple testing, the p-values were corrected using the 
Benjamini-Hochberg procedure. The effect size r (for non-parametric data, cf. Fritz et al., 2012) with 
95% confidence interval (calculated using Bootstrapping with 1000 replications) was determined for 
all Wilcoxon tests with significant results and can be interpreted after Cohen’s guidelines (small 
effect: 0.1 ≤ r < 0.3; medium effect: 0.3 ≤ r < 0.5; strong effect: 0.5 ≤ r ≤ 1.0; Cohen, 1988).  

Results and Discussion 
In this section, descriptive results of all study participants are analyzed first. Afterwards, results of 
the analysis of the eye-tracking data for item pair no. 8 are presented. This item pair was selected 
for the eye-tracking based analysis because it shows the greatest difference in terms of item 
difficulty in the mathematics and physics contexts (cf. Figure 2). 
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Descriptive results 

The results of the item difficulty analysis for all test items are shown in Figure 2. The task description 
of the item pairs is placed at the top and right-hand side of the diagram. For example, in item pair  
no. 1 (IP 1), participants were asked to compare the y-intercepts of two linearly increasing functions 
in mathematics or the initial positions of two objects with linearly increasing -graphs, 
respectively. Item pair no. 6 required the determination of the slope of a linearly decreasing function 
or the velocity of an object with a linearly decreasing -graph, respectively. Except for item pair 
no. 3, the item difficulties of the mathematics items are higher than those of the respective isomorphic 
kinematics items. Extremely difficult items are kinematical items dealing with negative velocities 
and with the representation form formula (PK4 = 0.15, PK8 = 0.08, PK9 = 0.20, PK10 = 0.10, PK11 = 
0.15, PK12 = 0.05) (Bortz & Schuster, 2010). Whereas the items K2, M2, and M6 are extremely easy 
items (PK2 = 0.89, PM2 = 1.00, PM6 = 0.83) (Bortz & Schuster, 2010).  

Figure 2: Comparison of item difficulty level P of all item pairs (IP) in the test instrument 

Item Pair No. 8 

The results of the Wilcoxon test (p-values with effect sizes r for significant results) are presented in 
Table 1 together with the mean TVD for each AOI of item pair no. 8. All significant results relate to 
longer TVDs in item K8 than in item M8 and are visualized in Figure 1. The two axis labels (AOIs 3 
and 9), the x-axis (AOI 5) and the intersections with the axes (AOIs 4 and 8) were viewed significantly 
longer in item K8.  

The number of transitions between AOIs with significant TVDs in both items of item pair no. 8 were 
analyzed. Table 2 shows the results of the Wilcoxon test ( -values with effect sizes r for significant 
results) together with the average number of transitions between two AOIs. 
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Table 1: Average TVD (Mean) per AOI with standard error (SE), adjusted p-values of the Wilcoxon 
Test and effect sizes r with 95% confidence intervals are given for all Wilcoxon tests with p < .05 

AOI MeanM SEM MeanK SEK P (adj.) r 

3 .05 .02 2.22 .38 .004 .882 [.877; .882] 

4 1.86 .37 4.30 .91 .020 .663 [.441; 1.000] 

5 1.24 .19 2.29 .49 .011 .714 [.543; 1.000] 

6 .11 .04 .73 .44 .011 .748 [.643; 863] 

8 .92 .21 2.65 .69 .020 .663 [.471; 1.000] 

9 .03 .02 1.13 .19 .004 .850 [.815; .914] 

Table 2: Average number of transitions (Mean) with standard error (SE), adjusted p-values of the 
Wilcoxon Test and effect sizes r with 95% confidence intervals for all tests with significant results 

AOI MeanM SEM MeanK SEK P (adj.) r 

3 | 4 .07 .07 5.53 1.01 .016 .852 [.793; .888] 

3 | 5 .00 .00 1.00 .22 .018 .744 [.627; .878] 

4 | 5 .87 .41 3.40 .87 .018 .736 [.529; .865] 

4 | 9 .00 .00 .67 .27 .044 .653 [.421; .816] 

8 | 9 .13 .09 1.73 .51 .018 .772 [.627; .888] 

 

All significant results refer to more frequent transitions in item K8 than in item M8 and are visualized 
by red arrows in Figure 1. Transitions along the axes that link information between axis labels and 
other axis content occur significantly more often in item K8 than in item M8. Other gaze shifts along 
the upper x-axis area and gaze shifts between the x-axis intercept and the t-axis label also occur 
significantly more often in item K8 than in item M8. 

Conclusions and Outlook 
In this study, a test instrument validated by Ceuppens et al. (2019) on linear graphs in a mathematical 
and kinematical context was used with upper secondary students. Our results confirm for the 
described sample from grade 11 the following main findings of the study by Ceuppens et al. (2019) 
with students from grade 9: Difficulties in the context of kinematics, with formulas and in the 
interpretation of functions with negative slopes. This shows that the difficulties also exist with older 
students and are not remedied by teaching in the classes in between. To gain more insight into the 
solution process, the eye-tracking data from a selected item were examined in more detail. 

Using a selected pair of isomorphic items to quantify a negative slope, it was shown that gaze 
behavior differs between kinematical and mathematical contexts. In detail, the results of the eye-
tracking analysis show a higher dwell time of the gaze from the axes in item K8 than in item M8, 
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which speaks for a stronger focus of the information extraction on the axis sections. In addition, 
changes of view between time- and position-axis happen more frequently in item K8 than in item 
M8, which means a stronger linking of the information on the axis sections. The analysis of the gaze 
data suggests that in the kinematical context mostly the attempt is made to form the quotient of place 
and time, which leads to the fact that the negative sign of the velocity is not taken into account and 
the task is thus solved incorrectly. The reason for this could be the physics lessons, in which an 
algorithmic procedure for calculating the velocity from the location and time data is taught, so that 
the application of mathematical procedures is no longer taken into account. These assumptions are 
supported by isolated interviews conducted as part of this study. For example, one student commented 
as follows in his description of the solution strategy for item K8: “The distance divided by time is the 
speed, so I just calculated at the distance 8 divided by time 4, 8 divided by 4 and that was 2 meters 
per second.” To remedy these transfer difficulties, teachers should be sensitized to this, and this 
should be done early in their curriculum. A targeted linking of mathematics lessons and physics 
lessons could on the one hand help to promote the transfer of mathematical procedures for solving 
physical problems, but on the other hand also connect mathematics to an application.  

It seems that students struggle interpreting graphs independent of their age. As graphing is one 
important, ubiquitous and everyday 21st Century Skill, we will study this question in a broader 
sample. In addition, based on this important preliminary work, we will collect interview data for 
triangulation in a follow-up study.  
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The role of mathematics in STEM teaching is often described as limited or unclear, and more or less 
always conceived as a tool. This paper examines the role of mathematics in 19 STEM activities 
developed in the research and development project LabSTEM, the goal of which includes developing 
STEM activities where mathematics is the focal point. All 19 activities include mathematics, and they 
target students from kindergarten to lower secondary school. The analysis contains a categorisation 
of the different roles that mathematics plays in the 19 STEM activities. The results show that teachers 
manage to present mathematics not as abstract and decontextualised but as integrated and relevant 
in most of the 19 activities. Nevertheless, there is a persistent tendency for them to place mathematics 
learning in the background, relegating mathematics to a supporting role in STEM. 

Keywords: STEM education, role of mathematics, 21st-century skills. 

 

Introduction 
As STEM teaching has advanced from being mostly a political goal in many countries to gradually 
becoming a larger and richer component of the classroom. It is important to consider and reflect on 
the role that mathematics plays or should play in STEM teaching. The acronym STEM does not 
automatically mean that all four disciplines (science, technology, engineering and mathematics) are 
included in teaching activities or are included to the same degree. There is no widely accepted 
agreement on whether STEM education refers to the promotion of knowledge within its individual 
disciplines or an integrated interdisciplinary approach. The disciplines can be combined and 
integrated in various ways. Some scholars argue that even if only two STEM disciplines are included, 
they are sufficient to constitute STEM teaching (Stohlmann, 2019). Other scholars contend that 
mathematics is a critical component of any teaching activity labelled STEM teaching (Doğan et al., 
2019).  

STEM teaching is often described as having a dual purpose. It must both provide students with the 
skills to perform tasks in complex and interdisciplinary contexts and ensure increased competency 
and skill level in STEM subjects (Maass, 2019). This dual goal poses the risk of a deep understanding 
of individual subjects being overshadowed by interdisciplinary, context-driven ways of working. 
Furthermore, a specific concern in the literature is that mathematics, in particular, will not occupy a 
distinct position because it figures as a background subject in STEM teaching (Shaugnessy, 2013), 
and STEM approaches seem to have a less positive impact on mathematical outcomes than science 
outcomes (Honey et al., 2014).  

Consequently, the objective of the Danish development and research project, Laboratory for 
Integrated STEM (LabSTEM), is to develop STEM teaching activities where mathematics is in focus. 
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The aim is for teachers to balance between addressing real-world problems that students perceive as 
interesting and relevant and ensure that they do meaningful work with content, skills or methods from 
mathematics in combination with the other three STEM areas. In this paper, we ask the following 
research question: RQ: How can mathematics be integrated as the focal point of STEM teaching?  

  

Different ways of integrating mathematics in STEM activities 
In the literature, the relation between mathematics and STEM can be understood in various ways 
(Bybee, 2013). The question that mathematics teachers often ask is what STEM-integrated activities 
can do for the subject of mathematics. One of the answers is to make mathematics content and 
teaching more meaningful and relevant by creating a scenario or context for mathematical problem-
solving. However, we also need to ask what mathematics can do for STEM teaching. Science provides 
mathematics with interesting problems to investigate, and mathematics provides science with 
powerful tools with which to analyse different scientific problems and concepts; thus, the relationship 
is reciprocal (Fitzallen, 2015). 

Pang and Good (2000) reviewed studies that integrated mathematics and science in the 1990s and 
stated that, at the time, the dominant approach focused primarily on scientific content, with 
mathematics assuming a supporting role. The authors even posed an interesting question, which 
remains relevant today: Is the focus on science a much more natural and productive approach for 
integration? In contrast, Isaacs et al. (1997) suggested that mathematics should form the primary basis 
of the integrated curriculum because of its inherently logical structure. Other researchers have pointed 
to engineering as a good starting point for integrating mathematics into STEM activities (Berland & 
Steingut, 2016). Bennet and Ruchti (2014) suggested the integration of mathematics into STEM 
activities using mathematical practices as a common framework, and several scholars have also 
described mathematical modelling as a way of integrating the disciplines, thereby making 
mathematics the focal point (Auning, 2021; Doğan et al., 2019; Maass et al., 2019).  

Kristensen et al. (2021) developed a framework describing the various roles that mathematics can 
play in STEM activities. The framework is based on the authors’ review of 37 papers, all of which 
included different STEM activities in which mathematics was integrated. 
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Figure 1: The role of mathematics (Kristensen et al., 2021) 

The framework in Figure 1 shows that mathematics can be variously applied as a tool in STEM 
activities, for example, to qualify an engineering design or improve students’ understanding of a 
specific science. When mathematic is a tool, mathematical skill, contents and competencies are not 
the focal point of the activity; however, mathematics is included, for example, to solve a problem in 
science or to develop something in engineering processes. Students do not necessarily learn new 
mathematics concepts/competences, but they are able to see that their mathematics knowledge can be 
used in other contexts. Figure 1 also shows that mathematics can be regarded as the primary objective 
and aim in a STEM activity, for instance, to develop students’ mathematical skills and conceptual 
understandings of mathematics or mathematical competencies (Niss & Højgaard, 2011). When 
mathematics is the goal, students’ learning of mathematics in the activity must be made clear. In these 
activities, science/engineering/technology is the context for mathematics learning. Mathematics can 
simultaneously serve as a tool and a goal in specific learning activities, and therefore, the dual roles 
are not mutually exclusive. More follows on this below. 

 

LabSTEM – mathematics as the focal point of STEM 
LabSTEM is a three-year research and development project which began in January 2020. Its 
purposes are to develop a STEM approach to teaching that is tailored for Denmark and to make it 
available for teaching and learning practice in order to support sustainable and interdisciplinary 
STEM teaching from day care to secondary school. Organisationally, temporary communities of 
practitioners and researchers were established in the form of STEM laboratories. These are not actual, 
physical laboratories but event-based gatherings of people. In 2021, 17 such laboratories were 
established, with approximately 250 participants, including kindergarten, primary and secondary 
school teachers. The aim of these laboratories is for teachers to develop STEM-teaching activities, 
with mathematics as the focal point. Furthermore, the aim is for these activities to be empirically 
tested in practice, with guidance from lecturers/researchers from university colleges or the University 
of Southern Denmark. Throughout the first year, the laboratories developed 19 STEM teaching 
activities, which we analyse in detail in this paper. These activities explicitly describe how 
mathematics is included and demonstrate noticeable differences in the ways in which they present 
mathematics. It is noteworthy that among the participating teachers, some were mathematics teachers, 
others were science teachers, and many were both.  

 

Methods 
The STEM activities were developed in teams of two to six members in the different laboratories. 
Afterwards, the teachers described each activity, including its title, level, theme, duration, 
prerequisites, relation to the national curriculum, goals, assessment, the learning process and how the 
different disciplines (S, T, E and M) operate. The 19 activities were then coded by the first and second 
authors of this paper in an Excel spreadsheet under different categories: mathematics content from 
the course description; how mathematics is applied, including a description of student work; a short 
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description of the teaching activity and a description of which STEM discipline was included and its 
focus. The research group then discussed each activity in relation to the model of Kristensen et al. 
(2021) (see Figure 1). In this paper, our analysis of the 19 activities is not based on empirical 
observations from classrooms; it is based exclusively on the teachers’ course descriptions. 

The 19 activities come from different levels of the school system: two from kindergarten, 12 from 
primary school and five from lower secondary school. This distribution pertains to the fact that the 
majority of the STEM laboratories are at the primary school level. The STEM activities deal with 
myriad contexts, from designing homes for hedgehogs to sorting waste or growing potatoes. A table 
of the 19 activities can be accessed here: http://kortlink.dk/2dv9k (each of which is numbered; these 
numberings will be used in this paper). The first two authors of this paper jointly conducted the 
analyses and categorisations of the different activities. Each activity description was read and 
discussed with regard to the different categorisations in Figure 1. In the following sections, we first 
describe one of the activities to clarify our analytical approach, followed by an overall analysis of the 
19 activities.  

 

Case – germination and growth of sunflowers and watercress 
A first-grade activity called Plants and Germination was developed in one of the laboratories. The 
focus was on sunflowers and watercress and what their seeds needed in order to grow. The activity 
began with a walk in the woods, focusing on observing normal conditions for the plants in the forest. 
Each student was then given a sunflower seed to embed in a cotton ball in a plastic bag, each of which 
was then taped onto the classroom window, resembling a cardboard greenhouse (see Figure 2a). Each 
student then kept a schedule of how many millimetres the plant grew from day to day. Additionally, 
watercress seeds were sown in milk cartons (see Figure 2b), which were positioned in different places 
in the classroom, with or without light and with more or less water.  

  
Figure 2. Pictures of growing seeds: a) sunflower; b) watercress 

In the days that followed, the students observed and documented the seed germination. How many 
watercress seeds sprouted? By how many millimeters did the sunflower seeds grow per day? The 
students systematically reported their results on Excel spreadsheets. Clear descriptions were provided 
that specific focus had to be placed on measuring with a ruler and the concept of measurement. The 
purpose was to make groups of students find some patterns showing the best conditions for the seeds. 
At the end of the activity, the students held dialogues in class and then in groups about their results 
and prepared a short video where they used their data to explain their results while showing the seeds 
and plants.  
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The following target outcomes for mathematics are listed in the course description: i) “The student 
can make a statistical inquiry with simple data”. ii) “The student has knowledge of simple methods 
of collecting, arranging and describing simple data”. iii) “The student has knowledge of and can 
measure units of length” (English translation). Based on the model (Figure 1) of Kristensen et al. 
(2021), we identified the role played by mathematics in this activity. First, we observed that 
mathematics was used as a tool to develop the students’ scientific understanding of photosynthesis. 
By measuring the sprouts with a ruler, the students learnt more about what the seeds needed to grow. 
Second, mathematics was a specific aim of the activity. As stated in the course description, one of the 
target outcomes was the development of the students’ mathematical skills (by using a ruler) and 
knowledge about the concept of measurement (as described, e.g. by Lehrer, 2003). 

 

The role of mathematics in the 19 STEM activities developed 
Similar to the case discussed in the preceding section, we examined the 19 above-described STEM 
activities from year one in LabSTEM. In almost all the activities, mathematics was used as a tool in 
the STEM activities (see Table 1). In relation to our RQ, this means that the role of mathematics in 
these activities was to help the students develop an understanding of science or technology or help 
them in engineering and design processes. Only in one activity was mathematics not defined as a tool 
(activity 16). Here, it was the main aim; the focus was on pi and the symbol’s history and meaning in 
everyday life.  

Mathematics as a tool and the aim of the mathematics (activity number is in parentheses) 

In 
problem- 
based 
activities 

To qualify 
an 
engineering
/design 
process 

To improve 
understanding of 
science 

To improve 
understandi
ng of 
technology 

To improve 
understandi
ng of 
technology 
and science 

To improve 
understanding 
of engineering 
and science 

(6,17,18) (2,3,4,5,13) (7,8,10,11,12,15) (19) (1) (9,14) 

3 5 6 1 1 2 

Table 1: Overview of the role of mathematics in the developed activities 

As mentioned earlier, all course descriptions explicitly listed the mathematics-specific goals of the 
various activities (this was a requirement in the guideline form), but it is important to clarify that we 
do not know whether the students actually achieved these goals in practice. Moreover, the 
descriptions were not all clear about how the students would achieve these specific goals.  

By studying the mathematics-specific content comprising the explicit aim of the 19 activities, we 
observed a wide spectrum. It was difficult to judge whether the content was about reviewing known 
concepts/skills or learning new concepts/skills in mathematics; however, we found a prevalent focus 
on the application of known mathematics, mostly because the goals described were often included in 
the curriculum of lower classes. However, in these activities, the students tried to apply the 
mathematical concepts as tools in other as well as new contexts. Three activities described a specific 
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focus on problem-solving, but in many of the others, mathematical modelling competence was very 
central, albeit without this being explicitly described. Often, only the mathematical skills were 
explicitly written, including practising counting, learning or reviewing skills in measuring time, 
handling data (e.g. with frequency tables) and measuring length with a ruler. Table 2 below  presents 
an overview.  

Mathematics as an aim 

Competence  Skills and concept knowledge 

problem-solving counting, writing numbers, scale ratio, geometric shapes, spatial figures, curves in the coordinate 
system, concept of functions (slope), measurement, statistics, spreadsheet, time, data comparison, 
pi, area and volume, angles, economics 

Table 2: Mathematics-specific goals in the developed activities 

We include statistics as part of mathematics because it is part of the mathematics teaching curriculum 
at these grade levels. This is despite the fact that these subject areas can also be viewed as separate 
from each other (Capaldi, 2019). Table 2 demonstrates that it is not accurate to say that some 
mathematical topics feature more frequently as aims in STEM courses than others as there is no one-
sided focus on specific topics.  

 

Discussion and conclusion 
Overall, the LabSTEM teachers developed activities in which mathematics is part and parcel of the 
aim and where the participating students engage with mathematics as a tool to gain a deeper 
understanding of science/technology/engineering. It is less clear the extent of the role of mathematics 
as this is not explicitly stated in the LabSTEM activity descriptions. 

In many STEM activities, mathematics has no clear role (Kristensen et al., 2021; Martín‐Páez et al., 
2019). However, in the 19 activities discussed in this paper, mathematics is not abstract and 
decontextualised. It is clearly part of the activity, and it is relevant and integrated to a greater or lesser 
degree. Interestingly, when teachers are assigned the specific task of making mathematics the focal 
point, they almost always use mathematics as both a tool and a goal, which leads to the question of 
whether it is possible not to make mathematics a tool in STEM activities (making it only the aim) and 
still integrate all the disciplines.  

To answer the question of how mathematics can be integrated as the focal point of STEM teaching, 
we argue that teachers need to have a clear focus on this when planning the teaching activity and need 
a great deal of support if this is to happen. At the same time, mathematics must figure as both a goal 
and a tool in the activity itself. The kind of tool that mathematics is, however, is an interesting 
question, and the precise meaning of tool could well be up for further research – for example, is tool 
a language or a context? 

The mathematics-specific goals of the 19 activities are widespread, but they are often characterised 
by reviews of mathematical concepts, skills training or applications of learned mathematics. 
Gravemeijer et al. (2016) discussed how mathematics may prepare students for the future and argued 
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for a shift from competencies that compete with what computers can do to competencies that 
complement computer capabilities. They suggested a greater focus on developing 21st-century skills 
such as critical thinking in mathematics, posing mathematical problems and mathematical 
communication. This is in line with the argument that STEM teaching aims to prepare for 21st-
century skills (Maass et al., 2019). There is, however, little connection between the mathematical 
content that Gravemeijer et al. (2016) proposed and the mathematical content forming the aim of the 
developed activities. For example, none of the activities have creativity or the posing of problems as 
aims. However, in addition to the explicitly described mathematical content, other mathematical 
processes will probably be included when the activities are enacted in practice. Examples include 
whether students need to make argumentations for their mathematical answers (mathematical 
reasoning competence) or work with different mathematical representations (mathematical 
representation competence) (Lim & Seldom, 2010).  

An additional theme worth discussing is the clarity of the target outcomes for students. Is it 
problematic if students are not explicitly told that mathematics competencies are included in the 
activities? Although we, as researchers in mathematics education, can perceive mathematics as 
central, it is probably more doubtful that all students will be cognisant of this. In this case, therefore, 
the activity would not help solve the problem of viewing mathematics as abstract and isolated from 
students’ everyday life (Niss & Højgaard, 2011).  
One of the tendencies of working with integrated STEM activities is to relegate the specific subjects 
to the background and bring the case/problem to the fore (the problem, rather than the subjects, as the 
aim) (Klausen, 2011). This may form the basis of critical reflection towards our own study since, in 
one sense, it contains a degree of “silo thinking”: focusing on mathematics in integrated activities. 
Nevertheless, if the most important part of mathematics is invisible to students, there is a great risk 
that they will not experience the significance of these competencies. Obviously, the teachers in the 
LabSTEM project do not present mathematics as abstract and decontextualised but as integrated and 
relevant in most of the 19 activities. In many ways, however, they are still inclined towards pushing 
mathematics learning to the background, relegating it to a supporting role as a tool in the STEM 
context rather than important in its own right.  
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Construction and calibration of an electronic weighing machine
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We present the structure of a STEM project in which middle school students (i.e., thirteen to fourteen-
year-old mandatory secondary school students) must build and calibrate and electronic weighing 
machine to contextualize the mathematical notion of linear function. During the calibration process, 
the didactical situation may overcome students’ algebraic knowledge; therefore, dynamic software 
is used to aid what students cannot do for themselves.

Keywords: Secondary school mathematics, STEM education, 8th grade.

Theoretical frame
Let’s consider a STEM project as a didactical situation (Brousseau, 1997) where students apply their 
personal mathematical knowledge and use a number of basic strategies to solve a particular task. The 
mathematical knowledge students are required to face in STEM problems mostly regards 
measurements, elemental geometrical language and arithmetical operations with numbers (Lasa, 
Abaurrea & Iribas, 2020). Finally, the STEM notion of technological literacy in a mathematical 
context naturally brings us to Instrumental Theory, since dynamic models can operate as antagonistic 
milieu, giving students the necessary feedback of their performance (Lasa & Wilhelmi, 2013).

Experimentation
Laboratory work (science) involves measurement of quantities in scientific notation and the use of 
the international unit-system, laboratory work (technology) to design an electric circuit prototype, the 
calibration of the scale by technological means (engineering) and the modeling of linear functions in 
real contexts, where students obtain numerical values out of algebraic expressions (mathematics).

Theoretical basis

The experiment is based on the assumption that the scale can be calibrated from a linear relationship 
between the known weigh of predetermined objects and the variation in the resistance of an electric 
circuit embedded on the metal piece, which forms the deformation gauge (figure 1).

a) Deformation gauge. 1, structure support; 2, 

aluminium gauge; 3, extensiometric gauge.

b) Detail of the extensiometric gauge. 1, input 

terminal; 2, output terminal; 3, electrical circuit.

c) Outline of a 

Wheatstone bridge

Figure 1: Outline of a deformation gauge and Wheatstone bridge
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Experiment 

Predetermined experimental phases in both schools avoid phase-order variability: 
Global 

discussion 
of shapes 

 
Software 
modeling 

(DGS) 
 

Physical 
construction  

Mathematical 
formal 
study 

Figure 3: Project steps (Lasa et al., 2021) 

Results 

Students have built a personal knowledge regarding the equation of the line, and are receptive to 
address the mathematical formalization of the line from a theoretical point of view. The mathematics 
teacher will now assume leadership and institutionalize the notion of linear function. 

   
a) Staging b) Calibration c) Measure 

Figure 5: Student working at the lab 

Conclusions 
This experience confirms that it is possible to integrate formal mathematics in the context of STEM 
projects, beyond its usual assistant character. Furthermore, the key notion of didactic situation has 
led us to an adapted structure for STEM project with a final formal mathematical component. 

Acknowledgment 
Research and Knowledge Transfer Project “Integration of the math curriculum for STEM proposals: 
design, implementation and evaluation”, Resolution 496/2019 of August 8th, NSDC: 448415. 

References 
Brousseau, G. (1997). Theory of didactical situations in mathematics. Amsterdam: Kluwer. 

Lasa, A., Abaurrea, J., & Iribas, H. (2020). Mathematical Content on STEM Activities. Journal on 
Mathematics Education, 11(3), 333-346. http://doi.org/10.22342/jme.11.3.11327.333-346. 

Lasa, A. & Wilhelmi, M. R. (2013). Use of GeoGebra in explorative, illustrative and demonstrative 
moments. Revista do Instituto GeoGebra de São Paulo, 2(1), 52- 64. Retrieved from 
[https://revistas.pucsp.br/IGISP/article/view/15160] 

Lasa, A., Wilhelmi, M.R., Belletich, O., Abaurrea, J. & Iribas, H. (2021). STEM projects as didactical 
situations in mathematics: theoretical frame to construct algebraic institutional meanings. In the 14th 
International Congress on Mathematical Education (ICME14), July 11-18, Shanghai. 

Proceedings of CERME12 4630
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STEM education and the development of children and young people's STEM competencies are on the 
political and educational agenda worldwide. In Denmark, curriculum descriptions of STEM 
competencies do not exist. Before composing such descriptions, it is relevant to investigate what 
characterizes STEM professionalism (Danish: STEM-faglighed). A hermeneutic framework provides 
the basis for a literature and document review, examining how international research, ministries, 
and the business community, characterize STEM professionalism. The analysis takes place through 
a concept map. Three categories characterize STEM professionalism: computing and visualising 
'everyday' data with computers, finding and solving STEM-related problems, and innovative STEM 
thinking. These categories can form a starting point for identifying and describing STEM 
competencies. A prototype of a STEM competency flower with three petals is presented.  

Keywords: STEM competencies, STEM professionalism, literature review, hermeneutical approach 

Introduction: Relevance and research question 
The international community aims to ensure that more children and young people acquire 
competencies in STEM (science, technology, engineering, mathematics) (Bybee, 2018; E. Council, 
2006; N. R. Council, 2011; Regeringen, 2018; Zollman, 2012). Competence descriptions can be the 
starting point for formulating concrete competence goals, which are essential for students to develop 
specific STEM competencies (Højgaard & Sølberg, 2019). If policy actors, principals, and teaching 
staff explicitly want to improve students' competencies in STEM, competence descriptions are 
essential (Sølberg et al., 2015).  

In Denmark, academic competence descriptions in the curriculums define the professionalism of all 
courses in the primary and lower secondary school. For example, six competencies define the 
professionalism of mathematics (Børne- og Undervisningsministeriet, 2019b), and four define natural 
science1(Børne- og Undervisningsministeriet, 2019a). In a Danish curriculum context, no 
descriptions of STEM competencies exist. With the object of making descriptions of such STEM 
competencies, it would be relevant to investigate what is understood when talking about STEM 
professionalism. A well laid-out characterization of STEM professionalism may subsequently 
identify some STEM competencies which can form the basis for future STEM education in Denmark. 

Professionalism in an educational context 

What is meant by professionalism in STEM is not clearly defined. Therefore, this paper examines 
how the community, such as international research, ministries, and the business community, 

 
1 Natural science includes the courses in nature/technology, physics/chemistry, biology, and geography 
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characterize STEM professionalism. In that light, the following research question arises:  What 
characterizes STEM professionalism according to international research and texts from ministries 
and the business community?   

Methodology 

When, in 2020, I completed a Ph.D.-proposal 
(Møller, 2020) for a scholarship within 
educational research, I gained knowledge of 
several texts relating to STEM education and 
teaching. My search for literature for the project 
proposal used 'non-systematic' and 'deliberate-
random' searches in Google Scholar, with 
keywords such as 'STEM', 'science', 
'mathematics', 'education' and 'teaching' in 
English and Danish, respectively. Knowledge 
from this search process forms the basis for my 
initial thoughts and ideas about my upcoming 
literature search for STEM professionalism. 

Based on a hermeneutical view of science, I chose a hermeneutic approach to rule the review process. 
A hermeneutic approach for a literature review is carried out by iterations between the two circles 
search and acquisition and analysis and interpretation, illustrated in Figure 1 (Boell & Cecez-
Kecmanovic, 2014, p. 264). The two circles are mutually independent. New knowledge achieved in 
one part of the process can give a new understanding of the field, and a new understanding of the 
field can change the perspective of well-known sub-elements. From a hermeneutic viewpoint, you 
can say that the part gives an insight into the whole, which provides an understanding of the part 
(Brinkkjær & Høyen, 2018).  

The review process 
The wording in the research question ‘What characterizes STEM professionalism …’ gives reason to 
be interested in how texts describe and relate to elements that can characterize STEM 
professionalism. A 'characterization' is a description of a given object's distinctive features or 
fundamental characteristics. In that light, I am interested in finding characteristics and features of 
STEM professionalism described in international research and texts from ministries and the business 
community. The purpose of the review process is, therefore, to assemble a corpus of literature that, 
through analysis, will develop some arguments for the characterization of STEM professionalism.  

Search and acquisition – sorting and identifying core literature 

I commenced my review process by rereading the 29 references in my PhD proposal (Møller, 2020). 
The texts served as initial ideas for going in the upper circle in Figure 1. In the texts, I explored 
keywords and issues that can describe features and characteristics of STEM professionalism; e.g., 
descriptions of STEM-related competencies, goals for teaching STEM to pupils, and central 
knowledge and skills in a STEM context. I included the publication if I thought its content could 

Figure 1. A hermeneutic framework for the literature review process 
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contribute to a characterization of STEM professionalism. An example is Barcelona (2014) because 
the publication articulates the importance of students' ability to solve STEM-related problems. 

I include seven references from my PhD project proposal in the review; see Table 1.  

Analysis and interpretation - a concept map as a tool for analysis 

As I read the included texts, I shifted to the bottom circle in Figure 1. While I read the individual 
texts, I organised essential concepts, topics, or content that described scientific elements concerning 
STEM professionalism in a digital concept map. A concept map can process and structure a collection 
of concepts and themes with complex interrelationships (Steen et al., 2020). An example of texts that 
contribute with content in the concept map is the National Research Council (2011) with ‘handling a 
large amount of data’ and Holdren et al. (2013) with ‘creativity’ in the context of solving problems.  

As I read more texts and obtained several subject elements, I organised the elements in groups, which 
related to or impacted each other. I explained the groups' relationship with arrows. When I perceived 
that the grouping had a certain kind of consistency, I gave them a header. I may have created a header 
or decided that one of the subject words was descriptive for the grouping. I printed the digital concept 
map and used analogue Post-It to place new concepts or replace concepts into new groups. I wrote 
analogue Post-It notes in the digital concept map at natural moments in the analysis process. For 
example, I would do this at the end of the working day, or if I knew that I could not continue to work 
on the review process for a few days. Thus, the online concept map was dynamic and continuously 
changing, and developed as I worked through the first iteration.  

Iteration two, three, four …  

The purpose of doing more than one iteration is to find more texts that deal with the field and reach 
a point of saturation (Boell & Cecez-Kecmanovic, 2014). When no new literature or significant 
arguments arrive in further searches, saturation is reached. 

I identified different texts through a snowball effect and citation searches. In the second iteration, I 
looked back at the seven included texts from my first iteration by noting relevant texts from their lists 
of references. Currently, I am working with the phases: sorting, selecting, acquiring, reading in the 
top circle in Figure 1. I also look forward to finding recent texts that refer to the given publication; 
e.g., Holdren et al. (2013) Carneval et al. (2011). This may also lead to the inclusion of Carneval et 
al. (2011).  

In addition, through iterations three and four, relevant texts will be retrieved by searching in library 
databases, talking to colleagues and other STEM stakeholders, participating in webinars, and looking 
into relevant project descriptions; e.g., European project proposals like Erasmus+ (CiSTEM, 2021). 
The dynamic hermeneutic process leads to a deeper and more wide-ranging overview and 
understanding of texts dealing with sub-elements to characterize STEM professionalism. I will work 
in the phases: mapping and classifying, critical assessment and argument development, which belong 
to the bottom circle in Figure 1. The second, third, and fourth iterations include 13, nine, and 32 texts. 
The 61 included texts are illustrated in Table 1. In Møller (2021), an exhaustive reference list is 
available. 
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Table 1. Included texts in four iterations. In Møller (2021), a reference list is available. 

Findings 
As the review process evolves, groupings in the concept map appear. In the analysis and interpretation 
of the groups, I use the term ‘category’ for a unit that brings together key concepts and contents that 
deal with STEM professionalism. I use the word ‘theme’ to describe the analytical units that 
crystallize within each category. No categories are thus determined in advance but stem from the 
literature and the documents found through the review process.  

Categories and themes found 

After four iterations in the review process, I will designate five groups in the concept map. Out of 
consideration of the limited extent of this CERME-paper, I include arguments for the first three 
categories with associated themes. I mark the first three categories with a blue oval in Figure 2. Each 
category is distinct from but overlaps every other category and cover-up several themes. Some themes 
relate to more than one category.  
I take a normative stance on the categories in the descriptions, but I am conscious that the review 
process aims to characterize STEM professionalism for future STEM education. 
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Computing and visualising 'everyday' data with computers 

The first category I present from the concept map is computing and visualising 'everyday' data with 
computers. Computers are necessary to work with and can handle large volumes of data. In a STEM 
context, authentic data from everyday life is essential (Kjelvik & Schultheis, 2019). Authentic data 
are accurate, quantitative, or qualitative information collected from real-life phenomena. Computers 
and associated programs have several advantages to quantify this kind of data (Linney & Walshe, 
2016). A way of getting an overview of data is to visualise it with graphs and computer-based 
statistics (Howard et al., 2000, Hõlm et al., 2016). Modelling is relevant for visualising data in a 
usable way and becomes a theme in the first category. Modelling in a STEM context is about asking 
the right questions, translating from the real world into mathematical and science formulations, 
computing and visualising with computers, and formulating a mathematical and scientific answer 
back in the real world (De Meester et al., 2020; Jensen, 2007; Steele, 2013, Aldron & Soury-
Lavergne, 2016). Simulations can support modelling in STEM by imitating minor or more prominent 
parts of reality—for example, a cell's interior or how the oceans' ecosystems are affected by acid 
pollution. An insight into such active representation of reality can contribute to learning and 
understanding relatively abstract STEM-related phenomes (Karis & Andersson, 2016). Simulations 
also become a theme. To visualise data with computers, you must manage and handle a large amount 
of data (E. Council, 2006; Karis & Andersson, 2016) and have some digital skills. These form the 
last two themes in the first category. 

Figure 2. A draft of the concept map of STEM professionalism divided in five groups. Three categories are marked with blue ovals . 
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Finding and solving STEM-related problems 

Problem-solving skills involve the identification of complex problems based on STEM-related issues 
and related information required to develop and evaluate options and implement solutions (Bingman 
& Stein, 2001; Carneval et al., 2011; Carracedo et al., 2018; E. Council, 2006; Halász & Michel, 
2011; Howard et al., 2000; Jang, 2016; Shaw, 2000; Steele, 2013; White & Berlin, 1985). This leads 
to the second category: Finding and solving STEM-related problems. One way of solving STEM-
related problems includes computational thinking (CT) (Becker & Park, 2011; Wing, 2006). CT 
becomes the first theme in this category. CT is a problem-solving process that encompasses several 
sub-processes For example, logical reasoning, algorithmic thinking, decomposing, abstraction, 
patterns and generalisation, and evaluation (Berry & Csizmadia, 2016). CT, modelling, simulations, 
and handling a large amount of data with computers can provide new knowledge to find resolutions 
to STEM-related issues. For example, these include disease control, nutrition, global warming, new 
energy sources, and understanding the universe (Hurd, 2000). This problem-solving process assumes 
mathematical reasoning and deductive endings, which becomes the second theme (Augustin et al., 
2005). With the language of math, science, and technology, you can argue in strictly logical ways, 
which is notable for solving STEM problems (Connecticut State Dept. of Education, 1991; Council 
on School Performance, Frankfort, 1989). Solving complex problems in a STEM context requires an 
interdisciplinary approach (Arikan et al., 2020; De Meester et al., 2020) and opens the possibility of  
cooperation between different STEM disciplines (Berns & Erickson, 2001). An interdisciplinary 
approach is the last theme in this category. 

Innovative STEM thinking 

When we want to find resolutions to STEM-related issues, thinking innovatively in a STEM-minded 
way is essential (Barcelona, 2014). Innovative STEM thinking is the third category. Innovative 
thinking is about having an idea and carrying it out. However, it is also about thinking in different 
ways and involves various perspectives. Creativity, design, and design thinking are themes in this 
category. Creativity is an important way of thinking in a STEM context (E. Council, 2006; Holdren 
et al., 2013; Jang, 2016; Regeringen, 2018; Steele, 2013). Design and design thinking can be 
approaches that encourages different perspectives in viewing and solving problems, and they are vital 
to creativity and innovation (Li et al., 2019). When you work creatively and innovatively, you need 
to collaborate with others within and across disciplines. To do that broadly helps communicate ideas 
to others and to understand inspiration and explanations from international sources, such as the 
internet (Jang, 2016; Yeung et al., 2000). In this situation, mastering the English language is 
advantageous (Berns & Erickson, 2001; Bingman & Stein, 2001; Baron et al., 1989; Yeung et al., 
2000). Communication and interdisciplinary collaboration are the last two themes in this category.  

To summarise, the first category with associated themes is: computing and visualising ‘everyday’ 
data with computers (modelling, simulations, handling a large amount of data, digital skills). The 
second category with associated themes is: finding and solving STEM-related problems 
(computational thinking, mathematical reasoning and deductive endings, interdisciplinary approach). 
The third category with associated themes is: innovative STEM thinking (creativity, design and 
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design thinking, communication, interdisciplinary collaboration). A complete overview of the 
included texts related to the categories and themes is registered in Møller (2021). 

Concluding remarks 
The findings of this paper indicate that it is possible, using a review with a hermeneutical approach, 
to develop some arguments for the characterization of STEM professionalism. Because of limited 
space, this paper includes arguments for the first three categories with associated themes. However, 
it is reasonable to think that the concept map's 
last two groupings can also be described. 
When that is properly carried out, the five 
categories can constitute an identification of 
STEM competencies. The competencies can 
be represented in a so-called competency 
flower, known from mathematics in the 
KOM framework (Niss & Højgaard Jensen, 
2002). In Figure 3, I have designed a 
prototype of a STEM competency flower 
with the first three petals: STEM data 
handling competency, STEM problem 
handling competency, and STEM innovative 
thinking competency. When the last two 
competencies are found, it is reasonable to 
assume that a STEM competency flower with 
comprehensive descriptions can be a starting 
point for competency-oriented STEM 
education. 

Suppose ministries, stakeholders, and 
teachers take such STEM competence description as a premise. In that case, the STEM competence 
descriptions can be the gateway for future competence-oriented STEM education, possibly explicitly 
developing pupils' STEM competencies.  
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Abstract: In this paper we explore 7th grade students’ engagement with engineering design 
processes while designing a two-dimensional scale plan of a neighborhood in Project Based 
Learning environment. To do this, verbal protocols throughout classroom observations and 
interviews were collected from 97 seventh-grade students. We analyze these protocols to document 
the students’ engagement with engineering design processes together with opportunities to learn 
and apply mathematics.  The results show that project-based learning engages students in 
engineering design processes while designing a two-dimensional scale plan of a neighborhood as 
a project. 

Keywords: Engineering design process, geometry, project-based learning. 

Introduction 
The project-based learning (PBL) approach engages students actively in pursuing solutions to 
authentic (driving) question that serves to organize and guide instructional tasks in both the 
presentation (benchmark lessons) and practice of selected topics (project) (see Ubuz & Erdogan, 
2019 for the definition of presentation and practice of selected topics). PBL scaffold learning and 
build meaningfully powerful Science, Technology, Engineering, and Mathematics (STEM) 
concepts supported by language, social studies, and art (Capraro & Slough, 2013). PBL builds on 
engineering design process as the cornerstone (Capraro & Slough, 2013). While engaged in a 
project, following an engineering design process (EDP) allows systematic learning, 
simultaneously exposing students to experience the cognitive processes of an engineer (Tate, 
Chandler, Fontenot, & Talkmitt, 2010).  

The key features of PBL (e.g., Markham, Larmer, & Ravitz, 2003) are to encourage students’ 
learning and develop the essential knowledge and skills to engineer a personalized solution to the 
design problem (Chua, Yang, & Leo, 2014). Even though many works have been conducted on 
PBL, none has specifically tailored to document students’ engagement with EDP. To do this, this 
paper focuses on documenting students’ engagement with EDPs while designing a two-
dimensional scale plan of a neighborhood in a PBL environment. EDP model followed in the 
current paper is composed of the following four characteristics: 1) Defining the problem, 2) 
generating and selecting between multiple possible solutions, 3) modeling and analysis, and 4) 
iteration (Berland, Steingut, & Ko, 2014). Specifically, this paper is guided by the following 
research question: How do students engage with the EDP in the PBL environment? 

Methodology 
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Participants 

The participants in the present study included those students for whom Project Based Geometry 
Learning (see Ubuz & Aydınyer, 2019) were instructed for five 40-min periods per week over the 
course of six weeks (altogether thirty 40-min periods). A total of 97 seventh-grade students, 
consisting of 57 females and 40 males, in three intact classes from a private school in Ankara, 
Turkey were the participants.  

Description of the Project in Project-Based Learning Environment 

In the PBL environment, students faced a challenging project, including the following problem 
situation to specify the well-defined outcome and ill-defined task:  

“There is a so-called contest entitled Neighborhood Renewal Project for redesigning a 
neighborhood replacing old buildings (not historical ones) with new ones. When you begin 
to design your scale plan, keep in mind that you have some design requirements.”  

The project was conducted during the last 14 lesson hours. To mirror real-world engineering, the 
students had to accommodate the following requirements to design their scale plan: 

 Designing a two-dimensional scale plan of a neighborhood located on a rectangular smooth 
surface with actual dimensions of 120 m and 170 m on an empty white cardboard with the 
corresponding dimensions of 48 cm and 68 cm. 

 Considering the needs of the residents and environmental problems encountered by them. 
 Including different positions of three lines in a plane representing roads as well as certain 

polygons with some dimensions representing ground areas covered by buildings and other 
areas. 

Students were expected to design their scale plan mainly using their knowledge of geometry 
and mathematics. The students were assigned to small groups composing three or mostly four 
students on the basis of the data from Group Embedded Figures Test. Each group included at least 
one student from each cognitive style (field dependent, field mixed, and field independent) Once 
the problem, “How do you design your neighborhood plan?”, was posed to the class at the 
beginning of the PBL, some sample scale plans of different neighborhoods were shown by 
projecting them on a large screen to discuss the positions of the roads with respect to each other 
and the types of polygons used for buildings based on their existing knowledge. Then, they were 
asked to conduct some preliminary research to design their plan, including:  

 Finding some scale plans of different neighborhoods to investigate their location, 
population, climate, economy, industry, history, and natural vegetation; the environmental 
problems that their residents encounter; and their roads, buildings, and other areas, and 
possible actual dimensions of them; and  

 Investigating different people’s involvement in designing a neighborhood. 

By reference to information collected through their investigations and discussions throughout their 
outside classroom work, each group decided their groupmates’ professional roles and their group 
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leader. Following this, each group started to construct their scale plan considering the requirements 
provided above.  

Throughout creating their scale plan, the classroom teacher interacted with the groups, 
answered the students’ questions, and prompted them to explain their choices and consider 
different alternatives. Although the project was set up as a contest between the groups, they were 
introduced that every project can win the contest as long as it fulfills all requirements.  

Data collection and analysis 

Classroom observations (abbreviated as O) and interviews (abbreviated as I) with the students 
depending on their available time during the treatment let us document students’ engagement with 
EDPs. Classroom observations and semi-structured interviews were conducted during and after 
the treatment. Each class was audio-recorded. Each interview conducted individually was also 
audio-recorded. There was no time limitation for the interviews. Interview questions are as 
follows: “What resources did you use while making the outside-classroom search? What 
information did you find?”, “Did you encounter any difficulties while creating your scale plan? If 
any, what kind of difficulties did you encounter? What did you do to overcome them?”, “How did 
you decide the types of polygons for ground areas covered by buildings and other areas of your 
scale plan?”, “Did you like/dislike creating your scale plan?”, and “What did you learn from 
creating your scale plan?” Please refer to the paper on the PBL environment (see Ubuz & 
Aydınyer, 2019) for the other details about interviews.  

The tapes from the classroom observations and interviews were then transcribed. The 
transcripts were then segmented into units of text in preparation for coding. Each segment 
represents one idea. Segmenting was done independently by the two researchers, checked for 
reliability, and any inconsistencies were resolved. The average reliability for segmenting was 94%. 
Once the segmenting was completed, data analysis was conducted. Each segment was coded with 
respect to EDP characteristics and their key aspects in the coding scheme (Berland et al., 2014). 
This process was fluid—a single utterance could speak to multiple EDP characteristics, and each 
characteristic could be addressed multiple times throughout the observation and interview. 

Findings 
The findings are provided around the aforementioned four characteristics of the EDP.   

Defining the problem 

After the teacher provided the driving question, each student simultaneously communicated with 
their parents, relatives, social studies teacher, and headman, and conducted research from various 
sources (e.g., the Internet, books, or other sources). From their parents and relatives, he/she 
received information regarding their profession (e.g., engineering, architecing, landscape 
architeching, city planning). From their social studies teacher, he/she got information about the 
geographical position, population, climate, economy, industry, history, and natural vegetation of 
some places. From the headman of their neighborhood, he/she got a sample plan of their 
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neighborhood and information about the requests and complaints of the residents. Through 
searching the Internet, books, or other sources (e.g., atlas, maps, encyclopedias), he/she found (1) 
some sample scale plans of different neighborhoods, (2) articles on designing a place, (3) the 
standards of designing a neighborhood (e.g., the number of floors of buildings should be adjusted 
according to the population of a neighborhood, wider streets are needed to be established if the 
neighborhood is close to the city center to be reached quickly and easily), (4) the elements of a 
neighborhod (e.g., roads, buildings and other areas), and (5) actual side lengths of the ground areas 
of the buildings and other areas as well the width of the roads. Regarding  to a particular 
neighborhood, he/she found its (1) geographical position (e.g., latitude and longitude, neighboring 
places, whether it is mountanious or by the sea, a town belongs to which city),  (2) population, (3) 
climate (e.g., average highest and lowest temperature each month, continental or Mediterranean 
climate), natural vegetation (e.g., woodland bush), (4) growing products (e.g., fruit trees, 
vegetables), economy and main sources of income (e.g., agriculture, tourism, industry), (5) history 
(e.g., historical and cultural buildings and other areas in it), and (6) environmental problems that 
the residents encounter.  

I-S17: I have learned what professional owners of city planners, architects, engineers, and 
landscape architects do. We are going to choose black pine for green areas [for our scale 
plan] because we learned that it produces more oxygen compared to other types of trees.  

Upon their investigations, they realized that the main environmental problems were air pollution, 
noise pollution, lack of green areas, traffic congestion, global warming, and unplanned 
urbanization; and different elements (e.g., roads, buildings, other areas) needed for the residents 
of a neighborhood regarding residence, health, education, administration, shopping, transportation, 
entertainment, doing sports, recreation, eating-out, and religion. Additionally, they realized  what 
professions should be included in a common project to design a place, what they do, and their 
training process at a university.  Upon this, each groupmate decided his/her profession. They 
mostly chose to be an engineer, an architect, and a city planner. Then, the groups decided where 
to design a neighborhood. Most of them decided to design it in different places (e.g., big cities, 
small towns, seaside, island, etc) in Turkey and a few in abroad.  
 To accommodate a neighborhood they wanted to design that is sustainable, walkable, vibrant, 
social, and livable, the groups started to make decisions to solve the issues the residents of the 
neighborhood encounter regarding the location, population, climate, economy, industry, history, 
natural vegetation, environmental problems, roads, buildings, and other areas.  
 As emphasized above, the main goal was to improve existing residential communities.  The 
problems raised in the context of this main goal can be listed as follows: 

1. What could be the elements of the neighborhood and the places of them? 
2. What could be the polygonal shapes of each building and other areas? 
3. What could be the side lengths and angle measures of polygonal shapes representing 

ground areas of the buildings and other areas in real life and on the plan considering the 
scale together?  
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4. What could be the positions of roads with respect to each other using positions of three 
lines in a plane? 

5. What could be the width and length of the roads on the plan? 
6. How can we draw and place polygons and roads agreed upon on the scale plan using a 

protractor and a ruler? 

The first problem is about deciding the issues related to the scale plan and the following four 
problems are about deciding geometric representation of the physical environment in the 
neighborhood, while the last is about drawing the scale plan. 

Generating and selecting between multiple possible solutions 

Regarding the first problem, the students decided the elements of a neighborhood and the 
placement of them in it based on their communication, search and investigation emphasized in the 
previous part. Regarding the elements of a neighborhood, they mostly decided to include houses 
for residence; buildings of health clinic and pharmacy for health; schools for education; bank, 
headman’s office, fire department, police office and post office for administration; market place 
and shopping center for shopping; bicycle routes, bus station, parking lot, petrol station, roads and 
taxi rank for transportation; theatre and cinema for entertainment; areas to do different kinds of 
sports; green areas and playgrounds for kids for recreation; and restaurant for eating-out. They also 
included different cultural and religious areas in their plan to be respectful to people from different 
cultures. They planned to protect existing historic and cultural places as well as natural beauties. 
Furthermore, depending on the place of the neighborhood, they included other areas such as a 
harbor if it is by the seaside. It was interesting to observe that some groups decided on cultivating 
particular fruit trees and vegetables according to the climate of the neighborhood so that the 
residents can do their own organic farming. They also decided to have buildings that are not too 
high to solve unplanned urbanization.  

In determining the placement of the buildings and other areas in the scale plan, students usually 
made suggestions within their professional roles. The suggestions of the students in different roles 
were discussed within the groups and then a common decision was reached.  Throughout the 
presentations of their project to the class, for example, they said the following as a group:   

As a landscape architect and the group leader, I (O-S12) advised to design green areas as large 
as possible…The reason that we chose this neighborhood was its unplanned urbanization. We 
tried to give importance to the aesthetic [appearance of it]... As a city planner, I (O-S13) 
advised to place buildings such as a pharmacy, a fire department, a police office, and schools 
in the center of the neighborhood so that the residents could be able to reach them easily… As 
an architect, I (O-S16) advised not to include the two houses very next to each other… We 
have learned how to design a place while developing this project… As an engineer, I (O-S21) 
decided the measurements of buildings and roads in real life and on the plan… 

Regarding the second problem, they determined polygonal shapes of the buildings and other 
areas to be placed in the plan by considering the ground areas of the buildings and other areas in 
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reality (e.g., squares and rectangles for football field, houses, and administration buildings). 
Furthermore, to fit the polygons into the plan and to fill the blanks on it, they considered the 
polygons’ number of sides, angle measures, and positions with respect to each other and with 
respect to the positions of the roads. They also included regular polygons (e.g., squares for houses 
which are symmetrical to each other and a regular hexagon for a theatre) to have a pleasing and 
attractively appearing and architecturally good-style neighborhood. They chose a triangle for 
having small areas such as a museum and a bus station, and some polygons having more than three 
sides to have larger areas (e.g., for green areas). They also used nested polygons for buildings used 
for similar purposes (e.g., for education). They chose trapezoids, parallelograms, and rhombi for 
buildings which had narrower and wider parts (e.g., for taxi ranks).  

Regarding the third problem, they considered the interior and exterior angle measures and the 
side lengths of polygons representing the ground areas of the buildings and other in real life. They 
had difficulty with estimating the lengths of the ground areas of the buildings in real life. For 
example, O-S23 asked, “Is the width of this class 25 meter-long? I want to visualize how long 25 
m is.” The teacher let her and her groupmate O-S25 measure the length of the classroom using a 
1-m ruler and they found it to be approximately 8 meters. Regarding the fourth problem, they 
decided to include parallel and crossing roads to solve traffic congestion and unplanned 
urbanization.    

Modeling and analysis 

Regarding the third problem, they needed to realize that a polygon to be placed on the plan and its 
shape in real life are similar. Then, first, considering that all corresponding angles of two similar 
polygons are congruent, they decided to have equal corresponding angle measures of a polygon to 
be placed on the plan and its shape in real life. Second, considering that all lengths of 
corresponding sides of two similar polygons are proportional, they decided the scale of the plan 
(i.e., 1:250) by thinking about the side lengths of the rectangular white cardboard to be used to 
draw their plan (48 cm by 68 cm), and the side lengths (120 m by 170 m) of the rectangular smooth 
surface they want to make a neighborhood. To do that, they converted the side lengths of the 
rectangular smooth surface from meter to centimeter to make the units the same and calculated the 
ratio of the length of the rectangular white cardboard to its corresponding actual side lengths in the 
rectangular smooth surface. Third, considering their decisions regarding to the actual side lengths 
of the polygons representing the ground areas of the buildings and other areas, they calculated the 
side lengths of the polygons to be placed on the plan using the scale of the plan (1:250) by first 
converting the actual side lengths of the polygons in real life from meter to centimeter. Regarding 
the fifth problem, considering their decisions regarding to the actual width of a road (e.g., 10 m), 
they calculated the width of a road (e.g., 4 cm) to be placed on the plan using the scale of the plan 
(1:250) by first converting the actual width of the road from meter to centimeter.  

Regarding the last problem, to draw their scale plan using a protractor they did not know how 
to use it to measure a particular angle and/or how to draw an angle having a particular measure. 
The teacher or groupmates helped the students who did not know how to use it. Besides that, minor 
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mistakes in their drawings regarding to the angle measures or side lengths of polygons made them 
unable to draw the shapes they wanted to make.  

O-S4: We could not draw a parallelogram with 100 and 80 degrees of angles, could you show 
us?   

O-S4: We tried to draw a regular hexagon whose side [lengths] are 2.5 cm. We were careful 
with [drawing] its angle measures but the sixth [side] length became 3 cm instead of 2.5 
cm.   

Iteration  

Although the students mostly worked in a definite order to create their scale plan (i.e., deciding 
the issues related to the scale plan, constructing two-dimensional geometric representation of the 
physical environment, making a rough sketch of the plan, and drawing the scale plan, respectively), 
they sometimes needed to reconsider previously made decisions and make some adjustments to 
improve their scale plan. The first remarkable iteration needed when the teacher noticed the errors 
in students’ decisions regarding to the angle measures and side lengths of the polygons 
representing the ground areas of the buildings and other areas.  Based on the teacher warning (e.g., 
“Be careful about the …”), they needed to reconsider their incorrect decisions regarding to the 
angle measures and/or side lengths of polygons. This incorrect decision is due to three reasons. 
The first is the confusion of the exterior and interior angle measures of a polygon (e.g., deciding 
60 degrees rather than 120 degrees for each interior angle measure of a regular hexagon). The 
second is not realizing that the polygons that represent ground areas of the buildings in real life 
and their corresponding polygons on the plan are similar. For this reason, they calculated the side 
lengths as well as the angle measures of the polygons on the plan on the basis of the scale. They 
then noticed that the polygons representing ground areas of the buildings in real life and their 
corresponding polygons on the plan are similar. That is, the angle measures of polygons 
representing ground areas of the buildings in real life and their corresponding polygons on the plan 
are the same. The last is a mistake on converting a unit to another unit (e.g., converting a side 
length from meter to centimeter by dividing rather than multiplying by 100). The second 
remarkable iteration occurred when they encountered difficulties while drawing the scale plan 
(e.g.., not being able to draw the polygon they want to construct, having some polygons not fitting 
into the plan, having more empty space in the plan). Not being able to draw the polygon they want 
to construct made the students realize the importance of accuracy and precision in measurements, 
as mentioned in the previous part. Not fitting into the plan or having more empty space in the plan 
made them revise their rough sketch and prior decisions regarding the polygonal shapes and their 
angle measures and side lengths. 

I-S20: I realized that drawing is not an easy work, and even a small error can destroy everything 
if architects do not pay attention to their drawing. 

O-S20: We thought this building of the neighborhood as a parallelogram, but it did not fit into 
the plan. We changed this parallelogram into a trapezoid. 
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Conclusion 
This study has proven that designing a two-dimensional scale plan of a neighborhood in the PBL 
environment engages students in EDPs and in turn probably deepen their EDP capabilities. This 
result is expected considering the structured PBL environment developed according to the key 
features of PBL. To achieve the goal of graduating students who are competent in EDPs, we need 
to continue to use PBL in schools. In sum, PBL environment builds on EDP as the cornerstone and 
as the foundation on which students bring their compartmentalized knowledge of science (e.g., 
types of trees that produce more oxygen compared to other ones), technology (computer, ruler, 
protractor), mathematics (angle and side properties of polygons, inclusion relationship between 
the polygons , e.g., “Is square a rhombus?”,  similarity and concurrence of polygons, angle and 
side properties of regular and irregular polygons) to bear on solving real-world problem. 
Furthermore, throughout designing a neighborhood plan, they learned how to design a place, the 
different types of professions and their duties, how to use a protractor to draw geometrical shapes, 
how to solve the challenges and difficulties as a group, the importance and value of geometry in 
real life, how the elements of a neighborhood are placed in it, and the importance of every detail 
such as accuracy and precision in drawings. 
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This research project relates to the core of spatial ability linking to the STEM-subjects. Well-
developed spatial abilities may lead to better comprehension of scientific and technical matters and 
to solving current real-world issues by thinking spatially in a variety of ways. The purpose of the 
study is the application of spatial abilities in the sense of spatial thinking as an entirety, which 
interacts in a broad way in the fields of science, mathematics, physics and technology. We have 
developed a new model of the extended Spatial Thinking for STEM, within we have underlined the 
movement as an essential element of spatial thinking. The various perspectives on movement in 
spatial thinking are combining elements, which show the interrelation between the subjects of STEM. 
This is described by selected examples. 

Keywords: Experience and space, movement, visual perception, spatial thinking, problem solving.  

Spatial thinking – the application of spatial abilities 
Spatial thinking as an entire ability  

Spatial thinking is the mental process of representing, analyzing, drawing interferences from 
spatial relations […] between objects […] or relations within objects, […] analyzing spatial 
relations and transforming spatial relations. (Uttal et al., 2013, p. 367) 

Spatial thinking, the “visual processing and spatial cognition” (McGrew, 2009; p. 5; Buckley et al., 
2019, p. 168) is a complex ability, which reveal the various spatial thinking processes. They are used 
individually and are changed within the solving processes of tasks (Barratt, 1953; Just & Carpenter; 
1985; Schultz, 1991).  

One of the first researchers, who named various aspects of spatial thinking, is the British scientist and 
mathematician Francis Galton. 

Much instruction on these matters can be derived from those who possess the power of what is 
called the visualising faculty, in a high degree. The objects of their memory are conspicuous 
images; they can retain them for a long time before the eye of their mind, they can dismiss or 
change them at will, and they can, if they please, subject them to careful examination from every 
side. (Galton, 1879, pp. 158) 

In this description, Galton implied three steps in the process of spatial thinking: the perception, the 
memory as the possibility to retain and to retrieve a recognized object and the imagining and operating 
with spatial pictures. This indicates an entire view on spatial thinking, as we can find also in novel 
definitions, for example the visual and spatial capacity of the intelligence is “the ability to generate, 
store, retrieve and transform visual images and sensations” (McGrew, 2009, p. 5). Furthermore, 
McGrew (2009) relates in his description to the perception and imagination of shapes, images and 
spatial orientation of objects, which change their shapes and positions in space by movement. Also 

Proceedings of CERME12 4647



 

 

in the actual research, spatial memory is a central element in spatial thinking, which is expressed in 
the following explanation “largely determined by the capacity to represent and manipulate mental 
information (spatial cognition) and to hold sufficient amounts of pertinent information (working 
memory)” (Buckley et al., 2019, p. 166). 

Thinking about and with space in STEM 

Spatial thinking includes thinking about space and thinking with space (Hegarty & Stull, 2012). The 
former means the experience in real space, in large-scale environment in which you can only see part 
of the whole at the same time. Further, it means the mental operating with real and imagined objects 
in space, in the small-scale. Thinking with space relates to the use of spatial objects and spatial mental 
processes for the imagining of non-spatial contents, for example the use of symbols and of graphs in 
coordinate systems, the representation of abstract contents in diagrams and the structure of terms 
(Malle, 1993). 

Spatial thinking needs to be promoted for problem solving in the subjects of STEM. Many studies 
reveal that students have more success in attending courses and finishing their study on the academic 
level when they have a good developed ability to think spatially. Also in the further professional 
working, they can arrive higher aims. (Uttal & Cohen, 2012; Sorby et al., 2018) 

Wai et al. (2009) highlight the interaction of the three abilities, spatial ability, mathematical ability 
and verbal ability. This necessitates a change in mindset in favour of spatial thinking for the curricula. 
Young adults with well-developed spatial abilities seem to handle better images and shapes in the 
imagination than those who think in verbal and numerical symbols (Wai et al., 2009; Mix et al., 2016). 
Probands with less-developed spatial abilities and well-developed verbal skills try to solve 
mathematical problems with verbal description, while others prefer a spatial representation in the 
problem solving (Fennema & Tartre, 1985). This relates to the usual structure of the logical thinking: 
a deductive and verbal process and a structured, global, intuitive spatial and inductive process (Tartre, 
1990). Even though “reasoning thinking” with verbal and analytical processes is sometimes elevated 
above the spatial perception and imagination, spatial thinking is the core of thinking (Duffy et al., 
2018, p. 273). Only the interaction of the two mental areas, the abilities of the spatial and of the 
rational thinking, leads to the expected success in STEM-subjects (Duffy et al., 2018; Sorby, et al. 
2018). 

Studies reveal that a higher spatial ability combined with a visual working memory supports the 
success in academic learning and the understanding of subject contents in the beginning of study. 
However, on a higher level specialist knowledge and experience are more used and successful in 
problem solving in STEM-subjects. (Uttal & Cohen, 2012; Duffy et al., 2018; Xie et al., 2020) 

Spatial thinking extended to problem solving in STEM  
In the following, we describe the development of a new model in Spatial Thinking for STEM. The 
aim of this attempt should be the application of spatial mental processes in mathematical, physical 
and technical issues.  
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From visual perception and spatial imagination to further reasoning 

Previous research has primarily focused on exploring visual perception (Vernon, 1962; Frostig et al., 
1972) and spatial ability (Thurstone, 1938; Linn & Petersen, 1985; Maier, 1994) as two distinct pillars 
of spatial thinking. Most models on spatial thinking and spatial abilities, and the related tasks have 
concentrated on artificial, theoretical situations in psychometric tests, and they have rarely considered 
scientific subject contents. To fill this research gap, there is constructed a model combining 
neurological findings of visual perception and spatial ability with the application on real problem 
solving in STEM-subjects. Spatial thinking and acting includes the two areas, visual perception and 
spatial ability. 

Visual perception is the anatomical and neuronal process from the sensory stimulus to the cortical 
cognition. It is the ability for seeing the world around us recognizing and identifying objects and 
situations. Other sensory stimuli, especially motoric and auditory ones complete the visual 
perception, which is the most involved in spatial ability (Nänni, 2009). From the psychological 
literature (Vernon, 1962; Bak, 2020) and from neurological research (Burgess, 2014) we outline three 
fundamental components of visual perception: the perceiving of objects, movements and depths.  

Spatial ability is the capacity to operate mentally with the images arising from visual perception, for 
instance, transforming, rotating, cutting and combining them. Sensory impressions are processed and 
reorganized mentally. We have to work actively on these mental images. (Thurstone, 1938; Maier, 
1994) 

In addition to the combination of visual perception and spatial ability (Maresch, 2020), a further 
component is necessary. This relates to the applying of spatial processes in spatial and non-spatial 
contents, including a higher level of thinking for arguing, reasoning and problem solving on abstract 
mathematical contents. This level includes expedient analyzing and creating individual solving steps 
(Figure 1). The “Movable Thinking” (Roth, 2005) in mathematical and geometrical contents can be 
seen as a further aspect of the higher spatial thinking. It is the capacity to find a movement and 
movable parts inside a geometrical constellation and to use them for arguing and proving.  

 
Figure 1: Spatial Thinking in STEM 
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The extended model of Spatial Thinking in STEM  

The model is composed of six fundamental and two overarching facets (Figure 2). They relate to 
contents of space and take place on every level of spatial thinking, namely the visual perception, the 
spatial imagining and the expedient thinking. 

 
Figure 2: The facets of Spatial Thinking 

The nature of objects in the focus relates to the comprehending of a constellation as a whole, from 
which single objects or parts are distinguished. The objects should be recognized in their relevant 
properties as constancies for identifying them and removing them from the background. Referring to 
mathematics, this facet includes arguing with geometrical properties, such as invariances, 
orthogonality and parallelism.  

The position of objects in space deals with the perceiving and imagining of the location and position 
of one or more objects in a spatial constellation, in relation together and to the viewer. For example, 
it includes the spatial relations of elements of areas and solids, such as the relation between lines, 
edges, and angles. The combination between the geometrical imagination and the algebraic 
representation of straights and planes in a metric space requires this facet using coordinate systems. 

The change of object properties in space is the changing of objects and parts of them through 
mirroring, rotating, shifting and scaling. This happens by the imagining of movements to recognize 
the changing process between the initial and the final state of the object. As an example, we can name 
the varying aspect of variable quantities.  

The real and potential object movement relates to a real movement in space and a possible movement 
in a mechanical configuration with movable parts, not to a fictive movement in a mathematical 
constellation. This facet has a concrete reference to various fields of physics and technology, while it 
is related indirectly to mathematics via the similarities with the facet of the change of object 
properties. For imagining the deflection of a moving object, e. g. a rolling ball (Kozhevnikov et al., 
2007) or a moving charged particle in a homogeneous magnetic field (Fulmer & Fulmer, 2014), we 
should be able to follow mentally the path of the movement. 

The facet of decomposition and combination of objects involves breaking down an object or a 
configuration into parts and combining the parts into a whole object or a new configuration through 
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Boolean operations. In a further sense, it relates also to the structuring of terms and the imagining of 
fractions, as a part of the whole.  

The spatial orientation in real and mental space is about the orientation of a person in the real space 
and in the mental imagination, whereby it is necessary to put themselves into the space. By changing 
the perspective, an object or a constellation of objects can be seen from different angles. Referring to 
physics, for instance, this facet is important for the imagination of movements in astronomy (Cole et 
al., 2018). As a viewer from different points on earth, as well as from outside the earth we see different 
movements, which we have to combine for understanding the interrelation, for example the apparent 
movement of the sun and the real movement of the earth.  

The spatial problem solving and the spatial memory flow in into all fundamental facets, in 
understanding the task, in mental and concrete processing of solving the task, in assessing the solution 
steps and in finding further possible solutions.  

The movement as a central element of spatial thinking  
Movement, as the change in location and position of an object in space and as the change of properties 
of an object, as well as the movability as a possibility for changing, pervades the spatial thinking as 
a whole. Movement appears in various ways, as imagining and anticipating a sequence of movements, 
as a mental process of changing an image or as a mental process for solving problems. Based on the 
real movement and orientation in the space to explore it and on feeling the movement of one's own 
body occurs the transfer of perception into the imagination. (Stückrath, 1955; Piaget & Inhelder, 
1971; Glück et al., 2005; Wolbers & Hegarty, 2010) 

We have found four perspectives on movement, which are important in the imagining of 
mathematical, physical, technological and scientific contents: 

 the movement which can actually be experienced in space and which is comprehensible in the 
imagination, 

 the potential movement of a movable part of a mechanical configuration, for example the 
movement of gearwheels, screws and pulleys, 

 the mental movement of an entire object to change its properties, 
 the mental movement to change single parts in a mathematical constellation as an internal 

displacement, for example folding a solid by its surface. This relates also to the movement 
which is applied in abstract mathematical and geometrical contents, as movable thinking.  

In the following, we present two examples, one for the spatial imagination of potential movement in 
a mechanical constellation (Thurstone, 1938) and one for the spatial imagination of real movement 
in an astronomical context.  

The movement in a mechanical configuration 

A rightwing screw engages a gearwheel in the signed direction. The gearwheel rotates on a fix axis. 
We have to imagine spatially how the rotating movement of the rod is combined with the translation 
movement. In which direction does the gear rotate when the threaded rod engages the gear in the 
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indicated sense of rotation? In which direction does the gear move, when the worm is put on the rod 
inversely, from the right side to the left side in this perspective?  

 
Figure 3: Gearwheel and threaded rod 

To solve the task, we fix distinct features in the representation, like the teeth of the gear and the 
rotating direction of the threaded rod. We can mentally imagine the relation between the rotation and 
the translation movement of the rod. The picture of a screw turned into a wall can serve as a practical 
help. When the worm is put inversely on the rod the spatial relations are conserved and the direction 
of each spiral is unchanged, as the thread remains a right-hand thread. The spatial thinking relates to 
the recognition of the spatial relation between the parts of configuration and their movement. 

The movement in an astronomical task 

A further example to improve the imagination of movement in science deals with the path of the sun, 
seen from diverse places on the earth. The content of the task refers to the daily rotation of the earth 
around its axes, whereby other movements and astronomical phenomena are neglected. In which 
direction do you see the path of the sun in Rome on the North Hemisphere and in Cape Town on the 
Southern Hemisphere? The absolute cardinal points of the sunrise, the sunset and the peaking of the 
sun have to be recognized, moreover the reference points to the body of the viewer, such as left or 
right when looking at the sun. This problem can be seen from the earth at rest, the large scale of 
experience, and from a fictive point in the universe on the moving earth, the small scale of a geometric 
model. For simplifying the task, two places outside the tropic are chosen, because otherwise the local 
and seasonal conditions have to be considered. As spatial approaches can be used: putting oneself 
into the reference frame through mental change of viewer’s position and spatial orientation or 
considering properties of objects and their relation using geometric quantities in an analytical way. 
As interesting statements of students for explaining their mental processes can be named the 
following answers: “I have thought about the earth as a sphere with one half in the shadow”, ”The 
earth rotates in certain points in the direction of sun and in others away from it”, “I have mentally 
imagined a person living near Cape Town.” (Zöggeler et al., 2021). 

Space and movement in space are the background of spatial thinking. 
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Rationale 
Thematic Working Group 27 focuses on research concerning the role of Mathematics Teacher 
Educators (MTEs) in fostering mathematics teacher learning, both during the pre-service and the in-
service periods of teachers' careers. The need for this group emerged in CERME11, when several 
papers submitted to TWG18 (Mathematics teacher education and professional development), focused 
on teacher educators. The rationale for opening a new group for this topic stemmed also from the 
accumulation of research on MTEs witnessed in recent years. This growing interest is reflected in 
conferences (e.g., Educating the Educators), books dedicated to MTEs (e.g., Goos & Beswick, 2021), 
journals and special issues on MTEs’ professionalization and their role in scaling up sustainable 
interventions (e.g., ZDM 46(2), 2014; ZDM 47(1), 2015; Int. Jr. of STEM Ed. 4(27), 2017; IJSME
(1), 2021), and a host of papers focusing on this issue in leading journals such as ESM, JMB and 
JMTE. Our goal in creating this TWG is to support further development of this emerging field.

First steps of TWG27: The CERME12 meeting 
As TWG27 is new, it met for the first time in CERME12. Twenty-three participants attended the
TWG27 sessions, 16 contributions (13 papers and 3 posters) were presented and discussed. Figure 1 
shows the distribution of contributions by countries, with about 57% coming from Europe, 25% from 
North America, 12% from South America and 6% from the Middle East.

Figure 1: Distribution of contributions to TWG27 by countries
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The call for papers proposed the following themes to initially form the scope and focus of the group:

1. Conceptualizing the profession of MTEs: Adapting theoretical frameworks from the teacher level 
to the MTE level; integrating generic and mathematical aspects within the work of MTEs;

2. Knowledge, beliefs, skills and practices of MTEs: Theoretical models and empirical studies;
3. Preparing MTEs (including formal and informal qualifications): Conceptual frameworks and 

empirical studies;
4. Designing professional development for MTEs; tools and resources for supporting MTEs;
5. Scaling up programs for mathematics teachers: Building institutional capacity through focusing 

on facilitators; institutional factors that support or hinder the effectiveness of PD facilitators;
6. The influence of current global issues on the role and practices of MTEs.

The majority of contributions related to themes 2, 3 and 4, one paper related to theme 6, and one to 
theme 5, while theme 1 was not directly addressed but mentioned in contributions with other foci.

A vocabulary note: MTEs are referred to in the literature by many different terms. For the purpose of 
coherence of the TWG27 work, we use the terms facilitators and educators to denote MTEs who 
support the learning of practicing teachers and prospective teachers, respectively.       

Characterizing TWG27 contributions: A brief summary of different aspects 
Main issues addressed 

Theme 2 was the focus of many contributions, presenting studies on the knowledge, beliefs, skills 
and especially the practices of MTEs. Several papers focused on facilitators’ practices with regard to 
different PD contents (e.g., conditional probability, Griese et al.; supporting at-risk students, Laschke 
et al.; algebraic thinking in early years, Ferreira et al.), while others centered on how PD goals are 
achieved (e.g., enacting norms, Schwarts et al.; modeling, Nolan; theory of change, Eriksen &
Solomon). Different tools were suggested to examine MTEs’ practices (e.g., scriptwriting tasks, 
Shure et al.; productive disciplinary engagement, Elliott & Lesseig; disruptive pedagogy, Bjerke & 
Nolan). Themes 3 and 4 were addressed by several contributions as well: Nieman et al. investigated
how a tool, designed to provide insight into mathematics teachers’ experiences within a PD course,
can be used by facilitators to inquire into their facilitation practices. Rojas et al. examined the impact 
of “critical friendship” experiences between MTEs on their professional development, and 
Mayerhofer et al. introduced the idea of personas as yet another means to support MTEs. Bruns et al. 
investigated the effects of an extensive facilitator PD program, while Opheim et al. discussed the 
design of PD experiences for MTEs with varied backgrounds. Theme 5 was addressed by Seago and 
Knotts, who reported on asynchronous online video-based PD modules, which can be flexibly 
adapted to various facilitation formats, and are therefore highly scalable. Finally, Theme 6 was 
uniquely represented by Coles, describing MTEs’ work with teachers who bring questions of global 
challenges into their classrooms.

Theoretical and conceptual lenses used 

A range of theoretical and conceptual tools or lenses were used across the studies in this TWG. They 
can be categorized broadly into three groups (with some papers drawing on ideas across more than 
one group). In the first group are papers which drew on particular notions of teacher expertise, or 
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teacher learning, and used them to reflect on the role of the MTE. For example, Seago and Knotts 
drew on Ball and Bass’s (2003) notion of Mathematics Knowledge for Teaching, as did Elliott and 
Lesseig (who particularly looked at Specialized Content Knowledge). Griese et al. used a model of 
teacher expertise in their study of facilitators, while Ferreira et al. used a model labelled Professional 
Learning Opportunities for Teachers, and Bruns et al. employed Prediger et al.’s (2019) three-
tetrahedron model of professional development designed to investigate teacher learning. A second 
group drew on conceptualizations of MTEs’ expertise. Shure et al. used Prediger et al.’s (2021) 
framework for the expertise of PD facilitators, and Laschke et al. used a model of teacher orientations 
which they develop into one of MTE orientations. Schwartz et al. analyzed facilitator decisions using 
a framework of MTEs’ resources, orientations, goals and identity (Karsenty et al., 2021). There were 
fewer papers in this second group than in the first, perhaps reflecting the relative recency of 
theorizations of MTE expertise. Finally, some papers drew on theoretical frameworks that support 
the analysis of MTEs’ actions and contexts. For example, Eriksen and Solomon used the notion of 
boundary objects (within Communities of Practice) to conceptualize MTEs’ practices, and Elliott and 
Lesseig mobilized the notion of productive engagement. Rojas et al. conceptualized and analyzed the 
self-study of MTEs. Sharing a critical perspective, Bjerke and Nolan drew on ideas of disruptive 
pedagogy to study the practices of MTEs and Coles used ideas from critical mathematics education 
with the same aim. This diversity can be seen as reflecting how the study of MTEs often draws on 
ideas from the highly diverse field of the study of teachers. We view it as encouraging that 
conceptualizations of MTEs’ practices are emerging and being shared.

Methodology employed in the studies reported 

Most of the presented studies were small-scale studies, following a qualitative research paradigm,
sometimes involving only single cases investigated in an in-depth manner, or self-studies (e.g., 
Nolan). Many of the studies used a variety of data sources to investigate MTEs’ work. These included 
the following: interviews (Bjerke & Nolan; Eriksen & Solomon; Griese et al.; Nieman et al.; Seago 
& Knotts); facilitators’ journal entries (Schwarts et al.); teachers’ weekly online logs and teacher 
community walls (Seago & Knotts); written records from teachers and facilitators (Ferreira et al.);
summative memos (Elliot et al.); audio and/or video data from PD sessions (Elliot et al.; Ferreira et 
al.; Laschke et al.; Schwarts et al.); dialogues from a scriptwriting task (Shure et al.); and video data 
from stimulated-recall interviews (Schwarts et al.).

As opposed to the aforementioned qualitative studies, Bruns et al. reported on a classical quasi-
experimental intervention study, using quantitative methods to investigate the effects of facilitator 
PD on teachers’ learning in the context of early mathematics education.

It can be conjectured that the focus of almost all the contributions on qualitative approaches is another 
indication that the field of research on MTEs is still emerging, with qualitative studies providing
findings that can later be used as springboards to more diversified research approaches.

New emerging issues 
Several issues emerged during the course of our group discussions. Here we summarize the most 
frequent ones.  
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MTEs’ role in bridging between theory and practice. We considered what conceptual lenses we 
might use to analyze MTEs’ practices that support the link between theory and practice. One 
suggested idea for exploring this issue was to conduct a workshop in which participants use 
different lenses to examine sets of data from multiple projects. 
The role of reflection as a learning mechanism for MTEs. We identified several questions for 
future consideration, for example: How can MTEs use reflection to better attune their practices 
to teacher learning? How do issues of status and power influence MTEs’ reflection with others 
such as their peers, researchers, and critical friends? What is the role of criticism or emotional 
reactions within MTEs’ reflections?
Role-modeling as a practice used by MTEs. We discussed the idea of modeling and the design 
of research that can address questions such as: How central is role-modeling to the practices of 
MTEs? To what extent do MTEs model the pedagogical practices that they support in theory? 
What are possible implications of a lack of coherence between the practices MTEs aim to support 
and the practices they use? 
The role that TWG27 might play in moving the field forward. As pointed out earlier, most studies 
reported in our group were small-scale, qualitative studies. We recognized the need to develop a 
more comprehensive picture of the field, for example by identifying areas of research that can 
benefit from larger-scale studies and an extended range of methodologies.

These issues, as well as other questions raised during the meeting, are reflected in the Call for Paper 
and Poster Proposals for CERME13.

In summary, the collection of TWG27 papers and posters presented in this volume reflects an effort 
to capture current themes within the developing research on the profession of MTEs. We look forward 
to the continuation of this group’s activities in future ERME conferences and aspire to expand this
TWG27 in terms of participants, represented countries, topics and types of studies. 
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In this paper, we explore the notion of disruptive pedagogy, and propose a disruptive pedagogy 
theoretical lens to study the practices of mathematics teacher educators (MTEs) in their post-field 
courses. While much is known about prospective teachers (PTs)’ transition from university to field 
experience, less is known about the under-researched transition from field experience and back to 
university. We propose that perspectives borrowed from literature focused on disruptive pedagogy 
can shed light on this transition and help MTEs to better understand their role in unpacking PTs’ 
field experiences. The lens consists of four key areas of focus (two on challenging current practices 
and two on promoting new practices). We close this paper by exemplifying what these ‘challenges’ 
and ‘promotions’ might look like in the context of MTE post-field practices.   

Keywords: Mathematics teacher educator, disruptive pedagogy, theory-practice, theoretical lens.  

Introduction  
Improving teacher education is a constant concern. In that respect, research on the theory-practice 
transitions has been extensive (Allen & Wright, 2014; Britzman, 2003; Gainsburg, 2012), including 
transitions from university (theory) to field experience (practice), as well as transitions from the 
process of becoming a teacher (university) to the first few years of being a teacher in schools (Nolan, 
2014). Another key transition in teacher education programs is the under-researched transition from 
field experience back to university, where “[l]ittle is known about the way in which teacher educators 
integrate prospective teachers’ actual experiences when they return to university after fieldwork” 
(Eriksen & Bjerke, 2019, p. 9). This ‘unpacking’ of field-back-to-university transitions is relevant to 
the community of teacher educators since teacher education programs, and corresponding field 
experiences, are frequently critiqued for being steeped in technical-rational approaches (Nolan & 
Tupper, 2020). Mathematics teacher educators (MTEs) in particular struggle with the tensions 
implicit in these transitions, as they seek to disrupt dominant ‘technique-oriented’ discourses of 
school mathematics and becoming a teacher.  

We acknowledge that the use of theory and practice to describe transitions between university teacher 
education courses and school-based field experiences creates a false binary and hierarchy (Zeichner, 
2010).  While we draw here on theory-practice language, in reality our interests are positioned within 
a hybrid space of research where we study the role of MTEs in disrupting and reimagining knowledge 
constructed in the crucial movement from university to field and back to university. Within this 
movement, it is the post-field context of teacher education that we focus our attention. 

Drawing on Anderson and Justice (2015) and their way of seeing a pedagogy as disruptive if it 
“requires students to challenge or change their epistemologies and participation in their learning” (p. 
400), we propose a theoretical lens of disruptive pedagogies that enables us to better understand the 
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roles and practices of MTEs in post-field contexts and to re-conceptualize post-field possibilities in 
teacher education. We suggest that such a lens can be applied to study a central question underpinning 
theory-practice transitions: What are MTEs' roles in unpacking prospective teachers’ (PTs’) field 
experiences? 

Disruptive pedagogies 
The use of the term disruptive first emerged in juxtaposition with the introduction of new technologies 
in companies, where “the degree of disruptiveness” was crucial in predicting its success or failure 
(Christensen, 1997, p. 169). Acknowledging that technological disruptions may provide the 
opportunity for new ways of thinking, learning, and teaching (despite possible internal resistance to 
adoption) resulted in Christensen and Raynor (2013) expanding the idea of disruption and introducing 
the term disruptive innovation, where innovations were seen as disruptive if they replaced a dominant 
current technology.    

These lines of inquiry sparked an interest in exploring more generally the impact of new technologies 
in educational settings (Christensen et al., 2011; Hedberg, 2011; Stevenson & Hedberg, 2011) and 
also within teacher education contexts, where the possibilities that emerge from the uptake of new 
technologies were investigated as a disruptive pedagogy (DP) (Anderson & Justice, 2015). In this 
way, DP emerged out of innovation with respect to technologies (Christensen, 1997), not more 
general pedagogies. To date, however, few teacher education studies have a non-technology focus 
with respect to DP, and fewer still (if any) turn the lens of DP toward mathematics teacher education 
and MTEs in particular. 

Anderson and Justice (2015) define disruption as “an analytical construct that allows for the 
investigation of how individual learning and changes in local practice mutually influence the other 
within a purposefully designed learning context” (p. 401). As with our work, these authors express 
interest in “disruptive innovations within teacher education contexts” (p. 401); however, they do so 
with an explicit focus only on pedagogies that engage prospective teachers with technology; that is, 
they “do not attempt to examine pedagogy independently from technology or technology independent 
from pedagogy” (p. 401). Thus, our exploration here contributes more generally to the theory and 
practice of DPs in teacher education as we, in this paper, expand upon that work in DP and propose 
a theoretical lens to investigate MTEs’ post-field pedagogical practices. We propose that such a DP 
lens can be used to view post-field contexts to understand the extent to which MTE practices address 
practice-theory gaps and contribute to a wider goal of improving mathematics teacher education.  

Introducing the Research Study 
As noted previously, our research interest is in exploring the question: What are MTEs' roles in 
unpacking PTs’ field experiences? In a recent paper (Nolan & Bjerke, 2021), we discuss and present 
a list of barriers/challenges encountered in theory-practice transitions (from university to field 
experience). Primarily based on findings from our own research on theory-practice transitions in 
teacher education, these barriers/challenges formed the basis for the construction of research 
interview questions designed to study the roles and practices of MTEs in the next transition – the 
practice-theory transition (from field experience back to university).  The interview questions 
included asking MTEs to share their own professional challenges with respect to practice-theory 
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transitions, the pedagogical strategies and theoretical tools they draw on to challenge and/or disrupt 
these transitions in working with PTs in post-field courses, and what they view as their primary role(s) 
in the post-field context of mathematics teacher education. Hence, we focus here on the work of 
teacher educators, not so much the actions of PTs, within teacher education. 

As MTEs, we know that PTs bring countless stories of success and failure from different mathematics 
classrooms to their post-field courses, many of which can serve as starting points for reflections – at 
least for the one who owns the story. However, reflection is challenging for PTs (Stiler & Philleo, 
2003), and such individual-level reflections are found to have little real value in bringing about lasting 
change within complex school environments (Forde et al., 2006). Instead, PTs must be skilled at 
reflecting critically, with a depth and quality that challenges the teacher education community and 
allows for “disruption” (Anderson & Justice, 2015). Given the shortcomings of a reflection-focused 
post-field context, we saw a need to develop a lens for analysis in conjunction with collecting our 
data, as a way to move beyond reflecting on single field experiences, and to move toward a way of 
detecting those disruptive and transformative practices initiated by MTEs. Here, we offer a theoretical 
lens that highlights the promising concept of disruption in the context of MTE practices.  

Introducing the theoretical lens 
Our aim in this section is two-fold: To describe our methods in selecting and reviewing research 
literature on DP and to present the lens itself.  

Once the need to construct a DP theoretical lens was established, we proceeded to locate research 
texts focusing on DP. Our aim in this engagement with the research literature was to learn about the 
diverse ways in which authors defined or described disruptive pedagogy. That is, our intention was 
to return to the roots of DP, not to conduct a comprehensive literature review. Thus, from each of the 
research texts located, we synthesized key ideas that spoke specifically to how the authors 
defined/conceptualized the pedagogy, including its aims and examples of what it might look like in 
practice in classrooms. Through careful study of these synthesized ideas, we noticed that, in some 
cases, the researchers sought primarily to challenge current status quo or traditional practices through 
DP while, in other cases, the goal was focused more on promoting different practices which were 
intended to disrupt and/or replace these current practices. In this way, it became clear how the 
literature suggested the existence of certain current pedagogies and practices teacher educators want 
to shift away from, and also pedagogies they want to promote, or ‘shifts towards’. In the end, our 
synthesis of ideas directed us toward the construction of four key areas of focus, or themes, across 
the literature on DP: two focused on challenging current practices and two focused on promoting new 
practices. When we introduce and describe the themes below, we maintain more general teacher 
educator language; however, after describing each theme with a summary of its focus, we outline a 
key question that directs our attention toward practices specific to MTEs. The four themes and their 
accompanying MTE-question constitute our DP lens.   

I. Challenge traditional and technical-rational approaches to teaching and learning 

The body of research on DP provides us with some helpful insights on ‘what currently is’. 
Acknowledging that something important is lost when inquiry/problem-based teaching and learning 
are marginalized (Anderson & Justice, 2015), we want to disrupt the conservative nature of traditional 
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teaching cultures (Hedberg, 2011). Instead, we want to push PTs “to challenge ideas, beliefs, and 
practices that they were not comfortable with, providing them with the opportunity for a re-
examination of their own beliefs, values, and practices in the classroom” (Anderson & Justice, 2015, 
pp. 406-407). This re-examination should include challenging assessment practices associated with 
traditional, linear ways of “defin[ing] pedagogical content and reduc[ing] learning to the tools which 
measure it” (Beighton, 2017, p. 114). As well, DP challenges the reducing of “teaching and learning 
to the application of ‘recipes’ of ‘good practice’” (Beighton, 2017, p. 117). We need to go beyond a 
focus on simple recall, recognition and reproduction of ideas and performances (Mills et al., 2009, 
pp. 72-73), which support a deterministic view of learning (Iftody & Sumara, 2010). In this regard, 
we can learn from Vratulis et al. (2011) who highlight the importance of moving away from those 
‘additive’ pedagogies which are “integrated to support existing, often teacher directed, classroom 
practice” (p. 1180). Taken together, this leads us ask: To what extent do MTEs work toward a 
(mathematics) teacher education that challenges pedagogies based on traditional and technical-
rational approaches to teaching and learning? 

II. Challenge practices informed by non-critical approaches  

Evidence of teacher educator practices which make knowledge problematic, and demand that PTs 
critically reflect on their own belief systems and learning experiences, is important due to “the culture 
of resistance for pedagogical change” that is embedded in schools (Vratulis et al., 2011, p. 1181). To 
unpack such resistance, Weis and Fine (2001) propose that teacher educators stage “act[s] designed 
to disrupt the asymmetric relations embedded in a capitalistic economy and racism” (p. 520), and 
draw attention to how schools “serve to perpetuate and indeed legitimize widespread structural 
inequalities” (p. 497). Sidebottom (2019) calls for teacher educators to challenge “the neoliberal, 
performative constraints on our abilities to realise socially-just academic organisations” (p. 233). 

To legitimize and promote social justice processes, Mills (1997) proposes a disruptive pedagogy to 
challenge “the legitimacy of school processes which produce and reproduce oppressive relations of 
power” (pp. 35-36). Such a critical perspective calls for a pedagogy which moves beyond ‘valuing’ 
diversity and a culture of tolerance “to a critical understanding of difference that … recognizes micro 
and macro power relations, and problematizes knowledge about ‘community’” (Mills et al., 2009, p. 
75). In this regard, Beighton (2017) offers the idea that “teacher educators can examine how non-
diversified practices at the local [micro] level constitute barriers to meaningful student participation 
and undermine teachers’ responses to issues of equity and social justice” (p. 113). Hence, we ask: To 
what extent do MTEs work toward a (mathematics) teacher education that challenges current 
practices from perspectives informed by critical mathematics education?  

III. Promote non-traditional and participatory approaches to teaching and learning 

While the two first themes were concerned with what DP aims to shift away from, we now turn to 
two themes that are more concerned with what DP promotes, or ‘shifts towards’. Generally speaking, 
this third theme is concerned with promoting pedagogies which introduce “new ways of thinking, 
learning, and teaching” (Anderson & Justice, 2015, p. 405), which frequently imply the “[n]eed for 
teachers to unlearn traditional teaching beliefs and practices” (Hedberg, 2011, p. 2).  The theme 
embraces a disruptive view of learning which highlights how learning can only be provoked, not 
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predicted (Iftody & Sumara, 2010, p. 105). In addition to provocation, an invitation to PTs to share 
their insights and stories is also key in this dimension of DP (Sidebottom, 2019); that is, inviting 
students into teaching and learning conversations is an important step in replacing the “formulaic 
deficit models” of teaching with “a creative engagement of and crucially with learners” (Beighton, 
2017, p. 120). Anderson and Justice (2015) advocate for disrupting traditional practices of teacher 
education courses by creating “a participatory environment that publicly challenges [PTs’] 
epistemologies and the community practices in the learning process through both their engagement 
with the content and interactions with their peers” (p. 404).    

In sum, a key aim of this DP theme is to mentor/support PTs to “fully engage in transformative, 
radical educational acts… required to constantly reposition, redefine, and rethink their roles and to 
deconstruct and redesign their objects of study” (Bastos, 2009, p. 5). Moreover, and above all, this 
third theme seeks evidence of teacher educator pedagogies that encourage PTs to “experiment with 
pedagogical approaches learned in their teacher education programs… [even] if they are not evident 
in schools and may not be supported by sponsor teachers on practicum” (Vratulis et al, 2011, p. 1181).  

In light of this theme description, we return our attention to mathematics teacher education, and ask: 
To what extent do MTEs work toward a (mathematics) teacher education that promotes pedagogies 
focused on non-traditional and participatory approaches to teaching and learning? 

IV. Promote practices informed by equity and social justice aims 

Here, we seek evidence of teacher educator pedagogies that promote an agenda grounded in equity 
and social justice aims. To promote such an agenda, teacher educators are called upon to model 
pedagogies that “challenge inequities and social injustice rather than… projecting a vision of an ideal 
school” (Mills, 1997, p. 39). This means teacher educators are called to work toward teaching 
practices that promote change in the existing relations of power that appear throughout the routines 
of life within a school Mills, 1997). It also means emphasizing the importance of providing 
challenging work for students from traditionally underachieving backgrounds (Mills et al., 2009) 
while paying “more attention to our own agency and responsibility” (Sidebottom, 2019, p. 233) in 
the face of systemic barriers to social justice. Given the critical and equity-focused aims of this theme, 
we ask: To what extent do MTEs work toward a (mathematics) teacher education that promotes 
practices from perspectives informed by equity and social justice aims? 

The DP lens in the context of MTE post-field practices  
With the four DP inspired themes established, and the way in which they raise questions that directs 
us to the practices of MTEs, we return to the language of mathematics teacher education and ask: 
What might these pedagogies—those that ‘challenge’ and ‘promote’— look like in the context of 
MTE post-field practices?  As it would be an impossible task to provide a comprehensive list, we aim 
here to suggest a few examples. At the same time, we remind the reader that this is a work in progress, 
and that the next step is to examine our study’s data through the four themes of this DP lens with a 
goal of understanding the pedagogical strategies and theoretical tools MTEs report to draw on as a 
way to bring about disruptions in their post-field work with PTs; that is, we aim to understand the 
extent to which there is evidence of disruptions in the post-field approaches of MTEs that set out to 
effect lasting changes in PTs’ practices. 
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Drawing on the points raised within our theme summaries, a disruptive pedagogy in mathematics 
teacher education would involve, for example, MTEs challenging different instrumentalist technique-
oriented approaches, for instance what Skovsmose (2001) refers to as the “exercise paradigm”. DP 
might also be characterized by MTEs providing opportunities for PTs to challenge their belief systems 
and learning experiences that have an impact on their ability to consider alternative discourses for 
what it means to know and learn mathematics. This would necessarily include challenging systems 
and structures of mathematics education that continue to colonize the learner toward deficit views 
with respect to who can succeed at mathematics, including misrecognizing the power of mathematics 
and its uses in schools and in society more generally (Andersson & Nolan, 2021). 

In the same manner, a disruptive pedagogy in mathematics teacher education would involve MTEs 
promoting, for example, more experimental task- and inquiry-based mathematics teaching and 
learning, thus “emphasizing that planning can be about inquiry and joint discovery rather than 
prediction and transmission” (Beighton, 2017, p. 119). Additionally, in keeping with an equity and 
social justice focused agenda, MTEs would move “critical mathematics education forward… with 
the goal of educating critically aware students who have power to question the mathematics that 
influences and formats their lives” (p. 45). Admittedly, it is no easy task for MTEs to practice 
disruptive pedagogies; however, Beighton (2017) reminds us, as “teacher educators [we] need to 
understand that learning, with all its difficulties and complexities, is not a problem to be fixed or a 
weakness to be confessed, but an ongoing process of engagement with what is becoming” (p. 120). 

Implications for the existing research in the area – and for MTEs  

Situating their work in the context of PTs working with technological innovations, Anderson and 
Justice (2015, p. 408) found that the practices of PTs in response to pedagogical disruptions fell into 
three distinct categories: transformative practices (where PTs took up the disruptive practices), 
performance of untransformed practices (where PTs participated to ‘get it done’), and practices that 
were resistant to the disruption (where PTs pushed back) (p. 408). In this way, their findings “provide 
a starting point for examining the implications of disruptive pedagogical practices within pre-service 
teacher education programs” (p. 416). Our lens construction is a recent development initiated to 
engage with MTEs’, rather than PTs’, perspectives on DPs. It remains to be seen whether MTE 
practices brought forth by our disruptive theoretical lens fall into categories similar to these, or 
perhaps very different ones.  

Our next step of data analysis will provide insights into how we may improve upon and enhance this 
DP theoretical lens by grounding its application in research data. In addition, presenting our lens for 
discussion in a community of MTEs (as in this CERME-12 TWG 27 focused on the professional 
practices, preparation and support of MTEs) will provide opportunities for us to further reflect on our 
conceptualization of this DP lens, as well as provide a desirable context for sharing this innovative 
theoretical lens for other MTEs to consider in their own research and practice.   
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A fundamental question in the context of professional development is whether teacher professional 
development (TPD) can be scaled up successfully using facilitator professional development (FPD) 
programs. Studies that link effects of FPD programs to teacher learning are, however, rare. The 
presented study addresses this research gap by examining effects of an extensive FPD program in 
the context of early mathematics education (EmMaM). To examine effects of EmMaM, a quasi-
experimental intervention study with two intervention groups was conducted: While in group A the 
TPD course was enacted by the program developers, in group B the TPD was enacted by facilitators. 
Results show that teachers in group B achieved comparable learning gains to teachers in group A. 
This result supports the idea of scaling up professional development using FPD – if facilitators are 
qualified accordingly. 

Keywords: Facilitator professional development, in-service professional development, teacher 
learning, early mathematics education. 

Facilitator Professional Development Programs and its Effects 
Teacher professional development (TPD) is essential to improve teaching quality and support 
teachers’ lifelong learning (e.g., Borko, 2004). Therefore, a shared aim of school administration, 
developers of professional development (PD) programs, and researchers is to scale up effective PD 
programs (e.g., Roesken-Winter et al., 2015). This scaling up can be realized by qualifying facilitators 
to enact TPD at several sites (Borko, 2004). To support facilitators in their (new) role, several authors 
suggest facilitator professional development (FPD) programs which include PD materials and 
activities for teachers as well as support materials for facilitators to enact the PD program (Borko, 
2004; Koellner et al., 2011; Prediger et al., 2019).  

Prediger et al. (2019) developed the Three-Tetrahedron Model of professional development “to 
capture the complexity of PD courses in a multifaceted way and to connect the different levels of (1) 
teaching and learning on the classroom level, (2) PD on the teacher level, and (3) PD on the facilitator 
level” (p. 408). The Three-Tetrahedron Model of professional development suggests a cascadic 
approach to scale up PD programs. In cascade models a group of facilitators, who are mostly teachers 
themselves, is trained to conduct TPD programs (Krainer, 2015).  

Different authors question the effectiveness of cascade models: They criticize that cascade models 
follow a transmissive approach and do not take the context of the individual facilitator into account 
(e.g., Hayes, 2000; Kennedy, 2014). Additionally, for example Krainer (2015) expects a dilution of 
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expertise with each level of the cascades. In summary, it is assumed, that facilitators might have less 
developed mathematical expertise and/or less accomplished facilitation practices then their trainers 
which in turn leads to less expertise at the teacher level. Whether this is the case has yet to be 
examined.  

Therefore, a key question is whether TPD programs enacted by facilitators in FPD programs achieve 
effects on teachers’ learning (Koellner et al., 2011; Perry & Boylan, 2018; Prediger et al., 2019; van 
Driel et al., 2012). The few research results on the effects of FPD on teachers’ learning available in 
the field of mathematics education indicate that teachers that were trained in a PD course enacted by 
facilitators increased their knowledge in comparison to untrained teachers (Bell & Higgins, 2010), 
but show less competence than their facilitators (Koellner & Jacobs, 2015; Lange, 2014; Turner et 
al., 2017). Additionally, effects of TPD differ with respect to the facilitator (Bell & Higgins, 2010; 
Carney et al., 2019). In summary, these results support the assumption that the scaling up of TPD 
using FPD is possible. However, the results do not clarify the extend of these effects and thus do not 
address the criticism of the dilution of effects with each level of the cascades. This is especially true 
as there is a lack of research comparing the effects of TPD courses enacted by facilitators and TPD 
courses enacted by experts in the field with more expertise then the facilitators (i.e. the 
originators/developers of the PD courses). The present study starts out to address the questions of the 
dilution of effects with each level of the cascades by examining FPD in the context of early 
mathematics education exemplified by the FPD program EmMaM (Bruns et al., 2021).  

The Context of this Study: EmMaM – A FPD Program for Early Mathematics 
Education 
A key feature of the Three-Tetrahedron Model is to base FDP on TPD. To realize this, we firstly 
developed a TPD course on early mathematics education called EmMa - Erzieherinnen und Erzieher 
machen Mathematik [EmMa – Early childhood teachers are doing mathematics] (Bruns et al., 2017), 
secondly examined the effectiveness of this TPD course (Bruns et al., 2017) and thirdly developed 
the facilitator professional program EmMaM (Bruns et al., 2021). The development of the facilitator 
professional program EmMaM was guided by key features of facilitators learning as indicated in the 
literature (Jacobs et al., 2017; Koellner et al., 2011; Schifter & Lester, 2005): 

- Considering all aspects of teaching and learning on the teacher and the classroom level: 
To realize this first key feature, the structure and content of the FPD program EmMaM is based 
on the structure and content of the TPD course EmMa. EmMaM comprises of an introductory 
module and four in-depth modules which each lasts two days. Additionally, EmMaM integrates 
various activities from the TPD course EmMa, which are firstly carried out by the facilitators 
themselves and afterwards reflected on with regard to the aims of the activities. EmMaM 
thereby addresses the content of the TPD course EmMa from a higher level which also includes 
typical teacher misconceptions and reflection of teaching strategies. 

- Integrating and modeling activities of the teachers PD program: As all activities as well as 
all theoretical aspects from the modules of the TPD course EmMa are enacted by the leaders of 
the FPD course, these leaders also function as a model for the facilitators. 
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- Supporting the preparation, implementation as well as the follow-up of the TPD course: 
In practical phases between the FPD modules, the facilitators independently lead TPD courses 
on early mathematical education. Through these practical phases, EmMaM realizes an 
accompanied implementation of the TPD program as advised by Jacobs et al. (2017). 
Facilitators are supported in the preparation, implementation and follow-up of their TPD course 
during the FPD. 

- Offering supporting materials to enable facilitators to conduct the PD course in alignment 
with the intended goals of the PD program: The fourth key feature of supporting materials is 
realized by a set of guiding materials. These materials include suggestions for the methodical 
structuring of the TPD course, a commented set of presentation-slides for each TPD module 
and templates for several teacher activities. In addition, the leaders of the FPD provided further 
literature as well as a set of games and play materials used to foster early mathematical learning 
in kindergarten (games, pattern blocks, etc.) which is used to plan different learning 
opportunities for children in the TPD program.  

All in all, the FPD program extends over a period of 10 months and includes 85 hours of presence 
time and at least 100 hours of time to prepare and implement the TPD course in the practical phases.  

Design of the Study  
Research Question and Research Approach 

To examine effects of EmMaM, a quasi-experimental intervention study with two intervention groups 
was conducted: While in group A the TPD course was enacted by the program developers (first author 
of this paper and a colleague), in group B the program was enacted by facilitators. According to the 
aims of our study and the TPD course EmMa, we focus on the effects on teachers’ mathematical 
pedagogical content knowledge (MPCK) and their beliefs. The leading research question is: Are there 
significant differences in the development of early childhood teachers’ MPCK and beliefs between 
early childhood teachers that undertook the PD course EmMa enacted by facilitators in comparison 
to early childhood teachers that visited the PD course EmMa enacted by experts (the program 
developers)?  

Sample 

The sample of the experimental group A, the expert group, comprises of n = 76 early childhood 
teachers (n = 65 female, n = 4 male, n = 7 missing) that visited a TPD course EmMa on early 
mathematics education enacted by the program developers between 2014 und 2016. The early 
childhood teachers were between 24 and 59 years old, on average 43.97 years (SD = 10.81). All early 
childhood teachers were trained at vocational schools and were working in Germany.  

The sample of experimental group B, the facilitator group, comprises of n = 83 early childhood 
teachers (n = 76 female, n = 7 male) that visited a TPD course EmMa on early mathematics education 
enacted by nine different facilitators. The early childhood teachers visiting these TPD courses were 
between 21 and 62 years old, on average 42.27 years (SD = 11.08). The early childhood teachers were 
also trained at vocational schools and are working in five different federal states with comparable 
frameworks concerning early childhood education.  
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The developer of the EmMa program leading the TPD courses of experimental group A are the first 
author of this paper, currently a junior professor for mathematics education and a colleague, who is 
an early childhood teacher himself and currently professor for early childhood education. The nine 
facilitators leading the PD courses of experimental group B were all visiting the FPD program 
EmMaM.. The TPD courses were conducted as a part of this FPD program (practical phase) in 2018. 
The facilitators were between 31 and 57 years old, in average 43.33 years (SD = 9.83). Six facilitators 
were trained as early childhood teachers themselves and had between 11 to 30 years practical 
experience as an early childhood teacher. The other three facilitators had a Master’s degree in 
educational studies, one with mathematics as a major field of her studies. Yet, none of the facilitators 
had been significantly involved with early mathematics education during their training or studies. 
Most of the facilitators (7 out of 9) additionally reported prior experience in leading PD courses to 
different topics relevant to early childhood teaching (e.g., language and literacy) but not to early 
mathematics education. Experience in PD ranged between 3 to 300 days (M = 70.13; SD = 101.42).  

As described facilitators were supported intensively in these practical phases by the leaders of the 
FPD program. In addition, results of a qualitative study on these practical phases of EmMaM using 
the same sample showed that facilitators all stayed very close to the suggestions for the methodical 
structuring of the TPD course (Bruns et al., 2021). From this it can be followed, that the TPD courses 
visited by the early childhood teachers in experimental group A and B were comparable concerning 
content and structure but not necessarily concerning the thematic depth and mathematical correctness.  

Instruments 

Early childhood teachers’ MPCK was measured by a standardized Rasch-scaled test consisting of 35 
items (Blömeke et al., 2015). Each item on MPCK was coded dichotomously (0 = not correct/ not 
reached; 1 = correct). The Rasch scaling model was applied to the coded data. The z-standardized 
early childhood teachers’ WLEs are used as performance values for any further analyses. In our study, 
the test showed an EAP reliability1 of .58 which is comparable to earlier studies (ibid.). 

The beliefs towards mathematics in general were assessed by a questionnaire (Blömeke et al., 2017) 
using 27 items and a 6-point Likert scale. The items distinguish five beliefs facets: (1) a static 
orientation towards mathematics (7 items, Cronbach’s =.83, (2) a process-related orientation 
towards mathematics (4 items, Cronbach’s =.82), (3) an application-orientation towards 
mathematics (6 items, Cronbach’s =.80), (4) gender stereotypes regarding mathematics (5 items, 
Cronbach’s =.92) and (5) enjoyment of mathematics (5 items, Cronbach’s =.87). Every single item 
ranges from 1 to 6, mean scores have been computed for the different scales. Higher scores indicated 
that participants had a higher agreement in the mathematics-related statements. 

 
1 When calculating IRT reliability using Rasch modeling, each participant is assigned an estimated ability value expressed 
as a score distribution. The predictive reliability is 1 minus the ratio of the variance of a participant's score distribution 
relative to the sample variance. EAP represents the mean of such predictive reliabilities in the sample and is thus a measure 
of the overall reliability of the sample that can be interpreted similarly to Cronbach's α (see e.g., Neumann et al., 2010). 
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Procedures and Analysis

Data on experimental group A was collected in TPD courses led by the program developers in the 
years 2014 to 2016. Due to missing data, we have 54 (MPCK) respectively 49 (beliefs) complete data 
sets for the analysis in group A. The facilitators started their FPD program EmMaM in March 2018. 
As a part of this FPD program the facilitators lead one EmMa TPD course with 10 to 12 early 
childhood teachers in the practical phases (see Figure 1). The early childhood teachers visiting these 
EmMa TPD courses led by the facilitators in training form experimental group B. Due to missing 
data, we have 82 (MPCK) respectively 81 (beliefs) complete data sets for the analysis in group B.

In order to assess whether the early childhood teachers’ MPCK and mathematic-related beliefs 
changed from measurement point 1 to measurement point 2, we used a t-test for dependent samples. 
Based on these findings, for each competence facet a repeated measure ANOVA was used to 
determine the extent to which changes differ depending on the experimental group. The absence of 
significant differences would indicate comparable effects in both groups. 

Results
The results of a paired t-test confirm significant increases in MPCK for both groups. The early 
childhood teachers from experimental group A score a mean of 46.81 points on the pre-test for 
measuring the MPCK and a mean of 49.89 points on the post-test (t(53) = -3.03, p < .01, d = 0.26). 
The early childhood teachers from experimental group B score a mean of 47.39 points on the pre-test 
for measuring the MPCK and a mean of 50.21 points on the post-test (t(81) = -2.23, p < .05, d = 0.27). 
The results of the repeated measure ANOVA reveal a significant main effect of the measurement 
point (p < .01, .08) but not of the experimental group. There was also no interaction effect. In 
other words, early childhood teachers in both experimental groups increased their MPCK equally. 

Concerning the beliefs, the results of paired t-tests confirm significant increases in the agreement to 
process (EG A t(48) = -2.16, p < .05, d = 0.30; EG B: t(81) = -4.41, p < .001, d = 0.50) and application 
orientation (EG A: t(48) = -4.41, p < .001, d = 0.55; EG B: t(81) = -3.07, p < .01, d = 0.40) statements 
towards mathematics and in the agreement to statements concerning the enjoyment of mathematics 
(EG A: t(48) = -5.37, p < .001, d = 0.76; EG B: t(81) = -6.28, p < .001, d = 0.78) for both experimental 
groups. Furthermore, significant decreases in the agreement to static orientation statements towards 
mathematics (EG A: t(48) = 6.73, p < .001, d = 0.86; EG B: t(81) = 6.45, p < .001, d = 0.78) and in 
the agreement to gender stereotypes (EG A: t(48) = 4.69, p < .001, d = 0.58; EG B: t(80) = 4.60, 
p < .001, d = 0.42) statements regarding mathematics are also confirmed for both experimental 

TPD EmMa
enacted by program developers

October 2014 –
June 2015

FPD EmMaM

enacted by program developers

September 2015 –
May 2016  

TPD EmMa
enacted by facilitators

March 2018 – December 2018

April 2018 – Sept 2018

Figure 1: Interconnections between the TPD enacted by the program developers (group A), the FPD 
and the TPD enacted by the facilitators (group B)
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groups. The results of the repeated measure ANOVA reveal significant main effects of the 
measurement point but no main effects of the experimental group. There are also not given any 
interaction effects. In conclusion, early childhood teachers in both experimental groups succeeded 
equally in positively changing mathematics-related beliefs. 

Discussion 
Limitations of the study 

Our study bears limitations regarding the sample of early childhood teachers in the two groups. The 
TPD courses in group A and B were time-shifted by about three years. We did, however, find no 
differences between the groups on the pre-test scores and therefore concluded that the differences in 
the sample seem to be neglectable for this study. Secondly, limitations can be traced back to the 
instruments used to measure early childhood teachers’ mathematical pedagogical content knowledge. 
To compare the facilitator and the expert group regarding their learning effects, we used the same 
instrument to measure teachers’ mathematical pedagogical content knowledge (Blömeke et al., 2015). 
The test score interpretation of this instrument is, however, validated for a sample of pre-service not 
in-service teachers and the test instrument follows a rather cognitive and broad approach regarding 
mathematical pedagogical content knowledge. Further limitations occur concerning the sample of the 
facilitators. This group was very heterogenous regarding their education, experience with TPD in 
general and their experience with mathematics and mathematics education (in early childhood 
settings). Likewise, it should be mentioned that facilitators followed the suggested structure, content 
and activities of the TPD course EmMa quite closely (Bruns et al., 2021). It can therefore be assumed 
that the effects we found can partly be attributed to the concept of the TPD course EmMa.  

Interpretation and Conclusion 

To our knowledge this is the first study that addresses the criticism of expertise dilution with each 
level of the cascades by comparing effects of TPD courses enacted by facilitators to effects of TPD 
courses enacted by experts in the field. As did previous research (Bell & Higgins, 2010; Carney et 
al., 2019; Koellner & Jacobs, 2015; Lange, 2014; Turner et al., 2017), our study found that TPD 
courses enacted by facilitators can achieve effects on teachers’ learning concerning their MPCK as 
well as their beliefs – if facilitators are qualified accordingly for the job and supported by experts in 
the field. Adding to the state of research, our study found that these effects are comparable to effects 
of experts in the field. Our study did not indicate any differences in the effects of the TPD course 
between the expert group and the facilitator group regarding the development of teachers’ MPCK nor 
their mathematics-related beliefs. This result supports the idea of scaling up PD using FPD (Borko, 
2004; Koellner et al., 2011; Prediger et al., 2019) as it reveals that experts and facilitators can achieve 
the same effects on teachers’ learning through TPD.  

However, this result must be considered in the light of the FPD concept: The effects found in this 
study are not only based on quality of the TPD courses lead by the facilitators and the expertise of 
the facilitators, but also on the extensive resources and specific materials used to support facilitators 
in leading TPD courses (s. a. Borko, 2004; Koellner et al., 2011; Prediger et al., 2019). It can therefore 
not be ruled out that there is a dilution of expertise with each level of the cascades. In fact, in an 
accompanying qualitative study, we found that the facilitators make a lot of incorrect statement during 
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their TPD courses (Bruns et al., 2021). Our results of this study do, however, indicate that this lack 
of expertise can be compensated by the close monitoring of the facilitators and the high quality of the 
TPD resources. Our results therefore support those critical perspectives on the cascade model that 
direct their criticism towards the implementation of the cascade model in practice (Hayes, 2000; 
Wedell, 2005). Still to be investigated is the extent to which the effects of the TPD courses differ 
depending on the facilitator (see also Bell & Higgin, 2010; Carney et al., 2019). Nevertheless, we 
conclude from this that scaling up TPD by qualifying facilitators to enact TPD at several sites can be 
successful – but probably has to be accompanied not only by extensive facilitator training but also 
high-quality resources to facilitate the TPD. 

References 
Bell, C. A., & Higgins, T. (2010). Measuring the effects of professional development on teacher 

knowledge: The case of developing mathematical ideas. Journal for Research in Mathematics 
Education, 41(5), 479–512. 

Blömeke, S., Jenßen, L., Dunekacke, S., Suhl, U., Grassmann, M., & Wedekind, H. (2015). 
Leistungstests zur Messung der professionellen Kompetenz frühpädagogischer Fachkräfte. 
Zeitschrift für Pädagogische Psychologie, 29(3–4), 177–191. https://doi.org/10.1024/1010-
0652/a000159 

Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational 
Researcher, 33(8), 3–15. https://doi.org/10.3102/0013189X033008003 

Borko, H., Koellner, K., & Jacobs, J. (2014). Examinig novice teacher leaders’ facilitation of 
mathematics professional development. Journal of Mathematical Behavior, 33, 149–167.  

Bruns, J., Eichen, L., & Gasteiger, H. (2017). Mathematics-related competence of early childhood 
teachers visiting a continuous professional development course: An intervention study. 
Mathematics Teacher Education and Development (MTED), 19(3), 76–93. 

Bruns, J., Schopferer, T., & Gasteiger, H. (2021). Adaptionshandlungen von Multiplikatorinnen und 
Multiplikatoren zur frühen mathematischen Bildung – Beschreibung und Bewertung aus 
fachbezogener Perspektive. Journal für Mathematik-Didaktik, 42(1), 243–271. 
https://doi.org/10.1007/s13138-020-00175-y 

Carney, M. B., Brendefur, J. L., Hughes, G., Thiede, K., Crawford, A. R., Jesse, D., & Smith, B. W. 
(2019). Scaling professional development for mathematics teacher educators. Teaching and 
Teacher Education, 80, 205–217. https://doi.org/10.1016/j.tate.2019.01.015 

Hauge, K. (2019). Teachers’ collective professional development in school: A review study. Cogent 
Education, 6(1), 1–20. https://doi.org/10.1080/2331186X.2019.1619223 

Hayes, D. (2000). Cascade training and teachers’ professional development. ELT Journal, 54(2), 
135–145. https://doi.org/10.1093/elt/54.2.135 

Jacobs, J., Seago, N., & Koellner, K. (2017). Preparing facilitators to use and adapt mathematics 
professional development materials productively. International Journal of STEM Education, 4(1), 
30. https://doi.org/10.1186/s40594-017-0089-9 

Proceedings of CERME12 4674



 

 

Kennedy, A. (2014). Models of continuing professional development: A framework for analysis. 
Professional Development in Education, 40(3), 336–351.  

Koellner, K., & Jacobs, J. (2015). Distinguishing models of professional development: The case of 
an adaptive model’s impact on teachers’ knowledge, instruction, and student achievement. Journal 
of Teacher Education, 66(1), 51–67. https://doi.org/10.1177/0022487114549599 

Koellner, K., Jacobs, J., & Borko, H. (2011). Mathematics professional development: Critical features 
for developing leadership skills and building teachers ’ capacity. Mathematics Teacher Education 
and Development, 13(1), 115–136. 

Krainer, K. (2015). Reflections on the increasing relevance of large-scale professional development. 
ZDM - Mathematics Education, 47(1), 143–151. 

Lange, S. (2014). Learner orientation through professional development of teachers? Empircial 
results from cascade training in Anglophone Cameroon. Compare: A Journal of Comparative and 
International Education, 44(4), 587–612. 

Neumann, I., Neumann, K., & Nehm, R. (2011). Evaluating Instrument Quality in Science Education: 
Rasch based analyses of a Nature of Science test. International Journal of Science Education, 
33(10), 1373–1405. https://doi.org/10.1080/09500693.2010.511297 

Perry, E., & Boylan, M. (2018). Developing the developers: supporting and researching the learning 
of professional development facilitators. Professional Development in Education, 44(2), 254–271. 
https://doi.org/10.1080/19415257.2017.1287767 

Prediger, S., Roesken-Winter, B., & Leuders, T. (2019). Which research can support PD facilitators? 
Strategies for content-related PD research in the three-tetrahedron model. Journal of Mathematics 
Teacher Education, 22(4), 407–425. https://doi.org/10.1007/s10857-019-09434-3 

Roesken-Winter, B., Hoyles, C., & Blömeke, S. (2015). Evidence-based CPD: Scaling up sustainable 
interventions. ZDM - Mathematics Education, 47(1), 1–12.  

Schifter, D., & Lester, J. B. (2005). Active facilitation: What do facilitators need to know and how 
might they learn tt. Journal of Mathematics and Science: Collaborative Explorations, 8, 97–118. 

Thurlings, M., & den Brok, P. (2017). Learning outcomes of teacher professional development 
activities: a meta-study. Educational Review, 69(5), 554–576.  

Turner, F., Brownhill, S., & Wilson, E. (2017). The transfer of content knowledge in a cascade model 
of professional development. Teacher Development, 21(2), 175–191. 

van Driel, J. H., Meirink, J. A., van Veen, K., & Zwart, R. C. (2012). Current trends and missing links 
in studies on teacher professional development in science education: A review of design features 
and quality of research. Studies in Science Education, 48(2), 129–160.  

Wedell, M. (2005). Cascading training down into the classroom: The need for parallel planning. 
International Journal of Educational Development, 25(6), 637–651.  

Proceedings of CERME12 4675



 

 

The role of the mathematics teacher educator in supporting 
engagement with global issues in the mathematics classroom 
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The world is in a period of rapid change. Climate chaos is leading to floods and droughts and 
exacerbating inequality. A recent global survey indicated a majority of young people are ‘very’ or 
‘extremely’ worried about climate change. This paper asks, in such a context, what is the role of 
mathematics education and, in particular, what can mathematics teacher educators (MTEs) do, in 
supporting teachers who want to engage in bringing global issues into their teaching? I report on 
work taking place in one university in the UK where, for the last 6 years, MTEs have been 
encouraging teachers to address global issues in their classroom. One role which has emerged for a 
MTE is in supporting the translation of scientific work on climate change into classroom tasks. In the 
UK, the spaces for such work are being squeezed in an increasingly politicized education system. The 
lens of critical mathematics education offers a mechanism for reflection on the role of the MTE. 

Keywords: Global challenges, climate change, learning to teach mathematics, role of the 
mathematics teacher educator, critical mathematics education. 

Introduction 
The effects of climate change, or the climate emergency, are visible across the world. The year 2021 
has seen extreme weather in the form of tornadoes, droughts leading to wildfires, rainfall leading to 
unprecedented flooding and more. Mathematics is deeply implicated in climate change and other 
global issues, for example, in how events are communicated and how they are modelled. 
Mathematical models of climate, pollution, virus spread, the economy have real world effects and so 
mathematics is also implicated in the creation of some of the global challenges facing humanity. For 
instance, mathematical models of the economy, which place no value on materials before they are 
extracted, facilitate exploitation of natural resources and the depletion of environments which have 
historically sustained communities. A report on a survey, about to be published (but trailed in the 
media) by Caroline Hickman at Bath University, UK, looked at the views of 10,000 16-25-year-olds 
across 10 countries and found high levels of eco-anxiety: 60% of young people surveyed said they 
felt ‘very’ or ‘extremely’ worried about climate change. In such contexts, a mathematics education 
which continues its business as usual, in isolation from the world outside the classroom, seems 
increasingly jarring. This paper aims to investigate what mathematics teacher educators (MTEs) 
might do. What role might a MTE take, in working with prospective or in-service teachers, in order 
to support a re-thinking of the kinds of topics or discussions which take place in mathematics 
classrooms, to include global issues and challenges such as climate change? My way of approaching 
such questions is informed by critical mathematics education and I set out this perspective in the next 
section. I then report on work that has taken place over the last 6 years, at the University of Bristol, 
in the UK, in which MTEs have been working with teachers to encourage and support tackling global 
issues in the mathematics classroom. 
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Critical mathematics education 
Critical mathematics education refers to work which brings insights from critical theory into the 
specific sphere of mathematics education. Andersson and Barwell (2021) offer a summary, that 
critical mathematics education: “is driven by urgent, complex questions; is inter-disciplinary; is 
politically active and engaged; is democratic; involves critique; and is reflexive and self-aware” (p.3, 
italics in original). This characterization says to me that critical mathematics education is particularly 
appropriate to a consideration of how issues such as climate change might be relevant to the work of 
a MTE. Global challenges such as the climate emergency, and other ecological disasters are certainly 
urgent and complex and inter-disciplinary. Addressing such questions as a MTE (in the UK) is a 
political statement since there is now a mandated curriculum for teacher education which is focused 
on the techniques and craft of teaching, with no mention, for instance, of our role in preparing citizens 
for a precarious future. And, as I hope to demonstrate in this paper, the use of critical mathematics 
education for MTEs can provide a tool for reflexivity. 

Andersson and Barwell (2021) identify three broad schools of work within critical mathematics 
education (acknowledging that such divisions are a simplification): Freirean; Foucauldian; and a 
Nordic school. They characterize the Freirean school as focused on the use of mathematics for 
consciousness raising, for “reading the world”, in a way that draws parallels to Freire’s (1970) work 
on literacy as consciousness raising. Within this tradition there is often an explicit aim to challenge 
oppression and effect change (Gutstein, 2006). The Foucauldian school investigates the (often 
invisible) uses of the discourses of mathematics in the “organization of human affairs” (Andersson & 
Barwell, 2021, p.9), for instance, the way in which middle class assumptions about what constitutes 
child development can become accepted as what it means to be “normal”, or the way in which 
differences between girls’ and boys’ relations to mathematics are constructed (Walkerdine, 1988). In 
the Nordic school, Skovsmose (1994) explores the use of technology in society and argues for the 
need for students in school to not only be taught to do mathematics but also to critique how 
mathematics is used and how it gets embedded in technologies which have real social effects, such 
as algorithms for welfare payment distributions. 

Perhaps surprisingly, there has been relatively little work linking critical mathematics education to 
issues such as climate change, with exceptions such as Renert (2011) and Barwell (2013); although 
this is a situation that now appears to be changing (e.g., Barwell & Hiis Hauge, 2021; Steffensen et 
al., 2021). There also appears to be little work bringing critical mathematics education into 
discussions of the work of mathematics teacher educators. This article brings both of these strands 
together. I do not adopt one particular school of thought within critical mathematics education but 
rather use the range of meanings in order to investigate evidence and possibilities for critical 
mathematics education in the role of a MTE. I use the broad characterization of the three schools of 
critical mathematics education as a set of ideas, offering opportunities for reflection and critique of 
the practices of MTEs. I will be reporting on a long-term project which is on-going at the University 
of Bristol. This is a project that embodies a process of curriculum innovation within our teacher 
education course and it has not been guided explicitly by ideas of critical mathematics education. In 
the next section, I offer a description of this project, before reporting on some of its outcomes via a 
reflection on three professional journal articles. 
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The Green Apple Project 
The name “Green Apple” came from the internal funding scheme which helped kick-start the project 
in 2015 at the University of Bristol, UK. The funding was to support innovation in our 1-year teacher 
education course for secondary school, which leads to a Post Graduate Certificate of Education 
(PGCE). The idea was to support teachers bringing questions of global challenges into their subject 
teaching, or their work as form tutors (a pastoral role required of teachers in England). Two (or more) 
“Green Apple representatives” (reps) are recruited from each of the 8 subjects offered on our PGCE 
course and these reps meet with a group of teacher educators (including MTEs) on three occasions 
over the year. The reps are responsible for disseminating outcomes from meetings to the rest of their 
subject group. Meetings introduce reps to ideas (such as the framing of “wicked problems”, or of 
education for sustainable development) and allow time for discussion between and across subject 
groups and offer prompts for action between meetings. Classroom resources are shared and previous 
years’ work is available. Over the last 6 years, the project has introduced and run sessions with all 
prospective teachers, provoking thought on the role of global challenges in their subject teaching.  

In order to present some of the outcomes of the project and to focus on the role of the MTE, I report 
here on three articles, which have been written by mathematics members of the Green Apple Project, 
and which have appeared in (or are soon to appear in) the professional journal Mathematics Teaching. 
These are the only publications from the group in a professional journal. In what I report here, I focus 
on the tasks offered in the articles, and reflect on the role of the MTE in each case, linking to ideas 
of critical mathematics education.  

Sustainable futures, from 2018 

Karl Bushnell wrote an article for Mathematics Teaching (Bushnell, 2018) based on resources he had 
developed and trialed for his own classroom. Karl had done his PGCE at the University of Bristol 
and taken an active role in the Green Apple project. The work he wrote about was conducted when 
he had taken up a job in a school near Bristol. Karl continued his Master’s in Education (with a 
specialization in Mathematics Education) at the University of Bristol and developed an approach to 
offering tasks which paralleled standard exercise questions, with questions that led students to 
answers which told them something about the global environment. An example is given in Figure 1,  
which shows the worksheet for students, involving a sequence of tasks leading them to calculate the 
sea-level rise that would be caused by the Greenland icesheet melting.  

In Figure 1, tasks are paired, to have one question, or set of questions, with no context and one 
question drawing on the same skills but in the context of melting ice sheets. For example, the second 
task (top right of the sheet) has three prisms and asks students to find their volume. Then the prompt 
is: “Given that the global water [sic] surface area is 361,132,000 square kilometres, and using your 
answer to Question (1) [which was to convert 50 metres into kilometres], calculate the volume of 
water needed to cause a 50m rise in sea levels”. The final question invites students to write down 
their thoughts having done the calculations, i.e., to reflect on the implications of the predicted change. 

The tasks were developed entirely by Bushnell, i.e., without direct MTE involvement. The role of the 
MTE, in the case of the work written up here, was one of supporting the raising of issues (via the 
Green Apple work on the PGCE course) and then subsequent support via a flexible Master’s 
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programme that allowed teachers to follow their own classroom interests. Bushnell was an engaged 
and passionate individual who took the initiative to continue to develop themes from the Green Apple 
project after he had left the PGCE course as a qualified teacher. 

 
Figure 1: A sequence of tasks calculating sea-level rise from the Greenland icesheet melting 

This task, and the MTE support, do not appear to attempt to offer a critique of the mathematics being 
used (as in the Foucauldian or Nordic schools). The mathematics is presented as a neutral tool and 
the assumptions behind the model being used are not discussed, for instance. The MTE did not 
provoke questions about this neutrality, nor prompt reflection on possible links to social action, or 
oppressions which are entailed in the causes of sea level rise (e.g., consideration of the almost 
incalculable human suffering which would ensue). There seems to be an aim to raise consciousness 
(edging towards a Freirean idea); in the classroom task the aim is to raise consciousness of the 
consequences of the melting of the Greenland icesheet. And the MTE role appears to have raised 
consciousness, or awareness, for the teacher, of possibilities for the use of global challenges in 
mathematics teaching and allowed space for reflection on how this could be done, while also 
maintaining a focus on the curriculum that needs to be taught in secondary school. 

Global challenges, from 2019-20 

Across two articles (Brown et al., 2021 Part 1; Brown et al., 2021 Part 2) 9 prospective teachers on 
the PGCE course (in the 2019-20 cohort), supported by their 3 MTEs, each wrote about one task they 
had either created or found and then used (or planned to use) with classes they were responsible for 
in their placement schools. By this time, several years into the Green Apple project, global challenges 
were involved in one of the mathematics programme’s Master’s assignments on the PGCE course, 
and so every prospective teacher had to engage, in at least one lesson, with thinking about how to 
incorporate an issue such as climate change into their classroom teaching. I relay below 5 of the 9 
tasks reported on across the articles. Two tasks began with simply stated challenges to provoke 
discussion, which then developed into more extended activity. 

“How does a country’s GPD affect a person’s life?” (Part 1, p.9) 
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“How many trees could fit in this room?” (Part 2, p.9) 

The other tasks got students doing some work or calculations that did not necessarily initially relate 
to a global challenge and then led into a key question. Here are three examples. 

Based on data about incomes in England and Romania: “Which country has a bigger pay gap 
between male and female workers?” (Part 1, p.10) 

Based on drawing paths and associated loci (to model a potential Covid transmission distance 
of 2m): “assess potential transmission points” (Part 1, p.13) 

Having worked out the area of the school grounds and, based on aerial photographs of 
deforestation in Brazil: “find the area that had been cut down, and how many ‘areas of the 
school’ that this represented” (Part 2, p.11) 

Several of these lesson ideas came from the prospective teachers’ engagement in their Master’s 
studies, where they had to plan a topic (around 5 hours of teaching) which involved at least one global 
challenge being addressed. For other teachers, these tasks were developed in response to a session 
given to all prospective teachers on the course, on Green Apple issues. The role of the MTE has 
shifted here, to one of mandating some exploration of global issues. As MTEs, having seen and been 
impressed by the work developed by these teachers, my two colleagues and I then proposed some 
joint writing. As MTEs we helped edit and structure the writing and supported its submission. 

As with the previous example, these tasks, and the MTE support for them, appear primarily focused 
on consciousness raising (Freirean school) without perhaps drawing attention to the uses of 
mathematics (the Nordic school) and hardly pointing towards more Foucauldian questions around the 
organisation of society. In other words, the tasks appear focused on raising awareness of issues such 
as deforestation and the MTE role appears, as before, primarily focused on raising awareness of 
possibilities within the classroom. The write-ups of the tasks suggest wider implications about 
society, and links to social activism, were left implicit and that would also be true to say about the 
MTE support being offered (i.e., consideration of such wider issues was not prompted or provoked). 

Climate science, from 2021 

In early 2021, I began a collaboration with a scientist (Joseph Darron) from the UK Met Office, after 
this scientist was given a secondment of a day a week to work at the University of Bristol. Joseph’s 
research centres around questions of how climate models and statistics are communicated (e.g., to 
politicians). After a few months of intermittent discussions about making his research into something 
usable in the classroom, we invited a local partner school to see if they would like to join us. One 
teacher (Barney Rolph) volunteered and worked on adapting and trialing the tasks that we were 
developing. Barney had been on the PGCE course at the University of Bristol and been involved in 
the Green Apple group. The task Barney adapted to use in his classroom was the following (Coles et 
al., 2022, p.7): 

Climate models are used to simulate the climate and predict changes. We will be focusing on 
models that can be used to predict how much wetter or drier a place might be in the future. 
There are different models, made by different scientists.  
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Botswana (in Africa) currently averages around 34mm of rain per month.  

Here are 9 projections for the change in rainfall in Botswana (in mm per month) in the coming 
years: 

+17; +13; +6; -2; -2; -6; -6; -6; -14 

Your task: 

Imagine you are an advisor to farmers in Botswana. You are going to prepare a written summary 
of this data advising farmers of future risks and changes to the climate. Think about different 
mathematical techniques that you have learnt that might help analyse and/or present this data. 

In the article, Barney offers some of the response of his class to this prompt and further work he went 
on to do with them using climate data. The MTE role is quite different in this case, compared to the 
previous two. Here, the MTE acts as a conduit between a climate scientist and a teacher. As the MTE 
involved, I remember recognizing, in Joseph’s presentation of his research, its classroom potential. 
The questions he was grappling with – to do with what the consequences are of different presentations 
of data for how they are interpreted – seemed like ones that students in schools could access. I also 
recognized that the data Joseph was using seemed accessible for quite young students and, in my 
experience as a teacher, it is not easy to find real data in a form that is suitable for a classroom. 

The task here, in contrast to the previous ones, feels more aligned to the Nordic school idea of inviting 
reflection on the use of mathematics and how complex data might be summarized mathematically. 
And hence, I also interpret the MTE role in this case as provoking awareness of the use of 
mathematics. There may be elements of consciousness raising also, in the task and in the work of the 
MTE, but again little attention to wider societal questions and connections to possibilities for action.  

Discussion 
Having presented the work of the Green Apple project, as it has manifested in three professional 
journal articles, and offered a description of the role of the MTE in each case, I now summarise and 
then reflect further on these outcomes. 

My aim in offering the work of the Green Apple project has been to allow reflection on the question: 
What role might a MTE take, in working with prospective or in-service teachers, in order to support 
a re-thinking of the kinds of topics or discussions which take place in mathematics classrooms, to 
include global issues and challenges such as climate change?  

As alluded to above, I interpret the MTE roles in the first two cases as being most aligned to a Freirean 
perspective on critical mathematics education, with a focus on consciousness raising. However, 
having said that, compared to examples offered in Freire (1970), the roles of the MTE in these cases 
are relatively limited examples of consciousness raising. Nonetheless there is a linking of reflection 
and action, in the work of the teachers, to implement changes in their classrooms and a hope, on the 
part of the MTEs, that such work will continue into the future. The final example, of the MTE in the 
role of conduit or bridge building, edges into more of a Nordic school version of critical mathematics 
education, in raising questions about the use of mathematics in communicating data about climate 
change, and the huge uncertainty of current models (despite the certainty that change is happening). 
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Considering the second example, there seems to be a power in mandating engagement in considering 
global challenges, as part of a teacher education programme, and supporting further engagement of 
those who show interest by setting up and coordinating a co-writing opportunity. In the final example, 
the use of mathematics by politicians, policy-makers and scientists is beginning to be explored in the 
task, in contrast to the previous two articles.  

In all cases, the Foucauldian school of critical mathematics education points to possibilities for the 
role of a MTE that were not taken. In Bushnell’s work, a possible MTE provocation might have been 
to invite consideration (on the part of the teacher and/or students) of who is in danger from sea-level 
rise and where do they live? In the case of the 2019-20 writing, similar provocations might have been, 
who benefits from de-forestation? how fairly spread is a country’s GDP? In the climate model 
scenario, again, we did not address questions of the impacts of drought or flood on difference sectors 
of society. In a UK context it is unlikely such wider question would be addressed in a mathematics 
classroom but, in reflecting on MTE roles not taken, these seem like potentially significant 
provocations for teachers, in forcing a consideration of how global issues link to the organisation of 
societies and the inequalities which are exposed by global forces such as climate change.  

As demonstrated here, the three lenses of critical mathematics education offer a mechanism for 
recognising what is not being done, as a MTE. Questions I might ask myself (e.g., in planning to 
work with prospective teachers) from each of the different perspectives are:  

What are the global challenges that teachers I am working with care about? What tasks and 
mechanisms (e.g., as part of a teacher education course) can I offer, to support them acting on their 
interests, in their own classrooms? (a Freirean perspective). 

When does mathematics teaching reinforce, or remain silent about, inequalities embedded in the 
wider organisation of society? Do I call attention to such absences? What might teachers’ lived 
experiences of inequality be and what sensitivities will be needed to explore this (e.g., the space 
and safety to express reactions and know they have been heard)? (a Foucauldian perspective). 

In any context of mathematics teaching (including my own), do I invite reflection on the uses of 
the mathematics being learnt? Can I link with a professional, who is working on a global challenge, 
and explore the reality of their use of mathematics? How might I make resources available for 
teachers in a form that provokes reflection on the uses of mathematics? (Nordic school). 

Despite the developments evident over the six-year period of the Green Apple project, I am left with 
a sense that the resources developed by teachers and the related work of MTEs remains on the 
margins. The tasks developed seem to represent likely one-offs in the teachers’ practices. Similarly, 
for the MTEs, a mandated “core content” of initial teacher education precludes any sustained focus 
on global challenges and hence support for such work also has a “one-off” feel. 

For both teachers and MTEs there are demands that are hard to ignore (exam success of their students, 
for the teachers; and, prospective teachers passing a teaching qualification, for the MTEs) both of 
which, in the UK, pull away from a focus on global challenges. So, although I have provided some 
answers to my question about what are possible roles of a MTE in supporting such work, I am struck 
by the limited nature of the roles I have been able to embody, in comparison to the complexity and 

Proceedings of CERME12 4682



 

 

depth of the issues facing the planet, and amidst a politicization of educational decisions in the UK 
that, to take one example, mandates against discussion of “anti-capitalist” perspectives in schools. 

One thought that sustains me, however, is that we are developing MTE practices, roles and resources 
to support a curriculum-in-waiting. COVID has shown how rapidly changes can be made in education 
systems. Over the six years of the Green Apple project I have sensed prospective teachers increasingly 
wanting to work on inter-disciplinary and global issues, through the lens of their subject teaching. I 
suggest that critical mathematics education offers a ready, and perhaps untapped, set of resources to 
help MTEs think about possibilities for transformation in their roles and practices and, one hope I 
have is that prospective and in-service teachers will increasingly demand for such change. 
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Well-prepared facilitators of mathematics PD are essential, yet few studies offer nuanced insights 
and content-specific practices for how facilitators support teachers’ productive mathematical 
engagement. This study utilizes a framework of productive disciplinary engagement (PDE) to 
investigate the social and mathematical practices of 48 aspiring facilitators and two expert PD 
leaders across a two-phase design-research study. We found that the PDE framework allowed us to 
identify participant and facilitation practices that afforded and constrained productive engagement 
with disciplinary content and practices. We discuss the use of PDE as an analytic and design 
framework for facilitator and teacher PD. This study contributes insights on content-specific PD 
practices applicable to a wide range of mathematics PD models.

Keywords: Facilitators, professional development, mathematics education, facilitator practices.

Introduction
Decades of U.S. policy and international research advance that effective professional development 
(PD) must actively engage participants in disciplinary work. In mathematics PD, this means offering 
opportunities for teachers to engage in the mathematics relevant to their classrooms. Previously, we 
have argued that goals for doing mathematics are underspecified, advocating for PD to attend to 
teachers’ specialized content knowledge (SCK) (Ball et al., 2008; Elliott et al., 2009). Well-prepared 
facilitators of mathematics PD are essential to realizing these goals and advancing PD research 
(Karsenty, 2021; Lesseig et al., 2017). Over the past decade, attention has been paid to the growth of 
PD facilitators (Krainer et al., 2021); however, few studies offer nuanced insights and content-specific 
practices for how facilitators support productive mathematical engagement when working with 
teachers in PD (Borko et al., 2014). We take up this aim by examining a nested context of facilitator 
PD focused on teacher PD, in which two expert leaders (ELs) worked with aspiring facilitators. 
Knowing how and what moves to support teachers’ productive engagement is vital to high-quality 
PD (Tekkumru-Kisa & Stein, 2017).

This study is situated in a two-phased design research project, Researching Mathematics Leader 
Learning (RMLL). The paper examines participants’ collective work on one mathematics task across 
four small groups and two whole group discussions using a framework of productive disciplinary 
engagement (PDE; Engle & Conant, 2002). We use this framework to understand what makes “doing 
mathematics” in PD effective and ways facilitators might guide collective mathematical activity 
toward particular goals for teacher learning. 

Theoretical perspective
Elsewhere we have argued that teacher learning of mathematics differs from students’ learning in at 
least two specific ways (Elliott et al., 2009). Teachers have experienced the content at least once as 
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students and often have revisited the mathematical ideas as teachers or PD participants. Second, in 
PD, teachers are working with peers and are often colleagues of the facilitator, resulting in different 
authority arrangements than those among teachers and students. These differences, coupled with the 
understanding that teachers come into PD with varied orientations toward mathematics, mathematics 
teaching, and learning, can create tensions as social positioning is negotiated among colleagues when 
doing mathematics (Holland & Lave, 2009). As a result, we have argued that a goal for teachers’ 
mathematical learning in PD is to develop SCK (Ball et al., 2008). With this goal, facilitators must 
anticipate and navigate the range of ways teachers may leverage mathematical concepts while 
simultaneously holding teachers accountable to the practices of the discipline and supporting their 
authority by positioning them as competent. Facilitators must also negotiate what constitutes a 
mathematical explanation, how errors and uncertainty are valued, and how social relations and 
positioning are mediated. This study utilizes the PDE framework as a lens to consider the dynamic 
interplay among social and mathematical aspects of the work accomplished by aspiring facilitators 
(teacher leaders) in a PD setting. Our analysis provides an empirical argument for the utility of the 
PDE framework addressing how productive disciplinary engagement is afforded or constrained in 
collective mathematical work in facilitator PD.

Adult learning involves cognitive, social, and cultural dynamics inseparable from contexts and 
content. Consistent with this situative perspective, we use PDE to examine the activity system - actors 
engaged with one another, using practices and resources to enact activity - as our unit of analysis 
(Holland & Lave, 2009). A vital feature of the study context of facilitator PD is that these actors 
belonged to at least three communities of practice central to doing mathematics - aspiring facilitators, 
previous participants in mathematics PD, and mathematics teachers. The complexity of these 
overlapping communities frames the collective work of doing mathematics in this setting and the 
social positions occupied by participants. Awareness of the practices nested within these multiple 
communities is vital to evaluate the productivity of PD engagement.

Productive Disciplinary Engagement
Engle and Conant (2002) describe productive engagement as the intensity and extent to which 
learners progress on a problem over time. Disciplinary engagement involves working toward goals 
by individuals and groups using the concepts and practices of that discipline. PDE frames how we 
make sense of ideas, practices, and discourse when a group of aspiring facilitators solve and share
solutions to mathematics tasks meant to support them in developing mathematical knowledge for 
teaching and leading. Engle and Conant (2002) operationalize PDE as a dynamic system of four 
coordinated tenets: problematizing–resources and authority–accountability, suggesting that when any
tenet is more dominant or missing, PDE is in jeopardy.

Problematizing refers to efforts where disciplinary uncertainties arise. Uncertainty involves questions 
or indecision regarding what to do, conclude, or justify. Productivity increases as learners reflect on 
uncertainty and employ resources to alleviate it. Resources might be tools, artifacts, or practices 
needed to do particular kinds of disciplinary work. Problematizing is advanced when learners have 
sufficient resources and are encouraged to question and make proposals or challenges. As learners 
assert authority, they express their agency to define, address and resolve disciplinary problems. 
Authority is expanded as learners take control over problematizing the disciplinary content. Learners’ 
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authority needs to be balanced by accountability to how one’s ideas make sense and are relevant to 
the work of one’s peers, others, and to the discipline. PDE was conceived as a set of design principles 
to understand the quality of learning settings (Engle & Conant, 2002). We extend PDE’s application 
to focus on the supporting conditions of facilitation in the context of PD. We consider the 
framework’s utility as an analytic and design tool across facilitator and teacher PD.

Context
RMLL’s five-year design-research project prepared facilitators to lead mathematical tasks in PD 
using a series of PD videocases to support productive mathematical discussions (Elliott et al., 2009). 
In six seminars in Phase I, facilitators solved mathematics tasks, discussed solutions, and analyzed
facilitation features within PD videocases (c.f., Lesseig, et al., 2017). Math tasks were identical to
those in student textbooks or PD curriculum. In eight seminars in Phase II, facilitators again solved 
mathematics tasks, discussed solutions, and analyzed videocases, but there was an increased emphasis 
on teacher learning goals to develop SCK. In Phase II, we redesigned mathematical tasks to foster 
and focus mathematical conversations on concepts and practices critical for teaching (Lesseig et al., 
2017). With these “reframed–tasks,” we aimed to invoke uncertainty by foregrounding mathematical 
structure while simultaneously providing facilitators with resources to coordinate representations as 
they explored mathematical patterns and offered conjectures and justifications.

Methods
We analyzed two small groups in Phase I (three and four members), two small groups in Phase II 
(four members each), and two whole group discussions (Phase 1, n =11, Phase II, n = 37) as 
facilitators worked on the Staircase Task (Noyce Foundation, 2005). This task is a visual patterning 
task in which facilitators were asked to determine the number of cubes needed to build the nth staircase 
(i.e., the sum of consecutive integers). In Phase II, after facilitators worked on the Staircase task, they 
were given the reframed task, which pressed them to coordinate representations (visual models,
expressions, and tables) to illustrate solutions to the quadratic relationship that can be generalized as 
[n(n+1)]/2. We were not looking for evidence of individuals’ cognitive resources; instead, we 
examined patterns of practices and how PDE was afforded or constrained.

First, we viewed the video records to develop a consistent idea unit of leading speaker and focus. Our
coding scheme captured the mathematical and social interactions in each idea unit. Disciplinary codes
included claims, justifications, and representations. Social codes noted whose ideas were made public 
and traced how the groups took up these ideas. We also noted how individuals positioned themselves 
or were positioned by others. Based on this coding, we wrote summative memos of small and whole 
groups examining how work was accomplished in light of the four PDE tenets to illuminate 
similarities and differences across groups (Miles & Huberman, 1994). We report on critical ideas 
across phases to illustrate the interaction of facilitators’ mathematical and social work (given 
pseudonyms initials) and the two ELs (noted as L in the transcript).

Results
Across both phases of small groups, most facilitators revealed their uncertainty with the Staircase 
task identifying a recursive relationship in their table (figure number and total cubes). Patterns were 
described as adding the figure number to the previous staircase, the sum of consecutive addends, or 
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a generalized sequence. Facilitators’ discussion revolved around various explanations for the 
recursive pattern and their attempts to find a formula that directly related the figure number to the 
number of cubes in the staircase. Most facilitators could not coordinate resources within their group 
to find the summation or move to a closed-form solution. A Phase I small group narrated a part of 
their uncertainty in the following interchange.

CK: This might be too long and cumbersome, but I'm thinking n+n-1+n-2 ((GT saying 
it at the same time))

GT: I wonder if there's another way to state that?
CK: I don't have any idea.
LN: But that's what it is
GT: Yeah, but isn't there an easier way to put it?
CK: There's gotta be.
LN: But how do you show a sequence?
CK: Well, I started writing out the actual numeric equation, so for 3, it equals 3+2+1,

and so for 4, it equals 4+and the quantity 3+2+1.  Do you see what I'm saying?…
LN: I don't know how to show sequencing in algebraic thinking except for parentheses
GT: Yeah, I don't know either. I can't remember.

Mathematical uncertainty made public 

As illustrated above, facilitators willingly made their uncertainty public, pushing papers into the 
center of the table to show their reasoning and sharing different patterns they noticed. Additional 
resources were needed to move forward within groups where uncertainty coalesced toward the same 
strategy (e.g., remembering how to sum a sequence). The compressed knowledge of previous 
mathematics and the various ways that different mathematical concepts were coordinated perpetuated 
uncertainty unless further resources were recruited into facilitators’ discussions.

When uncertainty was public, facilitators often positioned themselves in terms of mathematics. When 
attempting to generalize patterns, we heard facilitators suggest that they were “visual thinkers,” not 
“formula queens,” and label peers as “the Algebra teacher,” which conferred higher status. The 
positioning of facilitators often provided insights into the uncertainty they faced. We also noticed that 
this social positioning could result in facilitators deflecting their authority and hampering the 
accountability of the facilitator’s ideas to the discipline. This showed up in various ways, such as 
presenting strategies but not knowing how to continue because of faulty understandings 
(“remembering”) or in compressed solutions that were not pressed on to examine the mathematical 
claims and unpack justifications.

A counter-narrative to the deflecting of authority and accountability to the discipline emerged when 
facilitators asked how a strategy works, whether it always works, and how a variable was defined. In
Phase I we noted that these questions were potentially powerful, yet justification wasn’t normative,
and incorrect mathematical responses were not probed. However, we saw the expert leader press for 
accountability in the whole group by prompting facilitators to define variables and coordinate 
representations (visual model with expressions) to justify claims. Facilitators, in turn, challenged 
mistaken ideas pressed for further elaborations of mathematical concepts, and the expert leader 
continued to press for accountability to the discipline. This created opportunities to slow down 
conversations and connect resources to the uncertainty that had emerged in small groups.

The following are illustrative interchanges from the Phase I whole group.
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NC: ...So first, if you start with a 3 by 3, so when I looked at that, you could just divide 
this.  So, this would be x-squared.

L: And why is it x-squared?
NC: If you complete the whole square…(pointing to the additional squares added to 

figure 3 staircase).
L: So, what's x?
NC: X would be one dimension, one side. In this case, x would equal 3.
Moments later, in NC’s solution discussion
L: So, I'm curious as to why you subtract the [pointing to quantity ½ x2 - ½ x]…
SL: Okay, so I don't get, okay, here I am again. I don't get why that's ½ x, those three 

little chunks.
NC: Well, x is 3 squares, right?
SL: Ok. Yes, yes.
NC: And so, ½ x would be one square and a half square so if this (points to the squares 

on diagonal that have been cut in half) equals x, then this (points to the portion of 
squares on diagonal that needs to be included to create staircase) equals ½ x.

In Phase II, pressing questions in small groups like those in Phase I resulted in accountability to one 
another. Yet, we also found that the reframed task served as a resource to push facilitators toward 
greater accountability to the discipline. As the excerpt below illustrates, we heard facilitators share 
solutions, solicit support to co-create solutions and revoice each other’s answers until they felt 
mathematically confident with the ideas.

SJ: Okay, I’ve got another one, ½ of n2 + ½ of n. So which one of these models shows 
half of the square plus half of the number? How can we show that? I know it works.
You guys have to help me!

ED: That’s different; let me think that through.
BK: Yea, let me write it down, say it one more time.
SJ: Half of n2 + half of n
ED: But that just goes back to that is the same formula (pointing out that if you simplify 

[n(n+1)]/2, the expressions are equivalent).
SJ: But if we look at the square (SJ picks up blocks to recreate the 3 x 3 square). Here’s 

the square, right? So, half of that would take it to that.
ED: Plus…
SJ: Plus half of the 3 (continues rearranging the cubes to add back on and recreate 3rd

staircase).  
ED: So, half of the square is that much, and then the half of n is that much (pointing to 

subset of the blocks)
SJ: Is that what b is showing? (pointing to the square model in the reframed task)
ED: Yea, I think that is what that is showing because that is that half (pointing to the 

diagonal in figure b).
Here we see how the additional resources of the reframed task supported accountability to the 
discipline – enabling facilitators to coordinate symbolic and visual representations of the quadratic 
relationship and move beyond verifying that an expression works to justifying and making sense of 
expressions coordinated across representations. Small and whole group discussions were 
opportunities to coordinate uncertainty and resources and hold themselves accountable to one another 
and the discipline. Our analysis documents facilitators unpacking mathematical concepts and 
reasoning across representations to challenge ideas.

ELs played pivotal roles in both phases

In Phases I and II, ELs drew upon two facilitation practices to support reconciling facilitators’ 
uncertainty to catalyze resources. One method was to confer authority on the facilitators to address 
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their uncertainty by inviting facilitators to ask questions, press for justification, and compare
reasoning across groups. In the exchange from Phase I, below, the expert leader acknowledged the 
viability of facilitators’ reasoning (a recursive solution) and encouraged them to seek additional 
resources to address their articulated uncertainty.

GT: Yeah. We're all stuck here.
L: Well, what you might want to do is literally go in pairs and eavesdrop on the other 

two tables because they've actually got two different approaches.  So what I would 
suggest is going and just listening for a couple of minutes and then…

GT: We have an approach
L: You do! And I think that you might hear some things that would help you build on 

your approach.
A second practice the ELs utilized to support facilitators was to reposition resources generated via 
facilitators’ agency but not fully explored. This practice allowed facilitators to address uncertainty 
and hold themselves accountable to the discipline by coordinating the closed-form expression, the 
pattern in their table, and a visual representation of the algebraic ideas of multiplying the dimension 
of an n by n+1 rectangle and dividing the figure in half.

In Phase II, the second set of coordinated leader practices emerged, extending the facilitator’s agency
by inviting facilitators to connect representations in the reframed task and fostering facilitators’ 
rehearsal of partial or incomplete understandings. For example, when facilitators noticed 
connections between the visual rectangle model and a table showing Gauss’ counting method, the 
expert leader invited them to explore (extend their agency) and rehearse using the fourth Staircase to 
articulate the correspondences across the representations.

Although some might suggest that these leader practices are not unique to PD (i.e., similar to 
classroom practices), we contend that because the goals for learning are geared toward SCK, they are 
unique from goals for students and, as a result, demand particular sensibilities from ELs that are 
equally different. We expand upon those differences in the discussion that follows. 

Discussion 
Our analysis revealed critical insights on facilitators’ practices and ELs’ practices. One of the 
necessary conditions for PDE was fostering facilitators’ accountability to one another and the 
discipline when coordinating crucial resources. Persistent accountability amongst facilitators wasn’t 
enough to foster PDE. Facilitators needed access to resources to hold themselves accountable to the 
discipline. In Phase I, ELs conferred authority and strategically repositioned resources to balance
facilitators’ uncertainty with resources. With access to these resources, we saw facilitators use a range 
of socially and mathematically effective practices such as pressing for clarification, mapping
correspondences amongst representations, and creating the shared meaning of each other’s methods,
critical markers of PDE. Similar to Borko et al. (2014), when facilitators took up this kind of social 
and mathematics work, we saw groups make progress on their uncertainty and productively engage 
with key concepts and practices in the task. 

Our results led us to claim that collective agency to press on uncertainty is a supportive condition to 
foster PDE. When facilitators collectively asserted their authority to share, add-on, and connect ideas,
they could access resources to address their uncertainty. Further, when ELs offered opportunities to 
slow down conversations via practices of repositioning resources, extending agency, and rehearsing
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partial understanding, we saw facilitators reveal their errors, refine reasoning, and revoice solutions 
until they were confident with solutions. These were also spaces for peers to support accountability
by asking pressing questions, pointing out insights provided thus far in an explanation, and connecting 
methods (Tekkumru-Kisa & Stein, 2017).

ELs’ practices of conferring authority and repositioning resources were strategically deployed in
ways that either re-centered facilitator authority to disrupt status or leveraged facilitator authority in 
invitations to examine additional resources and share reasoning. These practices pressed facilitators 
for accountability to one another, and the discipline, and thus were vital to advancing productivity 
beyond engagement (Engle & Conant, 2002). To consider PDE as a framework for teacher and 
facilitator PD, we must understand the ways that teachers’ and facilitators’ social and professional 
positioning frames how authority and disciplinary uncertainty afford and constrain productive 
engagement.

The PDE framework allowed us to understand the resources needed in PD, the role of facilitator 
agency and accountability, and how ELs can foster PDE. Facilitators’ engagement with the reframed
task highlighted the need for “just enough” uncertainty to create productive struggle alongside 
resources to accelerate and focus discussions on critical mathematical ideas for teaching. Strategic 
leader practices of extending agency and fostering rehearsals of understanding were foundational to 
facilitators expanding their productive engagement with SCK.

Essential to a PDE lens for PD is to consider how mathematics is framed by specialized content 
central to mathematics teaching and learning (Ball et al., 2008). While related to what Engle and 
Conant (2012) call the critical content and practice of the discipline, PDE accountability in PD would 
mean something slightly different. For facilitators to be accountable to the discipline, they need to 
leverage and connect multiple mathematical structures, examine correspondences across 
representations, and coordinate various solutions. The EL practices we identified in our analysis 
fostered this type of facilitator activity and thus advanced these goals.

Conclusion
We used the PDE construct (Engle & Conant, 2002) to examine the dynamic interactions among 
social and mathematical aspects of doing mathematics in facilitator PD. The study offered empirical 
evidence for the framework as an analytic tool for PD research. The PDE framework revealed the 
nuanced ways that aspiring facilitators’ authority and accountability were at play as they accessed 
resources to address uncertainty. Moreover, we identified how ELs supported PDE via a set of 
strategic practices related to the four tenets of PDE. We offer insights on strategic facilitation 
practices of doing mathematics that can inform future studies of facilitation (Krainer et al., 2021).

While we did not use PDE as a design framework in RMLL, our emerging research suggests that 
“lifting” the tenets of PDE to inform PD designs is a viable lens to guide task design and practices. 
Our analysis of ELs’ practices revealed how their support of facilitators taking up resources in
response to their uncertainty and fostering authority in balance with accountability was a means for 
cultivating SCK. Frameworks to support PD design and formative feedback are essential for 
advancing content-specific facilitation across PD models (Karsenty, 2021). As a potential design 
framework, we can imagine how the adaptation of the PDE classroom framework could orient PD 
designs and advance productive social and mathematical norms while doing mathematics in PD. This 
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study contributes insights on content-specific PD practices beneficial to a wide range of PD models 
where teachers engage in mathematics.
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We analyse how two co-teaching mathematics teacher educators (MTEs) describe and justify the 
enactment of their theory of change in a course for practicing teachers. Applying concepts from 
Communities of Practice, we identify a shared view of the key boundary objects highlighted in the 
design of the course in our two MTEs, alongside divergent but complementary means of brokering 
learning at the boundary during enactment. Prominent in our analysis is a working relationship in 
which one MTE brokering through coordination appears to allow the other to work towards radical 
transformation, by seeking confrontation that allows her to define the problem space. We consider 
the implications of this dynamic for their emphasis on teaching as a pair.   

Keywords: Boundary learning, brokers, mathematics teacher educators.

Introduction
Mathematics teacher educators (MTEs) were oddly absent from earlier research on teacher education, 
perhaps because they were frequently those doing the research. Although they are now a research 
subject in their own right (see Goos & Beswick, 2021), as Jaworski (2021) notes in her response to 
contributions in that volume, in many studies of MTE learning and development, “the course or 
programme is very much in the background” (p.420). In this paper, we bring the course into focus in 
an exploration of two MTEs’ theory of change as they intervene in mathematics teachers’ practice. 

Theoretical/analytical framework 
Many of the studies in Goos and Beswick’s collection share a theoretical orientation towards 
communities of practice (Wenger, 1998).  Jaworski (2021) notes the usefulness of this approach as a 
way of understanding not only teacher learning and change but also MTE learning and development. 
In particular, she notes the power of the idea of boundary crossing in analysing the process of 
professional development, drawing on Akkerman and Bakker’s (2011) seminal review of the 
literature. Briefly, Akkerman and Bakker identify four mechanisms of learning potential at the 
boundary between practices – for example, when MTEs are university researchers, the boundary 
between MTEs (academic expertise) and teachers (practitioner expertise).  These mechanisms are:

Identification: The differences between communities' practices are made explicit without attempting 
to reconcile them. 

Coordination: A dialogue is established to translate between the communities, and these can co-exist 
without noticeable discontinuities. 

Reflection: Comparing and contrasting brings about (new) insights into the practices of both 
communities.  

Transformation: Confrontation with a problem triggers reconsideration of existing practices, resulting 
in recognition of a shared problem space. Sometimes this results in hybridisation, a new practice 
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emerging creatively from the meeting of diverse practices. Finally, crystallisation is the rare 
phenomenon where the hybrid practice has real consequences and results in new routines.   

These learning mechanisms are made possible by boundary objects, objects that have different local 
meanings but enough interpretative flexibility to allow communication across the boundary between 
communities (Star, 2010): an assignment in teacher education, for example, could be interpreted by 
students as a requirement that must be met and by the teacher educators as support for future practice.  

Literature review 
This framework has been used to explore how a diverse group of MTEs (academic researchers and 
science/mathematics teachers) worked on professional development for teachers which linked 
authentic workplace situations with mathematics teaching (Bakogianni et al., 2021). Analysis 
revealed that a range of boundary objects (tasks, course objectives, etc.) enabled a change in MTEs’ 
learning mechanisms over time, as they moved from identification to reflection and coordination. 
While in this example the boundary learning occurred spontaneously, it can also be fostered by 
brokers (Wenger, 1998). Goos and Bennison (2018) observe that MTEs frequently enter into explicit 
brokering between practices, and that this is enhanced by diversity among collaborating MTEs. In 
their study, MTEs were either specialists in mathematics or mathematics pedagogy, and success was 
defined as the integration of their respective disciplinary paradigms, mathematics content and 
pedagogy. In this paper, we focus not on MTE’s disciplinary backgrounds but on differences in how 
they describe enacting the shared goals in their theory of change. Hence, we ask our research question: 
What changes do two mathematics teacher educators set out to realise through a course for in-service 
teachers, and which features do they highlight as essential for realising change? 

Context of study 
The context for this study is a one-year part-time credit-bearing (30 credits, half of a full-time load) 
course for in-service teachers in a Norwegian university. Many – but not all – are primary teachers 
lacking the necessary credits to satisfy recent requirements for teaching mathematics. The course 
aims to introduce teachers to student-centred, inquiry-based mathematics teaching. It promotes a 
Realistic Mathematics Education (RME) approach to teaching, highlighting a number of key 
principles, particularly the importance of context in emergent mathematics and the transition from 
informal to pre-formal to formal models (e.g. Van den Heuvel-Panhuizen, 2003), and guided 
reinvention (Stephan et al., 2014).  In this paper we report on data from two of the MTEs teaching 
the course, Silje and Daniel (pseudonyms).  Both are experienced MTEs (Silje is more senior) who 
conduct research in mathematics education, and have experience as mathematics teachers in schools.  

The course was designed by Silje more than 15 years ago, and has been implemented at this university 
(cohorts of up to 200 divided in up to 5 classes) for the past 8 years (updating the reading list, 
modifying the tasks, etc.) by a group of MTEs working in pairs and led by Silje. Over the years, Silje 
has co-taught the course with a number of MTEs. Currently, she works with Daniel, who at the start 
of the data collection was beginning his second year teaching the course but had previously taught a 
course for prospective mathematics teachers that had adopted materials from Silje’s course. The two 
had asked to co-teach the course for the second time, as they consider their collaboration particularly 
fruitful. 
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Methodology 
This paper presents an analysis of a written statement and interviews with Silje and Daniel, as part of 
a larger project analysing a community of practice of ten MTEs involved in the course. The idea of 
theory of change in teacher professional development had been raised at a research group meeting, 
so we asked Silje and Daniel to write down their version for this course so that we might understand 
the connections between their goals for teacher change and the design and enactment of the course. 
They did this exercise together, and we reproduce their account here, translated into English by the 
first author (Table 1). Silje and Daniel were then interviewed together by the first author. The 
interview focused on the background to their document, and Silje and Daniel’s views on what they 
believed the teachers brought to the course and how the MTEs built on this to achieve their aims. 
They were also asked about the nature and extent of teacher change they hoped might happen. A 
follow-up interview with Silje aimed to clarify points arising in the first interview including her 
emphasis on having two MTEs in the classroom during teaching. Both interviews were transcribed 
in Norwegian and translated into English by the first author. In our translations we have aimed to 
keep as close as possible to our understanding of intended meaning in the original Norwegian.  

We analysed the data by first identifying boundary objects in Silje and Daniel’s written statement and 
then classifying the relevant interview extracts in accordance with Akkerman and Bakker’s (2011) 
four mechanisms for learning opportunities. There are at least four potential communities of practice 
at play here: the teachers-as-students, the teachers as members of the wider community of teachers, 
the MTEs as educators with a reform purpose, and the course members as a whole, engaged in a joint 
inquiry. We limit our interest here to examining the change that the MTEs aim to achieve at the 
boundary between teachers as members of a wider community and their own community of education 
reformers. In our analysis, we looked for references to these communities and the differences between 
them (identification), and references to actions taken by Silje and Daniel in terms of the establishment 
of dialogue which aims to translate between communities (coordination), comparison/contrast 
between practices (reflection), and presentation of problems which disturb practice (transformation).  

Analysis   
In this section we report first on Silje and Daniel’s written statement, identifying three boundary 
objects, followed by an analysis of their interview, highlighting their justification of the theory of 
change and their account of how the three boundary objects support their goals. We notice who 
introduces new perspectives, and how the other disagreed, supported or elaborated. We focus in the 
discussion on the relationships between them as brokers on the boundary between practices.  

Theory of change (Table 1) 

We identified three boundary objects in Silje and Daniel’s account: research-based course literature 
(while only one conceptual tool is referenced [Ulleberg & Solem, 2018], Silje and Daniel draw on 
technical vocabulary - pre-formal methods, talk moves,  learning landscapes etc - from the field of 
RME and inquiry learning, which they know we are familiar with); teachers’ lived experience of 
being in the classroom led by the MTEs (‘gatherings’); and written assignments on engaging with 
their school students’ mathematical thinking (‘missions’). There is an emphasis on creating a  learning 
experience for teachers which they will mirror in their classrooms, and on understanding the student 
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point of view. In addition to exposing teachers to close investigation of student work and of their own 
practice, Silje and Daniel seek to model the practice that they promote; in this sense their “theory of 
change” suggests that they aspire to transform in their work on the boundary by confronting teachers 
with new experiences which will lead to reconsideration of their existing practice. 

Table 1: Silje and Daniel’s “theory of change” document 

Our overall goals How 

That teachers experience learning through a reform-
based approach, and develop this in their own practice 

That teachers can facilitate practical, inquiry-based and 
theoretical work that nurtures and develops students' 
mathematical knowledge and mathematical thinking 

To develop teachers' dialogical approach to mathematics 
so that the use of talk moves and opportunities for oral 
mathematics increase 

To develop mathematical and didactic competencies so 
that discussion of student work is nuanced and teachers 
are explicit about their didactic tools. 

To create, as an example of practice that teachers can use 
in their own classroom, a safe learning environment in 
mathematics, where we listen to each other, dare to ask 
questions, dare to make mistakes, learn to persevere and 
give each other thinking time 

By discussing authentic student work and directing 
attention to what the student can do, what lies on the 
student's closest learning horizon, and how the teacher 
can challenge students to develop their thinking by: 

 discussing the learning landscape / learning 
trajectories of the students, cf. RME 

 analysing and discussing the work of their own 
students in written assignments  

 becoming acquainted with, work with and be able to 
account for, informal and pre-formal methods that 
can eventually be used as teaching tools 

By using Solem and Ulleberg’s model of questioning as 
analysis and reflection tools to develop conversational 
features / rich discussion in teaching 

By getting the teachers to work investigatively in and 
with mathematics throughout the course 

That we ourselves have a practice that reflects the overall 
goals of the course 

Learning opportunities: bringing about transformation 

The interview analysis suggests considerable complexity in this transformative aim. Asked to explain 
their theory of change, Silje embeds her account in her personal history as a teacher, and deep 
convictions about what is involved in learning mathematics. She identifies the core goal of the course 
as promoting mathematics teaching where students see themselves as sense-makers: 

From the moment I started teaching mathematics and discovered that people found it a very 
authoritarian subject – they didn't understand anything, they felt stupid – I realized that several 
generations were deprived of the opportunity to feel [...] that they could think for themselves.  

Silje justifies the theory of change primarily based on experience, while the research perspective is 
secondary. Daniel relates it to both his experience as a school teacher and research: 

I initially taught as I was taught myself ... it was really these [materials] of Malcolm Swan that 
were a revelation to me…What occurred to me was that the students started talking in a different 

Proceedings of CERME12 4695



 

 

way. It led to a kind of dialogue in the classroom that one could lift up. [The materials] gave me 
an idea of how I could ask questions and function in a different way in the classroom. 

Here, Daniel foregrounds the research (Swan, 2005), spotlighting specific elements of the theory of 
change (the classroom dialogue). Silje’s more holistic perspective emphasises values that she sees as 
encapsulated in Kierkegaard’s writing. Elaborating on this in the follow-up interview Silje explains: 

That’s what I see in […] Kierkegaard […], to meet the student where the student is and to lead 
him by the hand ... By ‘lead’ [I mean] that we go together and the premises are yours. You are the 
starting point... your path is not the same as hers! Now it's you we're talking about.  

This idea captures Silje’s ethos, and the essential quality of the community of practice she wants 
teachers to become part of through the course. For her, the shift towards making the student the 
starting point of teaching entails a radical transformation that must start with a confrontation; she 
rejects a passing suggestion from Daniel that the course might rely on teachers wanting to change:  

Most of them don’t want to change. [...] I meet them full of prejudice and assume they will convert, 
so to speak; [prejudice] that they come with traditional beliefs and experiences of mathematics 
teaching. And - as far as I can see - it turns out to be largely correct. … As [one teacher] said, it’s 
a paradigm shift. Something happens during the first gathering, they experience something they 
never experienced before. [...] So, no, I don’t think they need to want to. On the contrary.  

While Silje’s strong identification of difference is not at all concerned to reconcile practices, Daniel 
takes a less radical view, seeing participation in the course as an opportunity for development, a 
coordination between the teachers’ present practice and the goal of the course. He doesn’t see the 
teachers as “necessarily problematic”, but concedes that “one wants to develop their ways of teaching 
mathematics”. In this sense, Daniel speaks more readily as a broker concerned to promote dialogue 
and reflect on practices both old and new. Next, we analyse Silje’s and Daniel’s justifications of the 
three boundary objects - missions, course literature and gatherings – as opportunities for learning. 

The ‘missions’ 

Silje describes listening to students as a crucial but unfamiliar practice for the teachers:  

We want [...] teachers to learn to listen. Learn to see the student. Understand how this student 
thinks before going in with my understanding of what I think this student is thinking. That’s why 
we spend so much time on these ‘missions’. To get [teachers] to take the student perspective.  

The ‘missions’ create learning opportunities through transformation in which teachers are confronted 
with a problem space they weren’t aware of, valuing and building on students’ surprising ideas. She 
stresses their role as confrontations between reform teaching and their habitual practice:  

I believe it is because of these missions, where they have to sit with the students and have to 
analyse what they say and think about what to answer, that they discover sometimes – and they 
write so in the assignments in the start – that they took the answer out of the mouth of the student. 
This is something they need to experience, too. You need to discover how not to do it. And the joy 
to discover how incredibly lush children are! They think about so many fun things that we’ve 
forgotten to think about. I am very happy every time I discover it! 
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While Silje emphasises missions as opportunities for new discoveries and sheer difference which is 
not (and cannot be) reconciled with existing practice, Daniel describes them as enabling coordination 
in the sense of demonstrating the day-to-day ‘reality’ of theory: 

For the teachers, it’s the ‘missions’ that truly pull together all the threads of the course. In the oral 
exam they reflect on the missions and [say] that “we read about all these things, and then we did 
the observations – and the students said exactly the things we had read about!” It was almost a 
surprise for them that the theory could actually happen in their own day-to-day reality [laughs]. 

The research-based course literature 

The role of the substantial research-based reading list generates similar differences in Silje’s and 
Daniel’s accounts of brokering. Although she values the opportunities for reflection that this brings 
for teachers, Silje believes it is necessary but not sufficient for impacting practice (“it’s lethal to 
assume that literature alone can persuade teachers”), thus justifying the inclusion of missions. This is 
not to say that Silje thinks that engaging with literature is not important.  She recalls her excitement, 
as a novice MTE, on discovering literature on mathematics pedagogy and its usefulness as a tool for 
thinking. The RME orientation of the course, too, stems from literature that fits her ethos (“I had read 
the books from the Netherlands and took in ideas […] – they hit me right in my thinking”). For Silje, 
rooting the course in research is a given, but it must connect to prior or ongoing experience. Daniel, 
too, is selective: since joining the course he has consolidated the theoretical aspect of the RME 
orientation (“I read a lot on RME. [Including] the idea of learning landscapes was a bit my influence”) 
but stresses that the aim is not mere alignment - choices are based on their own assessment (“there is 
some influence from others, for instance Malcolm Swan … we are free to mix in other things”). 

Silje returns to missions and Daniel’s coordination argument, adding that translation is bi-directional:   

If it’s going to be research-based, […] reading is valuable, also to go back and get the theory 
confirmed. Isn’t this what we try to achieve with the missions? They read something - they have 
the experiences from the gathering - and then go out [to do the ‘mission’] and go back and read 
the theory again?. [...] I claim that the value is in the back-and-forth between theory and practice.  

While Silje focuses on the details of this dialogic relationship between reading and experience as part 
of a process of reflection, Daniel focuses on specifics of what the literature can contribute, pursuing 
his theme of coordination as translation between practices:  

We take examples of student work ... and try to lift the conversation about what the students did, 
what they thought - and frame it in the context of theory: both mathematical theory, say 
associativity and distributivity for multiplication, but also [theory] on development. […] Where 
they are in a mathematical landscape. [...] Even though the metaphor is limited, it helps! Because 
I think nobody is in a point in a landscape, but it helps teachers to think “What are the possibilities 
for this student now? What can he do and how can he develop from here?”  

The ‘gatherings’ 

During gatherings, Silje is less concerned with theory, focusing more on defining the problem space 
by modelling the practices she promotes, with the teachers experiencing the student perspective: 
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We go around and listen... It gives us an insight into the dialogue in each group […] and it teaches 
us an awful lot about how we interact with them - when you jumped in too soon, when you didn’t 
really know what to say, when you were wondering about … when you left that group to make 
time for another. We can’t teach them another practice if we aren’t participating and helping them.   

However, she is mindful of the danger of the experience amounting to identification rather than 
transformation and the need to broker the process through articulating her choices:  

We can design a session that [they] experience as very good. And it may well be good as a session 
where you teach mathematics. But if the goal is for them to learn to be teachers, then they need to 
know about the decisions behind. They can’t see it unless we say it, I think.  

Daniel sees the interaction between MTEs and teachers as coordination, an opportunity to translate 
between theory and practice. Interactions between the teachers are also important as they allow 
hybridisation, the emergence of new practice as they discuss their responses to students’ ideas:  

When we discuss and analyse a case for example […] this dialogue becomes their own, so that 
when something unexpected happens they will have developed another way of thinking. The 
dialogue going through their heads and the questions they will ask the student will be different 
because they had a dialogue with others about that. [...] And then they can use it in their teaching.  

Both MTEs value being two in the classroom. For Daniel, it allows identification as decisions and 
dilemmas become visible in a dialogue between the MTEs where they query each other’s choices.  
Silje elaborates in the follow-up interview that the spontaneity of dialogue is key: 

I love the dynamic […]  from Daniel [interrupting me to clarify] – so much fun! [...], to my saying 
to him “I completely disagree with you and here’s why”, to someone suddenly jumping in because 
what I said made them think of something that fits perfectly. But spontaneously! [...] We need to 
stand together and be in dialogue and talk to each other and talk to the audience. 

Discussion: partnering in change 
In this paper, we have drawn on concepts from Wenger’s (1998) Communities of Practice to 
understand two MTEs’ justification for their practice as they co-teach a course for teachers. 
Conceptualising the MTEs’ roles as brokers (Star, 2010; Wenger, 1998) for teachers’ boundary 
learning, analysis of their written theory of change allowed us to identify three key boundary objects: 
‘gatherings’, research-based course literature, and missions. Interview data showed that the two 
positioned themselves as members of both communities of practice (mathematics teachers and MTEs) 
as they shifted between justifying the theory of change from the perspective of practitioners or 
academics, with Silje foregrounding the first and Daniel the second. Akkerman and Bakker’s (2011) 
framework for boundary learning enabled a distinction between Silje’s holistic manner of justifying 
the theory of change (an aspiration to radical change, to transform the practices of the teachers) and 
Daniel’s more analytical approach picking out specific items from the theory of change (e.g. teacher 
questioning, Table 1) and unpacking these. The next layer of analysis identified similar contrasts in 
their accounts of enactment: Silje tended to initiate accounts of pursuing identification and 
transformation through the three boundary objects, while Daniel concentrated on coordination 
between practices. This characterisation of the complementary roles they take on as brokers supports 
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their sense that their collaboration is fruitful. To return to our research question, and the issue of Silje 
and Daniels’ justification for their overall goals of the course, these complementary roles and aims 
perhaps provide some indication of ways forward for understanding mathematics teacher educators’ 
evolving practice in more detail, and the nature and extent of their role in teacher change and 
development. 
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This paper presents the first intervention cycle of a design-based research on teacher professional 
development carried out in Brazil. It aims to understand how the formative process helped teachers 
to understand what algebraic thinking means and how to work with it in the early years of elementary 
school. Data analysis was based on three principles of design concerning the Role and actions of the 
teacher educator, Professional learning tasks for teachers and Discursive interactions among 
participants. The results indicate that the design principles contributed to the teachers’ 
understanding of the meaning of algebraic thinking and how to promote it in elementary students. 

Keywords: Professional development, early algebra, teacher educator, professional learning tasks, 
discursive interactions. 

Introduction 
The development of teacher knowledge is a condition for improving the quality of education (Borko 
et al., 2008), and teacher education (initial or continuing) is a cornerstone of this process. Often, the 
professional education offered to teachers is superficial, disconnected from the ways in which they 
learn and far from the practice of teaching. This indicates the need to develop research that can 
contribute to a greater understanding and, consequently, a better organization of teacher education 
(McDonald et al., 2013). With a design-based research (DBR) approach (Cobb et al., 2016), a teacher 
education program was developed with the objective of promoting professional learning opportunities 
for teachers of the early years of elementary school, related to working with algebraic thinking. Thus, 
the present study seeks to answer the following question: “How does the teacher educator’s role in 
preparing professional learning tasks and conducting discursive interactions in a formative process, 
contribute to creating learning opportunities for teachers who teach mathematics in the early grades 
of elementary school?” Although the teacher education process focuses on a specific mathematical 
theme, this study intends to contribute to the construction of general guiding principles for planning 
and carrying out teacher education processes, based on characteristics of effective professional 
development (Desimone, 2009) and from a model made to design and assess teacher education 
processes (Ribeiro & Ponte, 2020).  

Theoretical framework 
Over the last decades, the introduction of algebra in the school curriculum in the early years of 
elementary school has been a trend in Mathematics Education (Russel et al., 2011). This is because 
research has shown that, from an early age, children are already able to think algebraically (Blanton 
& Kaput, 2005) and that the development of this skill can favor the future learning of abstract algebra 
(Kieran et al., 2016). In this sense, teachers need to hold knowledge that enables them to work with 
algebraic thinking. Considering that elementary school teachers have little experience with classroom 
practice that can support work with algebraic thinking (Hunter et al, 2018), and how recent the 
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inclusion of this topic in the Brazilian national curriculum is (Ferreira, 2017), continuous 
development programs are critical to creating professional learning opportunities for teachers 
(Ribeiro & Ponte, 2020). Research points to the need for five characteristics to be present for a teacher 
education process to be of high quality and thus effective (Darling-Hammond et al., 2017; Desimone, 
2009; Kennedy, 2016): (1) focus on knowledge of the subject and on how students learn this content; 
(2) active learning, in which teachers participate in the knowledge construction process; (3) coherent 
with the curriculum and school objectives, teachers’ previous knowledge and beliefs; (4) duration of 
meetings with continuous and intensive opportunities; and (5) collective participation, in which 
groups of teachers participate and build an interactive learning community.  

Kennedy (2016), in addition to pointing out the importance of the motivation of teachers to participate 
in these programs, also suggests that their effectiveness depends largely on the pedagogy adopted 
(how they are carried out). In this sense, the PLOT model (Ribeiro & Ponte, 2020) (Figure 1) 
highlights the Role and Actions of the Teacher Educator (RATE), the Professional Learning Tasks 
for Teachers (PLTT) and the Discursive Interactions Among Participants (DIAP), as domains which, 
in an integrated way, contribute to the creation of Professional Learning Opportunities for Teachers 
(PLOT), in a certain context. 

 
Figure 1: PLOT Model (adapted from Ribeiro & Ponte, 2020) 

Although they do not directly refer to high-quality teacher education processes, the domains of the 
PLOT model consider many of its characteristics. The Role and Actions of the Teacher Educator 
(RATE), when designing formative processes that consider the characteristics of the local context 
(characteristic no. 3 of high-quality teacher education programs), takes into account conduction and 
mediation actions (Stein et al., 2008) through exploratory teaching (Ponte, 2005) in order to create 
professional learning opportunities for teachers (Ribeiro & Ponte, 2020). The role of the teacher 
educator, in addition to proposing tasks and creating a collective work environment, has to do with 
providing adequate and relevant feedback for each situation, ensuring the active and collective 
participation of all involved (characteristics 2 and 5). The teacher educator’s actions and questions 
should contribute to the reflection on the subject, seeking to establish a relationship between theory, 
experience and practice (Silver et al., 2007). The Professional Learning Tasks for Teachers (PLTT), 
which are strongly influenced by practice, focus inseparably on mathematical and didactical 
knowledge (Ribeiro & Ponte, 2020) (characteristic 1), and can be defined as tasks “that involve 
teachers in the teaching work, which can be developed in order to meet a specific objective for teacher 
learning and take into account the prior knowledge and experiences offered by the teachers” (Smith, 
2001, p. 8). Smith (2001) points out that materials such as videos of classes (Borko et al., 2008), 
student work (Kazemi & Franke, 2004) and high cognitive level mathematical tasks (Ribeiro & Ponte, 

 PLTT 
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2020) portray teaching practices and can create opportunities for teachers to analyze and evaluate real 
classroom scenarios (Silver et al., 2007). 

Discursive Interactions Among Participants (DIAP) are directly associated with collective 
participation (characteristic 5). It assumes that professional learning opportunities can materialize 
from exchanges between peers, through dialogical communication (Craig & Morgan, 2015). One way 
to provide discursive interactions is through the exploratory teaching approach, as it presupposes the 
circulation of mathematical and didactical experiences and knowledge among teachers (Ribeiro & 
Ponte, 2020). Some authors suggest exploratory teaching should take place in four phases (Stein et 
al., 2008): introduction, realization in students’ autonomous work, whole-class discussion and 
systematization.  

Research Methodology 
The present study was carried out in a qualitative-interpretive perspective with Design-Based 
Research (Cobb et al., 2016), in which data collection from the first design cycle was carried out in a 
continuing education program developed in the first half of 2019 in a São Paulo State education 
network, Brazil. Audio and video records of the meetings were collected, as well as written records 
from the teachers. The participants were 14 teachers from the early years of elementary school. The 
program lasted 32 hours, with 8 4-hour meetings, in an in-person format, and 32 hours of individual 
work. The entire teacher education process was video recorded with two cameras, one focused on the 
teacher educator and the other on the participants. The subgroup discussions were recorded in audio 
and written records of the teachers and the PLTT used were also collected. The teacher educator, with 
extensive professional experience at this level of education, is the first author of this paper. 

Considering the central aspects of effective teacher education program and the domains of the PLOT 
model, we established the following factors as design principles (main characteristic of a DBR) (Cobb 
et al., 2016)): (i) the Role and Actions of the Teacher Educator (RATE), which indicates the 
importance of considering the articulation between mathematics and didactics in and for teaching, the 
construction of an exploratory teaching-learning environment (Ponte, 2005) and the orchestration of 
discussions (Stein et al., 2008); (ii) the Professional Learning Tasks for Teachers (PLTT), which, by 
involving different practice records, promote the exploration of mathematical and didactical 
knowledge (Silver et al., 2007); and (iii) the Discursive Interactions Among Participants (DIAP), 
which, by affirming the importance of collective participation through dialogical communication 
(Craig & Morgan, 2015), involve teachers in an environment of reflection and discussion. Thus, the 
hypothesis of this research is that an intervention based on these principles contributes to promoting 
professional learning opportunities for teachers of the early years of elementary school regarding 
understanding the meaning and development of work with algebraic thinking. We used the three 
design principles as analytical lenses to consider the reflections brought by teachers and the ways in 
which the formative process provided teachers with opportunities for professional learning (Ribeiro 
& Ponte, 2020). 

Results 
Design Principle: Discursive Interactions Among Participants (DIAP) 

Proceedings of CERME12 4702



 

 

In its design, the PLTT Generalization asked teachers to discuss the students’ productions, analyzing 
their justification regarding the veracity of the mathematical sentence (Figure 2). This part of the 
PLTT focused both on the mathematical knowledge demonstrated in generalizations and on the 
didactical knowledge, considering how students think, as teachers needed to interpret and give 
meaning to the different justifications made by students. Regarding the first mathematical sentence 
in Figure 2, which the students answered is false because “Calculations are not made, the result never 
has multiplications,” the teachers made some observations during the whole-class discussion: 

 
Figure 2: Part of the practice record of the PLT Generalization 

Moisés:  There’s no coherence... 
Marina: Usually, they never see calculations with prior numbers. The teacher will give them 

the expression, not the result. They need to seek the results.  
Adriana:  Wow, I didn’t think of that... 

For both Adriana and Moisés, the student’s answer made no sense, since the justification was unusual 
for them. On the other hand, Marina identified that students believed that after the equal sign there 
could be no other expression, only a result, considering the operational perspective of the equal sign. 
For Adriana, this discussion provoked a new way of looking at the situation: 

Adriana:  I didn’t think of it like she [Marina] said... in my head she didn’t understood [that] 
if I add 24 and 37, it’s the same as adding 37 and 24. She didn’t understand what 
was proposed there, that the result can’t have expressions... 

By sharing her interpretation with the teachers, Marina contributed so that everyone could look at the 
student's response from another point of view, motivating the emergence of a professional learning 
opportunity arising from discursive interactions between participants (DIAP), a situation planned by 
the teacher educator in the design of the professional development process, from an active and 
collaborative process, through dialogic communication. 

 

 

 

Design Principle: Professional Learning Tasks for Teachers (PLTT) 

Justification 

T Calculations are not made, the 
result never has 
multiplications. 

Because everything 
times one results in 
the prior number. 
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In the first meeting, the teachers were asked to consider the work of a few students (Figure 3) and 
analyze the knowledge they demonstrated and what procedures they had adopted to solve the 
mathematical task: Pedro was very happy because he finally managed to complete his fourth sticker 
album! Each album has 225 stickers. How many stickers does Pedro have in all?” 

 
Figure 3: Records of the PLT “Analyzing a multiplication task” 

After the analysis of this record of practice, carried out by the subgroups of teachers, the teacher 
educator asked, during the whole-class discussion, in which of these representations it was possible 
to perceive algebraic thinking. This questioning sought to survey the teachers’ knowledge about the 
main content addressed by the teacher education program. Teacher Débora selected the Bernardo’s 
representation and justified her choice by saying: 

Débora:  Because it demonstrates that it is a numerical expression, it has more than one 
operation, so it is generalizing, it left a specific calculation... See, there [in 
Bernardo’s representation] he used multiplication and he also used sum, so he is 
using more than one operation to get to the result.  

In this excerpt, Débora associated generalization with the presence of more than one operation, in 
addition to linking it to numerical expressions, expressing your initial knowledge. After working with 
the PLTT Generalization (Figure 2), Débora expressed her concept of generalization, associating it with 
patterns and regularities:  

TE:  What is generalization in mathematics? 
Débora:  It’s when you have a situation... that serves not only a specific situation, but for 

more than one, there is a pattern, a regularity... for example, when they notice the 
regularity of the multiplication tables… 

The PLTT Generalization prepared by the teacher educator, using records of practice, that were 
specially chosen to promote teachers' reflection, promoted the analysis of students’ productions and 
contributed to the emergence of professional learning opportunities, in which Débora redefined her 
concept of generalization.  

Design Principle: Role and Actions of the Teacher Educator (RATE) 

In another situation, faced with a difficulty presented by Eliana, the teacher educator, in addition to 
seeking to contribute to the reflection, offered feedback: 

TE:  What was easier, what was more difficult, what would you do differently? 
Eliana: What I think would be more difficult in this task would be reaching all students. 
TE:  The groups were made up of how many children? 
Eliana: Four. 
TE:  If you start in pairs, a task for two [students]. Because in groups of four, one does 

the work, another helps, another pretends to help, and the last one doesn’t even pay 
attention. 
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The question posed by the teacher educator, promoted reflection because the teachers needed to think 
about what worked (or not) and what reformulations could be made. In addition, the teacher educator 
established a direct relationship with the teacher's position when considering her concern, suggesting 
that, if students were arranged in pairs, this could favor the understanding and performance of the 
mathematical task. This position of the teacher educator provided adequate feedback to the situation, 
based on her knowledge of didactic knowledge, establishing a direct relationship with practice. 

From the perspective of orchestration of the discussions, the teacher educator proposed reflections 
when the teachers discussed the division algorithm in a task done by the students: 

Débora: [The students thought] of the multiplication tables of the numbers that were in the 
brackets [divisors], that any number multiplied by number 1 will always result in 
the dividend. 

TE:  But... only by number 1? [...] 
TE:  I would put this on the board and ask the group. Look, this group found this, do 

you agree, does everyone agree? But just for number 1? Because, for example, 
when I divided, I had this number [in the quotient], if I multiply it [by the divisor] 
I have this number [dividend]. This goes for any division. 

Débora: I didn’t notice that. 

In this excerpt, the teacher educator assumes the role of guiding problematizations and calls attention 
to a rule, which although valid for number 1 would also be valid for other numbers, and that Débora 
said that she hadn’t noticed. The teacher educator’s action, articulating mathematical and didactical 
knowledge, drew attention to a mathematical regularity, causing the teacher to look at the division 
operation differently. 

Discussion 
The results show that the professional development process designed and carried out, considering the 
three design principles, supported the creation of professional learning opportunities in which teachers 
reflected on the meaning of algebraic thinking and didactics in mathematics classes, advancing in their 
perspectives. The PLTT Generalization, by presenting records of students’ work on a mathematical 
task (Ribeiro & Ponte, 2020), focusing on knowledge of students’ reasoning (Desimone, 2009), 
encouraged the teachers to discuss collectively (Darling-Hammond et al., 2017) the presence of 
generalizations in the students’ justifications (Figure 2). In this case, together with the aforementioned 
PLTT, the other two domains of the PLOT model, the Role and Actions of Teacher Educator (RATE) 
when designing the PLTT and promoting the analysis of the students’ records, and the promotion of 
Discursive Interactions Among Participants (DIAP), contributed, as stated by Débora, to reframe her 
understanding of the meaning of generalizations. The results show us that the design of the PLTTs and, 
especially, how the teacher educator led them through questions and actions (Stein et al., 2008) created 
opportunities for teachers’ professional learning as they provoked reflections in Débora, who realized 
that there was a regularity in the division algorithm and how this could be worked with students. In 
addition, by giving a suggestion on how to proceed to reach all students, the teacher educator provided 
pertinent feedback (Darling-Hammond et al., 2017) on the situation posed by Eliana establishing a 
bridge between teachers’ theory and practice (Silver et al., 2007). 

In addition, during the discursive interactions, Marina presented her interpretation that for the student 
there can be no other expression after the equal sign. This position by Marina may have contributed 

Proceedings of CERME12 4705



 

 

to the creation of an opportunity for professional learning, by leading Adriana to make a new 
interpretation, showing that situations of professional learning can arise from the exchange between 
peers through dialogic communication (as in Craig & Morgan, 2015).  

Conclusion 
In addition to the design principles adopted by this study (Role and Actions of the Teacher Educator 
(RATE), Professional Learning Tasks for Teachers (PLTT), and the Discursive Interactions Among 
Participants (DIAP) pointing to the creation of learning opportunities, there is a strong 
interdependence between them, as both PLTTs design and its conduction are the teacher educator’s 
tasks. The teacher educator thus gains a prominent role considering that the professional development 
process can be more in-depth and interconnected with practice depending on his/her actions. It is up 
to the teacher educator to carefully plan the teacher education learning processes (Kennedy, 2016), 
defining objectives, content and strategies organized in PLTTs (Ribeiro & Ponte, 2020), and to 
orchestrate (Stein et al., 2008) discursive interactions (DIAP), provoking reflections and providing 
appropriate feedback for each situation (Darling-Hammond et al., 2017). To create professional 
learning opportunities, it is not enough to place teachers in discussion groups (Kazemi & Franke, 
2004); there is a need to carefully plan what to discuss. Thus, the teacher educator’s knowledge is 
emphasized, both with regard to the knowledge of the content discussed in the teacher education 
program and to how it is led (Desimone, 2009). Although the present study has a mathematical focus 
on working with algebraic thinking in the early years, we suggest that the design principles that we 
use can be generalized to other mathematical themes or even other disciplines, which could give rise 
to further research. 
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Facilitators of teacher professional development (PD) courses mediate the course ideas 
conceptualized by the PD course designers. It is relevant to research what views facilitators hold in 
reference to the content goals, the learning obstacles, and the teaching resources that constitute the 
heart of a PD course. In our current study, we analyze one facilitator’s deliberations in an interview 
conducted after a PD day on conditional probability, based on a framework of expertise on the 
classroom and the PD level. The results reveal which elements of the PD course were adopted 
wholeheartedly, and which remained more or less superficial. The analysis also suggests reasons for 
this distinction and how to rethink facilitator qualification and PD course material. 

Keywords: Professional development, facilitators, expertise, conditional probability.  

Introduction: Challenges in teaching conditional probability 
With curriculum changes and the growing relevance of data in the modern world, stochastics 
(statistics and probability calculation) has moved into the spotlight of mathematics education 
(Batanero et al., 2011). This has led to a growing need for teacher professional development (PD) for 
stochastics in general, as teachers are the agents in lesson development, just as facilitators are the 
agents of teacher PD. Stochastics presents a challenge for numerous reasons (Burrill & Biehler, 
2011): There are uncertainties to deal with, e.g. when predicting future frequencies from probabilities. 
And modelling must be taken seriously; the step from reality or real data to the world of mathematics 
involves an awareness of idealizations, and the necessary interpretation of results requires considering 
restrictions of the model. 

In this paper, the challenges are exemplified by the content of conditional probability, which is 
connected to the concept of stochastic independence and Bayes’ theorem. The common mistakes 
respectively misconceptions in this area (Bar-Hillel, 1983; Gigerenzer & Hoffrage, 1995; Kahneman 
& Tversky, 1973; McDowell & Jacobs, 2017) cover confusing condition and event, misinterpreting 
stochastic dependence as causality, and underestimating the relevance of the base rate  for the 
calculation of the conditional probability . Substantial knowledge of common mistakes and 
misconceptions is prerequisite for choosing suitable teaching resources and supporting students in 
reaching the respective learning goals. Conducting a teacher PD, however, is accompanied by 
additional challenges. While providing necessary content knowledge or illustrating misconceptions, 
facilitators need to address aspects which are specific for a PD, like participants’ heterogeneity or 
their pre-formed opinions on learning pathways. A framework for design of and research on teacher 
PD, the three-tetrahedron model for content-related PD research (see Prediger et al., 2019) covers 
these aspects comprehensively: The four corners of a tetrahedron, referring to educator, learners, 
content, and teaching researches respectively, are specified for three levels, the classroom level, the 
PD level, and the qualification level. On the PD level e.g., the facilitators are the educators of the 
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learners, who are the participating teachers. This model also illustrates the connections between the 
different levels. Classroom level issues are nested in the PD level insofar as the content goals and 
learning obstacles for students are, together with suitable teaching resources, the content at the PD 
level. Therefore, facilitators should be experts in the content goals, the learning obstacles, and the 
teaching resources of both the classroom and the PD level. In how far this is the case and what might 
be the reasons behind, is the focus here.  

Theoretical considerations: Expertise for teaching conditional probability  
We base our considerations on a situated approach and chose a framework for teaching expertise 
(Prediger, 2019, adapting Bromme, 1992), which distinguishes between jobs, pedagogical tools, 
categories, and orientations. These concepts allow to describe and explore what teachers or 
facilitators focus on doing in a specific situation (jobs), which thinking categories they activate, what 
they utilize in order to reach their goals (pedagogical tools), and which orientations influence their 
choices. The thinking categories, in particular, cover specificities of the content, e.g. the procedural 
and conceptual learning goals, the possible learning pathways, and the learning obstacles. The 
framework is tuned towards the actual teaching / learning situation, with its carefully orchestrated 
resources and its ad hoc reactions and decisions. 

For this paper, we focus on content goals and learning obstacles (which are parts of the thinking 
categories), and on the pedagogical tools, which are closely connected to content goals and learning 
obstacles – as teachers / facilitators choose their pedagogical tools (e.g. specific tasks or activities, 
visualizations, software applications) with the aim of supporting their students / the participants in 
their PD course in reaching the intended content goals, keeping possible learning obstacles in mind, 
i.e. finding ways to overcome them. In our PD setting, a content goal is to comprehend the relevance 
of the base rate  for the calculation of the conditional probability , which is often 
underrated when the corresponding calculations are executed with probabilities and Bayes’ rule. 
Using natural frequencies and an easily accessible representation, e.g. a double tree diagram, can help 
to overcome this learning obstacle (Gigerenzer, 2011; Wassner et al., 2007). Our PD also aimed at 
generally promoting the use of simulations as a teaching resource, which has been shown to “have 
the potential to make learning statistics easier” (Lane & Peres, 2006, p. 6). On the one hand, 
simulations were presented to foster the frequentist view on probability. On the other hand, we 
introduced simulations as an adequate tool for calculating probabilities where learners’ analytic 
means are insufficient.  

The thinking categories at classroom level cover, among other aspects, the content goals that are to 
be addressed and the learning obstacles that might hinder reaching these goals. In the course section 
focused here, the content goals can be described as knowing the definition for conditional probability, 
understanding the sense of this definition, calculating conditional probabilities (via the definition or 
by using Bayes’ rule or other strategies), and being aware of the impact of different base rates. At PD 
level, knowing how to introduce conditional probability and stochastic independence by utilizing 
appropriate tasks, activities, simulations, and visualizations, as well as considering misconceptions 
when planning lessons, would be added to this list.  

At classroom level, various learning obstacles should be considered by the teacher, e.g.  
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 modelling issues as a result of idealizations involved in probabilistic models  
 sampling issues, sampling variation and differences between population and samples  
 motivation issues that might hinder students from grasping or memorizing the content,  
 misconceptions like confusing condition and event, misinterpreting stochastic dependence as 

causality or underestimating the relevance of the base rate, and  
 a high level of abstraction that could present a learning obstacle in itself. 

At PD level, additional learning obstacles comprise the heterogeneity of the group of participating 
teachers (e.g. referring to their individual knowledge or their respective professional learning groups), 
pre-formed opinions on certain teaching approaches, or previous (positive or negative) experiences 
when teaching the same or a similar content. For example, teachers might infer from their own 
learning history that the use of digital technology is not worth the time needed to come to grips with 
it. Or they might not consider modelling issues as relevant enough to discuss explicitly. 

The pedagogical tools comprise teaching and learning resources, which can have a close connection 
to the content goals. For the content of conditional probability at classroom level, these are: the 
reflected use of absolute (natural) or relative frequencies, traditional tree diagrams with probabilities, 
(double) tree diagrams with absolute frequencies, 2x2 tables, linguistic scaffolding, hands-on 
experiments, digital simulations, data from digital simulations, ideal simulation (gaining natural 
frequencies by using artificial population sizes), authentic problems, and problems with artificial 
stories. The resources listed here, taken from the PD course at hand, share the characteristic that they 
address conceptual understanding, rather than procedural skills (see Binder et al., 2020 for an 
explanation of the different tools for visualization). 

At PD level, these pedagogical tools can also be utilized, in a reconfigured form with a perspective 
on the PD situation: For example, the content and its associated pedagogical tools from the classroom 
level can be arranged in possible sequences, to present a range of teaching options. Then, the PD 
participants can be asked to work on the tasks and materials belonging to the different options, from 
a student perspective. This, in turn, can be followed by group discussions to reflect upon the teaching 
options, led by the facilitator who can incorporate his own experience with the material into the 
discussion, integrating participants’ concerns and misgivings. 

There are various possible connections between the content goals, the learning obstacles, and the 
teaching resources; and teachers’ or facilitators’ more general (and less content-specific) orientations 
can reveal the underlying reasons for their interpretation and the performance of their jobs: For 
example, an orientation to actively address misconceptions influences the choice of an activity or a 
teaching resource; an awareness of modelling issues implies integrating validation considerations; 
the belief that language matters encourages offering content-specific language learning opportunities. 
The exemplary connections in Figure 1 also illustrates the interconnection of the classroom and PD 
level. Using (ideal) simulations in class is an adequate tool to create an awareness for the impact of 
base rates. Promoting the use of simulations in the classroom implies addressing their advantages in 
the PD by pointing out their usefulness in e.g., group discussions.  

Our research goal is to learn more about facilitators’ views connected to the content goals, learning 
obstacles, and teaching resources – so we aim to answer these questions: 
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RQ1: Which content goals, learning obstacles, and teaching resources are mentioned by the facilitator 
and how are they accentuated? 
RQ2: Which connections between the content goals, learning obstacles, and teaching resources are 
mentioned by the facilitator and how are they elaborated upon? 

As a perspective, we are interested in exploring in how far the facilitator’s notions coincide with the 
conceptual ideas of the original PD designers. Therefore, our research interest is in knowing which 
orientations can be inferred from the above, in particular in reference to the facilitator’s adaption of 
the teaching concept. This also includes exploring if and when the facilitator focuses on student 
learning and / or on teacher PD. 

 
Figure 1: Nested facilitator expertise (categories, pedagogical tools) for teaching conditional 

probability, with exemplary connections 

Context of the PD course  
The PD course is part of a five-day PD program on stochastics for upper secondary level, developed 
at Paderborn University, Germany (Barzel & Biehler, 2017). The PD program envisions a teaching 
approach based on the principle of consistently promoting concept formation, e.g. via the use of 
simulations, digital tools, authentic examples and real applications. During the PD course on 
conditional probability, stochastic (in)dependence, and Bayes’ theorem, the teaching 
recommendations focus on the use of natural frequencies, e.g. gained in simulations, and their use in 
double tree diagrams, which are regarded as an innovation in the German school context. A more 
traditional form of representation, 2x2 tables, is mentioned along the way.  

The whole PD program was discussed at length and re-designed with four experienced facilitators 
over a period of three years, in cooperation with a regional education administration. Afterwards, the 
facilitators moderated the program more than once in teams of two. 

Methodology 
Directly after each PD day, guided interviews with the facilitators were conducted, audio-recorded 
and later transcribed. Among other aspects, the interviews covered the PD learning goals (both from 
the facilitator’s and from the course designers’ view), possible learning obstacles and how to 
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overcome them, and the teaching resources offered by the PD course for the classroom level. In the 
course of the interview, facilitators were asked to elaborate on a printed list of PD goals. 

In this paper, we concentrate on one facilitator, who we call “Mike”, who was involved in the re-
design of the PD program, and on the part (on day 2 of the program) on conditional probability, 
stochastic independence, and Bayes’ theorem. Mike is male and has 16 years of experience as teacher, 
and 13 years as facilitator (mostly for other content than conditional probability). The interview with 
Mike lasted 70 minutes and has 178 turns; the interviewee’s turns ranging in length between short 
comments of very few words and extensive elaborations of over 450 words.  

The transcribed interview was analyzed in three steps: First, the passages relevant for content goals, 
learning obstacles, and teaching resources were identified, respectively, by the first and second author 
separately. Second, a consensus was reached between them about which interview passages belonged 
to which aspect. Third, a qualitative analysis was conducted (Kvale, 2009) in order to dissect the 
relevant text passages and phrase answers to the research questions. 

Results 
The research questions (RQ1: Which content goals, learning obstacles, and teaching resources are 
mentioned by the facilitator and how are they accentuated? RQ2: Which connections between the 
content goals, learning obstacles, and teaching resources are mentioned by the facilitator and how are 
they elaborated upon?) can be answered as follows (see Figure 2 for an overview): 

Mike mentions the contents conditional probabilities and Bayes’ theorem as the most important goals 
for the PD day, without specifying what exactly is relevant for these topics (turn M_002). He 
emphasizes that the PD concept is to promote students’ understanding and argumentation skills 
(M_004, M_010, M_014, M_018, M_064) and sees this aspect as an indication for better teaching 
(M_010, M_012, M_022). There is no mention of procedural skills. Mike connects the advancement 
of understanding with an awareness of common misconceptions (M_010, M_018, M_111, M_121, 
M_127, M_165, M_171, M_175) and finds that the most relevant general problem is that “students 
show very many misconceptions, even with everyday relevance” (M_010), where at the same time 
he assesses everyday applications as beneficial for students’ motivation (M_010). Mike has noticed 
that PD course participants often hold misconceptions themselves (M_107, M_167), so addressing 
misunderstandings is an issue both at the classroom and at the PD level (for the connections between 
the different aspects of expertise, see Figure 2). Mike does not mention simulations, an adequate tool 
for fostering students’ understanding. 

The teaching resources Mike specifies can all be located on the classroom level and mostly refer to 
specific tasks (M_010, M_012, M_127, M_128, M_145, M_157, M_173) that have an authentic 
background and touch upon the common mistakes. Other pedagogical tools that Mike mentions are 
double tree diagrams (M_022, M_149, M_151) and 2x2 tables (M_121, M_149, M_151), again with 
a perspective on classroom teaching, not on teacher PD. He explains at length that he prefers 2x2 
tables (M_149, M_151) and gives as reasons that they help students to connect absolute and relative 
frequencies, and to bridge the transition from a tree diagram to the reversed tree diagram (M_149), 
therefore connecting a teaching resource to a content goal. Although double tree diagrams, as 
presented in the PD course, comprise didactic advantages, Mike states he would use this resource 
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only subsequently (M_151). In addition, Mike sees the advantages of using absolute over relative 
frequencies (M_129, M_131) for the content goal of promoting understanding, but comments on this 
teaching / learning resource only when hinted by the interview material. He stresses the fact that, in 
a PD course, the aim is not to offer an ideal teaching approach that works perfectly in every setting 
(M_127), but to present a range of teaching options (often in the form of tasks, M_052) teachers can 
choose from. Therefore, a lesson plan is not regarded as an appropriate teaching resource at the PD 
level, but a collection of tasks and activities is. Mike outlines that he would conceptualize his own 
lessons following the principle to orchestrate an easy access, stressing connections to previous 
knowledge elements, and introducing more complex considerations only when students feel secure 
on the new ground (M_141). The scenario he refers to particularly attends to weaker students and 
examination situations (M_121, M_145, M_147).  

 
Figure 2: Aspects of expertise and their connections mentioned by facilitator Mike (highlighted)  

The use of hands-on experiments or digital simulations triggers questions for Mike, as to when (or if, 
the German language does not distinguish this) these are helpful (M_109, M_143), and he finds that 
the result matters, independent of coming from a simulation or from a calculation (M_018). In this 
context, Mike is keen to refer to hands-on experiments (M_014), thus indicating a certain reserve 
towards digital simulations. More importantly, Mike always connects digital simulations with the 
technical skill of handling Graphing Calculators (M_024). As simulations require predetermining the 
number of overall experiments, Mike does not see the advantage of simulations over 2x2 tables – and 
he is unaware that these can indeed represent ideal simulations (M_143-145). He would utilize 
simulations when the probabilistic model is unclear, though (M_018, M_145).  

Particularly here, it becomes clear that Mike’s argumentation routinely refers to the decisions he has 
made or would make for his own teaching (M_097, M_145), the PD course participants do not feature 
in his deliberations as active agents of their own teaching. He visualizes himself teaching, not 
qualifying the PD participants teaching their respective students (M_141). This is a key point in our 
analysis, as it not only reveals Mike’s self-concept of himself as a facilitator, but also provides a 
method to spark reflections on this self-concept (via visualizing the prevalent scenes in one’s mind 
when leading a PD course), and categories for facilitator self-concepts (e.g. as teacher, as agent for 
the PD of the participating teachers, or even as erstwhile learner) in general.  
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Conclusion 
Mike, one of four facilitators, expresses his views openly in the interview. What he does and does not 
mention in reference to content goals, learning obstacles, and teaching resources allows insights into 
a facilitator’s views on the specific PD course at hand and on teacher PD in general. 

Mike’s utterances indicate an orientation to stick to teaching strategies that yielded satisfying learning 
results in the past, e.g. preferring 2x2 tables (a standard form of representation) over double tree 
diagrams (rather uncommon in German textbooks, but suggested by didactic research and successful 
teaching experiments). It is remarkable that Mike mentions of his own accord only teaching resources 
that he either favors (e.g. 2x2 tables), or that are both innovative and stand the test of him introducing 
them into his own lessons (e.g. double tree diagrams). He comments on other resources (like digital 
simulations) when these are mentioned by the interviewer, but does not introduce them into the 
conversation himself. This shows that he has remained skeptical of using digital simulations for 
improving learning in the classroom, and he states that he would only take recourse to them if there 
is no other way of establishing a probability. 

All in all, it becomes obvious that Mike favors the perspective of focusing on the classroom level 
(M_026, M_125, see Figure 2). He sees the main purpose of PD in teachers discussing and reflecting 
on concrete teaching situations, himself as primus inter pares – albeit acknowledging parallels 
between the PD course and a mathematics lesson. Mike switches to reflections on the PD level in the 
later parts of the interview (M_127 onwards), but retains his focus on his own suggested teaching, 
and on teacher professional development only indirectly via the intended student learning.  

Consequently, it remains doubtful how far certain aspects the PD course ideas have been conveyed 
successfully, in spite of intensive and prolonged cooperation between course designers and 
facilitators. It seems that orientations are not easily changed, in particular if they are based on previous 
experience, and addressing them should be planned very carefully. Introducing new teaching 
resources or pedagogical tools, on the other hand, might be presumed successful up to a certain level. 
And it we hope that these can impact on orientations in the long term. 

What is more, Mike’s focus on lessons and students leaves the issue unresolved if the PD courses he 
leads concentrate on teacher PD in the sense of advancing teacher expertise – which is more than 
reflections on advancing student learning. Mike emphasizes that teachers are presented with a range 
of tasks and activities to choose from or to adapt, but does not address the necessary skills for this 
selection or adaptation process. Ideally, these skills should be promoted during phases of discussion 
and reflection in the PD course, and the facilitator would disengage from the role of a colleague and 
view the PD course participants as individuals whose learning processes are also his responsibility. 

It will be interesting to explore if this interpretation can be supported by Mike’s actions and utterances 
during the PD course, which was audio-recorded. Although acting as a team, the analyses of the other 
three facilitators’ interviews and moderation will probably reveal different aspects and thus paint a 
more differentiated picture of facilitators’ views.  
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The orientations that teachers possess impact their instructional decisions. Accordingly, PD 
facilitators need to be able to identify and respond to these orientations, especially when teachers 
demonstrate orientations contradictory to PD principles. Facilitators are thus faced with the 
challenge of balancing PD content goals and atmospheric goals. We first examine teacher 
orientations at the beginning of a PD. Second, as facilitators’ situative goals and orientations become 
apparent in facilitators’ practices, we examine facilitators’ practices applied in response to teachers’ 
orientations. Results reflect previous evidence of teachers’ procedural, syllabus bound, short-term, 
and individual orientations. Our research furthermore revealed various practices facilitators use to 
respond to teachers’ various orientations such as confirming teachers’ statements, implicitly and 
explicitly referring to PD principles, and using examples from their own lives or instruction. 

Keywords: Professional development, facilitator practices, teacher orientations. 

Introduction  
Teacher orientations are crucial for instructional decisions in the classroom. Thus, if teachers view, 
for example, mathematical proficiency as implementing different mathematical procedures, they will 
highlight different instructional goals in comparison to teachers who accentuate conceptual 
understanding (e.g. Schoenfeld, 2011; Zohar & Dori, 2003). In the PD program Mastering Math, 
which represents the context of our study, the focus centers on fostering teachers’ ability to enhance 
at-risk students’ understanding of mathematical concepts. As orientations such as diagnostic, 
conceptual, long-term and communicative were identified as decisive to enhance at-risk students’ 
understanding (Prediger et al., 2019), these are the focus of the PD. Accordingly, the facilitators need 
to identify what orientations teachers possess and consider how they can respond in order to move 
forward towards the content goal of the PD. In the theory section, we first elaborate on teacher 
orientations for supporting at-risk students and, second, on goals and orientations as part of facilitator 
practices. In the empirical part of the paper, we present data from three PD courses to scrutinize 
teacher orientations and patterns of facilitator practices in response to these orientations. 

Teacher orientations for supporting at-risk students 

Teacher orientations can have consequences for supporting at-risk students, especially in building 
conceptual understanding. In expanding upon prior conceptualization of orientations, for instance by 
Schoenfeld (2011), Prediger (2019) created a framework of mathematics teacher expertise that 
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includes orientations as one of five facets: “Orientations refer to content-related and more general 
beliefs that implicitly or explicitly guide the teachers’ perceptions and prioritisations of jobs“ (p. 370). 
Evidence on teacher orientations and practices connected to at-risk students, revealed that teachers 
often focus on assisting students in developing procedural knowledge and less so on constructing 
conceptual knowledge (Beswick, 2007; Wilhelm et al., 2017; Zohar et al., 2001). Furthermore, 
teachers tend to base requirements on those dictated by the school syllabus, highlight short-term 
mastery instead of working toward long-term goals (Moser Opitz, 2007; Prediger et al., 2016), and 
emphasize individual student issues (Krähenmann et al., 2019) as opposed to rich discourse including 
all students and their products (Karsenty et al., 2007). According to these results, the following 
contrasting orientations can be used to identify the practices teachers show to support at-risk students’ 
understanding: diagnostic or syllabus-bound orientation; conceptual or procedural orientation; long-
term or short-term orientation; and communicative or individualistic orientation. Thereby, empirical 
studies identified orientations based on a diagnostic, conceptual, long-term and communicative 
approach as supportive to enhance at-risk students understanding (Prediger et al., 2019).  

Goals and orientations as part of facilitator practices  

In terms of what (novice) PD facilitators need to know and do to be able to provide successful PD 
programs for mathematics teachers, researchers have increasingly examined what constitutes 
necessary PD facilitator knowledge and practices (Borko et al., 2014; Lesseig et al., 2017). In view 
of diagnostic, conceptual, long-term and communicative orientations as the basis for the PD guiding 
principles and forming the content goals of the PD within the context of Mastering Math, the 
facilitators need to deal with diverse teacher orientations while targeting these PD content goals. 
Whether the PD content goal is reached depends on the practices that are “recurrent patterns of a 
facilitator’s utterances and actions” (Prediger et al., 2021) when conducting a PD. Practices are 
characterized by pedagogical tools facilitators use such as PD activities and their categories for 
noticing and thinking that can be based on the content knowledge and pedagogical content knowledge 
facilitators bring to the PD. Furthermore, the situative goals facilitators pursue, such as content goals 
or atmospheric goals, depend on facilitators’ orientations, such as goal orientation, participant 
orientation, or esteem for participants, and are part of facilitators’ practices (Prediger et al., 2021). 
According to prior case studies on facilitators’ practices in a PD, situations can occur that let different 
goals compete with one another and challenge facilitators to navigate between them or turn from one 
to another (Prediger & Pöhler, 2019). In the light of the PD program Mastering Math, facilitators may 
be faced with such a situation, in that teachers show orientations contradictory to the PD guiding 
principles (for example a procedural instead of a conceptual orientation), challenging facilitators to 
balance content goals and atmospheric goals. As facilitators’ situative goals and orientations become 
apparent in facilitators’ practices, we examine the practices applied in response to teacher orientations 
and the patterns of practices facilitators show. Against the aforementioned theoretical background, 
we pursue the following research questions: 

RQ1: What orientations for supporting at-risk students do teachers show during PD courses related 
to this topic? 

RQ2: What practices do the PD facilitators apply to respond to teachers’ orientations? 
RQ3: What patterns of facilitator practices and underlying situative goals can be detected? 

Proceedings of CERME12 4717



 

 

Methodology  
Participants  

Three PD groups (PD 1: N=17, PD 2: N=10; PD 3: N= 9) of the Mastering Math PD program 
participated in the study. The participating teachers possess different mathematical or non-
mathematical backgrounds and different experiences in teaching primary students, as some attended 
a primary teacher education program and completed their internship, and some are teaching out-of-
field. For each of the three PD groups, two PD facilitators were responsible to conduct the PD as a 
tandem. The facilitators are teachers themselves, and teach mathematics either in primary or 
secondary school. They also draw on different teaching experiences and various educational 
backgrounds, ranging from primary teacher education programs including an internship, to a major 
in mathematics or in special education. All facilitators received the same preparation to conduct the 
PD, then provided similar PD content and used similar methods.   

Data collection and analysis 

Within each PD group, a group discussion was conducted, videotaped and transcribed. Within this 
PD activity, teachers were asked to situate themselves in relation to the juxtaposition of all 
orientations (for example “It is important for at-risk students to find out if they have mastered basic 
arithmetic skills” for procedural orientation, or “It is important for at-risk students to find out if they 
have understood basic concepts and representations” for conceptual orientation).  

As a first step, the individual teacher utterances were analyzed utilizing a coding system with the 
aforementioned teacher orientations for supporting at-risk students (see table 1) following a deductive 
approach. The transcripts were coded by two experts in the field of mathematics education. 
Intercoder-reliability over all groups showed sufficient consistency (Kappa=0.98) (McHugh, 2012). 
Absolute and relative frequencies are reported to quantify the orientations. As a second step, all 
statements of facilitators in response to teachers’ statements were coded by two researchers, using an 
inductive approach. First, the two researches coded the transcript of PD group 1 independently. 
Second, the identified categories where discussed and revised, resulting in codes seen in the first 
column of Table 2. Third, the transcripts of the three PD groups were coded, according to the 
intercoder-reliability with a sufficient consistency (PD group 1: Kappa=1,0; PD group 2: 
Kappa=0.89, PD group 3: Kappa=0.93) (McHugh, 2012). Additionally, we coded the facilitators’ 
practices in response to the teacher orientations and report absolute frequencies. An inductive 
approach was used and resulted in four categories (see first column of Table 3, applied by two coders 
who fully agreed).  

Results  
According to the analysis of teacher orientations that were visible in the group discussions in the three 
PDs (RQ1), some teachers had, to an extent, internalized some of the guiding principles of the PD 
program (see the green marked orientations), including supporting conceptual learning, focusing on 
long-term mastery, and establishing a communicative atmosphere that involves all students. These 
orientations were most visible overall in the PD groups (see Table 1). In regard to the individual PD 
groups, however, differences can be seen in terms of the main orientations.  
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Table 1: Teacher orientations overall and in the three PD groups in percentages 

Teacher 
orientation 

All PD 
groups 
(in %) 

PD group 
1 (in %) 

PD group 
1 (absolute 
instances) 

PD group 
2 (in %) 

PD group 
2 (absolute 
instances) 

PD group 
3 (in %) 

PD group 
3 (absolute 
instances) 

Conceptual 15.56 22.73 5 0 0 12.50 2 

Both 6.67 4.54 1 0 0 12.50 2 

Procedural 6.67 9.09 2 0 0 6.25 1 

Diagnostic 2.22 4.54 1 0 0 0 0 

Both 4.44 4.54 1 0 0 6.25 1 

Syllabus-bound 2.22 0 0 14.29 1 0 0 

Long-term 15.56 22.73 5 14.29 1 6.25 1 

Both 11.11 9.09 2 14.29 1 12.50 2 

Short-term 6.67 4.54 1 28.57 2 12.50 2 

Communicative 13.33 13.64 3 14.29 1 12.50 2 

Both 6.67 4.54 1 0 0 12.50 2 

Individualistic 4.44 0 0 14.29 1 6.25 1 

While PD group 1 (n = 17) tended to display both a conceptual and a long-term mastery orientation, 
PD group 2 (n = 9) showed more of a short-term orientation, followed by syllabus-bound, both short-
term and long-term, communicative, and lastly, individualistic orientations. PD group 3 (n = 10), in 
contrast, displayed all orientations with less emphasis on any particular orientation. In all of the PD 
groups, teachers showed contradictory orientations. Even when a teacher or some of them showed 
orientations that agree with the guiding principles of the PD program Mastering Math (see the green 
marked orientations), usually there was also at least one another teacher who revealed orientations 
that do not agree with the guiding principles (red marked), such as “(…) has mastered the task, even 
if the background knowledge may not change, but it is a success for them (…)” or who weighed the 
pros and cons of both contradictory orientations (orange marked) by referring, for example, to the 
need to take into account the different perspectives students and teachers have, such as “[…] the 
current material can’t be understood, if there are gaps before that are too big (…) for the short-term 
success of the children this is here [short-term] much better and for the motivation also, but […] as a 
teacher I have them but then rather the longer-term development in view”.  

Teachers’ statements that, in some cases, point to orientations contradictory to the PD guiding 
principles represent the starting point of the PD with which facilitators need to deal with when 
targeting the PD content goals. We examined the practices and patterns of practices facilitators 
showed in response to teachers’ orientations as a next step (RQ 2 and RQ 3).  The analysis of the 
facilitator practices in reaction to the statements made by the teachers in the three PD groups revealed 

Proceedings of CERME12 4719



 

 

a variety of practices in the three groups (RQ2). When analyzing facilitators’ reactions and responses 
to orientations teachers articulated, the number of statements that agree, disagree or weigh pros and 
cons were considered (see table 2). Facilitators in PD group 1 most often needed to react to teachers’ 
statements that were in agreement with PD guiding principles. Accordingly, the number of facilitator 
statements providing confirmation is the highest in that group. However, the facilitators did not 
provide confirmation to all of the agreeing statements, but instead took note of them, recognizable 
through verbalized acknowledging.  

Table 2: Absolute instances of facilitator practices in response to teacher statements in the PD groups  

Facilitator practice in reaction to a teacher 
statement that  

Group 1   
facilitators 

Group 2 
facilitators 

Group 3 
facilitators 

is in agreement with PD guiding principles (=14 statements) (=2 statements) (=5 statements) 

 Acknowledging 4 2 2 

 Providing confirmation 9 3 2 

 Taking a neutral position 0 0 0 

 Not commenting 0 1 0 

 Invalidating a statement 0 0 0 

weighs pros and cons of PD guiding principles (=5 statements) (=1statement) (=7 statements) 

 Acknowledging 0 0 1 

 Providing confirmation 3 1 1 

 Taking a neutral position 0 0 1 

 Invalidating a statement 2 0 1 

 Reinterpreting a statement 1 0 0 

is in disagreement with PD guiding principles (=3 statements) (=4 statements) (=4 statements) 

 Acknowledging  0 0 0 

 Providing confirmation 1 1 0 

 Taking a neutral position 0 0 0 

 Invalidating a statement 2 3 1 

 Reinterpreting a statement 1 2 0 

If teachers’ statements were in disagreement with the PD guiding principles or the teachers weighed 
pros and cons, the facilitators, in most cases, invalidated or reinterpreted teachers’ statements, 
pursuing the content goal, but also provided confirmation when teachers weighed pros and cons, 
preferring to keep a good atmosphere as a situative goal. The facilitators’ practice of providing 
confirmation, even when a teacher’s statement did not agree with the PD principles, is part of a pattern 
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we identified also in PD group 3 (RQ3). Facilitators first showed esteem for participants by providing 
confirmation as a first step, presumably to maintain a good atmosphere. As a second step, they 
invalidated or reinterpreted the teacher’s statement, to stick to the content goal, by referring to PD 
guiding principles when highlighting the important role of understanding:  

Facilitator:  “Absolutely. And exactly it always depends on the person. […] In the short term I 
totally agree with you that you should build up self-confidence and strengthen the 
child a bit. But the understanding is […] and according to the concept of being able 
to do math safely is really the absolute crux. […] I can't understand the small, I can't 
understand the big – never. Ability. And then this child will always have failures 
his whole life long in mathematics lessons. […] That we think about it that 
understanding is really the absolute basis.” 

In sum, the facilitators in PD group 1 used the chance to refer to PD guiding principles implicitly or 
explicitly eight times when responding to teachers’ statements (see table 3) and additionally 
illustrated one of the principles by means of driving a car as an everyday example.   

The facilitators in PD group 2 pursued another pattern to respond to teachers’ statements. Only two 
teacher statements in this group were in agreement with PD guiding principles. The facilitators did 
not comment on the two statements directly but acknowledged the statement and returned to it later 
on to provide confirmation more than one time in order to pursue the content goal of the PD. 
Furthermore, when all teachers showed nonverbal agreement with the PD guiding principles, the 
facilitators did not ask them to provide an argument, resulting in a lower number of statements in 
agreement with the PD principles. Instead of asking teachers for arguments, the facilitator used the 
chance to praise the orientations of the teachers and additionally to refer to the PD guiding principles 
implicitly (see Table 3), using an alternative way to target the content goal. In the case of teacher 
statements in disagreement with PD guiding principles, the facilitators invalided and/or reinterpreted 
the statement, and, in one case, they provided confirmation. Also, in regard to the one statement that 
weighed pros and cons, the facilitators provided confirmation of it. In these cases, facilitators pursued 
an atmospheric goal instead of the content goal.  

The facilitators of PD group 3 responded to one of the five statements with the PD guiding principles, 
agreeing with teachers’ orientations by providing confirmation two times, but missed responding to 
four of them. Instead of directly providing confirmation with PD principles to agreeing statements, 
the facilitators provided anecdotes from their private lives or from their own teaching experiences. 
The same occurred in response to disagreeing statements or statements that weighed pros and cons 
(in sum 7 times, see Table 3). The facilitators referred implicitly or explicitly to PD guiding principles 
in response to all kinds of statements in six cases. Both contributed to maintaining a good atmosphere 
in the PD course. In sum, very often, they referred to examples out of their private lives and own 
instruction, as well as to PD guiding principles, explicitly or implicitly, pursuing an atmospheric goal. 
Instead of responding to teachers’ statements directly, they decided to let the discussion between 
teachers flow, looking for statements of other teachers that invalidated the disagreeing statement. 
Furthermore, they avoided direct responses that invalidated or reinterpreted teachers’ statements, also 
contributing to a good atmosphere and, at the same time, preserving the PD content goal.   
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Table 3: Absolute instances of facilitators reference to practice in the three PD groups  

Facilitators use of  Group 1    Group 2  Group 3  

 anecdotes or everyday examples 1 0 2 

 examples from own instruction 0 0 5 

 explicit reference to the PD guiding principles  5 1 4 

 implicit reference to the PD guiding principles 3 3 2 

Discussion and conclusion 
The orientations teachers showed when they started a PD course on fostering the ability to monitor 
and enhance students’ understanding of basic concepts are to some extent in line with previous 
evidence that points to a more procedural (Beswick, 2007; Wilhelm et al., 2017), syllabus bound, 
short-term (Prediger et al., 2016), and individual orientation (Krähenmann et al., 2019), instead of a 
conceptual, diagnostic, long-term and communicative orientation. The latter orientations build the 
principles of the PD program and inform the content goals facilitators need to target when conducting 
the PD. The study revealed various practices facilitators use to respond to teachers’ various 
orientations. Facilitators in PD group 1 mostly invited teachers to make a statement or bring an 
argument to the discussion. In the light of the PD guiding principles, the facilitator succeeded in being 
a good role model in that he or she exemplified a communicative orientation. Facilitators in PD group 
2, in contrast, let many chances pass to invite teachers into a discussion or to ask them to bring 
arguments for their orientation and therefore missed examining whether teachers actually have 
conceptual orientations or whether they hold procedural orientations. Facilitators in PD group 3 faced 
many disagreeing statements as well as statements that weighed pros and cons and they responded to 
these statements with various examples from their daily lives and their own teaching practices, 
combined with explicit or implicit references to PD guiding principles.  

In regard to the typical facilitators’ patterns we identified, first, in many cases, the facilitators avoided 
reinterpreting or invalidating teachers’ statements directly, but started their responses by providing 
confirmation before invalidating or reinterpreting them, presumably in order to maintain a good 
atmosphere. An additional pattern was found, also probably aiming to maintain good atmosphere 
within the PD groups: Instead of responding directly to statements that were not fully in agreement 
with PD guiding principles, the facilitators in two of the groups often used anecdotes or examples of 
their own instruction or referred to PD principles. Recourse to examples and principles seems to help 
the facilitators to pursue the content goal with a simultaneous preservation of a good atmosphere.  

The study reveals the variety of facilitator practices used to respond to teachers’ orientations and 
contributes to the understanding of multiple ways and patterns that appear in facilitators’ moderation 
strategies when conducting PD courses. In line with the results of further case studies (Prediger & 
Pöhler, 2019), the challenge facilitators face when navigating between different PD goals they need 
to manage becomes obvious; in our study, facilitators’ practices in all three of the PD groups 
demonstrated how facilitators attempted to balance content goals and atmospheric goals. As a next 
step, we suggest the investigation of whether facilitators’ abilities to focus more strongly on the 

Proceedings of CERME12 4722



 

 

content goal while simultaneously considering atmospheric goals can be fostered by discussing PD 
incidents in video clubs and probing PD situations in simulated learning environments.  
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Introduction 
Modern pedagogies place increasing emphasis on individualized learning to address student diversity. 
This is also required by new educational policies. Providing future teachers with relevant knowledge 
and fostering the development of their competencies to implement individualized learning settings is a 
challenge for mathematics teacher educators (MTEs). In this work, we suggest personas as a way to 
support MTEs in conveying the diversity of characteristics, needs, and conditions of mathematics 
learners. Personas are concise data-driven descriptions of fictional representatives of learners who share 
similar characteristics and needs. In our recent work, we have identified the potential of personas to 
facilitate student-centered teaching and learning of mathematics. We have collected data on students’ 
goals, needs, challenges, joys, fears, and strategies, and have developed personas of students in Austrian 
academic upper secondary schools to provide teachers with a resource to facilitate individualized 
learning. In this project, we expand upon that work towards teacher education courses suggesting 
personas as a new resource for MTEs to facilitate rendering the development of mathematical 
pedagogies more student-centered and promoting individualized teaching and learning opportunities. 
We aim at answering the following questions with regard to mathematics teacher education: (a) Which 
student characteristics should be portrayed by personas to promote decisions on designing 
individualized teaching and learning settings? (b) What are the scenarios for applying personas? 

Theoretical and methodological framework 
In Austria, teachers are required to align their teaching to the diversity of students by educational policy 
documents. In practice, however, teachers tend to consider highly specific and stereotypical student 
characteristics to decide how to address diversity in lesson design (Larina & Markina, 2019). To reduce 
subjectivity and bias in design contexts, Cooper (1999) claims that it is beneficial to have one specific 
person in mind and tune the design to their goals and needs. He suggests to use personas as a portray of 
the target group and as a communication tool for designers when discussing design ideas and drafts. 

Personas are “hypothetical archetypes of actual users […] defined by their goals” with fictional names, 
fictitious personal details, and a portrait (Cooper, 1999). Originally, they were used in user experience 
research to present characteristics, goals, skills, and interests of homogenous user groups. While Cooper 
(1999) introduced personas for product optimization processes with the goal to promote sales, the goal 
in the context of education is to enhance design processes for more efficient teaching and learning. 
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There has not been comprehensive research on applying persona development techniques to teacher 
training contexts although the use of personas has the potential to facilitate preparing teachers to 
implement individualization in their classrooms. 

In recent research, we collected data from mathematics teachers in Austrian academic upper secondary 
schools about the characteristics and needs of their students and created student personas based on these 
data. These personas have been utilized in teacher training courses to design materials for teaching 
mathematics. We plan to refine the personas by conducting a quantitative questionnaire study among 
school students. Including the teachers’ expert views and using standardized questionnaires for 
surveying students should help minimize subjectivity and bias. To identify potential applications of 
personas for MTEs, we review current approaches of MTEs to foster individualized mathematics 
teaching. We then propose applications of personas for MTEs based on the findings of this review. 

Results and discussion 
Recent literature on individualized teaching and learning states that for successful learning the demands 
on the students have to match their individual learning conditions (attitude, interests, level of 
knowledge, misconceptions, skills, self-concept) to avoid a decrease in cognitive activity; therefore, 
decisions on the demand level of students and on appropriate teaching and learning methods have to be 
made (Prediger & Aufschnaiter, 2017). As a consequence, when developing personas for use in 
mathematics teacher education, the learning condition of students should be portrayed. 

Personas of such kind can be a valuable resource for MTEs to train how to implement individualized 
learning in classrooms by promoting well-founded decisions for designing individualized materials and 
settings for teaching and learning mathematics. In particular, personas can serve as a basis for 
discussions about design approaches proposed by participants of mathematics teacher education 
courses. Thereby, personas meet Gueudet et al.’s (2012) demand for resources for MTEs to foster 
collaborative work. They facilitate including the students in discussions and have the potential to 
establish individualization as a premise for designing learning settings while reducing the bias 
stemming from stereotypical beliefs of the discussants. 
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Introduction  
Lunenberg et al (2007) writes, “at present one must have serious doubts about the competence of 
teacher educators to serve as role models in promoting new visions of learning” (p. 586). Others have 
suggested that teacher educators are not clear or consistent in what conceptions of teaching are most 
important to be modeled in teacher education (Montenegro, 2020; Timmerman, 2009). However, just 
as K-12 teachers cannot teach in ways that they themselves did not experience as learners (Nolan, 
2014), teacher educators are also challenged to model pedagogies that they have not experienced as 
learners or through professional development. For mathematics teacher educators (MTEs), this idea 
applies to topics of reform and inquiry-based pedagogies as well as other key approaches such as 
culturally responsive pedagogies (CRP). I draw on Ladson-Billings (1995) to describe CRP as “a 
theoretical model that not only addresses student achievement but also helps students to accept and 
affirm their cultural identity while developing critical perspectives that challenge inequities that 
schools (and other institutions) perpetuate” (p. 469). The research that I describe in this poster begins 
from the premise that MTEs must develop their own CRP as an essential step toward working with 
prospective and practicing teachers (PTs) to develop theirs. That is, MTEs need to grow their own 
practice as culturally responsive pedagogues (Nolan & Keazer, 2021). 

Research Study and Methods 
This poster describes a study I conducted while teaching a “CRP in Mathematics Classrooms” course 
to a group of practicing and prospective teachers (PTs) who were enrolled in a Teaching Elementary 
School Mathematics certificate program. The study was designed to explore PTs’ understandings of 
CRP at various points throughout the one-semester course. In total 38 students took the course over 
three offerings, with 31 students consenting to participate in the study and allowing their course 
journal assignment to be used as data; additionally, nine of these 31 participants agreed to participate 
in a post-course interview. This poster focuses on data gathered from one interview question in the 
study where I asked about my role as the course instructor and how/if I modeled CRP in the design 
and teaching of the course: In addition to teaching about CRP in mathematics, one of my goals is to 
teach through CRP. Can you think of any ways that I modeled CRP through teaching this course?   

Data and Discussion 
Analysis of this one interview question, posed to the nine research participants, yielded several 
themes which express how (according to the students) I successfully modeled CRP to my students. 
Examples of these themes are: My use of distributed expertise model (guest speakers invited to 
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present on topics within their realm of experience and/or research); how I positioned myself as a 
learner in the same field as I am instructing; I conveyed an image of CRP which clearly illustrated 
that there are many ways to define and enact CRP (what it means and looks like is as varied as the 
classrooms involved); I made a strong effort to privilege the voices of students throughout the course, 
from a pre-course survey on student needs/desires through to an opportunity to ‘personalize’ the 
course through an open-ended project. 

Viewing the data through a critical lens, interesting points can be noticed. For example, the post-
course interviews occurred within a few weeks of course completion, so one wonders if these PTs 
had internalized and processed for themselves what CRP might look like in their own classrooms as 
teachers, let alone have the capacity to reflect at the level of someone else’s classroom practices.   

Closing Thoughts 
Regrettably, the technical-rational practices teacher educators are expected to model are more widely 
studied (Aleccia, 2011) than teacher educator pedagogies which promote an agenda grounded in 
equity, social justice, and culturally responsive aims. To promote such an agenda, teacher educators 
are called upon to model pedagogies that “challenge inequities and social injustice rather than… 
projecting a vision of an ideal school” (Mills, 1997, p. 39). Critical analysis of this research study’s 
themes in light of current research on CRP in mathematics teacher education and K-12 schools will 
be presented in the context of MTEs modeling CRP.  
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Two decades ago, Tzur (2001) was surprised to notice that research on development of mathematics 
teacher educators was almost non-existent. More recently, Lloyd (2020) notes that research on 
mathematics teacher education still tends to emphasise the prospective teachers or participating 
teachers more than the mathematics teacher educators. Still, there is little support for teacher 
educators, and no common education for mathematics teacher educators. MatRIC, which is a Centre 
for Research, Innovation and Coordination of Mathematics Teaching in Norway, has collaborated 
with the Norwegian Centre for Mathematics Education to develop a national study programme for 
mathematics teacher educators. The study programme is designed to be two academic years, part-
time and gives 30 ECTS points. This poster presents the design of this programme. 

The study programme is designed to include teacher educators with varied backgrounds, so that they 
together can work and develop their teaching of pre-service teachers in collaboration. The pilot of the 
programme started in August 2021, with 26 participants from twelve different teacher education 
institutions in Norway. Some participants have PhD’s in applied or pure mathematics, but little or no 
experience from teaching mathematics in schools. Other participants have taught mathematics in 
primary or secondary school for many years but have less formal education in mathematics. We 
brought them all together with the aim of developing their teaching of pre-service teachers in 
mathematics in collaboration.   

The education of mathematics teachers involves mathematics as a scientific field, the practice field, 
and the mathematics education research field. The goal of this programme is that teacher educators 
will develop the competence to establish strong(er) connections between these three fields. 
Participants in this programme will gain insight into central mathematical ideas and central themes 
in mathematics education. Furthermore, the programme will engage participants in research into a 
variety of approaches for mathematics teacher education. In collaboration, participants will discuss 
and research mathematics teacher education, and the goal is for participants to develop their own 
practice as mathematics teacher educators. Participants will undertake a research and development 
project with their own pre-service teacher students. This will entail the development of research 
design, generation and analysis of data, and the production of a research article. 
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The programme in Mathematics Education for Teacher Educators is divided into four parts. 

Part 1: Mathematical thinking in the foreground. Participants will collaboratively: 

• investigate “big” ideas in mathematics (e.g., functions, associative property, relation) 
• investigate pre-service teacher’s understanding of big ideas in mathematics and relate these 

to pupils’ learning 
• investigate teaching of big ideas in mathematics teacher education – and relate these to pupils’ 

learning 

Part 2: Practice in the foreground. Participants will collaboratively: 

• investigate the nature of mathematics teachers’ practice and how this may be developed 
• investigate practices in teacher education that support the development of meaningful 

engagement in mathematics for pre-service teachers and pupils – and relate these to pupils’ 
engagement, learning and experience 

• analyse, reflect on, and develop teaching and mentoring in mathematics teacher education 

Part 3: Research (mathematics education) in the foreground. Participants will collaboratively: 

• Investigate some major research themes in mathematics teacher education, for instance 
through self-study or action research 

• Reflect about how research in mathematics teacher education can be applied in participants’ 
own teaching in mathematics teacher education 

• Investigate and reflect about how one’s own research can be integrated within teaching and 
supervising in the education of pre-service mathematics teachers 

Part 4: Individual research project. Participants will collaboratively: 

• Research and undertake systematic inquiry into their own practices 
• Author texts that can be further developed into publishable articles 
• Discuss and contribute towards each other’s research projects and texts 

The quality of the study programme – in particular how it was received, and to what extent 
participants consider it relevant for mathematics teacher educator practice – will be evaluated and 
explored by conducting interviews and questionaries among the participants, in addition to the reports 
and research articles written by the participants. The first cohort of the programme is considered a 
pilot, and it will be evaluated and further improved. However, this is a study programme which is 
designed to be able to last beyond the extra funding from MatRIC on the pilot, and where the teacher 
institutions see the value in investing this for their employees.  
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While the community highly values critical friendship experiences between teacher educators, there is 
little evidence regarding what happens within such experiences. In this study, we report a Self-Study 
developed by two mathematics teacher educators (MTE), focusing on their critical friendship sessions 
on preparing and implementing a sequence of classes by one of them. Data collection occurred by 
recording three critical friendship meetings conducted at the end of implementing a sequence of classes 
related to quadratic equations. Results discuss different types of questions focused on understanding 
MTE's pedagogical reasoning and teaching practice. On the other hand, the analysis of the corpus 
allowed characterizing their level of depth (descriptive or analytical) and the type of content 
(professional or didactic-mathematical). These findings enable unpacking the critical friendship 
relationship and invite to explore in-depth the interactions between MTE and critical friend and the 
possible impact on both professional learnings. 

Keywords: Mathematics teacher educator, critical friendship, reflective practice, pedagogical 
reasoning, professional development.  
 

Introduction 
Several studies, especially those referring to the practice of teaching (Beswick & Goos, 2018; Castro 
Superfine & Li, 2014), have reported that mathematics teacher educators (MTE) have a crucial role in 
the development of complex learning in their prospective teachers. Through their teaching practices, 
MTEs offer prospective teachers opportunities to learn mathematics as their future students should 
learn that subject (Chapman, 2008). As a result, the quality and effectiveness of mathematics teacher 
education depend on mathematics teacher educators’ expertise (Goos & Beswick, 2021; Ping et al., 
2018). However, studies about the development of mathematics teacher educators and the challenges 
they face in their work are scarce. Masingila & Olanoff (2021) highlight that most mathematics 
instructors in teacher education programs do not have professional support or training in becoming 
teacher educators. Although several studies have noted that studying one’s teaching practice is a 
powerful tool for teacher educators to reflect on and improve their practices (Schuck & Brandenburg, 
2020), Liang et al. (2019) claim that MTEs have little opportunity to study and develop their teaching 
practices.  

To contribute to this discussion, we present a part of a Self-Study to go deep into the reflection on the 
practice of a novel MTE promoted by a critical friend (Schuck & Russell 2005), a colleague 
experienced in mathematics teacher education. This kind of collaboration in self-study is crucial for 
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going beyond their initial background and expertise. In fact, this strategy supports the practice of 
reflecting on their own teaching as an inherent part of the work of mathematics teacher educators 
(Chapman, 2008). However, little is known about the practice of being a critical friend, exploring how 
to manage the questions, tensions, and dilemmas through appropriate support. To understand this 
collaborative process, we seek to answer the following research questions: what kind of questions does 
the critical friend promote to elicit the MTE's thinking? From the conversation with the critical friend, 
what characterizes the reflections of the MTE? This self-study is expected to unpack the reflection 
generated in a critical friendship between a novel and an experienced MTE and give new instances of 
reflective practices. 

Conceptual Framework 
In studies on the professional development of MTE, the notion of reflective practice as a means of 
linking theory and practice has been relevant (Goos & Beswick, 2021). In this way, different studies 
state that self-study allows MTEs to improve their teaching practices (Schuck et al., 2008; Schuck & 
Brandenburg, 2020). For example, Tzur (2001) researched his own professional path, tracing his 
experience as a mathematics learner, mathematics teacher, mathematics teacher educator, and mentor 
of fellow mathematics teacher educators, identifying crucial events and experiences that advanced his 
professional knowledge and practice. Schuck et al. (2008) point out that teacher educators can improve 
their teaching practices through reflective practice and learning conversations with critical friends. In 
the literature on self-study, critical friends can be from the same discipline area or different areas. They 
can be colleagues at different stages of their careers (Schuck & Russell 2005), and commonly reflection 
on practice involves collegial expert-novice partnerships (Goos & Beswick, 2021). On the other hand, 
an explicit goal of MTEs’ research of their practice should be self-understanding and professional 
development (Chapman, 2008). Therefore, we need to include in the research how the teacher 
educator-researchers reflected, inquiring in different kinds of questions reflective practices are 
developed in the interaction between MTE. To what extent can this practice become unpacking and 
sharing with other mathematics teacher educators to implement this process as a professional learning 
practice. 

Methods 
This paper reports a collaborative research project in two voices based on a critical friendship between 
Author 1 and Author 2 and is part of a broader self-study. Samaras (2010) states self-study as the 
critical examination of one’s actions to achieve a more conscious mode of professional activity. Hence, 
it is a self-focused and interactive approach that seeks meaning rather than solutions to a specific 
problem. In this research, Author 1 who takes the role of critical friend is an experienced university-
based MTE. He teaches method courses in primary and secondary mathematics teacher education 
programs connecting permanently theory and practice in mathematics education,  and investigates the 
role model practices held by mathematics teacher educators. Author 2 is a school-based novel 
mathematics teacher educator who teaches a method course (Mathematics Teaching and Learning) in a 
secondary mathematics teacher education program and works as a practicum supervisor of prospective 
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teachers. The double role of Author 2 makes him permanently connect his teaching as a MTE with his 
practice as a school-teacher. 

Data collection occurred by recording three critical friendship meetings before and after implementing 
a sequence of classes related to quadratic equations and functions teaching. In weekly meetings, Author 
1 and Author 2 engaged in critical dialogue around MTE’s teaching experience. During the first 
session, the focus was on establishing critical friendships and exploration of the issues which the MTE 
wanted to address in this self-study. During the second session, the MTE had to communicate the 
planning of classes that would be the object of analysis in the study and discuss the same with the 
critical friend. Finally, the third session addressed implementing the previously analyzed classes, 
delving more deeply into various topics. 

The data analyzed were the transcripts from audio-recorded meetings. We conducted a thematic 
analysis (Braun & Clarke, 2006) to identify themes related to personal and professional tensions in 
Author 1’s experience of becoming a mathematics teacher educator and his teaching practice. For 
doing so, a constant comparative method (Corbin & Strauss, 2015) was used to code the data, starting 
with open coding iteratively. A second coding round was conducted to collapse codes into themes such 
as recurrent questions, recurrent reflections, and foci of reflection. A third coding round was completed 
using the refined codes to understand where those themes were expressed or addressed. Several cross-
data triangulations were made across this coding scheme, with the collaboration of another researcher 
(Author 3) to validate codes, themes, and consistency (Cohen et al., 2000). Also, we discuss the main 
finding with the whole research team.  

Results 
Based on the analysis conducted, we were able to identify various types of questioning undertaken by 
the critical friend, and diverse types of answers and reflective practices used by the MTE.  

Role of the critical friend: delving further into some assumptions 

In general, we observe two major modes of asked questions during dialog and discussion. The first 
mode, referred to as questions asked to attempt to understand pedagogical reasoning, focuses on the 
MTE’s reasoning about the phenomenon under discussion, promoting explanations regarding adopted 
decisions. Instead, the second type of questions, identified as questions attempting to understand the 
MTE’s teaching practice, focuses on getting the teacher educator to establish relationships between his 
experience and decisions made that lie at the basis of his teaching practices, either in a higher education 
or primary or secondary school context, both at the present time as well as within other time 
frameworks. 

We distinguished three types of questions that focused on pedagogical reasoning: Exploration 
questions, Discussion questions, and questions aimed at Deepening Insight. Exploration questions 
sought to open up topics of conversation meant to enable the MTE to begin his reflective practices 
dealing with said topics. For example, in the first work meeting, the critical friend makes the following 
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statement to get the teacher educator to clarify what he expects to get out of these collaborative work 
sessions. 

CF: Then, the first issue is what it is you would expect to get out of a process of joint 
reflection such as this self-study. ¿What is it you would expect based on what we 
have already read and gotten to know of this methodology regarding the meetings 
with the Critical Friend? 

On the other hand, Discussion questions enabled the teacher educator to comment on his reasoning 
about making decisions, or on the topic under discussion. A clear example is a discussion about the 
content of classes. The critical friend questions the MTE about the reasons he must incorporate the 
concept of the didactic variable into his classes.  

CF: And why is the didactic variable interesting? 
MTE: Why is the didactic variable interesting!? [CF: Yes, why?] In other words, the 

didactic variable, just as a concept who cares whether it is called didactic variable or 
whatever it’s called. 

CF: OK, but why does dedicating a full two-module class to this content seem interesting 
to you?  

Finally, the last type of question was the one aimed at deepening insight, which attempted to get the 
MTE to reflect on his own explanations or reasoning regarding the phenomenon under discussion. For 
example, a broad debate about the teacher educator’s role as a model develops in the second session, 
and about what the latter thinks is being modeled in his classes. In this context, the critical friend 
engages more extensively in reflective practice and formulates questions that enable him/her to delve 
deeper into the MTE’s thinking.  

CF: [...] when you are teaching the class on equations or on some other mathematical 
subject you have taught, what is it you meta-communicate when you teach your 
classes? You told us you had classes that were more about the content of primary and 
secondary level math, others that were more about professional performance, such as 
planning, etc. When you are in classes that are more about primary and secondary 
level math content, what do you expect to model, or what have you seen yourself 
modeling? 

From the point of view of focus on practice, we distinguish three types of questions: those having to do 
with Personalization, with Experience, and with Assumption. In the personalization questions, the 
critical friend seeks to inquire into the MTE’s motivations or personal connections with the subject 
under discussion or into decisions he has made for the class. During the first session, for example, 
discussions take place in connection with theorizing about certain teaching practices the MTE feels are 
effective, and the critical friend seeks to understand how those practices affect him. 

CF: And how do you feel about that when you are standing in front of our students? 
MTE: How do I feel about needing a theory to back me? 
CF: Mmm? Do you feel more confident, do you feel calm? 

Another type of questions is those aiming to evoke the MTE’s practice. These experiential questions 
made it possible for the teacher educator to bring into the conversation different past experiences or those 
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from other contexts, to be discussed in terms of the phenomenon in question. During the first session, 
the discussion develops around the modeling role the teacher educator feels he has for his students. To 
inquire why this is relevant, the critical friend invites the MTE to engage in reflective practice about his 
experience. 

CF: Can you think of an episode in which you were impacted by the lack of coherence on 
the part of your teacher educators? At what point does [coherence] begin to be 
important for you? 

Finally, the third type of questions focusing on practice is the one having to do with assumptions. 
These are questions in which the critical friend puts the MTE in situations he/she has not necessarily 
lived or experienced. The purpose is for the MTE to project a decision or reflection about a 
phenomenon, in spite of the fact he denies having lived that experience in particular. In the following 
quote from the third session, we observe an episode where this type of question is being posed, and in 
which the teacher educator and critical friend discuss what happens to students when subjects are left 
open in class, which is a habitual strategy of the MTE. 

CF: But if you had a different group next year, this could happen to you, right? [MTE: Of 
course] Because in the final analysis, going beyond the group, your style of teaching 
leaves things open. So, there could be a group with which that doesn’t work … 
[MTE: How would I address that? what would you do in that case?] 

Types of teacher educator reflection practices during critical friendship sessions 

It was possible to identify two types of reflection practices dealing with questions and discussions 
triggered by the critical friend. On the one hand, in terms of depth, we found some reflective practices 
to be superficial, where the MTE did not engage in introspection with respect to what was being 
discussed, as opposed to some deeper ones in which the MTE engaged in introspection regarding the 
phenomenon under discussion. On the other hand, there were reflective practices related to the type of 
content of the MTE’s reflections, some related to professional aspects, and others of a didactic-
mathematical type.  

With regard to level of depth, the quote below comes from a moment in which the MTE gives an 
account of what he expects to get out of this critical friendship relationship and of the presence of 
questions that trigger the surfacing of beliefs. Even though one can observe a certain positioning on the 
part of the MTE, he does not delve much into the types of questions that he would like to explore. 

MTE: No, that seems perfect to me, but I would specifically add to that [...] that if the 
change with respect to certain beliefs is made explicit, beliefs about which we have 
no prior idea what they are going to be, but if there is some change or at least a 
certain…if certain doubts arise in me, at least that.  Because I don’t expect to clarify 
here all the doubts, I may have [...] but perhaps, to the contrary, generate more 
questions. 

Nevertheless, when the MTE continued his narrative, we observed an example of increased analysis 
and depth in his reflective practice, in which he contrasted his vision of the teaching role as a guide 
with the student’s autonomy. This vision reflects the evolution of the MTE’s role as a teacher educator 
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resulting from his professional experience, from staking his experiences, expectations, and challenges 
on that role. 

MTE: I believe that I have become aware that, at least during certain moments, 
independently of classroom contexts, the student is to be the protagonist. I need to be 
more like a guide [...]. I believe that generating autonomy, I don’t know if it can be 
said that way, but I believe that generating autonomy of thought or freedom of 
thought [...] I believe in that in my role as a teacher –I am thinking of the classroom – 
I believe that generating that freedom is of key importance. 

On the other hand, in terms of the specific content of the MTE’s reflective practice, we observed an 
increase in statements having to do with professional aspects such as classroom experience related to 
curricular decision-making, or expectations regarding the vision of teaching that future teachers begin 
constructing during their formative years. Didactic-mathematical aspects, such as decisions with 
respect to teaching and learning functions, or a design proposal for a specific mathematical task, were 
discussed to a lesser extent. The following quote is an example of a MTE’s professional response while 
alluding to the importance of installing decision-making and questioning as a permanent professional 
practice, especially when working with student teachers: 

MTE: Then how that decision-making act has an impact on designing a mathematical task 
with a specific purpose. The understanding that the fact of posing certain questions 
conditions your teaching, conditions the way you will be planning your teaching, and 
what the impact is I am going to have on my students. I believe that is what I would 
mostly expect to get out of this session with them. And what I would like to remain 
with, is the knowledge of having evidenced that the above [process] is taking place. 

In connection with statements aimed at didactic-mathematical topics, the following quote is extracted 
from a moment in the second session in which the MTE analyzes the notion of a didactic variable and 
his role in decision-making: 

MTE: That in itself is what is interesting, that one can handle that, manipulate that 
deliberately with a purpose, depending on the student, and that it makes an impact in 
the way that student learns.  That’s the point. So, I understand that the didactic 
variable is an answer to that process. I believe that it is transcendental. What happens 
is that if you have not been taught what the didactic variable is, that does not 
necessarily make you consider it or not consider it.  But it is important to make the 
student aware that this is present in their decision-making in the manner in which 
they design a mathematical task. It is present, and it is important to consider that. 

Discussion and Conclusion 
The results obtained show that the critical friend (Author 1) as well as the MTE (Author 2) develops a 
variety of strategies that allow them to build the critical friendship. On the one hand, the MTE is 
capable of articulating different levels of depth in his reflective practices and of diversifying their 
content in order to address professional aspects of a teacher’s work, as well as specific aspects of the 
teaching and learning of mathematics. This makes it possible to enrich Chapman’s approach (2008), to 
the extent of specifying the ways in which to examine the dilemmas of classroom practice. The 

Proceedings of CERME12 4743



questions voiced by the critical friend offer the teacher educator an opportunity to consider different 
points of view and to thus question his beliefs (Schuck & Brandenburg, 2020). At the same time, these 
results allow us to offer an unpacking of internal dynamics at work in the critical friendship 
relationship between MTEs. Table 1 summarizes the different types of questions posed by the critical 
friend and the different types of reasoning displayed by the MTE. 

Table 1: Categories of questions and answers tables 

Purpose of the Questions 
(Critical Friend) 

Types of reflective practice 
(Mathematics Teacher Educator) 

Understanding pedagogical 
reasoning 

Understanding teaching 
practices Level of Depth Content 

Exploration 
Discussion 
Delving into the topic  

Personalization 
Experience 
Assumption 

Descriptive 
Analytical 

Professional 
Didactic-Mathematical 

 

The relationship between questions and answers, and definitely between the purpose of questions posed 
by the critical friend and what the MTE displays during the conversation in connection with said 
questions, becomes a strategy that makes it possible to provide support to the professional learning of 
both actors within the critical friendship relationship. At the same time, it enables them to be aware of 
the personal resources they make available during the discussion, which they can project onto their own 
experience, thereby contributing to the improvement of their teaching practices. In addition, critical 
friendship is a tool that causes the teacher educators involved to evolve, as happened in this case in 
which they went from a dynamic based on questions to one in which they shared experiences, both 
mathematics teacher educator and critical friend having engaged in reflective practices that can 
potentially impact their teaching practices. 

Although this study has contributed to unpacking some crucial aspects of critical friendship, it is 
important to establish the limitations and scope of the findings. For example, this study focuses on a 
particular case; therefore, it does not allow it to be generalized to the broader group MTEs. 
Nonetheless, the findings of this study may contribute to starting new discussions about generating 
spaces for MTE professional learning supported by collaborative work among them. Based on our 
experience in this self-study, and particularly in this critical friendship, we consider it necessary to 
articulate the existence of these relationships between teacher educators of the same program, 
safeguarding the time and conditions to make them happen.  In addition, inclusion of various profiles of 
MTE has turned out to be an enriching element in the ensuing discussions and their analysis, which 
leads us to think that critical friendship may be used among other actors (practice tutors and students, 
teacher educators and students, etc.) for purposes of improving and growing the complexity of their 
professional learning. 
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The enactment of norms is a key challenge for professional development (PD) facilitators, 
particularly in video-based programs where teachers tend to be judgmental. This study follows seven 
novice facilitators of a video-based PD program that aims to promote reflection on practice while 
downplaying criticism on the filmed teachers’ actions. We describe how the novice facilitators 
enacted norms and responded to teachers’ judgmental comments, in order to unpack this challenge. 
The findings show that although the facilitators underwent the same preparation, considerable 
variations were found in their decision-making concerning this issue. We describe possible reasons 
for the different decisions, and suggest implications. 

Keywords: Novice facilitators, PD norms, video-based PD. 

Background 
All social interactions are built on certain norms, which constitute an implicit or explicit contract by 
which participants agree upon what is acceptable, what is less acceptable, and what is definitely 
unacceptable (Forsyth, 1995). In mathematics education, classroom norms have been thoroughly 
investigated (e.g., Yackel & Cobb, 1996), including teachers’ instructional norms (e.g., Herbst & 
Chazan, 2011). By contrast, norms in the PD context have received less attention. PD courses for 
practicing mathematics teachers are based on social interactions, and as such, are also  conducted 
according to norms that are meant to be accepted and shared by the PD facilitator and the participants. 
Facilitators are the dominant actors in introducing and maintaining these norms (Karsenty et al., under 
review), since they design the sessions, lead them, and have the authority to indicate what courses of 
action, comments, and directions to pursue are acceptable and valuable for the discussion. They often 
do so according to guidelines, and perhaps also tools or moves, provided by the PD program they 
facilitate. Since evaluative comments are prevalent in teachers’ talk when watching other teachers’ 
lessons (Coles 2013; Jaworski, 1990), the enactment of norms is a key challenge for facilitators in 
video-based PD programs (Karsenty et al., 2019). It follows that it is even more challenging for novice 
facilitators who need to make decisions during unfamiliar situations. When novices facilitate PDs to 
their colleagues, as often occurs in the upscaling process of a PD, the enactment of norms is also 
shaped by their sense of credibility and their multiple identities as teachers, colleagues, and 
facilitators (Knapp, 2017). In this paper, we focus on this challenge by exploring the following 
research questions: 

How do novice facilitators of a video-based PD respond to teachers’ judgmental comments? What 
underlies facilitators’ decisions with respect to this issue?  
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Context 
The above questions are investigated in the context of a PD project called VIDEO-LM (Viewing, 
Investigating, and Discussing Environments of Learning Mathematics), developed at the Weizmann 
Institute of Science in Israel. The program aims to enhance secondary mathematics teachers’ 
reflective skills, along with their mathematical knowledge for teaching (MKT; Ball et al., 2008), via 
collective guided analysis and discussions of videotaped lessons (hereafter VLs) of unfamiliar 
teachers. A six-lens framework is used to focus participants’ observations and analysis of VLs 
(Karsenty & Arcavi, 2017), including: mathematical and meta-mathematical ideas in the lesson; the 
filmed teacher’s goals; the tasks used; the interactions in the lesson; the filmed teacher’s dilemmas 
and decision-making; the filmed teacher’s beliefs. To enhance reflections and decenter criticism, the 
project team determined several core norms for these discussions (adapted from Karsenty & Arcavi, 
2017, p. 438-9): (1) Maintain a non-evaluative and respectful conversation about the filmed teachers, 
assuming that they are acting in the best interest of their students and that they have the knowledge 
needed for teaching the observed lessons; (2) Instead of criticizing the filmed teachers, practice 
“stepping into their shoes” in order to understand the goals and beliefs underlying their decisions; (3) 
Discuss alternative teaching decisions not as better or worse courses of action, but rather as a way to 
enrich the span of possible options while considering the gains and losses involved; (4) Under the 
assumption that there is no one best practice, observe lessons not as models to imitate but as rich 
artifacts that are aimed at stimulating discussions on issues of teaching; (5) Substantiate arguments 
raised in the video-based discussion, for example by using evidence from the VLs. To achieve the 
project goals as well as the local goals of the groups they work with, the facilitators of VIDEO-LM 
PDs choose which videos, lenses, and activities to use in each session. It follows that two central roles 
of the facilitators are designing sessions and leading discussions around VLs, and that the VIDEO-
LM context is a rich setting to explore the research questions posed above: firstly, since discussion 
norms are central to the program design, and secondly, because facilitators have the latitude to choose 
how to maintain these norms, and to monitor the extent to which they allow them to be breached.  

Method 
Participants. This study is part of a broader research project, consisting of a multiple case-study 
investigating seven novice facilitators, who are also mathematics teachers, in their first year of 
practice. During the VIDEO-LM project’s upscaling, new facilitators who previously participated in 
the PD as teachers were recruited. They were prepared in a one-year course and were supported by a 
personal mentor and by facilitators’ group meetings during their first year of facilitation. All the 
facilitators led school-based yearly VIDEO-LM courses in 2016-17 that lasted 21-30 hours, spread 
over 6-11 sessions. From the seven novice facilitators (named hereafter FacA, FacB, etc.), five 
facilitated the PD in their school (FacA-FacE) and two were external facilitators (FacF and FacG).  

Data collection. To examine facilitators’ decisions as well as their own view of them, the following 
data was used for this paper: (1) journals written by facilitators before and after each PD session, 
where they responded to guiding questions regarding goals, decisions, challenges, and more; (2) 
videos of two PD sessions per facilitator, one early in the year and another towards the end of the PD; 
(3) videos of stimulated-recall interviews (SRIs) held with every facilitator a few days after each of 
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the filmed PD sessions. In these SRIs, the facilitator and the first author jointly watched the PD 
videos, and the facilitator was asked to stop the video whenever s/he noticed a decision to reflect on. 

Data analysis. All the research project’s data was coded according to five macro-categories which 
we named issues of facilitation, one of them is “enacting norms”, namely, how facilitators introduced 
norms and responded to judgmental comments. The data presented in this paper are those that were 
coded under this issue, namely, transcripts of (a) PD discussions where facilitators initiated the 
enactment of norms and/or responded to their breach, (b) facilitators’ reflections on these episodes in 
SRIs, and (c) reflections in journal entries. The PD sessions were further segmented according to 
decisions, using the methods presented by Schoenfeld (2010). The criterion for coding a sequence as 
a “decision” was that it refers to something the facilitator initiated that consists of several turns that 
allow for capturing the context and meaning. To analyze facilitators’ decisions we used the ROGI 
framework (Karsenty, et al., 2021) comprising Resources, Orientations, Goals, (ROG, Schoenfeld, 
2010), and Identity, as defined by Gee (2000): "Being recognized as a certain ‘kind of person’, in a 
given context" (p. 99). By employing these four constructs and pointing to their interplay, we 
constructed interpretations of the facilitators’ decisions. We found four different ways in which 
facilitators responded to judgmental comments, and possible reasons underlying these decisions. 
Although facilitators may perform different decisions during one session, we assigned each PD 
session to one of the four decisions according to the most common decision identified in the session.  

Findings: ways to respond to judgmental comments, and their possible reasons 
Despite the centrality of discussion norms in VIDEO-LM and the fact that all the facilitators were 
highly familiar with them (first as PD participants themselves and then in the VIDEO-LM facilitation 
course they took), considerable variations were found when addressing this issue. Four different 
decisions were identified: (1) The facilitator leaves judgmental comments unaddressed; (2) The 
facilitator strictly upholds the norms; (3) The facilitator redirects judgmental comments; (4) The 
facilitator deliberately provokes criticism to stimulate the discussion. In the presentation of each 
decision we mention which cases were assigned to it: the numbers “1” and “2” refer to early and later 
sessions, respectively. For example, the notation FacB2 refers to FacB in her later PD session. Three 
sessions out of 14 analyzed (FacE1, FacC1, FacF2) were omitted since no judgmental comments were 
raised by the PD participants. Below, each decision is described using examples from different cases, 
(yet, due to space limitations, we do not represent all of the identified instances in each decision).  
The notation “I1-4” refers to the facilitator’s 1st SRI (interview), line 4. “T2” refers to Teacher 2. 

Leaving judgmental comments unaddressed (FacA2, FacD1, FacB1) 

This decision, which was identified in three cases, relates to facilitators’ non-enforcement of norms 
and avoidance of dealing with judgmental comments. When such comments appeared, the facilitators 
either ignored them or tried to move on to a different topic. This decision stemmed from one of the 
following reasons: (1) limited resources to handle such comments, coupled with ambiguous 
orientations on how and when to enforce norms (“When I heard these comments, I felt really bad, 
and I didn’t know how to relate to them, how to react”, FacD, I1-158); (2) an orientation that the 
norms should be introduced gradually (“This is only the second session, I want to let them get things 
out”, FacD, I1-178); (3) For a facilitator with a strong colleague identity, an aspired goal of 
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maintaining good relationships with the teachers (“I constantly remember that not all teachers 
participate in the PD with the highest desire and motivation. Since I am their colleague, I want to 
acknowledge their position”, FacB, 2nd Post-session journal); (4) a goal of letting teachers express 
themselves, in order to ensure their cooperation later on  (“I think it was a good decision to let him 
say whatever he wanted […] afterwards there were some parts where he contributed enormously to 
the discussion”, FacB, I1-59,61); (5) fear of reacting to judgment raised by the teachers by using 
further judgment towards the teachers themselves, which might lead to an unpleasant atmosphere (“I 
don’t want to be involved in confrontations […]  I’d rather avoid such frictions”, FacA, I2-6). 

Strictly upholding the norms (FacA1) 

Interestingly, although norms are essential in the VIDEO-LM design, this decision – in which the 
facilitator does not allow the violation of norms – was assigned only to one session out of 14. The 
decision was expressed as follows: a) mentioning the norms explicitly before screening a VL; b) 
reacting immediately when a norm was breached. Both these sub-decisions can be seen in the 
following illustrative examples from FacA’s early PD session: 

48 FacA: Last time I said we have norms of discussion, I said that what guides us is 
respecting those who stand in front of us [the filmed teachers], but I did not 
define what "respect" is. When I say "respect" [...] it's the state of mind I 
want you to get into every time we watch a lesson: assume that whoever is 
standing in front of us, especially since they knew they are going to be 
filmed, and they prepared the lesson – assume that they always act in the 
best interest of their students. And we are not supervisors, we are not 
instructors, we are not here to evaluate them, we only want to see things that 
happened in their classes and learn from them. 

495 FacA: [Context: the facilitator responds to a PD teacher that criticized the filmed 
teacher for only writing the positive solution  for the equation 

] Why do you think, why didn’t he [the filmed teacher] correct it? 
Obviously, he knows that it’s [supposed to be] ±. 

The main reason underlying this decision appeared to be FacA’s goals “to make the teachers 
assimilate the VIDEO-LM language of gains and losses” (I1-182) and “to have a non-judgmental 
discussion” (2nd Pre-session journal). These goals, together with Josh's strong adherence to the 
VIDEO-LM resources and values (“my definition of what a good [PD session] is […] it’s whether 
during the discussion the issues from the Observer’s Guide1 appear”, I1-273), have probably caused 
him to respond immediately to every violation of norms. This decision resonates with the approach 
that norms should be clear from the outset (Coles, 2013; Jaworsky, 1990) to determine the direction 
the discussion will take. 

Redirecting judgmental comments (FacC2, FacD2, FacE2) 

Whereas the previous decision relates to an immediate reaction to non-compliance with the norms, 
redirection is subtler; here the facilitator gradually steers the conversation into ascribing goals to the 
filmed teacher’s actions, using open-ended questions that are directed to the entire group. 

 
1 The Observer’s Guide (OG) is a document linked to each VL in the VIDEO-LM website, that includes a suggestion of 
how the VL may be analyzed using the six lenses.  
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Nonetheless, these decisions often go together: the facilitator may reassert the norms and then try to 
redirect the discussion. The decision to redirect allows for other participants’ opinions to be heard, 
including those which contradict the criticism that was voiced. However, this entails the risk that the 
non-enforcement of norms may lead to an increasingly judgmental discourse. The following 
discussion from FacD’s later session is an example of a successful redirection: 

[Context: The teachers had just observed a teaching episode from an 8th-grade probability lesson that consisted 
of games. When analyzing the mathematical ideas in one of the games, the filmed teacher asked the students 
to share their strategies and wrote their answers in a table. In the following PD discussion, Teacher 2 and 
Teacher 6 criticize this move]. 

366 T2: Filling out this table was just a waste of time . 
367 FacD: Filling out this table was a waste of time, what do you think? 
369 T1: No. 
370 FacD: Not a waste of time, why? 
371 T1: Kids love to give their answers. If you were to ask me what my strategy for 

the game was, I would want to share it very much. 
372 FacD: That was his [the filmed teacher's] consideration, letting all the students 

share their strategies?  
373 T6: [...] [in a criticizing tone] I think that if he had used technology here, he 

could have gotten faster and clearer results. 
374 FacD: Why do you think so? 
375 T6: If everyone were sharing their data in a common document [...] he would 

have seen it [the table of strategies] right away. 
376 FacD: Still, what... what's the gain in what he did ? 
378 FacD: What does this allow ? 
379 T1: That everyone can share. 

The judgmental comments in Turns 366 and 373 were followed by the facilitator’s open-ended 
questions (Turns 367, 370, 374, 376, 378), which encouraged the voicing of a different opinion (Turns 
369, 371, 379), even if expressed by only one teacher. The facilitator herself was pleased with the 
course of the discussion when observing it during SRI-2: 

I2-148  FacD: [Refers to T2’s comment in Turn 366] She prepared the groundwork for me 
[laughs]. Because many teachers think that filling out the table or discussing 
multiple strategies is a waste of time, and I think that's one of the nicest 
things in this VL. 

I2-149  GS: This teacher said something that you objected to, so why did it make you 
happy? 

I2-150  FacD: Because it was an opportunity to see how others feel and let the others think 
about it too. Also, she herself [T2] could have tried to answer [my question], 
I don’t know if she thought about it that way. 

FacD’s articulations indicate that she views judgmental comments as a resource for the discussion 
that enables her to put out feelers about the issue at hand and encourage multiple opinions. Therefore, 
according to her orientation, such comments should not be immediately rebutted, as the ensuing 
discussion may provide an opportunity for the critical teacher to change her mind, in light of the other 
teachers’ comments and the open-ended questions posed by the facilitator.  
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Deliberately provoking judgment (FacB2, FacF1, FacG1, FacG2) 

This decision relates to elicitations of judgmental comments, for example by deliberately choosing a 
controversial VL, by asking judgmental questions, or by probing a teacher who seems dissatisfied 
with a VL. Here are two examples from FacF’s early session: 

88 FacF: [Turns to a teacher who made gestures of dissatisfaction while the group re-
watched a 20-minute segment from a VL] Before we talk about the lenses, I 
want to start with you, Teacher 1. To hear about your experience of 
watching the same segment for the second time. 

92 FacF: I'm just terribly curious about this question, Teacher 2, I'm looking at you 
[...] you seem to be a little opposed. 

While these excerpts may have different interpretations than the one suggested above, FacF’s 
reflection on his PD video shows that his goal was to stimulate the discussion: 

I1-76 FacF: I was ready for criticism on the VL because my mentor had prepared me. I 
wanted the teachers to be evaluative, because criticism elicits conversation, 
and that was needed. Here, I saw Teacher 1 sitting uncomfortably [while 
watching the VL], and I wanted to get him agitated, I wanted them all to get 
angry, to get upset, to talk. 

A similar stance was expressed by FacG in her final session. In SRI-2 she reflected on a PD episode 
where the group was 'sleepy' and she used provocative questions (such as “are you sure the students 
understood what the filmed teacher did there?”) to enliven the discussion: 

I2-44 FacG: It was very important to me that they would not just give me the answer that 
they thought I wanted to hear. I wanted critical thinking. [I asked them if all 
the students understood] and they answered "yes, they all understood", and I 
thought, ‘are you sure all these 30 students understood?’ That's what's 
important to me, to constantly elicit their thinking. 

This decision lets facilitators control (to some extent) the volume of judgmental comments in the 
discussion, in the sense that: (1) they will not be caught by surprise when criticism emerges; and (2) 
the very fact that the facilitators themselves bring up the controversy may reduce teachers’ 
antagonism (“I decided to tell them in advance before watching, ‘you are going to squirm in your 
chairs’, because otherwise, [...] they would have been even more judgmental and the discussion would 
not have been productive”, FacB, I2-48). Regardless of this sense of control, facilitators may have 
little idea as to what to do with  such comments when they appear. Thus, a further decision is to 
prepare for the kind of comments that may emerge, including thinking about possible responses to 
use in real-time, as FacB described in SRI-2: 

I2-62 FacB: This VL makes people uneasy […]. I wrote in my session plan that the 
teachers would probably ask "what is she [the filmed teacher] doing this 
for?". [...] My role as a facilitator is thinking about what criticism could 
come up, and thinking what answers I can give. 

All the above excerpts suggest that as in the previous decision, the facilitators hold the orientation 
that judgmental comments are a useful resource that provides the spark to kindle a lively and engaging 
discussion. What distinguishes this decision is that the facilitators are those who initiate or elicit 
judgment, with the aid of prompts they purposefully chose.  
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Synthesis and implications 
This study set out with the aim of shedding light on how novice facilitators enact norms within a 
specific video-based PD, in particular how they respond to criticism, which is known to be an 
inhibitor of teachers’ learning and reflection (Coles, 2013; Karsenty & Arcavi, 2017). The four 
decisions presented above show different responses to judgmental comments that were identified 
within seven novice facilitators' practices. There are several similarities and differences between the 
decisions, that can illustrate the complexity of deciding on a course of action: The last three decisions 
are similar in the sense that they all show how facilitators steer evaluative talk into a discussion about 
gains and losses which can lead to teachers’ reflections. However, they differ in terms of the 
facilitators' capacity to withstand judgmental discussions, or, the extent to which facilitators see these 
comments as fruitful. The first decision, i.e., facilitators allow for judgmental comments but do 
nothing about them, may look on the surface very similar to the decision to redirect judgmental 
comments: in both cases, criticism towards the filmed teacher is enabled. However, in the redirection 
decision, judgmental comments are used by the facilitators as a resource, thus the liability to the 
program’s norms and the filmed teacher is preserved. In the first decision, in contrast, the criticism is 
never addressed. Overall, the findings contribute a delineation of different ways to execute the PD’s 
main goal, suggesting that there are multiple “best-practices” to do so, which are shaped by the 
different contexts. The ROGI analysis assisted to show the complexity of decision-making during 
facilitation, especially for newcomers who do not have well-established scripts to work by. For each 
decision, we described various underlying reasons, which are related to the goals of facilitators (e.g., 
to teach the VIDEO-LM language), their orientations (e.g., criticism can advance the discussion), 
their resources or lack thereof (e.g., inability to respond immediately to judgment), and their multiple 
identities (e.g., a facilitator who is also a colleague who prefers to maintain a pleasant atmosphere 
rather than get into confrontations while enforcing norms). Identifying the complex considerations 
underlying facilitators’ decisions contributes to a better understanding of novice facilitators’ 
practices. Accordingly, this work suggests immediate implications for facilitator educators: (a) to 
acknowledge that facilitators’ practices are shaped by multiple elements. Thus, alongside supplying 
them with adequate resources for the enactment of norms, it is worthwhile to ponder on their 
orientations and goals with respect to this issue and to understand what challenges and affordances 
are generated by their identities as teachers and colleagues; (b) to discuss the idea that there are 
various ways to accomplish the PD goals, each carries its own gains and losses; (c) to delve on how 
teachers’ criticism can enhance the discussion and turn into a resource for facilitators; (d) to discuss 
the possible consequences of a non-enactment of norms. In general, it could be of benefit for the field 
to understand more on how norms may influence mathematics teachers’ learning, and on the 
facilitators’ role in this process. 
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The Video in the Middle (VIM) project is creating forty two-hour video-based professional 
development modules that can be combined in a variety of ways to form personalized pathways that 
meet the unique needs of a wide range of professional learning settings and contexts. The VIM 
asynchronous modules are designed to be used in three flexible facilitation formats: locally 
facilitated, expert facilitated, or independent/non-facilitated. VIM modules aim to support teacher 
noticing of student thinking and increase their mathematical knowledge for teaching linear functions. 
Preliminary research results indicate that teachers appreciated the variety of facilitation formats, 
found the online modules useful and engaging, and noticed, compared, and analyzed a variety of 
visual and numeric methods for solving linear function problems.  

Keywords: Mathematics teacher educators, facilitation, online professional development, video-
based learning, teacher noticing, mathematical content knowledge. 

Introduction 
Incorporating video within a professional learning environment offers great potential for mathematics 
teacher educators to support teachers in unpacking the relationships among pedagogical decisions 
and practices, students’ thinking, and the disciplinary content (Borko et al., 2011). With video, 
teachers can observe and study the complexity of classroom life, reflect on their own instructional 
decisions, and to integrate multiple domains of knowledge to solve problems of practice (Blomberg 
et al., 2013). Recent reviews of the literature on video use in professional development (PD) point to 
the value of video as a tool for improving instructional practice (Gaudin & Chaliès, 2015).  

As video technology and online video sharing have become more accessible and widespread, video-
based PD is well-positioned to leverage the benefits of digital platforms (Ter s & Kartoglu, 2017). 
Online platforms can allow teachers access to professional learning resources that may not be 
available to them locally and can also support those who are reluctant to share ideas in face-to-face 
settings in becoming more comfortable doing so in digitally mediated interaction. Online PD is 
considerably more scalable than comparable face-to-face PD, and in many cases is subject to fewer 
monetary and logistical constraints for teachers (Killion, 2013). Research to date on online PD has 
shown some positive effects for teachers, even compared to face-to-face formats (O’Dwyer et al., 
2010). Most research comparing online, and face-to-face versions of PD has found that well-designed 
online courses utilizing high-quality learning materials intended for individual use can produce 
learning outcomes that are like or better than face-to-face options (Fishman et al., 2013).  

There is a general recognition of the critical role facilitators play in leading PD and the need for 
knowledgeable PD facilitators, leaders, and coaches (Bates et al., 2011). As PD shifts to address 
challenges such as COVID-19, facilitators are increasingly engaging with online platforms. To 
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flexibly respond to teachers’ complex and rapidly changing circumstances, new types of facilitation 
roles will become necessary (Koellner et. al., 2022). This paper reports on the design and preliminary 
findings from a project that is adapting face-to-face mathematics PD materials to an asynchronous 
digital format that was pilot tested with mathematics teachers in three facilitation conditions (local 
facilitated, expert facilitated and non-facilitated) to examine the impact on teacher and student 
knowledge. The paper will focus on findings related to the three facilitation conditions. 

The video in the middle project  

The Video in the Middle (VIM) project is designing and researching asynchronous PD modules.  The 
asynchronous format allows participants access to PD at any time, in any location, and can potentially 
eliminate the often-mentioned roadblocks to participation—lack of scheduling flexibility and 
geographic distance. The VIM project draws upon the face-to-face Learning and Teaching Linear 
Functions: Videocases for Mathematics Professional Development video and ancillary resources 
(e.g., lesson graphs, transcripts, mathematical and video commentaries) to develop 40 two-hour 
modules intended to develop teachers’ noticing skills and mathematical knowledge for teaching linear 
functions. These modules offer flexibility by allowing mathematics educators to design a variety of 
module sequences to fit their professional learning needs.  

Conceptual frameworks 
The design and development of the VIM asynchronous modules are conceptually grounded in two 
main bodies of research related to teacher learning in PD. First, the development of professional 
knowledge that consists of deep and connected mathematical content knowledge, the knowledge of 
students’ thinking and how students learn the content, and knowledge of pedagogical practices and 
norms to support student learning. Second, the development of a professional vision that consists of 
teachers’ ability to notice, analyze, and reason about features of student thinking and classroom 
interactions. In this section, we briefly discuss these two research areas with a focus on how they 
relate to the design and impact of the VIM asynchronous PD. 

Mathematical knowledge for teaching 

Ball and colleagues have identified and elucidated “mathematical knowledge for teaching” (MKT) 
as the professional knowledge that mathematics teachers must have to do the mathematical work of 
teaching effectively (Ball & Bass, 2002). This conception of knowledge of mathematics for teaching 
is multifaceted and includes both content and pedagogical content knowledge. MKT includes a 
sophisticated understanding of effective instructional practices and student thinking related to specific 
mathematical content and comes into play during all phases of teaching. For mathematics teacher 
educators, incorporating video within the learning environment supports opportunities for teachers to 
develop their MKT by unpacking the relationships among pedagogical decisions and practices, 
students’ work, and the disciplinary content (Bloomberg et al., 2013). Collectively viewing and 
discussing video clips allows for the complexities of classroom practice to be stopped in time, 
unpacked, and thoughtfully analyzed, helping to bridge the ever-present theory-to-practice divide and 
support instructional reflection and improvement. The VIM module design incorporates MKT by 
providing multiple and varied experiences to examine and compare a variety of mathematical 
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methods and representations, and to analyze the complex relations between content, pedagogy, and 
student thinking. 

Professional vision and noticing 

One unique aspect of mathematics teacher educators’ knowledge is their “professional vision”, which 
refers to their ability to notice and analyze features of classroom interactions, make connections to 
broader principles of teaching and learning, and reason about classroom events (Seidel & Stürmer, 
2014). Over the years, diverse conceptions of noticing have emerged in the literature, but in general 
most discussions of mathematics teacher noticing involve two main processes: (1) Attending to 
particular events in an instructional setting (i.e., teachers choose where to focus their attention and 
for how long) and (2) making sense of events in an instructional setting (i.e., teachers draw on their 
existing knowledge to interpret what they notice in classrooms) (Sherin et al., 2011). Sherin et al. 
(2011) argue that these two aspects of noticing are not discrete, but rather interrelated. Teachers attend 
to events based on their sense-making, and how they interpret classroom interactions and students’ 
thinking influences where they choose to focus their attention. A noticing conceptual frame is used 
within the VIM asynchronous module design to support the analysis of classroom interactions and 
reason about teaching and student thinking within the viewing and analysis probes of the video clips 
embedded within the modules. In addition, the bridge to practice activities that end each module are 
designed to connect teachers’ learning to their classroom practices. 

VIM module design and development 
Many, but not all, video-based mathematics PD programs have teachers are designed to engage 
teachers in specific activities before and after watching the focal video (Borko et al., 2011). For 
example, prior to watching a clip, PD facilitators may ask the teachers to solve and discuss the math 
problem shown in the video to develop content knowledge, motivate teachers to notice elements of 
the content contained within the clip, and attend to specified activities such as a unique solution 
method or teacher questions that prompt extended student reasoning. After viewing the video, 
facilitators may guide a discussion and in which the teachers relate what they have seen on the video 
to their own classroom practices. The discussion and follow-up activities extend teachers’ thinking 
and analysis by probing more deeply into topics or issues presented within the video. 

We label this intentional sequencing of video viewing such that it occurs between designated 
activities with specified learning goals a ‘video in the middle’ design (Seago et al., 2018). In video-
based mathematics PD that incorporates this design feature, video is in the middle of the learning 
experience, sandwiched between activities such as mathematical problem-solving and pedagogical 
reflection. Our goal is not to argue that this design feature is new to the field of professional 
development, but simply to highlight and label it, and consider how the design is likely to support 
pre- and in-service teachers’ learning. 

Each VIM module contains the same set of activities embedded in the video in the middle design, 
placing a video clip at the center, or “in the middle,” of professional learning as teachers take part in 
an online experience of mathematical problem solving, video analysis of classroom practice, and 
pedagogical reflection (Figure 1). The overall structure of this design is consistent across all VIM 
modules and is intended to support teachers’ professional learning opportunities around mathematical 
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knowledge for teaching (Ball & Bass, 2002) and teacher noticing of student thinking and teacher-
student interactions (Sherin et al., 2011).  

 
Figure 1: Video in the middle PD activities 

The VIM modules are designed to be offered in three asynchronous facilitation formats: (1) locally 
facilitated, (2) expert facilitated, and (3) independent/non-facilitated. The different formats provide 
unique affordances for teachers and provides users with both flexibility and choice in their 
professional learning. Some teachers may prefer to work independently at their own pace and on their 
own time schedule; others may prefer to work with colleagues at their school with local facilitation 
from a coach. Or districts may want to offer their teachers the opportunity to participate with other 
teachers nationally in an expert facilitated experience. VIM’s final design will offer a variety of 
suggested pathways through the modules depending upon goals, grade levels, and mathematics 
content, with options to personalize a professional learning plan (depending on one’s goals) or swap 
a particular module with another from the bank of VIM modules.  

Methodology 
During Spring 2020, middle and high school teachers were recruited across the state of California to 
participate in a pilot efficacy study to address the following research questions: 

What is the impact of teachers’ participation in the three delivery formats on teachers’ 
mathematical knowledge for teaching, their noticing skills, and their teaching practice? What is 
the impact on their students’ performance? 

In this paper, we report on the impact of participation in the three delivery formats on teachers’ 
mathematical knowledge for teaching and noticing skills.  

Participants. Mathematics coaches/leaders from two school districts with which researchers had 
existing relationships were recruited for the locally facilitated condition. The coaches/leaders in each 
district recruited teachers and then served as the local facilitators for groups in their districts. For the 
independent /non-facilitated condition and the expert-facilitated condition, teachers were recruited 
from districts across California and randomized into two groups. Where multiple teachers were 
recruited from the same district, teachers were split between the two groups. Of the 68 teachers who 
began the study, 56 (82%) completed all or nearly all study activities, including all four VIM modules 
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(16 local facilitated, 16 expert facilitated, 24 independent). All three conditions had 80% or higher 
completion rates—local facilitated (83%), expert facilitated 80%, and non-facilitated 83%. 

Intervention. All teachers experienced the same four sequenced, two-hour modules for a total of eight 
hours of professional development over the course of eight weeks (February-March 2020). While the 
modules are structured alike and contain a consistent set of activities and resources, each individual 
module is focused on a set of three unique learning goals (mathematical, pedagogical, and 
instructional) that are designed around each VIM mathematical task and video clip. 

Facilitator training. In January 2020 two project staff designed and facilitated a 90-min zoom 
facilitator orientation for the two expert and three local facilitators. During the orientation, staff gave 
an overview of the RCT study and timeline, the VIM module structure, tools (such as Canvas, 
NowComment and Padlet), and a web-based facilitator guide. Additionally, a video tutorial focused 
on the journal tool was created for the facilitators to learn how to comment on participants responses 
and provide feedback to their teacher participants within the asynchronous format.  

Measures. A variety of measures were used to gather impact data on teachers and students. Teacher 
measures included an online pre-post video and student work analysis task, weekly online self-report 
teacher logs focused on what teachers used in their classroom practice related to the PD, teacher 
interviews focused on usefulness, engagement and facilitation conditions, classroom observations 
and PD embedded pre-post community wall posts and comments. A student online quiz was 
developed to assess shifts in content knowledge. The focus of this paper will be on the analysis and 
results of the mathematics community wall pre-post data and interview data across the three 
facilitation conditions.   

Analysis and results 
COVID’s impact on data collection, analysis, and results. Weeks seven and eight of the RCT were 
impacted by COVID-19. In both facilitated groups there was less interaction among participants in 
the fourth module than the previous three modules. Typically, there were four-five participants who 
commented on colleagues’ posts. For the fourth module, there were one or two people who completed 
the module around the same time and interacted with each other. For teachers who completed the 
fourth module, they completed all the activities and journal entries but didn’t comment or interact 
much with their colleagues. In addition, while ~5000 pre student quiz data was successfully collected, 
post student quiz data was not able to be collected. Teacher observations were not completed and 
therefore teaching practice impact data was not collected. 

Teacher community walls. Within each of the VIM modules, teachers worked on the mathematical 
task that the students in the video clip engaged with. After solving the problem, they uploaded an 
image of their work and colleagues and facilitators commented or asked questions. Two project staff 
independently examined and categorized the various mathematical methods posted by teachers and 
analyzed the responses by the teachers on each other’s methods. They compared and agreed upon 
their categories, analysis, and calculations. Community mathematics wall participation was high in 
all three conditions. In the locally facilitated condition, 80% of participants posted their mathematical 
work in the first VIM module and 95% posted their work in the final VIM module. In the self-paced 
group, 88% of the participants posted their mathematical work for the first module and 100% posted 
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in the final module. In the VIM project facilitated group, 100% of the participants posted their work 
in both the first module and last modules. The VIM project facilitated group had the smallest number 
of pre-non-facilitator comments, but a similar number of total comments to the other two conditions.  
The most notable pre-post results emerged in the analysis of the visual versus numerical methods 
used by teachers. Specifically, by condition: 

 Locally facilitated: Visual methods increased from 3% of the total methods posted in 
module 1 to 89% in module 4; numerical methods decreased from 70% of the total methods 
posted in module 1 to 11% in module 4  

 Expert facilitated: Visual methods increased from 6% of the total methods posted in 
module 1 to 94% in module 4; numerical methods decreased from 82% of the total methods 
posted in module 1 to 6% in module 4 

 Non-facilitated: visual methods increased from 18% of the total methods posted in module 
1 to 85% in module 4; numerical methods decreased from 82% of the total methods posted 
in module 1 to 6% in module 4 

The preliminary results in the analysis pre-post methods not only showed improved MKT with a 
substantial shift from numerical to visual methods, but their comments indicated an increased 
appreciation for visual methods in general by mentioning use of color, modeling of expressions, etc. 

Teacher interviews. Of the 56 teachers who completed the study, nine were randomly selected for 
guided interviews in June and July 2020, three from each condition. All interviews were audio-
recorded and transcribed. Two project staff identified passages related to teachers’ engagement in the 
PD, the usefulness of module features, the content and resources, their thoughts on the facilitation 
conditions and the impact on their practice. All nine expressed that they found the VIM PD modules 
engaging and useful. When asked to comment on features or elements of the VIM modules they found 
most beneficial, the videos, lesson graphs, and community walls were all mentioned by most teachers. 
In relation to noticing, many teachers commented that watching a video of a real classroom helped 
them better understand what teacher moves described in the PD would look like and how ‘real’ 
students might respond mathematically. In relation to MKT, teachers mentioned that they learned a 
variety of ways linear functions tasks can be approached or solved, whether from the analysis of the 
videos, the solution methods document, or in other participants’ work posted on the community walls.  

When asked about their experiences, teachers in different conditions described distinctive affordances 
of each. For example, most teachers in the facilitated groups appreciated receiving feedback from a 
coach in their district or an expert facilitator, while those in the independent/non-facilitated group 
enjoyed the flexibility of being able to complete the modules at their own pace. As one independent 
participant said,  

‘I like this particular experience because I can go at my own pace, and it was still almost like it 
was facilitated because there were questions that you had to answer.’  

Most participants in the facilitated groups felt that the facilitation was supportive and helpful. They 
appreciated the comments and questions posed on the Padlet wall and said that it helped them reflect 
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on their own learning and perspective of the task.  Some shared that it helped them to be accountable 
and get the work done.  

‘I liked the group I was in because it held me accountable to do a lesson a week, or in the time 
constraints. I might not have managed my time as efficiently... I wouldn’t have 
gotten as much out of them. I feel I was able to get more out of them by being in 
the structured setting.’  

One person in a facilitated group shared how supportive the facilitator was in helping her 
understand some of the content of the lesson as well as the postings on the Padlet wall. Almost 
all the participants in the facilitated groups appreciated being in a facilitated group and said that 
they would choose that option again.  One participant felt ambivalent about the facilitation and 
said she could be in either a facilitated or independent condition, as the facilitation felt minimal 
and not very helpful. Participants in the independent condition were divided regarding whether 
they would prefer having been in a facilitated group instead.  

‘I kind of liked the independent group because I was able to adjust my weekly schedule, but I also 
like to socialize with colleagues and talk about what we are learning.  I would like 
to have tried the other part, but I don’t think I have a preference’.  

Discussion and conclusion 
The VIM asynchronous video-based PD modules are designed to meet the increasing need for online 
PD options that include flexibility and choice for teachers and facilitators (Koellner et.al., in press). 
The preliminary analysis of the community wall and interview data show impact of the three 
facilitation conditions on teacher noticing and MKT in the teacher’s examination of student thinking, 
classroom interactions, and mathematical representations/methods.  

A surprising result was the fact that there were no substantial differences in the RCT study across the 
three conditions regarding teacher engagement and interaction on the community mathematics task 
wall. We hypothesized that the facilitated group would be more engaged and post more comments in 
response to their colleagues’ methods and facilitator probes. This did not turn out to be the case, as 
teachers across all three conditions commented in similar numbers and shifted from numeric to visual 
methods from pre to post. We wonder if the design of the video in the middle experiences—the 
opportunities provided to teachers to access multiple perspectives of each other, mathematicians and 
mathematics educators and engage with their peers within the community wall activities—may have 
provided teachers with more similar than different experiences across the three conditions. We 
anticipate learning more as we analyze more data (journals, community wall reflections). 

The asynchronous, online nature of the VIM modules makes them highly scalable; unlike many face-
to-face and synchronous online PD options, mathematics educators do not need to limit participation 
due to space or cost concerns. At the same time, the various facilitation options allow for interaction 
and collaboration among teachers. 
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Teacher orientations influence instructional prioritizations and how teachers attend to students, 
particularly those at risk of being left behind. In PD programs, facilitators’ practices to recognize 
and respond to such teacher orientations for supporting at-risk students are thus an important aspect 
of content-related facilitator expertise. Extending the use of scriptwriting tasks to the PD facilitator 
level, we present two contrasting cases of how facilitators employ practices to respond to teachers’ 
orientations in a PD simulation. One facilitator avoids direct opposition with conflicting teacher 
orientations, while the second facilitator challenges the teachers’ orientations that do not contribute 
to supporting at-risk students’ learning. By discussing the contrasting practices in the facilitators’ 
written scripts, we demonstrate how the scriptwriting task can be used to investigate content-related 
facilitator expertise in terms of practices in response to teachers’ orientations.  

Keywords: Scriptwriting tasks, facilitator practices, teacher orientations, professional development.  

Introduction 
Mathematics represents a cumulative content area with basic concepts laying the foundation for later 
understanding. It is crucial that students can be supported in gaining knowledge from previous years 
or units, so they can develop deeper conceptual understanding as they move forward in later grades. 
The orientations that teachers have in response to less-privileged students who are at risk of being 
left behind are important to understand and necessary for PD facilitators to be able to identify and 
respond to. Such facilitator practices are part of their content-related expertise as conceptualized by 
Prediger et al. (2021). In this study, we draw on the Prediger et al. (2021) framework and utilize a 
scriptwriting task to examine facilitators’ practices for responding to teachers’ orientations for 
supporting at-risk students’ learning processes. We examine these practices in the context of a PD for 
teachers to monitor and enhance at-risk students’ conceptual understanding of basic concepts. In the 
theory section, we first address teacher orientations as part of their teaching expertise. Particularly, 
we elaborate on four sets of orientations pertinent to the context of fostering at-risks students’ 
mathematics performance. Second, we describe the framework of facilitators’ content-related 
expertise, with a focus on the facets relevant for our study. Third, we expound upon the tool of a 
scriptwriting task, the instrument we applied. Thereafter, we present and discuss the data we gained 
in the context of the teacher PD project Mastering Math, which is built around supporting at-risk 
students’ mathematics learning. Especially, we report how two facilitators were immersed in a PD 
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simulation by the scriptwriting task and what practices they applied to deal with different teacher 
orientations.   

Theoretical background 
Teacher orientations as a part of teacher expertise 

Various studies showed how teachers’ orientations, respectively beliefs, regarding the nature and 
meaning of mathematics are manifested in their teaching practices. Schoenfeld (2010) examined the 
components that impact how a teacher acts in the classroom and developed the theory of goal-oriented 
decision making, which considers resources, goals, and orientations as essential components. Such 
orientations and accompanying practices can have consequences for supporting students, especially 
those in need of additional assistance, if teachers prioritize, for example, procedural fluency over 
conceptual understanding. In expanding upon this conceptualization of orientations, Prediger (2019) 
created a framework of mathematics teacher expertise that includes orientations as one of five facets: 
“Orientations refer to content-related and more general beliefs that implicitly or explicitly guide the 
teachers’ perceptions and prioritisations of jobs (e.g. beliefs about the content or students’ learning 
processes)” (p. 370). Findings from empirical studies revealed four sets of contrasting orientations. 
First, teachers often focus on the development of procedural knowledge as opposed to conceptual 
knowledge (Wilhelm et al., 2017). Second, in terms of diagnosing individual student challenges, 
teachers often follow the school syllabus regardless if students fall behind, and, third, maintain short-
term mastery in contrast to emphasizing long-term goal mastery (Prediger et al., 2016). Fourth, 
teachers concentrate on individual student issues (Krähenmann et al., 2019), instead of facilitating 
rich discourse with all students. These four sets of orientations are addressed in the PD course 
Mastering Math that constitutes the context of our study. 

Facilitator practices as part of their content-related expertise  

In terms of what PD facilitators need to know and do to be able to provide successful PD programs 
for mathematics teachers, researchers have increasingly examined what constitutes necessary PD 
facilitator knowledge and practices (Borko et al., 2021; Lesseig et al., 2017). In putting different 
knowledge domains in action, facilitators need to employ practices that are conducive to working 
productively with adult learners and construct environments in which teachers can collaborate about 
relevant topics and can feel safe and supported to share information (Borko et al., 2014). Accordingly, 
Prediger et al. (2021) provided a framework for content-related facilitator expertise. The framework 
consists of jobs, which are conceptualized as typical and often complex situational demands of 
facilitating a specific PD, and practices as recurrent patterns of facilitators’ utterances and actions for 
managing the jobs. These practices can be described and analyzed by revealing the underlying 
facilitator orientations and situative goals on which the facilitator implicitly or explicitly draws:    

Orientations: Generic or content-related beliefs and pedagogical attitudes (e.g., about teachers’ 
thinking or about the PD content) that implicitly or explicitly guide the facilitators’ perceptions and 
prioritization of jobs (e.g., participant orientation).   

Situative goals: The goals that the facilitators pursue in a respective situation can directly refer to 
PD content learning goals (in brief, PD learning goals), can address process qualities (e.g., 

Proceedings of CERME12 4763



 

 

cognitive activation, briefly, process goals), or can be of an atmospheric nature (briefly atmospheric 
goals).  (Prediger et al., 2021, p. 8) 

Thus, goals and orientations determine how facilitators act in a specific situation, and it is important 
to make them visible in facilitators’ practices. For that purpose, scriptwriting tasks are a useful tool, 
which allow for creating a fictional context in which facilitators need to simulate their practice.  

Scriptwriting tasks as approximation of PD practices 

So far, scriptwriting tasks have been employed on the teacher level as a tool that functions as a bridge 
between planning and the actual course of action in the classroom by providing classroom situations 
for teachers to react to learners’ utterances and provide possible explanations (Zazkis & Sinclair, 
2013). By using scriptwriting tasks, one can draw on a situated approach to enable the approximation 
of the actual act of supporting students, but instead in a fictionalized situation. Scriptwriting tasks 
have been accordingly implemented as a means of investigating pre-service teachers’ understanding 
of content and facilitating of learning (Lim et al., 2018); and with in-service teachers (Kontorovich 
& Zazkis, 2016) to assess how teachers deal with student alternate conceptions. Scriptwriting tasks, 
however, have not yet been utilized as a tool for assessing facilitators practices in response to 
teachers’ orientations in a situated fictional PD context.  

Aims and research questions 

To examine PD facilitators’ practices in response to teachers’ orientations for supporting at-risk 
students, we employed a scriptwriting task to first provide facilitators with a fictional situation in 
which teachers in a PD are provided with a student dialogue of three students working on a task and 
then with a discussion between three teachers concerning how they would continue the conversation 
with the students. The facilitators were then given the task to first complete the dialogue with the 
fictional teachers and guide them to in discussing how to support the fictional students and, second, 
to provide rationale as to why they ended the dialogue at the chosen moment. We pursued the 
following research question:  

RQ: What practices do facilitators apply to respond to teachers’ orientations for supporting at-risk 
students in completing the scriptwriting task, and what situative goals are behind these practices?  

Methodology 
Instrument: scriptwriting task 

The scriptwriting task was developed based on a classroom-level task concerning filling in the tens 
between 0 and 100 on a number line that contained the following prompt: How can you plot and label 
numbers on the number line? What can help you? The scriptwriting task included a fictional dialogue 
of three students with alternate conceptions of the task discussing their solutions followed by a 
fictional teacher dialogue of three teachers discussing how they could support the students in 
completing the task (Figure 1). 
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 Figure 1: The scriptwriting task student dialogue (on the left) and teacher dialogue (on the right) 

After reading the fictional dialogues of the three students and the three teachers, the facilitators were 
asked to complete the dialogue with the three teachers (Karin, Sabine and Jana), thereby 
demonstrating how they will address the teachers’ orientations for supporting at-risk students and 
help the teachers to foster student understanding of the basic concepts in the task. The four contrasting 
sets of teacher orientations for supporting at-risk students were embedded in the scriptwriting task. 

Participants, data collection and data analysis 

In total, a group of 14 PD facilitators from the federal state of Berlin were asked to participate in this 
study and were provided with the number line scriptwriting task described in the previous section. 
Six facilitators agreed to participate. All of the facilitators led PD courses in the program Mastering 
Math for primary school mathematics teachers, which focuses on means of supporting students at risk 
of being left behind. The Mastering Math PD program centers on the four sets of principles: (1) 
diagnostic vs. syllabus-bound orientation; (2) conceptual vs. procedural orientation; (3) long-term vs. 
short-term orientation; and (4) communicative vs. individualistic orientation. We selected these 
unique written scripts from two of the facilitators, in particular, as these two contrasting cases of 
facilitator practices illustrate how two facilitators react differently in the same fictive PD situation to 
enhance teachers’ learning processes. 

Results 
The two written scripts demonstrate the facilitators’ contrasting approaches in the extent to which 
they attempt to convince the teachers of the guiding principles of the PD program for supporting at-
risk students. While the first facilitator poses questions and encourages the three teachers in the 
fictional PD situation to discuss the student misconceptions from the task without visibly advancing 
the guiding principles of the PD, the second facilitator more directly challenges the teachers who are 
not convinced by the guiding principles and engages them in a discussion surrounding long-term 
mastery achievement and diagnosing individual student capabilities in order to help move students 
forward. The two transcripts of the written scripts and the contrasting practices are presented in the 
following sections.   
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Case one: A hands-off approach to conveying PD guiding ideas 

The facilitator in the first transcript encourages the teachers to provide their opinions concerning the 
challenges the students in the fictional dialogue encountered by posing questions as to the students’ 
different approaches and different problems they faced. The facilitator responds to the teachers either 
by demonstrating agreement with the comments concerning Martin’s problem that interferes with his 
understanding of the task and adding to the teachers’ ideas with a short commentary that reflects the 
guiding ideas of the PD, or by remaining neutral by closing the discussion without further comment. 

1 Facilitator: The three students have different bases of understanding. What is the 
difference between Noah’s and Martin’s solutions? 

2 Jana: Noah has a strategy. He knows that he first has to look for the middle and 
then has to record the remaining numbers at equal intervals. 

3 Facilitator: And Martin? […] And what is Jonas’ problem? 
7 Karin:  Jonas obviously doesn’t know what is meant by tens. That is why I would 

first quickly explain it to him. 
8 Jana: I don’t think explaining will help. He could discover it for himself by showing 

him the work of the other two children. The children could then make 
comparisons themselves. 

9 Facilitator: Exactly. Martin has a fundamental problem. He may not yet have an 
understanding of place value. According to MSK, sustainable learning 
especially for at-risk students should be oriented towards building 
understanding. One of the guiding ideas of MSK is to promote 
communication. So what would have to happen for me to catch Martin up? 

11 Karin: Well, with some students it’s really hopeless. I wouldn’t waste so much time, 
but rather concentrate on the better-performing students. 

12 Jana: I believe that children have only really understood a subject when they can 
explain it in their own words. 

13 Facilitator: Thank you very much for your contributions and your assessment. At this 
point I would like to end the discussion for now and show you a short film. 

The facilitator continues the dialogue in such a manner echoing the main elements of the dialogue 
beginning such that Karin expresses a distinct opinion concerning how to support at-risk students, 
reiterating that short-term, quick approaches are necessary, especially for such “hopeless” students 
when support can instead be focused on “better-performing students.” It is evident that the facilitator 
identified the teacher orientations from the scriptwriting task dialogue and extended these to the 
continuation of the dialogue. The facilitator does not respond to Karin’s comments, however, but 
makes it clear that such orientations can be expressed in the PD. In response to the follow-up question 
regarding why the facilitator ended the dialogue at that specific moment, the facilitator explained: 

 Facilitator 1:  Karin is obviously still of the old school, according to the motto: Explain 
quickly and then continue with the material, don't waste any time. It is more 
important for her to support the better-performing students. The other two 
participants are more oriented towards the principles of MSK. In the first 
round of discussion, I would not try to persuade them. It is not about 
persuasion, but especially such teachers like Karin should be able to make 
their own discoveries and not be discouraged […] 

Thus, the facilitator reiterates her strategy of first assessing the orientations of the participating 
teachers, before engaging them or encouraging them to think about their viewpoints and their actions 
in the classroom. The facilitator creates an atmosphere in which the teachers are encouraged to 
express their opinions, at this stage, however, the facilitator does not push the teachers to reflect on 
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their positions and reasoning behind such viewpoints or have the teachers focus more deeply on the 
mathematics behind the students’ different representations from the student dialogue. 

Case two: A direct approach to conveying PD guiding ideas  

The second facilitator takes a different approach in the continuation of the dialogue with the three 
teachers in the written script and provides evaluative comments (see turn 24) of one of the teacher’s 
comments concerning spending too much time on the process of remediation for students considered 
not capable of doing math. 

7 Karin: But that can take a long time until Martin understands it. What if he doesn't 
realize that 50 has to be in the middle...then we'll still be sitting together the 
day after tomorrow. 

8 Facilitator: You're really making an important point here. There are children for whom 
MSK is ultimately not suitable either. And this would be a good time to find 
out what Martin's situation is like. If it's not clear to him that 50 is half of 100, 
and if he's not able to think in tens, then he needs a different kind of support. 
We would have to take a closer look at that in any case […] 

21 Facilitator: …But why (looking at Karin) is that so important anyway, that we take so 
much time for this whole process? […] 

23 Karin: But that takes an infinitely long time. And there are simply children where I 
don't know if that really helps. Math is also a bit like that - either you can do 
it or you can't. 

24 Facilitator: Yes, that's still a widespread belief. And there really are kids for whom it's 
very difficult to achieve. But there are also many who just need a little more 
time and visualization and action. And time for visualization....so...they need 
to be able to link what they see to their thinking. And when they get that, it 
clicks pretty quickly. Then they replace their misconceptions with more 
appropriate ones. If you have experienced this yourself a few times, then you 
can comprehend it better. You just have to do a few remedial lessons, and 
then you realize that. But it also takes a bit of time to develop a feeling for 
which children they really make a difference and for which ones you still have 
to look for other forms of support. But when you get the children further 
along, it's totally satisfying for everyone. Can you live with that for now, 
Karin? 

25 Karin: [nods] 
26 Jana: And luckily we don't have any time pressure in remedial lessons. It just 

doesn't make sense to keep going if the kids haven't understood it yet. 
27 Facilitator: Exactly, that's the great thing about remedial lessons! But unfortunately we 

do have a bit of time pressure...we're going to get on with our program now. 
Anyway, I'm really looking forward to your reports from your first remedial 
lessons. 

The second facilitator responds directly to Karin and even states that the idea that some children 
cannot do mathematics is “still a widespread belief,” and then explains how to support children 
who struggle with more time and visualizations. While the facilitator does provide an evaluative 
response to Karin’s statements, the facilitator asks Karin if she can try “to live with” the principle 
of long-term mastery for the time being, and moreover, the facilitator suggests that once Karin has 
completed a few remedial lessons, she will better understand the process of remediation. Thereby, 
the facilitator creates an atmosphere in which teachers with opposing orientations to the guiding 
principles of the PD are not completely discounted. In response to ending the continuation of the 
dialogue, the PD facilitator explains that such beliefs or orientations cannot be changed in one 
discussion as they are deeply rooted and will hopefully change with experience and observation: 
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 Facilitator 2:  Jana and Sabine are on the right track already and the essentials for 

conducting support discussions have been said. Karin still has doubts. But 
they can't be dispelled with a single conversation. These are deeply anchored 
beliefs about learning that - hopefully - will gradually disappear once Karin 
has gained her own experience and realizes that her colleagues are more 
convinced. 

The facilitator thus acknowledges that changing a teacher’s orientation to reflect the PD principles 
will not happen immediately and notes the role of the other members of the PD as relevant for 
influencing orientations. While the facilitator did respond to Karin’s comments concerning some 
children who just cannot do mathematics, the facilitator does not press Karin further and instead 
provides an opportunity for another teacher in the PD to express support for long-term mastery. 

Discussion and conclusion 
The exemplifying cases show how facilitators could react differently in a PD in response to teachers’ 
orientations. Facilitator 1 creates a situation when completing the scriptwriting task in which the 
facilitator pursues the content goal by directing the teachers’ focus to students’ thinking and 
challenges in solving the task, to then diagnosing students’ learning processes in light of PD guiding 
principles. Facilitator 1 therefore purses the content goal by illustrating one of the PD guiding 
principles by analyzing the students’ potential and challenges. The assertion of one of the teachers 
that it is important to avoid wasting time on students who are not able to understand is left 
uncommented. The facilitator thus seems to demonstrate the need to show esteem for participants 
and therefore, especially at the beginning of the PD, purses atmospheric goals instead of the content 
goal. In contrast, facilitator 2 discusses and confronts the orientation the teacher shows who insists 
on avoiding wasting time. Moreover, the facilitator consequently defends the PD guiding principles, 
thus focusing on the content goal, despite repeated objections of the teacher. Moreover, the facilitator 
seems to try to provoke the teacher to reinterpret or invalidate her own orientation. At the same time, 
the facilitator engages the teacher in the discussion process and shows esteem for her, presumably to 
maintain a good atmosphere. The practices of facilitator 1 match facilitator 2 practices to some 
respect, as both seem to recognize and take teachers’ orientations into account. Furthermore, both 
facilitators refer to the PD guiding principles, with a focus on the content goal, albeit to different 
extents. In addition, both facilitators are anxious to maintain a good atmosphere.  

As there have been calls for ways to expand research on expanding the professional growth of 
facilitators (Borko et al., 2014; Lesseig et al., 2017), this research responds with a research tool that 
can be utilized to fill this gap. The scriptwriting task as a tool for professional development of PD 
facilitators of mathematics represents a situated form of practice. First, as a tool for facilitator 
educators to examine facilitator practices in responding to teachers’ orientations, and second, as a 
means of discussing such responses to help facilitators continue on their path of professional growth. 
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